WorldWideScience

Sample records for inbred mouse model

  1. A mouse model system for genetic analysis of sociability: C57BL/6J versus BALB/cJ inbred mouse strains.

    Science.gov (United States)

    Sankoorikal, Geena Mary V; Kaercher, Kristin A; Boon, Catherine J; Lee, Jin Kyoung; Brodkin, Edward S

    2006-03-01

    Impairments in social behaviors are highly disabling symptoms of autism, schizophrenia, and other psychiatric disorders. Mouse model systems are useful for identifying the many genes and environmental factors likely to affect complex behaviors, such as sociability (the tendency to seek social interaction). To progress toward developing such a model system, we tested the hypothesis that C57BL/6J inbred mice show higher levels of sociability than BALB/cJ inbred mice. Mice tested for sociability were 4- and 9-week-old, male and female C57BL/6J and BALB/cJ mice. On 2 consecutive days, the sociability of each test mouse toward an unfamiliar 4-week-old DBA/2J stimulus mouse was assessed with a social choice paradigm conducted in a three-chambered apparatus. Measures of sociability included the time that the test mouse spent near versus far from the stimulus mouse, the time spent directly sniffing the stimulus mouse, and the time spent in contact between test and stimulus mice in a free interaction. C57BL/6J mice showed higher levels of sociability than BALB/cJ mice overall in each of these measures. We propose that C57BL/6J and BALB/cJ mice will be a useful mouse model system for future genetic and neurobiological studies of sociability.

  2. The mouse as a model for understanding chronic diseases of aging: the histopathologic basis of aging in inbred mice

    Directory of Open Access Journals (Sweden)

    David Harrison

    2011-06-01

    Full Text Available Inbred mice provide a unique tool to study aging populations because of the genetic homogeneity within an inbred strain, their short life span, and the tools for analysis which are available. A large-scale longitudinal and cross-sectional aging study was conducted on 30 inbred strains to determine, using histopathology, the type and diversity of diseases mice develop as they age. These data provide tools that when linked with modern in silico genetic mapping tools, can begin to unravel the complex genetics of many of the common chronic diseases associated with aging in humans and other mammals. In addition, novel disease models were discovered in some strains, such as rhabdomyosarcoma in old A/J mice, to diseases affecting many but not all strains including pseudoxanthoma elasticum, pulmonary adenoma, alopecia areata, and many others. This extensive data set is now available online and provides a useful tool to help better understand strain-specific background diseases that can complicate interpretation of genetically engineered mice and other manipulatable mouse studies that utilize these strains.

  3. Towards mouse models of perseveration: a heritable component in extinction of operant behavior in fourteen standard and recombinant inbred mouse lines.

    NARCIS (Netherlands)

    Malkki, H.A.I.; Donga, L.A.B.; de Groot, S.E.; Brussaard, A.B.; Borst, J.G.G.; Elgersma, J.W.; Galjart, N.; van der Horst, G.T.; Levelt, C.N.; Pennartz, C.M.A.; Smit, A.B.; Spruijt, B.M.; Verhage, M.; de Zeeuw, C.I.; Battaglia, F.P.

    2011-01-01

    Extinction of instrumental responses is an essential skill for adaptive behavior such as foraging. So far, only few studies have focused on extinction following appetitive conditioning in mice. We studied extinction of appetitive operant lever-press behavior in six standard inbred mouse strains

  4. Initial locomotor sensitivity to cocaine varies widely among inbred mouse strains.

    Science.gov (United States)

    Wiltshire, T; Ervin, R B; Duan, H; Bogue, M A; Zamboni, W C; Cook, S; Chung, W; Zou, F; Tarantino, L M

    2015-03-01

    Initial sensitivity to psychostimulants can predict subsequent use and abuse in humans. Acute locomotor activation in response to psychostimulants is commonly used as an animal model of initial drug sensitivity and has been shown to have a substantial genetic component. Identifying the specific genetic differences that lead to phenotypic differences in initial drug sensitivity can advance our understanding of the processes that lead to addiction. Phenotyping inbred mouse strain panels are frequently used as a first step for studying the genetic architecture of complex traits. We assessed locomotor activation following a single, acute 20 mg/kg dose of cocaine (COC) in males from 45 inbred mouse strains and observed significant phenotypic variation across strains indicating a substantial genetic component. We also measured levels of COC, the active metabolite, norcocaine and the major inactive metabolite, benzoylecgonine, in plasma and brain in the same set of inbred strains. Pharmacokinetic (PK) and behavioral data were significantly correlated, but at a level that indicates that PK alone does not account for the behavioral differences observed across strains. Phenotypic data from this reference population of inbred strains can be utilized in studies aimed at examining the role of psychostimulant-induced locomotor activation on drug reward and reinforcement and to test theories about addiction processes. Moreover, these data serve as a starting point for identifying genes that alter sensitivity to the locomotor stimulatory effects of COC. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  5. Estimation of genetic variability level in inbred CF1 mouse lines ...

    Indian Academy of Sciences (India)

    3Cátedra de Producción de Bovinos para carne, Facultad de Ciencias Veterinarias, CIC, Universidad Nacional de Rosario,. Argentina, Ov. Lagos y Ruta 33 (2170) Casilda, Argentina. [Renny M., Julio N. B., Bernardi S. F., Gardenal C. N. and Oyarzabal M. I. 2014 Estimation of genetic variability level in inbred CF1 mouse.

  6. Comparison of inbred mouse substrains reveals segregation of maladaptive fear phenotypes

    Directory of Open Access Journals (Sweden)

    Stephanie J Temme

    2014-08-01

    Full Text Available Maladaptive fear, such as fear that is persistent or easily generalized to a nonthreatening stimuli, is associated with anxiety-related disorders in humans. In the laboratory, maladaptive fear can be modeled in rodents using Pavlovian fear conditioning. Recently, an inbred mouse strain known as 129S1/SvImJ, or 129S1 have been reported as exhibiting impairments in fear extinction and enhanced fear generalization. With a long-term goal of identifying segregating genetic markers of maladaptive fear, we used Pavlovian fear conditioning to characterize a closely related substrain designated as 129S6/SvEvTac, or 129S6. Here we report that, like 129S1 animals, 129S6 mice exhibit appropriate levels of fear upon conditioning, but are unable to extinguish fear memories once they are consolidated. Importantly, the maladaptive fear phenotype in this inbred stain can be segregated by sub-strain when probed using conditioning protocols designed to assess generalized fear. We find that unlike the 129S1 substrain, mice from the 129S6 sub-strain do not generalize conditioned fear to previously novel contexts and can learn to discriminate between two similar contexts when trained using a discrimination protocol. These results suggest that at least two forms of maladaptive fear (deficits in fear extinction and fear generalization can be can be functionally segregated, further suggesting that the underlying neurobiology is heritable. Given the observation that two closely related sub-strains can exhibit different constellations of maladaptive fear suggests that these findings could be exploited to facilitate the identification of candidate genes for anxiety-related disorders.

  7. Estimation of genetic variability level in inbred CF1 mouse lines ...

    Indian Academy of Sciences (India)

    Estimation of genetic variability level in inbred CF1 mouse lines selected for body weight. MAURICIO RENNY1, NORMA B. JULIO1, SANDRA F. BERNARDI2, CRISTINA N. GARDENAL1 and MARÍA INÉS OYARZABAL3∗. 1Cátedra de Genética de Poblaciones y Evolución, Facultad de Ciencias Exactas, Físicas y Naturales ...

  8. Gene expression profiling in the striatum of inbred mouse strains with distinct opioid-related phenotypes

    Directory of Open Access Journals (Sweden)

    Piechota Marcin

    2006-06-01

    Full Text Available Abstract Background Mouse strains with a contrasting response to morphine provide a unique model for studying the genetically determined diversity of sensitivity to opioid reward, tolerance and dependence. Four inbred strains selected for this study exhibit the most distinct opioid-related phenotypes. C57BL/6J and DBA/2J mice show remarkable differences in morphine-induced antinociception, self-administration and locomotor activity. 129P3/J mice display low morphine tolerance and dependence in contrast to high sensitivity to precipitated withdrawal observed in SWR/J and C57BL/6J strains. In this study, we attempted to investigate the relationships between genetic background and basal gene expression profile in the striatum, a brain region involved in the mechanism of opioid action. Results Gene expression was studied by Affymetrix Mouse Genome 430v2.0 arrays with probes for over 39.000 transcripts. Analysis of variance with the control for false discovery rate (q Khdrbs1 and ATPase Na+/K+ alpha2 subunit (Atp1a2 with morphine self-administration and analgesic effects, respectively. Finally, the examination of transcript structure demonstrated a possible inter-strain variability of expressed mRNA forms as for example the catechol-O-methyltransferase (Comt gene. Conclusion The presented study led to the recognition of differences in the gene expression that may account for distinct phenotypes. Moreover, results indicate strong contribution of genetic background to differences in gene transcription in the mouse striatum. The genes identified in this work constitute promising candidates for further animal studies and for translational genetic studies in the field of addictive and analgesic properties of opioids.

  9. Genotype-dependent consequences of traumatic stress in four inbred mouse strains.

    Science.gov (United States)

    Szklarczyk, K; Korostynski, M; Golda, S; Solecki, W; Przewlocki, R

    2012-11-01

    Post-traumatic stress disorder (PTSD) is an anxiety disorder that develops in predisposed individuals following a terrifying event. Studies on isogenic animal populations might explain susceptibility to PTSD by revealing associations between the molecular and behavioural consequences of traumatic stress. Our study employed four inbred mouse strains to search for differences in post-stress response to a 1.5-mA electric foot shock. One day to 6 weeks after the foot shock anxiety, depression and addiction-like phenotypes were assessed. In addition, expression levels of selected stress-related genes were analysed in hippocampus and amygdala. C57BL/6J mice exhibited up-regulation in the expression of Tsc22d3, Nfkbia, Plat and Crhr1 genes in both brain regions. These alterations were associated with an increase of sensitized fear and depressive-like behaviour over time. Traumatic stress induced expression of Tsc22d3, Nfkbia, Plat and Fkbp5 genes and developed social withdrawal in DBA/2J mice. In 129P3/J strain, exposure to stress produced the up-regulation of Tsc22d3 and Nfkbia genes and enhanced sensitivity to the rewarding properties of morphine. Whereas, SWR/J mice displayed increase only in Pdyn expression in the amygdala and had the lowest conditioned fear. Our results reveal a complex genetic background of phenotypic variation in response to stress and indicate the SWR/J strain as a valuable model of stress resistance. We found potential links between the alterations in expression of Tsc22d3, Nfkbia and Pdyn, and different aspects of susceptibility to stress. © 2012 The Authors. Genes, Brain and Behavior © 2012 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society.

  10. Nocardia infections in congenitally athymic (nude) mice and in other inbred mouse strains.

    Science.gov (United States)

    Folb, P I; Timme, A; Horowitz, A

    1977-01-01

    The mortality rate and histopathological features of Nocardia asteroides and Nocardia brasiliensis infections in congenitally athymic (nude) mice of ICR and C3H/eB origins were quite different from what we found for Swiss white mice and other inbred mouse strains (namely, C57/BL/6J, New Zealand Black, BALB/c, CBA/LAC, and C3H/eB). The immunocompetent littermates of the congenitally athymic mice occupied an intermediate position between their athymic siblings and Swiss white mice in terms of their responses to both these organisms. Macrophage ingestion and destruction of N. brasiliensis, as demonstrated by electron microscopy, was found to occur. The T-lymphocyte appears to be an essential component in normal mouse resistance to infection by both N. asteroides and N. brasiliensis. Images PMID:336547

  11. Correlation between DNA repair of embryonic fibroblasts and different life span of 3 inbred mouse strains

    Energy Technology Data Exchange (ETDEWEB)

    Paffenholz, V.

    1978-02-01

    Primary mouse fibroblast cultures were established from 10 day old embryos of 3 inbred strains with a genetically determined different life expectancy. The capacity for unscheduled DNA synthesis following uv irradiation was studied in these cells at various passage levels of the in vitro ageing process. The mouse fibroblasts show considerable repair synthesis corresponding to the duration of exposure time. The capacity for induction of unscheduled DNA synthesis was different in the cells of each strain and correlated to the natural life span of the animal. In each case, however, the ability to perform repair synthesis was subjected to an age-associated decline, although semiconservative DNA synthesis and proliferative potential of the cell was not changed until the cultures entered phase III passages.

  12. Genetic, sex, and diet effects on body weight and obesity in the Berlin Fat Mouse Inbred lines.

    Science.gov (United States)

    Wagener, Asja; Schmitt, Armin O; Aksu, Soner; Schlote, Werner; Neuschl, Christina; Brockmann, Gudrun A

    2006-11-27

    Mouse lines long-term selected for high fatness offer the possibility to identify individual genes involved in the development of obesity. The Berlin Fat Mouse (BFM) line has been selected for low protein content and afterward for high fatness. Three Berlin Fat Mouse Inbred (BFMI) lines, which are derivates of the selection line BFM and an unselected control line (C57BL/6; B6) were systematically phenotyped between 3 and 20 wk. The body weights and body compositions were measured on a weekly basis. We demonstrated that the BFMI lines dispose of more body weight, body fat mass, and body lean mass than the control line B6 because of a better feed efficiency in these lines. In contrast to other growth-selected mouse lines, the BFMI lines exhibited a general increase in body fat mass but only a marginal increase in body lean mass. The three BFMI lines also showed line- and sex-specific patterns and varied in their response to high-fat diet. The phenotypic differences between the BFMI lines can be traced back to different sets of fixed alleles contributing to fat accumulation and diet-induced obesity. Our results demonstrate that the genetically related BFMI lines are novel models to study the genetic as well as the nutritional aspects of obesity.

  13. Unpredictable chronic mild stress differentially impairs social and contextual discrimination learning in two inbred mouse strains.

    Directory of Open Access Journals (Sweden)

    Michiel van Boxelaere

    Full Text Available Alterations in the social and cognitive domain are considered important indicators for increased disability in many stress-related disorders. Similar impairments have been observed in rodents chronically exposed to stress, mimicking potential endophenotypes of stress-related psychopathologies such as major depression disorder (MDD, anxiety, conduct disorder, and posttraumatic stress disorder (PTSD. Data from numerous studies suggest that deficient plasticity mechanisms in hippocampus (HC and prefrontal cortex (PFC might underlie these social and cognitive deficits. Specifically, stress-induced deficiencies in neural plasticity have been associated with a hypodopaminergic state and reduced neural plasticity persistence. Here we assessed the effects of unpredictable chronic mild stress (UCMS on exploratory, social and cognitive behavior of females of two inbred mouse strains (C57BL/6J and DBA/2J that differ in their dopaminergic profile. Exposure to chronic stress resulted in impaired circadian rhythmicity, sociability and social cognition in both inbred strains, but differentially affected activity patterns and contextual discrimination performance. These stress-induced behavioral impairments were accompanied by reduced expression levels of brain derived neurotrophic factor (BDNF in the prefrontal cortex. The strain-specific cognitive impairment was coexistent with enhanced plasma corticosterone levels and reduced expression of genes related to dopamine signaling in hippocampus. These results underline the importance of assessing different strains with multiple test batteries to elucidate the neural and genetic basis of social and cognitive impairments related to chronic stress.

  14. Unpredictable chronic mild stress differentially impairs social and contextual discrimination learning in two inbred mouse strains.

    Science.gov (United States)

    van Boxelaere, Michiel; Clements, Jason; Callaerts, Patrick; D'Hooge, Rudi; Callaerts-Vegh, Zsuzsanna

    2017-01-01

    Alterations in the social and cognitive domain are considered important indicators for increased disability in many stress-related disorders. Similar impairments have been observed in rodents chronically exposed to stress, mimicking potential endophenotypes of stress-related psychopathologies such as major depression disorder (MDD), anxiety, conduct disorder, and posttraumatic stress disorder (PTSD). Data from numerous studies suggest that deficient plasticity mechanisms in hippocampus (HC) and prefrontal cortex (PFC) might underlie these social and cognitive deficits. Specifically, stress-induced deficiencies in neural plasticity have been associated with a hypodopaminergic state and reduced neural plasticity persistence. Here we assessed the effects of unpredictable chronic mild stress (UCMS) on exploratory, social and cognitive behavior of females of two inbred mouse strains (C57BL/6J and DBA/2J) that differ in their dopaminergic profile. Exposure to chronic stress resulted in impaired circadian rhythmicity, sociability and social cognition in both inbred strains, but differentially affected activity patterns and contextual discrimination performance. These stress-induced behavioral impairments were accompanied by reduced expression levels of brain derived neurotrophic factor (BDNF) in the prefrontal cortex. The strain-specific cognitive impairment was coexistent with enhanced plasma corticosterone levels and reduced expression of genes related to dopamine signaling in hippocampus. These results underline the importance of assessing different strains with multiple test batteries to elucidate the neural and genetic basis of social and cognitive impairments related to chronic stress.

  15. Susceptibility of the wild-derived inbred CAST/Ei mouse to infection by orthopoxviruses analyzed by live bioluminescence imaging

    Energy Technology Data Exchange (ETDEWEB)

    Americo, Jeffrey L.; Sood, Cindy L.; Cotter, Catherine A.; Vogel, Jodi L.; Kristie, Thomas M.; Moss, Bernard, E-mail: bmoss@nih.gov; Earl, Patricia L., E-mail: pearl@nih.gov

    2014-01-20

    Classical inbred mice are extensively used for virus research. However, we recently found that some wild-derived inbred mouse strains are more susceptible than classical strains to monkeypox virus. Experiments described here indicated that the 50% lethal dose of vaccinia virus (VACV) and cowpox virus (CPXV) were two logs lower in wild-derived inbred CAST/Ei mice than classical inbred BALB/c mice, whereas there was little difference in the susceptibility of the mouse strains to herpes simplex virus. Live bioluminescence imaging was used to follow spread of pathogenic and attenuated VACV strains and CPXV virus from nasal passages to organs in the chest and abdomen of CAST/Ei mice. Luminescence increased first in the head and then simultaneously in the chest and abdomen in a dose-dependent manner. The spreading kinetics was more rapid with VACV than CPXV although the peak photon flux was similar. These data suggest advantages of CAST/Ei mice for orthopoxvirus studies. - Highlights: • Wild-derived inbred CAST/Ei mice are susceptible to vaccinia virus and cowpox virus. • Morbidity and mortality from orthopoxviruses are greater in CAST/Ei than BALB/c mice. • Morbidity and mortality from herpes simplex virus type 1 are similar in both mice. • Imaging shows virus spread from nose to lungs, abdominal organs and brain. • Vaccinia virus spreads more rapidly than cowpox virus.

  16. Functional coding variation in recombinant inbred mouse lines reveals multiple serotonin transporter-associated phenotypes.

    Science.gov (United States)

    Carneiro, Ana M D; Airey, David C; Thompson, Brent; Zhu, Chong-Bin; Lu, Lu; Chesler, Elissa J; Erikson, Keith M; Blakely, Randy D

    2009-02-10

    The human serotonin (5-hydroxytryptamine, 5-HT) transporter (hSERT, SLC6A4) figures prominently in the etiology and treatment of many prevalent neurobehavioral disorders including anxiety, alcoholism, depression, autism, and obsessive-compulsive disorder (OCD). Here, we use naturally occurring polymorphisms in recombinant inbred (RI) lines to identify multiple phenotypes associated with altered SERT function. The widely used mouse strain C57BL/6J, harbors a SERT haplotype defined by 2 nonsynonymous coding variants [Gly-39 and Lys-152 (GK)]. At these positions, many other mouse lines, including DBA/2J, encode, respectively, Glu-39 and Arg-152 (ER haplotype), amino acids found also in hSERT. Ex vivo synaptosomal 5-HT transport studies revealed reduced uptake associated with the GK variant, a finding confirmed by in vitro heterologous expression studies. Experimental and in silico approaches using RI lines (C57BL/6J x DBA/2J = BXD) identify multiple anatomical, biochemical, and behavioral phenotypes specifically impacted by GK/ER variation. Among our findings are several traits associated with alcohol consumption and multiple traits associated with dopamine signaling. Further bioinformatic analysis of BXD phenotypes, combined with biochemical evaluation of SERT knockout mice, nominates SERT-dependent 5-HT signaling as a major determinant of midbrain iron homeostasis that, in turn, dictates iron-regulated DA phenotypes. Our studies provide an example of the power of coordinated in vitro, in vivo, and in silico approaches using mouse RI lines to elucidate and quantify the system-level impact of gene variation.

  17. Neoplastic and nonneoplastic lesions in aging mice of unique and common inbred strains contribution to modeling of human neoplastic diseases.

    Science.gov (United States)

    Szymanska, H; Lechowska-Piskorowska, J; Krysiak, E; Strzalkowska, A; Unrug-Bielawska, K; Grygalewicz, B; Skurzak, H M; Pienkowska-Grela, B; Gajewska, M

    2014-05-01

    The evaluation of spontaneous lesions in classical inbred strains of mice has become increasingly important because genetically engineered mice (GEMs) are created on these backgrounds. Novel inbred strains-genetically diverse from classic strains-are valuable both as a new background for GEM mice and to increase the genetic variation found in laboratory mice. Newly arising spontaneous genetic alterations in commonly used strains may also lead to new and valuable mouse models of disease. This report evaluates gross and histological lesions in relatively new, classic, and rarely explored mouse inbred strains. Pathological lesions of 1273 mice from 12 inbred strains (129S1/SvW, A.CA-H2(f) /W, AKR/W, BALB/cW, BN/aW, C57BL/6 W, C57BL/10 W, C3H/W, C3H (wad) /W, CBA/W, DBA/2 W, and WOM/W) are reported. BN/aW, WOM/W, and C3H (wad) /W are novel inbred strains produced and maintained in the Department of Genetics and Laboratory Animal Breeding at the Center of Oncology, Warsaw, Poland. Both neoplastic and nonneoplastic lesions were examined. The prevalence of lung neoplasms was significantly higher in A.CA-H2(f) /W (33.3%) and BALB/cW (33.8%) mice (P WOM/W mice developed T-cell lymphoblastic lymphoma with high frequency (110/121 [90.9%] and 159/175 [90.9%], respectively) before 1 year of age. The occurrence of nonneoplastic lesions in the kidneys of BN/aW mice was increased (P < .01).

  18. Functional Coding Variation in Recombinant Inbred Mouse Lines Reveals Novel Serotonin Transporter-Associated Phenotypes

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, Ana [Vanderbilt University; Airey, David [University of Tennessee Health Science Center, Memphis; Thompson, Brent [Vanderbilt University; Zhu, C [Vanderbilt University; Rinchik, Eugene M [ORNL; Lu, Lu [University of Tennessee Health Science Center, Memphis; Chesler, Elissa J [ORNL; Erikson, Keith [University of North Carolina; Blakely, Randy [Vanderbilt University

    2009-01-01

    The human serotonin (5-hydroxytryptamine, 5-HT) transporter (hSERT, SLC6A4) figures prominently in the etiology or treatment of many prevalent neurobehavioral disorders including anxiety, alcoholism, depression, autism and obsessive-compulsive disorder (OCD). Here we utilize naturally occurring polymorphisms in recombinant inbred (RI) lines to identify novel phenotypes associated with altered SERT function. The widely used mouse strain C57BL/6J, harbors a SERT haplotype defined by two nonsynonymous coding variants (Gly39 and Lys152 (GK)). At these positions, many other mouse lines, including DBA/2J, encode Glu39 and Arg152 (ER haplotype), assignments found also in hSERT. Synaptosomal 5-HT transport studies revealed reduced uptake associated with the GK variant. Heterologous expression studies confirmed a reduced SERT turnover rate for the GK variant. Experimental and in silico approaches using RI lines (C57Bl/6J X DBA/2J=BXD) identifies multiple anatomical, biochemical and behavioral phenotypes specifically impacted by GK/ER variation. Among our findings are multiple traits associated with anxiety and alcohol consumption, as well as of the control of dopamine (DA) signaling. Further bioinformatic analysis of BXD phenotypes, combined with biochemical evaluation of SERT knockout mice, nominates SERT-dependent 5-HT signaling as a major determinant of midbrain iron homeostasis that, in turn, dictates ironregulated DA phenotypes. Our studies provide a novel example of the power of coordinated in vitro, in vivo and in silico approaches using murine RI lines to elucidate and quantify the system-level impact of gene variation.

  19. Cardiovascular response to beta-adrenergic blockade or activation in 23 inbred mouse strains.

    Directory of Open Access Journals (Sweden)

    Corinne Berthonneche

    Full Text Available We report the characterisation of 27 cardiovascular-related traits in 23 inbred mouse strains. Mice were phenotyped either in response to chronic administration of a single dose of the beta-adrenergic receptor blocker atenolol or under a low and a high dose of the beta-agonist isoproterenol and compared to baseline condition. The robustness of our data is supported by high trait heritabilities (typically H(2>0.7 and significant correlations of trait values measured in baseline condition with independent multistrain datasets of the Mouse Phenome Database. We then focused on the drug-, dose-, and strain-specific responses to beta-stimulation and beta-blockade of a selection of traits including heart rate, systolic blood pressure, cardiac weight indices, ECG parameters and body weight. Because of the wealth of data accumulated, we applied integrative analyses such as comprehensive bi-clustering to investigate the structure of the response across the different phenotypes, strains and experimental conditions. Information extracted from these analyses is discussed in terms of novelty and biological implications. For example, we observe that traits related to ventricular weight in most strains respond only to the high dose of isoproterenol, while heart rate and atrial weight are already affected by the low dose. Finally, we observe little concordance between strain similarity based on the phenotypes and genotypic relatedness computed from genomic SNP profiles. This indicates that cardiovascular phenotypes are unlikely to segregate according to global phylogeny, but rather be governed by smaller, local differences in the genetic architecture of the various strains.

  20. Virulence assessment of a Neospora caninum isolate for inbred C57BL/6 mouse

    Directory of Open Access Journals (Sweden)

    Lotfi, M.

    2012-06-01

    Full Text Available Neospora caninum (N. caninum is an apicomplexan parasite and causes abortion and congenital neosporosis in cattle worldwide. In this study, we evaluate the virulence of a N. caninum isolate on mouse strain C57BL/6. Six groups of five mice C57BL/6 were intraperitoneally inoculated with 1 × l07, 1.5 × l07, 2 × l07, 3 × l07 and 4 × l07 tachyzoites and a control inoculum of DMEM, respectively. Clinical signs and mortality rate were recorded and confirmed by histopathological findings and molecular method. The results of this study indicated that LD50 was 2.5 × l07 tachyzoites of N. caninum per C57BL/6 mouse. This can be used as a lethal challenge model in vaccine development studies.

  1. Prenatal exposure to alcohol does not affect radial maze learning and hippocampal mossy fiber sizes in three inbred strains of mouse

    Directory of Open Access Journals (Sweden)

    Bertholet Jean-Yves

    2005-04-01

    Full Text Available Abstract Background The aim of this study was to investigate the effects of prenatal alcohol exposure on radial-maze learning and hippocampal neuroanatomy, particularly the sizes of the intra- and infrapyramidal mossy fiber (IIPMF terminal fields, in three inbred strains of mice (C57BL/6J, BALB/cJ, and DBA/2J. Results Although we anticipated a modification of both learning and IIPMF sizes, no such effects were detected. Prenatal alcohol exposure did, however, interfere with reproduction in C57BL/6J animals and decrease body and brain weight (in interaction with the genotype at adult age. Conclusion Prenatal alcohol exposure influenced neither radial maze performance nor the sizes of the IIPMF terminal fields. We believe that future research should be pointed either at different targets when using mouse models for Fetal Alcohol Syndrome (e.g. more complicated behavioral paradigms, different hippocampal substructures, or other brain structures or involve different animal models.

  2. Mouse Behavioral Tasks Relevant to Autism: Phenotypes of Ten Inbred Strains

    Science.gov (United States)

    Moy, Sheryl S.; Nadler, Jessica J.; Young, Nancy B.; Perez, Antonio; Holloway, L. Paige; Barbaro, Ryan P.; Barbaro, Justin R.; West, Lindsay M.; Threadgill, David W.; Lauder, Jean M.; Magnuson, Terry R.; Crawley, Jacqueline N.

    2007-01-01

    Three defining clinical symptoms of autism are aberrant reciprocal social interactions, deficits in social communication, and repetitive behaviors, including motor stereotypies and insistence on sameness. We developed a set of behavioral tasks designed to model components of these core symptoms in mice. Male mice from ten inbred strains were characterized in assays for sociability, preference for social novelty, and reversal of the spatial location of the reinforcer in T-maze and Morris water maze tasks. Six strains, C57BL/6J, C57L/J, DBA/2J, FVB/NJ, C3H/HeJ, and AKR/J, showed significant levels of sociability, while A/J, BALB/cByJ, BTBR T+tf/J, and 129S1/SvImJ mice did not. C57BL/6J, C57L/J, DBA/2J, FVB/NJ, BALB/cByJ, and BTBR T+tf/J showed significant preference for social novelty, while C3H/HeJ, AKR/J, A/J, and 129S1/SvImJ did not. Normal scores on relevant control measures confirmed general health and physical abilities in all strains, ruling out artifactual explanations for social deficits. Elevated plus maze scores confirmed high anxiety-like behaviors in A/J, BALB/cByJ, and 129S1/SvImJ, which could underlie components of their low social approach. Strains that showed high levels of performance on acquisition of a T-maze task were also able to reach criterion for reversal learning. On the Morris water maze task, DBA/2J, AKR/J, BTBR T+tf/J, and 129S1/SvImJ failed to show significant quadrant preference during the reversal probe trial. These results highlight a dissociation between social task performance and reversal learning. BTBR T+tf/J is a particularly interesting strain, displaying both low social approach and resistance to change in routine on the water maze, consistent with an autism-like phenotype. Our multitask strategy for modeling symptoms of autism will be useful for investigating targeted and random gene mutations, QTLs, and microarray analyses. PMID:16971002

  3. Variation in Taxonomic Composition of the Fecal Microbiota in an Inbred Mouse Strain across Individuals and Time.

    Science.gov (United States)

    Hoy, Yana Emmy; Bik, Elisabeth M; Lawley, Trevor D; Holmes, Susan P; Monack, Denise M; Theriot, Julie A; Relman, David A

    2015-01-01

    Genetics, diet, and other environmental exposures are thought to be major factors in the development and composition of the intestinal microbiota of animals. However, the relative contributions of these factors in adult animals, as well as variation with time in a variety of important settings, are still not fully understood. We studied a population of inbred, female mice fed the same diet and housed under the same conditions. We collected fecal samples from 46 individual mice over two weeks, sampling four of these mice for periods as long as 236 days for a total of 190 samples, and determined the phylogenetic composition of their microbial communities after analyzing 1,849,990 high-quality pyrosequencing reads of the 16S rRNA gene V3 region. Even under these controlled conditions, we found significant inter-individual variation in community composition, as well as variation within an individual over time, including increases in alpha diversity during the first 2 months of co-habitation. Some variation was explained by mouse membership in different cage and vendor shipment groups. The differences among individual mice from the same shipment group and cage were still significant. Overall, we found that 23% of the variation in intestinal microbiota composition was explained by changes within the fecal microbiota of a mouse over time, 12% was explained by persistent differences among individual mice, 14% by cage, and 18% by shipment group. Our findings suggest that the microbiota of controlled populations of inbred laboratory animals may not be as uniform as previously thought, that animal rearing and handling may account for some variation, and that as yet unidentified factors may explain additional components of variation in the composition of the microbiota within populations and individuals over time. These findings have implications for the design and interpretation of experiments involving laboratory animals.

  4. Development of a Murine Model for Aerosolized Ebolavirus Infection Using a Panel of Recombinant Inbred Mice

    Directory of Open Access Journals (Sweden)

    Malak Kotb

    2012-12-01

    Full Text Available Countering aerosolized filovirus infection is a major priority of biodefense research.  Aerosol models of filovirus infection have been developed in knock-out mice, guinea pigs and non-human primates; however, filovirus infection of immunocompetent mice by the aerosol route has not been reported.  A murine model of aerosolized filovirus infection in mice should be useful for screening vaccine candidates and therapies.  In this study, various strains of wild-type and immunocompromised mice were exposed to aerosolized wild-type (WT or mouse-adapted (MA Ebola virus (EBOV.  Upon exposure to aerosolized WT-EBOV, BALB/c, C57BL/6 (B6, and DBA/2 (D2 mice were unaffected, but 100% of severe combined immunodeficiency (SCID and 90% of signal transducers and activators of transcription (Stat1 knock-out (KO mice became moribund between 7–9 days post-exposure (dpe.  Exposure to MA-EBOV caused 15% body weight loss in BALB/c, but all mice recovered.  In contrast, 10–30% lethality was observed in B6 and D2 mice exposed to aerosolized MA-EBOV, and 100% of SCID, Stat1 KO, interferon (IFN-γ KO and Perforin KO mice became moribund between 7–14 dpe. In order to identify wild-type, inbred, mouse strains in which exposure to aerosolized MA-EBOV is uniformly lethal, 60 BXD (C57BL/6 crossed with DBA/2 recombinant inbred (RI and advanced RI (ARI mouse strains were exposed to aerosolized MA-EBOV, and monitored for disease severity. A complete spectrum of disease severity was observed. All BXD strains lost weight but many recovered. However, infection was uniformly lethal within 7 to 12 days post-exposure in five BXD strains.  Aerosol exposure of these five BXD strains to 10-fold less MA-EBOV resulted in lethality ranging from 0% in two strains to 90–100% lethality in two strains.  Analysis of post-mortem tissue from BXD strains that became moribund and were euthanized at the lower dose of MA-EBOV, showed liver damage in all mice as well as lung lesions in

  5. Genetic and diet effects on Ppar-α and Ppar-γ signaling pathways in the Berlin Fat Mouse Inbred line with genetic predisposition for obesity

    Directory of Open Access Journals (Sweden)

    Wagener Asja

    2010-09-01

    Full Text Available Abstract Background The Berlin Fat Mouse Inbred (BFMI line is a new mouse model for obesity, which was long-term selected for high fatness. Peroxisome proliferator-activated receptors (PPARs are involved in the control of energy homeostasis, nutrient metabolism and cell proliferation. Here, we studied the expression patterns of the different Ppar genes and the genes in the PPAR pathway in the BFMI line in comparison to physiological changes. Results At the age of 10 weeks, the BFMI mice exhibited marked obesity with enlarged adipocytes and high serum triglycerides concentrations in comparison to the often used mouse line C57BL/6 (B6. Between these two lines, gene expression analyses revealed differentially expressed genes belonging to the PPAR pathway, in particular genes of the lipogenesis and the fatty acid transport. Conclusion Surprisingly, the Ppar-α gene expression was up-regulated in liver and Ppar-γ gene expression was down-regulated in the white adipose tissue, indicating the activation of a mechanism that counteracts the rise of obesity.

  6. Enhanced alcohol self-administration and reinstatement in a highly impulsive, inattentive recombinant inbred mouse strain

    Directory of Open Access Journals (Sweden)

    Maarten eLoos

    2013-10-01

    Full Text Available Deficits in executive control have frequently been associated with alcohol use disorder. Here we investigated to what extent pre-existing genetically encoded levels of impulsive/inattentive behavior associate with motivation to take alcohol and vulnerability to cue-induced reinstatement of alcohol seeking in an operant self-administration paradigm. We took advantage of BXD16, a recombinant inbred strain previously shown to have enhanced impulsivity and poor attentional control. We compared BXD16 with C57BL/6J mice in a simple choice reaction time task (SCRTT and confirmed its impulsive/inattentive phenotype. BXD16 mice were less active in a novel open field, and were equally active in an automated home cage environment, showing that increased impulsive responding of BXD16 mice could not be explained by enhanced general activity compared to C57BL/6J mice. After training in a sucrose/alcohol fading self-administration procedure, BXD16 showed increased motivation to earn 10% alcohol solution, both under fixed ratio (FR1 and progressive ratio (PR2 schedules of reinforcement. Responding on the active lever readily decreased during extinction training with no apparent differences between strains. However, upon re-exposure to alcohol-associated cues, alcohol seeking was reinstated to a larger extent in BXD16 than in C57BL/6J mice. Although further studies are needed to determine whether impulsivity/inattention and alcohol seeking depend on common or separate genetic loci, these data show that in mice enhanced impulsivity coincides with increased motivation to take alcohol, as well as relapse vulnerability.

  7. Sheltering behavior and locomotor activity in 11 genetically diverse common inbred mouse strains using home-cage monitoring.

    Directory of Open Access Journals (Sweden)

    Maarten Loos

    Full Text Available Functional genetic analyses in mice rely on efficient and in-depth characterization of the behavioral spectrum. Automated home-cage observation can provide a systematic and efficient screening method to detect unexplored, novel behavioral phenotypes. Here, we analyzed high-throughput automated home-cage data using existing and novel concepts, to detect a plethora of genetic differences in spontaneous behavior in a panel of commonly used inbred strains (129S1/SvImJ, A/J, C3H/HeJ, C57BL/6J, BALB/cJ, DBA/2J, NOD/LtJ, FVB/NJ, WSB/EiJ, PWK/PhJ and CAST/EiJ. Continuous video-tracking observations of sheltering behavior and locomotor activity were segmented into distinguishable behavioral elements, and studied at different time scales, yielding a set of 115 behavioral parameters of which 105 showed highly significant strain differences. This set of 115 parameters was highly dimensional; principal component analysis identified 26 orthogonal components with eigenvalues above one. Especially novel parameters of sheltering behavior and parameters describing aspects of motion of the mouse in the home-cage showed high genetic effect sizes. Multi-day habituation curves and patterns of behavior surrounding dark/light phase transitions showed striking strain differences, albeit with lower genetic effect sizes. This spontaneous home-cage behavior study demonstrates high dimensionality, with a strong genetic contribution to specific sets of behavioral measures. Importantly, spontaneous home-cage behavior analysis detects genetic effects that cannot be studied in conventional behavioral tests, showing that the inclusion of a few days of undisturbed, labor extensive home-cage assessment may greatly aid gene function analyses and drug target discovery.

  8. Generation of an inbred miniature pig model of retinitis pigmentosa.

    Science.gov (United States)

    Ross, Jason W; Fernandez de Castro, Juan P; Zhao, Jianguo; Samuel, Melissa; Walters, Eric; Rios, Cecilia; Bray-Ward, Patricia; Jones, Bryan W; Marc, Robert E; Wang, Wei; Zhou, Liang; Noel, Jennifer M; McCall, Maureen A; DeMarco, Paul J; Prather, Randall S; Kaplan, Henry J

    2012-01-31

    The Pro23His (P23H) rhodopsin (RHO) mutation underlies the most common form of human autosomal dominant retinitis pigmentosa (adRP). The objective of this investigation was to establish a transgenic miniature swine model of RP using the human P23H RHO gene. Somatic cell nuclear transfer (SCNT) was used to create transgenic miniature pigs that expressed the human P23H RHO mutation. From these experiments, six transgenic founders were identified whose retinal function was studied with full-field electroretinography (ffERG) from 3 months through 2 years. Progeny from one founder were generated and genotyped to determine transgene inheritance pattern. Retinal mRNA was isolated, and the ratio of P23H to wild-type pig RHO was measured. A single transgene integration site was observed for five of the six founders. All founders had abnormal scotopic and photopic ffERGs after 3 months. The severity of the ffERG phenotype was grouped into moderately and severely affected groups. Offspring of one founder inherited the transgene as an autosomal dominant mutation. mRNA analyses demonstrated that approximately 80% of total RHO was mutant P23H. Expression of the human RHO P23H transgene in the retina creates a miniature swine model with an inheritance pattern and retinal function that mimics adRP. This large-animal model can serve as a novel tool for the study of the pathogenesis and therapeutic intervention in the most common form of adRP.

  9. Genetic Analysis of Ligation-Induced Neointima Formation in an F2 Intercross of C57BL/6 and FVB/N Inbred Mouse Strains

    DEFF Research Database (Denmark)

    Östergren, Caroline; Shim, Jeong; Larsen, Jens Vinther

    2015-01-01

    OBJECTIVE: Proliferation and migration of vascular smooth muscle cells (SMCs) are central for arterial diseases including atherosclerosis and restenosis. We hypothesized that the underlying mechanisms may be modeled by carotid ligation in mice. In FVB/N inbred mice, ligation leads to abundant neo...

  10. Myelogenous leukemia in adult inbred MHC-defined miniature swine: a model for human myeloid leukemias.

    Science.gov (United States)

    Duran-Struuck, Raimon; Cho, Patricia S; Teague, Alexander G S; Fishman, Brian; Fishman, Aaron S; Hanekamp, John S; Moran, Shannon G; Wikiel, Krzysztof J; Ferguson, Kelly K; Lo, Diana P; Duggan, Michael; Arn, J Scott; Billiter, Bob; Horner, Ben; Houser, Stuart; Yeap, Beow Yong; Westmoreland, Susan V; Spitzer, Thomas R; McMorrow, Isabel M; Sachs, David H; Bronson, Roderick T; Huang, Christene A

    2010-06-15

    This manuscript reports on five cases of spontaneous myelogenous leukemia, similar to human disease, occurring within highly inbred, histocompatible sublines of Massachusetts General Hospital (MGH) MHC-defined miniature swine. In cases where a neoplasm was suspected based on clinical observations, samples were obtained for complete blood count, peripheral blood smear, and flow cytometric analysis. Animals confirmed to have neoplasms were euthanized and underwent necropsy. Histological samples were obtained from abnormal tissues and suspect lesions. The phenotype of the malignancies was assessed by flow cytometric analysis of processed peripheral blood mononuclear cells and affected tissues. Five cases of spontaneous myeloid leukemia were identified in adult animals older than 30 months of age. All animals presented with symptoms of weight loss, lethargy, and marked leukocytosis. At autopsy, all animals had systemic disease involvement and presented with severe hepatosplenomegaly. Three of the five myelogenous leukemias have successfully been expanded in vitro. The clustered incidence of disease in this closed herd suggests that genetic factors may be contributing to disease development. Myelogenous leukemia cell lines established from inbred sublines of MGH MHC-defined miniature swine have the potential to be utilized as a model to evaluate therapies of human leukemia. Copyright 2009 Elsevier B.V. All rights reserved.

  11. Inbred mouse strains C57BL/6J and DBA/2J vary in sensitivity to a subset of bitter stimuli

    Directory of Open Access Journals (Sweden)

    Nelson Theodore M

    2005-06-01

    Full Text Available Abstract Background Common inbred mouse strains are genotypically diverse, but it is still poorly understood how this diversity relates to specific differences in behavior. To identify quantitative trait genes that influence taste behavior differences, it is critical to utilize assays that exclusively measure the contribution of orosensory cues. With a few exceptions, previous characterizations of behavioral taste sensitivity in inbred mouse strains have generally measured consumption, which can be confounded by post-ingestive effects. Here, we used a taste-salient brief-access procedure to measure taste sensitivity to eight stimuli characterized as bitter or aversive in C57BL/6J (B6 and DBA/2J (D2 mice. Results B6 mice were more sensitive than D2 mice to a subset of bitter stimuli, including quinine hydrochloride (QHCl, 6-n-propylthiouracil (PROP, and MgCl2. D2 mice were more sensitive than B6 mice to the bitter stimulus raffinose undecaacetate (RUA. These strains did not differ in sensitivity to cycloheximide (CYX, denatonium benzoate (DB, KCl or HCl. Conclusion B6-D2 taste sensitivity differences indicate that differences in consumption of QHCl, PROP, MgCl2 and RUA are based on immediate orosensory cues, not post-ingestive effects. The absence of a strain difference for CYX suggests that polymorphisms in a T2R-type taste receptor shown to be differentially sensitive to CYX in vitro are unlikely to differentially contribute to the CYX behavioral response in vivo. The results of these studies point to the utility of these common mouse strains and their associated resources for investigation into the genetic mechanisms of taste.

  12. Genetic control of the radiosensitivity of lymphoid cells for antibody-forming ability in CXS series of recombinant inbred mouse strains

    International Nuclear Information System (INIS)

    Okumoto, M.; Mori, N.; Nishikawa, R.; Imai, S.; Hilgers, J.; Takamori, Y.; Yagasaki, O.

    1992-01-01

    Incidence of radiation-induced lymphomas differs remarkably among various mouse strains. BALB/cHeA (C) mice are highly susceptible to radiation induction of lymphomas, while STS/A (S) mice are resistant. Thus, the induction of the disease is controlled by some genetic factors. To examine an involvement of radiosensitivity of lymphoid cells in lymphomagenesis, we have compared genetic control of the radiosensitivity for antibody-forming ability with that of lymphoma development in BALB/cHeA, STS/A, (CXS)F 1 hybrids and CXS series of recombinant inbred strains. Decrease of number of splenic plaque-forming cell (PFC) in Jerne's method by 3 Gy of X-irradiation for BALB/cHeA mice was larger than that for STS/A mice by more than one order of magnitude. (CXS)F 1 hybrid mice showed small number of decrease of PFC similar to STS/A mice suggesting that phenotype of radioresistance was dominant over sensitivity. The best concordance between genetic markers and radiosensitivities of antibody-forming ability in recombinant inbred strains was observed in a region containing Igh locus on chromosome 12. The results show that one locus controlling the radioresistance of lymphoid cells for antibody-forming ability might exist in the region containing Igh locus, and that this region clearly differ from a region with Ifa locus on chromosome 4 which regulate the susceptibility to radiation-induced lymphomagenesis. (author)

  13. Burn mouse models

    DEFF Research Database (Denmark)

    Calum, Henrik; Høiby, Niels; Moser, Claus

    2014-01-01

    Severe thermal injury induces immunosuppression, involving all parts of the immune system, especially when large fractions of the total body surface area are affected. An animal model was established to characterize the burn-induced immunosuppression. In our novel mouse model a 6 % third-degree b......Severe thermal injury induces immunosuppression, involving all parts of the immune system, especially when large fractions of the total body surface area are affected. An animal model was established to characterize the burn-induced immunosuppression. In our novel mouse model a 6 % third......-degree burn injury was induced with a hot-air blower. The third-degree burn was confirmed histologically. At 48 h, a decline in the concentration of peripheral blood leucocytes was observed in the group of mice with burn wound. The reduction was ascribed to the decline in concentration of polymorphonuclear...... neutrophil leucocytes and monocytes. When infecting the skin with Pseudomonas aeruginosa, a dissemination of bacteria was observed only in the burn wound group. Histological characterization of the skin showed an increased polymorphonuclear neutrophil granulocytes dominated inflammation in the group of mice...

  14. Diversity in secreted PLA2-IIA activity among inbred mouse strains that are resistant or susceptible to Apc Min/+ tumorigenesis.

    Science.gov (United States)

    Markova, Marina; Koratkar, Revati A; Silverman, Karen A; Sollars, Vincent E; MacPhee-Pellini, Melina; Walters, Rhonda; Palazzo, Juan P; Buchberg, Arthur M; Siracusa, Linda D; Farber, Steven A

    2005-09-22

    The secreted phospholipase A2 type IIA (Pla2g2a) gene was previously identified as a modifier of intestinal adenoma multiplicity in Apc Min/+ mice. To determine if intestinal secreted phospholipase A2 (sPLA2) activity was also attenuated in susceptible strains, we developed a sensitive assay to directly quantitate sPLA2 activity in the murine intestinal tract utilizing a fluorescent BODIPY-labeled phospholipid substrate. Here, we report assay conditions that distinguish between secreted and cytosolic PLA2 enzyme activities in extracts of intestinal tissue. The small intestine exhibited higher activity levels than the large intestine. Consistent with predictions from the sPLA2-IIA gene sequence in inbred strains, we detected low levels of enzyme activity in inbred strains containing sPLA2-IIA mutations; these strains were also associated with greater numbers of intestinal polyps. Additionally, the assay was able to distinguish differences in levels of sPLA2 activity between neoplasia-resistant strains, which were then shown by sequencing to carry variant wild-type sPLA2-IIA alleles. Immunohistochemical analyses of intestinal tissues were consistent with sPLA2-IIA activity levels. This approach enables further studies of the mechanisms of sPLA2 action influencing the development and tumorigenesis of the small intestine and colon in both mice and humans.

  15. Transgenic Mouse Model of Chronic Beryllium Disease

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, Terry

    2009-05-26

    Animal models provide powerful tools for dissecting dose-response relationships and pathogenic mechanisms and for testing new treatment paradigms. Mechanistic research on beryllium exposure-disease relationships is severely limited by a general inability to develop a sufficient chronic beryllium disease animal model. Discovery of the Human Leukocyte Antigen (HLA) - DPB1Glu69 genetic susceptibility component of chronic beryllium disease permitted the addition of this human beryllium antigen presentation molecule to an animal genome which may permit development of a better animal model for chronic beryllium disease. Using FVB/N inbred mice, Drs. Rubin and Zhu, successfully produced three strains of HLA-DPB1 Glu 69 transgenic mice. Each mouse strain contains a haplotype of the HLA-DPB1 Glu 69 gene that confers a different magnitude of odds ratio (OR) of risk for chronic beryllium disease: HLA-DPB1*0401 (OR = 0.2), HLA-DPB1*0201 (OR = 15), HLA-DPB1*1701 (OR = 240). In addition, Drs. Rubin and Zhu developed transgenic mice with the human CD4 gene to permit better transmission of signals between T cells and antigen presenting cells. This project has maintained the colonies of these transgenic mice and tested the functionality of the human transgenes.

  16. Photosynthetic properties of erect leaf maize inbred lines as the efficient photo-model in breeding and seed production

    Directory of Open Access Journals (Sweden)

    Radenović Čedomir N.

    2003-01-01

    Full Text Available The initial idea of this study was a hypothesis that erect leaf maize inbred lines were characterized by properties of an efficient photo-model and that as such were very desirable in increasing the number of plants per area unit (plant density in the process of contemporary selection and seed production. The application of a non-invasive bioluminescence-photosynthetic method, suitable for the efficiency estimation of the photo-model, verified the hypothesis. Obtained photosynthetic properties of observed erect leaf maize inbred lines were based on the effects and characteristics of thermal processes of delayed chlorophyll fluorescence occurring in their thylakoid membranes. The temperature dependence of the delayed chlorophyll fluorescence intensity phase transitions (critical temperatures in the thylakoid membranes and activation energy are the principal parameters of the thermal processes. Based on obtained photosynthetic properties it is possible to select erect leaf maize inbred lines that are resistant and tolerant to high and very high temperatures, as well as, to drought. They could be good and efficient photo-models wherewith.

  17. Effect of acute swim stress on plasma corticosterone and brain monoamine levels in bidirectionally selected DxH recombinant inbred mouse strains differing in fear recall and extinction.

    Science.gov (United States)

    Browne, Caroline A; Hanke, Joachim; Rose, Claudia; Walsh, Irene; Foley, Tara; Clarke, Gerard; Schwegler, Herbert; Cryan, John F; Yilmazer-Hanke, Deniz

    2014-12-01

    Stress-induced changes in plasma corticosterone and central monoamine levels were examined in mouse strains that differ in fear-related behaviors. Two DxH recombinant inbred mouse strains with a DBA/2J background, which were originally bred for a high (H-FSS) and low fear-sensitized acoustic startle reflex (L-FSS), were used. Levels of noradrenaline, dopamine, and serotonin and their metabolites 3,4-dihydroxyphenyacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA) were studied in the amygdala, hippocampus, medial prefrontal cortex, striatum, hypothalamus and brainstem. H-FSS mice exhibited increased fear levels and a deficit in fear extinction (within-session) in the auditory fear-conditioning test, and depressive-like behavior in the acute forced swim stress test. They had higher tissue noradrenaline and serotonin levels and lower dopamine and serotonin turnover under basal conditions, although they were largely insensitive to stress-induced changes in neurotransmitter metabolism. In contrast, acute swim stress increased monoamine levels but decreased turnover in the less fearful L-FSS mice. L-FSS mice also showed a trend toward higher basal and stress-induced corticosterone levels and an increase in noradrenaline and serotonin in the hypothalamus and brainstem 30 min after stress compared to H-FSS mice. Moreover, the dopaminergic system was activated differentially in the medial prefrontal cortex and striatum of the two strains by acute stress. Thus, H-FSS mice showed increased basal noradrenaline tissue levels compatible with a fear phenotype or chronic stressed condition. Low corticosterone levels and the poor monoamine response to stress in H-FSS mice may point to mechanisms similar to those found in principal fear disorders or post-traumatic stress disorder.

  18. Genetic variation in hippocampal microRNA expression differences in C57BL/6 J X DBA/2 J (BXD recombinant inbred mouse strains

    Directory of Open Access Journals (Sweden)

    Parsons Michael J

    2012-09-01

    Full Text Available Abstract Background miRNAs are short single-stranded non-coding RNAs involved in post-transcriptional gene regulation that play a major role in normal biological functions and diseases. Little is currently known about how expression of miRNAs is regulated. We surveyed variation in miRNA abundance in the hippocampus of mouse inbred strains, allowing us to take a genetic approach to the study of miRNA regulation, which is novel for miRNAs. The BXD recombinant inbred panel is a very well characterized genetic reference panel which allows quantitative trait locus (QTL analysis of miRNA abundance and detection of correlates in a large store of brain and behavioural phenotypes. Results We found five suggestive trans QTLs for the regulation of miRNAs investigated. Further analysis of these QTLs revealed two genes, Tnik and Phf17, under the miR-212 regulatory QTLs, whose expression levels were significantly correlated with miR-212 expression. We found that miR-212 expression is correlated with cocaine-related behaviour, consistent with a reported role for this miRNA in the control of cocaine consumption. miR-31 is correlated with anxiety and alcohol related behaviours. KEGG pathway analysis of each miRNA’s expression correlates revealed enrichment of pathways including MAP kinase, cancer, long-term potentiation, axonal guidance and WNT signalling. Conclusions The BXD reference panel allowed us to establish genetic regulation and characterize biological function of specific miRNAs. QTL analysis enabled detection of genetic loci that regulate the expression of these miRNAs. eQTLs that regulate miRNA abundance are a new mechanism by which genetic variation influences brain and behaviour. Analysis of one of these QTLs revealed a gene, Tnik, which may regulate the expression of a miRNA, a molecular pathway and a behavioural phenotype. Evidence of genetic covariation of miR-212 abundance and cocaine related behaviours is strongly supported by previous

  19. Mouse models of cataract

    Indian Academy of Sciences (India)

    2009-12-31

    Dec 31, 2009 ... Mutations affecting the mouse lens can be identified easily by visual inspection, and a remarkable number of mutant lines ..... out mutants do not show an ocular phenotype, the two Bfsp genes are important for lens ... The more severe mutants have in addition to the ocular symptoms some more clinical ...

  20. Imaging Mouse Models of Cancer.

    Science.gov (United States)

    Lyons, Scott Keith

    2015-01-01

    Mouse models of cancer have proven to be an indispensable resource in furthering both our basic knowledge of cancer biology and the translation of new cancer treatments and imaging approaches into the clinic. As mouse models have developed and improved in their ability to model many diverse aspects of the human disease, so too has the need for robust imaging approaches to measure key biological parameters noninvasively. The aim of this review is to provide a brief overview of the various imaging approaches available to researchers today for imaging preclinical cancer models, highlighting their relative strengths and weaknesses. The very nature of modeling cancer in the mouse is also changing, and brief mention will be made on how imaging can maximize the utility of these new, accurate, and genetically versatile models.

  1. Using gene expression databases for classical trait QTL candidate gene discovery in the BXD recombinant inbred genetic reference population: Mouse forebrain weight

    Directory of Open Access Journals (Sweden)

    Zhou Jianhua

    2008-09-01

    Full Text Available Abstract Background Successful strategies for QTL gene identification benefit from combined experimental and bioinformatic approaches. Unique design aspects of the BXD recombinant inbred line mapping panel allow use of archived gene microarray expression data to filter likely from unlikely candidates. This prompted us to propose a simple five-filter protocol for candidate nomination. To filter more likely from less likely candidates, we required candidate genes near to the QTL to have mRNA abundance that correlated with the phenotype among the BXD lines as well as differed between the parental lines C57BL/6J and DBA/2J. We also required verification of mRNA abundance by an independent method, and finally we required either differences in protein levels or confirmed DNA sequence differences. Results QTL mapping of mouse forebrain weight in 34 BXD RI lines found significant association on chromosomes 1 and 11, with each C57BL/6J allele increasing weight by more than half a standard deviation. The intersection of gene lists that were within ± 10 Mb of the strongest associated location, that had forebrain mRNA abundance correlated with forebrain weight among the BXD, and that had forebrain mRNA abundance differing between C57BL/6J and DBA/2J, produced two candidates, Tnni1 (troponin 1 and Asb3 (ankyrin repeat and SOCS box-containing protein 3. Quantitative RT-PCR confirmed the direction of an increased expression in C57BL/6J genotype over the DBA/2J genotype for both genes, a difference that translated to a 2-fold difference in Asb3 protein. Although Tnni1 protein differences could not be confirmed, a 273 bp indel polymorphism was discovered 1 Kb upstream of the transcription start site. Conclusion Delivery of well supported candidate genes following a single quantitative trait locus mapping experiment is difficult. However, by combining available gene expression data with QTL mapping, we illustrated a five-filter protocol that nominated Asb3 and

  2. Mouse Models of Rheumatoid Arthritis.

    Science.gov (United States)

    Caplazi, P; Baca, M; Barck, K; Carano, R A D; DeVoss, J; Lee, W P; Bolon, B; Diehl, L

    2015-09-01

    Rheumatoid arthritis (RA) is a chronic debilitating autoimmune disorder characterized by synovitis that leads to cartilage and bone erosion by invading fibrovascular tissue. Mouse models of RA recapitulate many features of the human disease. Despite the availability of medicines that are highly effective in many patient populations, autoimmune diseases (including RA) remain an area of active biomedical research, and consequently mouse models of RA are still extensively used for mechanistic studies and validation of therapeutic targets. This review aims to integrate morphologic features with model biology and cover the key characteristics of the most commonly used induced and spontaneous mouse models of RA. Induced models emphasized in this review include collagen-induced arthritis and antibody-induced arthritis. Collagen-induced arthritis is an example of an active immunization strategy, whereas antibody- induced arthritis models, such as collagen antibody-induced arthritis and K/BxN antibody transfer arthritis, represent examples of passive immunization strategies. The coverage of spontaneous models in this review is focused on the TNFΔ (ARE) mouse, in which arthritis results from overexpression of TNF-α, a master proinflammatory cytokine that drives disease in many patients. © The Author(s) 2015.

  3. Nonspecific airway reactivity in a mouse model of asthma

    Energy Technology Data Exchange (ETDEWEB)

    Collie, D.D.; Wilder, J.A.; Bice, D.E.

    1995-12-01

    Animal models are indispensable for studies requiring an intact immune system, especially for studying the pathogenic mechanisms in atopic diseases, regulation of IgE production, and related biologic effects. Mice are particularly suitable and have been used extensively for such studies because their immune system is well characterized. Further, large numbers of mutants or inbred strains of mice are available that express deficiencies of individual immunologic processes, inflammatory cells, or mediator systems. By comparing reactions in such mice with appropriate control animals, the unique roles of individual cells or mediators may be characterized more precisely in the pathogenesis of atopic respiratory diseases including asthma. However, given that asthma in humans is characterized by the presence of airway hyperresponsiveness to specific and nonspecific stimuli, it is important that animal models of this disease exhibit similar physiologic abnormalities. In the past, the size of the mouse has limited its versatility in this regard. However, recent studies indicate the feasibility of measuring pulmonary responses in living mice, thus facilitating the physiologic evaluation of putative mouse models of human asthma that have been well charcterized at the immunologic and patholigic level. Future work will provide details of the morphometry of the methacholine-induced bronchoconstriction and will further seek to determine the relationship between cigarette smoke exposure and the development of NS-AHR in the transgenic mouse model.

  4. Mouse models of Fanconi anemia

    International Nuclear Information System (INIS)

    Parmar, Kalindi; D'Andrea, Alan; Niedernhofer, Laura J.

    2009-01-01

    Fanconi anemia is a rare inherited disease characterized by congenital anomalies, growth retardation, aplastic anemia and an increased risk of acute myeloid leukemia and squamous cell carcinomas. The disease is caused by mutation in genes encoding proteins required for the Fanconi anemia pathway, a response mechanism to replicative stress, including that caused by genotoxins that cause DNA interstrand crosslinks. Defects in the Fanconi anemia pathway lead to genomic instability and apoptosis of proliferating cells. To date, 13 complementation groups of Fanconi anemia were identified. Five of these genes have been deleted or mutated in the mouse, as well as a sixth key regulatory gene, to create mouse models of Fanconi anemia. This review summarizes the phenotype of each of the Fanconi anemia mouse models and highlights how genetic and interventional studies using the strains have yielded novel insight into therapeutic strategies for Fanconi anemia and into how the Fanconi anemia pathway protects against genomic instability.

  5. Analysis of sperm quality in recombinant inbred mouse strains: correlation of sperm head shape with sperm abnormalities and with the incidence of supplementary spermatozoa in the perivitelline space.

    Science.gov (United States)

    Krzanowska, H; Styrna, J; Wabik-Sliz, B

    1995-07-01

    Recombinant inbred strains were developed from reciprocal crosses between two inbred strains of mice (CBA and KE) differing in sperm head shape, proportion of normal sperm heads (CBA, 95%; KE, 78%) and fertilization efficiency (CBA, 100% of fertilized ova; KE, 72%), to determine whether the indices of sperm morphology and function were correlated. The following parameters were analysed in recombinant inbred and progenitor strains: index of sperm head shape (head width in the middle of its length/head length), percentage of abnormal sperm heads, percentage of spermatozoa with progressive movements, efficiency of penetration of hyaluronic acid polymer (Sperm Select) and percentage of fertilized ova after mating males from the tested strains with females from an outbred stock. For each investigated character, recombinant inbred strains, recombinant inbred EXCB and CBXE, could be divided into at least three categories: KE-like, CBA-like and intermediate, suggesting that in each case a minimum of two genes was involved. Recombinant strains derived from the reciprocal crosses of progenitor strains differed only with respect to the proportion of abnormal sperm heads, showing the involvement of the Y chromosome in determining this character. Penetration into Sperm Select was significantly correlated both with fertilization efficiency and sperm motility, while correlation with the proportion of normal spermatozoa did not reach the level of significance. However, there was a significant negative correlation of both sperm abnormalities and the incidence of supplementary spermatozoa in the perivitelline space with the index of sperm head shape.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Marked inbred mouse strain difference in the expression of quinpirole induced compulsive like behavior based on behavioral pattern analysis.

    Science.gov (United States)

    de Haas, Ria; Seddik, Amir; Oppelaar, Hugo; Westenberg, Herman G M; Kas, Martien J H

    2012-09-01

    Obsessive-compulsive disorder (OCD) is a chronic and complex psychiatric disorder with a lifetime prevalence of 2-3%. Recent work has shown that OCD rituals were not only characterized by a high rate of repetition but also by an increased behavioral repertoire due to additional non-functional unique acts. These two behavioral characteristics may provide an ethological basis for studying compulsive behavior in an animal model of OCD. Here, quinpirole induced behavior (so far only investigated in rats) has been studied in A/J and C57BL/6J mice by using behavioral pattern analysis. The aim of this study is to investigate whether genetic background is mediating this behavior. Results showed that open field motor activity levels of saline treated C57BL/6J mice was significantly higher compared to A/J treated saline mice. Long-term quinpirole treatment increased open field motor activity levels in A/J, but not in C57BL/6J. Quinpirole treatment induced a strain dependent difference in behavioral repertoire. There was a dose dependent increase in the number of different behavioral patterns in A/J, whereas, in C57BL/6J there was a dose dependent decrease. This data suggest that genetic background is important in expressing quinpirole induced compulsive like behavior. Following quinpirole treatment, A/J mice express a greater behavioral repertoire with a high rate of repetition. This phenotype resembles that of OCD rituals in patients and indicates that this strain is very interesting to further validate for studying neurobiological mechanisms of compulsive behavior. Copyright © 2012. Published by Elsevier B.V.

  7. USING OF MOUSE MODEL TO ANALYZE IMMUNE RESPONSE TO INFECTIOUS PATHOGENS BY THE METHODS OF CLASSICAL GENETICS

    Directory of Open Access Journals (Sweden)

    A. Poltorak

    2011-01-01

    Full Text Available Abstract. Identification and studying of numerous functions of all genes of the human beings is one of the main objects of modern biological science. Due to high level of homology between mouse and human genomes the important role to reach above mentioned goal belongs to the mouse model which using in the classical genetics increase in connection with appearance of different inbred mouse lines. For instance, the differences in immune response to infectious pathogens in various mouse lines were used many times to determine immunologically competent genes. That is why the contribution of mouse model in understanding of the mechanisms of immune response to infectious pathogens is difficult to overestimate. In the current review some of the most successful and well known examples of mouse using in studies of anti-infectious response are described.

  8. MBT/Pas mouse: a relevant model for the evaluation of Rift Valley fever vaccines.

    Science.gov (United States)

    Ayari-Fakhfakh, Emna; do Valle, Tânia Zaverucha; Guillemot, Laurent; Panthier, Jean-Jacques; Bouloy, Michèle; Ghram, Abdeljelil; Albina, Emmanuel; Cêtre-Sossah, Catherine

    2012-07-01

    Currently, there are no worldwide licensed vaccines for Rift Valley fever (RVF) that are both safe and effective. Development and evaluation of vaccines, diagnostics and treatments depend on the availability of appropriate animal models. Animal models are also necessary to understand the basic pathobiology of infection. Here, we report the use of an inbred MBT/Pas mouse model that consistently reproduces RVF disease and serves our purpose for testing the efficacy of vaccine candidates; an attenuated Rift Valley fever virus (RVFV) and a recombinant RVFV-capripoxvirus. We show that this model is relevant for vaccine testing.

  9. Identification of a nutrient-sensing transcriptional network in monocytes by using inbred rat models on a cafeteria diet.

    Science.gov (United States)

    Martínez-Micaelo, Neus; González-Abuín, Noemi; Terra, Ximena; Ardévol, Ana; Pinent, Montserrat; Petretto, Enrico; Behmoaras, Jacques; Blay, Mayte

    2016-10-01

    Obesity has reached pandemic levels worldwide. The current models of diet-induced obesity in rodents use predominantly high-fat based diets that do not take into account the consumption of variety of highly palatable, energy-dense foods that are prevalent in Western society. We and others have shown that the cafeteria (CAF) diet is a robust and reproducible model of human metabolic syndrome with tissue inflammation in the rat. We have previously shown that inbred rat strains such as Wistar Kyoto (WKY) and Lewis (LEW) show different susceptibilities to CAF diets with distinct metabolic and morphometric profiles. Here, we show a difference in plasma MCP-1 levels and investigate the effect of the CAF diet on peripheral blood monocyte transcriptome, as powerful stress-sensing immune cells, in WKY and LEW rats. We found that 75.5% of the differentially expressed transcripts under the CAF diet were upregulated in WKY rats and were functionally related to the activation of the immune response. Using a gene co-expression network constructed from the genes differentially expressed between CAF diet-fed LEW and WKY rats, we identified acyl-CoA synthetase short-chain family member 2 (Acss2) as a hub gene for a nutrient-sensing cluster of transcripts in monocytes. The Acss2 genomic region is significantly enriched for previously established metabolism quantitative trait loci in the rat. Notably, monocyte expression levels of Acss2 significantly correlated with plasma glucose, triglyceride, leptin and non-esterified fatty acid (NEFA) levels as well as morphometric measurements such as body weight and the total fat following feeding with the CAF diet in the rat. These results show the importance of the genetic background in nutritional genomics and identify inbred rat strains as potential models for CAF-diet-induced obesity. © 2016. Published by The Company of Biologists Ltd.

  10. Identification of a nutrient-sensing transcriptional network in monocytes by using inbred rat models on a cafeteria diet

    Directory of Open Access Journals (Sweden)

    Neus Martínez-Micaelo

    2016-10-01

    Full Text Available Obesity has reached pandemic levels worldwide. The current models of diet-induced obesity in rodents use predominantly high-fat based diets that do not take into account the consumption of variety of highly palatable, energy-dense foods that are prevalent in Western society. We and others have shown that the cafeteria (CAF diet is a robust and reproducible model of human metabolic syndrome with tissue inflammation in the rat. We have previously shown that inbred rat strains such as Wistar Kyoto (WKY and Lewis (LEW show different susceptibilities to CAF diets with distinct metabolic and morphometric profiles. Here, we show a difference in plasma MCP-1 levels and investigate the effect of the CAF diet on peripheral blood monocyte transcriptome, as powerful stress-sensing immune cells, in WKY and LEW rats. We found that 75.5% of the differentially expressed transcripts under the CAF diet were upregulated in WKY rats and were functionally related to the activation of the immune response. Using a gene co-expression network constructed from the genes differentially expressed between CAF diet-fed LEW and WKY rats, we identified acyl-CoA synthetase short-chain family member 2 (Acss2 as a hub gene for a nutrient-sensing cluster of transcripts in monocytes. The Acss2 genomic region is significantly enriched for previously established metabolism quantitative trait loci in the rat. Notably, monocyte expression levels of Acss2 significantly correlated with plasma glucose, triglyceride, leptin and non-esterified fatty acid (NEFA levels as well as morphometric measurements such as body weight and the total fat following feeding with the CAF diet in the rat. These results show the importance of the genetic background in nutritional genomics and identify inbred rat strains as potential models for CAF-diet-induced obesity.

  11. Mouse models for cone degeneration.

    Science.gov (United States)

    Samardzija, Marijana; Grimm, Christian

    2014-01-01

    Loss of cone vision has devastating effects on everyday life. Even though much effort has been made to understand cone physiology and pathophysiology, no successful therapies are available for patients suffering from cone disorders. As complex retinal interactions cannot be studied in vitro, utilization of different animal models is inevitable. Due to recent advances in transgenesis, mice became the most popular animal model to study human diseases, also in ophthalmology. While there are similarities in retinal anatomy and pathophysiology between mice and humans, there are also differences, most importantly the lack of a cone-rich macula in mice. Instead, cones in mice are rare and distributed over the whole retina, which makes the analysis of cone pathophysiology very difficult in these animals. This hindrance is one of the reasons why our understanding of rod pathophysiological processes is much more advanced. Recently, however, the sparseness of cones was overcome by the generation of the Nrl (- / -) mouse that expresses only cone photoreceptors in the retina. This paper will give a brief overview of some of the known mouse models to study cone degeneration and discuss the current knowledge gained from the analysis of these models.

  12. Breeding a PKU-mouse model on Phe-free diet, is it possible?

    DEFF Research Database (Denmark)

    Dagnæs-Hansen, Frederik; Johansen, Karen Singers; Vorup-Jensen, Thomas

    2014-01-01

    The PKU-mouse model mutated in the PAH gene was developed in the 1990s in the laboratory of Dr. Alexandra Shedlovsky at the McArdle Laboratory for Cancer Research, University of Wisconsin. The mutation was generated by ENU (N-ethyl-N-nitrosourea) treatment of BTBR males. Several mutation was found...... in the PAH gene among which the enu2 (c.364T>C) was found to be the most relevant model. The Pahenu2 mutation predicts a radical phenylalanine to serine substitution within the active site of PAH, and is located in exon 7, a gene region where serious mutations are common in humans. The Pahenu2 mutation...... is therefore widely used model in PKU research. The Pahenu2 mutation has been transferred to the inbred C57BL/6 mouse strain. Breeding colonies on both inbred strains have been established at Aarhus University. Recently an attempt to breed homozygous animals on a Phe-free diet was attempted in order to reduce...

  13. The wobbler mouse, an ALS animal model

    DEFF Research Database (Denmark)

    Moser, Jakob Maximilian; Bigini, Paolo; Schmitt-John, Thomas

    2013-01-01

    This review article is focused on the research progress made utilizing the wobbler mouse as animal model for human motor neuron diseases, especially the amyotrophic lateral sclerosis (ALS). The wobbler mouse develops progressive degeneration of upper and lower motor neurons and shows striking...

  14. Optimizing mouse models for precision cancer prevention.

    Science.gov (United States)

    Le Magnen, Clémentine; Dutta, Aditya; Abate-Shen, Cory

    2016-03-01

    As cancer has become increasingly prevalent, cancer prevention research has evolved towards placing a greater emphasis on reducing cancer deaths and minimizing the adverse consequences of having cancer. 'Precision cancer prevention' takes into account the collaboration of intrinsic and extrinsic factors in influencing cancer incidence and aggressiveness in the context of the individual, as well as recognizing that such knowledge can improve early detection and enable more accurate discrimination of cancerous lesions. However, mouse models, and particularly genetically engineered mouse (GEM) models, have yet to be fully integrated into prevention research. In this Opinion article, we discuss opportunities and challenges for precision mouse modelling, including the essential criteria of mouse models for prevention research, representative success stories and opportunities for more refined analyses in future studies.

  15. Revealing the Complexity in CD8 T Cell Responses to Infection in Inbred C57B/6 versus Outbred Swiss Mice.

    Science.gov (United States)

    Martin, Matthew D; Danahy, Derek B; Hartwig, Stacey M; Harty, John T; Badovinac, Vladimir P

    2017-01-01

    Recent work has suggested that current mouse models may underrepresent the complexity of human immune responses. While most mouse immunology studies utilize inbred mouse strains, it is unclear if conclusions drawn from inbred mice can be extended to all mouse strains or generalized to humans. We recently described a "surrogate activation marker" approach that could be used to track polyclonal CD8 T cell responses in inbred and outbred mice and noted substantial discord in the magnitude and kinetics of CD8 T cell responses in individual outbred mice following infection. However, how the memory CD8 T cell response develops following infection and the correlates of memory CD8 T cell-mediated protection against re-infection in outbred mice remains unknown. In this study, we investigated development of pathogen-specific memory CD8 T cell responses in inbred C57B/6 and outbred National Institutes of Health Swiss mice following lymphocytic choriomeningitis virus or L. monocytogenes infection. Interestingly, the size of the memory CD8 T cell pool generated and rate of phenotypic progression was considerably more variable in individual outbred compared to inbred mice. Importantly, while prior infection provided both inbred and outbred cohorts of mice with protection against re-infection that was dependent on the dose of primary infection, levels of memory CD8 T cells generated and degree of protection against re-infection did not correlate with primary infection dose in all outbred mice. While variation in CD8 T cell responses to infection is not entirely surprising due to the genetic diversity present, analysis of infection-induced immunity in outbred hosts may reveal hidden complexity in CD8 T cell responses in genetically diverse populations and might help us further bridge the gap between mouse and human studies.

  16. Validation of operant social motivation paradigms using BTBR T+tf/J and C57BL/6J inbred mouse strains.

    Science.gov (United States)

    Martin, Loren; Sample, Hannah; Gregg, Michael; Wood, Caleb

    2014-09-01

    As purported causal factors are identified for autism spectrum disorder (ASD), new assays are needed to better phenotype animal models designed to explore these factors. With recent evidence suggesting that deficits in social motivation are at the core of ASD behavior, the development of quantitative measures of social motivation is particularly important. The goal of our study was to develop and validate novel assays to quantitatively measure social motivation in mice. In order to test the validity of our paradigms, we compared the BTBR strain, with documented social deficits, to the prosocial C57BL/6J strain. Two novel conditioning paradigms were developed that allowed the test mouse to control access to a social partner. In the social motivation task, the test mice lever pressed for a social reward. The reward contingency was set on a progressive ratio of reinforcement and the number of lever presses achieved in the final trial of a testing session (breakpoint) was used as an index of social motivation. In the valence comparison task, motivation for a food reward was compared to a social reward. We also explored activity, social affiliation, and preference for social novelty through a series of tasks using an ANY-Maze video-tracking system in an open-field arena. BTBR mice had significantly lower breakpoints in the social motivation paradigm than C57BL/6J mice. However, the valence comparison task revealed that BTBR mice also made significantly fewer lever presses for a food reward. The results of the conditioning paradigms suggest that the BTBR strain has an overall deficit in motivated behavior. Furthermore, the results of the open-field observations may suggest that social differences in the BTBR strain are anxiety induced.

  17. Melatonin receptors: latest insights from mouse models

    Science.gov (United States)

    Tosini, Gianluca; Owino, Sharon; Guillame, Jean-Luc; Jockers, Ralf

    2014-01-01

    Summary Melatonin, the neuro-hormone synthesized during the night, has recently seen an unexpected extension of its functional implications towards type 2 diabetes development, visual functions, sleep disturbances and depression. Transgenic mouse models were instrumental for the establishment of the link between melatonin and these major human diseases. Most of the actions of melatonin are mediated by two types of G protein-coupled receptors, named MT1 and MT2, which are expressed in many different organs and tissues. Understanding the pharmacology and function of mouse MT1 and MT2 receptors, including MT1/MT2 heteromers, will be of crucial importance to evaluate the relevance of these mouse models for future therapeutic developments. This review will critically discuss these aspects, and give some perspectives including the generation of new mouse models. PMID:24903552

  18. Pathology of Mouse Models of Accelerated Aging.

    Science.gov (United States)

    Harkema, L; Youssef, S A; de Bruin, A

    2016-03-01

    Progeroid mouse models display phenotypes in multiple organ systems that suggest premature aging and resemble features of natural aging of both mice and humans. The prospect of a significant increase in the global elderly population within the next decades has led to the emergence of "geroscience," which aims at elucidating the molecular mechanisms involved in aging. Progeroid mouse models are frequently used in geroscience as they provide insight into the molecular mechanisms that are involved in the highly complex process of natural aging. This review provides an overview of the most commonly reported nonneoplastic macroscopic and microscopic pathologic findings in progeroid mouse models (eg, osteoporosis, osteoarthritis, degenerative joint disease, intervertebral disc degeneration, kyphosis, sarcopenia, cutaneous atrophy, wound healing, hair loss, alopecia, lymphoid atrophy, cataract, corneal endothelial dystrophy, retinal degenerative diseases, and vascular remodeling). Furthermore, several shortcomings in pathologic analysis and descriptions of these models are discussed. Progeroid mouse models are valuable models for aging, but thorough knowledge of both the mouse strain background and the progeria-related phenotype is required to guide interpretation and translation of the pathology data. © The Author(s) 2016.

  19. Preclinical Mouse Models of Neurofibromatosis

    Science.gov (United States)

    2009-10-01

    and merlin, together function upstream of the Hippo/ Salvador /Warts/Yki pathway(35). The McClatchey lab identified and cloned the putative mammalian...skeletal development and growth.” Human Mol Genet 2007; 16: 874-886. Romero , M.I., Lin, L, Lush, M.E., Lei, L., Parada, L.F. and Zhu, Y. Deletion of...mouse. Nat Genet. 1994;7:353-61. 3. Zhu Y, Romero MI, Ghosh P, Ye Z, Charnay P, Rushing EJ, et al. Ablation of NF1 function in neurons induces

  20. Lysed Enterococcus faecalis FK-23 (LFK Suppressing Allergic Responses in Mouse Models

    Directory of Open Access Journals (Sweden)

    Takashi Shimada

    2005-01-01

    Full Text Available Recently, several clinical trials have been published to discuss the possibility of probiotic supplementation, especially some products of lactic acid bacteria such as Lactobacillus and Bifidobacterium strains, in prevention and treatment of allergic disorders. However, the results of some investigations were inconsistent with each other. The contradictory effect of probiotics among different individuals might suggest differences in genetic or environmental factors, or both. It is conceivably beneficial to use inbred mice as experimental models to explore whether the effect of probiotics on limiting allergy is under the influence of genetic factors. In this review, firstly, we summarized recent publications regarding the effects of lysed Enterococcus faecalis FK-23 (LFK, which is a preparation of a probiotic lactic acid bacterium strain, on suppressing allergic responses in BALB/c mice. And then, we presented our latest data focused on the effects of LFK on suppressing active cutaneous anaphylaxis and local accumulation of eosinophils in four inbred mouse models by using the BALB/c, C57BL/ 6, C3H/HeN and C3H/HeJ strains. The finding of our experimental study suggests that the effect of LFK on combating allergic inflammatory reactions might be affect by individuals’ hereditary background.

  1. Genetically engineered mouse models of prostate cancer

    NARCIS (Netherlands)

    Nawijn, Martijn C.; Bergman, Andreas M.; van der Poel, Henk G.

    Objectives: Mouse models of prostate cancer are used to test the contribution of individual genes to the transformation process, evaluate the collaboration between multiple genetic lesions observed in a single tumour, and perform preclinical intervention studies in prostate cancer research. Methods:

  2. Pathology of Mouse Models of Accelerated Aging

    NARCIS (Netherlands)

    Harkema, L.; Youssef, S. A.; de Bruin, A.

    Progeroid mouse models display phenotypes in multiple organ systems that suggest premature aging and resemble features of natural aging of both mice and humans. The prospect of a significant increase in the global elderly population within the next decades has led to the emergence of geroscience,

  3. Pathology of Mouse Models of Accelerated Aging

    NARCIS (Netherlands)

    Harkema, L; Youssef, S A; de Bruin, A

    2016-01-01

    Progeroid mouse models display phenotypes in multiple organ systems that suggest premature aging and resemble features of natural aging of both mice and humans. The prospect of a significant increase in the global elderly population within the next decades has led to the emergence of "geroscience,"

  4. Physiologically based pharmacokinetic (PBPK) modeling of interstrain variability in trichloroethylene metabolism in the mouse.

    Science.gov (United States)

    Chiu, Weihsueh A; Campbell, Jerry L; Clewell, Harvey J; Zhou, Yi-Hui; Wright, Fred A; Guyton, Kathryn Z; Rusyn, Ivan

    2014-05-01

    Quantitative estimation of toxicokinetic variability in the human population is a persistent challenge in risk assessment of environmental chemicals. Traditionally, interindividual differences in the population are accounted for by default assumptions or, in rare cases, are based on human toxicokinetic data. We evaluated the utility of genetically diverse mouse strains for estimating toxicokinetic population variability for risk assessment, using trichloroethylene (TCE) metabolism as a case study. We used data on oxidative and glutathione conjugation metabolism of TCE in 16 inbred and 1 hybrid mouse strains to calibrate and extend existing physiologically based pharmacokinetic (PBPK) models. We added one-compartment models for glutathione metabolites and a two-compartment model for dichloroacetic acid (DCA). We used a Bayesian population analysis of interstrain variability to quantify variability in TCE metabolism. Concentration-time profiles for TCE metabolism to oxidative and glutathione conjugation metabolites varied across strains. Median predictions for the metabolic flux through oxidation were less variable (5-fold range) than that through glutathione conjugation (10-fold range). For oxidative metabolites, median predictions of trichloroacetic acid production were less variable (2-fold range) than DCA production (5-fold range), although the uncertainty bounds for DCA exceeded the predicted variability. Population PBPK modeling of genetically diverse mouse strains can provide useful quantitative estimates of toxicokinetic population variability. When extrapolated to lower doses more relevant to environmental exposures, mouse population-derived variability estimates for TCE metabolism closely matched population variability estimates previously derived from human toxicokinetic studies with TCE, highlighting the utility of mouse interstrain metabolism studies for addressing toxicokinetic variability.

  5. Engineering a new mouse model for vitiligo.

    Science.gov (United States)

    Manga, Prashiela; Orlow, Seth J

    2012-07-01

    Although the precise mechanisms that trigger vitiligo remain elusive, autoimmune responses mediate its progression. The development of therapies has been impeded by a paucity of animal models, since mice lack interfollicular melanocytes, the primary targets in vitiligo. In this issue, Harris et al. describe a mouse model in which interfollicular melanocytes are retained by Kit ligand overexpression and an immune response is initiated by transplanting melanocyte-targeting CD8+ T cells.

  6. Mouse models for core binding factor leukemia.

    Science.gov (United States)

    Chin, D W L; Watanabe-Okochi, N; Wang, C Q; Tergaonkar, V; Osato, M

    2015-10-01

    RUNX1 and CBFB are among the most frequently mutated genes in human leukemias. Genetic alterations such as chromosomal translocations, copy number variations and point mutations have been widely reported to result in the malfunction of RUNX transcription factors. Leukemias arising from such alterations in RUNX family genes are collectively termed core binding factor (CBF) leukemias. Although adult CBF leukemias generally are considered a favorable risk group as compared with other forms of acute myeloid leukemia, the 5-year survival rate remains low. An improved understanding of the molecular mechanism for CBF leukemia is imperative to uncover novel treatment options. Over the years, retroviral transduction-transplantation assays and transgenic, knockin and knockout mouse models alone or in combination with mutagenesis have been used to study the roles of RUNX alterations in leukemogenesis. Although successful in inducing leukemia, the existing assays and models possess many inherent limitations. A CBF leukemia model which induces leukemia with complete penetrance and short latency would be ideal as a platform for drug discovery. Here, we summarize the currently available mouse models which have been utilized to study CBF leukemias, discuss the advantages and limitations of individual experimental systems, and propose suggestions for improvements of mouse models.

  7. Chromosome Y variants from different inbred mouse strains are linked to differences in the morphologic and molecular responses of cardiac cells to postpubertal testosterone

    Directory of Open Access Journals (Sweden)

    Churchill Gary A

    2009-04-01

    Full Text Available Abstract Background We have reported previously that when chromosome Y (chrY from the mouse strain C57BL/6J (ChrYC57 was substituted for that of A/J mice (ChrYA, cardiomyocytes from the resulting "chromosome substitution" C57BL/6J-chrYA strain were smaller than that of their C57BL/6J counterparts. In reverse, when chrYA from A/J mice was substituted for that of chrYC57, cardiomyocytes from the resulting A/J-chrYC57 strain were larger than in their A/J counterparts. We further used these strains to test whether: 1 the origin of chrY could also be linked to differences in the profile of gene expression in the hearts of adult male mice, and 2 post-pubertal testosterone could play a role in the differential morphologic and/or molecular effects of chrYC57 and chrYA. Results The increased size of cardiomyocytes from adult male C57BL/6J mice compared to C57BL/6J-chrYA resulted from the absence of hypertrophic effects of post-pubertal testosterone on cells from the latter strain. However, gene profiling revealed that the latter effect could not be explained on the basis of an insensitivity of cells from C57BL/6J-chrYA to androgens, since even more cardiac genes were affected by post-pubertal testosterone in C57BL/6J-chrYA hearts than in C57BL/6J. By testing for interaction between the effects of surgery and strain, we identified 249 "interaction genes" whose expression was affected by post-pubertal testosterone differentially according to the genetic origin of chrY. These interaction genes were found to be enriched within a limited number of signaling pathways, including: 1 p53 signaling, which comprises the interacting genes Ccnd1, Pten and Cdkn1a that are also potential co-regulators of the androgen receptors, and 2 circadian rhythm, which comprises Arntl/Bmal1, which may in turn regulate cell growth via the control of Cdkn1a. Conclusion Although post-pubertal testosterone increased the size of cardiomyocytes from male C56BL/6J mice but not that from

  8. Proteome analysis of mouse model systems: A tool to model human disease and for the investigation of tissue-specific biology.

    Science.gov (United States)

    Kislinger, Thomas; Gramolini, Anthony O

    2010-10-10

    The molecular dissections of the mechanistic pathways involved in human disease have always relied on the use of model organisms. Among the higher mammalian organisms, the laboratory mouse (Mus musculus) is the most widely used model. A large number of commercially-available, inbred strains are available to the community, including an ever growing collection of transgenic, knock-out, and disease models. Coupled to availability is the fact that animal colonies can be kept under standardized housing condition at most major universities and research institutes, with relative ease and cost efficiency (compared to larger vertebrates). As such, mouse models to study human biology and disease remains extremely attractive. In the current review we will provide an historic overview of the use of mouse models in proteome research with a focus on general tissue and organelle biology, comparative proteomics of human and mouse and the use of mouse models to study cardiac disease. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  9. Digenic Inheritance in Cystinuria Mouse Model

    Science.gov (United States)

    Espino, Meritxell; Font-Llitjós, Mariona; Vilches, Clara; Salido, Eduardo; Prat, Esther; López de Heredia, Miguel; Palacín, Manuel; Nunes, Virginia

    2015-01-01

    Cystinuria is an aminoaciduria caused by mutations in the genes that encode the two subunits of the amino acid transport system b0,+, responsible for the renal reabsorption of cystine and dibasic amino acids. The clinical symptoms of cystinuria relate to nephrolithiasis, due to the precipitation of cystine in urine. Mutations in SLC3A1, which codes for the heavy subunit rBAT, cause cystinuria type A, whereas mutations in SLC7A9, which encodes the light subunit b0,+AT, cause cystinuria type B. By crossing Slc3a1-/- with Slc7a9-/- mice we generated a type AB cystinuria mouse model to test digenic inheritance of cystinuria. The 9 genotypes obtained have been analyzed at early (2- and 5-months) and late stage (8-months) of the disease. Monitoring the lithiasic phenotype by X-ray, urine amino acid content analysis and protein expression studies have shown that double heterozygous mice (Slc7a9+/-Slc3a1+/-) present lower expression of system b0,+ and higher hyperexcretion of cystine than single heterozygotes (Slc7a9+/-Slc3a1+/+ and Slc7a9+/+Slc3a1+/-) and give rise to lithiasis in 4% of the mice, demonstrating that cystinuria has a digenic inheritance in this mouse model. Moreover in this study it has been demonstrated a genotype/phenotype correlation in type AB cystinuria mouse model providing new insights for further molecular and genetic studies of cystinuria patients. PMID:26359869

  10. Digenic Inheritance in Cystinuria Mouse Model.

    Directory of Open Access Journals (Sweden)

    Meritxell Espino

    Full Text Available Cystinuria is an aminoaciduria caused by mutations in the genes that encode the two subunits of the amino acid transport system b0,+, responsible for the renal reabsorption of cystine and dibasic amino acids. The clinical symptoms of cystinuria relate to nephrolithiasis, due to the precipitation of cystine in urine. Mutations in SLC3A1, which codes for the heavy subunit rBAT, cause cystinuria type A, whereas mutations in SLC7A9, which encodes the light subunit b0,+AT, cause cystinuria type B. By crossing Slc3a1-/- with Slc7a9-/- mice we generated a type AB cystinuria mouse model to test digenic inheritance of cystinuria. The 9 genotypes obtained have been analyzed at early (2- and 5-months and late stage (8-months of the disease. Monitoring the lithiasic phenotype by X-ray, urine amino acid content analysis and protein expression studies have shown that double heterozygous mice (Slc7a9+/-Slc3a1+/- present lower expression of system b0,+ and higher hyperexcretion of cystine than single heterozygotes (Slc7a9+/-Slc3a1+/+ and Slc7a9+/+Slc3a1+/- and give rise to lithiasis in 4% of the mice, demonstrating that cystinuria has a digenic inheritance in this mouse model. Moreover in this study it has been demonstrated a genotype/phenotype correlation in type AB cystinuria mouse model providing new insights for further molecular and genetic studies of cystinuria patients.

  11. Analysis of microsatellite polymorphism in inbred knockout mice.

    Directory of Open Access Journals (Sweden)

    Baofen Zuo

    Full Text Available Previously, we found that the genotype of 42 out of 198 mouse microsatellite loci, which are distributed among all chromosomes except the Y chromosome, changed from monomorphism to polymorphism (CMP in a genetically modified inbred mouse strain. In this study, we further examined whether CMP also relates to the homologous recombination in gene knockout (KO mouse strains. The same 42 microsatellite loci were analyzed by polymerase chain reaction (PCR in 29 KO inbred mouse strains via short tandem sequence repeat (STR scanning and direct sequence cloning to justify microsatellite polymorphisms. The C57BL/6J and 129 mouse strains, from which these 29 KO mice were derived, were chosen as the background controls. The results indicated that 10 out of 42 (23.8% loci showed CMP in some of these mouse strains. Except for the trinucleotide repeat locus of D3Mit22, which had microsatellite CMP in strain number 9, the core sequences of the remaining 41 loci were dinucleotide repeats, and 9 out of 41 (21.95% showed CMPs among detected mouse strains. However, 11 out of 29 (37.9% KO mice strains were recognized as having CMPs. The popular dinucleotide motifs in CMP were (TG(n (50%, 2/4, followed by (GT(n (27.27%, 3/11 and (CA(n (23.08%, 3/13. The microsatellite CMP in (CT(n and (AG(n repeats were 20% (1/5. According to cloning sequencing results, 6 KO mouse strains showed insertions of nucleotides whereas 1 showed a deletion. Furthermore, 2 loci (D13Mit3 and D14Mit102 revealed CMP in 2 strains, and mouse strain number 9 showed CMPs in two loci (D3Mit22 and D13Mit3 simultaneously. Collectively, these results indicated that microsatellite polymorphisms were present in the examined inbred KO mice.

  12. Long-term exposure to intranasal oxytocin in a mouse autism model.

    Science.gov (United States)

    Bales, K L; Solomon, M; Jacob, S; Crawley, J N; Silverman, J L; Larke, R H; Sahagun, E; Puhger, K R; Pride, M C; Mendoza, S P

    2014-11-11

    Oxytocin (OT) is a neuropeptide involved in mammalian social behavior. It is currently in clinical trials for the treatment of autism spectrum disorder (ASD). Previous studies in healthy rodents (prairie voles and C57BL/6J mice) have shown that there may be detrimental effects of long-term intranasal administration, raising the questions about safety and efficacy. To investigate the effects of OT on the aspects of ASD phenotype, we conducted the first study of chronic intranasal OT in a well-validated mouse model of autism, the BTBR T+ Itpr3tf/J inbred strain (BTBR), which displays low sociability and high repetitive behaviors. BTBR and C57BL/6J (B6) mice (N=94) were administered 0.8  IU/kg of OT intranasally, daily for 30 days, starting on day 21. We ran a well-characterized set of behavioral tasks relevant to diagnostic and associated symptoms of autism, including juvenile reciprocal social interactions, three-chambered social approach, open-field exploratory activity, repetitive self-grooming and fear-conditioned learning and memory, some during and some post treatment. Intranasal OT did not improve autism-relevant behaviors in BTBR, except for female sniffing in the three-chambered social interaction test. Male saline-treated BTBR mice showed increased interest in a novel mouse, both in chamber time and sniffing time, whereas OT-treated male BTBR mice showed a preference for the novel mouse in sniffing time only. No deleterious effects of OT were detected in either B6 or BTBR mice, except possibly for the lack of a preference for the novel mouse's chamber in OT-treated male BTBR mice. These results highlight the complexity inherent in understanding the effects of OT on behavior. Future investigations of chronic intranasal OT should include a wider dose range and early developmental time points in both healthy rodents and ASD models to affirm the efficacy and safety of OT.

  13. A humanized mouse model of tuberculosis.

    Directory of Open Access Journals (Sweden)

    Veronica E Calderon

    Full Text Available Mycobacterium tuberculosis (M.tb is the second leading infectious cause of death worldwide and the primary cause of death in people living with HIV/AIDS. There are several excellent animal models employed to study tuberculosis (TB, but many have limitations for reproducing human pathology and none are amenable to the direct study of HIV/M.tb co-infection. The humanized mouse has been increasingly employed to explore HIV infection and other pathogens where animal models are limiting. Our goal was to develop a small animal model of M.tb infection using the bone marrow, liver, thymus (BLT humanized mouse. NOD-SCID/γc(null mice were engrafted with human fetal liver and thymus tissue, and supplemented with CD34(+ fetal liver cells. Excellent reconstitution, as measured by expression of the human CD45 pan leukocyte marker by peripheral blood populations, was observed at 12 weeks after engraftment. Human T cells (CD3, CD4, CD8, as well as natural killer cells and monocyte/macrophages were all observed within the human leukocyte (CD45(+ population. Importantly, human T cells were functionally competent as determined by proliferative capacity and effector molecule (e.g. IFN-γ, granulysin, perforin expression in response to positive stimuli. Animals infected intranasally with M.tb had progressive bacterial infection in the lung and dissemination to spleen and liver from 2-8 weeks post infection. Sites of infection in the lung were characterized by the formation of organized granulomatous lesions, caseous necrosis, bronchial obstruction, and crystallization of cholesterol deposits. Human T cells were distributed throughout the lung, liver, and spleen at sites of inflammation and bacterial growth and were organized to the periphery of granulomas. These preliminary results demonstrate the potential to use the humanized mouse as a model of experimental TB.

  14. Intraspecific Competition and Inbreeding Depression: Increased Competitive Effort by Inbred Males Is Costly to Outbred Opponents.

    Science.gov (United States)

    Richardson, Jon; Smiseth, Per T

    2017-05-01

    A recent theoretical model suggests that intraspecific competition is an important determinant of the severity of inbreeding depression. The reason for this is that intraspecific competition is density dependent, leading to a stronger negative effect on inbred individuals if they are weaker competitors than outbred ones. In support of this prediction, previous empirical work shows that inbred individuals are weaker competitors than outbred ones and that intraspecific competition often exacerbates inbreeding depression. Here, we report an experiment on the burying beetle Nicrophorus vespilloides, in which we recorded the outcome of competition over a small vertebrate carcass between an inbred or outbred male resident caring for a brood and a size-matched inbred or outbred male intruder. We found that inbred males were more successful as intruders in taking over a carcass from a male resident and were injured more frequently as either residents or intruders. Furthermore, inbred males gained less mass during the breeding attempt and had a shorter adult life span than outbred males. Finally, successful resident males reared a substantially smaller brood comprised of lighter larvae when the intruder was inbred than when it was outbred. Our results shows that inbred males increased their competitive effort, thus contradicting previous work suggesting that inbred males are weaker competitors. Furthermore, our results shows that inbred intruders impose a greater cost to resident males, suggesting that outbred individuals can suffer fitness costs as a result of competition with inbred ones.

  15. Genetic Dissection of Cardiac Remodeling in an Isoproterenol-Induced Heart Failure Mouse Model.

    Directory of Open Access Journals (Sweden)

    Jessica Jen-Chu Wang

    2016-07-01

    Full Text Available We aimed to understand the genetic control of cardiac remodeling using an isoproterenol-induced heart failure model in mice, which allowed control of confounding factors in an experimental setting. We characterized the changes in cardiac structure and function in response to chronic isoproterenol infusion using echocardiography in a panel of 104 inbred mouse strains. We showed that cardiac structure and function, whether under normal or stress conditions, has a strong genetic component, with heritability estimates of left ventricular mass between 61% and 81%. Association analyses of cardiac remodeling traits, corrected for population structure, body size and heart rate, revealed 17 genome-wide significant loci, including several loci containing previously implicated genes. Cardiac tissue gene expression profiling, expression quantitative trait loci, expression-phenotype correlation, and coding sequence variation analyses were performed to prioritize candidate genes and to generate hypotheses for downstream mechanistic studies. Using this approach, we have validated a novel gene, Myh14, as a negative regulator of ISO-induced left ventricular mass hypertrophy in an in vivo mouse model and demonstrated the up-regulation of immediate early gene Myc, fetal gene Nppb, and fibrosis gene Lgals3 in ISO-treated Myh14 deficient hearts compared to controls.

  16. Mouse models of metastasis: progress and prospects

    Directory of Open Access Journals (Sweden)

    Laura Gómez-Cuadrado

    2017-09-01

    Full Text Available Metastasis is the spread of cancer cells from a primary tumor to distant sites within the body to establish secondary tumors. Although this is an inefficient process, the consequences are devastating as metastatic disease accounts for >90% of cancer-related deaths. The formation of metastases is the result of a series of events that allow cancer cells to escape from the primary site, survive in the lymphatic system or blood vessels, extravasate and grow at distant sites. The metastatic capacity of a tumor is determined by genetic and epigenetic changes within the cancer cells as well as contributions from cells in the tumor microenvironment. Mouse models have proven to be an important tool for unraveling the complex interactions involved in the metastatic cascade and delineating its many stages. Here, we critically appraise the strengths and weaknesses of the current mouse models and highlight the recent advances that have been made using these models in our understanding of metastasis. We also discuss the use of these models for testing potential therapies and the challenges associated with the translation of these findings into the provision of new and effective treatments for cancer patients.

  17. Mouse Model of Burn Wound and Infection

    DEFF Research Database (Denmark)

    Calum, Henrik; Høiby, Niels; Moser, Claus

    2017-01-01

    The immunosuppression induced by thermal injury renders the burned victim susceptible to infection. A mouse model was developed to examine the immunosuppression, which was possible to induce even at a minor thermal insult of 6% total body surface area. After induction of the burn (48 hr......) a depression of leukocytes in the peripheral blood was found of the burned mice. This depression was due to a reduction in the polymorphonuclear cells. The burned mice were not able to clear a Pseudomonas aeruginosa wound infection, since the infection spread to the blood as compared to mice only infected...... with P. aeruginosa subcutaneously. The burn model offers an opportunity to study infections under these conditions. The present model can also be used to examine new antibiotics and immune therapy. Our animal model resembling the clinical situation is useful in developing new treatments of burn wound...

  18. Role of genotype in the development of locomotor sensitization to alcohol in adult and adolescent mice: comparison of the DBA/2J and C57BL/6J inbred mouse strains.

    Science.gov (United States)

    Melón, Laverne C; Boehm, Stephen L

    2011-07-01

    Animal models that explore differential sensitivity to the effects of acute and repeated exposure of alcohol (ethanol) may be influenced by both the developmental and genetic profile of the population. Therefore, we sought to compare the influence of ontogeny on sensitivity to ethanol-induced locomotor stimulation and on the induction of locomotor sensitization to this effect across 2 inbred strains of mice; the ethanol consuming C57BL/6J and the ethanol avoiding DBA/2J strains. C57BL/6J and DBA/2J adults (postnatal day [PD] 60 to 80) and adolescents (PD 30±2) were assessed for basal activity, acute response to 2.0 g/kg ethanol, and the expression of locomotor sensitization following repeated administration of 2.5, 3.0, or 3.5 g/kg ethanol. Basal activity was different across development for the C57BL/6J, but not DBA/2J, with adult B6 mice showing persistently greater baseline activity. Adolescents of both strains were more sensitive than adults to acute ethanol-induced locomotor stimulation; adults exhibited a decrease in their acute response across the testing session. Adolescent DBA/2J mice developed less ethanol sensitization compared to adults, with significant sensitization observed only following repeated administration of the lowest ethanol dose (2.5 g/kg), whereas DBA/2J adults sensitized to all doses. Age did not influence the development of ethanol sensitization for the C57BL/6J strain, as both adults and adolescents displayed a sensitized response following all ethanol doses. These results suggest that the developmental pattern of locomotor sensitivity to ethanol is unique to the genotypic profile of the animal model. Copyright © 2011 by the Research Society on Alcoholism.

  19. Genetic determination of the biological radiation response in inbred mice lines

    International Nuclear Information System (INIS)

    Gomolka, M.; Hornhardt, S.; Jung, T.

    2000-01-01

    Variation in radiation sensitivity and radiation resistance is influenced by the genetic constitution of an individual. Loss of function of genes involved in DNA repair, cell cycle or controlled cell death can have serious consequences on individual radiation sensitivity. For example, individuals suffering on the clinical syndrome of Ataxia telangiectasia exhibit radiation sensitivity in the order of 2-3 magnitudes higher than other cancer patients. For radiation protection it is important to clarify the role of genetic predisposition for radiation sensitivity in clinical healthy people. Therefore, data were collected from the literature describing the genetic variation (heritability) of radiation sensitivity in the mouse model. A heritability of 30-50% was calculated for 27 inbred mice lines by Roderick (1963) based on days of survival after a daily dose of 1 Gy γ-irradiation. The following inbred lines were described in the literature as radiation sensitive (phenotypical markers were e.g., time of survival, mortality, reduction in fertility post exposure): SWR, RIII, NC, K, HLG, DBA, CBA, BALB/c, A, AKR. Radiation resistance was demonstrated in SJL, SEC, RF, MA, C58, C57BR, BDP and 129. Parameter of longevity, some physiological, biochemical and immunological parameters as given in the data bank of the Jackson Laboratory, U.S.A., were compared between radiation sensitive and radiation resistant inbred strains. No correlation was seen for the most of the parameters except for the development of breast cancer. In 6 out of 10 radiosensitive inbred strains breast cancer is described while only 1 of 8 strains exhibits breast cancer. The higher heritability of 30-50% in spite of a very complex phenotype like survival and the correlation between radiosensitivity and tumour incidence show that individual genetic susceptibility is important on the biological radiation reaction. (orig.) [de

  20. Mouse models for dengue vaccines and antivirals.

    Science.gov (United States)

    Plummer, Emily M; Shresta, Sujan

    2014-08-01

    Dengue virus (DENV) has substantial global impact, with an estimated 390million people infected each year. In spite of this, there is currently no approved DENV-specific vaccine or antiviral. One reason for this is the difficulty involved with development of an adequate animal model. While non-human primates support viral replication, they do not exhibit signs of clinical disease. A mouse model is an ideal alternative; however, wild-type mice are resistant to DENV-induced disease. Infection of interferon receptor-deficient mice results in disease that recapitulates key features of severe dengue disease in humans. For the development of vaccines, interferon receptor-deficient mice provide a stringent model for testing vaccine-induced immune components from vaccinated wild-type mice. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. The Mouse Genome Database (MGD): facilitating mouse as a model for human biology and disease.

    Science.gov (United States)

    Eppig, Janan T; Blake, Judith A; Bult, Carol J; Kadin, James A; Richardson, Joel E

    2015-01-01

    The Mouse Genome Database (MGD, http://www.informatics.jax.org) serves the international biomedical research community as the central resource for integrated genomic, genetic and biological data on the laboratory mouse. To facilitate use of mouse as a model in translational studies, MGD maintains a core of high-quality curated data and integrates experimentally and computationally generated data sets. MGD maintains a unified catalog of genes and genome features, including functional RNAs, QTL and phenotypic loci. MGD curates and provides functional and phenotype annotations for mouse genes using the Gene Ontology and Mammalian Phenotype Ontology. MGD integrates phenotype data and associates mouse genotypes to human diseases, providing critical mouse-human relationships and access to repositories holding mouse models. MGD is the authoritative source of nomenclature for genes, genome features, alleles and strains following guidelines of the International Committee on Standardized Genetic Nomenclature for Mice. A new addition to MGD, the Human-Mouse: Disease Connection, allows users to explore gene-phenotype-disease relationships between human and mouse. MGD has also updated search paradigms for phenotypic allele attributes, incorporated incidental mutation data, added a module for display and exploration of genes and microRNA interactions and adopted the JBrowse genome browser. MGD resources are freely available to the scientific community. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Applications and Limitations of Mouse Models for Understanding Human Atherosclerosis

    Science.gov (United States)

    von Scheidt, Moritz; Zhao, Yuqi; Kurt, Zeyneb; Pan, Calvin; Zeng, Lingyao; Yang, Xia; Schunkert, Heribert; Lusis, Aldons J.

    2017-01-01

    Most of the biological understanding of mechanisms underlying coronary artery disease (CAD) derives from studies of mouse models. The identification of multiple CAD loci and strong candidate genes in large human genome-wide association studies (GWAS) presented an opportunity to examine the relevance of mouse models for the human disease. We comprehensively reviewed the mouse literature, including 827 literature-derived genes, and compared it to human data. First, we observed striking concordance of risk factors for atherosclerosis in mice and humans. Second, there was highly significant overlap of mouse genes with human genes identified by GWAS. In particular, of the 46 genes with strong association signals in CAD-GWAS that were studied in mouse models all but one exhibited consistent effects on atherosclerosis-related phenotypes. Third, we compared 178 CAD-associated pathways derived from human GWAS with 263 from mouse studies and observed that over 50% were consistent between both species. PMID:27916529

  3. A Transgenic Mouse Model of Poliomyelitis.

    Science.gov (United States)

    Koike, Satoshi; Nagata, Noriyo

    2016-01-01

    Transgenic mice (tg mice) that express the human poliovirus receptor (PVR), CD155, are susceptible to poliovirus and develop a neurological disease that resembles human poliomyelitis. Assessment of the neurovirulence levels of poliovirus strains, including mutant viruses produced by reverse genetics, circulating vaccine-derived poliovirus, and vaccine candidates, is useful for basic research of poliovirus pathogenicity, the surveillance of circulating polioviruses, and the quality control of oral live poliovirus vaccines, and does not require the use of monkeys. Furthermore, PVR-tg mice are useful for studying poliovirus tissue tropism and host immune responses. PVR-tg mice can be bred with mice deficient in the genes involved in viral pathogenicity. This report describes the methods used to analyze the pathogenicity and immune responses of poliovirus using the PVR-tg mouse model.

  4. Transgenic Mouse Models of SV40-Induced Cancer.

    Science.gov (United States)

    Hudson, Amanda L; Colvin, Emily K

    2016-01-01

    The SV40 viral oncogene has been used since the 1970s as a reliable and reproducible method to generate transgenic mouse models. This seminal discovery has taught us an immense amount about how tumorigenesis occurs, and its success has led to the evolution of many mouse models of cancer. Despite the development of more modern and targeted approaches for developing genetically engineered mouse models of cancer, SV40-induced mouse models still remain frequently used today. This review discusses a number of cancer types in which SV40 mouse models of cancer have been developed and highlights their relevance and importance to preclinical research. © The Author 2016. Published by Oxford University Press on behalf of the Institute for Laboratory Animal Research. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  5. Endogenous retrovirus induces leukemia in a xenograft mouse model for primary myelofibrosis.

    Science.gov (United States)

    Triviai, Ioanna; Ziegler, Marion; Bergholz, Ulla; Oler, Andrew J; Stübig, Thomas; Prassolov, Vladimir; Fehse, Boris; Kozak, Christine A; Kröger, Nicolaus; Stocking, Carol

    2014-06-10

    The compound immunodeficiencies in nonobese diabetic (NOD) inbred mice homozygous for the Prkdc(scid) and Il2rg(null) alleles (NSG mice) permit engraftment of a wide-range of primary human cells, enabling sophisticated modeling of human disease. In studies designed to define neoplastic stem cells of primary myelofibrosis (PMF), a myeloproliferative neoplasm characterized by profound disruption of the hematopoietic microenvironment, we observed a high frequency of acute myeloid leukemia (AML) in NSG mice. AML was of mouse origin, confined to PMF-xenografted mice, and contained multiple clonal integrations of ecotropic murine leukemia virus (E-MuLV). Significantly, MuLV replication was not only observed in diseased mice, but also in nontreated NSG controls. Furthermore, in addition to the single ecotropic endogenous retrovirus (eERV) located on chromosome 11 (Emv30) in the NOD genome, multiple de novo germ-line eERV integrations were observed in mice from each of four independent NSG mouse colonies. Analysis confirmed that E-MuLV originated from the Emv30 provirus and that recombination events were not necessary for virus replication or AML induction. Pathogenicity is thus likely attributable to PMF-mediated paracrine stimulation of mouse myeloid cells, which serve as targets for retroviral infection and transformation, as evidenced by integration into the Evi1 locus, a hotspot for retroviral-induced myeloid leukemia. This study thus corroborates a role of paracrine stimulation in PMF disease progression, underlines the importance of target cell type and numbers in MuLV-induced disease, and mandates awareness of replicating MuLV in NOD immunodeficient mice, which can significantly influence experimental results and their interpretation.

  6. Mouse models of colorectal cancer as preclinical models

    Science.gov (United States)

    Buczacki, Simon J.A.; Arends, Mark J.; Adams, David J.

    2015-01-01

    In this review, we discuss the application of mouse models to the identification and pre‐clinical validation of novel therapeutic targets in colorectal cancer, and to the search for early disease biomarkers. Large‐scale genomic, transcriptomic and epigenomic profiling of colorectal carcinomas has led to the identification of many candidate genes whose direct contribution to tumourigenesis is yet to be defined; we discuss the utility of cross‐species comparative ‘omics‐based approaches to this problem. We highlight recent progress in modelling late‐stage disease using mice, and discuss ways in which mouse models could better recapitulate the complexity of human cancers to tackle the problem of therapeutic resistance and recurrence after surgical resection. PMID:26115037

  7. Myeloid leukemias and virally induced lymphomas in miniature inbred swine; development of a large animal tumor model

    Directory of Open Access Journals (Sweden)

    RAIMON eDURAN-STRUUCK

    2015-11-01

    Full Text Available The lack of a large animal transplantable tumor model has limited the study of novel therapeutic strategies for the treatment of liquid cancers. Swine as a species provide a natural option based on their similarities with humans and their already extensive use in biomedical research. Specifically, the MGH miniature swine herd retains unique genetic characteristics that facilitate the study of hematopoietic cell and solid organ transplantation. Spontaneously arising liquid cancers in these swine, specifically myeloid leukemias and B cell lymphomas, closely resemble human malignancies. The ability to establish aggressive tumor cell lines in vitro from these naturally occurring malignancies makes a transplantable tumor model a close reality. Here, we discuss our experience with myeloid and lymphoid tumors in MHC characterized miniature swine and future approaches regarding the development of a large animal transplantable tumor model.

  8. Mouse Models of Rare Craniofacial Disorders.

    Science.gov (United States)

    Achilleos, Annita; Trainor, Paul A

    2015-01-01

    A rare disease is defined as a condition that affects less than 1 in 2000 individuals. Currently more than 7000 rare diseases have been documented, and most are thought to be of genetic origin. Rare diseases primarily affect children, and congenital craniofacial syndromes and disorders constitute a significant proportion of rare diseases, with over 700 having been described to date. Modeling craniofacial disorders in animal models has been instrumental in uncovering the etiology and pathogenesis of numerous conditions and in some cases has even led to potential therapeutic avenues for their prevention. In this chapter, we focus primarily on two general classes of rare disorders, ribosomopathies and ciliopathies, and the surprising finding that the disruption of fundamental, global processes can result in tissue-specific craniofacial defects. In addition, we discuss recent advances in understanding the pathogenesis of an extremely rare and specific craniofacial condition known as syngnathia, based on the first mouse models for this condition. Approximately 1% of all babies are born with a minor or major developmental anomaly, and individuals suffering from rare diseases deserve the same quality of treatment and care and attention to their disease as other patients. © 2015 Elsevier Inc. All rights reserved.

  9. Modeling Phenotypes of Tuberous Scerosis in the Mouse

    National Research Council Canada - National Science Library

    Shipley, James M

    2007-01-01

    The overall goal of this project is to generate a mouse model of the smooth muscle-related facets of tuberous sclerosis, specifically in an attempt to model the lung phenotype seen in a subset of TS...

  10. Modeling Phenotypes of Tuberous Sclerosis in the Mouse

    National Research Council Canada - National Science Library

    Shipley, James M

    2006-01-01

    The overall goal of this project is to generate a mouse model of the smooth muscle-related facets of tuberous sclerosis specifically in an attempt to model the lung phenotype seen in a subset of TS...

  11. Decerebrate mouse model for studies of the spinal cord circuits

    DEFF Research Database (Denmark)

    Meehan, Claire Francesca; Mayr, Kyle A; Manuel, Marin

    2017-01-01

    The adult decerebrate mouse model (a mouse with the cerebrum removed) enables the study of sensory-motor integration and motor output from the spinal cord for several hours without compromising these functions with anesthesia. For example, the decerebrate mouse is ideal for examining locomotor...... behavior using intracellular recording approaches, which would not be possible using current anesthetized preparations. This protocol describes the steps required to achieve a low-blood-loss decerebration in the mouse and approaches for recording signals from spinal cord neurons with a focus on motoneurons...

  12. Acetylcholine Elevation Relieves Cognitive Rigidity and Social Deficiency in a Mouse Model of Autism

    Science.gov (United States)

    Karvat, Golan; Kimchi, Tali

    2014-01-01

    Autism spectrum disorders (ASD) are defined by behavioral deficits in social interaction and communication, repetitive stereotyped behaviors, and restricted interests/cognitive rigidity. Recent studies in humans and animal-models suggest that dysfunction of the cholinergic system may underlie autism-related behavioral symptoms. Here we tested the hypothesis that augmentation of acetylcholine (ACh) in the synaptic cleft by inhibiting acetylcholinesterase may ameliorate autistic phenotypes. We first administered the acetylcholinesterase inhibitor (AChEI) Donepezil systemically by intraperitoneal (i.p.) injections. Second, the drug was injected directly into the rodent homolog of the caudate nucleus, the dorsomedial striatum (DMS), of the inbred mouse strain BTBR T+tf/J (BTBR), a commonly-used model presenting all core autism-related phenotypes and expressing low brain ACh levels. We found that i.p. injection of AChEI to BTBR mice significantly relieved autism-relevant phenotypes, including decreasing cognitive rigidity, improving social preference, and enhancing social interaction, in a dose-dependent manner. Microinjection of the drug directly into the DMS, but not into the ventromedial striatum, led to significant amelioration of the cognitive-rigidity and social-deficiency phenotypes. Taken together, these findings provide evidence of the key role of the cholinergic system and the DMS in the etiology of ASD, and suggest that elevated cognitive flexibility may result in enhanced social attention. The potential therapeutic effect of AChEIs in ASD patients is discussed. PMID:24096295

  13. The Mouse Tumor Biology Database: A Comprehensive Resource for Mouse Models of Human Cancer.

    Science.gov (United States)

    Krupke, Debra M; Begley, Dale A; Sundberg, John P; Richardson, Joel E; Neuhauser, Steven B; Bult, Carol J

    2017-11-01

    Research using laboratory mice has led to fundamental insights into the molecular genetic processes that govern cancer initiation, progression, and treatment response. Although thousands of scientific articles have been published about mouse models of human cancer, collating information and data for a specific model is hampered by the fact that many authors do not adhere to existing annotation standards when describing models. The interpretation of experimental results in mouse models can also be confounded when researchers do not factor in the effect of genetic background on tumor biology. The Mouse Tumor Biology (MTB) database is an expertly curated, comprehensive compendium of mouse models of human cancer. Through the enforcement of nomenclature and related annotation standards, MTB supports aggregation of data about a cancer model from diverse sources and assessment of how genetic background of a mouse strain influences the biological properties of a specific tumor type and model utility. Cancer Res; 77(21); e67-70. ©2017 AACR . ©2017 American Association for Cancer Research.

  14. Development of a novel mouse constipation model.

    Science.gov (United States)

    Liang, Chao; Wang, Kai-Yue; Yu, Zhi; Xu, Bin

    2016-03-07

    To establish a novel mouse constipation model. Animals were randomly divided into three groups, and intragastrically administered 0-4 °C saline (ice-cold group) or 15-20 °C saline (saline control group) daily for 14 d, or were left untreated (blank control group). Stools were collected 3-24 h after treatment to record the wet and dry weights and the stool form. Intestinal propulsion experiments were carried out and defecation time was measured for six days continuously after suspending treatments. The expressions of PGP9.5 were detected by immunohistochemistry. Based on the percentage of stool weight changes compared with baseline (before irritation) in 9-14 d, stool weight changes were classified into three levels. Each level shows a different body state, which is state I (no change: plus or minus 5%), state II (slightly decreased: 5%-15%) and state III (decreased: 15%-25%). In state III, between day 9-14, the stool weights decreased by 15%-25% compared with the baseline, and changed at a rate > 10% compared with blank control values, and the stools became small and dry. Additionally, intestinal functions degenerated in these animals, and PGP9.5-positive expression markedly decreased in jejunum, ileum and proximal colon myenteric plexus. Irritation with ice-cold saline is a stable, repeatable method in building constipation model in mice for exploring the pathogenesis and treatment options of constipation, and the change of stool weight and size may serve as a useful tool to judge a constipation model success or not.

  15. Characterization of a pneumococcal meningitis mouse model

    Directory of Open Access Journals (Sweden)

    Mook-Kanamori Barry

    2012-03-01

    Full Text Available Abstract Background S. pneumoniae is the most common causative agent of meningitis, and is associated with high morbidity and mortality. We aimed to develop an integrated and representative pneumococcal meningitis mouse model resembling the human situation. Methods Adult mice (C57BL/6 were inoculated in the cisterna magna with increasing doses of S. pneumoniae serotype 3 colony forming units (CFU; n = 24, 104, 105, 106 and 107 CFU and survival studies were performed. Cerebrospinal fluid (CSF, brain, blood, spleen, and lungs were collected. Subsequently, mice were inoculated with 104 CFU S. pneumoniae serotype 3 and sacrificed at 6 (n = 6 and 30 hours (n = 6. Outcome parameters were bacterial outgrowth, clinical score, and cytokine and chemokine levels (using Luminex® in CSF, blood and brain. Meningeal inflammation, neutrophil infiltration, parenchymal and subarachnoidal hemorrhages, microglial activation and hippocampal apoptosis were assessed in histopathological studies. Results Lower doses of bacteria delayed onset of illness and time of death (median survival CFU 104, 56 hrs; 105, 38 hrs, 106, 28 hrs. 107, 24 hrs. Bacterial titers in brain and CSF were similar in all mice at the end-stage of disease independent of inoculation dose, though bacterial outgrowth in the systemic compartment was less at lower inoculation doses. At 30 hours after inoculation with 104 CFU of S. pneumoniae, blood levels of KC, IL6, MIP-2 and IFN- γ were elevated, as were brain homogenate levels of KC, MIP-2, IL-6, IL-1β and RANTES. Brain histology uniformly showed meningeal inflammation at 6 hours, and, neutrophil infiltration, microglial activation, and hippocampal apoptosis at 30 hours. Parenchymal and subarachnoidal and cortical hemorrhages were seen in 5 of 6 and 3 of 6 mice at 6 and 30 hours, respectively. Conclusion We have developed and validated a murine model of pneumococcal meningitis.

  16. The p53-Deficient Mouse as a Breast Cancer Model

    National Research Council Canada - National Science Library

    Donehower, Laurence

    1998-01-01

    .... In order to better understand the role of p53 mutation and loss in breast cancer progression, we have developed a mouse model which is genetically programmed to develop mammary cancer in the presence and absence of p53...

  17. The p53-Deficient Mouse as a Breast Cancer Model

    National Research Council Canada - National Science Library

    Donehower, Lawrence

    1997-01-01

    .... In order to better understand the role of p53 mutation and loss in breast cancer progression, we have developed a mouse model which is genetically programmed to develop mammary cancer in the presence and absence of p53...

  18. Mouse models to study dengue virus immunology and pathogenesis

    Directory of Open Access Journals (Sweden)

    Raphaël M. Zellweger

    2014-04-01

    Full Text Available The development of a compelling murine model of dengue virus (DENV infection has been challenging, because dengue virus clinical isolates do not readily replicate or cause pathology in immunocompetent mice. However, research using immunocompromised mice and/or mouse-adapted viruses allows to investigate questions that may be impossible to address in human studies. In this review, we discuss the potential strengths and limitations of existing mouse models of dengue disease. Human studies are descriptive by nature; moreover, the strain, time, and sequence of infection are often unknown. In contrast, in mice, the conditions of infection are well defined and a large number of experimental parameters can be varied at will. Therefore, mouse models offer an opportunity to experimentally test hypotheses that are based on epidemiological observations. In particular, gain-of-function or loss-of-function models can be established to assess how different components of the immune system (either alone or in combination contribute to protection or pathogenesis during secondary infections or after vaccination. In addition, mouse models have been used for pre-clinical testing of antiviral drug or for vaccine development studies. Conclusions based on mouse experiments must be extrapolated to DENV infection in humans with caution due to the inherent limitations of animal models. However, research in mouse models is a useful complement to in vitro and epidemiological data, and may delineate new areas that deserve attention during future human studies.

  19. Transgenic mouse models of hormonal mammary carcinogenesis: advantages and limitations.

    Science.gov (United States)

    Kirma, Nameer B; Tekmal, Rajeshwar R

    2012-09-01

    Mouse models of breast cancer, especially transgenic and knockout mice, have been established as valuable tools in shedding light on factors involved in preneoplastic changes, tumor development and malignant progression. The majority of mouse transgenic models develop estrogen receptor (ER) negative tumors. This is seen as a drawback because the majority of human breast cancers present an ER positive phenotype. On the other hand, several transgenic mouse models have been developed that produce ER positive mammary tumors. These include mice over-expressing aromatase, ERα, PELP-1 and AIB-1. In this review, we will discuss the value of these models as physiologically relevant in vivo systems to understand breast cancer as well as some of the pitfalls involving these models. In all, we argue that the use of transgenic models has improved our understanding of the molecular aspects and biology of breast cancer. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Mouse models for gastric cancer: Matching models to biological questions.

    Science.gov (United States)

    Poh, Ashleigh R; O'Donoghue, Robert J J; Ernst, Matthias; Putoczki, Tracy L

    2016-07-01

    Gastric cancer is the third leading cause of cancer-related mortality worldwide. This is in part due to the asymptomatic nature of the disease, which often results in late-stage diagnosis, at which point there are limited treatment options. Even when treated successfully, gastric cancer patients have a high risk of tumor recurrence and acquired drug resistance. It is vital to gain a better understanding of the molecular mechanisms underlying gastric cancer pathogenesis to facilitate the design of new-targeted therapies that may improve patient survival. A number of chemically and genetically engineered mouse models of gastric cancer have provided significant insight into the contribution of genetic and environmental factors to disease onset and progression. This review outlines the strengths and limitations of current mouse models of gastric cancer and their relevance to the pre-clinical development of new therapeutics. © 2016 The Authors Journal of Gastroenterology and Hepatology published by Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  1. Whole exome sequencing of wild-derived inbred strains of mice improves power to link phenotype and genotype.

    Science.gov (United States)

    Chang, Peter L; Kopania, Emily; Keeble, Sara; Sarver, Brice A J; Larson, Erica; Orth, Annie; Belkhir, Khalid; Boursot, Pierre; Bonhomme, François; Good, Jeffrey M; Dean, Matthew D

    2017-10-01

    The house mouse is a powerful model to dissect the genetic basis of phenotypic variation, and serves as a model to study human diseases. Despite a wealth of discoveries, most classical laboratory strains have captured only a small fraction of genetic variation known to segregate in their wild progenitors, and existing strains are often related to each other in complex ways. Inbred strains of mice independently derived from natural populations have the potential to increase power in genetic studies with the addition of novel genetic variation. Here, we perform exome-enrichment and high-throughput sequencing (~8× coverage) of 26 wild-derived strains known in the mouse research community as the "Montpellier strains." We identified 1.46 million SNPs in our dataset, approximately 19% of which have not been detected from other inbred strains. This novel genetic variation is expected to contribute to phenotypic variation, as they include 18,496 nonsynonymous variants and 262 early stop codons. Simulations demonstrate that the higher density of genetic variation in the Montpellier strains provides increased power for quantitative genetic studies. Inasmuch as the power to connect genotype to phenotype depends on genetic variation, it is important to incorporate these additional genetic strains into future research programs.

  2. Mouse Model of Human Hereditary Pancreatitis

    Science.gov (United States)

    2016-09-01

    trypsin-dependent pathway in pancreatitis and to begin testing therapeutic and preventive approaches. Mutations in the digestive enzyme trypsinogen...expression of mutant trypsinogens at the protein level, we will perform chromatographic analysis of the total trypsinogen fraction isolated from mouse...pancreata (Subtask 4a). This subtask has been delayed until homozygous animals could be generated. Homozygous animals are now available and chromatographic

  3. Novel Transgenic Mouse Model of Polycystic Kidney Disease.

    Science.gov (United States)

    Kito, Yusuke; Saigo, Chiemi; Takeuchi, Tamotsu

    2017-09-01

    Transmembrane protein 207 (TMEM207) is characterized as an important molecule for invasiveness of gastric signet-ring cell carcinoma cells. To clarify the pathobiological effects of TMEM207, we generated 13 transgenic mouse strains, designated C57BL/6-transgenic (Tg) (ITF-TMEM207), where the mouse Tmem207 is ectopically expressed under the proximal promoter of the murine intestinal trefoil factor gene. A C57BL/6-Tg (ITF-TMEM207) mouse strain unexpectedly exhibited a high incidence of spontaneous kidney cysts with histopathological features resembling human polycystic kidney disease, which were found in approximately all mice within 1 year. TMEM207 immunoreactivity was found in noncystic kidney tubules and in renal cysts of the transgenic mice. The ITF-TMEM207 construct was inserted into Mitf at chromosome 6. Cystic kidney was not observed in other C57BL/6-Tg (ITF-TMEM207) transgenic mouse strains. Although several genetically manipulated animal models exist, this mouse strain harboring a genetic mutation in Mitf and overexpression of Tmem207 protein was not reported as a model of polycystic kidney disease until now. This study demonstrates that the C57BL/6-Tg (ITF-TMEM207) mouse may be a suitable model for understanding human polycystic kidney disease. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  4. TEMPORAL STRUCTURE OF OPEN-FIELD BEHAVIOR IN INBRED STRAINS OF MICE

    NARCIS (Netherlands)

    MAKINO, J; KATO, K; MAES, FW

    1991-01-01

    Behavior of the inbred mouse strains BALB, C3H, DBA and C57BL in an open field was directly observed for 10 min by a multi-event time sampling method. It was coded into nine behavioral items, the occurrence or absence of which in consecutive 5-s time bins was called a behavioral state. Fourteen

  5. Differences in embryo quality are associated with differences in oocyte composition: a proteomic study in inbred mice.

    Science.gov (United States)

    Pfeiffer, Martin J; Taher, Leila; Drexler, Hannes; Suzuki, Yutaka; Makałowski, Wojciech; Schwarzer, Caroline; Wang, Bingyuan; Fuellen, Georg; Boiani, Michele

    2015-02-01

    Current models of early mouse development assign roles to stochastic processes and epigenetic regulation, which are considered to be as influential as the genetic differences that exist between strains of the species Mus musculus. The aim of this study was to test whether mouse oocytes vary from each other in the abundance of gene products that could influence, prime, or even predetermine developmental trajectories and features of derivative embryos. Using the paradigm of inbred mouse strains, we quantified 2010 protein groups (SILAC LC-MS/MS) and 15205 transcripts (RNA deep sequencing) present simultaneously in oocytes of four strains tested (129/Sv, C57Bl/6J, C3H/HeN, DBA/2J). Oocytes differed according to donor strain in the abundance of catalytic and regulatory proteins, as confirmed for a subset (bromodomain adjacent to zinc finger domain, 1B [BAZ1B], heme oxygenase 1 [HMOX1], estrogen related receptor, beta [ESRRB]) via immunofluorescence in situ. Given a Pearson's r correlation coefficient of 0.18-0.20, the abundance of oocytic proteins could not be predicted from that of cognate mRNAs. Our results document that a prerequisite to generate embryo diversity, namely the different abundances of maternal proteins in oocytes, can be studied in the model of inbred mouse strains. Thus, we highlight the importance of proteomic quantifications in modern embryology. All MS data have been deposited in the ProteomeXchange with identifier PXD001059 (http://proteomecentral.proteomexchange.org/dataset/PXD001059). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Germline genetic variation modulates tumor progression and metastasis in a mouse model of neuroendocrine prostate carcinoma.

    Directory of Open Access Journals (Sweden)

    Shashank J Patel

    Full Text Available Neuroendocrine (NE differentiation has gained increased attention as a prostate cancer (PC prognostic marker. The aim of this study is to determine whether host germline genetic variation influences tumor progression and metastasis in C57BL/6-Tg(TRAMP8247Ng/J (TRAMP mouse model of aggressive NEPC. TRAMP mice were crossed to the eight progenitor strains of the Collaborative Cross recombinant inbred panel to address this. Tumor growth and metastasis burden were quantified in heterozygous transgene positive F1 male mice at 30 weeks of age. Compared to wild-type C57BL/6J-Tg(TRAMP824Ng/J males, TRAMP x CAST/EiJ, TRAMP x NOD/ShiLtJ and TRAMP x NZO/HlLtJ F1 males displayed significant increases in tumor growth. Conversely, TRAMP x WSB/EiJ and TRAMP x PWK/PhJ F1 males displayed significant reductions in tumor growth. Interestingly, despite reduced tumor burden, TRAMP x WSB/EiJ males had an increased nodal metastasis burden. Patterns of distant pulmonary metastasis tended to follow the same patterns as that of local dissemination in each of the strains. All tumors and metastases displayed positive staining for NE markers, synaptophysin, and FOXA2. These experiments conclusively demonstrate that the introduction of germline variation by breeding modulates tumor growth, local metastasis burden, and distant metastasis frequency in this model of NEPC. These strains will be useful as model systems to facilitate the identification of germline modifier genes that promote the development of aggressive forms of PC.

  7. Mouse models for understanding human developmental anomalies

    International Nuclear Information System (INIS)

    Generoso, W.M.

    1989-01-01

    The mouse experimental system presents an opportunity for studying the nature of the underlying mutagenic damage and the molecular pathogenesis of this class of anomalies by virtue of the accessibility of the zygote and its descendant blastomeres. Such studies could contribute to the understanding of the etiology of certain sporadic but common human malformations. The vulnerability of the zygotes to mutagens as demonstrated in the studies described in this report should be a major consideration in chemical safety evaluation. It raises questions regarding the danger to human zygotes when the mother is exposed to drugs and environmental chemicals

  8. Mouse models for understanding human developmental anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Generoso, W.M.

    1989-01-01

    The mouse experimental system presents an opportunity for studying the nature of the underlying mutagenic damage and the molecular pathogenesis of this class of anomalies by virtue of the accessibility of the zygote and its descendant blastomeres. Such studies could contribute to the understanding of the etiology of certain sporadic but common human malformations. The vulnerability of the zygotes to mutagens as demonstrated in the studies described in this report should be a major consideration in chemical safety evaluation. It raises questions regarding the danger to human zygotes when the mother is exposed to drugs and environmental chemicals.

  9. A preclinical mouse model of invasive lobular breast cancer metastasis

    NARCIS (Netherlands)

    Doornebal, Chris W.; Klarenbeek, Sjoerd; Braumuller, Tanya M.; Klijn, Christiaan N.; Ciampricotti, Metamia; Hau, Cheei-Sing; Hollmann, Markus W.; Jonkers, Jos; de Visser, Karin E.

    2013-01-01

    Metastatic disease accounts for more than 90% of cancer-related deaths, but the development of effective antimetastatic agents has been hampered by the paucity of clinically relevant preclinical models of human metastatic disease. Here, we report the development of a mouse model of spontaneous

  10. Mouse Xenograft Model for Mesothelioma | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The National Cancer Institute is seeking parties interested in collaborative research to co-develop, evaluate, or commercialize a new mouse model for monoclonal antibodies and immunoconjugates that target malignant mesotheliomas. Applications of the technology include models for screening compounds as potential therapeutics for mesothelioma and for studying the pathology of mesothelioma.

  11. A Mouse Model for Laser-induced Choroidal Neovascularization.

    Science.gov (United States)

    Shah, Ronil S; Soetikno, Brian T; Lajko, Michelle; Fawzi, Amani A

    2015-12-27

    The mouse laser-induced choroidal neovascularization (CNV) model has been a crucial mainstay model for neovascular age-related macular degeneration (AMD) research. By administering targeted laser injury to the RPE and Bruch's membrane, the procedure induces angiogenesis, modeling the hallmark pathology observed in neovascular AMD. First developed in non-human primates, the laser-induced CNV model has come to be implemented into many other species, the most recent of which being the mouse. Mouse experiments are advantageously more cost-effective, experiments can be executed on a much faster timeline, and they allow the use of various transgenic models. The miniature size of the mouse eye, however, poses a particular challenge when performing the procedure. Manipulation of the eye to visualize the retina requires practice of fine dexterity skills as well as simultaneous hand-eye-foot coordination to operate the laser. However, once mastered, the model can be applied to study many aspects of neovascular AMD such as molecular mechanisms, the effect of genetic manipulations, and drug treatment effects. The laser-induced CNV model, though useful, is not a perfect model of the disease. The wild-type mouse eye is otherwise healthy, and the chorio-retinal environment does not mimic the pathologic changes in human AMD. Furthermore, injury-induced angiogenesis does not reflect the same pathways as angiogenesis occurring in an age-related and chronic disease state as in AMD. Despite its shortcomings, the laser-induced CNV model is one of the best methods currently available to study the debilitating pathology of neovascular AMD. Its implementation has led to a deeper understanding of the pathogenesis of AMD, as well as contributing to the development of many of the AMD therapies currently available.

  12. Transgenic mouse models--a seminal breakthrough in oncogene research.

    Science.gov (United States)

    Smith, Harvey W; Muller, William J

    2013-12-01

    Transgenic mouse models are an integral part of modern cancer research, providing a versatile and powerful means of studying tumor initiation and progression, metastasis, and therapy. The present repertoire of these models is very diverse, with a wide range of strategies used to induce tumorigenesis by expressing dominant-acting oncogenes or disrupting the function of tumor-suppressor genes, often in a highly tissue-specific manner. Much of the current technology used in the creation and characterization of transgenic mouse models of cancer will be discussed in depth elsewhere. However, to gain a complete appreciation and understanding of these complex models, it is important to review the history of the field. Transgenic mouse models of cancer evolved as a new and, compared with the early cell-culture-based techniques, more physiologically relevant approach for studying the properties and transforming capacities of oncogenes. Here, we will describe early transgenic mouse models of cancer based on tissue-specific expression of oncogenes and discuss their impact on the development of this still rapidly growing field.

  13. Mouse Models of Fragile X-Associated Tremor Ataxia

    Science.gov (United States)

    Berman, Robert F.; Willemsen, Rob

    2009-01-01

    Objective To describe the development of mouse models of Fragile X-associated Tremor/Ataxia (FXTAS) and the behavioral, histological and molecular characteristics of these mice. Method This paper compares the pathophysiology and neuropsychological features of FXTAS in humans to the major mouse models of FXTAS. Specifically, the development of a transgenic mouse line carrying an expanded CGG trinucleotide repeat in the 5′untranslated regions of the Fmr1 gene is described along with a description of the characteristic intranuclear ubiquitin positive inclusions and the behavioral sequella observed in these mice. Results CGG KI mice model many of the important features of FXTAS, although some aspects are not well modeled in mice. Aspects of FXTAS that are modeled well include elevated levels of Fmr1 mRNA, reduced levels of Fmrp, the presence of intranuclear inclusions that develop with age and show similar distributions within neurons, and neuropsychological and cognitive deficits, including poor motor function, impaired memory and evidence of increased anxiety. Features of FXTAS that are not well modeled in these mice include intentional tremors that are observed in some FXTAS patients but have not been reported in CGG KI mice. In addition, while intranuclear inclusions in astrocytes are very prominent in FXTAS, there are relatively few observed in CGG KI mice. A number of additional features of FXTAS have not been systematically examined in mouse models yet, including white matter disease, hyperintensities in T2-weighted MRI, and brain atrophy, although these are currently under investigation in our laboratories. Conclusion The available mouse model has provided valuable insights into the molecular biology and pathophysiology of FXTAS, and will be particularly useful for developing and testing new therapeutic treatments in the future. PMID:19574928

  14. The clinical implications of mouse models of enhanced anxiety

    Science.gov (United States)

    Sartori, Simone B; Landgraf, Rainer; Singewald, Nicolas

    2011-01-01

    Mice are increasingly overtaking the rat model organism in important aspects of anxiety research, including drug development. However, translating the results obtained in mouse studies into information that can be applied in clinics remains challenging. One reason may be that most of the studies so far have used animals displaying ‘normal’ anxiety rather than ‘psychopathological’ animal models with abnormal (elevated) anxiety, which more closely reflect core features and sensitivities to therapeutic interventions of human anxiety disorders, and which would, thus, narrow the translational gap. Here, we discuss manipulations aimed at persistently enhancing anxiety-related behavior in the laboratory mouse using phenotypic selection, genetic techniques and/or environmental manipulations. It is hoped that such models with enhanced construct validity will provide improved ways of studying the neurobiology and treatment of pathological anxiety. Examples of findings from mouse models of enhanced anxiety-related behavior will be discussed, as well as their relation to findings in anxiety disorder patients regarding neuroanatomy, neurobiology, genetic involvement and epigenetic modifications. Finally, we highlight novel targets for potential anxiolytic pharmacotherapeutics that have been established with the help of research involving mice. Since the use of psychopathological mouse models is only just beginning to increase, it is still unclear as to the extent to which such approaches will enhance the success rate of drug development in translating identified therapeutic targets into clinical trials and, thus, helping to introduce the next anxiolytic class of drugs. PMID:21901080

  15. Reconstruction of human mammary tissues in a mouse model.

    Science.gov (United States)

    Proia, David A; Kuperwasser, Charlotte

    2006-01-01

    Establishing a model system that more accurately recapitulates both normal and neoplastic breast epithelial development in rodents is central to studying human breast carcinogenesis. However, the inability of human breast epithelial cells to colonize mouse mammary fat pads is problematic. Considering that the human breast is a more fibrous tissue than is the adipose-rich stroma of the murine mammary gland, our group sought to bypass the effects of the rodent microenvironment through incorporation of human stromal fibroblasts. We have been successful in reproducibly recreating functionally normal breast tissues from reduction mammoplasty tissues, in what we term the human-in-mouse (HIM) model. Here we describe our relatively simple and inexpensive techniques for generating this orthotopic xenograft model. Whether the model is to be applied for understanding normal human breast development or tumorigenesis, investigators with minimal animal surgery skills, basic cell culture techniques and access to human breast tissue will be able to generate humanized mouse glands within 3 months. Clearing the mouse of its endogenous epithelium with subsequent stromal humanization takes 1 month. The subsequent implantation of co-mixed human epithelial cells and stromal cells occurs 2 weeks after humanization, so investigators should expect to observe the desired outgrowths 2 months afterward. As a whole, this model system has the potential to improve the understanding of crosstalk between tissue stroma and the epithelium as well as factors involved in breast stem cell biology tumor initiation and progression.

  16. A mouse model of mammary hyperplasia induced by oral hormone ...

    African Journals Online (AJOL)

    Methods and Materials: To address the mechanism, we developed a mouse model of mammary hyperplasia. We gave mice estradiol valerate tablets and progesterone capsules sequentially for one month by intragastric administration. Results: Mice treated by this method had a series of pathological changes which are ...

  17. Towards a mouse model of depression : a psychoneuroendocrine approach

    NARCIS (Netherlands)

    Dalm, Sergiu

    2012-01-01

    Chronic stress is considered a vulnerability factor for depression. A key symptom is anhedonia; a reduced response to positive stimuli. Drugs are effective for only 20-40% of the patients and new drugs are urgently needed. The objective of the research was to develop a mouse model of depression that

  18. Diffusion microscopic MRI of the mouse embryo: Protocol and practical implementation in the splotch mouse model.

    Science.gov (United States)

    Norris, Francesca C; Siow, Bernard M; Cleary, Jon O; Wells, Jack A; De Castro, Sandra C P; Ordidge, Roger J; Greene, Nicholas D E; Copp, Andrew J; Scambler, Peter J; Alexander, Daniel C; Lythgoe, Mark F

    2015-02-01

    Advanced methodologies for visualizing novel tissue contrast are essential for phenotyping the ever-increasing number of mutant mouse embryos being generated. Although diffusion microscopic MRI (μMRI) has been used to phenotype embryos, widespread routine use is limited by extended scanning times, and there is no established experimental procedure ensuring optimal data acquisition. We developed two protocols for designing experimental procedures for diffusion μMRI of mouse embryos, which take into account the effect of embryo preparation and pulse sequence parameters on resulting data. We applied our protocols to an investigation of the splotch mouse model as an example implementation. The protocols provide DTI data in 24 min per direction at 75 μm isotropic using a three-dimensional fast spin-echo sequence, enabling preliminary imaging in 3 h (6 directions plus one unweighted measurement), or detailed imaging in 9 h (42 directions plus six unweighted measurements). Application to the splotch model enabled assessment of spinal cord pathology. We present guidelines for designing diffusion μMRI experiments, which may be adapted for different studies and research facilities. As they are suitable for routine use and may be readily implemented, we hope they will be adopted by the phenotyping community. © 2014 Wiley Periodicals, Inc.

  19. Rapid genetic algorithm optimization of a mouse computational model: Benefits for anthropomorphization of neonatal mouse cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Corina Teodora Bot

    2012-11-01

    Full Text Available While the mouse presents an invaluable experimental model organism in biology, its usefulness in cardiac arrhythmia research is limited in some aspects due to major electrophysiological differences between murine and human action potentials (APs. As previously described, these species-specific traits can be partly overcome by application of a cell-type transforming clamp (CTC to anthropomorphize the murine cardiac AP. CTC is a hybrid experimental-computational dynamic clamp technique, in which a computationally calculated time-dependent current is inserted into a cell in real time, to compensate for the differences between sarcolemmal currents of that cell (e.g., murine and the desired species (e.g., human. For effective CTC performance, mismatch between the measured cell and a mathematical model used to mimic the measured AP must be minimal. We have developed a genetic algorithm (GA approach that rapidly tunes a mathematical model to reproduce the AP of the murine cardiac myocyte under study. Compared to a prior implementation that used a template-based model selection approach, we show that GA optimization to a cell-specific model results in a much better recapitulation of the desired AP morphology with CTC. This improvement was more pronounced when anthropomorphizing neonatal mouse cardiomyocytes to human-like APs than to guinea pig APs. CTC may be useful for a wide range of applications, from screening effects of pharmaceutical compounds on ion channel activity, to exploring variations in the mouse or human genome. Rapid GA optimization of a cell-specific mathematical model improves CTC performance and may therefore expand the applicability and usage of the CTC technique.

  20. Cardiac disease and arrhythmogenesis: Mechanistic insights from mouse models

    Directory of Open Access Journals (Sweden)

    Lois Choy

    2016-09-01

    Full Text Available The mouse is the second mammalian species, after the human, in which substantial amount of the genomic information has been analyzed. With advances in transgenic technology, mutagenesis is now much easier to carry out in mice. Consequently, an increasing number of transgenic mouse systems have been generated for the study of cardiac arrhythmias in ion channelopathies and cardiomyopathies. Mouse hearts are also amenable to physical manipulation such as coronary artery ligation and transverse aortic constriction to induce heart failure, radiofrequency ablation of the AV node to model complete AV block and even implantation of a miniature pacemaker to induce cardiac dyssynchrony. Last but not least, pharmacological models, despite being simplistic, have enabled us to understand the physiological mechanisms of arrhythmias and evaluate the anti-arrhythmic properties of experimental agents, such as gap junction modulators, that may be exert therapeutic effects in other cardiac diseases. In this article, we examine these in turn, demonstrating that primary inherited arrhythmic syndromes are now recognized to be more complex than abnormality in a particular ion channel, involving alterations in gene expression and structural remodelling. Conversely, in cardiomyopathies and heart failure, mutations in ion channels and proteins have been identified as underlying causes, and electrophysiological remodelling are recognized pathological features. Transgenic techniques causing mutagenesis in mice are extremely powerful in dissecting the relative contributions of different genes play in producing disease phenotypes. Mouse models can serve as useful systems in which to explore how protein defects contribute to arrhythmias and direct future therapy.

  1. Modeling fragile X syndrome in the Fmr1 knockout mouse

    Science.gov (United States)

    Kazdoba, Tatiana M.; Leach, Prescott T.; Silverman, Jill L.; Crawley, Jacqueline N.

    2014-01-01

    Summary Fragile X Syndrome (FXS) is a commonly inherited form of intellectual disability and one of the leading genetic causes for autism spectrum disorder. Clinical symptoms of FXS can include impaired cognition, anxiety, hyperactivity, social phobia, and repetitive behaviors. FXS is caused by a CGG repeat mutation which expands a region on the X chromosome containing the FMR1 gene. In FXS, a full mutation (> 200 repeats) leads to hypermethylation of FMR1, an epigenetic mechanism that effectively silences FMR1 gene expression and reduces levels of the FMR1 gene product, fragile X mental retardation protein (FMRP). FMRP is an RNA-binding protein that is important for the regulation of protein expression. In an effort to further understand how loss of FMR1 and FMRP contribute to FXS symptomology, several FXS animal models have been created. The most well characterized rodent model is the Fmr1 knockout (KO) mouse, which lacks FMRP protein due to a disruption in its Fmr1 gene. Here, we review the behavioral phenotyping of the Fmr1 KO mouse to date, and discuss the clinical relevance of this mouse model to the human FXS condition. While much remains to be learned about FXS, the Fmr1 KO mouse is a valuable tool for understanding the repercussions of functional loss of FMRP and assessing the efficacy of pharmacological compounds in ameliorating the molecular and behavioral phenotypes relevant to FXS. PMID:25606362

  2. Cranial bone morphometric study among mouse strains

    Directory of Open Access Journals (Sweden)

    Yamamura Ken-ichi

    2008-02-01

    Full Text Available Abstract Background Little is known about the molecular mechanism which regulates how the whole cranium is shaped. Mouse models currently available for genetic research include several hundreds of unique inbred strains and genetically engineered mutants. By cross comparing their genomic structures, we can elucidate the cause of any differences in the phenotype between two strains. The craniometry of subspecies, or closely related species, of mice provide a good systemic model to study the relationship between genetic variance and cranial shape evolution. The lack of a quantified framework for comparing and analyzing mouse cranial shape has been a problem. For this reason, we performed quantitative analysis of cranial shape morphology between several mouse strains. Results This article reports on a craniometric assay of seven mouse strains: four inbred strains (C57BL/6J, BALB/cA, C3H/HeJ, and CBA/JNCr from Mus musculus domesticus (M. m. domesticus; one closed colony strain (ICR from M. m. domesticus; one inbred strain (MSM/Ms from Mus musculus molossinus; and, Mus spretus as a strain from a species other than M. m. domesticus. We performed linear measurements and geometric morphometrics. Geometric morphometrics revealed that the cranial characteristics of each strains were clearly distinguishable. We obtained mean scores for each species using the tpsRelw Program and plotted them. Conclusion Geometric morphometrics proved to be useful for identifying and classifying variations in form, and it revealed that M. spretus has a slender cranium when compared with our other strains. The mean cranial shape of C3H or CBA was more similar to MSM/Ms, which is derived from M. m. molossinus, than to either C57BL/6J, BALB, or ICR which are derived from M. m. domesticus. Future work in this field will aid in elucidating the mechanism of whole cranial shape regulation.

  3. Cranial bone morphometric study among mouse strains

    Science.gov (United States)

    2008-01-01

    Background Little is known about the molecular mechanism which regulates how the whole cranium is shaped. Mouse models currently available for genetic research include several hundreds of unique inbred strains and genetically engineered mutants. By cross comparing their genomic structures, we can elucidate the cause of any differences in the phenotype between two strains. The craniometry of subspecies, or closely related species, of mice provide a good systemic model to study the relationship between genetic variance and cranial shape evolution. The lack of a quantified framework for comparing and analyzing mouse cranial shape has been a problem. For this reason, we performed quantitative analysis of cranial shape morphology between several mouse strains. Results This article reports on a craniometric assay of seven mouse strains: four inbred strains (C57BL/6J, BALB/cA, C3H/HeJ, and CBA/JNCr) from Mus musculus domesticus (M. m. domesticus); one closed colony strain (ICR) from M. m. domesticus; one inbred strain (MSM/Ms) from Mus musculus molossinus; and, Mus spretus as a strain from a species other than M. m. domesticus. We performed linear measurements and geometric morphometrics. Geometric morphometrics revealed that the cranial characteristics of each strains were clearly distinguishable. We obtained mean scores for each species using the tpsRelw Program and plotted them. Conclusion Geometric morphometrics proved to be useful for identifying and classifying variations in form, and it revealed that M. spretus has a slender cranium when compared with our other strains. The mean cranial shape of C3H or CBA was more similar to MSM/Ms, which is derived from M. m. molossinus, than to either C57BL/6J, BALB, or ICR which are derived from M. m. domesticus. Future work in this field will aid in elucidating the mechanism of whole cranial shape regulation. PMID:18307817

  4. Current State of Animal (Mouse Modeling in Melanoma Research

    Directory of Open Access Journals (Sweden)

    Omer F. Kuzu

    2015-01-01

    Full Text Available Despite the considerable progress in understanding the biology of human cancer and technological advancement in drug discovery, treatment failure remains an inevitable outcome for most cancer patients with advanced diseases, including melanoma. Despite FDA-approved BRAF-targeted therapies for advanced stage melanoma showed a great deal of promise, development of rapid resistance limits the success. Hence, the overall success rate of melanoma therapy still remains to be one of the worst compared to other malignancies. Advancement of next-generation sequencing technology allowed better identification of alterations that trigger melanoma development. As development of successful therapies strongly depends on clinically relevant preclinical models, together with the new findings, more advanced melanoma models have been generated. In this article, besides traditional mouse models of melanoma, we will discuss recent ones, such as patient-derived tumor xenografts, topically inducible BRAF mouse model and RCAS/TVA-based model, and their advantages as well as limitations. Although mouse models of melanoma are often criticized as poor predictors of whether an experimental drug would be an effective treatment, development of new and more relevant models could circumvent this problem in the near future.

  5. Uterine disorders and pregnancy complications: insights from mouse models

    OpenAIRE

    Lim, Hyunjung Jade; Wang, Haibin

    2010-01-01

    Much of our knowledge of human uterine physiology and pathology has been extrapolated from the study of diverse animal models, as there is no ideal system for studying human uterine biology in vitro. Although it remains debatable whether mouse models are the most suitable system for investigating human uterine function(s), gene-manipulated mice are considered by many the most useful tool for mechanistic analysis, and numerous studies have identified many similarities in female reproduction be...

  6. Quantitative Trait Loci in Inbred Lines

    NARCIS (Netherlands)

    Jansen, R.C.

    2001-01-01

    Quantitative traits result from the influence of multiple genes (quantitative trait loci) and environmental factors. Detecting and mapping the individual genes underlying such 'complex' traits is a difficult task. Fortunately, populations obtained from crosses between inbred lines are relatively

  7. Mouse-based genetic modeling and analysis of Down syndrome

    Science.gov (United States)

    Xing, Zhuo; Li, Yichen; Pao, Annie; Bennett, Abigail S.; Tycko, Benjamin; Mobley, William C.; Yu, Y. Eugene

    2016-01-01

    Introduction Down syndrome (DS), caused by human trisomy 21 (Ts21), can be considered as a prototypical model for understanding the effects of chromosomal aneuploidies in other diseases. Human chromosome 21 (Hsa21) is syntenically conserved with three regions in the mouse genome. Sources of data A review of recent advances in genetic modeling and analysis of DS. Using Cre/loxP-mediated chromosome engineering, a substantial number of new mouse models of DS have recently been generated, which facilitates better understanding of disease mechanisms in DS. Areas of agreement Based on evolutionary conservation, Ts21 can be modeled by engineered triplication of Hsa21 syntenic regions in mice. The validity of the models is supported by the exhibition of DS-related phenotypes. Areas of controversy Although substantial progress has been made, it remains a challenge to unravel the relative importance of specific candidate genes and molecular mechanisms underlying the various clinical phenotypes. Growing points Further understanding of mechanisms based on data from mouse models, in parallel with human studies, may lead to novel therapies for clinical manifestations of Ts21 and insights to the roles of aneuploidies in other developmental disorders and cancers. PMID:27789459

  8. Comparative gene expression analysis of two mouse models of autism:transcriptome profiling of the BTBR and En2-/- hippocampus

    Directory of Open Access Journals (Sweden)

    Giovanni Provenzano

    2016-08-01

    Full Text Available Autism spectrum disorders (ASD are characterized by a high degree of genetic heterogeneity. Genomic studies identified common pathological processes underlying the heterogeneous clinical manifestations of ASD, and transcriptome analyses revealed that gene networks involved in synapse development, neuronal activity and immune function are deregulated in ASD. Mouse models provide unique tools to investigate the neurobiological basis of ASD; however, a comprehensive approach to identify transcriptional abnormalities in different ASD models has never been performed. Here we used two well-recognized ASD mouse models, BTBR T+ Itpr3tf/J (BTBR and Engrailed-2 knockout (En2-/-, to identify conserved ASD-related molecular signatures. En2-/- mice bear a mutation within the EN2 transcription factor homeobox, while BTBR is an inbred strain with unknown genetic defects. Hippocampal RNA samples from BTBR, En2-/- and respective control (C57Bl/6J and En2+/+ adult mice were assessed for differential gene expression using microarrays. A total of 153 genes were similarly deregulated in the BTBR and En2-/- hippocampus. Mouse phenotype and gene ontology enrichment analyses were performed on BTBR and En2-/- hippocampal differentially expressed genes (DEGs. Pathways represented in both BTBR and En2-/- hippocampal DEGs included abnormal behavioral response and chemokine/MAP kinase signaling. Genes involved in abnormal function of the immune system and abnormal synaptic transmission/seizures were significantly represented among BTBR and En2-/- DEGs, respectively. Interestingly, both BTBR and En2-/- hippocampal DEGs showed a significant enrichment of ASD and schizophrenia (SCZ-associated genes. Specific gene sets were enriched in the two models: microglial genes were significantly enriched among BTBR DEGs, whereas GABAergic/glutamatergic postsynaptic genes, FMRP-interacting genes and epilepsy-related genes were significantly enriched among En2-/- DEGs. Weighted

  9. Mouse models of myeloproliferative neoplasms: JAK of all grades

    Directory of Open Access Journals (Sweden)

    Juan Li

    2011-05-01

    Full Text Available In 2005, several groups identified a single gain-of-function point mutation in the JAK2 kinase that was present in the majority of patients with myeloproliferative neoplasms (MPNs. Since this discovery, much effort has been dedicated to understanding the molecular consequences of the JAK2V617F mutation in the haematopoietic system. Three waves of mouse models have been produced recently (bone marrow transplantation, transgenic and targeted knock-in, which have facilitated the understanding of the molecular pathogenesis of JAK2V617F-positive MPNs, providing potential platforms for designing and validating novel therapies in humans. This Commentary briefly summarises the first two types of mouse models and then focuses on the more recently generated knock-in models.

  10. Transgenic mouse models of metabolic bone disease.

    Science.gov (United States)

    McCauley, L K

    2001-07-01

    The approach of gene-targeted animal models is likely the most important experimental tool contributing to recent advances in skeletal biology. Modifying the expression of a gene in vivo, and the analysis of the consequences of the mutation, are central to the understanding of gene function during development and physiology, and therefore to our understanding of the gene's role in disease states. Researchers had been limited to animal models primarily involving pharmaceutical manipulations and spontaneous mutations. With the advent of gene targeting, however, animal models that impact our understanding of metabolic bone disease have evolved dramatically. Interestingly, some genes that were expected to yield dramatic phenotypes in bone, such as estrogen receptor-alpha or osteopontin, proved to have subtle phenotypes, whereas other genes, such as interleukin-5 or osteoprotegerin, were initially identified as having a role in bone metabolism via the analysis of their phenotype after gene ablation or overexpression. Particularly important has been the advance in knowledge of osteoblast and osteoclast independent and dependent roles via the selective targeting of genes and the consequent disruption of bone formation, bone resorption, or both. Our understanding of interactions of the skeletal system with other systems, ie, the vascular system and homeostatic controls of adipogenesis, has evolved via animal models such as the matrix gla protein, knock-out, and the targeted overexpression of Delta FosB. Challenging transgenic models such as the osteopontin-deficient mice with mediators of bone remodeling like parathyroid hormone and mechanical stimuli and extending phenotype characterization to mechanistic in vitro studies of primary bone cells is providing additional insight into the mechanisms involved in pathologic states and their potentials for therapeutic strategies. This review segregates characterization of transgenic models based on the category of gene altered

  11. A transgenic mouse model for trilateral retinoblastoma

    NARCIS (Netherlands)

    O'Brien, J.M.; Marcus, D.M.; Bernards, R.A.; Carpenter, J.L.; Windle, J.J.; Mellon, P.; Albert, D.M.

    1990-01-01

    We present a murine model of trilateral retinoblastoma. Ocular retinoblastoma and central nervous system tumors are observed in a line of mice formed by the transgenic expression of SV40 T-antigen. An oncogenic protein known to bind to the retinoblastoma gene product (p105-Rb) is specifically

  12. The Event Coordination Notation: Behaviour Modelling Beyond Mickey Mouse

    DEFF Research Database (Denmark)

    Jepsen, Jesper; Kindler, Ekkart

    2015-01-01

    The Event Coordination Notation (ECNO) allows modelling the desired behaviour of a software system on top of any object-oriented software. Together with existing technologies from Model-based Software Engineering (MBSE) for automatically generating the software for the structural parts, ECNO allows...... management system. This way, we demonstrate that ECNO can be used for modelling software beyond the typical Mickey Mouse examples. This example demonstrates that the essence of workflow management – including its behaviour – can be captured in ECNO: in a sense, it is a domain model of workflow management...

  13. Mouse models of estrogen receptor-positive breast cancer

    Directory of Open Access Journals (Sweden)

    Shakur Mohibi

    2011-01-01

    Full Text Available Breast cancer is the most frequent malignancy and second leading cause of cancer-related deaths among women. Despite advances in genetic and biochemical analyses, the incidence of breast cancer and its associated mortality remain very high. About 60 - 70% of breast cancers are Estrogen Receptor alpha (ER-α positive and are dependent on estrogen for growth. Selective estrogen receptor modulators (SERMs have therefore provided an effective targeted therapy to treat ER-α positive breast cancer patients. Unfortunately, development of resistance to endocrine therapy is frequent and leads to cancer recurrence. Our understanding of molecular mechanisms involved in the development of ER-α positive tumors and their resistance to ER antagonists is currently limited due to lack of experimental models of ER-α positive breast cancer. In most mouse models of breast cancer, the tumors that form are typically ER-negative and independent of estrogen for their growth. However, in recent years more attention has been given to develop mouse models that develop different subtypes of breast cancers, including ER-positive tumors. In this review, we discuss the currently available mouse models that develop ER-α positive mammary tumors and their potential use to elucidate the molecular mechanisms of ER-α positive breast cancer development and endocrine resistance.

  14. A consensus definition of cataplexy in mouse models of narcolepsy.

    Science.gov (United States)

    Scammell, Thomas E; Willie, Jon T; Guilleminault, Christian; Siegel, Jerome M

    2009-01-01

    People with narcolepsy often have episodes of cataplexy, brief periods of muscle weakness triggered by strong emotions. Many researchers are now studying mouse models of narcolepsy, but definitions of cataplexy-like behavior in mice differ across labs. To establish a common language, the International Working Group on Rodent Models of Narcolepsy reviewed the literature on cataplexy in people with narcolepsy and in dog and mouse models of narcolepsy and then developed a consensus definition of murine cataplexy. The group concluded that murine cataplexy is an abrupt episode of nuchal atonia lasting at least 10 seconds. In addition, theta activity dominates the EEG during the episode, and video recordings document immobility. To distinguish a cataplexy episode from REM sleep after a brief awakening, at least 40 seconds of wakefulness must precede the episode. Bouts of cataplexy fitting this definition are common in mice with disrupted orexin/hypocretin signaling, but these events almost never occur in wild type mice. It remains unclear whether murine cataplexy is triggered by strong emotions or whether mice remain conscious during the episodes as in people with narcolepsy. This working definition provides helpful insights into murine cataplexy and should allow objective and accurate comparisons of cataplexy in future studies using mouse models of narcolepsy.

  15. Development of a Representative Mouse Model with Nonalcoholic Steatohepatitis.

    Science.gov (United States)

    Verbeek, Jef; Jacobs, Ans; Spincemaille, Pieter; Cassiman, David

    2016-06-01

    Non-alcoholic fatty liver disease (NAFLD) is the most prevalent liver disease in the Western world. It represents a disease spectrum ranging from isolated steatosis to non-alcoholic steatohepatitis (NASH). In particular, NASH can evolve to fibrosis, cirrhosis, hepatocellular carcinoma, and liver failure. The development of novel treatment strategies is hampered by the lack of representative NASH mouse models. Here, we describe a NASH mouse model, which is based on feeding non-genetically manipulated C57BL6/J mice a 'Western style' high-fat/high-sucrose diet (HF-HSD). HF-HSD leads to early obesity, insulin resistance, and hypercholesterolemia. After 12 weeks of HF-HSD, all mice exhibit the complete spectrum of features of NASH, including steatosis, hepatocyte ballooning, and lobular inflammation, together with fibrosis in the majority of mice. Hence, this model closely mimics the human disease. Implementation of this mouse model will lead to a standardized setup for the evaluation of (i) underlying mechanisms that contribute to the progression of NAFLD to NASH, and (ii) therapeutic interventions for NASH. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  16. Mouse Models Recapitulating Human Adrenocortical Tumors: What is lacking?

    Directory of Open Access Journals (Sweden)

    Felicia Leccia

    2016-07-01

    Full Text Available Adrenal cortex tumors are divided into benign forms such as primary hyperplasias and adrenocortical adenomas (ACAs, and malignant forms or adrenocortical carcinomas (ACCs. Primary hyperplasias are rare causes of ACTH-independent hypercortisolism. ACAs are the most common type of adrenal gland tumors and they are rarely functional, i.e producing steroids. When functional, adenomas result in endocrine disorders such as Cushing’s syndrome (hypercortisolism or Conn’s syndrome (hyperaldosteronism. In contrast, ACCs are extremely rare but highly aggressive tumors that may also lead to hypersecreting syndromes. Genetic analyses of patients with sporadic or familial forms of adrenocortical tumors led to the identification of potentially causative genes, most of them being involved in PKA, Wnt/β-catenin and P53 signaling pathways. Development of mouse models is a crucial step to firmly establish the functional significance of candidate genes, to dissect mechanisms leading to tumors and endocrine disorders and in fine to provide in vivo tools for therapeutic screens. In this article we will provide an overview on the existing mouse models (xenografted and genetically engineered of adrenocortical tumors by focusing on the role of PKA and Wnt/β-catenin pathways in this context. We will discuss the advantages and limitations of models that have been developed heretofore and we will point out necessary improvements in the development of next generation mouse models of adrenal diseases.

  17. Magnolol inhibits the inflammatory response in mouse mammary epithelial cells and a mouse mastitis model.

    Science.gov (United States)

    Wei, Wang; Dejie, Liang; Xiaojing, Song; Tiancheng, Wang; Yongguo, Cao; Zhengtao, Yang; Naisheng, Zhang

    2015-02-01

    Mastitis comprises an inflammation of the mammary gland, which is almost always linked with bacterial infection. The treatment of mastitis concerns antimicrobial substances, but not very successful. On the other hand, anti-inflammatory therapy with Chinese traditional medicine becomes an effective way for treating mastitis. Magnolol is a polyphenolic binaphthalene compound extracted from the stem bark of Magnolia sp., which has been shown to exert a potential for anti-inflammatory activity. The purpose of this study was to investigate the protective effects of magnolol on inflammation in lipopolysaccharide (LPS)-induced mastitis mouse model in vivo and the mechanism of this protective effects in LPS-stimulated mouse mammary epithelial cells (MMECs) in vitro. The damage of tissues was determined by histopathology and myeloperoxidase (MPO) assay. The expression of pro-inflammatory cytokines was determined by enzyme-linked immunosorbent assay (ELISA). Nuclear factor-kappa B (NF-κB), inhibitory kappa B (IκBα) protein, p38, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and Toll-like receptor 4 (TLR4) were determined by Western blot. The results showed that magnolol significantly inhibit the LPS-induced TNF-α, IL-6, and IL-1β production both in vivo and vitro. Magnolol declined the phosphorylation of IκBα, p65, p38, ERK, and JNK in LPS-stimulated MMECs. Furthermore, magnolol inhibited the expression of TLR4 in LPS-stimulated MMECs. In vivo study, it was also observed that magnolol attenuated the damage of mastitis tissues in the mouse models. These findings demonstrated that magnolol attenuate LPS-stimulated inflammatory response by suppressing TLR4/NF-κB/mitogen-activated protein kinase (MAPK) signaling system. Thereby, magnolol may be a therapeutic agent against mastitis.

  18. Mouse Models of Allergic Diseases: TSLP and Its Functional Roles

    Directory of Open Access Journals (Sweden)

    Miyuki Omori-Miyake

    2012-01-01

    Full Text Available The cytokine TSLP was originally identified in a murine thymic stromal cell line as a lymphoid growth factor. After the discovery of TSLP, extensive molecular genetic analyses and gene targeting experiments have demonstrated that TSLP plays an essential role in allergic diseases. In this review, we discuss the current status of TSLP and its functional role in allergic diseases particularly by focusing on effects of TSLP on haematopoietic cells in mouse models. It is our conclusion that a number of research areas, i.e., a new source of TSLP, effects of TSLP on non-haematopoietic and haematopoietic cells, synergistic interactions of cytokines including IL-25 and IL-33 and a regulation of TSLP expression and its function, are critically needed to understand the whole picture of TSLP involvement in allergic diseases. The mouse models will thus contribute further to our understanding of TSLP involvement in allergic diseases and development of therapeutic measures for human allergic diseases.

  19. FGF/FGFR signaling coordinates skull development by modulating magnitude of morphological integration: evidence from Apert syndrome mouse models.

    Directory of Open Access Journals (Sweden)

    Neus Martínez-Abadías

    Full Text Available The fibroblast growth factor and receptor system (FGF/FGFR mediates cell communication and pattern formation in many tissue types (e.g., osseous, nervous, vascular. In those craniosynostosis syndromes caused by FGFR1-3 mutations, alteration of signaling in the FGF/FGFR system leads to dysmorphology of the skull, brain and limbs, among other organs. Since this molecular pathway is widely expressed throughout head development, we explore whether and how two specific mutations on Fgfr2 causing Apert syndrome in humans affect the pattern and level of integration between the facial skeleton and the neurocranium using inbred Apert syndrome mouse models Fgfr2(+/S252W and Fgfr2(+/P253R and their non-mutant littermates at P0. Skull morphological integration (MI, which can reflect developmental interactions among traits by measuring the intensity of statistical associations among them, was assessed using data from microCT images of the skull of Apert syndrome mouse models and 3D geometric morphometric methods. Our results show that mutant Apert syndrome mice share the general pattern of MI with their non-mutant littermates, but the magnitude of integration between and within the facial skeleton and the neurocranium is increased, especially in Fgfr2(+/S252W mice. This indicates that although Fgfr2 mutations do not disrupt skull MI, FGF/FGFR signaling is a covariance-generating process in skull development that acts as a global factor modulating the intensity of MI. As this pathway evolved early in vertebrate evolution, it may have played a significant role in establishing the patterns of skull MI and coordinating proper skull development.

  20. Large-scale in silico mapping of complex quantitative traits in inbred mice.

    Directory of Open Access Journals (Sweden)

    Pengyuan Liu

    2007-07-01

    Full Text Available Understanding the genetic basis of common disease and disease-related quantitative traits will aid in the development of diagnostics and therapeutics. The processs of gene discovery can be sped up by rapid and effective integration of well-defined mouse genome and phenome data resources. We describe here an in silico gene-discovery strategy through genome-wide association (GWA scans in inbred mice with a wide range of genetic variation. We identified 937 quantitative trait loci (QTLs from a survey of 173 mouse phenotypes, which include models of human disease (atherosclerosis, cardiovascular disease, cancer and obesity as well as behavioral, hematological, immunological, metabolic, and neurological traits. 67% of QTLs were refined into genomic regions <0.5 Mb with approximately 40-fold increase in mapping precision as compared with classical linkage analysis. This makes for more efficient identification of the genes that underlie disease. We have identified two QTL genes, Adam12 and Cdh2, as causal genetic variants for atherogenic diet-induced obesity. Our findings demonstrate that GWA analysis in mice has the potential to resolve multiple tightly linked QTLs and achieve single-gene resolution. These high-resolution QTL data can serve as a primary resource for positional cloning and gene identification in the research community.

  1. A genomic analysis of mouse models of breast cancer reveals molecular features of mouse models and relationships to human breast cancer.

    Science.gov (United States)

    Hollern, Daniel P; Andrechek, Eran R

    2014-06-05

    Genomic variability limits the efficacy of breast cancer therapy. To simplify the study of the molecular complexity of breast cancer, researchers have used mouse mammary tumor models. However, the degree to which mouse models model human breast cancer and are reflective of the human heterogeneity has yet to be demonstrated with gene expression studies on a large scale. To this end, we have built a database consisting of 1,172 mouse mammary tumor samples from 26 different major oncogenic mouse mammary tumor models. In this dataset we identified heterogeneity within mouse models and noted a surprising amount of interrelatedness between models, despite differences in the tumor initiating oncogene. Making comparisons between models, we identified differentially expressed genes with alteration correlating with initiating events in each model. Using annotation tools, we identified transcription factors with a high likelihood of activity within these models. Gene signatures predicted activation of major cell signaling pathways in each model, predictions that correlated with previous genetic studies. Finally, we noted relationships between mouse models and human breast cancer at both the level of gene expression and predicted signal pathway activity. Importantly, we identified individual mouse models that recapitulate human breast cancer heterogeneity at the level of gene expression. This work underscores the importance of fully characterizing mouse tumor biology at molecular, histological and genomic levels before a valid comparison to human breast cancer may be drawn and provides an important bioinformatic resource.

  2. Mouse models of DNA mismatch repair in cancer research.

    Science.gov (United States)

    Lee, Kyeryoung; Tosti, Elena; Edelmann, Winfried

    2016-02-01

    Germline mutations in DNA mismatch repair (MMR) genes are the cause of hereditary non-polyposis colorectal cancer/Lynch syndrome (HNPCC/LS) one of the most common cancer predisposition syndromes, and defects in MMR are also prevalent in sporadic colorectal cancers. In the past, the generation and analysis of mouse lines with knockout mutations in all of the known MMR genes has provided insight into how loss of individual MMR genes affects genome stability and contributes to cancer susceptibility. These studies also revealed essential functions for some of the MMR genes in B cell maturation and fertility. In this review, we will provide a brief overview of the cancer predisposition phenotypes of recently developed mouse models with targeted mutations in MutS and MutL homologs (Msh and Mlh, respectively) and their utility as preclinical models. The focus will be on mouse lines with conditional MMR mutations that have allowed more accurate modeling of human cancer syndromes in mice and that together with new technologies in gene targeting, hold great promise for the analysis of MMR-deficient intestinal tumors and other cancers which will drive the development of preventive and therapeutic treatment strategies. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Genetically engineered mucin mouse models for inflammation and cancer.

    Science.gov (United States)

    Joshi, Suhasini; Kumar, Sushil; Bafna, Sangeeta; Rachagani, Satyanarayana; Wagner, Kay-Uwe; Jain, Maneesh; Batra, Surinder K

    2015-12-01

    Mucins are heavily O-glycosylated proteins primarily produced by glandular and ductal epithelial cells, either in membrane-tethered or secretory forms, for providing lubrication and protection from various exogenous and endogenous insults. However, recent studies have linked their aberrant overexpression with infection, inflammation, and cancer that underscores their importance in tissue homeostasis. In this review, we present current status of the existing mouse models that have been developed to gain insights into the functional role(s) of mucins under physiological and pathological conditions. Knockout mouse models for membrane-associated (Muc1 and Muc16) and secretory mucins (Muc2) have helped us to elucidate the role of mucins in providing effective and protective barrier functions against pathological threats, participation in disease progression, and improved our understanding of mucin interaction with biotic and abiotic environmental components. Emphasis is also given to available transgenic mouse models (MUC1 and MUC7), which has been exploited to understand the context-dependent regulation and therapeutic potential of human mucins during inflammation and cancer.

  4. Hypersociability in the Angelman syndrome mouse model.

    Science.gov (United States)

    Stoppel, David C; Anderson, Matthew P

    2017-07-01

    Deletions and reciprocal triplications of the human chromosomal 15q11-13 region cause two distinct neurodevelopmental disorders. Maternally-derived deletions or inactivating mutations of UBE3A, a 15q11-13 gene expressed exclusively from the maternal allele in neurons, cause Angelman syndrome, characterized by intellectual disability, motor deficits, seizures, and a characteristic increased social smiling, laughing, and eye contact. Conversely, maternally-derived triplications of 15q11-13 cause a behavioral disorder on the autism spectrum with clinical features that include decreased sociability that we recently reconstituted in mice with Ube3a alone. Based on the unique sociability features reported in Angelman syndrome and the repressed sociability observed when Ube3a gene dosage is increased, we hypothesized that mice with neuronal UBE3A loss that models Angelman syndrome would display evidence of hypersocial behavior. We report that mice with maternally-inherited Ube3a gene deletion (Ube3a mKO ) have a prolonged preference for, and interaction with, social stimuli in the three chamber social approach task. By contrast, interactions with a novel object are reduced. Further, ultrasonic vocalizations and physical contacts are increased in male and female Ube3a mKO mice paired with an unfamiliar genotype-matched female. Single housing wild type mice increased these same social behavior parameters to levels observed in Ube3a mKO mice where this effect was partially occluded. These results indicate sociability is repressed by social experience and the endogenous levels of UBE3A protein and suggest some social behavioral features observed in Angelman syndrome may reflect an increased social motivation. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Brain gene expression of a sporadic (icv-STZ Mouse and a familial mouse model (3xTg-AD mouse of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Yanxing Chen

    Full Text Available Alzheimer's disease (AD can be divided into sporadic AD (SAD and familial AD (FAD. Most AD cases are sporadic and may result from multiple etiologic factors, including environmental, genetic and metabolic factors, whereas FAD is caused by mutations of presenilins or amyloid-β (Aβ precursor protein (APP. A commonly used mouse model for AD is 3xTg-AD mouse, which is generated by over-expression of mutated presenilin 1, APP and tau in the brain and thus represents a mouse model of FAD. A mouse model generated by intracerebroventricular (icv administration of streptozocin (STZ, icv-STZ mouse, shows many aspects of SAD. Despite the wide use of these two models for AD research, differences in gene expression between them are not known. Here, we compared the expression of 84 AD-related genes in the hippocampus and the cerebral cortex between icv-STZ mice and 3xTg-AD mice using a custom-designed qPCR array. These genes are involved in APP processing, tau/cytoskeleton, synapse function, apoptosis and autophagy, AD-related protein kinases, glucose metabolism, insulin signaling, and mTOR pathway. We found altered expression of around 20 genes in both mouse models, which affected each of above categories. Many of these gene alterations were consistent with what was observed in AD brain previously. The expression of most of these altered genes was decreased or tended to be decreased in the hippocampus of both mouse models. Significant diversity in gene expression was found in the cerebral cortex between these two AD mouse models. More genes related to synaptic function were dysregulated in the 3xTg-AD mice, whereas more genes related to insulin signaling and glucose metabolism were down-regulated in the icv-STZ mice. The present study provides important fundamental knowledge of these two AD mouse models and will help guide future studies using these two mouse models for the development of AD drugs.

  6. A mouse model of antepartum stillbirth.

    Science.gov (United States)

    Rahman, Anum; Cahill, Lindsay S; Zhou, Yu-Qing; Hoggarth, Johnathan; Rennie, Monique Y; Seed, Mike; Macgowan, Christopher K; Kingdom, John C; Adamson, S Lee; Sled, John G

    2017-10-01

    Many stillbirths of normally formed fetuses in the third trimester could be prevented via delivery if reliable means to anticipate this outcome existed. However, because the etiology of these stillbirths is often unexplained and although the underlying mechanism is presumed to be hypoxia from placental insufficiency, the placentas often appear normal on histopathological examination. Gestational age is a risk factor for antepartum stillbirth, with a rapid rise in stillbirth rates after 40 weeks' gestation. We speculate that a common mechanism may explain antepartum stillbirth in both the late-term and postterm periods. Mice also show increasing rates of stillbirth when pregnancy is artificially prolonged. The model therefore affords an opportunity to characterize events that precede stillbirth. The objective of the study was to prolong gestation in mice and monitor fetal and placental growth and cardiovascular changes. From embryonic day 15.5 to embryonic day 18.5, pregnant CD-1 mice received daily progesterone injections to prolong pregnancy by an additional 24 hour period (to embryonic day 19.5). To characterize fetal and placental development, experimental assays were performed throughout late gestation (embryonic day 15.5 to embryonic day 19.5), including postnatal day 1 pups as controls. In addition to collecting fetal and placental weights, we monitored fetal blood flow using Doppler ultrasound and examined the fetoplacental arterial vascular geometry using microcomputed tomography. Evidence of hypoxic organ injury in the fetus was assessed using magnetic resonance imaging and pimonidazole immunohistochemistry. At embryonic day 19.5, mean fetal weights were reduced by 14% compared with control postnatal day 1 pups. Ultrasound biomicroscopy showed that fetal heart rate and umbilical artery flow continued to increase at embryonic day 19.5. Despite this, the embryonic day 19.5 fetuses had significant pimonidazole staining in both brain and liver tissue

  7. Morphological variation in maize inbred lines

    Directory of Open Access Journals (Sweden)

    Jiban Shrestha

    2014-05-01

    Full Text Available In order to identify morphological variation in maize inbred lines, one hundred five inbred lines were planted under randomized complete block design with two replications at research field of National Maize Research Program, Rampur, Chitwan, Nepal during summer season (March to June, 2010. Descriptive statistics and cluster analysis were done. The results revealed a wide range of morphological variation among the tested inbred lines. The inbred lines grouped in cluster 4 namely PUTU-13, L-9, RL-105, RL-197, RL-103, RML-9, RML-41, RL-165, RL-36, RL-76, RL-125, RL-30-3, L-6, RL-107, RL-174, RL-41, L-13, RML-76 and L-5 had 0.833 days anthesis-silking interval and earlier in flowering (tasseling in 54.50 days and silking in 55.33 days. Moreover they consisted of 1.16 plant aspect, 1.25 ear aspect, 33.08 cm tassel length and 13.5 tassel branch number. Among tested lines, the above inbred lines had better morphological traits, so it was concluded that they were good candidates for development of hybrids and synthetic varieties. DOI: http://dx.doi.org/10.3126/ije.v3i2.10521 International Journal of the Environment Vol.3(2 2014: 98-107

  8. Inbreeding depression in maize populations and its effects on the obtention of promising inbred lines

    Directory of Open Access Journals (Sweden)

    Deoclecio Domingos Garbuglio

    2017-10-01

    Full Text Available Inbreeding can potentially be used for the development of inbred lines containing alleles of interest, but the genetic causes that control inbreeding depression are not completely known, and there are few studies found in the literature. The present study aimed to obtain estimates of inbreeding depression for eight traits in seven tropical maize populations, analyze the effects of inbreeding over generations and environments, and predict the behavior of inbred lines in future generation S? through linear regression methods. It was found that regardless of the base population used, prediction values could vary when the model was based on only 2 generations of inbreeding due to the environmental component. The influence of the environment in this type of study could be reduced when considering 3 generations of inbreeding, allowing greater precision in predicting the phenotypes of inbred lines. The use of linear regression was effective for inbred line prediction for the different agronomic traits evaluated. The use of 3 levels of inbreeding minimizes the effects of the environmental component in inbred line prediction for grain yield. GO-S was the most promising population for inbred line extraction.

  9. Preclinical Mouse Cancer Models: A Maze of Opportunities and Challenges

    Science.gov (United States)

    Day, Chi-Ping; Merlino, Glenn; Van Dyke, Terry

    2015-01-01

    Significant advances have been made in developing novel therapeutics for cancer treatment, and targeted therapies have revolutionized the treatment of some cancers. Despite the promise, only about five percent of new cancer drugs are approved, and most fail due to lack of efficacy. The indication is that current preclinical methods are limited in predicting successful outcomes. Such failure exacts enormous cost, both financial and in the quality of human life. This primer explores the current status, promise and challenges of preclinical evaluation in advanced mouse cancer models and briefly addresses emerging models for early-stage preclinical development. PMID:26406370

  10. Mouse models of neurodegenerative disease: preclinical imaging and neurovascular component.

    Science.gov (United States)

    Albanese, Sandra; Greco, Adelaide; Auletta, Luigi; Mancini, Marcello

    2017-10-26

    Neurodegenerative diseases represent great challenges for basic science and clinical medicine because of their prevalence, pathologies, lack of mechanism-based treatments, and impacts on individuals. Translational research might contribute to the study of neurodegenerative diseases. The mouse has become a key model for studying disease mechanisms that might recapitulate in part some aspects of the corresponding human diseases. Neurodegenerative disorders are very complicated and multifactorial. This has to be taken in account when testing drugs. Most of the drugs screening in mice are very difficult to be interpretated and often useless. Mouse models could be condiderated a 'pathway models', rather than as models for the whole complicated construct that makes a human disease. Non-invasive in vivo imaging in mice has gained increasing interest in preclinical research in the last years thanks to the availability of high-resolution single-photon emission computed tomography (SPECT), positron emission tomography (PET), high field Magnetic resonance, Optical Imaging scanners and of highly specific contrast agents. Behavioral test are useful tool to characterize different animal models of neurodegenerative pathology. Furthermore, many authors have observed vascular pathological features associated to the different neurodegenerative disorders. Aim of this review is to focus on the different existing animal models of neurodegenerative disorders, describe behavioral tests and preclinical imaging techniques used for diagnose and describe the vascular pathological features associated to these diseases.

  11. A dystrophic Duchenne mouse model for testing human antisense oligonucleotides.

    Directory of Open Access Journals (Sweden)

    Marcel Veltrop

    Full Text Available Duchenne muscular dystrophy (DMD is a severe muscle-wasting disease generally caused by reading frame disrupting mutations in the DMD gene resulting in loss of functional dystrophin protein. The reading frame can be restored by antisense oligonucleotide (AON-mediated exon skipping, allowing production of internally deleted, but partially functional dystrophin proteins as found in the less severe Becker muscular dystrophy. Due to genetic variation between species, mouse models with mutations in the murine genes are of limited use to test and further optimize human specific AONs in vivo. To address this we have generated the del52hDMD/mdx mouse. This model carries both murine and human DMD genes. However, mouse dystrophin expression is abolished due to a stop mutation in exon 23, while the expression of human dystrophin is abolished due to a deletion of exon 52. The del52hDMD/mdx model, like mdx, shows signs of muscle dystrophy on a histological level and phenotypically mild functional impairment. Local administration of human specific vivo morpholinos induces exon skipping and dystrophin restoration in these mice. Depending on the number of mismatches, occasional skipping of the murine Dmd gene, albeit at low levels, could be observed. Unlike previous models, the del52hDMD/mdx model enables the in vivo analysis of human specific AONs targeting exon 51 or exon 53 on RNA and protein level and muscle quality and function. Therefore, it will be a valuable tool for optimizing human specific AONs and genome editing approaches for DMD.

  12. Optimised and rapid pre-clinical screening in the SOD1(G93A transgenic mouse model of amyotrophic lateral sclerosis (ALS.

    Directory of Open Access Journals (Sweden)

    Richard J Mead

    Full Text Available The human SOD1(G93A transgenic mouse has been used extensively since its development in 1994 as a model for amyotrophic lateral sclerosis (ALS. In that time, a great many insights into the toxicity of mutant SOD1 have been gained using this and other mutant SOD transgenic mouse models. They all demonstrate a selective toxicity towards motor neurons and in some cases features of the pathology seen in the human disease. These models have two major drawbacks. Firstly the generation of robust preclinical data in these models has been highlighted as an area for concern. Secondly, the amount of time required for a single preclinical experiment in these models (3-4 months is a hurdle to the development of new therapies. We have developed an inbred C57BL/6 mouse line from the original mixed background (SJLxC57BL/6 SOD1(G93A transgenic line and show here that the disease course is remarkably consistent and much less prone to background noise, enabling reduced numbers of mice for testing of therapeutics. Secondly we have identified very early readouts showing a large decline in motor function compared to normal mice. This loss of motor function has allowed us to develop an early, sensitive and rapid screening protocol for the initial phases of denervation of muscle fibers, observed in this model. We describe multiple, quantitative readouts of motor function that can be used to interrogate this early mechanism. Such an approach will increase throughput for reduced costs, whilst reducing the severity of the experimental procedures involved.

  13. Prolonged gabapentin analgesia in an experimental mouse model of fibromyalgia

    Directory of Open Access Journals (Sweden)

    Ueda Hiroshi

    2008-11-01

    Full Text Available Abstract In a new mouse model for generalized pain syndrome, including fibromyalgia, which used intermittent cold stress (ICS, bilateral allodynia in the hindpaw was observed that lasted more than 12 days; thermal hyperalgesia lasted 15 days. During constant cold stress (CCS, mice showed only a transient allodynia. A female prevalence in ICS-induced allodynia was observed in gonadectomized but not in gonad intact mice. Systemic gabapentin showed complete anti-allodynic effects in the ICS model at the one-tenth dose for injury-induced neuropathic pain model, and central gabapentin showed long-lasting analgesia for 4 days in ICS, but not the injury model. These results suggest that the ICS model is useful for the study of generalized pain syndrome.

  14. The TNF-alpha transgenic mouse model of inflammatory arthritis.

    Science.gov (United States)

    Li, Ping; Schwarz, Edward M

    2003-08-01

    Rheumatoid arthritis is a chronic inflammatory disorder that affects multiple peripheral joints. It is the most common form of inflammatory arthritis and is characterized by synovial hyperplasia, immune cell infiltration, cartilage destruction, and bone erosion. To gain insight into the etiology of the disease, a variety of animal models have been established. Twelve years ago George Kollias' laboratory generated a transgenic (Tg) mouse that over-expresses human TNF-alpha, and develops an erosive polyarthritis with many characteristics observed in rheumatoid arthritis patients. The phenotype of this mouse model validated the theory that TNF-alpha is at the apex of the pro-inflammatory cascade in rheumatoid arthritis, and foreshadowed the remarkable success of anti-TNF-alpha therapy that has transformed the effective management of this disease. As such, the TNF-Tg mice are very useful tools for dissecting the molecular mechanisms of the pathogenic process and evaluating the efficacy of novel therapeutic strategies for rheumatoid arthritis. In this review we (1) provide a brief summary of TNF-alpha biology and the role of this dominant cytokine in rheumatoid arthritis, (2) describe the various TNF-Tg models and their phenotypes, and (3) give examples of how this model has been used experimentally.

  15. A new mouse model of metabolic syndrome and associated complications

    Science.gov (United States)

    Wang, Yun; Zheng, Yue; Nishina, Patsy M; Naggert, Jürgen K.

    2010-01-01

    Metabolic Syndrome (MS) encompasses a clustering of risk factors for cardiovascular disease, including obesity, insulin resistance, and dyslipidemia. We characterized a new mouse model carrying a dominant mutation, C57BL/6J-Nmf15/+ (B6-Nmf15/+), which develops additional complications of MS such as adipose tissue inflammation and cardiomyopathy. A backcross was used to genetically map the Nmf15 locus. Mice were examined in the CLAMS™ animal monitoring system, and dual energy X-ray absorptiometry and blood chemistry analyses were performed. Hypothalamic LepR, SOCS1 and STAT3 phosphorylation were examined. Cardiac function was assessed by Echo- and Electro Cardiography. Adipose tissue inflammation was characterized by in situ hybridization and measurement of Jun kinase activity. The Nmf15 locus mapped to distal mouse chromosome 5 with a LOD score of 13.8. Nmf15 mice developed obesity by 12 weeks of age. Plasma leptin levels were significantly elevated in pre-obese Nmf15 mice at 8 weeks of age and an attenuated STAT3 phosphorylation in the hypothalamus suggests a primary leptin resistance. Adipose tissue from Nmf15 mice showed a remarkable degree of inflammation and macrophage infiltration as indicated by expression of the F4/80 marker and increased phosphorylation of JNK1/2. Lipidosis was observed in tubular epithelial cells and glomeruli of the kidney. Nmf15 mice demonstrate both histological and pathophysiological evidence of cardiomyopathy. The Nmf15 mouse model provides a new entry point into pathways mediating leptin resistance and obesity. It is one of few models that combine many aspects of metabolic syndrome and can be useful for testing new therapeutic approaches for combating obesity complications, particularly cardiomyopathy. PMID:19398498

  16. Recent female mouse models displaying advanced reproductive aging.

    Science.gov (United States)

    Danilovich, Natalia; Ram Sairam, M

    2006-02-01

    Reproductive senescence occurs in all female mammals with resultant changes in numerous body functional systems and several important features may be species-specific. Those features that appear to parallel human menopause and aging include general similarity of hormone profiles across the menopausal transition, progression to cycle termination through irregular cycles, declining fertility with age, disturbances in thermogenesis, age-related gains in body weight, fat distribution and disposition towards metabolic syndrome. Structural and hormonal changes in the brain and ovary play a critical role in determining the onset of reproductive senescence. The short life span of rodents such as mice (compared to humans) and the ability to generate specific and timed gene deletions, provide powerful experimental paradigms to understand the molecular and functional changes that precede and follow the loss of reproductive capacity. In theory, any manipulation that compromises ovarian function either partly or totally would impact reproductive events at various levels followed by other dysfunctions. In this article, we provide an overview of three mouse models for the study of female reproductive aging. They are derived from different strategies and their age related phenotypes have been characterized to varying degrees. The follitropin receptor knockout (FORKO) mouse, in its null and haploinsufficient state as well as the dioxin/aryl hydrocarbon receptor (AhR) knockout mouse, serve as two examples of single gene deletions. A third model, using administration of a chemical toxicant such as 4-vinylcyclohexene diepoxide (VCD) in the adult state, produces ovarian deficiencies accompanied by aging changes. These will serve as useful alternatives to previously used radical ovariectomy in young adults. It is anticipated that these new models and more that will be forthcoming will extend opportunities to understand reproductive aging and resolve controversies that abound on issues

  17. Venous Thrombosis and Cancer: from Mouse Models to Clinical Trials

    Science.gov (United States)

    Hisada, Y.; Geddings, J. E.; Ay, C.; Mackman, N.

    2015-01-01

    Cancer patients have a ~4 fold increased risk of venous thromboembolism (VTE) compared with the general population and this is associated with significant morbidity and mortality. This review summarizes our current knowledge of VTE and cancer from mouse models to clinical studies. Notably, risk of VTE varies depending on the type and stage of cancer. For instance, pancreatic and brain cancer patients have a higher risk of VTE than breast and prostate cancer patients. Moreover, patients with metastatic disease have a higher risk than those with localized tumors. Tumor-derived procoagulant factors and growth factors may directly and indirectly enhance VTE. For example, increased levels of circulating tumor-derived, tissue factor-positive microvesicles may trigger VTE. In a mouse model of ovarian cancer, tumor-derived IL-6 and hepatic thrombopoietin has been linked to increased platelet production and thrombosis. In addition, mouse models of mammary and lung cancer showed that tumor-derived granulocyte colony-stimulating factor causes neutrophilia and activation of neutrophils. Activated neutrophils can release neutrophil extracellular traps (NETs) that enhance thrombosis. Cell-free DNA in the blood derived from cancer cells, NETs and treatment with cytotoxic drugs can activate the clotting cascade. These studies suggest that there are multiple mechanisms for VTE in patients with different types of cancer. Preventing and treating VTE in cancer patients is challenging; the current recommendations are to use low molecular weight heparin. Understanding the underlying mechanisms may allow the development of new therapies to safely prevent VTE in cancer patients. PMID:25988873

  18. Venous thrombosis and cancer: from mouse models to clinical trials.

    Science.gov (United States)

    Hisada, Y; Geddings, J E; Ay, C; Mackman, N

    2015-08-01

    Cancer patients have a ~4 fold increased risk of venous thromboembolism (VTE) compared with the general population and this is associated with significant morbidity and mortality. This review summarizes our current knowledge of VTE and cancer, from mouse models to clinical studies. Notably, the risk of VTE varies depending on the type and stage of cancer. For instance, pancreatic and brain cancer patients have a higher risk of VTE than breast and prostate cancer patients. Moreover, patients with metastatic disease have a higher risk than those with localized tumors. Tumor-derived procoagulant factors and growth factors may directly and indirectly enhance VTE. For example, increased levels of circulating tumor-derived, tissue factor-positive microvesicles may trigger VTE. In a mouse model of ovarian cancer, tumor-derived IL-6 and hepatic thrombopoietin have been linked to increased platelet production and thrombosis. In addition, mouse models of mammary and lung cancer showed that tumor-derived granulocyte colony-stimulating factor causes neutrophilia and activation of neutrophils. Activated neutrophils can release neutrophil extracellular traps (NETs) that enhance thrombosis. Cell-free DNA in the blood derived from cancer cells, NETs and treatment with cytotoxic drugs can activate the clotting cascade. These studies suggest that there are multiple mechanisms for VTE in patients with different types of cancer. Preventing and treating VTE in cancer patients is challenging; the current recommendations are to use low-molecular-weight heparin. Understanding the underlying mechanisms may allow the development of new therapies to safely prevent VTE in cancer patients. © 2015 International Society on Thrombosis and Haemostasis.

  19. Imaging mouse cancer models in vivo using reporter transgenes.

    Science.gov (United States)

    Lyons, Scott K; Patrick, P Stephen; Brindle, Kevin M

    2013-08-01

    Imaging mouse models of cancer with reporter transgenes has become a relatively common experimental approach in the laboratory, which allows noninvasive and longitudinal investigation of diverse aspects of tumor biology in vivo. Our goal here is to outline briefly the principles of the relevant imaging modalities, emphasizing particularly their strengths and weaknesses and what the researcher can expect in a practical sense from each of these techniques. Furthermore, we discuss how relatively subtle modifications in the way reporter transgene expression is regulated in the cell underpin the ability of reporter transgenes as a whole to provide readouts on such varied aspects of tumor biology in vivo.

  20. Dantrolene is neuroprotective in Huntington's disease transgenic mouse model

    Directory of Open Access Journals (Sweden)

    Chen Xi

    2011-11-01

    Full Text Available Abstract Background Huntington's disease (HD is a progressive neurodegenerative disorder caused by a polyglutamine expansion in the Huntingtin protein which results in the selective degeneration of striatal medium spiny neurons (MSNs. Our group has previously demonstrated that calcium (Ca2+ signaling is abnormal in MSNs from the yeast artificial chromosome transgenic mouse model of HD (YAC128. Moreover, we demonstrated that deranged intracellular Ca2+ signaling sensitizes YAC128 MSNs to glutamate-induced excitotoxicity when compared to wild type (WT MSNs. In previous studies we also observed abnormal neuronal Ca2+ signaling in neurons from spinocerebellar ataxia 2 (SCA2 and spinocerebellar ataxia 3 (SCA3 mouse models and demonstrated that treatment with dantrolene, a ryanodine receptor antagonist and clinically relevant Ca2+ signaling stabilizer, was neuroprotective in experiments with these mouse models. The aim of the current study was to evaluate potential beneficial effects of dantrolene in experiments with YAC128 HD mouse model. Results The application of caffeine and glutamate resulted in increased Ca2+ release from intracellular stores in YAC128 MSN cultures when compared to WT MSN cultures. Pre-treatment with dantrolene protected YAC128 MSNs from glutamate excitotoxicty, with an effective concentration of 100 nM and above. Feeding dantrolene (5 mg/kg twice a week to YAC128 mice between 2 months and 11.5 months of age resulted in significantly improved performance in the beam-walking and gait-walking assays. Neuropathological analysis revealed that long-term dantrolene feeding to YAC128 mice significantly reduced the loss of NeuN-positive striatal neurons and reduced formation of Httexp nuclear aggregates. Conclusions Our results support the hypothesis that deranged Ca2+ signaling plays an important role in HD pathology. Our data also implicate the RyanRs as a potential therapeutic target for the treatment of HD and demonstrate that Ryan

  1. Mouse genetic model for clinical and immunological heterogeneity of leishmaniasis

    Czech Academy of Sciences Publication Activity Database

    Lipoldová, Marie; Svobodová, M.; Havelková, Helena; Krulová, Magdalena; Badalová, Jana; Nohýnková, E.; Hart, A. A. M.; Schlegel, David; Volf, P.; Demant, P.

    2002-01-01

    Roč. 54, č. 3 (2002), s. 174-183 ISSN 0093-7711 R&D Projects: GA MZd NM28; GA ČR GA310/00/0760; GA MŠk OK 394 Grant - others:Howard Hughes Medical Institute(US) HHMI55000323; WHO(XX) TDR I.D. 970772; EC(XE) ERBI-C15-CT98-0317; EC(XE) BIO-4-CT98-0445 Institutional research plan: CEZ:AV0Z5052915 Keywords : Leishmaniasis * mouse model * complex disease Subject RIV: EC - Immunology Impact factor: 2.475, year: 2002

  2. High-throughput behavioral phenotyping of drug and alcohol susceptibility traits in the expanded panel of BXD recombinant inbred strains

    Energy Technology Data Exchange (ETDEWEB)

    Philip, Vivek M [ORNL; Ansah, T [University of Tennessee Health Science Center, Memphis; Blaha, C, [University of Tennessee Health Science Center, Memphis; Cook, Melloni N. [University of Memphis; Hamre, Kristin M. [University of Tennessee Health Science Center, Memphis; Lariviere, William R [University of Pittsburgh; Matthews, Douglas B [Baylor University; Goldowitz, Daniel [University of British Columbia, Vancouver; Chesler, Elissa J [ORNL

    2010-01-01

    Genetic reference populations, particularly the BXD recombinant inbred strains, are a valuable resource for the discovery of the bio-molecular substrates and genetic drivers responsible for trait variation and co- ariation. This approach can be profitably applied in the analysis of susceptibility and mechanisms of drug and alcohol use disorders for which many predisposing behaviors may predict occurrence and manifestation of increased preference for these substances. Many of these traits are modeled by common mouse behavioral assays, facilitating the detection of patterns and sources of genetic co-regulation of predisposing phenotypes and substance consumption. Members of the Tennessee Mouse Genome Consortium have obtained behavioral phenotype data from 260 measures related to multiple behavioral assays across several domains: self-administration, response to, and withdrawal from cocaine, MDMA, morphine and alcohol; novelty seeking; behavioral despair and related neurological phenomena; pain sensitivity; stress sensitivity; anxiety; hyperactivity; and sleep/wake cycles. All traits have been measured in both sexes and the recently expanded panel of 69 additional BXD recombinant inbred strains (N=69). Sex differences and heritability estimates were obtained for each trait, and a comparison of early (N = 32) and recent BXD RI lines was performed. Primary data is publicly available for heritability, sex difference and genetic analyses using www.GeneNetwork.org. These analyses include QTL detection and genetic analysis of gene expression. Stored results from these analyses are available at http://ontologicaldiscovery.org for comparison to other genomic analysis results. Together with the results of related studies, these data form a public resource for integrative systems genetic analysis of neurobehavioral traits.

  3. A Mouse Model of Hypospadias Induced by Estradiol Benzoate.

    Science.gov (United States)

    He, Hou-Guang; Han, Cong-Hui; Zhang, Wei

    2015-12-01

    We wished to establish a mouse model of hypospadias using injections of estradiol benzoate for investigating the molecular mechanisms of hypospadias. Fifty timed pregnant mice were randomly divided into five study groups: A, B, C, D, and E. These groups were injected subcutaneously with estradiol benzoate mixed with sesame oil at, respectively, the doses of 0, 0.1, 0.5, 2.5, or 12.5 mg kg(-1) days(-1) from gestation day (GD) 12 to GD 16. The pups' mortality was recorded on the day of delivery. Urethras and positions of testes were examined on postnatal day 28. The numbers of live pups were significantly lower in the study groups D and E compared to study group A (p Hypospadias was seen in groups C (3.3 %; 1/30), D (18.2 %; 4/22), and E (21.4 %; 3/14), while cryptorchidism was observed in groups C (10 %; 3/30), D (31.8 %; 7/22), and E (57.1 %; 8/14) on postnatal day 28. The experimental model of hypospadias induced by estradiol benzoate in the group D (2.5 mg kg(-1) days(-1)) was more reliable considering high mortality of the study group E. The dose of estradiol benzoate used in the group D is suitable for establishing mouse model of hypospadias.

  4. Considerations for skin carcinogenesis experiments using inducible transgenic mouse models.

    Science.gov (United States)

    Popis, Martyna C; Wagner, Rebecca E; Constantino-Casas, Fernando; Blanco, Sandra; Frye, Michaela

    2018-01-24

    This study was designed to estimate the percentage of non-malignant skin tumours (papillomas) progressing to malignant squamous cell carcinomas (SCCs) in a carcinogenesis study using established transgenic mouse models. In our skin cancer model, we conditionally induced oncogenic point mutant alleles of p53 and k-ras in undifferentiated, basal cells of the epidermis. Upon activation of the transgenes through administration of tamoxifen, the vast majority of mice (> 80%) developed skin papillomas, yet primarily around the mouth. Since these tumours hindered the mice eating, they rapidly lost weight and needed to be culled before the papillomas progressed to SCCs. The mouth papillomas formed regardless of the route of application, including intraperitoneal injections, local application to the back skin, or subcutaneous insertion of a tamoxifen pellet. Implantation of a slow releasing tamoxifen pellet into 18 mice consistently led to papilloma formation, of which only one progressed to a malignant SCC. Thus, the challenges for skin carcinogenesis studies using this particular cancer mouse model are low conversion rates of papillomas to SCCs and high frequencies of mouth papilloma formation.

  5. Mouse models of dengue virus infection for vaccine testing.

    Science.gov (United States)

    Sarathy, Vanessa V; Milligan, Gregg N; Bourne, Nigel; Barrett, Alan D T

    2015-12-10

    Dengue is a mosquito-borne disease caused by four serologically and genetically related viruses termed DENV-1 to DENV-4. With an annual global burden of approximately 390 million infections occurring in the tropics and subtropics worldwide, an effective vaccine to combat dengue is urgently needed. Historically, a major impediment to dengue research has been development of a suitable small animal infection model that mimics the features of human illness in the absence of neurologic disease that was the hallmark of earlier mouse models. Recent advances in immunocompromised murine infection models have resulted in development of lethal DENV-2, DENV-3 and DENV-4 models in AG129 mice that are deficient in both the interferon-α/β receptor (IFN-α/β R) and the interferon-γ receptor (IFN-γR). These models mimic many hallmark features of dengue disease in humans, such as viremia, thrombocytopenia, vascular leakage, and cytokine storm. Importantly AG129 mice develop lethal, acute, disseminated infection with systemic viral loads, which is characteristic of typical dengue illness. Infected AG129 mice generate an antibody response to DENV, and antibody-dependent enhancement (ADE) models have been established by both passive and maternal transfer of DENV-immune sera. Several steps have been taken to refine DENV mouse models. Viruses generated by peripheral in vivo passages incur substitutions that provide a virulent phenotype using smaller inocula. Because IFN signaling has a major role in immunity to DENV, mice that generate a cellular immune response are desired, but striking the balance between susceptibility to DENV and intact immunity is complicated. Great strides have been made using single-deficient IFN-α/βR mice for DENV-2 infection, and conditional knockdowns may offer additional approaches to provide a panoramic view that includes viral virulence and host immunity. Ultimately, the DENV AG129 mouse models result in reproducible lethality and offer multiple

  6. Experimental Mouse Model of Lumbar Ligamentum Flavum Hypertrophy.

    Science.gov (United States)

    Saito, Takeyuki; Yokota, Kazuya; Kobayakawa, Kazu; Hara, Masamitsu; Kubota, Kensuke; Harimaya, Katsumi; Kawaguchi, Kenichi; Hayashida, Mitsumasa; Matsumoto, Yoshihiro; Doi, Toshio; Shiba, Keiichiro; Nakashima, Yasuharu; Okada, Seiji

    2017-01-01

    Lumbar spinal canal stenosis (LSCS) is one of the most common spinal disorders in elderly people, with the number of LSCS patients increasing due to the aging of the population. The ligamentum flavum (LF) is a spinal ligament located in the interior of the vertebral canal, and hypertrophy of the LF, which causes the direct compression of the nerve roots and/or cauda equine, is a major cause of LSCS. Although there have been previous studies on LF hypertrophy, its pathomechanism remains unclear. The purpose of this study is to establish a relevant mouse model of LF hypertrophy and to examine disease-related factors. First, we focused on mechanical stress and developed a loading device for applying consecutive mechanical flexion-extension stress to the mouse LF. After 12 weeks of mechanical stress loading, we found that the LF thickness in the stress group was significantly increased in comparison to the control group. In addition, there were significant increases in the area of collagen fibers, the number of LF cells, and the gene expression of several fibrosis-related factors. However, in this mecnanical stress model, there was no macrophage infiltration, angiogenesis, or increase in the expression of transforming growth factor-β1 (TGF-β1), which are characteristic features of LF hypertrophy in LSCS patients. We therefore examined the influence of infiltrating macrophages on LF hypertrophy. After inducing macrophage infiltration by micro-injury to the mouse LF, we found excessive collagen synthesis in the injured site with the increased TGF-β1 expression at 2 weeks after injury, and further confirmed LF hypertrophy at 6 weeks after injury. Our findings demonstrate that mechanical stress is a causative factor for LF hypertrophy and strongly suggest the importance of macrophage infiltration in the progression of LF hypertrophy via the stimulation of collagen production.

  7. Nebivolol Desensitizes Myofilaments of a Hypertrophic Cardiomyopathy Mouse Model

    Directory of Open Access Journals (Sweden)

    Sabrina Stücker

    2017-08-01

    Full Text Available Background: Hypertrophic cardiomyopathy (HCM patients often present with diastolic dysfunction and a normal to supranormal systolic function. To counteract this hypercontractility, guideline therapies advocate treatment with beta-adrenoceptor and Ca2+ channel blockers. One well established pathomechanism for the hypercontractile phenotype frequently observed in HCM patients and several HCM mouse models is an increased myofilament Ca2+ sensitivity. Nebivolol, a commonly used beta-adrenoceptor antagonist, has been reported to lower maximal force development and myofilament Ca2+ sensitivity in rabbit and human heart tissues. The aim of this study was to evaluate the effect of nebivolol in cardiac muscle strips of an established HCM Mybpc3 mouse model. Furthermore, we investigated actions of nebivolol and epigallocatechin-gallate, which has been shown to desensitize myofilaments for Ca2+ in mouse and human HCM models, in cardiac strips of HCM patients with a mutation in the most frequently mutated HCM gene MYBPC3.Methods and Results: Nebivolol effects were tested on contractile parameters and force-Ca2+ relationship of skinned ventricular muscle strips isolated from Mybpc3-targeted knock-in (KI, wild-type (WT mice and cardiac strips of three HCM patients with MYBPC3 mutations. At baseline, KI strips showed no difference in maximal force development compared to WT mouse heart strips. Neither 1 nor 10 μM nebivolol had an effect on maximal force development in both genotypes. 10 μM nebivolol induced myofilament Ca2+ desensitization in WT strips and to a greater extent in KI strips. Neither 1 nor 10 μM nebivolol had an effect on Ca2+ sensitivity in cardiac muscle strips of three HCM patients with MYBPC3 mutations, whereas epigallocatechin-gallate induced a right shift in the force-Ca2+ curve.Conclusion: Nebivolol induced a myofilament Ca2+ desensitization in both WT and KI strips, which was more pronounced in KI muscle strips. In human cardiac muscle

  8. Combing Ability Analysis ofamong Early Generation Maize Inbred ...

    African Journals Online (AJOL)

    dagne.cimdom

    estimate combining ability effects of locally developed and introduced early generation maize inbred lines for grain yield, yield .... mass selection followed by self-pollination for generating inbred lines. The inbred lines ... for the experiment was an alpha (0, 1) lattice (Patterson and Williams, 1996) with two replications at each ...

  9. Revisiting the mouse model of oxygen-induced retinopathy

    Directory of Open Access Journals (Sweden)

    Kim CB

    2016-05-01

    Full Text Available Clifford B Kim,1,2 Patricia A D’Amore,2–4 Kip M Connor1,2 1Angiogenesis Laboratory, Massachusetts Eye and Ear, 2Department of Ophthalmology, Harvard Medical School, 3Schepens Eye Research Institute, Massachusetts Eye and Ear, 4Department of Pathology, Harvard Medical School, Boston, MA, USA Abstract: Abnormal blood vessel growth in the retina is a hallmark of many retinal diseases, such as retinopathy of prematurity (ROP, proliferative diabetic retinopathy, and the wet form of age-related macular degeneration. In particular, ROP has been an important health concern for physicians since the advent of routine supplemental oxygen therapy for premature neonates more than 70 years ago. Since then, researchers have explored several animal models to better understand ROP and retinal vascular development. Of these models, the mouse model of oxygen-induced retinopathy (OIR has become the most widely used, and has played a pivotal role in our understanding of retinal angiogenesis and ocular immunology, as well as in the development of groundbreaking therapeutics such as anti-vascular endothelial growth factor injections for wet age-related macular degeneration. Numerous refinements to the model have been made since its inception in the 1950s, and technological advancements have expanded the use of the model across multiple scientific fields. In this review, we explore the historical developments that have led to the mouse OIR model utilized today, essential concepts of OIR, limitations of the model, and a representative selection of key findings from OIR, with particular emphasis on current research progress. Keywords: ROP, OIR, angiogenesis

  10. Patched Knockout Mouse Models of Basal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Frauke Nitzki

    2012-01-01

    Full Text Available Basal cell carcinoma (BCC is the most common human tumor. Mutations in the hedgehog (HH receptor Patched (PTCH are the main cause of BCC. Due to their high and increasing incidence, BCC are becoming all the more important for the health care system. Adequate animal models are required for the improvement of current treatment strategies. A good model should reflect the situation in humans (i.e., BCC initiation due to Ptch mutations on an immunocompetent background and should allow for (i BCC induction at a defined time point, (ii analysis of defined BCC stages, and (iii induction of BCC in 100% of animals. In addition, it should be easy to handle. Here, we compare several currently existing conventional and conditional Ptch knockout mouse models for BCC and their potential use in preclinical research. In addition, we provide new data using conditional Ptchflox/flox mice and the K5-Cre-ERT+/− driver.

  11. Translational Mouse Models of Autism: Advancing Toward Pharmacological Therapeutics

    Science.gov (United States)

    Kazdoba, Tatiana M.; Leach, Prescott T.; Yang, Mu; Silverman, Jill L.; Solomon, Marjorie

    2016-01-01

    Animal models provide preclinical tools to investigate the causal role of genetic mutations and environmental factors in the etiology of autism spectrum disorder (ASD). Knockout and humanized knock-in mice, and more recently knockout rats, have been generated for many of the de novo single gene mutations and copy number variants (CNVs) detected in ASD and comorbid neurodevelopmental disorders. Mouse models incorporating genetic and environmental manipulations have been employed for preclinical testing of hypothesis-driven pharmacological targets, to begin to develop treatments for the diagnostic and associated symptoms of autism. In this review, we summarize rodent behavioral assays relevant to the core features of autism, preclinical and clinical evaluations of pharmacological interventions, and strategies to improve the translational value of rodent models of autism. PMID:27305922

  12. A new mouse model to explore therapies for preeclampsia.

    Directory of Open Access Journals (Sweden)

    Abdulwahab Ahmed

    Full Text Available BACKGROUND: Pre-eclampsia, a pregnancy-specific multisystemic disorder is a leading cause of maternal and perinatal mortality and morbidity. This syndrome has been known to medical science since ancient times. However, despite considerable research, the cause/s of preeclampsia remain unclear, and there is no effective treatment. Development of an animal model that recapitulates this complex pregnancy-related disorder may help to expand our understanding and may hold great potential for the design and implementation of effective treatment. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that the CBA/J x DBA/2 mouse model of recurrent miscarriage is also a model of immunologically-mediated preeclampsia (PE. DBA/J mated CBA/J females spontaneously develop many features of human PE (primigravidity, albuminuria, endotheliosis, increased sensitivity to angiotensin II and increased plasma leptin levels that correlates with bad pregnancy outcomes. We previously reported that antagonism of vascular endothelial growth factor (VEGF signaling by soluble VEGF receptor 1 (sFlt-1 is involved in placental and fetal injury in CBA/J x DBA/2 mice. Using this animal model that recapitulates many of the features of preeclampsia in women, we found that pravastatin restores angiogenic balance, ameliorates glomerular injury, diminishes hypersensitivity to angiotensin II and protects pregnancies. CONCLUSIONS/SIGNIFICANCE: We described a new mouse model of PE, were the relevant key features of human preeclampsia develop spontaneously. The CBA/J x DBA/2 model, that recapitulates this complex disorder, helped us identify pravastatin as a candidate therapy to prevent preeclampsia and its related complications. We recognize that these studies were conducted in mice and that clinical trials are needed to confirm its application to humans.

  13. Cerebellar associative sensory learning defects in five mouse autism models

    Science.gov (United States)

    Kloth, Alexander D; Badura, Aleksandra; Li, Amy; Cherskov, Adriana; Connolly, Sara G; Giovannucci, Andrea; Bangash, M Ali; Grasselli, Giorgio; Peñagarikano, Olga; Piochon, Claire; Tsai, Peter T; Geschwind, Daniel H; Hansel, Christian; Sahin, Mustafa; Takumi, Toru; Worley, Paul F; Wang, Samuel S-H

    2015-01-01

    Sensory integration difficulties have been reported in autism, but their underlying brain-circuit mechanisms are underexplored. Using five autism-related mouse models, Shank3+/ΔC, Mecp2R308/Y, Cntnap2−/−, L7-Tsc1 (L7/Pcp2Cre::Tsc1flox/+), and patDp(15q11-13)/+, we report specific perturbations in delay eyeblink conditioning, a form of associative sensory learning requiring cerebellar plasticity. By distinguishing perturbations in the probability and characteristics of learned responses, we found that probability was reduced in Cntnap2−/−, patDp(15q11-13)/+, and L7/Pcp2Cre::Tsc1flox/+, which are associated with Purkinje-cell/deep-nuclear gene expression, along with Shank3+/ΔC. Amplitudes were smaller in L7/Pcp2Cre::Tsc1flox/+ as well as Shank3+/ΔC and Mecp2R308/Y, which are associated with granule cell pathway expression. Shank3+/ΔC and Mecp2R308/Y also showed aberrant response timing and reduced Purkinje-cell dendritic spine density. Overall, our observations are potentially accounted for by defects in instructed learning in the olivocerebellar loop and response representation in the granule cell pathway. Our findings indicate that defects in associative temporal binding of sensory events are widespread in autism mouse models. DOI: http://dx.doi.org/10.7554/eLife.06085.001 PMID:26158416

  14. Parametric Modeling of the Mouse Left Ventricular Myocardial Fiber Structure.

    Science.gov (United States)

    Merchant, Samer S; Gomez, Arnold David; Morgan, James L; Hsu, Edward W

    2016-09-01

    Magnetic resonance diffusion tensor imaging (DTI) has greatly facilitated detailed quantifications of myocardial structures. However, structural patterns, such as the distinctive transmural rotation of the fibers, remain incompletely described. To investigate the validity and practicality of pattern-based analysis, 3D DTI was performed on 13 fixed mouse hearts and fiber angles in the left ventricle were transformed and fitted to parametric expressions constructed from elementary functions of the prolate spheroidal spatial variables. It was found that, on average, the myocardial fiber helix angle could be represented to 6.5° accuracy by the equivalence of a product of 10th-order polynomials of the radial and longitudinal variables, and 17th-order Fourier series of the circumferential variable. Similarly, the fiber imbrication angle could be described by 10th-order polynomials and 24th-order Fourier series, to 5.6° accuracy. The representations, while relatively concise, did not adversely affect the information commonly derived from DTI datasets including the whole-ventricle mean fiber helix angle transmural span and atlases constructed for the group. The unique ability of parametric models for predicting the 3D myocardial fiber structure from finite number of 2D slices was also demonstrated. These findings strongly support the principle of parametric modeling for characterizing myocardial structures in the mouse and beyond.

  15. Ghrelin modulates testicular damage in a cryptorchid mouse model

    Science.gov (United States)

    Boekelheide, Kim; Sigman, Mark; Hall, Susan J.; Hwang, Kathleen

    2017-01-01

    Cryptorchidism or undescended testis (UDT) is a common congenital abnormality associated with increased risk for developing male infertility and testicular cancer. This study elucidated the effects of endogenous ghrelin or growth hormone secretagogue receptor (GHSR) deletion on mouse reproductive performance and evaluated the ability of ghrelin to prevent testicular damage in a surgical cryptorchid mouse model. Reciprocal matings with heterozygous/homozygous ghrelin and GHSR knockout mice were performed. Litter size and germ cell apoptosis were recorded and testicular histological evaluations were performed. Wild type and GHSR knockout adult mice were subjected to creation of unilateral surgical cryptorchidism that is a model of heat-induced germ cell death. All mice were randomly separated into two groups: treatment with ghrelin or with saline. To assess testicular damage, the following endpoints were evaluated: testis weight, seminiferous tubule diameter, percentage of seminiferous tubules with spermatids and with multinucleated giant cells. Our findings indicated that endogenous ghrelin deletion altered male fertility. Moreover, ghrelin treatment ameliorated the testicular weight changes caused by surgically induced cryptorchidism. Testicular histopathology revealed a significant preservation of spermatogenesis and seminiferous tubule diameter in the ghrelin-treated cryptorchid testes of GHSR KO mice, suggesting that this protective effect of ghrelin was mediated by an unknown mechanism. In conclusion, ghrelin therapy could be useful to suppress testicular damage induced by hyperthermia, and future investigations will focus on the underlying mechanisms by which ghrelin mitigates testicular damage. PMID:28542403

  16. Human mammary microenvironment better regulates the biology of human breast cancer in humanized mouse model.

    Science.gov (United States)

    Zheng, Ming-Jie; Wang, Jue; Xu, Lu; Zha, Xiao-Ming; Zhao, Yi; Ling, Li-Jun; Wang, Shui

    2015-02-01

    During the past decades, many efforts have been made in mimicking the clinical progress of human cancer in mouse models. Previously, we developed a human breast tissue-derived (HB) mouse model. Theoretically, it may mimic the interactions between "species-specific" mammary microenvironment of human origin and human breast cancer cells. However, detailed evidences are absent. The present study (in vivo, cellular, and molecular experiments) was designed to explore the regulatory role of human mammary microenvironment in the progress of human breast cancer cells. Subcutaneous (SUB), mammary fat pad (MFP), and HB mouse models were developed for in vivo comparisons. Then, the orthotopic tumor masses from three different mouse models were collected for primary culture. Finally, the biology of primary cultured human breast cancer cells was compared by cellular and molecular experiments. Results of in vivo mouse models indicated that human breast cancer cells grew better in human mammary microenvironment. Cellular and molecular experiments confirmed that primary cultured human breast cancer cells from HB mouse model showed a better proliferative and anti-apoptotic biology than those from SUB to MFP mouse models. Meanwhile, primary cultured human breast cancer cells from HB mouse model also obtained the migratory and invasive biology for "species-specific" tissue metastasis to human tissues. Comprehensive analyses suggest that "species-specific" mammary microenvironment of human origin better regulates the biology of human breast cancer cells in our humanized mouse model of breast cancer, which is more consistent with the clinical progress of human breast cancer.

  17. Development of A Mouse Model of Menopausal Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Elizabeth R. Smith

    2014-02-01

    Full Text Available Despite significant understanding of the genetic mutations involved in ovarian epithelial cancer and advances in genomic approaches for expression and mutation profiling of tumor tissues, several key questions in ovarian cancer biology remain enigmatic: the mechanism for the well-established impact of reproductive factors on ovarian cancer risk remains obscure; questions of the cell of origin of ovarian cancer continue to be debated; and the precursor lesion, sequence, or events in progression remain to be defined. Suitable mouse models should complement the analysis of human tumor tissues and may provide clues to these questions currently perplexing ovarian cancer biology.A potentially useful model is the germ cell-deficient Wv (white spotting variant mutant mouse line, which may be used to study the impact of menopausal physiology on the increased risk of ovarian cancer. The Wv mice harbor a point mutation in c-Kit that reduces the receptor tyrosine kinase activity to about 1-5% (it is not a null mutation. Homozygous Wv mutant females have a reduced ovarian germ cell reservoir at birth and the follicles are rapidly depleted upon reaching reproductive maturity, but other biological phenotypes are minimal and the mice have a normal life span. The loss of ovarian function precipitates changes in hormonal and metabolic activity that model features of menopause in humans. As a consequence of follicle depletion, the Wv ovaries develop ovarian tubular adenomas, a benign epithelial tumor corresponding to surface epithelial invaginations and papillomatosis that mark human ovarian aging. Ongoing work will test the possibility of converting the benign epithelial tubular adenomas into neoplastic tumors by addition of an oncogenic mutation, such as of Tp53, to model the genotype and biology of serous ovarian cancer.Model based on the Wv mice may have the potential to gain biological and etiological insights into ovarian cancer development and prevention.

  18. Gait analysis in a mouse model resembling Leigh disease.

    Science.gov (United States)

    de Haas, Ria; Russel, Frans G; Smeitink, Jan A

    2016-01-01

    Leigh disease (LD) is one of the clinical phenotypes of mitochondrial OXPHOS disorders and also known as sub-acute necrotizing encephalomyelopathy. The disease has an incidence of 1 in 77,000 live births. Symptoms typically begin early in life and prognosis for LD patients is poor. Currently, no clinically effective treatments are available. Suitable animal and cellular models are necessary for the understanding of the neuropathology and the development of successful new therapeutic strategies. In this study we used the Ndufs4 knockout (Ndufs4(-/-)) mouse, a model of mitochondrial complex I deficiency. Ndusf4(-/-) mice exhibit progressive neurodegeneration, which closely resemble the human LD phenotype. When dissecting behavioral abnormalities in animal models it is of great importance to apply translational tools that are clinically relevant. To distinguish gait abnormalities in patients, simple walking tests can be assessed, but in animals this is not easy. This study is the first to demonstrate automated CatWalk gait analysis in the Ndufs4(-/-) mouse model. Marked differences were noted between Ndufs4(-/-) and control mice in dynamic, static, coordination and support parameters. Variation of walking speed was significantly increased in Ndufs4(-/-) mice, suggesting hampered and uncoordinated gait. Furthermore, decreased regularity index, increased base of support and changes in support were noted in the Ndufs4(-/-) mice. Here, we report the ability of the CatWalk system to sensitively assess gait abnormalities in Ndufs4(-/-) mice. This objective gait analysis can be of great value for intervention and drug efficacy studies in animal models for mitochondrial disease. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Real-Time PCR Quantification of Heteroplasmy in a Mouse Model with Mitochondrial DNA of C57BL/6 and NZB/BINJ Strains

    Science.gov (United States)

    Sangalli, Juliano Rodrigues; Rodrigues, Thiago Bittencourt; Smith, Lawrence Charles; Meirelles, Flávio Vieira; Chiaratti, Marcos Roberto

    2015-01-01

    Mouse models are widely employed to study mitochondrial inheritance, which have implications to several human diseases caused by mutations in the mitochondrial genome (mtDNA). These mouse models take advantage of polymorphisms between the mtDNA of the NZB/BINJ and the mtDNA of common inbred laboratory (i.e., C57BL/6) strains to generate mice with two mtDNA haplotypes (heteroplasmy). Based on PCR followed by restriction fragment length polymorphism (PCR-RFLP), these studies determine the level of heteroplasmy across generations and in different cell types aiming to understand the mechanisms underlying mitochondrial inheritance. However, PCR-RFLP is a time-consuming method of low sensitivity and accuracy that dependents on the use of restriction enzyme digestions. A more robust method to measure heteroplasmy has been provided by the use of real-time quantitative PCR (qPCR) based on allelic refractory mutation detection system (ARMS-qPCR). Herein, we report an ARMS-qPCR assay for quantification of heteroplasmy using heteroplasmic mice with mtDNA of NZB/BINJ and C57BL/6 origin. Heteroplasmy and mtDNA copy number were estimated in germline and somatic tissues, providing evidence of the reliability of the approach. Furthermore, it enabled single-step quantification of heteroplasmy, with sensitivity to detect as low as 0.1% of either NZB/BINJ or C57BL/6 mtDNA. These findings are relevant as the ARMS-qPCR assay reported here is fully compatible with similar heteroplasmic mouse models used to study mitochondrial inheritance in mammals. PMID:26274500

  20. Real-Time PCR Quantification of Heteroplasmy in a Mouse Model with Mitochondrial DNA of C57BL/6 and NZB/BINJ Strains.

    Directory of Open Access Journals (Sweden)

    Thiago Simões Machado

    Full Text Available Mouse models are widely employed to study mitochondrial inheritance, which have implications to several human diseases caused by mutations in the mitochondrial genome (mtDNA. These mouse models take advantage of polymorphisms between the mtDNA of the NZB/BINJ and the mtDNA of common inbred laboratory (i.e., C57BL/6 strains to generate mice with two mtDNA haplotypes (heteroplasmy. Based on PCR followed by restriction fragment length polymorphism (PCR-RFLP, these studies determine the level of heteroplasmy across generations and in different cell types aiming to understand the mechanisms underlying mitochondrial inheritance. However, PCR-RFLP is a time-consuming method of low sensitivity and accuracy that dependents on the use of restriction enzyme digestions. A more robust method to measure heteroplasmy has been provided by the use of real-time quantitative PCR (qPCR based on allelic refractory mutation detection system (ARMS-qPCR. Herein, we report an ARMS-qPCR assay for quantification of heteroplasmy using heteroplasmic mice with mtDNA of NZB/BINJ and C57BL/6 origin. Heteroplasmy and mtDNA copy number were estimated in germline and somatic tissues, providing evidence of the reliability of the approach. Furthermore, it enabled single-step quantification of heteroplasmy, with sensitivity to detect as low as 0.1% of either NZB/BINJ or C57BL/6 mtDNA. These findings are relevant as the ARMS-qPCR assay reported here is fully compatible with similar heteroplasmic mouse models used to study mitochondrial inheritance in mammals.

  1. PET/CT Imaging in Mouse Models of Myocardial Ischemia

    Directory of Open Access Journals (Sweden)

    Sara Gargiulo

    2012-01-01

    Full Text Available Different species have been used to reproduce myocardial infarction models but in the last years mice became the animals of choice for the analysis of several diseases, due to their short life cycle and the possibility of genetic manipulation. Many techniques are currently used for cardiovascular imaging in mice, including X-ray computed tomography (CT, high-resolution ultrasound, magnetic resonance imaging, and nuclear medicine procedures. Cardiac positron emission tomography (PET allows to examine noninvasively, on a molecular level and with high sensitivity, regional changes in myocardial perfusion, metabolism, apoptosis, inflammation, and gene expression or to measure changes in anatomical and functional parameters in heart diseases. Currently hybrid PET/CT scanners for small laboratory animals are available, where CT adds high-resolution anatomical information. This paper reviews mouse models of myocardial infarction and discusses the applications of dedicated PET/CT systems technology, including animal preparation, anesthesia, radiotracers, and images postprocessing.

  2. Analyses of homologous rotavirus infection in the mouse model.

    Science.gov (United States)

    Burns, J W; Krishnaney, A A; Vo, P T; Rouse, R V; Anderson, L J; Greenberg, H B

    1995-02-20

    The group A rotaviruses are significant human and veterinary pathogens in terms of morbidity, mortality, and economic loss. Despite its importance, an effective vaccine remains elusive due at least in part to our incomplete understanding of rotavirus immunity and protection. Both large and small animal model systems have been established to address these issues. One significant drawback of these models is the lack of well-characterized wild-type homologous viruses and their cell culture-adapted variants. We have characterized four strains of murine rotaviruses, EC, EHP, EL, and EW, in the infant and adult mouse model using wild-type isolates and cell culture-adapted variants of each strain. Wild-type murine rotaviruses appear to be equally infectious in infant and adult mice in terms of the intensity and duration of virus shedding following primary infection. Spread of infection to naive cagemates is seen in both age groups. Clearance of shedding following primary infection appears to correlate with the development of virus-specific intestinal IgA. Protective immunity is developed in both infant and adult mice following oral infection as demonstrated by a lack of shedding after subsequent wild-type virus challenge. Cell culture-adapted murine rotaviruses appear to be highly attenuated when administered to naive animals and do not spread efficiently to nonimmune cagemates. The availability of these wild-type and cell culture-adapted virus preparations should allow a more systematic evaluation of rotavirus infection and immunity. Furthermore, future vaccine strategies can be evaluated in the mouse model using several fully virulent homologous viruses for challenge.

  3. The first knockin mouse model of episodic ataxia type 2.

    Science.gov (United States)

    Rose, Samuel J; Kriener, Lisa H; Heinzer, Ann K; Fan, Xueliang; Raike, Robert S; van den Maagdenberg, Arn M J M; Hess, Ellen J

    2014-11-01

    Episodic ataxia type 2 (EA2) is an autosomal dominant disorder associated with attacks of ataxia that are typically precipitated by stress, ethanol, caffeine or exercise. EA2 is caused by loss-of-function mutations in the CACNA1A gene, which encodes the α1A subunit of the CaV2.1 voltage-gated Ca(2+) channel. To better understand the pathomechanisms of this disorder in vivo, we created the first genetic animal model of EA2 by engineering a mouse line carrying the EA2-causing c.4486T>G (p.F1406C) missense mutation in the orthologous mouse Cacna1a gene. Mice homozygous for the mutated allele exhibit a ~70% reduction in CaV2.1 current density in Purkinje cells, though surprisingly do not exhibit an overt motor phenotype. Mice hemizygous for the knockin allele (EA2/- mice) did exhibit motor dysfunction measurable by rotarod and pole test. Studies using Cre-flox conditional genetics explored the role of cerebellar Purkinje cells or cerebellar granule cells in the poor motor performance of EA2/- mice and demonstrate that manipulation of either cell type alone did not cause poor motor performance. Thus, it is possible that subtle dysfunction arising from multiple cell types is necessary for the expression of certain ataxia syndromes. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Human tissue models in cancer research: looking beyond the mouse.

    Science.gov (United States)

    Jackson, Samuel J; Thomas, Gareth J

    2017-08-01

    Mouse models, including patient-derived xenograft mice, are widely used to address questions in cancer research. However, there are documented flaws in these models that can result in the misrepresentation of human tumour biology and limit the suitability of the model for translational research. A coordinated effort to promote the more widespread development and use of 'non-animal human tissue' models could provide a clinically relevant platform for many cancer studies, maximising the opportunities presented by human tissue resources such as biobanks. A number of key factors limit the wide adoption of non-animal human tissue models in cancer research, including deficiencies in the infrastructure and the technical tools required to collect, transport, store and maintain human tissue for lab use. Another obstacle is the long-standing cultural reliance on animal models, which can make researchers resistant to change, often because of concerns about historical data compatibility and losing ground in a competitive environment while new approaches are embedded in lab practice. There are a wide range of initiatives that aim to address these issues by facilitating data sharing and promoting collaborations between organisations and researchers who work with human tissue. The importance of coordinating biobanks and introducing quality standards is gaining momentum. There is an exciting opportunity to transform cancer drug discovery by optimising the use of human tissue and reducing the reliance on potentially less predictive animal models. © 2017. Published by The Company of Biologists Ltd.

  5. Human tissue models in cancer research: looking beyond the mouse

    Directory of Open Access Journals (Sweden)

    Samuel J. Jackson

    2017-08-01

    Full Text Available Mouse models, including patient-derived xenograft mice, are widely used to address questions in cancer research. However, there are documented flaws in these models that can result in the misrepresentation of human tumour biology and limit the suitability of the model for translational research. A coordinated effort to promote the more widespread development and use of ‘non-animal human tissue’ models could provide a clinically relevant platform for many cancer studies, maximising the opportunities presented by human tissue resources such as biobanks. A number of key factors limit the wide adoption of non-animal human tissue models in cancer research, including deficiencies in the infrastructure and the technical tools required to collect, transport, store and maintain human tissue for lab use. Another obstacle is the long-standing cultural reliance on animal models, which can make researchers resistant to change, often because of concerns about historical data compatibility and losing ground in a competitive environment while new approaches are embedded in lab practice. There are a wide range of initiatives that aim to address these issues by facilitating data sharing and promoting collaborations between organisations and researchers who work with human tissue. The importance of coordinating biobanks and introducing quality standards is gaining momentum. There is an exciting opportunity to transform cancer drug discovery by optimising the use of human tissue and reducing the reliance on potentially less predictive animal models.

  6. Beethoven, a mouse model for dominant, progressive hearing loss DFNA36.

    Science.gov (United States)

    Vreugde, Sarah; Erven, Alexandra; Kros, Corné J; Marcotti, Walter; Fuchs, Helmut; Kurima, Kiyoto; Wilcox, Edward R; Friedman, Thomas B; Griffith, Andrew J; Balling, Rudi; Hrabé De Angelis, Martin; Avraham, Karen B; Steel, Karen P

    2002-03-01

    Despite recent progress in identifying genes underlying deafness, there are still relatively few mouse models of specific forms of human deafness. Here we describe the phenotype of the Beethoven (Bth) mouse mutant and a missense mutation in Tmc1 (transmembrane cochlear-expressed gene 1). Progressive hearing loss (DFNA36) and profound congenital deafness (DFNB7/B11) are caused by dominant and recessive mutations of the human ortholog, TMC1 (ref. 1), for which Bth and deafness (dn) are mouse models, respectively.

  7. Coupling estimated effects of QTLs for physiological traits to a crop growth model: Predicting yield variation among recombinant inbred lines in barley

    NARCIS (Netherlands)

    Yin, X.Y.; Chasalow, S.D.; Dourleijn, C.J.; Stam, P.; Kropff, M.J.

    2000-01-01

    Advances in the use of molecular markers to elucidate the inheritance of quantitative traits enable the integration of genetic information on physiological traits into crop growth models. The objective of this study was to assess the ability of a crop growth model with QTL-based estimates of

  8. Mouse model of glycogen storage disease type III.

    Science.gov (United States)

    Liu, Kai-Ming; Wu, Jer-Yuarn; Chen, Yuan-Tsong

    2014-04-01

    Glycogen storage disease type IIIa (GSD IIIa) is caused by a deficiency of the glycogen debranching enzyme (GDE), which is encoded by the Agl gene. GDE deficiency leads to the pathogenic accumulation of phosphorylase limit dextrin (PLD), an abnormal glycogen, in the liver, heart, and skeletal muscle. To further investigate the pathological mechanisms behind this disease and develop novel therapies to treat this disease, we generated a GDE-deficient mouse model by removing exons after exon 5 in the Agl gene. GDE reduction was confirmed by western blot and enzymatic activity assay. Histology revealed massive glycogen accumulation in the liver, muscle, and heart of the homozygous affected mice. Interestingly, we did not find any differences in the general appearance, growth rate, and life span between the wild-type, heterozygous, and homozygous affected mice with ad libitum feeding, except reduced motor activity after 50 weeks of age, and muscle weakness in both the forelimb and hind legs of homozygous affected mice by using the grip strength test at 62 weeks of age. However, repeated fasting resulted in decreased survival of the knockout mice. Hepatomegaly and progressive liver fibrosis were also found in the homozygous affected mice. Blood chemistry revealed that alanine transaminase (ALT), aspartate transaminase (AST) and alkaline phosphatase (ALP) activities were significantly higher in the homozygous affected mice than in both wild-type and heterozygous mice and the activity of these enzymes further increased with fasting. Creatine phosphokinase (CPK) activity was normal in young and adult homozygous affected mice. However, the activity was significantly elevated after fasting. Hypoglycemia appeared only at a young age (3 weeks) and hyperlipidemia was not observed in our model. In conclusion, with the exception of normal lipidemia, these mice recapitulate human GSD IIIa; moreover, we found that repeated fasting was detrimental to these mice. This mouse model will

  9. Polyoma virus-induced osteosarcomas in inbred strains of mice: host determinants of metastasis.

    Directory of Open Access Journals (Sweden)

    Palanivel Velupillai

    2010-01-01

    Full Text Available The mouse polyoma virus induces a broad array of solid tumors in mice of many inbred strains. In most strains tumors grow rapidly but fail to metastasize. An exception has been found in the Czech-II/Ei mouse in which bone tumors metastasize regularly to the lung. These tumors resemble human osteosarcoma in their propensity for pulmonary metastasis. Cell lines established from these metastatic tumors have been compared with ones from non-metastatic osteosarcomas arising in C3H/BiDa mice. Osteopontin, a chemokine implicated in migration and metastasis, is known to be transcriptionally induced by the viral middle T antigen. Czech-II/Ei and C3H/BiDa tumor cells expressed middle T and secreted osteopontin at comparable levels as the major chemoattractant. The tumor cell lines migrated equally well in response to recombinant osteopontin as the sole attractant. An important difference emerged in assays for invasion in which tumor cells from Czech-II/Ei mice were able to invade across an extracellular matrix barrier while those from C3H/BiDa mice were unable to invade. Invasive behavior was linked to elevated levels of the metalloproteinase MMP-2 and of the transcription factor NFAT. Inhibition of either MMP-2 or NFAT inhibited invasion by Czech-II/Ei osteosarcoma cells. The metastatic phenotype is dominant in F1 mice. Osteosarcoma cell lines from F1 mice expressed intermediate levels of MMP-2 and NFAT and were invasive. Osteosarcomas in Czech-II/Ei mice retain functional p53. This virus-host model of metastasis differs from engineered models targeting p53 or pRb and provides a system for investigating the genetic and molecular basis of bone tumor metastasis in the absence of p53 loss.

  10. Combining abilities of inbred lines for dry matter yield of maize (Zea mays L. Hybrids

    Directory of Open Access Journals (Sweden)

    Sečanski Mile

    2003-01-01

    Full Text Available This study encompass the investigation on combining abilities of six maize inbred lines and their diallel hybrids of F1 generation for dry matter yield of both, the whole plant and the ear. The analysis of combining abilities was performed following Griffing (1956 method 2, model I, without reciprocal crosses, while the analysis the genetic components of variance and the regression analysis were done after the model proposed by Hayman and Jinks (1954 and Mather and Jink (1971. Dominant gene effects in inheritance of dry matter yield of the whole plant and the ear were determined by the analysis of combining abilities. The role of these effects are also observable from the analysis of genetic components of variations and results of the Vr/Wr regression analysis. The inbred line ZPLB 406 was the inbred with the highest GCA effects. .

  11. Generation of Humanized Mouse Models with Focus on Antithrombin Deficiency

    DEFF Research Database (Denmark)

    Jensen, Astrid Bøgh

    2015-01-01

    transgene. The CRISPR/Cas9 system is a relatively new and innovative method for targeted mutagenesis. The Cas9 nuclease introduces a double stranded break in the DNA, which can be repaired through homologous recombination of a targeting vector. A mutated Cas9n (Cas9 nickase) has been designed, which only...... cuts one of the DNA strands. With this enzyme, two target sites have to be located close to each other in order to create double strand break. This will lower the risk for off target mutations, but might reduce the efficiency of targeting. In order to control the expression of the human antithrombin...... found that homozygous knockout embryos have a significantly increased level of systemic inflammation, around their time of death. Furthermore, the embryos show signs of hypertension, already at day 12 of gestation, possible due to kidney failure. A humanized mouse model for antithrombin deficiency can...

  12. Interplay between Endometriosis and Pregnancy in a Mouse Model.

    Directory of Open Access Journals (Sweden)

    Mariela Andrea Bilotas

    Full Text Available To evaluate the effect of endometriosis on fertility and the levels of the IL-2 and IFN-γ in the peritoneal fluid in a mouse model; to evaluate the effect of pregnancy on endometriotic lesion growth, apoptosis and cell proliferation.Two month old C57BL/6 female mice underwent either a surgical procedure to induce endometriosis or a sham surgery. Four weeks after surgery mice were mated and sacrificed at day 18 of pregnancy. Number of implantation sites, fetuses and fetal weight were recorded. Endometriotic lesions were counted, measured, excised and fixed. Apoptosis and cell proliferation were evaluated in lesions by TUNEL and immunohistochemistry for PCNA respectively. Levels of IL-2 and IFN-γ were assessed by ELISA in the peritoneal fluid.Pregnancy rate (i.e. pregnant mice/N decreased in mice with endometriosis. However there were no significant differences in resorption rate, litter size and pup weight between groups. IFN-γ augmented in endometriosis mice independently of pregnancy outcome. Additionally IFN-γ increased in pregnant endometriosis mice compared to pregnant sham animals. While IFN-γ increased in non pregnant versus pregnant mice in the sham group, IL-2 was increased in non pregnant mice in the endometriosis group. The size of endometriotic lesions increased in pregnant mice while apoptosis increased in the stroma and cell proliferation decreased in the epithelium of these lesions. Additionally, leukocyte infiltration, necrosis and decidualization were increased in the same lesions.Pregnancy rate is reduced in this mouse model of endometriosis. Levels of IL-2 are increased in the peritoneal fluid of mice with endometriosis suggesting a role of this cytokine in infertility related to this disease. The size of endometriotic lesions is increased in pregnant mice; however pregnancy has a beneficial effect on lesions by decreasing cell proliferation and by increasing apoptosis, decidualization and necrosis.

  13. Research on mouse model of grade II corneal alkali burn

    Directory of Open Access Journals (Sweden)

    Jun-Qiang Bai

    2016-04-01

    Full Text Available AIM: To choose appropriate concentration of sodium hydroxide (NaOH solution to establish a stable and consistent corneal alkali burn mouse model in grade II. METHODS: The mice (n=60 were randomly divided into four groups and 15 mice each group. Corneal alkali burns were induced by placing circle filter paper soaked with NaOH solutions on the right central cornea for 30s. The concentrations of NaOH solutions of groups A, B, C, and D were 0.1 mol/L, 0.15 mol/L , 0.2 mol/L, and 1.0 mol/L respectively. Then these corneas were irrigated with 20 mL physiological saline (0.9% NaCl. On day 7 postburn, slit lamp microscope was used to observe corneal opacity, corneal epithelial sodium fluorescein staining positive rate, incidence of corneal ulcer and corneal neovascularization, meanwhile pictures of the anterior eyes were taken. Cirrus spectral domain optical coherence tomography was used to scan cornea to observe corneal epithelial defect and corneal ulcer. RESULTS: Corneal opacity scores ( were not significantly different between the group A and group B (P=0.097. Incidence of corneal ulcer in group B was significantly higher than that in group A (P=0.035. Incidence of corneal ulcer and perforation rate in group B was lower than that in group C. Group C and D had corneal neovascularization, and incidence of corneal neovascularization in group D was significantly higher than that in group C (P=0.000. CONCLUSION: Using 0.15 mol/L NaOH can establish grade II mouse model of corneal alkali burns.

  14. A new model for Hendra virus encephalitis in the mouse.

    Directory of Open Access Journals (Sweden)

    Johanna Dups

    Full Text Available Hendra virus (HeV infection in humans is characterized by an influenza like illness, which may progress to pneumonia or encephalitis and lead to death. The pathogenesis of HeV infection is poorly understood, and the lack of a mouse model has limited the opportunities for pathogenetic research. In this project we reassessed the role of mice as an animal model for HeV infection and found that mice are susceptible to HeV infection after intranasal exposure, with aged mice reliably developing encephalitic disease. We propose an anterograde route of neuroinvasion to the brain, possibly along olfactory nerves. This is supported by evidence for the development of encephalitis in the absence of viremia and the sequential distribution of viral antigen along pathways of olfaction in the brain of intranasally challenged animals. In our studies mice developed transient lower respiratory tract infection without progressing to viremia and systemic vasculitis that is common to other animal models. These studies report a new animal model of HeV encephalitis that will allow more detailed studies of the neuropathogenesis of HeV infection, particularly the mode of viral spread and possible sequestration within the central nervous system; investigation of mechanisms that moderate the development of viremia and systemic disease; and inform the development of improved treatment options for human patients.

  15. A STAT-1 knockout mouse model for Machupo virus pathogenesis

    Directory of Open Access Journals (Sweden)

    Shurtleff Amy C

    2011-06-01

    Full Text Available Abstract Background Machupo virus (MACV, a member of the Arenaviridae, causes Bolivian hemorrhagic fever, with ~20% lethality in humans. The pathogenesis of MACV infection is poorly understood, and there are no clinically proven treatments for disease. This is due, in part, to a paucity of small animal models for MACV infection in which to discover and explore candidate therapeutics. Methods Mice lacking signal transducer and activator of transcription 1 (STAT-1 were infected with MACV. Lethality, viral replication, metabolic changes, hematology, histopathology, and systemic cytokine expression were analyzed throughout the course of infection. Results We report here that STAT-1 knockout mice succumbed to MACV infection within 7-8 days, and presented some relevant clinical and histopathological manifestations of disease. Furthermore, the model was used to validate the efficacy of ribavirin in protection against infection. Conclusions The STAT-1 knockout mouse model can be a useful small animal model for drug testing and preliminary immunological analysis of lethal MACV infection.

  16. Genetically engineered mouse models in oncology research and cancer medicine.

    Science.gov (United States)

    Kersten, Kelly; de Visser, Karin E; van Miltenburg, Martine H; Jonkers, Jos

    2017-02-01

    Genetically engineered mouse models (GEMMs) have contributed significantly to the field of cancer research. In contrast to cancer cell inoculation models, GEMMs develop de novo tumors in a natural immune-proficient microenvironment. Tumors arising in advanced GEMMs closely mimic the histopathological and molecular features of their human counterparts, display genetic heterogeneity, and are able to spontaneously progress toward metastatic disease. As such, GEMMs are generally superior to cancer cell inoculation models, which show no or limited heterogeneity and are often metastatic from the start. Given that GEMMs capture both tumor cell-intrinsic and cell-extrinsic factors that drive de novo tumor initiation and progression toward metastatic disease, these models are indispensable for preclinical research. GEMMs have successfully been used to validate candidate cancer genes and drug targets, assess therapy efficacy, dissect the impact of the tumor microenvironment, and evaluate mechanisms of drug resistance. In vivo validation of candidate cancer genes and therapeutic targets is further accelerated by recent advances in genetic engineering that enable fast-track generation and fine-tuning of GEMMs to more closely resemble human patients. In addition, aligning preclinical tumor intervention studies in advanced GEMMs with clinical studies in patients is expected to accelerate the development of novel therapeutic strategies and their translation into the clinic. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  17. Improving treatment outcome assessment in a mouse tuberculosis model.

    Science.gov (United States)

    Mourik, Bas C; Svensson, Robin J; de Knegt, Gerjo J; Bax, Hannelore I; Verbon, Annelies; Simonsson, Ulrika S H; de Steenwinkel, Jurriaan E M

    2018-04-09

    Preclinical treatment outcome evaluation of tuberculosis (TB) occurs primarily in mice. Current designs compare relapse rates of different regimens at selected time points, but lack information about the correlation between treatment length and treatment outcome, which is required to efficiently estimate a regimens' treatment-shortening potential. Therefore we developed a new approach. BALB/c mice were infected with a Mycobacterium tuberculosis Beijing genotype strain and were treated with rifapentine-pyrazinamide-isoniazid-ethambutol (R p ZHE), rifampicin-pyrazinamide-moxifloxacin-ethambutol (RZME) or rifampicin-pyrazinamide-moxifloxacin-isoniazid (RZMH). Treatment outcome was assessed in n = 3 mice after 9 different treatment lengths between 2-6 months. Next, we created a mathematical model that best fitted the observational data and used this for inter-regimen comparison. The observed data were best described by a sigmoidal E max model in favor over linear or conventional E max models. Estimating regimen-specific parameters showed significantly higher curative potentials for RZME and R p ZHE compared to RZMH. In conclusion, we provide a new design for treatment outcome evaluation in a mouse TB model, which (i) provides accurate tools for assessment of the relationship between treatment length and predicted cure, (ii) allows for efficient comparison between regimens and (iii) adheres to the reduction and refinement principles of laboratory animal use.

  18. Genetic background effects on disease onset and lifespan of the mutant dynactin p150Glued mouse model of motor neuron disease.

    Science.gov (United States)

    Heiman-Patterson, Terry D; Blankenhorn, Elizabeth P; Sher, Roger B; Jiang, Juliann; Welsh, Priscilla; Dixon, Meredith C; Jeffrey, Jeremy I; Wong, Philip; Cox, Gregory A; Alexander, Guillermo M

    2015-01-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease primarily affecting motor neurons in the central nervous system. Although most cases of ALS are sporadic, about 5-10% of cases are familial (FALS) with approximately 20% of FALS caused by mutations in the Cu/Zn superoxide dismutase (SOD1) gene. We have reported that hSOD1-G93A transgenic mice modeling this disease show a more severe phenotype when the transgene is bred on a pure SJL background and a milder phenotype when bred on a pure B6 background and that these phenotype differences link to a region on mouse Chromosome 17.To examine whether other models of motor neuron degeneration are affected by genetic background, we bred the mutant human dynactin p150Glued (G59S-hDCTN1) transgene onto inbred SJL and B6 congenic lines. This model is based on an autosomal dominant lower motor neuron disease in humans linked to a mutation in the p150Glued subunit of the dynactin complex. As seen in hSOD1-G93A mice, we observed a more severe phenotype with earlier disease onset (pdisease onset in hSOD1-G93A mice also showed delays onset in G59S-hDCTN1 mice suggesting that at least some genetic modifiers are shared. We have shown that genetic background influences phenotype in G59S-hDCTN1 mice, in part through a region of chromosome 17 similar to the G93-hSOD1 ALS mouse model. These results support the presence of genetic modifiers in both these models some of which may be shared. Identification of these modifiers will highlight intracellular pathways involved in motor neuron disease and provide new therapeutic targets that may be applicable to motor neuron degeneration.

  19. Iodine uptake and prostate cancer in the TRAMP mouse model.

    Science.gov (United States)

    Olvera-Caltzontzin, Paloma; Delgado, Guadalupe; Aceves, Carmen; Anguiano, Brenda

    2013-11-08

    Iodine supplementation exerts antitumor effects in several types of cancer. Iodide (I⁻) and iodine (I₂) reduce cell proliferation and induce apoptosis in human prostate cancer cells (LNCaP and DU-145). Both chemical species decrease tumor growth in athymic mice xenografted with DU-145 cells. The aim of this study was to analyze the uptake and effects of iodine in a preclinical model of prostate cancer (transgenic adenocarcinoma of the mouse prostate [TRAMP] mice/SV40-TAG antigens), which develops cancer by 12 wks of age. ¹²⁵I⁻ and ¹²⁵I₂ uptake was analyzed in prostates from wild-type and TRAMP mice of 12 and 24 wks in the presence of perchlorate (inhibitor of the Na⁺/I⁻ symporter [NIS]). NIS expression was quantified by quantitative polymerase chain reaction (qPCR). Mice (6 wks old) were supplemented with 0.125 mg I⁻ plus 0.062 mg I₂/mouse/day for 12 or 24 wks. The weight of the genitourinary tract (GUT), the number of acini with lesions, cell proliferation (levels of proliferating cell nuclear antigen [PCNA] by immunohistochemistry), p53 and p21 expression (by qPCR) and apoptosis (relative amount of nucleosomes by enzyme-linked immunosorbent assay) were evaluated. In both age-groups, normal and tumoral prostates take up both forms of iodine, but only I⁻ uptake was blocked by perchlorate. Iodine supplementation prevented the overexpression of NIS in the TRAMP mice, but had no effect on the GUT weight, cell phenotype, proliferation or apoptosis. In TRAMP mice, iodine increased p53 expression but had no effect on p21 (a p53-dependent gene). Our data corroborate NIS involvement in I⁻ uptake and support the notion that another transporter mediates I₂ uptake. Iodine did not prevent cancer progression. This result could be explained by a strong inactivation of the p53 pathway by TAG antigens.

  20. Indirubin Treatment of Lipopolysaccharide-Induced Mastitis in a Mouse Model and Activity in Mouse Mammary Epithelial Cells.

    Science.gov (United States)

    Lai, Jin-Lun; Liu, Yu-Hui; Peng, Yong-Chong; Ge, Pan; He, Chen-Fei; Liu, Chang; Chen, Ying-Yu; Guo, Ai-Zhen; Hu, Chang-Min

    2017-01-01

    Indirubin is a Chinese medicine extracted from indigo and known to be effective for treating chronic myelogenous leukemia, neoplasia, and inflammatory disease. This study evaluated the in vivo anti-inflammatory activity of indirubin in a lipopolysaccharide- (LPS-) induced mouse mastitis model. The indirubin mechanism and targets were evaluated in vitro in mouse mammary epithelial cells. In the mouse model, indirubin significantly attenuated the severity of inflammatory lesions, edema, inflammatory hyperemia, milk stasis and local tissue necrosis, and neutrophil infiltration. Indirubin significantly decreased myeloperoxidase activity and downregulated the production of tumor necrosis factor- α , interleukin-1 β (IL-1 β ), and IL-6 caused by LPS. In vitro, indirubin inhibited LPS-stimulated expression of proinflammatory cytokines in a dose-dependent manner. It also downregulated LPS-induced toll-like receptor 4 (TLR4) expression and inhibited phosphorylation of LPS-induced nuclear transcription factor-kappa B (NF- κ B) P65 protein and inhibitor of kappa B. In addition to its effect on the NF- κ B signaling pathway, indirubin suppressed the mitogen-activated protein kinase (MAPK) signaling by inhibiting phosphorylation of extracellular signal-regulated kinase (ERK), P38, and c-jun NH2-terminal kinase (JNK). Indirubin improved LPS-induced mouse mastitis by suppressing TLR4 and downstream NF- κ B and MAPK pathway inflammatory signals and might be a potential treatment of mastitis and other inflammatory diseases.

  1. A spontaneous and novel Pax3 mutant mouse that models Waardenburg syndrome and neural tube defects.

    Science.gov (United States)

    Ohnishi, Tetsuo; Miura, Ikuo; Ohba, Hisako; Shimamoto, Chie; Iwayama, Yoshimi; Wakana, Shigeharu; Yoshikawa, Takeo

    2017-04-05

    Genes responsible for reduced pigmentation phenotypes in rodents are associated with human developmental defects, such as Waardenburg syndrome, where patients display congenital deafness along with various abnormalities mostly related to neural crest development deficiency. In this study, we identified a spontaneous mutant mouse line Rwa, which displays variable white spots on mouse bellies and white digits and tail, on a C57BL/6N genetic background. Curly tail and spina bifida were also observed, although at a lower penetrance. These phenotypes were dominantly inherited by offspring. We searched for the genetic mechanism of the observed phenotypes. We harnessed a rapid mouse gene mapping system newly developed in our laboratories to identify a responsible gene. We detected a region within chromosome 1 as a probable locus for the causal mutation. Dense mapping using interval markers narrowed the locus down to a 670-kbp region, containing four genes including Pax3, a gene known to be implicated in the types I and III Waardenburg syndrome. Extensive mutation screening of Pax3 detected an 841-bp deletion, spanning the promoter region and intron 1 of the gene. The defective allele of Pax3, named Pax3 Rwa , lacked the first coding exon and co-segregated perfectly with the phenotypes, confirming its causal nature. The genetic background of Rwa mice is almost identical to that of inbred C57BL/6N. These results highlight Pax3 Rwa mice as a beneficial tool for analyzing biological processes involving Pax3, in particular the development and migration of neural crest cells and melanocytes. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Altered Cortical Ensembles in Mouse Models of Schizophrenia.

    Science.gov (United States)

    Hamm, Jordan P; Peterka, Darcy S; Gogos, Joseph A; Yuste, Rafael

    2017-04-05

    In schizophrenia, brain-wide alterations have been identified at the molecular and cellular levels, yet how these phenomena affect cortical circuit activity remains unclear. We studied two mouse models of schizophrenia-relevant disease processes: chronic ketamine (KET) administration and Df(16)A +/- , modeling 22q11.2 microdeletions, a genetic variant highly penetrant for schizophrenia. Local field potential recordings in visual cortex confirmed gamma-band abnormalities similar to patient studies. Two-photon calcium imaging of local cortical populations revealed in both models a deficit in the reliability of neuronal coactivity patterns (ensembles), which was not a simple consequence of altered single-neuron activity. This effect was present in ongoing and sensory-evoked activity and was not replicated by acute ketamine administration or pharmacogenetic parvalbumin-interneuron suppression. These results are consistent with the hypothesis that schizophrenia is an "attractor" disease and demonstrate that degraded neuronal ensembles are a common consequence of diverse genetic, cellular, and synaptic alterations seen in chronic schizophrenia. Published by Elsevier Inc.

  3. Zmpste24-/- mouse model for senescent wound healing research.

    Science.gov (United States)

    Butala, Parag; Szpalski, Caroline; Soares, Marc; Davidson, Edward H; Knobel, Denis; Warren, Stephen M

    2012-12-01

    The graying of our population has motivated the authors to better understand age-related impairments in wound healing. To increase research throughput, the authors hypothesized that the Hutchinson-Gilford progeria syndrome Zmpste24-deficient (Zmpste24(-/-)) mouse could serve as a model of senescent wound healing. Using a stented excisional wound closure model, the authors tested this hypothesis on 8-week-old male Zmpste24(-/-) mice (n = 25) and age-matched male C57BL/6J wild-type mice (n = 25). Wounds were measured photogrammetrically and harvested for immunohistochemistry, enzyme-linked immunosorbent assay, and quantitative real-time polymerase chain reaction, and circulating vasculogenic progenitor cells were measured by flow cytometry. Zmpste24(-/-) mice had a significant delay in wound closure compared with wild-type mice during the proliferative/vasculogenic phase. Zmpste24(-/-) wounds had decreased proliferation, increased 8-hydroxy-2'-deoxyguanosine levels, increased proapoptotic signaling (i.e., p53, PUMA, BAX), decreased antiapoptotic signaling (i.e., Bcl-2), and increased DNA fragmentation. These changes correlated with decreased local vasculogenic growth factor expression, decreased mobilization of bone marrow-derived vasculogenic progenitor cells, and decreased new blood vessel formation. Age-related impairments in wound closure are multifactorial. The authors' data suggest that the Hutchinson-Gilford progeria syndrome Zmpste24(-/-) progeroid syndrome shares mechanistic overlap with normal aging and therefore might provide a uniquely informative model with which to study age-associated impairments in wound closure.

  4. Genome-Wide Expression Profiling of Five Mouse Models Identifies Similarities and Differences with Human Psoriasis

    Science.gov (United States)

    Swindell, William R.; Johnston, Andrew; Carbajal, Steve; Han, Gangwen; Wohn, Christian; Lu, Jun; Xing, Xianying; Nair, Rajan P.; Voorhees, John J.; Elder, James T.; Wang, Xiao-Jing; Sano, Shigetoshi; Prens, Errol P.; DiGiovanni, John; Pittelkow, Mark R.; Ward, Nicole L.; Gudjonsson, Johann E.

    2011-01-01

    Development of a suitable mouse model would facilitate the investigation of pathomechanisms underlying human psoriasis and would also assist in development of therapeutic treatments. However, while many psoriasis mouse models have been proposed, no single model recapitulates all features of the human disease, and standardized validation criteria for psoriasis mouse models have not been widely applied. In this study, whole-genome transcriptional profiling is used to compare gene expression patterns manifested by human psoriatic skin lesions with those that occur in five psoriasis mouse models (K5-Tie2, imiquimod, K14-AREG, K5-Stat3C and K5-TGFbeta1). While the cutaneous gene expression profiles associated with each mouse phenotype exhibited statistically significant similarity to the expression profile of psoriasis in humans, each model displayed distinctive sets of similarities and differences in comparison to human psoriasis. For all five models, correspondence to the human disease was strong with respect to genes involved in epidermal development and keratinization. Immune and inflammation-associated gene expression, in contrast, was more variable between models as compared to the human disease. These findings support the value of all five models as research tools, each with identifiable areas of convergence to and divergence from the human disease. Additionally, the approach used in this paper provides an objective and quantitative method for evaluation of proposed mouse models of psoriasis, which can be strategically applied in future studies to score strengths of mouse phenotypes relative to specific aspects of human psoriasis. PMID:21483750

  5. The mouse gut microbiome revisited: From complex diversity to model ecosystems.

    Science.gov (United States)

    Clavel, Thomas; Lagkouvardos, Ilias; Blaut, Michael; Stecher, Bärbel

    2016-08-01

    Laboratory mice are the most commonly used animal model in translational medical research. In recent years, the impact of the gut microbiota (i.e. communities of microorganisms in the intestine) on host physiology and the onset of diseases, including metabolic and neuronal disorders, cancers, gastrointestinal infections and chronic inflammation, became a focal point of interest. There is abundant evidence that mouse phenotypes in disease models vary greatly between animal facilities or commercial providers, and that this variation is associated with differences in the microbiota. Hence, there is a clear discrepancy between the widespread use of mouse models in research and the patchwork knowledge on the mouse gut microbiome. In the present manuscript, we summarize data pertaining to the diversity and functions of the mouse gut microbiota, review existing work on gnotobiotic mouse models, and discuss challenges and opportunities for current and future research in the field. Copyright © 2016 Elsevier GmbH. All rights reserved.

  6. Using the mouse to model human disease: increasing validity and reproducibility

    Directory of Open Access Journals (Sweden)

    Monica J. Justice

    2016-02-01

    Full Text Available Experiments that use the mouse as a model for disease have recently come under scrutiny because of the repeated failure of data, particularly derived from preclinical studies, to be replicated or translated to humans. The usefulness of mouse models has been questioned because of irreproducibility and poor recapitulation of human conditions. Newer studies, however, point to bias in reporting results and improper data analysis as key factors that limit reproducibility and validity of preclinical mouse research. Inaccurate and incomplete descriptions of experimental conditions also contribute. Here, we provide guidance on best practice in mouse experimentation, focusing on appropriate selection and validation of the model, sources of variation and their influence on phenotypic outcomes, minimum requirements for control sets, and the importance of rigorous statistics. Our goal is to raise the standards in mouse disease modeling to enhance reproducibility, reliability and clinical translation of findings.

  7. Potential of maize single-cross hybrids for extraction of inbred lines using the mean components and mixed models with microsatellite marker information.

    Science.gov (United States)

    Balestre, M; Von Pinho, R G; Souza, J C; Machado, J C

    2008-10-21

    The present study examined the importance of mean (m+a' and d) components in the performance of single-cross hybrids for the formation of new populations and determined the contribution of the mixed model (best linear unbiased predictor of random effects, BLUP) method associated with molecular markers for the choice of crosses to obtain interpopulation hybrids. Ten single-cross commercial hybrids of different companies were used for this purpose, producing all possible double-cross hybrids through a complete diallel. The hybrids were evaluated in 15 locations in the agricultural year 2005/2006, using randomized complete block design with three repetitions. In three of these locations, estimates of m+a' and d were obtained. DNA was extracted from the single-cross hybrids and 20 SSR primers were used, nine of which were linked to QTL for yield. There was no correlation between m+a' of the single-cross hybrids with general combining ability (r = -0.15) inferring that populations with lines with high means do not always produce good hybrids. Also, it was observed that the correlation between the genetic distances with specific combining ability varied from 0.31 to 0.80 in the inter-group hybrids, while in the intra-group hybrids these estimates were low and non-significant. The heritability value obtained by BLUP was high and greater than that obtained by ordinary least squares (h(2) = 0.95 and 0.86), confirming the greater selection accuracy by the BLUP method. There were no differences between the accuracy values obtained with microsatellite information and without this information, inferring that there was no advantage of progenitor information on balanced data. It can be concluded that the estimate m+a' should not be used as a deciding parameter about the potential for extracting lines from a given population. The heritability and accuracy values obtained by BLUP allow the inference that it is possible to predict success in the choice of progenitors to obtain

  8. Deficient Sleep in Mouse Models of Fragile X Syndrome

    Directory of Open Access Journals (Sweden)

    R. Michelle Saré

    2017-09-01

    Full Text Available In patients with fragile X syndrome (FXS, sleep problems are commonly observed but are not well characterized. In animal models of FXS (dfmr1 and Fmr1 knockout (KO/Fxr2 heterozygote circadian rhythmicity is affected, but sleep per se has not been examined. We used a home-cage monitoring system to assess total sleep time in both light and dark phases in Fmr1 KO mice at different developmental stages. Fmr1 KOs at P21 do not differ from controls, but genotype × phase interactions in both adult (P70 and P180 groups are statistically significant indicating that sleep in Fmr1 KOs is reduced selectively in the light phase compared to controls. Our results show the emergence of abnormal sleep in Fmr1 KOs during the later stages of brain maturation. Treatment of adult Fmr1 KO mice with a GABAB agonist, R-baclofen, did not restore sleep duration in the light phase. In adult (P70 Fmr1 KO/Fxr2 heterozygote animals, total sleep time was further reduced, once again in the light phase. Our data highlight the importance of the fragile X genes (Fmr1 and Fxr2 in sleep physiology and confirm the utility of these mouse models in enhancing our understanding of sleep disorders in FXS.

  9. High-fat diet exacerbates cognitive rigidity and social deficiency in the BTBR mouse model of autism.

    Science.gov (United States)

    Zilkha, N; Kuperman, Y; Kimchi, T

    2017-03-14

    The global increase in rates of obesity has been accompanied by a similar surge in the number of autism diagnoses. Accumulating epidemiological evidence suggest a possible link between overweight and the risk for autism spectrum disorders (ASD), as well as autism severity. In laboratory animals, several studies have shown a connection between various environmental factors, including diet-induced obesity, and the development of autism-related behaviors. However, the effect of high-fat or imbalanced diet on a pre-existing autism-like phenotype is unclear. In this study, we employed the BTBR inbred mouse strain, a well-established mouse model for autism, to assess the impact of inadequate fattening nutrition on the autism-related behavioral phenotype. Male mice were fed by high-fat diet (HFD) or control balanced diet (control) from weaning onward, and tested in a series of behavioral assays as adults. In addition, we measured the hypothalamic expression levels of several genes involved in oxytocin and dopamine signaling, in search of a possible neurobiological underlying mechanism. As an internal control, we also employed similar metabolic and behavioral measures on neurotypical C57 mice. Compared to control-fed mice, BTBR mice fed by HFD showed marked aggravation in autism-related behaviors, manifested in increased cognitive rigidity and diminished preference for social novelty. Moreover, the total autism composite (severity) score was higher in the HFD group, and positively correlated with higher body weight. Finally, we revealed negative correlations associating dopamine signaling factors in the hypothalamus, to autism-related severity and body weight. In contrast, we found no significant effects of HFD on autism-related behaviors of C57 mice, though the metabolic effects of the diet were similar for both strains. Our results indicate a direct causative link between diet-induced obesity and worsening of a pre-existing autism-related behavior and emphasize the need

  10. The APO(*)E3-Leiden mouse as an animal model for basal laminar deposit

    NARCIS (Netherlands)

    Kliffen, M.; Lutgens, E.; Daemen, M. J.; de Muinck, E. D.; Mooy, C. M.; de Jong, P. T.

    2000-01-01

    To investigate the APO(*)E3-Leiden mouse as an animal model for age related maculopathy (ARM) related extracellular deposits. Eyes were obtained from APO(*)E3-Leiden transgenic mice on a high fat/cholesterol (HFC) diet (n=12) or on a normal mouse chow (n=6), for 9 months. As controls, eyes were

  11. The APO(*)E3-Leiden mouse as an animal model for basal laminar deposit

    NARCIS (Netherlands)

    M. Kliffen (Mike); E. Lutgens; M.J. Daemen (Mat); E.D. de Muinck; C.M. Mooy (Cornelia); P.T.V.M. de Jong (Paulus)

    2000-01-01

    textabstractAIM: To investigate the APO(*)E3-Leiden mouse as an animal model for age related maculopathy (ARM) related extracellular deposits. METHODS: Eyes were obtained from APO(*)E3-Leiden transgenic mice on a high fat/cholesterol (HFC) diet (n=12) or on a normal mouse chow

  12. Identification of five novel modifier loci of ApcMin harbored in the BXH14 recombinant inbred strain

    Science.gov (United States)

    Siracusa, Linda D.

    2012-01-01

    Every year thousands of people in the USA are diagnosed with small intestine and colorectal cancers (CRC). Although environmental factors affect disease etiology, uncovering underlying genetic factors is imperative for risk assessment and developing preventative therapies. Familial adenomatous polyposis is a heritable genetic disorder in which individuals carry germ-line mutations in the adenomatous polyposis coli (APC) gene that predisposes them to CRC. The Apc Min mouse model carries a point mutation in the Apc gene and develops polyps along the intestinal tract. Inbred strain background influences polyp phenotypes in Apc Min mice. Several Modifier of Min (Mom) loci that alter tumor phenotypes associated with the Apc Min mutation have been identified to date. We screened BXH recombinant inbred (RI) strains by crossing BXH RI females with C57BL/6J (B6) Apc Min males and quantitating tumor phenotypes in backcross progeny. We found that the BXH14 RI strain harbors five modifier loci that decrease polyp multiplicity. Furthermore, we show that resistance is determined by varying combinations of these modifier loci. Gene interaction network analysis shows that there are multiple networks with proven gene–gene interactions, which contain genes from all five modifier loci. We discuss the implications of this result for studies that define susceptibility loci, namely that multiple networks may be acting concurrently to alter tumor phenotypes. Thus, the significance of this work resides not only with the modifier loci we identified but also with the combinations of loci needed to get maximal protection against polyposis and the impact of this finding on human disease studies. Abbreviations:APCadenomatous polyposis coliGWASgenome-wide association studiesQTLquantitative trait lociSNPsingle-nucleotide polymorphism. PMID:22637734

  13. Identification of five novel modifier loci of Apc(Min) harbored in the BXH14 recombinant inbred strain.

    Science.gov (United States)

    Nnadi, Stephanie C; Watson, Rayneisha; Innocent, Julie; Gonye, Gregory E; Buchberg, Arthur M; Siracusa, Linda D

    2012-08-01

    Every year thousands of people in the USA are diagnosed with small intestine and colorectal cancers (CRC). Although environmental factors affect disease etiology, uncovering underlying genetic factors is imperative for risk assessment and developing preventative therapies. Familial adenomatous polyposis is a heritable genetic disorder in which individuals carry germ-line mutations in the adenomatous polyposis coli (APC) gene that predisposes them to CRC. The Apc ( Min ) mouse model carries a point mutation in the Apc gene and develops polyps along the intestinal tract. Inbred strain background influences polyp phenotypes in Apc ( Min ) mice. Several Modifier of Min (Mom) loci that alter tumor phenotypes associated with the Apc ( Min ) mutation have been identified to date. We screened BXH recombinant inbred (RI) strains by crossing BXH RI females with C57BL/6J (B6) Apc ( Min ) males and quantitating tumor phenotypes in backcross progeny. We found that the BXH14 RI strain harbors five modifier loci that decrease polyp multiplicity. Furthermore, we show that resistance is determined by varying combinations of these modifier loci. Gene interaction network analysis shows that there are multiple networks with proven gene-gene interactions, which contain genes from all five modifier loci. We discuss the implications of this result for studies that define susceptibility loci, namely that multiple networks may be acting concurrently to alter tumor phenotypes. Thus, the significance of this work resides not only with the modifier loci we identified but also with the combinations of loci needed to get maximal protection against polyposis and the impact of this finding on human disease studies.

  14. DFT study on the mechanism of InBr3-catalyzed [2+2] cycloaddition ...

    Indian Academy of Sciences (India)

    chemsci

    Abstract. Density functional theory calculations at the M06-2X level were done to study the reaction mech- anism and regioselectivity for the [2+2] cycloaddition of allyltrimethylsilane with alkynones using InBr3 as the catalyst. The solvent effect was described by the single-point calculations with SMD model in 1,2-.

  15. The mouse resources at the RIKEN BioResource center.

    Science.gov (United States)

    Yoshiki, Atsushi; Ike, Fumio; Mekada, Kazuyuki; Kitaura, Yasuyuki; Nakata, Hatsumi; Hiraiwa, Noriko; Mochida, Keiji; Ijuin, Maiko; Kadota, Masayo; Murakami, Ayumi; Ogura, Atsuo; Abe, Kuniya; Moriwaki, Kazuo; Obata, Yuichi

    2009-04-01

    Mice are one of the most important model organisms for studying biological phenomena and diseases processes in life sciences. The biomedical research community has succeeded in launching large scale strategic knockout mouse projects around the world. RIKEN BRC, a comprehensive government funded biological resource center was established in 2001. RIKEN BRC has been acting as the core facility for the mouse resources of the National BioResource Project (NBRP) of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan since 2002. RIKEN BRC is a founding member of the Federation of International Mouse Resources (FIMRe) together with the Jackson Laboratory, the European Mouse Mutant Archive, and other centers, and has participated in the International Mouse Strain Resource (IMSR) to distribute mouse strains worldwide. With the support of the scientific community, RIKEN BRC has collected over 3,800 strains including inbred, transgenic, knockout, wild-derived, and ENU-induced mutant strains. Excellent mouse models for human diseases and gene functions from academic organizations and private companies are distributed through RIKEN BRC. To meet research and social needs, our mice will be rederived to a specific pathogen-free state, strictly monitored for their health, and accurately tested for their genetic modifications and backgrounds. Users can easily access our mouse resources through the internet and obtain the mouse strains for a minimal fee. Cryopreservation of embryos and sperm is used for efficient preservation of the increasing number of mouse resources. RIKEN BRC collaborates with FIMRe members to support Japanese scientists in the use of valuable mouse resources from around the world.

  16. A Reliable Mouse Model of Hind limb Gangrene.

    Science.gov (United States)

    Parikh, Punam P; Castilla, Diego; Lassance-Soares, Roberta M; Shao, Hongwei; Regueiro, Manuela; Li, Yan; Vazquez-Padron, Roberto; Webster, Keith A; Liu, Zhao-Jun; Velazquez, Omaida C

    2018-04-01

    Lack of a reliable hind limb gangrene animal model limits preclinical studies of gangrene, a severe form of critical limb ischemia. We develop a novel mouse hind limb gangrene model to facilitate translational studies. BALB/c, FVB, and C57BL/6 mice underwent femoral artery ligation (FAL) with or without administration of N G -nitro-L-arginine methyl ester (L-NAME), an endothelial nitric oxide synthase inhibitor. Gangrene was assessed using standardized ischemia scores ranging from 0 (no gangrene) to 12 (forefoot gangrene). Laser Doppler imaging (LDI) and DiI perfusion quantified hind limb reperfusion postoperatively. BALB/c develops gangrene with FAL-only (n = 11/11, 100% gangrene incidence), showing mean limb ischemia score of 12 on postoperative days (PODs) 7 and 14 with LDI ranging from 0.08 to 0.12 on respective PODs. Most FVB did not develop gangrene with FAL-only (n = 3/9, 33% gangrene incidence) but with FAL and L-NAME (n = 9/9, 100% gangrene incidence). Mean limb ischemia scores for FVB undergoing FAL with L-NAME were significantly higher than for FVB receiving FAL-only. LDI score and capillary density by POD 28 were significantly lower in FVB undergoing FAL with L-NAME. C57BL/6 did not develop gangrene with FAL-only or FAL and L-NAME. Reproducible murine gangrene models may elucidate molecular mechanisms for gangrene development, facilitating therapeutic intervention. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Mouse Models of Type 2 Diabetes Mellitus in Drug Discovery.

    Science.gov (United States)

    Baribault, Helene

    2016-01-01

    Type 2 diabetes is a fast-growing epidemic in industrialized countries, associated with obesity, lack of physical exercise, aging, family history, and ethnic background. Diagnostic criteria are elevated fasting or postprandial blood glucose levels, a consequence of insulin resistance. Early intervention can help patients to revert the progression of the disease together with lifestyle changes or monotherapy. Systemic glucose toxicity can have devastating effects leading to pancreatic beta cell failure, blindness, nephropathy, and neuropathy, progressing to limb ulceration or even amputation. Existing treatments have numerous side effects and demonstrate variability in individual patient responsiveness. However, several emerging areas of discovery research are showing promises with the development of novel classes of antidiabetic drugs.The mouse has proven to be a reliable model for discovering and validating new treatments for type 2 diabetes mellitus. We review here commonly used methods to measure endpoints relevant to glucose metabolism which show good translatability to the diagnostic of type 2 diabetes in humans: baseline fasting glucose and insulin, glucose tolerance test, insulin sensitivity index, and body type composition. Improvements on these clinical values are essential for the progression of a novel potential therapeutic molecule through a preclinical and clinical pipeline.

  18. RANKL, osteopontin, and osteoclast homeostasis in a hyperocclusion mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Cameron G.; Ito, Yoshihiro; Dangaria, Smit; Luan, Xianghong; Diekwisch, Thomas G.H. (UIC)

    2009-10-21

    The biological mechanisms that maintain the position of teeth in their sockets establish a dynamic equilibrium between bone resorption and apposition. In order to reveal some of the dynamics involved in the tissue responses towards occlusal forces on periodontal ligament (PDL) and alveolar bone homeostasis, we developed the first mouse model of hyperocclusion. Swiss-Webster mice were kept in hyperocclusion for 0, 3, 6, and 9 d. Morphological and histological changes in the periodontium were assessed using micro-computed tomography (micro-CT) and ground sections with fluorescent detection of vital dye labels. Sections were stained for tartrate-resistant acid phosphatase, and the expression of receptor activator of nuclear factor-{kappa}B ligand (RANKL) and osteopontin (OPN) was analyzed by immunohistochemistry and real-time polymerase chain reaction (PCR). Traumatic occlusion resulted in enamel surface abrasion, inhibition of alveolar bone apposition, significant formation of osteoclasts at 3, 6 and 9 d, and upregulation of OPN and RANKL. Data from this study suggest that both OPN and RANKL contribute to the stimulation of bone resorption in the hyperocclusive state. In addition, we propose that the inhibition of alveolar bone apposition by occlusal forces is an important mechanism for the control of occlusal height that might work in synergy with RANKL-induced bone resorption to maintain normal occlusion.

  19. Increased opioid dependence in a mouse model of panic disorder

    Directory of Open Access Journals (Sweden)

    Xavier Gallego

    2010-02-01

    Full Text Available Panic disorder is a highly prevalent neuropsychiatric disorder that shows co-occurrence with substance abuse. Here, we demonstrate that TrkC, the high affinity receptor for neurotrophin-3, is a key molecule involved in panic disorder and opiate dependence, using a transgenic mouse model (TgNTRK3. Constitutive TrkC overexpression in TgNTRK3 mice dramatically alters spontaneous firing rates of locus coeruleus neurons and the response of the noradrenergic system to chronic opiate exposure, possibly related to the altered regulation of neurotrophic peptides observed. Notably, TgNTRK3 locus coeruleus neurons showed an increased firing rate in saline-treated conditions and profound abnormalities in their response to met5-enkephalin. Behaviorally, chronic morphine administration induced a significantly increased withdrawal syndrome in TgNTRK3 mice. In conclusion, we show here that the NT-3/TrkC system is an important regulator of neuronal firing in locus coeruleus and could contribute to the adaptations of the noradrenergic system in response to chronic opiate exposure. Moreover, our results indicate that TrkC is involved in the molecular and cellular changes in noradrenergic neurons underlying both panic attacks and opiate dependence and support a functional endogenous opioid deficit in panic disorder patients.

  20. Methylome repatterning in a mouse model of Maternal PKU Syndrome.

    Science.gov (United States)

    Dobrowolski, S F; Lyons-Weiler, J; Biery, A; Spridik, K; Vockley, G; Kranik, E; Skvorak, K; Sultana, T

    2014-11-01

    Maternal PKU Syndrome (MPKU) is an embryopathy resulting from in utero phenylalanine (PHE) toxicity secondary to maternal phenylalanine hydroxylase deficient phenylketonuria (PKU). Clinical phenotypes in MPKU include mental retardation, microcephaly, in utero growth restriction, and congenital heart defects. Numerous in utero toxic exposures alter DNA methylation in the fetus. The PAH(enu2) mouse is a model of classical PKU while offspring born of hyperphenylalaninemic dams model MPKU. We investigated offspring of PAH(enu2) dams to determine if altered patterns of DNA methylation occurred in response to in utero PHE exposure. As neurologic deficit is the most prominent MPKU phenotype, methylome patterns were assessed in brain tissue using methylated DNA immunoprecipitation and paired-end sequencing. Brain tissues were assessed in E18.5-19 fetuses of PHE unrestricted PAH(enu2) dams, PHE restricted PAH(enu2) dams, and heterozygous(wt/enu2) control dams. Extensive methylome repatterning was observed in offspring of hyperphenylalaninemic dams while the offspring of PHE restricted dams displayed attenuated methylome repatterning. Methylation within coding regions was dominated by noncoding RNA genes. Differential methylation of promoters targeted protein coding genes. To assess the impact of methylome repatterning on gene expression, brain tissue in experimental and control animals were queried with microarrays assessing expression of microRNAs and protein coding genes. Altered expression of methylome-modified microRNAs and protein coding genes was extensive in offspring of hyperphenylalaninemic dams while minimal changes were observed in offspring of PHE restricted dams. Several genes displaying significantly reduced expression have roles in neurological function or genetic disease with neurological phenotypes. These data indicate in utero PHE toxicity alters DNA methylation in the brain which has downstream impact upon gene expression. Altered gene expression may

  1. A gastrointestinal rotavirus infection mouse model for immune modulation studies

    Directory of Open Access Journals (Sweden)

    van Amerongen Geert

    2011-03-01

    Full Text Available Abstract Background Rotaviruses are the single most important cause of severe diarrhea in young children worldwide. The current study was conducted to assess whether colostrum containing rotavirus-specific antibodies (Gastrogard-R® could protect against rotavirus infection. In addition, this illness model was used to study modulatory effects of intervention on several immune parameters after re-infection. Methods BALB/c mice were treated by gavage once daily with Gastrogard-R® from the age of 4 to 10 days, and were inoculated with rhesus rotavirus (RRV at 7 days of age. A secondary inoculation with epizootic-diarrhea infant-mouse (EDIM virus was administered at 17 days of age. Disease symptoms were scored daily and viral shedding was measured in fecal samples during the post-inoculation periods. Rotavirus-specific IgM, IgG and IgG subclasses in serum, T cell proliferation and rotavirus-specific delayed-type hypersensitivity (DTH responses were also measured. Results Primary inoculation with RRV induced a mild but consistent level of diarrhea during 3-4 days post-inoculation. All mice receiving Gastrogard-R® were 100% protected against rotavirus-induced diarrhea. Mice receiving both RRV and EDIM inoculation had a lower faecal-viral load following EDIM inoculation then mice receiving EDIM alone or Gastrogard-R®. Mice receiving Gastrogard-R® however displayed an enhanced rotavirus-specific T-cell proliferation whereas rotavirus-specific antibody subtypes were not affected. Conclusions Preventing RRV-induced diarrhea by Gastrogard-R® early in life showed a diminished protection against EDIM re-infection, but a rotavirus-specific immune response was developed including both B cell and T cell responses. In general, this intervention model can be used for studying clinical symptoms as well as the immune responses required for protection against viral re-infection.

  2. Human Adrenal Androgens: Regulation of Biosynthesis and Role in Estrogen-Responsive Breast Cancer in a Mouse Model

    National Research Council Canada - National Science Library

    Hornsby, Peter

    1997-01-01

    .... An androgen-dependent human breast cancer model was established in the scid mouse. To provide zona reticularis function, essential for adrenal androgen biosynthesis, in human adrenal organoids in the mouse, two approaches are being taken...

  3. (Gossypium hirsutum L. race latifolium H.) cultivars and inbred lines ...

    African Journals Online (AJOL)

    Jane

    2010-12-13

    Dec 13, 2010 ... (L) Inbred line. Numbers from 10 to 21 refer to the four cultivars and eight inbred lines from US introduced in Mozambique in 2006. Table 2. Decamer arbritary primers used for DNA amplification. Primer. Nucleotide sequence (5' – 3'). Primer. Nucleotide sequence (5' – 3'). OPA-11. CAA TCG CCG T. OPF-16.

  4. Inhibition of Dermatophilus congolensis infection in a mouse model by antibiotic-producing staphylococci.

    OpenAIRE

    Noble, W. C.; Lloyd, D. H.; Appiah, S. N.

    1980-01-01

    In an acute model of skin infection with Dermatophilus congolensis in the mouse, lesions can be prevented by simultaneous application of staphylococci which produce antibiotics; non-producer staphylococci fail to inhibit lesion formation.

  5. Inhibition of Dermatophilus congolensis infection in a mouse model by antibiotic-producing staphylococci.

    Science.gov (United States)

    Noble, W C; Lloyd, D H; Appiah, S N

    1980-12-01

    In an acute model of skin infection with Dermatophilus congolensis in the mouse, lesions can be prevented by simultaneous application of staphylococci which produce antibiotics; non-producer staphylococci fail to inhibit lesion formation.

  6. Mouse Model of Human Breast Cancer Initiated by a Fusion Oncogene

    National Research Council Canada - National Science Library

    Orkin, Stuart H

    2006-01-01

    In this study, we generated a novel mouse model of human breast cancer based on a recurrent chromosomal translocation that produces the TEL-NTRK3 fusion oncogene, as the initiating mutation in human...

  7. Bioenergetic Defects and Oxidative Damage in Transgenic Mouse Models of Neurodegenerative Disorders

    National Research Council Canada - National Science Library

    Brown, Susan

    1999-01-01

    ... (HE) and familial amyotrophic lateral sclerosis (FALS), using transgenic mouse models. Studies in this first year employed C-14-2-deoxyglucose in vivo autoradiography and spectrophotometric metabolic enzyme assays...

  8. Rifalazil and derivative compounds show potent efficacy in a mouse model of H. pylori colonization.

    Science.gov (United States)

    Rothstein, David M; Mullin, Steve; Sirokman, Klari; Söndergaard, Karen L; Johnson, Starrla; Gwathmey, Judith K; van Duzer, John; Murphy, Christopher K

    2008-08-01

    The rifamycin rifalazil (RFZ), and derivatives (NCEs) were efficacious in a mouse model of Helicobacter pylori colonization. Select NCEs were more active in vitro and showed greater efficacy than RFZ. A systemic component contributes to efficacy.

  9. Mouse models of altered gonadotrophin action: insight into male reproductive disorders.

    Science.gov (United States)

    Jonas, Kim C; Oduwole, Olayiwola O; Peltoketo, Hellevi; Rulli, Susana B; Huhtaniemi, Ilpo T

    2014-10-01

    The advent of technologies to genetically manipulate the mouse genome has revolutionised research approaches, providing a unique platform to study the causality of reproductive disorders in vivo. With the relative ease of generating genetically modified (GM) mouse models, the last two decades have yielded multiple loss-of-function and gain-of-function mutation mouse models to explore the role of gonadotrophins and their receptors in reproductive pathologies. This work has provided key insights into the molecular mechanisms underlying reproductive disorders with altered gonadotrophin action, revealing the fundamental roles of these pituitary hormones and their receptors in the hypothalamic-pituitary-gonadal axis. This review will describe GM mouse models of gonadotrophins and their receptors with enhanced or diminished actions, specifically focusing on the male. We will discuss the mechanistic insights gained from these models into male reproductive disorders, and the relationship and understanding provided into male human reproductive disorders originating from altered gonadotrophin action. © 2014 Society for Reproduction and Fertility.

  10. Automatic Assessment of Craniofacial Growth in a Mouse Model of Crouzon Syndrome

    DEFF Research Database (Denmark)

    Thorup, Signe Strann; Larsen, Rasmus; Darvann, Tron Andre

    2009-01-01

    BACKGROUND & PURPOSE: Crouzon syndrome is characterized by growth disturbances caused by premature craniosynostosis. A mouse model with mutation Fgfr2C342Y, equivalent to the most common Crouzon syndrome mutation (henceforth called the Crouzon mouse model), has a phenotype showing many parallels...... to the human counterpart. Quantifying growth in the Crouzon mouse model could test hypotheses of the relationship between craniosynostosis and dysmorphology, leading to better understanding of the causes of Crouzon syndrome as well as providing knowledge relevant for surgery planning. METHODS: Automatic non......-rigid volumetric image registration was applied to micro-CT scans of ten 4-week and twenty 6-week euthanized mice for growth modeling. Each age group consisted of 50% normal and 50% Crouzon mice. Four 3D mean shapes, one for each mouse-type and age group were created. Extracting a dense field of growth vectors...

  11. Metabolic phenotype in the mouse model of osteogenesis imperfecta.

    Science.gov (United States)

    Boraschi-Diaz, Iris; Tauer, Josephine T; El-Rifai, Omar; Guillemette, Delphine; Lefebvre, Geneviève; Rauch, Frank; Ferron, Mathieu; Komarova, Svetlana V

    2017-09-01

    Osteogenesis imperfecta (OI) is the most common heritable bone fragility disorder, usually caused by dominant mutations in genes coding for collagen type I alpha chains, COL1A1 or COL1A2 Osteocalcin (OCN) is now recognized as a bone-derived regulator of insulin secretion and sensitivity and glucose homeostasis. Since OI is associated with increased rates of bone formation and resorption, we hypothesized that the levels of undercarboxylated OCN are increased in OI. The objective of this study was to determine changes in OCN and to elucidate the metabolic phenotype in the Col1a1 Jrt/+ mouse, a model of dominant OI caused by a Col1a1 mutation. Circulating levels of undercarboxylated OCN were higher in 4-week-old OI mice and normal by 8 weeks of age. Young OI animals exhibited a sex-dependent metabolic phenotype, including increased insulin levels in males, improved glucose tolerance in females, lower levels of random glucose and low adiposity in both sexes. The rates of O 2 consumption and CO 2 production, as well as energy expenditure assessed using indirect calorimetry were significantly increased in OI animals of both sexes, whereas respiratory exchange ratio was significantly higher in OI males only. Although OI mice have significant physical impairment that may contribute to metabolic differences, we specifically accounted for movement and compared OI and WT animals during the periods of similar activity levels. Taken together, our data strongly suggest that OI animals have alterations in whole body energy metabolism that are consistent with the action of undercarboxylated osteocalcin. © 2017 Society for Endocrinology.

  12. A novel transgenic mouse model of lysosomal storage disorder.

    Science.gov (United States)

    Ortiz-Miranda, Sonia; Ji, Rui; Jurczyk, Agata; Aryee, Ken-Edwin; Mo, Shunyan; Fletcher, Terry; Shaffer, Scott A; Greiner, Dale L; Bortell, Rita; Gregg, Ronald G; Cheng, Alan; Hennings, Leah J; Rittenhouse, Ann R

    2016-11-01

    Knockout technology has proven useful for delineating functional roles of specific genes. Here we describe and provide an explanation for striking pathology that occurs in a subset of genetically engineered mice expressing a rat Ca V β2a transgene under control of the cardiac α-myosin heavy chain promoter. Lesions were limited to mice homozygous for transgene and independent of native Cacnb2 genomic copy number. Gross findings included an atrophied pancreas; decreased adipose tissue; thickened, orange intestines; and enlarged liver, spleen, and abdominal lymph nodes. Immune cell infiltration and cell engulfment by macrophages were associated with loss of pancreatic acinar cells. Foamy macrophages diffusely infiltrated the small intestine's lamina propria, while similar macrophage aggregates packed liver and splenic red pulp sinusoids. Periodic acid-Schiff-positive, diastase-resistant, iron-negative, Oil Red O-positive, and autofluorescent cytoplasm was indicative of a lipid storage disorder. Electron microscopic analysis revealed liver sinusoids distended by clusters of macrophages containing intracellular myelin "swirls" and hepatocytes with enlarged lysosomes. Additionally, build up of cholesterol, cholesterol esters, and triglycerides, along with changes in liver metabolic enzyme levels, were consistent with a lipid processing defect. Because of this complex pathology, we examined the transgene insertion site. Multiple transgene copies inserted into chromosome 19; at this same site, an approximate 180,000 base pair deletion occurred, ablating cholesterol 25-hydroxylase and partially deleting lysosomal acid lipase and CD95 Loss of gene function can account for the altered lipid processing, along with hypertrophy of the immune system, which define this phenotype, and serendipitously provides a novel mouse model of lysosomal storage disorder. Copyright © 2016 the American Physiological Society.

  13. Novel autoimmune response in a tauopathy mouse model

    Directory of Open Access Journals (Sweden)

    Carlos J Nogueras-Ortiz

    2014-01-01

    Full Text Available Molecular diagnostic tools with non-invasive properties that allow detection of pathological events in Alzheimer’s disease (AD and other neurodegenerative tauopathies are essential for the development of therapeutics. Several diagnostic strategies based on the identification of biomarkers have been proposed. However, its specificity among neurodegenerative disorders is disputable as the association with pathological events remains elusive. Recently, we showed that Amphiphysin-1 (AMPH1 protein’s abundance is reduced in the central nervous system (CNS of the tauopathy mouse model JNPL3 and AD brains. AMPH1 is a synaptic protein that plays an important role in clathrin-mediated endocytosis and associates with BIN1, one of the most important risk loci for AD. Also, it has been associated with a rare neurological disease known as Stiff-Person Syndrome (SPS. Auto-antibodies against AMPH1 are used as diagnostic biomarkers for a paraneoplastic variant of SPS. Therefore, we set up to evaluate the presence and abundance of auto-AMPH1 antibodies in tau-mediated neurodegeneration. Immunoblots and enzyme-linked immunosorbent assays (ELISA were conducted to detect the presence of auto-AMPH1 antibodies in sera from euthanized mice that developed neurodegeneration (JNPL3 and healthy control mice (NTg. Results showed increased levels of auto-AMPH1 antibodies in JNPL3 sera compared to NTg controls. The abundance of auto-AMPH1 antibodies correlated with motor impairment and AMPH1 protein level decrease in the CNS. The results suggest that auto-AMPH1 antibodies could serve as a biomarker for the progression of tau-mediated neurodegeneration in JNPL3 mice.

  14. Mouse model for acute Epstein-Barr virus infection.

    Science.gov (United States)

    Wirtz, Tristan; Weber, Timm; Kracker, Sven; Sommermann, Thomas; Rajewsky, Klaus; Yasuda, Tomoharu

    2016-11-29

    Epstein-Barr Virus (EBV) infects human B cells and drives them into continuous proliferation. Two key viral factors in this process are the latent membrane proteins LMP1 and LMP2A, which mimic constitutively activated CD40 receptor and B-cell receptor signaling, respectively. EBV-infected B cells elicit a powerful T-cell response that clears the infected B cells and leads to life-long immunity. Insufficient immune surveillance of EBV-infected B cells causes life-threatening lymphoproliferative disorders, including mostly germinal center (GC)-derived B-cell lymphomas. We have modeled acute EBV infection of naive and GC B cells in mice through timed expression of LMP1 and LMP2A. Although lethal when induced in all B cells, induction of LMP1 and LMP2A in just a small fraction of naive B cells initiated a phase of rapid B-cell expansion followed by a proliferative T-cell response, clearing the LMP-expressing B cells. Interfering with T-cell activity prevented clearance of LMP-expressing B cells. This was also true for perforin deficiency, which in the human causes a life-threatening EBV-related immunoproliferative syndrome. LMP expression in GC B cells impeded the GC reaction but, upon loss of T-cell surveillance, led to fatal B-cell expansion. Thus, timed expression of LMP1 together with LMP2A in subsets of mouse B cells allows one to study major clinically relevant features of human EBV infection in vivo, opening the way to new therapeutic approaches.

  15. Regulatory Forum commentary: alternative mouse models for future cancer risk assessment.

    Science.gov (United States)

    Morton, Daniel; Sistare, Frank D; Nambiar, Prashant R; Turner, Oliver C; Radi, Zaher; Bower, Nancy

    2014-07-01

    International regulatory and pharmaceutical industry scientists are discussing revision of the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) S1 guidance on rodent carcinogenicity assessment of small molecule pharmaceuticals. A weight-of-evidence approach is proposed to determine the need for rodent carcinogenicity studies. For compounds with high human cancer risk, the product may be labeled appropriately without conducting rodent carcinogenicity studies. For compounds with minimal cancer risk, only a 6-month transgenic mouse study (rasH2 mouse or p53+/- mouse) or a 2-year mouse study would be needed. If rodent carcinogenicity testing may add significant value to cancer risk assessment, a 2-year rat study and either a 6-month transgenic mouse or a 2-year mouse study is appropriate. In many cases, therefore, one rodent carcinogenicity study could be sufficient. The rasH2 model predicts neoplastic findings relevant to human cancer risk assessment as well as 2-year rodent models, produces fewer irrelevant neoplastic outcomes, and often will be preferable to a 2-year rodent study. Before revising ICH S1 guidance, a prospective evaluation will be conducted to test the proposed weight-of-evidence approach. This evaluation offers an opportunity for a secondary analysis comparing the value of alternative mouse models and 2-year rodent studies in the proposed ICH S1 weight-of-evidence approach for human cancer risk assessment. © 2014 by The Author(s).

  16. Analyses of tumor-suppressor genes in germline mouse models of cancer.

    Science.gov (United States)

    Wang, Jingqiang; Abate-Shen, Cory

    2014-08-01

    Tumor-suppressor genes are critical regulators of growth and functioning of cells, whose loss of function contributes to tumorigenesis. Accordingly, analyses of the consequences of their loss of function in genetically engineered mouse models have provided important insights into mechanisms of human cancer, as well as resources for preclinical analyses and biomarker discovery. Nowadays, most investigations of genetically engineered mouse models of tumor-suppressor function use conditional or inducible alleles, which enable analyses in specific cancer (tissue) types and overcome the consequences of embryonic lethality of germline loss of function of essential tumor-suppressor genes. However, historically, analyses of genetically engineered mouse models based on germline loss of function of tumor-suppressor genes were very important as these early studies established the principle that loss of function could be studied in mouse cancer models and also enabled analyses of these essential genes in an organismal context. Although the cancer phenotypes of these early germline models did not always recapitulate the expected phenotypes in human cancer, these models provided the essential foundation for the more sophisticated conditional and inducible models that are currently in use. Here, we describe these "first-generation" germline models of loss of function models, focusing on the important lessons learned from their analyses, which helped in the design and analyses of "next-generation" genetically engineered mouse models. © 2014 Cold Spring Harbor Laboratory Press.

  17. Cocaine locomotor activation, sensitization and place preference in six inbred strains of mice

    Directory of Open Access Journals (Sweden)

    Grabowski-Boase Laura

    2011-08-01

    Full Text Available Abstract Background The expanding set of genomics tools available for inbred mouse strains has renewed interest in phenotyping larger sets of strains. The present study aims to explore phenotypic variability among six commonly-used inbred mouse strains to both the rewarding and locomotor stimulating effects of cocaine in a place conditioning task, including several strains or substrains that have not yet been characterized for some or all of these behaviors. Methods C57BL/6J (B6, BALB/cJ (BALB, C3H/HeJ (C3H, DBA/2J (D2, FVB/NJ (FVB and 129S1/SvImJ (129 mice were tested for conditioned place preference to 20 mg/kg cocaine. Results Place preference was observed in most strains with the exception of D2 and 129. All strains showed a marked increase in locomotor activity in response to cocaine. In BALB mice, however, locomotor activation was context-dependent. Locomotor sensitization to repeated exposure to cocaine was most significant in 129 and D2 mice but was absent in FVB mice. Conclusions Genetic correlations suggest that no significant correlation between conditioned place preference, acute locomotor activation, and locomotor sensitization exists among these strains indicating that separate mechanisms underlie the psychomotor and rewarding effects of cocaine.

  18. Complementation contributes to transcriptome complexity in maize (Zea mays L.) hybrids relative to their inbred parents

    Science.gov (United States)

    Paschold, Anja; Jia, Yi; Marcon, Caroline; Lund, Steve; Larson, Nick B.; Yeh, Cheng-Ting; Ossowski, Stephan; Lanz, Christa; Nettleton, Dan; Schnable, Patrick S.; Hochholdinger, Frank

    2012-01-01

    Typically, F1-hybrids are more vigorous than their homozygous, genetically distinct parents, a phenomenon known as heterosis. In the present study, the transcriptomes of the reciprocal maize (Zea mays L.) hybrids B73×Mo17 and Mo17×B73 and their parental inbred lines B73 and Mo17 were surveyed in primary roots, early in the developmental manifestation of heterotic root traits. The application of statistical methods and a suitable experimental design established that 34,233 (i.e., 86%) of all high-confidence maize genes were expressed in at least one genotype. Nearly 70% of all expressed genes were differentially expressed between the two parents and 42%–55% of expressed genes were differentially expressed between one of the parents and one of the hybrids. In both hybrids, ∼10% of expressed genes exhibited nonadditive gene expression. Consistent with the dominance model (i.e., complementation) for heterosis, 1124 genes that were expressed in the hybrids were expressed in only one of the two parents. For 65 genes, it could be shown that this was a consequence of complementation of genomic presence/absence variation. For dozens of other genes, alleles from the inactive inbred were activated in the hybrid, presumably via interactions with regulatory factors from the active inbred. As a consequence of these types of complementation, both hybrids expressed more genes than did either parental inbred. Finally, in hybrids, ∼14% of expressed genes exhibited allele-specific expression (ASE) levels that differed significantly from the parental-inbred expression ratios, providing further evidence for interactions of regulatory factors from one parental genome with target genes from the other parental genome. PMID:23086286

  19. Biplot analysis of diallel crosses of NS maize inbred lines

    Directory of Open Access Journals (Sweden)

    Boćanski Jan

    2011-01-01

    Full Text Available Genetic markers, from morphological to molecular, in function with early Heterosis is a prerequisite for the successful commercial maize production. It does not appear in any cross of two inbred lines, and therefore, the determination of combining abilities of parental lines is essential. The most commonly used method for determining combining abilities is diallel analysis. Besides conventional methods for diallel analysis, a new biplot approach has been sugested. In this paper, we studied the combining ability for grain yield in a set of genotypes obtained by diallel crossing system of six inbred lines. Both, the Griffing’s conventional method and the biplot approach have been used for diallel analysis. Comparing the GCA values from biplot analysis and Griffing’s method, similar results can be observed, with the exception of NS L 1051 and NS L 1000 whose ranks are interchanged. Biplot analysis enables the SCA estimation of parent inbred, and the highest SCA has inbred B73D. Biplot analysis also allows the estimation of the best crosses. Inbred B73D shows the best results when crossed with testers Mo17Ht, NS L 1051 and N152, inbred N152 combines best with testers NS L 1001 and NS L 1000, whereas the cross of inbred NS L 1051 with tester B73D results with the highest grain yield per plant in comparison with other testers.

  20. The mouse as a model for human biology: a resource guide for complex trait analysis.

    Science.gov (United States)

    Peters, Luanne L; Robledo, Raymond F; Bult, Carol J; Churchill, Gary A; Paigen, Beverly J; Svenson, Karen L

    2007-01-01

    The mouse has been a powerful force in elucidating the genetic basis of human physiology and pathophysiology. From its beginnings as the model organism for cancer research and transplantation biology to the present, when dissection of the genetic basis of complex disease is at the forefront of genomics research, an enormous and remarkable mouse resource infrastructure has accumulated. This review summarizes those resources and provides practical guidelines for their use, particularly in the analysis of quantitative traits.

  1. Ultrasonic vocalizations: a tool for behavioural phenotyping of mouse models of neurodevelopmental disorders

    OpenAIRE

    Scattoni, Maria Luisa; Crawley, Jacqueline; Ricceri, Laura

    2008-01-01

    In neonatal mice ultrasonic vocalizations have been studied both as an early communicative behavior of the pup-mother dyad and as a sign of an aversive affective state. Adult mice of both sexes produce complex ultrasonic vocalization patterns in different experimental/social contexts. All these vocalizations are becoming an increasingly valuable assay for behavioral phenotyping throughout the mouse life-span and alterations of the ultrasound patterns have been reported in several mouse models...

  2. A mouse model of ocular blast injury that induces closed globe anterior and posterior pole damage

    OpenAIRE

    Hines-Beard, Jessica; Marchetta, Jeffrey; Gordon, Sarah; Chaum, Edward; Geisert, Eldon E.; Rex, Tonia S.

    2012-01-01

    We developed and characterized a mouse model of primary ocular blast injury. The device consists of: a pressurized air tank attached to a regulated paintball gun with a machined barrel; a chamber that protects the mouse from direct injury and recoil, while exposing the eye; and a secure platform that enables fine, controlled movement of the chamber in relation to the barrel. Expected pressures were calculated and the optimal pressure transducer, based on the predicted pressures, was positione...

  3. Genetic determination of the biological radiation response in inbred mice lines; Genetische Determination der biologischen Strahlenantwort in Mausinzuchtstaemmen

    Energy Technology Data Exchange (ETDEWEB)

    Gomolka, M.; Hornhardt, S.; Jung, T. [Bundesamt fuer Strahlenschutz Oberschleissheim (Germany). Institut fuer Strahlenhygiene

    2000-07-01

    Variation in radiation sensitivity and radiation resistance is influenced by the genetic constitution of an individual. Loss of function of genes involved in DNA repair, cell cycle or controlled cell death can have serious consequences on individual radiation sensitivity. For example, individuals suffering on the clinical syndrome of Ataxia telangiectasia exhibit radiation sensitivity in the order of 2-3 magnitudes higher than other cancer patients. For radiation protection it is important to clarify the role of genetic predisposition for radiation sensitivity in clinical healthy people. Therefore, data were collected from the literature describing the genetic variation (heritability) of radiation sensitivity in the mouse model. A heritability of 30-50% was calculated for 27 inbred mice lines by Roderick (1963) based on days of survival after a daily dose of 1 Gy {gamma}-irradiation. The following inbred lines were described in the literature as radiation sensitive (phenotypical markers were e.g., time of survival, mortality, reduction in fertility post exposure): SWR, RIII, NC, K, HLG, DBA, CBA, BALB/c, A, AKR. Radiation resistance was demonstrated in SJL, SEC, RF, MA, C58, C57BR, BDP and 129. Parameter of longevity, some physiological, biochemical and immunological parameters as given in the data bank of the Jackson Laboratory, U.S.A., were compared between radiation sensitive and radiation resistant inbred strains. No correlation was seen for the most of the parameters except for the development of breast cancer. In 6 out of 10 radiosensitive inbred strains breast cancer is described while only 1 of 8 strains exhibits breast cancer. The higher heritability of 30-50% in spite of a very complex phenotype like survival and the correlation between radiosensitivity and tumour incidence show that individual genetic susceptibility is important on the biological radiation reaction. (orig.) [German] Die phaenotypische Variation der Strahlensensitivitaet und

  4. Defining the role of polyamines in colon carcinogenesis using mouse models

    Directory of Open Access Journals (Sweden)

    Natalia A Ignatenko

    2011-01-01

    Full Text Available Genetics and diet are both considered important risk determinants for colorectal cancer, a leading cause of death in the US and worldwide. Genetically engineered mouse (GEM models have made a significant contribution to the characterization of colorectal cancer risk factors. Reliable, reproducible, and clinically relevant animal models help in the identification of the molecular events associated with disease progression and in the development of effictive treatment strategies. This review is focused on the use of mouse models for studying the role of polyamines in colon carcinogenesis. We describe how the available mouse models of colon cancer such as the multiple intestinal neoplasia (Min mice and knockout genetic models facilitate understanding of the role of polyamines in colon carcinogenesis and help in the development of a rational strategy for colon cancer chemoprevention.

  5. A Versatile Protocol for Studying Calvarial Bone Defect Healing in a Mouse Model.

    Science.gov (United States)

    Samsonraj, Rebekah M; Dudakovic, Amel; Zan, Pengfei; Pichurin, Oksana; Cool, Simon M; van Wijnen, Andre J

    2017-11-01

    Animal models are vital tools for the preclinical development and testing of therapies aimed at providing solutions for several musculoskeletal disorders. For bone tissue engineering strategies addressing nonunion conditions, rodent models are particularly useful for studying bone healing in a controlled environment. The mouse calvarial defect model permits evaluation of drug, growth factor, or cell transplantation efficacy, together with offering the benefit of utilizing genetic models to study intramembranous bone formation within defect sites. In this study, we describe a detailed methodology for creating calvarial defects in mouse and present our results on bone morphogenetic protein-2-loaded fibrin scaffolds, thus advocating the utility of this functional orthotopic mouse model for the evaluation of therapeutic interventions (such as growth factors or cells) intended for successful bone regeneration therapies.

  6. A metabolomic comparison of mouse models of the Neuronal Ceroid Lipofuscinoses

    International Nuclear Information System (INIS)

    Salek, Reza M.; Pears, Michael R.; Cooper, Jonathan D.; Mitchison, Hannah M.; Pearce, David A.; Mortishire-Smith, Russell J.; Griffin, Julian L.

    2011-01-01

    The Neuronal Ceroid Lipofuscinoses (NCL) are a group of fatal inherited neurodegenerative diseases in humans distinguished by a common clinical pathology, characterized by the accumulation of storage body material in cells and gross brain atrophy. In this study, metabolic changes in three NCL mouse models were examined looking for pathways correlated with neurodegeneration. Two mouse models; motor neuron degeneration (mnd) mouse and a variant model of late infantile NCL, termed the neuronal ceroid lipofuscinosis (nclf) mouse were investigated experimentally. Both models exhibit a characteristic accumulation of autofluorescent lipopigment in neuronal and non neuronal cells. The NMR profiles derived from extracts of the cortex and cerebellum from mnd and nclf mice were distinguished according to disease/wildtype status. In particular, a perturbation in glutamine and glutamate metabolism, and a decrease in γ-amino butyric acid (GABA) in the cerebellum and cortices of mnd (adolescent mice) and nclf mice relative to wildtype at all ages were detected. Our results were compared to the Cln3 mouse model of NCL. The metabolism of mnd mice resembled older (6 month) Cln3 mice, where the disease is relatively advanced, while the metabolism of nclf mice was more akin to younger (1-2 months) Cln3 mice, where the disease is in its early stages of progression. Overall, our results allowed the identification of metabolic traits common to all NCL subtypes for the three animal models.

  7. Anticonvulsant profile of a balanced ketogenic diet in acute mouse seizure models.

    Science.gov (United States)

    Samala, Ramakrishna; Willis, Sarah; Borges, Karin

    2008-10-01

    Anticonvulsant effects of the ketogenic diet (KD) have been reported in the mouse, although previous studies did not control for intake of vitamins, minerals and antioxidants. The aim of this study was to examine the effects of balanced ketogenic and control diets in acute mouse seizure models. The behavior in four mouse seizure models, plasma d-beta-hydroxybutyrate (d-BHB) and glucose levels were determined after feeding control diet, 4:1 and 6:1 KDs with matched vitamins, minerals and antioxidants. Feeding 4:1 and 6:1 KDs ad lib to 3-week-old (adolescent) mice resulted in 1.2-2.2mM d-BHB in plasma, but did not consistently change glucose levels. The 6:1 KD reproducibly elevated the CC50 (current that initiates seizures in 50% mice tested) in the 6-Hz model after 14 days of feeding to adolescent CD1 mice. Higher plasma d-BHB levels correlated with anticonvulsant effects. Despite ketosis, no consistent anticonvulsant effects of KDs were found in the fluorothyl or pentylenetetrazole CD1 mouse models. The 4:1 KD was neither anticonvulsant nor neuroprotective in hippocampus in the C3H mouse kainate model. Taken together, the KD's anticonvulsant effect was limited to the 6-Hz model, required chronic feeding with 6:1 fat content, and was independent from lowering plasma glucose.

  8. A metabolomic comparison of mouse models of the Neuronal Ceroid Lipofuscinoses

    Energy Technology Data Exchange (ETDEWEB)

    Salek, Reza M.; Pears, Michael R. [University of Cambridge, Department of Biochemistry and Cambridge Systems Biology Centre (United Kingdom); Cooper, Jonathan D. [King' s College London, Pediatric Storage Disorders Laboratory, Department of Neuroscience, Institute of Psychiatry (United Kingdom); Mitchison, Hannah M. [Royal Free and University College Medical School, Department of Paediatrics and Child Health (United Kingdom); Pearce, David A. [Sanford School of Medicine of the University of South Dakota, Department of Pediatrics (United States); Mortishire-Smith, Russell J. [Johnson and Johnson PR and D (Belgium); Griffin, Julian L., E-mail: jlg40@mole.bio.cam.ac.uk [University of Cambridge, Department of Biochemistry and the Cambridge Systems Biology Centre (United Kingdom)

    2011-04-15

    The Neuronal Ceroid Lipofuscinoses (NCL) are a group of fatal inherited neurodegenerative diseases in humans distinguished by a common clinical pathology, characterized by the accumulation of storage body material in cells and gross brain atrophy. In this study, metabolic changes in three NCL mouse models were examined looking for pathways correlated with neurodegeneration. Two mouse models; motor neuron degeneration (mnd) mouse and a variant model of late infantile NCL, termed the neuronal ceroid lipofuscinosis (nclf) mouse were investigated experimentally. Both models exhibit a characteristic accumulation of autofluorescent lipopigment in neuronal and non neuronal cells. The NMR profiles derived from extracts of the cortex and cerebellum from mnd and nclf mice were distinguished according to disease/wildtype status. In particular, a perturbation in glutamine and glutamate metabolism, and a decrease in {gamma}-amino butyric acid (GABA) in the cerebellum and cortices of mnd (adolescent mice) and nclf mice relative to wildtype at all ages were detected. Our results were compared to the Cln3 mouse model of NCL. The metabolism of mnd mice resembled older (6 month) Cln3 mice, where the disease is relatively advanced, while the metabolism of nclf mice was more akin to younger (1-2 months) Cln3 mice, where the disease is in its early stages of progression. Overall, our results allowed the identification of metabolic traits common to all NCL subtypes for the three animal models.

  9. Alterations in Striatal Synaptic Transmission are Consistent across Genetic Mouse Models of Huntington's Disease

    Directory of Open Access Journals (Sweden)

    Damian M Cummings

    2010-05-01

    Full Text Available Since the identification of the gene responsible for HD (Huntington's disease, many genetic mouse models have been generated. Each employs a unique approach for delivery of the mutated gene and has a different CAG repeat length and background strain. The resultant diversity in the genetic context and phenotypes of these models has led to extensive debate regarding the relevance of each model to the human disorder. Here, we compare and contrast the striatal synaptic phenotypes of two models of HD, namely the YAC128 mouse, which carries the full-length huntingtin gene on a yeast artificial chromosome, and the CAG140 KI*** (knock-in mouse, which carries a human/mouse chimaeric gene that is expressed in the context of the mouse genome, with our previously published data obtained from the R6/2 mouse, which is transgenic for exon 1 mutant huntingtin. We show that striatal MSNs (medium-sized spiny neurons in YAC128 and CAG140 KI mice have similar electrophysiological phenotypes to that of the R6/2 mouse. These include a progressive increase in membrane input resistance, a reduction in membrane capacitance, a lower frequency of spontaneous excitatory postsynaptic currents and a greater frequency of spontaneous inhibitory postsynaptic currents in a subpopulation of striatal neurons. Thus, despite differences in the context of the inserted gene between these three models of HD, the primary electrophysiological changes observed in striatal MSNs are consistent. The outcomes suggest that the changes are due to the expression of mutant huntingtin and such alterations can be extended to the human condition.

  10. Olfaction in three genetic and two MPTP-induced Parkinson's disease mouse models.

    Directory of Open Access Journals (Sweden)

    Stefan Kurtenbach

    Full Text Available Various genetic or toxin-induced mouse models are frequently used for investigation of early PD pathology. Although olfactory impairment is known to precede motor symptoms by years, it is not known whether it is caused by impairments in the brain, the olfactory epithelium, or both. In this study, we investigated the olfactory function in three genetic Parkinson's disease (PD mouse models and mice treated with MPTP intraperitoneally and intranasally. To investigate olfactory function, we performed electro-olfactogram recordings (EOGs and an olfactory behavior test (cookie-finding test. We show that neither a parkin knockout mouse strain, nor intraperitoneal MPTP treated animals display any olfactory impairment in EOG recordings and the applied behavior test. We also found no difference in the responses of the olfactory epithelium to odorants in a mouse strain over-expressing doubly mutated α-synuclein, while this mouse strain was not suitable to test olfaction in a cookie-finding test as it displays a mobility impairment. A transgenic mouse expressing mutated α-synuclein in dopaminergic neurons performed equal to control animals in the cookie-finding test. Further we show that intranasal MPTP application can cause functional damage of the olfactory epithelium.

  11. Mouse models for disorders of mitochondrial fatty acid beta-oxidation.

    Science.gov (United States)

    Schuler, A Michele; Wood, Philip A

    2002-01-01

    Mitochondrial beta-oxidation of fatty acids is vital for energy production in periods of fasting and other metabolic stress. Human patients have been identified with inherited disorders of mitochondrial beta-oxidation of fatty acids with enzyme deficiencies identified at many of the steps in this pathway. Although these patients exhibit a range of disease processes, Reye-like illness (hypoketotic-hypoglycemia, hyperammonemia and fatty liver) and cardiomyopathy are common findings. There have been several mouse models developed to aid in the study of these disease conditions. The characterized mouse models include inherited deficiencies of very long-chain acyl-CoA dehydrogenase, long-chain acyl-CoA dehydrogenase, short-chain acyl-CoA dehydrogenase, mitochondrial trifunctional protein-alpha, and medium-/short-chain hydroxyacyl-CoA dehydrogenase. Mouse mutants developed, but presently incompletely characterized as models, include carnitine palmitoyltransferase-1a and medium-chain acyl-CoA dehydrogenase deficiencies. In general, the mouse models of disorders of mitochondrial fatty acid beta-oxidation have shown clinical signs that include Reye-like syndrome and cardiomyopathy, and many are cold intolerant. It is expected that these mouse models will provide vital contributions in understanding the mechanisms of disease pathogenesis of fatty acid oxidation disorders and the development of appropriate treatments and supportive care.

  12. Ultrastructural study of Rift Valley fever virus in the mouse model

    International Nuclear Information System (INIS)

    Reed, Christopher; Steele, Keith E.; Honko, Anna; Shamblin, Joshua; Hensley, Lisa E.; Smith, Darci R.

    2012-01-01

    Detailed ultrastructural studies of Rift Valley fever virus (RVFV) in the mouse model are needed to develop and characterize a small animal model of RVF for the evaluation of potential vaccines and therapeutics. In this study, the ultrastructural features of RVFV infection in the mouse model were analyzed. The main changes in the liver included the presence of viral particles in hepatocytes and hepatic stem cells accompanied by hepatocyte apoptosis. However, viral particles were observed rarely in the liver; in contrast, particles were extremely abundant in the CNS. Despite extensive lymphocytolysis, direct evidence of viral replication was not observed in the lymphoid tissue. These results correlate with the acute-onset hepatitis and delayed-onset encephalitis that are dominant features of severe human RVF, but suggest that host immune-mediated mechanisms contribute significantly to pathology. The results of this study expand our knowledge of RVFV–host interactions and further characterize the mouse model of RVF.

  13. Plant regeneration from immature embryos of Kenyan maize inbred ...

    African Journals Online (AJOL)

    % percent of regenerants were normal and fertile. The successful regeneration of some of the inbred lines and/or hybrids provides a basis for development of genetic transformation using Agrobacterium tumefaciens to improve priority traits such ...

  14. Genetic Architecture of Atherosclerosis in Mice: A Systems Genetics Analysis of Common Inbred Strains

    Science.gov (United States)

    Bennett, Brian J.; Davis, Richard C.; Civelek, Mete; Orozco, Luz; Wu, Judy; Qi, Hannah; Pan, Calvin; Packard, René R. Sevag; Eskin, Eleazar; Yan, Mujing; Kirchgessner, Todd; Wang, Zeneng; Li, Xinmin; Gregory, Jill C.; Hazen, Stanley L.; Gargalovic, Peter S.; Lusis, Aldons J.

    2015-01-01

    Common forms of atherosclerosis involve multiple genetic and environmental factors. While human genome-wide association studies have identified numerous loci contributing to coronary artery disease and its risk factors, these studies are unable to control environmental factors or examine detailed molecular traits in relevant tissues. We now report a study of natural variations contributing to atherosclerosis and related traits in over 100 inbred strains of mice from the Hybrid Mouse Diversity Panel (HMDP). The mice were made hyperlipidemic by transgenic expression of human apolipoprotein E-Leiden (APOE-Leiden) and human cholesteryl ester transfer protein (CETP). The mice were examined for lesion size and morphology as well as plasma lipid, insulin and glucose levels, and blood cell profiles. A subset of mice was studied for plasma levels of metabolites and cytokines. We also measured global transcript levels in aorta and liver. Finally, the uptake of acetylated LDL by macrophages from HMDP mice was quantitatively examined. Loci contributing to the traits were mapped using association analysis, and relationships among traits were examined using correlation and statistical modeling. A number of conclusions emerged. First, relationships among atherosclerosis and the risk factors in mice resemble those found in humans. Second, a number of trait-loci were identified, including some overlapping with previous human and mouse studies. Third, gene expression data enabled enrichment analysis of pathways contributing to atherosclerosis and prioritization of candidate genes at associated loci in both mice and humans. Fourth, the data provided a number of mechanistic inferences; for example, we detected no association between macrophage uptake of acetylated LDL and atherosclerosis. Fifth, broad sense heritability for atherosclerosis was much larger than narrow sense heritability, indicating an important role for gene-by-gene interactions. Sixth, stepwise linear regression

  15. Genetic Architecture of Atherosclerosis in Mice: A Systems Genetics Analysis of Common Inbred Strains.

    Directory of Open Access Journals (Sweden)

    Brian J Bennett

    2015-12-01

    Full Text Available Common forms of atherosclerosis involve multiple genetic and environmental factors. While human genome-wide association studies have identified numerous loci contributing to coronary artery disease and its risk factors, these studies are unable to control environmental factors or examine detailed molecular traits in relevant tissues. We now report a study of natural variations contributing to atherosclerosis and related traits in over 100 inbred strains of mice from the Hybrid Mouse Diversity Panel (HMDP. The mice were made hyperlipidemic by transgenic expression of human apolipoprotein E-Leiden (APOE-Leiden and human cholesteryl ester transfer protein (CETP. The mice were examined for lesion size and morphology as well as plasma lipid, insulin and glucose levels, and blood cell profiles. A subset of mice was studied for plasma levels of metabolites and cytokines. We also measured global transcript levels in aorta and liver. Finally, the uptake of acetylated LDL by macrophages from HMDP mice was quantitatively examined. Loci contributing to the traits were mapped using association analysis, and relationships among traits were examined using correlation and statistical modeling. A number of conclusions emerged. First, relationships among atherosclerosis and the risk factors in mice resemble those found in humans. Second, a number of trait-loci were identified, including some overlapping with previous human and mouse studies. Third, gene expression data enabled enrichment analysis of pathways contributing to atherosclerosis and prioritization of candidate genes at associated loci in both mice and humans. Fourth, the data provided a number of mechanistic inferences; for example, we detected no association between macrophage uptake of acetylated LDL and atherosclerosis. Fifth, broad sense heritability for atherosclerosis was much larger than narrow sense heritability, indicating an important role for gene-by-gene interactions. Sixth, stepwise linear

  16. Biplot analysis of diallel crosses of NS maize inbred lines

    OpenAIRE

    Boćanski Jan; Nastasić Aleksandra; Stanisavljević Dušan; Srećkov Zorana; Mitrović Bojan; Treskić Sanja; Vukosavljev Mirjana

    2011-01-01

    Bocanski J., A. Nastasic, D. Stanisavljevic, Z. Sreckov, B. Mitrovic, S. Treskic and M. Vukosavljev (2011): Biplot analysis of diallel crosses of NS maize inbred lines- Genetika, Vol 43, No. 2, 277 - 284. Genetic markers, from morphological to molecular, in function with early Heterosis is a prerequisite for the successful commercial maize production. It does not appear in any cross of two inbred lines, and therefore, the determination of combining abilities of parental lines is essential. Th...

  17. Digital phenotyping for quantification of genetic diversity in inbred guava (Psidium guajava) families.

    Science.gov (United States)

    Krause, W; Viana, A P; Cavalcante, N R; Ambrósio, M; Santos, E A; Vieira, H D

    2017-03-22

    Digital image analysis of seeds has been used for the identification of cultivars, determination of seed color and mechanical damage, and classification of different seed sizes. The aim of the present study was to evaluate the efficiency of digital image analysis of seeds for the quantification of genetic diversity among genotypes of inbred guava (Psidium guajava L.) families. The SAS Mini equipment, which consists of a capture module and a software program for analysis, was employed for the capture and analysis of the seed images. Different genetic diversity quantification strategies were tested using the Ward-Modified Location Model method. The set of variables related to geometry of the seeds was the largest contributor to divergence among the guava genotypes. The use of seed descriptors obtained by digital image analysis via the SAS system was efficient at quantifying the genetic diversity among genotypes of inbred guava families associated with the use of the Ward-Modified Location Model method.

  18. Recurrent selection in inbred popcorn families

    Directory of Open Access Journals (Sweden)

    Daros Máskio

    2004-01-01

    Full Text Available Although much appreciated in Brazil, commercial popcorn is currently cropped on a fairly small scale. A number of problems need to be solved to increase production, notably the obtaintion of seeds with good agronomic traits and good culinary characteristics. With the objective of developing superior genotypes in popcorn, a second cycle of intrapopulation recurrent selection based on inbred S1 families was carried out. From the first cycle of selection over the UNB-2U population, 222 S1 families were obtained, which were then divided into six sets and evaluated in a randomized complete block design with two replications within the sets. Experiments were carried out in two Brazilian localities. The analysis of variance revealed environmental effects for all evaluated traits, except popping and stand, showing that, for most traits, these environments affected genotype behavior in different ways. In addition, the set as source of variation was significant for most of the evaluated traits, indicating that dividing the families into sets was an efficient strategy. Genotype-by-environment interaction was detected for most traits, except popping expansion and stand. Differences among genotypes were also detected (1% F-test, making viable the proposition of using the genetic variability in the popcorn population as a basis for future recurrent selection cycles. Superior families were selected using the Smith and Hazel classic index, with predicted genetic gains of 17.8% for popping expansion and 26.95% for yield.

  19. Hypothalamic gene expression of appetite regulators in a cancer-cachectic mouse model [Dataset 1

    NARCIS (Netherlands)

    Dwarkasing, Jvalini; Dijk, Francina J.; Boekschoten, Mark; Faber, Joyce; Argilès, Josep M.; Lavianio, Alessandro; Muller, Michael; Witkamp, Renger; Norren, van Klaske

    2013-01-01

    Appetite is frequently affected in cancer patients, leading to anorexia and consequently insufficient food intake. In this study, we report on hypothalamic gene expression profile of a cancer cachectic mouse model with increased food intake. In this model, mice bearing C26 colon adenocarcinoma have

  20. Hypothalamic food intake regulation in a cancer-cachectic mouse model

    NARCIS (Netherlands)

    Dwarkasing, J.T.; Dijk, van M.; Dijk, F.J.; Boekschoten, M.V.; Faber, J.; Argiles, J.M.; Laviano, A.; Müller, M.R.; Witkamp, R.F.; Norren, van K.

    2014-01-01

    Background Appetite is frequently affected in cancer patients leading to anorexia and consequently insufficient food intake. In this study, we report on hypothalamic gene expression profile of a cancer-cachectic mouse model with increased food intake. In this model, mice bearing C26 tumour have an

  1. Hypothalamic gene expression of appetite regulators in a cancer-cachectic mouse model [Dataset 2

    NARCIS (Netherlands)

    Dwarkasing, Jvalini; Dijk, Francina J.; Boekschoten, Mark; Faber, Joyce; Argilès, Josep M.; Lavianio, Alessandro; Muller, Michael; Witkamp, Renger; Norren, van Klaske

    2013-01-01

    Appetite is frequently affected in cancer patients, leading to anorexia and consequently insufficient food intake. In this study, we report on hypothalamic gene expression profile of a cancer cachectic mouse model with increased food intake. In this model, mice bearing C26 colon adenocarcinoma have

  2. The Mouse Lemur, a Genetic Model Organism for Primate Biology, Behavior, and Health.

    Science.gov (United States)

    Ezran, Camille; Karanewsky, Caitlin J; Pendleton, Jozeph L; Sholtz, Alex; Krasnow, Maya R; Willick, Jason; Razafindrakoto, Andriamahery; Zohdy, Sarah; Albertelli, Megan A; Krasnow, Mark A

    2017-06-01

    Systematic genetic studies of a handful of diverse organisms over the past 50 years have transformed our understanding of biology. However, many aspects of primate biology, behavior, and disease are absent or poorly modeled in any of the current genetic model organisms including mice. We surveyed the animal kingdom to find other animals with advantages similar to mice that might better exemplify primate biology, and identified mouse lemurs ( Microcebus spp.) as the outstanding candidate. Mouse lemurs are prosimian primates, roughly half the genetic distance between mice and humans. They are the smallest, fastest developing, and among the most prolific and abundant primates in the world, distributed throughout the island of Madagascar, many in separate breeding populations due to habitat destruction. Their physiology, behavior, and phylogeny have been studied for decades in laboratory colonies in Europe and in field studies in Malagasy rainforests, and a high quality reference genome sequence has recently been completed. To initiate a classical genetic approach, we developed a deep phenotyping protocol and have screened hundreds of laboratory and wild mouse lemurs for interesting phenotypes and begun mapping the underlying mutations, in collaboration with leading mouse lemur biologists. We also seek to establish a mouse lemur gene "knockout" library by sequencing the genomes of thousands of mouse lemurs to identify null alleles in most genes from the large pool of natural genetic variants. As part of this effort, we have begun a citizen science project in which students across Madagascar explore the remarkable biology around their schools, including longitudinal studies of the local mouse lemurs. We hope this work spawns a new model organism and cultivates a deep genetic understanding of primate biology and health. We also hope it establishes a new and ethical method of genetics that bridges biological, behavioral, medical, and conservation disciplines, while

  3. From Immunodeficiency to Humanization: The Contribution of Mouse Models to Explore HTLV-1 Leukemogenesis

    Directory of Open Access Journals (Sweden)

    Eléonore Pérès

    2015-12-01

    Full Text Available The first discovered human retrovirus, Human T-Lymphotropic Virus type 1 (HTLV-1, is responsible for an aggressive form of T cell leukemia/lymphoma. Mouse models recapitulating the leukemogenesis process have been helpful for understanding the mechanisms underlying the pathogenesis of this retroviral-induced disease. This review will focus on the recent advances in the generation of immunodeficient and human hemato-lymphoid system mice with a particular emphasis on the development of mouse models for HTLV-1-mediated pathogenesis, their present limitations and the challenges yet to be addressed.

  4. Effects of p21 deletion in mouse models of premature aging

    Science.gov (United States)

    Benson, Erica K.; Zhao, Bo; Sassoon, David A.; Lee, Sam W.; Aaronson, Stuart A.

    2017-01-01

    An approach to investigate the role of cellular senescence in organismal aging has been to abrogate signaling pathways known to induce cellular senescence and to assess the effects in mouse models of premature aging. Recently, we reported the effect of loss of function of p21, a gene implicated in p53-induced cellular senescence, in the background of the Ku80−/− premature aging mouse (Zhao et al., EMBO Rep 2009). Here, we provide an overview of the effects of p21 deletion in different models of premature aging. PMID:19535900

  5. Genetic diversity for restriction fragment length polymorphisms and heterosis for two diallel sets of maize inbreds.

    Science.gov (United States)

    Melchinger, A E; Lee, M; Lamkey, K R; Hallauer, A R; Woodman, W L

    1990-10-01

    Changes that may have occurred over the past 50 years of hybrid breeding in maize (Zea maize L.) with respect to heterosis for yield and heterozygosity at the molecular level are of interest to both maize breeders and quantitative geneticists. The objectives of this study were twofold: The first, to compare two diallels produced from six older maize inbreds released in the 1950's and earlier and six newer inbreds released during the 1970's with respect to (a) genetic variation for restriction fragment length polymorphisms (RFLPs) and (b) the size of heterosis and epistatic effects, and the second, to evaluate the usefulness of RFLP-based genetic distance measures in predicting heterosis and performance of single-cross hybrids. Five generations (parents, F1; F2, and backcrosses) from the 15 crosses in each diallel were evaluated for grain yield and yield components in four Iowa environments. Genetic effects were estimated from generation means by ordinary diallel analyses and by the Eberhart-Gardner model. Newer lines showed significantly greater yield for inbred generations than did older lines but smaller heterosis estimates. In most cases, estimates of additive x additive epistatic effects for yield and yield components were significantly positive for both groups of lines. RFLP analyses of inbred lines included two restriction enzymes and 82 genomic DNA clones distributed over the maize genome. Eighty-one clones revealed polymorphisms with at least one enzyme. In each set, about three different RFLP variants were typically found per RFLP locus. Genetic distances between inbred lines were estimated from RFLP data as Rogers' distance (RD), which was subdivided into general (GRD) and specific (SRD) Rogers' distances within each diallel. The mean and range of RDs were similar for the older and newer lines, suggesting that the level of heterozygosity at the molecular level had not changed. GRD explained about 50% of the variation among RD values in both sets. Cluster

  6. Invited review: Genetic and genomic mouse models for livestock research

    Directory of Open Access Journals (Sweden)

    D. Arends

    2018-02-01

    Full Text Available Knowledge about the function and functioning of single or multiple interacting genes is of the utmost significance for understanding the organism as a whole and for accurate livestock improvement through genomic selection. This includes, but is not limited to, understanding the ontogenetic and environmentally driven regulation of gene action contributing to simple and complex traits. Genetically modified mice, in which the functions of single genes are annotated; mice with reduced genetic complexity; and simplified structured populations are tools to gain fundamental knowledge of inheritance patterns and whole system genetics and genomics. In this review, we briefly describe existing mouse resources and discuss their value for fundamental and applied research in livestock.

  7. Selection of antioxidants against ovarian oxidative stress in mouse model.

    Science.gov (United States)

    Li, Bojiang; Weng, Qiannan; Liu, Zequn; Shen, Ming; Zhang, Jiaqing; Wu, Wangjun; Liu, Honglin

    2017-12-01

    Oxidative stress (OS) plays an important role in the process of ovarian granulosa cell apoptosis and follicular atresia. The aim of this study was to select antioxidant against OS in ovary tissue. Firstly, we chose the six antioxidants and analyzed the reactive oxygen species (ROS) level in the ovary tissue. The results showed that proanthocyanidins, gallic acid, curcumin, and carotene decrease the ROS level compared with control group. We further demonstrated that both proanthocyanidins and gallic acid increase the antioxidant enzymes activity. Moreover, change in the ROS level was not observed in proanthocyanidins and gallic acid group of brain, liver, spleen, and kidney tissues. Finally, we found that proanthocyanidins and gallic acid inhibit pro-apoptotic genes expression in granulosa cells. Taken together, proanthocyanidins and gallic acid may be the most acceptable and optimal antioxidants specifically against ovarian OS and also may be involved in the inhibition of granulosa cells apoptosis in mouse ovary. © 2017 Wiley Periodicals, Inc.

  8. Novel Transgenic Mouse Model for Studying Human Serum Albumin as a Biomarker of Carcinogenic Exposure.

    Science.gov (United States)

    Sheng, Jonathan; Wang, Yi; Turesky, Robert J; Kluetzman, Kerri; Zhang, Qing-Yu; Ding, Xinxin

    2016-05-16

    Albumin is a commonly used serum protein for studying human exposure to xenobiotic compounds, including therapeutics and environmental pollutants. Often, the reactivity of albumin with xenobiotic compounds is studied ex vivo with human albumin or plasma/serum samples. Some studies have characterized the reactivity of albumin with chemicals in rodent models; however, differences between the orthologous peptide sequences of human and rodent albumins can result in the formation of different types of chemical-protein adducts with different interaction sites or peptide sequences. Our goal is to generate a human albumin transgenic mouse model that can be used to establish human protein biomarkers of exposure to hazardous xenobiotics for human risk assessment via animal studies. We have developed a human albumin transgenic mouse model and characterized the genotype and phenotype of the transgenic mice. The presence of the human albumin gene in the genome of the model mouse was confirmed by genomic PCR analysis, whereas liver-specific expression of the transgenic human albumin mRNA was validated by RT-PCR analysis. Further immunoblot and mass spectrometry analyses indicated that the transgenic human albumin protein is a full-length, mature protein, which is less abundant than the endogenous mouse albumin that coexists in the serum of the transgenic mouse. The transgenic protein was able to form ex vivo adducts with a genotoxic metabolite of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine, a procarcinogenic heterocyclic aromatic amine formed in cooked meat. This novel human albumin transgenic mouse model will facilitate the development and validation of albumin-carcinogen adducts as biomarkers of xenobiotic exposure and/or toxicity in humans.

  9. Whole Genome Sequence of Two Wild-Derived Mus musculus domesticus Inbred Strains, LEWES/EiJ and ZALENDE/EiJ, with Different Diploid Numbers

    Directory of Open Access Journals (Sweden)

    Andrew P. Morgan

    2016-12-01

    Full Text Available Wild-derived mouse inbred strains are becoming increasingly popular for complex traits analysis, evolutionary studies, and systems genetics. Here, we report the whole-genome sequencing of two wild-derived mouse inbred strains, LEWES/EiJ and ZALENDE/EiJ, of Mus musculus domesticus origin. These two inbred strains were selected based on their geographic origin, karyotype, and use in ongoing research. We generated 14× and 18× coverage sequence, respectively, and discovered over 1.1 million novel variants, most of which are private to one of these strains. This report expands the number of wild-derived inbred genomes in the Mus genus from six to eight. The sequence variation can be accessed via an online query tool; variant calls (VCF format and alignments (BAM format are available for download from a dedicated ftp site. Finally, the sequencing data have also been stored in a lossless, compressed, and indexed format using the multi-string Burrows-Wheeler transform. All data can be used without restriction.

  10. Neuropathological assessment and validation of mouse models for Alzheimer's disease: applying NIA-AA guidelines

    Directory of Open Access Journals (Sweden)

    C. Dirk Keene

    2016-06-01

    Full Text Available Dozens of transgenic mouse models, generally based on mutations associated with familial Alzheimer's disease (AD, have been developed, in part, for preclinical testing of candidate AD therapies. However, none of these models has successfully predicted the clinical efficacy of drugs for treating AD patients. Therefore, development of more translationally relevant AD mouse models remains a critical unmet need in the field. A concept not previously implemented in AD preclinical drug testing is the use of mouse lines that have been validated for neuropathological features of human AD. Current thinking suggests that amyloid plaque and neurofibrillary tangle deposition is an essential component for accurate modeling of AD. Therefore, the AD translational paradigm would require pathologic Aβ and tau deposition, a disease-relevant distribution of plaques and tangles, and a pattern of disease progression of Aβ and tau isoforms similar to the neuropathological features found in the brains of AD patients. Additional parameters useful to evaluate parallels between AD and animal models would include 1 cerebrospinal fluid (CSF AD biomarker changes with reduced Aβ and increased phospho-tau/tau; 2 structural and functional neuroimaging patterns including MRI hippocampal atrophy, fluorodeoxyglucose (FDG, and amyloid/tau PET alterations in activity and/or patterns of pathologic peptide deposition and distribution; and 3 cognitive impairment with emphasis on spatial learning and memory to distinguish presymptomatic and symptomatic mice at specific ages. A validated AD mouse model for drug testing would likely show tau-related neurofibrillary degeneration following Aβ deposition and demonstrate changes in pathology, CSF analysis, and neuroimaging that mirror human AD. Development of the ideal model would revolutionize the ability to establish the translational value of AD mouse models and serve as a platform for discussions about national phenotyping guidelines

  11. The STR/ort mouse model of spontaneous osteoarthritis - an update.

    Science.gov (United States)

    Staines, K A; Poulet, B; Wentworth, D N; Pitsillides, A A

    2017-06-01

    Osteoarthritis is a degenerative joint disease and a world-wide healthcare burden. Characterized by cartilage degradation, subchondral bone thickening and osteophyte formation, osteoarthritis inflicts much pain and suffering, for which there are currently no disease-modifying treatments available. Mouse models of osteoarthritis are proving critical in advancing our understanding of the underpinning molecular mechanisms. The STR/ort mouse is a well-recognized model which develops a natural form of osteoarthritis very similar to the human disease. In this Review we discuss the use of the STR/ort mouse in understanding this multifactorial disease with an emphasis on recent advances in its genetics and its bone, endochondral and immune phenotypes. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Probiotic Lactobacillus rhamnosus GG prevents alveolar bone loss in a mouse model of experimental periodontitis.

    Science.gov (United States)

    Gatej, Simona M; Marino, Victor; Bright, Richard; Fitzsimmons, Tracy R; Gully, Neville; Zilm, Peter; Gibson, Rachel J; Edwards, Suzanne; Bartold, Peter M

    2018-02-01

    This study investigated the role of Lactobacillus rhamnosus GG (LGG) on bone loss and local and systemic inflammation in an in vivo mouse model of experimental periodontitis (PD). Experimental PD was induced in mice by oral inoculation with Porphyromonas gingivalis and Fusobacterium nucleatum over a period of 44 days. The probiotic LGG was administered via oral inoculation or oral gavage prior to, and during disease induction. The antimicrobial activity of LGG on the inoculum was also tested. Alveolar bone levels and gingival tissue changes were assessed using in vivo microcomputed tomography and histological analysis. Serum levels of mouse homologues for IL-8 were measured using multiplex assays. Pre-treatment with probiotics either via oral gavage or via oral inoculation significantly reduced bone loss (p Lactobacillus rhamnosus GG effectively suppresses bone loss in a mouse model of induced PD irrespective of the mode of administration. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. A new transgenic mouse model for conditional overexpression of the Polycomb Group protein EZH2.

    Science.gov (United States)

    Koppens, Martijn A J; Tanger, Ellen; Nacerddine, Karim; Westerman, Bart; Song, Ji-Ying; van Lohuizen, Maarten

    2017-04-01

    The Polycomb Group protein EZH2 is upregulated in most prostate cancers, and its overexpression is associated with poor prognosis. Most insights into the functional role of EZH2 in prostate cancer have been gained using cell lines and EZH2 inactivation studies. However, the question remains whether overexpression of EZH2 can initiate prostate tumourigenesis or drive tumour progression. Appropriate transgenic mouse models that are required to answer such questions are lacking. We developed one such transgenic mouse model for conditional overexpression of Ezh2. In this transgene, Ezh2 and Luciferase are transcribed from a single open reading frame. The latter gene enables intravital bioluminescent imaging of tissues expressing this transgene, allowing the detection of tumour outgrowth and potential metastatic progression over time. Prostate-specific Ezh2 overexpression by crossbreeding with Probasin-Cre mice led to neoplastic prostate lesions at low incidence and with a long latency. Compounding a previously described Bmi1-transgene and Pten-deficiency prostate cancer mouse model with the Ezh2 transgene did not enhance tumour progression or drive metastasis formation. In conclusion, we here report the generation of a wildtype Ezh2 overexpression mouse model that allows for intravital surveillance of tissues with activated transgene. This model will be an invaluable tool for further unravelling the role of EZH2 in cancer.

  14. Evaluation of synthetic vascular grafts in a mouse carotid grafting model.

    Directory of Open Access Journals (Sweden)

    Alex H P Chan

    Full Text Available Current animal models for the evaluation of synthetic grafts are lacking many of the molecular tools and transgenic studies available to other branches of biology. A mouse model of vascular grafting would allow for the study of molecular mechanisms of graft failure, including in the context of clinically relevant disease states. In this study, we comprehensively characterise a sutureless grafting model which facilitates the evaluation of synthetic grafts in the mouse carotid artery. Using conduits electrospun from polycaprolactone (PCL we show the gradual development of a significant neointima within 28 days, found to be greatest at the anastomoses. Histological analysis showed temporal increases in smooth muscle cell and collagen content within the neointima, demonstrating its maturation. Endothelialisation of the PCL grafts, assessed by scanning electron microscopy (SEM analysis and CD31 staining, was near complete within 28 days, together replicating two critical aspects of graft performance. To further demonstrate the potential of this mouse model, we used longitudinal non-invasive tracking of bone-marrow mononuclear cells from a transgenic mouse strain with a dual reporter construct encoding both luciferase and green fluorescent protein (GFP. This enabled characterisation of mononuclear cell homing and engraftment to PCL using bioluminescence imaging and histological staining over time (7, 14 and 28 days. We observed peak luminescence at 7 days post-graft implantation that persisted until sacrifice at 28 days. Collectively, we have established and characterised a high-throughput model of grafting that allows for the evaluation of key clinical drivers of graft performance.

  15. Evaluation of mammary gland development and function in mouse models.

    Science.gov (United States)

    Plante, Isabelle; Stewart, Michael K G; Laird, Dale W

    2011-07-21

    The human mammary gland is composed of 15-20 lobes that secrete milk into a branching duct system opening at the nipple. Those lobes are themselves composed of a number of terminal duct lobular units made of secretory alveoli and converging ducts. In mice, a similar architecture is observed at pregnancy in which ducts and alveoli are interspersed within the connective tissue stroma. The mouse mammary gland epithelium is a tree like system of ducts composed of two layers of cells, an inner layer of luminal cells surrounded by an outer layer of myoepithelial cells denoted by the confines of a basement membrane. At birth, only a rudimental ductal tree is present, composed of a primary duct and 15-20 branches. Branch elongation and amplification start at the beginning of puberty, around 4 weeks old, under the influence of hormones. At 10 weeks, most of the stroma is invaded by a complex system of ducts that will undergo cycles of branching and regression in each estrous cycle until pregnancy. At the onset of pregnancy, a second phase of development begins, with the proliferation and differentiation of the epithelium to form grape-shaped milk secretory structures called alveoli. Following parturition and throughout lactation, milk is produced by luminal secretory cells and stored within the lumen of alveoli. Oxytocin release, stimulated by a neural reflex induced by suckling of pups, induces synchronized contractions of the myoepithelial cells around the alveoli and along the ducts, allowing milk to be transported through the ducts to the nipple where it becomes available to the pups. Mammary gland development, differentiation and function are tightly orchestrated and require, not only interactions between the stroma and the epithelium, but also between myoepithelial and luminal cells within the epithelium. Thereby, mutations in many genes implicated in these interactions may impair either ductal elongation during puberty or alveoli formation during early pregnancy

  16. Temporal dynamics of the developing lung transcriptome in three common inbred strains of laboratory mice reveals multiple stages of postnatal alveolar development

    Directory of Open Access Journals (Sweden)

    Kyle J. Beauchemin

    2016-08-01

    Full Text Available To characterize temporal patterns of transcriptional activity during normal lung development, we generated genome wide gene expression data for 26 pre- and post-natal time points in three common inbred strains of laboratory mice (C57BL/6J, A/J, and C3H/HeJ. Using Principal Component Analysis and least squares regression modeling, we identified both strain-independent and strain-dependent patterns of gene expression. The 4,683 genes contributing to the strain-independent expression patterns were used to define a murine Developing Lung Characteristic Subtranscriptome (mDLCS. Regression modeling of the Principal Components supported the four canonical stages of mammalian embryonic lung development (embryonic, pseudoglandular, canalicular, saccular defined previously by morphology and histology. For postnatal alveolar development, the regression model was consistent with four stages of alveolarization characterized by episodic transcriptional activity of genes related to pulmonary vascularization. Genes expressed in a strain-dependent manner were enriched for annotations related to neurogenesis, extracellular matrix organization, and Wnt signaling. Finally, a comparison of mouse and human transcriptomics from pre-natal stages of lung development revealed conservation of pathways associated with cell cycle, axon guidance, immune function, and metabolism as well as organism-specific expression of genes associated with extracellular matrix organization and protein modification. The mouse lung development transcriptome data generated for this study serves as a unique reference set to identify genes and pathways essential for normal mammalian lung development and for investigations into the developmental origins of respiratory disease and cancer. The gene expression data are available from the Gene Expression Omnibus (GEO archive (GSE74243. Temporal expression patterns of mouse genes can be investigated using a study specific web resource (http://lungdevelopment.jax.org.

  17. Human tumor infiltrating lymphocytes cooperatively regulate prostate tumor growth in a humanized mouse model

    OpenAIRE

    Roth, Michael D; Harui, Airi

    2015-01-01

    BACKGROUND: The complex interactions that occur between human tumors, tumor infiltrating lymphocytes (TIL) and the systemic immune system are likely to define critical factors in the host response to cancer. While conventional animal models have identified an array of potential anti-tumor therapies, mouse models often fail to translate into effective human treatments. Our goal is to establish a humanized tumor model as a more effective pre-clinical platform for understanding and manipulating ...

  18. Hypothalamic food intake regulation in a cancer-cachectic mouse model

    OpenAIRE

    Dwarkasing, Jvalini T.; van Dijk, Miriam; Dijk, Francina J.; Boekschoten, Mark V.; Faber, Joyce; Argilès, Josep M.; Laviano, Alessandro; Müller, Michael; Witkamp, Renger F.; van Norren, Klaske

    2013-01-01

    Background Appetite is frequently affected in cancer patients leading to anorexia and consequently insufficient food intake. In this study, we report on hypothalamic gene expression profile of a cancer-cachectic mouse model with increased food intake. In this model, mice bearing C26 tumour have an increased food intake subsequently to the loss of body weight. We hypothesise that in this model, appetite-regulating systems in the hypothalamus, which apparently fail in anorexia, are still able t...

  19. Hypothalamic gene expression of appetite regulators in a cancer-cachectic mouse model [Dataset 2

    OpenAIRE

    Dwarkasing, Jvalini; Dijk, Francina J.; Boekschoten, Mark; Faber, Joyce; Argilès, Josep M.; Lavianio, Alessandro; Muller, Michael; Witkamp, Renger; Norren, van, Klaske

    2013-01-01

    Appetite is frequently affected in cancer patients, leading to anorexia and consequently insufficient food intake. In this study, we report on hypothalamic gene expression profile of a cancer cachectic mouse model with increased food intake. In this model, mice bearing C26 colon adenocarcinoma have an increased food intake subsequently to the loss of body weight. We hypothesize that in this model, appetite regulating systems in the hypothalamus, which apparently fail in anorexia, are still ab...

  20. Hypothalamic gene expression of appetite regulators in a cancer-cachectic mouse model [Dataset 1

    OpenAIRE

    Dwarkasing, Jvalini; Dijk, Francina J.; Boekschoten, Mark; Faber, Joyce; Argilès, Josep M.; Lavianio, Alessandro; Muller, Michael; Witkamp, Renger; Norren, van, Klaske

    2013-01-01

    Appetite is frequently affected in cancer patients, leading to anorexia and consequently insufficient food intake. In this study, we report on hypothalamic gene expression profile of a cancer cachectic mouse model with increased food intake. In this model, mice bearing C26 colon adenocarcinoma have an increased food intake subsequently to the loss of body weight. We hypothesize that in this model, appetite regulating systems in the hypothalamus, which apparently fail in anorexia, are still ab...

  1. Transgenic mouse models to study the role of APOE in hyperlipidemia and atherosclerosis

    NARCIS (Netherlands)

    Hofker, M.H.; Vlijmen, B.J.M. van; Havekes, L.M.

    1998-01-01

    Transgenic technologies have provided a series of very useful mouse models to study hyperlipidemia and atherosclerosis. Normally, mice carry cholesterol mainly in the high density lipoprotein (HDL) sized lipoproteins, and have low density lipoprotein (LDL) and very low density lipoprotein (VLDL)

  2. Tissue specific mutagenic and carcinogenic responses in NER defective mouse models.

    NARCIS (Netherlands)

    Wijnhoven, Susan W P; Hoogervorst, Esther M; Waard, Harm de; Horst, Gijsbertus T J van der; Steeg, Harry van

    2007-01-01

    Several mouse models with defects in genes encoding components of the nucleotide excision repair (NER) pathway have been developed. In NER two different sub-pathways are known, i.e. transcription-coupled repair (TC-NER) and global-genome repair (GG-NER). A defect in one particular NER protein can

  3. Accelerated microglial pathology is associated with Aβ plaques in mouse models of Alzheimer's disease

    DEFF Research Database (Denmark)

    Baron, Rona; Babcock, Alicia A; Nemirovsky, Anna

    2014-01-01

    with a chronic proinflammatory reaction in the brain, aging causes a significant reduction in the capacity of microglia to scan their environment. This type of pathology is markedly accelerated in mouse models of AD, resulting in a severe microglial process deficiency, and possibly contributing to enhanced...... cognitive decline....

  4. Aging rather than aneuploidy affects monoamine neurotransmitters in brain regions of Down syndrome mouse models

    NARCIS (Netherlands)

    Dekker, Alain D; Vermeiren, Yannick; Albac, Christelle; Lana-Elola, Eva; Watson-Scales, Sheona; Gibbins, Dorota; Aerts, Tony; Van Dam, Debby; Fisher, Elizabeth M C; Tybulewicz, Victor L J; Potier, Marie-Claude; De Deyn, Peter P

    Altered concentrations of monoamine neurotransmitters and metabolites have been repeatedly found in people with Down syndrome (DS, trisomy 21). Because of the limited availability of human post-mortem tissue, DS mouse models are of great interest to study these changes and the underlying

  5. Comparative mRNA analysis of behavioral and genetic mouse models of aggression

    NARCIS (Netherlands)

    Malki, Karim; Tosto, Maria G.; Pain, Oliver; Sluyter, Frans; Mineur, Yann S.; Crusio, Wim E.; de Boer, Sietse; Sandnabba, Kenneth N.; Kesserwani, Jad; Robinson, Edward; Schalkwyk, Leonard C.; Asherson, Philip

    Mouse models of aggression have traditionally compared strains, most notably BALB/cJ and C57BL/6. However, these strains were not designed to study aggression despite differences in aggression-related traits and distinct reactivity to stress. This study evaluated expression of genes differentially

  6. Genetically Engineered Mouse Model of Diffuse Intrinsic Pontine Glioma as a Preclinical Tool

    Science.gov (United States)

    2014-11-01

    studying this rare incurable tumor. Our approach is unique as we are using genetic engineered mouse modeling techniques to dissect the contribution of...Kambhampati M, Snyder K, Yadavilli S, Devaney JM, Harmon B, Hall J, Raabe EH, An P, Weingart M, Rood BR, Magge SN, MacDonald TJ, Packer RJ, Nazarian J

  7. Allergen immunotherapy induces a suppressive memory response mediated by IL-10 in a mouse asthma model

    NARCIS (Netherlands)

    Vissers, Joost L. M.; van Esch, Betty C. A. M.; Hofman, Gerard A.; Kapsenberg, Martien L.; Weller, Frank R.; van Oosterhout, Antoon J. M.

    2004-01-01

    Background: Human studies have demonstrated that allergen immunotherapy induces memory suppressive responses and IL-10 production by allergen-specific T cells. Previously, we established a mouse model in which allergen immunotherapy was effective in the suppression of allergen-induced asthma

  8. Mast cells trigger epithelial barrier dysfunction, bacterial translocation and postoperative ileus in a mouse model

    NARCIS (Netherlands)

    Snoek, S. A.; Dhawan, S.; van Bree, S. H.; Cailotto, C.; van Diest, S. A.; Duarte, J. M.; Stanisor, O. I.; Hilbers, F. W.; Nijhuis, L.; Koeman, A.; van den Wijngaard, R. M.; Zuurbier, C. J.; Boeckxstaens, G. E.; de Jonge, W. J.

    2012-01-01

    Background Abdominal surgery involving bowel manipulation commonly results in inflammation of the bowel wall, which leads to impaired intestinal motility and postoperative ileus (POI). Mast cells have shown to play a key role in the pathogenesis of POI in mouse models and human studies. We studied

  9. Oral administration of methysticin improves cognitive deficits in a mouse model of Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Athanassios Fragoulis

    2017-08-01

    Conclusion: In summary, these findings show that methysticin administration activates the Nrf2 pathway and reduces neuroinflammation, hippocampal oxidative damage and memory loss in a mouse model of AD. Therefore, kavalactones might be suitable candidates to serve as lead compounds for the development of a new class of neuroprotective drugs.

  10. A novel brain trauma model in the mouse : effects of dexamethasone treatment

    NARCIS (Netherlands)

    Hortobágyi, Tibor; Hortobagyi, S; Gorlach, C; Harkany, T; Benbyo, Z; Gorogh, T; Nagel, W; Wahl, M

    2000-01-01

    We describe a novel methodological approach for inducing cold lesion in the mouse as a model of human cortical contusion trauma. To validate its reproducibility and reliability, dexamethasone (Dxm) was repeatedly applied to demonstrate possible antioedematous drug effects. Following tho induction of

  11. Dystropathology increases energy expenditure and protein turnover in the Mdx mouse model of Duchenne muscular dystrophy

    Science.gov (United States)

    The skeletal muscles in Duchenne muscular dystrophy and the mdx mouse model lack functional dystrophin and undergo repeated bouts of necrosis, regeneration, and growth. These processes have a high metabolic cost. However, the consequences for whole body energy and protein metabolism, and on the diet...

  12. Reduced activity-dependent protein levels in a mouse model of the fragile X premutation

    NARCIS (Netherlands)

    R.E. von Leden (Ramona); L.C. Curley (Lindsey); G.D. Greenberg (Gian); M.R. Hunsaker (Michael); R. Willemsen (Rob); R.F. Berman (Robert)

    2014-01-01

    textabstractEnvironmental enrichment results in increased levels of Fmrp in brain and increased dendritic complexity. The present experiment evaluated activity-dependent increases in Fmrp levels in the motor cortex in response to training on a skilled forelimb reaching task in the CGG KI mouse model

  13. Activity-Dependent Changes in MAPK Activation in the Angelman Syndrome Mouse Model

    Science.gov (United States)

    Filonova, Irina; Trotter, Justin H.; Banko, Jessica L.; Weeber, Edwin J.

    2014-01-01

    Angelman Syndrome (AS) is a devastating neurological disorder caused by disruption of the maternal "UBE3A" gene. Ube3a protein is identified as an E3 ubiquitin ligase that shows neuron-specific imprinting. Despite extensive research evaluating the localization and basal expression profiles of Ube3a in mouse models, the molecular…

  14. Dynamic pathology for circulating free DNA in a dextran sodium sulfate colitis mouse model.

    Science.gov (United States)

    Koike, Yuhki; Uchida, Keiichi; Tanaka, Koji; Ide, Shozo; Otake, Kohei; Okita, Yoshiki; Inoue, Mikihiro; Araki, Toshimitsu; Mizoguchi, Akira; Kusunoki, Masato

    2014-12-01

    In sepsis, circulating free DNA (cf-DNA) is increased, and is a marker of severity and prognosis of septic patients. This study aimed to evaluate cf-DNA in a dextran sodium sulfate-induced colitis mouse model, and its clinical implications. Dynamic pathology of the cecum wall in the DSS-induced colitis mouse model was analyzed using multiphoton microscopy (MPM). Plasma cf-DNA concentrations in colitis mouse were quantified using PicoGreen dsDNA Assay Kit. Plasma cf-DNA was also measured in 123 human ulcerative colitis (UC) patients [mean age: 35.9 years (3-75 years) with 20 pediatric patients] to assess its relationships with clinical severity and Matt's grade. Real-time images of cf-DNA were detected in the colitis model. The amount of labeled cf-DNA in the circulation of the colitis mice group was significantly higher compared with that in the control group (P UC blood samples, plasma cf-DNA concentrations in UC patients were significantly positively correlated with the clinical severity of UC and Matt's grade (P colitis mouse model. Plasma cf-DNA is a potential non-invasive blood marker for reflecting clinical severity and mucosal damage in UC patients.

  15. Studies on maize inbred lines susceptibility to herbicides

    Directory of Open Access Journals (Sweden)

    Stefanović Lidija

    2010-01-01

    Full Text Available This paper presents the analysis of results obtained during long- term studies on the response of maize inbred lines to herbicides. Under the agroecological conditions of Zemun Polje the response (reaction of maize inbred lines to herbicides of different classes was investigated. Biological tests were performed and some agronomic, morphological, physiological and biochemical parameters were determined when the response of maize inbred lines to herbicides was estimated. The use of active ingredients of herbicides from triazine, acetanilide, thiocarbamate to new chemical groups (sulfonylurea etc., have been resulted in changes in weed suppression and susceptibility of inbred lines. Obtained results show that effects of herbicides on susceptible maize genotypes can be different: they can slowdown the growth and development and affect the plant height; they can also affect the stages of the tassel and ear development and at the end they can reduced grain yield of the tested inbreds. Numerous studies confirmed the existence of differences in susceptibility level of maize genotypes in relation to herbicides. According to gained results the recommendations for growers are made on the possibility of the application of new herbicides in the hybrid seed production.

  16. Identification of exercise capacity QTL using association mapping in inbred mice.

    Science.gov (United States)

    Courtney, Sean M; Massett, Michael P

    2012-10-02

    There are large interindividual differences in exercise capacity. It is well established that there is a genetic basis for these differences. However, the genetic factors underlying this variation are undefined. Therefore, the purpose of this study was to identify novel putative quantitative trait loci (QTL) for exercise capacity by measuring exercise capacity in inbred mice and performing genome-wide association mapping. Exercise capacity, defined as run time and work, was assessed in male mice (n = 6) from 34 strains of classical and wild-derived inbred mice performing a graded treadmill test. Genome-wide association mapping was performed with an efficient mixed-model association (EMMA) algorithm to identify QTL. Exercise capacity was significantly different across strains. Run time varied by 2.7-fold between the highest running strain (C58/J) and the lowest running strain (A/J). These same strains showed a 16.5-fold difference in work. Significant associations were identified for exercise time on chromosomes 1, 2, 7, 11, and 13. The QTL interval on chromosome 2 (~168 Mb) contains one gene, Nfatc2, and overlaps with a suggestive QTL for training responsiveness in humans. These results provide phenotype data on the widest range of inbred strains tested thus far and indicate that genetic background significantly influences exercise capacity. Furthermore, the novel QTLs identified in the current study provide new targets for investigating the underlying mechanisms for variation in exercise capacity.

  17. alpha7 nicotinic receptor gene promoter polymorphisms in inbred mice affect expression in a cell type-specific fashion.

    Science.gov (United States)

    Mexal, Sharon; Jenkins, Paul M; Lautner, Meeghan A; Iacob, Eli; Crouch, Eric L; Stitzel, Jerry A

    2007-05-04

    Inbred mouse strains display significant differences in their levels of brain alpha7 nicotinic acetylcholine receptor (alpha7 nAChR) expression, as measured by binding of the alpha7-selective antagonist alpha-bungarotoxin. Variations in alpha-bungarotoxin binding have been shown to correlate with an animal's sensitivity to nicotine-induced seizures and sensory gating. In two inbred mouse strains, C3H/2Ibg (C3H) and DBA/2Ibg (DBA/2), the inter-strain binding differences are linked to a restriction length polymorphism in the alpha7 nAChR gene, Chrna7. Despite this finding, the molecular mechanism(s) through which genetic variability in Chrna7 may contribute to alpha7 nAChR expression differences remains unknown. However, studies of the human alpha7 nAChR gene (CHRNA7) previously have demonstrated that CHRNA7 promoter polymorphisms are associated with differences in promoter activity as well as differences in sensory processing. In the present study, a 947-base pair region of the Chrna7 promoter was cloned from both the C3H and DBA/2 inbred mouse strains in an attempt to identify polymorphisms that may underlie alpha7 nAChR differential expression. Sequence analysis of these fragments identified 14 single nucleotide polymorphisms (SNPs). A combination of two of these SNPs affects promoter activity in an in vitro luciferase reporter assay. These results suggest a mechanism through which the Chrna7 promoter genotype may influence interstrain variations in alpha7 nAChR expression.

  18. Construction of a mouse model of factor VIII deficiency by gene targeting

    Energy Technology Data Exchange (ETDEWEB)

    Bi, L.; Lawler, A.; Gearhart, J. [Univ. of Pennsylvania School of Medicine, Philadelphia, PA (United States)] [and others

    1994-09-01

    To develop a small animal model of hemophilia A for gene therapy experiments, we set out to construct a mouse model for factor VIII deficiency by gene targeting. First, we screened a mouse liver cDNA library using a human FVIII cDNA probe. We cloned a 2.6 Kb partial mouse factor VIII cDNA which extends from 800 base pairs of the 3{prime} end of exon 14 to the 5{prime} end of exon 26. A mouse genomic library made from strain 129 was then screened to obtain genomic fragments covering the exons desired for homologous recombination. Two genomic clones were obtained, and one covering exon 15 through 22 was used for gene targeting. To make gene targeting constructs, a 5.8 Kb genomic DNA fragment covering exons 15 to 19 of the mouse FVIII gene was subcloned, and the neo expression cassette was inserted into exons 16 and 17 separately by different strategies. These two constructs were named MFVIIIC-16 and MFVIIIC-17. The constructs were linearized and transfected into strain 129 mouse ES cells by electroporation. Factor VIII gene-knockout ES cell lines were selected by G-418 and screened by genomic Southern blots. Eight exon 16 targeted cell lines and five exon 17 targeted cell lines were obtained. Three cell lines from each construct were injected into blastocysts and surgically transferred into foster mothers. Multiple chimeric mice with 70-90% hair color derived from the ES-cell genotype were seen with both constructs. Germ line transmission of the ES-cell genotype has been obtained for the MFVIIIC-16 construct, and multiple hemophilia A carrier females have been identified. Factor VIII-deficient males will be conceived soon.

  19. Fractalkine overexpression suppresses tau pathology in a mouse model of tauopathy.

    Science.gov (United States)

    Nash, Kevin R; Lee, Daniel C; Hunt, Jerry B; Morganti, Josh M; Selenica, Maj-Linda; Moran, Peter; Reid, Patrick; Brownlow, Milene; Guang-Yu Yang, Clement; Savalia, Miloni; Gemma, Carmelina; Bickford, Paula C; Gordon, Marcia N; Morgan, David

    2013-06-01

    Alzheimer's disease is characterized by amyloid plaques, neurofibrillary tangles, glial activation, and neurodegeneration. In mouse models, inflammatory activation of microglia accelerates tau pathology. The chemokine fractalkine serves as an endogenous neuronal modulator to quell microglial activation. Experiments with fractalkine receptor null mice suggest that fractalkine signaling diminishes tau pathology, but exacerbates amyloid pathology. Consistent with this outcome, we report here that soluble fractalkine overexpression using adeno-associated viral vectors significantly reduced tau pathology in the rTg4510 mouse model of tau deposition. Furthermore, this treatment reduced microglial activation and appeared to prevent neurodegeneration normally found in this model. However, in contrast to studies with fractalkine receptor null mice, parallel studies in an APP/PS1 model found no effect of increased fractalkine signaling on amyloid deposition. These data argue that agonism at fractalkine receptors might be an excellent target for therapeutic intervention in tauopathies, including those associated with amyloid deposition. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. A new mouse model of impaired wound healing after irradiation.

    Science.gov (United States)

    Tsumano, Tomoko; Kawai, Kenichiro; Ishise, Hisako; Nishimoto, Soh; Fukuda, Kenji; Fujiwara, Toshihiro; Kakibuchi, Masao

    2013-04-01

    Radiation has many benefits and is an important treatment for cancer therapy. However, it also has unfavourable side-effects. Among these side-effects, the impairment of wound healing in the skin is a major problem in clinics. Although many attempts have been made to overcome this shortcoming, there are few effective treatments for impaired wound healing after irradiation. One reason for this is that it is hard to obtain good animal models for researching this topic. In this study, two different models were created and investigated. In one model, rectangular flaps were created on the backs of mice and irradiated while the other parts of their bodies were covered with a lead board. In another model, the lower limbs were exposed to radiation. In each model, several doses of irradiation were tested. Skin ulcers were created in the irradiated area, and the wound healing process was observed. In order to verify the usefulness of the model, adipose derived stromal cells were injected into the wound and the healing rate was calculated. In the flap model, the flaps contracted and formed linear scars. On the other hand, in the thigh model, 15 Gy irradiation resulted in slow wound healing but no strong inflammation or necrosis. The transplantation of adipose tissue derived stromal cells into the irradiated thigh wound improved the wound healing. This study suggested that irradiation of the lower limb at ∼ 15 Gy might be an appropriate model for basic research into wound healing in irradiated skin.

  1. DISC1 mouse models as a tool to decipher gene-environment interactions in psychiatric disorders

    Directory of Open Access Journals (Sweden)

    Tyler eCash-Padgett

    2013-09-01

    Full Text Available DISC1 was discovered in a Scottish pedigree in which a chromosomal translocation that breaks this gene segregates with psychiatric disorders, mainly depression and schizophrenia. Linkage and association studies in diverse populations support DISC1 as a susceptibility gene to a variety of neuropsychiatric disorders. Many Disc1 mouse models have been generated to study its neuronal functions. These mouse models display variable phenotypes, some of them relevant to schizophrenia, others to depression.The Disc1 mouse models are popular genetic models for studying gene-environment interactions in schizophrenia. Five different Disc1 models have been combined with environmental factors. The environmental stressors employed can be classified as either early immune activation or later social paradigms. These studies cover major time points along the neurodevelopmental trajectory: prenatal, early postnatal, adolescence, and adulthood. Various combinations of molecular, anatomical and behavioral methods have been used to assess the outcomes. Additionally, three of the studies sought to rescue the resulting abnormalities.Here we provide background on the environmental paradigms used, summarize the results of these studies combining Disc1 mouse models with environmental stressors and discuss what we can learn and how to proceed. A major question is how the genetic and environmental factors determine which psychiatric disorder will be clinically manifested. To address this we can take advantage of the many Disc1 models available and expose them to the same environmental stressor. The complementary experiment would be to expose the same model to different environmental stressors. DISC1 is an ideal gene for this approach, since in the Scottish pedigree the same chromosomal translocation results in different psychiatric conditions.

  2. The effects of exercise on hypothalamic neurodegeneration of Alzheimer’s disease mouse model

    OpenAIRE

    Do, Khoa; Laing, Brenton Thomas; Landry, Taylor; Bunner, Wyatt; Mersaud, Naderi; Matsubara, Tomoko; Li, Peixin; Yuan, Yuan; Lu, Qun; Huang, Hu

    2018-01-01

    Alzheimer's disease is a neurodegenerative disorder that affects the central nervous system. In this study, we characterized and examined the early metabolic changes in the triple transgenic mouse AD model (3xtg-AD), and their relationship with the hypothalamus, a key regulator of metabolism in the central nervous system. We observed that the 3xtg-AD model exhibited significantly higher oxygen consumption as well as food intake before reported amyloid plaque formation, indicating that metabol...

  3. Estimating Lead (Pb) Bioavailability In A Mouse Model

    Science.gov (United States)

    Children are exposed to Pb through ingestion of Pb-contaminated soil. Soil Pb bioavailability is estimated using animal models or with chemically defined in vitro assays that measure bioaccessibility. However, bioavailability estimates in a large animal model (e.g., swine) can be...

  4. Treatment with antioxidants ameliorates oxidative damage in a mouse model of propionic acidemia.

    Science.gov (United States)

    Rivera-Barahona, Ana; Alonso-Barroso, Esmeralda; Pérez, Belén; Murphy, Michael P; Richard, Eva; Desviat, Lourdes R

    2017-09-01

    Oxidative stress contributes to the pathogenesis of propionic acidemia (PA), a life threatening disease caused by the deficiency of propionyl CoA-carboxylase, in the catabolic pathway of branched-chain amino acids, odd-number chain fatty acids and cholesterol. Patients develop multisystemic complications including seizures, extrapyramidal symptoms, basal ganglia deterioration, pancreatitis and cardiomyopathy. The accumulation of toxic metabolites results in mitochondrial dysfunction, increased reactive oxygen species and oxidative damage, all of which have been documented in patients' samples and in a hypomorphic mouse model. Here we set out to investigate whether treatment with a mitochondria-targeted antioxidant, MitoQ, or with the natural polyphenol resveratrol, which is reported to have antioxidant and mitochondrial activation properties, could ameliorate the altered redox status and its functional consequences in the PA mouse model. The results show that oral treatment with MitoQ or resveratrol decreases lipid peroxidation and the expression levels of DNA repair enzyme OGG1 in PA mouse liver, as well as inducing tissue-specific changes in the expression of antioxidant enzymes. Notably, treatment decreased the cardiac hypertrophy marker BNP that is found upregulated in the PA mouse heart. Overall, the results provide in vivo evidence to justify more in depth investigations of antioxidants as adjuvant therapy in PA. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. A novel experimental mouse model of retinal detachment: complete functional and histologic recovery of the retina.

    Science.gov (United States)

    Zeng, Rui; Zhang, Ying; Shi, Fanjun; Kong, Fansheng

    2012-03-26

    To establish an experimental mouse model of retinal detachment (RD) created by corneal puncture (CP). Mouse corneas were punctured with a 30.5-gauge beveled needle, and the anterior chamber was penetrated. Histologic and functional changes of the retina were examined by light microscopy and electroretinography (ERG). Certain retinal cellular responses were examined by immunofluorescence microscopy. Internucleosomal DNA fragmentation in the retina was determined by terminal deoxynucleotidyl transferase-mediated uridine 5'-triphosphate-biotin nick-end labeling (TUNEL). RESULTS. CP caused transient leakage of aqueous humor along the needle shaft and immediate formation of multiple retinal blebs, which shrank and flattened within 24 hours. Bleb formation was associated with detachment of the neuroretina from the retinal pigment epithelium (RPE). After CP, the RPE cells underwent extensive transformation during retinal detachment/reattachment, but they resumed normal morphology on retinal reattachment around 10 to 13 days after CP. Relative to pre-CP ERG amplitudes, the punctured eyes showed decreases of 45% and 24% in scotopic and 7% and 12% in photopic b- and a-wave amplitudes, respectively, within 10 to 20 minutes after CP. The ERG amplitudes recovered fully by 12 hours after CP. No infiltrated cells were observed in the subretinal space, and no proliferating or TUNEL-positive cells were observed in the retina of the punctured eyes. Puncturing the mouse cornea can create transient RD, and the functional and histologic changes in the retina can subsequently recover. This experimental mouse model of RD mimics human traction and serous RD.

  6. Riluzole does not improve lifespan or motor function in three ALS mouse models.

    Science.gov (United States)

    Hogg, Marion C; Halang, Luise; Woods, Ina; Coughlan, Karen S; Prehn, Jochen H M

    2017-12-08

    Riluzole is the most widespread therapeutic for treatment of the progressive degenerative disease amyotrophic lateral sclerosis (ALS). Riluzole gained FDA approval in 1995 before the development of ALS mouse models. We assessed riluzole in three transgenic ALS mouse models: the SOD1 G93A model, the TDP-43 A315T model, and the recently developed FUS (1-359) model. Age, sex and litter-matched mice were treated with riluzole (22 mg/kg) in drinking water or vehicle (DMSO) from symptom onset. Lifespan was assessed and motor function tests were carried out twice weekly to determine whether riluzole slowed disease progression. Riluzole treatment had no significant benefit on lifespan in any of the ALS mouse models tested. Riluzole had no significant impact on decline in motor performance in the FUS (1-359) and SOD1 G93A transgenic mice as assessed by Rotarod and stride length analysis. Riluzole is widely prescribed for ALS patients despite questions surrounding its efficacy. Our data suggest that if riluzole was identified as a therapeutic candidate today it would not progress past pre-clinical assessment. This raises questions about the standards used in pre-clinical assessment of therapeutic candidates for the treatment of ALS.

  7. Assessment of Th17/Treg cells and Th cytokines in an improved immune thrombocytopenia mouse model.

    Science.gov (United States)

    Zhang, Guoyang; Zhang, Ping; Liu, Hongyun; Liu, Xiaoyan; Xie, Shuangfeng; Wang, Xiuju; Wu, Yudan; Chang, Jianxing; Ma, Liping

    2017-09-01

    The improved passive immune thrombocytopenia (ITP) mouse model has been extensively utilized for the study of ITP. However, how closely this model matches the human inflammation state and immune background is unclear. Our study aimed to explore the profile of Th cytokines and Th17/Treg cells in the model. We induced the ITP mouse model by dose-escalation injection of MWReg30. The serum levels of cytokines (IFN-γ, IL-2, IL-4, IL-10, IL-17A, and TGF-β1) were measured by enzyme-linked immunosorbent assay and the frequency of Th17 and Treg cells was measured by flow cytometry. The mRNA expression of Foxp3 and RORrt was measured by real-time PCR. The serum levels of cytokines IFN-γ, TGF-β1, IL-4, and IL-10 were significantly lower in ITP mice. The secretion of serum proinflammatory cytokines IL-2 and IL-17A and the percentage of Th17 cells showed no statistically significant increase. In ITP mice the frequency of Treg cells and mRNA expression of Foxp3 was significantly lower in splenocytes. Our data suggest that the improved passive ITP mouse model does not mimic the autoimmune inflammatory process of human ITP. Compared with human ITP, this model has a similar change in frequency of Treg cells, which may directly or indirectly result from antibody-mediated platelet destruction due to attenuated release of TGF-β.

  8. Brivaracetam, but not ethosuximide, reverses memory impairments in an Alzheimer's disease mouse model.

    Science.gov (United States)

    Nygaard, Haakon B; Kaufman, Adam C; Sekine-Konno, Tomoko; Huh, Linda L; Going, Hilary; Feldman, Samantha J; Kostylev, Mikhail A; Strittmatter, Stephen M

    2015-01-01

    Recent studies have shown that several strains of transgenic Alzheimer's disease (AD) mice overexpressing the amyloid precursor protein (APP) have cortical hyperexcitability, and their results have suggested that this aberrant network activity may be a mechanism by which amyloid-β (Aβ) causes more widespread neuronal dysfunction. Specific anticonvulsant therapy reverses memory impairments in various transgenic mouse strains, but it is not known whether reduction of epileptiform activity might serve as a surrogate marker of drug efficacy for memory improvement in AD mouse models. Transgenic AD mice (APP/PS1 and 3xTg-AD) were chronically implanted with dural electroencephalography electrodes, and epileptiform activity was correlated with spatial memory function and transgene-specific pathology. The antiepileptic drugs ethosuximide and brivaracetam were tested for their ability to suppress epileptiform activity and to reverse memory impairments and synapse loss in APP/PS1 mice. We report that in two transgenic mouse models of AD (APP/PS1 and 3xTg-AD), the presence of spike-wave discharges (SWDs) correlated with impairments in spatial memory. Both ethosuximide and brivaracetam reduce mouse SWDs, but only brivaracetam reverses memory impairments in APP/PS1 mice. Our data confirm an intriguing therapeutic role of anticonvulsant drugs targeting synaptic vesicle protein 2A across AD mouse models. Chronic ethosuximide dosing did not reverse spatial memory impairments in APP/PS1 mice, despite reduction of SWDs. Our data indicate that SWDs are not a reliable surrogate marker of appropriate target engagement for reversal of memory dysfunction in APP/PS1 mice.

  9. Animal models of gastrointestinal and liver diseases. New mouse models for studying dietary prevention of colorectal cancer.

    Science.gov (United States)

    Fleet, James C

    2014-08-01

    Colorectal cancer is a heterogeneous disease that is one of the major causes of cancer death in the U.S. There is evidence that lifestyle factors like diet can modulate the course of this disease. Demonstrating the benefit and mechanism of action of dietary interventions against colon cancer will require studies in preclinical models. Many mouse models have been developed to study colon cancer but no single model can reflect all types of colon cancer in terms of molecular etiology. In addition, many models develop only low-grade cancers and are confounded by development of the disease outside of the colon. This review will discuss how mice can be used to model human colon cancer and it will describe a variety of new mouse models that develop colon-restricted cancer as well as more advanced phenotypes for studies of late-state disease. Copyright © 2014 the American Physiological Society.

  10. An improved reprogrammable mouse model harbouring the reverse tetracycline-controlled transcriptional transactivator 3

    Directory of Open Access Journals (Sweden)

    S. Alaei

    2016-07-01

    Full Text Available Reprogrammable mouse models engineered to conditionally express Oct-4, Klf-4, Sox-2 and c-Myc (OKSM have been instrumental in dissecting molecular events underpinning the generation of induced pluripotent stem cells. However, until now these models have been reported in the context of the m2 reverse tetracycline-controlled transactivator, which results in low reprogramming efficiency and consequently limits the number of reprogramming intermediates that can be isolated for downstream profiling. Here, we describe an improved OKSM mouse model in the context of the reverse tetracycline-controlled transactivator 3 with enhanced reprogramming efficiency (>9-fold and increased numbers of reprogramming intermediate cells albeit with similar kinetics, which we believe will facilitate mechanistic studies of the reprogramming process.

  11. A model for gas and nutrient exchange in the chorionic vasculature system of the mouse placenta

    Science.gov (United States)

    Mirbod, Parisa; Sled, John

    2015-11-01

    The aim of this study is to develop an analytical model for the oxygen and nutrient transport from the umbilical cord to the small villous capillaries. The nutrient and carbon dioxide removal from the fetal cotyledons in the mouse placental system has also been considered. This model describes the mass transfer between the fetal and the maternal red blood cells in the chorionic arterial vasculature system. The model reveals the detail fetal vasculature system and its geometry and the precise mechanisms of mass transfer through the placenta. The dimensions of the villous capillaries, the total length of the villous trees, the total villi surface area, and the total resistance to mass transport in the fetal villous trees has also been defined. This is the first effort to explain the reason why there are at least 7 lobules in the mouse placenta from the fluid dynamics point of view.

  12. Partial corrosion casting to assess cochlear vasculature in mouse models of presbycusis and CMV infection.

    Science.gov (United States)

    Carraro, Mattia; Park, Albert H; Harrison, Robert V

    2016-02-01

    Some forms of sensorineural hearing loss involve damage or degenerative changes to the stria vascularis and/or other vascular structures in the cochlea. In animal models, many methods for anatomical assessment of cochlear vasculature exist, each with advantages and limitations. One methodology, corrosion casting, has proved useful in some species, however in the mouse model this technique is difficult to achieve because digestion of non vascular tissue results in collapse of the delicate cast specimen. We have developed a partial corrosion cast method that allows visualization of vasculature along much of the cochlear length but maintains some structural integrity of the specimen. We provide a detailed step-by-step description of this novel technique. We give some illustrative examples of the use of the method in mouse models of presbycusis and cytomegalovirus (CMV) infection. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Distinctive serum miRNA profile in mouse models of striated muscular pathologies.

    Directory of Open Access Journals (Sweden)

    Nicolas Vignier

    Full Text Available Biomarkers are critically important for disease diagnosis and monitoring. In particular, close monitoring of disease evolution is eminently required for the evaluation of therapeutic treatments. Classical monitoring methods in muscular dystrophies are largely based on histological and molecular analyses of muscle biopsies. Such biopsies are invasive and therefore difficult to obtain. The serum protein creatine kinase is a useful biomarker, which is however not specific for a given pathology and correlates poorly with the severity or course of the muscular pathology. The aim of the present study was the systematic evaluation of serum microRNAs (miRNAs as biomarkers in striated muscle pathologies. Mouse models for five striated muscle pathologies were investigated: Duchenne muscular dystrophy (DMD, limb-girdle muscular dystrophy type 2D (LGMD2D, limb-girdle muscular dystrophy type 2C (LGMD2C, Emery-Dreifuss muscular dystrophy (EDMD and hypertrophic cardiomyopathy (HCM. Two-step RT-qPCR methodology was elaborated, using two different RT-qPCR miRNA quantification technologies. We identified miRNA modulation in the serum of all the five mouse models. The most highly dysregulated serum miRNAs were found to be commonly upregulated in DMD, LGMD2D and LGMD2C mouse models, which all exhibit massive destruction of striated muscle tissues. Some of these miRNAs were down rather than upregulated in the EDMD mice, a model without massive myofiber destruction. The dysregulated miRNAs identified in the HCM model were different, with the exception of one dysregulated miRNA common to all pathologies. Importantly, a specific and distinctive circulating miRNA profile was identified for each studied pathological mouse model. The differential expression of a few dysregulated miRNAs in the DMD mice was further evaluated in DMD patients, providing new candidates of circulating miRNA biomarkers for DMD.

  14. Validation of a mouse xenograft model system for gene expression analysis of human acute lymphoblastic leukaemia

    Directory of Open Access Journals (Sweden)

    Francis Richard W

    2010-04-01

    Full Text Available Abstract Background Pre-clinical models that effectively recapitulate human disease are critical for expanding our knowledge of cancer biology and drug resistance mechanisms. For haematological malignancies, the non-obese diabetic/severe combined immunodeficient (NOD/SCID mouse is one of the most successful models to study paediatric acute lymphoblastic leukaemia (ALL. However, for this model to be effective for studying engraftment and therapy responses at the whole genome level, careful molecular characterisation is essential. Results Here, we sought to validate species-specific gene expression profiling in the high engraftment continuous ALL NOD/SCID xenograft. Using the human Affymetrix whole transcript platform we analysed transcriptional profiles from engrafted tissues without prior cell separation of mouse cells and found it to return highly reproducible profiles in xenografts from individual mice. The model was further tested with experimental mixtures of human and mouse cells, demonstrating that the presence of mouse cells does not significantly skew expression profiles when xenografts contain 90% or more human cells. In addition, we present a novel in silico and experimental masking approach to identify probes and transcript clusters susceptible to cross-species hybridisation. Conclusions We demonstrate species-specific transcriptional profiles can be obtained from xenografts when high levels of engraftment are achieved or with the application of transcript cluster masks. Importantly, this masking approach can be applied and adapted to other xenograft models where human tissue infiltration is lower. This model provides a powerful platform for identifying genes and pathways associated with ALL disease progression and response to therapy in vivo.

  15. Evidence should trump intuition by preferring inbred strains to outbred stocks in preclinical research.

    Science.gov (United States)

    Festing, Michael F W

    2014-01-01

    Inbred strains of mice such as C57BL and BALB/c are more widely used in published work than outbred stocks of mice such as ICR and CD-1. In contrast, outbred stocks of rats such as Wistar and Sprague-Dawley are more widely used than inbred strains such as F344 and LEW. The properties of inbred and outbred mice and rats are briefly reviewed, and it is concluded that, with some exceptions, there is a strong case for using inbred strains in most controlled experiments. This is because they are usually more uniform, so that fewer animals are usually needed to detect a specified response and they are more repeatable, because they are genetically defined (i.e., the strain can be identified using genetic markers) and less liable to genetic change. Yet many scientists continue to use outbred animals. In Daniel Kahneman's book "Thinking Fast and Slow" he explains that we can answer questions in 2 ways: "fast" by intuition or "slow" by analytical reasoning. The former method is instantaneous, requires no thought but is not evidence based. Analytical reasoning is evidence based but requires hard work, which we all avoid. He has found that "… when faced with a difficult question, we often answer an easier one instead, usually without noticing the substitution." The target question of whether to choose outbred or inbred strains in controlled experiments is a difficult one requiring knowledge of the characteristics of these strains and the principles of experimental design. A substitute question, "are humans and outbred stocks both genetically heterogeneous," is easily answered in the affirmative. It is likely that many scientists are intuitively answering the substitute question and are assuming that they have answered the target question. If so they may be using the wrong animals in their research. Nor is the fact that humans and outbred stocks are alike in being genetically heterogeneous a reason for using them. The whole concept of a "model" is that it is similar to the

  16. Quantification of Lung Metastases from In Vivo Mouse Models

    DEFF Research Database (Denmark)

    Chang, Joan; Erler, Janine T

    2016-01-01

    Cancer research has made significant progress in terms of understanding and targeting primary tumors; however, the challenge remains for the successful treatment of metastatic cancers. This highlights the importance to use in vivo models to study the metastatic process, as well as for preclinical...... testing of compounds that could inhibit metastasis. As a result, proper quantification of metastases from in vivo models is of the utmost significance. Here, we provide a detailed protocol for collecting and handling lung tissues from mice, and guidance for subsequent analysis of metastases, as well...

  17. Mouse models of acute and chronic hepacivirus infection

    DEFF Research Database (Denmark)

    Billerbeck, Eva; Wolfisberg, Raphael; Fahnøe, Ulrik

    2017-01-01

    An estimated 71 million people worldwide are infected with hepatitis C virus (HCV). The lack of small-animal models has impeded studies of antiviral immune mechanisms. Here we show that an HCV-related hepacivirus discovered in Norway rats can establish high-titer hepatotropic infections in labora......An estimated 71 million people worldwide are infected with hepatitis C virus (HCV). The lack of small-animal models has impeded studies of antiviral immune mechanisms. Here we show that an HCV-related hepacivirus discovered in Norway rats can establish high-titer hepatotropic infections...... provide mechanistic insights into hepatic antiviral immunity, a prerequisite for the development of HCV vaccines....

  18. Development of a unilaterally-lesioned 6-OHDA mouse model of Parkinson's disease.

    Science.gov (United States)

    Thiele, Sherri L; Warre, Ruth; Nash, Joanne E

    2012-02-14

    The unilaterally lesioned 6-hyroxydopamine (6-OHDA)-lesioned rat model of Parkinson's disease (PD) has proved to be invaluable in advancing our understanding of the mechanisms underlying parkinsonian symptoms, since it recapitulates the changes in basal ganglia circuitry and pharmacology observed in parkinsonian patients(1-4). However, the precise cellular and molecular changes occurring at cortico-striatal synapses of the output pathways within the striatum, which is the major input region of the basal ganglia remain elusive, and this is believed to be site where pathological abnormalities underlying parkinsonian symptoms arise(3,5). In PD, understanding the mechanisms underlying changes in basal ganglia circuitry following degeneration of the nigro-striatal pathway has been greatly advanced by the development of bacterial artificial chromosome (BAC) mice over-expressing green fluorescent proteins driven by promoters specific for the two striatal output pathways (direct pathway: eGFP-D1; indirect pathway: eGFP-D2 and eGFP-A2a)(8), allowing them to be studied in isolation. For example, recent studies have suggested that there are pathological changes in synaptic plasticity in parkinsonian mice(9,10). However, these studies utilised juvenile mice and acute models of parkinsonism. It is unclear whether the changes described in adult rats with stable 6-OHDA lesions also occur in these models. Other groups have attempted to generate a stable unilaterally-lesioned 6-OHDA adult mouse model of PD by lesioning the medial forebrain bundle (MFB), unfortunately, the mortality rate in this study was extremely high, with only 14% surviving the surgery for 21 days or longer(11). More recent studies have generated intra-nigral lesions with both a low mortality rate >80% loss of dopaminergic neurons, however expression of L-DOPA induced dyskinesia(11,12,13,14) was variable in these studies. Another well established mouse model of PD is the MPTP-lesioned mouse(15). Whilst this

  19. FXN Promoter Silencing in the Humanized Mouse Model of Friedreich Ataxia.

    Directory of Open Access Journals (Sweden)

    Yogesh K Chutake

    Full Text Available Friedreich ataxia is caused by an expanded GAA triplet-repeat sequence in intron 1 of the FXN gene that results in epigenetic silencing of the FXN promoter. This silencing mechanism is seen in patient-derived lymphoblastoid cells but it remains unknown if it is a widespread phenomenon affecting multiple cell types and tissues.The humanized mouse model of Friedreich ataxia (YG8sR, which carries a single transgenic insert of the human FXN gene with an expanded GAA triplet-repeat in intron 1, is deficient for FXN transcript when compared to an isogenic transgenic mouse lacking the expanded repeat (Y47R. We found that in YG8sR the deficiency of FXN transcript extended both upstream and downstream of the expanded GAA triplet-repeat, suggestive of deficient transcriptional initiation. This pattern of deficiency was seen in all tissues tested, irrespective of whether they are known to be affected or spared in disease pathogenesis, in both neuronal and non-neuronal tissues, and in cultured primary fibroblasts. FXN promoter function was directly measured via metabolic labeling of newly synthesized transcripts in fibroblasts, which revealed that the YG8sR mouse was significantly deficient in transcriptional initiation compared to the Y47R mouse.Deficient transcriptional initiation accounts for FXN transcriptional deficiency in the humanized mouse model of Friedreich ataxia, similar to patient-derived cells, and the mechanism underlying promoter silencing in Friedreich ataxia is widespread across multiple cell types and tissues.

  20. Genetic variation between Spanish and American versions of sweet corn inbred lines

    OpenAIRE

    Revilla Temiño, Pedro; Abuín, María del Carmen; Malvar Pintos, Rosa Ana; Soengas Fernández, María del Pilar; Ordás López, Bernardo; Ordás Pérez, Amando

    2005-01-01

    Conservation of maize inbred lines in different stations causes variability among strains. The objective of this research was to determine agronomic and molecular differences in American sweet corn inbreds maintained in Spain. American and Spanish strains of five sweet corn inbred lines were characterized by using 34 RAPD primers that produced 168 consistent bands. Strains of four of these inbreds were crossed in a diallel design, and hybrids were evaluated in four environments in northwester...

  1. Gnotobiotic mouse model's contribution to understanding host-pathogen interactions

    Czech Academy of Sciences Publication Activity Database

    Kubelková, K.; Benuchová, M.; Kozáková, Hana; Šinkora, Marek; Kročová, Z.; Pejchal, J.; Macela, A.

    2016-01-01

    Roč. 73, č. 20 (2016), s. 3961-3969 ISSN 1420-682X R&D Projects: GA ČR GA15-02274S Institutional support: RVO:61388971 Keywords : Germ-free model * Gnotobiology * Host-pathogen interaction Subject RIV: EC - Immunology Impact factor: 5.788, year: 2016

  2. CSF transthyretin neuroprotection in a mouse model of brain ischemia

    DEFF Research Database (Denmark)

    Santos, Sofia Duque; Lambertsen, Kate Lykke; Clausen, Bettina Hjelm

    2010-01-01

    Brain injury caused by ischemia is a major cause of human mortality and physical/cognitive disability worldwide. Experimentally, brain ischemia can be induced surgically by permanent middle cerebral artery occlusion. Using this model, we studied the influence of transthyretin in ischemic stroke. ...

  3. Molecular Alterations in a Mouse Cardiac Model of Friedreich Ataxia

    DEFF Research Database (Denmark)

    Anzovino, Amy; Chiang, Shannon; Brown, Bronwyn E

    2017-01-01

    Nuclear factor-erythroid 2-related factor-2 (Nrf2) is a master regulator of the antioxidant response. However, studies in models of Friedreich ataxia, a neurodegenerative and cardiodegenerative disease associated with oxidative stress, reported decreased Nrf2 expression attributable to unknown me...

  4. Abnormalities in the tricarboxylic Acid cycle in Huntington disease and in a Huntington disease mouse model.

    Science.gov (United States)

    Naseri, Nima N; Xu, Hui; Bonica, Joseph; Vonsattel, Jean Paul G; Cortes, Etty P; Park, Larry C; Arjomand, Jamshid; Gibson, Gary E

    2015-06-01

    Glucose metabolism is reduced in the brains of patients with Huntington disease (HD). The mechanisms underlying this deficit, its link to the pathology of the disease, and the vulnerability of the striatum in HD remain unknown. Abnormalities in some of the key mitochondrial enzymes involved in glucose metabolism, including the pyruvate dehydrogenase complex (PDHC) and the tricarboxylic acid (TCA) cycle, may contribute to these deficits. Here, activities for these enzymes and select protein levels were measured in human postmortem cortex and in striatum and cortex of an HD mouse model (Q175); mRNA levels encoding for these enzymes were also measured in the Q175 mouse cortex. The activities of PDHC and nearly all of the TCA cycle enzymes were dramatically lower (-50% to 90%) in humans than in mice. The activity of succinate dehydrogenase increased with HD in human (35%) and mouse (23%) cortex. No other changes were detected in the human HD cortex or mouse striatum. In Q175 cortex, there were increased activities of PDHC (+12%) and aconitase (+32%). Increased mRNA levels for succinyl thiokinase (+88%) and isocitrate dehydrogenase (+64%) suggested an upregulation of the TCA cycle. These patterns of change differ from those reported in other diseases, which may offer unique metabolic therapeutic opportunities for HD patients.

  5. Progressive Spatial Processing Deficits in a Mouse Model of the Fragile X Premutation

    Science.gov (United States)

    Hunsaker, Michael R.; Wenzel, H. Jürgen; Willemsen, Rob; Berman, Robert F.

    2012-01-01

    Fragile X associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disorder that is the result of a CGG trinucleotide repeat expansion in the range of 55-200 in the 5’ UTR of the FMR1 gene. To better understand the progression of this disorder, a knock-in (CGG KI) mouse was developed by substituting the mouse CGG8 trinucleotide repeat with an expanded CGG98 repeat from human origin. It has been shown that this mouse shows deficits on the water maze at 52 weeks of age. In the present study, this CGG KI mouse model of FXTAS was tested on behavioral tasks that emphasize spatial information processing. The results demonstrate that at 12 and 24 weeks of age, CGG KI mice were unable to detect a change in the distance between two objects (metric task), but showed intact detection of a transposition of the objects (topological task). At 48 weeks of age, CGG KI mice were unable to detect either change in object location. These data indicate that hippocampal-dependent impairments in spatial processing may occur prior to parietal cortex-dependent impairments in FXTAS. PMID:20001115

  6. Ultrasonic vocalizations in Shank mouse models for autism spectrum disorders: detailed spectrographic analyses and developmental profiles.

    Science.gov (United States)

    Wöhr, Markus

    2014-06-01

    Autism spectrum disorders (ASD) are a class of neurodevelopmental disorders characterized by persistent deficits in social behavior and communication across multiple contexts, together with repetitive patterns of behavior, interests, or activities. The high concordance rate between monozygotic twins supports a strong genetic component. Among the most promising candidate genes for ASD is the SHANK gene family, including SHANK1, SHANK2 (ProSAP1), and SHANK3 (ProSAP2). SHANK genes are therefore important candidates for modeling ASD in mice and various genetic models were generated within the last few years. As the diagnostic criteria for ASD are purely behaviorally defined, the validity of mouse models for ASD strongly depends on their behavioral phenotype. Behavioral phenotyping is therefore a key component of the current translational approach and requires sensitive behavioral test paradigms with high relevance to each diagnostic symptom category. While behavioral phenotyping assays for social deficits and repetitive patterns of behavior, interests, or activities are well-established, the development of sensitive behavioral test paradigms to assess communication deficits in mice is a daunting challenge. Measuring ultrasonic vocalizations (USV) appears to be a promising strategy. In the first part of the review, an overview on the different types of mouse USV and their communicative functions will be provided. The second part is devoted to studies on the emission of USV in Shank mouse models for ASD. Evidence for communication deficits was obtained in Shank1, Shank2, and Shank3 genetic mouse models for ASD, often paralleled by behavioral phenotypes relevant to social deficits seen in ASD. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. A mouse model for binge-like sucrose overconsumption: Contribution of enhanced motivation for sweetener consumption.

    Science.gov (United States)

    Yasoshima, Yasunobu; Shimura, Tsuyoshi

    2015-01-01

    Behavioral and neural features of binge-like sugar overconsumption have been studied using rat models. However, few mouse models are available to examine the interaction between neural and genetic underpinnings of bingeing. In the present study, we first aim to establish a simple mouse model of binge-like sucrose overconsumption using daytime limited access training in food-restricted male mice. Trained mice received 4-h limited access to both 0.5M sucrose solution and chow for 10 days. Three control groups received (1) 4-h sucrose and 20-h chow access, (2) 20-h sucrose and 4-h, or (3) 20-h chow access, respectively. Only the trained group showed progressively increased sucrose consumption during brief periods of time and developed binge-like excessive behavior. Next, we examined whether the present mouse model mimicked a human feature of binge eating known as "eating when not physically hungry." Trained mice consumed significantly more sucrose or non-caloric sweetener (saccharin) during post-training days even after they nocturnally consumed substantial chow prior to daytime sweetener access. In other trained groups, both a systemic administration of glucose and substantial chow consumption prior to the daytime limited sucrose access failed to reduce binge-like sucrose overconsumption. Our results suggest that even when caloric consumption is not necessarily required, limited access training shapes and triggers binge-like overconsumption of sweetened solution in trained mice. The binge-like behavior in trained mice may be mainly due to enhanced hedonic motivation for the sweetener's taste. The present study suggests that our mouse model for binge-like sugar overconsumption may mimic some human features of binge eating and can be used to investigate the roles of neural and genetic mechanisms in binge-like overconsumption of sweetened substances in the absence of physical hunger. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Cognitive Impairment, Neuroimaging, and Alzheimer Neuropathology in Mouse Models of Down Syndrome

    Science.gov (United States)

    Hamlett, Eric D.; Boger, Heather A.; Ledreux, Aurélie; Kelley, Christy M.; Mufson, Elliott J.; Falangola, Maria F.; Guilfoyle, David N.; Nixon, Ralph A.; Patterson, David; Duval, Nathan; Granholm, Ann-Charlotte E.

    2016-01-01

    Down syndrome (DS) is the most common non-lethal genetic condition that affects approximately 1 in 700 births in the United States of America. DS is characterized by complete or segmental chromosome 21 trisomy, which leads to variable intellectual disabilities, progressive memory loss, and accelerated neurodegeneration with age. During the last three decades, people with DS have experienced a doubling of life expectancy due to progress in treatment of medical comorbidities, which has allowed this population to reach the age when they develop early onset Alzheimer’s disease (AD). Individuals with DS develop cognitive and pathological hallmarks of AD in their fourth or fifth decade, and are currently lacking successful prevention or treatment options for dementia. The profound memory deficits associated with DS-related AD (DS-AD) have been associated with degeneration of several neuronal populations, but mechanisms of neurodegeneration are largely unexplored. The most successful animal model for DS is the Ts65Dn mouse, but several new models have also been developed. In the current review, we discuss recent findings and potential treatment options for the management of memory loss and AD neuropathology in DS mouse models. We also review age-related neuropathology, and recent findings from neuroimaging studies. The validation of appropriate DS mouse models that mimic neurodegeneration and memory loss in humans with DS can be valuable in the study of novel preventative and treatment interventions, and may be helpful in pinpointing gene-gene interactions as well as specific gene segments involved in neurodegeneration. PMID:26391050

  9. Revisiting the case for genetically engineered mouse models in human myelodysplastic syndrome research.

    Science.gov (United States)

    Zhou, Ting; Kinney, Marsha C; Scott, Linda M; Zinkel, Sandra S; Rebel, Vivienne I

    2015-08-27

    Much-needed attention has been given of late to diseases specifically associated with an expanding elderly population. Myelodysplastic syndrome (MDS), a hematopoietic stem cell-based blood disease, is one of these. The lack of clear understanding of the molecular mechanisms underlying the pathogenesis of this disease has hampered the development of efficacious therapies, especially in the presence of comorbidities. Mouse models could potentially provide new insights into this disease, although primary human MDS cells grow poorly in xenografted mice. This makes genetically engineered murine models a more attractive proposition, although this approach is not without complications. In particular, it is unclear if or how myelodysplasia (abnormal blood cell morphology), a key MDS feature in humans, presents in murine cells. Here, we evaluate the histopathologic features of wild-type mice and 23 mouse models with verified myelodysplasia. We find that certain features indicative of myelodysplasia in humans, such as Howell-Jolly bodies and low neutrophilic granularity, are commonplace in healthy mice, whereas other features are similarly abnormal in humans and mice. Quantitative hematopoietic parameters, such as blood cell counts, are required to distinguish between MDS and related diseases. We provide data that mouse models of MDS can be genetically engineered and faithfully recapitulate human disease. © 2015 by The American Society of Hematology.

  10. Mouse models of NPM1-mutated acute myeloid leukemia: biological and clinical implications.

    Science.gov (United States)

    Sportoletti, P; Varasano, E; Rossi, R; Mupo, A; Tiacci, E; Vassiliou, G; Martelli, M P; Falini, B

    2015-02-01

    Acute myeloid leukemia (AML) carrying nucleophosmin (NPM1) mutations displays distinct biological and clinical features that led to its inclusion as a provisional disease entity in the 2008 World Health Organization (WHO) classification of myeloid neoplasms. Studies of the molecular mechanisms underlying the pathogenesis of NPM1-mutated AML have benefited greatly from several mouse models of this leukemia developed over the past few years. Immunocompromised mice xenografted with NPM1-mutated AML served as the first valuable tool for defining the biology of the disease in vivo. Subsequently, genetically engineered mouse models of the NPM1 mutation, including transgenic and knock-in alleles, allowed the generation of mice with a constant genotype and a reproducible phenotype. These models have been critical for investigating the nature of the molecular effects of these mutations, defining the function of leukemic stem cells in NPM1-mutated AML, identifying chemoresistant preleukemic hemopoietic stem cells and unraveling the key molecular events that cooperate with NPM1 mutations to induce AML in vivo. Moreover, they can serve as a platform for the discovery and validation of new antileukemic drugs in vivo. Advances derived from the analysis of these mouse models promise to greatly accelerate the development of new molecularly targeted therapies for patients with NPM1-mutated AML.

  11. A novel transgenic mouse model of lysosomal storage disorder

    OpenAIRE

    Ortiz-Miranda, Sonia; Ji, Rui; Jurczyk, Agata; Aryee, Ken-Edwin; Mo, Shunyan; Fletcher, Terry; Shaffer, Scott A.; Greiner, Dale L.; Bortell, Rita; Gregg, Ronald G.; Cheng, Alan; Hennings, Leah J.; Rittenhouse, Ann R.

    2016-01-01

    We provide an explanation for striking pathology found in a subset of genetically engineered mice homozygous for a rat CaVβ2a transgene (Tg+/+). Multiple transgene (Tg) copies inserted into chromosome 19; at this same site a large deletion occurred, ablating cholesterol 25-hydroxylase and partially deleting lysosomal acid lipase and CD95. Their loss of function can account for lipid build up and immune system hypertrophy, which defines this phenotype and serendipitously provides a novel model...

  12. Modelling human myoblasts survival upon xenotransplantation into immunodeficient mouse muscle.

    Science.gov (United States)

    Praud, Christophe; Vauchez, Karine; Zongo, Pascal; Vilquin, Jean-Thomas

    2018-03-15

    Cell transplantation has been challenged in several clinical indications of genetic or acquired muscular diseases, but therapeutic success were mitigated. To understand and improve the yields of tissue regeneration, we aimed at modelling the fate of CD56-positive human myoblasts after transplantation. Using immunodeficient severe combined immunodeficiency (SCID) mice as recipients, we assessed the survival, integration and satellite cell niche occupancy of human myoblasts by a triple immunohistochemical labelling of laminin, dystrophin and human lamin A/C. The counts were integrated into a classical mathematical decline equation. After injection, human cells were essentially located in the endomysium, then they disappeared progressively from D0 to D28. The final number of integrated human nuclei was grossly determined at D2 after injection, suggesting that no more efficient fusion between donor myoblasts and host fibers occurs after the resolution of the local damages created by needle insertion. Almost 1% of implanted human cells occupied a satellite-like cell niche. Our mathematical model validated by histological counting provided a reliable quantitative estimate of human myoblast survival and/or incorporation into SCID muscle fibers. Informations brought by histological labelling and this mathematical model are complementary. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. A Susceptible Mouse Model for Zika Virus Infection.

    Directory of Open Access Journals (Sweden)

    Stuart D Dowall

    2016-05-01

    Full Text Available Zika virus (ZIKV is a mosquito-borne pathogen which has recently spread beyond Africa and into Pacific and South American regions. Despite first being detected in 1947, very little information is known about the virus, and its spread has been associated with increases in Guillain-Barre syndrome and microcephaly. There are currently no known vaccines or antivirals against ZIKV infection. Progress in assessing interventions will require the development of animal models to test efficacies; however, there are only limited reports on in vivo studies. The only susceptible murine models have involved intracerebral inoculations or juvenile animals, which do not replicate natural infection. Our report has studied the effect of ZIKV infection in type-I interferon receptor deficient (A129 mice and the parent strain (129Sv/Ev after subcutaneous challenge in the lower leg to mimic a mosquito bite. A129 mice developed severe symptoms with widespread viral RNA detection in the blood, brain, spleen, liver and ovaries. Histological changes were also striking in these animals. 129Sv/Ev mice developed no clinical symptoms or histological changes, despite viral RNA being detectable in the blood, spleen and ovaries, albeit at lower levels than those seen in A129 mice. Our results identify A129 mice as being highly susceptible to ZIKV and thus A129 mice represent a suitable, and urgently required, small animal model for the testing of vaccines and antivirals.

  14. Genetic analysis of japonica x indica recombinant inbred lines and ...

    African Journals Online (AJOL)

    Genetic analysis of japonica x indica recombinant inbred lines and characterization of major fragrance gene by microsatellite markers. ... At some SSR loci, new/recombinant alleles were observed, which indicate the active recombination between genomes of two rice varieties and can be used for linkage mapping once ...

  15. Combing Ability Analysis ofamong Early Generation Maize Inbred ...

    African Journals Online (AJOL)

    dagne.cimdom

    estimate combining ability effects of locally developed and introduced early generation maize inbred lines for grain ... variance revealed significant difference among the hybrids for all studied traits. General ... Guto LMS5, L15 x SC22 and L20 x TSC22) gave significantly higher grain yield advantage over the two standard ...

  16. Regeneration of Sudanese maize inbred lines and open pollinated ...

    African Journals Online (AJOL)

    Eight maize inbred lines and three open pollinated varieties from Sudan were evaluated for their response to tissue culture. Immature embryos obtained 16 days after pollination were used as explants for callus induction. Calli were induced on LS medium supplemented with 2 mg/L 2,4-dichlorophenoxyacetic acid.

  17. determination of the heterotic groups of maize inbred lines

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    Maize weevil (Sitophilus zeamais Motschulsky) is a major maize (Zea mays L) storage insect pest in the tropics. Fifty-two inbred lines developed for weevil resistance were crossed to two testers, A and B, to determine their heterotic groups and inheritance of resistance to maize weevil. For 10 testcrosses selected for ...

  18. Haldane, Waddington and recombinant inbred lines: extension of ...

    Indian Academy of Sciences (India)

    In the early 1930s, J. B. S. Haldane and C. H. Waddington collaborated on the consequences of genetic linkage and inbreeding. One elegant mathematical genetics problem solved by them concerns recombinant inbred lines (RILs) produced via repeated self or brother–sister mating. In this classic contribution, Haldane ...

  19. Genetic loci mapping for ear axis weight using recombinant inbred ...

    African Journals Online (AJOL)

    Ear axis weight (EAW) is one of the important agronomic traits in maize (Zea mays L.), related to yield. To understand its genetic basis, a recombinant inbred line (RIL) population, derived from the cross Mo17 × Huangzao4, was used for quantitative trait locus mapping (QTL) for EAW under high and low nitrogen (N) regimes.

  20. Biplot analysis of diallel crosses of NS maize inbred lines

    NARCIS (Netherlands)

    Bocanski, J.; Nastasic, A.; Stanisavljevic, D.; Sreckov, Z.; Mitrovic, B.; Treskic, S.; Vukosavljev, M.

    2011-01-01

    Bocanski J., A. Nastasic, D. Stanisavljevic, Z. Sreckov, B. Mitrovic, S. Treskic and M. Vukosavljev (2011): Biplot analysis of diallel crosses of NS maize inbred lines- Genetika, Vol 43, No. 2, 277 - 284. Genetic markers, from morphological to molecular, in function with early Heterosis is a

  1. Screening of recombinant inbred lines for salinity tolerance in bread ...

    African Journals Online (AJOL)

    Screening a large number of plants for salinity tolerance is not easy, therefore this investigation was performed to evaluate and screen 186 F8 recombinant inbred lines (RILs) derived from a cross between Superhead#2 (Super Seri) and Roshan wheat varieties for salinity tolerance. All the individuals were evaluated under ...

  2. Regeneration of Sudanese maize inbred lines and open pollinated ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-06-03

    Jun 3, 2008 ... Eight maize inbred lines and three open pollinated varieties from Sudan were evaluated for their response to tissue ... Keywords: Sudanese maize genotypes, embryogenic callus, regeneration, and tissue culture. INTRODUCTION .... genes have been implicated in the inheritance of callus induction and ...

  3. Assessment of genetic variability of maize inbred lines and their ...

    African Journals Online (AJOL)

    Assessment of genetic variability of maize inbred lines and their hybrids under normal and drought conditions. ... Nigeria Agricultural Journal ... Analysis of variance revealed significant differences for most of the characters under study which indicates the presence of sufficient amount of variability offering ample scope for ...

  4. Linking susceptibility genes and pathogenesis mechanisms using mouse models of systemic lupus erythematosus

    Directory of Open Access Journals (Sweden)

    Steve P. Crampton

    2014-09-01

    Full Text Available Systemic lupus erythematosus (SLE represents a challenging autoimmune disease from a clinical perspective because of its varied forms of presentation. Although broad-spectrum steroids remain the standard treatment for SLE, they have many side effects and only provide temporary relief from the symptoms of the disease. Thus, gaining a deeper understanding of the genetic traits and biological pathways that confer susceptibility to SLE will help in the design of more targeted and effective therapeutics. Both human genome-wide association studies (GWAS and investigations using a variety of mouse models of SLE have been valuable for the identification of the genes and pathways involved in pathogenesis. In this Review, we link human susceptibility genes for SLE with biological pathways characterized in mouse models of lupus, and discuss how the mechanistic insights gained could advance drug discovery for the disease.

  5. MTO1-deficient mouse model mirrors the human phenotype showing complex I defect and cardiomyopathy.

    Directory of Open Access Journals (Sweden)

    Lore Becker

    Full Text Available Recently, mutations in the mitochondrial translation optimization factor 1 gene (MTO1 were identified as causative in children with hypertrophic cardiomyopathy, lactic acidosis and respiratory chain defect. Here, we describe an MTO1-deficient mouse model generated by gene trap mutagenesis that mirrors the human phenotype remarkably well. As in patients, the most prominent signs and symptoms were cardiovascular and included bradycardia and cardiomyopathy. In addition, the mutant mice showed a marked worsening of arrhythmias during induction and reversal of anaesthesia. The detailed morphological and biochemical workup of murine hearts indicated that the myocardial damage was due to complex I deficiency and mitochondrial dysfunction. In contrast, neurological examination was largely normal in Mto1-deficient mice. A translational consequence of this mouse model may be to caution against anaesthesia-related cardiac arrhythmias which may be fatal in patients.

  6. Preclinical Imaging for the Study of Mouse Models of Thyroid Cancer

    Directory of Open Access Journals (Sweden)

    Adelaide Greco

    2017-12-01

    Full Text Available Thyroid cancer, which represents the most common tumors among endocrine malignancies, comprises a wide range of neoplasms with different clinical aggressiveness. One of the most important challenges in research is to identify mouse models that most closely resemble human pathology; other goals include finding a way to detect markers of disease that common to humans and mice and to identify the most appropriate and least invasive therapeutic strategies for specific tumor types. Preclinical thyroid imaging includes a wide range of techniques that allow for morphological and functional characterization of thyroid disease as well as targeting and in most cases, this imaging allows quantitative analysis of the molecular pattern of the thyroid cancer. The aim of this review paper is to provide an overview of all of the imaging techniques used to date both for diagnosis and theranostic purposes in mouse models of thyroid cancer.

  7. Branched chain amino acids attenuate major pathologies in mouse models of retinal degeneration and glaucoma.

    Science.gov (United States)

    Hasegawa, Tomoko; Ikeda, Hanako Ohashi; Iwai, Sachiko; Muraoka, Yuki; Tsuruyama, Tatsuaki; Okamoto-Furuta, Keiko; Kohda, Haruyasu; Kakizuka, Akira; Yoshimura, Nagahisa

    2018-02-01

    Retinal neuronal cell death underlies many incurable eye diseases such as retinitis pigmentosa (RP) and glaucoma, and causes adult blindness. We have shown that maintenance of ATP levels via inhibiting ATP consumption is a promising strategy for preventing neuronal cell death. Here, we show that branched chain amino acids (BCAAs) are able to increase ATP production by enhancing glycolysis. In cell culture, supplementation of the culture media with BCAAs, but not glucose alone, enhanced cellular ATP levels, which was canceled by a glycolysis inhibitor. Administration of BCAAs to RP mouse models, rd10 and rd12 , significantly attenuated photoreceptor cell death morphologically and functionally, even when administration was started at later stages. Administration of BCAAs in a glaucoma mouse model also showed significant attenuation of retinal ganglion cell death. These results suggest that administration of BCAAs could contribute to a comprehensive therapeutic strategy for retinal neurodegenerative diseases such as RP and glaucoma.

  8. Fucoidan Extracted from Fucus evanescens Prevents Endotoxin-Induced Damage in a Mouse Model of Endotoxemia

    Directory of Open Access Journals (Sweden)

    Tatyana A. Kuznetsova

    2014-01-01

    Full Text Available An important problem of treating patients with endotoxemia is to find drugs to reduce the negative effects of endotoxin on the organism. We tested fucoidan (sulfated polysaccharide from the brown alga Fucus evanescens as a potential drug in a mouse model of endotoxemia inducted by lipopolysaccharide (LPS. The survival time of mice injected with LPS increased under fucoidan treatment compared with the group of mice injected with LPS only. The preventive administration of fucoidan to mice with endotoxemia resulted in inhibition of increased levels of proinflammatory cytokines (TNFα and IL-6, as well as decreasing of the processes of hypercoagulability. The parenteral or per os administration of fucoidan resulted in decreasing the degree of microcirculatory disorders and secondary dystrophic-destructive changes in parenchymal organs of mice with endotoxemia. Taken together, these results demonstrate that fucoidan prevents endotoxin-induced damage in a mouse model of endotoxemia and increases the mice’s resistance to LPS.

  9. The Gut Microbiome Is Altered in a Letrozole-Induced Mouse Model of Polycystic Ovary Syndrome.

    Directory of Open Access Journals (Sweden)

    Scott T Kelley

    Full Text Available Women with polycystic ovary syndrome (PCOS have reproductive and metabolic abnormalities that result in an increased risk of infertility, diabetes and cardiovascular disease. The large intestine contains a complex community of microorganisms (the gut microbiome that is dysregulated in humans with obesity and type 2 diabetes. Using a letrozole-induced PCOS mouse model, we demonstrated significant diet-independent changes in the gut microbial community, suggesting that gut microbiome dysbiosis may also occur in PCOS women. Letrozole treatment was associated with a time-dependent shift in the gut microbiome and a substantial reduction in overall species and phylogenetic richness. Letrozole treatment also correlated with significant changes in the abundance of specific Bacteroidetes and Firmicutes previously implicated in other mouse models of metabolic disease in a time-dependent manner. Our results suggest that the hyperandrogenemia observed in PCOS may significantly alter the gut microbiome independently of diet.

  10. Imaging noradrenergic influence on amyloid pathology in mouse models of Alzheimer's disease

    International Nuclear Information System (INIS)

    Winkeler, A.; Waerzeggers, Y.; Klose, A.; Monfared, P.; Thomas, A.V.; Jacobs, A.H.; Schubert, M.; Heneka, M.T.

    2008-01-01

    Molecular imaging aims towards the non-invasive characterization of disease-specific molecular alterations in the living organism in vivo. In that, molecular imaging opens a new dimension in our understanding of disease pathogenesis, as it allows the non-invasive determination of the dynamics of changes on the molecular level. The imaging technology being employed includes magnetic resonance imaging (MRI) and nuclear imaging as well as optical-based imaging technologies. These imaging modalities are employed together or alone for disease phenotyping, development of imaging-guided therapeutic strategies and in basic and translational research. In this study, we review recent investigations employing positron emission tomography and MRI for phenotyping mouse models of Alzheimers' disease by imaging. We demonstrate that imaging has an important role in the characterization of mouse models of neurodegenerative diseases. (orig.)

  11. Linking susceptibility genes and pathogenesis mechanisms using mouse models of systemic lupus erythematosus

    Science.gov (United States)

    Crampton, Steve P.; Morawski, Peter A.; Bolland, Silvia

    2014-01-01

    Systemic lupus erythematosus (SLE) represents a challenging autoimmune disease from a clinical perspective because of its varied forms of presentation. Although broad-spectrum steroids remain the standard treatment for SLE, they have many side effects and only provide temporary relief from the symptoms of the disease. Thus, gaining a deeper understanding of the genetic traits and biological pathways that confer susceptibility to SLE will help in the design of more targeted and effective therapeutics. Both human genome-wide association studies (GWAS) and investigations using a variety of mouse models of SLE have been valuable for the identification of the genes and pathways involved in pathogenesis. In this Review, we link human susceptibility genes for SLE with biological pathways characterized in mouse models of lupus, and discuss how the mechanistic insights gained could advance drug discovery for the disease. PMID:25147296

  12. Transgenic Mouse Models Transferred into the Test Tube: New Perspectives for Developmental Toxicity Testing In Vitro?

    Science.gov (United States)

    Kugler, Josephine; Luch, Andreas; Oelgeschläger, Michael

    2016-10-01

    Despite our increasing understanding of molecular mechanisms controlling embryogenesis, the identification and characterization of teratogenic substances still heavily relies on animal testing. Embryonic development depends on cell-autonomous and non-autonomous processes including spatiotemporally regulated extracellular signaling activities. These have been elucidated in transgenic mouse models harboring easily detectable reporter genes under the control of evolutionarily conserved signaling cascades. We propose combining these transgenic mouse models and cells derived thereof with existing alternative toxicological testing strategies. This would enable the plausibility of in vitro data to be verified in light of in vivo data and, ultimately, facilitate regulatory acceptance of in vitro test methods. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Lipid profiling of in vitro cell models of adipogenic differentiation: relationships with mouse adipose tissues

    OpenAIRE

    Liaw, Lucy; Prudovsky, Igor; Koza, Robert A.; Anunciado-Koza, Rea V.; Siviski, Matthew E.; Lindner, Volkhard; Friesel, Robert E.; Rosen, Clifford J.; Baker, Paul R.S.; Simons, Brigitte; Vary, Calvin P.H.

    2016-01-01

    Our objective was to characterize lipid profiles in cell models of adipocyte differentiation in comparison to mouse adipose tissues in vivo. A novel lipid extraction strategy was combined with global lipid profiling using direct infusion and sequential precursor ion fragmentation, termed MS/MSALL. Perirenal and inguinal white adipose tissue and interscapular brown adipose tissues from adult C57BL/6J mice were analyzed. 3T3-L1 preadipocytes, ear mesenchymal progenitor cells, and brown adipose-...

  14. Age-related spontaneous lumbar intervertebral disc degeneration in a mouse model.

    Science.gov (United States)

    Ohnishi, Takashi; Sudo, Hideki; Tsujimoto, Takeru; Iwasaki, Norimasa

    2018-01-01

    The pathogenesis of intervertebral disc degeneration is unclear, but it is a major cause of several spinal diseases. Animal models have historically provided an appropriate benchmark for understanding the human spine. However, there is little information about when intervertebral disc degeneration begins in the mouse or regarding the relationship between magnetic resonance imaging and histological findings. The aim for this study was to obtain information about age-related spontaneous intervertebral disc degeneration in the mouse lumbar spine using magnetic resonance imaging and a histological score regarding when the intervertebral disc degeneration started and how rapidly it progressed, as well as how our histological score detected the degeneration. The magnetic resonance imaging index yielded a moderate correlation with our Age-related model score. The Pfirrmann grade and magnetic resonance imaging index had moderate correlations with age. However, our Age-related model score had a high correlation with age. Intervertebral disc level was not a significant variable for the severity of disc degeneration. Both Pfirrmann grade and the Age-related model score were higher in the ≥14-month-old group than in the 6-month-old group. The present results indicated that mild but significant intervertebral disc degeneration occurred in 14-month-old mice, and the degree of degeneration progressed slowly, reaching a moderate to severe condition for 22-month-old mice. At least a 14-month follow-up is mandatory for evaluating spontaneous age-related mouse intervertebral disc degeneration. The histological classification score can precisely detect the gradual progression of age-related spontaneous intervertebral disc degeneration in the mouse lumbar spine, and is appropriate for evaluating it. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:224-232, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  15. Vitamin D Improves Neurogenesis and Cognition in a Mouse Model of Alzheimer’s Disease

    OpenAIRE

    Morello , Maria; Landel , Véréna; Lacassagne , Emmanuelle; Baranger , Kévin; Annweiler , Cedric; Féron , François; Millet , Pascal

    2018-01-01

    International audience; The impairment of hippocampal neurogenesis at the early stages of Alzheimer’s disease (AD) is believed to support early cognitive decline. Converging studies sustain the idea that vitamin D might be linked to the pathophysiology of AD and to hippocampal neurogenesis. Nothing being known about the effects of vitamin D on hippocampal neurogenesis in AD, we assessed them in a mouse model of AD. In a previous study, we observed that dietary vitamin D supplementation in fem...

  16. Disease Heterogeneity and Immune Biomarkers in Preclinical Mouse Models of Ovarian Carcinogenesis

    Science.gov (United States)

    2014-08-01

    the cancer risk, including the cervical epithelial transformation zone with HPV [41], the esophageal-gastric junction and Barrett’s esophagus [42], and...Sweetwood JP, Cheng Y, Pace JL, et al. (2000) Development of a syngeneic mouse model for events related to ovarian cancer . Carcinogenesis 21: 585–591...endometriosis-associated ovarian cancer (EAOC, endometrial and clear cell). Of these genes, complement pathway genes were consistently present, suggesting

  17. Investigating Ductal Carcinoma in Situ Using Noninvasive Imaging of Genetically Engineered Mouse Models

    Science.gov (United States)

    2013-08-01

    PJ, Gupta PB, Klebba I, Jones AD, et al. (2011) Genetic predisposition directs breast cancer phenotype by dictating progenitor cell fate. Cell Stem...Albertson DG, Simin K. Cooperativity of Rb, Brca1, and p53 in malignant breast cancer evolution. PLoS Genet . 2012;8(11). 16. Behbod F, Kittrell FS...Cre lines for genetic recombination, specifically WAP-Cre and K14Cre, which are widely utilized in mouse models of breast cancer (Liu et al. PNAS

  18. Obesity-Linked Mouse Models of Liver Cancer | Center for Cancer Research

    Science.gov (United States)

    Jimmy Stauffer, Ph.D., and colleagues working with Robert  Wiltrout, Ph.D., in CCR’s Cancer and Inflammation Program, along with collaborators in the Laboratory of Human Carcinogenesis, have developed a novel mouse model that demonstrates how fat-producing phenotypes can influence the development of hepatic cancer.   The team recently reported their findings in Cancer Research.

  19. Dynamic oxygenation measurements using a phosphorescent coating within a mammary window chamber mouse model

    Science.gov (United States)

    Schafer, Rachel; Gmitro, Arthur F.

    2015-01-01

    Phosphorescent lifetime imaging was employed to measure the spatial and temporal distribution of oxygen partial pressure in tissue under the coverslip of a mammary window chamber breast cancer mouse model. A thin platinum-porphyrin coating, whose phosphorescent lifetime varies monotonically with oxygen partial pressure, was applied to the coverslip surface. Dynamic temporal responses to induced modulations in oxygenation levels were measured using this approach. PMID:25780753

  20. Suppressing thyroid hormone signaling preserves cone photoreceptors in mouse models of retinal degeneration

    OpenAIRE

    Ma, Hongwei; Thapa, Arjun; Morris, Lynsie; Redmond, T. Michael; Baehr, Wolfgang; Ding, Xi-Qin

    2014-01-01

    Photoreceptors degenerate in a wide array of hereditary retinal diseases and age-related macular degeneration. There is currently no treatment available for retinal degenerations. While outnumbered roughly 20:1 by rods in the human retina, it is the cones that mediate color vision and visual acuity, and their survival is critical for vision. In this communication, we investigate whether thyroid hormone (TH) signaling affects cone viability in retinal degeneration mouse models. TH signaling is...

  1. Proteomic profiling of the hypothalamus in a mouse model of cancer-induced anorexia-cachexia

    OpenAIRE

    Ihnatko, Robert; Post, Claes; Blomqvist, Anders

    2013-01-01

    Background: Anorexia-cachexia is a common and severe cancer-related complication but the underlying mechanisms are largely unknown. Here, using a mouse model for tumour-induced anorexia-cachexia, we screened for proteins that are differentially expressed in the hypothalamus, the brain’s metabolic control centre. Methods: The hypothalamus of tumour-bearing mice with implanted methylcholanthrene-induced sarcoma (MCG 101) displaying anorexia and their sham-implanted pair-fed or free-fed litterma...

  2. A viable mouse model for Netherton syndrome based on mosaic inactivation of the Spink5 gene

    Czech Academy of Sciences Publication Activity Database

    Kašpárek, Petr; Ileninová, Zuzana; Hanečková, Radka; Kanchev, Ivan; Jeníčková, Irena; Sedláček, Radislav

    2016-01-01

    Roč. 397, č. 12 (2016), s. 1287-1292 ISSN 1431-6730 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0109; GA MŠk(CZ) LQ1604; GA MŠk(CZ) LM2011032; GA MŠk(CZ) LO1509 Institutional support: RVO:68378050 Keywords : mosaicism * mouse model * netherton syndrome * skin * SPINK5 * TALEN Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.273, year: 2016

  3. Usefulness of running wheel for detection of congestive heart failure in dilated cardiomyopathy mouse model.

    Directory of Open Access Journals (Sweden)

    Masami Sugihara

    Full Text Available BACKGROUND: Inherited dilated cardiomyopathy (DCM is a progressive disease that often results in death from congestive heart failure (CHF or sudden cardiac death (SCD. Mouse models with human DCM mutation are useful to investigate the developmental mechanisms of CHF and SCD, but knowledge of the severity of CHF in live mice is necessary. We aimed to diagnose CHF in live DCM model mice by measuring voluntary exercise using a running wheel and to determine causes of death in these mice. METHODOLOGY/PRINCIPAL FINDINGS: A knock-in mouse with a mutation in cardiac troponin T (ΔK210 (DCM mouse, which results in frequent death with a t(1/2 of 70 to 90 days, was used as a DCM model. Until 2 months of age, average wheel-running activity was similar between wild-type and DCM mice (approximately 7 km/day. At approximately 3 months, some DCM mice demonstrated low running activity (LO: 5 km/day. In the LO group, the lung weight/body weight ratio was much higher than that in the other groups, and the lungs were infiltrated with hemosiderin-loaded alveolar macrophages. Furthermore, echocardiography showed more severe ventricular dilation and a lower ejection fraction, whereas Electrocardiography (ECG revealed QRS widening. There were two patterns in the time courses of running activity before death in DCM mice: deaths with maintained activity and deaths with decreased activity. CONCLUSIONS/SIGNIFICANCE: Our results indicate that DCM mice with low running activity developed severe CHF and that running wheels are useful for detection of CHF in mouse models. We found that approximately half of ΔK210 DCM mice die suddenly before onset of CHF, whereas others develop CHF, deteriorate within 10 to 20 days, and die.

  4. Vanadium Inhalation in a Mouse Model for the Understanding of Air-Suspended Particle Systemic Repercussion

    Directory of Open Access Journals (Sweden)

    T. I. Fortoul

    2011-01-01

    Full Text Available There is an increased concern about the health effects that air-suspended particles have on human health which have been dissected in animal models. Using CD-1 mouse, we explore the effects that vanadium inhalation produce in different tissues and organs. Our findings support the systemic effects of air pollution. In this paper, we describe our findings in different organs in our conditions and contrast our results with the literature.

  5. Mouse models for the study of postnatal cardiac hypertrophy

    Directory of Open Access Journals (Sweden)

    A. Del Olmo-Turrubiarte

    2015-06-01

    Full Text Available The main objective of this study was to create a postnatal model for cardiac hypertrophy (CH, in order to explain the mechanisms that are present in childhood cardiac hypertrophy. Five days after implantation, intraperitoneal (IP isoproterenol (ISO was injected for 7 days to pregnant female mice. The fetuses were obtained at 15, 17 and 19 dpc from both groups, also newborns (NB, neonates (7–15 days and young adults (6 weeks of age. Histopathological exams were done on the hearts. Immunohistochemistry and western blot demonstrated GATA4 and PCNA protein expression, qPCR real time the mRNA of adrenergic receptors (α-AR and β-AR, alpha and beta myosins (α-MHC, β-MHC and GATA4. After the administration of ISO, there was no change in the number of offsprings. We observed significant structural changes in the size of the offspring hearts. Morphometric analysis revealed an increase in the size of the left ventricular wall and interventricular septum (IVS. Histopathological analysis demonstrated loss of cellular compaction and presence of left ventricular small fibrous foci after birth. Adrenergic receptors might be responsible for changing a physiological into a pathological hypertrophy. However GATA4 seemed to be the determining factor in the pathology. A new animal model was established for the study of pathologic CH in early postnatal stages.

  6. Autophagy impairment in a mouse model of neuropathic pain

    Directory of Open Access Journals (Sweden)

    Berliocchi Laura

    2011-10-01

    Full Text Available Abstract Autophagy is an intracellular membrane trafficking pathway controlling the delivery of cytoplasmic material to the lysosomes for degradation. It plays an important role in cell homeostasis in both normal settings and abnormal, stressful conditions. It is now recognised that an imbalance in the autophagic process can impact basal cell functions and this has recently been implicated in several human diseases, including neurodegeneration and cancer. Here, we investigated the consequences of nerve injury on the autophagic process in a commonly used model of neuropathic pain. The expression and modulation of the main autophagic marker, the microtubule-associated protein 1 light chain 3 (LC3, was evaluated in the L4-L5 cord segment seven days after spinal nerve ligation (SNL. Levels of LC3-II, the autophagosome-associated LC3 form, were markedly higher in the spinal cord ipsilateral to the ligation side, appeared to correlate with the upregulation of the calcium channel subunit α2δ-1 and were not present in mice that underwent sham surgery. However, LC3-I and Beclin 1 expression were only slightly increased. On the contrary, SNL promoted the accumulation of the ubiquitin- and LC3-binding protein p62, which inversely correlates with autophagic activity, thus pointing to a block of autophagosome turnover. Our data showed for the first time that basal autophagy is disrupted in a model of neuropathic pain.

  7. Resveratrol Neuroprotection in a Chronic Mouse Model of Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Zoe eFonseca-Kelly

    2012-05-01

    Full Text Available Resveratrol is a naturally-occurring polyphenol that activates SIRT1, an NAD-dependent deacetylase. SRT501, a pharmaceutical formulation of resveratrol with enhanced systemic absorption, prevents neuronal loss without suppressing inflammation in mice with relapsing experimental autoimmune encephalomyelitis (EAE, a model of multiple sclerosis. In contrast, resveratrol has been reported to suppress inflammation in chronic EAE, although neuroprotective effects were not evaluated. The current studies examine potential neuroprotective and immunomodulatory effects of resveratrol in chronic EAE induced by immunization with myelin oligodendroglial glycoprotein peptide in C57/Bl6 mice. Effects of two distinct formulations of resveratrol administered daily orally were compared. Resveratrol delayed the onset of EAE compared to vehicle-treated EAE mice, but did not prevent or alter the phenotype of inflammation in spinal cords or optic nerves. Significant neuroprotective effects were observed, with higher numbers of retinal ganglion cells found in eyes of resveratrol-treated EAE mice with optic nerve inflammation. Results demonstrate that resveratrol prevents neuronal loss in this chronic demyelinating disease model, similar to its effects in relapsing EAE. Differences in immunosuppression compared with prior studies suggest that immunomodulatory effects may be limited and may depend on specific immunization parameters or timing of treatment. Importantly, neuroprotective effects can occur without immunosuppression, suggesting a potential additive benefit of resveratrol in combination with anti-inflammatory therapies for multiple sclerosis.

  8. The PPCD1 mouse: characterization of a mouse model for posterior polymorphous corneal dystrophy and identification of a candidate gene.

    Directory of Open Access Journals (Sweden)

    Anna L Shen

    2010-08-01

    Full Text Available The PPCD1 mouse, a spontaneous mutant that arose in our mouse colony, is characterized by an enlarged anterior chamber resulting from metaplasia of the corneal endothelium and blockage of the iridocorneal angle by epithelialized corneal endothelial cells. The presence of stratified multilayered corneal endothelial cells with abnormal patterns of cytokeratin expression are remarkably similar to those observed in human posterior polymorphous corneal dystrophy (PPCD and the sporadic condition, iridocorneal endothelial syndrome. Affected eyes exhibit epithelialized corneal endothelial cells, with inappropriate cytokeratin expression and proliferation over the iridocorneal angle and posterior cornea. We have termed this the "mouse PPCD1" phenotype and mapped the mouse locus for this phenotype, designated "Ppcd1", to a 6.1 Mbp interval on Chromosome 2, which is syntenic to the human Chromosome 20 PPCD1 interval. Inheritance of the mouse PPCD1 phenotype is autosomal dominant, with complete penetrance on the sensitive DBA/2J background and decreased penetrance on the C57BL/6J background. Comparative genome hybridization has identified a hemizygous 78 Kbp duplication in the mapped interval. The endpoints of the duplication are located in positions that disrupt the genes Csrp2bp and 6330439K17Rik and lead to duplication of the pseudogene LOC100043552. Quantitative reverse transcriptase-PCR indicates that expression levels of Csrp2bp and 6330439K17Rik are decreased in eyes of PPCD1 mice. Based on the observations of decreased gene expression levels, association with ZEB1-related pathways, and the report of corneal opacities in Csrp2bp(tm1a(KOMPWtsi heterozygotes and embryonic lethality in nulls, we postulate that duplication of the 78 Kbp segment leading to haploinsufficiency of Csrp2bp is responsible for the mouse PPCD1 phenotype. Similarly, CSRP2BP haploinsufficiency may lead to human PPCD.

  9. Transgenic Mouse Model for Reducing Oxidative Damage in Bone

    Science.gov (United States)

    Schreurs, Ann-Sofie; Torres, S.; Truong, T.; Moyer, E. L.; Kumar, A.; Tahimic, Candice C. G.; Alwood, J. S.; Limoli, C. L.; Globus, R. K.

    2016-01-01

    Bone loss can occur due to many challenges such age, radiation, microgravity, and Reactive Oxygen Species (ROS) play a critical role in bone resorption by osteoclasts (Bartell et al. 2014). We hypothesize that suppression of excess ROS in skeletal cells, both osteoblasts and osteoclasts, regulates skeletal growth and remodeling. To test our hypothesis, we used transgenic mCAT mice which overexpress the human anti-oxidant catalase gene targeted to the mitochondria, the main site for endogenous ROS production. mCAT mice have a longer life-span than wildtype controls and have been used to study various age-related disorders. To stimulate remodeling, 16 week old mCAT mice or wildtype mice were exposed to treatment (hindlimb-unloading and total body-irradiation) or sham treatment conditions (control). Tissues were harvested 2 weeks later for skeletal analysis (microcomputed tomography), biochemical analysis (gene expression and oxidative damage measurements), and ex vivo bone marrow derived cell culture (osteoblastogenesis and osteoclastogenesis). mCAT mice expressed the transgene and displayed elevated catalase activity in skeletal tissue and marrow-derived osteoblasts and osteoclasts grown ex vivo. In addition, when challenged with treatment, bone tissues from wildtype mice showed elevated levels of malondialdehyde (MDA), indicating oxidative damage) whereas mCAT mice did not. Correlation analysis revealed that increased catalase activity significantly correlated with decreased MDA levels and that increased oxidative damage correlated with decreased percent bone volume (BVTV). In addition, ex-vivo cultured osteoblast colony growth correlated with catalase activity in the osteoblasts. Thus, we showed that these transgenic mice can be used as a model to study the relationship between markers of oxidative damage and skeletal properties. mCAT mice displayed reduced BVTV and trabecular number relative to wildtype mice, as well as increased structural model index in the

  10. Rasagiline ameliorates olfactory deficits in an alpha-synuclein mouse model of Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Géraldine H Petit

    Full Text Available Impaired olfaction is an early pre-motor symptom of Parkinson's disease. The neuropathology underlying olfactory dysfunction in Parkinson's disease is unknown, however α-synuclein accumulation/aggregation and altered neurogenesis might play a role. We characterized olfactory deficits in a transgenic mouse model of Parkinson's disease expressing human wild-type α-synuclein under the control of the mouse α-synuclein promoter. Preliminary clinical observations suggest that rasagiline, a monoamine oxidase-B inhibitor, improves olfaction in Parkinson's disease. We therefore examined whether rasagiline ameliorates olfactory deficits in this Parkinson's disease model and investigated the role of olfactory bulb neurogenesis. α-Synuclein mice were progressively impaired in their ability to detect odors, to discriminate between odors, and exhibited alterations in short-term olfactory memory. Rasagiline treatment rescued odor detection and odor discrimination abilities. However, rasagiline did not affect short-term olfactory memory. Finally, olfactory changes were not coupled to alterations in olfactory bulb neurogenesis. We conclude that rasagiline reverses select olfactory deficits in a transgenic mouse model of Parkinson's disease. The findings correlate with preliminary clinical observations suggesting that rasagiline ameliorates olfactory deficits in Parkinson's disease.

  11. Rasagiline ameliorates olfactory deficits in an alpha-synuclein mouse model of Parkinson's disease.

    Science.gov (United States)

    Petit, Géraldine H; Berkovich, Elijahu; Hickery, Mark; Kallunki, Pekka; Fog, Karina; Fitzer-Attas, Cheryl; Brundin, Patrik

    2013-01-01

    Impaired olfaction is an early pre-motor symptom of Parkinson's disease. The neuropathology underlying olfactory dysfunction in Parkinson's disease is unknown, however α-synuclein accumulation/aggregation and altered neurogenesis might play a role. We characterized olfactory deficits in a transgenic mouse model of Parkinson's disease expressing human wild-type α-synuclein under the control of the mouse α-synuclein promoter. Preliminary clinical observations suggest that rasagiline, a monoamine oxidase-B inhibitor, improves olfaction in Parkinson's disease. We therefore examined whether rasagiline ameliorates olfactory deficits in this Parkinson's disease model and investigated the role of olfactory bulb neurogenesis. α-Synuclein mice were progressively impaired in their ability to detect odors, to discriminate between odors, and exhibited alterations in short-term olfactory memory. Rasagiline treatment rescued odor detection and odor discrimination abilities. However, rasagiline did not affect short-term olfactory memory. Finally, olfactory changes were not coupled to alterations in olfactory bulb neurogenesis. We conclude that rasagiline reverses select olfactory deficits in a transgenic mouse model of Parkinson's disease. The findings correlate with preliminary clinical observations suggesting that rasagiline ameliorates olfactory deficits in Parkinson's disease.

  12. The Effects of aging on the BTBR mouse model of autism spectrum disorder

    Directory of Open Access Journals (Sweden)

    Joan Mary Jasien

    2014-09-01

    Full Text Available Autism spectrum disorders (ASD are complex, heterogeneous neurodevelopmental disorderscharacterized by alterations in social functioning, communicative abilities, and engagement inrepetitive or restrictive behaviors. The process of aging in individuals with autism and relatedneurodevelopmental disorders is not well understood, despite the fact that the number ofindividuals with ASD aged 65 and older is projected to increase by over half a millionindividuals in the next 20 years. To elucidate the effects of aging in the context of a modifiedcentral nervous system, we investigated the effects of age on the BTBR T+tf/j mouse, a wellcharacterized and widely used mouse model that displays an ASD-like phenotype. We found thata reduction in social behavior persists into old age in male BTBR T+tf/j mice. We employedquantitative proteomics to discover potential alterations in signaling systems that could regulateaging in the BTBR mice. Unbiased proteomic analysis of hippocampal and cortical tissue ofBTBR mice compared to age-matched wild-type controls revealed a significant decrease in brainderived neurotrophic factor and significant increases in multiple synaptic markers (spinophilin,Synapsin I, PSD 95, NeuN, as well as distinct changes in functional pathways related to theseproteins, including Neural synaptic plasticity regulation and Neurotransmitter secretionregulation. Taken together, these results contribute to our understanding of the effects of agingon an ASD-like mouse model in regards to both behavior and protein alterations, thoughadditional studies are needed to fully understand the complex interplay underlying aging inmouse models displaying an ASD-like phenotype.

  13. Effect of induced peritoneal endometriosis on oocyte and embryo quality in a mouse model.

    Science.gov (United States)

    Cohen, J; Ziyyat, A; Naoura, I; Chabbert-Buffet, N; Aractingi, S; Darai, E; Lefevre, B

    2015-02-01

    To assess the impact of peritoneal endometriosis on oocyte and embryo quality in a mouse model. Peritoneal endometriosis was surgically induced in 33 B6CBA/F1 female mice (endometriosis group, N = 17) and sham-operated were used as control (sham group, N = 16). Mice were superovulated 4 weeks after surgery and mated or not, to collect E0.5-embryos or MII-oocytes. Evaluation of oocyte and zygote quality was done by immunofluorescence under spinning disk confocal microscopy. Endometriosis-like lesions were observed in all mice of endometriosis group. In both groups, a similar mean number of MII oocytes per mouse was observed in non-mated mice (30.2 vs 32.6), with a lower proportion of normal oocytes in the endometriosis group (61 vs 83 %, p endometriosis group (21 vs 35.5, p = 0.02) without difference in embryo quality. Our results support that induced peritoneal endometriosis in a mouse model is associated with a decrease in oocyte quality and embryo number. This experimental model allows further studies to understand mechanisms of endometriosis-associated infertility.

  14. Spatio-temporal Model of Xenobiotic Distribution and Metabolism in an in Silico Mouse Liver Lobule

    Science.gov (United States)

    Fu, Xiao; Sluka, James; Clendenon, Sherry; Glazier, James; Ryan, Jennifer; Dunn, Kenneth; Wang, Zemin; Klaunig, James

    Our study aims to construct a structurally plausible in silico model of a mouse liver lobule to simulate the transport of xenobiotics and the production of their metabolites. We use a physiologically-based model to calculate blood-flow rates in a network of mouse liver sinusoids and simulate transport, uptake and biotransformation of xenobiotics within the in silico lobule. Using our base model, we then explore the effects of variations of compound-specific (diffusion, transport and metabolism) and compound-independent (temporal alteration of blood flow pattern) parameters, and examine their influence on the distribution of xenobiotics and metabolites. Our simulations show that the transport mechanism (diffusive and transporter-mediated) of xenobiotics and blood flow both impact the regional distribution of xenobiotics in a mouse hepatic lobule. Furthermore, differential expression of metabolic enzymes along each sinusoid's portal to central axis, together with differential cellular availability of xenobiotics, induce non-uniform production of metabolites. Thus, the heterogeneity of the biochemical and biophysical properties of xenobiotics, along with the complexity of blood flow, result in different exposures to xenobiotics for hepatocytes at different lobular locations. We acknowledge support from National Institute of Health GM 077138 and GM 111243.

  15. Defects in neuromuscular junction remodelling in the Smn(2B/-) mouse model of spinal muscular atrophy.

    Science.gov (United States)

    Murray, Lyndsay M; Beauvais, Ariane; Bhanot, Kunal; Kothary, Rashmi

    2013-01-01

    Spinal muscular atrophy (SMA) is a devastating childhood motor neuron disease caused by mutations and deletions within the survival motor neuron 1 (SMN1) gene. Although other tissues may be involved, motor neurons remain primary pathological targets, with loss of neuromuscular junctions (NMJs) representing an early and significant event in pathogenesis. Although defects in axonal outgrowth and pathfinding have been observed in cell culture and in lower organisms upon Smn depletion, developmental defects in mouse models have been less obvious. Here, we have employed the Smn(2B/-) mouse model to investigate NMJ remodelling during SMA pathology, induced reinnervation, and paralysis. We show that whilst NMJs are capable of remodelling during pathogenesis, there is a marked reduction in paralysis-induced remodelling and in the nerve-directed re-organisation of acetylcholine receptors. This reduction in remodelling potential could not be attributed to a decreased rate of axonal growth. Finally, we have identified a loss of terminal Schwann cells which could contribute to the defects in remodelling/maintenance observed. Our work demonstrates that there are specific defects in NMJ remodelling in an intermediate SMA mouse model, which could contribute to or underlie pathogenesis in SMA. The development of strategies that can promote the remodelling potential of NMJs may therefore be of significant benefit to SMA patients. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Preclinical Testing of Erlotinib in a Transgenic Alveolar Rhabdomyosarcoma Mouse Model

    Directory of Open Access Journals (Sweden)

    Jinu Abraham

    2011-01-01

    Full Text Available Rhabdomyosarcoma is an aggressive childhood malignancy, accounting for more than 50% of all soft-tissue sarcomas in children. Even with extensive therapy, the survival rate among alveolar rhabdomyosarcoma patients with advanced disease is only 20%. The receptor tyrosine kinase Epidermal Growth Factor Receptor (EGFR has been found to be expressed and activated in human rhabdomyosarcomas. In this study we have used a genetically engineered mouse model for alveolar rhabdomyosarcoma (ARMS which faithfully recapitulates the human disease by activating the pathognomic Pax3:Fkhr fusion gene and inactivating p53 in the maturing myoblasts. We have demonstrated that tumors from our mouse model of alveolar rhabdomyosarcoma express EGFR at both the mRNA and protein levels. We then tested the EGFR inhibitor, Erlotinib, for its efficacy in this mouse model of alveolar rhabdomyosarcoma. Surprisingly, Erlotinib had no effect on tumor progression, yet mice treated with Erlotinib showed 10–20% loss of body weight. These results suggest that EGFR might not be an a priori monotherapy target in alveolar rhabdomyosarcoma.

  17. Early-onset behavioral and synaptic deficits in a mouse model of Alzheimer's disease

    Science.gov (United States)

    Jacobsen, J. Steven; Wu, Chi-Cheng; Redwine, Jeffrey M.; Comery, Thomas A.; Arias, Robert; Bowlby, Mark; Martone, Robert; Morrison, John H.; Pangalos, Menelas N.; Reinhart, Peter H.; Bloom, Floyd E.

    2006-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder for which numerous mouse models have been generated. In both AD patients and mouse models, there is increasing evidence that neuronal dysfunction occurs before the accumulation of β-amyloid (Aβ)-containing plaques and neurodegeneration. Characterization of the timing and nature of preplaque dysfunction is important for understanding the progression of this disease and to identify pathways and molecular targets for therapeutic intervention. Hence, we have examined the progression of dysfunction at the morphological, functional, and behavioral levels in the Tg2576 mouse model of AD. Our data show that decreased dendritic spine density, impaired long-term potentiation (LTP), and behavioral deficits occurred months before plaque deposition, which was first detectable at 18 months of age. We detected a decrease in spine density in the outer molecular layer of the dentate gyrus (DG) beginning as early as 4 months of age. Furthermore, by 5 months, there was a decline in LTP in the DG after perforant path stimulation and impairment in contextual fear conditioning. Moreover, an increase in the Aβ42/Aβ40 ratio was first observed at these early ages. However, total amyloid levels did not significantly increase until ≈18 months of age, at which time significant increases in reactive astrocytes and microglia could be observed. Overall, these data show that the perforant path input from the entorhinal cortex to the DG is compromised both structurally and functionally, and this pathology is manifested in memory defects long before significant plaque deposition. PMID:16549764

  18. Biology and therapy of inherited retinal degenerative disease: insights from mouse models

    Science.gov (United States)

    Veleri, Shobi; Lazar, Csilla H.; Chang, Bo; Sieving, Paul A.; Banin, Eyal; Swaroop, Anand

    2015-01-01

    Retinal neurodegeneration associated with the dysfunction or death of photoreceptors is a major cause of incurable vision loss. Tremendous progress has been made over the last two decades in discovering genes and genetic defects that lead to retinal diseases. The primary focus has now shifted to uncovering disease mechanisms and designing treatment strategies, especially inspired by the successful application of gene therapy in some forms of congenital blindness in humans. Both spontaneous and laboratory-generated mouse mutants have been valuable for providing fundamental insights into normal retinal development and for deciphering disease pathology. Here, we provide a review of mouse models of human retinal degeneration, with a primary focus on diseases affecting photoreceptor function. We also describe models associated with retinal pigment epithelium dysfunction or synaptic abnormalities. Furthermore, we highlight the crucial role of mouse models in elucidating retinal and photoreceptor biology in health and disease, and in the assessment of novel therapeutic modalities, including gene- and stem-cell-based therapies, for retinal degenerative diseases. PMID:25650393

  19. Biology and therapy of inherited retinal degenerative disease: insights from mouse models

    Directory of Open Access Journals (Sweden)

    Shobi Veleri

    2015-02-01

    Full Text Available Retinal neurodegeneration associated with the dysfunction or death of photoreceptors is a major cause of incurable vision loss. Tremendous progress has been made over the last two decades in discovering genes and genetic defects that lead to retinal diseases. The primary focus has now shifted to uncovering disease mechanisms and designing treatment strategies, especially inspired by the successful application of gene therapy in some forms of congenital blindness in humans. Both spontaneous and laboratory-generated mouse mutants have been valuable for providing fundamental insights into normal retinal development and for deciphering disease pathology. Here, we provide a review of mouse models of human retinal degeneration, with a primary focus on diseases affecting photoreceptor function. We also describe models associated with retinal pigment epithelium dysfunction or synaptic abnormalities. Furthermore, we highlight the crucial role of mouse models in elucidating retinal and photoreceptor biology in health and disease, and in the assessment of novel therapeutic modalities, including gene- and stem-cell-based therapies, for retinal degenerative diseases.

  20. Inflammatory Cytokine Pattern Is Sex-Dependent in Mouse Cutaneous Melanoma Experimental Model

    Directory of Open Access Journals (Sweden)

    Mihaela Surcel

    2017-01-01

    Full Text Available We present the evaluation of inflammatory cytokines in mouse cutaneous melanoma experimental model, as markers of disease evolution. Moreover, to test our experimental model, we have used low doses of dacarbazine (DTIC. C57 BL/6J mouse of both sexes were subjected to experimental cutaneous melanoma and treated with low doses of DTIC. Clinical parameters and serum cytokines were followed during tumor evolution and during DTIC therapy. Cytokine/chemokine pattern was assessed using xMAP technology and the following molecules were quantified: interleukins (IL-1-beta, IL-6, IL-10, IL-12 (p70, interferon (IFN-gamma, granulocyte macrophage colony-stimulating factor (GM-CSF, tumor necrosis factor (TNF-alpha, macrophage inflammatory protein (MIP-1alpha, monocyte chemoattractant protein (MCP-1, and keratinocyte-derived chemokine (KC. Significant differences were found between normal females and males mice, female mice having a statistically higher serum concentration of IL-1-beta compared to male mice, while males have a significantly higher concentration of MIP-1-alpha. During melanoma evolution in the female group, IL-1-beta, MIP-1-alpha, and KC circulatory levels were found 10-fold increased, while other cytokines doubled their values. In the male mice group, only circulatory KC increased 4 times, while IL-1-beta and TNF-alpha doubled their circulatory values. Various serum cytokines correlated with the disease evolution in cutaneous melanoma mouse model.

  1. Utilizing past and present mouse systems to engineer more relevant pancreatic cancer models.

    Science.gov (United States)

    DeCant, Brian T; Principe, Daniel R; Guerra, Carmen; Pasca di Magliano, Marina; Grippo, Paul J

    2014-01-01

    The study of pancreatic cancer has prompted the development of numerous mouse models that aim to recapitulate the phenotypic and mechanistic features of this deadly malignancy. This review accomplishes two tasks. First, it provides an overview of the models that have been used as representations of both the neoplastic and carcinoma phenotypes. Second, it presents new modeling schemes that ultimately will serve to more faithfully capture the temporal and spatial progression of the human disease, providing platforms for improved understanding of the role of non-epithelial compartments in disease etiology as well as evaluating therapeutic approaches.

  2. Utilizing Past and Present Mouse Systems to Engineer More Relevant Pancreatic Cancer Models

    Directory of Open Access Journals (Sweden)

    Brian T DeCant

    2014-12-01

    Full Text Available The study of pancreatic cancer has prompted the development of numerous mouse models that aim to recapitulate the phenotypic and mechanistic features of this deadly malignancy. This review accomplishes two tasks. First, it provides an overview of the models that have been used as representations of both the neoplastic and carcinoma phenotypes. Second, it presents new modeling schemes that ultimately will serve to more faithfully capture the temporal and spatial progression of the human disease, providing platforms for improved understanding of the role of non-epithelial compartments in disease etiology as well as evaluating therapeutic approaches.

  3. Atmosphere behavior in gas-closed mouse-algal systems - An experimental and modelling study

    Science.gov (United States)

    Averner, M. M.; Moore, B., III; Bartholomew, I.; Wharton, R.

    1984-01-01

    A NASA-sponsored research program initiated using mathematical modelling and laboratory experimentation aimed at examining the gas-exchange characteristics of artificial animal/plant systems closed to the ambient atmosphere is studied. The development of control techniques and management strategies for maintaining the atmospheric levels of carbon dioxide and oxygen at physiological levels is considered. A mathematical model simulating the behavior of a gas-closed mouse-algal system under varying environmental conditions is described. To verify and validate the model simulations, an analytical system with which algal growth and gas exchange characteristics can be manipulated and measured is designed, fabricated, and tested. The preliminary results are presented.

  4. Glyburide reduces bacterial dissemination in a mouse model of melioidosis.

    Directory of Open Access Journals (Sweden)

    Gavin C K W Koh

    Full Text Available Burkholderia pseudomallei infection (melioidosis is an important cause of community-acquired Gram-negative sepsis in Northeast Thailand, where it is associated with a ~40% mortality rate despite antimicrobial chemotherapy. We showed in a previous cohort study that patients taking glyburide ( = glibenclamide prior to admission have lower mortality and attenuated inflammatory responses compared to patients not taking glyburide. We sought to define the mechanism underlying this observation in a murine model of melioidosis.Mice (C57BL/6 with streptozocin-induced diabetes were inoculated with ~6 × 10(2 cfu B. pseudomallei intranasally, then treated with therapeutic ceftazidime (600 mg/kg intraperitoneally twice daily starting 24 h after inoculation in order to mimic the clinical scenario. Glyburide (50 mg/kg or vehicle was started 7 d before inoculation and continued until sacrifice. The minimum inhibitory concentration of glyburide for B. pseudomallei was determined by broth microdilution. We also examined the effect of glyburide on interleukin (IL 1β by bone-marrow-derived macrophages (BMDM.Diabetic mice had increased susceptibility to melioidosis, with increased bacterial dissemination but no effect was seen of diabetes on inflammation compared to non-diabetic controls. Glyburide treatment did not affect glucose levels but was associated with reduced pulmonary cellular influx, reduced bacterial dissemination to both liver and spleen and reduced IL1β production when compared to untreated controls. Other cytokines were not different in glyburide-treated animals. There was no direct effect of glyburide on B. pseudomallei growth in vitro or in vivo. Glyburide directly reduced the secretion of IL1β by BMDMs in a dose-dependent fashion.Diabetes increases the susceptibility to melioidosis. We further show, for the first time in any model of sepsis, that glyburide acts as an anti-inflammatory agent by reducing IL1β secretion accompanied by diminished

  5. Enhanced Operant Extinction and Prefrontal Excitability in a Mouse Model of Angelman Syndrome.

    Science.gov (United States)

    Sidorov, Michael S; Judson, Matthew C; Kim, Hyojin; Rougie, Marie; Ferrer, Alejandra I; Nikolova, Viktoriya D; Riddick, Natallia V; Moy, Sheryl S; Philpot, Benjamin D

    2018-03-14

    Angelman syndrome (AS), a neurodevelopmental disorder associated with intellectual disability, is caused by loss of maternal allele expression of UBE3A in neurons. Mouse models of AS faithfully recapitulate disease phenotypes across multiple domains, including behavior. Yet in AS, there has been only limited study of behaviors encoded by the prefrontal cortex, a region broadly involved in executive function and cognition. Because cognitive impairment is a core feature of AS, it is critical to develop behavioral readouts of prefrontal circuit function in AS mouse models. One such readout is behavioral extinction, which has been well described mechanistically and relies upon prefrontal circuits in rodents. Here we report exaggerated operant extinction in male AS model mice, concomitant with enhanced excitability in medial prefrontal neurons from male and female AS model mice. Abnormal behavior was specific to operant extinction, as two other prefrontally dependent tasks (cued fear extinction and visuospatial discrimination) were largely normal in AS model mice. Inducible deletion of Ube3a during adulthood was not sufficient to drive abnormal extinction, supporting the hypothesis that there is an early critical period for development of cognitive phenotypes in AS. This work represents the first formal experimental analysis of prefrontal circuit function in AS, and identifies operant extinction as a useful experimental paradigm for modeling cognitive aspects of AS in mice. SIGNIFICANCE STATEMENT Prefrontal cortex encodes "high-level" cognitive processes. Thus, understanding prefrontal function is critical in neurodevelopmental disorders where cognitive impairment is highly penetrant. Angelman syndrome is a neurodevelopmental disorder associated with speech and motor impairments, an outwardly happy demeanor, and intellectual disability. We describe a behavioral phenotype in a mouse model of Angelman syndrome and related abnormalities in prefrontal cortex function. We

  6. Proteomic Characterization of a Mouse Model of Familial Danish Dementia

    Directory of Open Access Journals (Sweden)

    Monica Vitale

    2012-01-01

    Full Text Available A dominant mutation in the ITM2B/BRI2 gene causes familial Danish dementia (FDD in humans. To model FDD in animal systems, a knock-in approach was recently implemented in mice expressing a wild-type and mutant allele, which bears the FDD-associated mutation. Since these FDDKI mice show behavioural alterations and impaired synaptic function, we characterized their synaptosomal proteome via two-dimensional differential in-gel electrophoresis. After identification by nanoliquid chromatography coupled to electrospray-linear ion trap tandem mass spectrometry, the differentially expressed proteins were classified according to their gene ontology descriptions and their predicted functional interactions. The Dlg4/Psd95 scaffold protein and additional signalling proteins, including protein phosphatases, were revealed by STRING analysis as potential players in the altered synaptic function of FDDKI mice. Immunoblotting analysis finally demonstrated the actual downregulation of the synaptosomal scaffold protein Dlg4/Psd95 and of the dual-specificity phosphatase Dusp3 in the synaptosomes of FDDKI mice.

  7. Epithelial morphogenesis: the mouse eye as a model system.

    Science.gov (United States)

    Chauhan, Bharesh; Plageman, Timothy; Lou, Ming; Lang, Richard

    2015-01-01

    Morphogenesis is the developmental process by which tissues and organs acquire the shape that is critical to their function. Here, we review recent advances in our understanding of the mechanisms that drive morphogenesis in the developing eye. These investigations have shown that regulation of the actin cytoskeleton is central to shaping the presumptive lens and retinal epithelia that are the major components of the eye. Regulation of the actin cytoskeleton is mediated by Rho family GTPases, by signaling pathways and indirectly, by transcription factors that govern the expression of critical genes. Changes in the actin cytoskeleton can shape cells through the generation of filopodia (that, in the eye, connect adjacent epithelia) or through apical constriction, a process that produces a wedge-shaped cell. We have also learned that one tissue can influence the shape of an adjacent one, probably by direct force transmission, in a process we term inductive morphogenesis. Though these mechanisms of morphogenesis have been identified using the eye as a model system, they are likely to apply broadly where epithelia influence the shape of organs during development. © 2015 Elsevier Inc. All rights reserved.

  8. Mouse models for preeclampsia: disruption of redox-regulated signaling

    Directory of Open Access Journals (Sweden)

    Chambers Anne E

    2009-01-01

    Full Text Available Abstract The concept that oxidative stress contributes to the development of human preeclampsia has never been tested in genetically-defined animal models. Homozygous deletion of catechol-O-methyl transferase (Comt-/- in pregnant mice leads to human preeclampsia-like symptoms (high blood pressure, albuminurea and preterm birth resulting from extensive vasculo-endothelial pathology, primarily at the utero-fetal interface where maternal cardiac output is dramatically increased during pregnancy. Comt converts estradiol to 2-methoxyestradiol 2 (2ME2 which counters angiogenesis by depleting hypoxia inducible factor-1 alpha (HIF-1 alpha at late pregnancy. We propose that in wild type (Comt++ pregnant mice, 2ME2 destabilizes HIF-1 alpha by inhibiting mitochondrial superoxide dismutase (MnSOD. Thus, 2ME2 acts as a pro-oxidant, disrupting redox-regulated signaling which blocks angiogenesis in wild type (WT animals in physiological pregnancy. Further, we suggest that a lack of this inhibition under normoxic conditions in mutant animals (Comt-/- stabilises HIF-1 alpha by inactivating prolyl hydroxlases (PHD. We predict that a lack of inhibition of MnSOD, leading to persistent accumulation of HIF-1 alpha, would trigger inflammatory infiltration and endothelial damage in mutant animals. Critical tests of this hypothesis would be to recreate preeclampsia symptoms by inducing oxidative stress in WT animals or to ameliorate by treating mutant mice with Mn-SOD-catalase mimetics or activators of PHD.

  9. Altered Erythropoiesis in Mouse Models of Type 3 Hemochromatosis

    Directory of Open Access Journals (Sweden)

    R. M. Pellegrino

    2017-01-01

    Full Text Available Type 3 haemochromatosis (HFE3 is a rare genetic iron overload disease which ultimately lead to compromised organs functioning. HFE3 is caused by mutations in transferrin receptor 2 (TFR2 gene that codes for two main isoforms (Tfr2α and Tfr2β. Tfr2α is one of the hepatic regulators of iron inhibitor hepcidin. Tfr2β is an intracellular isoform of the protein involved in the regulation of iron levels in reticuloendothelial cells. It has been recently demonstrated that Tfr2 is also involved in erythropoiesis. This study aims to further investigate Tfr2 erythropoietic role by evaluating the erythropoiesis of two Tfr2 murine models wherein either one or both of Tfr2 isoforms have been selectively silenced (Tfr2 KI and Tfr2 KO. The evaluations were performed in bone marrow and spleen, in 14 days’ and 10 weeks’ old mice, to assess erythropoiesis in young versus adult animals. The lack of Tfr2α leads to macrocytosis with low reticulocyte number and increased hemoglobin values, together with an anticipation of adult BM erythropoiesis and an increased splenic erythropoiesis. On the other hand, lack of Tfr2β (Tfr2 KI mice causes an increased and immature splenic erythropoiesis. Taken together, these data confirm the role of Tfr2α in modulation of erythropoiesis and of Tfr2β in favoring iron availability for erythropoiesis.

  10. Therapeutic liver repopulation in a mouse model of hypercholesterolemia.

    Science.gov (United States)

    Mitchell, C; Mignon, A; Guidotti, J E; Besnard, S; Fabre, M; Duverger, N; Parlier, D; Tedgui, A; Kahn, A; Gilgenkrantz, H

    2000-07-01

    Liver repopulation constitutes an attractive approach for the treatment of liver disorders or of diseases requiring abundant secretion of an active protein. We have described previously a model of selective repopulation of a normal liver by Fas/CD95-resistant hepatocytes, in which we achieved up to 16% hepatocyte repopulation. In the present study, we investigated the therapeutic efficacy of this strategy. With this aim, apolipoprotein E (ApoE) knockout mice were transplanted with Fas/CD95-resistant hepatocytes which constitutively express ApoE. Transplanted mice were submitted to weekly injections of non-lethal doses of the Fas agonist antibody Jo2. After 8 weeks of treatment, we obtained up to 30% of the normal level of plasma ApoE. ApoE secretion was accompanied by a drastic and significant decrease in total plasma cholesterol, which even fell to normal levels. Moreover, this secretion was sufficient to markedly reduce the progression of atherosclerosis. These results demonstrate the efficacy of this repopulation approach for correcting a deficiency in a protein secreted by the liver.

  11. Subfertility and growth restriction in a new galactose-1 phosphate uridylyltransferase (GALT) - deficient mouse model

    Science.gov (United States)

    Tang, Manshu; Siddiqi, Anwer; Witt, Benjamin; Yuzyuk, Tatiana; Johnson, Britt; Fraser, Nisa; Chen, Wyman; Rascon, Rafael; Yin, Xue; Goli, Harish; Bodamer, Olaf A; Lai, Kent

    2014-01-01

    The first GalT gene knockout (KO) mouse model for Classic Galactosemia (OMIM 230400) accumulated some galactose and its metabolites upon galactose challenge, but was seemingly fertile and symptom free. Here we constructed a new GalT gene-trapped mouse model by injecting GalT gene-trapped mouse embryonic stem cells into blastocysts, which were later implanted into pseudo-pregnant females. High percentage GalT gene-trapped chimera obtained were used to generate heterozygous and subsequently, homozygous GalT gene-trapped mice. Biochemical assays confirmed total absence of galactose-1 phosphate uridylyltransferase (GALT) activity in the homozygotes. Although the homozygous GalT gene-trapped females could conceive and give birth when fed with normal chow, they had smaller litter size (P=0.02) and longer time-to-pregnancy (P=0.013) than their wild-type littermates. Follicle-stimulating hormone levels of the mutant female mice were not significantly different from the age-matched, wild-type females, but histological examination of the ovaries revealed fewer follicles in the homozygous mutants (P=0.007). Administration of a high-galactose (40% w/w) diet to lactating homozygous GalT gene-trapped females led to lethality in over 70% of the homozygous GalT gene-trapped pups before weaning. Cerebral edema, abnormal changes in the Purkinje and the outer granular cell layers of the cerebellum, as well as lower blood GSH/GSSG ratio were identified in the galactose-intoxicated pups. Finally, reduced growth was observed in GalT gene-trapped pups fed with normal chow and all pups fed with high-galactose (20% w/w) diet. This new mouse model presents several of the complications of Classic Galactosemia and will be useful to investigate pathogenesis and new therapies. PMID:24549051

  12. Increased susceptibility to cortical spreading depression in the mouse model of familial hemiplegic migraine type 2.

    Directory of Open Access Journals (Sweden)

    Loredana Leo

    2011-06-01

    Full Text Available Familial hemiplegic migraine type 2 (FHM2 is an autosomal dominant form of migraine with aura that is caused by mutations of the α2-subunit of the Na,K-ATPase, an isoform almost exclusively expressed in astrocytes in the adult brain. We generated the first FHM2 knock-in mouse model carrying the human W887R mutation in the Atp1a2 orthologous gene. Homozygous Atp1a2(R887/R887 mutants died just after birth, while heterozygous Atp1a2(+/R887 mice showed no apparent clinical phenotype. The mutant α2 Na,K-ATPase protein was barely detectable in the brain of homozygous mutants and strongly reduced in the brain of heterozygous mutants, likely as a consequence of endoplasmic reticulum retention and subsequent proteasomal degradation, as we demonstrate in transfected cells. In vivo analysis of cortical spreading depression (CSD, the phenomenon underlying migraine aura, revealed a decreased induction threshold and an increased velocity of propagation in the heterozygous FHM2 mouse. Since several lines of evidence involve a specific role of the glial α2 Na,K pump in active reuptake of glutamate from the synaptic cleft, we hypothesize that CSD facilitation in the FHM2 mouse model is sustained by inefficient glutamate clearance by astrocytes and consequent increased cortical excitatory neurotransmission. The demonstration that FHM2 and FHM1 mutations share the ability to facilitate induction and propagation of CSD in mouse models further support the role of CSD as a key migraine trigger.

  13. Normal social seeking behavior, hypoactivity and reduced exploratory range in a mouse model of Angelman syndrome

    Directory of Open Access Journals (Sweden)

    Reiter Lawrence T

    2011-01-01

    Full Text Available Abstract Background Angelman syndrome (AS is a neurogenetic disorder characterized by severe developmental delay with mental retardation, a generally happy disposition, ataxia and characteristic behaviors such as inappropriate laughter, social-seeking behavior and hyperactivity. The majority of AS cases are due to loss of the maternal copy of the UBE3A gene. Maternal Ube3a deficiency (Ube3am-/p+, as well as complete loss of Ube3a expression (Ube3am-/p-, have been reproduced in the mouse model used here. Results Here we asked if two characteristic AS phenotypes - social-seeking behavior and hyperactivity - are reproduced in the Ube3a deficient mouse model of AS. We quantified social-seeking behavior as time spent in close proximity to a stranger mouse and activity as total time spent moving during exploration, movement speed and total length of the exploratory path. Mice of all three genotypes (Ube3am+/p+, Ube3am-/p+, Ube3am-/p- were tested and found to spend the same amount of time in close proximity to the stranger, indicating that Ube3a deficiency in mice does not result in increased social seeking behavior or social dis-inhibition. Also, Ube3a deficient mice were hypoactive compared to their wild-type littermates as shown by significantly lower levels of activity, slower movement velocities, shorter exploratory paths and a reduced exploratory range. Conclusions Although hyperactivity and social-seeking behavior are characteristic phenotypes of Angelman Syndrome in humans, the Ube3a deficient mouse model does not reproduce these phenotypes in comparison to their wild-type littermates. These phenotypic differences may be explained by differences in the size of the genetic defect as ~70% of AS patients have a deletion that includes several other genes surrounding the UBE3A locus.

  14. Behavioral and neurochemical characterization of new mouse model of hyperphenylalaninemia.

    Directory of Open Access Journals (Sweden)

    Tiziana Pascucci

    Full Text Available Hyperphenylalaninemia (HPA refers to all clinical conditions characterized by increased amounts of phenylalanine (PHE in blood and other tissues. According to their blood PHE concentrations under a free diet, hyperphenylalaninemic patients are commonly classified into phenotypic subtypes: classical phenylketonuria (PKU (PHE > 1200 µM/L, mild PKU (PHE 600-1200 µM/L and persistent HPA (PHE 120-600 µM/L (normal blood PHE < 120 µM/L. The current treatment for hyperphenylalaninemic patients is aimed to keep blood PHE levels within the safe range of 120-360 µM/L through a PHE-restricted diet, difficult to achieve. If untreated, classical PKU presents variable neurological and mental impairment. However, even mildly elevated blood PHE levels, due to a bad compliance to dietary treatment, produce cognitive deficits involving the prefrontal cortical areas, extremely sensible to PHE-induced disturbances. The development of animal models of different degrees of HPA is a useful tool for identifying the metabolic mechanisms underlying cognitive deficits induced by PHE. In this paper we analyzed the behavioral and biochemical phenotypes of different forms of HPA (control, mild-HPA, mild-PKU and classic-PKU, developed on the base of plasma PHE concentrations. Our results demonstrated that mice with different forms of HPA present different phenotypes, characterized by increasing severity of behavioral symptoms and brain aminergic deficits moving from mild HPA to classical PKU forms. In addition, our data identify preFrontal cortex and amygdala as the most affected brain areas and confirm the highest susceptibility of brain serotonin metabolism to mildly elevated blood PHE.

  15. Behavioral and Neurochemical Characterization of New Mouse Model of Hyperphenylalaninemia

    Science.gov (United States)

    Pascucci, Tiziana; Giacovazzo, Giacomo; Andolina, Diego; Accoto, Alessandra; Fiori, Elena; Ventura, Rossella; Orsini, Cristina; Conversi, David; Carducci, Claudia; Leuzzi, Vincenzo; Puglisi-Allegra, Stefano

    2013-01-01

    Hyperphenylalaninemia (HPA) refers to all clinical conditions characterized by increased amounts of phenylalanine (PHE) in blood and other tissues. According to their blood PHE concentrations under a free diet, hyperphenylalaninemic patients are commonly classified into phenotypic subtypes: classical phenylketonuria (PKU) (PHE > 1200 µM/L), mild PKU (PHE 600-1200 µM/L) and persistent HPA (PHE 120-600 µM/L) (normal blood PHE < 120 µM/L). The current treatment for hyperphenylalaninemic patients is aimed to keep blood PHE levels within the safe range of 120-360 µM/L through a PHE-restricted diet, difficult to achieve. If untreated, classical PKU presents variable neurological and mental impairment. However, even mildly elevated blood PHE levels, due to a bad compliance to dietary treatment, produce cognitive deficits involving the prefrontal cortical areas, extremely sensible to PHE-induced disturbances. The development of animal models of different degrees of HPA is a useful tool for identifying the metabolic mechanisms underlying cognitive deficits induced by PHE. In this paper we analyzed the behavioral and biochemical phenotypes of different forms of HPA (control, mild-HPA, mild-PKU and classic-PKU), developed on the base of plasma PHE concentrations. Our results demonstrated that mice with different forms of HPA present different phenotypes, characterized by increasing severity of behavioral symptoms and brain aminergic deficits moving from mild HPA to classical PKU forms. In addition, our data identify preFrontal cortex and amygdala as the most affected brain areas and confirm the highest susceptibility of brain serotonin metabolism to mildly elevated blood PHE. PMID:24376837

  16. Transgenic Mouse Model for Reducing Oxidative Damage in Bone

    Science.gov (United States)

    Schreurs, A.-S.; Torres, S.; Truong, T.; Kumar, A.; Alwood, J. S.; Limoli, C. L.; Globus, R. K.

    2014-01-01

    parameters. Taken together, this typically catabolic treatment (disuse and irradiation) appeared to stimulate cortical expansion in MCAT mice but not WT mice. In conclusion, these results reveal the importance of mitochondrial ROS generation in skeletal remodeling and show that MCAT mice provide a useful animal model for bone studies.

  17. Systematic characterization of myocardial inflammation, repair, and remodeling in a mouse model of reperfused myocardial infarction.

    Science.gov (United States)

    Christia, Panagiota; Bujak, Marcin; Gonzalez-Quesada, Carlos; Chen, Wei; Dobaczewski, Marcin; Reddy, Anilkumar; Frangogiannis, Nikolaos G

    2013-08-01

    Mouse models of myocardial infarction are essential tools for the study of cardiac injury, repair, and remodeling. Our current investigation establishes a systematic approach for quantitative evaluation of the inflammatory and reparative response, cardiac function, and geometry in a mouse model of reperfused myocardial infarction. Reperfused mouse infarcts exhibited marked induction of inflammatory cytokines that peaked after 6 hr of reperfusion. In the infarcted heart, scar contraction and chamber dilation continued for at least 28 days after reperfusion; infarct maturation was associated with marked thinning of the scar, accompanied by volume loss and rapid clearance of cellular elements. Echocardiographic measurements of end-diastolic dimensions correlated well with morphometric assessment of dilative remodeling in perfusion-fixed hearts. Hemodynamic monitoring was used to quantitatively assess systolic and diastolic function; the severity of diastolic dysfunction following myocardial infarction correlated with cardiomyocyte hypertrophy and infarct collagen content. Expression of molecular mediators of inflammation and cellular infiltration needs to be investigated during the first 72 hr, whereas assessment of dilative remodeling requires measurement of geometric parameters for at least four weeks after the acute event. Rapid initiation and resolution of the inflammatory response, accelerated scar maturation, and extensive infarct volume loss are important characteristics of infarct healing in mice.

  18. Primary amines protect against retinal degeneration in mouse models of retinopathies.

    Science.gov (United States)

    Maeda, Akiko; Golczak, Marcin; Chen, Yu; Okano, Kiichiro; Kohno, Hideo; Shiose, Satomi; Ishikawa, Kaede; Harte, William; Palczewska, Grazyna; Maeda, Tadao; Palczewski, Krzysztof

    2011-12-25

    Vertebrate vision is initiated by photoisomerization of the visual pigment chromophore 11-cis-retinal and is maintained by continuous regeneration of this retinoid through a series of reactions termed the retinoid cycle. However, toxic side reaction products, especially those involving reactive aldehyde groups of the photoisomerized product, all-trans-retinal, can cause severe retinal pathology. Here we lowered peak concentrations of free all-trans-retinal with primary amine-containing Food and Drug Administration (FDA)-approved drugs that did not inhibit chromophore regeneration in mouse models of retinal degeneration. Schiff base adducts between all-trans-retinal and these amines were identified by MS. Adducts were observed in mouse eyes only when an experimental drug protected the retina from degeneration in both short-term and long-term treatment experiments. This study demonstrates a molecular basis of all-trans-retinal-induced retinal pathology and identifies an assemblage of FDA-approved compounds with protective effects against this pathology in a mouse model that shows features of Stargardt's disease and age-related retinal degeneration.

  19. Sex Differences in Circadian Dysfunction in the BACHD Mouse Model of Huntington’s Disease

    Science.gov (United States)

    Kuljis, Dika A.; Gad, Laura; Loh, Dawn H.; MacDowell Kaswan, Zoë; Hitchcock, Olivia N.; Ghiani, Cristina A.; Colwell, Christopher S.

    2016-01-01

    Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder that affects men and women in equal numbers, but some epidemiological studies indicate there may be sex differences in disease progression. One of the early symptoms of HD is disruptions in the circadian timing system, but it is currently unknown whether sex is a factor in these alterations. Since sex differences in HD could provide important insights to understand cellular and molecular mechanism(s) and designing early intervention strategies, we used the bacterial artificial chromosome transgenic mouse model of HD (BACHD) to examine whether sex differences in circadian behavioral rhythms are detectable in an animal model of the disease. Similar to BACHD males, BACHD females display circadian disruptions at both 3 and 6 months of age; however, deficits to BACHD female mouse activity levels, rhythm precision, and behavioral fragmentation are either delayed or less severe relative to males. These sex differences are associated with a smaller suprachiasmatic nucleus (SCN) in BACHD male mice at age of symptom onset (3 months), but are not associated with sex-specific differences in SCN daytime electrical activity deficits, or peptide expression (arginine vasopressin, vasoactive intestinal peptide) within the SCN. Notably, BACHD females exhibited delayed motor coordination deficits, as measured using rotarod and challenge beam. These findings suggest a sex specific factor plays a role both in non-motor and motor symptom progression for the BACHD mouse. PMID:26871695

  20. Enhanced fear expression in a psychopathological mouse model of trait anxiety: pharmacological interventions.

    Directory of Open Access Journals (Sweden)

    Simone B Sartori

    Full Text Available The propensity to develop an anxiety disorder is thought to be determined by genetic and environmental factors. Here we investigated the relationship between a genetic predisposition to trait anxiety and experience-based learned fear in a psychopathological mouse model. Male CD-1 mice selectively bred for either high (HAB, or normal (NAB anxiety-related behaviour on the elevated plus maze were subjected to classical fear conditioning. During conditioning both mouse lines showed increased fear responses as assessed by freezing behaviour. However, 24 h later, HAB mice displayed more pronounced conditioned responses to both a contextual or cued stimulus when compared with NAB mice. Interestingly, 6 h and already 1 h after fear conditioning, freezing levels were high in HAB mice but not in NAB mice. These results suggest that trait anxiety determines stronger fear memory and/or a weaker ability to inhibit fear responses in the HAB line. The enhanced fear response of HAB mice was attenuated by treatment with either the α(2,3,5-subunit selective benzodiazepine partial agonist L-838,417, corticosterone or the selective neurokinin-1 receptor antagonist L-822,429. Overall, the HAB mouse line may represent an interesting model (i for identifying biological factors underlying misguided conditioned fear responses and (ii for studying novel anxiolytic pharmacotherapies for patients with fear-associated disorders, including post-traumatic stress disorder and phobias.

  1. X-irradiation improves mdx mouse muscle as a model of myofiber loss in DMD

    International Nuclear Information System (INIS)

    Wakeford, S.; Watt, D.J.; Partridge, T.A.

    1991-01-01

    The mdx mouse, although a genetic and biochemical homologue of human Duchenne muscular dystrophy (DMD), presents a comparatively mild histopathological and clinical phenotype. These differences are partially attributable to the greater efficacy of regeneration in the mdx mouse than in DMD muscle. To lessen this disparity, we have used a single dose of X-irradiation (16 Gy) to inhibit regeneration in one leg of mdx mice. The result is an almost complete block of muscle fiber regeneration leading to progressive loss of muscle fibers and their replacement by loose connective tissue. Surviving fibers are mainly peripherally nucleated and, surprisingly, of large diameter. Thus, X-irradiation converts mdx muscle to a model system in which the degenerative process can be studied in isolation from the complicating effect of myofiber regeneration. This system should be of use for testing methods of alleviating the myofiber degeneration which is common to mdx and DMD

  2. Terahertz spectroscopy of brain tissue from a mouse model of Alzheimer's disease

    Science.gov (United States)

    Shi, Lingyan; Shumyatsky, Pavel; Rodríguez-Contreras, Adrián; Alfano, Robert

    2016-01-01

    The terahertz (THz) absorption and index of refraction of brain tissues from a mouse model of Alzheimer's disease (AD) and a control wild-type (normal) mouse were compared using THz time-domain spectroscopy (THz-TDS). Three dominating absorption peaks associated to torsional-vibrational modes were observed in AD tissue, at about 1.44, 1.8, and 2.114 THz, closer to the peaks of free tryptophan molecules than in normal tissue. A possible reason is that there is more free tryptophan in AD brain tissue, while in normal brain tissue more tryptophan is attached to other molecules. Our study suggests that THz-absorption modes may be used as an AD biomarker fingerprint in brain, and that THz-TDS is a promising technique for early diagnosis of AD.

  3. Phenotypic and pathologic evaluation of the myd mouse. A candidate model for facioscapulohumeral dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Mathews, K.D.; Rapisarda, D.; Bailey, H.L. [Univ. of Iowa College of Medicine, Iowa City, IA (United States)] [and others

    1995-07-01

    Facioscapulohumeral dystrophy (FSHD) is an autosomal dominant disease of unknown pathogenesis which is characterized by weakness of the face and shoulder girdle. It is associated with a sensorineural hearing loss which may be subclinical. FSHD has been mapped to the distalmost portion of 4q35, although the gene has not yet been identified. Distal 4q has homology with a region of mouse chromosome 8 to which a mouse mutant, myodystrophy (myd), has been mapped. Muscle from homozygotes for the myd mutation appears dystrophic, showing degenerating and regenerating fibers, inflammatory infiltrates, central nuclei, and variation in fiber size. Brainstem auditory evoked potentials reveal a sensorineural hearing loss in myd homozygotes. Based on the homologous genetic map locations, and the phenotypic syndrome of dystrophic muscle with sensorineural hearing loss, we suggest that myd represents an animal model for the human disease FSHD. 28 refs., 4 figs.

  4. Analgesic effects of lappaconitine in leukemia bone pain in a mouse model

    Directory of Open Access Journals (Sweden)

    Xiao-Cui Zhu

    2015-05-01

    Full Text Available Bone pain is a common and severe symptom in cancer patients. The present study employed a mouse model of leukemia bone pain by injection K562 cells into tibia of mouse to evaluate the analgesic effects of lappacontine. Our results showed that the lappaconitine treatment at day 15, 17 and 19 could effectively reduce the spontaneous pain scoring values, restore reduced degree in the inclined-plate test induced by injection of K562 cells, as well as restore paw mechanical withdrawal threshold and paw withdrawal thermal latency induced by injection of K562 cells to the normal levels. Additionally, the molecular mechanisms of lappaconitine’s analgesic effects may be related to affect the expression levels of endogenous opioid system genes (POMC, PENK and MOR, as well as apoptosis-related genes (Xiap, Smac, Bim, NF-κB and p53. Our present results indicated that lappaconitine may become a new analgesic agent for leukemia bone pain management.

  5. Mouse neuroblastoma cell based model and the effect of epileptic events on calcium oscillations and neural spikes

    Science.gov (United States)

    Kim, Suhwan; Baek, Juyeong; Jung, Unsang; Lee, Sangwon; Jung, Woonggyu; Kim, Jeehyun; Kang, Shinwon

    2013-05-01

    Recently, Mouse neuroblastoma cells are considered as an attractive model for the study of human neurological and prion diseases, and intensively used as a model system in different areas. Among those areas, differentiation of neuro2a (N2A) cells, receptor mediated ion current, and glutamate induced physiological response are actively investigated. The reason for the interest to mouse neuroblastoma N2A cells is that they have a fast growing rate than other cells in neural origin with a few another advantages. This study evaluated the calcium oscillations and neural spikes recording of mouse neuroblastoma N2A cells in an epileptic condition. Based on our observation of neural spikes in mouse N2A cell with our proposed imaging modality, we report that mouse neuroblastoma N2A cells can be an important model related to epileptic activity studies. It is concluded that the mouse neuroblastoma N2A cells produce the epileptic spikes in vitro in the same way as produced by the neurons or the astrocytes. This evidence advocates the increased and strong level of neurotransmitters release by enhancement in free calcium using the 4-aminopyridine which causes the mouse neuroblastoma N2A cells to produce the epileptic spikes and calcium oscillation.

  6. A new dry eye mouse model produced by exorbital and intraorbital lacrimal gland excision.

    Science.gov (United States)

    Shinomiya, Katsuhiko; Ueta, Mayumi; Kinoshita, Shigeru

    2018-01-24

    Chronic dry eye is an increasingly prevalent condition worldwide, with resulting loss of visual function and quality of life. Relevant, repeatable, and stable animal models of dry eye are still needed. We have developed an improved surgical mouse model for dry eye based on severe aqueous fluid deficiency, by excising both the exorbital and intraorbital lacrimal glands (ELG and ILG, respectively) of mice. After ELG plus ILG excision, dry eye symptoms were evaluated using fluorescein infiltration observation, tear production measurement, and histological evaluation of ocular surface. Tear production in the model mice was significantly decreased compared with the controls. The corneal fluorescein infiltration score of the model mice was also significantly increased compared with the controls. Histological examination revealed significant severe inflammatory changes in the cornea, conjunctiva or meibomian glands of the model mice after surgery. In the observation of LysM-eGFP (+/-) mice tissues, postsurgical infiltration of green fluorescent neutrophils was observed in the ocular surface tissues. We theorize that the inflammatory changes on the ocular surface of this model were induced secondarily by persistent severe tear reduction. The mouse model will be useful for investigations of both pathophysiology as well as new therapies for tear-volume-reduction type dry eye.

  7. Proteomic profiling of the hypothalamus in two mouse models of narcolepsy.

    Science.gov (United States)

    Azzam, Sausan; Schlatzer, Daniela; Nethery, David; Saleh, Dania; Li, Xiaolin; Akladious, Afaf; Chance, Mark R; Strohl, Kingman P

    2017-07-01

    Narcolepsy is a disabling neurological disorder of sleepiness linked to the loss of neurons producing orexin neuropeptides in the hypothalamus. Two well-characterized phenotypic mouse models of narcolepsy, loss-of-function (orexin-knockout), and progressive loss of orexin (orexin/ataxin-3) exist. The open question is whether the proteomics signatures of the hypothalamus would be different between the two models. To address this gap, we utilized a label-free proteomics approach and conducted a hypothalamic proteome analysis by comparing each disease model to that of wild type. Following data processing and statistical analysis, 14 484 peptides mapping to 2282 nonredundant proteins were identified, of which 39 proteins showed significant differences in protein expression across groups. Altered proteins in both models showed commonalties in pathways for mitochondrial dysfunction and neuronal degeneration, as well as altered proteins related to inflammatory demyelination, insulin resistance, metabolic responses, and the dopaminergic and monoaminergic systems. Model-specific alterations in insulin degraded enzyme (IDE) and synaptosomal-associated protein-25 were unique to orexin-KO and orexin/ataxin-3, respectively. For both models, proteomics not only identified clinically suspected consequences of orexin loss on energy homeostasis and neurotransmitter systems, but also identified commonalities in inflammation and degeneration despite the entirely different genetic basis of the two mouse models. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A Bone-Implant Interaction Mouse Model for Evaluating Molecular Mechanism of Biomaterials/Bone Interaction.

    Science.gov (United States)

    Liu, Wenlong; Dan, Xiuli; Wang, Ting; Lu, William W; Pan, Haobo

    2016-11-01

    The development of an optimal animal model that could provide fast assessments of the interaction between bone and orthopedic implants is essential for both preclinical and theoretical researches in the design of novel biomaterials. Compared with other animal models, mice have superiority in accessing the well-developed transgenic modification techniques (e.g., cell tracing, knockoff, knockin, and so on), which serve as powerful tools in studying molecular mechanisms. In this study, we introduced the establishment of a mouse model, which was specifically tailored for the assessment of bone-implant interaction in a load-bearing bone marrow microenvironment and could potentially allow the molecular mechanism study of biomaterials by using transgenic technologies. The detailed microsurgery procedures for developing a bone defect (Φ = 0.8 mm) at the metaphysis region of the mouse femur were recorded. According to our results, the osteoconductive and osseointegrative properties of a well-studied 45S5 bioactive glass were confirmed by utilizing our mouse model, verifying the reliability of this model. The feasibility and reliability of the present model were further checked by using other materials as objects of study. Furthermore, our results indicated that this animal model provided a more homogeneous tissue-implant interacting surface than the rat at the early stage of implantation and this is quite meaningful for conducting quantitative analysis. The availability of transgenic techniques to mechanism study of biomaterials was further testified by establishing our model on Nestin-GFP transgenic mice. Intriguingly, the distribution of Nestin + cells was demonstrated to be recruited to the surface of 45S5 glass as early as 3 days postsurgery, indicating that Nestin + lineage stem cells may participate in the subsequent regeneration process. In summary, the bone-implant interaction mouse model could serve as a potential candidate to evaluate the early stage tissue

  9. X-ray phase-contrast CT of a pancreatic ductal adenocarcinoma mouse model.

    Directory of Open Access Journals (Sweden)

    Arne Tapfer

    Full Text Available To explore the potential of grating-based x-ray phase-contrast computed tomography (CT for preclinical research, a genetically engineered mouse model of pancreatic ductal adenocarcinoma (PDAC was investigated. One ex-vivo mouse specimen was scanned with different grating-based phase-contrast CT imaging setups covering two different settings: i high-resolution synchrotron radiation (SR imaging and ii dose-reduced imaging using either synchrotron radiation or a conventional x-ray tube source. These experimental settings were chosen to assess the potential of phase-contrast imaging for two different types of application: i high-performance imaging for virtual microscopy applications and ii biomedical imaging with increased soft-tissue contrast for in-vivo applications. For validation and as a reference, histological slicing and magnetic resonance imaging (MRI were performed on the same mouse specimen. For each x-ray imaging setup, attenuation and phase-contrast images were compared visually with regard to contrast in general, and specifically concerning the recognizability of lesions and cancerous tissue. To quantitatively assess contrast, the contrast-to-noise ratios (CNR of selected regions of interest (ROI in the attenuation images and the phase images were analyzed and compared. It was found that both for virtual microscopy and for in-vivo applications, there is great potential for phase-contrast imaging: in the SR-based benchmarking data, fine details about tissue composition are accessible in the phase images and the visibility of solid tumor tissue under dose-reduced conditions is markedly superior in the phase images. The present study hence demonstrates improved diagnostic value with phase-contrast CT in a mouse model of a complex endogenous cancer, promoting the use and further development of grating-based phase-contrast CT for biomedical imaging applications.

  10. Cardiac remodeling in the mouse model of Marfan syndrome develops into two distinctive phenotypes.

    Science.gov (United States)

    Tae, Hyun-Jin; Petrashevskaya, Natalia; Marshall, Shannon; Krawczyk, Melissa; Talan, Mark

    2016-01-15

    Marfan syndrome (MFS) is a systemic disorder of connective tissue caused by mutations in fibrillin-1. Cardiac dysfunction in MFS has not been characterized halting the development of therapies of cardiac complication in MFS. We aimed to study the age-dependent cardiac remodeling in the mouse model of MFS FbnC1039G+/- mouse [Marfan heterozygous (HT) mouse] and its association with valvular regurgitation. Marfan HT mice of 2-4 mo demonstrated a mild hypertrophic cardiac remodeling with predominant decline of diastolic function and increased transforming growth factor-β canonical (p-SMAD2/3) and noncanonical (p-ERK1/2 and p-p38 MAPK) signaling and upregulation of hypertrophic markers natriuretic peptides atrium natriuretic peptide and brain natriuretic peptide. Among older HT mice (6-14 mo), cardiac remodeling was associated with two distinct phenotypes, manifesting either dilated or constricted left ventricular chamber. Dilatation of left ventricular chamber was accompanied by biochemical evidence of greater mechanical stress, including elevated ERK1/2 and p38 MAPK phosphorylation and higher brain natriuretic peptide expression. The aortic valve regurgitation was registered in 20% of the constricted group and 60% of the dilated group, whereas mitral insufficiency was observed in 40% of the constricted group and 100% of the dilated group. Cardiac dysfunction was not associated with the increase of interstitial fibrosis and nonmyocyte proliferation. In the mouse model fibrillin-1, haploinsufficiency results in the early onset of nonfibrotic hypertrophic cardiac remodeling and dysfunction, independently from valvular abnormalities. MFS heart is vulnerable to stress-induced cardiac dilatation in the face of valvular regurgitation, and stress-activated MAPK signals represent a potential target for cardiac management in MFS.

  11. Sulfur mustard induces an endoplasmic reticulum stress response in the mouse ear vesicant model

    International Nuclear Information System (INIS)

    Chang, Yoke-Chen; Wang, James D.; Svoboda, Kathy K.; Casillas, Robert P.; Laskin, Jeffrey D.; Gordon, Marion K.; Gerecke, Donald R.

    2013-01-01

    The endoplasmic reticulum (ER) stress response is a cell survival pathway upregulated when cells are under severe stress. Severely damaged mouse ear skin exposed to the vesicant, sulfur mustard (bis-2-chloroethyl sulfide, SM), resulted in increased expression of ER chaperone proteins that accompany misfolded and incorrectly made proteins targeted for degradation. Time course studies with SM using the mouse ear vesicant model (MEVM) showed progressive histopathologic changes including edema, separation of the epidermis from the dermis, persistent inflammation, upregulation of laminin γ2 (one of the chains of laminin-332, a heterotrimeric skin glycoprotein required for wound repair), and delayed wound healing from 24 h to 168 h post exposure. This was associated with time related increased expression of the cell survival ER stress marker, GRP78/BiP, and the ER stress apoptosis marker, GADD153/CHOP, suggesting simultaneous activation of both cell survival and non-mitochondrial apoptosis pathways. Dual immunofluorescence labeling of a keratinocyte migration promoting protein, laminin γ2 and GRP78/BIP, showed colocalization of the two molecules 72 h post exposure indicating that the laminin γ2 was misfolded after SM exposure and trapped within the ER. Taken together, these data show that ER stress is induced in mouse skin within 24 h of vesicant exposure in a defensive response to promote cell survival; however, it appears that this response is rapidly overwhelmed by the apoptotic pathway as a consequence of severe SM-induced injury. - Highlights: ► We demonstrated ER stress response in the mouse ear vesicant model. ► We described the asymmetrical nature of wound repair in the MEVM. ► We identified the distribution of various ER stress markers in the MEVM

  12. Sulfur mustard induces an endoplasmic reticulum stress response in the mouse ear vesicant model

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yoke-Chen; Wang, James D. [Rutgers University, Pharmacology and Toxicology, 170 Frelinghuysen Rd, Piscataway, NJ 08854 (United States); Svoboda, Kathy K. [Texas A and M University, Baylor College of Dentistry, Center for Craniofacial Research 3302 Gaston Ave, Dallas, Texas 75246 (United States); Casillas, Robert P. [MRIGlobal, 425 Volker Boulevard, Kansas City, MO 64110 (United States); Laskin, Jeffrey D. [UMDNJ-Robert Wood Johnson Medical School, Environmental and Occupational Medicine, 170 Frelinghuysen Rd, Piscataway, NJ 08854 (United States); Gordon, Marion K. [Rutgers University, Pharmacology and Toxicology, 170 Frelinghuysen Rd, Piscataway, NJ 08854 (United States); Gerecke, Donald R., E-mail: gerecke@eohsi.rutgers.edu [Rutgers University, Pharmacology and Toxicology, 170 Frelinghuysen Rd, Piscataway, NJ 08854 (United States)

    2013-04-15

    The endoplasmic reticulum (ER) stress response is a cell survival pathway upregulated when cells are under severe stress. Severely damaged mouse ear skin exposed to the vesicant, sulfur mustard (bis-2-chloroethyl sulfide, SM), resulted in increased expression of ER chaperone proteins that accompany misfolded and incorrectly made proteins targeted for degradation. Time course studies with SM using the mouse ear vesicant model (MEVM) showed progressive histopathologic changes including edema, separation of the epidermis from the dermis, persistent inflammation, upregulation of laminin γ2 (one of the chains of laminin-332, a heterotrimeric skin glycoprotein required for wound repair), and delayed wound healing from 24 h to 168 h post exposure. This was associated with time related increased expression of the cell survival ER stress marker, GRP78/BiP, and the ER stress apoptosis marker, GADD153/CHOP, suggesting simultaneous activation of both cell survival and non-mitochondrial apoptosis pathways. Dual immunofluorescence labeling of a keratinocyte migration promoting protein, laminin γ2 and GRP78/BIP, showed colocalization of the two molecules 72 h post exposure indicating that the laminin γ2 was misfolded after SM exposure and trapped within the ER. Taken together, these data show that ER stress is induced in mouse skin within 24 h of vesicant exposure in a defensive response to promote cell survival; however, it appears that this response is rapidly overwhelmed by the apoptotic pathway as a consequence of severe SM-induced injury. - Highlights: ► We demonstrated ER stress response in the mouse ear vesicant model. ► We described the asymmetrical nature of wound repair in the MEVM. ► We identified the distribution of various ER stress markers in the MEVM.

  13. An athymic mouse model to mimic cobalt-60 cutaneous radiation injury

    International Nuclear Information System (INIS)

    Mosca, Rodrigo Crespo; Ferreira, Danilo Cardenuto; Napolitano, Celia Marina; Santin, Stefany Plumeri; Dornelles, Leonardo Dalla Porta; Alvarenga, Eluara Ortigoso; Mathor, Monica Beatriz

    2013-01-01

    Propose: Cutaneous wound from irradiation is the most common complication in radiotherapy treatment, and can be lead to mortality. We describe an athymic mouse model to mimic cutaneous radiation injury by Cobalt-60. Methods: A protocol was including dosimetry with silicon diodes,10x10x5 cm arrangement made by four lead bricks and PVC pipe designed to immobilize the athymic mouse in order to irradiate one clamped back skin point that was subdivided in four parts. To get the measurements of dose rates on the arrangement in Panoramic Irradiator, it was used a silicon diode encased in an opaque protection for ambient light and connected to an electric cable, forming a dosing probe. The currents generated in diode sensitive volume as a function of time of exposure to gamma radiation coming from the radiator, with dose rate of 0,015 Gy/min in positions 1, 0,021 Gy/min in position 2, 0,55 Gy/min in position 3 and 1,45 Gy/min in position four. After the dosimetry, each athymic mouse was anesthetized using Xylazine and Ketamine dilution and entered into a PVC pipe and a small portion of skin (1 cm 3 ) was clamped. This tube was then fixed to arrangement and the athymic mouse was irradiate for 60 min, than it was being returned to its cage. Results: The wound was visualized in all animals and photographed after 5 days of irradiation, with the emergence of ulceration after 9 days. No systemic or lethal sequelae occurred or visualized in any animals. Late clinical signs included a wound healing after 22 days. Conclusion: While still being a baseline study, we created a new functional preclinical animal model that can be used for new therapies and may improve radiotherapy management. (author)

  14. An athymic mouse model to mimic cobalt-60 cutaneous radiation injury

    Energy Technology Data Exchange (ETDEWEB)

    Mosca, Rodrigo Crespo; Ferreira, Danilo Cardenuto; Napolitano, Celia Marina; Santin, Stefany Plumeri; Dornelles, Leonardo Dalla Porta; Alvarenga, Eluara Ortigoso; Mathor, Monica Beatriz, E-mail: rcmosca@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Propose: Cutaneous wound from irradiation is the most common complication in radiotherapy treatment, and can be lead to mortality. We describe an athymic mouse model to mimic cutaneous radiation injury by Cobalt-60. Methods: A protocol was including dosimetry with silicon diodes,10x10x5 cm arrangement made by four lead bricks and PVC pipe designed to immobilize the athymic mouse in order to irradiate one clamped back skin point that was subdivided in four parts. To get the measurements of dose rates on the arrangement in Panoramic Irradiator, it was used a silicon diode encased in an opaque protection for ambient light and connected to an electric cable, forming a dosing probe. The currents generated in diode sensitive volume as a function of time of exposure to gamma radiation coming from the radiator, with dose rate of 0,015 Gy/min in positions 1, 0,021 Gy/min in position 2, 0,55 Gy/min in position 3 and 1,45 Gy/min in position four. After the dosimetry, each athymic mouse was anesthetized using Xylazine and Ketamine dilution and entered into a PVC pipe and a small portion of skin (1 cm{sup 3}) was clamped. This tube was then fixed to arrangement and the athymic mouse was irradiate for 60 min, than it was being returned to its cage. Results: The wound was visualized in all animals and photographed after 5 days of irradiation, with the emergence of ulceration after 9 days. No systemic or lethal sequelae occurred or visualized in any animals. Late clinical signs included a wound healing after 22 days. Conclusion: While still being a baseline study, we created a new functional preclinical animal model that can be used for new therapies and may improve radiotherapy management. (author)

  15. Expression of Caytaxin protein in Cayman Ataxia mouse models correlates with phenotype severity.

    Directory of Open Access Journals (Sweden)

    Kristine M Sikora

    Full Text Available Caytaxin is a highly-conserved protein, which is encoded by the Atcay/ATCAY gene. Mutations in Atcay/ATCAY have been identified as causative of cerebellar disorders such as the rare hereditary disease Cayman ataxia in humans, generalized dystonia in the dystonic (dt rat, and marked motor defects in three ataxic mouse lines. While several lines of evidence suggest that Caytaxin plays a critical role in maintaining nervous system processes, the physiological function of Caytaxin has not been fully characterized. In the study presented here, we generated novel specific monoclonal antibodies against full-length Caytaxin to examine endogenous Caytaxin expression in wild type and Atcay mutant mouse lines. Caytaxin protein is absent from brain tissues in the two severely ataxic Atcay(jit (jittery and Atcay(swd (sidewinder mutant lines, and markedly decreased in the mildly ataxic/dystonic Atcay(ji-hes (hesitant line, indicating a correlation between Caytaxin expression and disease severity. As the expression of wild type human Caytaxin in mutant sidewinder and jittery mice rescues the ataxic phenotype, Caytaxin's physiological function appears to be conserved between the human and mouse orthologs. Across multiple species and in several neuronal cell lines Caytaxin is expressed as several protein isoforms, the two largest of which are caused by the usage of conserved methionine translation start sites. The work described in this manuscript presents an initial characterization of the Caytaxin protein and its expression in wild type and several mutant mouse models. Utilizing these animal models of human Cayman Ataxia will now allow an in-depth analysis to elucidate Caytaxin's role in maintaining normal neuronal function.

  16. Cytomegalovirus-induced embryopathology: mouse submandibular salivary gland epithelial-mesenchymal ontogeny as a model

    Directory of Open Access Journals (Sweden)

    Huang Jing

    2006-09-01

    Full Text Available Abstract Background Human studies suggest, and mouse models clearly demonstrate, that cytomegalovirus (CMV is dysmorphic to early organ and tissue development. CMV has a particular tropism for embryonic salivary gland and other head mesenchyme. CMV has evolved to co-opt cell signaling networks so to optimize replication and survival, to the detriment of infected tissues. It has been postulated that mesenchymal infection is the critical step in disrupting organogenesis. If so, organogenesis dependent on epithelial-mesenchymal interactions would be particularly vulnerable. In this study, we chose to model the vulnerability by investigating the cell and molecular pathogenesis of CMV infected mouse embryonic submandibular salivary glands (SMGs. Results We infected E15 SMG explants with mouse CMV (mCMV. Active infection for up to 12 days in vitro results in a remarkable cell and molecular pathology characterized by atypical ductal epithelial hyperplasia, apparent epitheliomesenchymal transformation, oncocytic-like stromal metaplasia, β-catenin nuclear localization, and upregulation of Nfkb2, Relb, Il6, Stat3, and Cox2. Rescue with an antiviral nucleoside analogue indicates that mCMV replication is necessary to initiate and maintain SMG dysmorphogenesis. Conclusion mCMV infection of embryonic mouse explants results in dysplasia, metaplasia, and, possibly, anaplasia. The molecular pathogenesis appears to center around the activation of canonical and, perhaps more importantly, noncanonical NFκB. Further, COX-2 and IL-6 are important downstream effectors of embryopathology. At the cellular level, there appears to be a consequential interplay between the transformed SMG cells and the surrounding extracellular matrix, resulting in the nuclear translocation of β-catenin. From these studies, a tentative framework has emerged within which additional studies may be planned and performed.

  17. Dmdmdx/Largemyd: a new mouse model of neuromuscular diseases useful for studying physiopathological mechanisms and testing therapies

    Directory of Open Access Journals (Sweden)

    Poliana C. M. Martins

    2013-09-01

    Although muscular dystrophies are among the most common human genetic disorders, there are few treatment options available. Animal models have become increasingly important for testing new therapies prior to entering human clinical trials. The Dmdmdx mouse is the most widely used animal model for Duchenne muscular dystrophy (DMD, presenting the same molecular and protein defect as seen in humans with the disease. However, this mouse is not useful for clinical trials because of its very mild phenotype. The mouse model for congenital myodystrophy type 1D, Largemyd, harbors a mutation in the glycosyltransferase Large gene and displays a severe phenotype. To help elucidate the role of the proteins dystrophin and LARGE in the organization of the dystrophin-glycoprotein complex in muscle sarcolemma, we generated double-mutant mice for the dystrophin and LARGE proteins. The new Dmdmdx/Largemyd mouse model is viable and shows a severe phenotype that is associated with the lack of dystrophin in muscle. We tested the usefulness of our new mouse model for cell therapy by systemically injecting them with normal murine mesenchymal adipose stem cells (mASCs. We verified that the mASCs were hosted in the dystrophic muscle. The new mouse model has proven to be very useful for the study of several other therapies, because injected cells can be screened both through DNA and protein analysis. Study of its substantial muscle weakness will also be very informative in the evaluation of functional benefits of these therapies.

  18. Dmdmdx/Largemyd: a new mouse model of neuromuscular diseases useful for studying physiopathological mechanisms and testing therapies

    Science.gov (United States)

    Martins, Poliana C. M.; Ayub-Guerrieri, Danielle; Martins-Bach, Aurea B.; Onofre-Oliveira, Paula; Malheiros, Jackeline M.; Tannus, Alberto; de Sousa, Paulo L.; Carlier, Pierre G.; Vainzof, Mariz

    2013-01-01

    SUMMARY Although muscular dystrophies are among the most common human genetic disorders, there are few treatment options available. Animal models have become increasingly important for testing new therapies prior to entering human clinical trials. The Dmdmdx mouse is the most widely used animal model for Duchenne muscular dystrophy (DMD), presenting the same molecular and protein defect as seen in humans with the disease. However, this mouse is not useful for clinical trials because of its very mild phenotype. The mouse model for congenital myodystrophy type 1D, Largemyd, harbors a mutation in the glycosyltransferase Large gene and displays a severe phenotype. To help elucidate the role of the proteins dystrophin and LARGE in the organization of the dystrophin-glycoprotein complex in muscle sarcolemma, we generated double-mutant mice for the dystrophin and LARGE proteins. The new Dmdmdx/Largemyd mouse model is viable and shows a severe phenotype that is associated with the lack of dystrophin in muscle. We tested the usefulness of our new mouse model for cell therapy by systemically injecting them with normal murine mesenchymal adipose stem cells (mASCs). We verified that the mASCs were hosted in the dystrophic muscle. The new mouse model has proven to be very useful for the study of several other therapies, because injected cells can be screened both through DNA and protein analysis. Study of its substantial muscle weakness will also be very informative in the evaluation of functional benefits of these therapies. PMID:23798567

  19. A mouse model of alcoholic liver fibrosis-associated acute kidney injury identifies key molecular pathways

    International Nuclear Information System (INIS)

    Furuya, Shinji; Chappell, Grace A.; Iwata, Yasuhiro; Uehara, Takeki; Kato, Yuki; Kono, Hiroshi; Bataller, Ramon; Rusyn, Ivan

    2016-01-01

    Clinical data strongly indicate that acute kidney injury (AKI) is a critical complication in alcoholic hepatitis, an acute-on-chronic form of liver failure in patients with advanced alcoholic fibrosis. Development of targeted therapies for AKI in this setting is hampered by the lack of an animal model. To enable research into molecular drivers and novel therapies for fibrosis- and alcohol-associated AKI, we aimed to combine carbon tetrachloride (CCl 4 )-induced fibrosis with chronic intra-gastric alcohol feeding. Male C57BL/6J mice were administered a low dose of CCl 4 (0.2 ml/kg 2 × week/6 weeks) followed by alcohol intragastrically (up to 25 g/kg/day for 3 weeks) and with continued CCl 4 . We observed that combined treatment with CCl 4 and alcohol resulted in severe liver injury, more pronounced than using each treatment alone. Importantly, severe kidney injury was evident only in the combined treatment group. This mouse model reproduced distinct pathological features consistent with AKI in human alcoholic hepatitis. Transcriptomic analysis of kidneys revealed profound effects in the combined treatment group, with enrichment for damage-associated pathways, such as apoptosis, inflammation, immune-response and hypoxia. Interestingly, Havcr1 and Lcn2, biomarkers of AKI, were markedly up-regulated. Overall, this study established a novel mouse model of fibrosis- and alcohol-associated AKI and identified key mechanistic pathways. - Highlights: • Acute kidney injury (AKI) is a critical complication in alcoholic hepatitis • We developed a novel mouse model of fibrosis- and alcohol-associated AKI • This model reproduces key molecular and pathological features of human AKI • This animal model can help identify new targeted therapies for alcoholic hepatitis

  20. Automatic Assessment of Craniofacial Growth in a Mouse Model of Crouzon Syndrome

    DEFF Research Database (Denmark)

    Thorup, Signe Strann; Larsen, Rasmus; Darvann, Tron Andre

    2009-01-01

    -rigid volumetric image registration was applied to micro-CT scans of ten 4-week and twenty 6-week euthanized mice for growth modeling. Each age group consisted of 50% normal and 50% Crouzon mice. Four 3D mean shapes, one for each mouse-type and age group were created. Extracting a dense field of growth vectors...... a tool for spatially detailed automatic phenotyping. MAIN OBJECTIVES OF PRESENTATION: We will present a 3D growth model of normal and Crouzon mice, and differences will be statistically and visually compared....

  1. Humanizing the mdx mouse model of DMD: the long and the short of it.

    Science.gov (United States)

    Yucel, Nora; Chang, Alex C; Day, John W; Rosenthal, Nadia; Blau, Helen M

    2018-01-01

    Duchenne muscular dystrophy (DMD) is a common fatal heritable myopathy, with cardiorespiratory failure occurring by the third decade of life. There is no specific treatment for DMD cardiomyopathy, in large part due to a lack of understanding of the mechanisms underlying the cardiac failure. Mdx mice, which have the same dystrophin mutation as human patients, are of limited use, as they do not develop early dilated cardiomyopathy as seen in patients. Here we summarize the usefulness of the various commonly used DMD mouse models, highlight a model with shortened telomeres like humans, and identify directions that warrant further investigation.

  2. Comparison of three mouse strains by radiosensitivity of hemato-immune system

    International Nuclear Information System (INIS)

    Li, Deguan; Wu, Hongying; Wang, Yong; Zhang, Junling; Wang, Yueying; Lu, Lu; Meng, Aimin

    2008-01-01

    IRM-2, developed in our Lab, is an inbred strain mouse created by cross of a ICR/JCL female and 615 male mouse. Compared to the parent strains, the IRM-2 mouse exhibit increased resistance to radiation. We examine the damage of hemato-immune system induced by radiation in IRM-2, ICR and 615 mice in order to elucidate the radiation resistant mechanism of IRM-2 mouse. The hemato-immune function and radiosensitivities of three mouse strains (IRM-2, ICR/JCL, 615) have been compared using the following parameters: the white blood cells (WBC) in peripheral blood (PB), the bone marrow nucleated cells (BMC) per femur. Percent of phagocytosis of peritoneal macrophage (PM) was checked by chicken red blood cells. Lymphocyte phenotype in PB were analyzed by flow cytometry. Damage induced by radiation were analysed in the bone marrows cells, splenocytes and thymocyte exposed to irradiation in vitro by cell viability assay (ATP Bioluminescence assay) and apoptosis assay (Annexin V/PI). The WBC and BMC of IRM-2 mice were significantly higher than those in ICR mice and 615 mice, respectively (P<0.01). The ratio of CD4/CD8 in PB of IRM-2 mouse was lower than those in ICR and 615, P<0.01. Cell viability showed difference after 18 hs incubation post radiation in three mouse strains. The results of our primary study suggest that the hemato-immune function in IRM-2 mouse is different to its parent strains. The IRM-2 mouse provides an animal model to conducted further investigation to explore the role of hemato-immune system in radiation resistance. (author)

  3. The impact of mouse passaging of Mycobacterium tuberculosis strains prior to virulence testing in the mouse and guinea pig aerosol models.

    Directory of Open Access Journals (Sweden)

    Paul J Converse

    2010-04-01

    Full Text Available It has been hypothesized that the virulence of lab-passaged Mycobacterium tuberculosis and recombinant M. tuberculosis mutants might be reduced due to multiple in vitro passages, and that virulence might be augmented by passage of these strains through mice before quantitative virulence testing in the mouse or guinea pig aerosol models.By testing three M. tuberculosis H37Rv samples, one deletion mutant, and one recent clinical isolate for survival by the quantitative organ CFU counting method in mouse or guinea pig aerosol or intravenous infection models, we could discern no increase in bacterial fitness as a result of passaging of M. tuberculosis strains in mice prior to quantitative virulence testing in two animal models. Surface lipid expression as assessed by neutral red staining and thin-layer chromatography for PDIM analysis also failed to identify virulence correlates.These results indicate that animal passaging of M. tuberculosis strains prior to quantitative virulence testing in mouse or guinea pig models does not enhance or restore potency to strains that may have lost virulence due to in vitro passaging. It is critical to verify virulence of parental strains before genetic manipulations are undertaken and comparisons are made.

  4. Predicting Mouse Liver Microsomal Stability with "Pruned" Machine Learning Models and Public Data.

    Science.gov (United States)

    Perryman, Alexander L; Stratton, Thomas P; Ekins, Sean; Freundlich, Joel S

    2016-02-01

    Mouse efficacy studies are a critical hurdle to advance translational research of potential therapeutic compounds for many diseases. Although mouse liver microsomal (MLM) stability studies are not a perfect surrogate for in vivo studies of metabolic clearance, they are the initial model system used to assess metabolic stability. Consequently, we explored the development of machine learning models that can enhance the probability of identifying compounds possessing MLM stability. Published assays on MLM half-life values were identified in PubChem, reformatted, and curated to create a training set with 894 unique small molecules. These data were used to construct machine learning models assessed with internal cross-validation, external tests with a published set of antitubercular compounds, and independent validation with an additional diverse set of 571 compounds (PubChem data on percent metabolism). "Pruning" out the moderately unstable / moderately stable compounds from the training set produced models with superior predictive power. Bayesian models displayed the best predictive power for identifying compounds with a half-life ≥1 h. Our results suggest the pruning strategy may be of general benefit to improve test set enrichment and provide machine learning models with enhanced predictive value for the MLM stability of small organic molecules. This study represents the most exhaustive study to date of using machine learning approaches with MLM data from public sources.

  5. Predicting Drug Response in Human Prostate Cancer from Preclinical Analysis of In Vivo Mouse Models.

    Science.gov (United States)

    Mitrofanova, Antonina; Aytes, Alvaro; Zou, Min; Shen, Michael M; Abate-Shen, Cory; Califano, Andrea

    2015-09-29

    Although genetically engineered mouse (GEM) models are often used to evaluate cancer therapies, extrapolation of such preclinical data to human cancer can be challenging. Here, we introduce an approach that uses drug perturbation data from GEM models to predict drug efficacy in human cancer. Network-based analysis of expression profiles from in vivo treatment of GEM models identified drugs and drug combinations that inhibit the activity of FOXM1 and CENPF, which are master regulators of prostate cancer malignancy. Validation of mouse and human prostate cancer models confirmed the specificity and synergy of a predicted drug combination to abrogate FOXM1/CENPF activity and inhibit tumorigenicity. Network-based analysis of treatment signatures from GEM models identified treatment-responsive genes in human prostate cancer that are potential biomarkers of patient response. More generally, this approach allows systematic identification of drugs that inhibit tumor dependencies, thereby improving the utility of GEM models for prioritizing drugs for clinical evaluation. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Humanized mouse model for assessing the human immune response to xenogeneic and allogeneic decellularized biomaterials.

    Science.gov (United States)

    Wang, Raymond M; Johnson, Todd D; He, Jingjin; Rong, Zhili; Wong, Michelle; Nigam, Vishal; Behfar, Atta; Xu, Yang; Christman, Karen L

    2017-06-01

    Current assessment of biomaterial biocompatibility is typically implemented in wild type rodent models. Unfortunately, different characteristics of the immune systems in rodents versus humans limit the capability of these models to mimic the human immune response to naturally derived biomaterials. Here we investigated the utility of humanized mice as an improved model for testing naturally derived biomaterials. Two injectable hydrogels derived from decellularized porcine or human cadaveric myocardium were compared. Three days and one week after subcutaneous injection, the hydrogels were analyzed for early and mid-phase immune responses, respectively. Immune cells in the humanized mouse model, particularly T-helper cells, responded distinctly between the xenogeneic and allogeneic biomaterials. The allogeneic extracellular matrix derived hydrogels elicited significantly reduced total, human specific, and CD4 + T-helper cell infiltration in humanized mice compared to xenogeneic extracellular matrix hydrogels, which was not recapitulated in wild type mice. T-helper cells, in response to the allogeneic hydrogel material, were also less polarized towards a pro-remodeling Th2 phenotype compared to xenogeneic extracellular matrix hydrogels in humanized mice. In both models, both biomaterials induced the infiltration of macrophages polarized towards a M2 phenotype and T-helper cells polarized towards a Th2 phenotype. In conclusion, these studies showed the importance of testing naturally derived biomaterials in immune competent animals and the potential of utilizing this humanized mouse model for further studying human immune cell responses to biomaterials in an in vivo environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. New mouse model for inducing and evaluating unilateral vestibular deafferentation syndrome.

    Science.gov (United States)

    Cassel, R; Bordiga, P; Pericat, D; Hautefort, C; Tighilet, B; Chabbert, C

    2018-01-01

    Unilateral vestibular deafferentation syndrome (uVDS) holds a particular place in the vestibular pathology domain. Due to its suddenness, the violence of its symptoms that often result in emergency hospitalization, and its associated original neurophysiological properties, this syndrome is a major source of questioning for the otoneurology community. Also, its putative pathogenic causes remain to be determined. There is currently a strong medical need for the development of targeted and effective countermeasures to improve the therapeutic management of uVDS. The present study reports the development of a new mouse model for inducing and evaluating uVDS. Both the method for generating controlled excitotoxic-type peripheral vestibular damages, through transtympanic administration of the glutamate receptors agonist kainate (TTK), and the procedure for evaluating the ensuing clinical signs are detailed. Through extensive analysis of the clinical symptoms characteristics, this new animal model provides the opportunity to better follow the temporal evolution of various uVDS specific symptoms, while better appreciating the different phases that composed this syndrome. The uVDS evoked in the TTK mouse model displays two main phases distinguishable by their kinetics and amplitudes. Several parameters of the altered vestibular behaviour mimic those observed in the human syndrome. This new murine model brings concrete information about how uVDS develops and how it affects global behaviour. In addition, it opens new opportunity to decipher the etiopathological substrate of this pathology by authorizing the use of genetically modified mouse models. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Oral LD50 toxicity modeling and prediction of per- and polyfluorinated chemicals on rat and mouse.

    Science.gov (United States)

    Bhhatarai, Barun; Gramatica, Paola

    2011-05-01

    Quantitative structure-activity relationship (QSAR) analyses were performed using the LD(50) oral toxicity data of per- and polyfluorinated chemicals (PFCs) on rodents: rat and mouse. PFCs are studied under the EU project CADASTER which uses the available experimental data for prediction and prioritization of toxic chemicals for risk assessment by using the in silico tools. The methodology presented here applies chemometrical analysis on the existing experimental data and predicts the toxicity of new compounds. QSAR analyses were performed on the available 58 mouse and 50 rat LD(50) oral data using multiple linear regression (MLR) based on theoretical molecular descriptors selected by genetic algorithm (GA). Training and prediction sets were prepared a priori from available experimental datasets in terms of structure and response. These sets were used to derive statistically robust and predictive (both internally and externally) models. The structural applicability domain (AD) of the models were verified on 376 per- and polyfluorinated chemicals including those in REACH preregistration list. The rat and mouse endpoints were predicted by each model for the studied compounds, and finally 30 compounds, all perfluorinated, were prioritized as most important for experimental toxicity analysis under the project. In addition, cumulative study on compounds within the AD of all four models, including two earlier published models on LC(50) rodent analysis was studied and the cumulative toxicity trend was observed using principal component analysis (PCA). The similarities and the differences observed in terms of descriptors and chemical/mechanistic meaning encoded by descriptors to prioritize the most toxic compounds are highlighted.

  9. A mouse model of prenatal ethanol exposure using a voluntary drinking paradigm.

    Science.gov (United States)

    Allan, Andrea M; Chynoweth, Julie; Tyler, Lani A; Caldwell, Kevin K

    2003-12-01

    The incidence of fetal alcohol spectrum disorders is estimated to be as high as 1 in 100 births. Efforts to better understand the basis of prenatal ethanol-induced impairments in brain functioning, and the mechanisms by which ethanol produces these defects, will rely on the use of animal models of fetal alcohol exposure (FAE). Using a saccharin-sweetened alcohol solution, we developed a free-choice, moderate alcohol access model of prenatal alcohol exposure. Stable drinking of a saccharin solution (0.066%) was established in female mice. Ethanol then was added to the saccharin in increasing concentrations (2%, 5%, 10% w/v) every 2 days. Water was always available, and mice consumed standard pellet chow. Control mice drank saccharin solution without ethanol. After a stable baseline of ethanol consumption (14 g/kg/day) was obtained, females were impregnated. Ethanol consumption continued throughout pregnancy and then was decreased to 0% in a step-wise fashion over a period of 6 days after pups were delivered. Characterization of the model included measurements of maternal drinking patterns, blood alcohol levels, food consumption, litter size, pup weight, pup retrieval times for the dams, and effects of FAE on performance in fear-conditioned learning and novelty exploration. Maternal food consumption, maternal care, and litter size and number were all found to be similar for the alcohol-exposed and saccharin control animals. FAE did not alter locomotor activity in an open field but did increase the time spent inspecting a novel object introduced into the open field. FAE mice displayed reduced contextual fear when trained using a delay fear conditioning procedure. The mouse model should be a useful tool in testing hypotheses about the neural mechanisms underlying the learning deficits present in fetal alcohol spectrum disorders. Moreover, a mouse prenatal ethanol model should increase the opportunity to use the power of genetically defined and genetically altered mouse

  10. Voxel-based morphometry with templates and validation in a mouse model of Huntington's disease.

    Science.gov (United States)

    Sawiak, Stephen J; Wood, Nigel I; Williams, Guy B; Morton, A Jennifer; Carpenter, T Adrian

    2013-11-01

    Despite widespread application to human imaging, voxel-based morphometry (VBM), where images are compared following grey matter (GM) segmentation, is seldom used in mice. Here VBM is performed for the R6/2 model of Huntington's disease, a progressive neurological disorder. This article discusses issues in translating the methods to mice and shows that its statistical basis is sound in mice as it is in human studies. Whole brain images from live transgenic and control mice are segmented into GM maps after processing and compared to produce statistical parametric maps of likely differences. To assess whether false positives were likely to occur, a large cohort of ex vivo magnetic resonance brain images were sampled with permutation testing. Differences were seen particularly in the striatum and cortex, in line with studies performed ex vivo and as seen in human patients. In validation, the rate of false positives is as expected and these have no discernible distribution through the brain. The study shows that VBM successfully detects differences in the Huntington's disease mouse brain. The method is rapid compared to manual delineation and reliable. The templates created here for the mouse brain are freely released for other users in addition to an open-source software toolbox for performing mouse VBM. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Synergistic effect of lidocaine with pingyangmycin for treatment of venous malformation using a mouse spleen model

    Science.gov (United States)

    Bai, Nan; Chen, Yuan-Zheng; Mao, Kai-Ping; Fu, Yanjie; Lin, Qiang; Xue, Yan

    2014-01-01

    Aims: To explore whether lidocaine has the synergistic effect with pingyangmycin (PYM) in the venous malformations (VMs) treatment. Methods: The mouse spleen was chosen as a VM model and injected with different concentration of lidocaine or PYM or jointly treated with lidocaine and PYM. After 2, 5, 8 or 14 days, the mouse spleen tissues were acquired for hematoxylin-eosin (HE) staining, transmission electron microscopy (TEM) analysis, TUNEL assay and quantitative RT-PCR analysis to examine the toxicological effects of lidocaine and PYM on splenic vascular endothelial cells. Results: 0.4% of lidocaine mildly promoted the apoptosis of endothelial cells, while 2 mg/ml PYM significantly elevated the apoptotic ratios. However, the combination of 0.2% lidocaine and 0.5 mg/ml PYM notably elevated the apoptotic ratios of splenic cells and severely destroyed the configuration of spleen, compared to those of treatment with 0.5 mg/ml PYM alone. Conclusion: Lidocaine exerts synergistic effects with PYM in promoting the apoptosis of mouse splenic endothelial cells, indicating that lidocaine possibly promotes the therapeutic effects of PYM in VMs treatment via synergistically enhancing the apoptosis of endothelial cells of malformed venous lesions. PMID:24966943

  12. Galactosylceramidase deficiency causes sperm abnormalities in the mouse model of globoid cell leukodystrophy

    International Nuclear Information System (INIS)

    Luddi, A.; Strazza, M.; Carbone, M.; Moretti, E.; Costantino-Ceccarini, E.

    2005-01-01

    The classical recessive mouse mutant, 'the twitcher,' is one of the several animal models of the human globoid cell leukodystrophy (Krabbe disease) caused by a deficiency in the gene encoding the lysosomal enzyme galactosylceramidase (GALC). The failure to hydrolyze galactosylceramide (gal-cer) and galactosylsphingosine (psychosine) leads to degeneration of oligodendrocytes and severe demyelination. Substrate for GALC is also the galactosyl-alkyl-acyl-glycerol (GalAAG), precursor of the seminolipid, the most abundant glycolipid in spermatozoa of mammals. In this paper, we report the pathobiology of the testis and sperm in the twitcher mouse and demonstrate the importance of GALC for normal sperm maturation and function. The GALC deficit results in accumulation of GalAAG in the testis of the twitcher mouse. Morphological studies revealed that affected spermatozoa have abnormally swollen acrosomes and angulation of the flagellum mainly at midpiece-principal piece junction. Multiple folding of the principal piece was also observed. Electron microscopy analysis showed that in the twitcher sperm, acrosomal membrane is redundant, detached from the nucleus and folded over. Disorganization and abnormal arrangements of the axoneme components were also detected. These results provide in vivo evidence that GALC plays a critical role in spermiogenesis

  13. Trypsin digest protocol to analyze the retinal vasculature of a mouse model.

    Science.gov (United States)

    Chou, Jonathan C; Rollins, Stuart D; Fawzi, Amani A

    2013-06-13

    Trypsin digest is the gold standard method to analyze the retinal vasculature (1-5). It allows visualization of the entire network of complex three-dimensional retinal blood vessels and capillaries by creating a two-dimensional flat-mount of the interconnected vascular channels after digestion of the non-vascular components of the retina. This allows one to study various pathologic vascular changes, such as microaneurysms, capillary degeneration, and abnormal endothelial to pericyte ratios. However, the method is technically challenging, especially in mice, which have become the most widely available animal model to study the retina because of the ease of genetic manipulations (6,7). In the mouse eye, it is particularly difficult to completely remove the non-vascular components while maintaining the overall architecture of the retinal blood vessels. To date, there is a dearth of literature that describes the trypsin digest technique in detail in the mouse. This manuscript provides a detailed step-by-step methodology of the trypsin digest in mouse retina, while also providing tips on troubleshooting difficult steps.

  14. Centralized mouse repositories.

    Science.gov (United States)

    Donahue, Leah Rae; Hrabe de Angelis, Martin; Hagn, Michael; Franklin, Craig; Lloyd, K C Kent; Magnuson, Terry; McKerlie, Colin; Nakagata, Naomi; Obata, Yuichi; Read, Stuart; Wurst, Wolfgang; Hörlein, Andreas; Davisson, Muriel T

    2012-10-01

    Because the mouse is used so widely for biomedical research and the number of mouse models being generated is increasing rapidly, centralized repositories are essential if the valuable mouse strains and models that have been developed are to be securely preserved and fully exploited. Ensuring the ongoing availability of these mouse strains preserves the investment made in creating and characterizing them and creates a global resource of enormous value. The establishment of centralized mouse repositories around the world for distributing and archiving these resources has provided critical access to and preservation of these strains. This article describes the common and specialized activities provided by major mouse repositories around the world.

  15. Computational multiscale toxicodynamic modeling of silver and carbon nanoparticle effects on mouse lung function.

    Directory of Open Access Journals (Sweden)

    Dwaipayan Mukherjee

    Full Text Available A computational, multiscale toxicodynamic model has been developed to quantify and predict pulmonary effects due to uptake of engineered nanomaterials (ENMs in mice. The model consists of a collection of coupled toxicodynamic modules, that were independently developed and tested using information obtained from the literature. The modules were developed to describe the dynamics of tissue with explicit focus on the cells and the surfactant chemicals that regulate the process of breathing, as well as the response of the pulmonary system to xenobiotics. Alveolar type I and type II cells, and alveolar macrophages were included in the model, along with surfactant phospholipids and surfactant proteins, to account for processes occurring at multiple biological scales, coupling cellular and surfactant dynamics affected by nanoparticle exposure, and linking the effects to tissue-level lung function changes. Nanoparticle properties such as size, surface chemistry, and zeta potential were explicitly considered in modeling the interactions of these particles with biological media. The model predictions were compared with in vivo lung function response measurements in mice and analysis of mice lung lavage fluid following exposures to silver and carbon nanoparticles. The predictions were found to follow the trends of observed changes in mouse surfactant composition over 7 days post dosing, and are in good agreement with the observed changes in mouse lung function over the same period of time.

  16. Orofacial neuropathic pain mouse model induced by Trigeminal Inflammatory Compression (TIC of the infraorbital nerve

    Directory of Open Access Journals (Sweden)

    Ma Fei

    2012-12-01

    Full Text Available Abstract Background Trigeminal neuropathic pain attacks can be excruciating for patients, even after being lightly touched. Although there are rodent trigeminal nerve research models to study orofacial pain, few models have been applied to studies in mice. A mouse trigeminal inflammatory compression (TIC model is introduced here which successfully and reliably promotes vibrissal whisker pad hypersensitivity. Results The chronic orofacial neuropathic pain model is induced after surgical placement of chromic gut suture in the infraorbital nerve fissure in the maxillary bone. Slight compression and chemical effects of the chromic gut suture on the portion of the infraorbital nerve contacted cause mild nerve trauma. Nerve edema is observed in the contacting infraorbital nerve bundle as well as macrophage infiltration in the trigeminal ganglia. Centrally in the spinal trigeminal nucleus, increased immunoreactivity for an activated microglial marker is evident (OX42, postoperative day 70. Mechanical thresholds of the affected whisker pad are significantly decreased on day 3 after chromic gut suture placement, persisting at least 10 weeks. The mechanical allodynia is reversed by suppression of microglial activation. Cold allodynia was detected at 4 weeks. Conclusions A simple, effective, and reproducible chronic mouse model mimicking clinical orofacial neuropathic pain (Type 2 is induced by placing chromic gut suture between the infraorbital nerve and the maxillary bone. The method produces mild inflammatory compression with significant continuous mechanical allodynia persisting at least 10 weeks and cold allodynia measureable at 4 weeks.

  17. Effects of oxidative stress on hyperglycaemia-induced brain malformations in a diabetes mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Ya [Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China (China); Wang, Guang [Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632 (China); Han, Sha-Sha; He, Mei-Yao [Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China (China); Cheng, Xin; Ma, Zheng-Lai [Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632 (China); Wu, Xia [Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China (China); Yang, Xuesong, E-mail: yang_xuesong@126.com [Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632 (China); Liu, Guo-Sheng, E-mail: tlgs@jnu.edu.cn [Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China (China)

    2016-09-10

    Pregestational diabetes mellitus (PGDM) enhances the risk of fetal neurodevelopmental defects. However, the mechanism of hyperglycaemia-induced neurodevelopmental defects is not fully understood. In this study, several typical neurodevelopmental defects were identified in the streptozotocin-induced diabetes mouse model. The neuron-specific class III beta-tubulin/forkhead box P1-labelled neuronal differentiation was suppressed and glial fibrillary acidic protein-labelled glial cell lineage differentiation was slightly promoted in pregestational diabetes mellitus (PGDM) mice. Various concentrations of glucose did not change the U87 cell viability, but glial cell line-derived neurotrophic factor expression was altered with varying glucose concentrations. Mouse maternal hyperglycaemia significantly increased Tunel{sup +} apoptosis but did not dramatically affect PCNA{sup +} cell proliferation in the process. To determine the cause of increased apoptosis, we determined the SOD activity, the expression of Nrf2 as well as its downstream anti-oxidative factors NQO1 and HO1, and found that all of them significantly increased in PGDM fetal brains compared with controls. However, Nrf2 expression in U87 cells was not significantly changed by different glucose concentrations. In mouse telencephalon, we observed the co-localization of Tuj-1 and Nrf2 expression in neurons, and down-regulating of Nrf2 in SH-SY5Y cells altered the viability of SH-SY5Y cells exposed to high glucose concentrations. Taken together, the data suggest that Nrf2-modulated antioxidant stress plays a crucial role in maternal hyperglycaemia-induced neurodevelopmental defects. - Highlights: • Typical neurodevelopmental defects could be observed in STZ-treated mouse fetuses. • Nrf2 played a crucial role in hyperglycaemia-induced brain malformations. • The effects of hyperglycaemia on neurons and glia cells were not same.

  18. Combination of mouse models and genomewide association studies highlights novel genes associated with human kidney function.

    Science.gov (United States)

    Jing, Jiaojiao; Pattaro, Cristian; Hoppmann, Anselm; Okada, Yukinori; Fox, Caroline S; Köttgen, Anna

    2016-10-01

    Genomewide association studies have identified numerous chronic kidney disease-associated genetic variants, but often do not pinpoint causal genes. This limitation was addressed by combining Mouse Genome Informatics with human genomewide association studies of kidney function. Genes for which mouse models showed abnormal renal physiology, morphology, glomerular filtration rate (GFR), or urinary albumin-to-creatinine ratio were identified from Mouse Genome Informatics. The corresponding human orthologs were then evaluated for GFR-associated single-nucleotide polymorphisms in 133,814 individuals and urinary albumin-to-creatinine ratio-associated SNPs in 54,451 individuals in genome-wide association studies meta-analysis of the CKDGen Consortium. After multiple testing corrections, significant associations with estimated GFR in humans were identified for single-nucleotide polymorphisms in 2, 7, and 17 genes causing abnormal GFR, abnormal physiology, and abnormal morphology in mice, respectively. Genes identified for abnormal kidney morphology showed significant enrichment for estimated GFR-associated single-nucleotide polymorphisms. In total, 19 genes contained variants associated with estimated GFR or the urinary albumin-to-creatinine ratio of which 16 mapped into previously reported genomewide significant loci. CYP26A1 and BMP4 emerged as novel signals subsequently validated in a large, independent study. An additional gene, CYP24A1, was discovered after conditioning on a published nearby association signal. Thus, our novel approach to combine comprehensive mouse phenotype information with human genomewide association studies data resulted in the identification of candidate genes for kidney disease pathogenesis. Copyright © 2016 International Society of Nephrology. All rights reserved.

  19. Dynamic gene expression analysis in a H1N1 influenza virus mouse pneumonia model.

    Science.gov (United States)

    Bao, Yanyan; Gao, Yingjie; Shi, Yujing; Cui, Xiaolan

    2017-06-01

    H1N1, a major pathogenic subtype of influenza A virus, causes a respiratory infection in humans and livestock that can range from a mild infection to more severe pneumonia associated with acute respiratory distress syndrome. Understanding the dynamic changes in the genome and the related functional changes induced by H1N1 influenza virus infection is essential to elucidating the pathogenesis of this virus and thereby determining strategies to prevent future outbreaks. In this study, we filtered the significantly expressed genes in mouse pneumonia using mRNA microarray analysis. Using STC analysis, seven significant gene clusters were revealed, and using STC-GO analysis, we explored the significant functions of these seven gene clusters. The results revealed GOs related to H1N1 virus-induced inflammatory and immune functions, including innate immune response, inflammatory response, specific immune response, and cellular response to interferon-beta. Furthermore, the dynamic regulation relationships of the key genes in mouse pneumonia were revealed by dynamic gene network analysis, and the most important genes were filtered, including Dhx58, Cxcl10, Cxcl11, Zbp1, Ifit1, Ifih1, Trim25, Mx2, Oas2, Cd274, Irgm1, and Irf7. These results suggested that during mouse pneumonia, changes in the expression of gene clusters and the complex interactions among genes lead to significant changes in function. Dynamic gene expression analysis revealed key genes that performed important functions. These results are a prelude to advancements in mouse H1N1 influenza virus infection biology, as well as the use of mice as a model organism for human H1N1 influenza virus infection studies.

  20. Insufficient Innate Immunity Contributes to the Susceptibility of the Castaneous Mouse to Orthopoxvirus Infection.

    Science.gov (United States)

    Earl, Patricia L; Americo, Jeffrey L; Moss, Bernard

    2017-10-01

    The castaneous (CAST) mouse, a wild-derived inbred strain, is highly susceptible to orthopoxvirus infection by intranasal and systemic routes. The 50% lethal intraperitoneal dose of vaccinia virus (VACV) was 3 PFU for CAST mice, whereas BALB/c mice survived 10 6 PFU. At all times and in all organs analyzed, virus titers were higher in CAST than in BALB/c mice. In individual CAST mice, luciferase-expressing VACV was seen to replicate rapidly leading to death, whereas virus levels increased for a few days and then declined in BALB/c mice. Increases in gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α) were delayed and low in CAST mice compared to BALB/c mice following VACV infection or poly(I-C) inoculation, consistent with differences in innate immune responses. In addition, naive CAST mice had considerably lower numbers of NK and T cells than BALB/c mice. The percentage of IFN-γ-producing CD4 + and CD8 + T cells increased following infection of CAST mice only after considerable virus spread, and the absolute cell numbers remained low. Administration of exogenous IFN-γ or -α to CAST mice before or during the first days of infection suppressed virus replication and prolonged survival, allowing the mice to make adaptive CD4 + and CD8 + T cell responses that were necessary to clear the virus after cessation of interferon treatment. Thus, insufficient innate cytokine and cellular immune responses contribute to the unique susceptibility of CAST mice to VACV, whereas the adaptive immune response can be protective only if virus replication is suppressed during the first several days of infection. IMPORTANCE Most inbred mouse strains are relatively resistant to orthopoxviruses. The castaneous (CAST) mouse is a notable exception, exhibiting extreme vulnerability to monkeypox virus, cowpox virus, and vaccinia virus and thus providing a unique model for studying pathogenicity, immunity, vaccines, and antiviral drugs. To fully utilize the CAST mouse for such

  1. Effect of sclerostin antibody treatment in a mouse model of severe osteogenesis imperfecta.

    Science.gov (United States)

    Roschger, Andreas; Roschger, Paul; Keplingter, Petra; Klaushofer, Klaus; Abdullah, Sami; Kneissel, Michaela; Rauch, Frank

    2014-09-01

    Osteogenesis imperfecta (OI) is a heritable bone fragility disorder that is usually caused by mutations affecting collagen type I production in osteoblasts. Stimulation of bone formation through sclerostin antibody treatment (Sost-ab) has shown promising results in mouse models of relatively mild OI. We assessed the effect of once-weekly intravenous Sost-ab injections for 4weeks in male Col1a1(Jrt)/+mice, a model of severe dominant OI, starting either at 4weeks (growing mice) or at 20weeks (adult mice) of age. Sost-ab had no effect on weight or femur length. In OI mice, no significant treatment-associated differences in serum markers of bone formation (alkaline phosphatase activity, procollagen type I N-propeptide) or resorption (C-telopeptide of collagen type I) were found. Micro-CT analyses at the femur showed that Sost-ab treatment was associated with higher trabecular bone volume and higher cortical thickness in wild type mice at both ages and in growing OI mice, but not in adult OI mice. Three-point bending tests of the femur showed that in wild type but not in OI mice, Sost-ab was associated with higher ultimate load and work to failure. Quantitative backscattered electron imaging of the femur did not show any effect of Sost-ab on CaPeak (the most frequently occurring calcium concentration in the bone mineral density distribution), regardless of genotype, age or measurement location. Thus, Sost-ab had a larger effect in wild type than in Col1a1(Jrt)/+mice. Previous studies had found marked improvements of Sost-ab on bone mass and strength in an OI mouse model with a milder phenotype. Our data therefore suggest that Sost-ab is less effective in a more severely affected OI mouse model. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Neuropeptide Y mitigates neuropathology and motor deficits in mouse models of Machado-Joseph disease.

    Science.gov (United States)

    Duarte-Neves, Joana; Gonçalves, Nélio; Cunha-Santos, Janete; Simões, Ana Teresa; den Dunnen, Wilfred F A; Hirai, Hirokazu; Kügler, Sebastian; Cavadas, Cláudia; Pereira de Almeida, Luís

    2015-10-01

    Machado-Joseph disease (MJD) is a fatal, dominantly inherited neurodegenerative disorder associated with an expanded polyglutamine tract within the ataxin-3 protein, and characterized by progressive impairment of motor coordination, associated with neurodegeneration of specific brain regions, including cerebellum and striatum. The currently available therapies do not allow modification of disease progression. Neuropeptide Y (NPY) has been shown to exert potent neuroprotective effects by multiple pathways associated with the MJD mechanisms of disease. Thus, we evaluated NPY levels in MJD and investigated whether raising NPY by gene transfer would alleviate neuropathological and behavioural deficits in cerebellar and striatal mouse models of the disease. For that, a cerebellar transgenic and a striatal lentiviral-based models of MJD were used. NPY overexpression in the affected brain regions in these two mouse models was obtained by stereotaxic injection of adeno-associated viral vectors encoding NPY. Up to 8 weeks after viral injection, balance and motor coordination behaviour and neuropathology were analysed. We observed that NPY levels were decreased in two MJD patients' cerebella and in striata and cerebella of disease mouse models. Furthermore, overexpression of NPY alleviated the motor coordination impairments and attenuated the related neuropathological parameters, preserving cerebellar volume and granular layer thickness, reducing striatal lesion and decreasing mutant ataxin-3 aggregation. Additionally, NPY mediated increase of brain-derived neurotrophic factor levels and decreased neuroinflammation markers. Our data suggest that NPY is a potential therapeutic strategy for MJD. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Establishment of a mouse model with misregulated chromosome condensation due to defective Mcph1 function.

    Directory of Open Access Journals (Sweden)

    Marc Trimborn

    Full Text Available Mutations in the human gene MCPH1 cause primary microcephaly associated with a unique cellular phenotype with premature chromosome condensation (PCC in early G2 phase and delayed decondensation post-mitosis (PCC syndrome. The gene encodes the BRCT-domain containing protein microcephalin/BRIT1. Apart from its role in the regulation of chromosome condensation, the protein is involved in the cellular response to DNA damage. We report here on the first mouse model of impaired Mcph1-function. The model was established based on an embryonic stem cell line from BayGenomics (RR0608 containing a gene trap in intron 12 of the Mcph1 gene deleting the C-terminal BRCT-domain of the protein. Although residual wild type allele can be detected by quantitative real-time PCR cell cultures generated from mouse tissues bearing the homozygous gene trap mutation display the cellular phenotype of misregulated chromosome condensation that is characteristic for the human disorder, confirming defective Mcph1 function due to the gene trap mutation. While surprisingly the DNA damage response (formation of repair foci, chromosomal breakage, and G2/M checkpoint function after irradiation appears to be largely normal in cell cultures derived from Mcph1(gt/gt mice, the overall survival rates of the Mcph1(gt/gt animals are significantly reduced compared to wild type and heterozygous mice. However, we could not detect clear signs of premature malignant disease development due to the perturbed Mcph1 function. Moreover, the animals show no obvious physical phenotype and no reduced fertility. Body and brain size are within the range of wild type controls. Gene expression on RNA and protein level did not reveal any specific pattern of differentially regulated genes. To the best of our knowledge this represents the first mammalian transgenic model displaying a defect in mitotic chromosome condensation and is also the first mouse model for impaired Mcph1-function.

  4. Neurobehavioral Assessments in a Mouse Model of Neonatal Hypoxic-ischemic Brain Injury.

    Science.gov (United States)

    Kim, MinGi; Yu, Ji Hea; Seo, Jung Hwa; Shin, Yoon-Kyum; Wi, Soohyun; Baek, Ahreum; Song, Suk-Young; Cho, Sung-Rae

    2017-11-24

    We performed unilateral carotid artery occlusion on CD-1 mice to create a neonatal hypoxic-ischemic (HI) model and investigated the effects of neonatal HI brain injury by studying neurobehavioral functions in these mice compared to non-operated (i.e., normal) mice. During the study, Rice-Vannucci's method was used to induce neonatal HI brain damage in postnatal day 7-10 (P7-10) mice. The HI operation was performed on the pups by unilateral carotid artery ligation and exposure to hypoxia (8% O2 and 92% N2 for 90 min). One week after the operation, the damaged brains were evaluated with the naked eye through the semi-transparent skull and were categorized into subgroups based on the absence ("no cortical injury" group) or presence ("cortical injury" group) of cortical injury, such as a lesion in the right hemisphere. On week 6, the following neurobehavioral tests were performed to evaluate the cognitive and motor functions: passive avoidance task (PAT), ladder walking test, and grip strength test. These behavioral tests are helpful in determining the effects of neonatal HI brain injury and are used in other mouse models of neurodegenerative diseases. In this study, neonatal HI brain injury mice showed motor deficits that corresponded to right hemisphere damage. The behavioral test results are relevant to the deficits observed in human neonatal HI patients, such as cerebral palsy or neonatal stroke patients. In this study, a mouse model of neonatal HI brain injury was established and showed different degrees of motor deficits and cognitive impairment compared to non-operated mice. This work provides basic information on the HI mouse model. MRI images demonstrate the different phenotypes, separated according to the severity of brain damage by motor and cognitive tests.

  5. Novel Vitamin K analogues suppress seizures in zebrafish and mouse models of epilepsy

    Science.gov (United States)

    Rahn, Jennifer J.; Bestman, Jennifer E.; Josey, Benjamin J.; Inks, Elizabeth S.; Stackley, Krista D.; Rogers, Carolyn E.; Chou, C. James; Chan, Sherine S. L.

    2014-01-01

    Epilepsy is a debilitating disease affecting 1-2% of the world’s population. Despite this high prevalence, 30% of patients suffering from epilepsy are not successfully managed by current medication suggesting a critical need for new anti-epileptic drugs (AEDs). In an effort to discover new therapeutics for the management of epilepsy, we began our study by screening drugs that, like some currently used AEDs, inhibit HDACs using a well-established larval zebrafish model. In this model, 7-day post fertilization (dpf) larvae are treated with the widely used seizure-inducing compound pentylenetetrazol (PTZ) which stimulates a rapid increase in swimming behavior previously determined to be a measurable manifestation of seizures. In our first screen, we tested a number of different HDAC inhibitors and found that one, NQN1, significantly decreased swim activity to levels equal to that of VPA. We continued to screen structurally related compounds including Vitamin K3 (VK3) and a number of novel Vitamin K (VK) analogues. We found that VK3 was a robust inhibitor of the PTZ-induced swim activity, as were several of our novel compounds. Three of these compounds were subsequently tested on mouse seizure models at the National Institute of Neurological Disorders and Stroke (NINDS) Anticonvulsant Screening Program. Compound 2h reduced seizures particularly well in the minimal clonic seizure (6 Hz) and corneal kindled mouse models of epilepsy, with no observable toxicity. As VK3 affects mitochondrial function, we tested the effects of our compounds on mitochondrial respiration and ATP production in a mouse hippocampal cell line. We demonstrate that these compounds affect ATP metabolism and increase total cellular ATP. Our data indicate the potential utility of these and other VK analogues for prevention of seizures and suggest the potential mechanism for this protection may lie in the ability of these compounds to affect energy production. PMID:24291671

  6. Frontal cortical synaptic communication is abnormal in Disc1 genetic mouse models of schizophrenia.

    Science.gov (United States)

    Holley, Sandra M; Wang, Elizabeth A; Cepeda, Carlos; Jentsch, J David; Ross, Christopher A; Pletnikov, Mikhail V; Levine, Michael S

    2013-05-01

    Mouse models carrying Disc1 mutations may provide insights into how Disc1 genetic variations contribute to schizophrenia (SZ) susceptibility. Disc1 mutant mice show behavioral and cognitive disturbances reminiscent of SZ. To dissect the synaptic mechanisms underlying these phenotypes, we examined electrophysiological properties of cortical neurons from two mouse models, the first expressing a truncated mouse Disc1 (mDisc1) protein throughout the entire brain, and the second expressing a truncated human Disc1 (hDisc1) protein in forebrain regions. We obtained whole-cell patch clamp recordings to examine how altered expression of Disc1 protein changes excitatory and inhibitory synaptic transmissions onto cortical pyramidal neurons in the medial prefrontal cortex in 4-7 month-old mDisc1 and hDisc1 mice. In both mDisc1 and hDisc1 mice, the frequency of spontaneous EPSCs was greater than in wild-type littermate controls. Male mice from both lines were more affected by the Disc1 mutation than were females, exhibiting increases in the ratio of excitatory to inhibitory events. Changes in spontaneous IPSCs were only observed in the mDisc1 model and were sex-specific, with diminished cortical GABAergic neurotransmission, a well-documented characteristic of SZ, occurring only in male mDisc1 mice. In contrast, female mDisc1 mice showed an increase in the frequency of small-amplitude sIPSCs. These findings indicate that truncations of Disc1 alter glutamatergic and GABAergic neurotransmission both commonly and differently in the models and some of the effects are sex-specific, revealing how altered Disc1 expression may contribute to behavioral disruptions and cognitive deficits of SZ. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Differential visual system organization and susceptibility to experimental models of optic neuropathies in three commonly used mouse strains.

    Science.gov (United States)

    De Groef, Lies; Dekeyster, Eline; Geeraerts, Emiel; Lefevere, Evy; Stalmans, Ingeborg; Salinas-Navarro, Manuel; Moons, Lieve

    2016-04-01

    Mouse disease models have proven indispensable in glaucoma research, yet the complexity of the vast number of models and mouse strains has also led to confusing findings. In this study, we evaluated baseline intraocular pressure, retinal histology, and retinofugal projections in three mouse strains commonly used in glaucoma research, i.e. C57Bl/6, C57Bl/6-Tyr(c), and CD-1 mice. We found that the mouse strains under study do not only display moderate variations in their intraocular pressure, retinal architecture, and retinal ganglion cell density, also the retinofugal projections to the dorsal lateral geniculate nucleus and the superior colliculus revealed striking differences, potentially underlying diverging optokinetic tracking responses and visual acuity. Next, we reviewed the success rate of three models of (glaucomatous) optic neuropathies (intravitreal N-methyl-d-aspartic acid injection, optic nerve crush, and laser photocoagulation-induced ocular hypertension), looking for differences in disease susceptibility between these mouse strains. Different genetic backgrounds and albinism led to differential susceptibility to experimentally induced retinal ganglion cell death among these three mouse strains. Overall, CD-1 mice appeared to have the highest sensitivity to retinal ganglion cell damage, while the C57Bl/6 background was more resistant in the three models used. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Dynamics of phosphorus accumulation in maize inbred lines grain

    Directory of Open Access Journals (Sweden)

    Kovinčić Anika

    2016-01-01

    Full Text Available Mineral elements deficiency in food can cause serious health problems. Being one of the three most importatnt macroelements for plant nutrition, phosphorus is involved in several key processes: photosynthesis, respiration, synthesis of starch, transport of carbohydrates and products of photosynthesis, cell division and increased water utilization. The objective of this study was to estimate the dynamics of inorganic phosphorus (Pi, as a precursor in the synthesis of phytic acid, and phytic phosphorus (Pphy accumulation during the grain filling of two maize inbred lines differing in FAO maturity groups - L217 and L773. In addition, possible linkage between phosphorus content in grain and agro-morphological performances was observed. For the analysis of the dynamics in Pi and Pphy contents, seed samples were taken at 15th, 30th, 45th and 60th day after the polination. The obtained results showed a continuous decline of Pi content in both genotypes, with the most intensive decline observed at the first interval (e.i. 15-30 days after the polination. The trend observed was much more pronounced in L217. Moreover, this inbred acheaved higher grain yield for 61.8 % at first sowing and for 63.1 % at 10-day delayed sowing, respectively, compared to inbred L773. In all three intervals observed, the decrease of Pi content was highly correlated with Pphy content increase for both genotypes. Based on lower accumulation rate, followed by lower Pphy content (2.635 mg g-1 during the stage of physiological maturuty, it could be concluded that inbred L217 could be considered as potentialy suitable genotype for low-phytic hybride selection.

  9. Hemodynamic Characterization of Recombinant Inbred Strains: Twenty Years Later

    Czech Academy of Sciences Publication Activity Database

    Kuneš, Jaroslav; Dobešová, Zdenka; Musilová, Alena; Zídek, Václav; Vorlíček, Jaroslav; Pravenec, Michal; Křen, Vladimír; Zicha, Josef

    2008-01-01

    Roč. 31, č. 8 (2008), s. 1659-1668 ISSN 0916-9636 R&D Projects: GA MŠk(CZ) 1M0510; GA ČR(CZ) GA305/08/0139; GA AV ČR(CZ) IAA500110604 Institutional research plan: CEZ:AV0Z50110509 Keywords : recombinant inbred strains * blood pressure * telemetry Subject RIV: ED - Physiology Impact factor: 3.146, year: 2008

  10. CINcere Modelling : What Have Mouse Models for Chromosome Instability Taught Us?

    NARCIS (Netherlands)

    Simon, Judith E; Bakker, Bjorn; Foijer, Floris

    2015-01-01

    Chromosomal instability (CIN) is a process leading to errors in chromosome segregation and results in aneuploidy, a state in which cells have an abnormal number of chromosomes. CIN is a hallmark of cancer, and furthermore linked to ageing and age-related diseases such as Alzheimer's. Various mouse

  11. SSR markers in characterization of sweet corn inbred lines

    Directory of Open Access Journals (Sweden)

    Srdić Jelena

    2008-01-01

    Full Text Available Sweet corn differs from field corn in many important traits. So its breeding although includes some standard procedures demand application of techniques that are important for determining special traits, all because of the specificity of its usage. Application of molecular markers becomes almost a necessity for the breeding of sweet corn, especially because this is the type of maize in which still no definitive heterotic patterns have been determined. So getting to know genetic divergence of the sweet corn inbred lines is of great importance for its breeding. In this paper we analyzed genetic similarity of six sweet corn inbreds based on SSR markers. 40 SSR primers were used in DNA amplification. Results were compared and correlated with the data on specific combining ability, obtained by the diallel analysis. The results of SCA were in concurrence with genetic similarity. Values of rank correlation coefficient were negative, indicating that more similar inbred lines had smaller estimates of SCA, and lines that were less similar had higher estimates of SCA. Rank correlation coefficient between SCA and GS according to Dice coefficient was between -0,16 and -0,57*.

  12. Early Changes in Hippocampal Neurogenesis in Transgenic Mouse Models for Alzheimer's Disease.

    Science.gov (United States)

    Unger, M S; Marschallinger, J; Kaindl, J; Höfling, C; Rossner, S; Heneka, Michael T; Van der Linden, A; Aigner, Ludwig

    2016-10-01

    Alzheimer's disease (AD) is the most prevalent neurodegenerative disease in the Western world and is characterized by a progressive loss of cognitive functions leading to dementia. One major histopathological hallmark of AD is the formation of amyloid-beta plaques, which is reproduced in numerous transgenic animal models overexpressing pathogenic forms of amyloid precursor protein (APP). In human AD and in transgenic amyloid plaque mouse models, several studies report altered rates of adult neurogenesis, i.e. the formation of new neurons from neural stem and progenitor cells, and impaired neurogenesis has also been attributed to contribute to the cognitive decline in AD. So far, changes in neurogenesis have largely been considered to be a consequence of the plaque pathology. Therefore, possible alterations in neurogenesis before plaque formation or in prodromal AD have been largely ignored. Here, we analysed adult hippocampal neurogenesis in amyloidogenic mouse models of AD at different points before and during plaque progression. We found prominent alterations of hippocampal neurogenesis before plaque formation. Survival of newly generated cells and the production of new neurons were already compromised at this stage. Moreover and surprisingly, proliferation of doublecortin (DCX) expressing neuroblasts was significantly and specifically elevated during the pre-plaque stage in the APP-PS1 model, while the Nestin-expressing stem cell population was unaffected. In summary, changes in neurogenesis are evident already before plaque deposition and might contribute to well-known early hippocampal dysfunctions in prodromal AD such as hippocampal overactivity.

  13. Bee venom and its component apamin as neuroprotective agents in a Parkinson disease mouse model.

    Directory of Open Access Journals (Sweden)

    Daniel Alvarez-Fischer

    Full Text Available Bee venom has recently been suggested to possess beneficial effects in the treatment of Parkinson disease (PD. For instance, it has been observed that bilateral acupoint stimulation of lower hind limbs with bee venom was protective in the acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP mouse model of PD. In particular, a specific component of bee venom, apamin, has previously been shown to have protective effects on dopaminergic neurons in vitro. However, no information regarding a potential protective action of apamin in animal models of PD is available to date. The specific goals of the present study were to (i establish that the protective effect of bee venom for dopaminergic neurons is not restricted to acupoint stimulation, but can also be observed using a more conventional mode of administration and to (ii demonstrate that apamin can mimic the protective effects of a bee venom treatment on dopaminergic neurons. Using the chronic mouse model of MPTP/probenecid, we show that bee venom provides sustained protection in an animal model that mimics the chronic degenerative process of PD. Apamin, however, reproduced these protective effects only partially, suggesting that other components of bee venom enhance the protective action of the peptide.

  14. Bee venom and its component apamin as neuroprotective agents in a Parkinson disease mouse model.

    Science.gov (United States)

    Alvarez-Fischer, Daniel; Noelker, Carmen; Vulinović, Franca; Grünewald, Anne; Chevarin, Caroline; Klein, Christine; Oertel, Wolfgang H; Hirsch, Etienne C; Michel, Patrick P; Hartmann, Andreas

    2013-01-01

    Bee venom has recently been suggested to possess beneficial effects in the treatment of Parkinson disease (PD). For instance, it has been observed that bilateral acupoint stimulation of lower hind limbs with bee venom was protective in the acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. In particular, a specific component of bee venom, apamin, has previously been shown to have protective effects on dopaminergic neurons in vitro. However, no information regarding a potential protective action of apamin in animal models of PD is available to date. The specific goals of the present study were to (i) establish that the protective effect of bee venom for dopaminergic neurons is not restricted to acupoint stimulation, but can also be observed using a more conventional mode of administration and to (ii) demonstrate that apamin can mimic the protective effects of a bee venom treatment on dopaminergic neurons. Using the chronic mouse model of MPTP/probenecid, we show that bee venom provides sustained protection in an animal model that mimics the chronic degenerative process of PD. Apamin, however, reproduced these protective effects only partially, suggesting that other components of bee venom enhance the protective action of the peptide.

  15. Pathway-specific engineered mouse allograft models functionally recapitulate human serous epithelial ovarian cancer.

    Directory of Open Access Journals (Sweden)

    Ludmila Szabova

    Full Text Available The high mortality rate from ovarian cancers can be attributed to late-stage diagnosis and lack of effective treatment. Despite enormous effort to develop better targeted therapies, platinum-based chemotherapy still remains the standard of care for ovarian cancer patients, and resistance occurs at a high rate. One of the rate limiting factors for translation of new drug discoveries into clinical treatments has been the lack of suitable preclinical cancer models with high predictive value. We previously generated genetically engineered mouse (GEM models based on perturbation of Tp53 and Rb with or without Brca1 or Brca2 that develop serous epithelial ovarian cancer (SEOC closely resembling the human disease on histologic and molecular levels. Here, we describe an adaptation of these GEM models to orthotopic allografts that uniformly develop tumors with short latency and are ideally suited for routine preclinical studies. Ovarian tumors deficient in Brca1 respond to treatment with cisplatin and olaparib, a PARP inhibitor, whereas Brca1-wild type tumors are non-responsive to treatment, recapitulating the relative sensitivities observed in patients. These mouse models provide the opportunity for evaluation of effective therapeutics, including prediction of differential responses in Brca1-wild type and Brca1-deficient tumors and development of relevant biomarkers.

  16. Pressure Overload by Transverse Aortic Constriction Induces Maladaptive Hypertrophy in a Titin-Truncated Mouse Model

    Directory of Open Access Journals (Sweden)

    Qifeng Zhou

    2015-01-01

    Full Text Available Mutations in the giant sarcomeric protein titin (TTN are a major cause for inherited forms of dilated cardiomyopathy (DCM. We have previously developed a mouse model that imitates a TTN truncation mutation we found in a large pedigree with DCM. While heterozygous Ttn knock-in mice do not display signs of heart failure under sedentary conditions, they recapitulate the human phenotype when exposed to the pharmacological stressor angiotensin II or isoproterenol. In this study we investigated the effects of pressure overload by transverse aortic constriction (TAC in heterozygous (Het Ttn knock-in mice. Two weeks after TAC, Het mice developed marked impairment of left ventricular ejection fraction (p<0.05, while wild-type (WT TAC mice did not. Het mice also trended toward increased ventricular end diastolic pressure and volume compared to WT littermates. We found an increase in histologically diffuse cardiac fibrosis in Het compared to WT in TAC mice. This study shows that a pattern of DCM can be induced by TAC-mediated pressure overload in a TTN-truncated mouse model. This model enlarges our arsenal of cardiac disease models, adding a valuable tool to understand cardiac pathophysiological remodeling processes and to develop therapeutic approaches to combat heart failure.

  17. Neuroprotective efficacy of aminopropyl carbazoles in a mouse model of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Tesla, Rachel; Wolf, Hamilton Parker; Xu, Pin; Drawbridge, Jordan; Estill, Sandi Jo; Huntington, Paula; McDaniel, Latisha; Knobbe, Whitney; Burket, Aaron; Tran, Stephanie; Starwalt, Ruth; Morlock, Lorraine; Naidoo, Jacinth; Williams, Noelle S; Ready, Joseph M; McKnight, Steven L; Pieper, Andrew A

    2012-10-16

    We previously reported the discovery of P7C3, an aminopropyl carbazole having proneurogenic and neuroprotective properties in newborn neural precursor cells of the hippocampal dentate gyrus. We have further found that chemicals having efficacy in this in vivo screening assay also protect dopaminergic neurons of the substantia nigra following exposure to the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, a mouse model of Parkinson disease. Here, we provide evidence that an active analog of P7C3, known as P7C3A20, protects ventral horn spinal cord motor neurons from cell death in the G93A-SOD1 mutant mouse model of amyotrophic lateral sclerosis (ALS). P7C3A20 is efficacious in this model when administered at disease onset, and protection from cell death correlates with preservation of motor function in assays of walking gait and in the accelerating rotarod test. The prototypical member of this series, P7C3, delays disease progression in G93A-SOD1 mice when administration is initiated substantially earlier than the expected time of symptom onset. Dimebon, an antihistaminergic drug with significantly weaker proneurogenic and neuroprotective efficacy than P7C3, confers no protection in this ALS model. We propose that the chemical scaffold represented by P7C3 and P7C3A20 may provide a basis for the discovery and optimization of pharmacologic agents for the treatment of ALS.

  18. The mousetrap: what we can learn when the mouse model does not mimic the human disease.

    Science.gov (United States)

    Elsea, Sarah H; Lucas, Rebecca E

    2002-01-01

    In recent years, mouse models for human metabolic diseases have become commonplace because the information gained from in vivo study of biochemical pathways is invaluable, and many metabolic diseases are relatively easy to recreate in mice through gene knockout technology in embryonic stem cells. In certain cases, however, the knockout mice may reproduce only some of the human disease phenotype, may be more severely affected than human cases, or may have no clinical phenotype at all. Under these circumstances, the disease pathology can become more complex, causing the researcher to evaluate basic differences in mouse and human biology as well as questions of genetic background, alternate pathways, and possible gene interactions. This review is a brief analysis of gene knockout models for Lesch-Nyhan syndrome, Lowe syndrome, X-linked adrenoleukodystrophy, Fabry disease, galactosemia, glycogen storage disease type II, metachromatic leukodystrophy, and Tay-Sachs disease, which produce a biochemical model of disease but often do not reproduce clinical symptoms. These mice may be useful for studying the biochemical and physiological pathways in which certain metabolites function toward embryonic and fetal development, as well as specific functions in various organs, and they may provide an inexpensive and useful model system for development of new therapeutic techniques.

  19. Blocking antibodies induced by immunization with a hypoallergenic parvalbumin mutant reduce allergic symptoms in a mouse model of fish allergy

    OpenAIRE

    Freidl, Raphaela; Gstoettner, Antonia; Baranyi, Ulrike; Swoboda, Ines; Stolz, Frank; Focke-Tejkl, Margarete; Wekerle, Thomas; van Ree, Ronald; Valenta, Rudolf; Linhart, Birgit

    2016-01-01

    Background Fish is a frequent elicitor of severe IgE-mediated allergic reactions. Beside avoidance, there is currently no allergen-specific therapy available. Hypoallergenic variants of the major fish allergen, parvalbumin, for specific immunotherapy based on mutation of the 2 calcium-binding sites have been developed. Objectives This study sought to establish a mouse model of fish allergy resembling human disease and to investigate whether mouse and rabbit IgG antibodies induced by immunizat...

  20. Cellular, molecular and functional characterisation of YAC transgenic mouse models of Friedreich ataxia.

    Directory of Open Access Journals (Sweden)

    Sara Anjomani Virmouni

    Full Text Available Friedreich ataxia (FRDA is an autosomal recessive neurodegenerative disorder, caused by a GAA repeat expansion mutation within intron 1 of the FXN gene. We have previously established and performed preliminary characterisation of several human FXN yeast artificial chromosome (YAC transgenic FRDA mouse models containing GAA repeat expansions, Y47R (9 GAA repeats, YG8R (90 and 190 GAA repeats and YG22R (190 GAA repeats.We now report extended cellular, molecular and functional characterisation of these FXN YAC transgenic mouse models. FXN transgene copy number analysis of the FRDA mice demonstrated that the YG22R and Y47R lines each have a single copy of the FXN transgene while the YG8R line has two copies. Single integration sites of all transgenes were confirmed by fluorescence in situ hybridisation (FISH analysis of metaphase and interphase chromosomes. We identified significant functional deficits, together with a degree of glucose intolerance and insulin hypersensitivity, in YG8R and YG22R FRDA mice compared to Y47R and wild-type control mice. We also confirmed increased somatic GAA repeat instability in the cerebellum and brain of YG22R and YG8R mice, together with significantly reduced levels of FXN mRNA and protein in the brain and liver of YG8R and YG22R compared to Y47R.Together these studies provide a detailed characterisation of our GAA repeat expansion-based YAC transgenic FRDA mouse models that will help investigations of FRDA disease mechanisms and therapy.

  1. Monitoring Prostate Tumor Growth in an Orthotopic Mouse Model Using Three-Dimensional Ultrasound Imaging Technique

    Directory of Open Access Journals (Sweden)

    Jie Ni

    2016-02-01

    Full Text Available Prostate cancer (CaP is the most commonly diagnosed and the second leading cause of death from cancer in males in USA. Prostate orthotopic mouse model has been widely used to study human CaP in preclinical settings. Measurement of changes in tumor size obtained from noninvasive diagnostic images is a standard method for monitoring responses to anticancer modalities. This article reports for the first time the usage of a three-dimensional (3D ultrasound system equipped with photoacoustic (PA imaging in monitoring longitudinal prostate tumor growth in a PC-3 orthotopic NODSCID mouse model (n = 8. Two-dimensional and 3D modes of ultrasound show great ability in accurately depicting the size and shape of prostate tumors. PA function on two-dimensional and 3D images showed average oxygen saturation and average hemoglobin concentration of the tumor. Results showed a good fit in representative exponential tumor growth curves (n = 3; r2 = 0.948, 0.955, and 0.953, respectively and a good correlation of tumor volume measurements performed in vivo with autopsy (n = 8, r = 0.95, P < .001. The application of 3D ultrasound imaging proved to be a useful imaging modality in monitoring tumor growth in an orthotopic mouse model, with advantages such as high contrast, uncomplicated protocols, economical equipment, and nonharmfulness to animals. PA mode also enabled display of blood oxygenation surrounding the tumor and tumor vasculature and angiogenesis, making 3D ultrasound imaging an ideal tool for preclinical cancer research.

  2. PKC theta ablation improves healing in a mouse model of muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Luca Madaro

    Full Text Available Inflammation is a key pathological characteristic of dystrophic muscle lesion formation, limiting muscle regeneration and resulting in fibrotic and fatty tissue replacement of muscle, which exacerbates the wasting process in dystrophic muscles. Limiting immune response is thus one of the therapeutic options to improve healing, as well as to improve the efficacy of gene- or cell-mediated strategies to restore dystrophin expression. Protein kinase C θ (PKCθ is a member of the PKCs family highly expressed in both immune cells and skeletal muscle; given its crucial role in adaptive, but also innate, immunity, it is being proposed as a valuable pharmacological target for immune disorders. In our study we asked whether targeting PKCθ could represent a valuable approach to efficiently prevent inflammatory response and disease progression in a mouse model of muscular dystrophy. We generated the bi-genetic mouse model mdx/θ(-/-, where PKCθ expression is lacking in mdx mice, the mouse model of Duchenne muscular dystrophy. We found that muscle wasting in mdx/θ(-/- mice was greatly prevented, while muscle regeneration, maintenance and performance was significantly improved, as compared to mdx mice. This phenotype was associated to reduction in inflammatory infiltrate, pro-inflammatory gene expression and pro-fibrotic markers activity, as compared to mdx mice. Moreover, BM transplantation experiments demonstrated that the phenotype observed was primarily dependent on lack of PKCθ expression in hematopoietic cells.These results demonstrate a hitherto unrecognized role of immune-cell intrinsic PKCθ activity in the development of DMD. Although the immune cell population(s involved remain unidentified, our findings reveal that PKCθ can be proposed as a new pharmacological target to counteract the disease, as well as to improve the efficacy of gene- or cell- therapy approaches.

  3. Antioxidants Halt Axonal Degeneration in a Mouse Model of X-Adrenoleukodystrophy

    Science.gov (United States)

    López-Erauskin, Jone; Fourcade, Stéphane; Galino, Jorge; Ruiz, Montserrat; Schlüter, Agatha; Naudi, Alba; Jove, Mariona; Portero-Otin, Manuel; Pamplona, Reinald; Ferrer, Isidre; Pujol, Aurora

    2011-01-01

    Objective Axonal degeneration is a main contributor to disability in progressive neurodegenerative diseases in which oxidative stress is often identified as a pathogenic factor. We aim to demonstrate that antioxidants are able to improve axonal degeneration and locomotor deficits in a mouse model of X-adrenoleukodystrophy (X-ALD). Methods X-ALD is a lethal disease caused by loss of function of the ABCD1 peroxisomal transporter of very long chain fatty acids (VLCFA). The mouse model for X-ALD exhibits a late onset neurological phenotype with locomotor disability and axonal degeneration in spinal cord resembling the most common phenotype of the disease, adrenomyeloneuropathy (X-AMN). Recently, we identified oxidative damage as an early event in life, and the excess of VLCFA as a generator of radical oxygen species (ROS) and oxidative damage to proteins in X-ALD. Results Here, we prove the capability of the antioxidants N-acetyl-cysteine, α-lipoic acid, and α-tocopherol to scavenge VLCFA-dependent ROS generation in vitro. Furthermore, in a preclinical setting, the cocktail of the 3 compounds reversed: (1) oxidative stress and lesions to proteins, (2) immunohistological signs of axonal degeneration, and (3) locomotor impairment in bar cross and treadmill tests. Interpretation We have established a direct link between oxidative stress and axonal damage in a mouse model of neurodegenerative disease. This conceptual proof of oxidative stress as a major disease-driving factor in X-AMN warrants translation into clinical trials for X-AMN, and invites assessment of antioxidant strategies in axonopathies in which oxidative damage might be a contributing factor. Ann Neurol 2011; PMID:21786300

  4. Proteome and Transcriptome Profiles of a Her2/Neu-driven Mouse Model of Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Schoenherr, Regine M.; Kelly-Spratt, Karen S.; Lin, Chen Wei; Whiteaker, Jeffrey R.; Liu, Tao; Holzman, Ted; Coleman, Ilsa; Feng, Li-Chia; Lorentzen, Travis D.; Krasnoselsky, Alexei L.; Wang, Pei; Liu, Yan; Gurley, Kay E.; Amon, Lynn M.; Schepmoes, Athena A.; Moore, Ronald J.; Camp, David G.; Chodosh, Lewis A.; Smith, Richard D.; Nelson, Peter S.; McIntosh, Martin; Kemp, Christopher; Paulovich, Amanda G.

    2011-04-01

    In recent years, mouse models have proven to be invaluable in expanding our understanding of cancer biology. We have amassed a tremendous amount of proteomics and transcriptomics data profiling blood and tissues from a Her2-driven mouse model of breast cancer that closely recapitulates the pathology and natural history of human breast cancer. The purpose of this report is to make all of these data publicly available in raw and processed forms, as a resource to the community. Importantly, high quality biospecimens from this same mouse model are freely available through a sample repository that we established, so researchers can readily obtain samples to test biological hypotheses without the need of breeding animals and collecting biospecimens. Specifically, six proteomics and six transcriptomics datasets are available, with the former encompassing 841 liquid chromatography-tandem mass spectrometry (LC-MS/MS) experiments of both plasma and tissue samples, and the latter including 255 individual microarray analyses of five different tissue types (thymus, spleen, liver, blood cells, and breast ± laser capture microdissection). A total of 18,880 unique peptides were identified with a PeptideProphet error rate ≤1%, with 3884 non-redundant protein groups identified in five plasma datasets, and 1659 non-redundant protein groups in a tissue dataset (4977 non-redundant protein groups in total). We anticipate that these data will be of use to the community for software tool development, investigations of analytical variation in MS/MS data, development of quality control tools (multiple technical replicates are provided for a subset of the data), empirical selection of proteotypic peptides for multiple reaction monitoring mass spectrometry, and for advancing our understanding of cancer biology.

  5. Myricetin Prevents Alveolar Bone Loss in an Experimental Ovariectomized Mouse Model of Periodontitis

    Directory of Open Access Journals (Sweden)

    Jialiang Huang

    2016-03-01

    Full Text Available Periodontitis is a common chronic inflammatory disease, which leads to alveolar bone resorption. Healthy and functional alveolar bone, which can support the teeth and enable their movement, is very important for orthodontic treatment. Myricetin inhibited osteoclastogenesis by suppressing the expression of some genes, signaling pathways, and cytokines. This study aimed to investigate the effects of myricetin on alveolar bone loss in an ovariectomized (OVX mouse model of periodontitis as well as in vitro osteoclast formation and bone resorption. Twenty-four healthy eight-week-old C57BL/J6 female mice were assigned randomly to four groups: phosphate-buffered saline (PBS control (sham OVX + ligature + PBS (vehicle, and OVX + ligature + low or high (2 or 5 mg∙kg−1∙day−1, respectively doses of myricetin. Myricetin or PBS was injected intraperitoneally (i.p. every other day for 30 days. The maxillae were collected and subjected to further examination, including micro-computed tomography (micro-CT, hematoxylin and eosin (H&E staining, and tartrate-resistant acid phosphatase (TRAP staining; a resorption pit assay was also performed in vitro to evaluate the effects of myricetin on receptor activator of nuclear factor κ-B ligand (RANKL-induced osteoclastogenesis. Myricetin, at both high and low doses, prevented alveolar bone resorption and increased alveolar crest height in the mouse model and inhibited osteoclast formation and bone resorption in vitro. However, myricetin was more effective at high dose than at low dose. Our study demonstrated that myricetin had a positive effect on alveolar bone resorption in an OVX mouse model of periodontitis and, therefore, may be a potential agent for the treatment of periodontitis and osteoporosis.

  6. Assessing the Cognitive Translational Potential of a Mouse Model of the 22q11.2 Microdeletion Syndrome.

    Science.gov (United States)

    Nilsson, Simon Ro; Fejgin, Kim; Gastambide, Francois; Vogt, Miriam A; Kent, Brianne A; Nielsen, Vibeke; Nielsen, Jacob; Gass, Peter; Robbins, Trevor W; Saksida, Lisa M; Stensbøl, Tine B; Tricklebank, Mark D; Didriksen, Michael; Bussey, Timothy J

    2016-10-01

    A chromosomal microdeletion at the 22q11.2 locus is associated with extensive cognitive impairments, schizophrenia and other psychopathology in humans. Previous reports indicate that mouse models of the 22q11.2 microdeletion syndrome (22q11.2DS) may model the genetic basis of cognitive deficits relevant for neuropsychiatric disorders such as schizophrenia. To assess the models usefulness for drug discovery, a novel mouse (Df(h22q11)/+) was assessed in an extensive battery of cognitive assays by partners within the NEWMEDS collaboration (Innovative Medicines Initiative Grant Agreement No. 115008). This battery included classic and touchscreen-based paradigms with recognized sensitivity and multiple attempts at reproducing previously published findings in 22q11.2DS mouse models. This work represents one of the most comprehensive reports of cognitive functioning in a transgenic animal model. In accordance with previous reports, there were non-significant trends or marginal impairment in some tasks. However, the Df(h22q11)/+ mouse did not show comprehensive deficits; no robust impairment was observed following more than 17 experiments and 14 behavioral paradigms. Thus - within the current protocols - the 22q11.2DS mouse model fails to mimic the cognitive alterations observed in human 22q11.2 deletion carriers. We suggest that the 22q11.2DS model may induce liability for cognitive dysfunction with additional "hits" being required for phenotypic expression. © The Author 2016. Published by Oxford University Press.

  7. Development of a Mouse Model of Helicobacter pylori Infection that Mimics Human Disease

    Science.gov (United States)

    Marchetti, Marta; Arico, Beatrice; Burroni, Daniela; Figura, Natale; Rappuoli, Rino; Ghiara, Paolo

    1995-03-01

    The human pathogen Helicobacter pylori is associated with gastritis, peptic ulcer disease, and gastric cancer. The pathogenesis of H. pylori infection in vivo was studied by adapting fresh clinical isolates of bacteria to colonize the stomachs of mice. A gastric pathology resembling human disease was observed in infections with cytotoxin-producing strains but not with noncytotoxic strains. Oral immunization with purified H. pylori antigens protected mice from bacterial infection. This mouse model will allow the development of therapeutic agents and vaccines against H. pylori infection in humans.

  8. The origin of Pasteurella multocida impacts pathology and inflammation when assessed in a mouse model

    DEFF Research Database (Denmark)

    Pors, Susanne E.; Chadfield, Mark S.; Sorensen, Dorte B.

    2016-01-01

    Host-pathogen interactions of Pasteurella multocida isolates of different origin were studied in a mouse model, focusing on pathology, bacterial load and expression of the metalloproteinase MMP9 and its inhibitor TIMP1. Intranasal inoculation with one of three doses (10(6), 10(4), 10(2) CFU...... dose dependent and consisted of exudative bronchopneumonia, abscess formation in liver and a lower bacterial load in lung and liver. Both isolates caused increased expression of MMP9 and TIMP1. In conclusion, evaluation and comparison of pathogenicity and host-pathogen interaction of P. multocida...

  9. Modeling Prolactin Actions in Breast Cancer in vivo: Insights from the NRL-PRL Mouse

    Science.gov (United States)

    O'Leary, Kathleen A.; Shea, Michael P.; Schuler, Linda A.

    2016-01-01

    Elevated exposure to prolactin is epidemiologically associated with an increased risk of aggressive ER+ breast cancer. To understand the underlying mechanisms and crosstalk with other oncogenic factors, we developed the NRL-PRL mouse. In this model, mammary expression of a rat prolactin transgene raises local exposure to prolactin without altering estrous cycling. Nulliparous females develop metastatic, histotypically diverse mammary carcinomas independent from ovarian steroids, and most are ER+. These characteristics resemble the human clinical disease, facilitating study of tumorigenesis, and identification of novel preventive and therapeutic approaches. PMID:25472540

  10. Prophylactic effect of administration of human gamma globulins in a mouse model of tuberculosis.

    Science.gov (United States)

    Olivares, Nesty; Puig, Alina; Aguilar, Diana; Moya, Aniel; Cádiz, Armando; Otero, Oscar; Izquierdo, Luis; Falero, Gustavo; Solis, Rosa L; Orozco, Hector; Sarmiento, Maria E; Norazmi, Mohd Nor; Hernández-Pando, Rogelio; Acosta, Armando

    2009-05-01

    The protective effect of human gamma globulins on Mycobacterium tuberculosis infection was evaluated in a mouse model of intratracheal infection. Animals receiving human gamma globulins intranasally, 2h before intratracheal challenge showed a significant decrease in lung bacilli load compared to non-treated animals in different time intervals of up to 2 months after challenge. The same effect was obtained when M. tuberculosis was pre-incubated with the gamma globulin before challenge. The protective effect of the gamma-globulin formulation was abolished after pre-incubation with M. tuberculosis. These results suggest a potential role of specific antibodies in the defence against mycobacterial infections.

  11. Magnetic Nanoparticle-Based Hyperthermia for Head & Neck Cancer in Mouse Models

    Science.gov (United States)

    Zhao, Qun; Wang, Luning; Cheng, Rui; Mao, Leidong; Arnold, Robert D.; Howerth, Elizabeth W.; Chen, Zhuo G.; Platt, Simon

    2012-01-01

    In this study, magnetic iron oxide nanoparticle induced hyperthermia is applied for treatment of head and neck cancer using a mouse xenograft model of human head and neck cancer (Tu212 cell line). A hyperthermia system for heating iron oxide nanoparticles was developed by using alternating magnetic fields. Both theoretical simulation and experimental studies were performed to verify the thermotherapy effect. Experimental results showed that the temperature of the tumor center has dramatically elevated from around the room temperature to about 40oC within the first 5-10 minutes. Pathological studies demonstrate epithelial tumor cell destruction associated with the hyperthermia treatment. PMID:22287991

  12. Phage Therapy Is Effective in a Mouse Model of Bacterial Equine Keratitis.

    Science.gov (United States)

    Furusawa, Takaaki; Iwano, Hidetomo; Hiyashimizu, Yutaro; Matsubara, Kazuki; Higuchi, Hidetoshi; Nagahata, Hajime; Niwa, Hidekazu; Katayama, Yoshinari; Kinoshita, Yuta; Hagiwara, Katsuro; Iwasaki, Tomohito; Tanji, Yasunori; Yokota, Hiroshi; Tamura, Yutaka

    2016-09-01

    Bacterial keratitis of the horse is mainly caused by staphylococci, streptococci, and pseudomonads. Of these bacteria, Pseudomonas aeruginosa sometimes causes rapid corneal corruption and, in some cases, blindness. Antimicrobial resistance can make treatment very difficult. Therefore, new strategies to control bacterial infection are required. A bacteriophage (phage) is a virus that specifically infects and kills bacteria. Since phage often can lyse antibiotic-resistant bacteria because the killing mechanism is different, we examined the use of phage to treat horse bacterial keratitis. We isolated Myoviridae or Podoviridae phages, which together have a broad host range. They adsorb efficiently to host bacteria; more than 80% of the ΦR18 phage were adsorbed to host cells after 30 s. In our keratitis mouse model, the administration of phage within 3 h also could kill bacteria and suppress keratitis. A phage multiplicity of infection of 100 times the host bacterial number could kill host bacteria effectively. A cocktail of two phages suppressed bacteria in the keratitis model mouse. These data demonstrated that the phages in this study could completely prevent the keratitis caused by P. aeruginosa in a keratitis mouse model. Furthermore, these results suggest that phage may be a more effective prophylaxis for horse keratitis than the current preventive use of antibiotics. Such treatment may reduce the use of antibiotics and therefore antibiotic resistance. Further studies are required to assess phage therapy as a candidate for treatment of horse keratitis. Antibiotic-resistant bacteria are emerging all over the world. Bacteriophages have great potential for resolution of this problem. A bacteriophage, or phage, is a virus that infects bacteria specifically. As a novel therapeutic strategy against racehorse keratitis caused by Pseudomonas aeruginosa, we propose the application of phages for treatment. Phages isolated in this work had in vitro effectiveness for a broad

  13. Towards spatial frequency domain optical imaging of neurovascular coupling in a mouse model of Alzheimer's disease

    Science.gov (United States)

    Lin, Alexander J.; Konecky, Soren D.; Rice, Tyler B.; Green, Kim N.; Choi, Bernard; Durkin, Anthony J.; Tromberg, Bruce J.

    2012-02-01

    Early neurovascular coupling (NVC) changes in Alzheimer's disease can potentially provide imaging biomarkers to assist with diagnosis and treatment. Previous efforts to quantify NVC with intrinsic signal imaging have required assumptions of baseline optical pathlength to calculate changes in oxy- and deoxy-hemoglobin concentrations during evoked stimuli. In this work, we present an economical spatial frequency domain imaging (SFDI) platform utilizing a commercially available LED projector, camera, and off-the-shelf optical components suitable for imaging dynamic optical properties. The fast acquisition platform described in this work is validated on silicone phantoms and demonstrated in neuroimaging of a mouse model.

  14. The mouse intradermal test, a well-established and reliable model in skin tolerance testing.

    Science.gov (United States)

    Gloxhuber, C; Kästner, W

    1985-02-01

    The intradermal test in mice is a valuable model for assessing dermal tolerance to chemical substances. The test material is administered intracutaneously to hairless or depilated mice through a fine syringe, the animals are killed after 24 hours and the treated skin is removed, dried and assessed for reaction area, erythema and oedema. The skin fragments can be preserved as a record of the findings. While direct transfer of the findings from mouse to man is likely to be misleading, the test is well suited to comparative studies. Moreover it requires only small numbers of mice.

  15. Enhanced Polyubiquitination of Shank3 and NMDA receptor in a mouse model of Autism

    OpenAIRE

    Bangash, M Ali; Park, Joo Min; Melnikova, Tatiana; Wang, Dehua; Jeon, Soo Kyeong; Lee, Deidre; Syeda, Sbaa; Kim, Juno; Kouser, Mehreen; Schwartz, Joshua; Cui, Yiyuan; Zhao, Xia; Speed, Haley E.; Kee, Sara E.; Tu, Jian Cheng

    2011-01-01

    We have created a mouse genetic model that mimics a human mutation of Shank3 that deletes the C-terminus and is associated with autism. Expressed as a single copy [Shank3(+/ΔC) mice], Shank3ΔC protein interacts with the WT gene product and results in >90 % reduction of Shank3 at synapses. This “gain of function” phenotype is linked to increased polyubiquitination of WT Shank3 and its redistribution into proteasomes. Similarly, the NR1 subunit of the NMDA receptor is reduced at synapses with i...

  16. Tumour-cell killing by X-rays and immunity quantitated in a mouse model system

    International Nuclear Information System (INIS)

    Porteous, D.D.; Porteous, K.M.; Hughes, M.J.

    1979-01-01

    As part of an investigation of the interaction of X-rays and immune cytotoxicity in tumour control, an experimental mouse model system has been used in which quantitative anti-tumour immunity was raised in prospective recipients of tumour-cell suspensions exposed to varying doses of X-rays in vitro before injection. Findings reported here indicate that, whilst X-rays kill a proportion of cells, induced immunity deals with a fixed number dependent upon the immune status of the host, and that X-rays and anti-tumour immunity do not act synergistically in tumour-cell killing. The tumour used was the ascites sarcoma BP8. (author)

  17. A novel mouse model of Schistosoma haematobium egg-induced immunopathology.

    Science.gov (United States)

    Fu, Chi-Ling; Odegaard, Justin I; Herbert, De'Broski R; Hsieh, Michael H

    2012-01-01

    Schistosoma haematobium is the etiologic agent for urogenital schistosomiasis, a major source of morbidity and mortality for more than 112 million people worldwide. Infection with S. haematobium results in a variety of immunopathologic sequelae caused by parasite oviposition within the urinary tract, which drives inflammation, hematuria, fibrosis, bladder dysfunction, and increased susceptibility to urothelial carcinoma. While humans readily develop urogenital schistosomiasis, the lack of an experimentally-tractable model has greatly impaired our understanding of the mechanisms that underlie this important disease. We have developed an improved mouse model of S. haematobium urinary tract infection that recapitulates several aspects of human urogenital schistosomiasis. Following microinjection of purified S. haematobium eggs into the bladder wall, mice consistently develop macrophage-rich granulomata that persist for at least 3 months and pass eggs in their urine. Importantly, egg-injected mice also develop urinary tract fibrosis, bladder dysfunction, and various urothelial changes morphologically reminiscent of human urogenital schistosomiasis. As expected, S. haematobium egg-induced immune responses in the immediate microenvironment, draining lymph nodes, and systemic circulation are associated with a Type 2-dominant inflammatory response, characterized by high levels of interleukin-4, eosinophils, and IgE. Taken together, our novel mouse model may help facilitate a better understanding of the unique pathophysiological mechanisms of epithelial dysfunction, tissue fibrosis, and oncogenesis associated with urogenital schistosomiasis.

  18. A novel mouse model of Schistosoma haematobium egg-induced immunopathology.

    Directory of Open Access Journals (Sweden)

    Chi-Ling Fu

    Full Text Available Schistosoma haematobium is the etiologic agent for urogenital schistosomiasis, a major source of morbidity and mortality for more than 112 million people worldwide. Infection with S. haematobium results in a variety of immunopathologic sequelae caused by parasite oviposition within the urinary tract, which drives inflammation, hematuria, fibrosis, bladder dysfunction, and increased susceptibility to urothelial carcinoma. While humans readily develop urogenital schistosomiasis, the lack of an experimentally-tractable model has greatly impaired our understanding of the mechanisms that underlie this important disease. We have developed an improved mouse model of S. haematobium urinary tract infection that recapitulates several aspects of human urogenital schistosomiasis. Following microinjection of purified S. haematobium eggs into the bladder wall, mice consistently develop macrophage-rich granulomata that persist for at least 3 months and pass eggs in their urine. Importantly, egg-injected mice also develop urinary tract fibrosis, bladder dysfunction, and various urothelial changes morphologically reminiscent of human urogenital schistosomiasis. As expected, S. haematobium egg-induced immune responses in the immediate microenvironment, draining lymph nodes, and systemic circulation are associated with a Type 2-dominant inflammatory response, characterized by high levels of interleukin-4, eosinophils, and IgE. Taken together, our novel mouse model may help facilitate a better understanding of the unique pathophysiological mechanisms of epithelial dysfunction, tissue fibrosis, and oncogenesis associated with urogenital schistosomiasis.

  19. Alpha 1 Antitrypsin Inhibits Dendritic Cell Activation and Attenuates Nephritis in a Mouse Model of Lupus.

    Directory of Open Access Journals (Sweden)

    Ahmed S Elshikha

    Full Text Available Systemic lupus erythematosus (SLE is an autoimmune disorder with a worldwide distribution and considerable mortality and morbidity. Although the pathogenesis of this disease remains elusive, over-reactive dendritic cells (DCs play a critical role in the disease development. It has been shown that human alpha-1 antitrypsin (hAAT has protective effects in type 1 diabetes and rheumatoid arthritis mouse models. In the present study, we tested the effect of AAT on DC differentiation and functions, as well as its protective effect in a lupus-prone mouse model. We showed that hAAT treatment significantly inhibited LPS (TLR4 agonist and CpG (TLR9 agonist -induced bone-marrow (BM-derived conventional and plasmacytoid DC (cDC and pDC activation and reduced the production of inflammatory cytokines including IFN-I, TNF-α and IL-1β. In MRL/lpr mice, hAAT treatment significantly reduced BM-derived DC differentiation, serum autoantibody levels, and importantly attenuated renal pathology. Our results for the first time demonstrate that hAAT inhibits DC activation and function, and it also attenuates autoimmunity and renal damage in the MRL/lpr lupus model. These results imply that hAAT has a therapeutic potential for the treatment of SLE in humans.

  20. Persistent Unresolved Inflammation in the Mecp2-308 Female Mutated Mouse Model of Rett Syndrome

    Directory of Open Access Journals (Sweden)

    Alessio Cortelazzo

    2017-01-01

    Full Text Available Rett syndrome (RTT is a rare neurodevelopmental disorder usually caused by mutations in the X-linked gene methyl-CpG-binding protein 2 (MECP2. Several Mecp2 mutant mouse lines have been developed recapitulating part of the clinical features. In particular, Mecp2-308 female heterozygous mice, bearing a truncating mutation, are a validated model of the disease. While recent data suggest a role for inflammation in RTT, little information on the inflammatory status in murine models of the disease is available. Here, we investigated the inflammatory status by proteomic 2-DE/MALDI-ToF/ToF analyses in symptomatic Mecp2-308 female mice. Ten differentially expressed proteins were evidenced in the Mecp2-308 mutated plasma proteome. In particular, 5 positive acute-phase response (APR proteins increased (i.e., kininogen-1, alpha-fetoprotein, mannose-binding protein C, alpha-1-antitrypsin, and alpha-2-macroglobulin, and 3 negative APR reactants were decreased (i.e., serotransferrin, albumin, and apolipoprotein A1. CD5 antigen-like and vitamin D-binding protein, two proteins strictly related to inflammation, were also changed. These results indicate for the first time a persistent unresolved inflammation of unknown origin in the Mecp2-308 mouse model.