WorldWideScience

Sample records for inadequate tissue perfusion

  1. Tissue perfusion as a key underlying concept of pressure ulcer development and treatment.

    Science.gov (United States)

    Wywialowski, E F

    1999-03-01

    The purpose of this article is to refine and advance the theory that tissue perfusion is the key concept in the development and delayed healing of pressure ulcers. The person likely to have (be at risk for) pressure ulcers is at greater risk for inadequate tissue perfusion generally and specifically at pressure points. Accordingly, the tissue perfusion theory of pressure ulcer development states that the factors that contribute to inadequate tissue perfusion should be used to predict (identify risk factors for) pressure ulcer development and delayed healing. Factors influencing a person's adequacy of tissue perfusion need to be assessed to identify risk for pressure ulcers. In addition, adequate tissue perfusion needs to be maintained to provide for healing of such wounds. Current beliefs about the causes and prevention of pressure ulcers are described. Physiologic components of the tissue perfusion theory are discussed: cellular exchange of nutrients and wastes, autoregulation of blood flow at the cellular level, and regulatory mechanisms that affect tissue perfusion when it is significantly compromised. The North American Nursing Diagnosis Association (NANDA) framework is used to classify or group examples of common pathophysiologic, treatment-related, situational, and maturational factors. Implications for research, practice, and education also are discussed.

  2. Nuclear magnetic resonance of perfused tissue

    International Nuclear Information System (INIS)

    Harpen, M.D.; Allison, R.C.

    1986-01-01

    The effect of perfusion on the NMR signal observed in NMR imaging is studied in a phantom and in two isolated perfused canine lungs. It is observed that perfusion in tissue has little effect on longitudinal relaxation times. Transverse relaxation rates are observed to correlate linearly with rates of perfusion, in accordance with a model presented. (author)

  3. Pathologic evaluation of normal and perfused term placental tissue

    DEFF Research Database (Denmark)

    Maroun, Lisa Leth; Mathiesen, Line; Hedegaard, Morten

    2014-01-01

    This study reports for the 1st time the incidence and interobserver variation of morphologic findings in a series of 34 term placentas from pregnancies with normal outcome used for perfusion studies. Histologic evaluation of placental tissue is challenging, especially when it comes to defining...... "normal tissue" versus "pathologic lesions." A scoring system for registration of abnormal morphologic findings was developed. Light microscopic examination was performed independently by 2 pathologists, and interobserver variation was analyzed. Findings in normal and perfused tissue were compared...... and selected findings were tested against success parameters from the perfusions. Finally, the criteria for frequent lesions with fair to poor interobserver variation in the nonperfused tissue were revised and reanalyzed. In the perfused tissue, the perfusion artefact "trophoblastic vacuolization," which...

  4. Effect of Defocused CO2 Laser on Equine Tissue Perfusion

    Directory of Open Access Journals (Sweden)

    Bergh A

    2006-03-01

    Full Text Available Treatment with defocused CO2 laser can have a therapeutic effect on equine injuries, but the mechanisms involved are unclear. A recent study has shown that laser causes an increase in equine superficial tissue temperature, which may result in an increase in blood perfusion and a stimulating effect on tissue regeneration. However, no studies have described the effects on equine tissue perfusion. The aim of the present study was to investigate the effect of defocused CO2 laser on blood perfusion and to correlate it with temperature in skin and underlying muscle in anaesthetized horses. Differences between clipped and unclipped haircoat were also assessed. Eight horses and two controls received CO2 laser treatment (91 J/cm2 in a randomised order, on a clipped and unclipped area of the hamstring muscles, respectively. The significant increase in clipped skin perfusion and temperature was on average 146.3 ± 33.4 perfusion units (334% and 5.5 ± 1.5°C, respectively. The significant increase in perfusion and temperature in unclipped skin were 80.6 ± 20.4 perfusion units (264% and 4.8 ± 1.4°C. No significant changes were seen in muscle perfusion or temperature. In conclusion, treatment with defocused CO2 laser causes a significant increase in skin perfusion, which is correlated to an increase in skin temperature.

  5. Cardiac tissue engineering using perfusion bioreactor systems

    Science.gov (United States)

    Radisic, Milica; Marsano, Anna; Maidhof, Robert; Wang, Yadong; Vunjak-Novakovic, Gordana

    2009-01-01

    This protocol describes tissue engineering of synchronously contractile cardiac constructs by culturing cardiac cell populations on porous scaffolds (in some cases with an array of channels) and bioreactors with perfusion of culture medium (in some cases supplemented with an oxygen carrier). The overall approach is ‘biomimetic’ in nature as it tends to provide in vivo-like oxygen supply to cultured cells and thereby overcome inherent limitations of diffusional transport in conventional culture systems. In order to mimic the capillary network, cells are cultured on channeled elastomer scaffolds that are perfused with culture medium that can contain oxygen carriers. The overall protocol takes 2–4 weeks, including assembly of the perfusion systems, preparation of scaffolds, cell seeding and cultivation, and on-line and end-point assessment methods. This model is well suited for a wide range of cardiac tissue engineering applications, including the use of human stem cells, and high-fidelity models for biological research. PMID:18388955

  6. TH-CD-206-01: Expectation-Maximization Algorithm-Based Tissue Mixture Quantification for Perfusion MRI

    International Nuclear Information System (INIS)

    Han, H; Xing, L; Liang, Z; Li, L

    2016-01-01

    Purpose: To investigate the feasibility of estimating the tissue mixture perfusions and quantifying cerebral blood flow change in arterial spin labeled (ASL) perfusion MR images. Methods: The proposed perfusion MR image analysis framework consists of 5 steps: (1) Inhomogeneity correction was performed on the T1- and T2-weighted images, which are available for each studied perfusion MR dataset. (2) We used the publicly available FSL toolbox to strip off the non-brain structures from the T1- and T2-weighted MR images. (3) We applied a multi-spectral tissue-mixture segmentation algorithm on both T1- and T2-structural MR images to roughly estimate the fraction of each tissue type - white matter, grey matter and cerebral spinal fluid inside each image voxel. (4) The distributions of the three tissue types or tissue mixture across the structural image array are down-sampled and mapped onto the ASL voxel array via a co-registration operation. (5) The presented 4-dimensional expectation-maximization (4D-EM) algorithm takes the down-sampled three tissue type distributions on perfusion image data to generate the perfusion mean, variance and percentage images for each tissue type of interest. Results: Experimental results on three volunteer datasets demonstrated that the multi-spectral tissue-mixture segmentation algorithm was effective to initialize tissue mixtures from T1- and T2-weighted MR images. Compared with the conventional ASL image processing toolbox, the proposed 4D-EM algorithm not only generated comparable perfusion mean images, but also produced perfusion variance and percentage images, which the ASL toolbox cannot obtain. It is observed that the perfusion contribution percentages may not be the same as the corresponding tissue mixture volume fractions estimated in the structural images. Conclusion: A specific application to brain ASL images showed that the presented perfusion image analysis method is promising for detecting subtle changes in tissue perfusions

  7. TH-CD-206-01: Expectation-Maximization Algorithm-Based Tissue Mixture Quantification for Perfusion MRI

    Energy Technology Data Exchange (ETDEWEB)

    Han, H; Xing, L [Stanford University, Palo Alto, CA (United States); Liang, Z [Stony Brook University, Stony Brook, NY (United States); Li, L [City University of New York College of Staten Island, Staten Island, NY (United States)

    2016-06-15

    Purpose: To investigate the feasibility of estimating the tissue mixture perfusions and quantifying cerebral blood flow change in arterial spin labeled (ASL) perfusion MR images. Methods: The proposed perfusion MR image analysis framework consists of 5 steps: (1) Inhomogeneity correction was performed on the T1- and T2-weighted images, which are available for each studied perfusion MR dataset. (2) We used the publicly available FSL toolbox to strip off the non-brain structures from the T1- and T2-weighted MR images. (3) We applied a multi-spectral tissue-mixture segmentation algorithm on both T1- and T2-structural MR images to roughly estimate the fraction of each tissue type - white matter, grey matter and cerebral spinal fluid inside each image voxel. (4) The distributions of the three tissue types or tissue mixture across the structural image array are down-sampled and mapped onto the ASL voxel array via a co-registration operation. (5) The presented 4-dimensional expectation-maximization (4D-EM) algorithm takes the down-sampled three tissue type distributions on perfusion image data to generate the perfusion mean, variance and percentage images for each tissue type of interest. Results: Experimental results on three volunteer datasets demonstrated that the multi-spectral tissue-mixture segmentation algorithm was effective to initialize tissue mixtures from T1- and T2-weighted MR images. Compared with the conventional ASL image processing toolbox, the proposed 4D-EM algorithm not only generated comparable perfusion mean images, but also produced perfusion variance and percentage images, which the ASL toolbox cannot obtain. It is observed that the perfusion contribution percentages may not be the same as the corresponding tissue mixture volume fractions estimated in the structural images. Conclusion: A specific application to brain ASL images showed that the presented perfusion image analysis method is promising for detecting subtle changes in tissue perfusions

  8. Tissue distribution of enrofloxacin after intramammary or simulated systemic administration in isolated perfused sheep udders.

    Science.gov (United States)

    López Cadenas, Cristina; Fernández Martínez, Nélida; Sierra Vega, Matilde; Diez Liébana, Maria J; Gonzalo Orden, Jose M; Sahagún Prieto, Ana M; García Vieitez, Juan J

    2012-11-01

    To determine the tissue distribution of enrofloxacin after intramammary or simulated systemic administration in isolated perfused sheep udders by measuring its concentration at various sample collection sites. 26 udders (obtained following euthanasia) from 26 healthy lactating sheep. For each isolated udder, 1 mammary gland was perfused with warmed, gassed Tyrode solution. Enrofloxacin (1 g of enrofloxacin/5 g of ointment) was administered into the perfused gland via the intramammary route or systemically via the perfusion fluid (equivalent to a dose of 5 mg/kg). Samples of the perfusate were obtained every 30 minutes for 180 minutes; glandular tissue samples were obtained at 2, 4, 6, and 8 cm from the teat base after 180 minutes. The enrofloxacin content of the perfusate and tissue samples was analyzed via high-performance liquid chromatography with UV detection. After intramammary administration, maximun perfusate enrofloxacin concentration was detected at 180 minutes and, at this time, mean tissue enrofloxacin concentration was detected and mean tissue enrofloxacin concentration was 123.80, 54.48, 36.72, and 26.42 μg/g of tissue at 2, 4, 6, and 8 cm from the teat base, respectively. Following systemic administration, perfusate enrofloxacin concentration decreased with time and, at 180 minutes, tissue enrofloxacin concentrations ranged from 40.38 to 35.58 μg/g of tissue. By 180 minutes after administration via the intramammary or systemic route in isolated perfused sheep mammary glands, mean tissue concentration of enrofloxacin was greater than the minimum inhibitory concentration required to inhibit growth of 90% of many common mastitis pathogens in sheep. Use of either route of administration (or in combination) appears suitable for the treatment of acute mastitis in sheep.

  9. Discrete vessel heat transfer in perfused tissue - model comparison

    NARCIS (Netherlands)

    Stanczyk, M.; Leeuwen, van G.M.J.; Steenhoven, van A.A.

    2007-01-01

    The aim of this paper is to compare two methods of calculating heat transfer in perfused biological tissue using a discrete vessel description. The methods differ in two important aspects: the representation of the vascular system and the algorithm for calculating the heat flux between tissue and

  10. Photoplethysmographic sensors for perfusion measurements in spinal cord tissue

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, J P; Kyriacou, P A, E-mail: Justin.Phillips.1@city.ac.uk [School of Engineering and Mathematical Sciences, City University London, EC1V 0HB (United Kingdom)

    2011-08-17

    Sensors for recording photoplethysmographic signals from the nervous tissue of the spinal cord are described. The purpose of these sensors is to establish whether perfusion is compromised in various states of injury which occur in certain animal models of spinal cord injury, for example compression injury. Various measures of perfusion are applicable such as the amplitude of the photoplethysmograph signal and the oxygen saturation, measured using a dual wavelength configuration. Signals are usually compared to baseline measurements made in uninjured subjects. This paper describes two types of probe, one based on optical fibres, and one in which optotes are placed in direct contact with the tissue surface. Results from a study based on a compression model utilising a fibreoptic sensor are presented.

  11. Drug perfusion enhancement in tissue model by steady streaming induced by oscillating microbubbles.

    Science.gov (United States)

    Oh, Jin Sun; Kwon, Yong Seok; Lee, Kyung Ho; Jeong, Woowon; Chung, Sang Kug; Rhee, Kyehan

    2014-01-01

    Drug delivery into neurological tissue is challenging because of the low tissue permeability. Ultrasound incorporating microbubbles has been applied to enhance drug delivery into these tissues, but the effects of a streaming flow by microbubble oscillation on drug perfusion have not been elucidated. In order to clarify the physical effects of steady streaming on drug delivery, an experimental study on dye perfusion into a tissue model was performed using microbubbles excited by acoustic waves. The surface concentration and penetration length of the drug were increased by 12% and 13%, respectively, with streaming flow. The mass of dye perfused into a tissue phantom for 30s was increased by about 20% in the phantom with oscillating bubbles. A computational model that considers fluid structure interaction for streaming flow fields induced by oscillating bubbles was developed, and mass transfer of the drug into the porous tissue model was analyzed. The computed flow fields agreed with the theoretical solutions, and the dye concentration distribution in the tissue agreed well with the experimental data. The computational results showed that steady streaming with a streaming velocity of a few millimeters per second promotes mass transfer into a tissue. © 2013 Published by Elsevier Ltd.

  12. Finite-element simulation of blood perfusion in muscle tissue during compression and sustained contraction.

    Science.gov (United States)

    Vankan, W J; Huyghe, J M; Slaaf, D W; van Donkelaar, C C; Drost, M R; Janssen, J D; Huson, A

    1997-09-01

    Mechanical interaction between tissue stress and blood perfusion in skeletal muscles plays an important role in blood flow impediment during sustained contraction. The exact mechanism of this interaction is not clear, and experimental investigation of this mechanism is difficult. We developed a finite-element model of the mechanical behavior of blood-perfused muscle tissue, which accounts for mechanical blood-tissue interaction in maximally vasodilated vasculature. Verification of the model was performed by comparing finite-element results of blood pressure and flow with experimental measurements in a muscle that is subject to well-controlled mechanical loading conditions. In addition, we performed simulations of blood perfusion during tetanic, isometric contraction and maximal vasodilation in a simplified, two-dimensional finite-element model of a rat calf muscle. A vascular waterfall in the venous compartment was identified as the main cause for blood flow impediment both in the experiment and in the finite-element simulations. The validated finite-element model offers possibilities for detailed analysis of blood perfusion in three-dimensional muscle models under complicated loading conditions.

  13. Establishing Early Functional Perfusion and Structure in Tissue Engineered Cardiac Constructs.

    Science.gov (United States)

    Wang, Bo; Patnaik, Sourav S; Brazile, Bryn; Butler, J Ryan; Claude, Andrew; Zhang, Ge; Guan, Jianjun; Hong, Yi; Liao, Jun

    2015-01-01

    Myocardial infarction (MI) causes massive heart muscle death and remains a leading cause of death in the world. Cardiac tissue engineering aims to replace the infarcted tissues with functional engineered heart muscles or revitalize the infarcted heart by delivering cells, bioactive factors, and/or biomaterials. One major challenge of cardiac tissue engineering and regeneration is the establishment of functional perfusion and structure to achieve timely angiogenesis and effective vascularization, which are essential to the survival of thick implants and the integration of repaired tissue with host heart. In this paper, we review four major approaches to promoting angiogenesis and vascularization in cardiac tissue engineering and regeneration: delivery of pro-angiogenic factors/molecules, direct cell implantation/cell sheet grafting, fabrication of prevascularized cardiac constructs, and the use of bioreactors to promote angiogenesis and vascularization. We further provide a detailed review and discussion on the early perfusion design in nature-derived biomaterials, synthetic biodegradable polymers, tissue-derived acellular scaffolds/whole hearts, and hydrogel derived from extracellular matrix. A better understanding of the current approaches and their advantages, limitations, and hurdles could be useful for developing better materials for future clinical applications.

  14. Clinical indicators to monitor patients with risk for ineffective cerebral tissue perfusion

    Directory of Open Access Journals (Sweden)

    Miriam de Abreu Almeida

    2015-04-01

    Full Text Available Objective. Select and validate the clinical indicators to monitor patients on risk for ineffective cerebral tissue perfusion, according to the Nursing Outcomes Classification (NOC. Methodology. Validation study carried out between November 2012 and August 2013, in a Brazilian hospital. Seventeen judges nurses evaluated the clinical indicators of Nursing Outcomes, according to NOC for patients on risk for ineffective cerebral tissue perfusion. In the first stage, were selected the nursing results for the assessment of the studied diagnosis and, in the second nurses assessment the importance of the indicators of the validated results in the previous step through a five points Likert scale (1 = not important to 5 = extremely important. Were used the content validity index (CVI that corresponds to the calculation of weighted averages of them marks awarded for each indicator, as it considered the following weights: 1=0.00, 2=0.25, 3=0.50; 4=0.75; 5=1.00. For categorization, the CVI considered as critical = ≥0.80; supplementary =≥0.50 to 0.79 and were disposed results <0.50. Results. Of the 9 nursing results, only the cerebral tissue perfusion obtained a 100% consensus. The CVI of the 18 indicators of this result showed that five were validated as critical (impaired neurological reflexes, systolic blood pressure, diastolic blood pressure, reduced level of consciousness and mean arterial pressure, 12 were validated as supplementary (Agitation, Impaired cognition, Intracranial pressure, Syncope, Vomiting, Findings of cerebral angiography, Headache, Restlessness, Fever, Unexplained anxiety, listlessness and Hiccughs and one was disposed (carotid bruit. Conclusions. The validation of information about the conditions of risk may allow early intervention to minimize the consequences of ineffective cerebral tissue perfusion.

  15. Tissue to plasma capillary permeability of 131I-albumin in the perfused rabbit ear

    DEFF Research Database (Denmark)

    Bent-Hansen, L; Svendsen, Jesper Hastrup

    1991-01-01

    The tissue to plasma transfer of 131I-albumin was recorded in perfused rabbit ears (n = 6) following equilibration for 24 hr. 125I-fibrinogen served as the plasma marker, and was introduced intravenously 15 min before clamping. The ears were rollerpump perfused with isotonic diluted plasma...

  16. Effects of Initial Seeding Density and Fluid Perfusion Rate on Formation of Tissue-Engineered Bone

    OpenAIRE

    GRAYSON, WARREN L.; BHUMIRATANA, SARINDR; CANNIZZARO, CHRISTOPHER; CHAO, P.-H. GRACE; LENNON, DONALD P.; CAPLAN, ARNOLD I.; VUNJAK-NOVAKOVIC, GORDANA

    2008-01-01

    We describe a novel bioreactor system for tissue engineering of bone that enables cultivation of up to six tissue constructs simultaneously, with direct perfusion and imaging capability. The bioreactor was used to investigate the relative effects of initial seeding density and medium perfusion rate on the growth and osteogenic differentiation patterns of bone marrow–derived human mesenchymal stem cells (hMSCs) cultured on three-dimensional scaffolds. Fully decellularized bovine trabecular bon...

  17. A historical perspective on the development of modern concepts of tissue perfusion: prehistory to the twentieth century.

    Science.gov (United States)

    Ashby, Nathan; Squiers, Joshua

    2014-09-01

    The historical development of the concept of perfusion is traced, with particular focus on the development of the modern clinical concepts of perfusion through the fields of anatomy, physiology, and biochemistry. This article reviews many of the significant contributors to the changing ideas of perfusion up through the twentieth century that have influenced the modern physiologic circulatory and metabolic models. The developments outlined have provided the modern model of perfusion, linking the cardiopulmonary circulation, tissue oxygen utilization and carbon dioxide production, food intake, tissue waste production and elimination, and ultimately the production and utilization of ATP in the body. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Normal Values of Tissue-Muscle Perfusion Indexes of Lower Limbs Obtained with a Scintigraphic Method.

    Science.gov (United States)

    Manevska, Nevena; Stojanoski, Sinisa; Pop Gjorceva, Daniela; Todorovska, Lidija; Miladinova, Daniela; Zafirova, Beti

    2017-09-01

    Introduction Muscle perfusion is a physiologic process that can undergo quantitative assessment and thus define the range of normal values of perfusion indexes and perfusion reserve. The investigation of the microcirculation has a crucial role in determining the muscle perfusion. Materials and method The study included 30 examinees, 24-74 years of age, without a history of confirmed peripheral artery disease and all had normal findings on Doppler ultrasonography and pedo-brachial index of lower extremity (PBI). 99mTc-MIBI tissue muscle perfusion scintigraphy of lower limbs evaluates tissue perfusion in resting condition "rest study" and after workload "stress study", through quantitative parameters: Inter-extremity index (for both studies), left thigh/right thigh (LT/RT) left calf/right calf (LC/RC) and perfusion reserve (PR) for both thighs and calves. Results In our investigated group we assessed the normal values of quantitative parameters of perfusion indexes. Indexes ranged for LT/RT in rest study 0.91-1.05, in stress study 0.92-1.04. LC/RC in rest 0.93-1.07 and in stress study 0.93-1.09. The examinees older than 50 years had insignificantly lower perfusion reserve of these parameters compared with those younger than 50, LC (p=0.98), and RC (p=0.6). Conclusion This non-invasive scintigraphic method allows in individuals without peripheral artery disease to determine the range of normal values of muscle perfusion at rest and stress condition and to clinically implement them in evaluation of patients with peripheral artery disease for differentiating patients with normal from those with impaired lower limbs circulation.

  19. Adhesion of Plasmodium falciparum infected erythrocytes in ex vivo perfused placental tissue

    DEFF Research Database (Denmark)

    Pehrson, Caroline; Mathiesen, Line; Heno, Kristine K

    2016-01-01

    placental tissue. RESULTS: The ex vivo placental perfusion model was modified to study adhesion of infected erythrocytes binding to CSA, endothelial protein C receptor (EPCR) or a transgenic parasite where P. falciparum erythrocyte membrane protein 1 expression had been shut down. Infected erythrocytes......, such as binding to immunoglobulins. Furthermore, other parasite antigens have been associated with placental malaria. These findings have important implications for placental malaria vaccine design. The objective of this study was to adapt and describe a biologically relevant model of parasite adhesion in intact...... expressing VAR2CSA accumulated in perfused placental tissue whereas the EPCR binding and the transgenic parasite did not. Soluble CSA and antibodies specific against VAR2CSA inhibited binding of infected erythrocytes. CONCLUSION: The ex vivo model provides a novel way of studying receptor-ligand interactions...

  20. Importance of tissue perfusion in ST segment elevation myocardial infarction patients undergoing reperfusion strategies: role of adenosine.

    Science.gov (United States)

    Forman, Mervyn B; Jackson, Edwin K

    2007-11-01

    High risk ST segment elevation myocardial infarction (STEMI) patients undergoing reperfusion therapy continue to exhibit significant morbidity and mortality due in part to myocardial reperfusion injury. Importantly, preclinical studies demonstrate that progressive microcirculatory failure (the "no-reflow" phenomenon) contributes significantly to myocardial reperfusion injury. Diagnostic techniques to measure tissue perfusion have validated this concept in humans, and it is now clear that abnormal tissue perfusion occurs frequently in STEMI patients undergoing reperfusion therapy. Moreover, because tissue perfusion correlates poorly with epicardial blood flow (TIMI flow grade), clinical studies show that tissue perfusion is an independent predictor of early and late mortality in STEMI patients and is associated with infarct size, ventricular function, CHF and ventricular arrhythmias. The mechanisms responsible for abnormal tissue perfusion are multifactorial and include both mechanical obstruction and vasoconstrictor humoral factors. Adenosine, an endogenous nucleoside, maintains microcirculatory flow following reperfusion by activating four well-characterized extracellular receptors. Because activation of adenosine receptors attenuates the mechanical and functional mechanisms leading to the "no reflow" phenomenon and activates other cardioprotective pathways as well, it is not surprising that both experimental and clinical studies show striking myocardial salvage with intravenous infusions of adenosine administered in the peri-reperfusion period. For example, a post hoc analysis of the AMISTAD II trial indicates a significant reduction in 1 and 6-month mortality in STEMI patients undergoing reperfusion therapy who are treated with adenosine within 3 hours of symptoms. In conclusion, adenosine's numerous cardioprotective effects, including attenuation of the "no-reflow" phenomenon, support its use in high risk STEMI undergoing reperfusion.

  1. Crossing kingdoms: Using decellularized plants as perfusable tissue engineering scaffolds.

    Science.gov (United States)

    Gershlak, Joshua R; Hernandez, Sarah; Fontana, Gianluca; Perreault, Luke R; Hansen, Katrina J; Larson, Sara A; Binder, Bernard Y K; Dolivo, David M; Yang, Tianhong; Dominko, Tanja; Rolle, Marsha W; Weathers, Pamela J; Medina-Bolivar, Fabricio; Cramer, Carole L; Murphy, William L; Gaudette, Glenn R

    2017-05-01

    Despite significant advances in the fabrication of bioengineered scaffolds for tissue engineering, delivery of nutrients in complex engineered human tissues remains a challenge. By taking advantage of the similarities in the vascular structure of plant and animal tissues, we developed decellularized plant tissue as a prevascularized scaffold for tissue engineering applications. Perfusion-based decellularization was modified for different plant species, providing different geometries of scaffolding. After decellularization, plant scaffolds remained patent and able to transport microparticles. Plant scaffolds were recellularized with human endothelial cells that colonized the inner surfaces of plant vasculature. Human mesenchymal stem cells and human pluripotent stem cell derived cardiomyocytes adhered to the outer surfaces of plant scaffolds. Cardiomyocytes demonstrated contractile function and calcium handling capabilities over the course of 21 days. These data demonstrate the potential of decellularized plants as scaffolds for tissue engineering, which could ultimately provide a cost-efficient, "green" technology for regenerating large volume vascularized tissue mass. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Evaluation of Perfusion and Thermal Parameters of Skin Tissue Using Cold Provocation and Thermographic Measurements

    Directory of Open Access Journals (Sweden)

    Strąkowska Maria

    2016-09-01

    Full Text Available Measurement of the perfusion coefficient and thermal parameters of skin tissue using dynamic thermography is presented in this paper. A novel approach based on cold provocation and thermal modelling of skin tissue is presented. The measurement was performed on a person’s forearm using a special cooling device equipped with the Peltier module. The proposed method first cools the skin, and then measures the changes of its temperature matching the measurement results with a heat transfer model to estimate the skin perfusion and other thermal parameters. In order to assess correctness of the proposed approach, the uncertainty analysis was performed.

  3. Laser doppler perfusion imaging

    International Nuclear Information System (INIS)

    Waardell, K.

    1992-01-01

    Recording of tissue perfusion is important in assessing the influence of peripheral vascular diseases on the microcirculation. This thesis reports on a laser doppler perfusion imager based on dynamic light scattering in tissue. When a low power He-Ne laser beam sequentally scans the tissue, moving blood cells generate doppler components in the back-scattered light. A fraction of this light is detected by a photodetector and converted into an electrical signal. In the processor, a signal proportional to the tissue perfusion at each measurement site is calculated and stored. When the scanning procedure is completed, a color-coded perfusion image is presented on a monitor. To convert important aspects of the perfusion image into more quantitative parameters, data analysis functions are implemented in the software. A theory describing the dependence of the distance between individual measurement points and detector on the system amplification factor is proposed and correction algorithms are presented. The performance of the laser doppler perfusion imager was evaluated using a flow simulator. A linear relationship between processor output signal and flow through the simulator was demonstrated for blood cell concentrations below 0.2%. The median sampling depth of the laser beam was simulated by a Monte Carlo technique and estimated to 235 μm. The perfusion imager has been used in the clinic to study perfusion changes in port wine stains treated with argon laser and to investigate the intensity and extension of the cutaneous axon reflex response after electrical nerve stimulation. The fact that perfusion can be visualized without touching the tissue implies elimination of sterilization problems, thus simplifying clinical investigations of perfusion in association with diagnosis and treatment of peripheral vascular diseases. 22 refs

  4. Spatial interaction between tissue pressure and skeletal muscle perfusion during contraction.

    Science.gov (United States)

    van Donkelaar, C C; Huyghe, J M; Vankan, W J; Drost, M R

    2001-05-01

    The vascular waterfall theory attributes decreased muscle perfusion during contraction to increased intramuscular pressure (P(IM)) and concomitant increase in venous resistance. Although P(IM) is distributed during contractions, this theory does not account for heterogeneity. This study hypothesises that pressure heterogeneity could affect the interaction between P(IM) rise and perfusion. Regional tissue perfusion during submaximum (100kPa) tetanic contraction is studied, using a finite element model of perfused contracting skeletal muscle. Capillary flow in muscles with one proximal artery and vein (SIM(1)) and with an additional distal artery and vein (SIM(2)) is compared. Blood flow and pressures at rest and P(IM) during contraction ( approximately 25kPa maximally) are similar between simulations, but capillary flow and venous pressure differ. In SIM(2), venous pressure and capillary flow correspond to P(IM) distribution, whereas capillary flow in SIM(1) is less than 10% of flow in SIM(2), in the muscle half without draining vein. This difference is caused by a high central P(IM), followed by central venous pressure rise, in agreement with the waterfall theory. The high central pressure (SIM(1)), obstructs outflow from the distal veins. Distal venous pressure rises until central blood pressure is reached, although local P(IM) is low. Adding a distal vein (SIM(2)) restores the perfusion. It is concluded that regional effects contribute to the interaction between P(IM) and perfusion during contraction. Unlike stated by the vascular waterfall theory, venous pressure may locally exceed P(IM). Although this can be explained by the principles of this theory, the theory does not include this phenomenon as such.

  5. Skin perfusion pressure as an indicator of tissue perfusion in valvular heart surgery: Preliminary results from a prospective, observational study.

    Directory of Open Access Journals (Sweden)

    Young Song

    Full Text Available Hemodynamic management aims to provide adequate tissue perfusion, which is often altered during cardiac surgery with cardiopulmonary bypass (CPB. We evaluated whether skin perfusion pressure (SPP can be used for monitoring of adequacy of tissue perfusion in patients undergoing valvular heart surgery. Seventy-two patients undergoing valve replacement were enrolled. SPP and serum lactate level were assessed after anaesthesia induction (baseline, during CPB, after CPB-off, end of surgery, arrival at intensive care unit, and postoperative 6 h. Lactate was further measured until postoperative 48 h. Association of SPP with lactate and 30-day morbidity comprising myocardial infarction, acute kidney injury, stroke, prolonged intubation, sternal infection, reoperation, and mortality was assessed. Among the lactate levels, postoperative 6 h peak value was most closely linked to composite of 30-day morbidity. The SPP value during CPB and its % change from the baseline value were significantly associated with the postoperative 6 h peak lactate (r = -0.26, P = 0.030 and r = 0.47, P = 0.001, respectively. Optimal cut-off of % decrease in SPP during CPB from baseline value for the postoperative 6 h hyperlactatemia was 48% (area under curve, 0.808; 95% confidence interval (CI, 0.652-0.963; P = 0.001. Decrease in SPP >48% during CPB from baseline value was associated with a 12.8-fold increased risk of composite endpoint of 30-day morbidity (95% CI, 1.48-111.42; P = 0.021 on multivariate logistic regression. Large decrease in SPP during CPB predicts postoperative 6 h hyperlactatemia and 30-day morbidity, which implicates a promising role of SPP monitoring in the achievement of optimal perfusion during CPB.

  6. Skin perfusion pressure as an indicator of tissue perfusion in valvular heart surgery: Preliminary results from a prospective, observational study.

    Science.gov (United States)

    Song, Young; Soh, Sarah; Shim, Jae-Kwang; Park, Kyoung-Un; Kwak, Young-Lan

    2017-01-01

    Hemodynamic management aims to provide adequate tissue perfusion, which is often altered during cardiac surgery with cardiopulmonary bypass (CPB). We evaluated whether skin perfusion pressure (SPP) can be used for monitoring of adequacy of tissue perfusion in patients undergoing valvular heart surgery. Seventy-two patients undergoing valve replacement were enrolled. SPP and serum lactate level were assessed after anaesthesia induction (baseline), during CPB, after CPB-off, end of surgery, arrival at intensive care unit, and postoperative 6 h. Lactate was further measured until postoperative 48 h. Association of SPP with lactate and 30-day morbidity comprising myocardial infarction, acute kidney injury, stroke, prolonged intubation, sternal infection, reoperation, and mortality was assessed. Among the lactate levels, postoperative 6 h peak value was most closely linked to composite of 30-day morbidity. The SPP value during CPB and its % change from the baseline value were significantly associated with the postoperative 6 h peak lactate (r = -0.26, P = 0.030 and r = 0.47, P = 0.001, respectively). Optimal cut-off of % decrease in SPP during CPB from baseline value for the postoperative 6 h hyperlactatemia was 48% (area under curve, 0.808; 95% confidence interval (CI), 0.652-0.963; P = 0.001). Decrease in SPP >48% during CPB from baseline value was associated with a 12.8-fold increased risk of composite endpoint of 30-day morbidity (95% CI, 1.48-111.42; P = 0.021) on multivariate logistic regression. Large decrease in SPP during CPB predicts postoperative 6 h hyperlactatemia and 30-day morbidity, which implicates a promising role of SPP monitoring in the achievement of optimal perfusion during CPB.

  7. Use of perfusion bioreactors and large animal models for long bone tissue engineering.

    Science.gov (United States)

    Gardel, Leandro S; Serra, Luís A; Reis, Rui L; Gomes, Manuela E

    2014-04-01

    Tissue engineering and regenerative medicine (TERM) strategies for generation of new bone tissue includes the combined use of autologous or heterologous mesenchymal stem cells (MSC) and three-dimensional (3D) scaffold materials serving as structural support for the cells, that develop into tissue-like substitutes under appropriate in vitro culture conditions. This approach is very important due to the limitations and risks associated with autologous, as well as allogenic bone grafiting procedures currently used. However, the cultivation of osteoprogenitor cells in 3D scaffolds presents several challenges, such as the efficient transport of nutrient and oxygen and removal of waste products from the cells in the interior of the scaffold. In this context, perfusion bioreactor systems are key components for bone TERM, as many recent studies have shown that such systems can provide dynamic environments with enhanced diffusion of nutrients and therefore, perfusion can be used to generate grafts of clinically relevant sizes and shapes. Nevertheless, to determine whether a developed tissue-like substitute conforms to the requirements of biocompatibility, mechanical stability and safety, it must undergo rigorous testing both in vitro and in vivo. Results from in vitro studies can be difficult to extrapolate to the in vivo situation, and for this reason, the use of animal models is often an essential step in the testing of orthopedic implants before clinical use in humans. This review provides an overview of the concepts, advantages, and challenges associated with different types of perfusion bioreactor systems, particularly focusing on systems that may enable the generation of critical size tissue engineered constructs. Furthermore, this review discusses some of the most frequently used animal models, such as sheep and goats, to study the in vivo functionality of bone implant materials, in critical size defects.

  8. Extracellular Matrix Hydrogel Promotes Tissue Remodeling, Arteriogenesis, and Perfusion in a Rat Hindlimb Ischemia Model

    Directory of Open Access Journals (Sweden)

    Jessica L. Ungerleider, BS

    2016-01-01

    Full Text Available Although surgical and endovascular revascularization can be performed in peripheral arterial disease (PAD, 40% of patients with critical limb ischemia do not have a revascularization option. This study examines the efficacy and mechanisms of action of acellular extracellular matrix-based hydrogels as a potential novel therapy for treating PAD. We tested the efficacy of using a tissue-specific injectable hydrogel derived from decellularized porcine skeletal muscle (SKM and compared this to a new human umbilical cord-derived matrix (hUC hydrogel, which could have greater potential for tissue regeneration because of the younger age of the tissue source. In a rodent hindlimb ischemia model, both hydrogels were injected 1-week post-surgery and perfusion was regularly monitored with laser speckle contrast analysis to 35 days post-injection. There were significant improvements in hindlimb tissue perfusion and perfusion kinetics with both biomaterials. Histologic analysis indicated that the injected hydrogels were biocompatible, and resulted in arteriogenesis, rather than angiogenesis, as well as improved recruitment of skeletal muscle progenitors. Skeletal muscle fiber morphology analysis indicated that the muscle treated with the tissue-specific SKM hydrogel more closely matched healthy tissue morphology. Whole transcriptome analysis indicated that the SKM hydrogel caused a shift in the inflammatory response, decreased cell death, and increased blood vessel and muscle development. These results show the efficacy of an injectable ECM hydrogel alone as a potential therapy for treating patients with PAD. Our results indicate that the SKM hydrogel improved functional outcomes through stimulation of arteriogenesis and muscle progenitor cell recruitment.

  9. Design modification and optimisation of the perfusion system of a tri-axial bioreactor for tissue engineering.

    Science.gov (United States)

    Hussein, Husnah; Williams, David J; Liu, Yang

    2015-07-01

    A systematic design of experiments (DOE) approach was used to optimize the perfusion process of a tri-axial bioreactor designed for translational tissue engineering exploiting mechanical stimuli and mechanotransduction. Four controllable design parameters affecting the perfusion process were identified in a cause-effect diagram as potential improvement opportunities. A screening process was used to separate out the factors that have the largest impact from the insignificant ones. DOE was employed to find the settings of the platen design, return tubing configuration and the elevation difference that minimise the load on the pump and variation in the perfusion process and improve the controllability of the perfusion pressures within the prescribed limits. DOE was very effective for gaining increased knowledge of the perfusion process and optimizing the process for improved functionality. It is hypothesized that the optimized perfusion system will result in improved biological performance and consistency.

  10. Angiotensin extraction by trout tissues in vivo and metabolism by the perfused gill

    International Nuclear Information System (INIS)

    Olson, K.R.; Kullman, D.; Narkates, A.J.; Oparil, S.

    1986-01-01

    Plasma clearance and tissue accumulation of 125I-angiotensin I, [Asp1, Ile5]ANG I, and [14C]sucrose, an inert volume reference, were measured after a bolus injection into the dorsal aorta of rainbow trout, Salmo gairdneri. Retention and metabolism of ANG I to angiotensin II (ANG II) and their constituent 1-4 peptide by the gill were examined using an isolated perfused arch preparation in which outflow from the respiratory and central filamental (venous) pathways was separated. Clearance of ANG I from plasma is multiexponential, reflecting dilution and tissue extraction. Liver, bile, gonads, corpuscles of Stannius, and white skeletal muscle accumulate more 125I than 14C; gill tissue accumulates less 125I than 14C. ANG I and II are retained by the perfused gill longer than the inert vascular marker sucrose, even though the distribution volumes of the former are less. The gill respiratory pathway converts ANG I to ANG II whereas the venous pathway metabolizes either ANG I or II to the 1-4 peptide and other metabolites. The gill respiratory pathway is in series with the systemic vasculature, has a large blood-cell contact area, and, like the mammalian lung, is ideally suited to activate ANG I. The gill venous pathway is in parallel with the systemic vasculature and removes ANG II from the circulation. During stress, elevated plasma catecholamines may reduce venous perfusion and thereby help maintain elevated circulating ANG II levels through reduced venous metabolism

  11. Tissue-Muscle Perfusion Scintigraphy of the Lower Limbs in a Patient with Type 2 Diabetes Mellitus and Peripheral Arterial Disease

    Directory of Open Access Journals (Sweden)

    Irfan Ahmet

    2016-02-01

    Full Text Available The estimation of tissue perfusion as a hemodynamic consequence of peripheral arterial disease (PAD in diabetic patients is of great importance in the management of these patients.We present a noninvasive, functional method of 99mTc-MIBI (methoxy-isobutyl-isonitrile tissue-muscle perfusion scintigraphy (TMPS of the lower limbs, which assesses tissue perfusion in basal conditions (“rest” study and exercise conditions (“stress” study. Emphasis is given on perfusion reserve (PR as an important indicator of preservation of microcirculation and its local autoregulatory mechanisms in PAD. We present a case of a 71-year-old male diabetic patient with skin ulcers of the right foot and an ankle-brachial index >1.2 (0.9-1.1. Dynamic phase TMPS of the lower limbs showed decreased and late arterial vascularization of the right calf (RC with lower percentage of radioactivity in the 1st minute: RC 66%, left calf (LC 84%. PR was borderline with a value of 57% for LC and decreased for RC (42%. Functional assessment of hemodynamic consequences of PAD is important in evaluating both advanced and early PAD, especially the asymptomatic form. The method used to determine the TMPS of the lower limbs, can differentiate subtle changes in microcirculation and tissue perfusion

  12. Modeling and design of optimal flow perfusion bioreactors for tissue engineering applications.

    Science.gov (United States)

    Hidalgo-Bastida, L Araida; Thirunavukkarasu, Sundaramoorthy; Griffiths, Sarah; Cartmell, Sarah H; Naire, Shailesh

    2012-04-01

    Perfusion bioreactors have been used in different tissue engineering applications because of their consistent distribution of nutrients and flow-induced shear stress within the tissue-engineering scaffold. A widely used configuration uses a scaffold with a circular cross-section enclosed within a cylindrical chamber and inlet and outlet pipes which are connected to the chamber on either side through which media is continuously circulated. However, fluid-flow experiments and simulations have shown that the majority of the flow perfuses through the center. This pattern creates stagnant zones in the peripheral regions as well as in those of high flow rate near the inlet and outlet. This non-uniformity of flow and shear stress, owing to a circular design, results in limited cell proliferation and differentiation in these areas. The focus of this communication is to design an optimized perfusion system using computational fluid dynamics as a mathematical tool to overcome the time-consuming trial and error experimental method. We compared the flow within a circular and a rectangular bioreactor system. Flow simulations within the rectangular bioreactor are shown to overcome the limitations in the circular design. This communication challenges the circular cross-section bioreactor configuration paradigm and provides proof of the advantages of the new design over the existing one. Copyright © 2011 Wiley Periodicals, Inc.

  13. Perfusion decellularization of a human limb: A novel platform for composite tissue engineering and reconstructive surgery.

    Directory of Open Access Journals (Sweden)

    Mattia Francesco Maria Gerli

    Full Text Available Muscle and fasciocutaneous flaps taken from autologous donor sites are currently the most utilized approach for trauma repair, accounting annually for 4.5 million procedures in the US alone. However, the donor tissue size is limited and the complications related to these surgical techniques lead to morbidities, often involving the donor sites. Alternatively, recent reports indicated that extracellular matrix (ECM scaffolds boost the regenerative potential of the injured site, as shown in a small cohort of volumetric muscle loss patients. Perfusion decellularization is a bioengineering technology that allows the generation of clinical-scale ECM scaffolds with preserved complex architecture and with an intact vascular template, from a variety of donor organs and tissues. We recently reported that this technology is amenable to generate full composite tissue scaffolds from rat and non-human primate limbs. Translating this platform to human extremities could substantially benefit soft tissue and volumetric muscle loss patients providing tissue- and species-specific grafts. In this proof-of-concept study, we show the successful generation a large-scale, acellular composite tissue scaffold from a full cadaveric human upper extremity. This construct retained its morphological architecture and perfusable vascular conduits. Histological and biochemical validation confirmed the successful removal of nuclear and cellular components, and highlighted the preservation of the native extracellular matrix components. Our results indicate that perfusion decellularization can be applied to produce human composite tissue acellular scaffolds. With its preserved structure and vascular template, these biocompatible constructs, could have significant advantages over the currently implanted matrices by means of nutrient distribution, size-scalability and immunological response.

  14. Automated prediction of tissue outcome after acute ischemic stroke in computed tomography perfusion images

    Science.gov (United States)

    Vos, Pieter C.; Bennink, Edwin; de Jong, Hugo; Velthuis, Birgitta K.; Viergever, Max A.; Dankbaar, Jan Willem

    2015-03-01

    Assessment of the extent of cerebral damage on admission in patients with acute ischemic stroke could play an important role in treatment decision making. Computed tomography perfusion (CTP) imaging can be used to determine the extent of damage. However, clinical application is hindered by differences among vendors and used methodology. As a result, threshold based methods and visual assessment of CTP images has not yet shown to be useful in treatment decision making and predicting clinical outcome. Preliminary results in MR studies have shown the benefit of using supervised classifiers for predicting tissue outcome, but this has not been demonstrated for CTP. We present a novel method for the automatic prediction of tissue outcome by combining multi-parametric CTP images into a tissue outcome probability map. A supervised classification scheme was developed to extract absolute and relative perfusion values from processed CTP images that are summarized by a trained classifier into a likelihood of infarction. Training was performed using follow-up CT scans of 20 acute stroke patients with complete recanalization of the vessel that was occluded on admission. Infarcted regions were annotated by expert neuroradiologists. Multiple classifiers were evaluated in a leave-one-patient-out strategy for their discriminating performance using receiver operating characteristic (ROC) statistics. Results showed that a RandomForest classifier performed optimally with an area under the ROC of 0.90 for discriminating infarct tissue. The obtained results are an improvement over existing thresholding methods and are in line with results found in literature where MR perfusion was used.

  15. Quantitation of Brown Adipose Tissue Perfusion in Transgenic Mice Using Near-Infrared Fluorescence Imaging

    Directory of Open Access Journals (Sweden)

    Akira Nakayama

    2003-01-01

    Full Text Available Brown adipose tissue (BAT; brown fat is the principal site of adaptive thermogenesis in the human newborn and other small mammals. Of paramount importance for thermogenesis is vascular perfusion, which controls the flow of cool blood in, and warmed blood out, of BAT. We have developed an optical method for the quantitative imaging of BAT perfusion in the living, intact animal using the heptamethine indocyanine IR-786 and near-infrared (NIR fluorescent light. We present a detailed analysis of the physical, chemical, and cellular properties of IR-786, its biodistribution and pharmacokinetics, and its uptake into BAT. Using transgenic animals with homozygous deletion of Type II iodothyronine deiodinase, or homozygous deletion of uncoupling proteins (UCPs 1 and 2, we demonstrate that BAT perfusion can be measured noninvasively, accurately, and reproducibly. Using these techniques, we show that UCP 1/2 knockout animals, when compared to wild-type animals, have a higher baseline perfusion of BAT but a similar maximal response to β3-receptor agonist. These results suggest that compensation for UCP deletion is mediated, in part, by the control of BAT perfusion. Taken together, BAT perfusion can now be measured noninvasively using NIR fluorescent light, and pharmacological modulators of thermogenesis can be screened at relatively high throughput in living animals.

  16. Tissue ablation accelerated by peripheral scanning mode with high-intensity focused ultrasound: a study on isolated porcine liver perfusion.

    Science.gov (United States)

    Bu, Rui; Yin, Li; Yang, Han; Wang, Qi; Wu, Feng; Zou, Jian Zhong

    2013-08-01

    The aims of this study were to investigate the feasibility of accelerated tissue ablation using a peripheral scanning mode with high-intensity focused ultrasound (HIFU) and to explore the effect of flow rate on total energy consumption of the target tissues. Using a model of isolated porcine liver perfusion via the portal vein and hepatic artery, we conducted a scanning protocol along the periphery of the target tissues using linear-scanned HIFU to carefully adjust the varying focal depth, generator power, scanning velocity and line-by-line interval over the entire ablation range. Porcine livers were divided into four ablation groups: group 1, n = 12, with dual-vessel perfusion; group 2, n = 11, with portal vein perfusion alone; group 3, n = 10, with hepatic artery perfusion alone; and group 4, n = 11, control group with no-flow perfusion. The samples were cut open consecutively at a thickness of 3 mm, and the actual ablation ranges were calculated along the periphery of the target tissues after triphenyl tetrazolium chloride staining. Total energy consumption was calculated as the sum of the energy requirements at various focal depths in each group. On the basis of the pre-supposed scanning protocol, the peripheral region of the target tissue formed a complete coagulation necrosis barrier in each group with varying dose combinations, and the volume of the peripheral necrotic area did not differ significantly among the four groups (p > 0.05). Furthermore, total energy consumption in each group significantly decreased with the corresponding decrease in flow rate (p Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  17. Magnetic resonance perfusion imaging without contrast media

    International Nuclear Information System (INIS)

    Martirosian, Petros; Graf, Hansjoerg; Schick, Fritz; Boss, Andreas; Schraml, Christina; Schwenzer, Nina F.; Claussen, Claus D.

    2010-01-01

    Principles of magnetic resonance imaging techniques providing perfusion-related contrast weighting without administration of contrast media are reported and analysed systematically. Especially common approaches to arterial spin labelling (ASL) perfusion imaging allowing quantitative assessment of specific perfusion rates are described in detail. The potential of ASL for perfusion imaging was tested in several types of tissue. After a systematic comparison of technical aspects of continuous and pulsed ASL techniques the standard kinetic model and tissue properties of influence to quantitative measurements of perfusion are reported. For the applications demonstrated in this paper a flow-sensitive alternating inversion recovery (FAIR) ASL perfusion preparation approach followed by true fast imaging with steady precession (true FISP) data recording was developed and implemented on whole-body scanners operating at 0.2, 1.5 and 3 T for quantitative perfusion measurement in various types of tissue. ASL imaging provides a non-invasive tool for assessment of tissue perfusion rates in vivo. Images recorded from kidney, lung, brain, salivary gland and thyroid gland provide a spatial resolution of a few millimetres and sufficient signal to noise ratio in perfusion maps after 2-5 min of examination time. Newly developed ASL techniques provide especially high image quality and quantitative perfusion maps in tissues with relatively high perfusion rates (as also present in many tumours). Averaging of acquisitions and image subtraction procedures are mandatory, leading to the necessity of synchronization of data recording to breathing in abdominal and thoracic organs. (orig.)

  18. Release of Tissue-specific Proteins into Coronary Perfusate as a Model for Biomarker Discovery in Myocardial Ischemia/Reperfusion Injury

    DEFF Research Database (Denmark)

    Cordwell, Stuart; Edwards, Alistair; Liddy, Kiersten

    2012-01-01

    -rich plasma, in which the wide dynamic range of the native protein complement hinders classical proteomic investigations. We employed an ex vivo rabbit model of myocardial ischemia/reperfusion (I/R) injury using Langendorff buffer perfusion. Nonrecirculating perfusate was collected over a temporal profile...... reperfusion post-15I. Proteins released during irreversible I/R (60I/60R) were profiled using gel-based (2-DE and one-dimensional gel electrophoresis coupled to liquid chromatography and tandem mass spectrometry; geLC–MS) and gel-free (LC–MS/MS) methods. A total of 192 tissue-specific proteins were identified...... release using ex vivo buffer perfused tissue to limit the presence of obfuscating plasma proteins may identify candidates for further study in humans....

  19. Functional state of perfused liver tissue in X-ray irradiated rats

    Energy Technology Data Exchange (ETDEWEB)

    Borovikova, G.V.; Dokshina, G.A.; Lapteva, T.A. (Tomskij Gosudarstvennyj Univ. (USSR). Nauchno-Issledovatel' skij Inst. Biologii i Biofiziki)

    1981-01-01

    The results of studying the functional state of perfused liver tissue isolated from rats after irradiation in the 18.06x10/sup -2/ Kl/kg dose, which has been estimated by transamination process rate catalized alanine-(KF 2.6x1.2, ALT and aspartate by aminotransferases (KF 2.6x1.1, ACT), gluconeogenesis and urea production intensity presented. When comparing the results obtained on the perfused liver deprived of homeostatic body effects it has been found that the liver isolated from the body for the first 24 hours of the radiation sickness development possesses a higher radiation activity which manifests itself in intensification of the processes of gluconeogenesis and transamination with substrate addition. The third 24 hours upon irradiation in the isolated liver the intensity of the gluconeogenesis and transamination processes is attenuated.

  20. Post-operative monitoring of tissue transfers: advantages using contrast enhanced ultrasound (CEUS) and contrast enhanced MRI (ceMRI) with dynamic perfusion analysis?

    Science.gov (United States)

    Lamby, P; Prantl, L; Fellner, C; Geis, S; Jung, E M

    2011-01-01

    The immediate evaluation of microvascular tissue flaps with respect to microcirculation after transplantation is crucial for optimal monitoring and outcome. The purpose of our investigation was to evaluate the clinical value of contrast-enhanced ultrasound (CEUS) and contrast-enhanced MRI (ceMRI) for monitoring the integrity of tissue flaps in plastic surgery. To this end, we investigated 10 patients (47 ± 16 a) between postoperative day 7 and 14 who underwent flap surgery in order to cover tissue defects in various body regions. For CEUS we utilized the GE LOGIQ E9 equipped with a linear transducer (6-9 MHz). After application of 2.4 ml SonoVue, the tissue perfusion was detected in Low MI-Technique (MI present, both technologies provide an optimal assessment of perfusion in cutaneous, subcutaneous and muscle tissue layers, whereby the detection of fatty tissue perfusion is currently more easily detected using CEUS compared to ceMRI.

  1. Finite-element simulation of blood perfusion in muscle tissue during compression and sustained contraction

    NARCIS (Netherlands)

    Vankan, W.J.; Huyghe, J.M.R.J.; Slaaf, D.W.; Donkelaar, van C.C.; Drost, M.R.; Janssen, J.D.; Huson, A.

    1997-01-01

    Mechanical interaction between tissue stress and blood perfusion in skeletal muscles plays an important role in blood flow impediment during sustained contraction. The exact mechanism of this interaction is not clear, and experimental investigation of this mechanism is difficult. We developed a

  2. Comparative study of rabbit VX2 hepatic implantation tumor and normal liver tissue on magnetic resonance perfusion weighted imaging

    International Nuclear Information System (INIS)

    Jiao Zimei; Wang Xizhen; Wang Bin; Liu Feng; Li Haiqing; Sun Yequan; Dong Peng

    2012-01-01

    Objective: To investigate the value of magnetic resonance (MR) perfusion weighted imaging (PWI) in evaluating the blood perfusion of tumor by analyzing the features and indexes of PWI on rabbit VX2 hepatic implantation tumor and normal liver tissue. Methods: Twenty-four New Zealand White rabbits with VX2 carcinoma were established under direct surgical vision embedding tumor tissue. MR examination was performed at 21 days after the tumor implantation. The signal intensity -time curve of hepatic tumor and normal liver tissue were obtained. Mean time to enhance (MTE), negative enhancement integral (NEI), time to minimum (TM), maximum slope of decrease (MSD) and maximum slope of increase (MSI) were measured. Results: MTE, NEI, TM, MSD, and MSI of the normal liver tissue were 208.341±2.226 ms, 78.334±8.152, 24.059±1.927 ms, 38.221±2.443, and 15.389±2.526, respectively. MTE, NEI, TM, MSD, and MSI of the tumor tissue were 175.437±4.182 ms, 123.203±19.455, 17.061±1.834 ms, 125.740±4.842, and 67.832±2.882, respectively. The MTE and TM of tumor were shorter than those of normal hepatic tissue (P<0.05). NEI, MSD, and MSI of tumor were higher than those of normal hepatic tissue (P<0.05). Conclusion: PWI can distinguish the normal liver tissue from the tumor tissue, which is helpful in evaluating blood perfusion of different hepatic tissues. (authors)

  3. The functional state of perfused liver tissue in X-ray irradiated rats

    International Nuclear Information System (INIS)

    Borovikova, G.V.; Dokshina, G.A.; Lapteva, T.A.

    1981-01-01

    The results of studying the functional state of perfused liver tissue isolated from rates after irradiation in the 18.06x10 - 2 Kl/kg dose, which has been estimated by transamination process rate catalized alanine-(KF 2.6x1.2, ALT and aspartate by aminotransferases (KF 2.6x1.1, ACT), gluconeogenesis and urea production intensity presented. When comparing the results obtained on the perfused liver deprived of homeostatic body effects it has been found that the liver isolated from the body for the first 24 hours of the radiation sickness development possesses a higher radiation activity which manifests itself in intensification of the processes of gluconeogenesis and transamination with substrate addition. The third 24 hours upon irradiation in the isolated liver the intensity of the gluconeogenesis and transamination processes is attenuated

  4. Computer modeling of the combined effects of perfusion, electrical conductivity, and thermal conductivity on tissue heating patterns in radiofrequency tumor ablation.

    Science.gov (United States)

    Ahmed, Muneeb; Liu, Zhengjun; Humphries, Stanley; Goldberg, S Nahum

    2008-11-01

    To use an established computer simulation model of radiofrequency (RF) ablation to characterize the combined effects of varying perfusion, and electrical and thermal conductivity on RF heating. Two-compartment computer simulation of RF heating using 2-D and 3-D finite element analysis (ETherm) was performed in three phases (n = 88 matrices, 144 data points each). In each phase, RF application was systematically modeled on a clinically relevant template of application parameters (i.e., varying tumor and surrounding tissue perfusion: 0-5 kg/m(3)-s) for internally cooled 3 cm single and 2.5 cm cluster electrodes for tumor diameters ranging from 2-5 cm, and RF application times (6-20 min). In the first phase, outer thermal conductivity was changed to reflect three common clinical scenarios: soft tissue, fat, and ascites (0.5, 0.23, and 0.7 W/m- degrees C, respectively). In the second phase, electrical conductivity was changed to reflect different tumor electrical conductivities (0.5 and 4.0 S/m, representing soft tissue and adjuvant saline injection, respectively) and background electrical conductivity representing soft tissue, lung, and kidney (0.5, 0.1, and 3.3 S/m, respectively). In the third phase, the best and worst combinations of electrical and thermal conductivity characteristics were modeled in combination. Tissue heating patterns and the time required to heat the entire tumor +/-a 5 mm margin to >50 degrees C were assessed. Increasing background tissue thermal conductivity increases the time required to achieve a 50 degrees C isotherm for all tumor sizes and electrode types, but enabled ablation of a given tumor size at higher tissue perfusions. An inner thermal conductivity equivalent to soft tissue (0.5 W/m- degrees C) surrounded by fat (0.23 W/m- degrees C) permitted the greatest degree of tumor heating in the shortest time, while soft tissue surrounded by ascites (0.7 W/m- degrees C) took longer to achieve the 50 degrees C isotherm, and complete ablation

  5. Brain Perfusion Changes in Intracerebral Hemorrhage

    International Nuclear Information System (INIS)

    Mititelu, R.; Mazilu, C.; Ghita, S.; Rimbu, A.; Marinescu, G.; Codorean, I.; Bajenaru, O.

    2006-01-01

    Full text: Purpose: Despite the latest advances in medical treatment and neuro critical care, patients suffering spontaneous intracerebral hemorrhage (SICH) still have a very poor prognosis, with a greater mortality and larger neurological deficits at the survivors than for ischemic stroke. Many authors have shown that there are many mechanisms involved in the pathology of SICH: edema, ischemia, inflammation, apoptosis. All of these factors are affecting brain tissue surrounding hematoma and are responsible of the progressive neurological deterioration; most of these damages are not revealed by anatomical imaging techniques. The aim of our study was to asses the role of brain perfusion SPECT in demonstrating perfusion changes in SICH patients. Method: 17 SICH pts were studied. All pts underwent same day CT and brain SPECT with 99mTcHMPAO, 24h-5d from onset of stroke. Results: 14/17 pts showed a larger perfusion defect than expected after CT. In 2 pts hematoma diameter was comparable on CT and SPECT; 1pt had quasinormal aspect of SPECT study. In pts with larger defects, SPECT revealed a large cold spot with similar size compared with CT, and a surrounding hypo perfused area. 6/17 pts revealed cortical hyper perfusion adjacent to hypo perfused area and corresponding to a normal-appearing brain tissue on CT. In 3 pts we found crossed cerebellar diaskisis.In 2 pts we found cortical hypo perfused area in the contralateral cortex, with normal appearing brain tissue on CT. Conclusions: Brain perfusion SPECT revealed different types of perfusion changes in the brain tissue surrounding hematoma. These areas contain viable brain tissue that may be a target for future ne uroprotective strategies. Further studies are definitely required to demonstrate prognostic significance of these changes, but we can conclude that brain perfusion SPECT can play an important role in SICH, by early demonstrating functional changes responsible of clinical deterioration, thus allowing prompt

  6. Overexpressed connective tissue growth factor in cardiomyocytes attenuates left ventricular remodeling induced by angiotensin II perfusion.

    Science.gov (United States)

    Zhang, Ying; Yan, Hua; Guang, Gong-Chang; Deng, Zheng-Rong

    2017-01-01

    To evaluate the improving effects of specifically overexpressed connective tissue growth factor (CTGF) in cardiomyocytes on mice with hypertension induced by angiotensin II (AngII) perfusion, 24 transgenic mice with cardiac-restricted overexpression of CTGF (Tg-CTGF) were divided into two equal groups that were perfused with acetic acid and AngII, respectively, for 7 days. Another 24 cage-control wild-type C57BL/6 mice (NLC) were divided and treated identically. Blood pressure was detected by caudal artery cannulation. Cardiac structural and functional changes were observed by echocardiography. Cardiac fibrosis was detected by Masson staining. After AngII perfusion, blood pressures of NLC and Tg-CTGF mice, especially those of the formers, significantly increased. Compared with NLC + AngII group, Tg-CTGF + AngII group had significantly lower left ventricular posterior wall thickness at end-diastole and left ventricular posterior wall thickness at end-systole as well as significantly higher left ventricular end-systolic diameter and left ventricular end-diastolic diameter (P tissues (P < 0.05). Tg-CTGF can protect AngII-induced cardiac remodeling of mice with hypertension by mitigating inflammatory response. CTGF may be a therapy target for hypertension-induced myocardial fibrosis, but the detailed mechanism still needs in-depth studies.

  7. Targeted tissue perfusion versus macrocirculation-guided standard care in patients with septic shock (TARTARE-2S)

    DEFF Research Database (Denmark)

    Pettilä, Ville; Merz, Tobias; Wilkman, Erika

    2016-01-01

    at least 200 patients with septic shock in four European intensive care units (ICUs) to test whether a tissue perfusion-guided treatment strategy based on capillary refill time, peripheral temperature, arterial lactate concentrations, and accepting lower MAP levels, leads to a faster resolution of shock...

  8. CT Perfusion Characteristics Identify Metastatic Sites in Liver

    Directory of Open Access Journals (Sweden)

    Yuan Wang

    2015-01-01

    Full Text Available Tissue perfusion plays a critical role in oncology because growth and migration of cancerous cells require proliferation of new blood vessels through the process of tumor angiogenesis. Computed tomography (CT perfusion is an emerging functional imaging modality that measures tissue perfusion through dynamic CT scanning following intravenous administration of contrast medium. This noninvasive technique provides a quantitative basis for assessing tumor angiogenesis. CT perfusion has been utilized on a variety of organs including lung, prostate, liver, and brain, with promising results in cancer diagnosis, disease prognostication, prediction, and treatment monitoring. In this paper, we focus on assessing the extent to which CT perfusion characteristics can be used to discriminate liver metastases from neuroendocrine tumors from normal liver tissues. The neuroendocrine liver metastases were analyzed by distributed parameter modeling to yield tissue blood flow (BF, blood volume (BV, mean transit time (MTT, permeability (PS, and hepatic arterial fraction (HAF, for tumor and normal liver. The result reveals the potential of CT perfusion as a tool for constructing biomarkers from features of the hepatic vasculature for guiding cancer detection, prognostication, and treatment selection.

  9. Augmentation of limb perfusion and reversal of tissue ischemia produced by ultrasound-mediated microbubble cavitation.

    Science.gov (United States)

    Belcik, J Todd; Mott, Brian H; Xie, Aris; Zhao, Yan; Kim, Sajeevani; Lindner, Nathan J; Ammi, Azzdine; Linden, Joel M; Lindner, Jonathan R

    2015-04-01

    Ultrasound can increase tissue blood flow, in part, through the intravascular shear produced by oscillatory pressure fluctuations. We hypothesized that ultrasound-mediated increases in perfusion can be augmented by microbubble contrast agents that undergo ultrasound-mediated cavitation and sought to characterize the biological mediators. Contrast ultrasound perfusion imaging of hindlimb skeletal muscle and femoral artery diameter measurement were performed in nonischemic mice after unilateral 10-minute exposure to intermittent ultrasound alone (mechanical index, 0.6 or 1.3) or ultrasound with lipid microbubbles (2×10(8) IV). Studies were also performed after inhibiting shear- or pressure-dependent vasodilator pathways, and in mice with hindlimb ischemia. Ultrasound alone produced a 2-fold increase (Pultrasound power. Ultrasound-mediated augmentation in flow was greater with microbubbles (3- and 10-fold higher than control for mechanical index 0.6 and 1.3, respectively; Pultrasound and microbubbles by 70% (Pultrasound and ultrasound with microbubbles. In mice with unilateral hindlimb ischemia (40%-50% reduction in flow), ultrasound (mechanical index, 1.3) with microbubbles increased perfusion by 2-fold to a degree that was greater than the control nonischemic limb. Increases in muscle blood flow during high-power ultrasound are markedly amplified by the intravascular presence of microbubbles and can reverse tissue ischemia. These effects are most likely mediated by cavitation-related increases in shear and activation of endothelial nitric oxide synthase. © 2015 American Heart Association, Inc.

  10. Quantitative perfusion imaging in magnetic resonance imaging

    International Nuclear Information System (INIS)

    Zoellner, F.G.; Gaa, T.; Zimmer, F.; Ong, M.M.; Riffel, P.; Hausmann, D.; Schoenberg, S.O.; Weis, M.

    2016-01-01

    Magnetic resonance imaging (MRI) is recognized for its superior tissue contrast while being non-invasive and free of ionizing radiation. Due to the development of new scanner hardware and fast imaging techniques during the last decades, access to tissue and organ functions became possible. One of these functional imaging techniques is perfusion imaging with which tissue perfusion and capillary permeability can be determined from dynamic imaging data. Perfusion imaging by MRI can be performed by two approaches, arterial spin labeling (ASL) and dynamic contrast-enhanced (DCE) MRI. While the first method uses magnetically labelled water protons in arterial blood as an endogenous tracer, the latter involves the injection of a contrast agent, usually gadolinium (Gd), as a tracer for calculating hemodynamic parameters. Studies have demonstrated the potential of perfusion MRI for diagnostics and also for therapy monitoring. The utilization and application of perfusion MRI are still restricted to specialized centers, such as university hospitals. A broad application of the technique has not yet been implemented. The MRI perfusion technique is a valuable tool that might come broadly available after implementation of standards on European and international levels. Such efforts are being promoted by the respective professional bodies. (orig.) [de

  11. Simultaneous Multiagent Hyperpolarized 13C Perfusion Imaging

    DEFF Research Database (Denmark)

    von Morze, Cornelius; Bok, Robert A.; Reed, Galen D.

    2014-01-01

    in simulations. "Tripolarized" perfusion MRI methods were applied to initial preclinical studies with differential conditions of vascular permeability, in normal mouse tissues and advanced transgenic mouse prostate tumors. Results: Dynamic imaging revealed clear differences among the individual tracer...... distributions. Computed permeability maps demonstrated differential permeability of brain tissue among the tracers, and tumor perfusion and permeability were both elevated over values expected for normal tissues. Conclusion: Tripolarized perfusion MRI provides new molecular imaging measures for specifically...

  12. Perfusion CT in acute stroke

    International Nuclear Information System (INIS)

    Eckert, Bernd; Roether, Joachim; Fiehler, Jens; Thomalla, Goetz

    2015-01-01

    Modern multislice CT scanners enable multimodal protocols including non-enhanced CT, CT angiography, and CT perfusion. A 64-slice CT scanner provides 4-cm coverage. To cover the whole brain, a 128 - 256-slice scanner is needed. The use of perfusion CT requires an optimized scan protocol in order to reduce exposure to radiation. As compared to non-enhanced CT and CT angiography, the use of CT perfusion increases detection rates of cerebral ischemia, especially small cortical ischemic lesions, while the detection of lacunar and infratentorial stroke lesions remains limited. Perfusion CT enables estimation of collateral flow in acute occlusion of large intra- or extracranial arteries. Currently, no established reliable thresholds are available for determining infarct core and penumbral tissue by CT perfusion. Moreover, perfusion parameters depend on the processing algorithms and the software used for calculation. However, a number of studies point towards a reduction of cerebral blood volume (CBV) below 2 ml/100 g as a critical threshold that identifies infarct core. Large CBV lesions are associated with poor outcome even in the context of recanalization. The extent of early ischemic signs on non-enhanced CT remains the main parameter from CT imaging to guide acute reperfusion treatment. Nevertheless, perfusion CT increases diagnostic and therapeutic certainty in the acute setting. Similar to stroke MRI, perfusion CT enables the identification of tissue at risk of infarction by the mismatch between infarct core and the larger area of critical hypoperfusion. Further insights into the validity of perfusion parameters are expected from ongoing trials of mechanical thrombectomy in stroke.

  13. Visualizing feasible operating ranges within tissue engineering systems using a "windows of operation" approach: a perfusion-scaffold bioreactor case study.

    Science.gov (United States)

    McCoy, Ryan J; O'Brien, Fergal J

    2012-12-01

    Tissue engineering approaches to developing functional substitutes are often highly complex, multivariate systems where many aspects of the biomaterials, bio-regulatory factors or cell sources may be controlled in an effort to enhance tissue formation. Furthermore, success is based on multiple performance criteria reflecting both the quantity and quality of the tissue produced. Managing the trade-offs between different performance criteria is a challenge. A "windows of operation" tool that graphically represents feasible operating spaces to achieve user-defined levels of performance has previously been described by researchers in the bio-processing industry. This paper demonstrates the value of "windows of operation" to the tissue engineering field using a perfusion-scaffold bioreactor system as a case study. In our laboratory, perfusion bioreactor systems are utilized in the context of bone tissue engineering to enhance the osteogenic differentiation of cell-seeded scaffolds. A key challenge of such perfusion bioreactor systems is to maximize the induction of osteogenesis but minimize cell detachment from the scaffold. Two key operating variables that influence these performance criteria are the mean scaffold pore size and flow-rate. Using cyclooxygenase-2 and osteopontin gene expression levels as surrogate indicators of osteogenesis, we employed the "windows of operation" methodology to rapidly identify feasible operating ranges for the mean scaffold pore size and flow-rate that achieved user-defined levels of performance for cell detachment and differentiation. Incorporation of such tools into the tissue engineer's armory will hopefully yield a greater understanding of the highly complex systems used and help aid decision making in future translation of products from the bench top to the market place. Copyright © 2012 Wiley Periodicals, Inc.

  14. A Technique to Perfuse Cadavers that Extends the Useful Life of Fresh Tissues: The Duke Experience

    Science.gov (United States)

    Messmer, Caroline; Kellogg, Ryan T.; Zhang, Yixin; Baiak, Andresa; Leiweke, Clinton; Marcus, Jeffrey R.; Levin, L. Scott; Zenn, Michael R.; Erdmann, Detlev

    2010-01-01

    The demand for laboratory-based teaching and training is increasing worldwide as medical training and education confront the pressures of shorter training time and rising costs. This article presents a cost-effective perfusion technique that extends the useful life of fresh tissue. Refrigerated cadavers are preserved in their natural state for up…

  15. Macro- and microelements in the rat liver, kidneys, and brain tissues; sex differences and effect of blood removal by perfusion in vivo.

    Science.gov (United States)

    Orct, Tatjana; Jurasović, Jasna; Micek, Vedran; Karaica, Dean; Sabolić, Ivan

    2017-03-01

    Concentrations of macro- and microelements in animal organs indicate the animal health status and represent reference data for animal experiments. Their levels in blood and tissues could be different between sexes, and could be different with and without blood in tissues. To test these hypotheses, in adult female and male rats the concentrations of various elements were measured in whole blood, blood plasma, and tissues from blood-containing (nonperfused) and blood-free liver, kidneys, and brain (perfused in vivo with an elements-free buffer). In these samples, 6 macroelements (Na, Mg, P, S, K, Ca) and 14 microelements (Fe, Mn, Co, Cu, Zn, Se, I, As, Cd, Hg, Pb, Li, B, Sr) were determined by inductively coupled plasma mass spectrometry following nitric acid digestion. In blood and plasma, female- or male-dominant sex differences were observed for 6 and 5 elements, respectively. In nonperfused organs, sex differences were observed for 3 (liver, brain) or 9 (kidneys) elements, whereas in perfused organs, similar differences were detected for 9 elements in the liver, 5 in the kidneys, and none in the brain. In females, perfused organs had significantly lower concentrations of 4, 5, and 2, and higher concentrations of 10, 4, and 7 elements, respectively, in the liver, kidneys, and brain. In males, perfusion caused lower concentrations of 4, 7, and 2, and higher concentrations of 1, 1, and 7 elements, respectively, in the liver, kidneys, and brain. Therefore, the residual blood in organs can significantly influence tissue concentrations of various elements and their sex-dependency. Copyright © 2017 Elsevier GmbH. All rights reserved.

  16. Perfusion-decellularized pancreas as a natural 3D scaffold for pancreatic tissue and whole organ engineering

    Science.gov (United States)

    Goh, Saik-Kia; Bertera, Suzanne; Olsen, Phillip; Candiello, Joe; Halfter, Willi; Uechi, Guy; Balasubramani, Manimalha; Johnson, Scott; Sicari, Brian; Kollar, Elizabeth; Badylak, Stephen F.; Banerjee, Ipsita

    2013-01-01

    Approximately 285 million people worldwide suffer from diabetes, with insulin supplementation as the most common treatment measure. Regenerative medicine approaches such as a bioengineered pancreas has been proposed as potential therapeutic alternatives. A bioengineered pancreas will benefit from the development of a bioscaffold that supports and enhances cellular function and tissue development. Perfusion-decellularized organs are a likely candidate for use in such scaffolds since they mimic compositional, architectural and biomechanical nature of a native organ. In this study, we investigate perfusion-decellularization of whole pancreas and the feasibility to recellularize the whole pancreas scaffold with pancreatic cell types. Our result demonstrates that perfusion-decellularization of whole pancreas effectively removes cellular and nuclear material while retaining intricate three-dimensional microarchitecture with perfusable vasculature and ductal network and crucial extracellular matrix (ECM) components. To mimic pancreatic cell composition, we recellularized the whole pancreas scaffold with acinar and beta cell lines and cultured up to 5 days. Our result shows successful cellular engraftment within the decellularized pancreas, and the resulting graft gave rise to strong up-regulation of insulin gene expression. These findings support biological utility of whole pancreas ECM as a biomaterials scaffold for supporting and enhancing pancreatic cell functionality and represent a step toward bioengineered pancreas using regenerative medicine approaches. PMID:23787110

  17. Perfusion based cell culture chips

    DEFF Research Database (Denmark)

    Heiskanen, Arto; Emnéus, Jenny; Dufva, Martin

    2010-01-01

    Performing cell culture in miniaturized perfusion chambers gives possibilities to experiment with cells under near in vivo like conditions. In contrast to traditional batch cultures, miniaturized perfusion systems provide precise control of medium composition, long term unattended cultures...... and tissue like structuring of the cultures. However, as this chapter illustrates, many issues remain to be identified regarding perfusion cell culture such as design, material choice and how to use these systems before they will be widespread amongst biomedical researchers....

  18. Hepatic perfusion changes in an experimental model of acute pancreatitis: Evaluation by perfusion CT

    International Nuclear Information System (INIS)

    Tutcu, Semra; Serter, Selim; Kaya, Yavuz; Kara, Eray; Nese, Nalan; Pekindil, Goekhan; Coskun, Teoman

    2010-01-01

    Purpose: It is known that acute pancreatitis may cause secondary changes in several organs. Liver is one of these involved organs. In different experimental studies hepatic damages were shown histopathologically in acute pancreatitis but there are a few studies about perfusion disorders that accompany these histopathologic changes. Perfusion CT (pCT) provides the ability to detect regional and global alterations in organ blood flow. The purpose of the study was to describe hepatic perfusion changes in experimental acute pancreatitis model with pCT. Materials and methods: Forty Sprague-Dawley rats of both genders with average weights of 250 g were used. Rats were randomized into two groups. Twenty rats were in control group and 20 in acute pancreatitis group. pCT was performed. Perfusion maps were formed by processing the obtained images with perfusion CT software. Blood flow (BF) and blood volume (BV) values were obtained from these maps. All pancreatic and liver tissues were taken off with laparotomy and histopathologic investigation was performed. Student's t test was used for statistical analyses. Results: In pCT we found statistically significant increase in blood volume in both lobes of liver and in blood flow in right lobe of the liver (p < 0.01). Although blood flow in left lobe of the liver increased, it did not reach statistical significance. Conclusion: The quantitative analysis of liver parenchyma with pCT showed that acute pancreatitis causes a significant perfusion changes in the hepatic tissue. Systemic mediators seem to be effective as well as local inflammatory changes in perfusion changes.

  19. Hepatic perfusion changes in an experimental model of acute pancreatitis: Evaluation by perfusion CT

    Energy Technology Data Exchange (ETDEWEB)

    Tutcu, Semra [Department of Surgery, Celal Bayar University, School of Medicine, Manisa (Turkey); Serter, Selim, E-mail: serterselim@gmail.co [Department of Radiology, Celal Bayar University, School of Medicine, Manisa (Turkey); Kaya, Yavuz; Kara, Eray [Department of Surgery, Celal Bayar University, School of Medicine, Manisa (Turkey); Nese, Nalan [Department of Pathology, Celal Bayar University, School of Medicine, Manisa (Turkey); Pekindil, Goekhan [Department of Radiology, Celal Bayar University, School of Medicine, Manisa (Turkey); Coskun, Teoman [Department of Surgery, Celal Bayar University, School of Medicine, Manisa (Turkey)

    2010-08-15

    Purpose: It is known that acute pancreatitis may cause secondary changes in several organs. Liver is one of these involved organs. In different experimental studies hepatic damages were shown histopathologically in acute pancreatitis but there are a few studies about perfusion disorders that accompany these histopathologic changes. Perfusion CT (pCT) provides the ability to detect regional and global alterations in organ blood flow. The purpose of the study was to describe hepatic perfusion changes in experimental acute pancreatitis model with pCT. Materials and methods: Forty Sprague-Dawley rats of both genders with average weights of 250 g were used. Rats were randomized into two groups. Twenty rats were in control group and 20 in acute pancreatitis group. pCT was performed. Perfusion maps were formed by processing the obtained images with perfusion CT software. Blood flow (BF) and blood volume (BV) values were obtained from these maps. All pancreatic and liver tissues were taken off with laparotomy and histopathologic investigation was performed. Student's t test was used for statistical analyses. Results: In pCT we found statistically significant increase in blood volume in both lobes of liver and in blood flow in right lobe of the liver (p < 0.01). Although blood flow in left lobe of the liver increased, it did not reach statistical significance. Conclusion: The quantitative analysis of liver parenchyma with pCT showed that acute pancreatitis causes a significant perfusion changes in the hepatic tissue. Systemic mediators seem to be effective as well as local inflammatory changes in perfusion changes.

  20. Standardized perfusion value of the esophageal carcinoma and its correlation with quantitative CT perfusion parameter values

    Energy Technology Data Exchange (ETDEWEB)

    Djuric-Stefanovic, A., E-mail: avstefan@eunet.rs [Faculty of Medicine, University of Belgrade, Belgrade (Serbia); Unit of Digestive Radiology (First University Surgical Clinic), Center of Radiology and MR, Clinical Center of Serbia, Belgrade (Serbia); Saranovic, Dj., E-mail: crvzve4@gmail.com [Faculty of Medicine, University of Belgrade, Belgrade (Serbia); Unit of Digestive Radiology (First University Surgical Clinic), Center of Radiology and MR, Clinical Center of Serbia, Belgrade (Serbia); Sobic-Saranovic, D., E-mail: dsobic2@gmail.com [Faculty of Medicine, University of Belgrade, Belgrade (Serbia); Center of Nuclear Medicine, Clinical Center of Serbia, Belgrade (Serbia); Masulovic, D., E-mail: draganmasulovic@yahoo.com [Faculty of Medicine, University of Belgrade, Belgrade (Serbia); Unit of Digestive Radiology (First University Surgical Clinic), Center of Radiology and MR, Clinical Center of Serbia, Belgrade (Serbia); Artiko, V., E-mail: veraart@beotel.rs [Faculty of Medicine, University of Belgrade, Belgrade (Serbia); Center of Nuclear Medicine, Clinical Center of Serbia, Belgrade (Serbia)

    2015-03-15

    Purpose: Standardized perfusion value (SPV) is a universal indicator of tissue perfusion, normalized to the whole-body perfusion, which was proposed to simplify, unify and allow the interchangeability among the perfusion measurements and comparison between the tumor perfusion and metabolism. The aims of our study were to assess the standardized perfusion value (SPV) of the esophageal carcinoma, and its correlation with quantitative CT perfusion measurements: blood flow (BF), blood volume (BV), mean transit time (MTT) and permeability surface area product (PS) of the same tumor volume samples, which were obtained by deconvolution-based CT perfusion analysis. Methods: Forty CT perfusion studies of the esophageal cancer were analyzed, using the commercial deconvolution-based CT perfusion software (Perfusion 3.0, GE Healthcare). The SPV of the esophageal tumor and neighboring skeletal muscle were correlated with the corresponding mean tumor and muscle quantitative CT perfusion parameter values, using Spearman's rank correlation coefficient (r{sub S}). Results: Median SPV of the esophageal carcinoma (7.1; range: 2.8–13.4) significantly differed from the SPV of the skeletal muscle (median: 1.0; range: 0.4–2.4), (Z = −5.511, p < 0.001). The cut-off value of the SPV of 2.5 enabled discrimination of esophageal cancer from the skeletal muscle with sensitivity and specificity of 100%. SPV of the esophageal carcinoma significantly correlated with corresponding tumor BF (r{sub S} = 0.484, p = 0.002), BV (r{sub S} = 0.637, p < 0.001) and PS (r{sub S} = 0.432, p = 0.005), and SPV of the skeletal muscle significantly correlated with corresponding muscle BF (r{sub S} = 0.573, p < 0.001), BV (r{sub S} = 0.849, p < 0.001) and PS (r{sub S} = 0.761, p < 0.001). Conclusions: We presented a database of the SPV for the esophageal cancer and proved that SPV of the esophageal neoplasm significantly differs from the SPV of the skeletal muscle, which represented a sample of healthy

  1. In-vivo quantitative evaluation of perfusion zones and perfusion gradient in the deep inferior epigastric artery perforator flap

    Science.gov (United States)

    Saint-Cyr, Michel; Lakhiani, Chrisovalantis; Cheng, Angela; Mangum, Michael; Liang, Jinyang; Teotia, Sumeet; Livingston, Edward H.; Zuzak, Karel J.

    2013-03-01

    The selection of well-vascularized tissue during DIEP flap harvest remains controversial. While several studies have elucidated cross-midline perfusion, further characterization of perfusion to the ipsilateral hemiabdomen is necessary for minimizing rates of fat necrosis or partial fat necrosis in bilateral DIEP flaps. Eighteen patients (29 flaps) underwent DIEP flap harvest using a prospectively designed protocol. Perforators were marked and imaged with a novel system for quantitatively measuring tissue oxygenation, the Digital Light Hyperspectral Imager. Images were then analyzed to determine if perforator selection influenced ipsilateral flap perfusion. Flaps based on a single lateral row perforator (SLRP) were found to have a higher level of hemoglobin oxygenation in Zone I (mean %HbO2 = 76.1) compared to single medial row perforator (SMRP) flaps (%HbO2 = 71.6). Perfusion of Zone III relative to Zone I was similar between SLRP and SMRP flaps (97.4% vs. 97.9%, respectively). These differences were not statistically significant (p>0.05). Perfusion to the lateral edge of the flap was slightly greater for SLRP flaps compared SMRP flaps (92.1% vs. 89.5%, respectively). SMRP flaps had superior perfusion travelling inferiorly compared to SLRP flaps (88.8% vs. 83.9%, respectively). Overall, it was observed that flaps were better perfused in the lateral direction than inferiorly. Significant differences in perfusion gradients directed inferiorly or laterally were observed, and perforator selection influenced perfusion in the most distal or inferior aspects of the flap. This suggests broader clinical implications for flap design that merit further investigation.

  2. Erbium-Based Perfusion Contrast Agent for Small-Animal Microvessel Imaging

    Directory of Open Access Journals (Sweden)

    Justin J. Tse

    2017-01-01

    Full Text Available Micro-computed tomography (micro-CT facilitates the visualization and quantification of contrast-enhanced microvessels within intact tissue specimens, but conventional preclinical vascular contrast agents may be inadequate near dense tissue (such as bone. Typical lead-based contrast agents do not exhibit optimal X-ray absorption properties when used with X-ray tube potentials below 90 kilo-electron volts (keV. We have developed a high-atomic number lanthanide (erbium contrast agent, with a K-edge at 57.5 keV. This approach optimizes X-ray absorption in the output spectral band of conventional microfocal spot X-ray tubes. Erbium oxide nanoparticles (nominal diameter 4000 Hounsfield units, and perfusion of vessels < 10 μm in diameter was demonstrated in kidney glomeruli. The described new contrast agent facilitated the visualization and quantification of vessel density and microarchitecture, even adjacent to dense bone. Erbium’s K-edge makes this contrast agent ideally suited for both single- and dual-energy micro-CT, expanding potential preclinical research applications in models of musculoskeletal, oncological, cardiovascular, and neurovascular diseases.

  3. Correlation of the myocardial perfusion corrected by attenuation with the coronariography. Preliminary results; Correlacion de la perfusion miocardica corregida por atenuacion con la coronariografia

    Energy Technology Data Exchange (ETDEWEB)

    Garcia C, S.E.; Garcia O, R. [Servicio de Medicina Nuclear, Centro Medico ABC, Campis Observatorio, IAP (Mexico)

    2005-07-01

    The attenuation that suffers the radiation in the soft tissues of the hinders the appropriate interpretation of the myocardial perfusion studies, for what have been implemented attenuation correction systems to reduce the attenuation for soft tissues and to provide myocardial perfusion images more accurate in the diagnosis of coronary illness. The objective was to evaluate the utility of an attenuation correction system (with source of Gadolinium 153) to minimize the devices that look like true defects of myocardial perfusion, caused by soft tissues (mammary tissue, thoracic wall, abdomen, left hemi diaphragm), and to compare those interpretations of the studies with the interpretations of the corresponding coronariographies. The method consists of 95 electronic files which were revised with the concept of heart catheterization, being identified 20 patients from the masculine sex to those that underwent coronariography among May 1999 and December 2002, and that they had study of myocardial perfusion in a maximum period of 3 months foresaw to the invasive procedure. (Author)

  4. Phosphorus nuclear magnetic resonance in isolated perfused rat pancreas

    International Nuclear Information System (INIS)

    Matsumoto, Takehisa; Kanno, Tomio; Seo, Yoshiteru; Murakami, Masataka; Watari, Hiroshi

    1988-01-01

    Phosphorus nuclear magnetic resonance spectroscopy was applied to measure phosphorus energy metabolites in isolated perfused rat pancreas. The gland was perfused with a modified Krebs-Henseleit solution at room temperature (25 degree C). 31 P resonances of creatine phosphate (PCr), ATP, ADP, inorganic phosphate (P i ) and phosphomonoesters (PMEs) were observed in all the preparations of pancreas. In different individual preparations, the resonance of PCr varied, but those of ATP were almost the same. The initial levels of PCr and ATP in individual preparations, however, remained almost unchanged during perfusion with the standard solution for 2 h. When the perfusion was stopped, the levels of ATP and PCr decreased, while the levels of PME and P i increased. At that time, the P i resonance shfted to a higher magnetic field, indicating that the tissue pH decreased. On reperfusion, the tissue levels of phosphorus compounds and the tissue pH were restored to their initial resting levels. Continuous infusion of 0.1 μM acetylcholine caused marked and sustained increases in the flow of pancreatic juice and protein output. During the stimulation the tissue levels of phosphorus compounds remained unchanged, while the tissue pH was decreased slightly

  5. The use of hemoglobin saturation ratio as a means of measuring tissue perfusion in the development of heel pressure sores.

    Science.gov (United States)

    Aliano, Kristen A; Stavrides, Steve; Davenport, Thomas

    2013-09-01

    The heel is a common site of pressure ulcers. The amount of pressure and time needed to develop these wounds is dependent on various factors including pressure surface, the patient's anatomy, and co-morbidities. We studied the use of the hemoglobin saturation ratio as a means of assessing heel perfusion in various pressure settings. The mixed perfusion ratio in the heels of 5 volunteers was assessed on 3 pressure surfaces and at the time of off-load. The surfaces studied included: stretcher pad, plastic backboard without padding, and pressure reduction gel. Each surface was measured for 5 minutes with a real-time reading. On the stretcher, the average StO2% decrease for each pressure surface was 26.2 ± 10 (range 18-43). The average StO2% decrease on the backboard was 22.8 ± 12.3 (range 8-37), and 24.0 ± 4.8 (range 19-30) on the gel pad. The StO2% drop plateaued with the stretcher and gel pad, but with the backboard there was a continued slow drop at 5 minutes. This study demonstrates that hemoglobin oxygenation ratio may be effective in assessing a tissue's direct perfusion in the setting of tissue pressure and may also be beneficial to better assess the effects of pressure-reduction surfaces. Further studies will be needed to determine time to skin breakdown as it pertains to pressure and tissue oxygenation.

  6. Mucosal blood flow measurements using laser Doppler perfusion monitoring

    Institute of Scientific and Technical Information of China (English)

    Dag Arne Lihaug Hoff; Hans Gregersen; Jan Gunnar Hatlebakk

    2009-01-01

    Perfusion of individual tissues is a basic physiological process that is necessary to sustain oxygenation and nutrition at a cellular level. Ischemia, or the insufficiency of perfusion, is a common mechanism for tissue death or degeneration, and at a lower threshold, a mechanism for the generation of sensory signalling including pain. It is of considerable interest to study perfusion of peripheral abdominal tissues in a variety of circumstances. Microvascular disease of the abdominal organs has been implicated in the pathogenesis of a variety of disorders, including peptic ulcer disease, inflammatory bowel disease and chest pain. The basic principle of laser Doppler perfusion monitoring (LDPM) is to analyze changes in the spectrum of light reflected from tissues as a response to a beam of monochromatic laser light emitted. It reflects the total local microcirculatory blood perfusion, including perfusion in capillaries, arterioles, venules and shunts. During the last 20-25 years, numerous studies have been performed in different parts of the gastrointestinal (GI) tract using LDPM. In recent years we have developed a multi-modal catheter device which includes a laser Doppler probe, with the intent primarily to investigate patients suffering from functional chest pain of presumed oesophageal origin. Preliminary studies show the feasibility of incorporating LDPM into such catheters for performing physiological studies in the GI tract. LDPM has emerged as a research and clinical tool in preference to other methods; but, it is important to be aware of its limitations and account for them when reporting results.

  7. Effect of nicorandil on the myocardial tissue perfusion and myocardial cell injury in patients with diabetes after PCI

    Directory of Open Access Journals (Sweden)

    Xue-Li Ren1

    2017-04-01

    Full Text Available Objective: To study the effect of nicorandil on the myocardial tissue perfusion and myocardial cell damage in patients with diabetes after percutaneous coronary intervention (PCI. Methods: 68 patients with coronary heart disease and type 2 diabetes mellitus who received PCI in our hospital between May 2011 and September 2015 were collected and then divided into observation group and control group (n=34 according to the single-blind randomized control method. Control group of patients received PCI alone, and the observation group of patients received nicorandil therapy after PCI. After treatment, real-time myocardial ultrasound contrast was used to evaluate the myocardial perfusion of two groups of patients; blood biochemical analyzer was used to detect the contents of peripheral blood myocardial enzyme spectrum indexes; the ELISA method was used to detect the contents of serum oxidative stress indicators; RIA method was used to detect the contents of serum apoptosis molecules. Results: After treatment, the myocardial tissue perfusion parameters plateau peak intensity (A, slope rate of curve (β and myocardial blood flow (A×β levels of observation group were significantly higher than those of control group (P<0.05; peripheral blood myocardial enzyme spectrum indexes creatine kinase (CK, lactate dehydrogenase (LDH, troponin I (cTnI and glutamic oxalacetic transaminase (GOT contents of observation group were significantly lower than those of control group (P<0.05; serum vitamin E (VitE and vitamin C (VitC contents of observation group were significantly higher than those of control group while malondialdehyde (MDA, advanced oxidation protein products (AOPPs, soluble apoptosis-associated factor (sFas and soluble apoptosis-associated factor ligand (sFasL contents were lower than those of control group (P<0.05. Conclusion: Adjuvant nicorandil therapy can improve the myocardial perfusion and reduce the myocardial cell injury in patients with coronary

  8. DIEP flap customization using Fluobeam® indocyanine green tissue perfusion assessment with large previous abdominal scar

    Directory of Open Access Journals (Sweden)

    Michael A. Fallucco

    2017-06-01

    Full Text Available The Fluobeam® is a portable, near-infrared camera that is held and controlled by the surgeon to visualize tissue perfusion using indocyanine green (ICG fluorescence imaging. This case report describes how data obtained from ICG imaging allows intraoperative customization in a previously surgically scarred abdomen during autologous Deep Inferior Epigastric Artery Perforator (DIEP flap bilateral breast reconstruction. The outcome was successful breast mound recreation without fat necrosis.

  9. Computed Tomography Perfusion Imaging for the Diagnosis of Hepatic Alveolar Echinococcosis

    Science.gov (United States)

    Sade, Recep; Kantarci, Mecit; Genc, Berhan; Ogul, Hayri; Gundogdu, Betul; Yilmaz, Omer

    2018-01-01

    Objective: Alveolar echinococcosis (AE) is a rare life-threatening parasitic infection. Computed tomography perfusion (CTP) imaging has the potential to provide both quantitative and qualitative information about the tissue perfusion characteristics. The purpose of this study was the examination of the characteristic features and feasibility of CTP in AE liver lesions. Material and Methods: CTP scanning was performed in 25 patients who had a total of 35 lesions identified as AE of the liver. Blood flow (BF), blood volume (BV), portal venous perfusion (PVP), arterial liver perfusion (ALP), and hepatic perfusion indexes (HPI) were computed for background liver parenchyma and each AE lesion. Results: Significant differences were detected between perfusion values of the AE lesions and background liver tissue. The BV, BF, ALP, and PVP values for all components of the AE liver lesions were significantly lower than the normal liver parenchyma (p<0.01). Conclusions: We suggest that perfusion imaging can be used in AE of the liver. Thus, the quantitative knowledge of perfusion parameters are obtained via CT perfusion imaging. PMID:29531482

  10. Dual-energy perfusion-CT of pancreatic adenocarcinoma

    International Nuclear Information System (INIS)

    Klauß, M.; Stiller, W.; Pahn, G.; Fritz, F.; Kieser, M.; Werner, J.; Kauczor, H.U.; Grenacher, L.

    2013-01-01

    Purpose: To evaluate the feasibility of dual-energy CT (DECT)-perfusion of pancreatic carcinomas for assessing the differences in perfusion, permeability and blood volume of healthy pancreatic tissue and histopathologically confirmed solid pancreatic carcinoma. Materials and methods: 24 patients with histologically proven pancreatic carcinoma were examined prospectively with a 64-slice dual source CT using a dynamic sequence of 34 dual-energy (DE) acquisitions every 1.5 s (80 ml of iodinated contrast material, 370 mg/ml, flow rate 5 ml/s). 80 kV p , 140 kV p , and weighted average (linearly blended M0.3) 120 kV p -equivalent dual-energy perfusion image data sets were evaluated with a body-perfusion CT tool (Body-PCT, Siemens Medical Solutions, Erlangen, Germany) for estimating perfusion, permeability, and blood volume values. Color-coded parameter maps were generated. Results: In all 24 patients dual-energy CT-perfusion was. All carcinomas could be identified in the color-coded perfusion maps. Calculated perfusion, permeability and blood volume values were significantly lower in pancreatic carcinomas compared to healthy pancreatic tissue. Weighted average 120 kV p -equivalent perfusion-, permeability- and blood volume-values determined from DE image data were 0.27 ± 0.04 min −1 vs. 0.91 ± 0.04 min −1 (p −1 vs. 0.67 ± 0.05 *0.5 min −1 (p = 0.06) and 0.49 ± 0.07 min −1 vs. 1.28 ± 0.11 min −1 (p p the standard deviations of the kV p 120 kV p -equivalent values were manifestly smaller. Conclusion: Dual-energy CT-perfusion of the pancreas is feasible. The use of DECT improves the accuracy of CT-perfusion of the pancreas by fully exploiting the advantages of enhanced iodine contrast at 80 kV p in combination with the noise reduction at 140 kV p . Therefore using dual-energy perfusion data could improve the delineation of pancreatic carcinomas

  11. Normal anatomy of lung perfusion SPECT scintigraphy

    International Nuclear Information System (INIS)

    Moskowitz, G.W.; Levy, L.M.

    1987-01-01

    Ten patients studies for possible pulmonary embolic disease had normal lung perfusion planar and SPECT scintigraphy. A computer program was developed to superimpose the CT scans on corresponding SPECT images. Superimposition of CT scans on corresponding SPECT transaxial cross-sectional images, when available, provides the needed definition and relationships of adjacent organs. SPECT transaxial sections provide clear anatomic definition of perfusion defects without foreground and background lung tissue superimposed. The location, shape, and size of the perfusion defects can be readily assessed by SPECT. An algorithm was developed for the differentiation of abnormal pulmonary perfusion patterns from normal structures on variation

  12. Subtracted dynamic MR perfusion source images (sMRP-SI) provide collateral blood flow assessment in MCA occlusions and predict tissue fate

    International Nuclear Information System (INIS)

    Villringer, Kersten; Serrano-Sandoval, Rafael; Galinovic, Ivana; Ostwaldt, Ann-Christin; Brunecker, Peter; Fiebach, Jochen B.; Grittner, Ulrike; Schneider, Alice; Rocco, Andrea

    2016-01-01

    Collateral blood flow is accepted as a predictive factor of tissue fate in ischemic stroke. Thus, we aimed to evaluate a new method derived from MR perfusion source images to assess collateral flow in patients with ICA/MCA occlusions. A total of 132 patients of the prospective 1000+ study were examined. MR perfusion source images were assessed according to Δimg n = img n + 1 - img n - 1 using the five-grade Higashida collateral flow rating system. Higashida scores were correlated to mismatch (MM) volume, mismatch ratio, day 6 FLAIR lesion volumes and day 90 mRS. Patients with Higashida scores 3 and 4 had significantly lower admission NIHSS, smaller FLAIR day 6 lesion volumes (p < 0.001) and higher rates of better long-term outcome (mRS 0-2, p = 0.002). There was a linear trend for the association of Higashida grade 1 (p = 0.002) and 2 (p = 0.001) with unfavourable outcome (day 90 mRS 3-6), but no significant association was found for MM volume, MM ratio and day 90 mRS. Inter-rater agreement was 0.58 (95 % CI 0.43-0.73) on day 1, 0.70 (95 % CI 0.58-0.81) on day 2. sMRP-SI Higashida score offers a non-invasive collateral vessel and tissue perfusion assessment of ischemic tissue. The predictive value of Higashida rating proved superior to MM with regard to day 90 mRS. (orig.)

  13. Subtracted dynamic MR perfusion source images (sMRP-SI) provide collateral blood flow assessment in MCA occlusions and predict tissue fate

    Energy Technology Data Exchange (ETDEWEB)

    Villringer, Kersten; Serrano-Sandoval, Rafael; Galinovic, Ivana; Ostwaldt, Ann-Christin; Brunecker, Peter; Fiebach, Jochen B. [Charite-Universitaetsmedizin, Academic Neuroradiology, Center for Stroke Research (CSB), Berlin (Germany); Grittner, Ulrike [Charite, Universitaetsmedizin Berlin, Center for Stroke Research, Berlin (Germany); Charite, Department for Biostatistics and Clinical Epidemiology, Berlin (Germany); Schneider, Alice [Charite, Universitaetsmedizin Berlin, Center for Stroke Research, Berlin (Germany); Rocco, Andrea [Charite, Department of Neurology and Center for Stroke Research, Berlin (Germany)

    2016-05-15

    Collateral blood flow is accepted as a predictive factor of tissue fate in ischemic stroke. Thus, we aimed to evaluate a new method derived from MR perfusion source images to assess collateral flow in patients with ICA/MCA occlusions. A total of 132 patients of the prospective 1000+ study were examined. MR perfusion source images were assessed according to Δimg{sub n} = img{sub n} + 1 - img{sub n} - 1 using the five-grade Higashida collateral flow rating system. Higashida scores were correlated to mismatch (MM) volume, mismatch ratio, day 6 FLAIR lesion volumes and day 90 mRS. Patients with Higashida scores 3 and 4 had significantly lower admission NIHSS, smaller FLAIR day 6 lesion volumes (p < 0.001) and higher rates of better long-term outcome (mRS 0-2, p = 0.002). There was a linear trend for the association of Higashida grade 1 (p = 0.002) and 2 (p = 0.001) with unfavourable outcome (day 90 mRS 3-6), but no significant association was found for MM volume, MM ratio and day 90 mRS. Inter-rater agreement was 0.58 (95 % CI 0.43-0.73) on day 1, 0.70 (95 % CI 0.58-0.81) on day 2. sMRP-SI Higashida score offers a non-invasive collateral vessel and tissue perfusion assessment of ischemic tissue. The predictive value of Higashida rating proved superior to MM with regard to day 90 mRS. (orig.)

  14. Dual-energy perfusion-CT in recurrent pancreatic cancer. Preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Fritz, F.; Skornitzke, S.; Kauczor, H.U.; Stiller, W.; Klauss, M. [Heidelberg Univ. (Germany). Clinic of Diagnostic and Interventional Radiology; Hackert, T. [Heidelberg Univ. (Germany). Clinic of Surgery; Grenacher, L. [Diagnostik Muenchen (Germany). Diagnostic Imaging Center

    2016-06-15

    To evaluate the diagnostic performance of dual energy (DE) perfusion-CT for the differentiation between postoperative soft-tissue formation and tumor recurrence in patients after potentially curative pancreatic cancer resection. 24 patients with postoperative soft-tissue formation in the conventional regular follow-up CT acquisition after pancreatic cancer resection with curative intent were included prospectively. They were examined with a 64-row dual-source CT using a dynamic sequence of 34 DE acquisitions every 1.5 s (80 ml of iodinated contrast material, 370 mg/ml, flow rate 5 ml/s). Weighted average (linearly blended M0.5) 120 kVp-equivalent dual-energy perfusion image data sets were evaluated with a body-perfusion CT tool for estimating blood flow, permeability, and blood volume. Diagnosis was confirmed by histological study (n=4) and by regular follow-up. Final diagnosis was local recurrence of pancreatic cancer in 15 patients and unspecific postoperative tissue formation in 9 patients. The blood-flow values for recurrence tissue trended to be lower compared to postoperative tissue formation with 16.6 ml/100 ml/min and 24.7 ml/100 ml/min, respectively for weighted average 120 kVp-equivalent image data, which was not significant (n.s.) (p=0.06, significance level 0.05). Permeability- and blood-volume values were only slightly lower in recurrence tissue (n.s.). DE perfusion-CT is feasible in patients after pancreatic cancer resection and a promising functional imaging technique. As only a trend for lower perfusion values in local recurrence compared to unspecific postoperative alterations was found, the perfusion differences are not yet sufficient to differentiate between malignancy and unspecific postoperative alterations for this new technique. Further studies and technical improvements are needed to generate reliable data for this clinically highly relevant differentiation.

  15. Computed Tomography (CT) Perfusion in Abdominal Cancer

    DEFF Research Database (Denmark)

    Hansen, Martin Lundsgaard; Norling, Rikke; Lauridsen, Carsten

    2013-01-01

    Computed Tomography (CT) Perfusion is an evolving method to visualize perfusion in organs and tissue. With the introduction of multidetector CT scanners, it is now possible to cover up to 16 cm in one rotation, and thereby making it possible to scan entire organs such as the liver with a fixed...

  16. 3D printing of microtube in solid phantom to simulate tissue oxygenation and perfusion (Conference Presentation)

    Science.gov (United States)

    Lv, Xiang; Xue, Yue; Wang, Haili; Shen, Shu Wei; Zhou, Ximing; Liu, Guangli; Dong, Erbao; Xu, Ronald X.

    2017-03-01

    Tissue-simulating phantoms with interior vascular network may facilitate traceable calibration and quantitative validation of many medical optical devices. However, a solid phantom that reliably simulates tissue oxygenation and blood perfusion is still not available. This paper presents a new method to fabricate hollow microtubes for blood vessel simulation in solid phantoms. The fabrication process combines ultraviolet (UV) rapid prototyping technique with fluid mechanics of a coaxial jet flow. Polydimethylsiloxane (PDMS) and a UV-curable polymer are mixed at the designated ratio and extruded through a coaxial needle device to produce a coaxial jet flow. The extruded jet flow is quickly photo-polymerized by ultraviolet (UV) light to form vessel-simulating solid structures at different sizes ranging from 700 μm to 1000 μm. Microtube structures with adequate mechanical properties can be fabricated by adjusting material compositions and illumination intensity. Curved, straight and stretched microtubes can be formed by adjusting the extrusion speed of the materials and the speed of the 3D printing platform. To simulate vascular structures in biologic tissue, we embed vessel-simulating microtubes in a gel wax phantom of 10 cm x10 cm x 5 cm at the depth from 1 to 2 mm. Bloods at different oxygenation and hemoglobin concentration levels are circulated through the microtubes at different flow rates in order to simulate different oxygenation and perfusion conditions. The simulated physiologic parameters are detected by a tissue oximeter and a laser speckle blood flow meter respectively and compared with the actual values. Our experiments demonstrate that the proposed 3D printing process is able to produce solid phantoms with simulated vascular networks for potential applications in medical device calibration and drug delivery studies.

  17. Effects of radiosensitising agent nicotinamide on relative tissue perfusion and kidney junction in C3H mice

    International Nuclear Information System (INIS)

    Honess, D.J.; Bleehen, N.M.

    1993-01-01

    Nicotinamide is an effective radiosensitiser of murine tumours, functioning by improving tumour perfusion by decreasing the proportion of intermittently closed capillaries. The effect of nicotinamide on relative tissue perfusion of RIF-1 tumour and normal skin, muscle, lung, liver, kidney and spleen were investigated using the 86 Rb extraction technique. A dose of 1000 mg/kg was shown to have transient effects on tumour, skin and lung perfusion but to have sustained effects on muscle (a drop to 80% of control), liver, kidney and spleen (with increased ranging from 165% to 280% of control) from 0.5 to 4 h after treatment i.e. during the period of maximum radiosensitisation. These increases were evident at doses as low as 100 mg/kg. The data suggest that the radiosensitisation induced by nicotinamide in the mouse may be associated with these perfusion changes. Nicotinamide was also shown to have a substantial inhibitory effect on renal function, inhibiting 51 CrEDTA clearance by a factor (± 2 SE) of 2.56 ± 0.19 and 125 I-iodohippurate clearance by a factor of 2.07 ± 0.45 at 1000 mg/kg. These effects were shown to be dose-related, and to be evident at doses from 400 mg/kg upwards. This suggests that nicotinamide potentiation of co-administered cytotoxic agents may be mediated by reduced renal clearance of the cytotoxic drug, thus increasing the plasma half-life. (author)

  18. A 4D digital phantom for patient-specific simulation of brain CT perfusion protocols.

    Science.gov (United States)

    van den Boom, Rieneke; Manniesing, Rashindra; Oei, Marcel T H; van der Woude, Willem-Jan; Smit, Ewoud J; Laue, Hendrik O A; van Ginneken, Bram; Prokop, Mathias

    2014-07-01

    Optimizing CT brain perfusion protocols is a challenge because of the complex interaction between image acquisition, calculation of perfusion data, and patient hemodynamics. Several digital phantoms have been developed to avoid unnecessary patient exposure or suboptimum choice of parameters. The authors expand this idea by using realistic noise patterns and measured tissue attenuation curves representing patient-specific hemodynamics. The purpose of this work is to validate that this approach can realistically simulate mean perfusion values and noise on perfusion data for individual patients. The proposed 4D digital phantom consists of three major components: (1) a definition of the spatial structure of various brain tissues within the phantom, (2) measured tissue attenuation curves, and (3) measured noise patterns. Tissue attenuation curves were measured in patient data using regions of interest in gray matter and white matter. By assigning the tissue attenuation curves to the corresponding tissue curves within the phantom, patient-specific CTP acquisitions were retrospectively simulated. Noise patterns were acquired by repeatedly scanning an anthropomorphic skull phantom at various exposure settings. The authors selected 20 consecutive patients that were scanned for suspected ischemic stroke and constructed patient-specific 4D digital phantoms using the individual patients' hemodynamics. The perfusion maps of the patient data were compared with the digital phantom data. Agreement between phantom- and patient-derived data was determined for mean perfusion values and for standard deviation in de perfusion data using intraclass correlation coefficients (ICCs) and a linear fit. ICCs ranged between 0.92 and 0.99 for mean perfusion values. ICCs for the standard deviation in perfusion maps were between 0.86 and 0.93. Linear fitting yielded slope values between 0.90 and 1.06. A patient-specific 4D digital phantom allows for realistic simulation of mean values and

  19. Visual Enhancement of Laparoscopic Partial Nephrectomy With 3-Charge Coupled Device Camera: Assessing Intraoperative Tissue Perfusion and Vascular Anatomy by Visible Hemoglobin Spectral Response

    Science.gov (United States)

    2010-10-01

    reliably distinguish vascular structures during hilar dissection, and detect and monitor changes in renal tissue perfus:ion dw·ing and after warm...and in 25 patients with hilar tu- mors 16 in whom perioperative outcomes were com- parable to those of peripheral tumors. In a retro- spective study...Richstone et al also reported the safe performance of LPN for hilar tumors in 17 patients.17 Repeat partial nephrectomy for ipsilat- eral tumor has

  20. Basic consideration of diffusion/perfusion imaging

    International Nuclear Information System (INIS)

    Tamagawa, Yoichi; Kimura, Hirohiko; Matsuda, Tsuyoshi; Kawamura, Yasutaka; Nakatsugawa, Shigekazu; Ishii, Yasushi; Sakuma, Hajime; Tsukamoto, Tetsuji.

    1990-01-01

    In magnetic resonance imaging (MRI), microscopic motion of biological system such as molecular diffusion of water and microcirculation of blood in the capillary network (perfusion) has been proposed to cause signal attenuation as an intravoxel incoherent motion (IVIM). Quantitative imaging of the IVIM phenomenon was attempted to generate from a set of spin-echo (SE) sequences with or without sensitization by motion probing gradient (MPG). The IVIM imaging is characterized by a parameter, apparent diffusion coefficient (ADC), which is an integration of both the diffusion and the perfusion factor on voxel-by-voxel basis. Hard ware was adjusted to avoid image artifact mainly produced by eddy current. Feasibility of the method was tested using bottle phantom filled with water at different temperature and acetone, and the calculated ADC values of these media corresponded well with accepted values of diffusion. The method was then applied to biological system to investigate mutual participation of diffusion/perfusion on the ADC value. The result of tumor model born on nude mouse suggested considerable participation of perfusion factor which immediately disappeared after sacrificing the animal. Meanwhile, lower value of sacrificed tissue without microcirculation was suggested to have some restriction of diffusion factor by biological tissue. To substantiate the restriction effect on the diffusion, a series of observation have made on a fiber phantom, stalk of celory with botanical fibers and human brain with nerve fibers, in applying unidirectional MPG along the course of these banch of fiber system. The directional restriction effect of diffusion along the course of fiber (diffusion anisotrophy) was clearly visualized as directional change of ADC value. The present method for tissue characterization by diffusion/perfusion on microscopic level will provide a new insight for evaluation of functional derangement in human brain and other organs. (author)

  1. Improvements in the technique of vascular perfusion-fixation employing a fluorocarbon-containing perfusate and a peristaltic pump controlled by pressure feedback

    DEFF Research Database (Denmark)

    Rostgaard, J; Qvortrup, Klaus; Poulsen, Steen Seier

    1993-01-01

    A new improved technique for whole-body perfusion-fixation of rats and other small animals is described. The driving force is a peristaltic pump which is feedback regulated by a pressure transducer that monitors the blood-perfusion pressure in the left ventricle of the heart. The primary perfusate...... to cannulate the heart; the outer and inner barrels of the cannula are connected to the peristaltic pump and to the pressure transducer, respectively. The tissue oxygen tension in the rat is monitored by a subcutaneous oxygen electrode. Measurements showed that tissue hypoxia/anoxia did not develop before......-fixative is composed of a blood substitute--13.3% oxygenated fluorocarbon FC-75--in 0.05 M cacodylate buffer (pH 7.4) with a 2% glutaraldehyde. The secondary perfusate-fixative is composed of 2% glutaraldehyde in 0.05 M cacodylate buffer (pH 7.4) with 20 mM CaCl2. A double-barrelled, self-holding cannula is used...

  2. Isolated limb perfusion with tumor necrosis factor alpha and melphalan for locally advanced soft tissue sarcoma : The value of adjuvant radiotherapy

    NARCIS (Netherlands)

    Thijssens, KMJ; van Ginkel, RJ; Pras, E; Suurmeijer, AJH; Hoekstra, HJ

    Background: The aim was to investigate the value of adjuvant radiotherapy for locally advanced soft tissue sarcoma after hyperthermic isolated limb perfusion (ILP) with tumor necrosis factor alpha and melphalan followed by limb-saving surgery. Methods: From 1991 to 2003, 73 patients (median age, 54

  3. Blood flow and vascular reactivity in collaterally perfused brain tissue. Evidence of an ischemic penumbra in patients with acute stroke

    DEFF Research Database (Denmark)

    Olsen, T S; Larsen, B; Herning, M

    1983-01-01

    ). Autoregulation was impaired in all of the collaterally perfused areas while the CO2-response always was preserved. Steal phenomena were not seen. In the surrounding brain tissue, autoregulation was normal in 5 patients and impaired in 3 while the CO2-response seemed to be normal. The results confirm...

  4. Rapid pH and PO2 changes in the tissue recording chamber during stoppage of a gas-equilibrated perfusate: effects on calcium currents in ventral horn neurons.

    Science.gov (United States)

    Carlin, K P; Brownstone, R M

    2006-09-01

    In vitro studies often use bicarbonate-buffered saline solutions to mimic the normal extracellular environment of tissues. These solutions are typically equilibrated with gaseous O2 and CO2, the latter interacting with bicarbonate ions to maintain a physiological pH. In vitro tissue chambers, like those used for electrophysiology, are usually continually perfused with the gassed buffer, but stopping the perfusion to add expensive chemicals or acquire imaging data is a common practice. The present study demonstrates that this procedure leads to rapid (PO2 of the detained solution in the tissue chamber. During the first 200 s, pH increased by 0.4 units and resulted in a 25% PO2 reduction of the detained solution. The rates of these changes were dependent on the volume of solution in the chamber. In experiments using acute transverse slices from the lumbar spinal cord of neonatal (postnatal day 0-10) mice, perfusion stoppage of the same duration was accompanied by a 34.7% enhancement of the peak voltage-gated calcium current recorded from ventral horn neurons. In these cells both low voltage-activated and high voltage-activated currents were affected. These currents were unaffected by decreasing PO2 when a CO2-independent buffer was used, suggesting that changes in pH were responsible for the observed effects. It is concluded that the procedure of stopping a bicarbonate/CO2-buffered perfusate results in rapid changes in pH and PO2 of the solution detained in the tissue chamber, and that these changes have the potential to covertly influence experimental results.

  5. Dynamic contrast enhanced MRI for perfusion quantification

    DEFF Research Database (Denmark)

    Andersen, Irene Klærke

    2002-01-01

    Magnetic resonance imaging, during bolus passage of a paramagnetic contrast agent, is used world-wide to obtain parameters that reflect the pathological state of tissue. Abnormal perfusion occurs in diseases such as stoke and tumour. Consequently, perfusion quantication could have signi cant...... clinical value both in diagnosis and treatment of such pathologies. One approach for perfusion quanti cation involves using the contrast mechanism that a ects the transverse relaxation rates of the magnetization, R2 or R 2 , since this provides the most pronounced effect. However, the linearity between...

  6. Perfusion of tumor-bearing kidneys as a model for scintigraphic screening of monoclonal antibodies

    International Nuclear Information System (INIS)

    van Dijk, J.; Oosterwijk, E.; van Kroonenburgh, M.J.; Jonas, U.; Fleuren, G.J.; Pauwels, E.K.; Warnaar, S.O.

    1988-01-01

    Tumor-bearing human kidneys were used in an ex vivo perfusion model to screen monoclonal antibodies, recognizing renal cell carcinoma-associated antigens for diagnostic potential in vivo. Perfusion of tumor-bearing kidneys with /sup 99m/Tc-labeled G250 and RC38 antibody resulted in visualization of the tumor, whereas perfusion with two other monoclonal antibodies, RC2 and RC4, did not lead to tumor visualization. Uptake of radiolabel in normal kidney tissue was low for G250 and RC38 antibody. Tumor-to-kidney tissue ratios after perfusion with G250 and RC38 antibody were 2.7 and 2.2, respectively. After rinsing for 3 hr with unlabeled perfusion fluid the tumor-to-kidney tissue ratios increased to 8.6 for G250 antibody and to 2.7 for RC38 antibody. We conclude that perfusion of tumor-bearing human kidneys with radiolabeled monoclonal antibodies is a relatively simple way to evaluate renal cell carcinoma associated monoclonal antibodies as diagnostic agents in vivo

  7. Calculating regional tissue volume for hyperthermic isolated limb perfusion: Four methods compared.

    Science.gov (United States)

    Cecchin, D; Negri, A; Frigo, A C; Bui, F; Zucchetta, P; Bodanza, V; Gregianin, M; Campana, L G; Rossi, C R; Rastrelli, M

    2016-12-01

    Hyperthermic isolated limb perfusion (HILP) can be performed as an alternative to amputation for soft tissue sarcomas and melanomas of the extremities. Melphalan and tumor necrosis factor-alpha are used at a dosage that depends on the volume of the limb. Regional tissue volume is traditionally measured for the purposes of HILP using water displacement volumetry (WDV). Although this technique is considered the gold standard, it is time-consuming and complicated to implement, especially in obese and elderly patients. The aim of the present study was to compare the different methods described in the literature for calculating regional tissue volume in the HILP setting, and to validate an open source software. We reviewed the charts of 22 patients (11 males and 11 females) who had non-disseminated melanoma with in-transit metastases or sarcoma of the lower limb. We calculated the volume of the limb using four different methods: WDV, tape measurements and segmentation of computed tomography images using Osirix and Oncentra Masterplan softwares. The overall comparison provided a concordance correlation coefficient (CCC) of 0.92 for the calculations of whole limb volume. In particular, when Osirix was compared with Oncentra (validated for volume measures and used in radiotherapy), the concordance was near-perfect for the calculation of the whole limb volume (CCC = 0.99). With methods based on CT the user can choose a reliable plane for segmentation purposes. CT-based methods also provides the opportunity to separate the whole limb volume into defined tissue volumes (cortical bone, fat and water). Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. A capillary-based perfusion phantom for simulation of brain perfusion for MRI

    International Nuclear Information System (INIS)

    Maciak, A.; Kronfeld, A.; Mueller-Forell, W.; Wille, C.; Kempski, O.; Stoeter, P.

    2010-01-01

    Purpose: The measurement of the CBF is a non-standardized procedure and there are no reliable gold standards. This abstract shows a capillary-based perfusion-phantom for CE-DSC-MRI. It has equivalent flow properties to those within the tissue capillary system of the human brain and allows the validation of the Siemens Perfusion (MR) software. Materials and Methods: The perfusion phantom consists of a dialyzer for the simulation of the capillary system, a feeding tube for simulation of the AIF and a pulsatile pump for simulation of the heart. Using this perfusion phantom, the exact determination of the gold standard CBF due to the well-known geometry of the phantom is easy. It was validated based on different perfusion measurements. These measurements were investigated with standard software (Siemens Perfusion MR). The software determined the CBF within the capillary system. Based on this CBF, a comparison to the gold standard was made with several different flow speeds. After AIF selection, a total of 726 CBF data points were automatically extracted by the software. Results: This results in a comparison of the gold standard CBF to these 726 CBF values. Therefore, a reproducible and reliable deviation estimation between gold standard CBF and measured CBF using the software was computed. It can be shown that the deviation between gold standard and software-based evaluation ranges between 1 and 31 %. Conclusion: There is no significance for any correlation between flow speed and amount of deviation. The mean measured CBF is 11.4 % higher than the gold standard CBF (p-value < 0.001). Using this kind of perfusion-phantom, the validation of different software systems allows reliable conclusions about their quality. (orig.)

  9. Correlation of the myocardial perfusion corrected by attenuation with the coronariography. Preliminary results

    International Nuclear Information System (INIS)

    Garcia C, S.E.; Garcia O, R.

    2005-01-01

    The attenuation that suffers the radiation in the soft tissues of the hinders the appropriate interpretation of the myocardial perfusion studies, for what have been implemented attenuation correction systems to reduce the attenuation for soft tissues and to provide myocardial perfusion images more accurate in the diagnosis of coronary illness. The objective was to evaluate the utility of an attenuation correction system (with source of Gadolinium 153) to minimize the devices that look like true defects of myocardial perfusion, caused by soft tissues (mammary tissue, thoracic wall, abdomen, left hemi diaphragm), and to compare those interpretations of the studies with the interpretations of the corresponding coronariographies. The method consists of 95 electronic files which were revised with the concept of heart catheterization, being identified 20 patients from the masculine sex to those that underwent coronariography among May 1999 and December 2002, and that they had study of myocardial perfusion in a maximum period of 3 months foresaw to the invasive procedure. (Author)

  10. Transplacental pharmacokinetics of diclofenac in perfused human placenta.

    Science.gov (United States)

    Shintaku, Kyohei; Hori, Satoko; Tsujimoto, Masayuki; Nagata, Hideaki; Satoh, Shoji; Tsukimori, Kiyomi; Nakano, Hitoo; Fujii, Tomoyuki; Taketani, Yuji; Ohtani, Hisakazu; Sawada, Yasufumi

    2009-05-01

    The aims of this study were to evaluate the transplacental transfer properties of diclofenac and to determine the effect of L-lactic acid on the transplacental transfer of diclofenac. The maternal and fetal vessels of human placenta were perfused in a single-pass mode with a solution containing diclofenac and antipyrine. The transplacental pharmacokinetic model was fitted to the time profiles of the drug concentrations in the effluent and placenta to obtain transplacental pharmacokinetic parameters. In addition, chloride ion in the perfusate was partially replaced with L-lactic acid to see the change in the transplacental transfer properties of diclofenac. The TPT(ss) value (ratio of the rate of amount transferred across the placenta to that infused in the steady state) of diclofenac was 2.22%, which was approximately one-third that of antipyrine and was significantly reduced in the presence of L-lactic acid. The transplacental pharmacokinetic model could adequately explain the transplacental transfer of diclofenac with influx clearances from maternal and fetal perfusates to placental tissue of 0.276 and 0.0345 ml/min/g cotyledon and efflux rate constants from placental tissue to maternal and fetal perfusates of 0.406 and 0.0337 min(-1), respectively. By taking into account protein binding, the placental tissue/plasma concentration ratio in humans for diclofenac was estimated to be 0.108 ml/g of cotyledon and was smaller than that of antipyrine. In conclusion, human placental perfusion and transplacental pharmacokinetic modeling allowed us to determine the transplacental transfer properties of diclofenac quantitatively. Diclofenac may share transplacental transfer system(s) with L-lactic acid.

  11. Brain Tissue Volumes and Perfusion Change with the Number of Optic Neuritis Attacks in Relapsing Neuromyelitis Optica: A Voxel-Based Correlation Study.

    Directory of Open Access Journals (Sweden)

    Carlos A Sánchez-Catasús

    Full Text Available Recent neuroimaging studies show that brain abnormalities in neuromyelitis optica (NMO are more frequent than earlier described. Yet, more research considering multiple aspects of NMO is necessary to better understand these abnormalities. A clinical feature of relapsing NMO (RNMO is that the incremental disability is attack-related. Therefore, association between the attack-related process and neuroimaging might be expected. On the other hand, the immunopathological analysis of NMO lesions has suggested that CNS microvasculature could be an early disease target, which could alter brain perfusion. Brain tissue volume changes accompanying perfusion alteration could also be expected throughout the attack-related process. The aim of this study was to investigate in RNMO patients, by voxel-based correlation analysis, the assumed associations between regional brain white (WMV and grey matter volumes (GMV and/or perfusion on one side, and the number of optic neuritis (ON attacks, myelitis attacks and/or total attacks on the other side. For this purpose, high resolution T1-weighted MRI and perfusion SPECT imaging were obtained in 15 RNMO patients. The results showed negative regional correlations of WMV, GMV and perfusion with the number of ON attacks, involving important components of the visual system, which could be relevant for the comprehension of incremental visual disability in RNMO. We also found positive regional correlation of perfusion with the number of ON attacks, mostly overlapping the brain area where the WMV showed negative correlation. This provides evidence that brain microvasculature is an early disease target and suggests that perfusion alteration could be important in the development of brain structural abnormalities in RNMO.

  12. Repair of segmental bone defect using Totally Vitalized tissue engineered bone graft by a combined perfusion seeding and culture system.

    Directory of Open Access Journals (Sweden)

    Lin Wang

    Full Text Available BACKGROUND: The basic strategy to construct tissue engineered bone graft (TEBG is to combine osteoblastic cells with three dimensional (3D scaffold. Based on this strategy, we proposed the "Totally Vitalized TEBG" (TV-TEBG which was characterized by abundant and homogenously distributed cells with enhanced cell proliferation and differentiation and further investigated its biological performance in repairing segmental bone defect. METHODS: In this study, we constructed the TV-TEBG with the combination of customized flow perfusion seeding/culture system and β-tricalcium phosphate (β-TCP scaffold fabricated by Rapid Prototyping (RP technique. We systemically compared three kinds of TEBG constructed by perfusion seeding and perfusion culture (PSPC method, static seeding and perfusion culture (SSPC method, and static seeding and static culture (SSSC method for their in vitro performance and bone defect healing efficacy with a rabbit model. RESULTS: Our study has demonstrated that TEBG constructed by PSPC method exhibited better biological properties with higher daily D-glucose consumption, increased cell proliferation and differentiation, and better cell distribution, indicating the successful construction of TV-TEBG. After implanted into rabbit radius defects for 12 weeks, PSPC group exerted higher X-ray score close to autograft, much greater mechanical property evidenced by the biomechanical testing and significantly higher new bone formation as shown by histological analysis compared with the other two groups, and eventually obtained favorable healing efficacy of the segmental bone defect that was the closest to autograft transplantation. CONCLUSION: This study demonstrated the feasibility of TV-TEBG construction with combination of perfusion seeding, perfusion culture and RP technique which exerted excellent biological properties. The application of TV-TEBG may become a preferred candidate for segmental bone defect repair in orthopedic and

  13. Perfusion directed 3D mineral formation within cell-laden hydrogels.

    Science.gov (United States)

    Sawyer, Stephen William; Shridhar, Shivkumar Vishnempet; Zhang, Kairui; Albrecht, Lucas; Filip, Alex; Horton, Jason; Soman, Pranav

    2018-06-08

    Despite the promise of stem cell engineering and the new advances in bioprinting technologies, one of the major challenges in the manufacturing of large scale bone tissue scaffolds is the inability to perfuse nutrients throughout thick constructs. Here, we report a scalable method to create thick, perfusable bone constructs using a combination of cell-laden hydrogels and a 3D printed sacrificial polymer. Osteoblast-like Saos-2 cells were encapsulated within a gelatin methacrylate (GelMA) hydrogel and 3D printed polyvinyl alcohol (PVA) pipes were used to create perfusable channels. A custom-built bioreactor was used to perfuse osteogenic media directly through the channels in order to induce mineral deposition which was subsequently quantified via microCT. Histological staining was used to verify mineral deposition around the perfused channels, while COMSOL modeling was used to simulate oxygen diffusion between adjacent channels. This information was used to design a scaled-up construct containing a 3D array of perfusable channels within cell-laden GelMA. Progressive matrix mineralization was observed by cells surrounding perfused channels as opposed to random mineral deposition in static constructs. MicroCT confirmed that there was a direct relationship between channel mineralization within perfused constructs and time within the bioreactor. Furthermore, the scalable method presented in this work serves as a model on how large-scale bone tissue replacement constructs could be made using commonly available 3D printers, sacrificial materials, and hydrogels. © 2018 IOP Publishing Ltd.

  14. Assessment of foot perfusion in patients with a diabetic foot ulcer.

    Science.gov (United States)

    Forsythe, Rachael O; Hinchliffe, Robert J

    2016-01-01

    Assessment of foot perfusion is a vital step in the management of patients with diabetic foot ulceration, in order to understand the risk of amputation and likelihood of wound healing. Underlying peripheral artery disease is a common finding in patients with foot ulceration and is associated with poor outcomes. Assessment of foot perfusion should therefore focus on identifying the presence of peripheral artery disease and to subsequently estimate the effect this may have on wound healing. Assessment of perfusion can be difficult because of the often complex, diffuse and distal nature of peripheral artery disease in patients with diabetes, as well as poor collateralisation and heavy vascular calcification. Conventional methods of assessing tissue perfusion in the peripheral circulation may be unreliable in patients with diabetes, and it may therefore be difficult to determine the extent to which poor perfusion contributes to foot ulceration. Anatomical data obtained on cross-sectional imaging is important but must be combined with measurements of tissue perfusion (such as transcutaneous oxygen tension) in order to understand the global and regional perfusion deficit present in a patient with diabetic foot ulceration. Ankle-brachial pressure index is routinely used to screen for peripheral artery disease, but its use in patients with diabetes is limited in the presence of neuropathy and medial arterial calcification. Toe pressure index may be more useful because of the relative sparing of pedal arteries from medial calcification but may not always be possible in patients with ulceration. Fluorescence angiography is a non-invasive technique that can provide rapid quantitative information about regional tissue perfusion; capillaroscopy, iontophoresis and hyperspectral imaging may also be useful in assessing physiological perfusion but are not widely available. There may be a future role for specialized perfusion imaging of these patients, including magnetic resonance

  15. Hepatic Differentiation of Human Induced Pluripotent Stem Cells in a Perfused 3D Porous Polymer Scaffold for Liver Tissue Engineering

    DEFF Research Database (Denmark)

    Hemmingsen, Mette; Muhammad, Haseena Bashir; Mohanty, Soumyaranjan

    A huge shortage of liver organs for transplantation has motivated the research field of tissue engineering to develop bioartificial liver tissue and even a whole liver. The goal of NanoBio4Trans is to create a vascularized bioartificial liver tissue, initially as a liver-support system. Due...... to limitations of primary hepatocytes regarding availability and maintenance of functionality, stem cells and especially human induced pluripotent stem cells (hIPS cells) are an attractive cell source for liver tissue engineering. The aim of this part of NanoBio4Trans is to optimize culture and hepatic...... differentiation of hIPS-derived definitive endoderm (DE) cells in a 3D porous polymer scaffold built-in a perfusable bioreactor. The use of a microfluidic bioreactor array enables the culture of 16 independent tissues in one experimental run and thereby an optimization study to be performed....

  16. Skull-base Osteomyelitis: a Dreaded Complication after Trivial Fall and Inadequate Management

    Directory of Open Access Journals (Sweden)

    Kundan Mittal

    2015-10-01

    Full Text Available Introduction: Skull-based osteomyelitis is bony infection which generally originates from inadequately treated chronic infection, adjoining tissue infection or after trauma.Case: 11 month female child had a trivial fall while standing near a bucket. The child developed fracture of right clavicle and left orbital swelling which was inadequately treated. This resulted in in spread of infection to adjoining tissues, skull bones, sinuses and brain.Conclusion: Cranial base osteomyelitis is rare but dreaded condition which requires early diagnosis and prompt treatment to avoid mortality and morbidity in form of neurological deficits and permanent disability

  17. DiI Perfusion as a Method for Vascular Visualization in Ambystoma mexicanum.

    Science.gov (United States)

    Saltman, Anna J; Barakat, May; Bryant, Donald M; Brodovskaya, Anastasia; Whited, Jessica L

    2017-06-16

    Perfusion techniques have been used for centuries to visualize the circulation of tissues. Axolotl (Ambystoma mexicanum) is a species of salamander that has emerged as an essential model for regeneration studies. Little is known about how revascularization occurs in the context of regeneration in these animals. Here we report a simple method for visualization of the vasculature in axolotl via perfusion of 1,1'-Dioctadecy-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI). DiI is a lipophilic carbocyanine dye that inserts into the plasma membrane of endothelial cells instantaneously. Perfusion is done using a peristaltic pump such that DiI enters the circulation through the aorta. During perfusion, dye flows through the axolotl's blood vessels and incorporates into the lipid bilayer of vascular endothelial cells upon contact. The perfusion procedure takes approximately one hour for an eight-inch axolotl. Immediately after perfusion with DiI, the axolotl can be visualized with a confocal fluorescent microscope. The DiI emits light in the red-orange range when excited with a green fluorescent filter. This DiI perfusion procedure can be used to visualize the vascular structure of axolotls or to demonstrate patterns of revascularization in regenerating tissues.

  18. Computational fluid dynamics modeling of momentum transport in rotating wall perfused bioreactor for cartilage tissue engineering.

    Science.gov (United States)

    Cinbiz, Mahmut N; Tığli, R Seda; Beşkardeş, Işil Gerçek; Gümüşderelioğlu, Menemşe; Colak, Uner

    2010-11-01

    In this study, computational fluid dynamics (CFD) analysis of a rotating-wall perfused-vessel (RWPV) bioreactor is performed to characterize the complex hydrodynamic environment for the simulation of cartilage development in RWPV bioreactor in the presence of tissue-engineered cartilage constructs, i.e., cell-chitosan scaffolds. Shear stress exerted on chitosan scaffolds in bioreactor was calculated for different rotational velocities in the range of 33-38 rpm. According to the calculations, the lateral and lower surfaces were exposed to 0.07926-0.11069 dyne/cm(2) and 0.05974-0.08345 dyne/cm(2), respectively, while upper surfaces of constructs were exposed to 0.09196-0.12847 dyne/cm(2). Results validate adequate hydrodynamic environment for scaffolds in RWPV bioreactor for cartilage tissue development which concludes the suitability of operational conditions of RWPV bioreactor. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Fractal analysis in radiological and nuclear medicine perfusion imaging: a systematic review

    Energy Technology Data Exchange (ETDEWEB)

    Michallek, Florian; Dewey, Marc [Humboldt-Universitaet zu Berlin, Freie Universitaet Berlin, Charite - Universitaetsmedizin Berlin, Medical School, Department of Radiology, Berlin (Germany)

    2014-01-15

    To provide an overview of recent research in fractal analysis of tissue perfusion imaging, using standard radiological and nuclear medicine imaging techniques including computed tomography (CT), magnetic resonance imaging (MRI), ultrasound, positron emission tomography (PET) and single-photon emission computed tomography (SPECT) and to discuss implications for different fields of application. A systematic review of fractal analysis for tissue perfusion imaging was performed by searching the databases MEDLINE (via PubMed), EMBASE (via Ovid) and ISI Web of Science. Thirty-seven eligible studies were identified. Fractal analysis was performed on perfusion imaging of tumours, lung, myocardium, kidney, skeletal muscle and cerebral diseases. Clinically, different aspects of tumour perfusion and cerebral diseases were successfully evaluated including detection and classification. In physiological settings, it was shown that perfusion under different conditions and in various organs can be properly described using fractal analysis. Fractal analysis is a suitable method for quantifying heterogeneity from radiological and nuclear medicine perfusion images under a variety of conditions and in different organs. Further research is required to exploit physiologically proven fractal behaviour in the clinical setting. (orig.)

  20. Fractal analysis in radiological and nuclear medicine perfusion imaging: a systematic review

    International Nuclear Information System (INIS)

    Michallek, Florian; Dewey, Marc

    2014-01-01

    To provide an overview of recent research in fractal analysis of tissue perfusion imaging, using standard radiological and nuclear medicine imaging techniques including computed tomography (CT), magnetic resonance imaging (MRI), ultrasound, positron emission tomography (PET) and single-photon emission computed tomography (SPECT) and to discuss implications for different fields of application. A systematic review of fractal analysis for tissue perfusion imaging was performed by searching the databases MEDLINE (via PubMed), EMBASE (via Ovid) and ISI Web of Science. Thirty-seven eligible studies were identified. Fractal analysis was performed on perfusion imaging of tumours, lung, myocardium, kidney, skeletal muscle and cerebral diseases. Clinically, different aspects of tumour perfusion and cerebral diseases were successfully evaluated including detection and classification. In physiological settings, it was shown that perfusion under different conditions and in various organs can be properly described using fractal analysis. Fractal analysis is a suitable method for quantifying heterogeneity from radiological and nuclear medicine perfusion images under a variety of conditions and in different organs. Further research is required to exploit physiologically proven fractal behaviour in the clinical setting. (orig.)

  1. Bioprinting of 3D Convoluted Renal Proximal Tubules on Perfusable Chips

    Science.gov (United States)

    Homan, Kimberly A.; Kolesky, David B.; Skylar-Scott, Mark A.; Herrmann, Jessica; Obuobi, Humphrey; Moisan, Annie; Lewis, Jennifer A.

    2016-10-01

    Three-dimensional models of kidney tissue that recapitulate human responses are needed for drug screening, disease modeling, and, ultimately, kidney organ engineering. Here, we report a bioprinting method for creating 3D human renal proximal tubules in vitro that are fully embedded within an extracellular matrix and housed in perfusable tissue chips, allowing them to be maintained for greater than two months. Their convoluted tubular architecture is circumscribed by proximal tubule epithelial cells and actively perfused through the open lumen. These engineered 3D proximal tubules on chip exhibit significantly enhanced epithelial morphology and functional properties relative to the same cells grown on 2D controls with or without perfusion. Upon introducing the nephrotoxin, Cyclosporine A, the epithelial barrier is disrupted in a dose-dependent manner. Our bioprinting method provides a new route for programmably fabricating advanced human kidney tissue models on demand.

  2. Bioreactor perfusion system for the long-term maintenance of tissue-engineered skeletal muscle organoids

    Science.gov (United States)

    Chromiak, J. A.; Shansky, J.; Perrone, C.; Vandenburgh, H. H.

    1998-01-01

    Three-dimensional skeletal muscle organ-like structures (organoids) formed in tissue culture by fusion of proliferating myoblasts into parallel networks of long, unbranched myofibers provide an in vivo-like model for examining the effects of growth factors, tension, and space flight on muscle cell growth and metabolism. To determine the feasibility of maintaining either avian or mammalian muscle organoids in a commercial perfusion bioreactor system, we measured metabolism, protein turnover. and autocrine/paracrine growth factor release rates. Medium glucose was metabolized at a constant rate in both low-serum- and serum-free media for up to 30 d. Total organoid noncollagenous protein and DNA content decreased approximately 22-28% (P skeletal muscle growth factors prostaglandin F2alpha (PGF2alpha) and insulin-like growth factor-1 (IGF-1) could be measured accurately in collected media fractions, even after storage at 37 degrees C for up to 10 d. In contrast, creatine kinase activity (a marker of cell damage) in collected media fractions was unreliable. These results provide initial benchmarks for long-term ex vivo studies of tissue-engineered skeletal muscle.

  3. MRI of pulmonary perfusion; MRT der Lungenperfusion

    Energy Technology Data Exchange (ETDEWEB)

    Fink, C. [Klinikum Grosshadern der Ludwig-Maximilians-Universitaet Muenchen (Germany). Institut fuer Klinische Radiologie; Deutsches Krebsforschungszentrum (DKFZ), Abteilung Radiologie, Heidelberg (Germany); Risse, F.; Semmler, W. [Deutsches Krebsforschungszentrum (DKFZ), Abteilung Medizinische Physik in der Radiologie, Heidelberg (Germany); Schoenberg, S.O.; Reiser, M.F. [Klinikum Grosshadern der Ludwig-Maximilians-Universitaet Muenchen (Germany). Institut fuer Klinische Radiologie; Kauczor, H.-U. [Deutsches Krebsforschungszentrum (DKFZ), Abteilung Radiologie, Heidelberg (Germany)

    2006-04-15

    Lung perfusion is a crucial prerequisite for effective gas exchange. Quantification of pulmonary perfusion is important for diagnostic considerations and treatment planning in various diseases of the lungs. Besides disorders of pulmonary vessels such as acute pulmonary embolism and pulmonary hypertension, these also include diseases of the respiratory tract and lung tissue as well as pulmonary tumors. This contribution presents the possibilities and technical requirements of MRI for diagnostic work-up of pulmonary perfusion. (orig.) [German] Die Perfusion der Lunge ist eine entscheidende Voraussetzung fuer einen effektiven Gasaustausch. Die Bestimmung der Lungenperfusion ist bei verschiedenen Erkrankungen der Lunge fuer Diagnostik und Therapieplanung bedeutsam. Hierzu zaehlen neben Erkrankungen der Lungengefaesse wie akute Lungenembolie und pulmonale Hypertension ebenso Erkrankungen der Atemwege, des Lungengeruests und Lungentumoren. In diesem Beitrag werden die Moeglichkeiten und technischen Voraussetzungen der MRT zur Diagnostik der Lungenperfusion dargestellt. (orig.)

  4. Improved visualization of delayed perfusion in lung MRI

    International Nuclear Information System (INIS)

    Risse, Frank; Eichinger, Monika; Kauczor, Hans-Ulrich; Semmler, Wolfhard; Puderbach, Michael

    2011-01-01

    Introduction: The investigation of pulmonary perfusion by three-dimensional (3D) dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) was proposed recently. Subtraction images are generated for clinical evaluation, but temporal information is lost and perfusion defects might therefore be masked in this process. The aim of this study is to demonstrate a simple analysis strategy and classification for 3D-DCE-MRI perfusion datasets in the lung without omitting the temporal information. Materials and methods: Pulmonary perfusion measurements were performed in patients with different lung diseases using a 1.5 T MR-scanner with a time-resolved 3D-GRE pulse sequence. 25 3D-volumes were acquired after iv-injection of 0.1 mmol/kg KG Gadolinium-DTPA. Three parameters were determined for each pixel: (1) peak enhancement S n,max normalized to the arterial input function to detect regions of reduced perfusion; (2) time between arterial peak enhancement in the large pulmonary artery and tissue peak enhancement τ to visualize regions with delayed bolus onset; and (3) ratio R = S n,max /τ was calculated to visualize impaired perfusion, irrespectively of whether related to reduced or delayed perfusion. Results: A manual selection of peak perfusion images is not required. Five different types of perfusion can be found: (1) normal perfusion; (2) delayed non-reduced perfusion; (3) reduced non-delayed perfusion; (4) reduced and delayed perfusion; and (5) no perfusion. Types II and IV could not be seen in subtraction images since the temporal information is necessary for this purpose. Conclusions: The analysis strategy in this study allows for a simple and observer-independent visualization and classification of impaired perfusion in dynamic contrast-enhanced pulmonary perfusion MRI by using the temporal information of the datasets.

  5. Assessment value of quantitative indexes of pancreatic CT perfusion scanning for malignant degree of pancreatic cancer

    Directory of Open Access Journals (Sweden)

    Jiang-Xia Lei

    2016-10-01

    Full Text Available Objective: To analyze the assessment value of the quantitative indexes of pancreatic CT perfusion scanning for malignant degree of pancreatic cancer. Methods: A total of 58 patients with space-occupying pancreatic lesions were divided into 20 patients with pancreatic cancer and 38 patients with benign pancreatic lesions after pancreatic CT perfusion. Patients with pancreatic cancer received palliative surgery, and the cancer tissue and para-carcinoma tissue specimens were collected during operation. The differences in pancreatic CT perfusion scanning parameter values and serum tumor marker levels were compared between patients with pancreatic cancer and patients with benign pancreatic lesions, mRNA expression levels of malignant molecules in pancreatic cancer tissue and para-carcinoma tissue were further determined, and the correlation between pancreatic CT perfusion scanning parameter values and malignant degree of pancreatic cancer was analyzed. Results: CT perfusion scanning BF, BV and Per values of patients with pancreatic cancer were lower than those of patients with benign pancreatic lesions; serum CA19-9, CEA, CA125 and CA242 levels were higher than those of patients with benign pancreatic lesions (P<0.05; mRNA expression levels of Bcl-2, Bcl-xL and survivin in pancreatic cancer tissue samples were higher than those in paracarcinoma tissue samples, and mRNA expression levels of P53 and Bax were lower than those in para-carcinoma tissue samples (P<0.05; CT perfusion scanning parameters BF, BV and Per values of patients with pancreatic cancer were negatively correlated with CA19-9, CEA, CA125 and CA242 levels in serum as well as mRNA expression levels of Bcl-2, Bcl-xL and survivin in pancreatic cancer tissue, and positively correlated with mRNA expression levels of P53 and Bax in pancreatic cancer tissue (P<0.05. Conclusions: Pancreatic CT perfusion scanning is a reliable way to judge the malignant degree of pancreatic cancer and plays a

  6. Modeling laser speckle imaging of perfusion in the skin (Conference Presentation)

    Science.gov (United States)

    Regan, Caitlin; Hayakawa, Carole K.; Choi, Bernard

    2016-02-01

    Laser speckle imaging (LSI) enables visualization of relative blood flow and perfusion in the skin. It is frequently applied to monitor treatment of vascular malformations such as port wine stain birthmarks, and measure changes in perfusion due to peripheral vascular disease. We developed a computational Monte Carlo simulation of laser speckle contrast imaging to quantify how tissue optical properties, blood vessel depths and speeds, and tissue perfusion affect speckle contrast values originating from coherent excitation. The simulated tissue geometry consisted of multiple layers to simulate the skin, or incorporated an inclusion such as a vessel or tumor at different depths. Our simulation used a 30x30mm uniform flat light source to optically excite the region of interest in our sample to better mimic wide-field imaging. We used our model to simulate how dynamically scattered photons from a buried blood vessel affect speckle contrast at different lateral distances (0-1mm) away from the vessel, and how these speckle contrast changes vary with depth (0-1mm) and flow speed (0-10mm/s). We applied the model to simulate perfusion in the skin, and observed how different optical properties, such as epidermal melanin concentration (1%-50%) affected speckle contrast. We simulated perfusion during a systolic forearm occlusion and found that contrast decreased by 35% (exposure time = 10ms). Monte Carlo simulations of laser speckle contrast give us a tool to quantify what regions of the skin are probed with laser speckle imaging, and measure how the tissue optical properties and blood flow affect the resulting images.

  7. Isolated limb perfusion with tumor necrosis factor alpha and melphalan for locally advanced soft tissue sarcoma : Three time periods at risk for amputation

    NARCIS (Netherlands)

    van Ginkel, Robert J.; Thijssens, Katja M. J.; Pras, Elisabeth; van der Graaf, Winette T. A.; Suurmeijer, Albert J. H.; Hoekstra, Harald J.

    Background: The aim of this study was to investigate the long-term limb salvage rate and overall survival after isolated limb perfusion (ILP) with tumor necrosis factor alpha and melphalan for locally advanced soft tissue sarcoma (STS). Methods: From 1991 to 2003, 73 patients (36 men, 37 women,

  8. Goal-directed-perfusion in neonatal aortic arch surgery.

    Science.gov (United States)

    Cesnjevar, Robert Anton; Purbojo, Ariawan; Muench, Frank; Juengert, Joerg; Rueffer, André

    2016-07-01

    Reduction of mortality and morbidity in congenital cardiac surgery has always been and remains a major target for the complete team involved. As operative techniques are more and more standardized and refined, surgical risk and associated complication rates have constantly been reduced to an acceptable level but are both still present. Aortic arch surgery in neonates seems to be of particular interest, because perfusion techniques differ widely among institutions and an ideal form of a so called "total body perfusion (TBP)" is somewhat difficult to achieve. Thus concepts of deep hypothermic circulatory arrest (DHCA), regional cerebral perfusion (RCP/with cardioplegic cardiac arrest or on the perfused beating heart) and TBP exist in parallel and all carry an individual risk for organ damage related to perfusion management, chosen core temperature and time on bypass. Patient safety relies more and more on adequate end organ perfusion on cardiopulmonary bypass, especially sensitive organs like the brain, heart, kidney, liver and the gut, whereby on adequate tissue protection, temperature management and oxygen delivery should be visualized and monitored.

  9. Dynamic perfusion CT: Optimizing the temporal resolution for the calculation of perfusion CT parameters in stroke patients

    Energy Technology Data Exchange (ETDEWEB)

    Kaemena, Andreas [Department of Radiology, Charite-Medical University Berlin, Augustenburger Platz 1, D-13353 Berlin (Germany)], E-mail: andreas.kaemena@charite.de; Streitparth, Florian; Grieser, Christian; Lehmkuhl, Lukas [Department of Radiology, Charite-Medical University Berlin, Augustenburger Platz 1, D-13353 Berlin (Germany); Jamil, Basil [Department of Radiotherapy, Charite-Medical University Berlin, Schumannstr. 20/21, D-10117 Berlin (Germany); Wojtal, Katarzyna; Ricke, Jens; Pech, Maciej [Department of Radiology, Charite-Medical University Berlin, Augustenburger Platz 1, D-13353 Berlin (Germany)

    2007-10-15

    Purpose: To assess the influence of different temporal sampling rates on the accuracy of the results from cerebral perfusion CTs in patients with an acute ischemic stroke. Material and methods: Thirty consecutive patients with acute stroke symptoms received a dynamic perfusion CT (LightSpeed 16, GE). Forty millilitres of iomeprol (Imeron 400) were administered at an injection rate of 4 ml/s. After a scan delay of 7 s, two adjacent 10 mm slices at 80 kV and 190 mA were acquired in a cine mode technique with a cine duration of 49 s. Parametric maps for the blood flow (BF), blood volume (BV) and mean transit time (MTT) were calculated for temporal sampling intervals of 0.5, 1, 2, 3 and 4 s using GE's Perfusion 3 software package. In addition to the quantitative ROI data analysis, a visual perfusion map analysis was performed. Results: The perfusion analysis proved to be technically feasible with all patients. The calculated perfusion values revealed significant differences with regard to the BF, BV and MTT, depending on the employed temporal resolution. The perfusion contrast between ischemic lesions and healthy brain tissue decreased continuously at the lower temporal resolutions. The visual analysis revealed that ischemic lesions were best depicted with sampling intervals of 0.5 and 1 s. Conclusion: We recommend a temporal scan resolution of two images per second for the best detection and depiction of ischemic areas.

  10. Perfusion CT assessment of the colon and rectum: Feasibility of quantification of bowel wall perfusion and vascularization

    International Nuclear Information System (INIS)

    Khan, Sairah; Goh, Vicky; Tam, Emily; Wellsted, David; Halligan, Steve

    2012-01-01

    The aim was to determine the feasibility of vascular quantification of the bowel wall for different anatomical segments of the colorectum. Following institutional ethical approval and informed consent, 39 patients with colorectal cancer underwent perfusion CT. Blood flow (BF), blood volume (BV), mean transit time (MTT), and permeability surface area product (PS) were assessed for different segments of the colorectum: ascending, transverse, descending colon, sigmoid, or rectum, that were distant from the tumor, and which were proven normal on contemporary colonoscopy, and subsequent imaging and clinical follow up. Mean (SD) for BF, BV, MTT and PS for the different anatomical colorectal segments were obtained and compared using a pooled t-test. Significance was at 5%. Assessment was not possible in 9 of 39 (23%) patients as the bowel wall was ≤5 mm precluding quantitative analysis. Forty-four segments were evaluated in the remaining 30 patients. Mean BF was higher in the proximal than distal colon: 24.0 versus 17.8 mL/min/100 g tissue; p = 0.009; BV, MTT and PS were not significantly different; BV: 3.46 versus 3.15 mL/100 g tissue, p = 0.45; MTT: 15.1 versus 18.3 s; p = 0.10; PS: 6.84 versus 8.97 mL/min/100 tissue, p = 0.13, respectively. In conclusion, assessment of bowel wall perfusion may fail in 23% of patients. The colorectum demonstrates segmental differences in perfusion.

  11. Initial intramuscular perfusion pressure predicts early skeletal muscle function following isolated tibial fractures

    Directory of Open Access Journals (Sweden)

    Haas Norbert P

    2008-04-01

    Full Text Available Abstract Background The severity of associated soft tissue trauma in complex injuries of the extremities guides fracture treatment and decisively determines patient's prognosis. Trauma-induced microvascular dysfunction and increased tissue pressure is known to trigger secondary soft tissue damage and seems to adversely affect skeletal muscle function. Methods 20 patients with isolated tibial fractures were included. Blood pressure and compartment pressure (anterior and deep posterior compartment were measured continuously up to 24 hours. Corresponding perfusion pressure was calculated. After 4 and 12 weeks isokinetic muscle peak torque and mean power of the ankle joint in dorsal and plantar flexion were measured using a Biodex dynamometer. Results A significant inverse correlation between the anterior perfusion pressure at 24 hours and deficit in dorsiflexion at 4 weeks was found for both, the peak torque (R = -0.83; p Conclusion The functional relationship between the decrease in intramuscular perfusion pressures and muscle performance in the early rehabilitation period indicate a causative and prognostic role of early posttraumatic microcirculatory derangements and skeletal muscle function. Therapeutic concepts aimed at effective muscle recovery, early rehabilitation, and decreased secondary tissue damage, should consider the maintenance of an adequate intramuscular perfusion pressure.

  12. Discrepancy between microsphere and diffusible tracer estimates of perfusion to ischemic myocardium

    International Nuclear Information System (INIS)

    Yoshida, S.; Akizuki, S.; Gowski, D.; Downey, J.M.

    1985-01-01

    This study critically tests the ability of microspheres to accurately measure perfusion to ischemic myocardium. The left anterior descending coronary artery was cannulated and perfused with arterial blood. The perfusion line was clamped, and a sidearm between the clamp and the cannula was opened to the atmosphere, allowing blood to flow retrograde from the distal segment of the artery. Measurement of regional blood flow during retrograde flow diversion with 15-micron microspheres revealed essentially zero flow to the perfused segment (0.005 ml X min-1 X g-1). Measurements under the same conditions by either 86 Rb uptake or 133 Xe washout revealed that an appreciable perfusion of the tissue persisted during retrograde flow diversion (0.043 and 0.11 ml X min-1 X g-1, respectively, for the 2 methods). Thus, the authors have identified a condition during which microspheres indicate zero flow to the tissue but diffusible tracers can both be washed in and washed out at a brisk rate. They conclude that with simple occlusion there is a hidden component of perfusion to an ischemic zone that cannot be measured by microspheres, causing them to underestimate flow by about 25% in that condition

  13. Perfusion imaging with single-photon emission computed tomography

    International Nuclear Information System (INIS)

    Holman, B.L.; Hill, T.C.

    1987-01-01

    SPECT with perfusion tracers is useful in a number of circumstances: (1) In acute cerebral infarction while the CT scan may be normal for several days after onset of symptoms, the uptake of SPECT perfusion tracers will be altered immediately after the onset of the stroke. Even when the CT scan has become abnormal, the physiologic abnormality may exceed the anatomic abnormality. One may, therefore be able to measure the extent of the reversibly ischemic tissue early enough to justify more agressive therapeutic interventions. (2) For endarterectomy and other surgical and medical therapies serial measurements of regional cerebral perfusion with SPECT may provide a readily available tool to assess their efficacy. (3) SPECT perfusion imaging may become the method of choice for the diagnosis and evaluation of Alzheimer's disease. (4) In patients with epilepsy, the extent and location of the abnormally perfused focus may be important to medical and surgical management. Follow-up examination may be useful in documenting the effectiveness of therapy

  14. Tonometry revisited: perfusion-related, metabolic, and respiratory components of gastric mucosal acidosis in acute cardiorespiratory failure.

    Science.gov (United States)

    Jakob, Stephan M; Parviainen, Ilkka; Ruokonen, Esko; Kogan, Alexander; Takala, Jukka

    2008-05-01

    Mucosal pH (pHi) is influenced by local perfusion and metabolism (mucosal-arterial pCO2 gradient, DeltapCO2), systemic metabolic acidosis (arterial bicarbonate), and respiration (arterial pCO2). We determined these components of pHi and their relation to outcome during the first 24 h of intensive care. We studied 103 patients with acute respiratory or circulatory failure (age, 63+/-2 [mean+/-SEM]; Acute Physiology and Chronic Health Evaluation II score, 20+/-1; Sequential Organ Failure Assessment score, 8+/-0). pHi, and the effects of bicarbonate and arterial and mucosal pCO2 on pHi, were assessed at admission, 6, and 24 h. pHi was reduced (at admission, 7.27+/-0.01) due to low arterial bicarbonate and increased DeltapCO2. Low pHi (or=7.32 at admission; P=0.061) was associated with an increased DeltapCO2 in 59% of patients (mortality, 47% vs. 4% for patients with low pHi and normal DeltapCO2; P=0.0003). An increased versus normal DeltapCO2, regardless of pHi, was associated with increased mortality at admission (51% vs. 5%; Pacidosis. Inadequate tissue perfusion may persist despite stable hemodynamics and contributes to poor outcome.

  15. CT perfusion imaging in response assessment of pulmonary metastases undergoing stereotactic ablative radiotherapy

    International Nuclear Information System (INIS)

    Sawyer, Brooke; Pun, Emma; Tay, Huilee; Kron, Tomas; Bressel, Mathias; Ball, David; Siva, Shankar; Samuel, Michael

    2015-01-01

    Stereotactic ablative body radiotherapy (SABR) is an emerging treatment technique for pulmonary metastases in which conventional Response Evaluation Criteria in Solid Tumours (RECIST) may be inadequate. This study aims to assess the utility of CT perfusion imaging in response assessment of pulmonary metastases after SABR. In this ethics board-approved prospective study, 11 patients underwent a 26-Gy single fraction of SABR to pulmonary metastases. CT perfusion imaging occurred prior to and at 14 and 70 days post-SABR. Blood flow (mL/100 mL/min), blood volume (mL/100 mL), time to peak (seconds) and surface permeability (mL/100 mL/min), perfusion parameters of pulmonary metastases undergoing SABR, were independently assessed by two radiologists. Inter-observer variability was analysed. CT perfusion results were analysed for early response assessment comparing day 14 with baseline scans and for late response by comparing day 70 with baseline scans. The largest diameter of the pulmonary metastases undergoing SABR was recorded. Ten patients completed all three scans and one patient had baseline and early response assessment CT perfusion scans only. There was strong level of inter-observer agreement of CT perfusion interpretation with a median intraclass coefficient of 0.87 (range 0.20–0.98). Changes in all four perfusion parameters and tumour sizes were not statistically significant. CT perfusion imaging of pulmonary metastases is a highly reproducible imaging technique that may provide additional response assessment information above that of conventional RECIST, and it warrants further study in a larger cohort of patients undergoing SABR.

  16. Detachably assembled microfluidic device for perfusion culture and post-culture analysis of a spheroid array.

    Science.gov (United States)

    Sakai, Yusuke; Hattori, Koji; Yanagawa, Fumiki; Sugiura, Shinji; Kanamori, Toshiyuki; Nakazawa, Kohji

    2014-07-01

    Microfluidic devices permit perfusion culture of three-dimensional (3D) tissue, mimicking the flow of blood in vascularized 3D tissue in our body. Here, we report a microfluidic device composed of a two-part microfluidic chamber chip and multi-microwell array chip able to be disassembled at the culture endpoint. Within the microfluidic chamber, an array of 3D tissue aggregates (spheroids) can be formed and cultured under perfusion. Subsequently, detailed post-culture analysis of the spheroids collected from the disassembled device can be performed. This device facilitates uniform spheroid formation, growth analysis in a high-throughput format, controlled proliferation via perfusion flow rate, and post-culture analysis of spheroids. We used the device to culture spheroids of human hepatocellular carcinoma (HepG2) cells under two controlled perfusion flow rates. HepG2 spheroids exhibited greater cell growth at higher perfusion flow rates than at lower perfusion flow rates, and exhibited different metabolic activity and mRNA and protein expression under the different flow rate conditions. These results show the potential of perfusion culture to precisely control the culture environment in microfluidic devices. The construction of spheroid array chambers allows multiple culture conditions to be tested simultaneously, with potential applications in toxicity and drug screening. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Towards robust deconvolution of low-dose perfusion CT: Sparse perfusion deconvolution using online dictionary learning

    Science.gov (United States)

    Fang, Ruogu; Chen, Tsuhan; Sanelli, Pina C.

    2014-01-01

    Computed tomography perfusion (CTP) is an important functional imaging modality in the evaluation of cerebrovascular diseases, particularly in acute stroke and vasospasm. However, the post-processed parametric maps of blood flow tend to be noisy, especially in low-dose CTP, due to the noisy contrast enhancement profile and the oscillatory nature of the results generated by the current computational methods. In this paper, we propose a robust sparse perfusion deconvolution method (SPD) to estimate cerebral blood flow in CTP performed at low radiation dose. We first build a dictionary from high-dose perfusion maps using online dictionary learning and then perform deconvolution-based hemodynamic parameters estimation on the low-dose CTP data. Our method is validated on clinical data of patients with normal and pathological CBF maps. The results show that we achieve superior performance than existing methods, and potentially improve the differentiation between normal and ischemic tissue in the brain. PMID:23542422

  18. Imaging Human Brain Perfusion with Inhaled Hyperpolarized 129Xe MR Imaging.

    Science.gov (United States)

    Rao, Madhwesha R; Stewart, Neil J; Griffiths, Paul D; Norquay, Graham; Wild, Jim M

    2018-02-01

    Purpose To evaluate the feasibility of directly imaging perfusion of human brain tissue by using magnetic resonance (MR) imaging with inhaled hyperpolarized xenon 129 ( 129 Xe). Materials and Methods In vivo imaging with 129 Xe was performed in three healthy participants. The combination of a high-yield spin-exchange optical pumping 129 Xe polarizer, custom-built radiofrequency coils, and an optimized gradient-echo MR imaging protocol was used to achieve signal sensitivity sufficient to directly image hyperpolarized 129 Xe dissolved in the human brain. Conventional T1-weighted proton (hydrogen 1 [ 1 H]) images and perfusion images by using arterial spin labeling were obtained for comparison. Results Images of 129 Xe uptake were obtained with a signal-to-noise ratio of 31 ± 9 and demonstrated structural similarities to the gray matter distribution on conventional T1-weighted 1 H images and to perfusion images from arterial spin labeling. Conclusion Hyperpolarized 129 Xe MR imaging is an injection-free means of imaging the perfusion of cerebral tissue. The proposed method images the uptake of inhaled xenon gas to the extravascular brain tissue compartment across the intact blood-brain barrier. This level of sensitivity is not readily available with contemporary MR imaging methods. © RSNA, 2017.

  19. Vascularization of soft tissue engineering constructs

    DEFF Research Database (Denmark)

    Pimentel Carletto, Rodrigo

    nanotechnology-based paradigm for engineering vascularised liver tissue for transplantation”) and the Danish National Research Foundation and Villum Foundation’s Center for Intelligent Drug delivery and sensing Using microcontainers and Nanomechanics (Danish National Research Foundation (DNRF122).......Vascularization is recognized to be the biggest challenge for the fabrication of tissues and finally, organs in vitro. So far, several fabrication techniques have been proposed to create a perfusable vasculature within hydrogels, however, the vascularization and perfusion of hydrogels...... with mechanical properties in the range of soft tissues has not been fully achieved. My project focused on the fabrication and the active perfusion of hydrogel constructs with multi-dimensional vasculature and controlled mechanical properties targeting soft tissues. Specifically, the initial part of the research...

  20. In vivo perfusion assessment of an anastomosis surgery on porcine intestinal model (Conference Presentation)

    Science.gov (United States)

    Le, Hanh N. D.; Opferman, Justin; Decker, Ryan; Cheon, Gyeong W.; Kim, Peter C. W.; Kang, Jin U.; Krieger, Axel

    2016-04-01

    Anastomosis, the connection of two structures, is a critical procedure for reconstructive surgery with over 1 million cases/year for visceral indication alone. However, complication rates such as strictures and leakage affect up to 19% of cases for colorectal anastomoses and up to 30% for visceral transplantation anastomoses. Local ischemia plays a critical role in anastomotic complications, making blood perfusion an important indicator for tissue health and predictor for healing following anastomosis. In this work, we apply a real time multispectral imaging technique to monitor impact on tissue perfusion due to varying interrupted suture spacing and suture tensions. Multispectral tissue images at 470, 540, 560, 580, 670 and 760 nm are analyzed in conjunction with an empirical model based on diffuse reflectance process to quantify the hemoglobin oxygen saturation within the suture site. The investigated tissues for anastomoses include porcine small (jejunum and ileum) and large (transverse colon) intestines. Two experiments using interrupted suturing with suture spacing of 1, 2, and 3 mm and tension levels from 0 N to 2.5 N are conducted. Tissue perfusion at 5, 10, 20 and 30 min after suturing are recorded and compared with the initial normal state. The result indicates the contrast between healthy and ischemic tissue areas and assists the determination of suturing spacing and tension. Therefore, the assessment of tissue perfusion will permit the development and intra-surgical monitoring of an optimal suture protocol during anastomosis with less complications and improved functional outcome.

  1. Does a Better Perfusion of Deconditioned Muscle Tissue Release Chronic Low Back Pain?

    Directory of Open Access Journals (Sweden)

    Paola Valdivieso

    2018-03-01

    Full Text Available Non-specific chronic low back pain (nsCLBP is a multifactorial condition of unknown etiology and pathogenesis. Physical and genetic factors may influence the predisposition of individuals to CLBP, which in many instances share a musculoskeletal origin. A reduced pain level in low back pain patients that participate in exercise therapy highlights that disuse-related muscle deconditioning may predispose individuals to nsCLBP. In this context, musculoskeletal pain may be the consequence of capillary rarefaction in inactive muscle as this would lower local tissue drainage and washing out of toxic waste. Muscle activity is translated into an angio-adaptative process, which implicates angiogenic-gene expression and individual response differences due to heritable modifications of such genes (gene polymorphisms. The pathophysiologic mechanism underlying nsCLBP is still largely unaddressed. We hypothesize that capillary rarefaction due to a deconditioning of dorsal muscle groups exacerbates nsCLBP by increasing noxious sensation, reducing muscle strength and fatigue resistance by initiating a downward spiral of local deconditioning of back muscles which diminishes their load-bearing capacity. We address the idea that specific factors such as angiotensin-converting enzyme and Tenascin-C might play an important role in altering susceptibility to nsCLBP via their effects on microvascular perfusion and vascular remodeling of skeletal muscle, inflammation, and pain sensation. The genetic profile may help to explain the individual predisposition to nsCLBP, thus identifying subgroups of patients, which could benefit from ad hoc treatment types. Future therapeutic approaches aimed at relieving the pain associated with nsCLBP should be based on the verification of mechanistic processes of activity-induced angio-adaptation and muscle-perfusion.

  2. Industrialization of a perfusion bioreactor: Prime example of a non-straightforward process.

    Science.gov (United States)

    Talò, G; Turrisi, C; Arrigoni, C; Recordati, C; Gerges, I; Tamplenizza, M; Cappelluti, A; Riboldi, S A; Moretti, M

    2018-02-01

    Bioreactors are essential enabling technologies for the translation of advanced therapies medicinal products from the research field towards a successful clinical application. In order to speed up the translation and the spread of novel tissue engineering products into the clinical routine, tissue engineering bioreactors should evolve from laboratory prototypes towards industrialized products. In this work, we thus challenged the industrialization process of a novel technological platform, based on an established research prototype of perfusion bioreactor, following a GMP-driven approach. We describe how the combination of scientific background, intellectual property, start-up factory environment, wise industrial advice in the biomedical field, design, and regulatory consultancy allowed us to turn a previously validated prototype technology into an industrial product suitable for serial production with improved replicability and user-friendliness. The solutions implemented enhanced aesthetics, ergonomics, handling, and safety of the bioreactor, and they allowed compliance with the fundamental requirements in terms of traceability, reproducibility, efficiency, and safety of the manufacturing process of advanced therapies medicinal products. The result is an automated incubator-compatible device, housing 12 disposable independent perfusion chambers for seeding and culture of any perfusable tissue. We validated the cell seeding process of the industrialized bioreactor by means of the Design of Experiment approach, whilst the effectiveness of perfusion culture was evaluated in the context of bone tissue engineering. Copyright © 2017 John Wiley & Sons, Ltd.

  3. Optical modeling toward optimizing monitoring of intestinal perfusion in trauma patients

    Science.gov (United States)

    Akl, Tony J.; Wilson, Mark A.; Ericson, M. N.; Coté, Gerard L.

    2013-02-01

    Trauma is the number one cause of death for people between the ages 1 and 44 years in the United States. In addition, according to the Centers of Disease Control and Prevention, injury results in over 31 million emergency department visits annually. Minimizing the resuscitation period in major abdominal injuries increases survival rates by correcting impaired tissue oxygen delivery. Optimization of resuscitation requires a monitoring method to determine sufficient tissue oxygenation. Oxygenation can be assessed by determining the adequacy of tissue perfusion. In this work, we present the design of a wireless perfusion and oxygenation sensor based on photoplethysmography. Through optical modeling, the benefit of using the visible wavelengths 470, 525 and 590nm (around the 525nm hemoglobin isobestic point) for intestinal perfusion monitoring is compared to the typical near infrared (NIR) wavelengths (805nm isobestic point) used in such sensors. Specifically, NIR wavelengths penetrate through the thin intestinal wall ( 4mm) leading to high background signals. However, these visible wavelengths have two times shorter penetration depth that the NIR wavelengths. Monte-Carlo simulations show that the transmittance of the three selected wavelengths is lower by 5 orders of magnitude depending on the perfusion state. Due to the high absorbance of hemoglobin in the visible range, the perfusion signal carried by diffusely reflected light is also enhanced by an order of magnitude while oxygenation signal levels are maintained. In addition, short source-detector separations proved to be beneficial for limiting the probing depth to the thickness of the intestinal wall.

  4. New method of isolation and perfusion of rat pancreas for phosphorus nucletic resonance study

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Takehisa; Kanno, Tomio; Murakami, Masataka; Watari, Hiroshi; Seo, Yoshiteru

    1988-02-01

    Phosphorus nuclear magnetic resonance (/sup 31/P-NMR) was applied to measure phosphorus metabolites in the pancreas. Rat pancreatic gland was isolated and perfused with a modified Krebs-Henseleit solution at room temperature (25 deg C). Removal of the duodenum from the pancreas made it possible to record /sup 31/P-NMR spectra only from the pancreatic tissue. /sup 31/P signals of creatine phosphate (PCr), ATP and inorganic phosphate (Pi) were observed in all the glands. In different individual glands, the Signal intensity of PCr varied, but those of ATP were almost the same. The initial levels of all the phosphorus metabolites in individual glands remained almost unchanged during perfusion with the standard solution for 2 hours. When the perfusion was stopped, signal intensity of ATP and PCr decreased while Pi resonance increased and shifted to a higher magnetic field, indicating tissue acidification. On re-perfusion, each resonance and tissue pH were restored to the respective initial resting levels. Continuous stimulation with 0.3 ..mu..M acetylcholine (ACh) or 0.1 nM CCK-8 caused a markedly larger increase in pancreatic exocrine secretion than that observed in the perfused pancreas which was prepared by the previous method. Continuous stimulation with 0.1 ..mu..M ACh caused a marked and sustained increase in pancreatic exocrine secretion. During the stimulation, the resonances of phosphorus energy metabolites and tissue pH remained almost unchanged. These results indicate that the isolated perfused rat pancreas which is prepared by our new method is a useful preparation for analysis of secretion-metabolism coupling in the exocrine pancreas.

  5. Three-dimensional optical micro-angiography maps directional blood perfusion deep within microcirculation tissue beds in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ruikang K [Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97237 (United States)

    2007-12-07

    Optical micro-angiography (OMAG) is a recently developed method of imaging localized blood perfusion at capillary level resolution within microcirculatory beds. This paper reports that the OMAG is capable of directional blood perfusion mapping in vivo. This is achieved simply by translating the mirror located in the reference arm back and forth while 3D imaging is performed. The mirror which moves toward the incident beam gives the blood perfusion that flows away from the beam direction and vice versa. The approach is experimentally demonstrated by imaging of a flow phantom and then cerebro-vascular perfusion of a live mouse with cranium intact.

  6. Development of an Extracorporeal Perfusion Device for Small Animal Free Flaps.

    Directory of Open Access Journals (Sweden)

    Andreas M Fichter

    Full Text Available Extracorporeal perfusion (ECP might prolong the vital storage capabilities of composite free flaps, potentially opening a wide range of clinical applications. Aim of the study was the development a validated low-cost extracorporeal perfusion model for further research in small animal free flaps.After establishing optimal perfusion settings, a specially designed extracorporeal perfusion system was evaluated during 8-hour perfusion of rat epigastric flaps followed by microvascular free flap transfer. Controls comprised sham-operation, ischemia and in vivo perfusion. Flaps and perfusate (diluted blood were closely monitored by blood gas analysis, combined laser Doppler flowmetry and remission spectroscopy and Indocyanine-Green angiography. Evaluations were complemented by assessment of necrotic area and light microscopy at day 7.ECP was established and maintained for 8 hours with constant potassium and pH levels. Subsequent flap transfer was successful. Notably, the rate of necrosis of extracorporeally perfused flaps (27% was even lower than after in vivo perfusion (49%, although not statistically significant (P = 0,083. After sham-operation, only 6% of the total flap area became necrotic, while 8-hour ischemia led to total flap loss (98%. Angiographic and histological findings confirmed these observations.Vital storage capabilities of microvascular flaps can be prolonged by temporary ECP. Our study provides important insights on the pathophysiological processes during extracorporeal tissue perfusion and provides a validated small animal perfusion model for further studies.

  7. Automatic extraction of left ventricle in SPECT myocardial perfusion imaging

    International Nuclear Information System (INIS)

    Liu Li; Zhao Shujun; Yao Zhiming; Wang Daoyu

    1999-01-01

    An automatic method of extracting left ventricle from SPECT myocardial perfusion data was introduced. This method was based on the least square analysis of the positions of all short-axis slices pixels from the half sphere-cylinder myocardial model, and used a iterative reconstruction technique to automatically cut off the non-left ventricular tissue from the perfusion images. Thereby, this technique provided the bases for further quantitative analysis

  8. Flow-perfusion interferes with chondrogenic and hypertrophic matrix production by mesenchymal stem cells

    NARCIS (Netherlands)

    Kock, Linda M; Malda, Jos; Dhert, Wouter J A; Ito, Keita; Gawlitta, Debby

    2014-01-01

    Flow-perfusion is being promoted as a way to grow tissue-engineered cartilage in vitro. Yet, there is a concern that flow-perfusion may induce unwanted mechanical effects on chondrogenesis and terminal differentiation. Therefore, the aim of this study is to evaluate the effect of fluid flow on

  9. The effect of patent ductus arteriosus on pre-ductal and post-ductal perfusion index in preterm neonates.

    Science.gov (United States)

    Nitzan, Itamar; Hammerman, Cathy; Fink, Daniel; Nitzan, Meir; Koppel, Robert; Bromiker, Ruben

    2018-06-26

    The ductus arteriosus is a blood vessel that connects the pulmonary artery to the descending aorta during fetal life and generally undergoes spontaneous closure shortly after birth. In premature neonates it often fails to close (patent ductus arteriosus - PDA), which can result in diversion of a significant part of the left-ventricular cardiac output to the pulmonary circulation. This left-to-right shunt may result in significant increase of pulmonary blood flow and decrease of systemic perfusion (hemodynamically significant PDA - hsPDA), which may lead to severe neonatal morbidity. The study objective was to find the relationship between hsPDA and perfusion index (PI), a photoplethysmographic parameter, related to systemic perfusion. Approach. PI measures the relative systolic increase in tissue light absorption due to the systolic increase in the tissue blood volume. PI has been found to be directly related to tissue perfusion, and is therefore expected to be affected by hsPDA. Main results. PI was found to be higher in preterm neonates with hsPDA after first week of life, in comparison to those with closed DA, despite the lower systemic perfusion, probably due to reverse flow during diastole. Significance. In our study, perfusion index increased despite the lower systemic perfusion, indicating that in neonates with hsPDA, perfusion index is not necessarily a measure of perfusion. Nevertheless, PI can be used as a screening tool for suspicious PDA, in order to select a relatively small group of neonates for a more definitive examination by echocardiography, which is not suitable for universal screening. . © 2018 Institute of Physics and Engineering in Medicine.

  10. Intraoperative angiography provides objective assessment of skin perfusion in complex knee reconstruction.

    Science.gov (United States)

    Wyles, Cody C; Taunton, Michael J; Jacobson, Steven R; Tran, Nho V; Sierra, Rafael J; Trousdale, Robert T

    2015-01-01

    Wound necrosis is a potentially devastating complication of complex knee reconstruction. Laser-assisted indocyanine green angiography (LA-ICGA) is a technology that has been described in the plastic surgery literature to provide an objective assessment of skin perfusion in the operating room. This novel technology uses a plasma protein bound dye (ICG) and a camera unit that is calibrated to view the frequency emitted by the dye. The intention of this technology is to offer real-time visualization of blood flow to skin and soft tissue in a way that might help surgeons make decisions about closure or coverage of a surgical site based on blood flow, potentially avoiding soft tissue reconstruction while preventing skin necrosis or wound breakdown after primary closures, but its efficacy is untested in the setting of complex TKA. The purpose of this study was to evaluate perfusion borders and tension ischemia in a series of complex knee reconstructions to guide optimal wound management. Beginning in mid-2011, an LA-ICGA system was used to evaluate soft tissue viability in knee reconstruction procedures that were considered high risk for wound complications. Seven patients undergoing complex primary or revision TKA from 2011 to 2013 were included. These patients were chosen as a convenience sample of knee reconstruction procedures for which we obtained consultation with the plastic surgery service. The perfusion of skin and soft tissue coverage was evaluated intraoperatively for all patients with the LA-ICGA system, and the information was used to guide wound management. Followup was at a mean of 9 months (range, 6-17 months), no patients were lost to followup, and the main study endpoint was uneventful healing of the surgical incision. All seven closures went on to heal without necrosis. One patient, however, was subsequently revised for a deep periprosthetic infection 4 months after their knee reconstruction and underwent flap coverage at the time of that revision

  11. A holistic approach for perfusion assessment in septic shock: Basic foundations and clinical applications

    NARCIS (Netherlands)

    Hernández Poblete, G.W.

    2013-01-01

    A fundamental challenge in septic shock resuscitation is to evaluate tissue perfusion. In this thesis, we review the basic foundations for the development of a comprehensive and holistic model for perfusion assessment in septic shock, and outline its application to evaluate the impact of

  12. Spatial interaction between tissue pressure and skeletal muscle perfusion during contraction

    NARCIS (Netherlands)

    Donkelaar, van C.C.; Huyghe, J.M.R.J.; Vankan, W.J.; Drost, M.R.

    2001-01-01

    The vascular waterfall theory attributes decreased muscle perfusion during contraction to increased intramuscular pressure (P_IM ) and concomitant increase in venous resistance. Although P_IM is distributed during contractions, this theory does not account for heterogeneity.This study hypothesises

  13. Perfusion-induced changes in cardiac contractility depend on capillary perfusion.

    Science.gov (United States)

    Dijkman, M A; Heslinga, J W; Sipkema, P; Westerhof, N

    1998-02-01

    The perfusion-induced increase in cardiac contractility (Gregg phenomenon) is especially found in heart preparations that lack adequate coronary autoregulation and thus protection of changes in capillary pressure. We determined in the isolated perfused papillary muscle of the rat whether cardiac muscle contractility is related to capillary perfusion. Oxygen availability of this muscle is independent of internal perfusion, and perfusion may be varied or even stopped without loss of function. Muscles contracted isometrically at 27 degrees C (n = 7). During the control state stepwise increases in perfusion pressure resulted in all muscles in a significant increase in active tension. Muscle diameter always increased with increased perfusion pressure, but muscle segment length was unaffected. Capillary perfusion was then obstructed by plastic microspheres (15 microns). Flow, at a perfusion pressure of 66.6 +/- 26.2 cmH2O, reduced from 17.6 +/- 5.4 microliters/min in the control state to 3.2 +/- 1.3 microliters/min after microspheres. Active tension developed by the muscle in the unperfused condition before microspheres and after microspheres did not differ significantly (-12.8 +/- 29.4% change). After microspheres similar perfusion pressure steps as in control never resulted in an increase in active tension. Even at the two highest perfusion pressures (89.1 +/- 28.4 and 106.5 +/- 31.7 cmH2O) that were applied a significant decrease in active tension was found. We conclude that the Gregg phenomenon is related to capillary perfusion.

  14. Hepatic perfusion during hepatic artery infusion chemotherapy: Evaluation with perfusion CT and perfusion scintigraphy

    International Nuclear Information System (INIS)

    Miller, D.L.; Carrasquillo, J.A.; Lutz, R.J.; Chang, A.E.

    1989-01-01

    The standard method for the evaluation of hepatic perfusion during hepatic artery infusion (HAI) chemotherapy is planar hepatic artery perfusion scintigraphy (HAPS). Planar HAPS was performed with 2 mCi of [99mTc] macroaggregated albumin infused at 1 ml/min and compared with single photon emission CT (SPECT) HAPS and with a new study, CT performed during the slow injection of contrast material through the HAI catheter (HAI-CT). Thirteen patients underwent 16 HAI-CT studies, 14 planar HAPS studies, and 9 SPECT HAPS studies. In 13 of 14 studies (93%) HAI-CT and planar HAPS were in complete agreement as to the perfusion pattern of intrahepatic metastases and normal liver. In nine studies where all modalities were performed, the findings identified by HAI-CT and planar HAPS agreed in all cases, whereas the results of two SPECT scans disagreed with the other studies. With respect to perfusion of individual metastases, 14 of 14 HAI-CT studies, 12 of 13 planar HAPS studies, and 9 of 9 SPECT HAPS studies correctly demonstrated the perfusion status of individual lesions as indicated by the pattern of changes in tumor size determined on CT obtained before and after the perfusion studies. Hepatic artery infusion CT was superior for delineation of individual metastases, particularly small lesions, and for the evaluation of nonperfused portions of the liver. Planar HAPS detected extrahepatic perfusion in four patients, and this was not detected by HAI-CT. We conclude that HAI-CT and scintigraphy are complementary techniques. Hepatic artery infusion CT has advantages for the evaluation of intrahepatic perfusion, and planar HAPS is superior to HAI-CT for the detection of extrahepatic perfusion

  15. A model for post-occlusive reactive hyperemia as measured with laser-Doppler perfusion monitoring

    NARCIS (Netherlands)

    de Mul, FFM; Morales, F; Smit, AJ; Graaff, R

    To facilitate the quantitative analysis of post-occlusive reactive fiyper emia (POR11), measured with laser-Doppler perfusion monitoring (LDPM) on extremities, we present a flow model for the dynamics of the perfusion of the tissue during PORH, based on three parameters: two time constants (tau(1)

  16. A two-stage model for in vivo assessment of brain tumor perfusion and abnormal vascular structure using arterial spin labeling.

    Directory of Open Access Journals (Sweden)

    Patrick W Hales

    Full Text Available The ability to assess brain tumor perfusion and abnormalities in the vascular structure in vivo could provide significant benefits in terms of lesion diagnosis and assessment of treatment response. Arterial spin labeling (ASL has emerged as an increasingly viable methodology for non-invasive assessment of perfusion. Although kinetic models have been developed to describe perfusion in healthy tissue, the dynamic behaviour of the ASL signal in the brain tumor environment has not been extensively studied. We show here that dynamic ASL data acquired in brain tumors displays an increased level of 'biphasic' behaviour, compared to that seen in healthy tissue. A new two-stage model is presented which more accurately describes this behaviour, and provides measurements of perfusion, pre-capillary blood volume fraction and transit time, and capillary bolus arrival time. These biomarkers offer a novel contrast in the tumor and surrounding tissue, and provide a means for measuring tumor perfusion and vascular structural abnormalities in a fully non-invasive manner.

  17. Phosphorus NMR of isolated perfused morris hepatomas

    International Nuclear Information System (INIS)

    Graham, R.A.; Meyer, R.A.; Brown, T.R.; Sauer, L.A.

    1986-01-01

    The authors are developing techniques for the study of perfused solid tumors by NMR. Tissue-isolated solid hepatomas were grown to 1-2 cm diameter as described previously. The arterial supply was isolated and the tumors perfused (0.5 - 1.0 ml/min) in vitro at 25 C with a 15% suspension of red blood cells in Krebs-Henseliet solution. 31 P-NMR spectra were acquired at 162 MHz in a specially-designed NMR probe using a solenoidal coil. Intracellular pH (monitored from the chemical shift of inorganic phosphate) and ATP levels were stable for up to 6 hrs during perfusion. During 30 min of global ischemia, ATP decreased by 75% and pH fell from 7.0 to 6.7. These changes were reversed by 1 hr reperfusion. In addition to ATP and phosphate, the spectra included a large resonance due to phosphomonoesters, as well as peaks consistent with glycerylphosphocholine, glyceryl-phosphoethanolamine, phosphocreatine, NAD, and UDPG. However, the most novel feature of the spectra was the presence of an unidentified peak in the phosphonate region (+ 16.9 ppm). The peak was not present in spectra of muscle, liver, brain, kidney, or fat tissues excised from the same animals. They are presently attempting to identify the compound that gives rise to this peak and to establish its metabolic origin

  18. Evaluating optimal superficial limb perfusion at different angles using non-invasive micro-lightguide spectrophotometry.

    Science.gov (United States)

    Darmanin, Geraldine; Jaggard, Matthew; Hettiaratchy, Shehan; Nanchahal, Jagdeep; Jain, Abhilash

    2013-06-01

    It is common practice to elevate the limbs postoperatively to reduce oedema and hence optimise perfusion and facilitate rehabilitation. However, elevation may be counterproductive as it reduces the mean perfusion pressure. There are no clear data on the optimal position of the limbs even in normal subjects. The optimal position of limbs was investigated in 25 healthy subjects using a non-invasive micro-lightguide spectrophotometry system "O2C", which indirectly measures skin and superficial tissue perfusion through blood flow, oxygen saturation and relative haemoglobin concentration. We found a reduction in skin and superficial tissue blood flow of 17% (p=0.0001) on arm elevation (180° shoulder flexion) as compared to heart level and an increase in skin and superficial tissue blood flow of 25% (p=0.02) on forearm elevation of 45°. Lower limb skin and superficial tissue blood flow decreased by 15% (p=0.004) on elevation to 47 cm and by 70% on dependency (p=0.0001) compared to heart level. However, on elevation of the lower limb there was also a 28% reduction in superficial venous pooling (p=0.0001) compared to heart level. In the normal limb, the position for optimal superficial perfusion of the upper limb is with the arm placed at heart level and forearm at 45°. In the lower limb the optimal position for superficial perfusion would be at heart level. However, some degree of elevation may be useful if there is an element of venous congestion. Copyright © 2013 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  19. Quantitative Assessment of Free Flap Viability with CEUS Using an Integrated Perfusion Software.

    Science.gov (United States)

    Geis, S; Klein, S; Prantl, L; Dolderer, J; Lamby, P; Jung, E-M

    2015-12-01

    New treatment strategies in oncology and trauma surgery lead to an increasing demand for soft tissue reconstruction with free tissue transfer. In previous studies, CEUS was proven to detect early flap failure. The aim of this study was to detect and quantify vascular disturbances after free flap transplantation using a fast integrated perfusion software tool. From 2011 to 2013, 33 patients were examined by one experienced radiologist using CEUS after a bolus injection of 1-2.4 ml of SonoVue(®). Flap perfusion was analysed qualitatively regarding contrast defects or delayed wash-in. Additionally, an integrated semi-quantitative analysis using time-intensity curve analysis (TIC) was performed. TIC analysis of the transplant was conducted on a centimetre-by-centimetre basis up to a penetration depth of 4 cm. The 2 perfusion parameters "Time to PEAK" and "Area under the Curve" were compared in patients without complications vs. patients with minor complications or complete flap loss to figure out significant differences. TtoPk is given in seconds (s) and Area is given in relative units (rU) Results: A regular postoperative process was observed in 26 (79%) patients. In contrast, 5 (15%) patients with partial superficial flap necrosis, 1 patient (3%) with complete flap loss and 1 patient (3%) with haematoma were observed. TtoPk revealed no significant differences, whereas Area revealed significantly lower perfusion values in the corresponding areas in patients with complications. The critical threshold for sufficient flap perfusion was set below 150 rU. In conclusion, CEUS is a mobile and cost-effective opportunity to quantify tissue perfusion and can even be used almost without any restrictions in multi-morbid patients with renal and hepatic failure. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Concentration of (+/-)-propranolol in isolated, perfused lungs of rat.

    Science.gov (United States)

    Dollery, C T; Junod, A F

    1976-01-01

    1 The metabolism and the accumulation of (+/-)-propranolol have been studied in isolated lungs of the rat, perfused with an artificial medium. 2 Little or no metabolism took place during the perfusion periods (up to 10 minutes). 3 Accumulation was observed with high tissue/medium ratios for substrate concentrations of 0.2 muM to 1 mM; there was evidence for saturability, but no real plateau could be seen. The presence of two binding sites with different affinities was established. 4 Cold greatly inhibited the accumulation process at low substrate concentrations, but had no effect at 1 mM propranolol. 5 Inhibition of accumulation was measured in the presence of imipramine, desmethylimipramine, nortryptiline, chlorpromazine and of Na+-free medium. Cocaine, 5-hydroxytryptamine and noradrenaline had no effect. Lidocaine enhanced the accumulation process. Release of previously bound propranolol was accelerated in the presence of propranolol and imipramine, unaffected by a Na+-free medium and decreased by cold and by lidocaine. 6 Experiments on lung tissue slices yielded qualitatively similar results to those obtained with perfused lungs. Ouabain and KCN had no or little effect on propranolol accumulation. PMID:1276542

  1. Spatial relationship between tumor perfusion and endogeneous glucose distribution

    International Nuclear Information System (INIS)

    Schroeder, T.; Larrier, N.; Viglianti, B.; Rabbani, Z.N.; Peltz, C.; Vujascovic, Z.; Dewhirst, M.W.

    2003-01-01

    Earlier studies detecting glucose in tissue and solid tumors by bioluminescence imaging suggested, that glucose distribution patterns may be spatially related to functional vascularity. The purpose of this study was to evaluate this relationship by comparing glucose distribution patterns as determined by bioluminescence imaging to perfusion patterns of endogeneous Hoechst 33342 in rats bearing mammary carcinomas. R 3230 mammary carcinoma cells have been implanted subcutaneously into 7 female Fischer 344 rats. Two months post implantation, after injection of Hoechst 33342 the tumors were removed and snap frozen to conserve metabolite levels. Concomitantly, blood was sampled from the animals for analysis of glucose concentrations using a micodialysis analyzer. Cryosections of the tumors have been prepared, and every slice has been analyzed for both, Hoechst binding by fluorescence microscopy, and for glucose distribution patterns using bioluminescence imaging. In many cases vascular structures could be retrieved by the spatial pattern of glucose distribution. In some cases however, higher glucose concentrations could be found independent from Hoechst signal. On the other hand, regions of high Hoechst signal are not necessarily correlated with high glucose concentrations. When comparing blood and tissue glucose levels, tissue glucose content as measured with bioluminescence imaging (1.9-3.5 mM) is considerably lower than blood glucose (5.6-8.0 mM), demonstrating the expected gradient from blood to tissue. This study demonstrates the feasibility of monitoring glucose gradients in relation to functional vasculature throughout the body, from blood down to tissue or tumor and further, throughout the microenvironment of the solid tumor. Glucose distribution patterns may be an important tool in perfusion studies, e. g. in detecting the direction of blood flow in ex-vivo samples or in estimating glucose consumption rates of tumor cells adjacent to or in between perfused

  2. Evaluation of Microvascular Perfusion and Resuscitation after Severe Injury.

    Science.gov (United States)

    Lee, Yann-Leei L; Simmons, Jon D; Gillespie, Mark N; Alvarez, Diego F; Gonzalez, Richard P; Brevard, Sidney B; Frotan, Mohammad A; Schneider, Andrew M; Richards, William O

    2015-12-01

    Achieving adequate perfusion is a key goal of treatment in severe trauma; however, tissue perfusion has classically been measured by indirect means. Direct visualization of capillary flow has been applied in sepsis, but application of this technology to the trauma population has been limited. The purpose of this investigation was to compare the efficacy of standard indirect measures of perfusion to direct imaging of the sublingual microcirculatory flow during trauma resuscitation. Patients with injury severity scores >15 were serially examined using a handheld sidestream dark-field video microscope. In addition, measurements were also made from healthy volunteers. The De Backer score, a morphometric capillary density score, and total vessel density (TVD) as cumulative vessel area within the image, were calculated using Automated Vascular Analysis (AVA3.0) software. These indices were compared against clinical and laboratory parameters of organ function and systemic metabolic status as well as mortality. Twenty severely injured patients had lower TVD (X = 14.6 ± 0.22 vs 17.66 ± 0.51) and De Backer scores (X = 9.62 ± 0.16 vs 11.55 ± 0.37) compared with healthy controls. These scores best correlated with serum lactate (TVD R(2) = 0.525, De Backer R(2) = 0.576, P trauma patients, and seems to provide real-time assessment of microcirculatory perfusion. This study suggests that in severe trauma, many indirect measurements of perfusion do not correlate with microvascular perfusion. However, visualized perfusion deficiencies do reflect a shift toward anaerobic metabolism.

  3. The alphabet soup of perfusion CT and MR imaging: terminology revisited and clarified in five questions

    International Nuclear Information System (INIS)

    Leiva-Salinas, Carlos; Provenzale, James M.; Kudo, Kohsuke; Sasaki, Makoto; Wintermark, Max

    2012-01-01

    The five questions answered in this article revolve around the different parameters resulting from perfusion imaging processing, and this clarifies the frequently confusing terminology used to describe these parameters. More specifically, the article discusses the different imaging techniques and main mathematical models behind perfusion imaging, reviews the perfusion attributes of brain tissue, and proposes a standardized parameter terminology to facilitate understanding and avoid common misinterpretations. (orig.)

  4. The alphabet soup of perfusion CT and MR imaging: terminology revisited and clarified in five questions

    Energy Technology Data Exchange (ETDEWEB)

    Leiva-Salinas, Carlos [University of Virginia, Department of Radiology, Neuroradiology Division, Charlottesville, VA (United States); Hospital Universitario y Politecnico la Fe, Department of Radiology, Neuroradiology Division, Valencia (Spain); Universidad Autonoma de Barcelona, Department of Medicine, Barcelona (Spain); Provenzale, James M. [Duke University Medical Center, Department of Radiology, Durham, NC (United States); Emory University School of Medicine, Departments of Radiology, Oncology and Biomedical Engineering, Atlanta, GA (United States); Kudo, Kohsuke; Sasaki, Makoto [Iwate Medical University, Division of Ultra-high Field MRI, Institute for Biomedical Sciences, Morioka (Japan); Wintermark, Max [University of Virginia, Department of Radiology, Neuroradiology Division, Charlottesville, VA (United States); University of Virginia Medical Center, Department of Radiology, Neuroradiology Division, 1215 Lee Street-New Hospital, 1st Floor, Room 1011, PO Box 800170, Charlottesville, VA (United States)

    2012-09-15

    The five questions answered in this article revolve around the different parameters resulting from perfusion imaging processing, and this clarifies the frequently confusing terminology used to describe these parameters. More specifically, the article discusses the different imaging techniques and main mathematical models behind perfusion imaging, reviews the perfusion attributes of brain tissue, and proposes a standardized parameter terminology to facilitate understanding and avoid common misinterpretations. (orig.)

  5. Hemodynamic segmentation of brain perfusion images with delay and dispersion effects using an expectation-maximization algorithm.

    Directory of Open Access Journals (Sweden)

    Chia-Feng Lu

    Full Text Available Automatic identification of various perfusion compartments from dynamic susceptibility contrast magnetic resonance brain images can assist in clinical diagnosis and treatment of cerebrovascular diseases. The principle of segmentation methods was based on the clustering of bolus transit-time profiles to discern areas of different tissues. However, the cerebrovascular diseases may result in a delayed and dispersed local perfusion and therefore alter the hemodynamic signal profiles. Assessing the accuracy of the segmentation technique under delayed/dispersed circumstance is critical to accurately evaluate the severity of the vascular disease. In this study, we improved the segmentation method of expectation-maximization algorithm by using the results of hierarchical clustering on whitened perfusion data as initial parameters for a mixture of multivariate Gaussians model. In addition, Monte Carlo simulations were conducted to evaluate the performance of proposed method under different levels of delay, dispersion, and noise of signal profiles in tissue segmentation. The proposed method was used to classify brain tissue types using perfusion data from five normal participants, a patient with unilateral stenosis of the internal carotid artery, and a patient with moyamoya disease. Our results showed that the normal, delayed or dispersed hemodynamics can be well differentiated for patients, and therefore the local arterial input function for impaired tissues can be recognized to minimize the error when estimating the cerebral blood flow. Furthermore, the tissue in the risk of infarct and the tissue with or without the complementary blood supply from the communicating arteries can be identified.

  6. Creation of a Bioengineered Skin Flap Scaffold with a Perfusable Vascular Pedicle.

    Science.gov (United States)

    Jank, Bernhard J; Goverman, Jeremy; Guyette, Jacques P; Charest, Jon M; Randolph, Mark; Gaudette, Glenn R; Gershlak, Joshua R; Purschke, Martin; Javorsky, Emilia; Nazarian, Rosalynn M; Leonard, David A; Cetrulo, Curtis L; Austen, William G; Ott, Harald C

    2017-07-01

    Full-thickness skin loss is a challenging problem due to limited reconstructive options, demanding 75 million surgical procedures annually in the United States. Autologous skin grafting is the gold standard treatment, but results in donor-site morbidity and poor aesthetics. Numerous skin substitutes are available on the market to date, however, none truly functions as full-thickness skin due to lack of a vascular network. The creation of an autologous full-thickness skin analogue with a vascular pedicle would result in a paradigm shift in the management of wounds and in reconstruction of full-thickness skin defects. To create a clinically relevant foundation, we generated an acellular skin flap scaffold (SFS) with a perfusable vascular pedicle of clinically relevant size by perfusion decellularization of porcine fasciocutaneous flaps. We then analyzed the yielded SFS for mechanical properties, biocompatibility, and regenerative potential in vitro and in vivo. Furthermore, we assessed the immunological response using an in vivo model. Finally, we recellularized the vascular compartment of an SFS and reconnected it to a recipient's blood supply to test for perfusability. Perfusion decellularization removed all cellular components with preservation of native extracellular matrix composition and architecture. Biaxial testing revealed preserved mechanical properties. Immunologic response and biocompatibility assessed via implantation and compared with native xenogenic skin and commercially available dermal substitutes revealed rapid neovascularization and complete tissue integration. Composition of infiltrating immune cells showed no evidence of allorejection and resembled the inflammatory phase of wound healing. Implantation into full-thickness skin defects demonstrated good tissue integration and skin regeneration without cicatrization. We have developed a protocol for the generation of an SFS of clinically relevant size, containing a vascular pedicle, which can be

  7. Intrahemispheric Perfusion in Chronic Stroke-Induced Aphasia

    Directory of Open Access Journals (Sweden)

    Cynthia K. Thompson

    2017-01-01

    Full Text Available Stroke-induced alterations in cerebral blood flow (perfusion may contribute to functional language impairments and recovery in chronic aphasia. Using MRI, we examined perfusion in the right and left hemispheres of 35 aphasic and 16 healthy control participants. Across 76 regions (38 per hemisphere, no significant between-subjects differences were found in the left, whereas blood flow in the right was increased in the aphasic compared to the control participants. Region-of-interest (ROI analyses showed a varied pattern of hypo- and hyperperfused regions across hemispheres in the aphasic participants; however, there were no significant correlations between perfusion values and language abilities in these regions. These patterns may reflect autoregulatory changes in blood flow following stroke and/or increases in general cognitive effort, rather than maladaptive language processing. We also examined blood flow in perilesional tissue, finding the greatest hypoperfusion close to the lesion (within 0–6 mm, with greater hypoperfusion in this region compared to more distal regions. In addition, hypoperfusion in this region was significantly correlated with language impairment. These findings underscore the need to consider cerebral perfusion as a factor contributing to language deficits in chronic aphasia as well as recovery of language function.

  8. Blood perfusion in osteomyelitis studied with [15O]water PET in a juvenile porcine model

    DEFF Research Database (Denmark)

    Jødal, Lars; Nielsen, Ole L; Afzelius, Pia

    2017-01-01

    and not quantitative. Quantitative assessment of perfusion could aid in the selection of therapy. A non-invasive, quantitative way to study perfusion is dynamic [15O]water positron emission tomography (PET). We aim to demonstrate that the method can be used for measuring perfusion in OM lesions and hypothesize...... that perfusion will be less elevated in OM lesions than in soft tissue (ST) infection. The study comprised 11 juvenile pigs with haematogenous osteomyelitis induced by injection of Staphylococcus aureus into the right femoral artery 1 week before scanning (in one pig, 2 weeks). The pigs were dynamically PET...

  9. Analysis of blood flow in a third ventricular ependymoma and an olfactory bulb meningioma by usisng perfusion computed tomography

    International Nuclear Information System (INIS)

    Kishimoto, M.; Yamada, K.; Seok, J.S.; Shimizu, J.; Kobayashi, Y.; Akiba, Y.; Morishita, Y.; Iwasa, A.; Iwasaki, T.; Miyake, Y.

    2008-01-01

    Brain perfusion computed tomography (CT) scanning was performed in a mongrel dog and a golden retriever that were diagnosed with third ventricular tumor and olfactory bulb tumor, respectively, by contrast-enhanced CT. The tumors were pathologically diagnosed as ependymoma and meningioma, respectively. Perfusion CT results revealed that the ependymoma in this study had a lower blood flow, higher blood volume, and greater transit time of blood than the adjacent brain tissue. Further, the meningioma in this study had a higher blood flow, higher blood volume, and greater transit time of blood than the adjacent brain tissue. Perfusion CT can potentially be used for the grading of brain tumors and narrowing differential diagnosis, provided the perfusion CT data of animals are accumulated

  10. Chlorine and sodium perfusion and electrolyte balance in human tissue and tumours before and during neutron and photon radiotherapy

    Science.gov (United States)

    Koester, L.; Knopf, K.; Auberger, Th

    1997-08-01

    Radiotherapy with nuclear reactor fission neutrons was applied in 49 cases of pre-treated patients with superficial metastases or relapses from primary carcinoma. Measurements of the decay rates of the radiation-induced radioactivity of , and in the irradiated tissue resulted in values for the simultaneous local kinetics of chlorine and sodium, and in approximate data on the electrolyte masses. The electrolytes were present in non-exchangeable and exchangeable compartments of soft tissue. Exchange times of the intravascular to extravascular turnover and the frequencies of the exchange fractions were determined for a series of irradiations. The results have been interpreted in terms of the mean electrolyte exchange rates, of a standardized functional blood flow, and of the supply capacity of the vascular system. In the average of all cases, the regional perfusion was reduced by about 30% by irradiation up to 14 Gy (equivalent photon dose ) connected with an increase in the non-exchangeable fractions. After fractionated doses higher than 14 Gy, functional blood flow and supply capacity increased to 120%, and fixed electrolytes were removed from the irradiated tissue. Data on electrolyte kinetics and vascularity are compared with the literature.

  11. Quantitative lung perfusion evaluation using Fourier decomposition perfusion MRI.

    Science.gov (United States)

    Kjørstad, Åsmund; Corteville, Dominique M R; Fischer, Andre; Henzler, Thomas; Schmid-Bindert, Gerald; Zöllner, Frank G; Schad, Lothar R

    2014-08-01

    To quantitatively evaluate lung perfusion using Fourier decomposition perfusion MRI. The Fourier decomposition (FD) method is a noninvasive method for assessing ventilation- and perfusion-related information in the lungs, where the perfusion maps in particular have shown promise for clinical use. However, the perfusion maps are nonquantitative and dimensionless, making follow-ups and direct comparisons between patients difficult. We present an approach to obtain physically meaningful and quantifiable perfusion maps using the FD method. The standard FD perfusion images are quantified by comparing the partially blood-filled pixels in the lung parenchyma with the fully blood-filled pixels in the aorta. The percentage of blood in a pixel is then combined with the temporal information, yielding quantitative blood flow values. The values of 10 healthy volunteers are compared with SEEPAGE measurements which have shown high consistency with dynamic contrast enhanced-MRI. All pulmonary blood flow (PBF) values are within the expected range. The two methods are in good agreement (mean difference = 0.2 mL/min/100 mL, mean absolute difference = 11 mL/min/100 mL, mean PBF-FD = 150 mL/min/100 mL, mean PBF-SEEPAGE = 151 mL/min/100 mL). The Bland-Altman plot shows a good spread of values, indicating no systematic bias between the methods. Quantitative lung perfusion can be obtained using the Fourier Decomposition method combined with a small amount of postprocessing. Copyright © 2013 Wiley Periodicals, Inc.

  12. [Effect of hypertonic-hyperoncotic solution infusion on tissue perfusion during surgical treatment of the abdominal aorta].

    Science.gov (United States)

    Soskić, Ljiljana; Davidović, Lazar; Milicić, Biljana; Kocica, Mladen; Kovacević, Natasa; Simić, Tijana

    2007-10-01

    Decreasing of arterial flow below the critical level leads to capillary endothelium edema and to further worsening of tissue perfusion. Hypertonic solution infusion provides mild and short plasma osmolality increasing, while colloidal solutions intensify that effect. The aim of this study was to investigate the effect of hypertonic-hyperoncotic solution (HH) on the organs perfusion during reconstructive surgical procedure on the abdominal aorta (AA). The study included 40 patients submitted to AA reconstruction due to aneurysm or Leriche's syndrome. A clamp was put transversally to the aorta, under the outlets of the renal arterias. According to the solution received when a clamp was on the aorta, the patients were divided into two groups containing 20 patients each: the tested group (A) which received 4 ml/kg of the solution (7.2% NaCl/10% dextran), and the control group (B) which received 0.9% NaCl. The study excluded the patients with the preoperative creatinine level more than 139 micromol/l, and ejection heart fraction less than 40%. The mixed venous blood oxygen saturation increased from 73.3+/-7.33 to 74.95+/-6.19% in the group A, while it decreased from 65.35+/-10.39 to 62.65+/-10.42% in the group B (p = 0.001). The quantity of the provided oxygen in the group A increased significantly from 684.44+/-244.34 to 1362.45+/-2351.01 ml/min, while it decreased from 668.2+/-382.12 to 651.7+/-313.98 ml/min in the group B (p = 0.016). Alveolo-arterial difference in oxygen decreased from 23.12+/-14.74 to 21.1+/-10 mmHg in the group A, while it increased from 23.79+/-15.22 to 26.33+/-13.78 mmHg in the group B (p = 0.05). Satisfactory perfusion of organs during the AA surgery is obtained by using both HH and an isotonic solution. Due to maintaining the optimal values of the minute heart volume, saturation of vein blood blended with oxygen, and al-veolo-arterial difference in oxygen, it is recommended to use HH solution for reanimation of patients in declamping shock.

  13. Renal perfusion scintiscan

    Science.gov (United States)

    ... Radionuclide renal perfusion scan; Perfusion scintiscan - renal; Scintiscan - renal perfusion Images Kidney anatomy Kidney - blood and urine flow Intravenous pyelogram References Rottenberg G, Andi AC. Renal ...

  14. Evaluation of fiberoptic dermofluorometry as a means of clinically assessing tissue perfusion.

    Science.gov (United States)

    Leopold, P W; Chang, B B; Shah, D M; Corson, J D; Shandall, A A; Young, H L; Leather, R P; Karmody, A M

    1987-01-01

    Fiberoptic dermofluorometry (FDF) transcutaneously measures fluorescence, following an intravenous injection of sodium fluorescein (NaFl), which is transmitted along a fiberoptic bundle to a photomultiplier tube and converted into dermofluorescence units (DFU). In five normal subjects studied, the plasma concentration of NaFl peaked at 5-15 minutes before decaying with first order kinetics and corresponding dermofluorescence (DF) rose to a peak between 10-20 minutes before decaying. Peak DF in the head and neck was significantly higher (P less than .001) compared to other skin sites which were similar. Application to patients (n = 16) undergoing successful lower limb revascularization showed a significant (P less than 0.01) improvement in perfusion at the foot level only. The reproducibility of FDF was poor when studied on the control limbs. We conclude that FDF does not, at present, constitute a valid measure of skin perfusion.

  15. Direct 3D bioprinting of perfusable vascular constructs using a blend bioink.

    Science.gov (United States)

    Jia, Weitao; Gungor-Ozkerim, P Selcan; Zhang, Yu Shrike; Yue, Kan; Zhu, Kai; Liu, Wanjun; Pi, Qingment; Byambaa, Batzaya; Dokmeci, Mehmet Remzi; Shin, Su Ryon; Khademhosseini, Ali

    2016-11-01

    Despite the significant technological advancement in tissue engineering, challenges still exist towards the development of complex and fully functional tissue constructs that mimic their natural counterparts. To address these challenges, bioprinting has emerged as an enabling technology to create highly organized three-dimensional (3D) vascular networks within engineered tissue constructs to promote the transport of oxygen, nutrients, and waste products, which can hardly be realized using conventional microfabrication techniques. Here, we report the development of a versatile 3D bioprinting strategy that employs biomimetic biomaterials and an advanced extrusion system to deposit perfusable vascular structures with highly ordered arrangements in a single-step process. In particular, a specially designed cell-responsive bioink consisting of gelatin methacryloyl (GelMA), sodium alginate, and 4-arm poly(ethylene glycol)-tetra-acrylate (PEGTA) was used in combination with a multilayered coaxial extrusion system to achieve direct 3D bioprinting. This blend bioink could be first ionically crosslinked by calcium ions followed by covalent photocrosslinking of GelMA and PEGTA to form stable constructs. The rheological properties of the bioink and the mechanical strengths of the resulting constructs were tuned by the introduction of PEGTA, which facilitated the precise deposition of complex multilayered 3D perfusable hollow tubes. This blend bioink also displayed favorable biological characteristics that supported the spreading and proliferation of encapsulated endothelial and stem cells in the bioprinted constructs, leading to the formation of biologically relevant, highly organized, perfusable vessels. These characteristics make this novel 3D bioprinting technique superior to conventional microfabrication or sacrificial templating approaches for fabrication of the perfusable vasculature. We envision that our advanced bioprinting technology and bioink formulation may also

  16. Ex vivo perfusion of human spleens maintains clearing and processing functions.

    Science.gov (United States)

    Buffet, Pierre A; Milon, Geneviève; Brousse, Valentine; Correas, Jean-Michel; Dousset, Bertrand; Couvelard, Anne; Kianmanesh, Reza; Farges, Olivier; Sauvanet, Alain; Paye, François; Ungeheuer, Marie-Noëlle; Ottone, Catherine; Khun, Huot; Fiette, Laurence; Guigon, Ghislaine; Huerre, Michel; Mercereau-Puijalon, Odile; David, Peter H

    2006-05-01

    The spleen plays a central role in the pathophysiology of several potentially severe diseases such as inherited red cell membrane disorders, hemolytic anemias, and malaria. Research on these diseases is hampered by ethical constraints that limit human spleen tissue explorations. We identified a surgical situation--left splenopancreatectomy for benign pancreas tumors--allowing spleen retrieval at no risk for patients. Ex vivo perfusion of retrieved intact spleens for 4 to 6 hours maintained a preserved parenchymal structure, vascular flow, and metabolic activity. Function preservation was assessed by testing the ability of isolated-perfused spleens to retain Plasmodium falciparum-infected erythrocytes preexposed to the antimalarial drug artesunate (Art-iRBCs). More than 95% of Art-iRBCs were cleared from the perfusate in 2 hours. At each transit through isolated-perfused spleens, parasite remnants were removed from 0.2% to 0.23% of Art-iRBCs, a proportion consistent with the 0.02% to 1% pitting rate previously established in artesunate-treated patients. Histologic analysis showed that more than 90% of Art-iRBCs were retained and processed in the red pulp, providing the first direct evidence of a zone-dependent parasite clearance by the human spleen. Human-specific physiologic or pathophysiologic mechanisms involving clearing or processing functions of the spleen can now be experimentally explored in a human tissue context.

  17. Cardiac tissue engineering

    Directory of Open Access Journals (Sweden)

    MILICA RADISIC

    2005-03-01

    Full Text Available We hypothesized that clinically sized (1-5 mm thick,compact cardiac constructs containing physiologically high density of viable cells (~108 cells/cm3 can be engineered in vitro by using biomimetic culture systems capable of providing oxygen transport and electrical stimulation, designed to mimic those in native heart. This hypothesis was tested by culturing rat heart cells on polymer scaffolds, either with perfusion of culture medium (physiologic interstitial velocity, supplementation of perfluorocarbons, or with electrical stimulation (continuous application of biphasic pulses, 2 ms, 5 V, 1 Hz. Tissue constructs cultured without perfusion or electrical stimulation served as controls. Medium perfusion and addition of perfluorocarbons resulted in compact, thick constructs containing physiologic density of viable, electromechanically coupled cells, in contrast to control constructs which had only a ~100 mm thick peripheral region with functionally connected cells. Electrical stimulation of cultured constructs resulted in markedly improved contractile properties, increased amounts of cardiac proteins, and remarkably well developed ultrastructure (similar to that of native heart as compared to non-stimulated controls. We discuss here the state of the art of cardiac tissue engineering, in light of the biomimetic approach that reproduces in vitro some of the conditions present during normal tissue development.

  18. Technical and theoretical considerations about gradient perfusion culture for epithelia used in tissue engineering, biomaterial testing and pharmaceutical research

    International Nuclear Information System (INIS)

    Minuth, Will W; Strehl, Raimund

    2007-01-01

    Epithelia act as biological barriers, which are exposed to different environments at the luminal and basal sides. To simulate this situation and to improve functional features an in vitro gradient perfusion culture technique was developed in our laboratory. This innovative technique appears to be simple at first sight, but the performance needs practical and theoretical knowledge. To harvest intact epithelia after a long-term gradient culture period of many days, leakage, edge damage and pressure differences in the system have to be avoided so that the epithelial barrier function is maintained continuously. Unexpectedly, one of the major obstacles are micro-injuries in the epithelia caused by gas bubbles, which arise during transportation of the medium or due to respiration of the cultured tissue. Gas bubbles randomly accumulate either at the luminal or basal fluid flow of the gradient perfusion culture container. This phenomenon results in fluid pressure differences between the luminal and basal perfusion compartments of the gradient container, which in turn leads to damage of the barrier function. Consequently, the content of gas bubbles in the transported culture medium has to be minimized. Thus, our technical concept is the reduction of gas bubbles while keeping the content of oxygen constant. To follow this strategy we developed a new type of screw cap for media bottles specifically designed to allow fluid contact only with tube and not with cap material. Furthermore, a gas expander module separates gas bubbles from the liquid phase during transportation of the medium. Finally, a new type of gradient culture container allows a permanent elimination of transported gas bubbles. Application of this innovative equipment optimizes the parallel transportation of fluid in the luminal and basal compartments of a gradient culture container. (topical review)

  19. Technical and theoretical considerations about gradient perfusion culture for epithelia used in tissue engineering, biomaterial testing and pharmaceutical research

    Energy Technology Data Exchange (ETDEWEB)

    Minuth, Will W [Department of Molecular and Cellular Anatomy, University of Regensburg, D-93053 Regensburg, University Street 31 (Germany); Strehl, Raimund [Cellartis AB, S-41346 Goeteborg, Arvid Wallgrens Backe 20 (Sweden)

    2007-06-01

    Epithelia act as biological barriers, which are exposed to different environments at the luminal and basal sides. To simulate this situation and to improve functional features an in vitro gradient perfusion culture technique was developed in our laboratory. This innovative technique appears to be simple at first sight, but the performance needs practical and theoretical knowledge. To harvest intact epithelia after a long-term gradient culture period of many days, leakage, edge damage and pressure differences in the system have to be avoided so that the epithelial barrier function is maintained continuously. Unexpectedly, one of the major obstacles are micro-injuries in the epithelia caused by gas bubbles, which arise during transportation of the medium or due to respiration of the cultured tissue. Gas bubbles randomly accumulate either at the luminal or basal fluid flow of the gradient perfusion culture container. This phenomenon results in fluid pressure differences between the luminal and basal perfusion compartments of the gradient container, which in turn leads to damage of the barrier function. Consequently, the content of gas bubbles in the transported culture medium has to be minimized. Thus, our technical concept is the reduction of gas bubbles while keeping the content of oxygen constant. To follow this strategy we developed a new type of screw cap for media bottles specifically designed to allow fluid contact only with tube and not with cap material. Furthermore, a gas expander module separates gas bubbles from the liquid phase during transportation of the medium. Finally, a new type of gradient culture container allows a permanent elimination of transported gas bubbles. Application of this innovative equipment optimizes the parallel transportation of fluid in the luminal and basal compartments of a gradient culture container. (topical review)

  20. Acute Effects of Lateral Thigh Foam Rolling on Arterial Tissue Perfusion Determined by Spectral Doppler and Power Doppler Ultrasound.

    Science.gov (United States)

    Hotfiel, Thilo; Swoboda, Bernd; Krinner, Sebastian; Grim, Casper; Engelhardt, Martin; Uder, Michael; Heiss, Rafael U

    2017-04-01

    Hotfiel, T, Swoboda, B, Krinner, S, Grim, C, Engelhardt, M, Uder, M, and Heiss, R. Acute effects of lateral thigh foam rolling on arterial tissue perfusion determined by spectral Doppler and power Doppler ultrasound. J Strength Cond Res 31(4): 893-900, 2017-Foam rolling has been developed as a popular intervention in training and rehabilitation. However, evidence on its effects on the cellular and physiological level is lacking. The aim of this study was to assess the effect of foam rolling on arterial blood flow of the lateral thigh. Twenty-one healthy participants (age, 25 ± 2 years; height, 177 ± 9 cm; body weight, 74 ± 9 kg) were recruited from the medical and sports faculty. Arterial tissue perfusion was determined by spectral Doppler and power Doppler ultrasound, represented as peak flow (Vmax), time average velocity maximum (TAMx), time average velocity mean (TAMn), and resistive index (RI), and with semiquantitative grading that was assessed by 4 blindfolded investigators. Measurement values were assessed under resting conditions and twice after foam rolling exercises of the lateral thigh (0 and 30 minutes after intervention). The trochanteric region, mid portion, and distal tibial insertion of the lateral thigh were representative for data analysis. Arterial blood flow of the lateral thigh increased significantly after foam rolling exercises compared with baseline (p ≤ 0.05). We detected a relative increase in Vmax of 73.6% (0 minutes) and 52.7% (30 minutes) (p power Doppler scores at all portions revealed increased average grading of 1.96 after intervention and 2.04 after 30 minutes compared with 0.75 at baseline. Our results may contribute to the understanding of local physiological reactions to self-myofascial release.

  1. A Review of Liver Perfusion Method in Toxicology Studies

    Directory of Open Access Journals (Sweden)

    M karami

    2014-06-01

    Full Text Available Introduction: The isolated perfused rat liver is an accepted method in toxicology studies. The isolated perfused rat liver (IPRL is a useful experimental system for evaluating hepatic function without the influence of other organ systems, undefined plasma constituents, and neural-hormonal effects. Methods: The untreated male rats (180-220gr body weight were anesthetised with ether and then surgery with proper method. The abdomen was opened through a midline and one transversal incision and the bile duct was cannulated. Heparin sodium solution (0.5 ml; 500 U/ml in 0.9% NaCl was injected via the abdominal vena cava to prevent blood clotting. The liver inferior venacava was cannulated with PE-10 tubing and secured. The portal vein was immediately cannulated with an 23gr catheter which was secured and then liver was perfused in situ by Krebs- Henseleit buffer (pH 7.4; saturated with 95% O2 and 5% CO2; 37°C at a flow rate of 20 ml/min for 3hr. Temperature, perfusion pressure, flow rate and perfusion fluid pH were closely monitored during the perfusion. Results: Transferase enzymes (ALT, AST alterations can be widely used as a measure of biochemical alterations in order to assess liver damage due to use of drugs such as isoniazid (INH and animal and plant toxins. Accumulated material in gallbladder are valuable samples to assess the level of Glutathione (GSH. Sections of perfused liver tissue can also be effectively analyzed for pathological aspects such as necrosis, fibrosis, cellularity. Conclusion: The isolated perfused rat liver (IPRL is a useful and Sutible experimental system for evaluating hepatic function. In this system, the effects of adjacent organs, on the liver is minimized

  2. Spectral imaging technique for retinal perfusion detection using confocal scanning laser ophthalmoscopy

    Science.gov (United States)

    Rasta, Seyed Hossein; Manivannan, Ayyakkannu; Sharp, Peter F.

    2012-11-01

    To evaluate retinal perfusion in the human eye, a dual-wavelength confocal scanning laser ophthalmoscope (cSLO) was developed that provides spectral imaging of the fundus using a combination of red (670 nm) and near-infrared (810 nm) wavelengths. The image of the ocular fundus was analyzed to find out if quantitative measurements of the reflectivity of tissue permit assessment of the oxygen perfusion of tissue. We explored problems that affect the reproducibility of patient measurements such as non-uniformity errors on the image. For the first time, an image processing technique was designed and used to minimize the errors of oxygen saturation measurements by illumination correction in retina wide field by increasing SNR. Retinal images were taken from healthy and diabetic retinopathy eyes using the cSLO with a confocal aperture of 100 μm. The ratio image (RI) of red/IR, as oxygen saturation (SO2) index, was calculated for normal eyes. The image correction technique improved the reproducibility of the measurements. Average RI intensity variation of healthy retina tissue was determined within a range of about 5.5%. The capability of the new technique to discriminate oxygenation levels of retinal artery and vein was successfully demonstrated and showed good promise in the diagnosis of the perfused retina.

  3. Comparing CT perfusion with oxygen partial pressure in a rabbit VX2 soft-tissue tumor model

    International Nuclear Information System (INIS)

    Sun Changjin; Li Chao; Lv Haibo

    2014-01-01

    The aim of this study was to evaluate the oxygen partial pressure of the rabbit model of the VX2 tumor using a 64-slice perfusion CT and to compare the results with that obtained using the oxygen microelectrode method. Perfusion CT was performed for 45 successfully constructed rabbit models of a VX2 brain tumor. The perfusion values of the brain tumor region of interest, the blood volume (BV), the time to peak (TTP) and the peak enhancement intensity (PEI) were measured. The results were compared with the partial pressure of oxygen (PO2) of that region of interest obtained using the oxygen microelectrode method. The perfusion values of the brain tumor region of interest in 45 successfully constructed rabbit models of a VX2 brain tumor ranged from 1.3–127.0 (average, 21.1 ± 26.7 ml/min/ml); BV ranged from 1.2–53.5 ml/100g (average, 22.2 ± 13.7 ml/100g); PEI ranged from 8.7–124.6 HU (average, 43.5 ± 28.7 HU); and TTP ranged from 8.2–62.3 s (average, 38.8 ± 14.8 s). The PO2 in the corresponding region ranged from 0.14–47 mmHg (average, 16 ± 14.8 mmHg). The perfusion CT positively correlated with the tumor PO2, which can be used for evaluating the tumor hypoxia in clinical practice. (author)

  4. Comparing CT perfusion with oxygen partial pressure in a rabbit VX2 soft-tissue tumor model.

    Science.gov (United States)

    Sun, Chang-Jin; Li, Chao; Lv, Hai-Bo; Zhao, Cong; Yu, Jin-Ming; Wang, Guang-Hui; Luo, Yun-Xiu; Li, Yan; Xiao, Mingyong; Yin, Jun; Lang, Jin-Yi

    2014-01-01

    The aim of this study was to evaluate the oxygen partial pressure of the rabbit model of the VX2 tumor using a 64-slice perfusion CT and to compare the results with that obtained using the oxygen microelectrode method. Perfusion CT was performed for 45 successfully constructed rabbit models of a VX2 brain tumor. The perfusion values of the brain tumor region of interest, the blood volume (BV), the time to peak (TTP) and the peak enhancement intensity (PEI) were measured. The results were compared with the partial pressure of oxygen (PO2) of that region of interest obtained using the oxygen microelectrode method. The perfusion values of the brain tumor region of interest in 45 successfully constructed rabbit models of a VX2 brain tumor ranged from 1.3-127.0 (average, 21.1 ± 26.7 ml/min/ml); BV ranged from 1.2-53.5 ml/100g (average, 22.2 ± 13.7 ml/100g); PEI ranged from 8.7-124.6 HU (average, 43.5 ± 28.7 HU); and TTP ranged from 8.2-62.3 s (average, 38.8 ± 14.8 s). The PO2 in the corresponding region ranged from 0.14-47 mmHg (average, 16 ± 14.8 mmHg). The perfusion CT positively correlated with the tumor PO2, which can be used for evaluating the tumor hypoxia in clinical practice.

  5. Arterial spin labelling perfusion MRI of breast cancer using FAIR TrueFISP: Initial results

    International Nuclear Information System (INIS)

    Buchbender, S.; Obenauer, S.; Mohrmann, S.; Martirosian, P.; Buchbender, C.; Miese, F.R.; Wittsack, H.J.; Miekley, M.; Antoch, G.; Lanzman, R.S.

    2013-01-01

    Aim: To assess the feasibility of an unenhanced, flow-sensitive, alternating inversion recovery-balanced steady-state free precession (FAIR TrueFISP) arterial spin labelling (ASL) magnetic resonance imaging (MRI) technique for quantification of breast cancer perfusion. Materials and methods: Eighteen untreated breast tumour patients (mean age 53 ± 17 years, range 30–68 years) and four healthy controls (mean age 51 ± 14 years, range 33–68 years) were enrolled in this study and were imaged using a clinical 1.5 T MRI machine. Perfusion measurements were performed using a coronal single-section ASL FAIR TrueFISP technique in addition to a routine breast MRI examination. T1 relaxation time of normal breast parenchyma was determined in four healthy volunteers using the variable flip angle approach. The definitive diagnosis was obtained at histology after biopsy or surgery and was available for all patients. Results: ASL perfusion was successfully acquired in 13 of 18 tumour patients and in all healthy controls. The mean ASL perfusion of invasive ductal carcinoma tissue was significantly higher (88.2 ± 39.5 ml/100 g/min) compared to ASL perfusion of normal breast parenchyma (24.9 ± 12.7 ml/100 g/min; p < 0.05) and invasive lobular carcinoma (30.5 ± 4.3 ml/100 g/min; p < 0.05). No significant difference was found between the mean ASL perfusion of normal breast parenchyma and invasive lobular carcinoma tissue (p = 0.97). Conclusion: ASL MRI enables quantification of breast cancer perfusion without the use of contrast material. However, its impact on diagnosis and therapy management of breast tumours has to be evaluated in larger patient studies

  6. Non-invasive perfusion imaging by modified STAR using asymmetric inversion slabs (ASTAR)

    International Nuclear Information System (INIS)

    Kimura, Tokunori

    2000-01-01

    Arterial spin labeling (ASL) such as STAR, EPISTAR, and FAIR have been used as imaging techniques of tissue perfusion and blood vessels (in MRA). We have developed 'ASTAR', a modified version of STAR by using asymmetric inversion slabs. ASTAR solves the problems of suppression of venous inflow and subtraction error of stationary tissue signal caused by the imbalance of signal variations. The signal variations are dependent on MT effects. In order to avoid overlapping the control slab to the tissue (including large veins), the control and tag slabs are arranged asymmetrically to preserve the same offset of modulation frequency. We evaluated both the subtraction error caused by the MT effects, and the imperfection of an IR slab using a stationary phantom. We then measured the vessel signal on the brain of a volunteer, using the above methods. Two indexes were used for the evaluation: ASL signal to control signal ratio (ASLR [%]=100*deltaS/S cont ) and ASL signal to noise ratio (ASLNR=delatS/Noise) where deltaS=|S cont -S tag |. Phantom study: each ASLR and ASLNR between ASTAR and EPISTAR was comparable and showed a decrease in noise signal level. This means that the ASL signal from the stationary tissue with an imbalance in MT effects and the imperfection in inversion slab profiles were cancelled out almost perfectly. When calculating CBF, ASLR for zero perfusion stationary tissue should be below 0.1%. We were able to satisfy this requirement in our ASTAR experiment. ASLR and ASLNR in FAIR were 40% larger than in EPISTAR and ASTAR. Volunteer brain study: compared with each ASL image, the MT effects were cancelled out in EPISTAR and ASTAR. Veins (sagittal sinus etc) disappeared in STAR and ASTAR, but were visible in EPISTAR and FAIR. Perfusion signals were similar in ASTAR and EPISTAR, indicating that both cancellation of MT effects and venous inflow from the opposite side of the tag were suppressed in ASTAR. In conclusion, ASTAR is a practical method to image blood

  7. Brain perfusion CT in acute stroke: current status

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, Matthias E-mail: matthias.koenig@ruhr-uni-bochum.de

    2003-03-01

    Dynamic perfusion CT has become a widely accepted imaging modality for the diagnostic workup of acute stroke patients. Although compared with standard spiral CT the use of multislice CT has broadened the range from which perfusion data may be derived in a single scan run. The advent of multidetector row technology has not really overcome the limited 3D capability of this technique. Multidetector CT angiography (CTA) of the cerebral arteries may in part compensate for this by providing additional information about the cerebrovascular status. This article describes the basics of cerebral contrast bolus scanning with a special focus on optimization of contrast/noise in order to ensure high quality perfusion maps. Dedicated scan protocols including low tube voltage (80 kV) as well as the use of highly concentrated contrast media are amongst the requirements to achieve optimum contrast signal from the short bolus passage through the brain. Advanced pre and postprocessing algorithms may help reduce the noise level, which may become critical in unconscious stroke victims. Two theoretical concepts have been described for the calculation of tissue perfusion from contrast bolus studies, both of which can be equally employed for brain perfusion imaging. For each perfusion model there are some profound limitations regarding the validity of perfusion values derived from ischemic brain areas. This makes the use of absolute quantitative cerebral blood flow (CBF) values for the discrimination of the infarct core from periinfarct ischemia questionable. Multiparameter imaging using maps of CBF, cerebral blood volume (CBV), and a time parameter of the local bolus transit enables analyzing of the cerebral perfusion status in detail. Perfusion CT exceeds plain CT in depicting cerebral hypoperfusion at its earliest stage yielding a sensitivity of about 90% for the detection of embolic and hemodynamic lesions within cerebral hemispheres. Qualitative assessment of brain perfusion can be

  8. Normal myocardial perfusion imaging in the presence of significant coronary artery stenosis

    International Nuclear Information System (INIS)

    Tian Yueqin; He Zuoxiang; Fang Wei; Yang Minfu; Shen Rui

    2007-01-01

    Objective: The aim of this study was to investigate the factors which might result in normal myocardial perfusion imaging in the presence of significant coronary artery stenosis. Methods: One hundred and thirty-three patients [mean age of (59±10) years, 98 men, 35 women] who underwent coronary angiography and myocardial perfusion SPECT were retrospectively analyzed. Results: Forty-six (35%) patients performed adequate bicycle exercise testing and achieved more than 85% of their predicted maximal heart rates; while 87 (65%) patients did not. Eighty-four (63%) patients had single coronary stenosis, 31(23%) two-vessel and 17(13%) three-vessel diseases. The difference in stenosis severity among the vessels in 13 (76%) cases with three-vessel diseases was not more than 20%. There were totally 202 coronary artery stenosis: 93 (46%) in left anterior descending coronary artery (LAD), 52 (26%) left circumflex coronary artery (LCX), 52(26% ) right coronary artery (RCA) and 5 (2%) left main coronary artery (LM) disease. Eighty-six(43%) vessels had 50%-70% stenosis, 100 (49%) >70%-90% and 16(8% )more than 90%. Conclusion: Normal myocardial perfusion imaging with significant coronary artery stenosis can probably due to inadequate exercise, single vessel disease and mild to moderate stenotic lesion. (authors)

  9. Diffusion and perfusion imaging of bone marrow

    International Nuclear Information System (INIS)

    Biffar, Andreas; Dietrich, Olaf; Sourbron, Steven; Duerr, Hans-Roland; Reiser, Maximilian F.; Baur-Melnyk, Andrea

    2010-01-01

    In diffusion-weighted magnetic resonance imaging (DWI), the observed MRI signal intensity is attenuated by the self-diffusion of water molecules. DWI provides information about the microscopic structure and organization of a biological tissue, since the extent and orientation of molecular motion is influenced by these tissue properties. The most common method to measure perfusion in the body using MRI is T1-weighted dynamic contrast enhancement (DCE-MRI). The analysis of DCE-MRI data allows determining the perfusion and permeability of a biological tissue. DWI as well as DCE-MRI are established techniques in MRI of the brain, while significantly fewer studies have been published in body imaging. In recent years, both techniques have been applied successfully in healthy bone marrow as well as for the characterization of bone marrow alterations or lesions; e.g., DWI has been used in particular for the differentiation of benign and malignant vertebral compression fractures. In this review article, firstly a short introduction to diffusion-weighted and dynamic contrast-enhanced MRI is given. Non-quantitative and quantitative approaches for the analysis of DWI and semiquantitative and quantitative approaches for the analysis of DCE-MRI are introduced. Afterwards a detailed overview of the results of both techniques in healthy bone marrow and their applications for the diagnosis of various bone-marrow pathologies, like osteoporosis, bone tumors, and vertebral compression fractures are described.

  10. Dosimetry in myocardial perfusion imaging

    Energy Technology Data Exchange (ETDEWEB)

    Toledo, Janine M.; Trindade, Bruno; Ribeiro, Tarcisio P.C. [Universidade Federal de Minas Gerais (DEN/UFMG), Belo Horizonte (Brazil). Dept. de Engenharia Nuclear. Programa de Pos-Graduacao em Ciencias e Tecnicas Nucleares

    2011-07-01

    This paper conducts a dosimetric investigation on the myocardial perfusion image protocol, together with a literature reviewing, motivated by the significant statistic increasing on mortality, morbidity and disability associated with cardiovascular disease, surpassing infectious diseases. Nuclear Cardiology plays a role n the diagnostic functional evaluation of the heart and in the prognostic of patients with suspected or known cardiac ischemia. In the context of unstable myocardial ischemic syndrome, myocardial perfusion scintigraphy is a non-invasive procedure performed by administering a radiopharmaceutical targeted to the heart. As tool for this study are that the images obtained by thoracic angiotomography and abdominal aorta as a anatomic and functional information for model reproduction in SISCODES - System of Codes for Absorbed Dose Calculations based on Stochastic Methods. Data were manipulated in order to create a voxel computational model of the heart to be running in MCNP - Monte Carlo Neutron Particle Code. . It was assumed a homogeneous distribution of Tl-201 in cardiac muscle. Simulations of the transport of particles through the voxel and the interaction with the heart tissue were performed. As a result, the isodose curves in the heart model are displayed as well as the dose versus volume histogram of the heart muscle. We conclude that the present computational tools can generate doses distributed in myocardial perfusion. (author)

  11. Dosimetry in myocardial perfusion imaging

    International Nuclear Information System (INIS)

    Toledo, Janine M.; Trindade, Bruno; Ribeiro, Tarcisio P.C.

    2011-01-01

    This paper conducts a dosimetric investigation on the myocardial perfusion image protocol, together with a literature reviewing, motivated by the significant statistic increasing on mortality, morbidity and disability associated with cardiovascular disease, surpassing infectious diseases. Nuclear Cardiology plays a role n the diagnostic functional evaluation of the heart and in the prognostic of patients with suspected or known cardiac ischemia. In the context of unstable myocardial ischemic syndrome, myocardial perfusion scintigraphy is a non-invasive procedure performed by administering a radiopharmaceutical targeted to the heart. As tool for this study are that the images obtained by thoracic angiotomography and abdominal aorta as a anatomic and functional information for model reproduction in SISCODES - System of Codes for Absorbed Dose Calculations based on Stochastic Methods. Data were manipulated in order to create a voxel computational model of the heart to be running in MCNP - Monte Carlo Neutron Particle Code. . It was assumed a homogeneous distribution of Tl-201 in cardiac muscle. Simulations of the transport of particles through the voxel and the interaction with the heart tissue were performed. As a result, the isodose curves in the heart model are displayed as well as the dose versus volume histogram of the heart muscle. We conclude that the present computational tools can generate doses distributed in myocardial perfusion. (author)

  12. Radiation exposure to surgical staff during hyperthermic isolated limb perfusion with 99m Technetium labeled red blood cells

    DEFF Research Database (Denmark)

    Kristoffersen, Ulrik Sloth; Straalman, Kristina; Schmidt, Grethe

    2009-01-01

    PURPOSE: Hyperthermic isolated limb perfusion (HILP) is an effective method in the treatment of recurrent melanomas and soft tissue sarcomas. To avoid systemic toxicity, leakage from the limb perfusate into the systemic circulation is real-time monitored by administration of a radioactive agent...

  13. Is correction necessary when clinically determining quantitative cerebral perfusion parameters from multi-slice dynamic susceptibility contrast MR studies?

    International Nuclear Information System (INIS)

    Salluzzi, M; Frayne, R; Smith, M R

    2006-01-01

    Several groups have modified the standard singular value decomposition (SVD) algorithm to produce delay-insensitive cerebral blood flow (CBF) estimates from dynamic susceptibility contrast (DSC) perfusion studies. However, new dependences of CBF estimates on bolus arrival times and slice position in multi-slice studies have been recently recognized. These conflicting findings can be reconciled by accounting for several experimental and algorithmic factors. Using simulation and clinical studies, the non-simultaneous measurement of arterial and tissue concentration curves (relative slice position) in a multi-slice study is shown to affect time-related perfusion parameters, e.g. arterial-tissue-delay measurements. However, the current clinical impact of relative slice position on amplitude-related perfusion parameters, e.g. CBF, can be expected to be small unless any of the following conditions are present individually or in combination: (a) high concentration curve signal-to-noise ratios, (b) small tissue mean transit times, (c) narrow arterial input functions or (d) low temporal resolution of the DSC image sequence. Recent improvements in magnetic resonance (MR) technology can easily be expected to lead to scenarios where these effects become increasingly important sources of inaccuracy for all perfusion parameter estimates. We show that using Fourier interpolated (high temporal resolution) residue functions reduces the systematic error of the perfusion parameters obtained from multi-slice studies

  14. Whole-organ perfusion of the pancreas using dynamic volume CT in patients with primary pancreas carcinoma: acquisition technique, post-processing and initial results

    International Nuclear Information System (INIS)

    Kandel, Sonja; Kloeters, Christian; Meyer, Henning; Hein, Patrick; Rogalla, Patrik; Hilbig, Andreas

    2009-01-01

    The purpose of this study was to evaluate a whole-organ perfusion protocol of the pancreas in patients with primary pancreas carcinoma and to analyse perfusion differences between normal and diseased pancreatic tissue. Thirty patients with primary pancreatic malignancy were imaged on a 320-slice CT unit. Twenty-nine cancers were histologically proven. CT data acquisition was started manually after contrast-material injection (8 ml/s, 350 mg iodine/ml) and dynamic density measurements in the right ventricle. After image registration, perfusion was determined with the gradient-relationship technique and volume regions-of-interest were defined for perfusion measurements. Contrast time-density curves and perfusion maps were generated. Statistical analysis was performed using the Kolmogorov-Smirnov test for analysis of normal distribution and Kruskal-Wallis test (nonparametric ANOVA) with Bonferroni correction for multiple stacked comparisons. In all 30 patients the entire pancreas was imaged, and registration could be completed in all cases. Perfusion of pancreatic carcinomas was significantly lower than of normal pancreatic tissue (P < 0.001) and could be visualized on colored perfusion maps. The 320-slice CT allows complete dynamic visualization of the pancreas and enables calculation of whole-organ perfusion maps. Perfusion imaging carries the potential to improve detection of pancreatic cancers due to the perfusion differences. (orig.)

  15. The advantage of high relaxivity contrast agents in brain perfusion

    International Nuclear Information System (INIS)

    Cotton, F.; Hermier, M.

    2006-01-01

    Accurate MRI characterization of brain lesions is critical for planning therapeutic strategy, assessing prognosis and monitoring response to therapy. Conventional MRI with gadolinium-based contrast agents is useful for the evaluation of brain lesions, but this approach primarily depicts areas of disruption of the blood-brain barrier (BBB) rather than tissue perfusion. Advanced MR imaging techniques such as dynamic contrast agent-enhanced perfusion MRI provide physiological information that complements the anatomic data available from conventional MRI. We evaluated brain perfusion imaging with gadobenate dimeglumine (Gd-BOPTA, MultiHance; Bracco Imaging, Milan, Italy). The contrast-enhanced perfusion technique was performed on a Philips Intera 1.5-T MR system. The technique used to obtain perfusion images was dynamic susceptibility contrast-enhanced MRI, which is highly sensitive to T2* changes. Combined with PRESTO perfusion imaging, SENSE is applied to double the temporal resolution, thereby improving the signal intensity curve fit and, accordingly, the accuracy of the derived parametric images. MultiHance is the first gadolinium MR contrast agent with significantly higher T1 and T2 relaxivities than conventional MR contrast agents. The higher T1 relaxivity, and therefore better contrast-enhanced T1-weighted imaging, leads to significantly improved detection of BBB breakdown and hence improved brain tumor conspicuity and delineation. The higher T2 relaxivity allows high-quality T2*-weighted perfusion MRI and the derivation of good quality relative cerebral blood volume (rCBV) maps. We determined the value of MultiHance for enhanced T2*-weighted perfusion imaging of histologically proven (by surgery or stereotaxic biopsy) intraaxial brain tumors (n=80), multiple sclerosis lesions (n=10), abscesses (n=4), neurolupus (n=15) and stroke (n=16). All the procedures carried out were safe and no adverse events occurred. The acquired perfusion images were of good quality in

  16. Near infrared spectroscopy for controlling the quality of distal leg perfusion in remote access cardiopulmonary bypass.

    Science.gov (United States)

    Schachner, Thomas; Bonaros, Nikolaos; Bonatti, Johannes; Kolbitsch, Christian

    2008-12-01

    The prevention of leg ischemia is necessary in all patients undergoing femoral artery cannulation for extracorporeal circulation. Near infrared spectroscopy (NIRS) is an established non-invasive method for measuring tissue oxygen saturation. Ten patients underwent robotically assisted endoscopic coronary surgery or ASD repair on the arrested heart using aortic endo-occlusion catheters. They were monitored by transcutaneous NIRS (placed on both lower legs) for quality control of distal leg perfusion during femoral access cardiopulmonary bypass. The baseline NIRS values were 61 (52-80) on the cannulated side versus 70 (53-80) on the contralateral leg (p=n.s.). During clamping of the femoral artery for installation of the remote access perfusion system the tissue oxygen saturation dropped to 38 (18-58) (p=0.001 vs baseline) while it remained stable on the contralateral leg. After successful implantation of the distal leg perfusion the NIRS values normalized to similar amounts on both legs. We conclude that transcutaneous NIRS of the lower legs might be a useful non-invasive tool for monitoring leg perfusion in patients undergoing extracorporeal circulation via the femoral vessels.

  17. A capillary-based perfusion phantom for simulation of brain perfusion for MRI; Ein kapillarbasiertes Phantom zur Simulation der Gehirnperfusion mit der Magnet-Resonanz-Tomografie

    Energy Technology Data Exchange (ETDEWEB)

    Maciak, A.; Kronfeld, A.; Mueller-Forell, W. [Universitaetsklinikum Mainz (Germany). Inst. fuer Neuroradiologie; Wille, C. [Fachhochschule Bingen (Germany). Inst. fuer Informatik; Kempski, O. [Universitaetsklinikum Mainz (Germany). Inst. fuer Neurochirurgische Pathophysiologie; Stoeter, P. [CEDIMAT, Santo Domingo (Dominican Republic). Inst. of Neuroradiology

    2010-10-15

    Purpose: The measurement of the CBF is a non-standardized procedure and there are no reliable gold standards. This abstract shows a capillary-based perfusion-phantom for CE-DSC-MRI. It has equivalent flow properties to those within the tissue capillary system of the human brain and allows the validation of the Siemens Perfusion (MR) software. Materials and Methods: The perfusion phantom consists of a dialyzer for the simulation of the capillary system, a feeding tube for simulation of the AIF and a pulsatile pump for simulation of the heart. Using this perfusion phantom, the exact determination of the gold standard CBF due to the well-known geometry of the phantom is easy. It was validated based on different perfusion measurements. These measurements were investigated with standard software (Siemens Perfusion MR). The software determined the CBF within the capillary system. Based on this CBF, a comparison to the gold standard was made with several different flow speeds. After AIF selection, a total of 726 CBF data points were automatically extracted by the software. Results: This results in a comparison of the gold standard CBF to these 726 CBF values. Therefore, a reproducible and reliable deviation estimation between gold standard CBF and measured CBF using the software was computed. It can be shown that the deviation between gold standard and software-based evaluation ranges between 1 and 31 %. Conclusion: There is no significance for any correlation between flow speed and amount of deviation. The mean measured CBF is 11.4 % higher than the gold standard CBF (p-value < 0.001). Using this kind of perfusion-phantom, the validation of different software systems allows reliable conclusions about their quality. (orig.)

  18. The utility of first-pass perfusion CT in hyperacute ischemic stroke: early experience

    International Nuclear Information System (INIS)

    Lee, Tae Jin; Lee, Myeong Sub; Kim, Myung Soon; Hong, In Soo; Lee, Young Han; Lee, Ji Yong; Whang, Kum

    2003-01-01

    To evaluate the findings of first-pass perfusion CT in hyperacute stroke patients and to determine the relationship between a perfusion map and final infarct outcome. Thirty-five patients admitted with ischemic stroke within six hours of the onset of symptoms underwent conventional cerebral CT immediately followed by first-pass perfusion CT. Nineteen underwent follow-up CT or MRI, and three types of dynamic perfusion map-cerebral blood flow (CBF), cerebral blood volume (CBV) and mean transit time (MTT) - were evaluated by two radiologists. In these 19 patients, initial perfusion maps correlated with final infarct size, determined during follow-up studies. In all 35 patients, major large vessel perfusion abnormalities [middle cerebral artery - MCA MCA and anterior cerebral artery - ACA (n=2); posterior cerebral artery - PCA (n=8)] were detected. On first-pass perfusion maps depicting CBF and MTT, all lesions were detected, and CBF and delayed MTT values were recorded. CBV maps showed variable findings. In all 19 patients who were followed up, the final infarct size of perfusion abnormalities was less than that depicted on CBF and MTT maps, and similar to or much greater than that seen on CBV maps. First-pass perfusion CT scanning is a practical, rapid and advanced imaging technique. In hyperacute stroke patients, it provides important and reliable hemodynamic information as to which brain tissue is salvageable by thrombolytic therapy, and predicts outcome of such treatment

  19. Skin Blood Perfusion and Cellular Response to Insertion of Insulin Pen Needles With Different Diameters

    DEFF Research Database (Denmark)

    Præstmark, Kezia Ann; Stallknecht, Bente Merete; Bo Jensen, Casper

    2014-01-01

    skin blood perfusion response around needle insertion sites. Three common sized pen needles of 28G, 30G, and 32G as well as hooked 32G needles, were inserted into the neck skin of pigs and then removed. Laser Speckle Contrast Analysis was used to measure skin blood perfusion for 20 minutes after...... blood perfusion recording and grouped according to needle type, skin blood perfusion response relates to needle diameter. The response was significantly higher after insertions with 28G and hooked 32G needles than with 30G (P ..., but there was a trend of an increased response with increasing needle diameter. Skin blood perfusion response to pen needle insertions rank according to needle diameter, and the tissue response caused by hooked 32G needles corresponds to that of 28G needles. The relation between needle diameter and trauma when...

  20. Intra-voxel incoherent motion perfusion MR Imaging: a wake-up call

    Energy Technology Data Exchange (ETDEWEB)

    Le Bihan, D. [CEA Saclay, DSV, I2BM, F-91191 Gif Sur Yvette (France)

    2008-07-01

    This work gives the results of several studies made by different authors on IVIM MR Imaging. It appears that there are genuine potential applications for IVIM MR imaging. Perfusion is a very important surrogate marker of many physiologic or pathologic processes. MR imaging perfusion parameters can be obtained by using gadolinium-based contrast agents, either injected as a bolus (to determine blood flow, transit times, etc) or in a steady-state mode (to address blood volume, vessel permeability, etc). With the rising concern of nephrogenic systemic fibrosis, some patients cannot be examined with such an approach. IVIM MR imaging may then appear as an interesting alternative to provide crucial clues on perfusion in tissues, such as the kidneys, the liver, or even the placenta during pregnancy. (O.M.)

  1. Intra-voxel incoherent motion perfusion MR Imaging: a wake-up call

    International Nuclear Information System (INIS)

    Le Bihan, D.

    2008-01-01

    This work gives the results of several studies made by different authors on IVIM MR Imaging. It appears that there are genuine potential applications for IVIM MR imaging. Perfusion is a very important surrogate marker of many physiologic or pathologic processes. MR imaging perfusion parameters can be obtained by using gadolinium-based contrast agents, either injected as a bolus (to determine blood flow, transit times, etc) or in a steady-state mode (to address blood volume, vessel permeability, etc). With the rising concern of nephrogenic systemic fibrosis, some patients cannot be examined with such an approach. IVIM MR imaging may then appear as an interesting alternative to provide crucial clues on perfusion in tissues, such as the kidneys, the liver, or even the placenta during pregnancy. (O.M.)

  2. Intrinsic regulation of blood flow in adipose tissue

    DEFF Research Database (Denmark)

    Henriksen, O; Nielsen, Steen Levin; Paaske, W

    1976-01-01

    Previous studies on intact human subcutaneous tissue have shown, that blood flow remains constant during minor changes in perfusion pressure. This so-called autoregulatory response has not been demonstrable in isolated preparations of adipose tissue. In the present study on isolated, denervated...... subcutaneous tissue in female rabbits only 2 of 12 expts. revealed an autoregulatory response during reduction in arterial perfusion pressure. Effluent blood flow from the tissue in the control state was 15.5 ml/100 g-min (S.D. 6.4, n = 12) corresponding to slight vasodilatation of the exposed tissue...... vasoconstriction with pronounced flow reduction. These two reactions may be important for local regulation of blood flow in subcutaneous tissue during orthostatic changes in arterial and venous pressure. It is concluded that the response in adipose tissue to changes in arterial pressure (autoregulation), venous...

  3. The isolated perfused human skin flap model: A missing link in skin penetration studies?

    Science.gov (United States)

    Ternullo, Selenia; de Weerd, Louis; Flaten, Gøril Eide; Holsæter, Ann Mari; Škalko-Basnet, Nataša

    2017-01-01

    Development of effective (trans)dermal drug delivery systems requires reliable skin models to evaluate skin drug penetration. The isolated perfused human skin flap remains metabolically active tissue for up to 6h during in vitro perfusion. We introduce the isolated perfused human skin flap as a close-to-in vivo skin penetration model. To validate the model's ability to evaluate skin drug penetration the solutions of a hydrophilic (calcein) and a lipophilic (rhodamine) fluorescence marker were applied. The skin flaps were perfused with modified Krebs-Henseleit buffer (pH7.4). Infrared technology was used to monitor perfusion and to select a well-perfused skin area for administration of the markers. Flap perfusion and physiological parameters were maintained constant during the 6h experiments and the amount of markers in the perfusate was determined. Calcein was detected in the perfusate, whereas rhodamine was not detectable. Confocal images of skin cross-sections shoved that calcein was uniformly distributed through the skin, whereas rhodamine accumulated in the stratum corneum. For comparison, the penetration of both markers was evaluated on ex vivo human skin, pig skin and cellophane membrane. The proposed perfused flap model enabled us to distinguish between the penetrations of the two markers and could be a promising close-to-in vivo tool in skin penetration studies and optimization of formulations destined for skin administration. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Acute stroke: automatic perfusion lesion outlining using level sets.

    Science.gov (United States)

    Mouridsen, Kim; Nagenthiraja, Kartheeban; Jónsdóttir, Kristjana Ýr; Ribe, Lars R; Neumann, Anders B; Hjort, Niels; Østergaard, Leif

    2013-11-01

    To develop a user-independent algorithm for the delineation of hypoperfused tissue on perfusion-weighted images and evaluate its performance relative to a standard threshold method in simulated data, as well as in acute stroke patients. The study was approved by the local ethics committee, and patients gave written informed consent prior to their inclusion in the study. The algorithm identifies hypoperfused tissue in mean transit time maps by simultaneously minimizing the mean square error between individual and mean perfusion values inside and outside a smooth boundary. In 14 acute stroke patients, volumetric agreement between automated outlines and manual outlines determined in consensus among four neuroradiologists was assessed with Bland-Altman analysis, while spatial agreement was quantified by using lesion overlap relative to mean lesion volume (Dice coefficient). Performance improvement relative to a standard threshold approach was tested with the Wilcoxon signed rank test. The mean difference in lesion volume between automated outlines and manual outlines was -9.0 mL ± 44.5 (standard deviation). The lowest mean volume difference for the threshold approach was -25.8 mL ± 88.2. A significantly higher Dice coefficient was observed with the algorithm (0.71; interquartile range [IQR], 0.42-0.75) compared with the threshold approach (0.50; IQR, 0.27- 0.57; P , .001). The corresponding agreement among experts was 0.79 (IQR, 0.69-0.83). The perfusion lesions outlined by the automated algorithm agreed well with those defined manually in consensus by four experts and were superior to those obtained by using the standard threshold approach. This user-independent algorithm may improve the assessment of perfusion images as part of acute stroke treatment. http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.13121622/-/DC1. RSNA, 2013

  5. Perfusion and diffusion characteristics of cervical cancer based on intravoxel incoherent motion MR imaging-a pilot study

    International Nuclear Information System (INIS)

    Lee, Elaine Yuen Phin; Yu, Xue; Khong, Pek-Lan; Chu, Mandy Man Yee; Ngan, Hextan Yuen Sheung; Siu, Steven Wai Kwan; Soong, Inda Sung; Chan, Queenie

    2014-01-01

    To investigate the tissue characteristics of cervical cancer based on the intravoxel incoherent motion (IVIM) model and to assess the IVIM parameters in tissue differentiation in the female pelvis. Sixteen treatment-naive cervical cancer and 17 age-matched healthy subjects were prospectively recruited for diffusion-weighted (b = 0-1,000 s/mm 2 ) and standard pelvic MRI. Bi-exponential analysis was performed to derive the perfusion parameters f (perfusion fraction) and D* (pseudodiffusion coefficient) as well as the diffusion parameter D (true molecular diffusion coefficient) in cervical cancer (n = 16), normal cervix (n = 17), myometrium (n = 33) and leiomyoma (n = 14). Apparent diffusion coefficient (ADC) was calculated. Kruskal-Wallis test and receiver operating characteristics (ROC) curves were used. Cervical cancer had the lowest f (14.9 ± 2.6 %) and was significantly different from normal cervix and leiomyoma (p -3 mm2/s) was lowest in cervical cancer and was significantly different from normal cervix and myometrium (p -3 mm 2 /s and ADC -3 mm 2 /s could differentiate cervical cancer from non-malignant tissues (AUC 0.773-0.908). Cervical cancer has low perfusion and diffusion IVIM characteristics with promising potential for tissue differentiation. (orig.)

  6. Simultaneous measurement of pO2 and perfusion in the rabbit kidney in vivo.

    Science.gov (United States)

    O'Connor, Paul M; Anderson, Warwick P; Kett, Michelle M; Evans, Roger G

    2007-01-01

    Recently, a combined probe has been developed capable of simultaneous measurement of local tissue pO2 (fluorescence oximetry) and microvascular perfusion (laser Doppler flux) within the same local region. The aim of the current study was to test the utility of these combined probes to measure pO2 and perfusion in the kidney. Studies were performed in anesthetized, artificially ventilated rabbits (n=7). Baseline measurements of renal medullary perfusion and pO2 obtained using combined probes (537 +/- 110 units & 28.7 +/- 6.l mmHg, respectively) were indistinguishable from those obtained using independent probes (435 +/- 102 units & 26.9 +/- 6.4 mmHg). Baseline measurements of renal cortical pO2 were also similar between combined (9.7 +/- 1.6 mmHg) and independent probes (9.5 +/- 2.3 mmHg). Baseline levels of cortical perfusion however, were significantly greater when measured using independent probes (1130 +/- 114 units) compared to combined probes (622 +/- 59 units; P pO2 resulting from graded stimulation of the renal nerves were not significantly different when measured using combined probes to those obtained using independent probes. We conclude that combined probes are equally suitable to independent probes for tissue pO2 and microvascular perfusion measurement in the kidney. Our results raise some concerns regarding the accuracy of these OxyLite fluorescence probes for pO2 measurement in the kidney, particularly within the renal cortex.

  7. Radiation response of perfused tracheal sections

    International Nuclear Information System (INIS)

    Ford, J.R.; Maslowski, A.J.; Braby, L.A.

    2003-01-01

    Full text: A model of respiratory tissue using a perfusion culture system is being developed. We are using this system to quantify the effects of normal tissue architecture and the interaction of epithelial cells with other cell types on radiation-induced bystander effects. Tracheal tissue taken from young adult male Fischer 344 rats is imbedded in a growth factor enriched agarose matrix. The chamber is designed to allow growth medium to periodically wash the epithelial surface of the tracheal lumen while maintaining the air-interface that is necessary for the normal differentiation of the epithelium. In preliminary experiments with rat trachea we have shown that a differentiated epithelial lining can be maintained for several days. Cells can be obtained for a number of different cell culture assays for endpoints such as survival and preneoplastic transformation after irradiation

  8. A recapitulative three-dimensional model of breast carcinoma requires perfusion for multi-week growth

    Directory of Open Access Journals (Sweden)

    Kayla F Goliwas

    2016-07-01

    Full Text Available Breast carcinomas are complex, three-dimensional tissues composed of cancer epithelial cells and stromal components, including fibroblasts and extracellular matrix. In vitro models that more faithfully recapitulate this dimensionality and stromal microenvironment should more accurately elucidate the processes driving carcinogenesis, tumor progression, and therapeutic response. Herein, novel in vitro breast carcinoma surrogates, distinguished by a relevant dimensionality and stromal microenvironment, are described and characterized. A perfusion bioreactor system was used to deliver medium to surrogates containing engineered microchannels and the effects of perfusion, medium composition, and the method of cell incorporation and density of initial cell seeding on the growth and morphology of surrogates were assessed. Perfused surrogates demonstrated significantly greater cell density and proliferation and were more histologically recapitulative of human breast carcinoma than surrogates maintained without perfusion. Although other parameters of the surrogate system, such as medium composition and cell seeding density, affected cell growth, perfusion was the most influential parameter.

  9. Application of a Simplified Method for Estimating Perfusion Derived from Diffusion-Weighted MR Imaging in Glioma Grading.

    Science.gov (United States)

    Cao, Mengqiu; Suo, Shiteng; Han, Xu; Jin, Ke; Sun, Yawen; Wang, Yao; Ding, Weina; Qu, Jianxun; Zhang, Xiaohua; Zhou, Yan

    2017-01-01

    Purpose : To evaluate the feasibility of a simplified method based on diffusion-weighted imaging (DWI) acquired with three b -values to measure tissue perfusion linked to microcirculation, to validate it against from perfusion-related parameters derived from intravoxel incoherent motion (IVIM) and dynamic contrast-enhanced (DCE) magnetic resonance (MR) imaging, and to investigate its utility to differentiate low- from high-grade gliomas. Materials and Methods : The prospective study was approved by the local institutional review board and written informed consent was obtained from all patients. From May 2016 and May 2017, 50 patients confirmed with glioma were assessed with multi- b -value DWI and DCE MR imaging at 3.0 T. Besides conventional apparent diffusion coefficient (ADC 0,1000 ) map, perfusion-related parametric maps for IVIM-derived perfusion fraction ( f ) and pseudodiffusion coefficient (D*), DCE MR imaging-derived pharmacokinetic metrics, including K trans , v e and v p , as well as a metric named simplified perfusion fraction (SPF), were generated. Correlation between perfusion-related parameters was analyzed by using the Spearman rank correlation. All imaging parameters were compared between the low-grade ( n = 19) and high-grade ( n = 31) groups by using the Mann-Whitney U test. The diagnostic performance for tumor grading was evaluated with receiver operating characteristic (ROC) analysis. Results : SPF showed strong correlation with IVIM-derived f and D* ( ρ = 0.732 and 0.716, respectively; both P simplified method to measure tissue perfusion based on DWI by using three b -values may be helpful to differentiate low- from high-grade gliomas. SPF may serve as a valuable alternative to measure tumor perfusion in gliomas in a noninvasive, convenient and efficient way.

  10. Metabolism of perfused pig intercostal muscles evaluated by 31P-magnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Pedersen, Brian Lindegaard; Arendrup, Henrik; Secher, Niels H

    2006-01-01

    This study presents a perfused preparation for evaluation of metabolism in pig intercostal muscle in vitro. Preserved vessels and nerves to an intercostal segment including two adjacent ribs allowed for tissue perfusion and electrical stimulation with measurement of contraction force, oxygen......, as demonstrated in one preliminary experiment. The results demonstrate a stable and functional in vitro preparation of intact perfused intercostal muscles in the pig........ Tonic stimulation of the nerve caused anaerobic energy consumption as PCr and pH decreased, and both variables recovered after the contraction with half-time values of approximately 7 min. Force increased to 0.040 N g(-1) (range, 0.031-0.103 N g(-1)) and it gradually decreased by about 70% during...

  11. Mesenchymal Stem/Stromal Cells from Discarded Neonatal Sternal Tissue: In Vitro Characterization and Angiogenic Properties

    Directory of Open Access Journals (Sweden)

    Shuyun Wang

    2016-01-01

    Full Text Available Autologous and nonautologous bone marrow mesenchymal stem/stromal cells (MSCs are being evaluated as proangiogenic agents for ischemic and vascular disease in adults but not in children. A significant number of newborns and infants with critical congenital heart disease who undergo cardiac surgery already have or are at risk of developing conditions related to inadequate tissue perfusion. During neonatal cardiac surgery, a small amount of sternal tissue is usually discarded. Here we demonstrate that MSCs can be isolated from human neonatal sternal tissue using a nonenzymatic explant culture method. Neonatal sternal bone MSCs (sbMSCs were clonogenic, had a surface marker expression profile that was characteristic of bone marrow MSCs, were multipotent, and expressed pluripotency-related genes at low levels. Neonatal sbMSCs also demonstrated in vitro proangiogenic properties. Sternal bone MSCs cooperated with human umbilical vein endothelial cells (HUVECs to form 3D networks and tubes in vitro. Conditioned media from sbMSCs cultured in hypoxia also promoted HUVEC survival and migration. Given the neonatal source, ease of isolation, and proangiogenic properties, sbMSCs may have relevance to therapeutic applications.

  12. Quantitative perfusion imaging in magnetic resonance imaging; Quantitative Perfusionsbildgebung in der Magnetresonanztomographie

    Energy Technology Data Exchange (ETDEWEB)

    Zoellner, F.G.; Gaa, T.; Zimmer, F. [Universitaet Heidelberg, Computerunterstuetzte Klinische Medizin, Medizinische Fakultaet Mannheim, Mannheim (Germany); Ong, M.M.; Riffel, P.; Hausmann, D.; Schoenberg, S.O.; Weis, M. [Universitaet Heidelberg, Institut fuer Klinische Radiologie und Nuklearmedizin, Universitaetsmedizin Mannheim, Medizinische Fakultaet Mannheim, Mannheim (Germany)

    2016-02-15

    Magnetic resonance imaging (MRI) is recognized for its superior tissue contrast while being non-invasive and free of ionizing radiation. Due to the development of new scanner hardware and fast imaging techniques during the last decades, access to tissue and organ functions became possible. One of these functional imaging techniques is perfusion imaging with which tissue perfusion and capillary permeability can be determined from dynamic imaging data. Perfusion imaging by MRI can be performed by two approaches, arterial spin labeling (ASL) and dynamic contrast-enhanced (DCE) MRI. While the first method uses magnetically labelled water protons in arterial blood as an endogenous tracer, the latter involves the injection of a contrast agent, usually gadolinium (Gd), as a tracer for calculating hemodynamic parameters. Studies have demonstrated the potential of perfusion MRI for diagnostics and also for therapy monitoring. The utilization and application of perfusion MRI are still restricted to specialized centers, such as university hospitals. A broad application of the technique has not yet been implemented. The MRI perfusion technique is a valuable tool that might come broadly available after implementation of standards on European and international levels. Such efforts are being promoted by the respective professional bodies. (orig.) [German] Die Magnetresonanztomographie (MRT) zeichnet sich durch einen ueberlegenen Gewebekontrast aus, waehrend sie nichtinvasiv und frei von ionisierender Strahlung ist. Sie bietet Zugang zu Gewebe- und Organfunktion. Eine dieser funktionellen bildgebenden Verfahren ist die Perfusionsbildgebung. Mit dieser Technik koennen u. a. Gewebeperfusion und Kapillarpermeabilitaet aus dynamischen Bilddaten bestimmt werden. Perfusionsbildgebung mithilfe der MRT kann durch 2 Ansaetze, naemlich ''arterial spin labeling'' (ASL) und dynamische kontrastverstaerkte (DCE-)MRT durchgefuehrt werden. Waehrend die erste Methode magnetisch

  13. Renal MR angiography and perfusion in the pig using hyperpolarized water.

    Science.gov (United States)

    Wigh Lipsø, Kasper; Hansen, Esben Søvsø Szocska; Tougaard, Rasmus Stilling; Laustsen, Christoffer; Ardenkjaer-Larsen, Jan Henrik

    2017-09-01

    To study hyperpolarized water as an angiography and perfusion tracer in a large animal model. Protons dissolved in deuterium oxide (D 2 O) were hyperpolarized in a SPINlab dissolution dynamic nuclear polarization (dDNP) polarizer and subsequently investigated in vivo in a pig model at 3 Tesla (T). Approximately 15 mL of hyperpolarized water was injected in the renal artery by hand over 4-5 s. A liquid state polarization of 5.3 ± 0.9% of 3.8 M protons in 15 mL of deuterium oxide was achieved with a T 1 of 24 ± 1 s. This allowed injection through an arterial catheter into the renal artery and subsequently high-contrast imaging of the entire kidney parenchyma over several seconds. The dynamic images allow quantification of tissue perfusion, with a mean cortical perfusion of 504 ± 123 mL/100 mL/min. Hyperpolarized water MR imaging was successfully demonstrated as a renal angiography and perfusion method. Quantitative perfusion maps of the kidney were obtained in agreement with literature and control experiments with gadolinium contrast. Magn Reson Med 78:1131-1135, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  14. Perfusion-based three dimensional (3D) tissue engineering platform with integrated bioimpedance sensing

    DEFF Research Database (Denmark)

    Muhammad, Haseena Bashir; Canali, Chiara; Heiskanen, Arto

    2014-01-01

    We present an 8-channel bioreactor array with integrated bioimpedance sensors, which enables perfusion culture of cells seeded onto porous 3D scaffolds. Results show the capability of the system for monitoring cell proliferation within the scaffolds through a culture period of 19 days....

  15. Perfusion abnormalities in congenital and neoplastic pulmonary disease: comparison of MR perfusion and multislice CT imaging

    International Nuclear Information System (INIS)

    Boll, Daniel T.; Lewin, Jonathan S.; Young, Philip; Gilkeson, Robert C.; Siwik, Ernest S.

    2005-01-01

    The aim of this work was to assess magnetic resonance (MR) perfusion patterns of chronic, nonembolic pulmonary diseases of congenital and neoplastic origin and to compare the findings with results obtained with pulmonary, contrast-enhanced multislice computed tomography (CT) imaging to prove that congenital and neoplastic pulmonary conditions require MR imaging over the pulmonary perfusion cycle to successfully and directly detect changes in lung perfusion patterns. Twenty-five patients underwent concurrent CT and MR evaluation of chronic pulmonary diseases of congenital (n=15) or neoplastic (n=10) origin. Analysis of MR perfusion and contrast-enhanced CT datasets was realized by defining pulmonary and vascular regions of interest in corresponding positions. MR perfusion calculated time-to-peak enhancement, maximal enhancement and the area under the perfusion curve. CT datasets provided pulmonary signal-to-noise ratio measurements. Vessel centerlines of bronchial arteries were determined. Underlying perfusion type, such as pulmonary arterial or systemic arterial supply, as well as regions with significant variations in perfusion were determined statistically. Analysis of the pulmonary perfusion pattern detected pulmonary arterial supply in 19 patients; six patients showed systemic arterial supply. In pulmonary arterial perfusion, MR and multislice CT imaging consistently detected the perfusion type and regions with altered perfusion patterns. In bronchial arterial supply, MR perfusion and CT imaging showed significant perfusion differences. Patients with bronchial arterial supply had bronchial arteries ranging from 2.0 to 3.6 mm compared with submillimeter diameters in pulmonary arterial perfusion. Dynamic MR imaging of congenital and neoplastic pulmonary conditions allowed characterization of the pulmonary perfusion type. CT imaging suggested the presence of systemic arterial perfusion by visualizing hypertrophied bronchial arteries. (orig.)

  16. Perfusion pattern and time of vascularisation with CEUS increase accuracy in differentiating between benign and malignant tumours in 216 musculoskeletal soft tissue masses

    Energy Technology Data Exchange (ETDEWEB)

    De Marchi, Armanda, E-mail: armanda.demarchi@tiscali.it [Department of Imaging, Azienda Ospedaliera Città della Salute e della Scienza, CTO Hospital, Via Zuretti 29, 10126 Torino (Italy); Prever, Elena Brach del, E-mail: elena.brach@unito.it [Department of OrthopaedicOncology and ReconstructiveSurgery, Azienda Ospedaliero Universitaria Città della Salute e della Scienza, CTO Hospital, Via Zuretti 29, 10126 Torino (Italy); Cavallo, Franco, E-mail: franco.cavallo@unito.it [Department of Public health and Paediatrics, University of Turin, Via Santena 5-bis, 10126 Torino (Italy); Pozza, Simona, E-mail: simona.pozza@tin.it [Department of Imaging, Azienda Ospedaliera Città della Salute e della Scienza, CTO Hospital, Via Zuretti 29, 10126 Torino (Italy); Linari, Alessandra, E-mail: linaralessandra@libero.it [Department of Pathology, Azienda Ospedaliero Universitaria Città della Salute e della Scienza, Regina Margherita Hospital, Piazza Polonia, 10126 Torino (Italy); Lombardo, Paolo, E-mail: pao.lombardo82@gmail.com [Department of DiagnosticImaging and Radiotherapy of the University of Turin, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Via Genova 3, 10126 Torino (Italy); Comandone, Alessandro, E-mail: alessandro.comandone@gradenigo.it [Department of Oncology, Gradenigo Hospital, Corso Regina Margherita, 8/10.10153 Torino (Italy); Piana, Raimondo, E-mail: raimondo.piana@libero.it [Department of OrthopaedicOncology and ReconstructiveSurgery, Azienda Ospedaliero Universitaria Città della Salute e della Scienza, CTO Hospital, Via Zuretti 29, 10126 Torino (Italy); Faletti, Carlo [Department of Imaging, Azienda Ospedaliera Città della Salute e della Scienza, CTO Hospital, Via Zuretti 29, 10126 Torino (Italy)

    2015-01-15

    Introduction: Musculoskeletal Soft Tissue Tumours (STT) are frequent heterogeneous lesions. Guidelines consider a mass larger than 5 cm and deep with respect to the deep fascia potentially malignant. Contrast Enhanced Ultrasound (CEUS) can detect both vascularity and tumour neoangiogenesis. We hypothesised that perfusion patterns and vascularisation time could improve the accuracy of CEUS in discriminating malignant tumours from benign lesions. Materials and methods: 216 STT were studied: 40% benign lesions, 60% malignant tumours, 56% in the lower limbs. Seven CEUS perfusion patterns and three types of vascularisation (arterial-venous uptake, absence of uptake) were applied. Accuracy was evaluated by comparing imaging with the histological diagnosis. Univariate and multivariate analysis, Chi-square test and t-test for independent variables were applied; significance was set at p < 0.05 level, 95% computed CI. Results: CEUS pattern 6 (inhomogeneous perfusion), arterial uptake and location in the lower limb were associated with high risk of malignancy. CEUS pattern has PPV 77%, rapidity of vascularisation PPV 69%; location in the limbs is the most sensitive indicator, but NPV 52%, PPV 65%. The combination of CEUS-pattern and vascularisation has 74% PPV, 60% NPV, 70% sensitivity. No correlation with size and location in relation to the deep fascia was found. Conclusion: US with CEUS qualitative analysis could be an accurate technique to identify potentially malignant STT, for which second line imaging and biopsy are indicated in Referral Centers. Intense inhomogeneous enhancement with avascular areas and rapid vascularisation time could be useful in discriminating benign from malignant SST, overall when the lower limbs are involved.

  17. MRI characterization of brown adipose tissue in obese and normal-weight children

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Jie; Rigsby, Cynthia K.; Shore, Richard M. [Ann and Robert H. Lurie Children' s Hospital of Chicago, Department of Medical Imaging, 225 E. Chicago Ave., Box 9, Chicago, IL (United States); Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Schoeneman, Samantha E. [Ann and Robert H. Lurie Children' s Hospital of Chicago, Department of Medical Imaging, 225 E. Chicago Ave., Box 9, Chicago, IL (United States); Zhang, Huiyuan [John H. Stroger, Jr. Hospital of Cook County, Collaborative Research Unit, Chicago, IL (United States); Kwon, Soyang [Ann and Robert H. Lurie Children' s Hospital of Chicago, Stanley Manne Children' s Research Institute, Chicago, IL (United States); Northwestern University, Department of Pediatrics, Feinberg School of Medicine, Chicago, IL (United States); Josefson, Jami L. [Ann and Robert H. Lurie Children' s Hospital of Chicago, Division of Endocrinology, Chicago, IL (United States); Northwestern University, Department of Pediatrics, Feinberg School of Medicine, Chicago, IL (United States)

    2015-10-15

    Brown adipose tissue (BAT) is identified in mammals as an adaptive thermogenic organ for modulation of energy expenditure and heat generation. Human BAT may be primarily composed of brown-in-white (BRITE) adipocytes and stimulation of BRITE may serve as a potential target for obesity interventions. Current imaging studies of BAT detection and characterization have been mainly limited to PET/CT. MRI is an emerging application for BAT characterization in healthy children. To exploit Dixon and diffusion-weighted MRI methods to characterize cervical-supraclavicular BAT/BRITE properties in normal-weight and obese children while accounting for pubertal status. Twenty-eight healthy children (9-15 years old) with a normal or obese body mass index participated. MRI exams were performed to characterize supraclavicular adipose tissues by measuring tissue fat percentage, T2*, tissue water mobility, and microvasculature properties. We used multivariate linear regression models to compare tissue properties between normal-weight and obese groups while accounting for pubertal status. MRI measurements of BAT/BRITE tissues in obese children showed higher fat percentage (P < 0.0001), higher T2* (P < 0.0001), and lower diffusion coefficient (P = 0.015) compared with normal-weight children. Pubertal status was a significant covariate for the T2* measurement, with higher T2* (P = 0.0087) in pubertal children compared to prepubertal children. Perfusion measurements varied by pubertal status. Compared to normal-weight children, obese prepubertal children had lower perfusion fraction (P = 0.003) and pseudo-perfusion coefficient (P = 0.048); however, obese pubertal children had higher perfusion fraction (P = 0.02) and pseudo-perfusion coefficient (P = 0.028). This study utilized chemical-shift Dixon MRI and diffusion-weighted MRI methods to characterize supraclavicular BAT/BRITE tissue properties. The multi-parametric evaluation revealed evidence of morphological differences in brown

  18. MRI characterization of brown adipose tissue in obese and normal-weight children

    International Nuclear Information System (INIS)

    Deng, Jie; Rigsby, Cynthia K.; Shore, Richard M.; Schoeneman, Samantha E.; Zhang, Huiyuan; Kwon, Soyang; Josefson, Jami L.

    2015-01-01

    Brown adipose tissue (BAT) is identified in mammals as an adaptive thermogenic organ for modulation of energy expenditure and heat generation. Human BAT may be primarily composed of brown-in-white (BRITE) adipocytes and stimulation of BRITE may serve as a potential target for obesity interventions. Current imaging studies of BAT detection and characterization have been mainly limited to PET/CT. MRI is an emerging application for BAT characterization in healthy children. To exploit Dixon and diffusion-weighted MRI methods to characterize cervical-supraclavicular BAT/BRITE properties in normal-weight and obese children while accounting for pubertal status. Twenty-eight healthy children (9-15 years old) with a normal or obese body mass index participated. MRI exams were performed to characterize supraclavicular adipose tissues by measuring tissue fat percentage, T2*, tissue water mobility, and microvasculature properties. We used multivariate linear regression models to compare tissue properties between normal-weight and obese groups while accounting for pubertal status. MRI measurements of BAT/BRITE tissues in obese children showed higher fat percentage (P < 0.0001), higher T2* (P < 0.0001), and lower diffusion coefficient (P = 0.015) compared with normal-weight children. Pubertal status was a significant covariate for the T2* measurement, with higher T2* (P = 0.0087) in pubertal children compared to prepubertal children. Perfusion measurements varied by pubertal status. Compared to normal-weight children, obese prepubertal children had lower perfusion fraction (P = 0.003) and pseudo-perfusion coefficient (P = 0.048); however, obese pubertal children had higher perfusion fraction (P = 0.02) and pseudo-perfusion coefficient (P = 0.028). This study utilized chemical-shift Dixon MRI and diffusion-weighted MRI methods to characterize supraclavicular BAT/BRITE tissue properties. The multi-parametric evaluation revealed evidence of morphological differences in brown

  19. Quantitative evaluation of muscle perfusion with CEUS and with MR

    International Nuclear Information System (INIS)

    Weber, Marc-Andre; Delorme, Stefan; Krix, Martin

    2007-01-01

    Functional imaging might increase the role of imaging in muscular diseases, since alterations of muscle morphology alone are not specific for a particular disease. Perfusion, i.e., the blood flow per tissue and time unit including capillary flow, is an important functional parameter. Pathological changes of skeletal muscle perfusion can be found in various clinical conditions, such as degenerative or inflammatory myopathies or peripheral arterial occlusive disease. This article reviews the theoretical basics of functional radiological techniques for assessing skeletal muscle perfusion and focuses on contrast-enhanced ultrasound (CEUS) and magnetic resonance imaging (MRI) techniques. Also, the applications of microvascular imaging, such as in detection of myositis and for discriminating myositis from other myopathies or evaluating peripheral arterial occlusive disease, are presented, and possible clinical indications are discussed. In conclusion, dedicated MR and CEUS methods are now available that visualize and quantify (patho-)physiologic information about microcirculation within skeletal muscles in vivo and hence establish a useful diagnostic tool for muscular diseases. (orig.)

  20. Quantitative evaluation of muscle perfusion with CEUS and with MR

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Marc-Andre; Delorme, Stefan [German Cancer Research Centre, Department of Radiology, Heidelberg (Germany); Krix, Martin [German Cancer Research Centre, Department of Radiology, Heidelberg (Germany); Bracco ALTANA Pharma GmbH, Konstanz (Germany)

    2007-10-15

    Functional imaging might increase the role of imaging in muscular diseases, since alterations of muscle morphology alone are not specific for a particular disease. Perfusion, i.e., the blood flow per tissue and time unit including capillary flow, is an important functional parameter. Pathological changes of skeletal muscle perfusion can be found in various clinical conditions, such as degenerative or inflammatory myopathies or peripheral arterial occlusive disease. This article reviews the theoretical basics of functional radiological techniques for assessing skeletal muscle perfusion and focuses on contrast-enhanced ultrasound (CEUS) and magnetic resonance imaging (MRI) techniques. Also, the applications of microvascular imaging, such as in detection of myositis and for discriminating myositis from other myopathies or evaluating peripheral arterial occlusive disease, are presented, and possible clinical indications are discussed. In conclusion, dedicated MR and CEUS methods are now available that visualize and quantify (patho-)physiologic information about microcirculation within skeletal muscles in vivo and hence establish a useful diagnostic tool for muscular diseases. (orig.)

  1. The role of preservation solution on acid-base regulation during machine perfusion of kidneys.

    Science.gov (United States)

    Baicu, Simona C; Taylor, Michael J; Brockbank, Kelvin G M

    2006-01-01

    To meet the current clinical organ demand, efficient preservation methods and solutions are needed to increase the number of viable kidneys for transplantation. In the present study, the influence of perfusion solution buffering strength on renal pH dynamics and regulation mechanisms during kidney ex vivo preservation was determined. Porcine kidneys were hypothermically machine perfused for 72 h with either Unisol-UHK or Belzer-Machine Perfusion solution, Belzer-MP solution. Renal perfusate samples were periodically collected and biochemically analyzed. The UHK solution, a Hepes-based solution (35 mM), provided a more efficient control of renal pH that, in turn, resulted in minor changes in the perfusate pH relative to baseline, in response to tissue CO2 and HCO3- production. In the perfusate of Belzer-MP kidney group a wider range of pH values were recorded and a pronounced pH reduction was seen in response to significant rises in pCO2 and HCO3- concentrations. The Belzer-MP solution, containing phosphate (25 mM) as its main buffer, and only 10 mM Hepes, had a greater buffering requirement to attenuate larger pH changes.

  2. Measurement of ventilation- and perfusion-mediated cooling during laser ablation in ex vivo human lung tumors

    Energy Technology Data Exchange (ETDEWEB)

    Vietze, Andrea, E-mail: anvie@gmx.de [Department of Diagnostic Radiology and Neuroradiology, Ernst-Moritz-Arndt-Universitaet Greifswald, Sauerbruchstrasse, 17487 Greifswald (Germany); Koch, Franziska, E-mail: franzi_koch@hotmail.com [Department of Diagnostic Radiology and Neuroradiology, Ernst-Moritz-Arndt-Universitaet Greifswald, Sauerbruchstrasse, 17487 Greifswald (Germany); Laskowski, Ulrich, E-mail: ulrich.laskowski@klinikum-luedenscheid.de [Department of Vascular and Thoracic Surgery, Klinikum Luedenscheid, Paulmannshoeher Strasse 14, 58515 Luedenscheid (Germany); Linder, Albert, E-mail: albert.linder@klinikum-bremen-ost.de [Department of Thoracic Surgery, Klinikum Bremen-Ost, Zuericher Strasse 40, 28325 Bremen (Germany); Hosten, Norbert, E-mail: hosten@uni-greifswald.de [Department of Diagnostic Radiology and Neuroradiology, Ernst-Moritz-Arndt-Universitaet Greifswald, Sauerbruchstrasse, 17487 Greifswald (Germany)

    2011-11-15

    Purpose: Perfusion-mediated tissue cooling has often been described in the literature for thermal ablation therapies of liver tumors. The objective of this study was to investigate the cooling effects of both perfusion and ventilation during laser ablation of lung malignancies. Materials and methods: An ex vivo lung model was used to maintain near physiological conditions for the specimens. Fourteen human lung lobes containing only primary lung tumors (non-small cell lung cancer) were used. Laser ablation was carried out using a Nd:YAG laser with a wavelength of 1064 nm and laser fibers with 30 mm diffusing tips. Continuous invasive temperature measurement in 10 mm distance from the laser fiber was performed. Laser power was increased at 2 W increments starting at 10 W up to a maximum power of 12-20 W until a temperature plateau around 60 deg. C was reached at one sensor. Ventilation and perfusion were discontinued for 6 min each to assess their effects on temperature development. Results: The experiments lead to 25 usable temperature profiles. A significant temperature increase was observed for both discontinued ventilation and perfusion. In 6 min without perfusion, the temperature rose about 5.5 deg. C (mean value, P < 0.05); without ventilation it increased about 7.0 deg. C (mean value, P < 0.05). Conclusion: Ventilation- and perfusion-mediated tissue cooling are significant influencing factors on temperature development during thermal ablation. They should be taken into account during the planning and preparation of minimally invasive lung tumor treatment in order to achieve complete ablation.

  3. Effect of nutritional status on oxidative stress in an ex vivo perfused rat liver.

    Science.gov (United States)

    Stadler, Michaela; Nuyens, Vincent; Seidel, Laurence; Albert, Adelin; Boogaerts, Jean G

    2005-11-01

    Normothermic ischemia-reperfusion is a determinant in liver injury occurring during surgical procedures, ischemic state, and multiple organ failure. The preexisting nutritional status of the liver might contribute to the extent of tissue injury and primary nonfunction. The aim of this study was to determine the role of starvation on hepatic ischemia-reperfusion injury in normal rat livers. Rats were randomly divided into two groups: one had free access to food, the other was fasted for 16 h. The portal vein was cannulated, and the liver was removed and perfused in a closed ex vivo system. Two modes of perfusion were applied in each series of rats, fed and fasting. In the ischemia-reperfusion mode, the experiment consisted of perfusion for 15 min, warm ischemia for 60 min, and reperfusion during 60 min. In the nonischemia mode, perfusion was maintained during the 135-min study period. Five rats were included in each experimental condition, yielding a total of 20 rats. Liver enzymes, potassium, glucose, lactate, free radicals, i.e., dienes and trienes, and cytochrome c were analyzed in perfusate samples. The proportion of glycogen in hepatocytes was determined in tissue biopsies. Transaminases, lactate dehydrogenase, potassium, and free radical concentrations were systematically higher in fasting rats in both conditions, with and without ischemia. Cytochrome c was higher after reperfusion in the fasting rats. Glucose and lactate concentrations were greater in the fed group. The glycogen content decreased in both groups during the experiment but was markedly lower in the fasting rats. In fed rats, liver injury was moderate, whereas hepatocytes integrity was notably impaired both after continuous perfusion and warm ischemia in fasting animals. Reduced glycogen store in hepatocytes may explain reduced tolerance.

  4. Clinical evaluation of lung rest/stress perfusion scintigraphy in patients with severe emphysema

    International Nuclear Information System (INIS)

    Hadjikostova, Hr.

    1998-01-01

    Volume lung reduction surgery (LVRS) improves lung function and physical tolerance for selected patients with severe pulmonary emphysema by making conditions for developing of the vital parenchyma so far compressed by the emphysema blisters. The aim of this study was to establish the comparative functional information obtained from REST/STRESS lung perfusion tomoscintigraphies for identification of non functional lung tissue. Eleven patients (8 males and 3 females at age 41-60) were examined by two lung perfusions SPECT scintigraphies after intravenous application of 222 MBq 99m Tc-MAA: 1. after 30 min. lying rest and 2. 48 hours later after 6 min. walk test. Comparing the two scintigraphies the following changes in perfusion performance have been established at STRESS examination: increased at six patients (significant at three and slight also at three) and decreased at two. There was no difference between REST and STRESS examinations at 3 patients. Comparative REST/STRESS lung perfusion scintigraphy is important method for screening severe pulmonary patients for LVRS. (author)

  5. Visual and SPM analysis of regional cerebral perfusion with Tc-99m ECD brain SPECT in patients with developmental language disorder

    International Nuclear Information System (INIS)

    Yoon, Joon Kee; Lee, Myung Hoon; Joh, Chul Woo; Yoon, Seok Nam; Oh, Eun Young

    2003-01-01

    Developmental language disorder (DLD) refers to inadequate language acquisition at the expected age in children with otherwise normal development. However, language delay can be observed in patients with other developmental disoder (ODD). We, therefore, evaluated regional cerebral perfusion pattern in patients with DLD and ODD by means of visual and SPM analysis. Twelve patients, who underwent Tc-99m ECD brain SPECT within 3 weeks of their first visit, were included in the study. Psychological and language tests classified the patients into 2 groups ; 6 with DLD (3-7 yr, 5 male and I female) and 6 with ODD (2-6 yr, 6 male). Visual analysis for regional cerebral perfusion was done in each patient. SPM with 7 controls (age=7) was performed to evaluate difference between 2 groups using t-test. P value of less than 0.005 was considered to be significant. All patients had significant language delay for their age (9 month 3.5 yr). Among 6 patients with ODD, 4 had pervasive developmental disorder, 1 mental retardation and 1 attachment disorder. Visual analysis revealed significant perfusion decrease in only 1 patient with DLD and 2 with ODD ; the regions were left parieto-temporal cortex, both frontal and cerebellar cortices, and right temporal cortex respectively. Nine of 12 patients showed normal perfusion. SPM demonstrated perfusion decrease in left inferior frontal cortex and left superior parietal cortex (Wernicke's area) in patients with DLD, while, in patients with ODD, perfusion decrease was mostly located in the right hemisphere (lateral frontoorbital gyrus, occipitotemporal gyrus, cuneus and cerebellum). Corpus callosum showed no significant perfusion abnormality in both groups. Regional cerebral perfusion of patients with DLD, which was mainly located in the speech area, is quite different from that of ODD-patients with language delay. While SPM successfully revealed this difference in perfusion pattern, visual analysis had limited value

  6. Visual and SPM analysis of regional cerebral perfusion with Tc-99m ECD brain SPECT in patients with developmental language disorder

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Joon Kee; Lee, Myung Hoon; Joh, Chul Woo; Yoon, Seok Nam; Oh, Eun Young [College of Medicine, Univ. of Ajou, Suwon (Korea, Republic of)

    2003-07-01

    Developmental language disorder (DLD) refers to inadequate language acquisition at the expected age in children with otherwise normal development. However, language delay can be observed in patients with other developmental disoder (ODD). We, therefore, evaluated regional cerebral perfusion pattern in patients with DLD and ODD by means of visual and SPM analysis. Twelve patients, who underwent Tc-99m ECD brain SPECT within 3 weeks of their first visit, were included in the study. Psychological and language tests classified the patients into 2 groups ; 6 with DLD (3-7 yr, 5 male and I female) and 6 with ODD (2-6 yr, 6 male). Visual analysis for regional cerebral perfusion was done in each patient. SPM with 7 controls (age=7) was performed to evaluate difference between 2 groups using t-test. P value of less than 0.005 was considered to be significant. All patients had significant language delay for their age (9 month 3.5 yr). Among 6 patients with ODD, 4 had pervasive developmental disorder, 1 mental retardation and 1 attachment disorder. Visual analysis revealed significant perfusion decrease in only 1 patient with DLD and 2 with ODD ; the regions were left parieto-temporal cortex, both frontal and cerebellar cortices, and right temporal cortex respectively. Nine of 12 patients showed normal perfusion. SPM demonstrated perfusion decrease in left inferior frontal cortex and left superior parietal cortex (Wernicke's area) in patients with DLD, while, in patients with ODD, perfusion decrease was mostly located in the right hemisphere (lateral frontoorbital gyrus, occipitotemporal gyrus, cuneus and cerebellum). Corpus callosum showed no significant perfusion abnormality in both groups. Regional cerebral perfusion of patients with DLD, which was mainly located in the speech area, is quite different from that of ODD-patients with language delay. While SPM successfully revealed this difference in perfusion pattern, visual analysis had limited value.

  7. The effect of age on outcomes after isolated limb perfusion for advanced extremity malignancies.

    Science.gov (United States)

    Smith, H G; Wilkinson, M J; Smith, M J F; Strauss, D C; Hayes, A J

    2018-06-22

    Isolated limb perfusion (ILP) is a well-established treatment for patients with advanced extremity malignancies unsuitable for limb-conserving surgery. However, little is known about the outcomes of this treatment in elderly patients. We sought to determine the effects of age on the tolerability and efficacy of ILP for advanced extremity malignancy. Patients undergoing ILP at our institution between January 2005 and January 2018 were identified from a prospectively maintained database. Patients were stratified by pathology (melanoma, soft-tissue sarcoma, other) and age (<75 years and ≥75 years). Outcomes of interest were perioperative morbidity and mortality, locoregional toxicities, response rates and oncological outcomes. During the study period, a total of 189 perfusions were attempted. Successful perfusions were performed in 179 patients, giving a technical success rate of 94.7%. No difference in perfusion success rates, severe locoregional toxicity and perioperative morbidity or mortality was noted between those aged <75 years and ≥75 years. The overall response rate in melanoma was 82.4%, and no difference in response rates or oncological outcomes between age groups was noted in these patients. The overall response rate in soft-tissue sarcoma was 63.5%, with no difference in response rates noted between age groups. However, patients aged <75 years with soft-tissue sarcoma had prolonged local recurrence-free survival compared with older patients (13 versus 6 months), possibly due to the prevalence of chemosensitive subtypes in the younger age group. ILP is an effective treatment for advanced extremity malignancies in the elderly, with comparable response rates and toxicities to younger patients. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  8. Noninvasive, near infrared spectroscopic-measured muscle pH and PO2 indicate tissue perfusion for cardiac surgical patients undergoing cardiopulmonary bypass

    Science.gov (United States)

    Soller, Babs R.; Idwasi, Patrick O.; Balaguer, Jorge; Levin, Steven; Simsir, Sinan A.; Vander Salm, Thomas J.; Collette, Helen; Heard, Stephen O.

    2003-01-01

    OBJECTIVE: To determine whether near infrared spectroscopic measurement of tissue pH and Po2 has sufficient accuracy to assess variation in tissue perfusion resulting from changes in blood pressure and metabolic demand during cardiopulmonary bypass. DESIGN: Prospective clinical study. SETTING: Academic medical center. SUBJECTS: Eighteen elective cardiac surgical patients. INTERVENTION: Cardiac surgery under cardiopulmonary bypass. MEASUREMENTS AND MAIN RESULTS: A near infrared spectroscopic fiber optic probe was placed over the hypothenar eminence. Reference Po2 and pH sensors were inserted in the abductor digiti minimi (V). Data were collected every 30 secs during surgery and for 6 hrs following cardiopulmonary bypass. Calibration equations developed from one third of the data were used with the remaining data to investigate sensitivity of the near infrared spectroscopic measurement to physiologic changes resulting from cardiopulmonary bypass. Near infrared spectroscopic and reference pH and Po2 measurements were compared for each subject using standard error of prediction. Near infrared spectroscopic pH and Po2 at baseline were compared with values during cardiopulmonary bypass just before rewarming commenced (hypotensive, hypothermic), after rewarming (hypotensive, normothermic) just before discontinuation of cardiopulmonary bypass, and at 6 hrs following cardiopulmonary bypass (normotensive, normothermic) using mixed-model analysis of variance. Near infrared spectroscopic pH and Po2 were well correlated with the invasive measurement of pH (R2 =.84) and Po2 (R 2 =.66) with an average standard error of prediction of 0.022 +/- 0.008 pH units and 6 +/- 3 mm Hg, respectively. The average difference between the invasive and near infrared spectroscopic measurement was near zero for both the pH and Po2 measurements. Near infrared spectroscopic Po2 significantly decreased 50% on initiation of cardiopulmonary bypass and remained depressed throughout the bypass and

  9. Three-dimensional bioprinting of thick vascularized tissues

    Science.gov (United States)

    Kolesky, David B.; Homan, Kimberly A.; Skylar-Scott, Mark A.; Lewis, Jennifer A.

    2016-03-01

    The advancement of tissue and, ultimately, organ engineering requires the ability to pattern human tissues composed of cells, extracellular matrix, and vasculature with controlled microenvironments that can be sustained over prolonged time periods. To date, bioprinting methods have yielded thin tissues that only survive for short durations. To improve their physiological relevance, we report a method for bioprinting 3D cell-laden, vascularized tissues that exceed 1 cm in thickness and can be perfused on chip for long time periods (>6 wk). Specifically, we integrate parenchyma, stroma, and endothelium into a single thick tissue by coprinting multiple inks composed of human mesenchymal stem cells (hMSCs) and human neonatal dermal fibroblasts (hNDFs) within a customized extracellular matrix alongside embedded vasculature, which is subsequently lined with human umbilical vein endothelial cells (HUVECs). These thick vascularized tissues are actively perfused with growth factors to differentiate hMSCs toward an osteogenic lineage in situ. This longitudinal study of emergent biological phenomena in complex microenvironments represents a foundational step in human tissue generation.

  10. [Influence of the professional experience of the clinical cardiologist on the adequacy of the clinical indications of myocardial perfusion gated-SPECT].

    Science.gov (United States)

    Dominguez-Rodriguez, Alberto; Avanzas, Pablo; Abreu-Gonzalez, Pedro; Sanchez Grande-Flecha, Alejandro; García-Baute, María Del Carmen; Gómez, María Ángeles

    2017-11-30

    During cardiology training, the cardiology fellow has to be trained in all things related to the indication, interpretation, and performing of nuclear cardiology studies using single photon emission computed tomography (SPECT). The aim of the present study was to analyse the relationship between the adequacy of indications of myocardial perfusion gated-SPECT and the years of experience since the completion of cardiology training. A descriptive, retrospective analysis was performed on a single-centre register, in which the indications (adequate or inadequate use) were recorded according to myocardial perfusion gated-SPECT guidelines, prescribed by cardiologists of a university hospital. A total of 950 gated-SPECT tests were analysed according to the appropriate or inadequate indication. The sample of study was distributed in quartiles (years) since the cardiologist finished the residency. Cardiologists with less than 10 years of clinical experience reported a higher proportion of gated-SPECT tests compared to the more experienced cardiologists (87.6 vs. 9.3%, P<.001). After adjusting for age, gender, and cardiovascular risk factors, the multivariate analysis showed that, for each year of experience after completion of cardiology training, the probability of adequately indicating the test (OR: 1.33, 95% CI: 1.29-1.38, P<.001) was statistically significant. The professional experience of the clinical cardiologist is the most important factor to perform an appropriate indication of gated-SPECT myocardial perfusion. Copyright © 2017 Instituto Nacional de Cardiología Ignacio Chávez. Publicado por Masson Doyma México S.A. All rights reserved.

  11. The Use of an Acellular Oxygen Carrier in a Human Liver Model of Normothermic Machine Perfusion.

    Science.gov (United States)

    Laing, Richard W; Bhogal, Ricky H; Wallace, Lorraine; Boteon, Yuri; Neil, Desley A H; Smith, Amanda; Stephenson, Barney T F; Schlegel, Andrea; Hübscher, Stefan G; Mirza, Darius F; Afford, Simon C; Mergental, Hynek

    2017-11-01

    Normothermic machine perfusion of the liver (NMP-L) is a novel technique that preserves liver grafts under near-physiological conditions while maintaining their normal metabolic activity. This process requires an adequate oxygen supply, typically delivered by packed red blood cells (RBC). We present the first experience using an acellular hemoglobin-based oxygen carrier (HBOC) Hemopure in a human model of NMP-L. Five discarded high-risk human livers were perfused with HBOC-based perfusion fluid and matched to 5 RBC-perfused livers. Perfusion parameters, oxygen extraction, metabolic activity, and histological features were compared during 6 hours of NMP-L. The cytotoxicity of Hemopure was also tested on human hepatic primary cell line cultures using an in vitro model of ischemia reperfusion injury. The vascular flow parameters and the perfusate lactate clearance were similar in both groups. The HBOC-perfused livers extracted more oxygen than those perfused with RBCs (O2 extraction ratio 13.75 vs 9.43 % ×10 per gram of tissue, P = 0.001). In vitro exposure to Hemopure did not alter intracellular levels of reactive oxygen species, and there was no increase in apoptosis or necrosis observed in any of the tested cell lines. Histological findings were comparable between groups. There was no evidence of histological damage caused by Hemopure. Hemopure can be used as an alternative oxygen carrier to packed red cells in NMP-L perfusion fluid.

  12. Whole Ovine Ovaries as a Model for Human: Perfusion with Cryoprotectants In Vivo and In Vitro

    Directory of Open Access Journals (Sweden)

    Vladimir Isachenko

    2014-01-01

    Full Text Available These experiments were performed to test the perfusion of ovine as a model for human ovaries by cryoprotectants in vivo at high temperature when the permeability of capillaries is high and when blood is insensibly replaced by the solution of cryoprotectants. By our hypothetical supposition, ovaries could be saturated by cryoprotectants before their surgical removal. The objective was to examine the effectiveness of perfusion of ovine ovaries with vascular pedicle in vivo and in vitro. Arteria ovarica was cannuled and ovaries were perfused by Leibovitz L-15 medium + 100 IU/mL heparin + 5% bovine calf serum + 6% dimethyl sulfoxide + 6% ethylene glycol + 0.15 M sucrose + Indian ink in vivo and in vitro. In the first and second cycle of experiments, ovaries (n=13 and n=23 were perfused in vivo and in vitro, respectively, during 60 min with the rate of perfusion 50 mL/h (0.8 mL/min. It was established with in vivo perfusion that only about 10% of ovarian tissues were perfused due to an appearance of multiple anastomoses when the perfusion medium goes from arteria ovarica to arteria uterina without inflow into the ovaries. It was concluded that in vitro perfusion of ovine intact ovaries with vascular pedicle by freezing medium is more effective than this manipulation performed in vivo.

  13. Reduced myocardial perfusion reserve in myocardium having coronary artery aneurysm of Kawasaki disease

    International Nuclear Information System (INIS)

    Yoon, S. N.; Lee, D. S.; Choi, J. Y.; Kil, H. R.; Jeong, Z. K.; Lee, M. C.; Ko, C. S.

    1997-01-01

    Kawasaki disease is a systemic vasculitis involving the coronary arteries at early childhood and cause coronary artery aneurysms and thrombotic occlusions. These coronary artery aneurysms were usually transformed later into stenotic or obstructive lesions, however, the majority of these aneurysms, even the giant ones, are known to be associated with normal epicardial coronary flow. Flow reserve is difficult to assess in aneurysmal arteries with echo or angiography. We performed this study to question if there are abnormalities in flow reserve in myocardial tissue with normal epicardial arterial flow on angiography in patients with Kawasaki disease, dipyridamole stress and rest Tc-99m-sestamibi SPECT were performed in 37 patients (28 boys, 9 girls, mean age 6.6 years). We compared SPECT findings with coronary angiography (CAG) findings in 21 patients who did both studies after finding abnormality on echocardiaography. On CAG, aneurysms were found in 26 arteries of 16 patients, i.e., 10 left main arteries, 6 left anterior descending arteries (LAD), 2 left circumflex arteries (LCX), and 8 right coronary arteries (RCA). Localized and segmental stenotic lesions were found in 11 arteries in 9 patients (LAD: 4, LCX: 1, RCA: 6). Eight of the 10 patients with aneurysms had no obvious stenosis. On stress-rest SPECT, 16(43%) out of 37 patients showed normal perfusion and the other 21(57%) showed reversible or persistent decrease. Among 11 stenotic artery territories, 3(27%) showed persistent and/or reversible perfusion defects. The other 8 were normal. Among 26 aneurysmal artery territories, 12 artery territories showe perfusion decrease. Three of the 5 patients with normal CAG showed persistent and/or transient perfusion defects. Among 14 artery territories with perfusion decrease in the 16 patients, 3(21%) could be localized to vascular territory having stenosis of supplying coronary arteries, 12(86%) were related to the coronary artery aneurysms. Two were not related to

  14. 99mTc-ECD dynamic SPECT in 'luxury perfusion' of subacute stroke

    International Nuclear Information System (INIS)

    Ogasawara, Kuniaki; Fujiwara, Satoru; Yoshimoto, Takashi.

    1995-01-01

    To evaluate the cerebral pharmacokinetics of 99m Tc-ethyl cysteinate dimer ( 99m Tc-ECD) at blood flow levels beyond the normal range, we investigated 'luxury perfusion' in subacute stroke, ictal hyperperfusion in epilepsy and post-decompressive hyperemia in head trauma. All 7 patients showed a hyperactive area on SPECT studies using 99m Tc-HM-PAO. 99m Tc-ECD static image demonstrated a hyperactive area in both epilepsy and head trauma, and a hypoactive area in 'luxury perfusion.' On the dynamic SPECT of 99m Tc-ECD in both epilepsy and head trauma, brain distribution of the tracer was determined within 2 min postinjection and remained stable for up to 1 hour; however, 'luxury perfusion' area showed a change from initial hyperactivity to late hypoactivity with the passage of time. The time activity curve in 'luxury perfusion' area demonstrated a steep decrease of counts/pixel for up to 4-5 minutes postinjection, and a moderate decrease in the following phase. The early wash-out mechanism of 99m Tc-ECD from 'luxury perfusion' area can be described by a biexponential function including an initial steep decrease representing the rapid loss of the lipophilic complexes which were not metabolized in injured brain tissue. (author)

  15. Inadequate housing in Ghana

    Directory of Open Access Journals (Sweden)

    Franklin Obeng-Odoom

    2011-01-01

    Full Text Available Two themes are evident in housing research in Ghana. One involves the study of how to increase the number of dwellings to correct the overall housing deficit, and the other focuses on how to improve housing for slum dwellers. Between these two extremes, there is relatively little research on why the existing buildings are poorly maintained. This paper is based on a review of existing studies on inadequate housing. It synthesises the evidence on the possible reasons for this neglect, makes a case for better maintenance and analyses possible ways of reversing the problem of inadequate housing.

  16. A randomized, controlled, double-blind crossover study on the effects of 2-L infusions of 0.9% saline and plasma-lyte® 148 on renal blood flow velocity and renal cortical tissue perfusion in healthy volunteers.

    Science.gov (United States)

    Chowdhury, Abeed H; Cox, Eleanor F; Francis, Susan T; Lobo, Dileep N

    2012-07-01

    We compared the effects of intravenous infusions of 0.9% saline ([Cl] 154 mmol/L) and Plasma-Lyte 148 ([Cl] 98 mmol/L, Baxter Healthcare) on renal blood flow velocity and perfusion in humans using magnetic resonance imaging (MRI). Animal experiments suggest that hyperchloremia resulting from 0.9% saline infusion may affect renal hemodynamics adversely, a phenomenon not studied in humans. Twelve healthy adult male subjects received 2-L intravenous infusions over 1 hour of 0.9% saline or Plasma-Lyte 148 in a randomized, double-blind manner. Crossover studies were performed 7 to 10 days apart. MRI scanning proceeded for 90 minutes after commencement of infusion to measure renal artery blood flow velocity and renal cortical perfusion. Blood was sampled and weight recorded hourly for 4 hours. Sustained hyperchloremia was seen with saline but not with Plasma-Lyte 148 (P Blood volume changes were identical (P = 0.867), but there was greater expansion of the extravascular fluid volume after saline (P = 0.029). There was a significant reduction in mean renal artery flow velocity (P = 0.045) and renal cortical tissue perfusion (P = 0.008) from baseline after saline, but not after Plasma-Lyte 148. There was no difference in concentrations of urinary neutrophil gelatinase-associated lipocalin after the 2 infusions (P = 0.917). This is the first human study to demonstrate that intravenous infusion of 0.9% saline results in reductions in renal blood flow velocity and renal cortical tissue perfusion. This has implications for intravenous fluid therapy in perioperative and critically ill patients. NCT01087853.

  17. Effect of myocardial perfusion and metabolic interventions on cardiac kinetics of phenylpentadecanoic acid (IPPA) I 123

    Energy Technology Data Exchange (ETDEWEB)

    Reske, S.N.; Schoen, S.; Schmitt, W.; Knopp, R.; Winkler, C.; Machulla, H.J.

    1986-08-01

    The effect of regional myocardial perfusion and flow-independent adrenergic stimulation, as well as lactate-mediated inhibition of cardiac lipolysis, on cardiac IPPA uptake and metabolism was examined in canine hearts (flow studies) and in the isolated perfused Langendorff rat heart (metabolic interventions). In both normal and ischaemic myocardium, local perfusion is a major determinant of cardiac IPPA uptake. In pacing-induced hyperaemia, the strict flow-dependence of cardiac IPPA uptake is not preserved. Adrenergic stimulation raises the rate of oxidation of both palmitic acid /sup 14/C and IPPA. This change is reflected by increased metabolite production released into the perfusate and radioactivity clearance recorded externally. Lactate in high concentrations exerts the opposite effect on cardiac free fatty acid oxidation. IPPA is stored in this condition preferentially in tissue phospholipids and triglycerides.

  18. Effect of myocardial perfusion and metabolic interventions on cardiac kinetics of phenylpentadecanoic acid (IPPA) I 123

    International Nuclear Information System (INIS)

    Reske, S.N.; Schoen, S.; Schmitt, W.; Knopp, R.; Winkler, C.; Machulla, H.J.

    1986-01-01

    The effect of regional myocardial perfusion and flow-independent adrenergic stimulation, as well as lactate-mediated inhibition of cardiac lipolysis, on cardiac IPPA uptake and metabolism was examined in canine hearts (flow studies) and in the isolated perfused Langendorff rat heart (metabolic interventions). In both normal and ischaemic myocardium, local perfusion is a major determinant of cardiac IPPA uptake. In pacing-induced hyperaemia, the strict flow-dependence of cardiac IPPA uptake is not preserved. Adrenergic stimulation raises the rate of oxidation of both palmitic acid 14 C and IPPA. This change is reflected by increased metabolite production released into the perfusate and radioactivity clearance recorded externally. Lactate in high concentrations exerts the opposite effect on cardiac free fatty acid oxidation. IPPA is stored in this condition preferentially in tissue phospholipids and triglycerides. (orig.)

  19. Abnormal perfusion on myocardial perfusion SPECT in patients with Wolff-Parkinson-White syndrome

    International Nuclear Information System (INIS)

    Kang, Do Young; Cha, Kwang Soo; Han, Seung Ho; Park, Tae Ho; Kim, Moo Hyun; Kim, Young Dae

    2005-01-01

    Abnormal myocardial perfusion may be caused by ventricular preexcitation, but its location, extent, severity and correlation with accessory pathway (AP) are not established. We evaluated perfusion patterns on myocardial perfusion SPECT and location of AP in patients with WPW (Wolff-Parkison-White) syndrome. Adenosine Tc-99m MIBI or Tl-201 myocardial perfusion SPECT was performed in 11 patients with WPW syndrome. Perfusion defects (PD) were compared to AP location based on ECT with Fitzpatrick's algorithm of electrophysiologic study and radiofrequency catheter ablation. Patients had atypical chest discomfort or no symptom. Risk of coronary artery disease (CAD) was below 0.1 in 11 patients using the nomogram to estimate the probability of CAD. Coronary angiography was performed in 4 patients(mid-LAD 50% in one, normal in others). In 4 patients, AP localization was done by electrophysiologic study and radiofrequency catheter ablation (RFCA). Small to large extent (11.0 ± 8.5%, range:3 ∼ 35%) and mild to moderate severity (-71 ± 42.7%, range:-217 ∼ -39%) of reversible (n=9) or fixed (n=1) perfusion defects were noted. One patients with right free wall (right lateral) AP showed normal. PD locations were variable following the location of AP. One patient with left lateral wall AP was followed 6 weeks after RFCA and showed significantly decreased PD on SPECT with successful ablation. Myocardial perfusion defect showed variable extent, severity and location in patients with WPW syndrome. Abnormal perfusion defect showed in most of all patients, but if did not seem to be correlated specifically with location of accessory pathway and coronary artery disease. Therefore myocardial perfusion SPECT should be interpreted carefully in patients with WPW syndrome

  20. Abnormal perfusion on myocardial perfusion SPECT in patients with Wolff-Parkinson-White syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Do Young; Cha, Kwang Soo; Han, Seung Ho; Park, Tae Ho; Kim, Moo Hyun; Kim, Young Dae [Donga University College of Medicine, Busan (Korea, Republic of)

    2005-02-15

    Abnormal myocardial perfusion may be caused by ventricular preexcitation, but its location, extent, severity and correlation with accessory pathway (AP) are not established. We evaluated perfusion patterns on myocardial perfusion SPECT and location of AP in patients with WPW (Wolff-Parkison-White) syndrome. Adenosine Tc-99m MIBI or Tl-201 myocardial perfusion SPECT was performed in 11 patients with WPW syndrome. Perfusion defects (PD) were compared to AP location based on ECT with Fitzpatrick's algorithm of electrophysiologic study and radiofrequency catheter ablation. Patients had atypical chest discomfort or no symptom. Risk of coronary artery disease (CAD) was below 0.1 in 11 patients using the nomogram to estimate the probability of CAD. Coronary angiography was performed in 4 patients(mid-LAD 50% in one, normal in others). In 4 patients, AP localization was done by electrophysiologic study and radiofrequency catheter ablation (RFCA). Small to large extent (11.0 {+-} 8.5%, range:3 {approx} 35%) and mild to moderate severity (-71 {+-} 42.7%, range:-217 {approx} -39%) of reversible (n=9) or fixed (n=1) perfusion defects were noted. One patients with right free wall (right lateral) AP showed normal. PD locations were variable following the location of AP. One patient with left lateral wall AP was followed 6 weeks after RFCA and showed significantly decreased PD on SPECT with successful ablation. Myocardial perfusion defect showed variable extent, severity and location in patients with WPW syndrome. Abnormal perfusion defect showed in most of all patients, but if did not seem to be correlated specifically with location of accessory pathway and coronary artery disease. Therefore myocardial perfusion SPECT should be interpreted carefully in patients with WPW syndrome.

  1. Blood perfusion and pH monitoring in organs by laser-induced fluorescence spectroscopy

    Science.gov (United States)

    Vari, Sandor G.; Papazoglou, Theodore G.; Pergadia, Vani R.; Stavridi, Marigo; Snyder, Wendy J.; Papaioannou, Thanassis; Duffy, J. T.; Weiss, Andrew B.; Thomas, Reem; Grundfest, Warren S.

    1994-01-01

    Sensitivity of laser-induced fluorescence spectroscopy (LIFS) in detecting a change in tissue pH, and blood perfusion was determined. Rabbits were anesthetized, paralyzed, and mechanically ventilated. The arterial and venous blood supplies of the kidney were isolated and ligated to alter the perfusion. The femoral artery was cannulated to extract samples for blood gas analysis. A 308-nm XeCl was used as an excitation source. A 600 micrometers core diameter fiber was used for fluorescence acquisition, and the spectra analyzed by an optical multichannel analyzer (EG & G, OMA III). the corresponding intensity ratio R equals INADH / ICOLL was used as an index for respiratory acidosis. Blood perfusion was assessed using the following algorithm: (IELAS minus ICOLL) divided by (INADH minus ICOLL). The intensity ratio linearly decreased with the reduction of blood perfusion. When we totally occluded the artery the ratio decreased tenfold when compared to the ratio of a fully perfused kidney. Results of monitoring blood acidosis by laser-induced fluorescence spectroscopy shows a significant trend between pH and intensity ratio. Since all the slopes were negative, there is an obvious significant correlation between the pH and NADH.COLLAGEN RATIO. Blue-light-induced fluorescence measurements and ratio fluorometry is a sensitive method for monitoring blood perfusion and acidity or alkalinity of an organ.

  2. MRI and MRA of kidney transplants - evaluation of vessels and perfusion

    International Nuclear Information System (INIS)

    Wiesner, W.; Pfammatter, T.; Krestin, G.P.; Debatin, J.F.

    1998-01-01

    Purpose: To document the value of fast contrast enhanced-sequences in the assessment of the vascular supply and parenchymal perfusion in renal transplants. Patients: 18 recipients of a renal transplant were examined with a 1.5-Tesla-MR-system. The protocol included fast contrast enhanced 3D MR angiography and coronal 2D GRE sequences. The transplant artery and vein were assessed as well as regional parenchymal perfusion. Results: 3D MRA detected three transplant artery stenoses and one occlusion. In addition, two renal vein thromboses and one compression were identified. Perfusion deficits were documented in 8 renal transplants: Renal infarction (n=4), cortical necrosis (n=2), acute tubular necrosis (n=1) and venous ischemia (n=1). Fluid collections were documented as well as dilatation of the collecting system and abnormalities of the surrounding tissues. Conclusion: Contrast enhanced MRI and MRA permit a comprehensive assessment of renal transplants without inducing nephrotoxicity. (orig.) [de

  3. Pulmonary artery perfusion versus no pulmonary perfusion during cardiopulmonary bypass in patients with COPD

    DEFF Research Database (Denmark)

    Buggeskov, Katrine B; Sundskard, Martin M; Jonassen, Thomas

    2016-01-01

    INTRODUCTION: Absence of pulmonary perfusion during cardiopulmonary bypass (CPB) may be associated with reduced postoperative oxygenation. Effects of active pulmonary artery perfusion were explored in patients with chronic obstructive pulmonary disease (COPD) undergoing cardiac surgery. METHODS: 90...... perfusion with normothermic oxygenated blood during cardiopulmonary bypass appears to improve postoperative oxygenation in patients with COPD undergoing cardiac surgery. Pulmonary artery perfusion with hypothermic HTK solution does not seem to improve postoperative oxygenation. TRIAL REGISTRATION NUMBER...

  4. Radiologists' responses to inadequate referrals

    International Nuclear Information System (INIS)

    Lysdahl, Kristin Bakke; Hofmann, Bjoern Morten; Espeland, Ansgar

    2010-01-01

    To investigate radiologists' responses to inadequate imaging referrals. A survey was mailed to Norwegian radiologists; 69% responded. They graded the frequencies of actions related to referrals with ambiguous indications or inappropriate examination choices and the contribution of factors preventing and not preventing an examination of doubtful usefulness from being performed as requested. Ninety-five percent (344/361) reported daily or weekly actions related to inadequate referrals. Actions differed among subspecialties. The most frequent were contacting the referrer to clarify the clinical problem and checking test results/information in the medical records. Both actions were more frequent among registrars than specialists and among hospital radiologists than institute radiologists. Institute radiologists were more likely to ask the patient for additional information and to examine the patient clinically. Factors rated as contributing most to prevent doubtful examinations were high risk of serious complications/side effects, high radiation dose and low patient age. Factors facilitating doubtful examinations included respect for the referrer's judgment, patient/next-of-kin wants the examination, patient has arrived, unreachable referrer, and time pressure. In summary, radiologists facing inadequate referrals considered patient safety and sought more information. Vetting referrals on arrival, easier access to referring clinicians, and time for radiologists to handle inadequate referrals may contribute to improved use of imaging. (orig.)

  5. Reverse ventilation--perfusion mismatch

    International Nuclear Information System (INIS)

    Palmaz, J.C.; Barnett, C.A.; Reich, S.B.; Krumpe, P.E.; Farrer, P.A.

    1984-01-01

    Patients having lobar airway obstruction or consolidation usually have decreases of both ventilation and perfusion on lung scans. We report three patients in whom hypoxic vasoconstriction was apparently incomplete, resulting in a ''reversed'' ventilation-perfusion mismatch. Perfusion of the hypoxic lobe on the radionuclide scan was associated with metabolic alkalosis, pulmonary venous and pulmonary arterial hypertension in these patients

  6. Impaired glymphatic perfusion after strokes revealed by contrast-enhanced MRI: a new target for fibrinolysis?

    Science.gov (United States)

    Gaberel, Thomas; Gakuba, Clement; Goulay, Romain; Martinez De Lizarrondo, Sara; Hanouz, Jean-Luc; Emery, Evelyne; Touze, Emmanuel; Vivien, Denis; Gauberti, Maxime

    2014-10-01

    The aim of the present study was to investigate the impact of different stroke subtypes on the glymphatic system using MRI. We first improved and characterized an in vivo protocol to measure the perfusion of the glymphatic system using MRI after minimally invasive injection of a gadolinium chelate within the cisterna magna. Then, the integrity of the glymphatic system was evaluated in 4 stroke models in mice including subarachnoid hemorrhage (SAH), intracerebral hemorrhage, carotid ligature, and embolic ischemic stroke. We were able to reliably evaluate the glymphatic system function using MRI. Moreover, we provided evidence that the glymphatic system was severely impaired after SAH and in the acute phase of ischemic stroke, but was not altered after carotid ligature or in case of intracerebral hemorrhage. Notably, this alteration in glymphatic perfusion reduced brain clearance rate of low-molecular-weight compounds. Interestingly, glymphatic perfusion after SAH can be improved by intracerebroventricular injection of tissue-type plasminogen activator. Moreover, spontaneous arterial recanalization was associated with restoration of the glymphatic function after embolic ischemic stroke. SAH and acute ischemic stroke significantly impair the glymphatic system perfusion. In these contexts, injection of tissue-type plasminogen activator either intracerebroventricularly to clear perivascular spaces (for SAH) or intravenously to restore arterial patency (for ischemic stroke) may improve glymphatic function. © 2014 American Heart Association, Inc.

  7. Reproducibility of rest and exercise stress contrast-enhanced calf perfusion magnetic resonance imaging in peripheral arterial disease

    Directory of Open Access Journals (Sweden)

    Jiji Ronny S

    2013-01-01

    Full Text Available Abstract Background The purpose was to determine the reproducibility and utility of rest, exercise, and perfusion reserve (PR measures by contrast-enhanced (CE calf perfusion magnetic resonance imaging (MRI of the calf in normal subjects (NL and patients with peripheral arterial disease (PAD. Methods Eleven PAD patients with claudication (ankle-brachial index 0.67 ±0.14 and 16 age-matched NL underwent symptom-limited CE-MRI using a pedal ergometer. Tissue perfusion and arterial input were measured at rest and peak exercise after injection of 0.1 mM/kg of gadolinium-diethylnetriamine pentaacetic acid (Gd-DTPA. Tissue function (TF and arterial input function (AIF measurements were made from the slope of time-intensity curves in muscle and artery, respectively, and normalized to proton density signal to correct for coil inhomogeneity. Perfusion index (PI = TF/AIF. Perfusion reserve (PR = exercise TF/ rest TF. Intraclass correlation coefficient (ICC was calculated from 11 NL and 10 PAD with repeated MRI on a different day. Results Resting TF was low in NL and PAD (mean ± SD 0.25 ± 0.18 vs 0.35 ± 0.71, p = 0.59 but reproducible (ICC 0.76. Exercise TF was higher in NL than PAD (5.5 ± 3.2 vs. 3.4 ± 1.6, p = 0.04. Perfusion reserve was similar between groups and highly variable (28.6 ± 19.8 vs. 42.6 ± 41.0, p = 0.26. Exercise TF and PI were reproducible measures (ICC 0.63 and 0.60, respectively. Conclusion Although rest measures are reproducible, they are quite low, do not distinguish NL from PAD, and lead to variability in perfusion reserve measures. Exercise TF and PI are the most reproducible MRI perfusion measures in PAD for use in clinical trials.

  8. Fast Doppler as a novel bedside measure of cerebral perfusion in preterm infants.

    Science.gov (United States)

    Peeples, Eric S; Mehic, Edin; Mourad, Pierre D; Juul, Sandra E

    2016-02-01

    Altered cerebral perfusion from impaired autoregulation may contribute to the morbidity and mortality associated with premature birth. We hypothesized that fast Doppler imaging could provide a reproducible bedside estimation of cerebral perfusion and autoregulation in preterm infants. This is a prospective pilot study using fast Doppler ultrasound to assess blood flow velocity in the basal ganglia of 19 subjects born at 26-32 wk gestation. Intraclass correlation provided a measure of test-retest reliability, and linear regression of cerebral blood flow velocity and heart rate or blood pressure allowed for estimations of autoregulatory ability. The intraclass correlation when imaging in the first 48 h of life was 0.634. We found significant and independent correlations between the systolic blood flow velocity and both systolic blood pressure and heart rate (P = 0.015 and 0.012 respectively) only in the 26-28 wk gestational age infants in the first 48 h of life. Our results suggest that fast Doppler provides reliable bedside measurements of cerebral blood flow velocity at the tissue level in premature infants, acting as a proxy for cerebral tissue perfusion. Additionally, autoregulation appears to be impaired in the extremely preterm infants, even within a normal range of blood pressures.

  9. Perfusion dyssynchrony analysis

    NARCIS (Netherlands)

    Chiribiri, A.; Villa, A.D.M.; Sammut, E.; Breeuwer, M.; Nagel, E.

    2015-01-01

    AIMS: We sought to describe perfusion dyssynchrony analysis specifically to exploit the high temporal resolution of stress perfusion CMR. This novel approach detects differences in the temporal distribution of the wash-in of contrast agent across the left ventricular wall. METHODS AND RESULTS:

  10. Brain perfusion: computed tomography applications

    International Nuclear Information System (INIS)

    Miles, K.A.

    2004-01-01

    Within recent years, the broad introduction of fast multi-detector computed tomography (CT) systems and the availability of commercial software for perfusion analysis have made cerebral perfusion imaging with CT a practical technique for the clinical environment. The technique is widely available at low cost, accurate and easy to perform. Perfusion CT is particularly applicable to those clinical circumstances where patients already undergo CT for other reasons, including stroke, head injury, subarachnoid haemorrhage and radiotherapy planning. Future technical developments in multi-slice CT systems may diminish the current limitations of limited spatial coverage and radiation burden. CT perfusion imaging on combined PET-CT systems offers new opportunities to improve the evaluation of patients with cerebral ischaemia or tumours by demonstrating the relationship between cerebral blood flow and metabolism. Yet CT is often not perceived as a technique for imaging cerebral perfusion. This article reviews the use of CT for imaging cerebral perfusion, highlighting its advantages and disadvantages and draws comparisons between perfusion CT and magnetic resonance imaging. (orig.)

  11. Transplacental transfer of monomethyl phthalate and mono(2-ethylhexyl) phthalate in a human placenta perfusion system

    DEFF Research Database (Denmark)

    Mose, Tina; Knudsen, Lisbeth E; Hedegaard, Morten

    2007-01-01

    The transplacental passage of monomethylphtalate (mMP) and mono (2-ethylhexyl) phthalate (mEHP) was studied using an ex vivo placental perfusion model with simultaneous perfusion of fetal and maternal circulation in a single cotyledon. Umbilical cord blood and placental tissue collected both before...... plasma samples. mMP and possibly other short-chained phthalate monoesters in maternal blood can cross the placenta by slow transfer, whereas the results indicate no placental transfer of mEHP. Further studies are recommended....

  12. Placental transfer of the polybrominated diphenyl ethers BDE-47, BDE-99 and BDE-209 in a human placenta perfusion system: an experimental study

    Directory of Open Access Journals (Sweden)

    Frederiksen Marie

    2010-07-01

    Full Text Available Abstract Background Polybrominated diphenyl ethers (PBDEs have been widely used as flame retardants in consumer products. PBDEs may affect thyroid hormone homeostasis, which can result in irreversible damage of cognitive performance, motor skills and altered behaviour. Thus, in utero exposure is of very high concern due to critical windows in fetal development. Methods A human ex vivo placenta perfusion system was used to study the kinetics and extent of the placental transfer of BDE-47, BDE-99 and BDE-209 during four-hour perfusions. The PBDEs were added to the maternal circulation and monitored in the maternal and fetal compartments. In addition, the perfused cotyledon, the surrounding placental tissue as well as pre-perfusion placental tissue and umbilical cord plasma were also analysed. The PBDE analysis included Soxhlet extraction, clean-up by adsorption chromatography and GC-MS analysis. Results and Discussion Placental transfer of BDE-47 was faster and more extensive than for BDE-99. The fetal-maternal ratios (FM-ratio after four hours of perfusion were 0.47 and 0.25 for BDE-47 and BDE-99, respectively, while the indicative permeability coefficient (IPC measured after 60 minutes of perfusion was 0.26 h-1 and 0.10 h-1, respectively. The transport of BDE-209 seemed to be limited. These differences between the congeners may be related to the degree of bromination. Significant accumulation was observed for all congeners in the perfused cotyledon as well as in the surrounding placental tissue. Conclusion The transport of BDE-47 and BDE-99 indicates in utero exposure to these congeners. Although the transport of BDE-209 was limited, however, possible metabolic debromination may lead to products which are both more toxic and transportable. Our study demonstrates fetal exposure to PBDEs, which should be included in risk assessment of PBDE exposure of women of child-bearing age.

  13. The effect of head size/shape, miscentering, and bowtie filter on peak patient tissue doses from modern brain perfusion 256-slice CT: How can we minimize the risk for deterministic effects?

    International Nuclear Information System (INIS)

    Perisinakis, Kostas; Seimenis, Ioannis; Tzedakis, Antonis; Papadakis, Antonios E.; Damilakis, John

    2013-01-01

    Purpose: To determine patient-specific absorbed peak doses to skin, eye lens, brain parenchyma, and cranial red bone marrow (RBM) of adult individuals subjected to low-dose brain perfusion CT studies on a 256-slice CT scanner, and investigate the effect of patient head size/shape, head position during the examination and bowtie filter used on peak tissue doses. Methods: The peak doses to eye lens, skin, brain, and RBM were measured in 106 individual-specific adult head phantoms subjected to the standard low-dose brain perfusion CT on a 256-slice CT scanner using a novel Monte Carlo simulation software dedicated for patient CT dosimetry. Peak tissue doses were compared to corresponding thresholds for induction of cataract, erythema, cerebrovascular disease, and depression of hematopoiesis, respectively. The effects of patient head size/shape, head position during acquisition and bowtie filter used on resulting peak patient tissue doses were investigated. The effect of eye-lens position in the scanned head region was also investigated. The effect of miscentering and use of narrow bowtie filter on image quality was assessed. Results: The mean peak doses to eye lens, skin, brain, and RBM were found to be 124, 120, 95, and 163 mGy, respectively. The effect of patient head size and shape on peak tissue doses was found to be minimal since maximum differences were less than 7%. Patient head miscentering and bowtie filter selection were found to have a considerable effect on peak tissue doses. The peak eye-lens dose saving achieved by elevating head by 4 cm with respect to isocenter and using a narrow wedge filter was found to approach 50%. When the eye lies outside of the primarily irradiated head region, the dose to eye lens was found to drop to less than 20% of the corresponding dose measured when the eye lens was located in the middle of the x-ray beam. Positioning head phantom off-isocenter by 4 cm and employing a narrow wedge filter results in a moderate reduction of

  14. Prona positioning in patients submitted to myocardial perfusion scintigraphy

    International Nuclear Information System (INIS)

    Cunha, C.J.; Ferreira, F.C.L.; Dullius, M.A.; Souza, S.O.; Souza, D.N.

    2011-01-01

    The myocardium perfusion scintigraphy corresponds at the nuclear medicine to one of best diagnostic methods for myocardium diseases. However, artefacts generated by the diaphragmatic tissue can induce to false positive diagnostic when does not occurs association of the image in supine position with the prone position. Images acquired at the two positions were analysed and the evaluation of tomographic images were estimation and consequently, a more completed diagnostic

  15. Perfusion and diffusion characteristics of cervical cancer based on intravoxel incoherent motion MR imaging-a pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Elaine Yuen Phin; Yu, Xue; Khong, Pek-Lan [The University of Hong Kong, Department of Diagnostic Radiology, Queen Mary Hospital, Hong Kong (China); Chu, Mandy Man Yee; Ngan, Hextan Yuen Sheung [The University of Hong Kong, Department of Obstetrics and Gynaecology, Queen Mary Hospital, Hong Kong (China); Siu, Steven Wai Kwan [Queen Mary Hospital, Department of Clinical Oncology, Hong Kong (China); Soong, Inda Sung [Pamela Youde Nethersole Eastern Hospital, Department of Clinical Oncology, Hong Kong (China); Chan, Queenie [Philips Healthcare, Hong Kong (China)

    2014-07-15

    To investigate the tissue characteristics of cervical cancer based on the intravoxel incoherent motion (IVIM) model and to assess the IVIM parameters in tissue differentiation in the female pelvis. Sixteen treatment-naive cervical cancer and 17 age-matched healthy subjects were prospectively recruited for diffusion-weighted (b = 0-1,000 s/mm{sup 2}) and standard pelvic MRI. Bi-exponential analysis was performed to derive the perfusion parameters f (perfusion fraction) and D* (pseudodiffusion coefficient) as well as the diffusion parameter D (true molecular diffusion coefficient) in cervical cancer (n = 16), normal cervix (n = 17), myometrium (n = 33) and leiomyoma (n = 14). Apparent diffusion coefficient (ADC) was calculated. Kruskal-Wallis test and receiver operating characteristics (ROC) curves were used. Cervical cancer had the lowest f (14.9 ± 2.6 %) and was significantly different from normal cervix and leiomyoma (p < 0.05). The D (0.86 ± 0.16 x 10{sup -3} mm2/s) was lowest in cervical cancer and was significantly different from normal cervix and myometrium (p < 0.05) but not leiomyoma. No difference was observed in D*. D was consistently lower than ADC in all tissues. ROC curves indicated that f < 16.38 %, D < 1.04 x 10{sup -3} mm{sup 2}/s and ADC < 1.13 x 10{sup -3} mm{sup 2}/s could differentiate cervical cancer from non-malignant tissues (AUC 0.773-0.908). Cervical cancer has low perfusion and diffusion IVIM characteristics with promising potential for tissue differentiation. (orig.)

  16. Impaired microcirculatory perfusion in a rat model of cardiopulmonary bypass : the role of hemodilution

    NARCIS (Netherlands)

    Koning, Nick J.; de lange, Fellery; Vonk, Alexander B. A.; Ahmed, Yunus; van den Brom, Charissa E.; Bogaards, Sylvia; van Meurs, Matijs; Jongman, Rianne M.; Schalkwijk, Casper G.; Begieneman, Mark P. V.; Niessen, Hans W.; Baufreton, Christophe; Boer, Christa

    2016-01-01

    Although hemodilution is attributed as the main cause of microcirculatory impairment during cardiopulmonary bypass (CPB), this relationship has never been investigated. We investigated the distinct effects of hemodilution with or without CPB on microvascular perfusion and subsequent renal tissue

  17. The Hepatoprotective Effects of Corn Silk against Dose-induced Injury of Ecstasy (MDMA Using Isolated Rat Liver Perfusion System

    Directory of Open Access Journals (Sweden)

    Mohammad Karami

    2016-07-01

    Full Text Available Background: Corn silk (CS is widely used in Iranian traditional medicine. The aim of this study was to investigate hepatoprotective activity of CS by Isolated Rat Liver Perfusion System (IRLP. Methods: Hydro-alcoholic extract of corn silk (10, 20, 40, and 100 mg kg-1 was evaluated for its hepatoprotective activity by IRLP. Phenol and flavonoid contents of the extract were determined as gallic acid and quercetin equivalents from a calibration curve, respectively. IRLP system is ideal for studying biochemical alterations of chemicals with minimum neuro-hormonal effects. In this study, the liver was perfused with Kerbs-Henseleit buffer, containing different concentration of hydro-alcoholic extract of corn silk (10, 20, 40, 50,100mg/kg, added to the buffer, and perfused for 2 hours. During the perfusion, many factors, including amino-transferees activities and the level of GSH, were assessed as indicators of liver viability. Consequently, sections of liver tissues were examined for any histopathological changes. Results: Histopathological changes in liver tissues were related to hydro-alcoholic extract of corn silk concentrations in a dose-dependent manner. Also, 50 and 100mg/kg doses caused significant (P<0.05 histopathological changes. Level of GSH in samples perfused with hydro-alcoholic extract increased compared to the control group. Conclusion: Hepatoprotective effect of CS is due to decreased lipid peroxidation, although other mechanisms might also be involved.

  18. Determining the appropriate number and duration of leech therapy in congested tissues using tissue spectrophotometry and laser Doppler flowmetry.

    Science.gov (United States)

    Rothenberger, Jens; Petersen, Wiebke; Schaller, Hans-Eberhard; Held, Manuel

    2016-11-01

    A universal protocol determining the number of leeches and their application time does not exist. The aim of this study, therefore, is to quantify perfusion dynamics in venous congested tissues after leech application to get more detailed information about changes due to leech-induced skin microcirculation and to evaluate the usability of the Oxygen to See (O2C) device in terms of determining the appropriate number of leeches and the duration of therapy. Twelve patients with the need for leech therapy participated in the study. Perfusion dynamics of the congested tissue was assessed using the O2C device, which determines blood flow (BF), the relative amount of hemoglobin (rHB), and the oxygen saturation (SO2). Measurements were carried out before leech application and on various intervals like 10 minutes, one hour, and three hours after leech application. The leech application effectuated after 10 minutes a nonsignificant perfusion improvement, which further increased after one hour with a significant reduction of the relative amount of hemoglobin and a significant increase of blood flow and oxygen saturation (BF= +56.7%; rHB= -25.5%; SO2= +53.7%). After three hours, the values returned to the levels before leech administration. In two cases, in which further administration of leeches within the measurement period was necessary, no substantial perfusion changes were obtained. The results of this study forms a more precise pattern of microcirculatory changes of leech therapy in congested tissues. According to our measurements a venous drainage improvement can be expected in congested tissue one hour after leech administration. The O2C seems to be a useful method to determine the appropriate number and duration of leech therapy. © 2016 by the Wound Healing Society.

  19. The Transcranial Doppler Sonography for Optimal Monitoring and Optimization of Cerebral Perfusion in Aortic Arch Surgery: A Case Series.

    Science.gov (United States)

    Ghazy, Tamer; Darwisch, Ayham; Schmidt, Torsten; Nguyen, Phong; Elmihy, Sohaila; Fajfrova, Zuzana; Zickmüller, Claudia; Matschke, Klaus; Kappert, Utz

    2017-06-16

    To analyze the feasibility and advantages of transcranial doppler sonography (TCD) for monitoring and optimization of selective cerebral perfusion (SCP) in aortic arch surgery. From April 2013 to April 2014, nine patients with extensive aortic pathology underwent surgery under moderate hypothermic cardiac arrest with unilateral antegrade SCP under TCD monitoring in our institution. Adequate sonographic window and visualization of circle of Willis were to be confirmed. Intraoperatively, a cerebral cross-filling of the contralateral cerebral arteries on the unilateral SCP was to be confirmed with TCD. If no cross-filling was confirmed, an optimization of the SCP was performed via increasing cerebral flow and increasing PCO2. If not successful, the SCP was to be switched to bilateral perfusion. Air bubble hits were recorded at the termination of SCP. A sonographic window was confirmed in all patients. Procedural success was 100%. The mean operative time was 298 ± 89 minutes. Adequate cross-filling was confirmed in 8 patients. In 1 patient, inadequate cross-filling was detected by TCD and an optimization of cerebral flow was necessary, which was successfully confirmed by TCD. There was no conversion to bilateral perfusion. Extensive air bubble hits were confirmed in 1 patient, who suffered a postoperative stroke. The 30-day mortality rate was 0. Conclusion: The TCD is feasible for cerebral perfusion monitoring in aortic surgery. It enables a confirmation of adequacy of cerebral perfusion strategy or the need for its optimization. Documentation of calcific or air-bubble hits might add insight into patients suffering postoperative neurological deficits.

  20. Volume perfusion CT imaging of cerebral vasospasm: diagnostic performance of different perfusion maps

    Energy Technology Data Exchange (ETDEWEB)

    Othman, Ahmed E. [RWTH Aachen University, Department of Diagnostic and Interventional Neuroradiology, Aachen (Germany); Eberhard Karls University Tuebingen, University Hospital Tuebingen, Department for Diagnostic and Interventional Radiology, Tuebingen (Germany); Afat, Saif; Nikoubashman, Omid; Mueller, Marguerite; Wiesmann, Martin; Brockmann, Carolin [RWTH Aachen University, Department of Diagnostic and Interventional Neuroradiology, Aachen (Germany); Schubert, Gerrit Alexander [RWTH Aachen University, Department of Neurosurgery, Aachen (Germany); Bier, Georg [Eberhard Karls University Tuebingen, University Hospital Tuebingen, Department for Diagnostic and Interventional Neuroradiology, Tuebingen (Germany); Brockmann, Marc A. [RWTH Aachen University, Department of Diagnostic and Interventional Neuroradiology, Aachen (Germany); University Hospital Mainz, Department of Neuroradiology, Mainz (Germany)

    2016-08-15

    In this study, we aimed to evaluate the diagnostic performance of different volume perfusion CT (VPCT) maps regarding the detection of cerebral vasospasm compared to angiographic findings. Forty-one datasets of 26 patients (57.5 ± 10.8 years, 18 F) with subarachnoid hemorrhage and suspected cerebral vasospasm, who underwent VPCT and angiography within 6 h, were included. Two neuroradiologists independently evaluated the presence and severity of vasospasm on perfusion maps on a 3-point Likert scale (0 - no vasospasm, 1 - vasospasm affecting <50 %, 2 - vasospasm affecting >50 % of vascular territory). A third neuroradiologist independently assessed angiography for the presence and severity of vasospasm on a 3-point Likert scale (0 - no vasospasm, 1 - vasospasm affecting < 50 %, 2 - vasospasm affecting > 50 % of vessel diameter). Perfusion maps of cerebral blood volume (CBV), cerebral blood flow (CBF), mean transit time (MTT), and time to drain (TTD) were evaluated regarding diagnostic accuracy for cerebral vasospasm with angiography as reference standard. Correlation analysis of vasospasm severity on perfusion maps and angiographic images was performed. Furthermore, inter-reader agreement was assessed regarding findings on perfusion maps. Diagnostic accuracy for TTD and MTT was significantly higher than for all other perfusion maps (TTD, AUC = 0.832; MTT, AUC = 0.791; p < 0.001). TTD revealed higher sensitivity than MTT (p = 0.007). The severity of vasospasm on TTD maps showed significantly higher correlation levels with angiography than all other perfusion maps (p ≤ 0.048). Inter-reader agreement was (almost) perfect for all perfusion maps (kappa ≥ 0.927). The results of this study indicate that TTD maps have the highest sensitivity for the detection of cerebral vasospasm and highest correlation with angiography regarding the severity of vasospasm. (orig.)

  1. Comparison between acoustic radiation force impulse quantification data and perfusion-CT parameters in hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Esser, Michael, E-mail: michael.esser@med.uni-tuebingen.de; Schneeweiß, Sven, E-mail: sven.schneeweiss@med.uni-tuebingen.de; Kolb, Manuel, E-mail: manuel.kolb@med.uni-tuebingen.de; Kurucay, Mustafa, E-mail: mustafa.kurucay@med.uni-tuebingen.de; Ruff, Christer, E-mail: christer.ruff@med.uni-tuebingen.de; Nikolaou, Konstantin, E-mail: konstantin.nikolaou@med.uni-tuebingen.de; Horger, Marius, E-mail: marius.horger@med.uni-tuebingen.de

    2017-04-15

    Highlights: • HCC tissue stiffness did not correlate with the degree of tumor vascularization. • HCC tissue stiffness declined while increasing HCC distance to the skin surface. • HCC tissue stiffness showed higher values the larger the respective tumor was. • Poorly differentiated HCCs showed increased values of tumor tissue stiffness. - Abstract: Objective: To find out, if ultrasound elastography of hepatocellular carcinoma (HCC) can predict patterns of tumor perfusion in volume perfusion computed tomography (VPCT). Material and methods: 25 consecutive patients (mean age, 68.9; range, 51–85 years) with liver cirrhosis suspected of HCC underwent VPCT and acoustic radiation force impulse (ARFI) elastography the same day. Quantitative elasticity values were registered, while blood flow (BF), blood volume (BV) and hepatic perfusion index (HPI) of the HCC lesions were calculated. Additionally, we identified histologic WHO grading, lesion size and localization. The Siemens Acuson S 3000 HELX-System with Virtual Touch™-Software and Siemens Somatom Definition Flash with Syngo{sup ®} software were used. Results: A total of 43 HCC lesions were assessed. Mean shear wave velocity was 2.6 m/s (range, 1.1–4.3 m/s). There was no significant linear correlation between the elasticity values and BF (p = 0.751), BV (p = 0.426) and HPI (p = 0.437). However, elasticity values were higher, the larger the tumor was (p = 0.008). Shear wave velocity declined with increasing distance of the HCC to the skin surface (p = 0.028) and depending on liver segment. In addition, elasticity values were higher in less differentiated HCCs. This trend was not statistically significant (p = 0.842). Conclusion: Tissue elasticity in HCC does not correlate with the degree of tumor vascularization, but calculated values are influenced both by the tumor size and localization inside the liver.

  2. Brain perfusion-CT in acute stroke patients

    International Nuclear Information System (INIS)

    Andreev, T.; Totsev, N.; Tzvetanov, P.

    2013-01-01

    Since 1979 when Grodfrey Hounsfield and Allan Corman introduced the computed tomography new generations of CT were developed that improved the special resolution and time of acquisition. The role of neuro-imaging in the evaluation of acute stroke has changed dramatically in the past decade. Previously, neuro-imaging was used in this set-ting to provide anatomic imaging that indicated the presence or absence of acute cerebral ischemia and excluded lesions that produce symptoms or signs mimicking those of stroke, such as hemorrhage and neoplasms. More recently, the introduction of thrombolysis has changed the goals of neuro-imaging from providing solely anatomic information to providing physiologic information that could help to determine which patients might benefit from therapy. In particular, significant emphasis has been placed on the delineation of the ischemic penumbra, also called tissue at risk. Modem CT survey, consisting of three indissociable elements; noncontrast CT (NCT) of course, perfusion-CT (PCT) and CT-angiography (CTA), fulfill all the requirements for hyperacute stroke imaging. CTA can define the occlusion site, depict arterial dissection, grade collateral blood flow, and characterize atherosclerotic disease, whereas PCT accurately defines the infarct core and the ischemic penumbra. CT offers a number of practical advantages over other cerebral perfusion imaging methods, including its wide availability. Using PCT and CTA to define new individualized strategies for acute reperfusion will allow more acute stroke patients to benefit from thrombolytic therapy. Key words: Stroke. Penumbra. Computed Tomography. Perfusion-CT. CT Angiography. Outcome

  3. Dynamic CT myocardial perfusion imaging identifies early perfusion abnormalities in diabetes and hypertension : Insights from a multicenter registry

    NARCIS (Netherlands)

    Vliegenthart, Rozemarijn; De Cecco, Carlo N.; Wichmann, Julian L.; Meinel, Felix G.; Pelgrim, Gert Jan; Tesche, Christian; Ebersberger, Ullrich; Pugliese, Francesca; Bamberg, Fabian; Choe, Yeon Hyeon; Wang, Yining; Schoepf, U. Joseph

    2016-01-01

    Background: To identify patients with early signs of myocardial perfusion reduction, a reference base for perfusion measures is needed. Objective: To analyze perfusion parameters derived from dynamic computed tomography perfusion imaging (CTPI) in patients with suspected coronary artery disease

  4. Diffusion and Perfusion Magnetic Resonance Imaging:Fundamentals and Advances

    OpenAIRE

    Assili, Sanam

    2016-01-01

    Over the past few decades, magnetic resonance imaging has been utilized as a powerful imaging modality to evaluate the structure and function of various organs in the human body,such as the brain. Additionally, diffusion and perfusion MR imaging have been increasingly used in neurovascular clinical applications. In diffusion-weighted magnetic resonance imaging, the mobility of water molecules is explored in order to obtain information about the microscopic behavior of the tissues. In contrast...

  5. Methodology for ventilation/perfusion SPECT

    DEFF Research Database (Denmark)

    Bajc, Marika; Neilly, Brian; Miniati, Massimo

    2010-01-01

    radiolabeled liquid aerosols are not restricted to the presence of obstructive lung disease. Radiolabeled macroaggregated human albumin is the imaging agent of choice for perfusion scintigraphy. An optimal combination of nuclide activities and acquisition times for ventilation and perfusion, collimators......Ventilation/perfusion single-photon emission computed tomography (V/Q SPECT) is the scintigraphic technique of choice for the diagnosis of pulmonary embolism and many other disorders that affect lung function. Data from recent ventilation studies show that the theoretic advantages of Technegas over......, and imaging matrix yields an adequate V/Q SPECT study in approximately 20 minutes of imaging time. The recommended protocol based on the patient remaining in an unchanged position during the initial ventilation study and the perfusion study allows presentation of matching ventilation and perfusion slices...

  6. Increased brainstem perfusion, but no blood-brain barrier disruption, during attacks of migraine with aura

    DEFF Research Database (Denmark)

    Hougaard, Anders; Amin, Faisal M; Christensen, Casper E

    2017-01-01

    symptoms are related to the headache phase of migraine. Animal studies suggest that cortical spreading depression, the likely mechanism of migraine aura, causes disruption of the blood-brain barrier and noxious stimulation of trigeminal afferents leading to activation of brainstem nuclei and triggering...... of migraine headache. We used the sensitive and validated technique of dynamic contrast-enhanced high-field magnetic resonance imaging to simultaneously investigate blood-brain barrier permeability and tissue perfusion in the brainstem (at the level of the lower pons), visual cortex, and brain areas......-free day. The mean time from attack onset to scanning was 7.6 h. We found increased brainstem perfusion bilaterally during migraine with aura attacks. Perfusion also increased in the visual cortex and posterior white matter following migraine aura. We found no increase in blood-brain barrier permeability...

  7. Assessment of drug disposition in the perfused rat brain by statistical moment analysis

    International Nuclear Information System (INIS)

    Sakane, T.; Nakatsu, M.; Yamamoto, A.; Hashida, M.; Sezaki, H.; Yamashita, S.; Nadai, T.

    1991-01-01

    Drug disposition in the brain was investigated by statistical moment analysis using an improved in situ brain perfusion technique. The right cerebral hemisphere of the rat was perfused in situ. The drug and inulin were injected into the right internal carotid artery as a rapid bolus and the venous outflow curve at the posterior facial vein was obtained. The infusion rate was adjusted to minimize the flow of perfusion fluid into the left hemisphere. The obtained disposition parameters were characteristics and considered to reflect the physicochemical properties of each drug. Antipyrine showed a small degree of initial uptake. Therefore, its apparent distribution volume (Vi) and apparent intrinsic clearance (CLint,i) were small. Diazepam showed large degrees of both influx and efflux and, thus, a large Vi. Water showed parameters intermediate between those of antipyrine and those of diazepam. Imipramine, desipramine, and propranolol showed a large CLint,i compared with those of the other drugs. The extraction ratio of propranolol significantly decreased with increasing concentrations of unlabeled propranolol in the perfusion fluid. These findings may be explained partly by the tissue binding of these drugs. In conclusion, the present method is useful for studying drug disposition in the brain

  8. Regional glucose utilization in infarcted and remote myocardium: its relation to coronary anatomy and perfusion.

    Science.gov (United States)

    Fragasso, G; Chierchia, S L; Landoni, C; Lucignani, G; Rossetti, E; Sciammarella, M; Vanoli, G E; Fazio, F

    1998-07-01

    We studied the relationship between coronary anatomy, perfusion and metabolism in myocardial segments exhibiting transient and persistent perfusion defects on stress/rest 99Tcm-MIBI single photon emission tomography in 35 patients (31 males, 4 females, mean age 56 +/- 7 years) with a previous myocardial infarction. Quantitative coronary angiography and assessment of myocardial perfusion reserve and glucose metabolism were performed within 1 week of one another. Perfusion was assessed by SPET after the intravenous injection of 740 MBq of 99Tcm-MIBI at rest and after exercise. Regional myocardial glucose metabolism was assessed by position emission tomography at rest (200 MBq of 18F-2-deoxyglucose, FDG) after an overnight fast with no glucose loading. All 35 patients exhibited persistent perfusion defects consistent with the clinically identified infarct site, and 27 (77%) also showed various degrees of within-infarct FDG uptake; 11 patients developed exercise-induced transient perfusion defects within, or in the vicinity of, 15 infarct segments and resting FDG uptake was present in 10 of these segments (67%). Five patients also showed exercise-induced transient perfusion defects in nine segments remote from the site of infarct: resting FDG uptake was present in six of these regions (67%). Finally, nine patients had increased glucose uptake in non-infarcted regions not showing transient perfusion defects upon exercise testing and perfused by coronary arteries with only minor irregularities. Our results confirm the presence of viable tissue in a large proportion of infarct sites. Moreover, FDG uptake can be seen in regions perfused by coronary arteries showing minor irregularities, not necessarily resulting in detectable transient perfusion defects on a MIBI stress scan. Since the clinical significance of such findings is not clear, further studies should be conducted to assess the long-term evolution of perfusion, function and metabolism in non

  9. Noninvasive study of extremity perfusion by 43K scanning

    International Nuclear Information System (INIS)

    Miyamoto, A.T.; Mishkin, F.S.; Maxwell, T.M.

    1975-01-01

    In nine patients with lower extremity symptoms of arterial insufficiency, potassium chloride 43 K was injected intravenously during rest, reactive hyperemia, or exercise. Decreased radioactivity in muscle tissue was observed to correspond with symptoms, physical findings, Doppler ultrasound pressures, and angiographic findings in all six who had the procedure. Studies following surgical endarterectomies in two, a bypass procedure in one, and exploration without attempted reconstruction in one showed good correlation with postoperative symptoms, physical findings, and pressure measurements using Doppler ultrasound in three of four patients. The fourth patient showed no change on the postoperative study despite clinical improvement. These findings suggest that intravenously administered radioactive potassium provides a noninvasive means for demonstrating the perfused muscle mass of the extremities with delineation of ischemic areas. The risk of arterial puncture is eliminated, and the ability to visualize perfusion patterns during exercise is unique to this method. (U.S.)

  10. Hydrostatic determinants of cerebral perfusion

    International Nuclear Information System (INIS)

    Wagner, E.M.; Traystman, R.J.

    1986-01-01

    We examined the cerebral blood flow response to alterations in perfusion pressure mediated through decreases in mean arterial pressure, increases in cerebrospinal fluid (CSF) pressure, and increases in jugular venous (JV) pressure in 42 pentobarbital anesthetized dogs. Each of these three pressures was independently controlled. Cerebral perfusion pressure was defined as mean arterial pressure minus JV or CSF pressure, depending on which was greater. Mean hemispheric blood flow was measured with the radiolabeled microsphere technique. Despite 30-mm Hg reductions in mean arterial pressure or increases in CSF or JV pressure, CBF did not change as long as the perfusion pressure remained greater than approximately 60 mm Hg. However, whenever perfusion pressure was reduced to an average of 48 mm Hg, cerebral blood flow decreased 27% to 33%. These results demonstrate the capacity of the cerebral vascular bed to respond similarly to changes in the perfusion pressure gradient obtained by decreasing mean arterial pressure, increasing JV pressure or increasing CSF pressure, and thereby support the above definition of cerebral perfusion pressure

  11. The effect of amperozide on uptake and release of [3H]-dopamine in vitro from perfused rat striatal and limbic brain areas

    International Nuclear Information System (INIS)

    Eriksson, E.; Christensson, E.

    1990-01-01

    Amperozide, a putatively antipsychotic drug, was studied for its effects on uptake and release of [ 3 H]-dopamine in rat brain in vitro. Amperozide inhibited uptake of [ 3 H]-dopamine in striatal chopped tissue in vitro with an IC 50 of 18 μM. It also increased basal release of [ 3 H]-dopamine from perfused rat striatal and limbic tissue in vitro at concentrations above 5 μM. Release of [ 3 H]-dopamine from perfused rat striatal and limbic tissue stimulated with 5 μM amphetamine, was inhibited by 1 μM amperozide to 46%. No significant difference was found for the effect of amperozide on in vitro release of [ 3 H]-dopamine from corpus striatum compared to tissue from limbic grain regions; neither on basal release nor on amphetamine-stimulated release of dopamine. (author)

  12. Application of a Simplified Method for Estimating Perfusion Derived from Diffusion-Weighted MR Imaging in Glioma Grading

    Directory of Open Access Journals (Sweden)

    Mengqiu Cao

    2018-01-01

    Full Text Available Purpose: To evaluate the feasibility of a simplified method based on diffusion-weighted imaging (DWI acquired with three b-values to measure tissue perfusion linked to microcirculation, to validate it against from perfusion-related parameters derived from intravoxel incoherent motion (IVIM and dynamic contrast-enhanced (DCE magnetic resonance (MR imaging, and to investigate its utility to differentiate low- from high-grade gliomas.Materials and Methods: The prospective study was approved by the local institutional review board and written informed consent was obtained from all patients. From May 2016 and May 2017, 50 patients confirmed with glioma were assessed with multi-b-value DWI and DCE MR imaging at 3.0 T. Besides conventional apparent diffusion coefficient (ADC0,1000 map, perfusion-related parametric maps for IVIM-derived perfusion fraction (f and pseudodiffusion coefficient (D*, DCE MR imaging-derived pharmacokinetic metrics, including Ktrans, ve and vp, as well as a metric named simplified perfusion fraction (SPF, were generated. Correlation between perfusion-related parameters was analyzed by using the Spearman rank correlation. All imaging parameters were compared between the low-grade (n = 19 and high-grade (n = 31 groups by using the Mann-Whitney U test. The diagnostic performance for tumor grading was evaluated with receiver operating characteristic (ROC analysis.Results: SPF showed strong correlation with IVIM-derived f and D* (ρ = 0.732 and 0.716, respectively; both P < 0.001. Compared with f, SPF was more correlated with DCE MR imaging-derived Ktrans (ρ = 0.607; P < 0.001 and vp (ρ = 0.397; P = 0.004. Among all parameters, SPF achieved the highest accuracy for differentiating low- from high-grade gliomas, with an area under the ROC curve value of 0.942, which was significantly higher than that of ADC0,1000 (P = 0.004. By using SPF as a discriminative index, the diagnostic sensitivity and specificity were 87.1% and 94

  13. Machine Perfusion of Porcine Livers with Oxygen-Carrying Solution Results in Reprogramming of Dynamic Inflammation Networks

    Directory of Open Access Journals (Sweden)

    David Sadowsky

    2016-11-01

    Full Text Available Background: Ex vivo machine perfusion (MP can better preserve organs for transplantation. We have recently reported on the first application of a MP protocol in which liver allografts were fully oxygenated, under dual pressures and subnormothermic conditions, with a new hemoglobin-based oxygen carrier solution specifically developed for ex vivo utilization. In those studies, MP improved organ function post-operatively and reduced inflammation in porcine livers. Herein, we sought to refine our knowledge regarding the impact of MP by defining dynamic networks of inflammation in both tissue and perfusate. Methods: Porcine liver allografts were preserved either with MP (n = 6 or with cold static preservation (CSP; n = 6, then transplanted orthotopically after 9 h of preservation. Fourteen inflammatory mediators were measured in both tissue and perfusate during liver preservation at multiple time points, and analyzed using Dynamic Bayesian Network (DyBN inference to define feedback interactions, as well as Dynamic Network Analysis (DyNA to define the time-dependent development of inflammation networks.Results: Network analyses of tissue and perfusate suggested an NLRP3 inflammasome-regulated response in both treatment groups, driven by the pro-inflammatory cytokine interleukin (IL-18 and the anti-inflammatory mediator IL-1 receptor antagonist (IL-1RA. Both DyBN and DyNA suggested a reduced role of IL-18 and increased role of IL-1RA with MP, along with increased liver damage with CSP. DyNA also suggested divergent progression of responses over the 9 h preservation time, with CSP leading to a stable pattern of IL-18-induced liver damage and MP leading to a resolution of the pro-inflammatory response. These results were consistent with prior clinical, biochemical, and histological findings after liver transplantation. Conclusion: Our results suggest that analysis of dynamic inflammation networks in the setting of liver preservation may identify novel

  14. Cyclic Loading of Growing Tissue in a Bioreactor: Mathematical Model and Asymptotic Analysis

    KAUST Repository

    Pohlmeyer, J. V.

    2013-10-24

    A simplified 2D mathematical model for tissue growth within a cyclically-loaded tissue engineering scaffold is presented and analyzed. Such cyclic loading has the potential to improve yield and functionality of tissue such as bone and cartilage when grown on a scaffold within a perfusion bioreactor. The cyclic compression affects the flow of the perfused nutrient, leading to flow properties that are inherently unsteady, though periodic, on a timescale short compared with that of tissue proliferation. A two-timescale analysis based on these well-separated timescales is exploited to derive a closed model for the tissue growth on the long timescale of proliferation. Some sample numerical results are given for the final model, and discussed. © 2013 Society for Mathematical Biology.

  15. The Influence of Bioreactor Geometry and the Mechanical Environment on Engineered Tissues

    KAUST Repository

    Osborne, J. M.; O’ Dea, R. D.; Whiteley, J. P.; Byrne, H. M.; Waters, S. L.

    2010-01-01

    A three phase model for the growth of a tissue construct within a perfusion bioreactor is examined. The cell population (and attendant extracellular matrix), culture medium, and porous scaffold are treated as distinct phases. The bioreactor system is represented by a two-dimensional channel containing a cell-seeded rigid porous scaffold (tissue construct), which is perfused with a culture medium. Through the prescription of appropriate functional forms for cell proliferation and extracellular matrix deposition rates, the model is used to compare the influence of cell density-, pressure-, and culture medium shear stress-regulated growth on the composition of the engineered tissue. The governing equations are derived in O'Dea et al. "A Three Phase Model for Tissue Construct Growth in a Perfusion Bioreactor," Math. Med. Biol., in which the long-wavelength limit was exploited to aid analysis; here, finite element methods are used to construct two-dimensional solutions to the governing equations and to investigate thoroughly their behavior. Comparison of the total tissue yield and averaged pressures, velocities, and shear stress demonstrates that quantitative agreement between the two-dimensional and long-wavelength approximation solutions is obtained for channel aspect ratios of order 10 -2 and that much of the qualitative behavior of the model is captured in the long-wavelength limit, even for relatively large channel aspect ratios. However, we demonstrate that in order to capture accurately the effect of mechanotransduction mechanisms on tissue construct growth, spatial effects in at least two dimensions must be included due to the inherent spatial variation of mechanical stimuli relevant to perfusion bioreactors, most notably, fluid shear stress, a feature not captured in the long-wavelength limit. Copyright © 2010 by ASME.

  16. The Influence of Bioreactor Geometry and the Mechanical Environment on Engineered Tissues

    KAUST Repository

    Osborne, J. M.

    2010-01-01

    A three phase model for the growth of a tissue construct within a perfusion bioreactor is examined. The cell population (and attendant extracellular matrix), culture medium, and porous scaffold are treated as distinct phases. The bioreactor system is represented by a two-dimensional channel containing a cell-seeded rigid porous scaffold (tissue construct), which is perfused with a culture medium. Through the prescription of appropriate functional forms for cell proliferation and extracellular matrix deposition rates, the model is used to compare the influence of cell density-, pressure-, and culture medium shear stress-regulated growth on the composition of the engineered tissue. The governing equations are derived in O\\'Dea et al. "A Three Phase Model for Tissue Construct Growth in a Perfusion Bioreactor," Math. Med. Biol., in which the long-wavelength limit was exploited to aid analysis; here, finite element methods are used to construct two-dimensional solutions to the governing equations and to investigate thoroughly their behavior. Comparison of the total tissue yield and averaged pressures, velocities, and shear stress demonstrates that quantitative agreement between the two-dimensional and long-wavelength approximation solutions is obtained for channel aspect ratios of order 10 -2 and that much of the qualitative behavior of the model is captured in the long-wavelength limit, even for relatively large channel aspect ratios. However, we demonstrate that in order to capture accurately the effect of mechanotransduction mechanisms on tissue construct growth, spatial effects in at least two dimensions must be included due to the inherent spatial variation of mechanical stimuli relevant to perfusion bioreactors, most notably, fluid shear stress, a feature not captured in the long-wavelength limit. Copyright © 2010 by ASME.

  17. Estimation of Radiation Exposure of 128-Slice 4D-Perfusion CT for the Assessment of Tumor Vascularity

    Energy Technology Data Exchange (ETDEWEB)

    Ketelsen, Dominik; Horger, Marius; Buchgeister, Markus; Fenchel, Michael; Thomas, Christoph; Boehringer, Nadine; Schulze, Maximilian; Tsiflikas, Ilias; Claussen, Claus D.; Heuschmid, Martin [University Hospital Tuebingen, Tuebingen (Germany)

    2010-10-15

    We aimed to estimate the effective dose of 4D-Perfusion-CT protocols of the lung, liver, and pelvis for the assessment of tumor vascularity. An Alderson-Rando phantom equipped with thermoluminescent dosimeters was used to determine the effective dose values of 4D Perfusion-CT. Phantom measurements were performed on a 128-slice single source scanner in adaptive 4D-spiral-mode with bidirectional table movement and a total scan range of 69 mm over a time period of nearly 120 seconds (26 scans). Perfusion measurements were simulated for the lung, liver, and pelvis under the following conditions: lung (80 kV, 60 mAs), liver (80 kV/80 mAs and 80 kV/120 mAs), pelvis (100 kV/80 mAs and 100 kV/120 mAs). Depending on gender, the evaluated body region and scan protocol, an effective whole-body dose between 2.9-12.2 mSv, was determined. The radiation exposure administered to gender-specific organs like the female breast tissue (lung perfusion) or to the ovaries (pelvic perfusion) led to an increase in the female specific dose by 86% and 100% in perfusion scans of the lung and the pelvis, respectively. Due to a significant radiation dose of 4D-perfusion-CT protocols, the responsible use of this new promising technique is mandatory. Gender- and organ-specific differences should be considered for indication and planning of tumor perfusion scans

  18. A new positive pressure ventilation delivery system: its impact on lung ventilation studies that are technically inadequate or non diagnostic

    International Nuclear Information System (INIS)

    Bui, C.; Leiper, C.; Lee, K.; Saunders, C.; Dixson, H.; Elison, B.; Bennett, G.; Gibian, T.; Rutland, J.; Tse, V.; Elzein, H.; Babicheva, R.

    2000-01-01

    Full text: The objective of this study was to evaluate the efficacy and safety of an improved Positive Pressure Ventilation Delivery System (PVDS) in the investigation of Pulmonary Embolism (PE). The major component of PVDS is a commercially available, self-inflating 1.6L Hudson Resuscitator Bag, filled with either oxygen or air (if the patient has CO 2 retention), which is squeezed by the operator to push Technegas from the Technegas Generator Chamber to the patient via the Patient Administration Set synchronously with patient inspiration. 27 spontaneously breathing in-patients (12 males, 15 females, age range 64-89, 21 with chronic airflow limitation), whose conventional lung ventilation images were technically inadequate or non diagnostic, were re-scanned using PVDS within four days after the conventional ventilation study. Randomised blinded visual interpretation of conventional ventilation/perfusion scan vs. PVDS-assisted ventilation/perfusion scan was performed by consensus reading with two experienced observers. In conclusion PVDS was safe and well tolerated. PVDS improved the image quality of the lung ventilation scans in this cohort of patients. This technique has the potential to improve the accuracy of lung scanning in patients with severe lung disease. Copyright (2000) The Australian and New Zealand Society of Nuclear Medicine Inc

  19. Intra-Arterial MR Perfusion Imaging of Meningiomas: Comparison to Digital Subtraction Angiography and Intravenous MR Perfusion Imaging.

    Directory of Open Access Journals (Sweden)

    Mark A Lum

    Full Text Available To evaluate the ability of IA MR perfusion to characterize meningioma blood supply.Studies were performed in a suite comprised of an x-ray angiography unit and 1.5T MR scanner that permitted intraprocedural patient movement between the imaging modalities. Patients underwent intra-arterial (IA and intravenous (IV T2* dynamic susceptibility MR perfusion immediately prior to meningioma embolization. Regional tumor arterial supply was characterized by digital subtraction angiography and classified as external carotid artery (ECA dural, internal carotid artery (ICA dural, or pial. MR perfusion data regions of interest (ROIs were analyzed in regions with different vascular supply to extract peak height, full-width at half-maximum (FWHM, relative cerebral blood flow (rCBF, relative cerebral blood volume (rCBV, and mean transit time (MTT. Linear mixed modeling was used to identify perfusion curve parameter differences for each ROI for IA and IV MR imaging techniques. IA vs. IV perfusion parameters were also directly compared for each ROI using linear mixed modeling.18 ROIs were analyzed in 12 patients. Arterial supply was identified as ECA dural (n = 11, ICA dural (n = 4, or pial (n = 3. FWHM, rCBV, and rCBF showed statistically significant differences between ROIs for IA MR perfusion. Peak Height and FWHM showed statistically significant differences between ROIs for IV MR perfusion. RCBV and MTT were significantly lower for IA perfusion in the Dural ECA compared to IV perfusion. Relative CBF in IA MR was found to be significantly higher in the Dural ICA region and MTT significantly lower compared to IV perfusion.

  20. Radiologists' responses to inadequate referrals

    Energy Technology Data Exchange (ETDEWEB)

    Lysdahl, Kristin Bakke [Oslo University College, Faculty of Health Sciences, Oslo (Norway); University of Oslo, Section for Medical Ethics, Faculty of Medicine, P.O. Box 1130, Blindern, Oslo (Norway); Hofmann, Bjoern Morten [University of Oslo, Section for Medical Ethics, Faculty of Medicine, P.O. Box 1130, Blindern, Oslo (Norway); Gjoevik University College, Faculty of Health Care and Nursing, Gjoevik (Norway); Espeland, Ansgar [Haukeland University Hospital, Department of Radiology, Bergen (Norway); University of Bergen, Section for Radiology, Department of Surgical Sciences, Bergen (Norway)

    2010-05-15

    To investigate radiologists' responses to inadequate imaging referrals. A survey was mailed to Norwegian radiologists; 69% responded. They graded the frequencies of actions related to referrals with ambiguous indications or inappropriate examination choices and the contribution of factors preventing and not preventing an examination of doubtful usefulness from being performed as requested. Ninety-five percent (344/361) reported daily or weekly actions related to inadequate referrals. Actions differed among subspecialties. The most frequent were contacting the referrer to clarify the clinical problem and checking test results/information in the medical records. Both actions were more frequent among registrars than specialists and among hospital radiologists than institute radiologists. Institute radiologists were more likely to ask the patient for additional information and to examine the patient clinically. Factors rated as contributing most to prevent doubtful examinations were high risk of serious complications/side effects, high radiation dose and low patient age. Factors facilitating doubtful examinations included respect for the referrer's judgment, patient/next-of-kin wants the examination, patient has arrived, unreachable referrer, and time pressure. In summary, radiologists facing inadequate referrals considered patient safety and sought more information. Vetting referrals on arrival, easier access to referring clinicians, and time for radiologists to handle inadequate referrals may contribute to improved use of imaging. (orig.)

  1. Pulmonary perfusion ''without ventilation''

    International Nuclear Information System (INIS)

    Chapman, C.N.; Sziklas, J.J.; Spencer, R.P.; Rosenberg, R.J.

    1983-01-01

    An 88-yr-old man, with prior left upper lobectomy and phrenic nerve injury, had a ventilation/perfusion lung image. Both wash-in and equilibrium ventilation images showed no radioactive gas in the left lung. Nevertheless, the left lung was perfused. A similar result was obtained on a repeat study 8 days later. Delayed images, during washout, showed some radioactive gas in the left lung. Nearly absent ventilation (but continued perfusion) of that lung might have been related to altered gas dynamics brought about by the prior lobectomy, a submucosal bronchial lesion, phrenic nerve damage, and limited motion of the left part of the diaphragm. This case raises the issue of the degree of ventilation (and the phase relationship between the lungs) required for the entry of radioactive gas into a diseased lung, and the production of a ''reversed ventilation/perfusion mismatch.''

  2. Captopril improves tumor nanomedicine delivery by increasing tumor blood perfusion and enlarging endothelial gaps in tumor blood vessels.

    Science.gov (United States)

    Zhang, Bo; Jiang, Ting; Tuo, Yanyan; Jin, Kai; Luo, Zimiao; Shi, Wei; Mei, Heng; Hu, Yu; Pang, Zhiqing; Jiang, Xinguo

    2017-12-01

    Poor tumor perfusion and unfavorable vessel permeability compromise nanomedicine drug delivery to tumors. Captopril dilates blood vessels, reducing blood pressure clinically and bradykinin, as the downstream signaling moiety of captopril, is capable of dilating blood vessels and effectively increasing vessel permeability. The hypothesis behind this study was that captopril can dilate tumor blood vessels, improving tumor perfusion and simultaneously enlarge the endothelial gaps of tumor vessels, therefore enhancing nanomedicine drug delivery for tumor therapy. Using the U87 tumor xenograft with abundant blood vessels as the tumor model, tumor perfusion experiments were carried out using laser Doppler imaging and lectin-labeling experiments. A single treatment of captopril at a dose of 100 mg/kg significantly increased the percentage of functional vessels in tumor tissues and improved tumor blood perfusion. Scanning electron microscopy of tumor vessels also indicated that the endothelial gaps of tumor vessels were enlarged after captopril treatment. Immunofluorescence-staining of tumor slices demonstrated that captopril significantly increased bradykinin expression, possibly explaining tumor perfusion improvements and endothelial gap enlargement. Additionally, imaging in vivo, imaging ex vivo and nanoparticle distribution in tumor slices indicated that after a single treatment with captopril, the accumulation of 115-nm nanoparticles in tumors had increased 2.81-fold with a more homogeneous distribution pattern in comparison to non-captopril treated controls. Finally, pharmacodynamics experiments demonstrated that captopril combined with paclitaxel-loaded nanoparticles resulted in the greatest tumor shrinkage and the most extensive necrosis in tumor tissues among all treatment groups. Taken together, the data from the present study suggest a novel strategy for improving tumor perfusion and enlarging blood vessel permeability simultaneously in order to improve

  3. 99mTc-ECD brain SPECT in patients with Moyamoya disease: a reflection of cerebral perfusion status at tissue level in the disease process

    International Nuclear Information System (INIS)

    Kashyap, Raghava; Mittal, Bhagwant Rai; Sunil, Hejjaji Venkataramarao; Bhattacharya, Anish; Singh, Baljinder; Mukherjee, Kanchan Kumar; Gupta, Sunil Kumar

    2011-01-01

    Moyamoya disease is a rare, progressive cerebrovascular disorder caused by intracranial stenosis of the circle of Willis, resulting in successive ischemic events. Computed tomography (CT) and magnetic resonance imaging (MRI) play a major role in diagnosis. The aim of the study was to describe the spectrum of findings on brain SPECT in patients with Moyamoya disease and to compare the findings with other investigations. 99m Tc-ECD SPECT scans of seventeen patients (7 children and 10 adults) were analysed to study the brain perfusion. Features of Moyamoya disease were detected on DSA in 11 patients, CTA in one, MR angiography in one patient. Brain perfusion SPECT analysis showed unilateral perfusion defects in 11 patients, normal perfusion in 2 and bilateral defects in 4 patients. No perfusion defects despite bilateral vascular changes were noted in one patient. Cerebral infarcts were detected on MRI unilaterally in three subjects while multiple infarcts were identified in one. 99m Tc-ECD Brain SPECT showed perfusion defects that were more extensive compared to those detected on MRI. Post acetazolamide studies for assessment of cerebrovascular reserve were done in three patients. Two of them showed good cerebrovascular reserve (>1). Follow-up studies post-surgical procedures (Myo-dura synangiosis) done in two patients showed partial resolution of perfusion defects in the involved areas. Brain perfusion scintigraphy is an important adjunct in evaluation of patients with Moyamoya disease yielding information about the direct end results of the pathology in the vessels and also prognostic information. (author)

  4. Computed Tomography Perfusion, Magnetic Resonance Imaging, and Histopathological Findings After Laparoscopic Renal Cryoablation: An In Vivo Pig Model

    DEFF Research Database (Denmark)

    Nielsen, Tommy Kjærgaard; Østraat, Øyvind; Graumann, Ole

    2017-01-01

    The present study investigates how computed tomography perfusion scans and magnetic resonance imaging correlates with the histopathological alterations in renal tissue after cryoablation. A total of 15 pigs were subjected to laparoscopic-assisted cryoablation on both kidneys. After intervention...... of follow-up, but on microscopic examination, the urothelium was found to be intact in all cases. In conclusion, cryoablation effectively destroyed renal parenchyma, leaving the urothelium intact. Both computed tomography perfusion and magnetic resonance imaging reflect the microscopic findings...

  5. 9 CFR 417.6 - Inadequate HACCP Systems.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Inadequate HACCP Systems. 417.6 Section 417.6 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... ANALYSIS AND CRITICAL CONTROL POINT (HACCP) SYSTEMS § 417.6 Inadequate HACCP Systems. A HACCP system may be...

  6. Contralateral thalamic hypoperfusion on brain perfusion SPECT

    International Nuclear Information System (INIS)

    Lee, Seok Mo; Bae, Sang Kyun; Yoo, Kyung Moo; Yum, Ha Yong

    2000-01-01

    Brain perfusion single photon emission computed tomography (SPECT) is useful for the localization of cerebrovascular lesion and sometimes reveals more definite lesion than radiologic imaging modality such as CT or MRI does. The purpose of this study was to evaluate the diagnostic usefulness of brain perfusion SPECT in patients with hemisensory impairment. Thirteen consecutive patients (M:F= 8:5, mean age = 48) who has hemisensory impairment were included. Brain perfusion SPECT was performed after intravenous injection of 1110 MBq of Tc-99m ECD. The images were obtained using a dual-head gamma camera with ultra-high resolution collimator. Semiquantitative analysis was performed after placing multiple ROIs on cerebral cortex, basal ganglia, thalamus and cerebellum. There were 10 patients with left hemisensory impairment and 3 patients with right-sided symptom. Only 2 patients revealed abnormal signal change in the thalamus on MRI. But brain perfusion SPECT showed decreased perfusion in the thalamus in 9 patients. Six patients among 10 patients with left hemisensory impairment revealed decreased perfusion in the contralateral thalamus on brain SPECT. The other 4 patients revealed no abnormality. Two patients among 3 patients with right hemisensory impairment also showed decreased perfusion in the contralateral thalamus on brain SPECT. One patients with right hemisensory impairment showed ipsilateral perfusion decrease. Two patients who had follow-up brain perfusion SEPCT after treatment revealed normalization of perfusion in the thalamus. Brain perfusion SPECT might be a useful tool in diagnosing patients with hemisensory impairment

  7. Hepatic arterial perfusion increases in the early stage of severe acute pancreatitis patients: Evaluation by perfusion computed tomography

    International Nuclear Information System (INIS)

    Koyasu, Sho; Isoda, Hiroyoshi; Tsuji, Yoshihisa; Yamamoto, Hiroshi; Matsueda, Kazuhiro; Watanabe, Yuji; Chiba, Tsutomu; Togashi, Kaori

    2012-01-01

    Purpose: Although hepatic perfusion abnormalities have been reported in patients with acute pancreatitis, hepatic perfusion with severe acute pancreatitis (SAP) has not been quantitatively evaluated in humans. Therefore, we investigated hepatic perfusion in patients with SAP using perfusion CT. Materials and methods: Hepatic perfusion CT was performed in 67 patients with SAP within 3 days after symptom onset. The patients were diagnosed as having SAP according to the Atlanta criteria. Fifteen cases were established as a control group. Perfusion CT was obtained for 54 s beginning with a bolus injection of 40 ml of contrast agent (600–630 mgI/kg) at a flow rate of 4 ml/s. Perfusion data were analyzed by the dual-input maximum slope method to obtain hepatic arterial perfusion (HAP) and hepatic portal perfusion (HPP). Finally, we compared HAP and HPP in SAP patients with those in the control group, respectively. Results: Average HAP was significantly higher in SAP patients than in the control group (75.1 ± 38.0 vs. 38.2 ± 9.0 ml/min/100 ml; p < 0.001). There was no significant difference in average HPP between SAP patients and the control group (206.7 ± 54.9 vs. 204.4 ± 38.5 ml/min/100 ml; p = 0.92). Conclusion: Using quantitative analysis on perfusion CT, we first demonstrated an increase of HAP in the right hepatic lobe in SAP patients.

  8. Tc99m-sestamibi dosimetry in myocardial perfusion imaging

    International Nuclear Information System (INIS)

    Toledo, Janine M.; Trindade, Bruno M.; Campos, Tarcisio P.R.

    2015-01-01

    This paper addressed myocardial perfusion imaging providing a spatial dosimetric investigation of the 99m Tc-radiopharmaceutical dose distribution at the myocardium. Radiological data manipulation was performed in order to create a computational voxel model of the heart. A set of images obtained by thoracic angiotomography and abdominal aorta was set up providing anatomic and functional information for heart modeling in SISCODES code. A homogeneous distribution of 99m Tc was assumed into the cardiac muscle. Simulations of the transport of particles through the voxel and the interaction with the heart tissues were performed on the MCNP - Monte Carlo Code. The spatial dose distribution in the heart model is displayed as well as the dose versus volume histogram of the heart muscle. The present computational tools can generate spatial doses distribution in myocardial perfusion imaging. Specially, the dosimetry performed elucidates imparted dose distribution in the myocardial muscle per unit of injected 99m Tc activity, which can contribute to future deterministic effect investigations. (author)

  9. A randomized, controlled, double-blind crossover study on the effects of 1-L infusions of 6% hydroxyethyl starch suspended in 0.9% saline (voluven) and a balanced solution (Plasma Volume Redibag) on blood volume, renal blood flow velocity, and renal cortical tissue perfusion in healthy volunteers.

    Science.gov (United States)

    Chowdhury, Abeed H; Cox, Eleanor F; Francis, Susan T; Lobo, Dileep N

    2014-05-01

    We compared the effects of intravenous administration of 6% hydroxyethyl starch (maize-derived) in 0.9% saline (Voluven; Fresenius Kabi, Runcorn, United Kingdom) and a "balanced" preparation of 6% hydroxyethyl starch (potato-derived) [Plasma Volume Redibag (PVR); Baxter Healthcare, Thetford, United Kingdom] on renal blood flow velocity and renal cortical tissue perfusion in humans using magnetic resonance imaging. Hyperchloremia resulting from 0.9% saline infusion may adversely affect renal hemodynamics when compared with balanced crystalloids. This phenomenon has not been studied with colloids. Twelve healthy adult male subjects received 1-L intravenous infusions of Voluven or PVR over 30 minutes in a randomized, double-blind manner, with crossover studies 7 to 10 days later. Magnetic resonance imaging proceeded for 60 minutes after commencement of infusion to measure renal artery blood flow velocity and renal cortical perfusion. Blood was sampled, and weight was recorded at 0, 30, 60, 120, 180, and 240 minutes. Mean peak serum chloride concentrations were 108 and 106 mmol/L, respectively, after Voluven and PVR infusion (P = 0.032). Changes in blood volume (P = 0.867), strong ion difference (P = 0.219), and mean renal artery flow velocity (P = 0.319) were similar. However, there was a significant increase in mean renal cortical tissue perfusion after PVR when compared with Voluven (P = 0.033). There was no difference in urinary neutrophil gelatinase-associated liopcalin to creatinine ratios after the infusion (P = 0.164). There was no difference in the blood volume-expanding properties of the 2 preparations of 6% hydroxyethyl starch. The balanced starch produced an increase in renal cortical tissue perfusion, a phenomenon not seen with starch in 0.9% saline.

  10. Parametric investigation of heating due to magnetic fluid hyperthermia in a tumor with blood perfusion

    Energy Technology Data Exchange (ETDEWEB)

    Liangruksa, Monrudee [Department of Engineering Science and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 (United States); Ganguly, Ranjan [Department of Power Engineering, Jadavpur University, Kolkata 700098 (India); Puri, Ishwar K., E-mail: ikpuri@vt.ed [Department of Engineering Science and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 (United States)

    2011-03-15

    Magnetic fluid hyperthermia (MFH) is a cancer treatment that can selectively elevate the tumor temperature without significantly damaging the surrounding healthy tissue. Optimal MFH design requires a fundamental parametric investigation of the heating of soft materials by magnetic fluids. We model the problem of a spherical tumor and its surrounding healthy tissue that are heated by exciting a homogeneous dispersion of magnetic nanoparticles infused only into the tumor with an external AC magnetic field. The key dimensionless parameters influencing thermotherapy are the Peclet, Fourier, and Joule numbers. Analytical solutions for transient and steady hyperthermia provide correlations between these parameters and the portions of tumor and healthy tissue that are subjected to a threshold temperature beyond which they are damaged. Increasing the ratio of the Fourier and Joule numbers also increases the tumor temperature, but doing so can damage the healthy tissue. Higher magnetic heating is required for larger Peclet numbers due to the larger convection heat loss that occurs through blood perfusion. A comparison of the model predictions with previous experimental data for MFH applied to rabbit tumors shows good agreement. The optimal MFH conditions are identified based on two indices, the fraction I{sub T} of the tumor volume in which the local temperature is above a threshold temperature and the ratio I{sub N} of the damaged normal tissue volume to the tumor tissue volume that also lies above it. The spatial variation in the nanoparticle concentration is also considered. A Gaussian distribution provides efficacy while minimizing the possibility of generating a tumor hot spot. Varying the thermal properties of tumor and normal tissue alters I{sub T}and I{sub N} but the nature of the temperature distribution remains unchanged. - Research highlights: > Analytical model of magnetic fluid hyperthermia of tumor tissue perfused with magnetic nanoparticles that is surrounded

  11. Parametric investigation of heating due to magnetic fluid hyperthermia in a tumor with blood perfusion

    International Nuclear Information System (INIS)

    Liangruksa, Monrudee; Ganguly, Ranjan; Puri, Ishwar K.

    2011-01-01

    Magnetic fluid hyperthermia (MFH) is a cancer treatment that can selectively elevate the tumor temperature without significantly damaging the surrounding healthy tissue. Optimal MFH design requires a fundamental parametric investigation of the heating of soft materials by magnetic fluids. We model the problem of a spherical tumor and its surrounding healthy tissue that are heated by exciting a homogeneous dispersion of magnetic nanoparticles infused only into the tumor with an external AC magnetic field. The key dimensionless parameters influencing thermotherapy are the Peclet, Fourier, and Joule numbers. Analytical solutions for transient and steady hyperthermia provide correlations between these parameters and the portions of tumor and healthy tissue that are subjected to a threshold temperature beyond which they are damaged. Increasing the ratio of the Fourier and Joule numbers also increases the tumor temperature, but doing so can damage the healthy tissue. Higher magnetic heating is required for larger Peclet numbers due to the larger convection heat loss that occurs through blood perfusion. A comparison of the model predictions with previous experimental data for MFH applied to rabbit tumors shows good agreement. The optimal MFH conditions are identified based on two indices, the fraction I T of the tumor volume in which the local temperature is above a threshold temperature and the ratio I N of the damaged normal tissue volume to the tumor tissue volume that also lies above it. The spatial variation in the nanoparticle concentration is also considered. A Gaussian distribution provides efficacy while minimizing the possibility of generating a tumor hot spot. Varying the thermal properties of tumor and normal tissue alters I T and I N but the nature of the temperature distribution remains unchanged. - Research Highlights: →Analytical model of magnetic fluid hyperthermia of tumor tissue perfused with magnetic nanoparticles that is surrounded by healthy tissue

  12. Controlled destruction and temperature distributions in biological tissues subjected to monoactive electrocoagulation.

    Science.gov (United States)

    Erez, A; Shitzer, A

    1980-02-01

    An analysis of the temperature fields developed in a biological tissue undergoing a monoactive electrical coagulating process is presented, including thermal recovery following prolonged heating. The analysis is performed for the passage of alternating current and assumes a homogeneous and isotropic tissue model which is uniformly perfused by blood at arterial temperature. Solution for the one-dimensional spherical geometry is obtained by a Laplace transform and numerical integrations. Results obtained indicate the major role which blood perfusion plays in determining the effects of the coagulating process; tissue temperatures and depth of destruction are drastically reduced as blood perfusion increases. Metabolic heat generation rate is found to have negligible effects on tissue temperatures whereas electrode thermal inertia affects temperature levels appreciably. However, electrodes employed in practice would have a low thermal inertia which might be regarded as zero for all practical purposes. It is also found that the depth of tissue destruction is almost directly proportional to the electrical power and duration of application. To avoid excessively high temperatures and charring, it would be advantageous to reduce power and increase the time of application. Results of this study should be regarded as a first approximation to the rather complex phenomena associated with electrocoagulation. They may, nevertheless, serve as preliminary guidelines to practicing surgeons applying this technique.

  13. Ventilation-perfused studies using SPECT

    International Nuclear Information System (INIS)

    Zwijnenburg, A.

    1989-01-01

    A method for the quantitative analysis of ventilation-perfusion SPECT studies is decribed and an effort is made to evaluate its usefullness. The technical details of the emthod are described. In the the transaxial reconstructions of the tomographic studies the contour of the lungs is detected and regional values of lung volume, ventilation, perfusion and ventilation-perfusion ratios are calculated. The method is operator independent. The lung volume calculations from the SPECT studies are validated by comparing them with lung volume measurements using the helium dilution technique. A good correlation (r=0.91) was found between the two volumes. SPECT volume was greater than the volume measured with helium dilution, which was attributed to non-gas-containing structures in the. lungs. The use of ventilation-perfusion ratio SPECT is described to evaluate the effect of ionizing radiation on the lungs in patients treated with mantle field irradiation for Hodgkin's disease. Perfusion changes appear as early as 2 months after the start of irradiation. Ventilation changes appear later and relatively minor. No changes are seen outside the radiation portals. The ventilation-perfusion inequality in pulmonary sarcoidosis is treated. It is suggested that the decrease D LCO in these patients may be partly due to an even distribution of ventilation perfusion ratios. An effort is made to establish the properties of a new tracer used for the assessment of the metabolic function of the pulmonary endothelium. The lung uptake of I-123 IMP mimics the distribution of a perfusion tracer and it is suggested that this tracer may be useful for the early detection of pulmonary vascular damage, even when blood flow is still intact. Some aspects of the use of Kr-81m as a ventilation tracer are discussed as well as the effect of noise on Kr-81m SPECT reconstructions. (author). 146 refs.; 39 figs.; 8 tabs

  14. Automatic assessment of cardiac perfusion MRI

    DEFF Research Database (Denmark)

    Ólafsdóttir, Hildur; Stegmann, Mikkel Bille; Larsson, Henrik B.W.

    2004-01-01

    In this paper, a method based on Active Appearance Models (AAM) is applied for automatic registration of myocardial perfusion MRI. A semi-quantitative perfusion assessment of the registered image sequences is presented. This includes the formation of perfusion maps for three parameters; maximum up...

  15. Can preoperative myocardial perfusion scintigraphy predict changes in left ventricular perfusion and function after coronary artery bypass graft surgery?

    DEFF Research Database (Denmark)

    Eckardt, Rozy; Kjeldsen, Bo Juel; Johansen, Allan

    2012-01-01

    OBJECTIVESWe wanted to evaluate whether preoperative myocardial perfusion scintigraphy (MPS) could predict changes in cardiac symptoms and postoperative myocardial perfusion and left ventricular function after coronary artery bypass grafting (CABG).METHODSNinety-two patients with stable angina...... in 26%. Left ventricular ejection fraction (LVEF), which was normal before operation in 45%, improved in 40% of all patients. The increase in LVEF was not related to the preoperative pattern of perfusion defects. Of 30 patients with normalized perfusion after CABG, 29 (97%) had reversible defects...... that reversible or partly reversible perfusion defects at a preoperative MPS have a high chance of normalized myocardial perfusion assessed by MPS 6 months after operation. Normal perfusion is obtained almost exclusively in territories with reversible ischaemia. Symptoms improved in nearly all patients and LVEF...

  16. Vascularization of soft tissue engineering constructs

    DEFF Research Database (Denmark)

    Pimentel Carletto, Rodrigo

    with mechanical properties in the range of soft tissues has not been fully achieved. My project focused on the fabrication and the active perfusion of hydrogel constructs with multi-dimensional vasculature and controlled mechanical properties targeting soft tissues. Specifically, the initial part of the research...... nanotechnology-based paradigm for engineering vascularised liver tissue for transplantation”) and the Danish National Research Foundation and Villum Foundation’s Center for Intelligent Drug delivery and sensing Using microcontainers and Nanomechanics (Danish National Research Foundation (DNRF122)....

  17. Effects of Electroacupuncture Stimulation at “Zusanli” Acupoint on Hepatic NO Release and Blood Perfusion in Mice

    Directory of Open Access Journals (Sweden)

    Shu-you Wang

    2015-01-01

    Full Text Available The study is to observe the influence of electroacupuncture (EA stimulation at “Zusanli” (ST36 on the release of nitric oxide (NO and blood perfusion (BP in the liver and further explore whether the hepatic blood perfusion (HBP changes were regulated by EA ST36 induced NO in nitric oxide synthase inhibited mice. The HBP change of the mice was detected by laser speckle perfusion imaging (LSPI before and after being given interventions, and the NO in liver tissue was detected by nitric acid reductase in each group. The NO levels and HBP in the L-NAME group were significantly lower than those in the control group (P<0.01. The NO level and HBP increase in EA group were significantly higher than those in control group (P<0.05. The NO level in the L-NAME EA group was slightly higher than that in the L-NAME group. The HBP increase in the L-NAME EA group was not statistically significant. These results showed that EA could accelerate the synthesis of NO and thereby increase HBP via vasodilation in liver tissue.

  18. Novel diffuse optics system for continuous tissue viability monitoring: extended recovery in vivo testing in a porcine flap model

    Science.gov (United States)

    Lee, Seung Yup; Pakela, Julia M.; Hedrick, Taylor L.; Vishwanath, Karthik; Helton, Michael C.; Chung, Yooree; Kolodziejski, Noah J.; Stapels, Christopher J.; McAdams, Daniel R.; Fernandez, Daniel E.; Christian, James F.; O'Reilly, Jameson; Farkas, Dana; Ward, Brent B.; Feinberg, Stephen E.; Mycek, Mary-Ann

    2017-02-01

    In reconstructive surgery, tissue perfusion/vessel patency is critical to the success of microvascular free tissue flaps. Early detection of flap failure secondary to compromise of vascular perfusion would significantly increase the chances of flap salvage. We have developed a compact, clinically-compatible monitoring system to enable automated, minimally-invasive, continuous, and quantitative assessment of flap viability/perfusion. We tested the system's continuous monitoring capability during extended non-recovery surgery using an in vivo porcine free flap model. Initial results indicated that the system could assess flap viability/perfusion in a quantitative and continuous manner. With proven performance, the compact form constructed with cost-effective components would make this system suitable for clinical translation.

  19. Ex-vivo machine perfusion for kidney preservation.

    Science.gov (United States)

    Hamar, Matyas; Selzner, Markus

    2018-06-01

    Machine perfusion is a novel strategy to decrease preservation injury, improve graft assessment, and increase organ acceptance for transplantation. This review summarizes the current advances in ex-vivo machine-based kidney preservation technologies over the last year. Ex-vivo perfusion technologies, such as hypothermic and normothermic machine perfusion and controlled oxygenated rewarming, have gained high interest in the field of organ preservation. Keeping kidney grafts functionally and metabolically active during the preservation period offers a unique chance for viability assessment, reconditioning, and organ repair. Normothermic ex-vivo kidney perfusion has been recently translated into clinical practice. Preclinical results suggest that prolonged warm perfusion appears superior than a brief end-ischemic reconditioning in terms of renal function and injury. An established standardized protocol for continuous warm perfusion is still not available for human grafts. Ex-vivo machine perfusion represents a superior organ preservation method over static cold storage. There is still an urgent need for the optimization of the perfusion fluid and machine technology and to identify the optimal indication in kidney transplantation. Recent research is focusing on graft assessment and therapeutic strategies.

  20. Estimation of Radiation Exposure of 128-Slice 4D-Perfusion CT for the Assessment of Tumor Vascularity

    Science.gov (United States)

    Horger, Marius; Buchgeister, Markus; Fenchel, Michael; Thomas, Christoph; Boehringer, Nadine; Schulze, Maximilian; Tsiflikas, Ilias; Claussen, Claus D.; Heuschmid, Martin

    2010-01-01

    Objective We aimed to estimate the effective dose of 4D-Perfusion-CT protocols of the lung, liver, and pelvis for the assessment of tumor vascularity. Materials and Methods An Alderson-Rando phantom equipped with thermoluminescent dosimeters was used to determine the effective dose values of 4D-Perfusion-CT. Phantom measurements were performed on a 128-slice single-source scanner in adaptive 4D-spiral-mode with bidirectional table movement and a total scan range of 69 mm over a time period of nearly 120 seconds (26 scans). Perfusion measurements were simulated for the lung, liver, and pelvis under the following conditions: lung (80 kV, 60 mAs), liver (80 kV/80 mAs and 80 kV/120 mAs), pelvis (100 kV/80 mAs and 100 kV/120 mAs). Results Depending on gender, the evaluated body region and scan protocol, an effective whole-body dose between 2.9-12.2 mSv, was determined. The radiation exposure administered to gender-specific organs like the female breast tissue (lung perfusion) or to the ovaries (pelvic perfusion) led to an increase in the female specific dose by 86% and 100% in perfusion scans of the lung and the pelvis, respectively. Conclusion Due to a significant radiation dose of 4D-perfusion-CT protocols, the responsible use of this new promising technique is mandatory. Gender- and organ-specific differences should be considered for indication and planning of tumor perfusion scans. PMID:20808699

  1. Circulatory shock in horses / Choque circulatório em equinos

    Directory of Open Access Journals (Sweden)

    José Monteira da Silva Filho

    2010-04-01

    Full Text Available Circulatory shock can be defined as an acute circulatory failure with an inadequate tissue delivery of oxygen and nutritive substrates to the tissues, resulting in generalised cellular hypoxia. Shock can be classified as cardiogenic, obstructive, hypovolaemic, or distributive. The pathophysiologic consequences of inadequate tissue perfusion are directly related to cell ischemia, inadequate O2 delivery, and the production of proinflammatory mediators. If abnormalities of tissue perfusion are allowed to persist, the function of vital organs will be impaired. The subsequent reperfusion will exacerbate organ dysfunction and, in severe cases, may culminate in multiple organ dysfunction syndrome. Early recognition of equine that are shocked and immediate provision of effective circulatory support is therefore essential. In all cases the objective is to restore oxygen delivery to the tissues while correcting the underlying cause. Delays in making the diagnosis and initiating treatment, as well as suboptimal resuscitation, contribute to the development of peripheral vascular failure and irreversible defects in oxygen use which can culminate in vital organ dysfunction.Choque circulatório pode ser definido como uma falha circulatória aguda com liberação inadequada de oxigênio e nutrientes aos tecidos, resultando em hipóxia celular. O choque pode ser classificado como cardiogênico, obstrutivo, hipovolêmico ou distributivo. As consequências fisiopatológicas da perfusão tecidual inadequada estão diretamente relacionadas à isquemia celular, liberação inadequada de O2 e produção de potentes mediadores inflamatórios. Caso as anormalidades de perfusão tecidual se perpetuem, a função de vários órgãos se torna inadequada. A consequente reperfusão poderá exacerbar a disfunção orgânica e, nos casos graves, culminar na síndrome da disfunção orgânica múltipla. O reconhecimento precoce de equinos em choque circulatório e o

  2. Bioheat model evaluations of laser effects on tissues: role of water evaporation and diffusion

    Science.gov (United States)

    Nagulapally, Deepthi; Joshi, Ravi P.; Thomas, Robert J.

    2011-03-01

    A two-dimensional, time-dependent bioheat model is applied to evaluate changes in temperature and water content in tissues subjected to laser irradiation. Our approach takes account of liquid-to-vapor phase changes and a simple diffusive flow of water within the biotissue. An energy balance equation considers blood perfusion, metabolic heat generation, laser absorption, and water evaporation. The model also accounts for the water dependence of tissue properties (both thermal and optical), and variations in blood perfusion rates based on local tissue injury. Our calculations show that water diffusion would reduce the local temperature increases and hot spots in comparison to simple models that ignore the role of water in the overall thermal and mass transport. Also, the reduced suppression of perfusion rates due to tissue heating and damage with water diffusion affect the necrotic depth. Two-dimensional results for the dynamic temperature, water content, and damage distributions will be presented for skin simulations. It is argued that reduction in temperature gradients due to water diffusion would mitigate local refractive index variations, and hence influence the phenomenon of thermal lensing. Finally, simple quantitative evaluations of pressure increases within the tissue due to laser absorption are presented.

  3. Bioreactor-induced mesenchymal progenitor cell differentiation and elastic fiber assembly in engineered vascular tissues.

    Science.gov (United States)

    Lin, Shigang; Mequanint, Kibret

    2017-09-01

    In vitro maturation of engineered vascular tissues (EVT) requires the appropriate incorporation of smooth muscle cells (SMC) and extracellular matrix (ECM) components similar to native arteries. To this end, the aim of the current study was to fabricate 4mm inner diameter vascular tissues using mesenchymal progenitor cells seeded into tubular scaffolds. A dual-pump bioreactor operating either in perfusion or pulsatile perfusion mode was used to generate physiological-like stimuli to promote progenitor cell differentiation, extracellular elastin production, and tissue maturation. Our data demonstrated that pulsatile forces and perfusion of 3D tubular constructs from both the lumenal and ablumenal sides with culture media significantly improved tissue assembly, effectively inducing mesenchymal progenitor cell differentiation to SMCs with contemporaneous elastin production. With bioreactor cultivation, progenitor cells differentiated toward smooth muscle lineage characterized by the expression of smooth muscle (SM)-specific markers smooth muscle alpha actin (SM-α-actin) and smooth muscle myosin heavy chain (SM-MHC). More importantly, pulsatile perfusion bioreactor cultivation enhanced the synthesis of tropoelastin and its extracellular cross-linking into elastic fiber compared with static culture controls. Taken together, the current study demonstrated progenitor cell differentiation and vascular tissue assembly, and provides insights into elastin synthesis and assembly to fibers. Incorporation of elastin into engineered vascular tissues represents a critical design goal for both mechanical and biological functions. In the present study, we seeded porous tubular scaffolds with multipotent mesenchymal progenitor cells and cultured in dual-pump pulsatile perfusion bioreactor. Physiological-like stimuli generated by bioreactor not only induced mesenchymal progenitor cell differentiation to vascular smooth muscle lineage but also actively promoted elastin synthesis and

  4. Xenon ventilation-perfusion lung scans. The early diagnosis of inhalation injury

    International Nuclear Information System (INIS)

    Schall, G.L.; McDonald, H.D.; Carr, L.B.; Capozzi, A.

    1978-01-01

    The use of xenon Xe-133 ventilation-perfusion lung scans for the early diagnosis of inhalation injury was evaluated in 67 patients with acute thermal burns. Study results were interpreted as normal if there was complete pulmonary clearance of the radioactive gas by 150 seconds. Thirty-two scans were normal, 32 abnormal, and three technically inadequate. There were three true false-positive study results and one false-negative study result. Good correlation was found between the scan results and various historical, physical, and laboratory values currently used to evaluate inhalation injury. The scans appeared to be the most sensitive method for the detection of early involvement, often being abnormal several days before the chest roentgenogram. Xenon lung scanning is a safe, easy, accurate, and sensitive method for the early diagnosis of inhalation injury and has important therapeutic and prognostic implications as well

  5. Developing a Benchmarking Process in Perfusion: A Report of the Perfusion Downunder Collaboration

    Science.gov (United States)

    Baker, Robert A.; Newland, Richard F.; Fenton, Carmel; McDonald, Michael; Willcox, Timothy W.; Merry, Alan F.

    2012-01-01

    Abstract: Improving and understanding clinical practice is an appropriate goal for the perfusion community. The Perfusion Downunder Collaboration has established a multi-center perfusion focused database aimed at achieving these goals through the development of quantitative quality indicators for clinical improvement through benchmarking. Data were collected using the Perfusion Downunder Collaboration database from procedures performed in eight Australian and New Zealand cardiac centers between March 2007 and February 2011. At the Perfusion Downunder Meeting in 2010, it was agreed by consensus, to report quality indicators (QI) for glucose level, arterial outlet temperature, and pCO2 management during cardiopulmonary bypass. The values chosen for each QI were: blood glucose ≥4 mmol/L and ≤10 mmol/L; arterial outlet temperature ≤37°C; and arterial blood gas pCO2 ≥ 35 and ≤45 mmHg. The QI data were used to derive benchmarks using the Achievable Benchmark of Care (ABC™) methodology to identify the incidence of QIs at the best performing centers. Five thousand four hundred and sixty-five procedures were evaluated to derive QI and benchmark data. The incidence of the blood glucose QI ranged from 37–96% of procedures, with a benchmark value of 90%. The arterial outlet temperature QI occurred in 16–98% of procedures with the benchmark of 94%; while the arterial pCO2 QI occurred in 21–91%, with the benchmark value of 80%. We have derived QIs and benchmark calculations for the management of several key aspects of cardiopulmonary bypass to provide a platform for improving the quality of perfusion practice. PMID:22730861

  6. Non-contrast MRI perfusion angiosome in diabetic feet

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jie [Cardiovascular Imaging Lab, Mallinckrodt Institute of Radiology, St. Louis, MO (United States); Hastings, Mary K.; Mueller, Michael J. [Washington University School of Medicine, The Program in Physical Therapy, St. Louis, MO (United States); Muccigross, David; Hildebolt, Charles F. [Washington University School of Medicine, Mallinckrodt Institute of Radiology, St. Louis, MO (United States); Fan, Zhaoyang [Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA (United States); Gao, Fabao [West China Hospital, Sichuan University, Department of Radiology, Chengdu (China); Curci, John [Washington University School of Medicine, The Department of Surgery, St. Louis, MO (United States)

    2015-01-15

    The purpose of this study is to develop a non-contrast magnetic resonance imaging (MRI) approach to evaluate skeletal muscle perfusion in the diabetic foot based on the concept of angiosomes of the foot. Five healthy volunteers and five participants with diabetes (HbA1c = 7.2 ± 1.8 %) without a history of peripheral artery disease were examined. The non-contrast perfusion measurements were performed during a toe flexion challenge. Absolute perfusion maps were created and two regions (medial and lateral) on the maps were segmented based on angiosomes. Regional difference in the perfusion of foot muscle was readily visualized in the MRI perfusion angiosomes during the challenge. In the participants with diabetes, the perfusion during toe flexion challenge was significantly lower than in healthy volunteers (P < 0.01). The average perfusion for the medial plantar region of the right foot was lower in subjects with diabetes (38 ± 9 ml/min/100 g) than in healthy subjects (93 ± 33 ml/min/100 g). Non-contrast MRI perfusion angiosome maps demonstrate the feasibility of determining regional perfusion in foot muscles during toe challenge and may facilitate evaluation of muscle perfusion in diabetic feet. (orig.)

  7. Non-contrast MRI perfusion angiosome in diabetic feet

    International Nuclear Information System (INIS)

    Zheng, Jie; Hastings, Mary K.; Mueller, Michael J.; Muccigross, David; Hildebolt, Charles F.; Fan, Zhaoyang; Gao, Fabao; Curci, John

    2015-01-01

    The purpose of this study is to develop a non-contrast magnetic resonance imaging (MRI) approach to evaluate skeletal muscle perfusion in the diabetic foot based on the concept of angiosomes of the foot. Five healthy volunteers and five participants with diabetes (HbA1c = 7.2 ± 1.8 %) without a history of peripheral artery disease were examined. The non-contrast perfusion measurements were performed during a toe flexion challenge. Absolute perfusion maps were created and two regions (medial and lateral) on the maps were segmented based on angiosomes. Regional difference in the perfusion of foot muscle was readily visualized in the MRI perfusion angiosomes during the challenge. In the participants with diabetes, the perfusion during toe flexion challenge was significantly lower than in healthy volunteers (P < 0.01). The average perfusion for the medial plantar region of the right foot was lower in subjects with diabetes (38 ± 9 ml/min/100 g) than in healthy subjects (93 ± 33 ml/min/100 g). Non-contrast MRI perfusion angiosome maps demonstrate the feasibility of determining regional perfusion in foot muscles during toe challenge and may facilitate evaluation of muscle perfusion in diabetic feet. (orig.)

  8. Simulation evaluation of quantitative myocardial perfusion assessment from cardiac CT

    Science.gov (United States)

    Bindschadler, Michael; Modgil, Dimple; Branch, Kelley R.; La Riviere, Patrick J.; Alessio, Adam M.

    2014-03-01

    blood flow estimation. In conclusion, quantitative model-based dynamic cardiac CT perfusion assessment is capable of accurately estimating MBF across a range of cardiac outputs and tissue perfusion states, outperforms comparable static perfusion estimates, and is relatively robust to noise and temporal subsampling.

  9. Multiple-indicator dilution technique for characterization of normal and retrograde flow in once-through rat liver perfusions

    International Nuclear Information System (INIS)

    St-Pierre, M.V.; Schwab, A.J.; Goresky, C.A.; Lee, W.F.; Pang, K.S.

    1989-01-01

    The technique of normal and retrograde rat liver perfusion has been widely used to probe zonal differences in drug-metabolizing activities. The validity of this approach mandates the same tissue spaces being accessed by substrates during both normal and retrograde perfusions. Using the multiple-indicator dilution technique, we presently examine the extent to which retrograde perfusion alters the spaces accessible to noneliminated references. A bolus dose of 51Cr-labeled red blood cells, 125I-albumin, 14C-sucrose and 3H2O was injected into the portal (normal) or hepatic (retrograde) vein of rat livers perfused at 10 ml per min per liver. The outflow perfusate was serially collected over 220 sec to characterize the transit times and the distribution spaces of the labels. During retrograde perfusion, red blood cells, albumin and sucrose profiles peaked later and lower than during normal perfusion, whereas the water curves were similar. The transit times of red blood cells, albumin and sucrose were longer (p less than 0.005), whereas those for water did not change. Consequently, retrograde flow resulted in significantly larger sinusoidal blood volumes (45%), albumin Disse space (42%) and sucrose Disse space (25%) than during normal flow, whereas the distribution spaces for total and intracellular water remained unaltered. The distension of the vascular tree was confirmed by electron microscopy, by which occasional isolated foci of widened intercellular recesses and spaces of Disse were observed. Cellular ultrastructure was otherwise unchanged, and there was no difference found between normal and retrograde perfusion for bile flow rates, AST release, perfusion pressure, oxygen consumption and metabolic removal of ethanol, a substrate with flow-limited distribution, which equilibrates rapidly with cell water (hepatic extraction ratios were virtually identical: normal vs. retrograde, 0.50 vs. 0.48 at 6 to 7.4 mM input concentration)

  10. Estimation of intra-operator variability in perfusion parameter measurements using DCE-US.

    Science.gov (United States)

    Gauthier, Marianne; Leguerney, Ingrid; Thalmensi, Jessie; Chebil, Mohamed; Parisot, Sarah; Peronneau, Pierre; Roche, Alain; Lassau, Nathalie

    2011-03-28

    To investigate intra-operator variability of semi-quantitative perfusion parameters using dynamic contrast-enhanced ultrasonography (DCE-US), following bolus injections of SonoVue(®). The in vitro experiments were conducted using three in-house sets up based on pumping a fluid through a phantom placed in a water tank. In the in vivo experiments, B16F10 melanoma cells were xenografted to five nude mice. Both in vitro and in vivo, images were acquired following bolus injections of the ultrasound contrast agent SonoVue(®) (Bracco, Milan, Italy) and using a Toshiba Aplio(®) ultrasound scanner connected to a 2.9-5.8 MHz linear transducer (PZT, PLT 604AT probe) (Toshiba, Japan) allowing harmonic imaging ("Vascular Recognition Imaging") involving linear raw data. A mathematical model based on the dye-dilution theory was developed by the Gustave Roussy Institute, Villejuif, France and used to evaluate seven perfusion parameters from time-intensity curves. Intra-operator variability analyses were based on determining perfusion parameter coefficients of variation (CV). In vitro, different volumes of SonoVue(®) were tested with the three phantoms: intra-operator variability was found to range from 2.33% to 23.72%. In vivo, experiments were performed on tumor tissues and perfusion parameters exhibited values ranging from 1.48% to 29.97%. In addition, the area under the curve (AUC) and the area under the wash-out (AUWO) were two of the parameters of great interest since throughout in vitro and in vivo experiments their variability was lower than 15.79%. AUC and AUWO appear to be the most reliable parameters for assessing tumor perfusion using DCE-US as they exhibited the lowest CV values.

  11. In-effort perfusion pulmonary tomo-scintigraphies for pre-surgery evaluation of severe emphysema

    International Nuclear Information System (INIS)

    Poiseau, E.; Roue, C.; Bonnin, F.; Stievenart, J.L.; Fournier, M.; Bok, B.

    1997-01-01

    The pulmonary reduction surgery improves the in-effort tolerance of certain severe emphysema, possibly by the compression of zones of adjacent healthy pulmonary parenchyma. Six patients afflicted with severe emphysema (5 M and 1 F, 20 to 63 years old) benefited at each 3 days by an at-rest and in-effort perfusion pulmonary tomo-scintigraphy (PPTS), after a trial interval of 6 minutes. After injection IV of 6 mCi of MAA- 99m Tc, in sitting position, 120 projection images were acquired with a single-head camera on a 128 x 128 matrix, with a high resolution collimator. After reconstruction with a Metz filter, without corrections of attenuations, the coronal and cross sections were recorded on films in a standard procedure. These were visually interpreted by two independent senior physicians. The procedure has been tolerated by all the patients. Differences of pulmonary perfusion occurred at rest in comparison with the in-effort condition in 4 patients. In all the cases concerned were the zones of pulmonary parenchyma appearing as strongly injured in tomodensitometry. The in-effort pulmonary perfusion improves in 3 patients and impairs in one patient. The role of bubble and implied pulmonary diseases in the deterioration of pulmonary function, respectively, is difficult to estimate. The improvement of in-effort pulmonary perfusion could suggest the persistence of functional pulmonary tissue. On the other side, its deterioration could express the compressive character of bubbles and thus could be an indicator of severity. The observation during this pilot study of the differences between at-rest and in-effort pulmonary perfusion urges utilisation of a tool of analysis of image superposition (PPTS and scans) to study in a group of patients the correlations between the perfusion variations and the post-surgery development, in order to know better the pathophysiology of diseases and select better the patients

  12. Dual-energy CT iodine maps as an alternative quantitative imaging biomarker to abdominal CT perfusion: determination of appropriate trigger delays for acquisition using bolus tracking.

    Science.gov (United States)

    Skornitzke, Stephan; Fritz, Franziska; Mayer, Philipp; Koell, Marco; Hansen, Jens; Pahn, Gregor; Hackert, Thilo; Kauczor, Hans-Ulrich; Stiller, Wolfram

    2018-05-01

    Quantitative evaluation of different bolus tracking trigger delays for acquisition of dual energy (DE) CT iodine maps as an alternative to CT perfusion. Prior to this retrospective analysis of prospectively acquired data, DECT perfusion sequences were dynamically acquired in 22 patients with pancreatic carcinoma using dual source CT at 80/140 kV p with tin filtration. After deformable motion-correction, perfusion maps of blood flow (BF) were calculated from 80 kV p image series of DECT, and iodine maps were calculated for each of the 34 DECT acquisitions per patient. BF and iodine concentrations were measured in healthy pancreatic tissue and carcinoma. To evaluate potential DECT acquisition triggered by bolus tracking, measured iodine concentrations from the 34 DECT acquisitions per patient corresponding to different trigger delays were assessed for correlation to BF and intergroup differences between tissue types depending on acquisition time. Average BF measured in healthy pancreatic tissue and carcinoma was 87.6 ± 28.4 and 38.6 ± 22.2 ml/100 ml min -1 , respectively. Correlation between iodine concentrations and BF was statistically significant for bolus tracking with trigger delay greater than 0 s (r max = 0.89; p alternative to CT perfusion measurements of BF. Advances in knowledge: After clinical validation, DECT iodine maps of pancreas acquired using bolus tracking with appropriate trigger delay as determined in this study could offer an alternative quantitative imaging biomarker providing functional information for tumor assessment at reduced patient radiation exposure compared to CT perfusion measurements of BF.

  13. Perfusion vector - a new method to quantify myocardial perfusion scintigraphy images: a simulation study with validation in patients

    DEFF Research Database (Denmark)

    Minarik, David; Senneby, Martin; Wollmer, Per

    2015-01-01

    Background The interpretation of myocardial perfusion scintigraphy (MPS) largely relies on visual assessment by the physician of the localization and extent of a perfusion defect. The aim of this study was to introduce the concept of the perfusion vector as a new objective quantitative method...

  14. Placental perfusion - a human alternative

    DEFF Research Database (Denmark)

    Mose, Tina; Knudsen, Lisbeth E

    2006-01-01

    Foetal exposures to environmental and medicinal products have impact on the growth of the foetus (e.g. cigarette smoke) and development of organs (e.g. methylmercury and Thalidomide). Perfusion studies of the human term placenta enable investigation of placental transport of chemical substances...... between the mother and foetus. Dual perfusion of a single cotyledon in the human placenta can contribute to a better understanding of the placental barrier, transport rate and mechanisms of different substances and placental metabolism. The perfusion system has recently been established in Copenhagen...

  15. The Groningen hypothermic liver perfusion pump : Functional evaluation of a new machine perfusion system

    NARCIS (Netherlands)

    van der Plaats, A.; Maathuis, M. H. J.; Hart, N. A. 't; Bellekom, A. A.; Hofker, H. S.; van der Houwen, E. B.; Verkerke, G. J.; Leuvenink, H. G. D.; Verdonck, P.; Ploeg, R. J.; Rakhorst, G.

    2006-01-01

    To improve preservation of donor livers, we have developed a portable hypothermic machine perfusion (HMP) system as an alternative for static cold storage. A prototype of the system was built and evaluated on functionality. Evaluation criteria included 24 h of adequate pressure controlled perfusion,

  16. Transport lattice models of heat transport in skin with spatially heterogeneous, temperature-dependent perfusion

    Directory of Open Access Journals (Sweden)

    Martin Gregory T

    2004-11-01

    Full Text Available Abstract Background Investigation of bioheat transfer problems requires the evaluation of temporal and spatial distributions of temperature. This class of problems has been traditionally addressed using the Pennes bioheat equation. Transport of heat by conduction, and by temperature-dependent, spatially heterogeneous blood perfusion is modeled here using a transport lattice approach. Methods We represent heat transport processes by using a lattice that represents the Pennes bioheat equation in perfused tissues, and diffusion in nonperfused regions. The three layer skin model has a nonperfused viable epidermis, and deeper regions of dermis and subcutaneous tissue with perfusion that is constant or temperature-dependent. Two cases are considered: (1 surface contact heating and (2 spatially distributed heating. The model is relevant to the prediction of the transient and steady state temperature rise for different methods of power deposition within the skin. Accumulated thermal damage is estimated by using an Arrhenius type rate equation at locations where viable tissue temperature exceeds 42°C. Prediction of spatial temperature distributions is also illustrated with a two-dimensional model of skin created from a histological image. Results The transport lattice approach was validated by comparison with an analytical solution for a slab with homogeneous thermal properties and spatially distributed uniform sink held at constant temperatures at the ends. For typical transcutaneous blood gas sensing conditions the estimated damage is small, even with prolonged skin contact to a 45°C surface. Spatial heterogeneity in skin thermal properties leads to a non-uniform temperature distribution during a 10 GHz electromagnetic field exposure. A realistic two-dimensional model of the skin shows that tissue heterogeneity does not lead to a significant local temperature increase when heated by a hot wire tip. Conclusions The heat transport system model of the

  17. Vicarious audiovisual learning in perfusion education.

    Science.gov (United States)

    Rath, Thomas E; Holt, David W

    2010-12-01

    Perfusion technology is a mechanical and visual science traditionally taught with didactic instruction combined with clinical experience. It is difficult to provide perfusion students the opportunity to experience difficult clinical situations, set up complex perfusion equipment, or observe corrective measures taken during catastrophic events because of patient safety concerns. Although high fidelity simulators offer exciting opportunities for future perfusion training, we explore the use of a less costly low fidelity form of simulation instruction, vicarious audiovisual learning. Two low fidelity modes of instruction; description with text and a vicarious, first person audiovisual production depicting the same content were compared. Students (n = 37) sampled from five North American perfusion schools were prospectively randomized to one of two online learning modules, text or video.These modules described the setup and operation of the MAQUET ROTAFLOW stand-alone centrifugal console and pump. Using a 10 question multiple-choice test, students were assessed immediately after viewing the module (test #1) and then again 2 weeks later (test #2) to determine cognition and recall of the module content. In addition, students completed a questionnaire assessing the learning preferences of today's perfusion student. Mean test scores from test #1 for video learners (n = 18) were significantly higher (88.89%) than for text learners (n = 19) (74.74%), (p audiovisual learning modules may be an efficacious, low cost means of delivering perfusion training on subjects such as equipment setup and operation. Video learning appears to improve cognition and retention of learned content and may play an important role in how we teach perfusion in the future, as simulation technology becomes more prevalent.

  18. Pulmonary ventilation and perfusion abnormalities and ventilation perfusion imbalance in children with pulmonary atresia or extreme tetralogy of Fallot

    Energy Technology Data Exchange (ETDEWEB)

    Dowdle, S.C.; Human, D.G.; Mann, M.D. (Univ. of Cape Town (South Africa))

    1990-08-01

    Xenon-133 lung ventilation and perfusion scans were done preoperatively after cardiac catheterization and cineangiocardiography in 19 children; 6 had pulmonary atresia with an intact ventricular septum and hypoplastic right ventricle, 4 pulmonary atresia with associated complex univentricular heart, and 9 extreme Tetralogy of Fallot. The four patients with discrepancies in the sizes of the left and right pulmonary arteries on angiography had marked asymmetry of pulmonary perfusion and ventilation-perfusion imbalance on scintigraphy. Similar degrees of asymmetry and imbalance were present in 6 of the 15 children with equal-size pulmonary vessels. Asymmetry of pulmonary perfusion and ventilation-perfusion imbalance were associated with a poor prognosis.

  19. Pulmonary ventilation and perfusion abnormalities and ventilation perfusion imbalance in children with pulmonary atresia or extreme tetralogy of Fallot

    International Nuclear Information System (INIS)

    Dowdle, S.C.; Human, D.G.; Mann, M.D.

    1990-01-01

    Xenon-133 lung ventilation and perfusion scans were done preoperatively after cardiac catheterization and cineangiocardiography in 19 children; 6 had pulmonary atresia with an intact ventricular septum and hypoplastic right ventricle, 4 pulmonary atresia with associated complex univentricular heart, and 9 extreme Tetralogy of Fallot. The four patients with discrepancies in the sizes of the left and right pulmonary arteries on angiography had marked asymmetry of pulmonary perfusion and ventilation-perfusion imbalance on scintigraphy. Similar degrees of asymmetry and imbalance were present in 6 of the 15 children with equal-size pulmonary vessels. Asymmetry of pulmonary perfusion and ventilation-perfusion imbalance were associated with a poor prognosis

  20. Direct assessment of lipoprotein outflow from in vivo-labeled arterial tissue as determined in an in vitro perfusion system.

    Science.gov (United States)

    Björnheden, T; Bondjers, G; Wiklund, O

    1998-12-01

    The rate of cholesterol deposition during the atherosclerotic process is determined by the balance between the inflow and outflow of plasma lipoproteins in the arterial wall. Whereas the rate of inflow may be measured directly, the rate of outflow has most often been calculated indirectly from lipoprotein uptake by using the 2-compartment model. One objection against such calculations is that lipoprotein binding is not being considered. In the present study 2 different protocols were used to obtain a direct measure of the outflow of lipoproteins from atherosclerotic rabbit aortas. Thus, 3 rabbits with experimental atherosclerosis were given 125I-LDL intravenously and 3 were given [14C]cholesterol perorally. Twenty-four hours later the aortas were removed and the outflow of label was monitored during in vitro perfusion. Despite the different protocols, our results were consistent and indicated that fractional loss relative to whole tissue was approximately 0.01 pool/h, which is 1 order of magnitude lower than current estimates based on the 2-compartment model (0.04 to 0.4 pool/h). Furthermore, whereas as much as 2/3 to 3/4 of the tracer that had entered the arterial wall was effectively trapped, the remainder equilibrated at a faster rate (0.06 pool/h). In conclusion, it seems that tissue binding constitutes a prominent and possibly underrated mechanism of lipoprotein deposition, at least in the atherosclerotic rabbit aorta. Furthermore, this means that current estimates of lipoprotein exchange parameters based on the 2-compartment model (eg, fractional loss) may rest on invalid assumptions and should be regarded with caution.

  1. The value of MR perfusion weighted imaging in normal and abnormal kidneys

    International Nuclear Information System (INIS)

    Shi Hao; Ding Hongyu; Duan Ruiping; Sun Yongping; Xing Yiyong

    2008-01-01

    Objective: To explore the characteristics and the clinical application of MR perfusion weighted imaging (PWI) in the normal kidneys and the renal diseases. Methods: Thirty-one subjects including 9 cases without urinary diseases, 14 cases with renal carcinoma, 6 cases with renal cyst and 2 cases with renal tuberculosis who had been examined with T 1 WI, T 2 WI and PWI were analyzed retrospectively. All the data were processed by a workstation to obtain time-signal intensity curves, color perfusion maps and relative perfusion value. The relative renal blood volume (RBV), relative renal blood flow (RBF), mean transition time (MTY) and the time to peak (TTP) in the normal renal cortex and medulla and the renal lesions were calculated. Comparisons between the right and the left normal kidneys, and between the cortex and the medulla of the normal kidneys were performed using t test, and comparisons between the normal and the abnormal kidneys were performed using q test. Results: Relative RBV and relative RBF of the cortex were 1.33±0.08 and 1.44±0.09 respectively, and for medulla were 0.58± 0.05 and 0.78±0.13 respectively (t=9.2241 and 5.0336, P 0.05). The values of relative RBF of the renal carcinoma (1.35±0.34) were significantly higher than that of the normal tissues (1.02±0.06) (q=3.0882, P< 0.01). Conclusion: PWI is able to demonstrate the hemodynamic change of the normal renal tissues and the renal lesions, and it maybe an ideal method for showing the functional changes of the kidney and for differentiating the renal diseases. (authors)

  2. Clinical application of cerebral dynamic perfusion studies

    International Nuclear Information System (INIS)

    DeLand, F.H.

    1975-01-01

    Radionuclide cerebral perfusion studies are assuming a far greater importance in the detection and differential diagnosis of cerebral lesions. Perfusion studies not only contribute to the differential diagnosis of lesions but in certain cases are the preferred methods by which more accurate clinical interpretations can be made. The characteristic blood flow of arterio-venous malformations readily differentiates this lesion from neoplasms. The decreased perfusion or absent perfusion observed in cerebral infarctions is diagnostic without concurrent evidence from static images. Changes in rates and direction of blood flow contribute fundamental information to the status of stenosis and vascular occlusion and, in addition, offer valuable information on the competency and routes of collateral circulation. The degree of cerebral perfusion after cerebral vascular accidents appears to be directly related to patient recovery, particularly muscular function. Cerebral perfusion adds a new parameter in the diagnosis of subdural haematomas and concussion and in the differentiation of obscuring radioactivity from superficial trauma. Although pictorial displays of perfusion blood flow will offer information in most cerebral vascular problems, the addition of computer analysis better defines temporal relationships of regional blood flow, quantitative changes in flow and the detection of the more subtle increases or decreases in cerebral blood flow. The status of radionuclide cerebral perfusion studies has taken on an importance making it the primary modality for the diagnosis of cerebral lesions. (author)

  3. Brain perfusion-CT in acute stroke patients

    International Nuclear Information System (INIS)

    Wintermark, M.

    2005-01-01

    The role of neuro-imaging in the evaluation of acute stroke has changed dramatically in the past decade. Previously, neuro-imaging was used in this setting to provide anatomic imaging that indicated the presence or absence of acute cerebral ischemia and excluded lesions that produce symptoms or signs mimicking those of stroke, such as hemorrhage and neoplasms. More recently, the introduction of thrombolysis has changed the goals of neuro-imaging from providing solely anatomic information to providing physiologic information that could help to determine which patients might benefit from therapy. In particular, significant emphasis has been placed on the delineation of the ischemic penumbra, also called tissue at risk. Modern CT survey, consisting of three indissociable elements: noncontrast CT (NCT) of course, perfusion-CT (PCT) and CT-angiography (CTA), fulfill all the requirements for hyper-acute stroke imaging. CTA can define the occlusion site, depict arterial dissection, grade collateral blood flow, and characterize atherosclerotic disease, whereas PCT accurately delineates the infarct core and the ischemic penumbra. CT offers a number of practical advantages over other cerebral perfusion imaging methods, including its wide availability. Using PCT and CTA to define new individualized strategies for acute reperfusion will allow more acute stroke patients to benefit from thrombolytic therapy. (orig.)

  4. Abnormalities of Microcirculation and Intracranial and Cerebral Perfusion Pressures in Severe Brain Injury

    Directory of Open Access Journals (Sweden)

    Yu. A. Churlyaev

    2008-01-01

    Full Text Available Objective: to evaluate the states of microcirculation, cerebral perfusion intracranial pressures in patients with isolated severe brain injury (SBI and to determine their possible relationships. Subjects and methods. 148 studies were performed in 16 victims with SBI. According to the outcome of brain traumatic disease, the patients were divided into two groups: 1 those who had a good outcome (n=8 and 2 those who had a fatal outcome (n=8. Microcirculation was examined by skin laser Doppler flowmetry using a LAKK-01 capillary blood flow laser analyzer (LAZMA Research-and-Production Association, Russian Federation. All the victims underwent surgical interventions to remove epi-, subdural, and intracerebral hematomas. A Codman subdural/intraparenchymatous intracranial pressure (ICD sensor (Johnson & Johnson, United Kingdom was intraoperatively inserted in the victims. Cerebral perfusion pressure (CPP was calculated using the generally accepted formula: CPP = MBP (mean blood pressure — ICD. ICD, CPP, and microcirculation were studied on postoperative days 1, 3, 5, and 7. Their values were recorded simultaneously. Ninety and 58 studies were conducted in the group of patients with good and fatal outcomes, respectively. Results. No correlation between the changes in MBP, ICD, and microcirculatory parameters suggested that the value of ICD was determined by the nature of brain damage and it was the leading and determining indicator in the diagnosis and treatment of secondary cerebral lesions. The amplitude of low-frequency fluctuations directly correlated with ICD, which indicated that they might be used to evaluate cerebral perfusion and impaired cerebral circulation indirectly in victims with severe brain injury. Conclusion. The laser Doppler flowmetric technique makes it possible not only to qualitatively, but also quantitatively determine changes in the tissue blood flow system in severe brain injury. With this technique, both the local and central

  5. Effect of intravenous contrast agent volume on colorectal cancer vascular parameters as measured by perfusion computed tomography

    International Nuclear Information System (INIS)

    Goh, V.; Bartram, C.; Halligan, S.

    2009-01-01

    Aim: To determine the effect of two different contrast agent volumes on quantitative and semi-quantitative vascular parameters as measured by perfusion computed tomography (CT) in colorectal cancer. Materials and methods: Following ethical approval and informed consent, eight prospectively recruited patients with proven colorectal adenocarcinoma underwent two separate perfusion CT studies on the same day after (a) 100 ml and (b) 50 ml of a 340 mg/ml iodinated contrast medium, respectively. Quantitative (blood volume, blood flow, permeability surface area product) and semi-quantitative (peak enhancement, time to peak enhancement) tumour vascular parameters were determined using commercial software based on distributed parameter analysis and compared using t-testing. Results: Tumour blood volume, blood flow, and permeability surface area product were not substantially different following the injection of 100 ml and 50 ml contrast medium: 6.12 versus 6.23 ml/100 g tissue; 73.4 versus 71.3 ml/min/100 g tissue; 15.6 versus 15.3 ml/min/100 g tissue for 100 and 50 ml, respectively; p > 0.05. Tumour peak enhancement and time to peak were significantly greater following the injection of 100 ml versus 50 ml contrast medium: 41.2 versus 28.5 HU; 16.1 versus 11.8 s for 100 ml and 50 ml, respectively; p = 0.002; p = 0.0003. Conclusion: Quantitative parameters do not appear to change substantially with a higher contrast agent volume suggesting a combined diagnostic staging-perfusion CT study following a single injection is feasible for colorectal cancer

  6. Microfluidic culture chamber for the long-term perfusion and precise chemical stimulation of organotypic brain tissue slices

    DEFF Research Database (Denmark)

    Caicedo, H. H.; Vignes, M.; Brugg, B.

    2010-01-01

    We have developed a microfluidic perfusion-based culture system to study long-term in-vitro responses of organo-typic brain slices exposed to localized neurochemical stimulation. Using this microperfusion chamber we show that hip-pocampal organotypic brain slices cultures grown on nitrocellulose ...

  7. Characteristics of Brain Perfusion in Patients of Parkinson's Disease

    International Nuclear Information System (INIS)

    Jeong, Young Jin; Park, Min Jung; Kim, Jae Woo; Kang, Young Kang

    2008-01-01

    It was well known that cerebral blood perfusion is normal or diffusely decreased in the majority of patients with Parkinson's disease (PD). Actually we interpreted brain perfusion SPECT images of PD patients in the clinical situation, we observed various cerebral perfusion patterns in patients with PD. So we performed brain perfusion SPECT to know the brain perfusion patterns of PD patients and the difference of perfusion patterns according to the sex and the age. Also we classified PD patients into small groups based on the brain perfusion pattern. Two hundred nineteen patients (M: 70, F: 149, mean age: 62.9±6.9 y/o) who were diagnosed as PD without dementia clinically and 55 patients (M: 15, F: 40, mean age: 61.4±9.2 y/o) as normal controls who had no past illness history were performed 99m Tc-HMPAO brain perfusion SPECT and neuropsychological test. At first, we compared all patients with PD and normal controls. Brain perfusion in left inferior frontal gyrus, left insula, left transverse temporal gyrus, left inferior parietal lobule, left superior parietal lobule, right precuneus, right caudate tail were lower in patients with PD than normal controls. Secondly, we compared male and female patients with PD and normal controls, respectively. Brain perfusion SPECT showed more decreased cerebral perfusion in left hemisphere than right side in both male and female patients compared to normal controls. And there was larger hypoperfusion area in female patients compared with male. Thirdly, we classified patients with PD and normal controls into 4 groups according to the age and compared brain perfusion respectively. In patient below fifties, brain perfusion in both occipitoparietal and left temporal lobe were lower in PD group. As the patients with PD grew older, hypoperfusion area were shown in both frontal, temporal and limbic lobes. Fourthly, We were able to divide patients into small groups based on cerebral perfusion pattern. There was normal cerebral blood

  8. Optical techniques for perfusion monitoring of the gastric tube after esophagectomy: a review of technologies and thresholds.

    Science.gov (United States)

    Jansen, S M; de Bruin, D M; van Berge Henegouwen, M I; Strackee, S D; Veelo, D P; van Leeuwen, T G; Gisbertz, S S

    2018-04-26

    Anastomotic leakage is one of the most severe complications after esophageal resection with gastric tube reconstruction. Impaired perfusion of the gastric fundus is seen as the main contributing factor for this complication. Optical modalities show potential in recognizing compromised perfusion in real time, when ischemia is still reversible. This review provides an overview of optical techniques with the aim to evaluate the (1) quantitative measurement of change in perfusion in gastric tube reconstruction and (2) to test which parameters are the most predictive for anastomotic leakage.A Pubmed, MEDLINE, and Embase search was performed and articles on laser Doppler flowmetry (LDF), near-infrared spectroscopy (NIRS), laser speckle contrast imaging (LSCI), fluorescence imaging (FI), sidestream darkfield microscopy (SDF), and optical coherence tomography (OCT) regarding blood flow in gastric tube surgery were reviewed. Two independent reviewers critically appraised articles and extracted the data: Primary outcome was quantitative measure of perfusion change; secondary outcome was successful prediction of necrosis or anastomotic leakage by measured perfusion parameters.Thirty-three articles (including 973 patients and 73 animals) were selected for data extraction, quality assessment, and risk of bias (QUADAS-2). LDF, NIRS, LSCI, and FI were investigated in gastric tube surgery; all had a medium level of evidence. IDEAL stage ranges from 1 to 3. Most articles were found on LDF (n = 12), which is able to measure perfusion in arbitrary perfusion units with a significant lower amount in tissue with necrosis development and on FI (n = 12). With FI blood flow routes could be observed and flow was qualitative evaluated in rapid, slow, or low flow. NIRS uses mucosal oxygen saturation and hemoglobin concentration as perfusion parameters. With LSCI, a decrease of perfusion units is observed toward the gastric fundus intraoperatively. The perfusion units (LDF, LSCI), although

  9. Regional Cerebral Perfusion in Progressive Supranuclear Palsy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Yong; Lee, Ki Hyeong; Yoon, Byung Woo; Lee, Sang Bok; Jeon, Beom S. [Samsung Medical Center, Seoul (Korea, Republic of); Lee, Kyung Han; Lee, Myung Chul [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1996-03-15

    Progressive supranuclear palsy (PSP) is a Parkinson-plus syndrome characterized clinically by supranuclear ophthalmoplegia, pseudobulbar palsy, axial rigidity, bradykinesia, postural instability and dementia. Presence of dementia and lack of cortical histopathology suggest the derangement of cortical function by pathological changes in subcortical structures in PSP, which is supported by the pattern of behavioral changes and measurement of brain metabolism using positron emission tomography. This study was done to examine whether there are specific changes of regional cerebral perfusion in PSP and whether there is a correlation between severity of motor abnormaility and degree of changes in cerebral perfusion. We measured regional cerebral perfusion indices in 5 cortical and 2 subcortical areas in 6 patients with a clinical diagnosis of PSP and 6 healthy age and sex matched controls using Tc-99m-HMPAO SPECT. Compared with age and sex matched controls, only superior frontal regional perfusion index was significantly decreased in PSP (p<0.05). There was no correlation between the severity of the motor abnormality and any of the regional cerebral perfusion indices (p>0.05). We affirm the previous reports that perfusion in superior frontal cortex is decreased in PSP. Based on our results that there was no correlation between severity of motor abnormality and cerebral perfusion in the superior frontal cortex, nonmotoric symptoms including dementia needs to be looked at whether there is a correlation with the perfusion abnormality in superior frontal cortex

  10. Dynamic iterative beam hardening correction (DIBHC) in myocardial perfusion imaging using contrast-enhanced computed tomography.

    Science.gov (United States)

    Stenner, Philip; Schmidt, Bernhard; Allmendinger, Thomas; Flohr, Thomas; Kachelrie, Marc

    2010-06-01

    In cardiac perfusion examinations with computed tomography (CT) large concentrations of iodine in the ventricle and in the descending aorta cause beam hardening artifacts that can lead to incorrect perfusion parameters. The aim of this study is to reduce these artifacts by performing an iterative correction and by accounting for the 3 materials soft tissue, bone, and iodine. Beam hardening corrections are either implemented as simple precorrections which cannot account for higher order beam hardening effects, or as iterative approaches that are based on segmenting the original image into material distribution images. Conventional segmentation algorithms fail to clearly distinguish between iodine and bone. Our new algorithm, DIBHC, calculates the time-dependent iodine distribution by analyzing the voxel changes of a cardiac perfusion examination (typically N approximately 15 electrocardiogram-correlated scans distributed over a total scan time up to T approximately 30 s). These voxel dynamics are due to changes in contrast agent. This prior information allows to precisely distinguish between bone and iodine and is key to DIBHC where each iteration consists of a multimaterial (soft tissue, bone, iodine) polychromatic forward projection, a raw data comparison and a filtered backprojection. Simulations with a semi-anthropomorphic dynamic phantom and clinical scans using a dual source CT scanner with 2 x 128 slices, a tube voltage of 100 kV, a tube current of 180 mAs, and a rotation time of 0.28 seconds have been carried out. The uncorrected images suffer from beam hardening artifacts that appear as dark bands connecting large concentrations of iodine in the ventricle, aorta, and bony structures. The CT-values of the affected tissue are usually underestimated by roughly 20 HU although deviations of up to 61 HU have been observed. For a quantitative evaluation circular regions of interest have been analyzed. After application of DIBHC the mean values obtained deviate by

  11. Rapid clearance of xanthines from airway and pulmonary tissues

    International Nuclear Information System (INIS)

    Kroell, F.K.; Karlsson, J.A.; Nilsson, E.; Ryrfeldt, A.; Persson, C.G.

    1990-01-01

    The airway and pulmonary fate of two antiasthma xanthines was examined in a guinea pig perfused lung preparation where the airway mechanics and airway microvascular perfusion are maintained at near normal values. 14C-theophylline or 14C-enprofylline was infused for 10, 30, and 300 s into the pulmonary artery of the guinea pig isolated lung. The radioactivity increased rapidly (within 10 s) in tracheobronchial as well as in lung tissue, confirming that the large airway microcirculation was well supplied also by the perfusion. The effluent concentrations of total 3H and 14C radioactivity at the onset, during, and after intrapulmonary infusion of 14C-labeled xanthines and 3H-sucrose were closely associated, suggesting that the xanthines, like sucrose, largely distributed in extracellular fluid and were not taken up by the tissues. No metabolites of enprofylline or theophylline could be detected in the lung tissue or lung effluent, suggesting that xanthines are not biotransformed by the guinea pig lung. After intratracheal instillation of 14C-theophylline, the peak radioactivity in the lung effluent appeared in the second 15-s fraction after instillation, and after 10 and 60 min, 68.1 +/- 4.7% and 86.9 +/- 8.4%, respectively, of the given dose had appeared in the lung effluent. The present data suggest a mainly extracellular distribution and a rapid clearance of xanthines from the lung and airway tissues. The rapid disappearance of topical theophylline may explain the lack of success of inhalation therapy with this drug

  12. Correlation of oxygenation and perfusion sensitive MRI with invasive micro probe measurements in healthy mice brain

    International Nuclear Information System (INIS)

    Sedlacik, Jan; Fiehler, Jens; Reitz, Matthias; Schmidt, Nils O.; Bolar, Divya S.; Adalsteinsson, Elfar

    2015-01-01

    The non-invasive assessment of (patho-)physiological parameters such as, perfusion and oxygenation, is of great importance for the characterization of pathologies e.g., tumors, which may be helpful to better predict treatment response and potential outcome. To better understand the influence of physiological parameters on the investigated oxygenation and perfusion sensitive MRI methods, MRI measurements were correlated with subsequent invasive micro probe measurements during free breathing conditions of air, air+10% CO2 and 100% O2 in healthy mice brain. MRI parameters were the irreversible (R2), reversible (R2') and effective (R2*) transverse relaxation rates, venous blood oxygenation level assessed by quantitative blood oxygenation level dependent (qBOLD) method and cerebral blood flow (CBF) assessed by arterial spin labeling (ASL) using a 7T small animal MRI scanner. One to two days after MRI, tissue perfusion and pO2 were measured by Laser-Doppler flowmetry and fluorescence quenching micro probes, respectively. The tissue pO2 values were converted to blood oxygen saturation by using the Hill equation. The animals were anesthetized by intra peritoneal injection of ketamine-xylazine-acepromazine (10-2-0.3 mg/ml.kg). Results for normal/hypercapnia/hyperoxia conditions were: R2[s and -1] = 20.7/20.4/20.1, R2*[s and -1] = 31.6/29.6/25.9, R2'[s and 1] = 10.9/9.2/5.7, qBOLD venous blood oxygenation level = 0.43/0.51/0.56, CBF[ml.min and -1.100g and -1] = 70.6/105.5/81.8, Laser-Doppler flowmetry[a.u.] = 89.2/120.2/90.6 and pO2[mmHg] = 6.3/32.3/46.7. All parameters were statistically significantly different with P < 0.001 between all breathing conditions. All MRI and the corresponding micro probe measurements were also statistically significantly (P ≤ 0.03) correlated with each other. However, converting the tissue pO2 to blood oxygen saturation = 0.02/0.34/0.63, showed only very limited agreement with the qBOLD venous blood oxygenation level. We found good

  13. Correlation of oxygenation and perfusion sensitive MRI with invasive micro probe measurements in healthy mice brain

    Energy Technology Data Exchange (ETDEWEB)

    Sedlacik, Jan; Fiehler, Jens [University Medical Center Hamburg-Eppendorf, Hamburg (Germany). Neuroradiology; Reitz, Matthias; Schmidt, Nils O. [University Medical Center Hamburg-Eppendorf, Hamburg (Germany). Neurosurgery; Bolar, Divya S. [Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA (United States). Radiology; Adalsteinsson, Elfar [Massachusetts Institute of Technology, Cambridge, MA (United States). Electrical Engineering and Computer Science

    2015-05-01

    The non-invasive assessment of (patho-)physiological parameters such as, perfusion and oxygenation, is of great importance for the characterization of pathologies e.g., tumors, which may be helpful to better predict treatment response and potential outcome. To better understand the influence of physiological parameters on the investigated oxygenation and perfusion sensitive MRI methods, MRI measurements were correlated with subsequent invasive micro probe measurements during free breathing conditions of air, air+10% CO2 and 100% O2 in healthy mice brain. MRI parameters were the irreversible (R2), reversible (R2') and effective (R2*) transverse relaxation rates, venous blood oxygenation level assessed by quantitative blood oxygenation level dependent (qBOLD) method and cerebral blood flow (CBF) assessed by arterial spin labeling (ASL) using a 7T small animal MRI scanner. One to two days after MRI, tissue perfusion and pO2 were measured by Laser-Doppler flowmetry and fluorescence quenching micro probes, respectively. The tissue pO2 values were converted to blood oxygen saturation by using the Hill equation. The animals were anesthetized by intra peritoneal injection of ketamine-xylazine-acepromazine (10-2-0.3 mg/ml.kg). Results for normal/hypercapnia/hyperoxia conditions were: R2[s {sup and} -1] = 20.7/20.4/20.1, R2*[s {sup and} -1] = 31.6/29.6/25.9, R2'[s {sup and} 1] = 10.9/9.2/5.7, qBOLD venous blood oxygenation level = 0.43/0.51/0.56, CBF[ml.min {sup and} -1.100g {sup and} -1] = 70.6/105.5/81.8, Laser-Doppler flowmetry[a.u.] = 89.2/120.2/90.6 and pO2[mmHg] = 6.3/32.3/46.7. All parameters were statistically significantly different with P < 0.001 between all breathing conditions. All MRI and the corresponding micro probe measurements were also statistically significantly (P ≤ 0.03) correlated with each other. However, converting the tissue pO2 to blood oxygen saturation = 0.02/0.34/0.63, showed only very limited agreement with the qBOLD venous blood

  14. Comparing model-based and model-free analysis methods for QUASAR arterial spin labeling perfusion quantification.

    Science.gov (United States)

    Chappell, Michael A; Woolrich, Mark W; Petersen, Esben T; Golay, Xavier; Payne, Stephen J

    2013-05-01

    Amongst the various implementations of arterial spin labeling MRI methods for quantifying cerebral perfusion, the QUASAR method is unique. By using a combination of labeling with and without flow suppression gradients, the QUASAR method offers the separation of macrovascular and tissue signals. This permits local arterial input functions to be defined and "model-free" analysis, using numerical deconvolution, to be used. However, it remains unclear whether arterial spin labeling data are best treated using model-free or model-based analysis. This work provides a critical comparison of these two approaches for QUASAR arterial spin labeling in the healthy brain. An existing two-component (arterial and tissue) model was extended to the mixed flow suppression scheme of QUASAR to provide an optimal model-based analysis. The model-based analysis was extended to incorporate dispersion of the labeled bolus, generally regarded as the major source of discrepancy between the two analysis approaches. Model-free and model-based analyses were compared for perfusion quantification including absolute measurements, uncertainty estimation, and spatial variation in cerebral blood flow estimates. Major sources of discrepancies between model-free and model-based analysis were attributed to the effects of dispersion and the degree to which the two methods can separate macrovascular and tissue signal. Copyright © 2012 Wiley Periodicals, Inc.

  15. Regional Cerebral Perfusion in Progressive Supranuclear Palsy

    International Nuclear Information System (INIS)

    Lee, Won Yong; Lee, Ki Hyeong; Yoon, Byung Woo; Lee, Sang Bok; Jeon, Beom S.; Lee, Kyung Han; Lee, Myung Chul

    1996-01-01

    Progressive supranuclear palsy (PSP) is a Parkinson-plus syndrome characterized clinically by supranuclear ophthalmoplegia, pseudobulbar palsy, axial rigidity, bradykinesia, postural instability and dementia. Presence of dementia and lack of cortical histopathology suggest the derangement of cortical function by pathological changes in subcortical structures in PSP, which is supported by the pattern of behavioral changes and measurement of brain metabolism using positron emission tomography. This study was done to examine whether there are specific changes of regional cerebral perfusion in PSP and whether there is a correlation between severity of motor abnormaility and degree of changes in cerebral perfusion. We measured regional cerebral perfusion indices in 5 cortical and 2 subcortical areas in 6 patients with a clinical diagnosis of PSP and 6 healthy age and sex matched controls using Tc-99m-HMPAO SPECT. Compared with age and sex matched controls, only superior frontal regional perfusion index was significantly decreased in PSP (p 0.05). We affirm the previous reports that perfusion in superior frontal cortex is decreased in PSP. Based on our results that there was no correlation between severity of motor abnormality and cerebral perfusion in the superior frontal cortex, nonmotoric symptoms including dementia needs to be looked at whether there is a correlation with the perfusion abnormality in superior frontal cortex

  16. Computerized analysis of brain perfusion parameter images

    International Nuclear Information System (INIS)

    Turowski, B.; Haenggi, D.; Wittsack, H.J.; Beck, A.; Aurich, V.

    2007-01-01

    Purpose: The development of a computerized method which allows a direct quantitative comparison of perfusion parameters. The display should allow a clear direct comparison of brain perfusion parameters in different vascular territories and over the course of time. The analysis is intended to be the basis for further evaluation of cerebral vasospasm after subarachnoid hemorrhage (SAH). The method should permit early diagnosis of cerebral vasospasm. Materials and Methods: The Angiotux 2D-ECCET software was developed with a close cooperation between computer scientists and clinicians. Starting from parameter images of brain perfusion, the cortex was marked, segmented and assigned to definite vascular territories. The underlying values were averages for each segment and were displayed in a graph. If a follow-up was available, the mean values of the perfusion parameters were displayed in relation to time. The method was developed under consideration of CT perfusion values but is applicable for other methods of perfusion imaging. Results: Computerized analysis of brain perfusion parameter images allows an immediate comparison of these parameters and follow-up of mean values in a clear and concise manner. Values are related to definite vascular territories. The tabular output facilitates further statistic evaluations. The computerized analysis is precisely reproducible, i. e., repetitions result in exactly the same output. (orig.)

  17. 3D whole-heart myocardial tissue analysis

    NARCIS (Netherlands)

    van den Broek, HT; de Jong, Leon; Doevendans, Pieter A.; Chamuleau, Steven A.J.; van Slochteren, Frebus J.; Van Es, René

    2017-01-01

    Cardiac regenerative therapies aim to protect and repair the injured heart in patients with ischemic heart disease. By injecting stem cells or other biologicals that enhance angio- or vasculogenesis into the infarct border zone (IBZ), tissue perfusion is improved, and the myocardium can be protected

  18. Human placental perfusion method in the assessment of transplacental passage of antiepileptic drugs

    International Nuclear Information System (INIS)

    Myllynen, Paeivi; Pienimaeki, Paeivi; Vaehaekangas, Kirsi

    2005-01-01

    Epilepsy is one of the most common neurological diseases, affecting about 0.5 to 1% of pregnant women. It is commonly accepted that older antiepileptic drugs bear teratogenic potential. So far, no agreement has been reached about the safest antiepileptic drug during pregnancy. It is known that nearly all drugs cross the placenta at least to some extent. Nowadays, there is very little information available of the pharmacokinetics of drugs in the feto-placental unit. Detailed information about drug transport across the placenta would be valuable for the development of safe and effective treatments. For reasons of safety, human studies on placental transfer are restricted to a limited number of drugs. Interspecies differences limit the extrapolation of animal data to humans. Several in vitro methods for the study of placental transfer have been developed over the past decades. The placental perfusion method is the only experimental method that has been used to study human placental transfer of substances in organized placental tissue. The aim of this article is to review human placental perfusion data on antiepileptic drugs. According to perfusion data, it seems that most of the antiepileptic drugs are transferred across the placenta meaning significant fetal exposure

  19. Extracellular Vesicles from Human Liver Stem Cells Reduce Injury in an Ex Vivo Normothermic Hypoxic Rat Liver Perfusion Model.

    Science.gov (United States)

    Rigo, Federica; De Stefano, Nicola; Navarro-Tableros, Victor; David, Ezio; Rizza, Giorgia; Catalano, Giorgia; Gilbo, Nicholas; Maione, Francesca; Gonella, Federica; Roggio, Dorotea; Martini, Silvia; Patrono, Damiano; Salizzoni, Mauro; Camussi, Giovanni; Romagnoli, Renato

    2018-05-01

    The gold standard for organ preservation before transplantation is static cold storage, which is unable to fully protect suboptimal livers from ischemia/reperfusion injury. An emerging alternative is normothermic machine perfusion (NMP), which permits organ reconditioning. Here, we aimed to explore the feasibility of a pharmacological intervention on isolated rat livers by using a combination of NMP and human liver stem cells-derived extracellular vesicles (HLSC-EV). We established an ex vivo murine model of NMP capable to maintain liver function despite an ongoing hypoxic injury induced by hemodilution. Livers were perfused for 4 hours without (control group, n = 10) or with HLSC-EV (treated group, n = 9). Bile production was quantified; perfusate samples were collected hourly to measure metabolic (pH, pO2, pCO2) and cytolysis parameters (AST, alanine aminotransferase, lactate dehydrogenase). At the end of perfusion, we assessed HLSC-EV engraftment by immunofluorescence, tissue injury by histology, apoptosis by terminal deoxynucleotidyl transferase dUTP nick-end labeling assay, tissue hypoxia-inducible factor 1-α, and transforming growth factor-beta 1 RNA expression by quantitative reverse transcription-polymerase chain reaction. During hypoxic NMP, livers were able to maintain homeostasis and produce bile. In the treated group, AST (P = 0.018) and lactate dehydrogenase (P = 0.032) levels were significantly lower than those of the control group at 3 hours of perfusion, and AST levels persisted lower at 4 hours (P = 0.003). By the end of NMP, HLSC-EV had been uptaken by hepatocytes, and EV treatment significantly reduced histological damage (P = 0.030), apoptosis (P = 0.049), and RNA overexpression of hypoxia-inducible factor 1-α (P < 0.0001) and transforming growth factor-beta 1 (P = 0.014). HLSC-EV treatment, even in a short-duration model, was feasible and effectively reduced liver injury during hypoxic NMP.

  20. Comparison with myocardial perfusion MRI and myocardial perfusion SPECT in the diagnostic performance of coronary artery disease. A meta-analysis

    International Nuclear Information System (INIS)

    Iwata, Kunihiro; Kubota, Makoto; Ogasawara, Katsuhiko

    2008-01-01

    We compared the diagnostic abilities of stress myocardial perfusion MRI (myocardial perfusion MRI) and myocardial perfusion single photon emission computed tomography (SPECT), using a meta-analysis method. We investigated the diagnostic abilities of MRI and SPECT in similar subject groups in reports written in English or Japanese. The reports to be used for analysis were selected according to a ''screening standard,'' which was established in advance. After consolidating the data from the selected reports, we compared the integrated odds ratio, the point estimation values of sensibility/specificity, and the summary receiver operating characteristic (ROC) curve. For the analysis, six reports were selected (subjects: 153, coronary-artery target sites: 447). Meta-analysis revealed that the diagnostic ability of myocardial perfusion MRI was superior to that of myocardial perfusion SPECT regarding each of the parameters. This is considered to be supportive evidence of the usefulness of myocardial perfusion MRI. (author)

  1. Development and use of a new perfusion technique to study glucose metabolism of the aortic wall in normal and alloxan-diabetic rabbits

    International Nuclear Information System (INIS)

    Brown, B.J.M.

    1985-01-01

    This study investigated (1) possible alterations in glucose uptake and utilization in the perfused, normal, and diabetic vascular wall of rabbits and (2) the effects thereon of insulin and exogenous glucose concentration. Part I involved development and characterization of an in vitro perfusion technique that closely reproduced predetermined in vivo conditions of aortic blood flow, arterial blood pressure, heart rate and pulse pressure. The responsiveness of the preparation to vasoactive agents was assessed with concentrations of norepinephrine (NE) from 10 -9 to 10 -4 M. In Part II, the effects of NE-induced tension development on glucose metabolism were determined by perfusion with oxygenated physiological salt solution (PSS) containing 7 mM glucose and tracer amounts of uniformly labeled 14 C-glucose. Aortas from 8 week-diabetic rabbits were perfused under similar conditions employing a NE infusion in the presence or absence of insulin (150 uU/ml) and variable levels of glucose. Effects of NE-induced tension development include an apparent increase (39%) in glucose uptake and a twofold increase in 14 CO 2 and lactate production. Aortas from diabetic rabbits perfused with PSS containing 7 mM glucose demonstrated marked decreases in glucose uptake (74%), 14 CO 2 (68%), lactate (30%), total tissue glycogen (75%) and labeled tissue phospholipids (70%). Insulin or elevation of exogenous glucose to 25 mM (diabetic levels) normalized glucose uptake, but had differential effects on the pattern of substrate utilization. The marked alterations of glucose metabolism in the diabetic state may contribute to the functional changes observed in diabetic blood vessels

  2. Effects of acupuncture on tissue oxygenation of the rat brain.

    Science.gov (United States)

    Chen, G S; Erdmann, W

    1978-04-01

    Acupuncture has been claimed to be effective in restoring consciousness in some comatose patients. Possible mechanisms to explain alleged acupuncture-induced arousal may include vasodilatory effects caused by smypathetic stimulation which leads to an augmentation of cerebral microcirculation and thereby improves oxygen supply to the brain tissue. Experiments were performed in ten albino rats (Wistar) employing PO2 microelectrodes which were inserted into the cortex through small burholes. Brain tissue PO2 was continuously recorded before, during, and after acupuncture. Stimulation of certain acupuncture points (Go-26) resulted in immediate increase of PO2 in the frontal cortex of the rat brain. This effect was reproducible and was comparable to that obtained with increase of inspiratory CO2 known to induce arterial vasodilatation and thus capillary perfusion pressure. The effect was more significant as compared to tissue PO2 increases obtained after increase in inspiratory oxygen concentration from 21% to 100%. It appears that acupuncture causes increased brain tissue perfusion which may be, at least in part, responsible for arousal of unconscious patients.

  3. Tc-99m DTPA perfusion scintigraphy and color coded duplex sonography in the evaluation of minimal renal allograft perfusion

    International Nuclear Information System (INIS)

    Bair, H.J.; Platsch, G.; Wolf, F.; Guenter, E.; Becker, D.; Rupprecht, H.; Neumayer, H.H.

    1997-01-01

    Aim: The clinical impact of perfusion scintigraphy versus color coded Duplex sonography was evaluated, with respect to their potential in assessing minimal allograft perfusion in vitally threatened kidney transplants, i.e. oligoanuric allografts suspected to have either severe rejection or thrombosis of the renal vein or artery. Methods: From July 1990 to August 1994 the grafts of 15 out of a total of 315 patients were vitally threatened. Technetium-99m DTPA scintigraphy and color coded Duplex sonography were performed in all patients. For scintigraphic evaluation of transplant perfusion analog scans up to 60 min postinjection, and time-activity curves over the first 60 sec after injection of 370-440 MBq Tc-99m diethylenetriaminepentaacetate acid (DTPA) were used and classified by a perfusion score, the time between renal and iliac artery peaks (TDiff) and the washout of the renogram curve. Additionally, evaluation of excretion function and assessment of vascular or urinary leaks were performed. By color coded Duplex sonography the perfusion in all sections of the graft as well as the vascular anastomoses were examined and the maximal blood flow velocity (Vmax) and the resistive index (RI) in the renal artery were determined by means of the pulsed Doppler device. Pathologic-anatomical diagnosis was achieved by either biopsy or post-explant histology in all grafts. Results: Scintigraphy and color coded Duplex sonography could reliably differentiate minimal (8/15) and not perfused (7/15) renal allografts. The results were confirmed either by angiography in digital subtraction technique (DSA) or the clinical follow up. Conclusion: In summary, perfusion scintigraphy and color coded Duplex sonography are comparable modalities to assess kidney graft perfusion. In clinical practice scintigraphy and colorcoded Doppler sonography can replace digital subtraction angiography in the evaluation of minimal allograft perfusion. (orig.) [de

  4. Assessment of the effects of different sample perfusion procedures on phase-contrast tomographic images of mouse spinal cord

    Science.gov (United States)

    Stefanutti, E.; Sierra, A.; Miocchi, P.; Massimi, L.; Brun, F.; Maugeri, L.; Bukreeva, I.; Nurmi, A.; Begani Provinciali, G.; Tromba, G.; Gröhn, O.; Giove, F.; Cedola, A.; Fratini, M.

    2018-03-01

    Synchrotron X-ray Phase Contrast micro-Tomography (SXrPCμT) is a powerful tool in the investigation of biological tissues, including the central nervous system (CNS), and it allows to simultaneously detect the vascular and neuronal network avoiding contrast agents or destructive sample preparations. However, specific sample preparation procedures aimed to optimize the achievable contrast- and signal-to-noise ratio (CNR and SNR, respectively) are required. Here we report and discuss the effects of perfusion with two different fixative agents (ethanol and paraformaldehyde) and with a widely used contrast medium (MICROFIL®) on mouse spinal cord. As a main result, we found that ethanol enhances contrast at the grey/white matter interface and increases the contrast in correspondence of vascular features and fibres, thus providing an adequate spatial resolution to visualise the vascular network at the microscale. On the other hand, ethanol is known to induce tissue dehydration, likely reducing cell dimensions below the spatial resolution limit imposed by the experimental technique. Nonetheless, neurons remain well visible using either perfused paraformaldehyde or MICROFIL® compound, as these latter media do not affect tissues with dehydration effects. Paraformaldehyde appears as the best compromise: it is not a contrast agent, like MICROFIL®, but it is less invasive than ethanol and permits to visualise well both cells and blood vessels. However, a quantitative estimation of the relative grey matter volume of each sample has led us to conclude that no significant alterations in the grey matter extension compared to the white matter occur as a consequence of the perfusion procedures tested in this study.

  5. Arterio-venous anastomoses in mice affect perfusion measurements with dynamic contrast enhanced CT

    International Nuclear Information System (INIS)

    Gabra, Peter; Lee, Ting-Yim; Shen, Gang; Xuan, Jim

    2010-01-01

    Accurate measurement of perfusion with dynamic contrast enhanced CT requires an arterial input curve (AIC) uncontaminated by venous sources. Arterio-venous anastomoses (AVAs) are sources of contamination if contrast is injected intravenously. We seek to identify AVAs in mice and associated errors in perfusion measurements. Six transgenic mice with spontaneous prostate tumor were scanned with a micro-CT scanner (GE Healthcare (GE)) using a high resolution anatomical and a lower resolution perfusion protocol. For the anatomical protocol, a CT scan was performed during injection of an iodinated contrast agent (Hypaque) into a tail vein. Images covering the thoracic, abdominal and pelvic regions at an isotropic resolution of 175 µm were reconstructed and rendered in 3D to show the arterial and venous tree (Advantage Window, GE). For the perfusion protocol, each mouse was continuously scanned for 40 s and the contrast agent (Hypaque) was injected via a tail vein 5 s into scanning. Tumor images were reconstructed every second. Tumor blood flow (BF) and volume (BV) maps were calculated with CT perfusion software (GE) using AIC measured either from abdominal aorta (AA) or tail (caudal) artery (TA). In all mice, there was an AVA from the bifurcation of the inferior vena cava to the tail artery shunting venous blood and portion of the contrast agent injected into the tail vein into the TA. Contrast arrival time at the TA preceded that at the AA by 3.3 ± 0.5 s (P < 0.05). Mean tumor BV and BF values calculated with AA versus TA were 10.0 ± 1.8 versus 4.8 ± 2.1 ml (100 g) −1 (P < 0.05) and 108.8 ± 26.5 versus 33.0 ± 8.5 ml min −1 100 g −1 (P < 0.05), respectively. AVA in the murine pelvic region can result in inaccurate and more variable measurements of pelvic organ/tissue perfusion when the tail artery is used as the AIC

  6. A Novel bioreactor with mechanical stimulation for skeletal tissue engineering

    Directory of Open Access Journals (Sweden)

    M. Petrović

    2009-01-01

    Full Text Available The provision of mechanical stimulation is believed to be necessary for the functional assembly of skeletal tissues, which are normally exposed to a variety of biomechanical signals in vivo. In this paper, we present a development and validation of a novel bioreactor aimed for skeletal tissue engineering that provides dynamic compression and perfusion of cultivated tissues. Dynamic compression can be applied at frequencies up to 67.5 Hz and displacements down to 5 m thus suitable for the simulation of physiological conditions in a native cartilage tissue (0.1-1 Hz, 5-10 % strain. The bioreactor also includes a load sensor that was calibrated so to measure average loads imposed on tissue samples. Regimes of the mechanical stimulation and acquisition of load sensor outputs are directed by an automatic control system using applications developed within the LabView platform. In addition, perfusion of tissue samples at physiological velocities (10–100 m/s provides efficient mass transfer, as well as the possibilities to expose the cells to hydrodynamic shear and simulate the conditions in a native bone tissue. Thus, the novel bioreactor is suited for studies of the effects of different biomechanical signals on in vitro regeneration of skeletal tissues, as well as for the studies of newly formulated biomaterials and cell biomaterial interactions under in vivo-like settings.

  7. Regional cortical hyper perfusion on perfusion CT during postical motor deficit: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Baik, Hye Jin [Dept. of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan (Korea, Republic of)

    2013-08-15

    Postictal neurologic deficit is a well-known complication mimicking the manifestation of a stroke. We present a case of a patient with clinical evidence of Todd's paralysis correlating with reversible postictal parenchymal changes on perfusion CT and magnetic resonance (MR) imaging. In this case, perfusion CT and MR imaging were helpful in the differential diagnosis of stroke-mimicking conditions.

  8. Ventilation and perfusion display in a single image

    International Nuclear Information System (INIS)

    Lima, J.J.P. de; Botelho, M.F.R.; Pereira, A.M.S.; Rafael, J.A.S.; Pinto, A.J.; Marques, M.A.T.; Pereira, M.C.; Baganha, M.F.; Godinho, F.

    1991-01-01

    A new method of ventilation and perfusion display onto a single image is presented. From the data on regions of interest of the lungs, three-dimensional histograms are created, containing as parameters X and Y for the position of the pixels, Z for the perfusion and colour for local ventilation. The perfusion value is supplied by sets of curves having Z proportional to the local perfusion count rate. Ventilation modulates colour. Four perspective views of the histogram are simultaneously displayed to allow visualization of the entire organ. Information about the normal ranges for both ventilation and perfusion is also provided in the histograms. (orig.)

  9. effect of dl-carnitine on tissue content of ad eno ine triphospha te

    African Journals Online (AJOL)

    BSN

    values of 16.2 ± 5.2µ mols lg dry weight for ATP and I 1.7± 2.5 ~11nols/g dry weight for CP in normal (non ischaem1c) myocardial tissue. Continuous perfusion of the heans "ith perfusate contaming 4.9µmols/ml. DL-Carnitine appeared to prevent the lowermg of ATP and CP levels as a result of induction of ischaemia.

  10. Effects of Steroid Hormones on Sex Differences in Cerebral Perfusion.

    Directory of Open Access Journals (Sweden)

    Carmen Ghisleni

    Full Text Available Sex differences in the brain appear to play an important role in the prevalence and progression of various neuropsychiatric disorders, but to date little is known about the cerebral mechanisms underlying these differences. One widely reported finding is that women demonstrate higher cerebral perfusion than men, but the underlying cause of this difference in perfusion is not known. This study investigated the putative role of steroid hormones such as oestradiol, testosterone, and dehydroepiandrosterone sulphate (DHEAS as underlying factors influencing cerebral perfusion. We acquired arterial spin labelling perfusion images of 36 healthy adult subjects (16 men, 20 women. Analyses on average whole brain perfusion levels included a multiple regression analysis to test for the relative impact of each hormone on the global perfusion. Additionally, voxel-based analyses were performed to investigate the sex difference in regional perfusion as well as the correlations between local perfusion and serum oestradiol, testosterone, and DHEAS concentrations. Our results replicated the known sex difference in perfusion, with women showing significantly higher global and regional perfusion. For the global perfusion, DHEAS was the only significant predictor amongst the steroid hormones, showing a strong negative correlation with cerebral perfusion. The voxel-based analyses revealed modest sex-dependent correlations between local perfusion and testosterone, in addition to a strong modulatory effect of DHEAS in cortical, subcortical, and cerebellar regions. We conclude that DHEAS in particular may play an important role as an underlying factor driving the difference in cerebral perfusion between men and women.

  11. CT perfusion of the liver during selective hepatic arteriography. Pure arterial blood perfusion of liver tumor and parenchyma

    International Nuclear Information System (INIS)

    Komemushi, Atsushi; Tanigawa, Noboru; Kojima, Hiroyuki; Kariya, Shuji; Sawada, Satoshi

    2003-01-01

    The purpose of this study was to quantify pure arterial blood perfusion of liver tumor and parenchyma by using CT perfusion during selective hepatic arteriography. A total of 44 patients underwent liver CT perfusion study by injection of contrast medium via the hepatic artery. CT-perfusion parameters including arterial blood flow, arterial blood volume, and arterial mean transit time in the liver parenchyma and liver tumor were calculated using the deconvolution method. The CT-perfusion parameters and vascularity of the tumor were compared. A complete analysis could be performed in 36 of the 44 patients. For liver tumor and liver parenchyma, respectively, arterial blood flow was 184.6±132.7 and 41.0±27.0 ml/min/100 g, arterial blood volume was 19.4±14.6 and 4.8±4.2 ml/100 g, and arterial mean transit time was 8.9±4.2 and 10.2±5.3 sec. Arterial blood flow and arterial blood volume correlated significantly with the vascularity of the tumor; however no correlation was detected between arterial mean transit time and the vascularity of the tumor. This technique could be used to quantify pure hepatic arterial blood perfusion. (author)

  12. Correlation of oxygenation and perfusion sensitive MRI with invasive micro probe measurements in healthy mice brain.

    Science.gov (United States)

    Sedlacik, Jan; Reitz, Matthias; Bolar, Divya S; Adalsteinsson, Elfar; Schmidt, Nils O; Fiehler, Jens

    2015-03-01

    The non-invasive assessment of (patho-)physiological parameters such as, perfusion and oxygenation, is of great importance for the characterization of pathologies e.g., tumors, which may be helpful to better predict treatment response and potential outcome. To better understand the influence of physiological parameters on the investigated oxygenation and perfusion sensitive MRI methods, MRI measurements were correlated with subsequent invasive micro probe measurements during free breathing conditions of air, air+10% CO2 and 100% O2 in healthy mice brain. MRI parameters were the irreversible (R2), reversible (R2') and effective (R2*) transverse relaxation rates, venous blood oxygenation level assessed by quantitative blood oxygenation level dependent (qBOLD) method and cerebral blood flow (CBF) assessed by arterial spin labeling (ASL) using a 7 T small animal MRI scanner. One to two days after MRI, tissue perfusion and pO2 were measured by Laser-Doppler flowmetry and fluorescence quenching micro probes, respectively. The tissue pO2 values were converted to blood oxygen saturation by using the Hill equation. The animals were anesthetized by intra peritoneal injection of ketamine-xylazine-acepromazine (10-2-0.3 mg/ml · kg). Results for normal/hypercapnia/hyperoxia conditions were: R2[s(∧)-1] = 20.7/20.4/20.1, R2*[s(∧)-1] = 31.6/29.6/25.9, R2'[s-(∧)1] = 10.9/9.2/5.7, qBOLD venous blood oxygenation level = 0.43/0.51/0.56, CBF[ml · min(∧)-1 · 100 g(∧)-1] = 70.6/105.5/81.8, Laser-Doppler flowmetry[a.u.] = 89.2/120.2/90.6 and pO2[mmHg] = 6.3/32.3/46.7. All parameters were statistically significantly different with P effects of anesthesia and trauma due to micro probe insertion are strong confounding factors and need close attention for study planning and conduction of experiments. Investigation of the correlation of perfusion and oxygenation sensitive MRI methods with micro probe measurements in pathologic tissue such as tumors is now of compelling interest

  13. Perfusion-weighted MR imaging of uterine leiomyoma

    Energy Technology Data Exchange (ETDEWEB)

    Takase, Hiroyasu; Munechika, Hirotsugu [Showa Univ., Tokyo (Japan). School of Medicine

    2001-06-01

    Serial images of uterine leiomyoma in gradient-echo, echo-planar, magnetic resonance imaging were taken to draw a {delta}R2{sup *} curve after intravenous bolus injection of Gd-DTPA. The {delta}R2{sup *} integral was calculated from a {delta}R2{sup *} curve to have relative perfusion of uterine leiomyoma. We then, evaluated the amount of perfusion correlated with MR findings, size and number of leiomyoma or the clinical symptoms and established that perfusion was correlated positively with the findings of T2 weighted images and clinical symptoms but not with other MR findings or size and number of leiomyoma. In conclusion, we presumed that the clinical symptoms could be reduced by decreasing of an amount of perfusion of uterine leiomyoma in some means. However, it remained uncertain why severe clinical symptoms were associated with a high amount of perfusion in uterine leiomyomas. (author)

  14. Clinical significance of inadequate endometrial biopsies prior to hysterectomy.

    Science.gov (United States)

    Turney, Emily H; Farghaly, Hanan; Eskew, Ashley M; Parker, Lynn P; Milam, Michael R

    2012-01-01

    To evaluate preoperative clinical risk factors associated with significant uterine histopathologic abnormalities in final hysterectomy specimens in patients with inadequate preoperative endometrial biopsies. This is an institutional review board-approved, retrospective cohort analysis of 469 consecutive patients who underwent preoperative endometrial biopsies with subsequent hysterectomy from January 1, 2005, to December 31, 2009, at the University of Louisville Medical Center. We analyzed risk factors for inadequate biopsy and for final diagnosis of endometrial pathology (defined as endometrial hyperplasia or uterine cancer). Of the 469 preoperative endometrial biopsies reviewed, 26.2% (123/469) were inadequate (IBx) and 73.8% (346/469) were adequate and benign. IBx on endometrial biopsies was associated with a greater risk of having significant uterine histopathologic abnormalities on final hysterectomy specimens (6.5% vs. 2.3%, RR 2.8 [95% CI 1.1-7.3], p = 0.04). Although inadequate endometrial biopsies are a common finding, they can be associated with significant uterine histopathologic abnormalities on final hysterectomy specimens.

  15. Regional myocardial perfusion of cardioplegic solutions

    International Nuclear Information System (INIS)

    Eugene, J.; Lyons, K.P.; Ott, R.A.; Gelezunas, V.L.; Chang, C.W.; Kowall, M.G.; Haiduc, N.J.

    1987-01-01

    We compared the regional myocardial perfusion of blood cardioplegic solution (BCP) and crystalloid cardioplegic solution (CCP) in 14 mongrel dogs. Cardiopulmonary bypass was established at 28 degrees C, and a hydraulic occluder was placed around the proximal left anterior descending (LAD) coronary artery. In group 1 (N = 7) collateral coronary arteries were ligated; in group 2 (N = 7) collateral coronary arteries were left in situ. After the aorta was clamped, BCP and CCP were alternately perfused at 200 ml/min. The occluder was inflated to produce moderate, severe, and critical LAD stenosis, and regional perfusion was measured by xenon-133 washout with the Silicon Avalanche Radiation Detector. BCP infusion produced a consistently higher aortic pressure, but CCP flow was better than BCP flow under all conditions, particularly without coronary collaterals. Regional myocardial perfusion of CCP is superior to BCP

  16. Consideration of Normal Variation of Perfusion Measurements in the Quantitative Analysis of Myocardial Perfusion SPECT: Usefulness in Assessment of Viable Myocardium

    International Nuclear Information System (INIS)

    Paeng, Jin Chul; Lim, Il Han; Kim, Ki Bong; Lee, Dong Soo

    2008-01-01

    Although automatic quantification software of myocardial perfusion SPECT provides highly objective and reproducible quantitative measurements, there is still some limitation in the direct use of quantitative measurements. In this study we derived parameters using normal variation of perfusion measurements, and tried to test the usefulness of these parameters. In order to calculate normal variation of perfusion measurements on myocardial perfusion SPECT, 55 patients (M:F=28:27) of low-likelihood for coronary artery disease were enrolled and 201 Tl rest / 99m Tc-MIBI stress SPECT studies were performed. Using 20-segment model, mean (m) and standard deviation (SD) of perfusion were calculated in each segment. As a myocardial viability assessment group, another 48 patients with known coronary artery disease, who underwent coronary artery bypass graft surgery (CABG) were enrolled. 201 Tl rest / 99m Tc-MIBI stress / 201 Tl 24-hr delayed SPECT was performed before CABG and SPECT was followed up 3 months after CABG. From the preoperative 24-hr delayed SPECT, Q delay (perfusion measurement), Δ delay (Q delay .m) and Z delay ((Q delay .m)/SD) were defined and diagnostic performances of them for myocardial viability were evaluated using area under curve (AUC) on receiver operating characteristic (ROC) curve analysis. Segmental perfusion measurements showed considerable normal variations among segments. In men, the lowest segmental perfusion measurement was 51.8±6.5 and the highest segmental perfusion was 87.0±5.9, and they are 58.7±8.1 and 87.3±6.0, respectively in women. In the viability assessment, Q delay showed AUC of 0.633, while those for Δ delay and Z delay were 0.735 and 0.716, respectively. The AUCs of Δ delay and Z delay were significantly higher than that of Q delay (p=0.001 and 0.018, respectively). The diagnostic performance of Δ delay , which showed highest AUC, was 85% of sensitivity and 53% of specificity at the optimal cutoff of -24.7. On automatic

  17. Computed tomography perfusion imaging denoising using Gaussian process regression

    International Nuclear Information System (INIS)

    Zhu Fan; Gonzalez, David Rodriguez; Atkinson, Malcolm; Carpenter, Trevor; Wardlaw, Joanna

    2012-01-01

    Brain perfusion weighted images acquired using dynamic contrast studies have an important clinical role in acute stroke diagnosis and treatment decisions. However, computed tomography (CT) images suffer from low contrast-to-noise ratios (CNR) as a consequence of the limitation of the exposure to radiation of the patient. As a consequence, the developments of methods for improving the CNR are valuable. The majority of existing approaches for denoising CT images are optimized for 3D (spatial) information, including spatial decimation (spatially weighted mean filters) and techniques based on wavelet and curvelet transforms. However, perfusion imaging data is 4D as it also contains temporal information. Our approach using Gaussian process regression (GPR), which takes advantage of the temporal information, to reduce the noise level. Over the entire image, GPR gains a 99% CNR improvement over the raw images and also improves the quality of haemodynamic maps allowing a better identification of edges and detailed information. At the level of individual voxel, GPR provides a stable baseline, helps us to identify key parameters from tissue time-concentration curves and reduces the oscillations in the curve. GPR is superior to the comparable techniques used in this study. (note)

  18. CT perfusion during delayed cerebral ischemia after subarachnoid hemorrhage: distinction between reversible ischemia and ischemia progressing to infarction

    Energy Technology Data Exchange (ETDEWEB)

    Cremers, Charlotte H.P. [University Medical Center Utrecht, Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, PO Box 85500, Utrecht, Utrecht (Netherlands); University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Vos, Pieter C. [University Medical Center Utrecht, Image Sciences Institute, Utrecht (Netherlands); Schaaf, Irene C. van der; Velthuis, Birgitta K.; Dankbaar, Jan Willem [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Vergouwen, Mervyn D.I.; Rinkel, Gabriel J.E. [University Medical Center Utrecht, Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, PO Box 85500, Utrecht, Utrecht (Netherlands)

    2015-09-15

    Delayed cerebral ischemia (DCI) after aneurysmal subarachnoid hemorrhage (aSAH) can be reversible or progress to cerebral infarction. In patients with a deterioration clinically diagnosed as DCI, we investigated whether CT perfusion (CTP) can distinguish between reversible ischemia and ischemia progressing to cerebral infarction. From a prospectively collected series of aSAH patients, we included those with DCI, CTP on the day of clinical deterioration, and follow-up imaging. In qualitative CTP analyses (visual assessment), we calculated positive and negative predictive value (PPV and NPV) with 95 % confidence intervals (95%CI) of a perfusion deficit for infarction on follow-up imaging. In quantitative analyses, we compared perfusion values of the least perfused brain tissue between patients with and without infarction by using receiver-operator characteristic curves and calculated a threshold value with PPV and NPV for the perfusion parameter with the highest area under the curve. In qualitative analyses of 33 included patients, 15 of 17 patients (88 %) with and 6 of 16 patients (38 %) without infarction on follow-up imaging had a perfusion deficit during clinical deterioration (p = 0.002). Presence of a perfusion deficit had a PPV of 71 % (95%CI: 48-89 %) and NPV of 83 % (95%CI: 52-98 %) for infarction on follow-up. Quantitative analyses showed that an absolute minimal cerebral blood flow (CBF) threshold of 17.7 mL/100 g/min had a PPV of 63 % (95%CI: 41-81 %) and a NPV of 78 % (95%CI: 40-97 %) for infarction. CTP may differ between patients with DCI who develop infarction and those who do not. For this purpose, qualitative evaluation may perform marginally better than quantitative evaluation. (orig.)

  19. Increased sinusoidal volume and solute extraction during retrograde liver perfusion

    International Nuclear Information System (INIS)

    Bass, N.M.; Manning, J.A.; Weisiger, R.A.

    1989-01-01

    Retrograde isolated liver perfusion has been used to probe acinar functional heterogeneity, but the hemodynamic effects of backward flow have not been characterized. In this study, extraction of a long-chain fatty acid derivative, 12-N-methyl-7-nitrobenzo-2-oxa-1,3-diazol-amino stearate (12-NBDS), was greater during retrograde than during anterograde perfusion of isolated rat liver. To determine whether hemodynamic differences between anterograde and retrograde perfused livers could account for this finding, the hepatic extracellular space was measured for both directions of flow by means of [ 14 C]sucrose washout during perfusion as well as by direct measurement of [ 14 C]sucrose entrapped during perfusion. A three- to fourfold enlargement of the total hepatic extracellular space was found during retrograde perfusion by both approaches. Examination of perfusion-fixed livers by light microscopy and morphometry revealed that marked distension of the sinusoids occurred during retrograde perfusion and that this accounts for the observed increase in the [ 14 C]sucrose space. These findings support the hypothesis that maximum resistance to perfusate flow in the isolated perfused rat liver is located at the presinusoidal level. In addition, increased transit time of perfusate through the liver and greater sinusoidal surface area resulting from sinusoidal distension may account for the higher extraction of 12-NBDS and possibly other compounds by retrograde perfused liver

  20. Hepatic artery perfusion imaging

    International Nuclear Information System (INIS)

    Thrall, J.H.; Gyves, J.W.; Ziessman, H.A.; Ensminger, W.D.

    1985-01-01

    Organ and region-selective intra-arterial chemotherapy have been used for more than two decades to treat malignant neoplasms in the extremities, head and neck region, pelvis, liver, and other areas. Substantial evidence of improved response to regional chemotherapy now exists, but there are stringent requirements for successful application of the regional technique. First, the chemotherapeutic agent employed must have appropriate pharmacokinetic and pharmacodynamic properties. Second, the drug must be reliably delivered to the tumor-bearing area. This typically requires an arteriographic assessment of the vascular supply of the tumor, followed by placement of a therapeutic catheter and confirmation that the ''watershed'' perfusion distribution from the catheter truly encompasses the tumor. Optimal catheter placement also minimizes perfusion of nontarget organs. Radionuclide perfusion imaging with technetium 99m-labeled particles, either microspheres or macroaggregates of albumin, has become the method of choice for making these assessments. Catheter placement itself is considered by many to represent a type of ''therapeutic'' intervention. However, once the catheter is in the hepatic artery the radionuclide perfusion technique can be used to assess adjunctive pharmacologic maneuvers designed to further exploit the regional approach to chemotherapy. This chapter presents the technetium Tc 99m macroaggregated albumin method for assessing catheter placement and the pharmacokinetic rationale for regional chemotherapy, and discusses two promising avenues for further intervention

  1. Intercellular adhesion molecule-1 blockade attenuates inflammatory response and improves microvascular perfusion in rat pancreas grafts.

    Science.gov (United States)

    Preissler, Gerhard; Eichhorn, Martin; Waldner, Helmut; Winter, Hauke; Kleespies, Axel; Massberg, Steffen

    2012-10-01

    After pancreas transplantation (PTx), early capillary malperfusion and leukocyte recruitment indicate the manifestation of severe ischemia/reperfusion injury (IRI). Oscillatory blood-flow redistribution (intermittent capillary perfusion, IP), leading to an overall decrease in erythrocyte flux, precedes complete microvascular perfusion failure with persistent blood flow cessation. We addressed the role of intercellular adhesion molecule-1 (ICAM-1) for leukocyte-endothelial interactions (LEIs) after PTx and evaluated the contribution of IP and malperfusion. Pancreas transplantation was performed in rats after 18-hour preservation, receiving either isotype-matched IgG or monoclonal anti-ICAM-1 antibodies (10 mg/kg intravenously) once before reperfusion. Leukocyte-endothelial interaction, IP, erythrocyte flux, and functional capillary density, respectively, were examined in vivo during 2-hour reperfusion. Nontransplanted animals served as controls. Tissue samples were analyzed by histomorphometry. In grafts of IgG-treated animals, IP was encountered already at an early stage after reperfusion and steadily increased over 2 hours, whereas erythrocyte flux declined continuously. In contrast, inhibition of ICAM-1 significantly improved erythrocyte flux and delayed IP appearance by 2 hours. Further, anti-ICAM-1 significantly reduced LEI and leukocyte tissue infiltration when compared to IgG; edema development was less pronounced in response to anti-ICAM-1 monoclonal antibody. Intercellular adhesion molecule-1 blockade significantly attenuates IRI via immediate reduction of LEI and concomitant improvement of capillary perfusion patterns, emphasizing its central role during IRI in PTx.

  2. Theoretical model of intravascular paramagnetic tracers effect on tissue relaxation

    DEFF Research Database (Denmark)

    Kjølby, Birgitte Fuglsang; Østergaard, Leif; Kiselev, Valerij G

    2006-01-01

    The concentration of MRI tracers cannot be measured directly by MRI and is commonly evaluated indirectly using their relaxation effect. This study develops a comprehensive theoretical model to describe the transverse relaxation in perfused tissue caused by intravascular tracers. The model takes...... into account a number of individual compartments. The signal dephasing is simulated in a semianalytical way by embedding Monte Carlo simulations in the framework of analytical theory. This approach yields a tool for fast, realistic simulation of the change in the transverse relaxation. The results indicate...... with bulk blood. The enhancement of relaxation in tissue is due to the contrast in magnetic susceptibility between blood vessels and parenchyma induced by the presence of paramagnetic tracer. Beyond the perfusion measurements, the results can be applied to quantitation of functional MRI and to vessel size...

  3. Microangiographic study of the canine dental tissues: a preliminary report

    International Nuclear Information System (INIS)

    Miyabayashi, T.; Morgan, J.P.

    1987-01-01

    A microangiographic study of the dental tissues was performed on one adult mongrel dog to examine the usefulness of the technique. This preliminary study used 30% wt/vol Micropaque suspension which was perfused into the common carotid arteries. After the complete perfusion, the specimen was fixed into a mixture of 10% buffered neutral formalin solution and 95% ethyl alcohol. The mandibular bone with teeth in situ was decalcified. The specimen was embedded in methyl methacrylate. One mm slab sections were made, and then the microangiographs were made. Adequate filling of arterioles was evident on the microangiographs. This technique is shown to be useful in characterizing the nature of the blood supply to the bone and teeth that might be involved in the pathogenesis of radiation-induced injury in the canine dental and periodontal tissues

  4. Role of glycolysis in maintenance of the action potential duration and contractile activity in isolated perfused rat heart.

    Science.gov (United States)

    Opie, L H; Tuschmidt, R; Bricknell, O; Girardier, L

    1980-01-01

    1. Changing substrates from glucose to pyruvate in paced isolated rat hearts, perfused by the Langendorff technique at 65 cm H2O with a Krebs-Henseleit bicarbonate buffer, produced effects which are opposite to those of ouabain treatment: negative inotropy, decreased work efficiency, hyperpolarization, increased maximum rate of rise and amplitude of the action potential, increased conduction velocity. 2. All the effects resulting from perfusion with pyruvate can be reversed by adding ouabain at a concentration of 100 microM. 3. The correlation between various tissue metabolises and change in contractile force (delta F), rate of tension development [maximum + (dF/dt)] and rate of relaxation [maximum -(dF/dt)] was studied by multiple linear regression. No significant correlation was found with either glycogen content and tissue lactate or with cAMP and cGMP. A weak negative correlation was found with ATP and phosphocreatine. The strongest correlation was found 76 to 807 nM/g in passing from glucose- to pyruvate-containing perfusion solution. 4. In vitro tests performed with a solution containing high energy phosphates and magnesium at concentrations equal to their calculated values in the cytosol (pH 7.0) showed that a significant negative correlation exists between citrate concentration (range: 1 and 1500 M) and free calcium concentration in the micromole range. 5. It is concluded that the effects of pyruvate (non glucose substrate) perfusion could be mediated by a decrease in cytosolic-free calcium resulting from an increase in intracellular citrate. The observation that all these effects can be reversed by ouabain is taken as a circumstantial evidence of a common mechanism.

  5. [An automatic system controlled by microcontroller for carotid sinus perfusion].

    Science.gov (United States)

    Yi, X L; Wang, M Y; Fan, Z Z; He, R R

    2001-08-01

    To establish a new method for controlling automatically the carotid perfusion pressure. A cheap practical automatic perfusion unit based on AT89C2051 micro controller was designed. The unit, LDB-M perfusion pump and the carotid sinus of an animal constituted an automatic perfusion system. This system was able to provide ramp and stepwise updown perfusion pattern and has been used in the research of baroreflex. It can insure the precision and reproducibility of perfusion pressure curve, and improve the technical level in corresponding medical field.

  6. Adipose-Derived Cell Construct Stabilizes Heart Function and Increases Microvascular Perfusion in an Established Infarct

    Science.gov (United States)

    Nguyen, Quang T.; Touroo, Jeremy S.; Aird, Allison L.; Chang, Raymond C.; Ng, Chin K.; Hoying, James B.; Williams, Stuart K.

    2013-01-01

    We have previously shown that myocardial infarction (MI) immediately treated with an epicardial construct containing stromal vascular fraction (SVF) from adipose tissue preserved microvascular function and left ventricle contractile mechanisms. In order to evaluate a more clinically relevant condition, we investigated the cardiac recovery potential of an SVF construct implanted onto an established infarct. SVF cells were isolated from rat adipose tissue, plated on Vicryl, and cultured for 14 days. Fischer-344 rats were separated into MI groups: (a) 6-week MI (MI), (b) 6-week MI treated with an SVF construct at 2 weeks (MI SVF), (c) 6-week MI with Vicryl construct at 2 weeks (MI Vicryl), and (d) MI 2wk (time point of intervention). Emax, an indicator of systolic performance and contractile function, was lower in the MI and MI Vicryl versus MI SVF. Positron emission tomography imaging (18F-fluorodeoxyglucose) revealed a decreased percentage of relative infarct volume in the MI SVF versus MI and MI Vicryl. Total vessel count and percentage of perfusion assessed via immunohistochemistry were both increased in the infarct region of MI SVF versus MI and MI Vicryl. Overall cardiac function, percentage of relative infarct, and percentage of perfusion were similar between MI SVF and MI 2wk; however, total vessel count increased after SVF treatment. These data suggest that SVF treatment of an established infarct stabilizes the heart at the time point of intervention by preventing a worsening of cardiac performance and infarcted volume, and is associated with increased microvessel perfusion in the area of established infarct. PMID:24106337

  7. Corrections of arterial input function for dynamic H215O PET to assess perfusion of pelvic tumours: arterial blood sampling versus image extraction

    International Nuclear Information System (INIS)

    Luedemann, L; Sreenivasa, G; Michel, R; Rosner, C; Plotkin, M; Felix, R; Wust, P; Amthauer, H

    2006-01-01

    Assessment of perfusion with 15 O-labelled water (H 2 15 O) requires measurement of the arterial input function (AIF). The arterial time activity curve (TAC) measured using the peripheral sampling scheme requires corrections for delay and dispersion. In this study, parametrizations with and without arterial spillover correction for fitting of the tissue curve are evaluated. Additionally, a completely noninvasive method for generation of the AIF from a dynamic positron emission tomography (PET) acquisition is applied to assess perfusion of pelvic tumours. This method uses a volume of interest (VOI) to extract the TAC from the femoral artery. The VOI TAC is corrected for spillover using a separate tissue TAC and for recovery by determining the recovery coefficient on a coregistered CT data set. The techniques were applied in five patients with pelvic tumours who underwent a total of 11 examinations. Delay and dispersion correction of the blood TAC without arterial spillover correction yielded in seven examinations solutions inconsistent with physiology. Correction of arterial spillover increased the fitting accuracy and yielded consistent results in all patients. Generation of an AIF from PET image data was investigated as an alternative to arterial blood sampling and was shown to have an intrinsic potential to determine the AIF noninvasively and reproducibly. The AIF extracted from a VOI in a dynamic PET scan was similar in shape to the blood AIF but yielded significantly higher tissue perfusion values (mean of 104.0 ± 52.0%) and lower partition coefficients (-31.6 ± 24.2%). The perfusion values and partition coefficients determined with the VOI technique have to be corrected in order to compare the results with those of studies using a blood AIF

  8. Quantitative dual energy CT measurements in rabbit VX2 liver tumors: Comparison to perfusion CT measurements and histopathological findings

    International Nuclear Information System (INIS)

    Zhang, Long Jiang; Wu, Shengyong; Wang, Mei; Lu, Li; Chen, Bo; Jin, Lixin; Wang, Jiandong; Larson, Andrew C.; Lu, Guang Ming

    2012-01-01

    Purpose: To evaluate the correlation between quantitative dual energy CT and perfusion CT measurements in rabbit VX2 liver tumors. Materials and methods: This study was approved by the institutional animal care and use committee at our institution. Nine rabbits with VX2 liver tumors underwent contrast-enhanced dual energy CT and perfusion CT. CT attenuation for the tumors and normal liver parenchyma and tumor-to-liver ratio were obtained at the 140 kVp, 80 kVp, average weighted images and dual energy CT iodine maps. Quantitative parameters for the viable tumor and adjacent liver were measured with perfusion CT. The correlation between the enhancement values of the tumor in iodine maps and perfusion CT parameters of each tumor was analyzed. Radiation dose from dual energy CT and perfusion CT was measured. Results: Enhancement values for the tumor were higher than that for normal liver parenchyma at the hepatic arterial phase (P < 0.05). The highest tumor-to-liver ratio was obtained in hepatic arterial phase iodine map. Hepatic blood flow of the tumor was higher than that for adjacent liver (P < 0.05). Enhancement values of hepatic tumors in the iodine maps positively correlated with permeability of capillary vessel surface (r = 0.913, P < 0.001), hepatic blood flow (r = 0.512, P = 0.010), and hepatic blood volume (r = 0.464, P = 0.022) at the hepatic arterial phases. The effective radiation dose from perfusion CT was higher than that from DECT (P < 0.001). Conclusions: The enhancement values for viable tumor tissues measured in iodine maps were well correlated to perfusion CT measurements in rabbit VX2 liver tumors. Compared with perfusion CT, dual energy CT of the liver required a lower radiation dose.

  9. Diffusion and Perfusion Characteristics of MELAS (Mitochondrial Myopathy, Encephalopathy, Lactic Acidosis, and Stroke-Like Episode) in Thirteen Patients

    International Nuclear Information System (INIS)

    Kim, Ji Hye; Jeon, Tae Yeon; Eo, Hong; Yoo, So Young; Lim, Myung Kwan; Rha, Jung Ho; Shu, Chang Hae

    2011-01-01

    We analyzed the diffusion and perfusion characteristics of acute MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episode) lesions in a large series to investigate the controversial changes of the apparent diffusion coefficient (ADC) that were reported in prior studies. We analyzed 44 newly appearing lesions during 28 stroke-like episodes in 13 patients with MELAS. We performed a visual assessment of the MR images including the ADC and perfusion maps, comparison of the ADC between the normal and abnormal areas, comparison of % ADC between the 44 MELAS lesions and the 30 acute ischemic infarcts. In addition, the patterns of evolution on follow-up MR images were analyzed. Decreased, increased, and normal ADCs were noted in 16 (36%), 16 (36%), and 12 (27%) lesions, respectively. The mean % ADC was 102 ± 40.9% in the MELAS and 64 ± 17.8% in the acute vascular infarcts (p < 0.001), while perfusion imaging demonstrated hyper-perfusion in six acute MELAS lesions. On follow-up images, resolution, progression, and tissue loss were noted in 10, 4, and 17 lesions, respectively. The cytotoxic edema gradually evolves following an acute stroke-like episode in patients with MELAS, and this may overlap with hyper-perfusion and vasogenic edema. The edematous swelling may be reversible or it may evolve to encephalomalacia, suggesting irreversible damage

  10. Insulin degradation products from perfused rat kidney

    International Nuclear Information System (INIS)

    Duckworth, W.C.; Hamel, F.G.; Liepnieks, J.; Peavy, D.; Frank, B.; Rabkin, R.

    1989-01-01

    The kidney is a major site for insulin metabolism, but the enzymes involved and the products generated have not been established. To examine the products, we have perfused rat kidneys with insulin specifically iodinated on either the A14 or the B26 tyrosine. Labeled material from both the perfusate and kidney extract was examined by Sephadex G50 and high-performance liquid chromatography (HPLC). In perfusate from a filtering kidney, 22% of the insulin-sized material was not intact insulin on HPLC. With the nonfiltering kidney, 10.6% was not intact insulin. Labeled material from HPLC was sulfitolyzed and reinjected on HPLC. By use of 125 I-iodo(A14)-insulin, almost all the degradation products contained an intact A-chain. By use of 125 I-iodo(B26)-insulin, several different B-chain-cleaved products were obtained. The material extracted from the perfused kidney was different from perfusate products but similar to intracellular products from hepatocytes, suggesting that cellular metabolism by kidney and liver are similar. The major intracellular product had characteristics consistent with a cleavage between the B16 and B17 amino acids. This product and several of the perfusate products are also produced by insulin protease suggesting that this enzyme is involved in the degradation of insulin by kidney

  11. Alterations in diffusion and perfusion in the pathogenesis of peritumoral brain edema in meningiomas

    International Nuclear Information System (INIS)

    Bitzer, M.; Klose, U.; Naegele, T.; Voigt, K.; Geist-Barth, B.; Schick, F.; Claussen, C.D.; Morgalla, M.

    2002-01-01

    Magnetic resonance perfusion and diffusion studies were undertaken to clarify the significance of ischemia in the pathogenesis of peritumoral brain edema in patients with meningiomas. Included in this study were 26 patients with 27 meningiomas and 5 gliomas. Perfusion-weighted imaging (PWI) was performed using a gradient-echo, echo-planar-imaging (EPI) sequence for calculation of the relative regional cerebral blood volume (rrCBV) and the relative regional cerebral blood flow index (rrCBFi). Furthermore, multi-slice spin-echo EPI sequences were applied in order to obtain anisotropic and isotropic diffusion-weighted imaging (DWI). Apparent diffusion coefficient (ADC) values were then calculated for peritumoral brain parenchyma from tumors, with and without edema, using various diffusion sensitivities. Meningiomas without edema demonstrated a minimal increase of perfusion parameters in the peritumoral brain tissue. In contrast, cases with brain edema had highly significant (p 2 . The DWI showed a significantly larger ADC value within areas of brain edema, compared with the normal white matter (0.74 x 10 -3 vs 1.55 x 10 -3 mm 2 /s; p<0.0001). Increases in EI correlated with increases in ADC values. In 31% of the meningiomas associated with edema, areas with increased signal, probable ischemia, demonstrated significantly lower ADC values, in comparison with the rest of the edematous areas. These areas were confined to tissue immediately adjacent to the tumor. In general, the decrease in rrCBV in brain edema represents a consequence from, rather than a cause of, vasogenic edema. Ischemic alterations can be regarded as secondary, facultative phenomena in the pathogenesis of meningioma-related brain edema. (orig.)

  12. Pulmonary artery perfusion versus no perfusion during cardiopulmonary bypass for open heart surgery in adults

    DEFF Research Database (Denmark)

    Buggeskov, Katrine B; Grønlykke, Lars; Risom, Emilie C

    2018-01-01

    BACKGROUND: Available evidence has been inconclusive on whether pulmonary artery perfusion during cardiopulmonary bypass (CPB) is associated with decreased or increased mortality, pulmonary events, and serious adverse events (SAEs) after open heart surgery. To our knowledge, no previous systematic...... handsearched retrieved study reports and scanned citations of included studies and relevant reviews to ensure that no relevant trials were missed. We searched for ongoing trials and unpublished trials in the World Health Organization International Clinical Trials Registry Platform (ICTRP) and at clinicaltrials......). We used GRADE principles to assess the quality of evidence. MAIN RESULTS: We included in this review four RCTs (210 participants) reporting relevant outcomes. Investigators randomly assigned participants to pulmonary artery perfusion with blood versus no perfusion during CPB. Only one trial included...

  13. Diagnostic value of dynamic perfusion MR imaging in benign and malignant musculoskeletal lesions

    International Nuclear Information System (INIS)

    Choi, Byeong Kyoo; Lee, Sang Hoon; Cha, Ji Hyeon; Kim, Sung Moon; Shin, Myung Jin; Han, Heon; Kim, Sam Soo; Lee, Ji Yeon; Jeon, Yong Hwan

    2008-01-01

    To assess the diagnostic value of dynamic perfusion MR imaging for differentiation between benign and malignant musculoskeletal lesions. Dynamic perfusion MR imaging was performed using a 3.0 T system in 32 female and 30 male patients (aged 10-90 years, mean age, 43 years). Following the assessment of the precontrast imaging, a dynamic study was performed. This dynamic technique allowed for 638 images to be obtained at 11 levels throughout the lesion. Twenty-eight lesions originated within bone (8 benign, 20 malignant), whereas 34 lesions were of soft tissue origin (22 benign, 12 malignant). The final diagnosis was histopathologically confirmed in all patients. To differentiate between benign and malignant lesions, we analyzed the four parameters: (maximal relative enhancement (MRE), time to peak (TTP), wash in rate (WI), steepest slope (SS) and the distribution of time intensity curve (TIC) patterns. The TTP, WI, and SS values of malignant lesions were statistically significant from those of benign lesions(ρ < 0.05). However, the difference for the MRE values was not statistically significant. The distribution of TIC patterns was a helpful indicator of benign or malignant state, however the difference between the two states was not significant. Dynamic perfusion MR imaging is a helpful tool in differentiating benign and malignant musculoskeletal lesions

  14. Ex Vivo Machine Perfusion in CTA with a Novel Oxygen Carrier System to Enhance Graft Preservation and Immunologic Outcomes

    Science.gov (United States)

    2015-10-01

    within 5 different segments of the VRAM grafts (e.g. skin, subcutaneous adipose tissue, muscle, microvasculature and large hilar vessels). This modified...Large vessels ( hilar structures of the VRAM graft) 5. Nerve tissue * p < 0.05 vs machine perfusion # p < 0.05 vs Baseline (BL) n=4 each...induced myelin damage Distribution Unlimited Page 27 d. axonal vacuolization e. axotomy 5. Large hilar vessels a. intraluminal thrombi b. loss of

  15. Consequences of Inadequate Physical Activity

    Centers for Disease Control (CDC) Podcasts

    2018-03-27

    Listen as CDC Epidemiologist Susan Carlson, PhD, talks about her research, which estimates the percentage of US deaths attributed to inadequate levels of physical activity.  Created: 3/27/2018 by Preventing Chronic Disease (PCD), National Center for Chronic Disease Prevention and Health Promotion (NCCDPHP).   Date Released: 3/27/2018.

  16. Value of chest X-ray combined with perfusion scan versus ventilation/perfusion scan in acute pulmonary embolism

    NARCIS (Netherlands)

    de Groot, M. R.; Turkstra, F.; van Marwijk Kooy, M.; Oostdijk, A. H.; van Beek, E. J.; Büller, H. R.

    2000-01-01

    The main purpose of ventilation scanning, as adjunct to perfusion lung scintigraphy, in acute pulmonary embolism is to allow for the classification of segmental perfusion defects as mismatched, which is generally accepted as proof for the presence of pulmonary embolism. We examined whether this

  17. Myocardial perfusion scintigraphy - possibilities of diagnosing CAD

    International Nuclear Information System (INIS)

    Tsonevska, A.

    1998-01-01

    A reviewing the diagnostic methods used in the intricate process of evaluating CAD patients in a attempt to establish the role played by radionuclide methods in the diagnostic strategy is done. The perfusion cardiotropic radiopharmaceuticals used and the various methods of evaluating myocardial are discussed. Although 210 Tl-chloride is the most widely used myocardial perfusion agent, recently 99m Tc-MIBI is proposed as an alternative because of its advantages. Myocardial perfusion assessment is done by various techniques depending on the specific aim, each of them having its proper advantages and shortcomings. The inference is reached that regardless of the routine practical implementation of myocardial perfusion scintigraphy and comprehensive studies along this line in course, there are problems still not well enough clarified awaiting solution

  18. Impairment of myocardial perfusion in children with sickle cell disease; Alteration de la perfusion myocardique chez l'enfant drepanocytaire

    Energy Technology Data Exchange (ETDEWEB)

    Maunoury, C. [Hopital Necker-Enfants-Malades, Service de Medecine Nucleaire, 75 - Paris (France); Acar, P. [Centre Hospitalier Universitaire, Hopital des Enfants, Service de Cardiologie Pediatrique, 31 - Toulouse (France); Montalembert, M. de [Hopital Necker-Enfants-Malades, Service de Pediatrie Generale, 75 - Paris (France)

    2003-10-01

    While brain, bone and spleen strokes are well documented in children with sickle cell disease (SCD), impairment of myocardial perfusion is an unknown complication. Non invasive techniques such as exercise testing and echocardiography have a low sensitivity to detect myocardial ischemia in patients with SCD. We have prospectively assessed myocardial perfusion with Tl-201 SPECT in 23 patients with SCD (10 female, 13 male, mean age 12 {+-} 5 years). Myocardial SPECT was performed after stress and 3 hours later after reinjection on a single head gamma camera equipped with a LEAP collimator (64 x 64 matrix size format, 30 projections over 180 deg C, 30 seconds per step). Left ventricular ejection fraction (LVEF) was assessed by equilibrium radionuclide angiography at rest on the same day. Myocardial perfusion was impaired in 14/23 patients: 9 reversible defects and 5 fixed defects. The left ventricular cavity was dilated in 14/23 patients. The mean LVEF was 63 {+-} 9%. There was no relationship between myocardial perfusion and left ventricular dilation or function. The frequent impairment of myocardial perfusion in children with SCD could lead to suggest a treatment with hydroxyurea, an improvement of perfusion can be noted with hydroxyurea. (author)

  19. CT perfusion mapping of hemodynamic disturbances associated to acute spontaneous intracerebral hemorrhage

    International Nuclear Information System (INIS)

    Fainardi, Enrico; Borrelli, Massimo; Saletti, Andrea; Ceruti, Stefano; Tamarozzi, Riccardo; Schivalocchi, Roberta; Cavallo, Michele; Azzini, Cristiano; Chieregato, Arturo

    2008-01-01

    We sought to quantify perfusion changes associated to acute spontaneous intracerebral hemorrhage (SICH) by means of computed tomography perfusion (CTP) imaging. We studied 89 patients with supratentorial SICH at admission CT by using CTP scanning obtained within 24 h after symptom onset. Regional cerebral blood flow (rCBF), cerebral blood volume (rCBV) and mean transit time (rMTT) levels were measured in four different regions of interest manually outlined on CT scan: (1) hemorrhagic core; (2) perihematomal low-density area; (3) 1 cm rim of normal-appearing brain tissue surrounding the perilesional area; and (4) a mirrored area, including the clot and the perihematomal region, located in the non-lesioned contralateral hemisphere. rCBF, rCBV, and rMTT mean levels showed a centrifugal distribution with a gradual increase from the core to the periphery (p 20 ml) hematomas (p<0.01 and p <0.02, respectively). Multi-parametric CTP mapping of acute SICH indicates that perfusion values show a progressive improvement from the core to the periphery. In the first 24 h, perihemorrhagic region was hypoperfused with CTP values which were not suggestive of ischemic penumbra destined to survive but more likely indicative of edema formation. These findings also argue for a potential influence of early amounts of bleeding on perihematomal hemodynamic abnormalities. (orig.)

  20. Quantification of absolute myocardial perfusion at rest and during exercise with positron emission tomography after human cardiac transplantation

    International Nuclear Information System (INIS)

    Krivokapich, J.; Stevenson, L.W.; Kobashigawa, J.; Huang, S.C.; Schelbert, H.R.

    1991-01-01

    The maximal exercise capacity of cardiac transplant recipients is reduced compared with that of normal subjects. To determine if this reduced exercise capacity is related to inadequate myocardial perfusion during exercise, myocardial perfusion was measured noninvasively with use of positron emission tomography and nitrogen (N)-13 ammonia. Twelve transplant recipients with no angiographic evidence of accelerated coronary atherosclerosis were studied. Serial N-13 ammonia imaging was performed at rest and during supine bicycle exercise. The results were compared with those from 10 normal volunteers with a low probability of having cardiac disease. A two-compartment kinetic model for estimating myocardial perfusion was applied to the data. Transplant recipients achieved a significant lower exercise work load than did the volunteers (42 ± 16 vs. 128 ± 22 W), but a higher venous lactate concentration (31.3 ± 14.9 vs. 13.7 ± 4.1 mg/100 ml). Despite the difference in exercise work load, there was no significant difference in the cardiac work achieved by transplant recipients and normal subjects as evidenced by similar rate-pressure products of 24,000 ± 3,400 versus 21,300 ± 2,800 betas/min per mm Hg, respectively. In addition, myocardial blood flow during exercise was not significantly different between the two groups (1.70 ± 0.60 vs. 1.56 ± 0.71 ml/min per g, respectively). This study demonstrates that the myocardial flow response to the physiologic stress of exercise is appropriate in transplant recipients and does not appear to explain the decreased exercise capacity in these patients

  1. Effects of a change in entry-to-practice criteria for cardiovascular perfusion in Canada: results of a national survey.

    Science.gov (United States)

    Belway, Dean; Tran, Diem T T; Rubens, Fraser D

    2017-05-01

    Years of experience and level of education are two important determinants of a clinician's expertise. While entry-to-practice criteria for admission to perfusion training in Canada changed from clinical experience-based criteria to education-based criteria in 2006, the effects of these changes have not been studied. To determine the academic and clinical backgrounds of perfusionists in Canada, ascertain perceptions about the adequacy of training and evaluate the effects of the changes on the composition of the perfusion community of Canada. An electronic questionnaire was distributed to all practicing perfusionists in Canada, addressing details regarding clinical experience, academic education and perceptions about the adequacy of training. Two hundred and twenty-eight questionnaires were completed, representing a 72% response rate. Perfusionists admitted under academic-based criteria have significantly higher levels of education (100% degree holders vs 69.1%, pCanada believe themselves inadequately trained for their clinical assignments outside the OR. In addition, 19% of perfusionists plan to retire over the next 10 years. The introduction of education-based entry criteria has changed the academic and clinical experience levels of perfusionists in Canada. Strategies designed to better prepare perfusionists for their clinical assignments outside the OR are merited.

  2. Effect of x-ray tube current on the accuracy of cerebral perfusion parameters obtained by CT perfusion studies

    International Nuclear Information System (INIS)

    Murase, Kenya; Nanjo, Takafumi; Ii, Satoshi; Miyazaki, Shohei; Hirata, Masaaki; Sugawara, Yoshifumi; Kudo, Masayuki; Sasaki, Kousuke; Mochizuki, Teruhito

    2005-01-01

    The purpose of this study was to investigate the effect of x-ray tube current on the accuracy of cerebral perfusion parameters obtained by CT perfusion studies using multi-detector row CT (MDCT). Following the standard CT perfusion study protocol, continuous (cine) scans (1 s/rotation x 60 s) consisting of four 5 mm thick contiguous slices were performed using an MDCT scanner with a tube voltage of 80 kVp and a tube current of 200 mA. We generated the simulated images with tube currents of 50 mA, 100 mA and 150 mA by adding the corresponding noise to the raw scan data of the original image acquired above using a noise simulation tool. From the original and simulated images, we generated the functional images of cerebral blood flow (CBF), cerebral blood volume (CBV) and mean transit time (MTT) in seven patients with cerebrovascular disease, and compared the correlation coefficients (CCs) between the perfusion parameter values obtained from the original and simulated images. The coefficients of variation (CVs) in the white matter were also compared. The CC values deteriorated with decreasing tube current. There was a significant difference between 50 mA and 100 mA for all perfusion parameters. The CV values increased with decreasing tube current. There were significant differences between 50 mA and 100 mA and between 100 mA and 150 mA for CBF. For CBV and MTT, there was also a significant difference between 150 mA and 200 mA. This study will be useful for understanding the effect of x-ray tube current on the accuracy of cerebral perfusion parameters obtained by CT perfusion studies using MDCT, and for selecting the tube current

  3. Gray matter perfusion correlates with disease severity in ALS.

    Science.gov (United States)

    Rule, Randall R; Schuff, Norbert; Miller, Robert G; Weiner, Michael W

    2010-03-09

    The goal of this study is to determine if regional brain perfusion, as measured by arterial spin labeling (ASL) MRI, is correlated with clinical measures of amyotrophic lateral sclerosis (ALS) disease severity. The presence of such a relationship would indicate a possible role for ASL perfusion as a marker of disease severity and upper motor neuron involvement in ALS. Disease severity was assessed in 16 subjects with ALS (age 54 +/- 11) using the Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS) and the pulmonary function measure, forced vital capacity (FVC). Upper motor neuron involvement was assessed by testing rapid tapping of the fingers and feet. Magnetic resonance perfusion images were coregistered with structural T1-weighted MRI, corrected for partial volume effects using the structural images and normalized to a study-specific atlas. Correlations between perfusion and ALS disease severity were analyzed, using statistical parametric mapping, and including age as a factor. Analyses were adjusted for multiple clusters. ALS severity, as measured by the ALSFRS and FVC, was correlated with gray matter perfusion. This correlation was predominantly observed in the hemisphere contralateral to the more affected limbs. ALSFRS scores correlated with perfusion in the contralateral frontal and parietal lobe (p frontal lobe (p frontal lobe (p Upper motor neuron involvement, as measured by rapid finger tapping, correlated bilaterally with perfusion in the middle cingulate gyrus (p < 0.001). Amyotrophic lateral sclerosis (ALS) severity is correlated with brain perfusion as measured by arterial spin labeling (ASL) perfusion. This correlation appears to be independent of brain atrophy. ASL perfusion may be a useful tool for monitoring disease progression and assessing treatment effects in ALS.

  4. Inhibition of Notch signaling by Dll4-Fc promotes reperfusion of acutely ischemic tissues

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ren [Department of Pathology, University of Southern California, Los Angeles (United States); Trindade, Alexandre [Centro Interdisciplinar de Investigacao em Sanidade Animal (CIISA), Lisbon Technical University, Lisbon (Portugal); Instituto Gulbenkian de Ciencia, Oeiras (Portugal); Sun, Zhanfeng [Department of Vascular Surgery, 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang (China); Kumar, Ram; Weaver, Fred A. [Department of Surgery, University of Southern California, Los Angeles (United States); Krasnoperov, Valery; Naga, Kranthi [Vasgene Therapeutics, Los Angeles, CA (United States); Duarte, Antonio [Centro Interdisciplinar de Investigacao em Sanidade Animal (CIISA), Lisbon Technical University, Lisbon (Portugal); Instituto Gulbenkian de Ciencia, Oeiras (Portugal); Gill, Parkash S., E-mail: parkashg@usc.edu [Department of Pathology, University of Southern California, Los Angeles (United States)

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer Low dose Dll4-Fc increases vascular proliferation and overall perfusion. Black-Right-Pointing-Pointer Low dose Dll4-Fc helps vascular injury recovery in hindlimb ischemia model. Black-Right-Pointing-Pointer Low dose Dll4-Fc helps vascular injury recovery in skin flap model. Black-Right-Pointing-Pointer Dll4 heterozygous deletion promotes vascular injury recovery. Black-Right-Pointing-Pointer Dll4 overexpression delays vascular injury recovery. -- Abstract: Notch pathway regulates vessel development and maturation. Dll4, a high-affinity ligand for Notch, is expressed predominantly in the arterial endothelium and is induced by hypoxia among other factors. Inhibition of Dll4 has paradoxical effects of reducing the maturation and perfusion in newly forming vessels while increasing the density of vessels. We hypothesized that partial and/or intermittent inhibition of Dll4 may lead to increased vascular response and still allow vascular maturation to occur. Thus tissue perfusion can be restored rapidly, allowing quicker recovery from ischemia or tissue injury. Our studies in two different models (hindlimb ischemia and skin flap) show that inhibition of Dll4 at low dose allows faster recovery from vascular and tissue injury. This opens a new possibility for Dll4 blockade's therapeutic application in promoting recovery from vascular injury and restoring blood supply to ischemic tissues.

  5. CT perfusion study of neck lymph nodes

    International Nuclear Information System (INIS)

    Zhong Jin; Liu Jun; Hua Rui; Qiao Hui; Gong Yi

    2011-01-01

    Objective: To study the CT perfusion features of various lymph nodes in the neck. Methods: Dynamic perfusion CT scanning was performed in 83 neck lymph nodes proved by pathology, including tuberculosis lymph nodes, lymphoma and metastatic lymph nodes. The shapes, blood flow modes, and perfusion parameters of these lymph nodes were compared among 3 groups. Statistical analysis of L/T and CT perfusion parameters was performed by one-way ANOVA and LSD test. Results: The values of MTT of tuberculosis lymph nodes, lymphoma and metastatic lymph nodes were (28.13±5.08), (31.08±5.82), and (11.24±5.31) s, respectively. The MTT of metastatic lymph nodes was statistically lower than that of tuberculosis lymph nodes and lymphoma (P -1 · 100 g -1 , respectively. The values of BV were (24.68±2.84), (25.30±3.16), and (25.15± 8.81) ml·100 g -1 respectively. The values of TTP were (40.90±8.85), (40.67±6.45), and (40.98±6.62) s, respectively. There were no significant differences in L/T, BF, BV and TTP among tuberculosis lymph nodes, lymphoma and metastatic lymph nodes (P>0.05). Conclusion: CT perfusion, especially combination functional imaging with perfusion images may be helpful in judging the nature of neck lymph nodes. (authors)

  6. Persufflation (or gaseous oxygen perfusion) as a method of organ preservation.

    Science.gov (United States)

    Suszynski, Thomas M; Rizzari, Michael D; Scott, William E; Tempelman, Linda A; Taylor, Michael J; Papas, Klearchos K

    2012-06-01

    Improved preservation techniques have the potential to improve transplant outcomes by better maintaining donor organ quality and by making more organs available for allotransplantation. Persufflation, (PSF, gaseous oxygen perfusion) is potentially one such technique that has been studied for over a century in a variety of tissues, but has yet to gain wide acceptance for a number of reasons. A principal barrier is the perception that ex vivo PSF will cause in vivo embolization post-transplant. This review summarizes the extensive published work on heart, liver, kidney, small intestine and pancreas PSF, discusses the differences between anterograde and retrograde PSF, and between PSF and other conventional methods of organ preservation (static cold storage, hypothermic machine perfusion). Prospective implications of PSF within the broader field of organ transplantation, and in the specific application with pancreatic islet isolation and transplant are also discussed. Finally, key issues that need to be addressed before PSF becomes a more widely utilized preservation strategy are summarized and discussed. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Perfusion MRI in CNS disease: current concepts

    International Nuclear Information System (INIS)

    Essig, M.; Giesel, F.; Le-Huu, M.; Stieltjes, B.; Tengg, H. von; Weber, M.-A.

    2004-01-01

    Today there are several indications for cerebral perfusion MRI. The major indications routinely used in increasing numbers of imaging centers include cerebrovascular disease, tumor imaging and recently psychiatric disorders. Perfusion MRI is based on the injection of a gadolinium chelate and the rapid acquisition of images as the bolus of contrast agent passes through the blood vessels in the brain. The contrast agent causes a signal change; this signal change over time can be analysed to measure cerebral hemodynamics. The quality of brain perfusion studies is very dependent on the contrast agent used: a robust and strong signal decrease with a compact bolus is needed. MultiHance (gadobenate dimeglumine, Gd-BOPTA) is the first of a new class of paramagnetic MR contrast agents with a weak affinity for serum proteins. Due to the interaction of Gd-BOPTA with serum albumin, MultiHance presents with significantly higher T1- and T2-relaxivities enabling a sharper bolus profile. This article reviews the indications of perfusion MRI and the performance of MultiHance in MR perfusion of different diseases. Previous studies using perfusion MRI for a variety of purposes required the use of double dose of contrast agent to achieve a sufficiently large signal drop to enable the acquisition of a clear input function and the calculation of perfusion rCBV and rCBF maps of adequate quality. Recent studies with Multi-Hance suggest that only a single dose of this agent is needed to cause a signal drop of about 30% which is sufficient to allow the calculation of high quality rCBV and rCBF maps. (orig.)

  8. A model system for perfusion quantification using FAIR

    DEFF Research Database (Denmark)

    Andersen, Irene Klærke; Sidaros, Karam; Gesmar, Henrik

    2000-01-01

    Flow-sensitive experiments (FAIR) have been performed on a tube-flow phantom in order to validate quantitative perfusion measurements on humans. A straight-forward correspondence between perfusion and bulk-flow is found. It is shown that the flow phantom model only holds when the slice profiles...... of the involved RF pulses are taken into account. A small flow-independent off-set may be present in the data. The off-set is explained by the model. Based on the correspondence between the phantom and the in vivo models, it is shown that the lowest flow values that could be measured in the phantom correspond...... to perfusion values lower than the cortical perfusion in the brain. Thus, the experimental accuracy and the computational methods for quantitative perfusion measurements in vivo can be validated by a tube-flow phantom....

  9. A model system for perfusion quantification using FAIR

    DEFF Research Database (Denmark)

    Andersen, I.K.; Sidaros, Karam; Gesmar, H

    2000-01-01

    Flow-sensitive experiments (FAIR) have been performed on a tube-flow phantom in order to validate quantitative perfusion measurements on humans. A straight-forward correspondence between perfusion and bulk-flow is found. It is shown that the flow phantom model only holds when the slice profiles...... of the involved RF pulses are taken into account. A small flow-independent off-set may be present in the data. The off-set is explained by the model. Based on the correspondence between the phantom and the in vivo models, it is shown that the lowest flow values that could be measured in the phantom correspond...... to perfusion values lower than the cortical perfusion in the brain. Thus, the experimental accuracy and the computational methods for quantitative perfusion measurements in vivo can be validated by a tube-flow phantom...

  10. Influence of ocular perfusion pressure fluctuation on glaucoma

    Directory of Open Access Journals (Sweden)

    Min-Zi Ren

    2015-12-01

    Full Text Available AIM:To investigate the influence of ocular perfusion pressure fluctuation on glaucoma. METHODS:Forty patients with primary open angle glaucoma from January 2013 to June 2015 in our hospital were used as observation group and 40 families were used as control group. Circadian fluctuation of intraocular pressure, blood pressure and ocular perfusion pressure in 24h were determined to obtain systolic ocular perfusion pressure(SOPP, diastolic ocular perfusion pressure(DOPPand mean ocular perfusion pressure(MOPP. Pearson linear correlation was used to analyze the correlation of circadian MOPP fluctuation with cup-disc ratio, mean defect(MDand the picture standard deviation(PSD. RESULTS:The fluctuation of MOPP, SOPP and DOPP of observation group were significantly higher than those of control group(Pr=-0.389, 95%CI:-0.612~-0.082; P=0.011, was positively correlated with PSD(r=0.512, 95%CI:0.139 ~0.782; P=0.008; no correlation was found between it and the vertical cup-disc ratio(r=0.115, 95%CI:0.056~0.369; P=0.355. CONCLUSION:Ocular perfusion pressure fluctuations in patients with primary open angle glaucoma may reflect the severity of the disease and may make the situation aggravating. Therefore through perfusion pressure monitor in 24h may help us understand the ocular blood flow and the development of primary open-angle glaucoma.

  11. Meta-Analysis of Stress Myocardial Perfusion Imaging

    Science.gov (United States)

    2017-06-06

    Coronary Disease; Echocardiography; Fractional Flow Reserve, Myocardial; Hemodynamics; Humans; Magnetic Resonance Imaging; Myocardial Perfusion Imaging; Perfusion; Predictive Value of Tests; Single Photon Emission Computed Tomography; Positron Emission Tomography; Multidetector Computed Tomography; Echocardiography, Stress; Coronary Angiography

  12. CTA-enhanced perfusion CT: an original method to perform ultra-low-dose CTA-enhanced perfusion CT

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Elizabeth; Wintermark, Max [University of Virginia, Department of Radiology, Neuroradiology Division, Charlottesville, VA (United States)

    2014-11-15

    Utilizing CT angiography enhances image quality in PCT, thereby permitting acquisition at ultra-low dose. Dynamic CT acquisitions were obtained at 80 kVp with decreasing tube current-time product [milliamperes x seconds (mAs)] in patients suspected of ischemic stroke, with concurrent CTA of the cervical and intracranial arteries. By utilizing fast Fourier transformation, high spatial frequencies of CTA were combined with low spatial frequencies of PCT to create a virtual PCT dataset. The real and virtual PCT datasets with decreasing mAs were compared by assessing contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR), and noise and PCT values and by visual inspection of PCT parametric maps. Virtual PCT attained CNR and SNR three- to sevenfold superior to real PCT and noise reduction by a factor of 4-6 (p < 0.05). At 20 mAs, virtual PCT achieved diagnostic parametric maps, while the quality of real PCT maps was inadequate. At 10 mAs, both real and virtual PCT maps were nondiagnostic. Virtual PCT (but not real PCT) maps regained diagnostic quality at 10 mAs by applying 40 % adaptive statistical iterative reconstruction (ASIR) and improved further with 80 % ASIR. Our new method of creating virtual PCT by combining ultra-low-dose PCT with CTA information yields diagnostic perfusion parametric maps from PCT acquired at 20 or 10 mAs with 80 % ASIR. Effective dose is approximately 0.20 mSv, equivalent to two chest radiographs. (orig.)

  13. Dynamic CT myocardial perfusion imaging

    International Nuclear Information System (INIS)

    Caruso, Damiano; Eid, Marwen; Schoepf, U. Joseph; Jin, Kwang Nam; Varga-Szemes, Akos; Tesche, Christian; Mangold, Stefanie

    2016-01-01

    Highlights: • CT myocardial perfusion provides functional assessment of the myocardium. • CCTA is limited in determining the hemodynamic significance of coronary stenosis. • CT-MPI can accurately detect hemodynamically significant coronary artery stenosis. - Abstract: Non-invasive cardiac imaging has rapidly evolved during the last decade due to advancements in CT based technologies. Coronary CT angiography has been shown to reliably assess coronary anatomy and detect high risk coronary artery disease. However, this technique is limited to anatomical assessment, thus non-invasive techniques for functional assessment of the heart are necessary. CT myocardial perfusion is a new CT based technique that provides functional assessment of the myocardium and allows for a comprehensive assessment of coronary artery disease with a single modality when combined with CTA. This review aims to discuss dynamic CT myocardial perfusion as a new technique in the assessment of CAD.

  14. Dynamic CT myocardial perfusion imaging

    Energy Technology Data Exchange (ETDEWEB)

    Caruso, Damiano [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Radiological Sciences, Oncological and Pathological Sciences, University of Rome “Sapienza”, Latina (Italy); Eid, Marwen [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Schoepf, U. Joseph, E-mail: schoepf@musc.edu [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC (United States); Jin, Kwang Nam [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Radiology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul (Korea, Republic of); Varga-Szemes, Akos [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Tesche, Christian [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Cardiology and Intensive Care Medicine, Heart Center Munich-Bogenhausen, Munich (Germany); Mangold, Stefanie [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Tuebingen (Germany); and others

    2016-10-15

    Highlights: • CT myocardial perfusion provides functional assessment of the myocardium. • CCTA is limited in determining the hemodynamic significance of coronary stenosis. • CT-MPI can accurately detect hemodynamically significant coronary artery stenosis. - Abstract: Non-invasive cardiac imaging has rapidly evolved during the last decade due to advancements in CT based technologies. Coronary CT angiography has been shown to reliably assess coronary anatomy and detect high risk coronary artery disease. However, this technique is limited to anatomical assessment, thus non-invasive techniques for functional assessment of the heart are necessary. CT myocardial perfusion is a new CT based technique that provides functional assessment of the myocardium and allows for a comprehensive assessment of coronary artery disease with a single modality when combined with CTA. This review aims to discuss dynamic CT myocardial perfusion as a new technique in the assessment of CAD.

  15. Lung perfusion scintigraphy by SPECT

    International Nuclear Information System (INIS)

    Hirayama, Takanobu

    1990-01-01

    The initial study reports the characteristic performance using lung segmental phantom filled in Tc-99m pertechnetate. To evaluate the segmental defect in lung perfusion scintigraphy, we applied Bull's-eye analysis in addition to planar image set. Bull's-eye analysis especially facilitated the interpretation in both middle and lower lobes. Subsequently, to evolute the clinical application of Bull's-eye analysis, pulmonary scintigraphy was performed on 10 normal subjects and 60 patients with several pulmonary diseases. Of interest, Bull's-eye analysis, however, encouraged the interpretation in both lower lobes. To calculate the extention and severity of perfusion defect, the present study describes Bull's-eye analysis. Quantitative scoring showed higher in patients with lung cancer than those with pulmonary tuberculosis. The present study focus that Bull's-eye analysis can be useful for evaluating perfusion in patients with a couple of pulmonary diseases. (author)

  16. Effects of Constant Flow vs. Constant Pressure Perfusion on Fluid Filtration in Severe Hypothermic Isolated Blood-Perfused Rat Lungs.

    Science.gov (United States)

    Halsøy, Kathrine; Kondratiev, Timofey; Tveita, Torkjel; Bjertnaes, Lars J

    2016-01-01

    Victims of severe accidental hypothermia are prone to fluid extravasation but rarely develop lung edema. We hypothesize that combined hypothermia-induced increase in pulmonary vascular resistance (PVR) and a concomitant fall in cardiac output protect the lungs against edema development. Our aim was to explore in hypothermic-isolated blood-perfused rat lungs whether perfusion at constant pressure influences fluid filtration differently from perfusion at constant flow. Isolated blood-perfused rat lungs were hanging freely in a weight transducer for measuring weight changes (ΔW). Fluid filtration coefficient (Kfc), was determined by transiently elevating left atrial pressure (Pla) by 5.8 mmHg two times each during normothermia (37°C) and during hypothermia (15°C). The lung preparations were randomized to two groups. One group was perfused with constant flow (Constant flow group) and the other group with constant pulmonary artery pressure (Constant PPA group). Microvascular pressure (Pmv) was determined before and during elevation of Pla (ΔPmv) by means of the double occlusion technique. Kfc was calculated with the formula Kfc = ΔW/ΔPmv/min. All Kfc values were normalized to predicted lung weight (P LW ), which was based on body weight (BW) according to the formula: P LW  = 0.0053 BW - 0.48 and presented as Kfc PLW in mg/min/mmHg/g. At cessation, bronchoalveolar lavage (BAL) fluid/perfusate protein concentration (B/P) ratio was determined photometrically. Data were analyzed with parametric or non-parametric tests as appropriate. p  Kfc PLW and B/P ratio increased significantly by more than 10-fold during hypothermia concerted by visible signs of edema in the trachea. Hemoglobin and hematocrit increased within the Constant flow group and between the groups at cessation of the experiments. In hypothermic rat lungs perfused at constant flow, fluid filtration coefficient per gram P LW and B/P ratio increased more than 10-fold concerted by increased

  17. Reversible ventilation and perfusion abnormalities in unilateral obstructed lung

    International Nuclear Information System (INIS)

    Ward, H.E.; Jones, R.L.; King, E.G.; Sproule, B.J.; Fortune, R.L.

    1982-01-01

    An intraluminal carcinoid tumor obstructing the left mainstem bronchus produced hypoxemia through alteration in ventilation/perfusion matching. Studies of regional lung function using 133-xenon (/sup 133/Xe) and a multiprobe computerized instrumentation system documented a reduction of perfusion to 22 percent and ventilation to 6 percent of the total. There was negligible washout of intravenously injected /sup 133/Xe from the left lung consistent with air trapping. Four days after left mainstem bronchial sleeve resection, perfusion, ventilation and washout of injected xenon had significantly improved and by four months postresection, all measurements were virtually normal, although complete restoration of perfusion in relation to ventilation was delayed. Regional lung function studied with a multiprobe system in this patient provided a clinical model for the study of ventilation and perfusion inter-relationships in large airway obstruction and demonstrated that a prolonged time may be required for return of perfusion to normal

  18. Characteristics of Brain Perfusion in Patients of Parkinson's Disease

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Young Jin; Park, Min Jung; Kim, Jae Woo; Kang, Young Kang [Dong-A University College of Medicine, Busan (Korea, Republic of)

    2008-02-15

    It was well known that cerebral blood perfusion is normal or diffusely decreased in the majority of patients with Parkinson's disease (PD). Actually we interpreted brain perfusion SPECT images of PD patients in the clinical situation, we observed various cerebral perfusion patterns in patients with PD. So we performed brain perfusion SPECT to know the brain perfusion patterns of PD patients and the difference of perfusion patterns according to the sex and the age. Also we classified PD patients into small groups based on the brain perfusion pattern. Two hundred nineteen patients (M: 70, F: 149, mean age: 62.9{+-}6.9 y/o) who were diagnosed as PD without dementia clinically and 55 patients (M: 15, F: 40, mean age: 61.4{+-}9.2 y/o) as normal controls who had no past illness history were performed {sup 99m}Tc-HMPAO brain perfusion SPECT and neuropsychological test. At first, we compared all patients with PD and normal controls. Brain perfusion in left inferior frontal gyrus, left insula, left transverse temporal gyrus, left inferior parietal lobule, left superior parietal lobule, right precuneus, right caudate tail were lower in patients with PD than normal controls. Secondly, we compared male and female patients with PD and normal controls, respectively. Brain perfusion SPECT showed more decreased cerebral perfusion in left hemisphere than right side in both male and female patients compared to normal controls. And there was larger hypoperfusion area in female patients compared with male. Thirdly, we classified patients with PD and normal controls into 4 groups according to the age and compared brain perfusion respectively. In patient below fifties, brain perfusion in both occipitoparietal and left temporal lobe were lower in PD group. As the patients with PD grew older, hypoperfusion area were shown in both frontal, temporal and limbic lobes. Fourthly, We were able to divide patients into small groups based on cerebral perfusion pattern. There was normal

  19. Selective Heart, Brain and Body Perfusion in Open Aortic Arch Replacement.

    Science.gov (United States)

    Maier, Sven; Kari, Fabian; Rylski, Bartosz; Siepe, Matthias; Benk, Christoph; Beyersdorf, Friedhelm

    2016-09-01

    Open aortic arch replacement is a complex and challenging procedure, especially in post dissection aneurysms and in redo procedures after previous surgery of the ascending aorta or aortic root. We report our experience with the simultaneous selective perfusion of heart, brain, and remaining body to ensure optimal perfusion and to minimize perfusion-related risks during these procedures. We used a specially configured heart-lung machine with a centrifugal pump as arterial pump and an additional roller pump for the selective cerebral perfusion. Initial arterial cannulation is achieved via femoral artery or right axillary artery. After lower body circulatory arrest and selective antegrade cerebral perfusion for the distal arch anastomosis, we started selective lower body perfusion simultaneously to the selective antegrade cerebral perfusion and heart perfusion. Eighteen patients were successfully treated with this perfusion strategy from October 2012 to November 2015. No complications related to the heart-lung machine and the cannulation occurred during the procedures. Mean cardiopulmonary bypass time was 239 ± 33 minutes, the simultaneous selective perfusion of brain, heart, and remaining body lasted 55 ± 23 minutes. One patient suffered temporary neurological deficit that resolved completely during intensive care unit stay. No patient experienced a permanent neurological deficit or end-organ dysfunction. These high-risk procedures require a concept with a special setup of the heart-lung machine. Our perfusion strategy for aortic arch replacement ensures a selective perfusion of heart, brain, and lower body during this complex procedure and we observed excellent outcomes in this small series. This perfusion strategy is also applicable for redo procedures.

  20. Accuracy and feasibility of dynamic contrast-enhanced 3D MR imaging in the assessment of lung perfusion: comparison with Tc-99 MAA perfusion scintigraphy

    International Nuclear Information System (INIS)

    Yilmaz, E.; Akkoclu, A.; Degirmenci, B.; Cooper, R.A.; Sengun, B.; Gulcu, A.; Osma, E.; Ucan, E.S.

    2005-01-01

    AIM: The aim of this study was to correlate findings of perfusion magnetic resonance imaging (MRI) and perfusion scintigraphy in cases where there was a suspicion of abnormal pulmonary vasculature, and to evaluate the usefulness of MRI in the detection of perfusion deficits of the lung. METHODS: In all, 17 patients with suspected abnormality of the pulmonary vasculature underwent dynamic contrast-enhanced MRI. T1-weighted 3D fast-field echo pulse sequences were obtained (TR/TE 3.3/1.58 ms; flip angle 30 deg ; slice thickness 12 to 15 mm). The dynamic study was acquired in the coronal plane following administration of 0.1 mmol/kg gadopentetate dimeglumine. A total of 8 to 10 sections repeated 20 to 25 times at intervals of 1 s were performed. Perfusion lung scintigraphy was carried out a maximum of 48 h before the MR examination in all cases. Two radiologists, who were blinded to the clinical data and results of other imaging methods, reviewed all coronal sections. MR perfusion images were independently assessed in terms of segmental or lobar perfusion defects in the 85 lobes of the 17 individuals, and the findings were compared with the results of scintigraphy. RESULTS: Of the 17 patients, 8 were found to have pulmonary emboli, 2 chronic obstructive pulmonary disease with emphysema, 2 bullous emphysema, 2 Takayasu arteritis and 1 had a hypoplastic pulmonary artery. Pulmonary perfusion was completely normal in 2 cases. In 35 lobes, perfusion defects were detected using both methods, in 4 with MR alone and in 9 only with scintigraphy. There was good agreement between MRI and scintigraphy findings (kappa=0.695). CONCLUSION: Pulmonary perfusion MRI is a new alternative to scintigraphy in the evaluation of pulmonary perfusion for various lung disorders. In addition, this technique allows measurement and quantification of pulmonary perfusion abnormalities

  1. Optimization of perfusion studies using Atropine

    International Nuclear Information System (INIS)

    Alvarado, A.N.; Valle, V.M.; Montoya, M.J.; Eskenazi, E.S.; Montiel, M.L.; Cueto, C.C.

    2002-01-01

    The studies of myocardial perfusion require an adequate stress; exercise or pharmacological. Every day, more pharmacological studies are performed, specially in some group of patients (women, AMI, etc). There some drugs that are used for this purpose, as adenosine and dobutamine. However, their cost and the lack of availability and infrastructure in our country do not allow there routinely use. We performed dipyridamol as a pharmacological stress, however in some patients there is a doubt regarding if the pharmacological effect was adequate. Atropine is a drug that is frequently used for different purpose and it is well know its tachycardic response. We present and alternative technique, using dipyridamol-atropine as a protocol of stress perfusion study. Our goal was to correlate the standard dipyridamol -thallium perfusion study and the dipyridamol -atropine-perfusion in patients with chronic coronary disease. We evaluated 6 patients (5 males) with stable angina and chronic coronary disease. A standard dipyridamol-thallium study was performed in all of them. Dipyridamole was administered intravenously at a rate of 0.14 mg/kg/min over 6 min for a total of 0.84 mg/kg body weight. Blood pressure, heart rate, EKG and symptoms were monitored before, during and after the pharmacological infusion. Two minutes after the infusion was completed, the radiotracer was injected intravenously. In the next 6 months, without any modification of the clinical situation (symptoms and therapy) a new dipyridamol study was performed, using 1 mg of atropine after the administration of dipyridamol. There were no differences in the collateral effects and we observed and average increase of 30% in the heart rate in relation with the study using dipyridamol alone. The addition of atropine to the standard dipyridamol perfusion study is safe, cheaper and improved the detection of perfusion defects in patients with coronary artery disease

  2. Evidence Report: Risk Factor of Inadequate Nutrition

    Science.gov (United States)

    Smith, Scott M.; Zwart, Sara R.; Heer, Martina

    2015-01-01

    The importance of nutrition in exploration has been documented repeatedly throughout history, where, for example, in the period between Columbus' voyage in 1492 and the invention of the steam engine, scurvy resulted in more sailor deaths than all other causes of death combined. Because nutrients are required for the structure and function of every cell and every system in the body, defining the nutrient requirements for spaceflight and ensuring provision and intake of those nutrients are primary issues for crew health and mission success. Unique aspects of nutrition during space travel include the overarching physiological adaptation to weightlessness, psychological adaptation to extreme and remote environments, and the ability of nutrition and nutrients to serve as countermeasures to ameliorate the negative effects of spaceflight on the human body. Key areas of clinical concern for long-duration spaceflight include loss of body mass (general inadequate food intake), bone and muscle loss, cardiovascular and immune system decrements, increased radiation exposure and oxidative stress, vision and ophthalmic changes, behavior and performance, nutrient supply during extravehicular activity, and general depletion of body nutrient stores because of inadequate food supply, inadequate food intake, increased metabolism, and/or irreversible loss of nutrients. These topics are reviewed herein, based on the current gap structure.

  3. Nuclear cardiology: Myocardial perfusion and function

    International Nuclear Information System (INIS)

    Seldin, D.W.

    1991-01-01

    Myocardial perfusion studies continue to be a major focus of research, with new investigations of the relationship of exercise-redistribution thallium imaging to diagnosis, prognosis, and case management. The redistribution phenomenon, which seemed to be fairly well understood a few years ago, is now recognized to be much more complex than originally thought, and various strategies have been proposed to clarify the meaning of persistent defects. Pharmacologic intervention with dipyridamole and adenosine has become available as an alternative to exercise, and comparisons with exercise imaging and catheterization results have been described. Thallium itself is no longer the sole single-photon perfusion radiopharmaceutical; two new technetium agents are now widely available. In addition to perfusion studies, advances in the study of ventricular function have been made, including reports of studies performed in conjunction with technetium perfusion studies, new insights into cardiac physiology, and the prognostic and case-management information that function studies provide. Finally, work has continued with monoclonal antibodies for the identification of areas of myocyte necrosis. 41 references

  4. Radiation-induced nitric oxide mitigates tumor hypoxia and radioresistance in a murine SCCVII tumor model

    International Nuclear Information System (INIS)

    Nagane, Masaki; Yasui, Hironobu; Yamamori, Tohru; Zhao, Songji; Kuge, Yuji; Tamaki, Nagara; Kameya, Hiromi; Nakamura, Hideo; Fujii, Hirotada; Inanami, Osamu

    2013-01-01

    Highlights: •IR-induced NO increased tissue perfusion and pO 2 . •IR increased NO production in tumors without changes in the mRNA and protein levels of NOS isoforms. •NOS activity assay showed that IR upregulated eNOS activity in tumors. •IR-induced NO decreased tumor hypoxia and altered tumor radiosensitivity. -- Abstract: Tumor hypoxia, which occurs mainly as a result of inadequate tissue perfusion in solid tumors, is a well-known challenge for successful radiotherapy. Recent evidence suggests that ionizing radiation (IR) upregulates nitric oxide (NO) production and that IR-induced NO has the potential to increase intratumoral circulation. However, the kinetics of NO production and the responsible isoforms for NO synthase in tumors exposed to IR remain unclear. In this study, we aimed to elucidate the mechanism by which IR stimulates NO production in tumors and the effect of IR-induced NO on tumor radiosensitivity. Hoechst33342 perfusion assay and electron spin resonance oxymetry showed that IR increased tissue perfusion and pO 2 in tumor tissue. Immunohistochemical analysis using two different hypoxic probes showed that IR decreased hypoxic regions in tumors; treatment with a nitric oxide synthase (NOS) inhibitor, L-NAME, abrogated the effects of IR. Moreover, IR increased endothelial NOS (eNOS) activity without affecting its mRNA or protein expression levels in SCCVII-transplanted tumors. Tumor growth delay assay showed that L-NAME decreased the anti-tumor effect of fractionated radiation (10 Gy × 2). These results suggested that IR increased eNOS activity and subsequent tissue perfusion in tumors. Increases in intratumoral circulation simultaneously decreased tumor hypoxia. As a result, IR-induced NO increased tumor radiosensitivity. Our study provides a new insight into the NO-dependent mechanism for efficient fractionated radiotherapy

  5. Ventilation and ventilation/perfusion ratios

    International Nuclear Information System (INIS)

    Valind, S.O.

    1989-01-01

    The thesis is based on five different papers. The labelling of specific tracer compounds with positron emitting radionuclides enables a range of structural, physiological and biochemical parameters in the lung to be measured non-invasively, using positron emission tomography. This concept affords a unique opportunity for in vivo studies of different expressions of pulmonary pathophysiology at the regional level. The present thesis describes the application of positron emission tomography to the measurements of ventilation and ventilation/perfusion ratios using inert gas tracers, neon-19 and nitrogen-13 respectively. The validity of the methods applied was investigated with respect to the transport of inert gas tracers in the human lung. Both ventilation and the ventilation/perfusion ratio may be obtained with errors less than 10 % in the normal lung. In disease, however, errors may increase in those instances where the regional ventilation is very low or the intra-regional gas flow distribution is markedly nonuniform. A 2-3 fold increase in ventilation was demonstrated in normal nonsmoking subjects going from ventral to dorsal regions in the supine posture. These large regional differences could be well explained by the intrinsic elastic properties of lung tissue, considering the gravitational gradient in transpulmonary pressure. In asymptomatic smokers substantial regional ventilatroy abnormalities were found whilst the regional gas volume was similar in smokers and nonsmokers. The uncoupling between ventilation and gas volume probably reflects inflammatory changes in the airways. The regional differences in dV/dt/dQ/dt were relatively small and blood flow was largely matched to ventilation in the supine posture. However, small regions of lung with very low ventilation, unmatched by blood flow commonly exists in the most dependent parts of the lung in both smokers and nonsmokers. (29 illustrations, 7 tables, 113 references)

  6. The precision of DCE-MRI using the tissue homogeneity model with continuous formulation of the perfusion parameters

    Czech Academy of Sciences Publication Activity Database

    Bartoš, Michal; Jiřík, Radovan; Kratochvíla, Jiří; Standara, M.; Starčuk jr., Zenon; Torfinn, T.

    2014-01-01

    Roč. 32, č. 5 (2014), s. 505-513 ISSN 0730-725X R&D Projects: GA ČR GAP102/12/2380; GA MŠk ED0017/01/01; GA MŠk(CZ) LO1212 Institutional support: RVO:67985556 ; RVO:68081731 Keywords : dynamic contrast-enhanced MRI (DCE-MRI) * perfusion * parameter estimation * bolus arrival time Subject RIV: FS - Medical Facilities ; Equipment Impact factor: 2.090, year: 2014

  7. The Link Between Inadequate Sleep and Obesity in Young Adults.

    Science.gov (United States)

    Vargas, Perla A

    2016-03-01

    The prevalence of obesity has increased dramatically over the past decade. Although an imbalance between caloric intake and physical activity is considered a key factor responsible for the increase, there is emerging evidence suggesting that other factors may be important contributors to weight gain, including inadequate sleep. Overall research evidence suggests that inadequate sleep is associated with obesity. Importantly, the strength and trajectory of the association seem to be influenced by multiple factors including age. Although limited, the emerging evidence suggests young adults might be at the center of a "perfect health storm," exposing them to the highest risk for obesity and inadequate sleep. Unfortunately, the methods necessary for elucidating the complex relationship between sleep and obesity are lacking. Uncovering the underlying factors and trajectories between inadequate sleep and weight gain in different populations may help to identify the windows of susceptibility and to design targeted interventions to prevent the negative impact of obesity and related diseases.

  8. Regional cerebral perfusion measurements: a comparative study of xenon-enhanced CT and C15O2 build-up using dynamic PET

    International Nuclear Information System (INIS)

    St Lawrence, K.S.; Bews, J.; Dunscombe, P.B.

    1992-01-01

    Regional cerebral perfusion can be determined by monitoring the uptake of a diffusable tracer concurrently in cerebral tissue and arterial blood. Two techniques based on this methodology are xenon-enhanced computed tomography (Xe CT) and C 15 O 2 build-up using dynamic positron emission tomography (C 15 O 2 PET). Serial images are used by both Xe CT and C 15 O 2 PET to characterize the uptake of the tracer in cerebral tissue. The noise present in these images will reduce the precision of the perfusion measurements obtained by either technique. Using Monte Carlo type computer simulations, the precision of the two techniques as a function of image noise has been examined. On the basis of their results, they conclude that the precision of the Xe CT technique is comparable to the precision of C 15 O 2 PET when realistic clinical protocols are employed for both. (author)

  9. Combined T1-based perfusion MRI and MR angiography in kidney: First experience in normals and pathology

    Energy Technology Data Exchange (ETDEWEB)

    Dujardin, Martine [Department of Radiology/BEFY, UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels (Belgium)], E-mail: martine.dujardin@gmail.com; Luypaert, Rob [Department of Radiology/BEFY, UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels (Belgium)], E-mail: rluypaer@vub.ac.be; Vandenbroucke, F. [Department of Radiology/BEFY, UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels (Belgium)], E-mail: frederik.vandenbroucke@uzbrussel.be; Van der Niepen, Patricia [Department of Nephrology, UZ Brussel, Laarbeeklaan 101, 1090 Brussels (Belgium)], E-mail: hemovnnp@az.vub.ac.be; Sourbron, Steven [Institute of Clinical Radiology, Ludwig-Maximilian-University Munich, Marchioninistrasse 15, 81377 Munchen (Germany)], E-mail: Steven.Sourbron@med.uni-muenchen.de; Verbeelen, Dierik [Department of Nephrology, UZ Brussel, Laarbeeklaan 101, 1090 Brussels (Belgium)], E-mail: dierik.verbeelen@uzbrussel.be; Stadnik, T. [Department of Radiology/BEFY, UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels (Belgium)], E-mail: tadeusz.stadnik@uzbrussel.be; Mey, Johan de [Department of Radiology/BEFY, UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels (Belgium)], E-mail: johan.demey@uzbrussel.be

    2009-03-15

    Objectives: To investigate the feasibility of implementing quantitative T1-perfusion in the routine MRA-protocol and to obtain a first experience in normals and pathology. Materials and methods: For perfusion imaging, IR-prepared FLASH (one 4 mm slice at mid-renal level, TR 4.4 ms, TE 2.2 ms, TI 180 ms, FA 50 deg., matrix 128 x 256, bandwidth per pixel 300, 400 dynamics, temporal resolution 0.3 s, total measurement time 2 min) was applied during the injection of 10 ml of standard 0.5 mmol/ml Gadolinium-DTPA solution at 2 ml/s, followed by 3DCE-MRA with bolus tracking (TR 5.4, TE 1.4, FA 40 deg., matrix 192 x 512, NSA 1, slice thickness 1.5 mm), using a second dose of 0.1 mmol Gadolinium-DTPA per kg body weight with a maximum of 20 ml. The T1-weighted signals (perfusion data) were converted to tissue tracer concentrations and deconvolved with an inflow corrected AIF; blood flow, distribution volume, mean transit time and blood flow heterogeneity were derived. Results: MRA quality was uncompromised by the first bolus administered for perfusion purposes. In the normals, average cortical RBF, RVD and MTT were 1.2 ml/min/ml (S.D. 0.3 ml/min/ml), 0.4 ml/ml (S.D. 0.1 ml/ml) and 21 s (S.D. 4 s). These RBF values are lower than those found in the literature, probably due to residual AIF inflow effects. The sensitivity of the technique was sufficient to demonstrate altered perfusion in the examples of pathology. Conclusion: Combined quantitative T1-perfusion and MRA have a potential for noninvasive renovascular screening and may provide an anatomical and physiological evaluation of renal status.

  10. Whole-brain 320-detector row dynamic volume CT perfusion detected crossed cerebellar diaschisis after spontaneous intracerebral hemorrhage

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Jun; Chen, Wei-jian; Wang, Mei-hao; Li, Jian-ce; Zhang, Qian; Xia, Neng-zhi; Yang, Yun-jun [Wenzhou Medical University, Department of Radiology, First Affiliated Hospital, Wenzhou (China); Wu, Gui-yun [Cleveland Clinics Foundation, Department of Nuclear Medicine, Imaging Institute, Cleveland, OH (United States); Cheng, Jing-liang; Zhang, Yong [Zhengzhou University, Department of Radiology, First Affiliated Hospital, Zhengzhou (China); Zhuge, Qichuan [Wenzhou Medical University, Department of Neurosurgery, First Affiliated Hospital, Wenzhou (China)

    2014-11-09

    The purpose of this study was to evaluate the value of 320-detector row CT used to detect crossed cerebellar diaschisis (CCD) in patients with unilateral supratentorial spontaneous intracerebral hemorrhage (SICH). We investigated 62 of 156 patients with unilateral supratentorial SICH using 320-detector row CT scanning. Regional cerebral blood flow (rCBF), cerebral blood volume (rCBV), mean transit time (rMTT), and time to peak (rTTP) levels were measured in different regions of interest (ROIs) that were manually outlined on computed tomography perfusion (CTP) for the cerebrum, including normal-appearing brain tissue that surrounded the perilesional low-density area (NA) and the perihematomal low-density area (PA) in all patients and the cerebellum (ipsilateral and contralateral) in CCD-positive patients. Of 62 cases, a total of 14 met the criteria for CCD due to cerebellar perfusion asymmetry on CTP maps. In the quantitative analysis, significant differences were found in the perfusion parameters between the contralateral and ipsilateral cerebellum in CCD-positive cases. No significant differences were found between the CCD-positive group and the CCD-negative group according to the hematoma volume, NIHSS scores, and cerebral perfusion abnormality (each P > 0.05). The correlation analysis of the degree of NA, PA perfusion abnormality, and the degree of CCD severity showed negative and significant linear correlations (R, -0.66∝-0.56; P < 0.05). 320-detector row CT is a robust and practicable method for the comprehensive primary imaging work-up of CCD in unilateral supratentorial SICH patients. (orig.)

  11. Whole-brain 320-detector row dynamic volume CT perfusion detected crossed cerebellar diaschisis after spontaneous intracerebral hemorrhage

    International Nuclear Information System (INIS)

    Fu, Jun; Chen, Wei-jian; Wang, Mei-hao; Li, Jian-ce; Zhang, Qian; Xia, Neng-zhi; Yang, Yun-jun; Wu, Gui-yun; Cheng, Jing-liang; Zhang, Yong; Zhuge, Qichuan

    2015-01-01

    The purpose of this study was to evaluate the value of 320-detector row CT used to detect crossed cerebellar diaschisis (CCD) in patients with unilateral supratentorial spontaneous intracerebral hemorrhage (SICH). We investigated 62 of 156 patients with unilateral supratentorial SICH using 320-detector row CT scanning. Regional cerebral blood flow (rCBF), cerebral blood volume (rCBV), mean transit time (rMTT), and time to peak (rTTP) levels were measured in different regions of interest (ROIs) that were manually outlined on computed tomography perfusion (CTP) for the cerebrum, including normal-appearing brain tissue that surrounded the perilesional low-density area (NA) and the perihematomal low-density area (PA) in all patients and the cerebellum (ipsilateral and contralateral) in CCD-positive patients. Of 62 cases, a total of 14 met the criteria for CCD due to cerebellar perfusion asymmetry on CTP maps. In the quantitative analysis, significant differences were found in the perfusion parameters between the contralateral and ipsilateral cerebellum in CCD-positive cases. No significant differences were found between the CCD-positive group and the CCD-negative group according to the hematoma volume, NIHSS scores, and cerebral perfusion abnormality (each P > 0.05). The correlation analysis of the degree of NA, PA perfusion abnormality, and the degree of CCD severity showed negative and significant linear correlations (R, -0.66∝-0.56; P < 0.05). 320-detector row CT is a robust and practicable method for the comprehensive primary imaging work-up of CCD in unilateral supratentorial SICH patients. (orig.)

  12. [Effect of glucocorticoides on the release of amino acids in the perfused rat hindquarter (author's transl)].

    Science.gov (United States)

    Thienhaus, R; Tharandt, L; Zais, U; Staib, W

    1975-06-01

    The release of amino acids by skeletal muscle was studied in the isolated perfused rat hindquarter. Adrenalectomy depressed the formation of glutamine and alanine as well as the efflux of all other amino acids measured. Betamethasone--a synthetic glucocorticoid--caused a significant increase in the efflux of nearly all amino acids up to the level of normal controls. The release of amino acids was also increased in perfused hindquarters of diabetic rats. On the other hand, insulin exhibited a depressing effect on the release of amino acids by hindquarters of normal rats. The metabolic integrity of the muscle tissue was proved by measuring creatine phosphate, ATP, ADP and water content as well as by the significant insulin effect on glucose uptake and on [14C]leucine incorporation into muscle proteins.

  13. Hydrogel microfabrication technology toward three dimensional tissue engineering

    Directory of Open Access Journals (Sweden)

    Fumiki Yanagawa

    2016-03-01

    Full Text Available The development of biologically relevant three-dimensional (3D tissue constructs is essential for the alternative methods of organ transplantation in regenerative medicine, as well as the development of improved drug discovery assays. Recent technological advances in hydrogel microfabrication, such as micromolding, 3D bioprinting, photolithography, and stereolithography, have led to the production of 3D tissue constructs that exhibit biological functions with precise 3D microstructures. Furthermore, microfluidics technology has enabled the development of the perfusion culture of 3D tissue constructs with vascular networks. In this review, we present these hydrogel microfabrication technologies for the in vitro reconstruction and cultivation of 3D tissues. Additionally, we discuss current challenges and future perspectives of 3D tissue engineering.

  14. Quantitative myocardial perfusion from static cardiac and dynamic arterial CT

    Science.gov (United States)

    Bindschadler, Michael; Branch, Kelley R.; Alessio, Adam M.

    2018-05-01

    Quantitative myocardial blood flow (MBF) estimation by dynamic contrast enhanced cardiac computed tomography (CT) requires multi-frame acquisition of contrast transit through the blood pool and myocardium to inform the arterial input and tissue response functions. Both the input and the tissue response functions for the entire myocardium are sampled with each acquisition. However, the long breath holds and frequent sampling can result in significant motion artifacts and relatively high radiation dose. To address these limitations, we propose and evaluate a new static cardiac and dynamic arterial (SCDA) quantitative MBF approach where (1) the input function is well sampled using either prediction from pre-scan timing bolus data or measured from dynamic thin slice ‘bolus tracking’ acquisitions, and (2) the whole-heart tissue response data is limited to one contrast enhanced CT acquisition. A perfusion model uses the dynamic arterial input function to generate a family of possible myocardial contrast enhancement curves corresponding to a range of MBF values. Combined with the timing of the single whole-heart acquisition, these curves generate a lookup table relating myocardial contrast enhancement to quantitative MBF. We tested the SCDA approach in 28 patients that underwent a full dynamic CT protocol both at rest and vasodilator stress conditions. Using measured input function plus single (enhanced CT only) or plus double (enhanced and contrast free baseline CT’s) myocardial acquisitions yielded MBF estimates with root mean square (RMS) error of 1.2 ml/min/g and 0.35 ml/min/g, and radiation dose reductions of 90% and 83%, respectively. The prediction of the input function based on timing bolus data and the static acquisition had an RMS error compared to the measured input function of 26.0% which led to MBF estimation errors greater than threefold higher than using the measured input function. SCDA presents a new, simplified approach for quantitative

  15. Patient satisfaction with coronary CT angiography, myocardial CT perfusion, myocardial perfusion MRI, SPECT myocardial perfusion imaging and conventional coronary angiography

    Energy Technology Data Exchange (ETDEWEB)

    Feger, S.; Rief, M.; Zimmermann, E.; Richter, F.; Roehle, R. [Freie Universitaet Berlin, Department of Radiology, Charite - Universitaetsmedizin Berlin Campus Mitte, Humboldt-Universitaet zu Berlin, Berlin (Germany); Dewey, M. [Freie Universitaet Berlin, Department of Radiology, Charite - Universitaetsmedizin Berlin Campus Mitte, Humboldt-Universitaet zu Berlin, Berlin (Germany); Institut fuer Radiologie, Berlin (Germany); Schoenenberger, E. [Medizinische Hochschule Hannover, Department of Medicine, Hannover (Germany)

    2015-07-15

    To evaluate patient acceptance of noninvasive imaging tests for detection of coronary artery disease (CAD), including single-photon emission computed tomography myocardial perfusion imaging (SPECT-MPI), stress perfusion magnetic resonance imaging (MRI), coronary CT angiography (CTA) in combination with CT myocardial stress perfusion (CTP), and conventional coronary angiography (CCA). Intraindividual comparison of perception of 48 patients from the CORE320 multicentre multinational study who underwent rest and stress SPECT-MPI with a technetium-based tracer, combined CTA and CTP (both with contrast agent, CTP with adenosine), MRI, and CCA. The analysis was performed by using a validated questionnaire. Patients had significantly more concern prior to CCA than before CTA/CTP (p < 0.001). CTA/CTP was also rated as more comfortable than SPECT-MPI (p = 0.001). Overall satisfaction with CT was superior to that of MRI (p = 0.007). More patients preferred CT (46 %; p < 0.001) as a future diagnostic test. Regarding combined CTA/CTP, CTP was characterised by higher pain levels and an increased frequency of angina pectoris during the examination (p < 0.001). Subgroup analysis showed a higher degree of pain during SPECT-MPI with adenosine stress compared to physical exercise (p = 0.016). All noninvasive cardiac imaging tests are well accepted by patients, with CT being the preferred examination. (orig.)

  16. Spatio-temporal analysis of blood perfusion by imaging photoplethysmography

    Science.gov (United States)

    Zaunseder, Sebastian; Trumpp, Alexander; Ernst, Hannes; Förster, Michael; Malberg, Hagen

    2018-02-01

    Imaging photoplethysmography (iPPG) has attracted much attention over the last years. The vast majority of works focuses on methods to reliably extract the heart rate from videos. Only a few works addressed iPPGs ability to exploit spatio-temporal perfusion pattern to derive further diagnostic statements. This work directs at the spatio-temporal analysis of blood perfusion from videos. We present a novel algorithm that bases on the two-dimensional representation of the blood pulsation (perfusion map). The basic idea behind the proposed algorithm consists of a pairwise estimation of time delays between photoplethysmographic signals of spatially separated regions. The probabilistic approach yields a parameter denoted as perfusion speed. We compare the perfusion speed versus two parameters, which assess the strength of blood pulsation (perfusion strength and signal to noise ratio). Preliminary results using video data with different physiological stimuli (cold pressure test, cold face test) show that all measures are influenced by those stimuli (some of them with statistical certainty). The perfusion speed turned out to be more sensitive than the other measures in some cases. However, our results also show that the intraindividual stability and interindividual comparability of all used measures remain critical points. This work proves the general feasibility of employing the perfusion speed as novel iPPG quantity. Future studies will address open points like the handling of ballistocardiographic effects and will try to deepen the understanding of the predominant physiological mechanisms and their relation to the algorithmic performance.

  17. Nifedipine and thallium-201 myocardial perfusion in progressive systemic sclerosis

    International Nuclear Information System (INIS)

    Kahan, A.; Devaux, J.Y.; Amor, B.

    1986-01-01

    Heart disease in patients with progressive systemic sclerosis may be due in part to myocardial ischemia caused by a disturbance of the coronary microcirculation. To determine whether abnormalities of myocardial perfusion in this disorder are potentially reversible, we evaluated the effect of the coronary vasodilator nifedipine on myocardial perfusion assessed by thallium-201 scanning in 20 patients. Thallium-201 single-photon-emission computerized tomography was performed under control conditions and 90 minutes after 20 mg of oral nifedipine. The mean (+/- SD) number of left ventricular segments with perfusion defects decreased from 5.3 +/- 2.0 to 3.3 +/- 2.2 after nifedipine (P = 0.0003). Perfusion abnormalities were quantified by a perfusion score (0 to 2.0) assigned to each left ventricular segment and by a global perfusion score (0 to 18) for the entire left ventricle. The mean perfusion score in segments with resting defects increased from 0.97 +/- 0.24 to 1.26 +/- 0.44 after nifedipine (P less than 0.00001). The mean global perfusion score increased from 11.2 +/- 1.7 to 12.8 +/- 2.4 after nifedipine (P = 0.003). The global perfusion score increased by at least 2.0 in 10 patients and decreased by at least 2.0 in only 1. These observations reveal short-term improvement in thallium-201 myocardial perfusion with nifedipine in patients with progressive systemic sclerosis. The results are consistent with a potentially reversible abnormality of coronary vasomotion in this disorder, but the long-term therapeutic effects of nifedipine remain to be determined

  18. 3D bioprinting for vascularized tissue fabrication

    Science.gov (United States)

    Richards, Dylan; Jia, Jia; Yost, Michael; Markwald, Roger; Mei, Ying

    2016-01-01

    3D bioprinting holds remarkable promise for rapid fabrication of 3D tissue engineering constructs. Given its scalability, reproducibility, and precise multi-dimensional control that traditional fabrication methods do not provide, 3D bioprinting provides a powerful means to address one of the major challenges in tissue engineering: vascularization. Moderate success of current tissue engineering strategies have been attributed to the current inability to fabricate thick tissue engineering constructs that contain endogenous, engineered vasculature or nutrient channels that can integrate with the host tissue. Successful fabrication of a vascularized tissue construct requires synergy between high throughput, high-resolution bioprinting of larger perfusable channels and instructive bioink that promotes angiogenic sprouting and neovascularization. This review aims to cover the recent progress in the field of 3D bioprinting of vascularized tissues. It will cover the methods of bioprinting vascularized constructs, bioink for vascularization, and perspectives on recent innovations in 3D printing and biomaterials for the next generation of 3D bioprinting for vascularized tissue fabrication. PMID:27230253

  19. Renal perfusion image using harmonic ultrasound with microbble contrast agent: preliminary study

    International Nuclear Information System (INIS)

    Kim, Jung Hoon; Choi, Jae Ho; Han, Dong Chul; Lee, Hi Bahl; Choi, Deuk Lin; Eun, Hyo Won; Lee, Hun Jae

    2003-01-01

    To compare, in terms of their feasibility and normal range, 99m Tc-DTPA renal perfusion imaging and renal perfusion imaging using harmonic ultrasound (US) with a microbubble contrast agent for the evaluation of renal perfusion after renal transplantation. During a six-month period, thirty patients who had received a renal transplant underwent both 99m Tc-DTPA renal perfusion imaging and renal perfusion imaging using harmonic US with a microbubble contrast agent. Sonographic renal perfusion images were obtained before and after a bolus injection of the microbubble contrast agent Levovist TM (SH U 5084; Schering AG, Berlin, Germany) every 3 seconds for 3 minutes. Sonographic renal perfusion images were converted into a renal perfusion curve by a computer program and T peak of the curve thus obtained was compared with that of the 99m Tc-DTPA curve. Average T peak of the 99m Tc-DTPA renal perfusion curve was 16.2 seconds in the normal group and 39.6 seconds in the delayed perfusion group, while average T peak of the sonographic renal perfusion curve was 23.7 seconds and 46.2 seconds, respectively. T peak of the sonographic renal perfusion curve showed a good correlation with that of the 99m Tc-DTPA curve (correlation coefficient=0.8209; p=0.0001). The cut-off value of T peak of the sonographic renal perfusion curve was 35 seconds (sensitivity=90%, specificity=95%). In patients who have received a renal transplant, the findings of renal perfusion imaging using harmonic US with a microbubble contrast agent show close correlation with those of 99m Tc-DTPA renal perfusion imaging. The optimal cut-off value of T peak of the sonographic renal perfusion curve was 35 seconds

  20. Myocardial perfusion in type 2 diabetes with left ventricular hypertrophy

    DEFF Research Database (Denmark)

    Hesse, Birger; Meyer, Christian; Nielsen, Flemming S

    2004-01-01

    The purpose of this study was to assess whether acute angiotensin-converting enzyme (ACE) inhibition would improve myocardial perfusion and perfusion reserve in a subpopulation of normotensive patients with diabetes and left ventricular hypertrophy (LVH), both independent risk factors of coronary...... disease. Using positron emission tomography (PET), we investigated the response of regional myocardial perfusion to acute ACE inhibition with i.v. infusion of perindoprilat (vs saline infusion as control, minimum interval 3 days) in 12 diabetic patients with LVH. Myocardial perfusion was quantified...... with controls, maximal perfusion was reduced in patients (1.8+/-0.6 vs 2.5+/-1.0 ml min(-1) g(-1); P2.7+/-1.0 vs 3.6+/-1.3; P=0.059). During perindoprilat infusion, myocardial perfusion reserve in patients increased to 3.9+/-0.9 ( P

  1. Comparison of tissue processing methods for microvascular visualization in axolotls.

    Science.gov (United States)

    Montoro, Rodrigo; Dickie, Renee

    2017-01-01

    The vascular system, the pipeline for oxygen and nutrient delivery to tissues, is essential for vertebrate development, growth, injury repair, and regeneration. With their capacity to regenerate entire appendages throughout their lifespan, axolotls are an unparalleled model for vertebrate regeneration, but they lack many of the molecular tools that facilitate vascular imaging in other animal models. The determination of vascular metrics requires high quality image data for the discrimination of vessels from background tissue. Quantification of the vasculature using perfused, cleared specimens is well-established in mammalian systems, but has not been widely employed in amphibians. The objective of this study was to optimize tissue preparation methods for the visualization of the microvascular network in axolotls, providing a basis for the quantification of regenerative angiogenesis. To accomplish this aim, we performed intracardiac perfusion of pigment-based contrast agents and evaluated aqueous and non-aqueous clearing techniques. The methods were verified by comparing the quality of the vascular images and the observable vascular density across treatment groups. Simple and inexpensive, these tissue processing techniques will be of use in studies assessing vascular growth and remodeling within the context of regeneration. Advantages of this method include: •Higher contrast of the vasculature within the 3D context of the surrounding tissue •Enhanced detection of microvasculature facilitating vascular quantification •Compatibility with other labeling techniques.

  2. A Unifying model of perfusion and motion applied to reconstruction of sparsely sampled free-breathing myocardial perfusion MRI

    DEFF Research Database (Denmark)

    Pedersen, Henrik; Ólafsdóttir, Hildur; Larsen, Rasmus

    2010-01-01

    The clinical potential of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is currently limited by respiratory induced motion of the heart. This paper presents a unifying model of perfusion and motion in which respiratory motion becomes an integral part of myocardial perfusion...... quantification. Hence, the need for tedious manual motion correction prior to perfusion quantification is avoided. In addition, we demonstrate that the proposed framework facilitates the process of reconstructing DCEMRI from sparsely sampled data in the presence of respiratory motion. The paper focuses primarily...... on the underlying theory of the proposed framework, but shows in vivo results of respiratory motion correction and simulation results of reconstructing sparsely sampled data....

  3. MicroRNA-93 controls perfusion recovery after hindlimb ischemia by modulating expression of multiple genes in the cell cycle pathway.

    Science.gov (United States)

    Hazarika, Surovi; Farber, Charles R; Dokun, Ayotunde O; Pitsillides, Achillieas N; Wang, Tao; Lye, R John; Annex, Brian H

    2013-04-30

    MicroRNAs are key regulators of gene expression in response to injury, but there is limited knowledge of their role in ischemia-induced angiogenesis, such as in peripheral arterial disease. Here, we used an unbiased strategy and took advantage of different phenotypic outcomes that follow surgically induced hindlimb ischemia between inbred mouse strains to identify key microRNAs involved in perfusion recovery from hindlimb ischemia. From comparative microRNA profiling between inbred mouse strains that display profound differences in their extent of perfusion recovery after hindlimb ischemia, we found that the mouse strain with higher levels of microRNA-93 (miR-93) in hindlimb muscle before ischemia and the greater ability to upregulate miR-93 in response to ischemia had better perfusion recovery. In vitro, overexpression of miR-93 attenuated hypoxia-induced apoptosis in both endothelial and skeletal muscle cells and enhanced proliferation in both cell types. In addition, miR-93 overexpression enhanced endothelial cell tube formation. In vivo, miR-93 overexpression enhanced capillary density and perfusion recovery from hindlimb ischemia, and antagomirs to miR-93 attenuated perfusion recovery. Both in vitro and in vivo modulation of miR-93 resulted in alterations in the expression of >1 cell cycle pathway gene in 2 different cell types. Our data indicate that miR-93 enhances perfusion recovery from hindlimb ischemia by modulation of multiple genes that coordinate the functional pathways of cell proliferation and apoptosis. Thus, miR-93 is a strong potential target for pharmacological modulation to promote angiogenesis in ischemic tissue.

  4. Allgöwer-Donati Versus Vertical Mattress Suture Technique Impact on Perfusion in Ankle Fracture Surgery: A Randomized Clinical Trial Using Intraoperative Angiography.

    Science.gov (United States)

    Shannon, Steven F; Houdek, Matthew T; Wyles, Cody C; Yuan, Brandon J; Cross, William W; Cass, Joseph R; Sems, Stephen A

    2017-02-01

    The purpose of this study was to evaluate which primary wound closure technique for ankle fractures affords the most robust perfusion as measured by laser-assisted indocyanine green angiography: Allgöwer-Donati or vertical mattress. Prospective, randomized. Level 1 Academic Trauma Center. Thirty patients undergoing open reduction internal fixation for ankle fractures were prospectively randomized to Allgöwer-Donati (n = 15) or vertical mattress (n = 15) closure. Demographics were similar for both cohorts with respect to age, sex, body mass index, surgical timing, and OTA/AO fracture classification. Skin perfusion (mean incision perfusion and mean perfusion impairment) was quantified in fluorescence units with laser-assisted indocyanine green angiography along the lateral incision as well as anterior and posterior to the incision at 30 separate locations. Minimum follow-up was 3 months with a mean follow-up 4.7 months. Allgöwer-Donati enabled superior perfusion compared with the vertical mattress suture technique. Mean incision perfusion for Allgöwer-Donati was 51 (SD = 13) and for vertical mattress was 28 (SD = 10, P ankle fractures. Theoretically, this may enhance soft tissue healing and decrease the risk of wound complications. Surgeons may take this into consideration when deciding closure techniques for ankle fractures. Therapeutic Level I. See Instructions for Authors for a complete description of levels of evidence.

  5. Wind energy: Overcoming inadequate wind and modeling uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Kane, Vivek

    2010-09-15

    'Green Energy' is the call of the day, and significance of Wind Energy can never be overemphasized. But the key question here is - What if the wind resources are inadequate? Studies reveal that the probability of finding favorable wind at a given place on land is only 15%. Moreover, there are inherent uncertainties associated with wind business. Can we overcome inadequate wind resources? Can we scientifically quantify uncertainty and model it to make business sense? This paper proposes a solution, by way of break-through Wind Technologies, combined with advanced tools for Financial Modeling, enabling vital business decisions.

  6. Myocardial metabolism, perfusion, wall motion and electrical activity in Duchenne muscular dystrophy

    International Nuclear Information System (INIS)

    Perloff, J.K.; Henze, E.; Schelbert, H.R.

    1982-01-01

    The cardiomyopathy of Duchenne's muscular dystrophy originates in the posterobasal left ventricle and extends chiefly to the contiguous lateral wall. Ultrastructural abnormalities in these regions precede connective tissue replacement. We postulated that a metabolic fault coincided with or antedated the subcellular abnormality. Accordingly, regional left ventricular metabolism, perfusion and wall motion were studied using positron computed tomography and metabolic isotopes supplemented by thallium perfusion scans, equilibrium radionuclide angiography and M-mode and two-dimensional echocardiography. To complete the assessment, electrocardiograms, vectorcardiograms, 24 hour taped electrocardiograms and chest x-rays were analyzed. Positron computed tomography utilizing F-18 2-fluoro 2-deoxyglucose (FDG) provided the first conclusive evidence supporting the hypothesis of a premorphologic regional metabolic fault. Thus, cardiac involvement in duchenne dystrophy emerges as a unique form of heart disease, genetically targeting specific regions of ventricular myocardium for initial metabolic and subcellular changes. Reported ultrastructural abnormalities of the impulse and conduction systems provide, at least in part, a basis for the clinically observed sinus node, intraatrial, internodal, AV nodal and infranodal disorders

  7. Effects of acupuncture on tissue-oxygenation of the rat brain.

    Science.gov (United States)

    Chen, G S; Erdmann, W

    1977-01-01

    Acupuncture has been claimed to be effective in restoring consciousness in some comatose patients. Possible mechanisms to explain alleged acupuncture-induced arousal may include vasodilatory effects caused by sympathetic stimulation which leads to an augmentation of cerebral microcirculation and thereby improves oxygen supply to the brain tissue. Experiments were performed in ten albino rats (Wistar) employing PO2 microelectrodes which were inserted into the cortex of the animals through small burholes. Brain tissue PO2 was continuously recorded before, during, and after acupuncture. Stimulation of certain acupuncture loci (Go-26) resulted in immediate increase of PO2 in the frontal cortex of the rat brain. This effect was reproducible. The effect was comparable to that obtained with increase of inspiratory CO2 known to induce arterial vasodilatation and thus capillary perfusion pressure. The effect was more significant as compared to tissue PO2 increases obtained after increase of inspiratory oxygen concentration from 21% to 100%. It appears that acupuncture causes an increase of brain tissue perfusion which may be, at least in part, responsible for arousal of unconscious patients. Dilatation of cerebral vascular vessels and improvement of autoregulation in the brain by acupuncture stimulation may also explain the effectiveness of acupuncture in the treatment of migraine headache.

  8. Adenosine-stress dynamic real-time myocardial perfusion CT and adenosine-stress first-pass dual-energy myocardial perfusion CT for the assessment of acute chest pain: Initial results

    Energy Technology Data Exchange (ETDEWEB)

    Weininger, Markus [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); Schoepf, U. Joseph, E-mail: schoepf@musc.edu [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); Department of Medicine, Division of Cardiology, Medical University of South Carolina, Charleston, SC (United States); Ramachandra, Ashok [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); Fink, Christian [Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University (Germany); Rowe, Garrett W.; Costello, Philip [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); Henzler, Thomas [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University (Germany)

    2012-12-15

    Purpose: Recent innovations in CT enable the evolution from mere morphologic imaging to dynamic and functional testing. We describe our initial experience performing myocardial stress perfusion CT in a clinical population with acute chest pain. Methods and materials: Myocardial stress perfusion CT was performed on twenty consecutive patients (15 men, 5 women; mean age 65 ± 8 years) who presented with acute chest pain and were clinically referred for stress/rest SPECT and cardiac MRI. Prior to CT each patient was randomly assigned either to Group A or to Group B in a consecutive order (10 patients per group). Group A underwent adenosine-stress dynamic real-time myocardial perfusion CT using a novel “shuttle” mode on a 2nd generation dual-source CT. Group B underwent adenosine-stress first-pass dual-energy myocardial perfusion CT using the same CT scanner in dual-energy mode. Two experienced observers visually analyzed all CT perfusion studies. CT findings were compared with MRI and SPECT. Results: In Group A 149/170 myocardial segments (88%) could be evaluated. Real-time perfusion CT (versus SPECT) had 86% (84%) sensitivity, 98% (92%) specificity, 94% (88%) positive predictive value, and 96% (92%) negative predictive value in comparison with perfusion MRI for the detection of myocardial perfusion defects. In Group B all myocardial segments were available for analysis. Compared with MRI, dual-energy myocardial perfusion CT (versus SPECT) had 93% (94%) sensitivity, 99% (98%) specificity, 92% (88%) positive predictive value, and 96% (94%) negative predictive value for detecting hypoperfused myocardial segments. Conclusion: Our results suggest the clinical feasibility of myocardial perfusion CT imaging in patients with acute chest pain. Compared to MRI and SPECT both, dynamic real-time perfusion CT and first-pass dual-energy perfusion CT showed good agreement for the detection of myocardial perfusion defects.

  9. Adenosine-stress dynamic real-time myocardial perfusion CT and adenosine-stress first-pass dual-energy myocardial perfusion CT for the assessment of acute chest pain: Initial results

    International Nuclear Information System (INIS)

    Weininger, Markus; Schoepf, U. Joseph; Ramachandra, Ashok; Fink, Christian; Rowe, Garrett W.; Costello, Philip; Henzler, Thomas

    2012-01-01

    Purpose: Recent innovations in CT enable the evolution from mere morphologic imaging to dynamic and functional testing. We describe our initial experience performing myocardial stress perfusion CT in a clinical population with acute chest pain. Methods and materials: Myocardial stress perfusion CT was performed on twenty consecutive patients (15 men, 5 women; mean age 65 ± 8 years) who presented with acute chest pain and were clinically referred for stress/rest SPECT and cardiac MRI. Prior to CT each patient was randomly assigned either to Group A or to Group B in a consecutive order (10 patients per group). Group A underwent adenosine-stress dynamic real-time myocardial perfusion CT using a novel “shuttle” mode on a 2nd generation dual-source CT. Group B underwent adenosine-stress first-pass dual-energy myocardial perfusion CT using the same CT scanner in dual-energy mode. Two experienced observers visually analyzed all CT perfusion studies. CT findings were compared with MRI and SPECT. Results: In Group A 149/170 myocardial segments (88%) could be evaluated. Real-time perfusion CT (versus SPECT) had 86% (84%) sensitivity, 98% (92%) specificity, 94% (88%) positive predictive value, and 96% (92%) negative predictive value in comparison with perfusion MRI for the detection of myocardial perfusion defects. In Group B all myocardial segments were available for analysis. Compared with MRI, dual-energy myocardial perfusion CT (versus SPECT) had 93% (94%) sensitivity, 99% (98%) specificity, 92% (88%) positive predictive value, and 96% (94%) negative predictive value for detecting hypoperfused myocardial segments. Conclusion: Our results suggest the clinical feasibility of myocardial perfusion CT imaging in patients with acute chest pain. Compared to MRI and SPECT both, dynamic real-time perfusion CT and first-pass dual-energy perfusion CT showed good agreement for the detection of myocardial perfusion defects.

  10. CT perfusion imaging of the liver and the spleen in patients with cirrhosis: Is there a correlation between perfusion and portal venous hypertension?

    International Nuclear Information System (INIS)

    Talakic, Emina; Schoellnast, Helmut; Schaffellner, Silvia; Kniepeiss, Daniela; Mueller, Helmut; Stauber, Rudolf; Quehenberger, Franz

    2017-01-01

    To correlate hepatic and splenic CT perfusion parameters with hepatic venous pressure gradient (HVPG) measurements in patients with cirrhosis. Twenty-one patients with cirrhosis (males, 17; females, 4; mean ± SD age, 57 ± 7 years) underwent hepatic and splenic perfusion CT on a 320-detector row volume scanner as well as invasive measurement of HVPG. Different CT perfusion algorithms (maximum slope analysis and Patlak plot) were used to measure hepatic arterial flow (HAF), portal venous flow (PVF), hepatic perfusion index (HPI), splenic arterial flow (SAF), splenic blood volume (SBV) and splenic clearance (SCL). Hepatic and splenic perfusion parameters were correlated with HVPG, and sensitivity and specificity for detection of severe portal hypertension (≥12 mmHg) were calculated. The Spearman correlation coefficient was -0.53 (p < 0.05) between SAF and HVPG, and -0.68 (p < 0.01) between HVPG and SCL. Using a cut-off value of 125 ml/min/100 ml for SCL, sensitivity for detection of a HVPG of ≥12 mmHg was 94%, and specificity 100%. There was no significant correlation between hepatic perfusion parameters and HVPG. CT perfusion in patients with cirrhosis showed a strong correlation between SCL and HVPG and may be used for detection of severe portal hypertension. (orig.)

  11. CT perfusion imaging of the liver and the spleen in patients with cirrhosis: Is there a correlation between perfusion and portal venous hypertension?

    Energy Technology Data Exchange (ETDEWEB)

    Talakic, Emina; Schoellnast, Helmut [Medical University of Graz, Division of General Radiology, Department of Radiology, Graz (Austria); Schaffellner, Silvia; Kniepeiss, Daniela; Mueller, Helmut [Medical University of Graz, Department of Surgery, Division of Transplantation Surgery, Graz (Austria); Stauber, Rudolf [Medical University of Graz, Department of Internal Medicine, Division of Gastoenterology and Hepatology, Graz (Austria); Quehenberger, Franz [Medical University of Graz, Institute for Medical Informatics, Statistics and Documentation, Graz (Austria)

    2017-10-15

    To correlate hepatic and splenic CT perfusion parameters with hepatic venous pressure gradient (HVPG) measurements in patients with cirrhosis. Twenty-one patients with cirrhosis (males, 17; females, 4; mean ± SD age, 57 ± 7 years) underwent hepatic and splenic perfusion CT on a 320-detector row volume scanner as well as invasive measurement of HVPG. Different CT perfusion algorithms (maximum slope analysis and Patlak plot) were used to measure hepatic arterial flow (HAF), portal venous flow (PVF), hepatic perfusion index (HPI), splenic arterial flow (SAF), splenic blood volume (SBV) and splenic clearance (SCL). Hepatic and splenic perfusion parameters were correlated with HVPG, and sensitivity and specificity for detection of severe portal hypertension (≥12 mmHg) were calculated. The Spearman correlation coefficient was -0.53 (p < 0.05) between SAF and HVPG, and -0.68 (p < 0.01) between HVPG and SCL. Using a cut-off value of 125 ml/min/100 ml for SCL, sensitivity for detection of a HVPG of ≥12 mmHg was 94%, and specificity 100%. There was no significant correlation between hepatic perfusion parameters and HVPG. CT perfusion in patients with cirrhosis showed a strong correlation between SCL and HVPG and may be used for detection of severe portal hypertension. (orig.)

  12. Hemodynamic study on liver cirrhosis: clinical application of CT perfusion imaging

    International Nuclear Information System (INIS)

    Jiang Li; Yang Jianyong; Xie Hongbo; Yang Xufeng; Yan Chaogui; Li Ziping; Zeng Fang

    2004-01-01

    Objective: To estimate hepatic perfusion parameters with helical CT, and to study the relationship between hepatic perfusion parameters and the severity of liver cirrhosis. Methods: Dynamic single-section computed tomography (CT) of the liver was performed in 40 participants, including 27 patients with liver cirrhosis and 13 patients without liver disease (control subjects). CT scans were obtained at a single level to include the liver, spleen, aorta, and portal vein. On each CT scan, the attenuation of these organs was measured in regions of interest to provide time-density curves. The arterial, portal venous, and total perfusion of the liver and the hepatic perfusion index were assessed. Results: In the control group, hepatic arterial perfusion, portal venous perfusion, and total hepatic perfusion were (0.2823 ± 0.0969) ml·min -1 ·ml -1 , (1.1788 ± 0.4004) ml·min -1 ·ml -1 , and (1.4563 ± 0.4439) ml·min -1 ·ml -1 , respectively. Hepatic perfusion index was (19.73 ±5.81)%. These hepatic perfusion parameters correlated significantly with the severity of liver cirrhosis. Hepatic arterial perfusion decreased in Child A and B cirrhotic patients [ (0.1685 ± 0.1068) ml·min -1 ·ml -1 and (0.1921 ± 0.0986) ml·min -1 ·ml -1 , respectively]. Comparing to Child A and B cirrhotic patients, hepatic arterial perfusion in Child C cirrhotic patients [(0.3072 · 0.1145) ml·min -1 ·ml -1 ] raised significantly. Portal venous perfusion decreased significantly in Child B and C cirrhotic patients [(0.6331±0.2070) ml·min -1 ·ml -1 and (0.5702 ± 0.3562) ml·min -1 ·ml -1 , respectively]. Total hepatic blood flow reduced markedly in Child B and C cirrhotic patients [(0.8252 ± 0.2952) ml·min -1 ·ml -1 and (0.8774 ± 0.4118) ml·min -1 ·ml -1 , respectively]. Hepatic perfusion index increased in Child C cirrhotic patients (37.48 ± 16.65)%. Conclusion: Dynamic single-section CT showed potential in quantifying hepatic perfusion parameters, and hepatic perfusion

  13. Study of lung perfusion in colagenosis

    Energy Technology Data Exchange (ETDEWEB)

    Macedo de Carvalho, A C; Calegaro, J U.M. [Fundacao Hospitalar do Distrito Federal, Distrito Federal (Brazil). Unidade de Medicina Nuclear

    1982-07-01

    The lung involvement in the various types of colagenosis has been widely described in the literature. However, the study of lung perfusion utilizing radionuclides has been only mentioned in a few papers. With the intention of ascertaining the importance of the lung perfusion scanning in colagenosis, ten cases were studied, seven of which were females and three males, with the following pathologies: 4 rheumatoid arthritis, 4 systemic lupus eritematosous, 1 scleroderma and 1 scleroderma plus dermatomyositis. The ages of the patients varied from 20 to 73 years, and the duration of the disease from 1 month to 39 years. The lung scanning showed perfusion defects in 100% of the cases, not related with the type of colagenosis, duration of the disease, sex or age. On the other hand, the X rays study showed alterations in only 2 patients (20% of the cases). The ventilatory and respiratory functions were tested on 7 patients showing alteration (mixed pattern with predominance of the restrictive factor) in only one (14.3%), while the other patients were normal (85.7%). The importance of the lung perfusion scanning study in all patients with collagen vascular diseases is emphasized.

  14. Study of lung perfusion in colagenosis

    International Nuclear Information System (INIS)

    Macedo de Carvalho, A.C.; Calegaro, J.U.M.

    1982-01-01

    The lung involvement in the various types of colagenosis has been widely described in the literature. However, the study of lung perfusion utilizing radionuclides has been only mentioned in a few papers. With the intention of ascertaining the importance of the lung perfusion scanning in colagenosis, ten cases were studied, seven of which were females and three males, with the following pathologies: 4 rheumatoid arthritis, 4 systemic lupus eritematosous, 1 scleroderma and 1 scleroderma plus dermatomyositis. The ages of the patients varied from 20 to 73 years, and the duration of the disease from 1 month to 39 years. The lung scanning showed perfusion defects in 100% of the cases, not related with the type of colagenosis, duration of the disease, sex or age. On the other hand, the X rays study showed alterations in only 2 patients (20% of the cases). The ventilatory and respiratory functions were tested on 7 patients showing alteration (mixed pattern with predominance of the restrictive factor) in only one (14.3%), while the other patients were normal (85.7%). The importance of the lung perfusion scanning study in all patients with collagen vascular diseases is emphasized. (author) [es

  15. MR-based assessment of pulmonary ventilation-perfusion in animal models

    International Nuclear Information System (INIS)

    Yang Jian; Wan Mingxi; Guo Youmin

    2003-01-01

    Objective: To show the feasibility and value in the diagnosis of airway obstruction and pulmonary embolism with MR oxygen-enhanced ventilation combined with pulmonary perfusion imaging. Methods: Eight canines were implemented for peripheral pulmonary embolism by intravenous injection of gelfoam granules at pulmonary segmental arterial level, and five of them were formed airway obstruction models by inserting self-made balloon catheter at second-bronchia. The oxygen-enhanced MR ventilation imaging was introduced by subtracting the images of pre- and post- inhaled pure oxygen. The MR pulmonary perfusion imaging was achieved by the first-pass contrast agent method. Moreover, the manifestation of MR ventilation and perfusion imaging was observed and contradistinguished with that of general pathologic anatomy, ventilation-perfusion scintigraphy, and pulmonary angiography. Results: The manifestations of airway obstruction regions in MR ventilation and perfusion imaging were matched, but those of pulmonary embolism regions were dismatched. The defect range of airway obstruction in MR ventilation image was smaller than that in ventilation scintigraphy. The abnormal perfusion regions of pulmonary embolism were divided into defect regions and reduce regions based on the time courses of signal intensity changes. The sensitivity and specificity of diagnosis on pulmonary embolism by MR ventilation combined with perfusion technique were 75.0% and 98.1%. The diagnostic results were in good coherence with ventilation-perfusion scintigraphy and pulmonary angiography (K=0.743, 0.899). Conclusion: The MR oxygen-enhanced ventilation combined with pulmonary perfusion imaging can be used to diagnose the airway and vascular abnormity in lung. This technique resembles the ventilation-perfusion scintigraphy. It can provide quantitative functional information and better spatial and temporal resolution, and possesses the value of clinical application

  16. Patient-specific coronary blood supply territories for quantitative perfusion analysis

    Science.gov (United States)

    Zakkaroff, Constantine; Biglands, John D.; Greenwood, John P.; Plein, Sven; Boyle, Roger D.; Radjenovic, Aleksandra; Magee, Derek R.

    2018-01-01

    Abstract Myocardial perfusion imaging, coupled with quantitative perfusion analysis, provides an important diagnostic tool for the identification of ischaemic heart disease caused by coronary stenoses. The accurate mapping between coronary anatomy and under-perfused areas of the myocardium is important for diagnosis and treatment. However, in the absence of the actual coronary anatomy during the reporting of perfusion images, areas of ischaemia are allocated to a coronary territory based on a population-derived 17-segment (American Heart Association) AHA model of coronary blood supply. This work presents a solution for the fusion of 2D Magnetic Resonance (MR) myocardial perfusion images and 3D MR angiography data with the aim to improve the detection of ischaemic heart disease. The key contribution of this work is a novel method for the mediated spatiotemporal registration of perfusion and angiography data and a novel method for the calculation of patient-specific coronary supply territories. The registration method uses 4D cardiac MR cine series spanning the complete cardiac cycle in order to overcome the under-constrained nature of non-rigid slice-to-volume perfusion-to-angiography registration. This is achieved by separating out the deformable registration problem and solving it through phase-to-phase registration of the cine series. The use of patient-specific blood supply territories in quantitative perfusion analysis (instead of the population-based model of coronary blood supply) has the potential of increasing the accuracy of perfusion analysis. Quantitative perfusion analysis diagnostic accuracy evaluation with patient-specific territories against the AHA model demonstrates the value of the mediated spatiotemporal registration in the context of ischaemic heart disease diagnosis. PMID:29392098

  17. Effect of perfusion and irrigation flow rate variations on NaCl efflux from the isolated, perfused head of the marine teleost, Myoxocephalus octodecimspinosus

    Energy Technology Data Exchange (ETDEWEB)

    Claiborne, J.B. (Miami Univ., Coral Gables, FL (USA)); Evans, D.H. (Mt. Desert Island Biological Laboratory, Salsbury Cove, ME, USA)

    1981-06-01

    In vivo branchial blood pressure and unidirectional efflux values for NaCl were determined in the marine teleost, Myoxocephalus octodecimspinosus. Utilizing an isolated, perfused head preparation, perfused at in vivo pressure levels, NaCl efflux was measured and compared to in vivo values. The effect of variations in perfusion or irrigation rates on the ion efflux across the gills of the isolated head was also studied. The efflux of /sup 22/Na from the isolated, perfused head was found to be similar to in vivo values and dependent on perfusion flow and pressure. In vitro /sup 36/Cl efflux was lower than the efflux from intact animals and was determined to be flow/pressure independent. Irrigation rate changes at all rates tested did not affect the unidirectional efflux of either ion.

  18. Bioprinting for vascular and vascularized tissue biofabrication.

    Science.gov (United States)

    Datta, Pallab; Ayan, Bugra; Ozbolat, Ibrahim T

    2017-03-15

    Bioprinting is a promising technology to fabricate design-specific tissue constructs due to its ability to create complex, heterocellular structures with anatomical precision. Bioprinting enables the deposition of various biologics including growth factors, cells, genes, neo-tissues and extra-cellular matrix-like hydrogels. Benefits of bioprinting have started to make a mark in the fields of tissue engineering, regenerative medicine and pharmaceutics. Specifically, in the field of tissue engineering, the creation of vascularized tissue constructs has remained a principal challenge till date. However, given the myriad advantages over other biofabrication methods, it becomes organic to expect that bioprinting can provide a viable solution for the vascularization problem, and facilitate the clinical translation of tissue engineered constructs. This article provides a comprehensive account of bioprinting of vascular and vascularized tissue constructs. The review is structured as introducing the scope of bioprinting in tissue engineering applications, key vascular anatomical features and then a thorough coverage of 3D bioprinting using extrusion-, droplet- and laser-based bioprinting for fabrication of vascular tissue constructs. The review then provides the reader with the use of bioprinting for obtaining thick vascularized tissues using sacrificial bioink materials. Current challenges are discussed, a comparative evaluation of different bioprinting modalities is presented and future prospects are provided to the reader. Biofabrication of living tissues and organs at the clinically-relevant volumes vitally depends on the integration of vascular network. Despite the great progress in traditional biofabrication approaches, building perfusable hierarchical vascular network is a major challenge. Bioprinting is an emerging technology to fabricate design-specific tissue constructs due to its ability to create complex, heterocellular structures with anatomical precision

  19. Inadequate exercise as a risk factor for sepsis mortality.

    Science.gov (United States)

    Williams, Paul T

    2013-01-01

    Test whether inadequate exercise is related to sepsis mortality. Mortality surveillance of an epidemiological cohort of 155,484 National Walkers' and Runners' Health Study participants residing in the United States. Deaths were monitored for an average of 11.6-years using the National Death index through December 31, 2008. Cox proportional hazard analyses were used to compare sepsis mortality (ICD-10 A40-41) to inadequate exercise (<1.07 METh/d run or walked) as measured on their baseline questionnaires. Deaths occurring within one year of the baseline survey were excluded. Sepsis was the underlying cause in 54 deaths (sepsis(underlying)) and a contributing cause in 184 deaths (sepsis(contributing)), or 238 total sepsis-related deaths (sepsis(total)). Inadequate exercise was associated with 2.24-fold increased risk for sepsis(underlying) (95%CI: 1.21 to 4.07-fold, P = 0.01), 2.11-fold increased risk for sepsis(contributing) (95%CI: 1.51- to 2.92-fold, P<10(-4)), and 2.13-fold increased risk for sepsis(total) (95%CI: 1.59- to 2.84-fold, P<10(-6)) when adjusted for age, sex, race, and cohort. The risk increase did not differ significantly between runners and walkers, by sex, or by age. Sepsis(total) risk was greater in diabetics (P = 10(-5)), cancer survivors (P = 0.0001), and heart attack survivors (P = 0.003) and increased with waist circumference (P = 0.0004). The sepsis(total) risk associated with inadequate exercise persisted when further adjusted for diabetes, prior cancer, prior heart attack and waist circumference, and when excluding deaths with cancer, or cardiovascular, respiratory, or genitourinary disease as the underlying cause. Inadequate exercise also increased sepsis(total) risk in 2163 baseline diabetics (4.78-fold, 95%CI: 2.1- to 13.8-fold, P = 0.0001) when adjusted, which was significantly greater (P = 0.03) than the adjusted risk increase in non-diabetics (1.80-fold, 95%CI: 1.30- to 2.46-fold, P = 0

  20. Magnetic Resonance Imaging of Ventilation and Perfusion in the Lung

    Science.gov (United States)

    Prisk, Gordon Kim (Inventor); Hopkins, Susan Roberta (Inventor); Buxton, Richard Bruce (Inventor); Pereira De Sa, Rui Carlos (Inventor); Theilmann, Rebecca Jean (Inventor); Cronin, Matthew Vincent (Inventor)

    2017-01-01

    Methods, devices, and systems are disclosed for implementing a fully quantitative non-injectable contrast proton MRI technique to measure spatial ventilation-perfusion (VA/Q) matching and spatial distribution of ventilation and perfusion. In one aspect, a method using MRI to characterize ventilation and perfusion in a lung includes acquiring an MR image of the lung having MR data in a voxel and obtaining a breathing frequency parameter, determining a water density value, a specific ventilation value, and a perfusion value in at least one voxel of the MR image based on the MR data and using the water density value to determine an air content value, and determining a ventilation-perfusion ratio value that is the product of the specific ventilation value, the air content value, the inverse of the perfusion value, and the breathing frequency.

  1. Whole-brain dynamic CT angiography and perfusion imaging

    Energy Technology Data Exchange (ETDEWEB)

    Orrison, W.W. [CHW Nevada Imaging Company, Nevada Imaging Centers, Spring Valley, Las Vegas, NV (United States); College of Osteopathic Medicine, Touro University Nevada, Henderson, NV (United States); Department of Health Physics and Diagnostic Sciences, University of Nevada Las Vegas, Las Vegas, NV (United States); Department of Medical Education, University of Nevada School of Medicine, Reno, NV (United States); Snyder, K.V.; Hopkins, L.N. [Department of Neurosurgery, Millard Fillmore Gates Circle Hospital, Buffalo, NY (United States); Roach, C.J. [School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV (United States); Advanced Medical Imaging and Genetics (Amigenics), Las Vegas, NV (United States); Ringdahl, E.N. [Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV (United States); Nazir, R. [Shifa International Hospital, Islamabad (Pakistan); Hanson, E.H., E-mail: eric.hanson@amigenics.co [College of Osteopathic Medicine, Touro University Nevada, Henderson, NV (United States); Department of Health Physics and Diagnostic Sciences, University of Nevada Las Vegas, Las Vegas, NV (United States); Advanced Medical Imaging and Genetics (Amigenics), Las Vegas, NV (United States)

    2011-06-15

    The availability of whole brain computed tomography (CT) perfusion has expanded the opportunities for analysing the haemodynamic parameters associated with varied neurological conditions. Examples demonstrating the clinical utility of whole-brain CT perfusion imaging in selected acute and chronic ischaemic arterial neurovascular conditions are presented. Whole-brain CT perfusion enables the detection and focused haemodynamic analyses of acute and chronic arterial conditions in the central nervous system without the limitation of partial anatomical coverage of the brain.

  2. Assessment of cerebral perfusion with dynamic susceptibility contrast

    International Nuclear Information System (INIS)

    Takahashi, Kiyohiko; Naito, Isao; Nozokido, Takeshi; Sato, Takaaki; Takatama, Shin; Kimura, Tokunori

    2004-01-01

    Accurate measurements of arterial input function (AIF) are indispensable for the quantification of perfusion parameters such as mean transit time (MTT), cerebral blood volume (CBV), and cerebral blood flow (CBF). Quantification trials of cerebral perfusion using the disconsolation method with dynamic susceptibility contrast MRI (DSC-MRI) have been reported on. Accurately measuring AIF with DSC-MRI is difficult due to non-linearity and the limited dynamic range between ΔR 2 * and the concentration of contrast media. In this study, we assessed simple methods while using various parameters calculated by the tissue time intensity curve without measuring AIF. The parameters used were appearance time of contrast media (AT), 1'st moment (MT1), the full width at half maximum (FWHM), and up slope at maximum gradient (US). Difference of the appearance time (delta AT) and the CBFratio between the regions in question and the contralateral regions obtained by MT1, FWHM and US were assessed in 38 stroke patients. The CBF calculated by the linear scaling method using the signal of the ASL (ASL, CBF) was used as the standard for a correlation study. The delta AT in patients with middle cerebral artery occlusions supplied by retrograde flow indicated a significantly greater value as compared to patients with other lesions with antegrade flow. US CBF indicated the best correlation among the three CBFs obtained by MT1, FWHM and US. Both the ASL CBFratio and the US CBFratio correlated with delta AT, with the ASL CBFratio being predominant. The CBVratio-CBFratio map showed that the CBVratio tended to decrease when the CBFratio decreased. The map is useful in clinical analysis of cerebral perfusion due to its simplicity and ability to alleviate AIF dependent errors. The validity of the proposed method still needs to be examined by comparing it to the deconvolution method with DSC-MRI, since DSC-MRI can correct the effect of AIF. It might also be compared to Xenon CT, which is less

  3. Biased visualization of hypoperfused tissue by computed tomography due to short imaging duration: improved classification by image down-sampling and vascular models

    Energy Technology Data Exchange (ETDEWEB)

    Mikkelsen, Irene Klaerke; Ribe, Lars Riisgaard; Bekke, Susanne Lise; Tietze, Anna; Oestergaard, Leif; Mouridsen, Kim [Aarhus University Hospital, Center of Functionally Integrative Neuroscience, Aarhus C (Denmark); Jones, P.S.; Alawneh, Josef [University of Cambridge, Department of Clinical Neurosciences, Cambridge (United Kingdom); Puig, Josep; Pedraza, Salva [Dr. Josep Trueta Girona University Hospitals, Department of Radiology, Girona Biomedical Research Institute, Girona (Spain); Gillard, Jonathan H. [University of Cambridge, Department of Radiology, Cambridge (United Kingdom); Warburton, Elisabeth A. [Cambrigde University Hospitals, Addenbrooke, Stroke Unit, Cambridge (United Kingdom); Baron, Jean-Claude [University of Cambridge, Department of Clinical Neurosciences, Cambridge (United Kingdom); Centre Hospitalier Sainte Anne, INSERM U894, Paris (France)

    2015-07-15

    Lesion detection in acute stroke by computed-tomography perfusion (CTP) can be affected by incomplete bolus coverage in veins and hypoperfused tissue, so-called bolus truncation (BT), and low contrast-to-noise ratio (CNR). We examined the BT-frequency and hypothesized that image down-sampling and a vascular model (VM) for perfusion calculation would improve normo- and hypoperfused tissue classification. CTP datasets from 40 acute stroke patients were retrospectively analysed for BT. In 16 patients with hypoperfused tissue but no BT, repeated 2-by-2 image down-sampling and uniform filtering was performed, comparing CNR to perfusion-MRI levels and tissue classification to that of unprocessed data. By simulating reduced scan duration, the minimum scan-duration at which estimated lesion volumes came within 10 % of their true volume was compared for VM and state-of-the-art algorithms. BT in veins and hypoperfused tissue was observed in 9/40 (22.5 %) and 17/40 patients (42.5 %), respectively. Down-sampling to 128 x 128 resolution yielded CNR comparable to MR data and improved tissue classification (p = 0.0069). VM reduced minimum scan duration, providing reliable maps of cerebral blood flow and mean transit time: 5 s (p = 0.03) and 7 s (p < 0.0001), respectively. BT is not uncommon in stroke CTP with 40-s scan duration. Applying image down-sampling and VM improve tissue classification. (orig.)

  4. Biased visualization of hypoperfused tissue by computed tomography due to short imaging duration: improved classification by image down-sampling and vascular models

    International Nuclear Information System (INIS)

    Mikkelsen, Irene Klaerke; Ribe, Lars Riisgaard; Bekke, Susanne Lise; Tietze, Anna; Oestergaard, Leif; Mouridsen, Kim; Jones, P.S.; Alawneh, Josef; Puig, Josep; Pedraza, Salva; Gillard, Jonathan H.; Warburton, Elisabeth A.; Baron, Jean-Claude

    2015-01-01

    Lesion detection in acute stroke by computed-tomography perfusion (CTP) can be affected by incomplete bolus coverage in veins and hypoperfused tissue, so-called bolus truncation (BT), and low contrast-to-noise ratio (CNR). We examined the BT-frequency and hypothesized that image down-sampling and a vascular model (VM) for perfusion calculation would improve normo- and hypoperfused tissue classification. CTP datasets from 40 acute stroke patients were retrospectively analysed for BT. In 16 patients with hypoperfused tissue but no BT, repeated 2-by-2 image down-sampling and uniform filtering was performed, comparing CNR to perfusion-MRI levels and tissue classification to that of unprocessed data. By simulating reduced scan duration, the minimum scan-duration at which estimated lesion volumes came within 10 % of their true volume was compared for VM and state-of-the-art algorithms. BT in veins and hypoperfused tissue was observed in 9/40 (22.5 %) and 17/40 patients (42.5 %), respectively. Down-sampling to 128 x 128 resolution yielded CNR comparable to MR data and improved tissue classification (p = 0.0069). VM reduced minimum scan duration, providing reliable maps of cerebral blood flow and mean transit time: 5 s (p = 0.03) and 7 s (p < 0.0001), respectively. BT is not uncommon in stroke CTP with 40-s scan duration. Applying image down-sampling and VM improve tissue classification. (orig.)

  5. Perfusion magnetic resonance imaging with continuous arterial spin labeling: methods and clinical applications in the central nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Detre, John A. E-mail: detre@mail.med.upenn.edu; Alsop, David C

    1999-05-01

    Several methods are now available for measuring cerebral perfusion and related hemodynamic parameters using magnetic resonance imaging (MRI). One class of techniques utilizes electromagnetically labeled arterial blood water as a noninvasive diffusible tracer for blood flow measurements. The electromagnetically labeled tracer has a decay rate of T1, which is sufficiently long to allow perfusion of the tissue and microvasculature to be detected. Alternatively, electromagnetic arterial spin labeling (ASL) may be used to obtain qualitative perfusion contrast for detecting changes in blood flow, similar to the use of susceptibility contrast in blood oxygenation level dependent functional MRI (BOLD fMRI) to detect functional activation in the brain. The ability to obtain blood flow maps using a non-invasive and widely available modality such as MRI should greatly enhance the utility of blood flow measurement as a means of gaining further insight into the broad range of hemodynamically related physiology and pathophysiology. This article describes the biophysical considerations pertaining to the generation of quantitative blood flow maps using a particular form of ASL in which arterial blood water is continuously labeled, termed continuous arterial spin labeling (CASL). Technical advances permit multislice perfusion imaging using CASL with reduced sensitivity to motion and transit time effects. Interpretable cerebral perfusion images can now be reliably obtained in a variety of clinical settings including acute stroke, chronic cerebrovascular disease, degenerative diseases and epilepsy. Over the past several years, the technical and theoretical foundations of CASL perfusion MRI techniques have evolved from feasibility studies into practical usage. Currently existing methodologies are sufficient to make reliable and clinically relevant observations which complement structural assessment using MRI. Future technical improvements should further reduce the acquisition times

  6. Quality assessment of a placental perfusion protocol

    DEFF Research Database (Denmark)

    Mathiesen, Line; Mose, Tina; Mørck, Thit Juul

    2010-01-01

    mlh(-1) from the fetal reservoir) when adding 2 (n=7) and 20mg (n=9) FITC-dextran/100ml fetal perfusion media. Success rate of the Copenhagen placental perfusions is provided in this study, including considerations and quality control parameters. Three checkpoints suggested to determine success rate...

  7. Dual energy CT for the assessment of lung perfusion-Correlation to scintigraphy

    International Nuclear Information System (INIS)

    Thieme, Sven F.; Becker, Christoph R.; Hacker, Marcus; Nikolaou, Konstantin; Reiser, Maximilian F.; Johnson, Thorsten R.C.

    2008-01-01

    Purpose of this study was to determine the diagnostic value of dual energy CT in the assessment of pulmonary perfusion with reference to pulmonary perfusion scintigraphy. Thirteen patients received both dual energy CT (DECT) angiography (Somatom Definition, Siemens) and ventilation/perfusion scintigraphy. Median time between scans was 3 days (range, 0-90). DECT perfusion maps were generated based on the spectral properties of iodine. Two blinded observes assessed DECT angiograms, perfusion maps and scintigrams for presence and location of perfusion defects. The results were compared by patient and by segment, and diagnostic accuracy of DECT perfusion imaging was calculated regarding scintigraphy as standard of reference. Diagnostic accuracy per patient showed 75% sensitivity, 80% specificity and a negative predictive value of 66%. Sensitivity per segment amounted to 83% with 99% specificity, with 93% negative predictive value. Peripheral parts of the lungs were not completely covered by the 80 kVp detector in 85% of patients. CTA identified corresponding emboli in 66% of patients with concordant perfusion defects in DECT and scintigraphy. Dual energy CT perfusion imaging is able to display pulmonary perfusion defects with good agreement to scintigraphic findings. DECT can provide a pulmonary CT angiogram, high-resolution morphology of the lung parenchyma and perfusion information in one single exam

  8. Dual energy CT for the assessment of lung perfusion-Correlation to scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Thieme, Sven F.; Becker, Christoph R. [Department of Clinical Radiology, Ludwig-Maximilians-University of Munich (Germany); Hacker, Marcus [Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich (Germany); Nikolaou, Konstantin; Reiser, Maximilian F. [Department of Clinical Radiology, Ludwig-Maximilians-University of Munich (Germany); Johnson, Thorsten R.C. [Department of Clinical Radiology, Ludwig-Maximilians-University of Munich (Germany)], E-mail: thorsten.johnson@med.uni-muenchen.de

    2008-12-15

    Purpose of this study was to determine the diagnostic value of dual energy CT in the assessment of pulmonary perfusion with reference to pulmonary perfusion scintigraphy. Thirteen patients received both dual energy CT (DECT) angiography (Somatom Definition, Siemens) and ventilation/perfusion scintigraphy. Median time between scans was 3 days (range, 0-90). DECT perfusion maps were generated based on the spectral properties of iodine. Two blinded observes assessed DECT angiograms, perfusion maps and scintigrams for presence and location of perfusion defects. The results were compared by patient and by segment, and diagnostic accuracy of DECT perfusion imaging was calculated regarding scintigraphy as standard of reference. Diagnostic accuracy per patient showed 75% sensitivity, 80% specificity and a negative predictive value of 66%. Sensitivity per segment amounted to 83% with 99% specificity, with 93% negative predictive value. Peripheral parts of the lungs were not completely covered by the 80 kVp detector in 85% of patients. CTA identified corresponding emboli in 66% of patients with concordant perfusion defects in DECT and scintigraphy. Dual energy CT perfusion imaging is able to display pulmonary perfusion defects with good agreement to scintigraphic findings. DECT can provide a pulmonary CT angiogram, high-resolution morphology of the lung parenchyma and perfusion information in one single exam.

  9. Cerebral perfusion imaging in HIV positive patients

    International Nuclear Information System (INIS)

    Kundley, Kshama; Chowdhury, D.; Lele, V.R.; Lele, R.D.

    1998-01-01

    Full text: Twelve human immunodeficiency virus (HIV) positive patients were studied by SPECT cerebral perfusion imaging 1 hour post injection of 15 mCi of 99m Tc-ECD under ideal conditions with a triple head gamma camera (Prism 3000 X P LEUHR), fanbeam collimators followed by Folstein Mini Mental Status Examination (FMMSE) and AIDS dementia complex (ADC) staging on the same day. All 12 patients were male, in the age range of 23-45 y (mean 31 y). The infected status was diagnosed by ELISA (10 patients) or Western blot (5 patients). The interval between diagnosis and imaging ranged from 1 month - 35 months (mean 15.3 months). Two patients were alcoholic and 2 were smokers. None of them had CNS disorder clinically. ADC staging and FMMSE could be performed in 4 patients. Two patients were normal (stage 0) and 2 were subclinical (stage 0.5) on ADC staging. FMMSE revealed normal or near normal status (mean score 35; maximum score 36). Cerebral perfusion images were interpreted simultaneously by 3 observers blind towards history and examination using semi-quantitative and quantitative methods by consensus. It revealed multiple areas of hypoperfusion, viz. temporal (11 patients (91 %), parietal 10 patients (83%), frontal 9 patients (75%, pre and post central gyrus 7 patients (58%), occipital 6 patients (50%) cingulate gyrus and cerebellum 5 patients (41%) and thalamic in 2 patients (16%). Hyper perfusion in caudate nuclei was noted in 10 patients (83%). The study reveals presence of multiple perfusion abnormalities on cerebral perfusion imaging in HIV positive patients who have normal/near normal mental status suggesting precedence of perfusion abnormality over clinically apparent mental deficit

  10. In situ monitoring of localized shear stress and fluid flow within developing tissue constructs by Doppler optical coherence tomography

    Science.gov (United States)

    Jia, Yali; Bagnaninchi, Pierre O.; Wang, Ruikang K.

    2008-02-01

    Mechanical stimuli can be introduced to three dimensional (3D) cell cultures by use of perfusion bioreactor. Especially in musculoskeletal tissues, shear stress caused by fluid flow generally increase extra-cellular matrix (ECM) production and cell proliferation. The relationship between the shear stress and the tissue development in situ is complicated because of the non-uniform pore distribution within the cell-seeded scaffold. In this study, we firstly demonstrated that Doppler optical coherence tomography (DOCT) is capable of monitoring localized fluid flow and shear stress in the complex porous scaffold by examining their variation trends at perfusion rate of 5, 8, 10 and 12 ml/hr. Then, we developed the 3D porous cellular constructs, cell-seeded chitosan scaffolds monitored during several days by DOCT. The fiber based fourier domain DOCT employed a 1300 nm superluminescent diode with a bandwidth of 52 nm and a xyz resolution of 20×20×15 μm in free space. This setup allowed us not only to assess the cell growth and ECM deposition by observing their different scattering behaviors but also to further investigate how the cell attachment and ECM production has the effect on the flow shear stress and the relationship between flow rate and shear stress in the developing tissue construct. The possibility to monitor continuously the constructs under perfusion will easily indicate the effect of flow rate or shear stress on the cell viability and cell proliferation, and then discriminate the perfusion parameters affecting the pre-tissue formation rate growth.

  11. Automatic Detection of Myocardial Boundaries in MR Cardio Perfusion Images

    NARCIS (Netherlands)

    Spreeuwers, Luuk; Breeuwer, Marcel

    2001-01-01

    Cardiovascular diseases often result in reduced blood perfusion of the myocardium (MC). Recent advances in MR allow fast recordingof contrast enhanced myocardial perfusion scans. For perfusion analysis the myocardial boundaries must be traced. Currently this is done manually. In this paper a method

  12. [Myokard-Perfusions-SPECT. Myocardial perfusion SPECT - Update S1 guideline].

    Science.gov (United States)

    Lindner, Oliver; Bengel, Frank; Burchert, Wolfgang; Dörr, Rolf; Hacker, Marcus; Schäfer, Wolfgang; Schäfers, Michael A; Schmidt, Matthias; Schwaiger, Markus; Vom Dahl, Jürgen; Zimmermann, Rainer

    2017-08-14

    The S1 guideline for myocardial perfusion SPECT has been published by the Association of the Scientific Medical Societies in Germany (AWMF) and is valid until 2/2022. This paper is a short summary with comments on all chapters and subchapters wich were modified and amended.

  13. Clearance of α-aminoisobutyric acid during in-situ perfusion of the guinea pig placenta

    International Nuclear Information System (INIS)

    Kelman, B.J.; Sikov, M.R.

    1983-05-01

    Extensive investigation of the transport of α-aminoisobutyric acid (AIB; a nonmetabolized amino acid) has shown that AIB is actively transported from mother to fetus across the hemochorial placenta of the guinea pig. As a step towards clarifying the relative rolls of active and passive movements of amino acids across the placenta, it would be useful to obtain concurrent measurements of transplacental movements of a substance which crosses the placenta rapidly by simple diffusion (water) and of a substance which is actively transported across the placenta (AIB). In our study, placentas from guinea pigs between 59 and 61 days of gestation were perfused in situ through cannulated umbilical vessels with the maternal circulation left intact. Tritiated water and 14 C-AIB were injected into a maternal jugular vein and maternal blood samples were obtained at 1 to 10 minute intervals; perfusate samples were collected sequentially after one pass through the placenta. Clearance of 14 C-AIB from mother to fetus (AIB/sub MF/) and AIB concentrations in placental tissue, maternal plasma, and perfusate were consistent in magnitude with data obtained by other invetigators who have clearly shown an active transport of AIB in the placenta. On the other hand, in this study AIB/sub MF/ ranged from approximately 50% to 96% of the clearance of 3 H-labeled water from mother to fetus (T/sub MF/) and that changes in AIB/sub MF/ correlated closely with changes in T/sub MF/ in all perfusions. Thus, it appears that AIB/sub MF/ closely paralleled T/sub MF/ and these data suggest that a relatively large component of AIB/sub MF/ is of passive origin in the in situ placenta

  14. PET imaging of cerebral perfusion and oxygen metabolism in stroke

    Energy Technology Data Exchange (ETDEWEB)

    Pointon, O.; Yasaka, M.; Berlangieri, S.U.; Newton, M.R.; Thomas, D.L.; Chan, C.G.; Egan, G.F.; Tochon-Danguy, H.J.; O``Keefe, G.; Donnan, G.A.; McKay, W.J. [Austin Hospital, Melbourne, VIC (Australia). Centre for PET and Depts of Nuclear Medicine and Neurology

    1998-03-01

    Full text: Stroke remains a devastating clinical event with few therapeutic options. In patients with acute stroke, we studied the cerebral perfusion and metabolic patterns with {sup 15}O-CO{sub 2} or H{sub 2}O and {sup 15}O-O{sub 2} positron emission tomography and correlated these findings to the clinical background. Forty three patients underwent 45 studies 0-23 days post-stroke (mean 7 days). Fifteen patients showed luxury perfusion (Group A), 10 had matched low perfusion and metabolism (B) and 3 showed mixed pattern including an area of misery perfusion (C). Seventeen showed no relevant abnormality (D) and there were no examples of isolated misery perfusion. Twelve of the 15 in Group A had either haemorrhagic transformation on CT, re-opening on angiography, or a cardioembolic mechanism. In contrast only 5/10 in Group B, 0/3 in Group C and 2/17 in Group D had these features. Although 7/10 in group B had moderate or large size infarcts on CT the incidence of haemorrhagic transformation was low (2/10) and significant carotid stenoses were more common in those studied (5/8) compared with the other groups. Misery perfusion was not seen beyond five days. Thus, luxury perfusion seems to be related to a cardio-embolic mechanism or reperfusion. Matched low perfusion and metabolism was associated with a low rate of haemorrhagic transformation despite a high incidence of moderate to large size infarcts. Misery perfusion is an early phenomenon in the evolution of ischaemic stroke.

  15. TU-EF-204-02: Hiigh Quality and Sub-MSv Cerebral CT Perfusion Imaging

    International Nuclear Information System (INIS)

    Li, Ke; Niu, Kai; Wu, Yijing; Chen, Guang-Hong

    2015-01-01

    Purpose: CT Perfusion (CTP) imaging is of great importance in acute ischemic stroke management due to its potential to detect hypoperfused yet salvageable tissue and distinguish it from definitely unsalvageable tissue. However, current CTP imaging suffers from poor image quality and high radiation dose (up to 5 mSv). The purpose of this work was to demonstrate that technical innovations such as Prior Image Constrained Compressed Sensing (PICCS) have the potential to address these challenges and achieve high quality and sub-mSv CTP imaging. Methods: (1) A spatial-temporal 4D cascaded system model was developed to indentify the bottlenecks in the current CTP technology; (2) A task-based framework was developed to optimize the CTP system parameters; (3) Guided by (1) and (2), PICCS was customized for the reconstruction of CTP source images. Digital anthropomorphic perfusion phantoms, animal studies, and preliminary human subject studies were used to validate and evaluate the potentials of using these innovations to advance the CTP technology. Results: The 4D cascaded model was validated in both phantom and canine stroke models. Based upon this cascaded model, it has been discovered that, as long as the spatial resolution and noise properties of the 4D source CT images are given, the 3D MTF and NPS of the final CTP maps can be analytically derived for a given set of processing methods and parameters. The cascaded model analysis also identified that the most critical technical factor in CTP is how to acquire and reconstruct high quality source images; it has very little to do with the denoising techniques often used after parametric perfusion calculations. This explained why PICCS resulted in a five-fold dose reduction or substantial improvement in image quality. Conclusion: Technical innovations generated promising results towards achieving high quality and sub-mSv CTP imaging for reliable and safe assessment of acute ischemic strokes. K. Li, K. Niu, Y. Wu: Nothing to

  16. TU-EF-204-02: Hiigh Quality and Sub-MSv Cerebral CT Perfusion Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ke; Niu, Kai; Wu, Yijing; Chen, Guang-Hong [University of Wisconsin, Madison, WI (United States)

    2015-06-15

    Purpose: CT Perfusion (CTP) imaging is of great importance in acute ischemic stroke management due to its potential to detect hypoperfused yet salvageable tissue and distinguish it from definitely unsalvageable tissue. However, current CTP imaging suffers from poor image quality and high radiation dose (up to 5 mSv). The purpose of this work was to demonstrate that technical innovations such as Prior Image Constrained Compressed Sensing (PICCS) have the potential to address these challenges and achieve high quality and sub-mSv CTP imaging. Methods: (1) A spatial-temporal 4D cascaded system model was developed to indentify the bottlenecks in the current CTP technology; (2) A task-based framework was developed to optimize the CTP system parameters; (3) Guided by (1) and (2), PICCS was customized for the reconstruction of CTP source images. Digital anthropomorphic perfusion phantoms, animal studies, and preliminary human subject studies were used to validate and evaluate the potentials of using these innovations to advance the CTP technology. Results: The 4D cascaded model was validated in both phantom