WorldWideScience

Sample records for inactivation rate constant

  1. Arrhenius Rate: constant volume burn

    Energy Technology Data Exchange (ETDEWEB)

    Menikoff, Ralph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-12-06

    A constant volume burn occurs for an idealized initial state in which a large volume of reactants at rest is suddenly raised to a high temperature and begins to burn. Due to the uniform spatial state, there is no fluid motion and no heat conduction. This reduces the time evolu tion to an ODE for the reaction progress variable. With an Arrhenius reaction rate, two characteristics of thermal ignition are illustrated: induction time and thermal runaway. The Frank-Kamenetskii approximation then leads to a simple expression for the adiabatic induction time. For a first order reaction, the analytic solution is derived and used to illustrate the effect of varying the activation temperature; in particular, on the induction time. In general, the ODE can be solved numerically. This is used to illustrate the effect of varying the reaction order. We note that for a first order reaction, the time evolution of the reaction progress variable has an exponential tail. In contrast, for a reaction order less than one, the reaction completes in a nite time. The reaction order also affects the induction time.

  2. Dissociative electron attachment to ozone: rate constant

    International Nuclear Information System (INIS)

    Skalny, J.D.; Cicman, P.; Maerk, T.D.

    2002-01-01

    The rate constant for dissociative electron attachment to ozone has been derived over the energy range of 0-10 eV by using previously measured cross section data revisited here in regards to discrimination effect occurring during the extraction of ions. The obtained data for both possible channels exhibit the maximum at mean electron energies close to 1 eV. (author)

  3. Fluorodeoxyglucose rate constants, lumped constant, and glucose metabolic rate in rabbit heart

    International Nuclear Information System (INIS)

    Krivokapich, J.; Huang, S.C.; Selin, C.E.; Phelps, M.E.

    1987-01-01

    The isolated arterial perfused rabbit interventricular septum was used to measure myocardial metabolic rate for glucose (MMRGlc) and rate constants and lumped constant (LC) for the glucose analogue [ 18 F]fluorodeoxyglucose (FDG) using a tracer kinetic model. FDG was delivered by constant infusion during coincidence counting of tissue 18 F radioactivity. The MMRGlc was measured by the Fick method. Control septa were paced at 72 beats/min and perfused at 1.5 ml/min with oxygenated perfusate containing 5.6 mM glucose and 5 mU/ml insulin. The following conditions were tested: 3.0 and 4.5 ml/min; insulin increased to 25 mU/ml; insulin omitted; 2.8 mM and 11.2 mM glucose; 144 beats/min and 96 paired stimuli/min; and anoxia. Under all conditions studied the phosphorylation (hexokinase) reaction was rate limiting relative to transport. Compared with control conditions, the phosphorylation rate constant was significantly increased with 2.8 mM glucose as well as in anoxia. With 4.5 ml/min and 11.2 mM glucose, conditions that should increase glucose flux into tissue without increasing demand, the phosphorylation rate constant decreased significantly. With 11.2 mM glucose, 96 paired stimuli/min, and anoxia without insulin, a significant increase in the hydrolysis rate of FDG 6-phosphate was observed and suggests that hydrolysis is also an important mechanism for regulating the MMRGlc. Increased transport rate constants were observed with increased flow rates, 96 paired stimuli/min, and anoxia at 96 beats/min. The LC was not significantly different from control in 11 of 14 conditions studied. Therefore, under most conditions in average LC can be used to calculate MMRGlc estimates

  4. Constant False Alarm Rate (CFAR) Autotrend Evaluation Report

    Science.gov (United States)

    2011-12-01

    TECHNICAL REPORT RDMR-AE-11-01 CONSTANT FALSE ALARM RATE ( CFAR ) AUTOTREND EVALUATION REPORT Daniel Wade Aviation Engineering...TYPE AND DATES COVERED Final 4. TITLE AND SUBTITLE Constant False Alarm Rate ( CFAR ) Autotrend Evaluation Report 5. FUNDING NUMBERS...performance of the Constant False Alarm Rate ( CFAR ) Autotrend dynamic alert detection technology as an augmentation to the Apache Modernized Signal

  5. ADSORPTION RATE CONSTANTS OF EOSIN IN HUMIN

    OpenAIRE

    anshar, andi muhammad

    2015-01-01

    Eosin is one of the dyes commonly used in the industry and has the potential to cause pollution of the water environment. The Eosin pollution treatment methods used in this study was the adsorption method using humin fraction obtained from the peat land comes from Kalimantan. From the research data showed that the adsorption of eosin in humin result of washing with HCl / HF optimum at pH 4 and a contact time of 60 minutes with the adsorption-order rate was 8,4 x 10-3 min-1

  6. Rate Constants and Mechanisms of Protein-Ligand Binding.

    Science.gov (United States)

    Pang, Xiaodong; Zhou, Huan-Xiang

    2017-05-22

    Whereas protein-ligand binding affinities have long-established prominence, binding rate constants and binding mechanisms have gained increasing attention in recent years. Both new computational methods and new experimental techniques have been developed to characterize the latter properties. It is now realized that binding mechanisms, like binding rate constants, can and should be quantitatively determined. In this review, we summarize studies and synthesize ideas on several topics in the hope of providing a coherent picture of and physical insight into binding kinetics. The topics include microscopic formulation of the kinetic problem and its reduction to simple rate equations; computation of binding rate constants; quantitative determination of binding mechanisms; and elucidation of physical factors that control binding rate constants and mechanisms.

  7. Determination of Biological Oxygen Demand Rate Constant and ...

    African Journals Online (AJOL)

    Determination of Biological Oxygen Demand Rate Constant and Ultimate Biological Oxygen Demand for Liquid Waste Generated from Student Cafeteria at Jimma University: A Tool for Development of Scientific Criteria to Protect Aquatic Health in the Region.

  8. Rate constant for reaction of atomic hydrogen with germane

    Science.gov (United States)

    Nava, David F.; Payne, Walter A.; Marston, George; Stief, Louis J.

    1990-01-01

    Due to the interest in the chemistry of germane in the atmospheres of Jupiter and Saturn, and because previously reported kinetic reaction rate studies at 298 K gave results differing by a factor of 200, laboratory measurements were performed to determine the reaction rate constant for H + GeH4. Results of the study at 298 K, obtained via the direct technique of flash photolysis-resonance fluorescence, yield the reaction rate constant, k = (4.08 + or - 0.22) x 10(exp -12) cu cm/s.

  9. Rate constant for reaction of hydroxyl radicals with bicarbonate ions

    International Nuclear Information System (INIS)

    Buxton, G.V.; Elliot, A.J.

    1986-01-01

    The rate constant for reaction of hydroxyl radicals with the bicarbonate ion has been determined to be 8.5 x 10 6 dm 3 mol -1 s -1 . This value was calculated from: the measured rate of formation of the CO 3 - radical in pulsed electron irradiation of bicarbonate solutions over the pH range 7.0 to 9.4; the pK for the equilibrium HCO 3 - = CO 3 2- + H + ; and the rate constant for hydroxyl radicals reacting with the carbonate ion. (author)

  10. A Comparative Study of the Drying Rate Constant, Drying Efficiency ...

    African Journals Online (AJOL)

    The adoption of the drying techniques would ensure steady availability of these vegetables all the year round as well as reduce carbon emissions from the conventional drying methods and hence mitigate global warming. KEYWORDS: Solar drying, open- air sun drying, drying rate constant, falling rate, climate change, food ...

  11. Sensitivity of molecular vibrational dynamics to energy exchange rate constants

    International Nuclear Information System (INIS)

    Billing, G D; Coletti, C; Kurnosov, A K; Napartovich, A P

    2003-01-01

    The sensitivity of molecular vibrational population dynamics, governing the CO laser operated in fundamental and overtone transitions, to vibration-to-vibration rate constants is investigated. With this aim, three rate constant sets have been used, differing in their completeness (i.e. accounting for single-quantum exchange only, or for multi-quantum exchange with a limited number of rate constants obtained by semiclassical calculations, and, finally, with an exhaustive set of rate constants including asymmetric exchange processes, as well) and in the employed interaction potential. The most complete set among these three is introduced in this paper. An existing earlier kinetic model was updated to include the latter new data. Comparison of data produced by kinetic modelling with the above mentioned sets of rate constants shows that the vibrational distribution function, and, in particular, the CO overtone laser characteristics, are very sensitive to the choice of the model. The most complete model predicts slower evolution of the vibrational distribution, in qualitative agreement with experiments

  12. High Heating Rates Affect Greatly the Inactivation Rate of Escherichia coli

    Science.gov (United States)

    Huertas, Juan-Pablo; Aznar, Arantxa; Esnoz, Arturo; Fernández, Pablo S.; Iguaz, Asunción; Periago, Paula M.; Palop, Alfredo

    2016-01-01

    Heat resistance of microorganisms can be affected by different influencing factors. Although, the effect of heating rates has been scarcely explored by the scientific community, recent researches have unraveled its important effect on the thermal resistance of different species of vegetative bacteria. Typically heating rates described in the literature ranged from 1 to 20°C/min but the impact of much higher heating rates is unclear. The aim of this research was to explore the effect of different heating rates, such as those currently achieved in the heat exchangers used in the food industry, on the heat resistance of Escherichia coli. A pilot plant tubular heat exchanger and a thermoresistometer Mastia were used for this purpose. Results showed that fast heating rates had a deep impact on the thermal resistance of E. coli. Heating rates between 20 and 50°C/min were achieved in the heat exchanger, which were much slower than those around 20°C/s achieved in the thermoresistometer. In all cases, these high heating rates led to higher inactivation than expected: in the heat exchanger, for all the experiments performed, when the observed inactivation had reached about seven log cycles, the predictions estimated about 1 log cycle of inactivation; in the thermoresistometer these differences between observed and predicted values were even more than 10 times higher, from 4.07 log cycles observed to 0.34 predicted at a flow rate of 70 mL/min and a maximum heating rate of 14.7°C/s. A quantification of the impact of the heating rates on the level of inactivation achieved was established. These results point out the important effect that the heating rate has on the thermal resistance of E. coli, with high heating rates resulting in an additional sensitization to heat and therefore an effective food safety strategy in terms of food processing. PMID:27563300

  13. High Heating Rates Affect Greatly the Inactivation Rate of Escherichia coli.

    Science.gov (United States)

    Huertas, Juan-Pablo; Aznar, Arantxa; Esnoz, Arturo; Fernández, Pablo S; Iguaz, Asunción; Periago, Paula M; Palop, Alfredo

    2016-01-01

    Heat resistance of microorganisms can be affected by different influencing factors. Although, the effect of heating rates has been scarcely explored by the scientific community, recent researches have unraveled its important effect on the thermal resistance of different species of vegetative bacteria. Typically heating rates described in the literature ranged from 1 to 20°C/min but the impact of much higher heating rates is unclear. The aim of this research was to explore the effect of different heating rates, such as those currently achieved in the heat exchangers used in the food industry, on the heat resistance of Escherichia coli. A pilot plant tubular heat exchanger and a thermoresistometer Mastia were used for this purpose. Results showed that fast heating rates had a deep impact on the thermal resistance of E. coli. Heating rates between 20 and 50°C/min were achieved in the heat exchanger, which were much slower than those around 20°C/s achieved in the thermoresistometer. In all cases, these high heating rates led to higher inactivation than expected: in the heat exchanger, for all the experiments performed, when the observed inactivation had reached about seven log cycles, the predictions estimated about 1 log cycle of inactivation; in the thermoresistometer these differences between observed and predicted values were even more than 10 times higher, from 4.07 log cycles observed to 0.34 predicted at a flow rate of 70 mL/min and a maximum heating rate of 14.7°C/s. A quantification of the impact of the heating rates on the level of inactivation achieved was established. These results point out the important effect that the heating rate has on the thermal resistance of E. coli, with high heating rates resulting in an additional sensitization to heat and therefore an effective food safety strategy in terms of food processing.

  14. Distribution of adhesion rate constant in the coal sample

    Directory of Open Access Journals (Sweden)

    Marian Brožek

    2005-11-01

    Full Text Available Flotation is the process of enrichment which consists in differentiating the useful component (volume property in the separation products. Flotation leads to the differentiation of the volume property by means of applying the differentiation of surface properties. Since there is a correlation between these properties, the authors determined the distribution of adhesion rate constant in relation with the content of the useful component and applying the dispersive model of a particle. The content of the useful component is directly connected with the volume physical property, represented by particle density. The paper present distribution functions of density and adhesion rate constant in the sample. Also the relation between adhesion rate constant and ash content for narrow density fractions has been revealed.

  15. Accurate and approximate thermal rate constants for polyatomic chemical reactions

    International Nuclear Information System (INIS)

    Nyman, Gunnar

    2007-01-01

    In favourable cases it is possible to calculate thermal rate constants for polyatomic reactions to high accuracy from first principles. Here, we discuss the use of flux correlation functions combined with the multi-configurational time-dependent Hartree (MCTDH) approach to efficiently calculate cumulative reaction probabilities and thermal rate constants for polyatomic chemical reactions. Three isotopic variants of the H 2 + CH 3 → CH 4 + H reaction are used to illustrate the theory. There is good agreement with experimental results although the experimental rates generally are larger than the calculated ones, which are believed to be at least as accurate as the experimental rates. Approximations allowing evaluation of the thermal rate constant above 400 K are treated. It is also noted that for the treated reactions, transition state theory (TST) gives accurate rate constants above 500 K. TST theory also gives accurate results for kinetic isotope effects in cases where the mass of the transfered atom is unchanged. Due to neglect of tunnelling, TST however fails below 400 K if the mass of the transferred atom changes between the isotopic reactions

  16. Impact of Constant Rate Factor on Objective Video Quality Assessment

    Directory of Open Access Journals (Sweden)

    Juraj Bienik

    2017-01-01

    Full Text Available This paper deals with the impact of constant rate factor value on the objective video quality assessment using PSNR and SSIM metrics. Compression efficiency of H.264 and H.265 codecs defined by different Constant rate factor (CRF values was tested. The assessment was done for eight types of video sequences depending on content for High Definition (HD, Full HD (FHD and Ultra HD (UHD resolution. Finally, performance of both mentioned codecs with emphasis on compression ratio and efficiency of coding was compared.

  17. 18 CFR 806.12 - Constant-rate aquifer testing.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Constant-rate aquifer testing. 806.12 Section 806.12 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN... groundwater availability analysis to determine the availability of water during a 1-in-10-year recurrence...

  18. Tunneling corrections to unimolecular rate constants, with application to formaldehyde

    International Nuclear Information System (INIS)

    Miller, W.H.

    1979-01-01

    Tunneling corrections to the rate constant for unimolecular reactions in an isolated molecule are treated within the standard transition state (i.e., RRKM) theory of such processes. The microcanonical distribution relevant to the unimolecular case causes tunneling effects to enter in a somewhat more complicated fashion than in the analogous transition-state theory for thermally averaged bimolecular rate constants; e.g., even within the separable approximation they do not enter as simply a multiplicative correction factor. Application of the theoretical expressions to some unimolecular processes (H 2 CO → H 2 + CO, trans-HCOH → H 2 CO) of interest in the collisionless photochemistry of formaldehyde indicates that tunneling effects are quite significant for rates of 10 9 s -1 or slower. Isotope effects are also considered and seen to be quite interesting. 4 figures, 1 table

  19. Semiclassical Calculation of Reaction Rate Constants for Homolytical Dissociations

    Science.gov (United States)

    Cardelino, Beatriz H.

    2002-01-01

    There is growing interest in extending organometallic chemical vapor deposition (OMCVD) to III-V materials that exhibit large thermal decomposition at their optimum growth temperature, such as indium nitride. The group III nitrides are candidate materials for light-emitting diodes and semiconductor lasers operating into the blue and ultraviolet regions. To overcome decomposition of the deposited compound, the reaction must be conducted at high pressures, which causes problems of uniformity. Microgravity may provide the venue for maintaining conditions of laminar flow under high pressure. Since the selection of optimized parameters becomes crucial when performing experiments in microgravity, efforts are presently geared to the development of computational OMCVD models that will couple the reactor fluid dynamics with its chemical kinetics. In the present study, we developed a method to calculate reaction rate constants for the homolytic dissociation of III-V compounds for modeling OMCVD. The method is validated by comparing calculations with experimental reaction rate constants.

  20. High-temperature rate constant measurements for OH+xylenes

    KAUST Repository

    Elwardani, Ahmed Elsaid

    2015-06-01

    The overall rate constants for the reactions of hydroxyl (OH) radicals with o-xylene (k 1), m-xylene (k 2), and p-xylene (k 3) were measured behind reflected shock waves over 890-1406K at pressures of 1.3-1.8atm using OH laser absorption near 306.7nm. Measurements were performed under pseudo-first-order conditions. The measured rate constants, inferred using a mechanism-fitting approach, can be expressed in Arrhenius form as:k1=2.93×1013exp(-1350.3/T)cm3mol-1s-1(890-1406K)k2=3.49×1013exp(-1449.3/T)cm3mol-1s-1(906-1391K)k3=3.5×1013exp(-1407.5/T)cm3mol-1s-1(908-1383K)This paper presents, to our knowledge, first high-temperature measurements of the rate constants of the reactions of xylene isomers with OH radicals. Low-temperature rate-constant measurements by Nicovich et al. (1981) were combined with the measurements in this study to obtain the following Arrhenius expressions, which are applicable over a wider temperature range:k1=2.64×1013exp(-1181.5/T)cm3mol-1s-1(508-1406K)k2=3.05×109exp(-400/T)cm3mol-1s-1(508-1391K)k3=3.0×109exp(-440/T)cm3mol-1s-1(526-1383K) © 2015 The Combustion Institute.

  1. Uniaxial tension test on Rubber at constant true strain rate

    Directory of Open Access Journals (Sweden)

    Sourne H.L.

    2012-08-01

    Full Text Available Elastomers are widely used for damping parts in different industrial contexts because of their remarkable dissipation properties. Indeed, they can undergo severe mechanical loading conditions, i.e., high strain rates and large strains. Nevertheless, the mechanical response of these materials can vary from purely rubber-like to glassy depending on the strain rate undergone. Classically, uniaxial tension tests are made in order to find a relation between the stress and the strain in the material at various strain rates. However, even if the strain rate is searched to be constant, it is the nominal strain rate that is considered. Here we develop a test at constant true strain rate, i.e. the strain rate that is experienced by the material. In order to do such a test, the displacement imposed by the machine is an exponential function of time. This test has been performed with a high speed hydraulic machine for strain rates between 0.01/s and 100/s. A specific specimen has been designed, yielding a uniform strain field (and so a uniform stress field. Furthermore, an instrumented aluminum bar has been used to take into account dynamic effects in the measurement of the applied force. A high speed camera enables the determination of strain in the sample using point tracking technique. Using this method, the stress-strain curve of a rubber-like material during a loading-unloading cycle has been determined, up to a stretch ratio λ = 2.5. The influence of the true strain rate both on stiffness and on dissipation of the material is then discussed.

  2. Empirical correlation for prediction of the elutriation rate constant

    Directory of Open Access Journals (Sweden)

    Stojkovski Valentino

    2003-01-01

    Full Text Available In vessels containing fluidized solids, the gas leaving carries some suspended particles. This flux of solids is called entrainment, E or carryover and the bulk density of solids on this leaving gas stream is called the holdup. For design we need to know the rate of this entrainment and the size distribution of these entrained particles Rim in relation to the size distribution in the bed, Rib, as well as the variation of both these quantities with gas and solids properties, gas flow rate, bed geometry and location of the leaving gas stream. Steady-state elutriation experiments have been done in a fluidized bed 0,2 m diameter by 2,94 m high freeboard with superficial gas velocities up to 1 m/s using solids ranging in mean size from 0,15 to 0,58 mm and with particle density 2660 kg/m3. When the fine and coarse particles were mixed, the total entrainment flux above the freeboard was increased. None of the published correlations for estimating the elutriation rate constant were useful. A new simple equation, which is developed on the base of experimental results and theory of dimensional analyses, is presented.

  3. Simultaneous in vivo measurement of lumped constant and rate constants in experimental cerebral ischemia using F-18 FDG.

    Science.gov (United States)

    Nakai, H; Matsuda, H; Takara, E; Diksic, M; Meyer, E; Yamamoto, Y L

    1987-01-01

    Lumped and transfer rate constants in ischemic brain tissue must be measured to estimate accurately cerebral glucose utilization by the deoxyglucose method. We studied the bilateral middle cerebral artery occlusion model in 17 cats, 5 with a 1-hour occlusion, 5 with a 4-hour occlusion, and 7 with a sham operation. The time course of cerebral tissue radioactivity (Ci*(t)) was monitored by external coincidence counting during a programmed infusion of [18F]-2-deoxy-2-fluoro-d-glucose (18F-2-FDG). Arterial plasma concentration (Cp*(t)) of the tracer was kept constant during the first 45 minutes. Rate constants were estimated from Ci*(t) and Cp*(t) by a nonlinear least-squares fitting routine. The lumped constant was estimated from the fit of the ratio of extraction fractions of glucose and 18F-2-FDG by nonweighted, nonlinear least-squares fitting. In the 4-hour-occlusion model, the transfer constant k1* was 23% lower, k3* 39% lower, and the lumped constant 78% higher than in the sham-operated animals. In the 1-hour-occlusion model, k3* was 26% lower than in the sham-operated animals but the lumped constant was not significantly different. The rate of glucose utilization was significantly different in the 4-hour-occlusion model compared to the sham-operated animals (48% decrease, p less than 0.05) but was not significantly different in the 1-hour-occlusion model.

  4. Voltage gating by molecular subunits of Na+ and K+ ion channels: higher-dimensional cubic kinetics, rate constants, and temperature.

    Science.gov (United States)

    Fohlmeister, Jürgen F

    2015-06-01

    The structural similarity between the primary molecules of voltage-gated Na and K channels (alpha subunits) and activation gating in the Hodgkin-Huxley model is brought into full agreement by increasing the model's sodium kinetics to fourth order (m(3) → m(4)). Both structures then virtually imply activation gating by four independent subprocesses acting in parallel. The kinetics coalesce in four-dimensional (4D) cubic diagrams (16 states, 32 reversible transitions) that show the structure to be highly failure resistant against significant partial loss of gating function. Rate constants, as fitted in phase plot data of retinal ganglion cell excitation, reflect the molecular nature of the gating transitions. Additional dimensions (6D cubic diagrams) accommodate kinetically coupled sodium inactivation and gating processes associated with beta subunits. The gating transitions of coupled sodium inactivation appear to be thermodynamically irreversible; response to dielectric surface charges (capacitive displacement) provides a potential energy source for those transitions and yields highly energy-efficient excitation. A comparison of temperature responses of the squid giant axon (apparently Arrhenius) and mammalian channel gating yields kinetic Q10 = 2.2 for alpha unit gating, whose transitions are rate-limiting at mammalian temperatures; beta unit kinetic Q10 = 14 reproduces the observed non-Arrhenius deviation of mammalian gating at low temperatures; the Q10 of sodium inactivation gating matches the rate-limiting component of activation gating at all temperatures. The model kinetics reproduce the physiologically large frequency range for repetitive firing in ganglion cells and the physiologically observed strong temperature dependence of recovery from inactivation. Copyright © 2015 the American Physiological Society.

  5. Rate Constant and Temperature Dependence for the Reaction of Hydroxyl Radicals with 2-Flouropropane (FC-281ea) and Comparison with an Estimated Rate Constant

    Science.gov (United States)

    DeMore, W.; Wilson, E., Jr.

    1998-01-01

    Relative rate experiments were used to measure the rate constant and temperature dependence of the reaction of OH radicals with 2-fluoropropane (HFC-281ea), using ethane, propane, ethyl chloride as reference standards.

  6. A Novel Rate Control Scheme for Constant Bit Rate Video Streaming

    Directory of Open Access Journals (Sweden)

    Venkata Phani Kumar M

    2015-08-01

    Full Text Available In this paper, a novel rate control mechanism is proposed for constant bit rate video streaming. The initial quantization parameter used for encoding a video sequence is determined using the average spatio-temporal complexity of the sequence, its resolution and the target bit rate. Simple linear estimation models are then used to predict the number of bits that would be necessary to encode a frame for a given complexity and quantization parameter. The experimental results demonstrate that our proposed rate control mechanism significantly outperforms the existing rate control scheme in the Joint Model (JM reference software in terms of Peak Signal to Noise Ratio (PSNR and consistent perceptual visual quality while achieving the target bit rate. Furthermore, the proposed scheme is validated through implementation on a miniature test-bed.

  7. Determination of Rate Constants and Equilibrium Constants for Solution-Phase Drug–Protein Interactions by Ultrafast Affinity Extraction

    Science.gov (United States)

    2015-01-01

    A method was created on the basis of ultrafast affinity extraction to determine both the dissociation rate constants and equilibrium constants for drug–protein interactions in solution. Human serum albumin (HSA), an important binding agent for many drugs in blood, was used as both a model soluble protein and as an immobilized binding agent in affinity microcolumns for the analysis of free drug fractions. Several drugs were examined that are known to bind to HSA. Various conditions to optimize in the use of ultrafast affinity extraction for equilibrium and kinetic studies were considered, and several approaches for these measurements were examined. The dissociation rate constants obtained for soluble HSA with each drug gave good agreement with previous rate constants reported for the same drugs or other solutes with comparable affinities for HSA. The equilibrium constants that were determined also showed good agreement with the literature. The results demonstrated that ultrafast affinity extraction could be used as a rapid approach to provide information on both the kinetics and thermodynamics of a drug–protein interaction in solution. This approach could be extended to other systems and should be valuable for high-throughput drug screening or biointeraction studies. PMID:24911267

  8. Kidney function during arterial chemoreceptor stimulation. I. Influence of unilateral renal nerve section, bilateral cervical vagotomy, constant artificial ventilation, and carotid body chemoreceptor inactivation.

    Science.gov (United States)

    Schmidt, M; Ledderhos, C; Honig, A

    1985-01-01

    The reactions of renal hemodynamics and excretory function elicited by perfusion of the vascularly isolated carotid bodies with venous blood were studied in four groups of chloralosed cats in which the Nn. vagi, the breathing reactions, and the carotid body chemoreceptors were excluded successively. The kidney function was determined using clearance-techniques in both the innervated right and denervated left kidneys. In the animals with intact carotid chemoreceptors perfusion of the carotid bifurcations with venous blood caused a weak (4-6 mm Hg on the average) and transient increase of the mean systemic arterial blood pressure as well as a vasoconstriction and a fall of the blood flow and glomerular filtration rate in the innervated kidneys. In the spontaneously breathing animals carotid body chemoreceptor stimulation effected a rise of fractional sodium excretion only in the denervated kidneys whereas the relaxed and constantly ventilated cats showed a natriuretic response both at the innervated and denervated side. The reactions of renal excretory function did not correlate with those of renal hemodynamics. Vagotomy, relaxation, and constant artificial ventilation failed to abolish the responses elicited by stimulation of the chemoreceptors. Inactivation of the carotid body chemoreceptors by injecting acetic acid into the vascularly isolated carotid sinuses prevented both the hemodynamic and tubular reactions due to hypoxic-hypercapnic perfusion of the carotid bodies. The findings suggest that the arterial chemoreceptors control kidney function by specific reflex mechanisms. The influence of the carotid body chemoreceptors on kidney vasculature is mediated by the efferent renal nerves, whereas the control of renal tubular sodium reabsorption requires hormone action.

  9. Assessment of the analgesic potency of constant rate infusion of ...

    African Journals Online (AJOL)

    Parameters determined were heart and respiratory rates, blood glucose level, pain score and body weight. Results showed that mean heart rate, respiratory rate and body weight were not differed significantly (p > 0.05) within and among the groups. Mean blood glucose level of group 4 was significantly higher (p < 0.05) ...

  10. Exergy analysis of integrated photovoltaic thermal solar water heater under constant flow rate and constant collection temperature modes

    NARCIS (Netherlands)

    Tiwari, A.; Dubey, Swapnil; Sandhu, G.S.; Sodha, M.S.; Anwar, S.I.

    2009-01-01

    In this communication, an analytical expression for the water temperature of an integrated photovoltaic thermal solar (IPVTS) water heater under constant flow rate hot water withdrawal has been obtained. Analysis is based on basic energy balance for hybrid flat plate collector and storage tank,

  11. Reaction rate constants of HO2 + O3 in the temperature range 233-400 K

    Science.gov (United States)

    Wang, Xiuyan; Suto, Masako; Lee, L. C.

    1988-01-01

    The reaction rate constants of HO2 + O3 were measured in the temperature range 233-400 K using a discharge flow system with photofragment emission detection. In the range 233-253 K, the constants are approximately a constant value, and then increase with increasing temperature. This result suggests that the reaction may have two different channels. An expression representing the reaction rate constants is presented.

  12. Kidney function during common carotid artery occlusion in anaesthetized cats: influence of vagotomy, constant ventilation, blood pressure stabilization, and carotid body chemoreceptor inactivation.

    Science.gov (United States)

    Honig, A; Schmidt, M; Arndt, H; Hanus, U; Kranz, G; Rogoll, I

    1985-01-01

    The reactions of kidney function elicited by bilateral common carotid artery occlusion were studied in six groups of chloralosed cats in which the Nn. vagi, the breathing reaction, the increase of the mean systemic arterial blood pressure, and the carotid body chemoreceptors were excluded successively. Carotid occlusion in the control animals caused a rise of the mean systemic arterial blood pressure, hyperventilation, and an increase in renal sodium and water excretion, resulting from an inhibition of tubular reabsorption. Bilateral cervical vagotomy, relaxation and constant artificial ventilation only slightly modified this renal response. Inactivation of the carotid body chemoreceptors in vagotomized and constantly ventilated cats attenuated the natriuresis due to carotid occlusion regardless of the behaviour of the renal perfusion pressure. On the other hand, keeping the mean arterial blood pressure during carotid occlusion constant by the bleeding technique also reduced the natriuretic reaction. Cats with both inactivated carotid body chemoreceptors and constant renal perfusion pressure exhibited an antinatriuretic reaction during carotid clamping. From these data it is concluded that in narcotized cats the natriuretic response during carotid occlusion is the result of both a stimulation of the carotid body chemoreceptors and the rise of the renal perfusion pressure. In contrast, in dogs this so-called carotid-sinus-polyuria seems to be induced solely by the increase of the systemic arterial blood pressure. The findings additionally indicated that the arterial chemoreceptors may be involved in the physiological daily control of renal sodium excretion already at normal arterial oxygen tension under sea-level conditions.

  13. Universality of thermodynamic constants governing biological growth rates.

    Science.gov (United States)

    Corkrey, Ross; Olley, June; Ratkowsky, David; McMeekin, Tom; Ross, Tom

    2012-01-01

    Mathematical models exist that quantify the effect of temperature on poikilotherm growth rate. One family of such models assumes a single rate-limiting 'master reaction' using terms describing the temperature-dependent denaturation of the reaction's enzyme. We consider whether such a model can describe growth in each domain of life. A new model based on this assumption and using a hierarchical Bayesian approach fits simultaneously 95 data sets for temperature-related growth rates of diverse microorganisms from all three domains of life, Bacteria, Archaea and Eukarya. Remarkably, the model produces credible estimates of fundamental thermodynamic parameters describing protein thermal stability predicted over 20 years ago. The analysis lends support to the concept of universal thermodynamic limits to microbial growth rate dictated by protein thermal stability that in turn govern biological rates. This suggests that the thermal stability of proteins is a unifying property in the evolution and adaptation of life on earth. The fundamental nature of this conclusion has importance for many fields of study including microbiology, protein chemistry, thermal biology, and ecological theory including, for example, the influence of the vast microbial biomass and activity in the biosphere that is poorly described in current climate models.

  14. Universality of thermodynamic constants governing biological growth rates.

    Directory of Open Access Journals (Sweden)

    Ross Corkrey

    Full Text Available BACKGROUND: Mathematical models exist that quantify the effect of temperature on poikilotherm growth rate. One family of such models assumes a single rate-limiting 'master reaction' using terms describing the temperature-dependent denaturation of the reaction's enzyme. We consider whether such a model can describe growth in each domain of life. METHODOLOGY/PRINCIPAL FINDINGS: A new model based on this assumption and using a hierarchical Bayesian approach fits simultaneously 95 data sets for temperature-related growth rates of diverse microorganisms from all three domains of life, Bacteria, Archaea and Eukarya. Remarkably, the model produces credible estimates of fundamental thermodynamic parameters describing protein thermal stability predicted over 20 years ago. CONCLUSIONS/SIGNIFICANCE: The analysis lends support to the concept of universal thermodynamic limits to microbial growth rate dictated by protein thermal stability that in turn govern biological rates. This suggests that the thermal stability of proteins is a unifying property in the evolution and adaptation of life on earth. The fundamental nature of this conclusion has importance for many fields of study including microbiology, protein chemistry, thermal biology, and ecological theory including, for example, the influence of the vast microbial biomass and activity in the biosphere that is poorly described in current climate models.

  15. A model for turbulent dissipation rate in a constant pressure ...

    Indian Academy of Sciences (India)

    J Dey

    flow quantities. Comparable agreement between the estimated Taylor microscale and Kolmogorov length scale with other data ... experimentally. Keywords. Boundary layers; dissipation rate; Kolmogorov length scale; Taylor microscale. 1. ... practice due to complexity involved in estimating these quantities. Segalini et al [2] ...

  16. A model for turbulent dissipation rate in a constant pressure ...

    Indian Academy of Sciences (India)

    J Dey

    for measuring the Taylor microscale from two hot-wire measurements. Once the Taylor microscale is available, the turbulent dissipation rate can be estimated, at least for isotropic turbulence. .... Reynolds number based on the boundary layer thickness. While the ... the laminar skin-friction term in pipe and channel flows.

  17. Constant temperatures and the rate of seed germination in maize ...

    African Journals Online (AJOL)

    The rate of germination of the NEM cultivar was faster than that of the QPM cultivar at all temperatures. The thermal times for median germination were 46 for QPM and 40.7 oCd for the NEM cultivar. The cardinal temperatures (base, Tb, optimum, To and ceiling, Tc) for the NEM cultivar were Tb: 7, To: 30 and Tc: 48.2 oC.

  18. The effect of temperature fluctuations of reaction rate constants in turbulent reacting flows

    Science.gov (United States)

    Chinitz, W.; Antaki, P. J.; Kassar, G. M.

    1981-01-01

    Current models of turbulent reacting flows frequently use Arrhenius reaction rate constants obtained from static or laminar flow theory and/or experiments, or from best fits of static, laminar, and turbulent data. By treating the reaction rate constant as a continuous random variable which is temperature-dependent, the present study assesses the effect of turbulent temperature fluctuations on the reaction rate constant. This model requires that a probability density function (PDF) describing the nature of the fluctuations be specified. Three PDFs are examined: the clipped Gaussian, the beta PDF, and the ramp model. All the models indicate that the reaction rate constant is greater in a turbulent flow field than in an equivalent laminar flow. In addition, an amplification ratio, which is the ratio of the turbulent rate constant to the laminar rate constant, is defined and its behavior as a function of the mean temperature fluctuations is described

  19. Measuring kinetic rate constants of multiple-component reactions with optical biosensors.

    Science.gov (United States)

    Edwards, David A; Evans, Ryan M; Li, Wenbin

    2017-09-15

    One may measure the kinetic rate constants associated with biochemical reactions using an optical biosensor: an instrument in which ligand molecules are convected through a flow cell over a surface to which receptors are immobilized. If there are multiple reactants, one is faced with the problem of fitting multiple kinetic rate constants to one signal, since data from all of the reacting species is lumped together. Even in the presence of ambiguous data, one may use a series of experiments to accurately determine the rate constants. Moreover, the true set of rate constants may be identified by either postprocessing the signals or adjusting the ligand inflow concentrations. Published by Elsevier Inc.

  20. Protein A chromatography increases monoclonal antibody aggregation rate during subsequent low pH virus inactivation hold.

    Science.gov (United States)

    Mazzer, Alice R; Perraud, Xavier; Halley, Jennifer; O'Hara, John; Bracewell, Daniel G

    2015-10-09

    Protein A chromatography is a near-ubiquitous method of mAb capture in bioprocesses. The use of low pH buffer for elution from protein A is known to contribute to product aggregation. Yet, a more limited set of evidence suggests that low pH may not be the sole cause of aggregation in protein A chromatography, rather, other facets of the process may contribute significantly. This paper presents a well-defined method for investigating this problem. An IgG4 was incubated in elution buffer after protein A chromatography (typical of the viral inactivation hold) and the quantity of monomer in neutralised samples was determined by size exclusion chromatography; elution buffers of different pH values predetermined to induce aggregation of the IgG4 were used. Rate constants for monomer decay over time were determined by fitting exponential decay functions to the data. Similar experiments were implemented in the absence of a chromatography step, i.e. IgG4 aggregation at low pH. Rate constants for aggregation after protein A chromatography were considerably higher than those from low pH exposure alone; a distinct shift in aggregation rates was apparent across the pH range tested. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Protein A chromatography increases monoclonal antibody aggregation rate during subsequent low pH virus inactivation hold

    Science.gov (United States)

    Mazzer, Alice R.; Perraud, Xavier; Halley, Jennifer; O’Hara, John; Bracewell, Daniel G.

    2015-01-01

    Protein A chromatography is a near-ubiquitous method of mAb capture in bioprocesses. The use of low pH buffer for elution from protein A is known to contribute to product aggregation. Yet, a more limited set of evidence suggests that low pH may not be the sole cause of aggregation in protein A chromatography, rather, other facets of the process may contribute significantly. This paper presents a well-defined method for investigating this problem. An IgG4 was incubated in elution buffer after protein A chromatography (typical of the viral inactivation hold) and the quantity of monomer in neutralised samples was determined by size exclusion chromatography; elution buffers of different pH values predetermined to induce aggregation of the IgG4 were used. Rate constants for monomer decay over time were determined by fitting exponential decay functions to the data. Similar experiments were implemented in the absence of a chromatography step, i.e. IgG4 aggregation at low pH. Rate constants for aggregation after protein A chromatography were considerably higher than those from low pH exposure alone; a distinct shift in aggregation rates was apparent across the pH range tested. PMID:26346187

  2. Effects of track structure and cell inactivation on the calculation of heavy ion mutation rates in mammalian cells

    Science.gov (United States)

    Cucinotta, F. A.; Wilson, J. W.; Shavers, M. R.; Katz, R.

    1996-01-01

    It has long been suggested that inactivation severely effects the probability of mutation by heavy ions in mammalian cells. Heavy ions have observed cross sections of inactivation that approach and sometimes exceed the geometric size of the cell nucleus in mammalian cells. In the track structure model of Katz the inactivation cross section is found by summing an inactivation probability over all impact parameters from the ion to the sensitive sites within the cell nucleus. The inactivation probability is evaluated using the dose-response of the system to gamma-rays and the radial dose of the ions and may be equal to unity at small impact parameters for some ions. We show how the effects of inactivation may be taken into account in the evaluation of the mutation cross sections from heavy ions in the track structure model through correlation of sites for gene mutation and cell inactivation. The model is fit to available data for HPRT mutations in Chinese hamster cells and good agreement is found. The resulting calculations qualitatively show that mutation cross sections for heavy ions display minima at velocities where inactivation cross sections display maxima. Also, calculations show the high probability of mutation by relativistic heavy ions due to the radial extension of ions track from delta-rays in agreement with the microlesion concept. The effects of inactivation on mutations rates make it very unlikely that a single parameter such as LET or Z*2/beta(2) can be used to specify radiation quality for heavy ion bombardment.

  3. Competitive kinetics as a tool to determine rate constants for reduction of ferrylmyoglobin by food components

    DEFF Research Database (Denmark)

    Jongberg, Sisse; Lund, Marianne Nissen; Pattison, David I.

    2016-01-01

    . This approach allows determination of apparent rate constants for the oxidation of proteins by haem proteins of relevance to food oxidation and should be applicable to other systems. A similar approach has provided approximate apparent rate constants for the reduction of MbFe(IV)=O by catechin and green tea...

  4. Constrained least squares methods for estimating reaction rate constants from spectroscopic data

    NARCIS (Netherlands)

    Bijlsma, S.; Boelens, H.F.M.; Hoefsloot, H.C.J.; Smilde, A.K.

    2002-01-01

    Model errors, experimental errors and instrumental noise influence the accuracy of reaction rate constant estimates obtained from spectral data recorded in time during a chemical reaction. In order to improve the accuracy, which can be divided into the precision and bias of reaction rate constant

  5. Estimating reaction rate constants: comparison between traditional curve fitting and curve resolution

    NARCIS (Netherlands)

    Bijlsma, S.; Boelens, H. F. M.; Hoefsloot, H. C. J.; Smilde, A. K.

    2000-01-01

    A traditional curve fitting (TCF) algorithm is compared with a classical curve resolution (CCR) approach for estimating reaction rate constants from spectral data obtained in time of a chemical reaction. In the TCF algorithm, reaction rate constants an estimated from the absorbance versus time data

  6. Rate constants for some electrophilic reactions of benzyl, benzhydryl, and trityl cations in solution

    International Nuclear Information System (INIS)

    Ujdak, R.J.; Jones, R.L.; Dorfman, L.M.

    1976-01-01

    Absolute rate constants have been determined by the pulse radiolysis technique for several electrophilic reactions of the benzyl, the benzhydryl, and the trityl cation in 1,2-dichloroethane solution. The rate constants for the reactions of these carbonium ions with chloride ion, with bromide ion, and with iodide ion are all very nearly the same, namely 6 x 10 10 M -1 s -1 at 24 0 C. The values very likely represent the diffusion controlled limit for the ion combination reactions. The rate constants for the reactions with triethylamine, tri-n-propylamine, and tri-n-butylamine range from 2.0 x 10 9 to 7 x 10 6 M -1 s -1 at 24 0 C. With increasing phenyl substitution, the decreasing trend in the magnitude of the rate constant is consistent with the combined electronic and steric effects. With increasing size of the amine, the decrease in the value of the rate constant seems to indicate that the steric effect predominates. The values of the rate constants for reactions of benzyl and benzhydryl cation with methanol, ethanol, and 2-propanol indicate the following. The rate constant is higher for reaction with the alcohol dimer in solution than with alcohol monomer. The rate constants for reaction with alcohol monomer have values of 1 x 10 8 M -1 s -1 or lower

  7. Rate constants for the reaction of OH radicals with 1-chloroalkanes at 295 K

    DEFF Research Database (Denmark)

    Markert, F.; Nielsen, O.J.

    1992-01-01

    The rate constants for the reaction of OH radicals with a series of 1-chloroalkanes were measured at 295 K and at a total pressure of 1 atm. The rate constants were obtained by using the absolute technique of pulse radiolysis combined with kinetic UV-spectroscopy. The results are discussed in terms...

  8. Rate Constants for the Reactions of Hydroxyl Radical with Several Alkanes, Cycloalkanes, and Dimethyl Ether

    Science.gov (United States)

    DeMore, W.; Bayes, K.

    1998-01-01

    Relative rate experiements were used to measure rate constants and temperature denpendencies of the reactions of OH with propane, n-butane, n-pentane, n-hexane, cyclopropane, cyclobutane, cyclopentane, and dimethyl ether.

  9. The time dependence of rate constants of esub(aq)sup(-) reactions

    International Nuclear Information System (INIS)

    Burcl, R.; Byakov, V.M.; Grafutin, V.I.

    1982-01-01

    Published data about the time dependence of rate constants k(esub(aq)sup(-)+Ac) of esub(aq)sup(-) reactions with the acceptor Ac are analyzed, using the results of rate constant k(Ps+Ac) measurements for positronium reactions. It is shown that neither esub(aq)sup(-) nor Ps reaction rate constants depend on time in the observable range. Experimentally found concentration dependence of k(esub(aq)sup(-)+Ac) is due to other factors, connected with the existence of electric charge of esub(aq)sup(-), e.g. ionic strength, tunnelling effect etc. (author)

  10. Henry's law constants and hydrolysis rate constants of 2,2,2-trifluoroethyl acetate and methyl trifluoroacetate

    Science.gov (United States)

    Kutsuna, Shuzo; Chen, Liang; Ohno, Kayo; Tokuhashi, Kazuaki; Sekiya, Akira

    Henry's law constants ( H) and hydrolysis rate constants ( kh) of two fluorinated esters [CH 3C(O)OCH 2CF 3 and CF 3C(O)OCH 3] were determined at 278-298 K by a column-stripping method. The H value at 298 K ( H298) and the standard solvation enthalpy for gas-to-liquid transfer (Δ Hsol) were determined from the van't Hoff equation to be H 298=0.58±0.04 M atm -1 and ΔH sol=- 44±3 kJ mol - 1 for CH 3C(O)OCH 2CF 3, and H 298=0.12±0.04 M atm - 1 and ΔH sol=- 41±16 kJ mol - 1for CF 3C(O)OCH 3. Hydrolysis of CH 3C(O)OCH 2CF 3 was not observed (k hmetal ions, and the salting-out effects of NaCl were also examined for CH 3C(O)OCH 2CF 3. Dissolution in seawater is expected to be a significant tropospheric sink of these fluorinated esters.

  11. Abstraction and exchange contributions to the rate constant of muonium + hydrogen chloride reaction

    International Nuclear Information System (INIS)

    Lagana, A.; Ciccarelli, L.

    1987-01-01

    Quantum collinear rate constants for the abstraction and the exchange channels of the Mu + HCl reaction have been calculated in order to have an estimate of the relative efficiency of the two processes in promoting reactivity for this system. (orig.)

  12. Abstraction and exchange contributions to the rate constant of muonium+hydrogen chloride reaction

    Science.gov (United States)

    Laganà, A.; Ciccarelli, L.

    1987-02-01

    Quantum collinear rate constants for the abstraction and the exchange channels of the Mu+HCl reaction have been calculated in order to have an estimate of the relative efficiency of the two processes in promoting reactivity for this system.

  13. Systematic Angle Random Walk Estimation of the Constant Rate Biased Ring Laser Gyro

    Directory of Open Access Journals (Sweden)

    Guohu Feng

    2013-02-01

    Full Text Available An actual account of the angle random walk (ARW coefficients of gyros in the constant rate biased rate ring laser gyro (RLG inertial navigation system (INS is very important in practical engineering applications. However, no reported experimental work has dealt with the issue of characterizing the ARW of the constant rate biased RLG in the INS. To avoid the need for high cost precise calibration tables and complex measuring set-ups, the objective of this study is to present a cost-effective experimental approach to characterize the ARW of the gyros in the constant rate biased RLG INS. In the system, turntable dynamics and other external noises would inevitably contaminate the measured RLG data, leading to the question of isolation of such disturbances. A practical observation model of the gyros in the constant rate biased RLG INS was discussed, and an experimental method based on the fast orthogonal search (FOS for the practical observation model to separate ARW error from the RLG measured data was proposed. Validity of the FOS-based method was checked by estimating the ARW coefficients of the mechanically dithered RLG under stationary and turntable rotation conditions. By utilizing the FOS-based method, the average ARW coefficient of the constant rate biased RLG in the postulate system is estimated. The experimental results show that the FOS-based method can achieve high denoising ability. This method estimate the ARW coefficients of the constant rate biased RLG in the postulate system accurately. The FOS-based method does not need precise calibration table with high cost and complex measuring set-up, and Statistical results of the tests will provide us references in engineering application of the constant rate biased RLG INS.

  14. Periods of constant and falling-rate for infrared drying of carrot slices Períodos de secagem constante e decrescente de fatias de cenoura por infravermelho

    OpenAIRE

    Fernando M. Botelho; Paulo C. Corrêa; André. L. D. Goneli; Márcio A. Martins; Felipe E. A. Magalhães; Sílvia C. Campos

    2011-01-01

    The aim of this work was to study the infrared drying process of carrot slices and to determine coefficients related to the heat and mass transfer of the process. Fresh carrots were used, dried until constant weight in a dryer with infrared heating source. Different models were utilized to fit the experimental data of constant and falling drying rate periods. It was verified that the coefficients of heat and mass transfer, during the constant drying rate, significantly increased with temperat...

  15. Reaction rate constants of H-abstraction by OH from large ketones: measurements and site-specific rate rules.

    Science.gov (United States)

    Badra, Jihad; Elwardany, Ahmed E; Farooq, Aamir

    2014-06-28

    Reaction rate constants of the reaction of four large ketones with hydroxyl (OH) are investigated behind reflected shock waves using OH laser absorption. The studied ketones are isomers of hexanone and include 2-hexanone, 3-hexanone, 3-methyl-2-pentanone, and 4-methl-2-pentanone. Rate constants are measured under pseudo-first-order kinetics at temperatures ranging from 866 K to 1375 K and pressures near 1.5 atm. The reported high-temperature rate constant measurements are the first direct measurements for these ketones under combustion-relevant conditions. The effects of the position of the carbonyl group (C=O) and methyl (CH3) branching on the overall rate constant with OH are examined. Using previously published data, rate constant expressions covering, low-to-high temperatures, are developed for acetone, 2-butanone, 3-pentanone, and the hexanone isomers studied here. These Arrhenius expressions are used to devise rate rules for H-abstraction from various sites. Specifically, the current scheme is applied with good success to H-abstraction by OH from a series of n-ketones. Finally, general expressions for primary and secondary site-specific H-abstraction by OH from ketones are proposed as follows (the subscript numbers indicate the number of carbon atoms bonded to the next-nearest-neighbor carbon atom, the subscript CO indicates that the abstraction is from a site next to the carbonyl group (C=O), and the prime is used to differentiate different neighboring environments of a methylene group):

  16. Reaction mechanisms and rate constants of waste degradation in landfill bioreactor systems with enzymatic-enhancement.

    Science.gov (United States)

    Jayasinghe, P A; Hettiaratchi, J P A; Mehrotra, A K; Kumar, S

    2014-06-01

    Augmenting leachate before recirculation with peroxidase enzymes is a novel method to increase the available carbon, and therefore the food supply to microorganisms at the declining phase of the anaerobic landfill bioreactor operation. In order to optimize the enzyme-catalyzed leachate recirculation process, it is necessary to identify the reaction mechanisms and determine rate constants. This paper presents a kinetic model developed to ascertain the reaction mechanisms and determine the rate constants for enzyme catalyzed anaerobic waste degradation. The maximum rate of reaction (Vmax) for MnP enzyme-catalyzed reactors was 0.076 g(TOC)/g(DS).day. The catalytic turnover number (k(cat)) of the MnP enzyme-catalyzed was 506.7 per day while the rate constant (k) of the un-catalyzed reaction was 0.012 per day. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Convergence analysis of Chauvin's PCA learning algorithm with a constant learning rate

    International Nuclear Information System (INIS)

    Lv Jiancheng; Yi Zhang

    2007-01-01

    The convergence of Chauvin's PCA learning algorithm with a constant learning rate is studied in this paper by using a DDT method (deterministic discrete-time system method). Different from the DCT method (deterministic continuous-time system method), the DDT method does not require that the learning rate converges to zero. An invariant set of Chauvin's algorithm with a constant learning rate is obtained so that the non-divergence of this algorithm can be guaranteed. Rigorous mathematic proofs are provided to prove the local convergence of this algorithm

  18. Rate constant and reaction coordinate of Trp-cage folding in explicit water

    NARCIS (Netherlands)

    Juraszek, J.; Bolhuis, P.G.

    2008-01-01

    We report rate constant calculations and a reaction coordinate analysis of the rate-limiting folding and unfolding process of the Trp-cage mini-protein in explicit solvent using transition interface sampling. Previous transition path sampling simulations revealed that in this (un)folding process the

  19. On the Values at Equilibrium and Rate Constants in Inter - Conversion Processes.

    Science.gov (United States)

    Olteanu, Octav

    2016-01-01

    Inter - conversion processes of labile molecules obey similar rules to those of reversible chemical reactions. Solving the corresponding linear differential systems is used along this work, as well as in the preceding version. The main purpose of the present mini revue paper is to recall, improve and correct some mathematical methods in determining the optimal values at equilibrium, and remarkable particular rate constants. This part was not proved correctly in my previous work. In my previous work, the proof of the equality of the concentrations of the main species at equilibrium was not correct. In the current manuscript, we use increasing velocity in order to obtain this first important result. To this aim, one applies Schwarz inequality and the case when equality occurs. In order to determine significant rate constants, we characterize these special values in terms of the norm of the linear operator defined by the matrix of the differential system. In my previous work, the normal probability density function was used. The latter method was not realistic. Increasing the velocity, one obtains equal optimal values of the concentrations at equilibrium. This method represents a patent in the field. Secondly, characterization of remarkable rate constants (which are also equal) is deduced. The optimal solutions are written explicitly. Under suitable conditions, the values at equilibrium and the rate constants are equal. The common value at equilibrium equals the common value of the rate constants.

  20. Extraction of elementary rate constants from global network analysis of E. coli central metabolism

    Science.gov (United States)

    Zhao, Jiao; Ridgway, Douglas; Broderick, Gordon; Kovalenko, Andriy; Ellison, Michael

    2008-01-01

    Background As computational performance steadily increases, so does interest in extending one-particle-per-molecule models to larger physiological problems. Such models however require elementary rate constants to calculate time-dependent rate coefficients under physiological conditions. Unfortunately, even when in vivo kinetic data is available, it is often in the form of aggregated rate laws (ARL) that do not specify the required elementary rate constants corresponding to mass-action rate laws (MRL). There is therefore a need to develop a method which is capable of automatically transforming ARL kinetic information into more detailed MRL rate constants. Results By incorporating proteomic data related to enzyme abundance into an MRL modelling framework, here we present an efficient method operating at a global network level for extracting elementary rate constants from experiment-based aggregated rate law (ARL) models. The method combines two techniques that can be used to overcome the difficult properties in parameterization. The first, a hybrid MRL/ARL modelling technique, is used to divide the parameter estimation problem into sub-problems, so that the parameters of the mass action rate laws for each enzyme are estimated in separate steps. This reduces the number of parameters that have to be optimized simultaneously. The second, a hybrid algebraic-numerical simulation and optimization approach, is used to render some rate constants identifiable, as well as to greatly narrow the bounds of the other rate constants that remain unidentifiable. This is done by incorporating equality constraints derived from the King-Altman and Cleland method into the simulated annealing algorithm. We apply these two techniques to estimate the rate constants of a model of E. coli glycolytic pathways. The simulation and statistical results show that our innovative method performs well in dealing with the issues of high computation cost, stiffness, local minima and uncertainty

  1. Constant rate of paddy rice drying using air dehumidification with zeolite

    Science.gov (United States)

    Utari, F. D.; Djaeni, M.; Irfandy, F.

    2018-01-01

    Drying using air dehumidification with zeolite has the purpose to produce paddy rice with lower moisture content and to enhance the storage life. In this study, the paddy rice was dried from initial moisture content 21% wet basis to 14% wet basis (final moisture content) using fluidized bed dryer and dehumidification with zeolite. This dryer lifted the paddy from the bottom (fluidized state) so the final moisture content was uniform. The paddy was dried in various drying temperatures (40-60°C). The moisture content was observed every 15 minutes for 120 minutes. As the control, paddy was dried without using air dehumidification. Several thin layer model was used to determine the constant rate of the drying and then the drying time can well be predicted. Result showed that Two term model was suitable to determine the constant rate of the drying. The constant rate of the drying was 19% higher in drying using air dehumidification.

  2. Simplified Representation of Partial and Total Rate Constants of Complex-Forming Bimolecular Reactions.

    Science.gov (United States)

    Troe, J

    2015-12-17

    The temperature and pressure dependence of partial and total rate constants of complex-forming bimolecular reactions are investigated with the goal to obtain simplified and compact rate constant expressions suitable for data compilations. The transition of the reactions from low pressure chemical activation to high pressure association character is analyzed. The two processes are modeled separately first by solving master equations, leading to "inverse" and "normal" falloff curves, respectively, and allowing for a compact representation of the separated rate constants. It is shown that broadening factors of the two falloff curves are different, and those of chemical activation often approaching unity. Coupling of the two separate processes then is modeled in a simplified manner. Finally, thermal redissociation of the adducts formed by association is accounted for.

  3. Magnetization-transfer measurements of individual rate constants in the presence of multiple reactions

    Science.gov (United States)

    Uǧurbil, Kâmil

    Magnetization-transfer techniques, such as saturation or inversion transfer, are extremely useful methods for measuring chemical-exchange rate constants which are comparable to spin-lattice relaxation rate constants of the exchanging spins. Although such determinations are relatively simple for a two-site exchange case, complications arise when multisite exchanges are involved. This severely restricts the applicability of this type of measurement, especially in whole cells and tissues where many reactants are utilized by more than one enzyme. In this paper, it is shown that a multisite exchange problem can first be reduced effectively to a two-site exchange, and a single rate constant can subsequently be measured simply and unequivocally. Application of this procedure to equilibrium and nonequilibrium chemical-exchange problems are discussed.

  4. Prediction and dissection of widely-varying association rate constants of actin-binding proteins.

    Science.gov (United States)

    Pang, Xiaodong; Zhou, Kenneth H; Qin, Sanbo; Zhou, Huan-Xiang

    2012-01-01

    Actin is an abundant protein that constitutes a main component of the eukaryotic cytoskeleton. Its polymerization and depolymerization are regulated by a variety of actin-binding proteins. Their functions range from nucleation of actin polymerization to sequestering G-actin in 1∶1 complexes. The kinetics of forming these complexes, with rate constants varying at least three orders of magnitude, is critical to the distinct regulatory functions. Previously we have developed a transient-complex theory for computing protein association mechanisms and association rate constants. The transient complex refers to an intermediate in which the two associating proteins have near-native separation and relative orientation but have yet to form short-range specific interactions of the native complex. The association rate constant is predicted as k(a) = k(a0) e(-ΔG(el*)/k(B)T), where k(a0) is the basal rate constant for reaching the transient complex by free diffusion, and the Boltzmann factor captures the bias of long-range electrostatic interactions. Here we applied the transient-complex theory to study the association kinetics of seven actin-binding proteins with G-actin. These proteins exhibit three classes of association mechanisms, due to their different molecular shapes and flexibility. The 1000-fold k(a) variations among them can mostly be attributed to disparate electrostatic contributions. The basal rate constants also showed variations, resulting from the different shapes and sizes of the interfaces formed by the seven actin-binding proteins with G-actin. This study demonstrates the various ways that actin-binding proteins use physical properties to tune their association mechanisms and rate constants to suit distinct regulatory functions.

  5. Propargyl Recombination: Estimation of the High Temperature, Low Pressure Rate Constant from Flame Measurements

    DEFF Research Database (Denmark)

    Rasmussen, Christian Lund; Skjøth-Rasmussen, Martin Skov; Jensen, Anker

    2005-01-01

    3 at temperatures below 1000 K, while data at high temperature and low pressure only can be obtained from flames. In the present work, an estimate of the rate constant for the reaction at 1400 +/- 50 K and 20 Torr is obtained from analysis of the fuel-rich acetylene flame of Westmoreland, Howard......, and Longwell. Based on an accurate modeling of the flame structure, in particular the concentration profile of propargyl, we estimate the rate constant by fitting the kinetic modeling predictions to the measured benzene and phenyl profiles. The best agreement is obtained with k = 1.3 x 10(12) cm(3)/mol...

  6. Big bang nucleosynthesis with a varying fine structure constant and nonstandard expansion rate

    International Nuclear Information System (INIS)

    Ichikawa, Kazuhide; Kawasaki, Masahiro

    2004-01-01

    We calculate the primordial abundances of light elements produced during big bang nucleosynthesis when the fine structure constant and/or the cosmic expansion rate take nonstandard values. We compare them with the recent values of observed D, 4 He, and 7 Li abundances, which show a slight inconsistency among themselves in the standard big bang nucleosynthesis scenario. This inconsistency is not solved by considering either a varying fine structure constant or a nonstandard expansion rate separately but solutions are found by their simultaneous existence

  7. An Empirical Rate Constant Based Model to Study Capacity Fading in Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Srivatsan Ramesh

    2015-01-01

    Full Text Available A one-dimensional model based on solvent diffusion and kinetics to study the formation of the SEI (solid electrolyte interphase layer and its impact on the capacity of a lithium ion battery is developed. The model uses the earlier work on silicon oxidation but studies the kinetic limitations of the SEI growth process. The rate constant of the SEI formation reaction at the anode is seen to play a major role in film formation. The kinetics of the reactions for capacity fading for various battery systems are studied and the rate constants are evaluated. The model is used to fit the capacity fade in different battery systems.

  8. Reaction rate constant of HO2+O3 measured by detecting HO2 from photofragment fluorescence

    Science.gov (United States)

    Manzanares, E. R.; Suto, Masako; Lee, Long C.; Coffey, Dewitt, Jr.

    1986-01-01

    A room-temperature discharge-flow system investigation of the rate constant for the reaction 'HO2 + O3 yields OH + 2O2' has detected HO2 through the OH(A-X) fluorescence produced by photodissociative excitation of HO2 at 147 nm. A reaction rate constant of 1.9 + or - 0.3 x 10 to the -15th cu cm/molecule per sec is obtained from first-order decay of HO2 in excess O3; this agrees well with published data.

  9. Impact of uncertainties in inorganic chemical rate constants on tropospheric composition and ozone radiative forcing

    Directory of Open Access Journals (Sweden)

    B. Newsome

    2017-12-01

    Full Text Available Chemical rate constants determine the composition of the atmosphere and how this composition has changed over time. They are central to our understanding of climate change and air quality degradation. Atmospheric chemistry models, whether online or offline, box, regional or global, use these rate constants. Expert panels evaluate laboratory measurements, making recommendations for the rate constants that should be used. This results in very similar or identical rate constants being used by all models. The inherent uncertainties in these recommendations are, in general, therefore ignored. We explore the impact of these uncertainties on the composition of the troposphere using the GEOS-Chem chemistry transport model. Based on the Jet Propulsion Laboratory (JPL and International Union of Pure and Applied Chemistry (IUPAC evaluations we assess the influence of 50 mainly inorganic rate constants and 10 photolysis rates on tropospheric composition through the use of the GEOS-Chem chemistry transport model. We assess the impact on four standard metrics: annual mean tropospheric ozone burden, surface ozone and tropospheric OH concentrations, and tropospheric methane lifetime. Uncertainty in the rate constants for NO2 + OH →M  HNO3 and O3 + NO  →  NO2 + O2 are the two largest sources of uncertainty in these metrics. The absolute magnitude of the change in the metrics is similar if rate constants are increased or decreased by their σ values. We investigate two methods of assessing these uncertainties, addition in quadrature and a Monte Carlo approach, and conclude they give similar outcomes. Combining the uncertainties across the 60 reactions gives overall uncertainties on the annual mean tropospheric ozone burden, surface ozone and tropospheric OH concentrations, and tropospheric methane lifetime of 10, 11, 16 and 16 %, respectively. These are larger than the spread between models in recent model intercomparisons. Remote

  10. Impact of uncertainties in inorganic chemical rate constants on tropospheric composition and ozone radiative forcing

    Science.gov (United States)

    Newsome, Ben; Evans, Mat

    2017-12-01

    Chemical rate constants determine the composition of the atmosphere and how this composition has changed over time. They are central to our understanding of climate change and air quality degradation. Atmospheric chemistry models, whether online or offline, box, regional or global, use these rate constants. Expert panels evaluate laboratory measurements, making recommendations for the rate constants that should be used. This results in very similar or identical rate constants being used by all models. The inherent uncertainties in these recommendations are, in general, therefore ignored. We explore the impact of these uncertainties on the composition of the troposphere using the GEOS-Chem chemistry transport model. Based on the Jet Propulsion Laboratory (JPL) and International Union of Pure and Applied Chemistry (IUPAC) evaluations we assess the influence of 50 mainly inorganic rate constants and 10 photolysis rates on tropospheric composition through the use of the GEOS-Chem chemistry transport model. We assess the impact on four standard metrics: annual mean tropospheric ozone burden, surface ozone and tropospheric OH concentrations, and tropospheric methane lifetime. Uncertainty in the rate constants for NO2 + OH style="position: relative; top: .02em; left: .1em;">→style=" margin-left:-.9em">M HNO3 and O3 + NO → NO2 + O2 are the two largest sources of uncertainty in these metrics. The absolute magnitude of the change in the metrics is similar if rate constants are increased or decreased by their σ values. We investigate two methods of assessing these uncertainties, addition in quadrature and a Monte Carlo approach, and conclude they give similar outcomes. Combining the uncertainties across the 60 reactions gives overall uncertainties on the annual mean tropospheric ozone burden, surface ozone and tropospheric OH concentrations, and tropospheric methane lifetime of 10, 11, 16 and 16 %, respectively. These are larger than the spread between models in recent

  11. Determination of reaction rate constants for alkylation of 4-(p-nitrobenzyl) pyridine by different alkylating agents.

    Science.gov (United States)

    Walles, S A

    1980-02-01

    The rate constants have been determined for the reaction between some different alkylating agents and 4-(p-nitrobenzyl) pyridine (NBP) in methanol. These constants have been compared with those for alkylation of aniline in water. All the constants were lower in methanol than in water but in different degrees. The rate constants of the different alkylating agents have been calculated at a nucleophilic strength n=2. The genetic risk defined as the degree of alkylation of a nucleophile (n=2) is equivalent to the rate constant kn=2 and the target dose. The dependence of the genetic risk on the rate constant (kn=2) is discussed.

  12. Determination of rate constants in second-order kinetics using UV-visible spectroscopy

    NARCIS (Netherlands)

    Bijlsma, S.; Boelens, H. F. M.; Smilde, A. R.

    2001-01-01

    A general method for estimating reaction rate constants of chemical reactions using ultraviolet-visible (UV-vis) spectroscopy is presented. The only requirement is that some of the chemical components involved be spectroscopically active. The method uses the combination of spectroscopic measurements

  13. Theoretical and Shock Tube Study of the Rate Constants for Hydrogen Abstraction Reactions of Ethyl Formate.

    Science.gov (United States)

    Wu, Junjun; Khaled, Fethi; Ning, Hongbo; Ma, Liuhao; Farooq, Aamir; Ren, Wei

    2017-08-24

    We report a systematic chemical kinetics study of the H atom abstractions from ethyl formate (EF) by H, O( 3 P), CH 3 , OH, and HO 2 radicals. The geometry optimization and frequency calculation of all the species were conducted using the M06 method and the cc-pVTZ basis set. The one-dimensional hindered rotor treatment of the reactants and transition states and the intrinsic reaction coordinate analysis were also performed at the M06/cc-pVTZ level of theory. The relative electronic energies were calculated at the CCSD(T)/cc-pVXZ (where X = D, T) level of theory and further extrapolated to the complete basis set limit. Rate constants for the tittle reactions were calculated over the temperature range 500-2500 K by the transition state theory (TST) in conjunction with the asymmetric Eckart tunneling effect. In addition, the rate constants of H-abstraction by hydroxyl radical were measured in shock tube experiments at 900-1321 K and 1.4-2.0 atm. Our theoretical rate constants of OH + EF → products agree well with the experimental results within 15% over the experimental temperature range of 900-1321 K. Branching ratios for the five types of H-abstraction reactions were also determined from their individual site-specific rate constants.

  14. Some chaotic behaviors in a MCA learning algorithm with a constant learning rate

    International Nuclear Information System (INIS)

    Lv Jiancheng; Yi Zhang

    2007-01-01

    Douglas's minor component analysis algorithm with a constant learning rate has both stability and chaotic dynamical behavior under some conditions. The paper explores such dynamical behavior of this algorithm. Certain stability and chaos of this algorithm are derived. Waveform plots, Lyapunov exponents and bifurcation diagrams are presented to illustrate the existence of chaotic behavior

  15. Mineralization Rate Constants, Half-Lives and Effects of Two Organic

    African Journals Online (AJOL)

    Agro-Science Journal of Tropical Agriculture, Food, Environment and Extension. Volume 14 Number 3 September, ... Key words: cattle dung, swine waste, mineralization rate constants, soil organic carbon, maize yield. INTRODUCTION. Low soil fertility is ..... Principles and proceedures of statistics. A biometric approach.

  16. Low-energy electron impact cross-sections and rate constants of NH2

    Indian Academy of Sciences (India)

    This systematic study reports various electron impact cross-sections, rate constants and transport properties of N H 2 radical in the low-energy limit. The collision study is based on R ... This theoretical study provides a pathway to understand collision dynamics and generates data required in various fields of applied physics.

  17. Power consumption analysis of constant bit rate video transmission over 3G networks

    DEFF Research Database (Denmark)

    Ukhanova, Ann; Belyaev, Evgeny; Wang, Le

    2012-01-01

    This paper presents an analysis of the power consumption of video data transmission with constant bit rate over 3G mobile wireless networks. The work includes the description of the radio resource control transition state machine in 3G networks, followed by a detailed power consumption analysis...

  18. Power consumption analysis of constant bit rate data transmission over 3G mobile wireless networks

    DEFF Research Database (Denmark)

    Wang, Le; Ukhanova, Ann; Belyaev, Evgeny

    2011-01-01

    This paper presents the analysis of the power consumption of data transmission with constant bit rate over 3G mobile wireless networks. Our work includes the description of the transition state machine in 3G networks, followed by the detailed energy consumption analysis and measurement results...

  19. USE OF ROUGH SETS AND SPECTRAL DATA FOR BUILDING PREDICTIVE MODELS OF REACTION RATE CONSTANTS

    Science.gov (United States)

    A model for predicting the log of the rate constants for alkaline hydrolysis of organic esters has been developed with the use of gas-phase min-infrared library spectra and a rule-building software system based on the mathematical theory of rough sets. A diverse set of 41 esters ...

  20. Estimate Of The Decay Rate Constant of Hydrogen Sulfide Generation From Landfilled Drywall

    Science.gov (United States)

    Research was conducted to investigate the impact of particle size on H2S gas emissions and estimate a decay rate constant for H2S gas generation from the anaerobic decomposition of drywall. Three different particle sizes of regular drywall and one particle size of paperless drywa...

  1. Neural estimation of kinetic rate constants from dynamic PET-scans

    DEFF Research Database (Denmark)

    Fog, Torben L.; Nielsen, Lars Hupfeldt; Hansen, Lars Kai

    1994-01-01

    A feedforward neural net is trained to invert a simple three compartment model describing the tracer kinetics involved in the metabolism of [18F]fluorodeoxyglucose in the human brain. The network can estimate rate constants from positron emission tomography sequences and is about 50 times faster ...

  2. Low-energy electron impact cross-sections and rate constants of

    Indian Academy of Sciences (India)

    Anand Bharadvaja

    2017-07-24

    Jul 24, 2017 ... This systematic study reports various electron impact cross-sections, rate constants and transport properties of NH2 radical in the low-energy limit. The collision study is based on R-matrix formalism ... tion and exchange effects are considered in the inner region. The target and continuum orbitals are repre-.

  3. Theoretical and Shock Tube Study of the Rate Constants for Hydrogen Abstraction Reactions of Ethyl Formate

    KAUST Repository

    Wu, Junjun

    2017-08-03

    We report a systematic chemical kinetics study of the H-atom abstractions from ethyl formate (EF) by H, O(3P), CH3, OH, and HO2 radicals. The geometry optimization and frequency calculation of all the species were conducted using the M06 method and the cc-pVTZ basis set. The one-dimensional hindered rotor treatment of the reactants and transition states and the intrinsic reaction coordinate analysis were also performed at the M06/cc-pVTZ level of theory. The relative electronic energies were calculated at the CCSD(T)/cc-pVXZ (where X = D, T) level of theory and further extrapolated to the complete basis set limit. Rate constants for the tittle reactions were calculated over the temperature range of 500‒2500 K by the transition state theory (TST) in conjunction with asymmetric Eckart tunneling effect. In addition, the rate constants of H-abstraction by hydroxyl radical were measured in shock tube experiments at 900‒1321 K and 1.4‒2.0 atm. Our theoretical rate constants of OH + EF → Products agree well with the experimental results within 15% over the experimental temperature range of 900‒1321 K. Branching ratios for the five types of H-abstraction reactions were also determined from their individual site-specific rate constants.

  4. Separating the effect of respiration from the heart rate variability for cases of constant harmonic breathing

    Directory of Open Access Journals (Sweden)

    Kircher Michael

    2015-09-01

    Full Text Available Heart Rate Variability studies are a known measure for the autonomous control of the heart rate. In special situations, its interpretation can be ambiguous, since the respiration has a major influence on the heart rate variability. For this reason it has often been proposed to measure Heart Rate Variability, while the subjects are breathing at a constant respiration rate. That way the spectral influence of the respiration is known. In this work we propose to remove this constant respiratory influence from the heart rate and the Heart Rate Variability parameters to gain respiration free autonomous controlled heart rate signal. The spectral respiratory component in the heart rate signal is detected and characterized. Subsequently the respiratory effect on Heart Rate Variability is removed using spectral filtering approaches, such as the Notch filter or the Raised Cosine filter. As a result new decoupled Heart Variability parameters are gained, which could lead to new additional interpretations of the autonomous control of the heart rate.

  5. SP-A binds alpha1-antitrypsin in vitro and reduces the association rate constant for neutrophil elastase

    Directory of Open Access Journals (Sweden)

    Carrabino Natalia

    2005-12-01

    Full Text Available Abstract Background α1-antitrypsin and surfactant protein-A (SP-A are major lung defense proteins. With the hypothesis that SP-A could bind α1-antitrypsin, we designed a series of in vitro experiments aimed at investigating the nature and consequences of such an interaction. Methods and results At an α1-antitrypsin:SP-A molar ratio of 1:1, the interaction resulted in a calcium-dependent decrease of 84.6% in the association rate constant of α1-antitrypsin for neutrophil elastase. The findings were similar when SP-A was coupled with the Z variant of α1-antitrypsin. The carbohydrate recognition domain of SP-A appeared to be a major determinant of the interaction, by recognizing α1-antitrypsin carbohydrate chains. However, binding of SP-A carbohydrate chains to the α1-antitrypsin amino acid backbone and interaction between carbohydrates of both proteins are also possible. Gel filtration chromatography and turnover per inactivation experiments indicated that one part of SP-A binds several molar parts of α1-antitrypsin. Conclusion We conclude that the binding of SP-A to α1-antitrypsin results in a decrease of the inhibition of neutrophil elastase. This interaction could have potential implications in the physiologic regulation of α1-antitrypsin activity, in the pathogenesis of pulmonary emphysema, and in the defense against infectious agents.

  6. Apparent rate constant mapping using hyperpolarized [1-(13) C]pyruvate

    DEFF Research Database (Denmark)

    Khegai, O.; Schulte, R. F.; Janich, M. A.

    2014-01-01

    frequencies are automatically estimated using a matching pursuit algorithm. Second, a time-discretized formulation of the two-site exchange kinetic model is used to quantify metabolite signal dynamics by two characteristic rate constants in the form of (i) an apparent build-up rate (quantifying the build......) and suppression of high perfusion regions with low conversion (e.g. blood vessels). Apparent build-up rate constant mapping provides a novel quantitative image contrast for the characterization of metabolic activity. Its possible implementation as a quantitative standard will be subject to further studies......-up of downstream metabolites from the pyruvate substrate) and (ii) an effective decay rate (summarizing signal depletion due to repetitive excitation, T1-relaxation and backward conversion). The presented spectral and kinetic quantification were experimentally verified in vitro and in vivo using hyperpolarized [1...

  7. Product distributions, rate constants, and mechanisms of LiH +H reactions

    Science.gov (United States)

    Defazio, Paolo; Petrongolo, Carlo; Gamallo, Pablo; González, Miguel

    2005-06-01

    We present a quantum-mechanical investigation of the LiH depletion reaction LiH +H→Li+H2 and of the H exchange reaction LiH +H'→LiH'+H. We report product distributions, rate constant, and mechanism of the former, and rate constant and mechanism of the latter reaction. We use the potential-energy surface by Dunne et al. [Chem. Phys. Lett. 336, 1 (2001)], the real-wave-packet method by Gray and Balint-Kurti [J. Chem. Phys. 108, 950 (1998)], and the J-shifting approximation. The H21 nuclear-spin statistics and progressions of vib-rotational states (v',j') rule both initial-state-resolved and thermal product distributions, which have saw-toothed shapes with odd j' preferred with respect to even j'. At high collision energies and temperatures, we obtain a regular 3-to-1 intensity alternation of rotational states. At low collision energies and temperatures, the degeneracy and density of many H2 levels can, however, give more irregular distributions. During the collision, the energy flows from the reactant translational mode to the product vibration and recoil ones. The rate constants of both reactions are not Arrhenius type because the reactions are barrier-less. The low-temperature, LiH depletion rate constant is larger than the H exchange one, whereas the contrary holds at high temperature. The real-time mechanisms show the nuclear rearrangements of the nonreactive channel and of the reactive ones, and point out that the LiH depletion is preferred over the H exchange at short times. This confirms the rate-constant results.

  8. Efficient quantum-classical method for computing thermal rate constant of recombination: application to ozone formation.

    Science.gov (United States)

    Ivanov, Mikhail V; Babikov, Dmitri

    2012-05-14

    Efficient method is proposed for computing thermal rate constant of recombination reaction that proceeds according to the energy transfer mechanism, when an energized molecule is formed from reactants first, and is stabilized later by collision with quencher. The mixed quantum-classical theory for the collisional energy transfer and the ro-vibrational energy flow [M. Ivanov and D. Babikov, J. Chem. Phys. 134, 144107 (2011)] is employed to treat the dynamics of molecule + quencher collision. Efficiency is achieved by sampling simultaneously (i) the thermal collision energy, (ii) the impact parameter, and (iii) the incident direction of quencher, as well as (iv) the rotational state of energized molecule. This approach is applied to calculate third-order rate constant of the recombination reaction that forms the (16)O(18)O(16)O isotopomer of ozone. Comparison of the predicted rate vs. experimental result is presented.

  9. The Rate Constant for the Reaction H + C2H5 at T = 295 - 150K

    Science.gov (United States)

    Pimentel, Andre S.; Payne, Walter A.; Nesbitt, Fred L.; Cody, Regina J.; Stief, Louis J.

    2004-01-01

    The reaction between the hydrogen atom and the ethyl (C2H3) radical is predicted by photochemical modeling to be the most important loss process for C2H5 radicals in the atmospheres of Jupiter and Saturn. This reaction is also one of the major sources for the methyl radicals in these atmospheres. These two simplest hydrocarbon radicals are the initial species for the synthesis of larger hydrocarbons. Previous measurements of the rate constant for the H + C2H5 reaction varied by a factor of five at room temperature, and some studies showed a dependence upon temperature while others showed no such dependence. In addition, the previous studies were at higher temperatures and generally higher pressures than that needed for use in planetary atmospheric models. The rate constant for the reaction H + C2H5 has been measured directly at T = 150, 202 and 295 K and at P = 1.0 Torr He for all temperatures and additionally at P = 0.5 and 2.0 Torr He at T = 202 K. The measurements were performed in a discharge - fast flow system. The decay of the C2H5 radical in the presence of excess hydrogen was monitored by low-energy electron impact mass spectrometry under pseudo-first order conditions. H atoms and C2H5 radicals were generated rapidly and simultaneously by the reaction of fluorine atoms with H2 and C2H6, respectively. The total rate constant was found to be temperature and pressure independent. The measured total rate constant at each temperature are: k(sub 1)(295K) = (1.02+/-0.24)x10(exp -10), k(sub 1)(202K) = (1.02+/-0.22)x10(exp -10) and k(sub 1)(150K) = (0.93+/-0.21)x10(exp -10), all in units of cu cm/molecule/s. The total rate constant derived from all the combined measurements is k(sub 1) = (l.03+/-0.17)x10(exp -10) cu cm/molecule/s. At room temperature our results are about a factor of two higher than the recommended rate constant and a factor of three lower than the most recently published study.

  10. Effects of the anion salt nature on the rate constants of the aqueous proton exchange reactions.

    Science.gov (United States)

    Paredes, Jose M; Garzon, Andres; Crovetto, Luis; Orte, Angel; Lopez, Sergio G; Alvarez-Pez, Jose M

    2012-04-28

    The proton-transfer ground-state rate constants of the xanthenic dye 9-[1-(2-methyl-4-methoxyphenyl)]-6-hydroxy-3H-xanthen-3-one (TG-II), recovered by Fluorescence Lifetime Correlation Spectroscopy (FLCS), have proven to be useful to quantitatively reflect specific cation effects in aqueous solutions (J. M. Paredes, L. Crovetto, A. Orte, J. M. Alvarez-Pez and E. M. Talavera, Phys. Chem. Chem. Phys., 2011, 13, 1685-1694). Since these phenomena are more sensitive to anions than to cations, in this paper we have accounted for the influence of salts with the sodium cation in common, and the anion classified according to the empirical Hofmeister series, on the proton transfer rate constants of TG-II. We demonstrate that the presence of ions accelerates the rate of the ground-state proton-exchange reaction in the same order than ions that affect ion solvation in water. The combination of FLCS with a fluorophore undergoing proton transfer reactions in the ground state, along with the desirable feature of a pseudo-dark state when the dye is protonated, allows one unique direct determination of kinetic rate constants of the proton exchange chemical reaction. This journal is © the Owner Societies 2012

  11. Degradation of bisphenol A by ozonation: rate constants, influence of inorganic anions, and by-products

    Directory of Open Access Journals (Sweden)

    Kheng Soo Tay

    2012-02-01

    Full Text Available The second-order rate constants for the reaction between bisphenol A (BPA and ozonewere evaluated over the pH range of 2-12. The rate constants showed minimum values (×104 M-1s-1under acidic condition (pH 10. From pH 4 to 7, the second-order rate constants were found to increase by a magnitudeof almost 102 and this was due to the increase in anionic BPA species in the solution. The rateconstants increased almost twofold when pH increased from 9.6 to 10.2. The presence of commoninorganic anions at levels commonly found in the environment did not affect the rate of degradationof BPA.The degradation by-products from the ozonation of BPA were identified as 4-(prop-1-en-2-ylphenol, hydroquinone, 4-hydroxyacetophenone, 2-(2-(4-hydroxyphenylpropan-2-ylsuccinaldehyde,2-(1-(4-hydroxyphenylvinylpent-2-enal, 3-formyl-4-(4-hydroxyphenyl-4-methylpent-2-enoic acid, monohydroxy-BPA and dihydroxy-BPA. In conclusion, ozonation was found to be aneffective method for the removal of BPA even in the presence of common inorganic anions atenvironmental concentrations. However, incomplete treatment of BPA might produce a variety ofdegradation by-products.

  12. Low-Temperature Experimental and Theoretical Rate Constants for the O(1D) + H2 Reaction.

    Science.gov (United States)

    Hickson, Kevin M; Suleimanov, Yury V

    2017-03-09

    In the present joint experimental and theoretical study, we report thermal rate constants for the O( 1 D) + H 2 reaction within the 50-300 K temperature range. Experimental kinetics measurements were performed using a continuous supersonic flow reactor coupled with pulsed laser photolysis for O( 1 D) production and pulsed laser-induced fluorescence in the vacuum ultraviolet wavelength range (VUV LIF) for O( 1 D) detection. Theoretical rate constants were obtained using the ring polymer molecular dynamics (RPMD) approach over the two lowest potential energy surfaces 1 1 A' and 1 1 A″, which possess barrierless and thermally activated energy profiles, respectively. Both the experimental and theoretical rate constants exhibit a weak temperature dependence. The theoretical results show the dominant role of the 1 1 A' ground state and that contribution of the 1 1 A″ excited state to the total thermal rate decreases dramatically at lower temperature. Agreement between the experimental and theoretical results is good, and the discrepancy does not exceed 25%. It is argued that these differences are likely to be due to nonadiabatic couplings between the 1 1 A' and 2 1 A' surfaces.

  13. Rate constants for the reaction of CF3O radicals with hydrocarbons at 298 K

    DEFF Research Database (Denmark)

    Kelly, C.; Treacy, J.; Sidebottom, H.W.

    1993-01-01

    Rate constant ratios of the reactions of CF3O radicals with a number of hydrocarbons have been determined at 298 +/- 2 K and atmospheric pressure using a relative rate method. Using a previously determined value k(CF30 + C2H6) = 1.2 x 10(-12) cm3 molecule-1 s-1 these rate constant ratios provide...... estimates of the rate constants: k(CF3O + CH4) = (1.2 +/- 0.1) x 10(-14), k(CF3O + c-C3H6) = (3.6 +/- 0.2) x 10(-13), k(CF3O + C3H8) = (4.7 +/- 0.7) x 10(-12), k(CF3O + (CH3)3CH) = (7.2 +/- 0.5) x 10(-12), k(CF3O + C2H4) = (3.0 +/- 0.1) x 10(-11) and k(CF3O + C6H6) = (3.6 +/- 0.1) x 10(-11) cm3 molecule-1 s......-1. The importance of the reactions of CF3O radicals with hydrocarbons under atmospheric conditions is discussed....

  14. Rate constant for the reaction SO + BrO yields SO2 + Br

    Science.gov (United States)

    Brunning, J.; Stief, L.

    1986-01-01

    The rate of the radical-radical reaction SO + BrO yields SO2 + Br has been determined at 298 K in a discharge flow system near 1 torr pressure with detection of SO and BrO via collision-free sampling mass spectrometry. The rate constant was determined using two different methods: measuring the decay of SO radicals in the presence of an excess of BrO and measuring the decay of BrO radicals in excess SO. The results from the two methods are in reasonable agreement and the simple mean of the two values gives the recommended rate constant at 298 K, k = (5.7 + or - 2.0) x 10 to the -11th cu cm/s. This represents the first determination of this rate constant and it is consistent with a previously derived lower limit based on SO2 formation. Comparison is made with other radical-radical reactions involving SO or BrO. The reaction SO + BrO yields SO2 + Br is of interest for models of the upper atmosphere of the earth and provides a potential coupling between atmospheric sulfur and bromine chemistry.

  15. Likelihood inference of non-constant diversification rates with incomplete taxon sampling.

    Directory of Open Access Journals (Sweden)

    Sebastian Höhna

    Full Text Available Large-scale phylogenies provide a valuable source to study background diversification rates and investigate if the rates have changed over time. Unfortunately most large-scale, dated phylogenies are sparsely sampled (fewer than 5% of the described species and taxon sampling is not uniform. Instead, taxa are frequently sampled to obtain at least one representative per subgroup (e.g. family and thus to maximize diversity (diversified sampling. So far, such complications have been ignored, potentially biasing the conclusions that have been reached. In this study I derive the likelihood of a birth-death process with non-constant (time-dependent diversification rates and diversified taxon sampling. Using simulations I test if the true parameters and the sampling method can be recovered when the trees are small or medium sized (fewer than 200 taxa. The results show that the diversification rates can be inferred and the estimates are unbiased for large trees but are biased for small trees (fewer than 50 taxa. Furthermore, model selection by means of Akaike's Information Criterion favors the true model if the true rates differ sufficiently from alternative models (e.g. the birth-death model is recovered if the extinction rate is large and compared to a pure-birth model. Finally, I applied six different diversification rate models--ranging from a constant-rate pure birth process to a decreasing speciation rate birth-death process but excluding any rate shift models--on three large-scale empirical phylogenies (ants, mammals and snakes with respectively 149, 164 and 41 sampled species. All three phylogenies were constructed by diversified taxon sampling, as stated by the authors. However only the snake phylogeny supported diversified taxon sampling. Moreover, a parametric bootstrap test revealed that none of the tested models provided a good fit to the observed data. The model assumptions, such as homogeneous rates across species or no rate shifts, appear

  16. Identifiability of models for time-resolved fluorescence with underlying distributions of rate constants.

    Science.gov (United States)

    Boens, Noël; Van der Auweraer, Mark

    2014-02-01

    The deterministic identifiability analysis of photophysical models for the kinetics of excited-state processes, assuming errorless time-resolved fluorescence data, can verify whether the model parameters can be determined unambiguously. In this work, we have investigated the identifiability of several uncommon models for time-resolved fluorescence with underlying distributions of rate constants which lead to non-exponential decays. The mathematical functions used here for the description of non-exponential fluorescence decays are the stretched exponential or Kohlrausch function, the Becquerel function, the Förster type energy transfer function, decay functions associated with exponential, Gaussian and uniform distributions of rate constants, a decay function with extreme sub-exponential behavior, the Mittag-Leffler function and Heaviside's function. It is shown that all the models are uniquely identifiable, which means that for each specific model there exists a single parameter set that describes its associated fluorescence δ-response function.

  17. Rate constant and possible pressure dependence of the reaction OH + HO2

    Science.gov (United States)

    Demore, W. B.

    1982-01-01

    The technique of laser-induced fluorescence is used to measure steady-state OH concentrations in the photolysis of water vapor at 184.9 nm and 298 K, with O2 added in trace amounts. He or Ar is present at total pressures in the range 75-730 torr. The results are used in deriving the rate-constant ratio of k1 to k5 to the 1/2 power, where k1 and k5 are the rate constants for the reactions OH + HO2 = H2O + O2 and HO2 + HO2 = O2, respectively. When available values of k5 are used, the results give k1 = (1.2 + or - 0.4) x 10 to the -10 cu cm/s at 1-atm pressure, with evidence of a decline of k1 at lower pressures. No water-vapor effect on k1 is observed.

  18. Electron attachment rate constant measurement by photoemission electron attachment ion mobility spectrometry (PE-EA-IMS)

    International Nuclear Information System (INIS)

    Su, Desheng; Niu, Wenqi; Liu, Sheng; Shen, Chengyin; Huang, Chaoqun; Wang, Hongmei; Jiang, Haihe; Chu, Yannan

    2012-01-01

    Photoemission electron attachment ion mobility spectrometry (PE-EA-IMS), with a source of photoelectrons induced by vacuum ultraviolet radiation on a metal surface, has been developed to study electron attachment reaction at atmospheric pressure using nitrogen as the buffer gas. Based on the negative ion mobility spectra, the rate constants for electron attachment to tetrachloromethane and chloroform were measured at ambient temperature as a function of the average electron energy in the range from 0.29 to 0.96 eV. The experimental results are in good agreement with the data reported in the literature. - Highlights: ► Photoemission electron attachment ion mobility spectrometry (PE-EA-IMS) was developed to study electron attachment reaction. ► The rate constants of electron attachment to CCl 4 and CHCl 3 were determined. ► The present experimental results are in good agreement with the previously reported data.

  19. Rate constant for the reaction of O(3P) with diacetylene from 210 to 423 K

    Science.gov (United States)

    Mitchell, M. B.; Nava, D. F.; Stief, L. J.

    1986-01-01

    The absolute rate constant for the reaction of O(3P) with diacetylene (C4H2) has been measured as a function of pressure and temperature by the flash-photolysis/resonance-fluorescence method. At 298 K and below, no pressure dependence of the rate constant was observed, but at 423 K a moderate (factor-of-2) increase was detected in the range 3 to 75 torr Ar.Results at or near the high-pressure limit are represented by an Arrhenius expression over the temperature range 210 to 423 K. The results are compared with previous determinations, all of which employed the discharge-flow/mass-spectrometry technique. The mechanism of the reaction is considered, including both primary and secondary processes. The heats of formation of the reactants, adducts, and products for the O(3P) + C4H2 reaction are discussed and contrasted with those for O(3P) + C2H2.

  20. Equivalent formulae of stress Green's functions for a constant slip rate on a triangular fault

    Science.gov (United States)

    Feng, Xi; Zhang, Haiming

    2017-06-01

    We present an equivalent form of the expressions first obtained by Tada (Geophys J Int 164:653-669, 2006. doi: 10.1111/j.1365-246X.2006.03868.x), which represents the transient stress response of an infinite, homogeneous and isotropic medium to a constant slip rate on a triangular fault that continues perpetually after the slip onset. Our results are simpler than Tada's, and the corresponding codes have a higher running speed.

  1. A method for computing association rate constants of atomistically represented proteins under macromolecular crowding

    Science.gov (United States)

    Qin, Sanbo; Cai, Lu; Zhou, Huan-Xiang

    2012-12-01

    In cellular environments, two protein molecules on their way to form a specific complex encounter many bystander macromolecules. The latter molecules, or crowders, affect both the energetics of the interaction between the test molecules and the dynamics of their relative motion. In earlier work (Zhou and Szabo 1991 J. Chem. Phys. 95 5948-52), it has been shown that, in modeling the association kinetics of the test molecules, the presence of crowders can be accounted for by their energetic and dynamic effects. The recent development of the transient-complex theory for protein association in dilute solutions makes it possible to easily incorporate the energetic and dynamic effects of crowders. The transient complex refers to a late on-pathway intermediate, in which the two protein molecules have near-native relative separation and orientation, but have yet to form the many short-range specific interactions of the native complex. The transient-complex theory predicts the association rate constant as ka = ka0exp( - ΔG*el/kBT), where ka0 is the ‘basal’ rate constant for reaching the transient complex by unbiased diffusion, and the Boltzmann factors captures the influence of long-range electrostatic interactions between the protein molecules. Crowders slow down the diffusion, therefore reducing the basal rate constant (to kac0), and induce an effective interaction energy ΔGc. We show that the latter interaction energy for atomistic proteins in the presence of spherical crowders is ‘long’-ranged, allowing the association rate constant under crowding to be computed as kac = kac0exp[ - (ΔG*el + ΔG*c)/kBT]. Applications demonstrate that this computational method allows for realistic modeling of protein association kinetics under crowding.

  2. Biotransformation of trace organic chemicals during groundwater recharge: How useful are first-order rate constants?

    Science.gov (United States)

    Regnery, J; Wing, A D; Alidina, M; Drewes, J E

    2015-08-01

    This study developed relationships between the attenuation of emerging trace organic chemicals (TOrC) during managed aquifer recharge (MAR) as a function of retention time, system characteristics, and operating conditions using controlled laboratory-scale soil column experiments simulating MAR. The results revealed that MAR performance in terms of TOrC attenuation is primarily determined by key environmental parameters (i.e., redox, primary substrate). Soil columns with suboxic and anoxic conditions performed poorly (i.e., less than 30% attenuation of moderately degradable TOrC) in comparison to oxic conditions (on average between 70-100% attenuation for the same compounds) within a residence time of three days. Given this dependency on redox conditions, it was investigated if key parameter-dependent rate constants are more suitable for contaminant transport modeling to properly capture the dynamic TOrC attenuation under field-scale conditions. Laboratory-derived first-order removal kinetics were determined for 19 TOrC under three different redox conditions and rate constants were applied to MAR field data. Our findings suggest that simplified first-order rate constants will most likely not provide any meaningful results if the target compounds exhibit redox dependent biotransformation behavior or if the intention is to exactly capture the decline in concentration over time and distance at field-scale MAR. However, if the intention is to calculate the percent removal after an extended time period and subsurface travel distance, simplified first-order rate constants seem to be sufficient to provide a first estimate on TOrC attenuation during MAR. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Measuring the Electrode Kinetics of Surface Confined Electrode Reactions at a Constant Scan Rate

    OpenAIRE

    Guziejewski, Dariusz; Mirceski, Valentin; Jadresko, Dijana

    2014-01-01

    Abstract: The kinetics of surface confined electrode reactions of alizarin, vitamin B12, and vitamin K2 is measured with square-wave voltammetry over a wide pH interval, by applying the recent methodology for kinetic analysis at a constant scan rate [V. Mirceski, D. Guziejewski, K. Lisichkov, Electrochim. Acta 2013, 114, 667–673]. The reliability and the simplicity of the recent methodology is confirmed. The methodology requires analysis of the peak potential separation o...

  4. Biotransformation of trace organic chemicals during groundwater recharge: How useful are first-order rate constants?

    KAUST Repository

    Regnery, J.

    2015-05-29

    This study developed relationships between the attenuation of emerging trace organic chemicals (TOrC) during managed aquifer recharge (MAR) as a function of retention time, system characteristics, and operating conditions using controlled laboratory-scale soil column experiments simulating MAR. The results revealed that MAR performance in terms of TOrC attenuation is primarily determined by key environmental parameters (i.e. redox, primary substrate). Soil columns with suboxic and anoxic conditions performed poorly (i.e. less than 30% attenuation of moderately degradable TOrC) in comparison to oxic conditions (on average between 70-100% attenuation for the same compounds) within a residence time of three days. Given this dependency on redox conditions, it was investigated if key parameter-dependent rate constants are more suitable for contaminant transport modeling to properly capture the dynamic TOrC attenuation under field-scale conditions. Laboratory-derived first-order removal kinetics were determined for 19 TOrC under three different redox conditions and rate constants were applied to MAR field data. Our findings suggest that simplified first-order rate constants will most likely not provide any meaningful results if the target compounds exhibit redox dependent biotransformation behavior or if the intention is to exactly capture the decline in concentration over time and distance at field-scale MAR. However, if the intention is to calculate the percent removal after an extended time period and subsurface travel distance, simplified first-order rate constants seem to be sufficient to provide a first estimate on TOrC attenuation during MAR.

  5. Evaluation of a constant rate infusion of lidocaine for balanced anesthesia in dogs undergoing surgery

    OpenAIRE

    Ortega, Maria; Cruz, Ignacio

    2011-01-01

    This study assessed the intraoperative analgesic effects of intravenous lidocaine administered by a constant rate infusion (CRI) in surgical canine patients. A prospective, blinded, randomized study was designed with 2 treatment groups: A (lidocaine) and B (placebo), involving 41 dogs. All patients were premedicated with acepromazine and buprenorphine, induced with propofol and midazolam; anesthesia was maintained with isoflurane in oxygen. Group A received 2 mg/kg IV lidocaine immediately af...

  6. The rate constant for the CO + H2O2 reaction

    DEFF Research Database (Denmark)

    Glarborg, Peter; Marshall, Paul

    2009-01-01

    The rate constant for the reaction CO + H2O2 -> HOCO + OH (R1) at 713 K is determined based on the batch reactor experiments of Baldwin et al. [ R. R. Baldwin, R. W. Walker, S. J. Webster, Combust. Flame 15 (1970) 167] on decomposition of H2O2 sensitized by CO. The value, k(1) (713 K) = 8.1 x 10...

  7. Rate Constant and Branching Fraction for the NH2 + NO2 Reaction

    DEFF Research Database (Denmark)

    Klippenstein, Stephen J.; Harding, Lawrence B.; Glarborg, Peter

    2013-01-01

    The NH2 + NO2 reaction has been studied experimentally and theoretically. On the basis of laser photolysis/LIF experiments, the total rate constant was determined over the temperature range 295–625 K as k1,exp(T) = 9.5 × 10–7(T/K)−2.05 exp(−404 K/T) cm3 molecule–1 s–1. This value is in the upper...... range of data reported for this temperature range. The reactions on the NH2 + NO2 potential energy surface were studied using high level ab initio transition state theory (TST) based master equation methods, yielding a rate constant of k1,theory(T) = 7.5 × 10–12(T/K)−0.172 exp(687 K/T) cm3 molecule–1 s...... with the measured overall rate constant but tend to overestimate the branching ratio defined as β = k1a/(k1a + k1b) at lower temperatures. Modest adjustments of the attractive potentials for the reaction yield values of k1a = 4.3 × 10–6(T/K)−2.191 exp(−229 K/T) cm3 molecule–1 s–1 and k1b = 1.5 × 10–12(T/K)0.032 exp...

  8. Reaction rate constants of H-abstraction by OH from large ketones: Measurements and site-specific rate rules

    KAUST Repository

    Badra, Jihad

    2014-01-01

    Reaction rate constants of the reaction of four large ketones with hydroxyl (OH) are investigated behind reflected shock waves using OH laser absorption. The studied ketones are isomers of hexanone and include 2-hexanone, 3-hexanone, 3-methyl-2-pentanone, and 4-methl-2-pentanone. Rate constants are measured under pseudo-first-order kinetics at temperatures ranging from 866 K to 1375 K and pressures near 1.5 atm. The reported high-temperature rate constant measurements are the first direct measurements for these ketones under combustion-relevant conditions. The effects of the position of the carbonyl group (CO) and methyl (CH3) branching on the overall rate constant with OH are examined. Using previously published data, rate constant expressions covering, low-to-high temperatures, are developed for acetone, 2-butanone, 3-pentanone, and the hexanone isomers studied here. These Arrhenius expressions are used to devise rate rules for H-abstraction from various sites. Specifically, the current scheme is applied with good success to H-abstraction by OH from a series of n-ketones. Finally, general expressions for primary and secondary site-specific H-abstraction by OH from ketones are proposed as follows (the subscript numbers indicate the number of carbon atoms bonded to the next-nearest-neighbor carbon atom, the subscript CO indicates that the abstraction is from a site next to the carbonyl group (CO), and the prime is used to differentiate different neighboring environments of a methylene group):P1,CO = 7.38 × 10-14 exp(-274 K/T) + 9.17 × 10-12 exp(-2499 K/T) (285-1355 K)S10,CO = 1.20 × 10-11 exp(-2046 K/T) + 2.20 × 10-13 exp(160 K/T) (222-1464 K)S11,CO = 4.50 × 10-11 exp(-3000 K/T) + 8.50 × 10-15 exp(1440 K/T) (248-1302 K)S11′,CO = 3.80 × 10-11 exp(-2500 K/T) + 8.50 × 10-15 exp(1550 K/T) (263-1370 K)S 21,CO = 5.00 × 10-11 exp(-2500 K/T) + 4.00 × 10-13 exp(775 K/T) (297-1376 K) © 2014 the Partner Organisations.

  9. Direct quantum mechanical calculation of the F + H2 → HF + H thermal rate constant

    International Nuclear Information System (INIS)

    Moix, Marc; Huarte-Larranaga, Fermin

    2008-01-01

    Accurate full-dimensional quantum mechanical thermal rate constant values have been calculated for the F+H 2 →HF+H reaction on the Stark-Werner ab initio potential energy surface. These calculations are based on a flux correlation functions and employ a rigorous statistical sampling scheme to account for the overall rotation and the MCTDH scheme for the wave packet propagation. Our results shed some light on discrepancies on the thermal rate found for previous flux correlation based calculations with respect to accurate reactive scattering results. The resonance pattern of the all-J cumulative reaction probability is analyzed in terms of the partial wave contributions

  10. Numerical methods for realizing nonstationary Poisson processes with piecewise-constant instantaneous-rate functions

    DEFF Research Database (Denmark)

    Harrod, Steven; Kelton, W. David

    2006-01-01

    with piecewise-constant instantaneous rate functions, a capability that has been implemented in commercial simulation software. They test these algorithms in C programs and make comparisons of accuracy, speed, and variability across disparate rate functions and microprocessor architectures. Choice of optimal......Nonstationary Poisson processes are appropriate in many applications, including disease studies, transportation, finance, and social policy. The authors review the risks of ignoring nonstationarity in Poisson processes and demonstrate three algorithms for generation of Poisson processes...... algorithm could not be predicted without knowledge of microprocessor architecture....

  11. Solar radiation disinfection of drinking water at temperate latitudes: inactivation rates for an optimised reactor configuration.

    Science.gov (United States)

    Davies, C M; Roser, D J; Feitz, A J; Ashbolt, N J

    2009-02-01

    Solar radiation-driven inactivation of bacteria, virus and protozoan pathogen models was quantified in simulated drinking water at a temperate latitude (34 degrees S). The water was seeded with Enterococcus faecalis, Clostridium sporogenes spores, and P22 bacteriophage, each at ca 1x10(5) mL(-1), and exposed to natural sunlight in 30-L reaction vessels. Water temperature ranged from 17 to 39 degrees C during the experiments lasting up to 6h. Dark controls showed little inactivation and so it was concluded that the inactivation observed was primarily driven by non-thermal processes. The optimised reactor design achieved S90 values (cumulative exposure required for 90% reduction) for the test microorganisms in the range 0.63-1.82 MJ m(-2) of Global Solar Exposure (GSX) without the need for TiO2 as a catalyst. High turbidity (840-920 NTU) only reduced the S(90) value by 0.05). However, inactivation was significantly reduced for E. faecalis and P22 when the transmittance of UV wavelengths was attenuated by water with high colour (140 PtCo units) or a suboptimally transparent reactor lid (prob.SODIS type pasteurization were not produced, non-thermal inactivation alone appeared to offer a viable means for reliably disinfecting low colour source waters by greater than 4 orders of magnitude on sunny days at 34 degrees S latitude.

  12. Shock tube measurements of the rate constants for seven large alkanes+OH

    KAUST Repository

    Badra, Jihad

    2015-01-01

    Reaction rate constants for seven large alkanes + hydroxyl (OH) radicals were measured behind reflected shock waves using OH laser absorption. The alkanes, n-hexane, 2-methyl-pentane, 3-methyl-pentane, 2,2-dimethyl-butane, 2,3-dimethyl-butane, 2-methyl-heptane, and 4-methyl-heptane, were selected to investigate the rates of site-specific H-abstraction by OH at secondary and tertiary carbons. Hydroxyl radicals were monitored using narrow-line-width ring-dye laser absorption of the R1(5) transition of the OH spectrum near 306.7 nm. The high sensitivity of the diagnostic enabled the use of low reactant concentrations and pseudo-first-order kinetics. Rate constants were measured at temperatures ranging from 880 K to 1440 K and pressures near 1.5 atm. High-temperature measurements of the rate constants for OH + n-hexane and OH + 2,2-dimethyl-butane are in agreement with earlier studies, and the rate constants of the five other alkanes with OH, we believe, are the first direct measurements at combustion temperatures. Using these measurements and the site-specific H-abstraction measurements of Sivaramakrishnan and Michael (2009) [1,2], general expressions for three secondary and two tertiary abstraction rates were determined as follows (the subscripts indicate the number of carbon atoms bonded to the next-nearest-neighbor carbon): S20=1.58×10-11exp(-1550K/T)cm3molecule-1s-1(887-1327K)S30=2.37×10-11exp(-1850K/T)cm3molecule-1s-1(887-1327K)S21=4.5×10-12exp(-793.7K/T)cm3molecule-1s-1(833-1440K)T100=2.85×10-11exp(-1138.3K/T)cm3molecule-1s-1(878-1375K)T101=7.16×10-12exp(-993K/T)cm3molecule-1s-1(883-1362K) © 2014 The Combustion Institute.

  13. Laser Measurements of the H Atom + Ozone Rate Constant at Atmospheric Temperatures

    Science.gov (United States)

    Liu, Y.; Smith, G. P.; Peng, J.; Reppert, K. J.; Callahan, S. L.

    2015-12-01

    The exothermic H + O3 reaction produces OH(v) Meinel band emissions, used to derive mesospheric H concentrations and chemical heating rates. We have remeasured its rate constant to reduce resulting uncertainties and the measurement extend to lower mesospheric temperatures using modern laser techniques. H atoms are produced by pulsed ultraviolet laser trace photolysis of O3, followed by reaction of O(D) with added H2. A second, delayed, frequency-mixed dye laser measures the reaction decay rate with the remaining ozone by laser induced fluorescence. We monitor either the H atom decay by 2 photon excitation at 205 nm and detection of red fluorescence, or the OH(v=9) product time evolution with excitation of the B-X (0,9) band at 237 nm and emission in blue B-A bands. By cooling the enclosed low pressure flow cell we obtained measurements from 146-305 K. Small kinetic modeling corrections are made for secondary regeneration of H atoms. The results fully confirm the current NASA JPL recommendation for this rate constant, and establish its extrapolation down to the lower temperatures of the mesosphere. This work was supported by the NSF Aeronomy Program and an NSF Physics summer REU student grant.

  14. Nonparametric change point estimation for survival distributions with a partially constant hazard rate.

    Science.gov (United States)

    Brazzale, Alessandra R; Küchenhoff, Helmut; Krügel, Stefanie; Schiergens, Tobias S; Trentzsch, Heiko; Hartl, Wolfgang

    2018-04-05

    We present a new method for estimating a change point in the hazard function of a survival distribution assuming a constant hazard rate after the change point and a decreasing hazard rate before the change point. Our method is based on fitting a stump regression to p values for testing hazard rates in small time intervals. We present three real data examples describing survival patterns of severely ill patients, whose excess mortality rates are known to persist far beyond hospital discharge. For designing survival studies in these patients and for the definition of hospital performance metrics (e.g. mortality), it is essential to define adequate and objective end points. The reliable estimation of a change point will help researchers to identify such end points. By precisely knowing this change point, clinicians can distinguish between the acute phase with high hazard (time elapsed after admission and before the change point was reached), and the chronic phase (time elapsed after the change point) in which hazard is fairly constant. We show in an extensive simulation study that maximum likelihood estimation is not robust in this setting, and we evaluate our new estimation strategy including bootstrap confidence intervals and finite sample bias correction.

  15. Ozonation of norfloxacin and levofloxacin in water: Specific reaction rate constants and defluorination reaction.

    Science.gov (United States)

    Ling, Wencui; Ben, Weiwei; Xu, Ke; Zhang, Yu; Yang, Min; Qiang, Zhimin

    2018-03-01

    The degradation kinetics and mechanism of two typical fluoroquinolones (FQs), norfloxacin (NF) and levofloxacin (LOF), by ozone in water were investigated. Semi-continuous mode and competition kinetics mode experiments were conducted to determine the reaction rate constants of target FQs with ozone and OH, separately. Results indicate that both NF and LOF were highly reactive toward ozone, and the reactivity was strongly impacted by the solution pH. The specific reaction rate constants of the diprotonated, monoprotonated and deprotonated species were determined to be 7.20 × 10 2 , 8.59 × 10 3 , 4.54 × 10 5  M -1  s -1 respectively for NF and 1.30 × 10 3 , 1.40 × 10 4 , 1.33 × 10 6  M -1  s -1 respectively for LOF. The reaction rate constants of target FQs toward OH were measured to be (4.81-7.41) × 10 9  M -1  s -1 in the pH range of 6.3-8.3. Furthermore, NF was selected as a model compound to clarify the degradation pathways, with a particular focus on the defluorination reaction. The significant release of F - ions and the formation of three F-free organic byproducts indicated that defluorination was a prevalent pathway in ozonation of FQs, while six F-containing organic byproducts indicated that ozone also attacked the piperazinyl and quinolone moieties. Escherichia coli growth inhibition tests revealed that ozonation could effectively eliminate the antibacterial activity of target FQ solutions, and the residual antibacterial activity had a negative linear correlation with the released F - concentration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Reconsideration of the rate constant for the reaction of hydroxyl radicals with nitric acid

    Energy Technology Data Exchange (ETDEWEB)

    Brown, S.S.; Talukdar, R.K.; Ravishankara, A.R. [National Oceanic and Atmospheric Administration, Boulder, CO (United States). Aeronomy Lab.]|[Univ. of Colorado, Boulder, CO (United States)

    1999-04-22

    The authors report rate coefficients for the reaction of OH with HNO{sub 3}, k{sub 1}, between 10 and 500 Torr of He, SF{sub 6}, N{sub 2}, and O{sub 2} and at 10 different temperatures between 200 and 375 K. They generated OH via pulsed photolysis of HNO{sub 3} and monitored the [OH] temporal profile via pulsed laser induced fluorescence. Below 300 K the value of k{sub 1} increases rapidly with decreasing temperature and depends on pressure. The pressure dependence of k{sub 1} at low temperature is significantly larger than that obtained by extrapolation of the currently available data. The pressure and temperature dependence is most likely due to a competition between direct abstraction and reactive complex formation. A rate constant expression derived from such a mechanism gives a global fit for k{sub 1} that is applicable to atmospheric conditions. The new rate constant alters the calculated NO{sub 2} to HNO{sub 3} ratio in the lower stratosphere.

  17. Addition and spin exchange rate constants by longitudinal field μSR: the Mu + NO reaction

    International Nuclear Information System (INIS)

    Senba, Masayoshi; Gonzalez, A.C.; Kempton, J.R.; Arseneau, D.J.; Pan, J.J.; Tempelmann, A.; Fleming, D.G.

    1991-01-01

    The addition reaction Mu + NO + M → MuNO + M and the spin exchange reaction Mu(↑) + NO(↓)→Mu(↓)+NO(↑) have been measured by longitudinal field μSR at room temperature in the presence of up to 58 atm of N 2 as inert collider. The pressure dependence of the longitudinal relaxation rate due to the addition reaction (λ c ) demonstrates that the system is still in the low pressure regime in this pressure range. The corresponding termolecular rate constant has been determined as k 0.Mu =(1.10±0.25)x10 -32 cm 6 molecules -2 s -1 , almost 4 times smaller than the corresponding H atom reaction k 0,H =3.90x10 -32 cm 6 molecules -2 s -1 . The average value of the spin exchange rate constants in the 2.5-58 atm pressure range, k SE = (3.16±0.06)x10 -10 cm 3 molecule -1 s -1 , is in good agreement with previous values obtained by transverse field μSR. (orig.)

  18. Reaction rate constants and mean population percentage for nitrifiers in an alternating oxidation ditch system.

    Science.gov (United States)

    Mantziaras, I D; Katsiri, A

    2011-01-01

    This paper presents a methodology for the determination of reaction rate constants for nitrifying bacteria and their mean population percentage in biomass in an alternating oxidation ditch system. The method used is based on the growth rate equations of the ASM1 model (IWA) (Henze et al. in Activated sludge models ASM1, ASM2, ASM2d, and ASM3. IWA Scientific and Technical Report no. 9, IWA Publishing, London, UK, 2000) and the application of mass balance equations for nitrifiers and ammonium nitrogen in an operational cycle of the ditch system. The system consists of two ditches operating in four phases. Data from a large-scale oxidation ditch pilot plant with a total volume of 120 m(3) within an experimental period of 8 months was used. Maximum specific growth rate for autotrophs (μ(A)) and the half-saturation constant for ammonium nitrogen (K(NH)) were found to be 0.36 day(-1) and 0.65 mgNH(4)-N/l, respectively. Additionally, the average population percentage of the nitrifiers in the biomass was estimated to be around 3%.

  19. Rate Constant of the Reaction between CH3O2 Radicals and OH Radicals Revisited.

    Science.gov (United States)

    Assaf, Emmanuel; Song, Bo; Tomas, Alexandre; Schoemaecker, Coralie; Fittschen, Christa

    2016-11-17

    The reaction between CH 3 O 2 and OH radicals has been studied in a laser photolysis cell using the reaction of F atoms with CH 4 and H 2 O for the simultaneous generation of both radicals, with F atoms generated through 248 nm photolysis of XeF 2 . An experimental setup combining cw-Cavity Ring Down Spectroscopy (cw-CRDS) and high repetition rate laser-induced fluorescence (LIF) to a laser photolysis cell has been used. The absolute concentration of CH 3 O 2 was measured by cw-CRDS, while the relative concentration of OH(v = 0) radicals was determined by LIF. To remove dubiety from the quantification of CH 3 O 2 by cw-CRDS in the near-infrared, its absorption cross section has been determined at 7489.16 cm -1 using two different methods. A rate constant of k 1 = (1.60 ± 0.4) × 10 -10 cm 3 s -1 has been determined at 295 K, nearly a factor of 2 lower than an earlier determination from our group ((2.8 ± 1.4) × 10 -10 cm 3 s -1 ) using CH 3 I photolysis as a precursor. Quenching of electronically excited I atoms (from CH 3 I photolysis) in collision with OH(v = 0) is suspected to be responsible for a bias in the earlier, fast rate constant.

  20. Alternative approach to estimate the hydrolysis rate constant of particulate material from batch data

    International Nuclear Information System (INIS)

    Koch, Konrad; Drewes, Jörg E.

    2014-01-01

    Highlights: • An alternative to the commonly used first-order approach is presented. • A relationship between k h and the 1% criterion of the VDI 4630 is deduced. • Equation is proposed to directly calculate k h without the need for data fitting. • Hydrolysis constant k h can then easily be read-off from a table. - Abstract: As anaerobic batch tests are easy to conduct, they are commonly used to assess the effects of different operational factors on the anaerobic digestion process. Hydrolysis of particulate material is often assumed to be the rate limiting step in anaerobic digestion. Its velocity is often estimated by data fitting from batch tests. In this study, a Monod-type alternative to the commonly used first-order approach is presented. The approach was adapted from balancing a continuously stirred-tank reactor and better accommodates the fact that even after a long incubation time, some of the methane potential of the substrate remains untapped in the digestate. In addition, an equation is proposed to directly calculate the hydrolysis constant from the time when the daily gas production is less than 1% of the total gas production. The hydrolysis constant can then easily be read-off from a table when the batch test duration is known

  1. Electron attachment rate constant measurement by photoemission electron attachment ion mobility spectrometry (PE-EA-IMS)

    Science.gov (United States)

    Su, Desheng; Niu, Wenqi; Liu, Sheng; Shen, Chengyin; Huang, Chaoqun; Wang, Hongmei; Jiang, Haihe; Chu, Yannan

    2012-12-01

    Photoemission electron attachment ion mobility spectrometry (PE-EA-IMS), with a source of photoelectrons induced by vacuum ultraviolet radiation on a metal surface, has been developed to study electron attachment reaction at atmospheric pressure using nitrogen as the buffer gas. Based on the negative ion mobility spectra, the rate constants for electron attachment to tetrachloromethane and chloroform were measured at ambient temperature as a function of the average electron energy in the range from 0.29 to 0.96 eV. The experimental results are in good agreement with the data reported in the literature.

  2. Manifold adaptation for constant false alarm rate ship detection in South African oceans

    CSIR Research Space (South Africa)

    Schwegmann, CP

    2015-04-01

    Full Text Available FOR PUBLICATION IN IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 5 in the ratio image because µROI > µc. Fig. 3 shows three spikes found in a mean ratio image with two threshold manifolds overlaid - one flat and the other non-flat... IN IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 1 Manifold adaptation for constant false alarm rate ship detection in South African oceans C. P. Schwegmann, W. Kleynhans and B. P. Salmon Abstract The detection of ships...

  3. Pseudo-extravasation rate constant of dynamic susceptibility contrast-MRI determined from pharmacokinetic first principles.

    Science.gov (United States)

    Li, Xin; Varallyay, Csanad G; Gahramanov, Seymur; Fu, Rongwei; Rooney, William D; Neuwelt, Edward A

    2017-11-01

    Dynamic susceptibility contrast-magnetic resonance imaging (DSC-MRI) is widely used to obtain informative perfusion imaging biomarkers, such as the relative cerebral blood volume (rCBV). The related post-processing software packages for DSC-MRI are available from major MRI instrument manufacturers and third-party vendors. One unique aspect of DSC-MRI with low-molecular-weight gadolinium (Gd)-based contrast reagent (CR) is that CR molecules leak into the interstitium space and therefore confound the DSC signal detected. Several approaches to correct this leakage effect have been proposed throughout the years. Amongst the most popular is the Boxerman-Schmainda-Weisskoff (BSW) K 2 leakage correction approach, in which the K 2 pseudo-first-order rate constant quantifies the leakage. In this work, we propose a new method for the BSW leakage correction approach. Based on the pharmacokinetic interpretation of the data, the commonly adopted R 2 * expression accounting for contributions from both intravascular and extravasating CR components is transformed using a method mathematically similar to Gjedde-Patlak linearization. Then, the leakage rate constant (K L ) can be determined as the slope of the linear portion of a plot of the transformed data. Using the DSC data of high-molecular-weight (~750 kDa), iron-based, intravascular Ferumoxytol (FeO), the pharmacokinetic interpretation of the new paradigm is empirically validated. The primary objective of this work is to empirically demonstrate that a linear portion often exists in the graph of the transformed data. This linear portion provides a clear definition of the Gd CR pseudo-leakage rate constant, which equals the slope derived from the linear segment. A secondary objective is to demonstrate that transformed points from the initial transient period during the CR wash-in often deviate from the linear trend of the linearized graph. The inclusion of these points will have a negative impact on the accuracy of the leakage

  4. Methane combustion kinetic rate constants determination: an ill-posed inverse problem analysis

    Directory of Open Access Journals (Sweden)

    Bárbara D. L. Ferreira

    2013-01-01

    Full Text Available Methane combustion was studied by the Westbrook and Dryer model. This well-established simplified mechanism is very useful in combustion science, for computational effort can be notably reduced. In the inversion procedure to be studied, rate constants are obtained from [CO] concentration data. However, when inherent experimental errors in chemical concentrations are considered, an ill-conditioned inverse problem must be solved for which appropriate mathematical algorithms are needed. A recurrent neural network was chosen due to its numerical stability and robustness. The proposed methodology was compared against Simplex and Levenberg-Marquardt, the most used methods for optimization problems.

  5. Monte Carlo method for determining free-energy differences and transition state theory rate constants

    International Nuclear Information System (INIS)

    Voter, A.F.

    1985-01-01

    We present a new Monte Carlo procedure for determining the Helmholtz free-energy difference between two systems that are separated in configuration space. Unlike most standard approaches, no integration over intermediate potentials is required. A Metropolis walk is performed for each system, and the average Metropolis acceptance probability for a hypothetical step along a probe vector into the other system is accumulated. Either classical or quantum free energies may be computed, and the procedure is also ideally suited for evaluating generalized transition state theory rate constants. As an application we determine the relative free energies of three configurations of a tungsten dimer on the W(110) surface

  6. Rapid estimation of glucosinolate thermal degradation rate constants in leaves of Chinese kale and broccoli (Brassica oleracea) in two seasons.

    Science.gov (United States)

    Hennig, Kristin; Verkerk, Ruud; Bonnema, Guusje; Dekker, Matthijs

    2012-08-15

    Kinetic modeling was used as a tool to quantitatively estimate glucosinolate thermal degradation rate constants. Literature shows that thermal degradation rates differ in different vegetables. Well-characterized plant material, leaves of broccoli and Chinese kale plants grown in two seasons, was used in the study. It was shown that a first-order reaction is appropriate to model glucosinolate degradation independent from the season. No difference in degradation rate constants of structurally identical glucosinolates was found between broccoli and Chinese kale leaves when grown in the same season. However, glucosinolate degradation rate constants were highly affected by the season (20-80% increase in spring compared to autumn). These results suggest that differences in glucosinolate degradation rate constants can be due to variation in environmental as well as genetic factors. Furthermore, a methodology to estimate rate constants rapidly is provided to enable the analysis of high sample numbers for future studies.

  7. Periods of constant and falling-rate for infrared drying of carrot slices Períodos de secagem constante e decrescente de fatias de cenoura por infravermelho

    Directory of Open Access Journals (Sweden)

    Fernando M. Botelho

    2011-08-01

    Full Text Available The aim of this work was to study the infrared drying process of carrot slices and to determine coefficients related to the heat and mass transfer of the process. Fresh carrots were used, dried until constant weight in a dryer with infrared heating source. Different models were utilized to fit the experimental data of constant and falling drying rate periods. It was verified that the coefficients of heat and mass transfer, during the constant drying rate, significantly increased with temperature on rise. The Diffusion Approximation, Two Terms, Midili and Verna models satisfactory represented the falling period of drying rate of carrot slices. The effective diffusion coefficient increased with temperature and this relationship can be represented by the Arrhenius equation, obtaining activation energy to the drying process of 29.092 kJ mol-1.Com este trabalho objetivou-se estudar o processo de secagem por infravermelho das fatias de cenoura e determinar alguns coeficientes referentes à transferência de calor e massa do processo. Utilizaram-se cenouras frescas, secadas até massa constante em um secador com fonte de aquecimento por infravermelho. Aos dados experimentais se ajustaram diferentes modelos para os períodos de taxa de secagem constante e decrescentes. Verificou-se que os coeficientes transferência de calor e massa, referentes ao período de secagem constante, aumentaram significativamente com o aumento da temperatura e que os modelos Aproximação da Difusão, Dois Termos, Midili e Verna representaram satisfatoriamente o período de secagem decrescente das fatias de cenoura. O coeficiente de difusão efetivo aumentou com a temperatura e esta relação pode ser representada pela Equação de Arrhenius, obtendo-se uma energia de ativação para o processo de secagem de 29,092 kJ mol-1.

  8. Comments to "Analysis of constant rate period of spray drying of slurry" by Liang et al., 2001

    DEFF Research Database (Denmark)

    Jørgensen, Kåre; Jensen, Anker Degn; Sloth, Jakob

    2006-01-01

    In the study by Liang et al. [2001. Analysis of constant rate period of spray drying of slurry. Chemical Engineering Science 56, 2205-2213] the Darcy flow of liquid through a pore system of primary particles to the surface of a slurry droplet was applied for the constant rate period. Steep primary...

  9. Comments to ”Analysis of constant rate period of spray drying of slurry” by Liang et al

    DEFF Research Database (Denmark)

    Jørgensen, Kåre; Jensen, Anker; Sloth, Jakob

    2006-01-01

    In the study by Liang et al. [2001. Analysis of constant rate period of spray drying of slurry. Chemical Engineering Science 56, 2205-2213] the Darcy flow of liquid through a pore system of primary particles to the surface of a slurry droplet was applied for the constant rate period. Steep primary...

  10. Rate constant for the OH + CO reaction - Pressure dependence and the effect of oxygen

    Science.gov (United States)

    Demore, W. B.

    1984-01-01

    The effect of pressure on the rate constant of the OH + CO reaction has been measured for Ar, N2, and SF6 over the pressure range 200-730 torr. All experiments were at room temperature. The method involved laser-induced fluorescence to measure steady-state OH concentrations in the 184.9 nm photolysis of H2O-CO mixtures in the three carrier gases, combined with supplementary measurements of the CO depletion in these same carrier gases in the presence and absence of competing reference reactants. The effect of O2 on the pressure effect was determined. A pressure enhancement of the rate constant was observed for N2 and SF6, but not for Ar, within an experimental error of about 10 percent. The pressure effect for N2 was somewhat lower than previous literature reports, being about 40 percent at 730 torr. For SF6 a factor of two enhancement was seen at 730 torr. In each case it was found that O2 had no effect on the pressure enhancement. The roles of the radical species HCO and HOCO were evaluated.

  11. Voltage affects the dissociation rate constant of the m2 muscarinic receptor.

    Directory of Open Access Journals (Sweden)

    Yair Ben Chaim

    Full Text Available G-protein coupled receptors (GPCRs comprise the largest protein family and mediate the vast majority of signal transduction processes in the body. Until recently GPCRs were not considered to be voltage dependent. Newly it was shown for several GPCRs that the first step in GPCR activation, the binding of agonist to the receptor, is voltage sensitive: Voltage shifts the receptor between two states that differ in their binding affinity. Here we show that this shift involves the rate constant of dissociation. We used the m2 muscarinic receptor (m2R a prototypical GPCR and measured directly the dissociation of [(3H]ACh from m2R expressed Xenopus oocytes. We show, for the first time, that the voltage dependent change in affinity is implemented by voltage shifting the receptor between two states that differ in their rate constant of dissociation. Furthermore, we provide evidence that suggest that the above shift is achieved by voltage regulating the coupling of the GPCR to its G protein.

  12. Reaction of H2 with O2 in Excited Electronic States: Reaction Pathways and Rate Constants.

    Science.gov (United States)

    Pelevkin, Alexey V; Loukhovitski, Boris I; Sharipov, Alexander S

    2017-12-21

    Comprehensive quantum chemical analysis with the use of the multireference state-averaged complete active space self-consistent field approach was carried out to study the reactions of H 2 with O 2 in a 1 Δ g , b 1 Σ g + , c 1 Σ u - , and A' 3 Δ u electronically excited states. The energetically favorable reaction pathways and possible intersystem crossings have been revealed. The energy barriers were refined employing the extended multiconfiguration quasi-degenerate second-order perturbation theory. It has been shown that the interaction of O 2 (a 1 Δ g ) and O 2 (A' 3 Δ u ) with H 2 occurs through the H-abstraction process with relatively low activation barriers that resulted in the formation of the HO 2 molecule in A″ and A' electronic states, respectively. Meanwhile, molecular oxygen in singlet sigma states (b 1 Σ g + and c 1 Σ u - ) was proved to be nonreactive with respect to the molecular hydrogen. Appropriate rate constants for revealed reaction and quenching channels have been estimated using variational transition-state theory including corrections for the tunneling effect, possible nonadiabatic transitions, and anharmonicity of vibrations for transition states and reactants. It was demonstrated that the calculated reaction rate constant for the H 2 + O 2 (a 1 Δ g ) process is in reasonable agreement with known experimental data. The Arrhenius approximations for these processes have been proposed for the temperature range T = 300-3000 K.

  13. Effects of Water Molecule on CO Oxidation by OH: Reaction Pathways, Kinetic Barriers, and Rate Constants.

    Science.gov (United States)

    Zhang, Linyao; Yang, Li; Zhao, Yijun; Zhang, Jiaxu; Feng, Dongdong; Sun, Shaozeng

    2017-07-06

    The water dilute oxy-fuel combustion is a clean combustion technology for near-zero emission power; and the presence of water molecule could have both kinetic and dynamic effects on combustion reactions. The reaction OH + CO → CO 2 + H, one of the most important elementary reactions, has been investigated by extensive electronic structure calculations. And the effects of a single water molecule on CO oxidation have been studied by considering the preformed OH(H 2 O) complex reacts with CO. The results show little change in the reaction pathways, but the additional water molecule actually increases the vibrationally adiabatic energy barriers (V a G ). Further thermal rate constant calculations in the temperature range of 200 to 2000 K demonstrate that the total low-pressure limit rate constant for the water assisted OH(H 2 O) + CO → CO 2 + H 2 O + H reaction is 1-2 orders lower than that of the water unassisted one, which is consistent with the change of V a G . Therefore, the hydrated radical OH(H 2 O) would actually slow down the oxidation of CO. Meanwhile, comparisons show that the M06-2X/aug-cc-pVDZ method gives a much better estimation in energy and thus is recommended to be employed for direct dynamics simulations.

  14. Absolute rate constants for the reaction of hypochlorous acid with protein side chains and peptide bonds

    DEFF Research Database (Denmark)

    Pattison, D I; Davies, Michael Jonathan

    2001-01-01

    , absolute second-order rate constants for the reactions of HOCl with protein side chains, model compounds, and backbone amide (peptide) bonds have been determined at physiological pH values. The reactivity of HOCl with potential reactive sites in proteins is summarized by the series: Met (3.8 x 10(7) M(-1......) x s(-1)) > backbone amides (10-10(-3) M(-1) x s(-1)) > Gln(0.03 M(-1) x s(-1)) approximately Asn (0.03 M(-1) x s(-1)). The rate constants for reaction of HOCl with backbone amides (peptide bonds) vary by 4 orders of magnitude with uncharged peptide bonds reacting more readily with HOCl than those....... Proteins are major targets for this oxidant, and such reaction results in side-chain modification, backbone fragmentation, and cross-linking. Despite a wealth of qualitative data for such reactions, little absolute kinetic data is available to rationalize the in vitro and in vivo data. In this study...

  15. Exposure rate constants and lead shielding values for over 1,100 radionuclides.

    Science.gov (United States)

    Smith, David S; Stabin, Michael G

    2012-03-01

    The authors have assembled a compilation of exposure rate constants, ƒ-factors, and lead shielding thicknesses for more than 1,100 radionuclides described in ICRP Publication 107. Physical data were taken from well established reference sources for mass-energy absorption coefficients in air, attenuation coefficients, and buildup factors in lead and other variables.The data agreed favorably for the most part with those of other investigators; thus this compilation provides an up-to-date and sizeable database of these data, which are of interest to many for routine calculations. Emissions were also segregated by emitting nuclide, and decay product emissions were emitted from the calculated coefficients, thus for the first time providing for the calculation of exposure rates from arbitrary mixtures of nuclides in arbitrary equilibrium states.

  16. The enterprise constant improvement by using medium ratings differentiation analysis on the second Toyota principle

    Directory of Open Access Journals (Sweden)

    Stanisław Borkowski

    2014-07-01

    Full Text Available The organization constant improvement process is possible using a step by step method. The self-learning organization and continuous improvement of the organization's culture guarantees achievement of good market results and raising competitiveness. This paper aims to identify and analyze the ratings importance level for the production process factors in order for the manufacturing process to improve in the chosen construction company. The study used an innovative research method BOST, which refers to the Toyota management principles in the production and the service organizations. As a result of research the ratings differentiation importance level for the production process factors was achieved which provides a basis for the process of the analyzed company to improve.

  17. Dynamic Monte Carlo rate constants for magnetic Hamiltonians coupled to a phonon bath

    Science.gov (United States)

    Solomon, Lazarus; Novotny, Mark

    2007-03-01

    For quantitative comparisons between experimental time- dependent measurements and dynamic Monte Carlo simulations, a relation between the time constant in the simulation and real time is necessary. We calculate the transition rate for spin S system using the lattice frame method for a rigid spin cluster in an elastic medium [1]. We compare this with the transition rate for an Ising spin 12 system using the quantum- mechanical density-matrix method [2] with the results of ref [1,3]. These transition probabilities are different from those of either the Glauber or the Metropolis dynamics, and reflect the properties of the bosonic bath. Comparison with recent experiments [4] will be discussed. [1] E. M. Chudnovsky, D. A. Garanin, and R. Schilling (PRB 72, 2006) [2] K. Park, M. A. Novotny, and P. A. Rikvold (PRE 66, 2002) [3] K Saito, S. Takesue, and S. Miyashita, (PRE 61, 2002) [4] T. Meunier et al (Condensed Matter, 2006)

  18. Rate constant for the reaction of atomic oxygen with phosphine at 298 K

    Science.gov (United States)

    Stief, L. J.; Payne, W. A.; Nava, D. F.

    1987-01-01

    The rate constant for the reaction of atomic oxygen with phosphine has been measured at 298 K using flash photolysis combined with time-resolved detection of O(3P) via resonance fluorescence. Atomic oxygen was produced by flash photolysis of N2O or NO highly diluted in argon. The results were shown to be independent of (PH3), (O), total pressure and the source of O(3P). The mean value of all the experiments is k1 = (3.6 + or -0.8) x 10 to the -11th cu cm/s (1 sigma). Two previous measurements of k1 differed by more than an order of magnitude, and the results support the higher value obtained in a discharge flow-mass spectrometry study. A comparison with rate data for other atomic and free radical reactions with phosphine is presented, and the role of these reactions in the aeronomy or photochemistry of Jupiter and Saturn is briefly considered.

  19. Atypical transitions in material response during constant strain rate, hot deformation of austenitic steel

    Science.gov (United States)

    Borah, Utpal; Aashranth, B.; Samantaray, Dipti; Kumar, Santosh; Davinci, M. Arvinth; Albert, Shaju K.; Bhaduri, A. K.

    2017-10-01

    Work hardening, dynamic recovery and dynamic recrystallization (DRX) occurring during hot working of austenitic steel have been extensively studied. Various empirical models describe the nature and effects of these phenomena in a typical framework. However, the typical model is sometimes violated following atypical transitions in deformation mechanisms of the material. To ascertain the nature of these atypical transitions, researchers have intentionally introduced discontinuities in the deformation process, such as interrupting the deformation as in multi-step rolling and abruptly changing the rate of deformation. In this work, we demonstrate that atypical transitions are possible even in conventional single-step, constant strain rate deformation of austenitic steel. Towards this aim, isothermal, constant true strain rate deformation of austenitic steel has been carried out in a temperature range of 1173-1473 K and strain rate range of 0.01-100 s-1. The microstructural response corresponding to each deformation condition is thoroughly investigated. The conventional power-law variation of deformation grain size (D) with peak stress (σp) during DRX is taken as a typical model and experimental data is tested against it. It is shown that σp-D relations exhibit an atypical two-slope linear behaviour rather than a continuous power law relation. Similarly, the reduction in σp with temperature (T) is found to consist of two discrete linear segments. In practical terms, the two linear segments denote two distinct microstructural responses to deformation. As a consequence of this distinction, the typical model breaks down and is unable to completely relate microstructural evolution to flow behaviour. The present work highlights the microstructural mechanisms responsible for this atypical behavior and suggests strategies to incorporate the two-slope behaviour in the DRX model.

  20. Extension of the master sintering curve for constant heating rate modeling

    Science.gov (United States)

    McCoy, Tammy Michelle

    The purpose of this work is to extend the functionality of the Master Sintering Curve (MSC) such that it can be used as a practical tool for predicting sintering schemes that combine both a constant heating rate and an isothermal hold. Rather than just being able to predict a final density for the object of interest, the extension to the MSC will actually be able to model a sintering run from start to finish. Because the Johnson model does not incorporate this capability, the work presented is an extension of what has already been shown in literature to be a valuable resource in many sintering situations. A predicted sintering curve that incorporates a combination of constant heating rate and an isothermal hold is more indicative of what is found in real-life sintering operations. This research offers the possibility of predicting the sintering schedule for a material, thereby having advanced information about the extent of sintering, the time schedule for sintering, and the sintering temperature with a high degree of accuracy and repeatability. The research conducted in this thesis focuses on the development of a working model for predicting the sintering schedules of several stabilized zirconia powders having the compositions YSZ (HSY8), 10Sc1CeSZ, 10Sc1YSZ, and 11ScSZ1A. The compositions of the four powders are first verified using x-ray diffraction (XRD) and the particle size and surface area are verified using a particle size analyzer and BET analysis, respectively. The sintering studies were conducted on powder compacts using a double pushrod dilatometer. Density measurements are obtained both geometrically and using the Archimedes method. Each of the four powders is pressed into ¼" diameter pellets using a manual press with no additives, such as a binder or lubricant. Using a double push-rod dilatometer, shrinkage data for the pellets is obtained over several different heating rates. The shrinkage data is then converted to reflect the change in relative

  1. Potential chlorofluorocarbon replacements: OH reaction rate constants between 250 and 315 K and infrared absorption spectra

    Science.gov (United States)

    Garland, Nancy L.; Medhurst, Laura J.; Nelson, H. H.

    1993-12-01

    We measured the rate constant for reactions of the OH radical with several potential chlorofluorocarbon replacements over the temperature range 251-314 K using laser photolysis laser-induced fluorescence techniques. The compounds studied and Arrhenius parameters determined from fits to the measured rate constants are as follows: CHF2OCHF2 (E 134), k(T) = (5.4 ± 3.5) × 10-13 cm3 s-1 exp [(-3.1 ± 0.4 kcal mol-1)/RT]; CF3CH2CF3 (FC 236fa), k(T) = (2.0 ± 1.0) × 10-14 cm3 s-1 exp [(-1.8 ± 0.3 kcal mol-1)/RT]; CF3CHFCHF2 (FC 236ea), k(T) = (2.0 ± 0.9) × 10-13 cm3 s-1 exp [(-2.0 ± 0.3 kcal mol-1)/RT]; and CF3CF2CH2F (FC 236cb), k(T)= (2.6 ± 1.6) × 10-13 cm3 s-1 exp [(-2.2 ± 0.4 kcal mol-1)/RT]. The measured activation energies (2-3 kcal mol-1) are consistent with a mechanism of H atom abstraction. The tropospheric lifetimes, estimated from the measured OH reaction rates, and measured integrated infrared absorption cross sections over the range 770 to 1430 cm-1 suggest that E 134 and FC 236fa may have significant global warming potential, while FC 236ea and FC 236cb do not.

  2. Crystallization of isotactic polypropylene from mesomorphic phase: a constant heating rate study

    Energy Technology Data Exchange (ETDEWEB)

    Asakawa, H; Nishida, K; Kanaya, T [Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011 (Japan); Matsuba, G [Department of Polymer Science and Engineering, Yamagata University, Yonezawa, Yamagata, 992-8510 (Japan); Ogawa, H, E-mail: knishida@scl.kyoto-u.ac.jp [Japan Synchrotron Radiation Research Institute (JASRI), Kouto, Sayo-cho, Sayogun, Hyogo, 679-5198 (Japan)

    2011-01-01

    We have studied crystallization behaviour of isotactic polypropylene (iPP) from mesomorphic phase in structural point of view. Time-resolved wide-angle X-ray diffraction (WAXD) measurements during a heating process have been performed using a synchrotron radiation (SR) X-ray beam line at SPring-8, Japan. The heating process was so programmed to reproduce a thermal trace of differential scanning calorimetry (DSC) with a constant heating rate (10 deg. C/min) in order to compare the structural change with thermal behaviour. SR-WAXD sensitively detected the crystallization behaviour and we have obtained fractions of alpha-crystal, mesomorphic phase and amorphous phase as a function of temperature by analysing the data. The results showed that the crystallization from mesomorphic phase proceeds in between 60 and 120 deg. C (meso-alpha transition). During this process, the crystallization from amorphous hardly takes place. The crystalline fraction shows almost constant in between 120 and 140 deg. C; meanwhile, the mesomorphic fraction still decreases above 120 deg. C. The crystalline fraction starts to decrease above 140 deg. C and the most extensively decreases at around 165 deg. C (melting point). We have also determined the energy level of the mesomorphic phase (meta-stable state) relative to that of alpha-crystal (stable state), considering the balance among the fractions of alpha-crystal, mesomorphic phase and amorphous.

  3. Rate constants for the slow Mu + propane abstraction reaction at 300 K by diamagnetic RF resonance.

    Science.gov (United States)

    Fleming, Donald G; Cottrell, Stephen P; McKenzie, Iain; Ghandi, Khashayar

    2015-08-14

    The study of kinetic isotope effects for H-atom abstraction rates by incident H-atoms from the homologous series of lower mass alkanes (CH4, C2H6 and, here, C3H8) provides important tests of reaction rate theory on polyatomic systems. With a mass of only 0.114 amu, the most sensitive test is provided by the rates of the Mu atom. Abstraction of H by Mu can be highly endoergic, due to the large zero-point energy shift in the MuH bond formed, which also gives rise to high activation energies from similar zero-point energy corrections at the transition state. Rates are then far too slow near 300 K to be measured by conventional TF-μSR techniques that follow the disappearance of the spin-polarised Mu atom with time. Reported here is the first measurement of a slow Mu reaction rate in the gas phase by the technique of diamagnetic radio frequency (RF) resonance, where the amplitude of the MuH product formed in the Mu + C3H8 reaction is followed with time. The measured rate constant, kMu = (6.8 ± 0.5) × 10(-16) cm(3) s(-1) at 300 K, is surprisingly only about a factor of three slower than that expected for H + C3H8, indicating a dominant contribution from quantum tunneling in the Mu reaction, consistent with elementary transition state theory calculations of the kMu/kH kinetic isotope effect.

  4. Consideration of demand rate in overall equipment effetiveness (OEE on equipment with constant process time

    Directory of Open Access Journals (Sweden)

    Tay C.C.

    2013-06-01

    research should be conducted to test the possibility and to verify the definition of such performance ratio including Takt time on those processes of which its operating time is possibly to be reduced, especially those are not constant and fixed. This piece of research is temporarily done on the process where its operating time is constant from time to time and there is no ideal cycle time possible.Practical implications: The awareness of the overproduction should be emphasized and raised in the intention of pursuing higher OEE value. As the definition proposed such, the process with constant cycle time could even be defined in different performance ratio from time to time regarding to the customer demands and corresponding production rate. These two variables can be adjusted and balanced to increase the OEE value through optimization of average cycle time. Over this, optimization of average cycle time on equipment with constant operating time can be achieved through the optimization of loading number per each processing.Originality/value: The novelty of the paper is the inclusion of customer demand in obtaining OEE value of any particular equipment. Besides that, the equipment without ideal cycle time, which means those processes carried out in constant cycle time are possibly to be evaluated with performance ratio. As consequence of that, the machine utilization and capability used could be quantified and visualized using the performance ratio data of the OEE proposed.

  5. Stress relaxation of entangled polystyrene solution after constant-rate, uniaxial elongation

    DEFF Research Database (Denmark)

    Matsumiya, Yumi; Masubuchi, Yuichi; Watanabe, Hiroshi

    For an entangled solution of linear polystyrene (PS 545k; M = 545k) in dibutyl phthalate (DBP), the stress relaxation after constant-rate uniaxial elongation was examined with an extensional viscosity fixture mounted on ARES (TA Instruments). The PS concentration, c = 52 wt%, was chosen in a way...... that the entanglement density M/Me of the solution coincided with that of PS 290k melt (M = 290k). After the elongation at the Rouse-based Weissenberg number Wi(R) ~ 3 up to the Hencky strain of 3, the short time stress relaxation of the solution was accelerated by a factor of ~4, which was less significant compared...... but this reduction weakens on an increase of the concentration of un-stretchable solvent molecules. This change of the stretch/orientation reduction of the friction with the solvent concentration appears to be consistent with the monotonic thinning of the steady-state elongational viscosity seen for melts...

  6. Determination of rate constants of N-alkylation of primary amines by 1H NMR spectroscopy.

    Science.gov (United States)

    Li, Chenghong

    2013-09-05

    Macromolecules containing N-diazeniumdiolates of secondary amines are proposed scaffolds for controlled nitrogen oxide (NO) release medical applications. Preparation of these compounds often involves converting primary amine groups to secondary amine groups through N-alkylation. However, N-alkylation results in not only secondary amines but tertiary amines as well. Only N-diazeniumdiolates of secondary amines are suitable for controlled NO release; therefore, the yield of secondary amines is crucial to the total NO load of the carrier. In this paper, (1)H NMR spectroscopy was used to estimate the rate constants for formation of secondary amine (k1) and tertiary amine (k2) for alkylation reagents such as propylene oxide (PO), methyl acrylate (MA), and acrylonitrile (ACN). At room temperature, the ratio of k2/k1 for the three reactions was found to be around 0.50, 0.026, and 0.0072.

  7. The Reaction Mechanism and Rate Constants in the Radiolysis of Fe2+-Cu2+ Solutions

    DEFF Research Database (Denmark)

    Bjergbakke, Erling; Sehested, Knud; Rasmussen, O. Lang

    1976-01-01

    Pulse radiolysis and gamma radiolysis have been used to study the reaction mechanism in the radiolysis of aqueous solutions of Fe2+ and Cu2+. A reaction scheme has been developed and confirmed by computation of the corresponding complete set of differential equations. The rate constants for some...... of the reactions have been determined at different pH's. $k_{{\\rm Cu}^{+}+{\\rm O}_{2}}=4.6\\times 10^{5}$ and $1.0\\times 10^{6}\\ {\\rm mol}^{-1}\\ {\\rm sec}^{-1}$, $k_{{\\rm Cu}^{+}+{\\rm Fe}^{3+}}=5.5\\times 10^{6}$ and $1.3\\times 10^{7}\\ {\\rm mol}^{-1}\\ {\\rm sec}^{-1}$, $k_{{\\rm Cu}({\\rm III)}+{\\rm Fe}^{2+}}=3.3\\times...

  8. Dissociation and recombination rate constants for CN on Cu and Ni group transition metal surfaces

    Science.gov (United States)

    Sellers, Harrell

    2000-07-01

    We report dissociation and recombination reaction rate constants for CN on the fcc(111) surfaces of Ni, Pd, Pt, Cu, Ag and Au from molecular dynamics simulations employing our normalized bond index-reactive potential functions (NBI-RPF). The Arrhenius pre-exponentials for recombination of CN on these surfaces are about three orders of magnitude greater than the dissociation pre-exponentials. On the series of metals considered herein, the reaction energetics favor dissociation on the more active metals and favor recombination on the least active metals. However, the differences in the pre-exponentials of nearly a factor of 10 3 express the tendency of the reaction entropy to favor the recombination on the surfaces investigated. We also discuss the implications of these results in terms of the thermodynamics of the surface reactions.

  9. Lock-In Amplifier Technology in Laser Gyroscope North Finder of Constant Rate Biasing

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2013-01-01

    Full Text Available This paper presents a new type of strapdown north finder. A simplified configuration is proposed, including three parts: a pendulous force-feedback accelerometer, a ring laser gyroscope, and a single-axis rotating platform. The dynamic northfinding scheme of continuous rotation is adopted to eliminate the lock-in region of the laser gyroscope and to modulate the weak attitude signals; meanwhile the complex leveling process is avoided in this proposed configuration. To suppress the drift noises of the accelerometer and gyroscope, two digital lock-in amplifiers are used to extract the weak attitude signals. Simulation results show that the north finder can determine the heading angle in 72 s, when the rotating rate is /s with the maximum heading error less than 1.0′; meanwhile the horizontal attitude angles as well as the constant drift noises of the inertial components could also be obtained.

  10. Table 5.1. Exchange current densities and rate constants in aqueous systems

    Science.gov (United States)

    Holze, R.

    This document is part of Volume 9 `Electrochemistry', Subvolume A, of Landolt-Börnstein - Group IV `Physical Chemistry'. This document lists the exchange current densities and the electrode reaction rate constants of the following metallic electrodes in aqueous systems for various electrolyte reactions: silver (Ag), aluminium (Al), gold (Au), bismuth (Bi), carbon (C), cadmium (Cd), cobalt (Co), chromium (Cr), cesium (Cs), copper (Cu), iron (Fe), gallium (Ga), mercury (Hg), indium (In), iridium (Ir), potassium (K), lithium (Li), molybdenum (Mo), natrium (Na), niobium (Nb), nickel (Ni), lead (Pb), palladium (Pd), platinum (Pt), rubidium (Rb), rhodium (Rh), ruthenium (Ru), antimony (Sb), tin (Sn), tantalum (Ta), titanium (Ti), thallium (Tl), vanadium (V), tungsten (W), zinc (Zn). For each electrolyte reaction the electrolyte solution, the educt, product and concentration are specified along with the temperature of determination of the given values.

  11. Feasibility study of volumetric modulated arc therapy with constant dose rate for endometrial cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ruijie [Department of Radiation Oncology, Peking University Third Hospital, Beijing (China); Wang, Junjie, E-mail: junjiewang47@yahoo.com [Department of Radiation Oncology, Peking University Third Hospital, Beijing (China); Xu, Feng [Department of Biomedical Engineering, Peking University Third Hospital, Beijing (China); Li, Hua [Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing (China); Zhang, Xile [Department of Radiation Oncology, Peking University Third Hospital, Beijing (China)

    2013-10-01

    To investigate the feasibility, efficiency, and delivery accuracy of volumetric modulated arc therapy with constant dose rate (VMAT-CDR) for whole-pelvic radiotherapy (WPRT) of endometrial cancer. The nine-field intensity-modulated radiotherapy (IMRT), VMAT with variable dose-rate (VMAT-VDR), and VMAT-CDR plans were created for 9 patients with endometrial cancer undergoing WPRT. The dose distribution of planning target volume (PTV), organs at risk (OARs), and normal tissue (NT) were compared. The monitor units (MUs) and treatment delivery time were also evaluated. For each VMAT-CDR plan, a dry run was performed to assess the dosimetric accuracy with MatriXX from IBA. Compared with IMRT, the VMAT-CDR plans delivered a slightly greater V{sub 20} of the bowel, bladder, pelvis bone, and NT, but significantly decreased the dose to the high-dose region of the rectum and pelvis bone. The MUs decreased from 1105 with IMRT to 628 with VMAT-CDR. The delivery time also decreased from 9.5 to 3.2 minutes. The average gamma pass rate was 95.6% at the 3%/3 mm criteria with MatriXX pretreatment verification for 9 patients. VMAT-CDR can achieve comparable plan quality with significant shorter delivery time and smaller number of MUs compared with IMRT for patients with endometrial cancer undergoing WPRT. It can be accurately delivered and be an alternative to IMRT on the linear accelerator without VDR capability.

  12. Study of heterogeneous and homogeneous electron transfer rate constants of some nitrogen containing organic radicals. Master's thesis

    Energy Technology Data Exchange (ETDEWEB)

    Yasmeen, S.

    1992-01-01

    In the present work electrochemical (cyclic voltammetric) studies of methyl viologen in THF + H2O at mercury electrode and TEMPOL in three different solvents (DMF, CH3CN and DMSO) at two different platinum electrodes have been carried out at 22.5 C. Heterogeneous electron transfer rate constants for the above two systems have been calculated by using Gileadi's method. Similarly electron spin resonance (ESR) studies have also been carried out in THF + H2O. Comparison of heterogeneous and homogeneous rate constants have also been carried out. The rate constants were calculated in terms of free energy of activation using Marcus formula.

  13. Detecting Randomness: the Sensitivity of Statistical Tests to Deviations from a Constant Rate Poisson Process

    Science.gov (United States)

    Michael, A. J.

    2012-12-01

    Detecting trends in the rate of sporadic events is a problem for earthquakes and other natural hazards such as storms, floods, or landslides. I use synthetic events to judge the tests used to address this problem in seismology and consider their application to other hazards. Recent papers have analyzed the record of magnitude ≥7 earthquakes since 1900 and concluded that the events are consistent with a constant rate Poisson process plus localized aftershocks (Michael, GRL, 2011; Shearer and Stark, PNAS, 2012; Daub et al., GRL, 2012; Parsons and Geist, BSSA, 2012). Each paper removed localized aftershocks and then used a different suite of statistical tests to test the null hypothesis that the remaining data could be drawn from a constant rate Poisson process. The methods include KS tests between event times or inter-event times and predictions from a Poisson process, the autocorrelation function on inter-event times, and two tests on the number of events in time bins: the Poisson dispersion test and the multinomial chi-square test. The range of statistical tests gives us confidence in the conclusions; which are robust with respect to the choice of tests and parameters. But which tests are optimal and how sensitive are they to deviations from the null hypothesis? The latter point was raised by Dimer (arXiv, 2012), who suggested that the lack of consideration of Type 2 errors prevents these papers from being able to place limits on the degree of clustering and rate changes that could be present in the global seismogenic process. I produce synthetic sets of events that deviate from a constant rate Poisson process using a variety of statistical simulation methods including Gamma distributed inter-event times and random walks. The sets of synthetic events are examined with the statistical tests described above. Preliminary results suggest that with 100 to 1000 events, a data set that does not reject the Poisson null hypothesis could have a variability that is 30% to

  14. A Unified Kinetics and Equilibrium Experiment: Rate Law, Activation Energy, and Equilibrium Constant for the Dissociation of Ferroin

    Science.gov (United States)

    Sattar, Simeen

    2011-01-01

    Tris(1,10-phenanthroline)iron(II) is the basis of a suite of four experiments spanning 5 weeks. Students determine the rate law, activation energy, and equilibrium constant for the dissociation of the complex ion in acid solution and base dissociation constant for phenanthroline. The focus on one chemical system simplifies a daunting set of…

  15. Assessment of volumetric-modulated arc therapy for constant and variable dose rates

    Directory of Open Access Journals (Sweden)

    Mariluz De Ornelas-Couto

    2017-01-01

    Full Text Available Purpose: The aim of this study is to compare the effects of dose rate on volumetric-modulated arc therapy plans to determine optimal dose rates for prostate and head and neck (HN cases. Materials and Methods: Ten prostate and ten HN cases were retrospectively studied. For each case, seven plans were generated: one variable dose rate (VDR and six constant dose rate (CDR (100–600 monitor units [MUs]/min plans. Prescription doses were: 80 Gy to planning target volume (PTV for the prostate cases, and 70, 60, and 54 Gy to PTV1, PTV2, and PTV3, respectively, for HN cases. Plans were normalized to 95% of the PTV and PTV1, respectively, with the prescription dose. Plans were assessed using Dose-Volume-Histogram metrics, homogeneity index, conformity index, MUs, and delivery time. Results: For the prostate cases, significant differences were found for rectum D35 between VDR and all CDR plans, except CDR500. Furthermore, VDR was significantly different than CDR100 and 200 for bladder D50. Delivery time for all CDR plans and MUs for CDR400–600 were significantly higher when compared to VDR. HN cases showed significant differences between VDR and CDR100, 500 and 600 for D2 to the cord and brainstem. Significant differences were found for delivery time and MUs for all CDR plans, except CDR100 for number of MUs. Conclusion: The most significant differences were observed in delivery time and number of MUs. All-in-all, the best CDR for prostate cases was found to be 300 MUs/min and 200 or 300 MUs/min for HN cases. However, VDR plans are still the choice in terms of MU efficiency and plan quality.

  16. An Analytical Formula for Potential Water Vapor in an Atmosphere of Constant Lapse Rate

    Directory of Open Access Journals (Sweden)

    Ali Varmaghani

    2012-01-01

    Full Text Available Accurate calculation of precipitable water vapor (PWV in the atmosphere has always been a matter of importance for meteorologists. Potential water vapor (POWV or maximum precipitable water vapor can be an appropriate base for estimation of probable maximum precipitation (PMP in an area, leading to probable maximum flood (PMF and flash flood management systems. PWV and POWV have miscellaneously been estimated by means of either discrete solutions such as tables, diagrams or empirical methods; however, there is no analytical formula for POWV even in a particular atmospherical condition. In this article, fundamental governing equations required for analytical calculation of POWV are first introduced. Then, it will be shown that this POWV calculation relies on a Riemann integral solution over a range of altitude whose integrand is merely a function of altitude. The solution of the integral gives rise to a series function which is bypassed by approximation of saturation vapor pressure in the range of -55 to 55 degrees Celsius, and an analytical formula for POWV in an atmosphere of constant lapse rate is proposed. In order to evaluate the accuracy of the suggested equation, exact calculations of saturated adiabatic lapse rate (SALR at different surface temperatures were performed. The formula was compared with both the diagrams from the US Weather Bureau and SALR. The results demonstrated unquestionable capability of analytical solutions and also equivalent functions.

  17. Tyrosinase inactivation in organic solvents.

    Science.gov (United States)

    Warrington, J C; Saville, B A

    1999-11-05

    The inactivation of the catecholase activity of mushroom tyrosinase was investigated under nonaqueous conditions. The enzyme was immobilized on glass beads, and assays were conducted in chloroform, toluene, amyl acetate, isopropyl ether, and butanol. The reaction components were pre-equilibrated for 2 weeks with a saturated salt solution at a water activity of 0.90. The initial reaction velocity varied between 1.3 x 10(3) mol product/((mol enzyme)(min)) in toluene and 8.7 x 10(3) mol product/((mol enzyme)(min)) in amyl acetate. The turnover number varied between 8.1 x 10(3) mol product/mol enzyme in toluene and 7.2 x 10(4) mol product/mol enzyme in amyl acetate. In each solvent, the tyrosinase reaction inactivation parameters were represented by a probabilistic model. Changes in the probability of inactivation were followed throughout the course of the reaction using a second model which relates the reaction velocity to the amount of product formed. These models reveal that the inactivation rate of tyrosinase decreases as the reaction progresses, and that the inactivation kinetics are independent of the quinone concentration in toluene, chloroform, butanol, and amyl acetate. Significant effects of quinone concentration were, however, observed in isopropyl ether. The likelihood of inactivation of the enzyme was found to be greatest toward the beginning of the reaction. In the latter phase of the reaction, inactivation probability was less and tended to remain constant until the completion of the reaction. Copyright 1999 John Wiley & Sons, Inc.

  18. Determination of hydroxyl rate constants by a high-throughput fluorimetric assay: towards a unified reactivity scale for antioxidants

    International Nuclear Information System (INIS)

    Louit, G.; Renault, J.P.; Pin, S.; Coffigny, H.; Hanedanian, M.; Taran, F.; Renault, J.P.; Pin, S.

    2009-01-01

    We describe in this article the development of a new method for the determination of rate constants of reaction of the hydroxyl radical, generated by radiolysis of water, with almost any possible molecule. It has been designed to provide a fast and reliable screening of antioxidant banks using microplates. Our particular approach is based on the use of the coumarin molecule as a competitor against the tested molecules: after a fast pulse of low dose irradiation, the fluorescence of 7-hydroxycoumarin produced by the oxidation of coumarin is measured and is inversely proportional to the scavenging ability of the tested antioxidant. We have validated our protocol using 32 molecules whose rate constants with HO . had already been evaluated and found a good agreement between our rate constants and the latter ones. The scopes and limitations of our method, as well as those of other rate constant determination methods, are discussed. (authors)

  19. Reaction rate constants of eaq- and OH radicals with alkylbromides(AB) in aqueous solutions (Preprint no. RC-05)

    International Nuclear Information System (INIS)

    Mahal, H.S.; Manohar Lal

    1991-01-01

    The reaction rate constant of e aq - and OH radicals with ethylbromide, l,s,t butylbromide, bromochloroethane, propylbromide, bromopentane, tetrabromoethane and 1,2 dibromoethane in aqueous solutions by pulse radiolysis technique is reported. (author). 8 refs., 1 tab

  20. KABAM Version 1.0 User's Guide and Technical Documentation - Appendix H - Methods for Estimating Metabolism Rate Constant

    Science.gov (United States)

    Appendix H of KABAM Version 1.0 documentation related to estimating the metabolism rate constant. KABAM is a simulation model used to predict pesticide concentrations in aquatic regions for use in exposure assessments.

  1. Inactivation of E. Coli in Water Using Photocatalytic, Nanostructured Films Synthesized by Aerosol Routes

    Directory of Open Access Journals (Sweden)

    Pratim Biswas

    2013-03-01

    Full Text Available TiO2 nanostructured films were synthesized by an aerosol chemical vapor deposition (ACVD method with different controlled morphologies: columnar, granular, and branched structures for the photocatalytic inactivation of Escherichia coli (E. coli in water. Effects of film morphology and external applied voltage on inactivation rate were investigated. As-prepared films were characterized using scanning electron microscopy (SEM, transmission electron microscopy (TEM, X-ray diffractometry (XRD, and UV-VIS. Photocatalytic and photoelectrochemical inactivation of E. coli using as-prepared TiO2 films were performed under irradiation of UVA light (note: UVA has a low efficiency to inactivate E. coli. Inactivation rate constants for each case were obtained from their respective inactivation curve through a 2 h incubation period. Photocatalytic inactivation rate constants of E. coli are 0.02/min (using columnar films, and 0.08/min (using branched films. The inactivation rate constant for the columnar film was enhanced by 330% by applied voltage on the film while that for the branched film was increased only by 30%. Photocatalytic microbial inactivation rate of the columnar and the branched films were also compared taking into account their different surface areas. Since the majority of the UV radiation that reaches the Earth’s surface is UVA, this study provides an opportunity to use sunlight to efficiently decontaminate drinking water.

  2. Experimental determination of the high-temperature rate constant for the reaction of OH with sec-butanol.

    Science.gov (United States)

    Pang, Genny A; Hanson, Ronald K; Golden, David M; Bowman, Craig T

    2012-10-04

    The overall rate constant for the reaction of OH with sec-butanol [CH(3)CH(OH)CH(2)CH(3)] was determined from measurements of the near-first-order OH decay in shock-heated mixtures of tert-butylhydroperoxide (as a fast source of OH) with sec-butanol in excess. Three kinetic mechanisms from the literature describing sec-butanol combustion were used to examine the sensitivity of the rate constant determination to secondary kinetics. The overall rate constant determined can be described by the Arrhenius expression 6.97 × 10(-11) exp(-1550/T[K]) cm(3) molecule(-1) s(-1), valid over the temperature range of 888-1178 K. Uncertainty bounds of ±30% were found to adequately account for the uncertainty in secondary kinetics. To our knowledge, the current data represent the first efforts toward an experimentally determined rate constant for the overall reaction of OH with sec-butanol at combustion-relevant temperatures. A rate constant predicted using a structure-activity relationship from the literature was compared to the current data and previous rate constant measurements for the title reaction at atmospheric-relevant temperatures. The structure-activity relationship was found to be unable to correctly predict the measured rate constant at all temperatures where experimental data exist. We found that the three-parameter fit of 4.95 × 10(-20)T(2.66) exp(+1123/T[K]) cm(3) molecule(-1) s(-1) better describes the overall rate constant for the reaction of OH with sec-butanol from 263 to 1178 K.

  3. Absolute rate constants for the reaction of NO3 radicals with a series of dienes at 295 K

    DEFF Research Database (Denmark)

    Ellermann, T.; Nielsen, O.J.; Skov, H.

    1992-01-01

    The rate constants for the reaction of NO3 radicals with a series of 7 dienes, 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, trans-1,3-pentadiene, cis-1,3-pentadiene, trans,trans-2,4-hexadiene, and 1,3-cyclohexadiene, were measured at 295 K and at a total pressure of 1 atm. The rate constant...

  4. Inactivation of orange pectinesterase by combined high-pressure and -temperature treatments: a kinetic study.

    Science.gov (United States)

    Van den Broeck, I; Ludikhuyze, L R; Van Loey, A M; Hendrickx, M E

    2000-05-01

    Pressure and/or temperature inactivation of orange pectinesterase (PE) was investigated. Thermal inactivation showed a biphasic behavior, indicating the presence of labile and stable fractions of the enzyme. In a first part, the inactivation of the labile fraction was studied in detail. The combined pressure-temperature inactivation of the labile fraction was studied in the pressure range 0.1-900 MPa combined with temperatures from 15 to 65 degrees C. Inactivation in the pressure-temperature domain specified could be accurately described by a first-order fractional conversion model, estimating the inactivation rate constant of the labile fraction and the remaining activity of the stable fraction. Pressure and temperature dependence of the inactivation rate constants of the labile fraction was quantified using the Eyring and Arrhenius relations, respectively. By replacing in the latter equation the pressure-dependent parameters (E(a), k(ref)(T)()) by mathematical expressions, a global model was formulated. This mathematical model could accurately predict the inactivation rate constant of the labile fraction of orange PE as a function of pressure and temperature. In a second part, the stable fraction was studied in more detail. The stable fraction inactivated at temperatures exceeding 75 degrees C. Acidification (pH 3.7) enhanced thermal inactivation of the stable fraction, whereas addition of Ca(2+) ions (1 M) suppressed inactivation. At elevated pressure (up to 900 MPa), an antagonistic effect of pressure and temperature on the inactivation of the stable fraction was observed. The antagonistic effect was more pronounced in the presence of a 1 M CaCl(2) solution as compared to the inactivation in water, whereas it was less pronounced for the inactivation in acid medium.

  5. Multi-target QSPR modeling for simultaneous prediction of multiple gas-phase kinetic rate constants of diverse chemicals

    Science.gov (United States)

    Basant, Nikita; Gupta, Shikha

    2018-03-01

    The reactions of molecular ozone (O3), hydroxyl (•OH) and nitrate (NO3) radicals are among the major pathways of removal of volatile organic compounds (VOCs) in the atmospheric environment. The gas-phase kinetic rate constants (kO3, kOH, kNO3) are thus, important in assessing the ultimate fate and exposure risk of atmospheric VOCs. Experimental data for rate constants are not available for many emerging VOCs and the computational methods reported so far address a single target modeling only. In this study, we have developed a multi-target (mt) QSPR model for simultaneous prediction of multiple kinetic rate constants (kO3, kOH, kNO3) of diverse organic chemicals considering an experimental data set of VOCs for which values of all the three rate constants are available. The mt-QSPR model identified and used five descriptors related to the molecular size, degree of saturation and electron density in a molecule, which were mechanistically interpretable. These descriptors successfully predicted three rate constants simultaneously. The model yielded high correlations (R2 = 0.874-0.924) between the experimental and simultaneously predicted endpoint rate constant (kO3, kOH, kNO3) values in test arrays for all the three systems. The model also passed all the stringent statistical validation tests for external predictivity. The proposed multi-target QSPR model can be successfully used for predicting reactivity of new VOCs simultaneously for their exposure risk assessment.

  6. Rate constant for the reaction C2H5 + HBr → C2H6 + Br.

    Science.gov (United States)

    Golden, David M; Peng, Jingping; Goumri, A; Yuan, J; Marshall, Paul

    2012-06-21

    RRKM theory has been employed to analyze the kinetics of the title reaction, in particular, the once-controversial negative activation energy. Stationary points along the reaction coordinate were characterized with coupled cluster theory combined with basis set extrapolation to the complete basis set limit. A shallow minimum, bound by 9.7 kJ mol(-1) relative to C(2)H(5) + HBr, was located, with a very small energy barrier to dissociation to Br + C(2)H(6). The transition state is tight compared to the adduct. The influence of vibrational anharmonicity on the kinetics and thermochemistry of the title reaction were explored quantitatively. With adjustment of the adduct binding energy by ∼4 kJ mol(-1), the computed rate constants may be brought into agreement with most experimental data in the literature, including new room-temperature results described here. There are indications that at temperatures above those studied experimentally, the activation energy may switch from negative to positive.

  7. Application of the constant rate of pressure change method to improve jet pump performance

    International Nuclear Information System (INIS)

    Long, X P; Yang, X L

    2012-01-01

    This paper adopts a new method named the constant rate of pressure change (CRPC) to improve the jet pump performance. The main contribution of this method is that the diffuser generates uniform pressure gradient. The performance of the jet pump with new diffusers designed by the CRPC method, obtained by CFD methods, was compared with that of the jet pump with traditional conical diffusers. It is found that the CRPC diffuser produces a linear pressure increase indeed. The higher friction loss and the separation decrease the CRPC diffuser efficiency and then lower the pump efficiency. The pump with shorter throats has higher efficiency at small flow ratio while its efficiency is lower than the original pump at lager flow ratio and the peak efficiency of the pumps with the throat length of 5-6 Dt is higher than that of the pumps with other throat length. When the throat length is less than 4 Dt, the CRPC diffuser efficiency is higher than the conical diffuser. The CRPC method could also be used to design the nozzle and other situations needing the pressure change gradually.

  8. Regularized learning of linear ordered-statistic constant false alarm rate filters (Conference Presentation)

    Science.gov (United States)

    Havens, Timothy C.; Cummings, Ian; Botts, Jonathan; Summers, Jason E.

    2017-05-01

    The linear ordered statistic (LOS) is a parameterized ordered statistic (OS) that is a weighted average of a rank-ordered sample. LOS operators are useful generalizations of aggregation as they can represent any linear aggregation, from minimum to maximum, including conventional aggregations, such as mean and median. In the fuzzy logic field, these aggregations are called ordered weighted averages (OWAs). Here, we present a method for learning LOS operators from training data, viz., data for which you know the output of the desired LOS. We then extend the learning process with regularization, such that a lower complexity or sparse LOS can be learned. Hence, we discuss what 'lower complexity' means in this context and how to represent that in the optimization procedure. Finally, we apply our learning methods to the well-known constant-false-alarm-rate (CFAR) detection problem, specifically for the case of background levels modeled by long-tailed distributions, such as the K-distribution. These backgrounds arise in several pertinent imaging problems, including the modeling of clutter in synthetic aperture radar and sonar (SAR and SAS) and in wireless communications.

  9. Detection of exudates in fundus imagery using a constant false-alarm rate (CFAR) detector

    Science.gov (United States)

    Khanna, Manish; Kapoor, Elina

    2014-05-01

    Diabetic retinopathy is the leading cause of blindness in adults in the United States. The presence of exudates in fundus imagery is the early sign of diabetic retinopathy so detection of these lesions is essential in preventing further ocular damage. In this paper we present a novel technique to automatically detect exudates in fundus imagery that is robust against spatial and temporal variations of background noise. The detection threshold is adjusted dynamically, based on the local noise statics around the pixel under test in order to maintain a pre-determined, constant false alarm rate (CFAR). The CFAR detector is often used to detect bright targets in radar imagery where the background clutter can vary considerably from scene to scene and with angle to the scene. Similarly, the CFAR detector addresses the challenge of detecting exudate lesions in RGB and multispectral fundus imagery where the background clutter often exhibits variations in brightness and texture. These variations present a challenge to common, global thresholding detection algorithms and other methods. Performance of the CFAR algorithm is tested against a publicly available, annotated, diabetic retinopathy database and preliminary testing suggests that performance of the CFAR detector proves to be superior to techniques such as Otsu thresholding.

  10. Dose rate constants for the quantity Hp(3) for frequently used radionuclides in nuclear medicine.

    Science.gov (United States)

    Szermerski, Bastian; Bruchmann, Iris; Behrens, Rolf; Geworski, Lilli

    2016-12-01

    According to recent studies, the human eye lens is more sensitive to ionising radiation than previously assumed. Therefore, the dose limit for personnel occupationally exposed to ionising radiation will be lowered from currently 150 mSv to 20 mSv per year. Currently, no data base for a reliable estimation of the dose to the lens of the eye is available for nuclear medicine. Furthermore, the dose is usually not monitored. The aim of this work was to determine dose rate constants for the quantity H p (3), which is supposed to estimate the dose to the lens of the eye. For this, H p (3)-dosemeters were fixed to an Alderson Phantom at different positions. The dosemeters were exposed to radiation from nuclides typically used in nuclear medicine in their geometries analog to their application in nuclear medicine, e.g. syringe or vial. The results show that the handling of high-energy beta (i.e. electron or positron) emitters may lead to a relevant dose to the lens of the eye. For low-energy beta emitters and gamma emitters, an exceeding of the lowered dose limit seems to be unlikely. Copyright © 2015. Published by Elsevier GmbH.

  11. Quantum chemical and conventional TST calculations of rate constants for the OH + alkane reaction

    International Nuclear Information System (INIS)

    Bravo-Perez, Graciela; Alvarez-Idaboy, J. Raul; Jimenez, Annia Galano; Cruz-Torres, Armando

    2005-01-01

    Reactions of OH with methane, ethane, propane, i-butane, and n-butane have been modeled using ab initio (MP2) and hybrid DFT (BHandHLYP) methods, and the 6-311G(d,p) basis set. Furthermore, single-point calculations at the CCSD(T) level were carried out at the optimized geometries. The rate constants have been calculated using the conventional transition-state theory (CTST). Arrhenius equations are proposed in the temperature range of 250-650 K. Hindered Internal Rotation partition functions calculations were explicitly carried out and included in the total partition functions. These corrections showed to be relevant in the determination of the pre-exponential parameters, although not so important as in the NO 3 + alkane reactions [G. Bravo-Perez, J.R. Alvarez-Idaboy, A. Cruz-Torres, M.E. Ruiz, J. Phys. Chem. A 106 (2002) 4645]. The explicit participation of the tunnel effect has been taken into account. The calculated rate coefficients provide a very good agreement with the experimental data. The best agreement for the overall alkane + OH reactions seemed to occur when the BHandHLYP geometries and partition functions are used. For propane and i-butane, in addition to the respective secondary and tertiary H-abstraction channels, the primary one has been considered. These pathways are confirmed to be significant in spite of the large differences in activation energies between primary and secondary or primary and tertiary channels, respectively of propane and i-butane reactions and should not be disregarded

  12. Rate constant measurements for the overall reaction of OH + 1-butanol → products from 900 to 1200 K.

    Science.gov (United States)

    Pang, Genny A; Hanson, Ronald K; Golden, David M; Bowman, Craig T

    2012-03-15

    The rate constant for the overall reaction OH + 1-butanol → products was determined in the temperature range 900 to 1200 K from measurements of OH concentration time histories in reflected shock wave experiments of tert-butyl hydroperoxide (TBHP) as a fast source of OH radicals with 1-butanol in excess. Narrow-linewidth laser absorption was employed for the quantitative OH concentration measurement. A detailed kinetic mechanism was constructed that includes updated rate constants for 1-butanol and TBHP kinetics that influence the near-first-order OH concentration decay under the present experimental conditions, and this mechanism was used to facilitate the rate constant determination. The current work improves upon previous experimental studies of the title rate constant by utilizing a rigorously generated kinetic model to describe secondary reactions. Additionally, the current work extends the temperature range of experimental data in the literature for the title reaction under combustion-relevant conditions, presenting the first measurements from 900 to 1000 K. Over the entire temperature range studied, the overall rate constant can be expressed in Arrhenius form as 3.24 × 10(-10) exp(-2505/T [K]) cm(3) molecule(-1) s(-1). The influence of secondary reactions on the overall OH decay rate is discussed, and a detailed uncertainty analysis is performed yielding an overall uncertainty in the measured rate constant of ±20% at 1197 K and ±23% at 925 K. The results are compared with previous experimental and theoretical studies on the rate constant for the title reaction and reasonable agreement is found when the earlier experimental data were reinterpreted.

  13. Three-minute constant rate step test for detecting exertional dyspnea relief after bronchodilation in COPD

    Directory of Open Access Journals (Sweden)

    Borel B

    2016-11-01

    Full Text Available Benoit Borel,1,2 Courtney A Wilkinson-Maitland,3 Alan Hamilton,4 Jean Bourbeau,5 Hélène Perrault,6 Dennis Jensen,3,5,7 François Maltais2 1Laboratoire HAVAE, Université de Limoges, Limoges, France; 2Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, 3Clinical Exercise and Respiratory Physiology Laboratory, Department of Kinesiology and Physical Education, McGill University, Montréal, QC, 4Boehringer Ingelheim (Canada Limited, Burlington, ON, 5Respiratory Epidemiology and Clinical Research Unit, Montreal Chest Institute, McGill University Health Center, Montreal, QC, 6Faculty of Health Sciences, University of Ottawa, Ottawa, ON, 7Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada Background: The aim of this study was to evaluate the responsiveness of the 3-minute constant rate step test (3-MST to detect the relief of exertional dyspnea (respiratory discomfort after acute bronchodilation in COPD patients. Patients and methods: A total of 40 patients with moderate-to-severe COPD (mean forced expiratory volume in 1 second: 45.7 (±14.7, % predicted performed four 3-MSTs at randomly assigned stepping rates of 14, 16, 20 and 24 steps/min after inhalation of nebulized ipratropium bromide (500 µg/salbutamol (2.5 mg and saline placebo, which were randomized to order. Patients rated their intensity of perceived dyspnea at the end of each 3-MST using Borg 0–10 category ratio scale. Results: A total of 37 (92.5%, 36 (90%, 34 (85% and 27 (67.5% patients completed all 3 minutes of exercise at 14, 16, 20 and 24 steps/min under both treatment conditions, respectively. Compared with placebo, ipratropium bromide/salbutamol significantly decreased dyspnea at the end of the third minute of exercise at 14 steps/min (by 0.6±1.0 Borg 0–10 scale units, P<0.01 and 16 steps/min (by 0.7±1.3 Borg 0–10 scale

  14. Application of an Artificial Neural Network to the Prediction of OH Radical Reaction Rate Constants for Evaluating Global Warming Potential.

    Science.gov (United States)

    Allison, Thomas C

    2016-03-03

    Rate constants for reactions of chemical compounds with hydroxyl radical are a key quantity used in evaluating the global warming potential of a substance. Experimental determination of these rate constants is essential, but it can also be difficult and time-consuming to produce. High-level quantum chemistry predictions of the rate constant can suffer from the same issues. Therefore, it is valuable to devise estimation schemes that can give reasonable results on a variety of chemical compounds. In this article, the construction and training of an artificial neural network (ANN) for the prediction of rate constants at 298 K for reactions of hydroxyl radical with a diverse set of molecules is described. Input to the ANN consists of counts of the chemical bonds and bends present in the target molecule. The ANN is trained using 792 (•)OH reaction rate constants taken from the NIST Chemical Kinetics Database. The mean unsigned percent error (MUPE) for the training set is 12%, and the MUPE of the testing set is 51%. It is shown that the present methodology yields rate constants of reasonable accuracy for a diverse set of inputs. The results are compared to high-quality literature values and to another estimation scheme. This ANN methodology is expected to be of use in a wide range of applications for which (•)OH reaction rate constants are required. The model uses only information that can be gathered from a 2D representation of the molecule, making the present approach particularly appealing, especially for screening applications.

  15. On the ambiguity of the reaction rate constants in multivariate curve resolution for reversible first-order reaction systems.

    Science.gov (United States)

    Schröder, Henning; Sawall, Mathias; Kubis, Christoph; Selent, Detlef; Hess, Dieter; Franke, Robert; Börner, Armin; Neymeyr, Klaus

    2016-07-13

    If for a chemical reaction with a known reaction mechanism the concentration profiles are accessible only for certain species, e.g. only for the main product, then often the reaction rate constants cannot uniquely be determined from the concentration data. This is a well-known fact which includes the so-called slow-fast ambiguity. This work combines the question of unique or non-unique reaction rate constants with factor analytic methods of chemometrics. The idea is to reduce the rotational ambiguity of pure component factorizations by considering only those concentration factors which are possible solutions of the kinetic equations for a properly adapted set of reaction rate constants. The resulting set of reaction rate constants corresponds to those solutions of the rate equations which appear as feasible factors in a pure component factorization. The new analysis of the ambiguity of reaction rate constants extends recent research activities on the Area of Feasible Solutions (AFS). The consistency with a given chemical reaction scheme is shown to be a valuable tool in order to reduce the AFS. The new methods are applied to model and experimental data. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Temperature-Dependent Rate Constants and Substituent Effects for the Reactions of Hydroxyl Radicals With Three Partially Fluorinated Ethers

    Science.gov (United States)

    Hsu, K.-J.; DeMore, W. B.

    1995-01-01

    Rate constants and temperature dependencies for the reactions of OH with CF3OCH3 (HFOC-143a), CF2HOCF2H (HFOC-134), and CF3OCF2H (HFOC-125) were studied using a relative rate technique in the temperature range 298-393 K. The following absolute rate constants were derived: HFOC-143a, 1.9E-12 exp(-1555/T); HFOC-134, 1.9E-12 exp(-2006/T); HFOC-125, 4.7E-13 exp(-2095/T). Units are cm(exp 3)molecule(exp -1) s(exp -1). Substituent effects on OH abstraction rate constants are discussed, and it is shown that the CF3O group has an effect on the OH rate constants similar to that of a fluorine atom. The effects are related to changes in the C-H bond energies of the reactants (and thereby the activation energies) rather than changes in the preexponential factors. On the basis of a correlation of rate constants with bond energies, the respective D(C-H) bond strengths in the three ethers are found to be 102, 104, and 106 kcal/mol, with an uncertainty of about 1 kcal/mol.

  17. Evaluating the methane generation rate constant (k value) of low-organic waste at Danish landfills.

    Science.gov (United States)

    Mou, Zishen; Scheutz, Charlotte; Kjeldsen, Peter

    2015-01-01

    The methane (CH4) generation rate constant (k value, yr(-1)) is an essential parameter when using first-order decay (FOD) landfill gas (LFG) generation models to estimate CH4 generation from landfills. Four categories of waste (street cleansing, mixed bulky, shredder, and sludge waste) with a low-organic content, as well as temporarily stored combustible waste, were sampled from four Danish landfills. Anaerobic degradation experiments were set up in duplicate for all waste samples and incubated for 405 days, while the cumulative CH4 generation was continuously monitored. Applying FOD equations to the experimental results, half-life time values (t½, yr) and k values of various waste categories were determined. In general, similar waste categories obtained from different Danish landfills showed similar results. Sludge waste had the highest k values, which were in the range 0.156-0.189 yr(-1). The combustible and street cleansing waste showed k values of 0.023-0.027 yr(-1) and 0.073-0.083 yr(-1), respectively. The lowest k values were obtained for mixed bulky and shredder wastes ranging from 0.013 to 0.017 yr(-1). Most low-organic waste samples showed lower k values in comparison to the default numeric values in current FOD models (e.g., IPCC, LandGEM, and Afvalzorg). Compared with the k values reported in the literature, this research determined low-organic waste for the first time via reliable large-scale and long-term experiments. The degradation parameters provided in this study are valuable when using FOD LFG generation models to estimate CH4 generation from modern landfills that receive only low-organic waste. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Applications of Cell-Ratio Constant False-Alarm Rate Method in Coherent Doppler Wind Lidar

    Directory of Open Access Journals (Sweden)

    Hao Zhu

    2016-12-01

    Full Text Available A cell-ratio constant false-alarm rate (CR-CFAR method for detecting the Doppler frequency shift is proposed to improve the accuracy of velocity measured by coherent Doppler wind lidar (CWL in low signal-to-noise ratio (SNR environments. The method analyzes the spectrum to solve issues of weak signal submergence in noise encountered in the widely used periodogram method. This characteristic is that the signal region slope is larger than the noise region slope in the frequency spectrum. We combined the ratio and CFAR to propose the CR-CFAR method. The peak area is discriminated from the spectrum using this method. By removing background noise, the peak signal is obtained along with the Doppler shift. To verify the CR-CFAR method, a campaign experiment using both CWL and a commercial Doppler lidar was performed in Hami, China (42°32′ N, 94°03′ E during 1–7 June 2016. The results showed that the proposed method significantly improved the reliability of CWL data under low SNR conditions. The height—at which both horizontal wind speed correlativity and horizontal wind direction correlativity exceeded 0.99—increased by 65 m. The relative deviation of the horizontal wind speed at 120 m decreased from 40.37% to 11.04%. We used the CR-CFAR method to analyze continuous data. A greater number of wind field characteristics were obtained during observation compared to those obtained using the common wind field inversion method.

  19. Study of supersonic flow in a constant rate of momentum change (CRMC) ejector with frictional effects

    International Nuclear Information System (INIS)

    Kumar, Virendra; Singhal, Gaurav; Subbarao, P.M.V.

    2013-01-01

    The constant rate of momentum change (CRMC) is a new approach towards design of supersonic ejectors. CRMC methodology was first proposed by Eames [1] in a study which was primarily based on isentropic flow inside the diffusing region of a supersonic ejector. The prime benefit that accrues from employing a CRMC ejector is that it can effectively eliminate the irreversibility associated with occurrence of thermodynamic shock process. The present study examines the supersonic flow in a CRMC ejector from the perspective of an adiabatic flow with frictional effects inside the variable cross-section of supersonic ejector, which is apparently more realistic. An analytical model has been discussed for the prediction of flow parameter variation in a space marching formulation taking into account change in localized frictional coefficient due to corresponding changes at each step. The analytical results have been validated by conducting a computational study based on 2-D axi-symmetric viscous compressible flow formulation with turbulence in FLUENT. The results are in good agreement at on-design conditions. The predictions especially for the recovered pressure made through the analytical formulation incorporating friction are found to be in significantly better agreement than the isentropic approach. The experimental validation for the approach has also been presented with the results being in close agreement with analytically predicted values. -- Highlights: • CRMC ejector eliminates the irreversibility due to occurrence of thermodynamic shock. • Frictional effect based apparently present more realistic solution for ejector. • Static pressure variation between proposed model and numerical study is nearly 2.29%. • Static pressure variation between analytical and experimental values is nearly 4%. • Experimentally observed entrainment ratio shows 3% variation w.r.t. design point value

  20. Constant pulse energy power supply for a high repetition rate laser system

    International Nuclear Information System (INIS)

    Lo, C.C.; Fan, B.

    1976-01-01

    A pulsed power supply system with constant pulse energy has been developed to drive flashlamps in a 0.5--5 pulses per second Nd : glass laser. By using a stable, absolute reference voltage source to set the trigger level, the energy discharged through the flashlamps is kept constant despite pulsing frequency change, power line fluctuation, and minimum dc power supply regulation. The concept can be expanded or adapted to operate other similar systems

  1. Endo- and exocytic rate constants for spontaneous and protein kinase C-activated T cell receptor cycling

    DEFF Research Database (Denmark)

    Menné, Charlotte; Møller Sørensen, Tine; Siersma, Volkert

    2002-01-01

    To determine the rate constants of spontaneous and activated TCR cycling, we examined TCR endo- and exocytosis in the human T cell line Jurkat by three different methods. Using a simple kinetic model for TCR cycling and non-linear regression analyses, we found that the spontaneous endocytic rate...

  2. Kinetics analysis for development of a rate constant estimation model for ultrasonic degradation reaction of methylene blue.

    Science.gov (United States)

    Kobayashi, Daisuke; Honma, Chiemi; Matsumoto, Hideyuki; Takahashi, Tomoki; Kuroda, Chiaki; Otake, Katsuto; Shono, Atsushi

    2014-07-01

    Ultrasound has been used as an advanced oxidation method for wastewater treatment. Sonochemical degradation of organic compounds in aqueous solution occurs by pyrolysis and/or reaction with hydroxyl radicals. Moreover, kinetics of sonochemical degradation has been proposed. However, the effect of ultrasonic frequency on degradation rate has not been investigated. In our previous study, a simple model for estimating the apparent degradation rate of methylene blue was proposed. In this study, sonochemical degradation of methylene blue was performed at various frequencies. Apparent degradation rate constant was evaluated assuming that sonochemical degradation of methylene blue was a first-order reaction. Specifically, we focused on effects of ultrasonic frequency and power on rate constant, and the applicability of our proposed model was demonstrated. Using this approach, maximum sonochemical degradation rate was observed at 490 kHz, which agrees with a previous investigation into the effect of frequency on the sonochemical efficiency value evaluated by KI oxidation dosimetry. Degradation rate increased with ultrasonic power at every frequency. It was also observed that threshold power must be reached for the degradation reaction to progress. The initial methylene blue concentration and the apparent degradation rate constant have a relation of an inverse proportion. Our proposed model for estimating the apparent degradation rate constant using ultrasonic power and sonochemical efficiency value can apply to this study which extended the frequency and initial concentration range. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. QSARs for phenols and phenolates: oxidation potential as a predictor of reaction rate constants with photochemically produced oxidants.

    Science.gov (United States)

    Arnold, William A; Oueis, Yan; O'Connor, Meghan; Rinaman, Johanna E; Taggart, Miranda G; McCarthy, Rachel E; Foster, Kimberley A; Latch, Douglas E

    2017-03-22

    Quantitative structure-activity relationships (QSARs) for prediction of the reaction rate constants of phenols and phenolates with three photochemically produced oxidants, singlet oxygen, carbonate radical, and triplet excited state sensitizers/organic matter, are developed. The predictive variable is the one-electron oxidation potential (E 1 ), which is calculated for each species using density functional theory. The reaction rate constants are obtained from the literature, and for singlet oxygen, are augmented with new experimental data. Calculated E 1 values have a mean unsigned error compared to literature values of 0.04-0.06 V. For singlet oxygen, a single linear QSAR that includes both phenols and phenolates is developed that predicts experimental rate constants, on average, to within a factor of three. Predictions for only 6 out of 87 compounds are off by more than a factor of 10. A more limited data set for carbonate radical reactions with phenols and phenolates also gives a single linear QSAR with prediction of rate constant being accurate to within a factor of three. The data for the reactions of phenols with triplet state sensitizers demonstrate that two sensitizers, 2-acetonaphthone and methylene blue, most closely predict the reactivity trend of triplet excited state organic matter with phenols. Using sensitizers with stronger reduction potentials could lead to overestimation of rate constants and thus underestimation of phenolic pollutant persistence.

  4. Linear free energy relationships between aqueous phase hydroxyl radical reaction rate constants and free energy of activation.

    Science.gov (United States)

    Minakata, Daisuke; Crittenden, John

    2011-04-15

    The hydroxyl radical (HO(•)) is a strong oxidant that reacts with electron-rich sites on organic compounds and initiates complex radical chain reactions in aqueous phase advanced oxidation processes (AOPs). Computer based kinetic modeling requires a reaction pathway generator and predictions of associated reaction rate constants. Previously, we reported a reaction pathway generator that can enumerate the most important elementary reactions for aliphatic compounds. For the reaction rate constant predictor, we develop linear free energy relationships (LFERs) between aqueous phase literature-reported HO(•) reaction rate constants and theoretically calculated free energies of activation for H-atom abstraction from a C-H bond and HO(•) addition to alkenes. The theoretical method uses ab initio quantum mechanical calculations, Gaussian 1-3, for gas phase reactions and a solvation method, COSMO-RS theory, to estimate the impact of water. Theoretically calculated free energies of activation are found to be within approximately ±3 kcal/mol of experimental values. Considering errors that arise from quantum mechanical calculations and experiments, this should be within the acceptable errors. The established LFERs are used to predict the HO(•) reaction rate constants within a factor of 5 from the experimental values. This approach may be applied to other reaction mechanisms to establish a library of rate constant predictions for kinetic modeling of AOPs.

  5. Variable dose rate single-arc IMAT delivered with a constant dose rate and variable angular spacing

    International Nuclear Information System (INIS)

    Tang, Grace; Earl, Matthew A; Yu, Cedric X

    2009-01-01

    Single-arc intensity-modulated arc therapy (IMAT) has gained worldwide interest in both research and clinical implementation due to its superior plan quality and delivery efficiency. Single-arc IMAT techniques such as the Varian RapidArc(TM) deliver conformal dose distributions to the target in one single gantry rotation, resulting in a delivery time in the order of 2 min. The segments in these techniques are evenly distributed within an arc and are allowed to have different monitor unit (MU) weightings. Therefore, a variable dose-rate (VDR) is required for delivery. Because the VDR requirement complicates the control hardware and software of the linear accelerators (linacs) and prevents most existing linacs from delivering IMAT, we propose an alternative planning approach for IMAT using constant dose-rate (CDR) delivery with variable angular spacing. We prove the equivalence by converting VDR-optimized RapidArc plans to CDR plans, where the evenly spaced beams in the VDR plan are redistributed to uneven spacing such that the segments with larger MU weighting occupy a greater angular interval. To minimize perturbation in the optimized dose distribution, the angular deviation of the segments was restricted to ≤± 5 deg. This restriction requires the treatment arc to be broken into multiple sectors such that the local MU fluctuation within each sector is reduced, thereby lowering the angular deviation of the segments during redistribution. The converted CDR plans were delivered with a single gantry sweep as in the VDR plans but each sector was delivered with a different value of CDR. For four patient cases, including two head-and-neck, one brain and one prostate, all CDR plans developed with the variable spacing scheme produced similar dose distributions to the original VDR plans. For plans with complex angular MU distributions, the number of sectors increased up to four in the CDR plans in order to maintain the original plan quality. Since each sector was

  6. Global dynamics and transition state theories: Comparative study of reaction rate constants for gas-phase chemical reactions.

    Science.gov (United States)

    Ju, Li-Ping; Han, Ke-Li; Zhang, John Z H

    2009-01-30

    In this review article, we present a systematic comparison of the theoretical rate constants for a range of bimolecular reactions that are calculated by using three different classes of theoretical methods: quantum dynamics (QD), quasi-classical trajectory (QCT), and transition state theory (TST) approaches. The study shows that the difference of rate constants between TST results and those of the global dynamics methods (QD and QCT) are seen to be related to a number of factors including the number of degrees-of-freedom (DOF), the density of states at transition state (TS), etc. For reactions with more DOF and higher density of states at the TS, it is found that the rate constants from TST calculations are systematically higher than those obtained from global dynamics calculations, indicating large recrossing effect for these systems. The physical insight of this phenomenon is elucidated in the present review. (c) 2008 Wiley Periodicals, Inc.

  7. Pressure dependence of the absolute rate constant for the reaction OH + C2H2 from 228 to 413 K

    Science.gov (United States)

    Michael, J. V.; Nava, D. F.; Payne, W. A.; Stief, L. J.; Borkowski, R. P.

    1980-01-01

    The pressure dependence of the absolute rate constant for the reaction of the hydroxyl radical with acetylene, important in both atmospheric and combustion chemistry, is determined for temperatures between 228 and 413 K. The flash photolysis-resonance fluorescence technique was employed at five temperatures over wide ranges of pressure and acetylene concentrations, with the OH produced by water photolysis and hydroxyl resonance fluorescent photons measured by multiscaling techniques. Results indicate that, except at the lowest temperature, the bimolecular rate constant for the reaction depends strongly on total pressure, with the pressure effect becoming more pronounced with increasing temperature. At limiting high pressures, the rate constant is found to be equal to 6.83 + or - 1.19 x 10 to the -12th exp (-646 + or - 47/T) cu cm/molecule per sec, where T is the temperature. Results thus demonstrate the importance of environmental conditions in theoretical studies of atmospheric and combustion product compositions

  8. Tempo of Diversification of Global Amphibians: One-Constant Rate, One-Continuous Shift or Multiple-Discrete Shifts?

    OpenAIRE

    Youhua Chen

    2014-01-01

    In this brief report, alternative time-varying diversification rate models were fitted onto the phylogeny of global amphibians by considering one-constant-rate (OCR), one-continuous-shift (OCS) and multiplediscrete- shifts (MDS) situations. The OCS diversification model was rejected by γ statistic (γ=-5.556, p⁄ 0.001), implying the existence of shifting diversification rates for global amphibian phylogeny. Through model selection, MDS diversification model outperformed OCS and OCR...

  9. Temperature dependence of the rate constant of hydrogen isotope interactions with a lithium capillary-porous system under reactor irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Tazhibayeva, Irina, E-mail: tazhibayeva@ntsc.kz [Institute of Atomic Energy NNC RK, Kurchatov (Kazakhstan); Kulsartov, Timur; Gordienko, Yuri [Institute of Atomic Energy NNC RK, Kurchatov (Kazakhstan); Mukanova, Aliya [Al’ Farabi Kazakh National University, Almaty (Kazakhstan); Ponkratov, Yuri; Barsukov, Nikolay; Tulubaev, Evgeniy [Institute of Atomic Energy NNC RK, Kurchatov (Kazakhstan); Platacis, Erik [University of Latvia (IPUL), Riga (Latvia); Kenzhin, Ergazy [Shakarim Semey State University, Semey (Kazakhstan)

    2013-10-15

    Highlights: • The experiments with Li CPS sample were carried out at reactor IVG-1.M. • The gas absorption technique was used to study hydrogen isotope interaction with lithium CPS. • The temperature dependence of constants of interaction rate was obtained for various power rates of the reactor. • Determination of the activation energies, and pre-exponents of Arrhenius dependence. • The effect of increase of the rate constant under reaction irradiation. -- Abstract: Experiments with a sample of a lithium capillary-porous system (CPS) were performed at the reactor IVG-1.M of the Institute of Atomic Energy NNC RK to study the effects of neutron irradiation on the parameters of hydrogen isotope interactions with a lithium CPS. The absorption technique was used during the experiments, and this technique allowed the temperature dependences of the hydrogen isotope interaction rate constants with the lithium CPS to be obtained under various reactor powers. The obtained dependencies were used to determine the main interaction parameters: the activation energies and the pre-exponents of the Arrhenius dependence of the hydrogen interaction rate constants with lithium and the lithium CPS. An increase of the hydrogen isotope interaction rate with the lithium CPS was observed under reactor irradiation.

  10. High-level theoretical study of the reaction between hydroxyl and ammonia: Accurate rate constants from 200 to 2500 K

    Science.gov (United States)

    Nguyen, Thanh Lam; Stanton, John F.

    2017-10-01

    Hydrogen abstraction from NH3 by OH to produce H2O and NH2—an important reaction in combustion of NH3 fuel—was studied with a theoretical approach that combines high level quantum chemistry and advanced chemical kinetics methods. Thermal rate constants calculated from first principles agree well (within 5%-20%) with available experimental data over a temperature range that extends from 200 to 2500 K. Quantum mechanical tunneling effects were found to be important; they lead to a decided curvature and non-Arrhenius behavior for the rate constant.

  11. A pumpless cell culture chip with the constant medium perfusion-rate maintained by balanced droplet dispensing.

    Science.gov (United States)

    Kim, Taeyoon; Cho, Young-Ho

    2011-05-21

    This paper presents a pumpless cell culture chip, where a constant-rate medium perfusion is achieved by balanced droplet dispensing. Previous pumpless cell culture chips, where the gravity-driven flow is induced by gradually decreasing the hydraulic-head difference, Δh, between source and drain reservoirs, result in a decreasing perfusion-rate. However, the present pumpless cell culture chip, where autonomous droplet dispensers are integrated on the source reservoirs, results in a constant perfusion-rate using a constant Δh maintained by balanced droplet dispensing between the source-inlet and the drain-outlet. In the experimental study, constant perfusion-rates of 0.1, 0.2, and 0.3 μl min(-1) are obtained by Δh of 38, 76, and 114 mm, respectively. At the constant perfusion-rate (Q=0.2 μl min(-1)), H358 lung cancer cells show the maximum growth-rate of 57.8 ± 21.1% d(-1), which is 1.9 times higher than the 30.2 ± 10.3% d(-1) of the static culture. At a perfusion-rate varying between 0.1-0.3 μl min(-1) (average=0.2 μl min(-1)), however, the H358 cells show a growth-rate of 46.9 ± 8.3% d(-1), which is lower than that of the constant Q of 0.2 μl min(-1). The constant-rate perfusion culture (Q=0.1, 0.2, and 0.3 μl min(-1)) also results in an average cell viability of 89.2%, which is higher than 75.9% of the static culture. This pumpless cell culture chip offers a favorable environment to cells with a high growth-rate and viability, thus having potential for use in cell-based bio-assays. © The Royal Society of Chemistry 2011

  12. Inactivation of pectin methylesterase by immobilized trypsins from cunner fish and bovine pancreas.

    Science.gov (United States)

    Li, Dan; Matos, Madyu; Simpson, Benjamin K

    2013-01-01

    Immobilized cunner fish trypsin was used to inactivate pectin methylesterase (PME). The effects of different reaction conditions (e.g., incubation time, PME concentration, and temperature) on PME inactivation and kinetics of inactivation were investigated. Temperature, incubation time, and PME concentration significantly affected the extent of PME inactivation. Generally, higher temperature, longer incubation time, and low PME concentration caused more PME inactivation. The immobilized fish trypsin had higher capacity to inactivate PME than immobilized bovine trypsin. The inactivation efficiency of the immobilized fish trypsin was about 20% higher than that of its bovine counterpart. However, PME inactivated by both trypsins regained partial activity during storage at 4°C, with immobilized fish trypsin-treated PME regaining more of its original activity than the immobilized bovine trypsin-treated PME. Heat-denatured PME was hydrolyzed more extensively by immobilized fish trypsin than by its bovine counterpart. The rate constants increased, whereas the D-values decreased with temperature for both immobilized fish and bovine trypsins. The inactivation rate constants of immobilized fish trypsin at all the temperatures investigated (i.e., 15-35°C) were higher than those of immobilized bovine trypsin. Furthermore, the activation energy (Ea ) of PME inactivation by immobilized fish trypsin was lower than that of immobilized bovine trypsin. © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  13. Factors affecting the infectivity of tissues from pigs with classical swine fever: thermal inactivation rates and oral infectious dose.

    Science.gov (United States)

    Cowan, Lucie; Haines, Felicity J; Everett, Helen E; Crudgington, Bentley; Johns, Helen L; Clifford, Derek; Drew, Trevor W; Crooke, Helen R

    2015-03-23

    Outbreaks of classical swine fever are often associated with ingestion of pig meat or products derived from infected pigs. Assessment of the disease risks associated with material of porcine origin requires knowledge on the likely amount of virus in the original material, how long the virus may remain viable within the resulting product and how much of that product would need to be ingested to result in infection. Using material from pigs infected with CSFV, we determined the viable virus concentrations in tissues that comprise the majority of pork products. Decimal reduction values (D values), the time required to reduce the viable virus load by 90% (or 1 log10), were determined at temperatures of relevance for chilling, cooking, composting and ambient storage. The rate of CSFV inactivation varied in different tissues. At lower temperatures, virus remained viable for substantially longer in muscle and serum compared to lymphoid and fat tissues. To enable estimation of the temperature dependence of inactivation, the temperature change required to change the D values by 90% (Z values) were determined as 13 °C, 14 °C, 12 °C and 10 °C for lymph node, fat, muscle and serum, respectively. The amount of virus required to infect 50% of pigs by ingestion was determined by feeding groups of animals with moderately and highly virulent CSFV. Interestingly, the virulent virus did not initiate infection at a lower dose than the moderately virulent strain. Although higher than for intranasal inoculation, the amount of virus required for infection via ingestion is present in only a few grams of tissue from infected animals. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  14. EFRT M-12 Issue Resolution: Caustic Leach Rate Constants from PEP and Laboratory-Scale Tests

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, Lenna A.; Rassat, Scot D.; Eslinger, Paul W.; Aaberg, Rosanne L.; Aker, Pamela M.; Golovich, Elizabeth C.; Hanson, Brady D.; Hausmann, Tom S.; Huckaby, James L.; Kurath, Dean E.; Minette, Michael J.; Sundaram, S. K.; Yokuda, Satoru T.

    2009-08-14

    concentrated to nominally 20 wt% solids using cross-flow ultrafiltration before adding caustic. The work described in this report addresses the kinetics of caustic leach under WTP conditions, based on tests performed with a Hanford waste simulant. The tests were completed at the lab-scale and in the PEP, which is a 1/4.5-scale mock-up of key PTF process equipment. The purpose of this report is to summarize the results from both scales that are related to caustic leach chemistry to support a scale-up factor for the submodels to be used in the G2 model, which predicts WTP operating performance. The scale-up factor will take the form of an adjustment factor for the rate constant in the boehmite leach kinetic equation in the G2 model.

  15. Clinical evaluation of the efficacy and safety of a constant rate infusion of dexmedetomidine for postoperative pain management in dogs

    NARCIS (Netherlands)

    Valtolina, C.|info:eu-repo/dai/nl/412503034; Robben, J.H.|info:eu-repo/dai/nl/266740790; Uilenreef, J.J.|info:eu-repo/dai/nl/30483095X; Murrell, J.C.; Aspegrén, J.; McKusick, B.C.; Hellebrekers, L.J.|info:eu-repo/dai/nl/073499234

    2009-01-01

    Vet Anaesth Analg. 2009 Jul;36(4):369-83. Epub 2009 May 12. Clinical evaluation of the efficacy and safety of a constant rate infusion of dexmedetomidine for postoperative pain management in dogs. Valtolina C, Robben JH, Uilenreef J, Murrell JC, Aspegrén J, McKusick BC, Hellebrekers LJ. Department

  16. Quantitative correlation of absolute hydroxyl radical rate constants with non-isolated effluent organic matter bulk properties in water.

    Science.gov (United States)

    Rosario-Ortiz, Fernando L; Mezyk, Stephen P; Doud, Devin F R; Snyder, Shane A

    2008-08-15

    Absolute second-order rate constants for the reaction between the hydroxyl radical (*OH) and eight water samples containing non-isolated effluent organic matter (EfOM) collected at different wastewater and reclamation sites were measured by electron pulse radiolysis. The measured rate constants ranged from 0.27 to 1.21 x 10(9) Mc(-1) s(-1), with an average value of 0.86 (+/-0.35) x 10(9) Mc(-1) s(-1). These absolute values were 3-5 times faster than previously reported values using natural organic matter and wastewater isolates. The obtained rate constants were correlated (R2 > 0.99) to bulk EfOM properties through an empirical equation that included terms relating to the polarity, apparent molecular weight, and fluorescence index of the effluent organic matter. The obtained data were used to model steady state *OH concentrations during UV advanced oxidation. The steady-state *OH concentration was lower than that obtained using previously reported values for the reaction with dissolved organic matter, indicating that accurate measurement of reaction rate constants at specific sites would greatly improve the design and prediction of the removal of organic contaminants. These results will improve the ability of researchers to accurately model scavenging capacities during the advanced oxidation processtreatment of wastewaters.

  17. The constant failure rate model for fault tree evaluation as a tool for unit protection reliability assessment

    International Nuclear Information System (INIS)

    Vichev, S.; Bogdanov, D.

    2000-01-01

    The purpose of this paper is to introduce the fault tree analysis method as a tool for unit protection reliability estimation. The constant failure rate model applies for making reliability assessment, and especially availability assessment. For that purpose an example for unit primary equipment structure and fault tree example for simplified unit protection system is presented (author)

  18. [Polyphenolic antioxidants efficiently protect urease from inactivation by ultrasonic cavitation].

    Science.gov (United States)

    Metelitsa, D I; Tarun, E I; Losev, Iu P

    2002-01-01

    Inactivation of urease (25 nM) in aqueous solutions (pH 5.0-6.0) treated with low-frequency ultrasound (LFUS; 27 kHz, 60 Wt/cm2, 36-56 degrees C) or high-frequency ultrasound (HFUS; 2.64 MHz, 1 Wt/cm2, 36 or 56 degrees C) has been characterized quantitatively, using first-order rate constants: kin, aggregate inactivation; kin*, thermal inactivation; and kin* (US), ultrasonic inactivation. Within the range from 1 nM to 10 microM, propyl gallate (PG) decreases approximately threefold the rate of LFUS-induced inactivation of urease (56 degrees C), whereas resorcinol poly-2-disulfide prevents this process at 1 nM or higher concentrations. PG completely inhibits HFUS-induced inactivation of urease at 1 nM (36 degrees C) or 10 nM (56 degrees C). At 0.2-10 microM, human serum albumin (HSA) increases the resistance of urease (at 56 degrees C) treated with HFUS to temperature- and cavitation-induced inactivation. Complexes of gallic acid polydisulfide (GAPDS) with HSA (GAPDS-HSA), formed by conjugation of 1.0 nM PGDS with 0.33 nM HSA, prevent HFUS-induced urease inactivation (56 degrees C).

  19. Rate constants and hydrogen isotope substitution effects in the CH3 + HCl and CH3 + Cl2 reactions.

    Science.gov (United States)

    Eskola, Arkke J; Timonen, Raimo S; Marshall, Paul; Chesnokov, Evgeni N; Krasnoperov, Lev N

    2008-08-14

    The kinetics of the CH3 + Cl2 (k2a) and CD3 + Cl2 (k2b) reactions were studied over the temperature range 188-500 K using laser photolysis-photoionization mass spectrometry. The rate constants of these reactions are independent of the bath gas pressure within the experimental range, 0.6-5.1 Torr (He). The rate constants were fitted by the modified Arrhenius expression, k2a = 1.7 x 10(-13)(T/300 K)(2.52)exp(5520 J mol(-1)/RT) and k2b = 2.9 x 10(-13)(T/300 K)(1.84)exp(4770 J mol(-1)/RT) cm(3) molecule(-1) s(-1). The results for reaction 2a are in good agreement with the previous determinations performed at and above ambient temperature. Rate constants of the CH3 + Cl2 and CD3 + Cl2 reactions obtained in this work exhibit minima at about 270-300 K. The rate constants have positive temperature dependences above the minima, and negative below. Deuterium substitution increases the rate constant, in particular at low temperatures, where the effect reaches ca. 45% at 188 K. These observations are quantitatively rationalized in terms of stationary points on a potential energy surface based on QCISD/6-311G(d,p) geometries and frequencies, combined with CCSD(T) energies extrapolated to the complete basis set limit. 1D tunneling as well as the possibility of the negative energies of the transition state are incorporated into a transition state theory analysis, an approach which also accounts for prior experiments on the CH3 + HCl system and its various deuterated isotopic substitutions [Eskola, A. J.; Seetula, J. A.; Timonen, R. S. Chem. Phys. 2006, 331, 26].

  20. Variational transition-state theory study of the rate constant of the DMS·OH scavenging reaction by O2.

    Science.gov (United States)

    Ramírez-Anguita, Juan M; González-Lafont, Àngels; Lluch, José M

    2011-07-30

    The chemical tropospheric dimethyl sulfide (DMS, CH3SCH3) degradation involves several steps highly dependent on the environmental conditions. So, intensive efforts have been devoted during the last years to enhance the understanding of the DMS oxidation mechanism under different conditions. The reaction of DMS with OH is considered to be the most relevant process that initiates the whole oxidation process. The experimental observations have been explained by a two-channel mechanism consisting of a H-abstraction process leading to CH3S(O)CH3 and HO2 and an addition reaction leading to the DMS·OH adduct. In the presence of O2, the DMS·OH adduct is competitively scavenged increasing the contribution of the addition channel to the overall DMS oxidation. Recent experimental measurements have determined from a global fit that the rate constant of this scavenging process is independent of pressure and temperature but this rate constant cannot be directly measured. In this article, a variational transition-state theory calculation of the low- and high-pressure rate constants for the reaction between DMS·OH and O2 has been carried out as a function of temperature. Our proposal is that the slight temperature dependence of the scavenging rate constant can only be explained if the H-abstraction bottleneck is preceded by a dynamical bottleneck corresponding to the association process between the DMS·OH adduct and the O2 molecule. The agreement between the low-pressure and high-pressure rate constants confirms the experimental observations. Copyright © 2011 Wiley Periodicals, Inc.

  1. Dose equivalent rate constants and barrier transmission data for nuclear medicine facility dose calculations and shielding design.

    Science.gov (United States)

    Kusano, Maggie; Caldwell, Curtis B

    2014-07-01

    A primary goal of nuclear medicine facility design is to keep public and worker radiation doses As Low As Reasonably Achievable (ALARA). To estimate dose and shielding requirements, one needs to know both the dose equivalent rate constants for soft tissue and barrier transmission factors (TFs) for all radionuclides of interest. Dose equivalent rate constants are most commonly calculated using published air kerma or exposure rate constants, while transmission factors are most commonly calculated using published tenth-value layers (TVLs). Values can be calculated more accurately using the radionuclide's photon emission spectrum and the physical properties of lead, concrete, and/or tissue at these energies. These calculations may be non-trivial due to the polyenergetic nature of the radionuclides used in nuclear medicine. In this paper, the effects of dose equivalent rate constant and transmission factor on nuclear medicine dose and shielding calculations are investigated, and new values based on up-to-date nuclear data and thresholds specific to nuclear medicine are proposed. To facilitate practical use, transmission curves were fitted to the three-parameter Archer equation. Finally, the results of this work were applied to the design of a sample nuclear medicine facility and compared to doses calculated using common methods to investigate the effects of these values on dose estimates and shielding decisions. Dose equivalent rate constants generally agreed well with those derived from the literature with the exception of those from NCRP 124. Depending on the situation, Archer fit TFs could be significantly more accurate than TVL-based TFs. These results were reflected in the sample shielding problem, with unshielded dose estimates agreeing well, with the exception of those based on NCRP 124, and Archer fit TFs providing a more accurate alternative to TVL TFs and a simpler alternative to full spectral-based calculations. The data provided by this paper should assist

  2. Simulation of surface dynamics during dissolution as a function of the surface orientation: Implications for non-constant dissolution rates

    Science.gov (United States)

    Godinho, J. R. A.; Piazolo, S.; Evans, L.

    2014-12-01

    An important problem in geochemistry is the understanding of how changes occurring on a surface during dissolution affect the variability of measured dissolution rates. In this study a new approach to study the effect of surface dynamics on dissolution rates is tested by coupling experimental data with a numerical model that simulates the retreat of surface profiles during dissolution. We present specific results from the simulation of dissolution of fluorite surfaces. The equations that determine the retreat of a surface are based on experimentally obtained equations that relate the retreat rate of a surface to a single variable, the crystallographic orientation of the surface. Our results show that depending on the starting orientation, different types of topography are developed, similar to those observed experimentally. During the initial dissolution phase, changes of topography are rapid and associated with fast dissolution rates. The progressively slower dissolution rates are coupled with the development of surface segments with orientations that dissolve at a slower rate. Consequently, the overall retreat rate of a profile decreases during the simulation, and tends to a near-constant value. The results show a close relationship between dissolution rates, surface orientation and surface dynamics, which suggests that the dissolution rate of a specific mineral phase is not constant but varies with dissolution time and surface structure. This variability needs to be considered in the evaluation of experimentally derived dissolution rates, future dissolution experiments, and predictive kinetic models of dissolution.

  3. Photon spectrometry for the determination of the dose-rate constant of low-energy photon-emitting brachytherapy sources

    International Nuclear Information System (INIS)

    Chen, Zhe Jay; Nath, Ravinder

    2007-01-01

    Accurate determination of dose-rate constant (Λ) for interstitial brachytherapy sources emitting low-energy photons (<50 keV) has remained a challenge in radiation dosimetry because of the lack of a suitable absolute dosimeter for accurate measurement of the dose rates near these sources. Indeed, a consensus value of Λ taken as the arithmetic mean of the dose-rate constants determined by different research groups and dosimetry techniques has to be used at present for each source model in order to minimize the uncertainties associated with individual determinations of Λ. Because the dosimetric properties of a source are fundamentally determined by the characteristics of the photons emitted by the source, a new technique based on photon spectrometry was developed in this work for the determination of dose-rate constant. The photon spectrometry technique utilized a high-resolution gamma-ray spectrometer to measure source-specific photon characteristics emitted by the low-energy sources and determine their dose-rate constants based on the measured photon-energy spectra and known dose-deposition properties of mono-energetic photons in water. This technique eliminates many of the difficulties arising from detector size, the energy dependence of detector sensitivity, and the use of non-water-equivalent solid phantoms in absolute dose rate measurements. It also circumvents the uncertainties that might be associated with the source modeling in Monte Carlo simulation techniques. It was shown that the estimated overall uncertainty of the photon spectrometry technique was less than 4%, which is significantly smaller than the reported 8-10% uncertainty associated with the current thermo-luminescent dosimetry technique. In addition, the photon spectrometry technique was found to be stable and quick in Λ determination after initial setup and calibration. A dose-rate constant can be determined in less than two hours for each source. These features make it ideal to determine

  4. Flowing afterglow: construction of an apparatus, measurement of rate constants, and consideration of the diffusive behavior of charges

    International Nuclear Information System (INIS)

    Matsuoka, Shingo; Nakamura, Hirone; Tamura, Takaaki; Fujii, Toshihiro.

    1984-01-01

    A flowing afterglow apparatus was constructed and the operation of the afterglow system including data analysis was tested by measuring the rate constants for the reactions N + + NO, N 2 + + NO, He + + N 2 , and SF 6 + e; the results were 5.8 x 10 -10 , 3.9 x 10 -10 , 1.20 x 10 -9 , and 2.1 x 10 -7 cm 3 s -1 respectively. In the measurements an extraction voltage for ion sampling was not applied to the nose cone in order not to introduce an electric field into the reaction region. A ''non-ambipolar'' model developed by us was used for the data analysis of the ion/molecule reactions. For the data analysis of the electron attachment, a typical curve fit mehtod to the product ion signal was used. However, no theoretical curves fit the experimental points. This disagreement is attributed to a change of the ion-sampling efficiency through the nose-cone aperture arising from a change of the electron-dominated plasma to a negative-ion-dominated plasma with an increasing flow rate of SF 6 . Nevertheless, the attachment rate could be determined by fitting the theoretical and experimantal curves in the limited region of the SF 6 flow rate where the negative-ion-dominated plasma is established at the sampling aperture. All the rate constants obtained here agree reasonably well with literature values. Next, errors in the positive ion/molecule reaction rate constants, which would occur if the diffusion coefficients of the ions and neutrals each have a + 10 % error were calculated for the flow model to be -0.4 and +1.2 % respectively, demonstrating that these parameters are not important in the analysis of data. This insensitivity explains why the nose-cone voltage applied in a typical flowing afterglow operation has not caused a significant error in the published rate constants although it disturbs the ion diffusive behavior. (author)

  5. Site-specific reaction rate constant measurements for various secondary and tertiary H-abstraction by OH radicals

    KAUST Repository

    Badra, Jihad

    2015-02-01

    Reaction rate constants for nine site-specific hydrogen atom (H) abstraction by hydroxyl radicals (OH) have been determined using experimental measurements of the rate constants of Alkane+OH→Products reactions. Seven secondary (S 20, S 21, S 22, S 30, S 31, S 32, and S 33) and two tertiary (T 100 and T 101) site-specific rate constants, where the subscripts refer to the number of carbon atoms (C) connected to the next-nearest-neighbor (N-N-N) C atom, were obtained for a wide temperature range (250-1450K). This was done by measuring the reaction rate constants for H abstraction by OH from a series of carefully selected large branched alkanes. The rate constant of OH with four different alkanes, namely 2,2-dimethyl-pentane, 2,4-dimethyl-pentane, 2,2,4-trimethyl-pentane (iso-octane), and 2,2,4,4-tetramethyl-pentane were measured at high temperatures (822-1367K) using a shock tube and OH absorption diagnostic. Hydroxyl radicals were detected using the narrow-line-width ring-dye laser absorption of the R1(5) transition of OH spectrum near 306.69nm.Previous low-temperature rate constant measurements are added to the current data to generate three-parameter rate expressions that successfully represent the available direct measurements over a wide temperature range (250-1450. K). Similarly, literature values of the low-temperature rate constants for the reaction of OH with seven normal and branched alkanes are combined with the recently measured high-temperature rate constants from our group [1]. Subsequent to that, site-specific rate constants for abstractions from various types of secondary and tertiary H atoms by OH radicals are derived and have the following modified Arrhenius expressions:. S20=8.49×10-17T1.52exp(73.4K/T)cm3molecule-1s-1(250-1450K) S21=1.07×10-15T1.07exp(208.3K/T)cm3molecule-1s-1(296-1440K) S22=2.88×10-13T0.41exp(-291.5K/T)cm3molecule-1s-1(272-1311K) S30=3.35×10-18T1.97exp(323.1K/T)cm3molecule-1s-1(250-1366K) S31=1.60×10-18T2.0exp(500.0K/T)cm3

  6. Kinetic parameters for thermal inactivation of soluble peroxidase from needles of Serbian spruce Picea omorika (Pancić) Purkyne.

    Science.gov (United States)

    Laketa, Danijela; Bogdanović, Jelena; Kalauzi, Aleksandar; Radotić, Ksenija

    2009-03-01

    Thermal inactivation of peroxidase (POD) in an extract of Picea omorika (Pancić) Purkyne needles initiated by heat treatment was studied. This is the first study of this kind on a conifer species. Non-linear regression analysis was applied on the inactivation rate data, combining Mitscherlich and Arrhenius equations, treating time and temperature simultaneously as explaining variables. We determined the inactivation rate constant k, the Arrhenius energy of inactivation E and the remaining activity C(min) for the crude extract and for separated acidic and basic enzyme fractions, as well as for individual isoenzymes separated electrophoretically. A comparison of inactivation parameters for acidic and basic fractions shows that the thermal inactivation rate of the basic fraction is higher. The obtained value of inactivation energy for crude extract was between the values for acidic and basic isoenzyme fractions. One of the three analysed individual isoenzymes was characterised by a lower inactivation rate constant and higher inactivation energy. Another isoenzyme showed considerably higher level of remaining activity compared to the others, which identified it as the most resistant to high temperatures. The acquired values of Arrhenius energy of inactivation for POD in crude extract were intermediate, considering a range of POD values for various other plant species.

  7. [Ultrasonic inactivation of Aspergillus niger glucose oxidase in aqueous solutions].

    Science.gov (United States)

    Karaseva, E I; Tarun, E I; Metelitsa, D I

    2009-01-01

    The inactivation of Aspergillus niger glucose oxidase (GO) was studied in 0.02 M phosphate-citrate buffer (PCB) at various pH, temperatures of 37-59 degrees C, and sonication with low frequency (27 kHz, LF-US) and high frequency (2.64 MHz, HF-US) ultrasound. The GO inactivation was characterized by the effective first-order inactivation rate constants k(in), k(in)*, and k(in)(us), reflecting the total, thermal, and ultrasonic inactivation components. The constants strongly depended on the pH and temperature of solution, GO concentration, and the presence of acceptors of the free radicals HO* -DMF, DMSO, ethanol, butanol, octanol, and mannitol, confirming that the active radicals formed in the ultrasonic cavitation field played an important role in the GO inactivation. The activation energy in the loss of GO catalytic activity considerably decreased when the enzyme solution was treated with LF-US or HF-US. The dissociative scheme of GO inactivation is discussed. Mannitol can be used for protection of GO from inactivation with LF-US or HF-US in the food industry and immunobiotechnology.

  8. [Characteristics of thermal inactivation of lysozyme in solution].

    Science.gov (United States)

    Tarun, E I; Eremin, A N; Metelitsa, D I

    1986-01-01

    In the buffer solution (pH 6,2) at 20-80 degrees, the lysozyme thermoinactivation was studied by monitoring of its activity decrease in the lysis of M. lysodeicticus cells. Protein inactivation was characterized by effective pseudofirst order rate constants which depend on enzyme concentration and are described by equation k = k0 . exp [-alpha 0 (1-gamma/T) [E]0], where k0 is inactivation rate constant at "infinite" enzyme dilution, [E0] is an initial lysozyme concentration, alpha 0 and gamma are the coefficients independent on [E0]. By extrapolation of the "k" dependencies on [E]0 the constants k0 were determined. In the range 40-70 degrees C, the rate constant k0 is equal 4,0 X 10(11) . exp (-24 200/RT) sec-1.

  9. Theoretical Prediction of Rate Constants for Hydrogen Abstraction by OH, H, O, CH3, and HO2 Radicals from Toluene.

    Science.gov (United States)

    Li, Shu-Hao; Guo, Jun-Jiang; Li, Rui; Wang, Fan; Li, Xiang-Yuan

    2016-05-26

    Hydrogen abstraction from toluene by OH, H, O, CH3, and HO2 radicals are important reactions in oxidation process of toluene. Geometries and corresponding harmonic frequencies of the reactants, transition states as well as products involved in these reactions are determined at the B3LYP/6-31G(2df,p) level. To achieve highly accurate thermochemical data for these stationary points on the potential energy surfaces, the Gaussian-4(G4) composite method was employed. Torsional motions are treated either as free rotors or hindered rotors in calculating partion functions to determine thermodynamic properties. The obtained standard enthalpies of formation for reactants and some prodcuts are shown to be in excellent agreement with experimental data with the largest error of 0.5 kcal mol(-1). The conventional transition state theory (TST) with tunneling effects was adopted to determine rate constants of these hydrogen abstraction reactions based on results from quantum chemistry calculations. To faciliate its application in kinetic modeling, the obtained rate constants are given in Arrhenius expression: k(T) = AT(n) exp(-EaR/T). The obtained reaction rate constants also agree reasonably well with available expermiental data and previous theoretical values. Branching ratios of these reactions have been determined. The present reaction rates for these reactions have been used in a toluene combustion mechanism, and their effects on some combustion properties are demonstrated.

  10. Comparison of calculated and experimental thermal attachment rate constants for SF6 in the temperature range 200--6000K

    International Nuclear Information System (INIS)

    Orient, O.J.; Chutjian, A.

    1986-01-01

    Electron-attachment cross sections are calculated for the process e - +SF 6 →SF 6 - in the energy range 1--200 MeV. An electron scattering approximation is used in which diatomic-like potential energy curves near the equilibrium SF 6 ground state are constructed from recent spectroscopic data. Excellent agreement is found over the entire energy range with experimental attachment cross sections at a temperature of 300 0 K for s-wave (l = 0) scattering. The same calculation, with appropriate adjustment of the thermal populations, is used to calculate attachment rate constants k(epsilon-bar) in the range 50--600 0 K for both s- and p-wave scattering. Comparisons are made with four independent sets of measured rate constants in the range 200--600 0 K, after adding an experimental estimate of the attachment rate for the process e - +SF 6 →SF 5 - +F. Good agreement is found with three sets of data, and poorer agreement with the fourth. The calculation shows that the true s-wave behavior of the rate constant, in which k(epsilon-bar) is independent of epsilon-bar, will be realized only at temperatures T less than 115 K, and that the observed constancy in the range 300--600 0 K is accidental. Theory predicts approximately a 9% increase in k(epsilon-bar) as T is lowered from 300 to 200 0 K

  11. Constant growth rate can be supported by decreasing energy flux and increasing aerobic glycolysis

    NARCIS (Netherlands)

    Slavov, Nikolai; Budnik, Bogdan A; Schwab, David; Airoldi, Edoardo M; van Oudenaarden, Alexander

    2014-01-01

    Fermenting glucose in the presence of enough oxygen to support respiration, known as aerobic glycolysis, is believed to maximize growth rate. We observed increasing aerobic glycolysis during exponential growth, suggesting additional physiological roles for aerobic glycolysis. We investigated such

  12. Rates of molecular evolution in bacteria are relatively constant despite spore dormancy.

    Science.gov (United States)

    Maughan, Heather

    2007-02-01

    Rates of molecular evolution are known to vary considerably among lineages, partially due to differences in life-history traits such as generation time. The generation-time effect has been well documented in some eukaryotes, but its prevalence in prokaryotes is unknown. "Because many species of Firmicute bacteria spend long periods of time as metabolically dormant spores, which could result in fewer DNA substitutions per unit time, they present an excellent system for testing predictions of the molecular clock hypothesis." To test whether spore-forming bacteria evolve more slowly than their non-spore-forming relatives, I used phylogenetic methods to determine if there were differences in rates of amino acid substitution between spore-forming and non-spore-forming lineages of Firmicute bacteria. Although rates of evolution do vary among lineages, I find no evidence for an effect of spore-formation on evolutionary rate and, furthermore, evolutionary rates are similar to those calculated for enteric bacteria. These results support the notion that variation in generation time does not affect evolutionary rates in bacterial lineages.

  13. First-Principles Computed Rate Constant for the O + O2 Isotopic Exchange Reaction Now Matches Experiment.

    Science.gov (United States)

    Guillon, Grégoire; Honvault, Pascal; Kochanov, Roman; Tyuterev, Vladimir

    2018-04-19

    We show, by performing exact time-independent quantum molecular scattering calculations, that the quality of the ground electronic state global potential energy surface appears to be of utmost importance in accurately obtaining even as strongly averaged quantities as kinetic rate constants. The oxygen isotope exchange reaction, 18 O + 32 O 2 , motivated by the understanding of a complex long-standing problem of isotopic ozone anomalies in the stratosphere and laboratory experiments, is explored in this context. The thermal rate constant for this key reaction is now in quantitative agreement with all experimental data available to date. A significant recent progress at the frontier of three research domains, advanced electronic structure calculations, ultrasensitive spectroscopy, and quantum scattering calculations, has therefore permitted a breakthrough in the theoretical modeling of this crucial collision process from first principles.

  14. Absolute rate constants for the reaction of NO with a series of peroxy radicals in the gas at 295 K

    DEFF Research Database (Denmark)

    Sehested, J.; Nielsen, O.J.; Wallington, T.J.

    1993-01-01

    The rate constants for the reaction of NO with a series of peroxy radicals: CH3O2, C2H5O2, (CH3)3CCH2O2, (CH3)3CC(CH3)2CH2O2, CH2FO2, CH2ClO2, CH2BrO2, CHF2O2, CF2ClO2, CHF2CF2O2, CF3CF2O2, CFCl2CH2O2 and CF2ClCH2O2 were measured at 298 K and a total pressure of 1 atm. The rate constants were...

  15. GCR Transport in the Brain: Assessment of Self-Shielding, Columnar Damage, and Nuclear Reactions on Cell Inactivation Rates

    Science.gov (United States)

    Shavers, M. R.; Atwell, W.; Cucinotta, F. A.; Badhwar, G. D. (Technical Monitor)

    1999-01-01

    Radiation shield design is driven by the need to limit radiation risks while optimizing risk reduction with launch mass/expense penalties. Both limitation and optimization objectives require the development of accurate and complete means for evaluating the effectiveness of various shield materials and body-self shielding. For galactic cosmic rays (GCR), biophysical response models indicate that track structure effects lead to substantially different assessments of shielding effectiveness relative to assessments based on LET-dependent quality factors. Methods for assessing risk to the central nervous system (CNS) from heavy ions are poorly understood at this time. High-energy and charge (HZE) ion can produce tissue events resulting in damage to clusters of cells in a columnar fashion, especially for stopping heavy ions. Grahn (1973) and Todd (1986) have discussed a microlesion concept or model of stochastic tissue events in analyzing damage from HZE's. Some tissues, including the CNS, maybe sensitive to microlesion's or stochastic tissue events in a manner not illuminated by either conventional dosimetry or fluence-based risk factors. HZE ions may also produce important lateral damage to adjacent cells. Fluences of high-energy proton and alpha particles in the GCR are many times higher than HZE ions. Behind spacecraft and body self-shielding the ratio of protons, alpha particles, and neutrons to HZE ions increases several-fold from free-space values. Models of GCR damage behind shielding have placed large concern on the role of target fragments produced from tissue atoms. The self-shielding of the brain reduces the number of heavy ions reaching the interior regions by a large amount and the remaining light particle environment (protons, neutrons, deuterons. and alpha particles) may be the greatest concern. Tracks of high-energy proton produce nuclear reactions in tissue, which can deposit doses of more than 1 Gv within 5 - 10 cell layers. Information on rates of

  16. Stress corrosion cracking test with slow strain rate and constant current

    International Nuclear Information System (INIS)

    Ondrejcin, R.S.

    1976-01-01

    A rapid electrochemical tensile test was developed for evaluating stress corrosion crack initiation in carbon steel. Constant anodic current was imposed on smooth-bar tensile specimens as the specimens were slowly strained to fracture at cross-head speeds of 1.3 x 10 -6 /sec. Equivalent response results were obtained for all ductility properties measured; uniform elongation, total elongation and reduction of area. Total elongation was chosen as the index for stress corrosion crack initiation. An equation was developed that allowed calculation of total elongation of specimens in electrolytes (test solutions) with composition ranges of 1.5 to 5.5 M nitrate, 0 to 3.5 M nitrite, and 0 to 5.0 M hydroxide, and a temperature range of 50 0 C to 100 0 C. A minimum of 13 percent total elongation was selected to indicate the possible initiation of cracking in A 285-B steel alloy. The test was used to evaluate relative aggressiveness of synthetic nuclear wastes on A 285-B carbon steel and the relative resistances of several steels to given solution compositions. Test results formed one of the bases for setting temperature limits and concentration limits for several ions in nuclear wastes that are stored in carbon steel tanks at the Savannah River Plant

  17. Stability analysis of 4-species Aβaggregation model: A novel approach to obtaining physically meaningful rate constants.

    Science.gov (United States)

    Ghag, G; Ghosh, P; Mauro, A; Rangachari, V; Vaidya, A

    2013-11-01

    Protein misfolding and concomitant aggregation towards amyloid formation is the underlying biochemical commonality among a wide range of human pathologies. Amyloid formation involves the conversion of proteins from their native monomeric states (intrinsically disordered or globular) to well-organized, fibrillar aggregates in a nucleation-dependent manner. Understanding the mechanism of aggregation is important not only to gain better insight into amyloid pathology but also to simulate and predict molecular pathways. One of the main impediments in doing so is the stochastic nature of interactions that impedes thorough experimental characterization and the development of meaningful insights. In this study, we have utilized a well-known intermediate state along the amyloid- β peptide aggregation pathway called protofibrils as a model system to investigate the molecular mechanisms by which they form fibrils using stability and perturbation analysis. Investigation of protofibril aggregation mechanism limits both the number of species to be modeled (monomers, and protofibrils), as well as the reactions to two (elongation by monomer addition, and protofibril-protofibril lateral association). Our new model is a reduced order four species model grounded in mass action kinetics. Our prior study required 3200 reactions, which makes determining the reaction parameters prohibitively difficult. Using this model, along with a linear perturbation argument, we rigorously determine stable ranges of rate constants for the reactions and ensure they are physically meaningful. This was accomplished by finding the ranges in which the perturbations dieout in a five-parameter sweep, which includes the monomer and protofibril equilibrium concentrations and three of the rate constants. The results presented are a proof-of-concept method in determining meaningful rate constants that can be used as a bonafide way for determining accurate rate constants for other models involving complex

  18. Interaction of hydrated electron with dietary flavonoids and phenolic acids. Rate constants and transient spectra studied by pulse radiolysis

    International Nuclear Information System (INIS)

    Cai, Zhongli; Li, Xifeng; Katsumura, Yosuke

    2000-01-01

    The reaction rate constants and transient spectra of 11 flavonoids and 4 phenolic acids reacting with e aq - at neutral pH were measured. The results suggest that C 4 keto group is the active site for e aq - to attack on flavonoids and phenolic acids, while the o-dihydroxy structure in B-ring, the C 2,3 double bond, the C 3 -OH group and glycosylation have little effects on the e aq - scavenging activities. (author)

  19. Channel specific rate constants for reactions of O(1D) with HCl and HBr

    Science.gov (United States)

    Wine, P. H.; Wells, J. R.; Ravishankara, A. R.

    1986-01-01

    The absolute rate coefficients and product yields for reactions of O(1D) with HCl(1) and HBr(2) at 287 K are presently determined by means of the time-resolved resonance fluorescence detection of O(3P) and H(2S) in conjunction with pulsed laser photolysis of O3/HX/He mixtures. Total rate coefficients for O(1D) removal are found to be, in units of 10 to the -10th cu cm/molecule per sec, k(1) = 1.50 + or - 0.18 and k(2) 1.48 + or - 0.16; the absolute accuracy of these rate coefficients is estimated to be + or - 20 percent.

  20. Parametric imaging of the rate constant Ki using [18Fluoro]-L-dopa positron emission tomography in progressive supranuclear palsy

    International Nuclear Information System (INIS)

    Cordes, M.; Snow, B.J.; Morrison, S.; Sossi, V.; Ruth, T.J.; Calne, D.B.

    1993-01-01

    Positron emission tomography (PET) studies using [18F]-L-dopa were carried out in 9 patients with supranuclear palsy and 13 controls. For quantification of PET data a rate constant K i was calculated for the radiotracer using a graphical method. Corrections for nonspecific activity were performed in both arterial plasma and brain tissue. The purpose of this study was to test the hypothesis that parametric images of the rate constant K mapping can be obtained on a pixel-by-pixel basis using an appropriate mathematical algorithm. K i values from these parametric images and the graphical approach were compared. Both correlated closely, with y=0.013+0.947 * x, r=0.992 and y=-0.052+1.048 * x, r=0.965 in patients and controls, respectively. Contrast measurements were also performed and showed a striking increase in contrast on parametric images. K mapping offers several advantages over the graphical approach, since parametric images are time-independent, i.e. one image represents the quantitative result of the study. In addition, parmetric images of the rate constant are normalized to arterial plasma radioactivity and corrected for tissue metabolites. Thus, parametric images of K i in different individuals can be compared directly without further processing in order to assess the nigrostriatal integrity. (orig.)

  1. A methodology to study cyclic debond growth at constant mode-mixity and energy release rate

    DEFF Research Database (Denmark)

    Quispitupa, Amilcar; Berggreen, Christian; Carlsson, Leif A.

    2010-01-01

    It is well known that face/core debond crack propagation is governed by the critical energy release rate (fracture toughness) and mode-mixity at the crack tip. Thus, the current study focuses on the developing of a methodology to perform fatigue crack growth experiments of debonded sandwich...... structures under well controlled cyclic energy release rate and mode-mixity. The proposed methodology uses the mixed mode bending (MMB) sandwich specimen and MMB test rig. Crack length measurements are based on an analytically available compliance expression. Accurate fatigue crack growth measurements...

  2. Rate Constant Change of Photo Reaction of Bacteriorhodopsin Observed in Trimeric Molecular System.

    Science.gov (United States)

    Tsujiuchi, Yutaka; Masumoto, Hiroshi; Goto, Takashi

    2016-04-01

    To elucidate the time evolution of photo reaction of bacteriorhodopsin in glycerol mixed purple membrane at around 196 K under irradiation by red light, a kinetic model was constructed. The change of absorption with irradiation at times of 560 nm and 412 nm was analyzed for the purpose of determining reaction rates of photo reaction of bacteriorhodopsin and its product M intermediate. In this study it is shown that reaction rates of conversion from bacteriorhodopsin to the M intermediate can be explained by a set of linear differential equations. This model analysis concludes that bacteriorhodopsin in which constitutes a trimer unit with other two bacteriorhodopsin molecules changes into M intermediates in the 1.73 of reaction rate, in the initial step, and according to the number of M intermediate in a trimer unit, from three to one, the reaction rate of bacteriorhodopsin into M intermediates smaller as 1.73, 0.80, 0.19 which caused by influence of inter-molecular interaction between bacteriorhodopsin.

  3. Rate Constants and Activation Energies for Gas-Phase Reactions of Three Cyclic Volatile Methyl Siloxanes with the Hydroxyl Radical.

    Science.gov (United States)

    Safron, Andreas; Strandell, Michael; Kierkegaard, Amelie; Macleod, Matthew

    2015-07-01

    Reaction with hydroxyl radicals (OH) is the major pathway for removal of cyclic volatile methyl siloxanes (cVMS) from air. We present new measurements of second-order rate constants for reactions of the cVMS octamethylcyclotetrasiloxane (D 4 ), decamethylcyclopentasiloxane (D 5 ), and dodecamethylcyclohexasiloxane (D 6 ) with OH determined at temperatures between 313 and 353 K. Our measurements were made using the method of relative rates with cyclohexane as a reference substance and were conducted in a 140-mL gas-phase reaction chamber with online mass spectrometry analysis. When extrapolated to 298 K, our measured reaction rate constants of D 4 and D 5 with the OH radical are 1.9 × 10 -12 (95% confidence interval (CI): (1.7-2.2) × 10 -12 ) and 2.6 × 10 -12 (CI: (2.3-2.9) × 10 -12 ) cm 3 molecule -1 s -1 , respectively, which are 1.9× and 1.7× faster than previous measurements. Our measured rate constant for D 6 is 2.8 × 10 -12 (CI: (2.5-3.2) × 10 -12 ) cm 3 molecule -1 s -1 and to our knowledge there are no comparable laboratory measurements in the literature. Reaction rates for D 5 were 33% higher than for D 4 (CI: 30-37%), whereas the rates for D 6 were only 8% higher than for D 5 (CI: 5-10%). The activation energies of the reactions of D 4 , D 5 , and D 6 with OH were not statistically different and had a value of 4300 ± 2800 J/mol.

  4. Rate Constants and Activation Energies for Gas‐Phase Reactions of Three Cyclic Volatile Methyl Siloxanes with the Hydroxyl Radical

    Science.gov (United States)

    Safron, Andreas; Strandell, Michael; Kierkegaard, Amelie

    2015-01-01

    ABSTRACT Reaction with hydroxyl radicals (OH) is the major pathway for removal of cyclic volatile methyl siloxanes (cVMS) from air. We present new measurements of second‐order rate constants for reactions of the cVMS octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) with OH determined at temperatures between 313 and 353 K. Our measurements were made using the method of relative rates with cyclohexane as a reference substance and were conducted in a 140‐mL gas‐phase reaction chamber with online mass spectrometry analysis. When extrapolated to 298 K, our measured reaction rate constants of D4 and D5 with the OH radical are 1.9 × 10−12 (95% confidence interval (CI): (1.7–2.2) × 10−12) and 2.6 × 10−12 (CI: (2.3–2.9) × 10−12) cm3 molecule−1 s−1, respectively, which are 1.9× and 1.7× faster than previous measurements. Our measured rate constant for D6 is 2.8 × 10−12 (CI: (2.5–3.2) × 10−12) cm3 molecule−1 s−1 and to our knowledge there are no comparable laboratory measurements in the literature. Reaction rates for D5 were 33% higher than for D4 (CI: 30–37%), whereas the rates for D6 were only 8% higher than for D5 (CI: 5–10%). The activation energies of the reactions of D4, D5, and D6 with OH were not statistically different and had a value of 4300 ± 2800 J/mol. PMID:27708500

  5. Non-Constant Learning Rates in Retrospective Experience Curve Analyses and their Correlation to Deployment Programs

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Max [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Smith, Sarah J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sohn, Michael D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-07-16

    A key challenge for policy-makers and technology market forecasters is to estimate future technology costs and in particular the rate of cost reduction versus production volume. A related, critical question is what role should state and federal governments have in advancing energy efficient and renewable energy technologies? This work provides retrospective experience curves and learning rates for several energy-related technologies, each of which have a known history of federal and state deployment programs. We derive learning rates for eight technologies including energy efficient lighting technologies, stationary fuel cell systems, and residential solar photovoltaics, and provide an overview and timeline of historical deployment programs such as state and federal standards and state and national incentive programs for each technology. Piecewise linear regimes are observed in a range of technology experience curves, and public investments or deployment programs are found to be strongly correlated to an increase in learning rate across multiple technologies. A downward bend in the experience curve is found in 5 out of the 8 energy-related technologies presented here (electronic ballasts, magnetic ballasts, compact fluorescent lighting, general service fluorescent lighting, and the installed cost of solar PV). In each of the five downward-bending experience curves, we believe that an increase in the learning rate can be linked to deployment programs to some degree. This work sheds light on the endogenous versus exogenous contributions to technological innovation and highlights the impact of exogenous government sponsored deployment programs. This work can inform future policy investment direction and can shed light on market transformation and technology learning behavior.

  6. Direct quantum mechanical calculation of the F + H{sub 2} {yields} HF + H thermal rate constant

    Energy Technology Data Exchange (ETDEWEB)

    Moix, Marc [Computer Simulation and Modeling (COSMO) Lab, Parc Cientific de Barcelona, Josep Samitier 5, 08028 Barcelona (Spain); Institut de Quimica Teorica i Computacional de la UB (IQTCUB), Universitat de Barcelona (Spain); Huarte-Larranaga, Fermin [Computer Simulation and Modeling (COSMO) Lab, Parc Cientific de Barcelona, Josep Samitier 5, 08028 Barcelona (Spain); Institut de Quimica Teorica i Computacional de la UB (IQTCUB), Universitat de Barcelona (Spain)], E-mail: fhuarte@pcb.ub.es

    2008-07-03

    Accurate full-dimensional quantum mechanical thermal rate constant values have been calculated for the F+H{sub 2}{yields}HF+H reaction on the Stark-Werner ab initio potential energy surface. These calculations are based on a flux correlation functions and employ a rigorous statistical sampling scheme to account for the overall rotation and the MCTDH scheme for the wave packet propagation. Our results shed some light on discrepancies on the thermal rate found for previous flux correlation based calculations with respect to accurate reactive scattering results. The resonance pattern of the all-J cumulative reaction probability is analyzed in terms of the partial wave contributions.

  7. A simple formula for local burnup based on constant relative reaction rate per nuclei

    OpenAIRE

    Yuan, Cenxi; Wang, Xuming; Chen, Shengli

    2015-01-01

    A simple and analytical formula is suggested to solve the problems of the local burnup and the isotope distributions. The present method considers two extreme conditions of neutrons penetrating the fuel rod. Based on these considerations, the formula is obtained to calculate the reaction rates of $^{235}$U, $^{238}$U, and $^{239}$Pu and straightforward the local burnup and the isotope distributions. Starting from an initial burnup level, the parameters of the formula are fitted to the reactio...

  8. A Simple Formula for Local Burnup and Isotope Distributions Based on Approximately Constant Relative Reaction Rate

    Directory of Open Access Journals (Sweden)

    Cenxi Yuan

    2016-01-01

    Full Text Available A simple and analytical formula is suggested to solve the problems of the local burnup and the isotope distributions. The present method considers two extreme conditions of neutrons penetrating the fuel rod. Based on these considerations, the formula is obtained to calculate the reaction rates of 235U, 238U, and 239Pu and straightforward the local burnup and the isotope distributions. Starting from an initial burnup level, the parameters of the formula are fitted to the reaction rates given by a Monte Carlo (MC calculation. Then the present formula independently gives very similar results to the MC calculation from the starting to high burnup level but takes just a few minutes. The relative reaction rates are found to be almost independent of the radius (except (n,γ of  238U and the burnup, providing a solid background for the present formula. A more realistic examination is also performed when the fuel rods locate in an assembly. A combination of the present formula and the MC calculation is expected to have a nice balance between the numerical accuracy and time consumption.

  9. Determination of photoformation rates and scavenging rate constants of hydroxyl radicals in natural waters using an automatic light irradiation and injection system

    Energy Technology Data Exchange (ETDEWEB)

    Nakatani, Nobutake [Graduate School of Biosphere Science, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521 (Japan)]. E-mail: nnakatan@hiroshima-u.ac.jp; Hashimoto, Norichika [Graduate School of Biosphere Science, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521 (Japan); Shindo, Hirotaka [Graduate School of Biosphere Science, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521 (Japan); Yamamoto, Masatoshi [LABOTEC Co. Ltd., 4-15-48 Itsukaiti, Saeki-ku, Hiroshima 731-5128 (Japan); Kikkawa, Megumi [LABOTEC Co. Ltd., 4-15-48 Itsukaiti, Saeki-ku, Hiroshima 731-5128 (Japan); Sakugawa, Hiroshi [Graduate School of Biosphere Science, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521 (Japan)

    2007-01-09

    Photoformation rates and scavenging rate constants of hydroxyl radicals ({center_dot}OH) in natural water samples were determined by an automatic determination system. After addition of benzene as a chemical probe to a water sample in a reaction cell, light irradiation and injection of irradiated water samples into an HPLC as a function of time were performed automatically. Phenol produced by the reaction between {center_dot}OH and the benzene added to the water sample was determined to quantify the {center_dot}OH formation rate. The rate constants of {center_dot}OH formation from the photolysis of nitrate ions, nitrite ions and hydrogen peroxide were comparable with those obtained in previous studies. The percent of expected {center_dot}OH photoformation rate from added nitrate ion were high in drinking water (97.4%) and river water (99.3%). On the other hand, the low percent (65.0%) was observed in seawater due to the reaction of {center_dot}OH with the high concentrations of chloride and bromide ions. For the automatic system, the coefficient of variance for the determination of the {center_dot}OH formation rate was less than 5.0%, which is smaller than that in the previous report. When the complete time sequence of analytical cycle was 40 min for one sample, the detection limit of the photoformation rate and the sample throughput were 8 x 10{sup -13} M s{sup -1} and 20 samples per day, respectively. The automatic system successfully determined the photoformation rates and scavenging rate constants of {center_dot}OH in commercial drinking water and the major source and sink of {center_dot}OH were identified as nitrate and bicarbonate ions, respectively.

  10. Tempo of Diversification of Global Amphibians: One-Constant Rate, One-Continuous Shift or Multiple-Discrete Shifts?

    Directory of Open Access Journals (Sweden)

    Youhua Chen

    2014-01-01

    Full Text Available In this brief report, alternative time-varying diversification rate models were fitted onto the phylogeny of global amphibians by considering one-constant-rate (OCR, one-continuous-shift (OCS and multiplediscrete- shifts (MDS situations. The OCS diversification model was rejected by γ statistic (γ=-5.556, p⁄ 0.001, implying the existence of shifting diversification rates for global amphibian phylogeny. Through model selection, MDS diversification model outperformed OCS and OCR models using “laser” package under R environment. Moreover, MDS models, implemented using another R package “MEDUSA”, indicated that there were sixteen shifts over the internal nodes for amphibian phylogeny. Conclusively, both OCS and MDS models are recommended to compare so as to better quantify rate-shifting trends of species diversification. MDS diversification models should be preferential for large phylogenies using “MEDUSA” package in which any arbitrary numbers of shifts are allowed to model.

  11. An Effective Continuum Model for the Liquid-to-Gas Phase Change in a Porous Medium Driven by Solute Diffusion: I. Constant Pressure Decline Rates

    Energy Technology Data Exchange (ETDEWEB)

    Tsimpanogiannis, Ioannis N.; Yortsos, Yanis C.

    2001-08-15

    This report, focuses on the isothermal gas phase growth from a supersaturated, slightly compressible, binary liquid in a porous medium. This is driven by mass transfer, the extent of which is controlled by the application of either a constant-rate decline of the system pressure or the withdrawal of the liquid at a constant rate. This report deals with the first process. Pressure depletion due to constant-rate liquid withdrawal is analyzed in a companion report .

  12. Rate constants for the reactions of OH with CH3Cl, CH2Cl2, CHCl3, and CH3Br

    Science.gov (United States)

    Hsu, K.-J.; Demore, W. B.

    1994-01-01

    Rate constants for the reactions of OH with CH3Cl, CH2Cl2, CHCl3, and CH3Br have been measured by a relative rate technique in which the reaction rate of each compound was compared to that of HFC-152a (CH3CHF2) and (for CH2Cl2) HFC-161 (CH3CH2F). Using absolute rate constants for HFC-152a and HFC-161, which we have determined relative to those for CH4, CH3CCl3, and C2H6, temperature dependent rate constants of both compounds were derived. The derived rate constant for CH3Br is in good agreement with recent absolute measurements. However, for the chloromethanes all the rate constants are lower at atmospheric temperatures than previously reported, especially for CH2Cl2 where the present rate constant is about a factor of 1.6 below the JPL 92-20 value. The new rate constant appears to resolve a discrepancy between the observed atmospheric concentrations and those calculated from the previous rate constant and estimated release rates.

  13. Theoretical determination of chemical rate constants using novel time-dependent methods

    Science.gov (United States)

    Dateo, Christopher E.

    1994-01-01

    The work completed within the grant period 10/1/91 through 12/31/93 falls primarily in the area of reaction dynamics using both quantum and classical mechanical methodologies. Essentially four projects have been completed and have been or are in preparation of being published. The majority of time was spent in the determination of reaction rate coefficients in the area of hydrocarbon fuel combustion reactions which are relevant to NASA's High Speed Research Program (HSRP). These reaction coefficients are important in the design of novel jet engines with low NOx emissions, which through a series of catalytic reactions contribute to the deterioration of the earth's ozone layer. A second area of research studied concerned the control of chemical reactivity using ultrashort (femtosecond) laser pulses. Recent advances in pulsed-laser technologies have opened up a vast new field to be investigated both experimentally and theoretically. The photodissociation of molecules adsorbed on surfaces using novel time-independent quantum mechanical methods was a third project. And finally, using state-of-the-art, high level ab initio electronic structure methods in conjunction with accurate quantum dynamical methods, the rovibrational energy levels of a triatomic molecule with two nonhydrogen atoms (HCN) were calculated to unprecedented levels of agreement between theory and experiment.

  14. Measuring in-stream retention of copper by means of constant-rate additions.

    Science.gov (United States)

    Serra, A; Guasch, H; Martí, E; Geiszinger, A

    2009-06-01

    Human practices entail inputs of nutrients and toxicants such as heavy metals to the fluvial ecosystems. While nutrient dynamics in fluvial ecosystems have been widely studied for over three decades, dynamics of toxicants still remain unclear. In this investigation, the nutrient spiraling concept and associated methodologies to quantify nutrient retention in streams were applied to study copper (Cu) dynamics in streams. The present study aimed to quantify total dissolved Cu retention using a simplified system of indoor channels colonized with fluvial biofilms. Cu retention was studied at sub-toxic concentrations to avoid negative/lethal effects on biota. In addition, Cu retention was compared with retention estimates of a macronutrient, phosphate (PO(4)(3-)), which has been widely studied within the context of the nutrient spiraling concept. The methodology used allowed a successful quantification of Cu and PO(4)(3-) retention. The results showed higher retention efficiency for PO(4)(3-) than for Cu. The biofilm played a key role in retaining both solutes. Although retention efficiency for both solutes was higher in the experiments with colonized substrata compared to uncolonized substrata, we found a positive relationship between uptake rate and chlorophyll-a only for PO(4)(3-). Finally, retention efficiency for both solutes was influenced by water discharge, showing lower retention efficiencies under higher flow conditions. These results suggest that the fate and toxic effects of copper on stream biota may be strongly influenced by the prevailing environmental conditions. Our results indicate that the experimental approach considered can provide new insights into the investigation of retention of toxic compounds in fluvial systems and their controlling mechanisms.

  15. Variational RRKM calculation of thermal rate constant for C–H bond fission reaction of nitro methane

    Directory of Open Access Journals (Sweden)

    Afshin Taghva Manesh

    2017-02-01

    Full Text Available The present work provides quantitative results for the rate constants of unimolecular C–H bond fission reactions in the nitro methane at elevated temperatures up to 2000 K. In fact, there are three different hydrogen atoms in the nitro methane. The potential energy surface for each C–H bond fission reaction of nitro methane was investigated by ab initio calculations. The geometry and vibrational frequencies of the species involved in this process were optimized at the MP2 level of theory, using the cc-pvdz basis set. Since C–H bond fission channel is a barrierless reaction, we have used variational RRKM theory to predict rate coefficients. By means of calculated rate coefficients at different temperatures, the Arrhenius expression of the channel over the temperature range of 100–2000 K is k(T = 5.9E19∗exp(−56274.6/T.

  16. Evaluation of Chemical Kinetic for Mathematics Model Reduction of Cadmium Reaction Rate, Constant and Reaction Orde in to Electrochemical Process

    International Nuclear Information System (INIS)

    Prayitno

    2007-01-01

    The experiment was reduction of cadmium rate with electrochemical influenced by time process, concentration, current strength and type of electrode plate. The aim of the experiment was to know the influence, mathematic model reduction of cadmium the reaction rate, reaction rate constant and reaction orde influenced by time process, concentration, current strength and type of electrode plate. Result of research indicate the time processing if using plate of copper electrode is during 30 minutes and using plate of aluminium electrode is during 20 minutes. Condition of strong current that used in process of electrochemical is only 0.8 ampere and concentration effective is 5.23 mg/l. The most effective type Al of electrode plate for reduction from waste and the efficiency of reduction is 98 %. (author)

  17. Modeling the downward transport of 210Pb in Peatlands: Initial Penetration‐Constant Rate of Supply (IP-CRS) model

    International Nuclear Information System (INIS)

    Olid, Carolina; Diego, David; Garcia-Orellana, Jordi; Cortizas, Antonio Martínez; Klaminder, Jonatan

    2016-01-01

    The vertical distribution of 210 Pb is commonly used to date peat deposits accumulated over the last 100–150 years. However, several studies have questioned this method because of an apparent post-depositional mobility of 210 Pb within some peat profiles. In this study, we introduce the Initial Penetration–Constant Rate of Supply (IP-CRS) model for calculating ages derived from 210 Pb profiles that are altered by an initial migration of the radionuclide. This new, two-phased, model describes the distribution of atmospheric-derived 210 Pb ( 210 Pb xs ) in peat taking into account both incorporation of 210 Pb into the accumulating peat matrix as well as an initial flushing of 210 Pb through the uppermost peat layers. The validity of the IP-CRS model is tested in four anomalous 210 Pb peat records that showed some deviations from the typical exponential decay profile not explained by variations in peat accumulation rates. Unlike the most commonly used 210 Pb-dating model (Constant Rate of Supply (CRS)), the IP-CRS model estimates peat accumulation rates consistent with typical growth rates for peatlands from the same areas. Confidence in the IP-CRS chronology is also provided by the good agreement with independent chronological markers (i.e. 241 Am and 137 Cs). Our results showed that the IP-CRS can provide chronologies from peat records where 210 Pb mobility is evident, being a valuable tool for studies reconstructing past environmental changes using peat archives during the Anthropocene. - Highlights: • Accurate age dating of peat and sediment cores is critical for evaluating change. • A new 210 Pb dating model that includes vertical transport of 210 Pb was developed. • The IP-CRS model provided consistent peat accumulation rates. • The IP-CRS ages were consistent with independent chronological markers. • The IP-CRS model derives peat ages where downward 210 Pb transport is evidenced.

  18. Computational study of the reactions of methanol with the hydroperoxyl and methyl radicals. 2. Accurate thermal rate constants.

    Science.gov (United States)

    Alecu, I M; Truhlar, Donald G

    2011-12-29

    Multistructural canonical variational-transition-state theory with multidimensional tunneling (MS-CVT/MT) is employed to calculate thermal rate constants for the abstraction of hydrogen atoms from both positions of methanol by the hydroperoxyl and methyl radicals over the temperature range 100-3000 K. The M08-HX hybrid meta-generalized gradient approximation density functional and M08-HX with specific reaction parameters, both with the maug-cc-pVTZ basis set, were validated in part 1 of this study (Alecu, I. M.; Truhlar, D. G. J. Phys. Chem. A2011, 115, 2811) against highly accurate CCSDT(2)(Q)/CBS calculations for the energetics of these reactions, and they are used here to compute the properties of all stationary points and the energies, gradients, and Hessians of nonstationary points along each considered reaction path. The internal rotations in some of the transition states are found to be highly anharmonic and strongly coupled to each other, and they generate multiple structures (conformations) whose contributions are included in the partition function. It is shown that the previous estimates for these rate constants used to build kinetic models for the combustion of methanol, some of which were based on transition state theory calculations with one-dimensional tunneling corrections and harmonic-oscillator approximations or separable one-dimensional hindered rotor treatments of torsions, are appreciably different than the ones presently calculated using MS-CVT/MT. The rate constants obtained from the best MS-CVT/MT calculations carried out in this study, in which the important effects of corner cutting due to small and large reaction path curvature are captured via a microcanonical optimized multidimensional tunneling (μOMT) treatment, are recommended for future refinement of the kinetic model for methanol combustion. © 2011 American Chemical Society

  19. Creatine kinase rate constant in the human heart measured with 3D‐localization at 7 tesla

    Science.gov (United States)

    Robson, Matthew D.; Neubauer, Stefan; Rodgers, Christopher T.

    2016-01-01

    Purpose We present a new Bloch‐Siegert four Angle Saturation Transfer (BOAST) method for measuring the creatine kinase (CK) first‐order effective rate constant kf in human myocardium at 7 tesla (T). BOAST combines a variant of the four‐angle saturation transfer (FAST) method using amplitude‐modulated radiofrequency pulses, phosphorus Bloch‐Siegert B1+‐mapping to determine the per‐voxel flip angles, and nonlinear fitting to Bloch simulations for postprocessing. Methods Optimal flip angles and repetition time parameters were determined from Monte Carlo simulations. BOAST was validated in the calf muscle of two volunteers at 3T and 7T. The myocardial CK forward rate constant was then measured in 10 volunteers at 7T in 82 min (after 1H localization). Results BOAST kfCK values were 0.281 ± 0.002 s−1 in the calf and 0.35 ± 0.05 s−1 in myocardium. These are consistent with literature values from lower fields. Using a literature values for adenosine triphosphate concentration, we computed CK flux values of 4.55 ± 1.52 mmol kg−1 s−1. The sensitive volume for BOAST depends on the B1 inhomogeneity of the transmit coil. Conclusion BOAST enables measurement of the CK rate constant in the human heart at 7T, with spatial localization in three dimensions to 5.6 mL voxels, using a 10‐cm loop coil. Magn Reson Med 78:20–32, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:27579566

  20. Direct Dynamics Simulation of the Thermal 3CH2 + 3O2 Reaction. Rate Constant and Product Branching Ratios.

    Science.gov (United States)

    Lakshmanan, Sandhiya; Pratihar, Subha; Machado, Francisco Bolivar Correto; Hase, William Louis

    2018-04-26

    The reaction of 3CH2 with 3O2 is of fundamental importance in combustion and the reaction is complex as a result of multiple extremely exothermic product channels. In the present study, direct dynamics simulations were performed to study the reaction on both the singlet and triplet potential energy surfaces (PESs). The simulations were performed at the UM06/6-311++G(d,p) level of theory. Trajectories were calculated at a temperature of 300 K and all reactive trajectories proceeded through the carbonyl oxide Criegee intermediate, CH2OO, on both the singlet and triplet PESs. The triplet surface leads to only one product channel, H2CO + O(3P), while the singlet surface leads to 8 product channels with their relative importance as: CO + H2O > CO + OH + H ~ H2CO + O(1D) > HCO + OH ~ CO2 + H2 ~ CO + H2 + O(1D) > CO2 + H + H > HCO + O(1D) + H. Reaction on the singlet PES is barrierless, consistent with experiment and the total rate constant on the singlet surface is 0.93 ± 0.22 x 10-12 cm3molecule-1s-1 in comparison to the recommended experimental rate constant of 3.3 x 10-12 cm3molecule-1s-1. The simulation product yields for the singlet PES are compared with experiment and the most significant differences are for H, CO2, and H2O. Reaction on the triplet surface is also barrierless, inconsistent with experiment. A discussion is given of the need for future calculations to address the: (1) barrier on the triplet PES for 3CH2 + 3O2 → 3CH2OO; (2) temperature dependence of the 3CH2 + 3O2 reaction rate constant and product branching ratios; and (3) possible non-RRKM dynamics of the 1CH2OO Criegee intermediate.

  1. Kinetics of reaction of peroxynitrite with selenium- and sulfur-containing compounds: Absolute rate constants and assessment of biological significance.

    Science.gov (United States)

    Storkey, Corin; Pattison, David I; Ignasiak, Marta T; Schiesser, Carl H; Davies, Michael J

    2015-12-01

    Peroxynitrite (the physiological mixture of ONOOH and its anion, ONOO(-)) is a powerful biologically-relevant oxidant capable of oxidizing and damaging a range of important targets including sulfides, thiols, lipids, proteins, carbohydrates and nucleic acids. Excessive production of peroxynitrite is associated with several human pathologies including cardiovascular disease, ischemic-reperfusion injury, circulatory shock, inflammation and neurodegeneration. This study demonstrates that low-molecular-mass selenols (RSeH), selenides (RSeR') and to a lesser extent diselenides (RSeSeR') react with peroxynitrite with high rate constants. Low molecular mass selenols react particularly rapidly with peroxynitrite, with second order rate constants k2 in the range 5.1 × 10(5)-1.9 × 10(6)M(-1)s(-1), and 250-830 fold faster than the corresponding thiols (RSH) and many other endogenous biological targets. Reactions of peroxynitrite with selenides, including selenosugars are approximately 15-fold faster than their sulfur homologs with k2 approximately 2.5 × 10(3)M(-1)s(-1). The rate constants for diselenides and sulfides were slower with k2 0.72-1.3 × 10(3)M(-1)s(-1) and approximately 2.1 × 10(2)M(-1)s(-1) respectively. These studies demonstrate that both endogenous and exogenous selenium-containing compounds may modulate peroxynitrite-mediated damage at sites of acute and chronic inflammation, with this being of particular relevance at extracellular sites where the thiol pool is limited. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Nanoscopic Approach to Quantification of Equilibrium and Rate Constants of Complex Formation at Single-Molecule Level.

    Science.gov (United States)

    Zhang, Xuzhu; Sisamakis, Evangelos; Sozanski, Krzysztof; Holyst, Robert

    2017-12-07

    Equilibrium and rate constants are key descriptors of complex-formation processes in a variety of chemical and biological reactions. However, these parameters are difficult to quantify, especially in the locally confined, heterogeneous, and dynamically changing living matter. Herein, we address this challenge by combining stimulated emission depletion (STED) nanoscopy with fluorescence correlation spectroscopy (FCS). STED reduces the length-scale of observation to tens of nanometres (2D)/attoliters (3D) and the time-scale to microseconds, with direct, gradual control. This allows one to distinguish diffusional and binding processes of complex-formation, even at reaction rates higher by an order of magnitude than in confocal FCS. We provide analytical autocorrelation formulas for probes undergoing diffusion-reaction processes under STED condition. We support the theoretical analysis of experimental STED-FCS data on a model system of dye-micelle, where we retrieve the equilibrium and rates constants. Our work paves a promising way toward quantitative characterization of molecular interactions in vivo.

  3. Non-steady state mass action dynamics without rate constants: dynamics of coupled reactions using chemical potentials

    Science.gov (United States)

    Cannon, William R.; Baker, Scott E.

    2017-10-01

    Comprehensive and predictive simulation of coupled reaction networks has long been a goal of biology and other fields. Currently, metabolic network models that utilize enzyme mass action kinetics have predictive power but are limited in scope and application by the fact that the determination of enzyme rate constants is laborious and low throughput. We present a statistical thermodynamic formulation of the law of mass action for coupled reactions at both steady states and non-stationary states. The formulation uses chemical potentials instead of rate constants. When used to model deterministic systems, the method corresponds to a rescaling of the time dependent reactions in such a way that steady states can be reached on the same time scale but with significantly fewer computational steps. The relationships between reaction affinities, free energy changes and generalized detailed balance are central to the discussion. The significance for applications in systems biology are discussed as is the concept and assumption of maximum entropy production rate as a biological principle that links thermodynamics to natural selection.

  4. Determination of Chemical Kinetic Rate Constants of a Model for Carbothermal Processing of Lunar Regolith Simulant Using Methane

    Science.gov (United States)

    Balasubramaniam, R; Gokoglu, S.; Hegde, U.

    2009-01-01

    We have previously developed a chemical conversion model of the carbothermal processing of lunar regolith using methane to predict the rate of production of carbon monoxide. In this carbothermal process, gaseous methane is pyrolyzed as it flows over the hot surface of a molten zone of lunar regolith and is converted to carbon and hydrogen. Hydrogen is carried away by the exiting stream of gases and carbon is deposited on the melt surface. The deposited carbon mixes with the melt and reacts with the metal oxides in it to produce carbon monoxide that bubbles out of the melt. In our model, we assume that the flux of carbon deposited is equal to the product of the surface reaction rate constant gamma and the concentration of methane adjacent to the melt surface. Similarly, the rate of consumption of carbon per unit volume in the melt is equal to the product of the melt reaction rate constant k and the concentrations of carbon and metal oxide in the melt. In this paper, we describe our effort to determine gamma and k by comparison of the predictions from our model with test data obtained by ORBITEC (Orbital Technologies Corporation). The concentration of methane adjacent to the melt surface is a necessary input to the model. It is inferred from the test data by a mass balance of methane, adopting the usual assumptions of the continuously-stirred-tank-reactor model, whereby the average concentration of a given gaseous species equals its exit concentration. The reaction rates gamma and k have been determined by a non-linear least-squares fit to the test data for the production of carbon monoxide and the fraction of the incoming methane that is converted. The comparison of test data with our model predictions using the determined chemical kinetic rate constants provides a consistent interpretation of the process over the full range of temperatures, pressures, and methane flow rates used in the tests, thereby increasing our confidence to use the model for scale-up purposes.

  5. The D(+) + H2 reaction: differential and integral cross sections at low energy and rate constants at low temperature.

    Science.gov (United States)

    González-Lezana, Tomás; Scribano, Yohann; Honvault, Pascal

    2014-08-21

    The D(+) + H2 reaction is investigated by means of a time independent quantum mechanical (TIQM) and statistical quantum mechanical (SQM) methods. Differential cross sections and product rotational distributions obtained with these two theoretical approaches for collision energies between 1 meV and 0.1 eV are compared to analyze the dynamics of the process. The agreement observed between the TIQM differential cross sections and the SQM predictions as the energy increases revealed the role played by the complex-forming mechanism. The importance of a good description of the asymptotic regions is also investigated by calculating rate constants for the title reaction at low temperature.

  6. Interaction of hydrated electron with dietary flavonoids and phenolic acids. Rate constants and transient spectra studied by pulse radiolysis

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Zhongli; Li, Xifeng; Katsumura, Yosuke [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab

    2000-03-01

    The reaction rate constants and transient spectra of 11 flavonoids and 4 phenolic acids reacting with e{sub aq}{sup -} at neutral pH were measured. The results suggest that C{sub 4} keto group is the active site for e{sub aq}{sup -} to attack on flavonoids and phenolic acids, while the o-dihydroxy structure in B-ring, the C{sub 2,3} double bond, the C{sub 3}-OH group and glycosylation have little effects on the e{sub aq}{sup -} scavenging activities. (author)

  7. A survey of the reaction rate constants for the thermal dissociation and recombination of nitrogen and oxygen

    Science.gov (United States)

    Marraffa, Lionel; Dulikravich, George S.; Keeney, Timothy C.; Deiwert, George S.

    1988-01-01

    The objective of the present report is to survey the various values of forward and backward reaction rate constants used by investigators in the field of high-temperature (T greater than 2000 K) gas reactions involving nitrogen and oxygen only. The objective is to find those values that correlate well so that they can be used for the studies of hypersonic flow and supersonic combustion with reasonable confidence. Relatively good agreement among these various values is observed for temperatures lower than 10,000 K.

  8. A simple-beam diameter transducer for tensile testing of round specimens at constant true strain rates

    International Nuclear Information System (INIS)

    Barrie, J.N.

    1977-06-01

    A simple-beam diameter transducer was developed for tensile testing of round specimens at constant true strain rates. The design adopted consists of a pair of thin beams of spring steel bent across the specimen mid-point and hinged at their extremities. A strain gauge is bonded to the outer surface at the mid-length of one of the beams. If the hinge points and vertical centre line of the specimen lie in the same plane, the strain measured on the beam will vary linearly with the diameter of the specimen. In practice, this geometric requirement is satisfied by the method of construction, and linearity was confirmed by experiment. (author)

  9. The WiggleZ Dark Energy Survey: constraining the evolution of Newton's constant using the growth rate of structure

    International Nuclear Information System (INIS)

    Nesseris, Savvas; Blake, Chris; Davis, Tamara; Parkinson, David

    2011-01-01

    We constrain the evolution of Newton's constant using the growth rate of large-scale structure measured by the WiggleZ Dark Energy Survey in the redshift range 0.1 m (assuming General Relativity), and use this to construct a diagnostic to detect the presence of an evolving Newton's constant. Secondly we directly measure the evolution of Newton's constant, G eff , that appears in Modified Gravity theories, without assuming General Relativity to be true. The novelty of these approaches are that, contrary to other methods, they do not require knowledge of the expansion history of the Universe, H(z), making them model independent tests. Our constraints for the second derivative of Newton's constant at the present day, assuming it is slowly evolving as suggested by Big Bang Nucleosynthesis constraints, using the WiggleZ data is G double-dot eff (t 0 ) = −1.19 ± 0.95·10 −20 h 2 yr −2 , where h is defined via H 0 = 100 h km s −1 Mpc −1 , while using both the WiggleZ and the Sloan Digital Sky Survey Luminous Red Galaxy (SDSS LRG) data is G double-dot eff (t 0 ) = −3.6 ± 6.8·10 −21 h 2 yr −2 , both being consistent with General Relativity. Finally, our constraint for the rms mass fluctuation σ 8 using the WiggleZ data is σ 8 = 0.75 ± 0.08, while using both the WiggleZ and the SDSS LRG data σ 8 = 0.77 ± 0.07, both in good agreement with the latest measurements from the Cosmic Microwave Background radiation

  10. Rate constants for the reactions of OH with HFC-134a (CF3CH2F) and HFC-134 (CHF2CHF2)

    Science.gov (United States)

    Demore, W. B.

    1993-01-01

    Measurements of rate constants for HFC-134 (CF2HCF2H) relative to CH3CCl3, HFC-125, and HFC-134a are reported. The measurements were made in a slow-flow, temperature controlled photochemical reactor, and were based on relative rates of disappearance of the parent compounds as measured by FTIR spectroscopy. Hydroxyl radicals were generated by 254-nm photolysis of O3 in the presence of water vapor. NASA/JPL rate constants for the reference compounds are used to derive temperature-dependent rate constants of both compounds. Rate constants obtained from the different reference compounds are in excellent agreement. The presently recommended rate constant for HFC-134a is about 25 percent too high.

  11. Measurement of nucleotide exchange rate constants in single rabbit soleus myofibrils during shortening and lengthening using a fluorescent ATP analog.

    Science.gov (United States)

    Shirakawa, I; Chaen, S; Bagshaw, C R; Sugi, H

    2000-02-01

    The kinetics of displacement of a fluorescent nucleotide, 2'(3')-O-[N[2-[[Cy3]amido]ethyl]carbamoyl]-adenosine 5'-triphosphate (Cy3-EDA-ATP), bound to rabbit soleus muscle myofibrils were studied using flash photolysis of caged ATP. Use of myofibrils from this slow twitch muscle allowed better resolution of the kinetics of nucleotide exchange than previous studies with psoas muscle myofibrils (, Biophys. J. 73:2033-2042). Soleus myofibrils in the presence of Cy3-EDA-nucleotides (Cy3-EDA-ATP or Cy3-EDA-ADP) showed selective fluorescence staining of the A-band. The K(m) for Cy3-EDA-ATP and the K(d) for Cy3-EDA-ADP binding to the myofibril A-band were 1.9 microM and 3.8 microM, respectively, indicating stronger binding of nucleotide to soleus cross-bridges compared to psoas cross-bridges (2.6 microM and 50 microM, respectively). After flash photolysis of caged ATP, the A-band fluorescence of the myofibril in the Cy3-EDA-ATP solution under isometric conditions decayed exponentially with a rate constant of 0.045 +/- 0.007 s(-1) (n = 32) at 10 degrees C, which was about seven times slower than that for psoas myofibrils. When a myofibril was allowed to shorten with a constant velocity, the nucleotide displacement rate constant increased from 0.066 s(-1) (isometric) to 0.14 s(-1) at 20 degrees C with increasing shortening velocity up to 0.1 myofibril length/s (V(max), the shortening velocity under no load was approximately 0. 2 myofibril lengths/s). The rate constant was not significantly affected by an isovelocity stretch of up to 0.1 myofibril lengths/s. These results suggest that the cross-bridge kinetics are not significantly affected at higher strain during lengthening but depend on the lower strain during shortening. These data also indicate that the interaction distance between a cross-bridge and the actin filament is at least 16 nm for a single cycle of the ATPase.

  12. Temperature dependence of the rate constant for reactions of hydrated electrons with H, OH and H2O2

    DEFF Research Database (Denmark)

    Christensen, H.; Sehested, K.; Løgager, T.

    1994-01-01

    The temperature dependence of the rate constants, for the reactions of hydrated electrons with H atoms, OH radicals and H2O2 has been determined. The reaction with H atoms, studied in the temperature range 20-250-degrees-C gives k(20-degrees-C) = 2.4 x 10(10) M-1 s-1 and the activation energy E......-1 and E(A) = 15.6 kJ mol-1 (3.7 kcal mol-1) measured from 5-150-degrees-C. Thus, the activation energy for all three fast reactions is close to that expected for diffusion controlled reactions. As phosphates were used as buffer system, the rate constant and activation energy for the reaction......(A) = 14.0 kJ mol-1 (3.3 kcal mol-1). For reaction with OH radicals the corresponding values are, k(20-degrees-C) = 3.1 x 10(10) M-1 s-1 and E(A) = 14.7 kJ mol-1 (3.5 kcal mol-1) determined in the temperature range 5-175-degrees-C. For reaction with H2O2 the values are, k(20-degrees-C) = 1.2 x 10(10) M-1 s...

  13. Determination of the stability constants of a number of metal fluoride complexes and their rates of formation

    International Nuclear Information System (INIS)

    Hammer, R.R.

    1979-08-01

    The stability constants of the fluoride complexes of Al +3 , H 3 BO 3 , Cr +3 , Cr +6 , Fe +3 , Gd +3 , Nb +5 , UO 2 +2 , and Zr +4 were determined in 0.96 and 2.88 M HNO 3 solutions in the temperature range 25 to 60 0 C with a fluoride specific ion electrode. These data can be used to calculate the concentration of chemical species in solution and will be used to correlate solution properties with solution composition. The solubilities of some fluoride precipitates were also measured in nitric acid solutions. The rates of formation of the fluoborates, aluminum fluoride, and zirconium fluoride complexes were measured with a fluoride specific ion electrode at 25, 35, and 45 0 C. The rates of formation of all complexes, except BF 4 - , AlF +2 , and a fluoride complex with aluminum containing more than three fluorides associated with it, were too fast to measure with the instrumentation used

  14. Rationale choosing interval of a piecewise-constant approximation of input rate of non-stationary queue system

    Science.gov (United States)

    Korelin, Ivan A.; Porshnev, Sergey V.

    2018-01-01

    The paper demonstrates the possibility of calculating the characteristics of the flow of visitors to objects carrying out mass events passing through checkpoints. The mathematical model is based on the non-stationary queuing system (NQS) where dependence of requests input rate from time is described by the function. This function was chosen in such way that its properties were similar to the real dependencies of speed of visitors arrival on football matches to the stadium. A piecewise-constant approximation of the function is used when statistical modeling of NQS performing. Authors calculated the dependencies of the queue length and waiting time for visitors to service (time in queue) on time for different laws. Time required to service the entire queue and the number of visitors entering the stadium at the beginning of the match were calculated too. We found the dependence for macroscopic quantitative characteristics of NQS from the number of averaging sections of the input rate.

  15. Calculation of rate constants for dissociative attachment of low-energy electrons to hydrogen halides HCl, HBr, and HI and their deuterated analogs

    International Nuclear Information System (INIS)

    Houfek, Karel; Cizek, Martin; Horacek, Jiri

    2002-01-01

    Calculations of rate constants for the process of dissociative attachment of low-energy electrons to hydrogen halides HCl, HBr, and HI and for the reverse process of associative detachment based on the nonlocal resonance model are reported. The calculated data are of importance for the modeling of plasma processes, environmental chemistry, etc. The calculated dissociative attachment rate constants are found to be in good agreement with existing experimental data. It is shown that at low temperatures the rate constants are very sensitive to small changes of the parameters of the nonlocal resonance model used for the calculation of the rate constants and represent a severe test of the theory. The isotopic effect and its dependence on the temperature is also discussed. The calculations of rate constants for the reverse process of associative detachment are also reported and discussed

  16. SU-F-T-33: Air-Kerma Strength and Dose Rate Constant by the Full Monte Carlo Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Tsuji, S [Kawasaki Medical School, Kurashiki, Okayama (Japan); Oita, M [Graduate School of Health Sciences, Okayama University, Okayama, Okayama (Japan); Narihiro, N [Kawasaki College of Allied Health Professions, Kurashiki, Okayama (Japan)

    2016-06-15

    Purpose: In general, the air-kerma strength (Sk) has been determined by the energy weighting the photon energy fluence and the corresponding mass-energy absorption coefficient or mass-energy transfer coefficient. Kerma is an acronym for kinetic energy released per unit mass, defined as the sum of the initial kinetic energies of all the charged particles. Monte Carlo (MC) simulations can investigate the kinetic energy of the charged particles after photo interactions and sum the energy. The Sk of {sup 192}Ir source is obtained in the full MC simulation and finally the dose rate constant Λ is determine. Methods: MC simulations were performed using EGS5 with the microSelectron HDR v2 type of {sup 192}Ir source. The air-kerma rate obtained to sum the electron kinetic energy after photoelectric absorption or Compton scattering for transverse-axis distance from 1 to 120 cm with a 10 m diameter air phantom. Absorbed dose in water is simulated with a 30 cm diameter water phantom. The transport cut-off energy is 10 keV and primary photons from the source need two hundred and forty billion in the air-kerma rate and thirty billion in absorbed dose in water. Results: Sk is multiplied by the square of the distance in air-kerma rate and determined by fitting a linear function. The result of Sk is (2.7039±0.0085)*10-{sup −11} µGy m{sup 2} Bq{sup −1} s{sup −1}. Absorbed dose rate in water at 1 cm transverse-axis distance D(r{sub 0}, θ{sub 0}) is (3.0114±0.0015)*10{sup −11} cGy Bq{sup −1} s{sup −1}. Conclusion: From the results, dose rate constant Λ of the microSelectron HDR v2 type of {sup 192}Ir source is (1.1137±0.0035) cGy h{sup −1} U{sup −1} by the full MC simulations. The consensus value conΛ is (1.109±0.012) cGy h{sup −1} U{sup −1}. The result value is consistent with the consensus data conΛ.

  17. Creatine kinase rate constant in the human heart measured with 3D-localization at 7 tesla.

    Science.gov (United States)

    Clarke, William T; Robson, Matthew D; Neubauer, Stefan; Rodgers, Christopher T

    2017-07-01

    We present a new Bloch-Siegert four Angle Saturation Transfer (BOAST) method for measuring the creatine kinase (CK) first-order effective rate constant k f in human myocardium at 7 tesla (T). BOAST combines a variant of the four-angle saturation transfer (FAST) method using amplitude-modulated radiofrequency pulses, phosphorus Bloch-Siegert B1+-mapping to determine the per-voxel flip angles, and nonlinear fitting to Bloch simulations for postprocessing. Optimal flip angles and repetition time parameters were determined from Monte Carlo simulations. BOAST was validated in the calf muscle of two volunteers at 3T and 7T. The myocardial CK forward rate constant was then measured in 10 volunteers at 7T in 82 min (after 1 H localization). BOAST kfCK values were 0.281 ± 0.002 s -1 in the calf and 0.35 ± 0.05 s -1 in myocardium. These are consistent with literature values from lower fields. Using a literature values for adenosine triphosphate concentration, we computed CK flux values of 4.55 ± 1.52 mmol kg -1 s -1 . The sensitive volume for BOAST depends on the B 1 inhomogeneity of the transmit coil. BOAST enables measurement of the CK rate constant in the human heart at 7T, with spatial localization in three dimensions to 5.6 mL voxels, using a 10-cm loop coil. Magn Reson Med 78:20-32, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  18. Bevacizumab reduces the growth rate constants of renal carcinomas: a novel algorithm suggests early discontinuation of bevacizumab resulted in a lack of survival advantage.

    Science.gov (United States)

    Stein, Wilfred D; Yang, James; Bates, Susan E; Fojo, Tito

    2008-10-01

    To hasten cancer drug development, new paradigms are needed to assess therapeutic efficacy. In a randomized phase II study in patients with renal cell carcinoma, 10 microg/kg bevacizumab (Avastin; Genentech, Inc., South San Francisco, CA) administered every 2 weeks resulted in a longer time to progression but a statistically significant difference in overall survival could not be demonstrated. We developed a novel two-phase equation to estimate concomitant rates of tumor regression (regression rate constant) and tumor growth (growth rate constant). This method allows us to assess therapeutic efficacy using tumor measurements gathered while a patient receives therapy in a clinical trial. The growth rate constants of renal cell carcinomas were significantly lower during therapy with 10 microg/kg bevacizumab than those of tumors in patients receiving placebo. In all cohorts the tumor growth rate constants were correlated with survival. That a survival advantage was not demonstrated with bevacizumab appears to have been a result of early discontinuation of bevacizumab. Single-agent bevacizumab significantly affects the growth rate constants of renal cell carcinoma. Extrapolating from the growth rate constants, we conclude that the failure to demonstrate a survival advantage in the original study was a result of premature discontinuation of bevacizumab. The mathematical model described herein has applications to many tumor types and should aid in evaluating the relative efficacies of different therapies. Quantitating tumor growth rate constants using data gathered while patients are enrolled in a clinical trial, as in the present study, may streamline and assist in drug development.

  19. SU-G-201-06: Directional Low-Dose Rate Brachytherapy: Determination of the TG-43 Dose-Rate Constant Analog for a New Pd-103 Source

    Energy Technology Data Exchange (ETDEWEB)

    Aima, M; Culberson, W; Hammer, C; Micka, J; DeWerd, L [Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI (United States)

    2016-06-15

    Purpose: The aim of this work is to determine the TG-43 dose-rate constant analog for a new directional low-dose rate brachytherapy source based on experimental methods and comparison to Monte Carlo simulations. The CivaSheet™ is a new commercially available planar source array comprised of a variable number of discrete directional source elements called “CivaDots”. Given the directional nature and non-conventional design of the source, modifications to the AAPM TG-43 protocol for dosimetry are required. As a result, various parameters of the TG-43 dosimetric formalism have to be adapted to accommodate this source. This work focuses on the dose-rate constant analog determination for a CivaDot. Methods: Dose to water measurements of the CivaDot were performed in a polymethyl methacrylate phantom (20×20×12 cm{sup 3}) using thermoluminescent dosimeters (TLDs) and Gafchromic EBT3 film. The source was placed in the center of the phantom, and nine TLD micro-cubes were irradiated along its central axis at a distance of 1 cm. For the film measurements, the TLDs were substituted by a (3×3) cm{sup 2} EBT3 film. Primary air-kerma strength measurements of the source were performed using a variable-aperture free-air chamber. Finally, the source was modeled using the Monte Carlo N-Particle Transport Code 6. Results: Dose-rate constant analog observed for a total of eight CivaDots using TLDs and five CivaDots using EBT3 film was within ±7.0% and ±2.9% of the Monte Carlo predicted value respectively. The average difference observed was −4.8% and −0.1% with a standard deviation of 1.7% and 2.1% for the TLD and the film measurements respectively, which are both within the comparison uncertainty. Conclusion: A preliminary investigation to determine the doserate constant analog for a CivaDot was conducted successfully with good agreement between experimental and Monte Carlo based methods. This work will aid in the eventual realization of a clinically-viable dosimetric

  20. Calculated Third Order Rate Constants for Interpreting the Mechanisms of Hydrolyses of Chloroformates, Carboxylic Acid Halides, Sulfonyl Chlorides and Phosphorochloridates

    Directory of Open Access Journals (Sweden)

    T. William Bentley

    2015-05-01

    Full Text Available Hydrolyses of acid derivatives (e.g., carboxylic acid chlorides and fluorides, fluoro- and chloroformates, sulfonyl chlorides, phosphorochloridates, anhydrides exhibit pseudo-first order kinetics. Reaction mechanisms vary from those involving a cationic intermediate (SN1 to concerted SN2 processes, and further to third order reactions, in which one solvent molecule acts as the attacking nucleophile and a second molecule acts as a general base catalyst. A unified framework is discussed, in which there are two reaction channels—an SN1-SN2 spectrum and an SN2-SN3 spectrum. Third order rate constants (k3 are calculated for solvolytic reactions in a wide range of compositions of acetone-water mixtures, and are shown to be either approximately constant or correlated with the Grunwald-Winstein Y parameter. These data and kinetic solvent isotope effects, provide the experimental evidence for the SN2-SN3 spectrum (e.g., for chloro- and fluoroformates, chloroacetyl chloride, p-nitrobenzoyl p-toluenesulfonate, sulfonyl chlorides. Deviations from linearity lead to U- or V-shaped plots, which assist in the identification of the point at which the reaction channel changes from SN2-SN3 to SN1-SN2 (e.g., for benzoyl chloride.

  1. Modeling-independent elucidation of inactivation pathways in recombinant and native A-type Kv channels

    Science.gov (United States)

    Fineberg, Jeffrey D.; Ritter, David M.

    2012-01-01

    A-type voltage-gated K+ (Kv) channels self-regulate their activity by inactivating directly from the open state (open-state inactivation [OSI]) or by inactivating before they open (closed-state inactivation [CSI]). To determine the inactivation pathways, it is often necessary to apply several pulse protocols, pore blockers, single-channel recording, and kinetic modeling. However, intrinsic hurdles may preclude the standardized application of these methods. Here, we implemented a simple method inspired by earlier studies of Na+ channels to analyze macroscopic inactivation and conclusively deduce the pathways of inactivation of recombinant and native A-type Kv channels. We investigated two distinct A-type Kv channels expressed heterologously (Kv3.4 and Kv4.2 with accessory subunits) and their native counterparts in dorsal root ganglion and cerebellar granule neurons. This approach applies two conventional pulse protocols to examine inactivation induced by (a) a simple step (single-pulse inactivation) and (b) a conditioning step (double-pulse inactivation). Consistent with OSI, the rate of Kv3.4 inactivation (i.e., the negative first derivative of double-pulse inactivation) precisely superimposes on the profile of the Kv3.4 current evoked by a single pulse because the channels must open to inactivate. In contrast, the rate of Kv4.2 inactivation is asynchronous, already changing at earlier times relative to the profile of the Kv4.2 current evoked by a single pulse. Thus, Kv4.2 inactivation occurs uncoupled from channel opening, indicating CSI. Furthermore, the inactivation time constant versus voltage relation of Kv3.4 decreases monotonically with depolarization and levels off, whereas that of Kv4.2 exhibits a J-shape profile. We also manipulated the inactivation phenotype by changing the subunit composition and show how CSI and CSI combined with OSI might affect spiking properties in a full computational model of the hippocampal CA1 neuron. This work unambiguously

  2. Inactivation kinetics and efficiencies of UV-LEDs against Pseudomonas aeruginosa, Legionella pneumophila, and surrogate microorganisms.

    Science.gov (United States)

    Rattanakul, Surapong; Oguma, Kumiko

    2018-03-01

    To demonstrate the effectiveness of UV light-emitting diodes (UV-LEDs) to disinfect water, UV-LEDs at peak emission wavelengths of 265, 280, and 300 nm were adopted to inactivate pathogenic species, including Pseudomonas aeruginosa and Legionella pneumophila, and surrogate species, including Escherichia coli, Bacillus subtilis spores, and bacteriophage Qβ in water, compared to conventional low-pressure UV lamp emitting at 254 nm. The inactivation profiles of each species showed either a linear or sigmoidal survival curve, which both fit well with the Geeraerd's model. Based on the inactivation rate constant, the 265-nm UV-LED showed most effective fluence, except for with E. coli which showed similar inactivation rates at 265 and 254 nm. Electrical energy consumption required for 3-log 10 inactivation (E E,3 ) was lowest for the 280-nm UV-LED for all microbial species tested. Taken together, the findings of this study determined the inactivation profiles and kinetics of both pathogenic bacteria and surrogate species under UV-LED exposure at different wavelengths. We also demonstrated that not only inactivation rate constants, but also energy efficiency should be considered when selecting an emission wavelength for UV-LEDs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. The effect of surfaces on AGR coolant chemistry: critical assessment of gas-phase rate constants relevant to ethane pyrolysis

    International Nuclear Information System (INIS)

    Gonzales, M.D.U.; Norfolk, D.J.

    1988-02-01

    Previous work has shown the ability of a chemical kinetic model, applied using the FACSIMILE computer code, to predict the thermal decomposition of ethane in a silica flow reactor. To optimise the performance of the model, the present report reviews the literature data on the twenty reactions which it incorporates. Critical assessment has shown some discrepancies in the previously used rate constants, especially those leading to ethyne formation. Table 2 of the report gives the kinetic data which, as a result of the present evaluation, are recommended for future work. Use of these data gives significantly improved agreement between the model and the experimental results, particularly for ethyne formation, which had previously been underestimated. (author)

  4. Water Exchange Rate Constant as a Biomarker of Treatment Efficacy in Patients With Brain Metastases Undergoing Stereotactic Radiosurgery

    International Nuclear Information System (INIS)

    Mehrabian, Hatef; Desmond, Kimberly L.; Chavez, Sofia; Bailey, Colleen; Rola, Radoslaw; Sahgal, Arjun; Czarnota, Gregory J.; Soliman, Hany; Martel, Anne L.; Stanisz, Greg J.

    2017-01-01

    Purpose: This study was designed to evaluate whether changes in metastatic brain tumors after stereotactic radiosurgery (SRS) can be seen with quantitative MRI early after treatment. Methods and Materials: Using contrast-enhanced MRI, a 3-water-compartment tissue model consisting of intracellular (I), extracellular-extravascular (E), and vascular (V) compartments was used to assess the intra–extracellular water exchange rate constant (k IE ), efflux rate constant (k ep ), and water compartment volume fractions (M 0,I , M 0,E , M 0,V ). In this prospective study, 19 patients were MRI-scanned before treatment and 1 week and 1 month after SRS. The change in model parameters between the pretreatment and 1-week posttreatment scans was correlated to the change in tumor volume between pretreatment and 1-month posttreatment scans. Results: At 1 week k IE differentiated (P<.001) tumors that had partial response from tumors with stable and progressive disease, and a high correlation (R=−0.76, P<.001) was observed between early changes in the k IE and tumor volume change 1 month after treatment. Other model parameters had lower correlation (M 0,E ) or no correlation (k ep , M 0,V ). Conclusions: This is the first study that measured k IE early after SRS, and it found that early changes in k IE (1 week after treatment) highly correlated with long-term tumor response and could predict the extent of tumor shrinkage at 1 month after SRS.

  5. Combination of poroelasticity theory and constant strain rate test in modelling land subsidence due to groundwater extraction

    Science.gov (United States)

    Pham, Tien Hung; Rühaak, Wolfram; Sass, Ingo

    2017-04-01

    Extensive groundwater extraction leads to a drawdown of the ground water table. Consequently, soil effective stress increases and can cause land subsidence. Analysis of land subsidence generally requires a numerical model based on poroelasticity theory, which was first proposed by Biot (1941). In the review of regional land subsidence accompanying groundwater extraction, Galloway and Burbey (2011) stated that more research and application is needed in coupling of stress-dependent land subsidence process. In geotechnical field, the constant rate of strain tests (CRS) was first introduced in 1969 (Smith and Wahls 1969) and was standardized in 1982 through the designation D4186-82 by American Society for Testing and Materials. From the reading values of CRS tests, the stress-dependent parameters of poroelasticity model can be calculated. So far, there is no research to link poroelasticity theory with CRS tests in modelling land subsidence due to groundwater extraction. One dimensional CRS tests using conventional compression cell and three dimension CRS tests using Rowe cell were performed. The tests were also modelled by using finite element method with mixed elements. Back analysis technique is used to find the suitable values of hydraulic conductivity and bulk modulus that depend on the stress or void ratio. Finally, the obtained results are used in land subsidence models. Biot, M. A. (1941). "General theory of three-dimensional consolidation." Journal of applied physics 12(2): 155-164. Galloway, D. L. and T. J. Burbey (2011). "Review: Regional land subsidence accompanying groundwater extraction." Hydrogeology Journal 19(8): 1459-1486. Smith, R. E. and H. E. Wahls (1969). "Consolidation under constant rates of strain." Journal of Soil Mechanics & Foundations Div.

  6. Water Exchange Rate Constant as a Biomarker of Treatment Efficacy in Patients With Brain Metastases Undergoing Stereotactic Radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Mehrabian, Hatef, E-mail: hatef.mehrabian@sri.utoronto.ca [Medical Biophysics, University of Toronto, Toronto, Ontario (Canada); Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario (Canada); Desmond, Kimberly L. [Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario (Canada); Chavez, Sofia [Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario (Canada); Bailey, Colleen [Computer Science Department, University College London, London (United Kingdom); Rola, Radoslaw [Neurosurgery and Pediatric Neurosurgery, Medical University, Lublin (Poland); Sahgal, Arjun [Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario (Canada); Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada); Czarnota, Gregory J. [Medical Biophysics, University of Toronto, Toronto, Ontario (Canada); Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario (Canada); Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada); Soliman, Hany [Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada); Martel, Anne L. [Medical Biophysics, University of Toronto, Toronto, Ontario (Canada); Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario (Canada); Stanisz, Greg J. [Medical Biophysics, University of Toronto, Toronto, Ontario (Canada); Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario (Canada); Neurosurgery and Pediatric Neurosurgery, Medical University, Lublin (Poland)

    2017-05-01

    Purpose: This study was designed to evaluate whether changes in metastatic brain tumors after stereotactic radiosurgery (SRS) can be seen with quantitative MRI early after treatment. Methods and Materials: Using contrast-enhanced MRI, a 3-water-compartment tissue model consisting of intracellular (I), extracellular-extravascular (E), and vascular (V) compartments was used to assess the intra–extracellular water exchange rate constant (k{sub IE}), efflux rate constant (k{sub ep}), and water compartment volume fractions (M{sub 0,I}, M{sub 0,E}, M{sub 0,V}). In this prospective study, 19 patients were MRI-scanned before treatment and 1 week and 1 month after SRS. The change in model parameters between the pretreatment and 1-week posttreatment scans was correlated to the change in tumor volume between pretreatment and 1-month posttreatment scans. Results: At 1 week k{sub IE} differentiated (P<.001) tumors that had partial response from tumors with stable and progressive disease, and a high correlation (R=−0.76, P<.001) was observed between early changes in the k{sub IE} and tumor volume change 1 month after treatment. Other model parameters had lower correlation (M{sub 0,E}) or no correlation (k{sub ep}, M{sub 0,V}). Conclusions: This is the first study that measured k{sub IE} early after SRS, and it found that early changes in k{sub IE} (1 week after treatment) highly correlated with long-term tumor response and could predict the extent of tumor shrinkage at 1 month after SRS.

  7. Nonadiabatic rate constants for proton transfer and proton-coupled electron transfer reactions in solution: Effects of quadratic term in the vibronic coupling expansion

    International Nuclear Information System (INIS)

    Soudackov, Alexander V.; Hammes-Schiffer, Sharon

    2015-01-01

    Rate constant expressions for vibronically nonadiabatic proton transfer and proton-coupled electron transfer reactions are presented and analyzed. The regimes covered include electronically adiabatic and nonadiabatic reactions, as well as high-frequency and low-frequency proton donor-acceptor vibrational modes. These rate constants differ from previous rate constants derived with the cumulant expansion approach in that the logarithmic expansion of the vibronic coupling in terms of the proton donor-acceptor distance includes a quadratic as well as a linear term. The analysis illustrates that inclusion of this quadratic term in the framework of the cumulant expansion framework may significantly impact the rate constants at high temperatures for proton transfer interfaces with soft proton donor-acceptor modes that are associated with small force constants and weak hydrogen bonds. The effects of the quadratic term may also become significant in these regimes when using the vibronic coupling expansion in conjunction with a thermal averaging procedure for calculating the rate constant. In this case, however, the expansion of the coupling can be avoided entirely by calculating the couplings explicitly for the range of proton donor-acceptor distances sampled. The effects of the quadratic term for weak hydrogen-bonding systems are less significant for more physically realistic models that prevent the sampling of unphysical short proton donor-acceptor distances. Additionally, the rigorous relation between the cumulant expansion and thermal averaging approaches is clarified. In particular, the cumulant expansion rate constant includes effects from dynamical interference between the proton donor-acceptor and solvent motions and becomes equivalent to the thermally averaged rate constant when these dynamical effects are neglected. This analysis identifies the regimes in which each rate constant expression is valid and thus will be important for future applications to proton

  8. Nonadiabatic rate constants for proton transfer and proton-coupled electron transfer reactions in solution: Effects of quadratic term in the vibronic coupling expansion.

    Science.gov (United States)

    Soudackov, Alexander V; Hammes-Schiffer, Sharon

    2015-11-21

    Rate constant expressions for vibronically nonadiabatic proton transfer and proton-coupled electron transfer reactions are presented and analyzed. The regimes covered include electronically adiabatic and nonadiabatic reactions, as well as high-frequency and low-frequency proton donor-acceptor vibrational modes. These rate constants differ from previous rate constants derived with the cumulant expansion approach in that the logarithmic expansion of the vibronic coupling in terms of the proton donor-acceptor distance includes a quadratic as well as a linear term. The analysis illustrates that inclusion of this quadratic term in the framework of the cumulant expansion framework may significantly impact the rate constants at high temperatures for proton transfer interfaces with soft proton donor-acceptor modes that are associated with small force constants and weak hydrogen bonds. The effects of the quadratic term may also become significant in these regimes when using the vibronic coupling expansion in conjunction with a thermal averaging procedure for calculating the rate constant. In this case, however, the expansion of the coupling can be avoided entirely by calculating the couplings explicitly for the range of proton donor-acceptor distances sampled. The effects of the quadratic term for weak hydrogen-bonding systems are less significant for more physically realistic models that prevent the sampling of unphysical short proton donor-acceptor distances. Additionally, the rigorous relation between the cumulant expansion and thermal averaging approaches is clarified. In particular, the cumulant expansion rate constant includes effects from dynamical interference between the proton donor-acceptor and solvent motions and becomes equivalent to the thermally averaged rate constant when these dynamical effects are neglected. This analysis identifies the regimes in which each rate constant expression is valid and thus will be important for future applications to proton

  9. Acceleration and sensitivity analysis of lattice kinetic Monte Carlo simulations using parallel processing and rate constant rescaling.

    Science.gov (United States)

    Núñez, M; Robie, T; Vlachos, D G

    2017-10-28

    Kinetic Monte Carlo (KMC) simulation provides insights into catalytic reactions unobtainable with either experiments or mean-field microkinetic models. Sensitivity analysis of KMC models assesses the robustness of the predictions to parametric perturbations and identifies rate determining steps in a chemical reaction network. Stiffness in the chemical reaction network, a ubiquitous feature, demands lengthy run times for KMC models and renders efficient sensitivity analysis based on the likelihood ratio method unusable. We address the challenge of efficiently conducting KMC simulations and performing accurate sensitivity analysis in systems with unknown time scales by employing two acceleration techniques: rate constant rescaling and parallel processing. We develop statistical criteria that ensure sufficient sampling of non-equilibrium steady state conditions. Our approach provides the twofold benefit of accelerating the simulation itself and enabling likelihood ratio sensitivity analysis, which provides further speedup relative to finite difference sensitivity analysis. As a result, the likelihood ratio method can be applied to real chemistry. We apply our methodology to the water-gas shift reaction on Pt(111).

  10. Energy dependence of the reaction rate constants of Ar+, Ar++ and N2+ ions with Cl2

    International Nuclear Information System (INIS)

    Lukac, P.; Holubcik, L.; Morva, I.; Lindinger, W.

    2002-01-01

    Dry etching processes using low temperature plasmas in Cl 2 and in Cl 2 -noble gas or nitrogen mixtures are common in the manufacture of semiconductor devices, but their chemical mechanisms are often poorly understood. Results are given for the reaction rate constant measurements of Ar + , Ar ++ , N 2 + ions with chlorine as a function of mean relative kinetic energy. The experiments were performed by using the innsbruck flow drift tube (IFDT) apparatus. Measurements were done at various E/N values, where E is the electric field strength and N the buffer gas density in the drift section. The mean relative kinetic energy KE CM between the ions and the neutral chlorine Cl 2 was calculated using the Wanniers formula. It was found that The N 2 + , Ar + and Ar ++ positive ions react with chlorine Cl 2 very fast and the corresponding reaction rate coefficients depend on the mean relative kinetic energy. For the reaction of Ar - with Cl 2 , its reaction coefficient depends also on the buffer gas. It can imply the enhancement of Cl 2 + ions during etching of Si in the Ar/Cl 2 mixtures. (nevyjel)

  11. Acceleration and sensitivity analysis of lattice kinetic Monte Carlo simulations using parallel processing and rate constant rescaling

    Science.gov (United States)

    Núñez, M.; Robie, T.; Vlachos, D. G.

    2017-10-01

    Kinetic Monte Carlo (KMC) simulation provides insights into catalytic reactions unobtainable with either experiments or mean-field microkinetic models. Sensitivity analysis of KMC models assesses the robustness of the predictions to parametric perturbations and identifies rate determining steps in a chemical reaction network. Stiffness in the chemical reaction network, a ubiquitous feature, demands lengthy run times for KMC models and renders efficient sensitivity analysis based on the likelihood ratio method unusable. We address the challenge of efficiently conducting KMC simulations and performing accurate sensitivity analysis in systems with unknown time scales by employing two acceleration techniques: rate constant rescaling and parallel processing. We develop statistical criteria that ensure sufficient sampling of non-equilibrium steady state conditions. Our approach provides the twofold benefit of accelerating the simulation itself and enabling likelihood ratio sensitivity analysis, which provides further speedup relative to finite difference sensitivity analysis. As a result, the likelihood ratio method can be applied to real chemistry. We apply our methodology to the water-gas shift reaction on Pt(111).

  12. [Flavonoids as effective protectors of urease from ultrasonic inactivation in solutions].

    Science.gov (United States)

    Tarun, E I; Kurchenko, V P; Metelitsa, D I

    2006-01-01

    Inactivation of soybean urease in aqueous solution at pH 5.4, 36 degrees C, and high-frequency sonication (2.64 MHz, 1.0 W/cm2) is substantially reduced in the presence of seven structurally different flavonoids. A comparative kinetic study of the effect of these flavonoids on the effective first-order rate constants that characterize the total (thermal and ultrasonic) inactivation k(i), thermal inactivation k(i)*, and ultrasonic inactivation k(i)(US) of 25 nM enzyme solution was carried out. The dependences of the three inactivation rate constants of the urease on the concentrations of flavonoids within the range from 10(-11) to 10(-4) M were obtained. The following order of the efficiency of the flavonoids used in respect of the urease protection from ultrasonic inactivation was found: astragalin > silybin > naringin > hesperidin > quercetin > kaempferol > morin. The results confirm a significant role in the inactivation of the urease of HO* and HO2*, free radicals, which are formed in the ultrasonic cavitation field.

  13. Other paradigms: growth rate constants and tumor burden determined using computed tomography data correlate strongly with the overall survival of patients with renal cell carcinoma.

    Science.gov (United States)

    Stein, Wilfred D; Huang, Hui; Menefee, Michael; Edgerly, Maureen; Kotz, Herb; Dwyer, Andrew; Yang, James; Bates, Susan E

    2009-01-01

    In solid tumors, where curative therapies still elude oncologists, novel paradigms are needed to assess the efficacy of new therapies and those already approved. We used radiologic measurements obtained in patients with metastatic renal cell carcinoma enrolled in a phase II study of the epothilone B analog, ixabepilone (Ixempra), to address this issue. Using a novel 2-phase mathematical equation, we used the radiologic measurements to estimate the concomitant rates of tumor regression and growth (regression and growth rate constants). Eighty-one patients were enrolled on the ixabepilone trial at the time of this analysis. Growth rate constants were determined using computed tomography measurements obtained exclusively while a patient was enrolled on study. The growth rate constants of renal cell carcinomas treated with ixabepilone were significantly reduced compared with those of tumors in patients who received placebo in a previous trial. Furthermore, a correlation with overall survival was found for both the growth rate constant and the initial tumor burden; and this correlation was even stronger when both the growth rate constant and the initial tumor burden were combined. The readily amenable mathematical model described herein has potential applications to many tumor types that can be assessed with imaging modalities. Because the growth rate constant seems to be a surrogate for survival, assessment could aid in the evaluation of relative efficacies of different therapies and perhaps in assessing the potential individual benefit of an experimental therapy.

  14. ESTIMATION OF HYDROLYSIS RATE CONSTANTS OF CARBOXYLIC ACID ESTER AND PHOSPHATE ESTER COMPOUNDS IN AQUEOUS SYSTEMS FROM MOLECULAR STRUCTURE BY SPARC

    Science.gov (United States)

    SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to calculate hydrolysis rate constants for carboxylic acid ester and phosphate ester compounds in aqueous non- aqueous and systems strictly from molecular structure. The energy diffe...

  15. A new concept in radiation dose calculation by using of 1 cm dose equivalent rate constant with shielding effect and accompanying software

    International Nuclear Information System (INIS)

    Nakamura, Ayako; Yamano, Toyotsugu

    2000-01-01

    A new concept called 1 cm dose equivalent rate constant with shielding effect is introduced for estimation of radiation dose. This new concept represents an expansion of the former standard 1 cm dose equivalent rate constant (defined as μSv·m 2 ·MBq -1 ·h -1 ) adjusted attenuation for any given thickness of shielding material (iron, lead and concrete). The 1 cm dose equivalent rate constant with shielding effect for various shielding conditions can be rapidly computed with a free-software application, KINGS-B621, which may be easily downloaded from the internet. The computed rate constants can be put out as text files which are compatible with commercially available spread-sheet software, so it is easy for users to apply the data to creation of documents concerning radiation dose. (author)

  16. Methods for determining the methane generation potential and methane generation rate constant for the FOD model: a review.

    Science.gov (United States)

    Park, Jin-Kyu; Chong, Yong-Gil; Tameda, Kazuo; Lee, Nam-Hoon

    2018-03-01

    In the first order decay (FOD) model of landfill methane generation, the methane generation potential ( L 0 ) and methane generation rate constant ( k) for both bulk municipal solid waste (MSW) and individual waste components have been determined by a variety of approaches throughout various literature. Differences in the determination methods for L 0 and k are related to differences in our understanding of the waste decomposition dynamics. A thorough understanding of the various available methods for determining L 0 and k values is critical for comparative study and the drawing of valid conclusions. The aim of this paper is to review the literature on the available determining methods and the ranges for L 0 and k values of both bulk MSW and individual waste components, while focusing on understanding the decomposition of waste, including the role of lignin. L 0 estimates in the literature are highly variable and have been derived from theoretical stoichiometric calculations, laboratory experiments, or actual field measurements. The lignin concentration in waste is correlated with the fraction of total degradable organic carbon (DOC f ) that will actually anaerobically degrade in the landfill. The k value has been determined by precipitation rates, laboratory simulations, aged-defined waste sample, and model fitting or regression analysis using actual gas data. However, the lignin concentration does not correlate well with the k value, presumably due to the impact of lignin arrangement and structure on cellulose bioavailability and degradation rate. In sum, this review summarizes the literature on the measurement of L 0 and k values, including the dynamics and decomposition of bulk MSW and individual waste components within landfills.

  17. Dynamics of chest wall volume regulation during constant work rate exercise in patients with chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    L.S. Takara

    2012-12-01

    Full Text Available This study evaluated the dynamic behavior of total and compartmental chest wall volumes [(V CW = rib cage (V RC + abdomen (V AB] as measured breath-by-breath by optoelectronic plethysmography during constant-load exercise in patients with stable chronic obstructive pulmonary disease. Thirty males (GOLD stages II-III underwent a cardiopulmonary exercise test to the limit of tolerance (Tlim at 75% of peak work rate on an electronically braked cycle ergometer. Exercise-induced dynamic hyperinflation was considered to be present when end-expiratory (EE V CW increased in relation to resting values. There was a noticeable heterogeneity in the patterns of V CW regulation as EEV CW increased non-linearly in 17/30 "hyperinflators" and decreased in 13/30 "non-hyperinflators" (P < 0.05. EEV AB decreased slightly in 8 of the "hyperinflators", thereby reducing and slowing the rate of increase in end-inspiratory (EI V CW (P < 0.05. In contrast, decreases in EEV CW in the "non-hyperinflators" were due to the combination of stable EEV RC with marked reductions in EEV AB. These patients showed lower EIV CW and end-exercise dyspnea scores but longer Tlim than their counterparts (P < 0.05. Dyspnea increased and Tlim decreased non-linearly with a faster rate of increase in EIV CW regardless of the presence or absence of dynamic hyperinflation (P < 0.001. However, no significant between-group differences were observed in metabolic, pulmonary gas exchange and cardiovascular responses to exercise. Chest wall volumes are continuously regulated during exercise in order to postpone (or even avoid their migration to higher operating volumes in patients with COPD, a dynamic process that is strongly dependent on the behavior of the abdominal compartment.

  18. Dynamics of chest wall volume regulation during constant work rate exercise in patients with chronic obstructive pulmonary disease

    Energy Technology Data Exchange (ETDEWEB)

    Takara, L.S.; Cunha, T.M.; Barbosa, P.; Rodrigues, M.K.; Oliveira, M.F.; Nery, L.E. [Setor de Função Pulmonar e Fisiologia Clínica do Exercício, Disciplina de Pneumologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Neder, J.A. [Setor de Função Pulmonar e Fisiologia Clínica do Exercício, Disciplina de Pneumologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Division of Respiratory and Critical Care Medicine, Department of Medicine, Queen' s University, Kingston, ON (Canada)

    2012-10-15

    This study evaluated the dynamic behavior of total and compartmental chest wall volumes [(V{sub CW}) = rib cage (V{sub RC}) + abdomen (V{sub AB})] as measured breath-by-breath by optoelectronic plethysmography during constant-load exercise in patients with stable chronic obstructive pulmonary disease. Thirty males (GOLD stages II-III) underwent a cardiopulmonary exercise test to the limit of tolerance (Tlim) at 75% of peak work rate on an electronically braked cycle ergometer. Exercise-induced dynamic hyperinflation was considered to be present when end-expiratory (EE) V{sub CW} increased in relation to resting values. There was a noticeable heterogeneity in the patterns of V{sub CW} regulation as EEV{sub CW} increased non-linearly in 17/30 “hyperinflators” and decreased in 13/30 “non-hyperinflators” (P < 0.05). EEV{sub AB} decreased slightly in 8 of the “hyperinflators”, thereby reducing and slowing the rate of increase in end-inspiratory (EI) V{sub CW} (P < 0.05). In contrast, decreases in EEV{sub CW} in the “non-hyperinflators” were due to the combination of stable EEV{sub RC} with marked reductions in EEV{sub AB}. These patients showed lower EIV{sub CW} and end-exercise dyspnea scores but longer Tlim than their counterparts (P < 0.05). Dyspnea increased and Tlim decreased non-linearly with a faster rate of increase in EIV{sub CW} regardless of the presence or absence of dynamic hyperinflation (P < 0.001). However, no significant between-group differences were observed in metabolic, pulmonary gas exchange and cardiovascular responses to exercise. Chest wall volumes are continuously regulated during exercise in order to postpone (or even avoid) their migration to higher operating volumes in patients with COPD, a dynamic process that is strongly dependent on the behavior of the abdominal compartment.

  19. Dynamics of chest wall volume regulation during constant work rate exercise in patients with chronic obstructive pulmonary disease

    International Nuclear Information System (INIS)

    Takara, L.S.; Cunha, T.M.; Barbosa, P.; Rodrigues, M.K.; Oliveira, M.F.; Nery, L.E.; Neder, J.A.

    2012-01-01

    This study evaluated the dynamic behavior of total and compartmental chest wall volumes [(V CW ) = rib cage (V RC ) + abdomen (V AB )] as measured breath-by-breath by optoelectronic plethysmography during constant-load exercise in patients with stable chronic obstructive pulmonary disease. Thirty males (GOLD stages II-III) underwent a cardiopulmonary exercise test to the limit of tolerance (Tlim) at 75% of peak work rate on an electronically braked cycle ergometer. Exercise-induced dynamic hyperinflation was considered to be present when end-expiratory (EE) V CW increased in relation to resting values. There was a noticeable heterogeneity in the patterns of V CW regulation as EEV CW increased non-linearly in 17/30 “hyperinflators” and decreased in 13/30 “non-hyperinflators” (P < 0.05). EEV AB decreased slightly in 8 of the “hyperinflators”, thereby reducing and slowing the rate of increase in end-inspiratory (EI) V CW (P < 0.05). In contrast, decreases in EEV CW in the “non-hyperinflators” were due to the combination of stable EEV RC with marked reductions in EEV AB . These patients showed lower EIV CW and end-exercise dyspnea scores but longer Tlim than their counterparts (P < 0.05). Dyspnea increased and Tlim decreased non-linearly with a faster rate of increase in EIV CW regardless of the presence or absence of dynamic hyperinflation (P < 0.001). However, no significant between-group differences were observed in metabolic, pulmonary gas exchange and cardiovascular responses to exercise. Chest wall volumes are continuously regulated during exercise in order to postpone (or even avoid) their migration to higher operating volumes in patients with COPD, a dynamic process that is strongly dependent on the behavior of the abdominal compartment

  20. SU-E-T-421: Feasibility Study of Volumetric Modulated Arc Therapy with Constant Dose Rate for Endometrial Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yang, R; Wang, J [Peking University Third Hospital, Beijing, Beijing (China)

    2014-06-01

    Purpose: To investigate the feasibility, efficiency, and delivery accuracy of volumetric modulated arc therapy with constant dose rate (VMAT-CDR) for whole-pelvic radiotherapy (WPRT) of endometrial cancer. Methods: The nine-Field intensity-modulated radiotherapy (IMRT), VMAT with variable dose-rate (VMAT-VDR), and VMAT-CDR plans were created for 9 patients with endometrial cancer undergoing WPRT. The dose distribution of planning target volume (PTV), organs at risk (OARs), and normal tissue (NT) were compared. The monitor units (MUs) and treatment delivery time were also evaluated. For each VMAT-CDR plan, a dry Run was performed to assess the dosimetric accuracy with MatriXX from IBA. Results: Compared with IMRT, the VMAT-CDR plans delivered a slightly greater V20 of the bowel, bladder, pelvis bone, and NT, but significantly decreased the dose to the high-dose region of the rectum and pelvis bone. The MUs Decreased from 1105 with IMRT to 628 with VMAT-CDR. The delivery time also decreased from 9.5 to 3.2 minutes. The average gamma pass rate was 95.6% at the 3%/3 mm criteria with MatriXX pretreatment verification for 9 patients. Conclusion: VMAT-CDR can achieve comparable plan quality with significant shorter delivery time and smaller number of MUs compared with IMRT for patients with endometrial cancer undergoing WPRT. It can be accurately delivered and be an alternative to IMRT on the linear accelerator without VDR capability. This work is supported by the grant project, National Natural; Science Foundation of China (No. 81071237)

  1. Rate constants and branching ratios for the reaction of CH radicals with NH3: a combined experimental and theoretical study.

    Science.gov (United States)

    Blitz, Mark A; Talbi, Dahbia; Seakins, Paul W; Smith, Ian W M

    2012-06-21

    The reaction between CH radicals and NH(3) molecules is known to be rapid down to at least 23 K {at which temperature k = (2.21 ± 0.17) × 10(-10) cm(3) molecule(-1) s(-1): Bocherel ; et al. J. Phys. Chem. 1996, 100, 3063}. However, there have been only limited theoretical investigations of this reaction and its products are not known. This paper reports (i) ab initio quantum chemical calculations on the energy paths that lead to various reaction products, (ii) calculations of the overall rate constant and branching ratios to different products using transition state and master equation methods, and (iii) an experimental determination of the H atom yield from the reaction. The ab initio calculations show that reaction occurs predominantly via the initial formation of a datively bound HC-NH(3) complex and reveal low energy pathways to three sets of reaction products: H(2)CNH + H, HCNH(2) + H, and CH(3) + NH. The transition state calculations indicate the roles of "outer" and "inner" transition states and yield rate constants between 20 and 320 K that are in moderate agreement with the experimental values. These calculations and those using the master equation approach show that the branching ratio for the most exothermic reaction, to H(2)CNH + H, is ca. 96% throughout the temperature range covered by the calculations, with those to HCNH(2) + H and CH(3) + NH being (4 ± 3)% and <0.3%, respectively. In the experiments, multiple photon dissociation of CHBr(3) was used to generate CH radicals and laser-induced fluorescence at 121.56 nm (VUV-LIF) was employed to observe H atoms. By comparing signals from CH + NH(3) with those from CH + CH(4), where the yield of H atoms is known to be unity, it is possible to estimate that the yield of H atoms from CH + NH(3) is equal to 0.89 ± 0.07 (2σ), in satisfactory agreement with the theoretical estimate.

  2. Absolute rate constant, kinetic isotope effect, and mechanism of the reaction of ethylene oxide with oxygen(3P) atoms

    International Nuclear Information System (INIS)

    Bogan, D.J.; Hand, C.W.

    1978-01-01

    The kinetics of the reaction of ethylene oxide with O( 3 P) atoms has been investigated in detail using a discharge flow system with mass spectrometric and photometric detection. Absolute measurements of the rate constant, kinetic isotope effect, and stoichiometry have been made. The overall stoichiometry is 3 +- 1 oxygen atoms consumed per ethylene oxide molecule. Arrhenius parameters for the reaction of C 2 H 4 O with O are A = 10/sup (9.28+-0.08)/ L mol -1 s -1 and E = 5250 +- 150 cal mol -1 over the temperature range 298 to 691 0 K, and Arrhenius parameters for the kinetic isotope effect are A/sub H//A/sub D/ = 0.9 +- 0.20 and E/sub D/--E/sub H/ = 1460 +- 230 cal mol -1 , over the temperature range 482 to 691 0 K. The magnitude of the preexponential factor and the temperature dependence of the isotope effect establish that hydrogen abstraction, rather than insertion to form a dioxetane intermediate, is the sole reactive channel for ethylene oxide plus O( 3 P). The Arrhenius parameters are discussed and compared to other hydrogen abstraction reactions of O( 3 P). Comparison is also made to the reactions of O( 3 P) with other strained three-membered ring compounds. The final products H 2 , H 2 O, HCHO, CO, and CO 2 were identified, and a mechanism is proposed to account for their formation from the radical products of the initial step

  3. Th isotopes in the Santa Monica basin: temporal variation, long-term mass balance and model rate constants

    International Nuclear Information System (INIS)

    Huh, Chih-An

    1995-01-01

    Distribution and flux of 234 Th, 232 Th and 230 Th in the water column of central Santa Monica basin observed over a period of seven years show seasonal and interannual variabilities. A steady-state model is applied to the integrated data to calculate long term average flux and model rate constants of Th isotopes. Mass balance calculations show that the basin acts like a closed system for short-lived 234 Th, but not for the long-lived isotopes 230 Th and 232 Th. Most 230 Th in the basin is transported from elsewhere. Of the incoming Th, 40-55% of the 230 Th and 14-26% of the 232 Th enter the surface water in dissolved form. In the upper 100m, the residence time of dissolved Th with respect to adsorption onto suspended particulates, 70-80 days, is about one order of magnitude higher than the residence time of suspended particles with respect to aggregation into sinking particles, 7-10 days. (author)

  4. Theoretical study on the rate constants for the C2H5 + HBr --> C2H6 + Br reaction.

    Science.gov (United States)

    Sheng, Li; Li, Ze-Sheng; Liu, Jing-Yao; Xiao, Jing-Fa; Sun, Chia-Chung

    2004-02-01

    The reaction C(2)H(5) + HBr --> C(2)H(6) + Br has been theoretically studied over the temperature range from 200 to 1400 K. The electronic structure information is calculated at the BHLYP/6-311+G(d,p) and QCISD/6-31+G(d) levels. With the aid of intrinsic reaction coordinate theory, the minimum energy paths (MEPs) are obtained at the both levels, and the energies along the MEP are further refined by performing the single-point calculations at the PMP4(SDTQ)/6-311+G(3df,2p)//BHLYP and QCISD(T)/6-311++G(2df,2pd)//QCISD levels. The calculated ICVT/SCT rate constants are in good agreement with available experimental values, and the calculate results further indicate that the C(2)H(5) + HBr reaction has negative temperature dependence at T 850 K. The current work predicts that the kinetic isotope effect for the title reaction is inverse in the temperature range from 200 to 482 K, i.e., k(HBr)/k(DBr) < 1. Copyright 2003 Wiley Periodicals, Inc.

  5. A quasi-QSPR modelling for the photocatalytic decolourization rate constants and cellular viability (CV%) of nanoparticles by CORAL.

    Science.gov (United States)

    Toropova, A P; Toropov, A A; Benfenati, E

    2015-01-01

    Most quantitative structure-property/activity relationships (QSPRs/QSARs) predict various endpoints related to organic compounds. Gradually, the variety of organic compounds has been extended to inorganic, organometallic compounds and polymers. However, the so-called molecular descriptors cannot be defined for super-complex substances such as different nanomaterials and peptides, since there is no simple and clear representation of their molecular structure. Some possible ways to define approaches for a predictive model in the case of super-complex substances are discussed. The basic idea of the approach is to change the traditionally used paradigm 'the endpoint is a mathematical function of the molecular structure' with another paradigm 'the endpoint is a mathematical function of available eclectic information'. The eclectic data can be (i) conditions of a synthesis, (ii) technological attributes, (iii) size of nanoparticles, (iv) concentration, (v) attributes related to cell membranes, and so on. Two examples of quasi-QSPR/QSAR analyses are presented and discussed. These are (i) photocatalytic decolourization rate constants (DRC) (10(-5)/s) of different nanopowders; and (ii) the cellular viability under the effect of nano-SiO(2).

  6. A Lagging Model for Describing Drawdown Induced by a Constant-Rate Pumping in a Leaky Confined Aquifer

    Science.gov (United States)

    Lin, Ye-Chen; Yeh, Hund-Der

    2017-10-01

    This study proposes a generalized Darcy's law with considering phase lags in both the water flux and drawdown gradient to develop a lagging flow model for describing drawdown induced by constant-rate pumping (CRP) in a leaky confined aquifer. The present model has a mathematical formulation similar to the dual-porosity model. The Laplace-domain solution of the model with the effect of wellbore storage is derived by the Laplace transform method. The time-domain solution for the case of neglecting the wellbore storage and well radius is developed by the use of Laplace transform and Weber transform. The results of sensitivity analysis based on the solution indicate that the drawdown is very sensitive to the change in each of the transmissivity and storativity. Also, a study for the lagging effect on the drawdown indicates that its influence is significant associated with the lag times. The present solution is also employed to analyze a data set taken from a CRP test conducted in a fractured aquifer in South Dakota, USA. The results show the prediction of this new solution with considering the phase lags has very good fit to the field data, especially at early pumping time. In addition, the phase lags seem to have a scale effect as indicated in the results. In other words, the lagging behavior is positively correlated with the observed distance in the Madison aquifer.

  7. Atmospheric reaction of Cl + methacrolein: a theoretical study on the mechanism, and pressure- and temperature-dependent rate constants.

    Science.gov (United States)

    Sun, Cuihong; Xu, Baoen; Zhang, Shaowen

    2014-05-22

    Methacrolein is a major degradation product of isoprene, the reaction of methacrolein with Cl atoms may play some roles in the degradation of isoprene where these species are relatively abundant. However, the energetics and kinetics of this reaction, which govern the reaction branching, are still not well understood so far. In the present study, two-dimensional potential energy surfaces were constructed to analyze the minimum energy path of the barrierless addition process between Cl and the C═C double bond of methacrolein, which reveals that the terminal addition intermediate is directly formed from the addition reaction. The terminal addition intermediate can further yield different products among which the reaction paths abstracting the aldehyde hydrogen atom and the methyl hydrogen atom are dominant reaction exits. The minimum reaction path for the direct aldehydic hydrogen atom abstraction is also obtained. The reaction kinetics was calculated by the variational transition state theory in conjunction with the master equation method. From the theoretical model we predicted that the overall rate constant of the Cl + methacrolein reaction at 297 K and atmospheric pressure is koverall = 2.3× 10(-10) cm(3) molecule(-1) s(-1), and the branching ratio of the aldehydic hydrogen abstraction is about 12%. The reaction is pressure dependent at P < 10 Torr with the high pressure limit at about 100 Torr. The calculated results could well account for the experimental observations.

  8. Dose rate constants for the quantity H{sub p}(3) for frequently used radionuclides in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Szermerski, Bastian; Bruchmann, Iris; Geworski, Lilli [Medical School Hannover (Germany). Dept. for Radiation Protection and Medical Physics; Behrens, Rolf [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany)

    2016-07-01

    According to recent studies, the human eye lens is more sensitive to ionising radiation than previously assumed. Therefore, the dose limit for personnel occupationally exposed to ionising radiation will be lowered from currently 150 mSv to 20 mSv per year. Currently, no data base for a reliable estimation of the dose to the lens of the eye is available for nuclear medicine. Furthermore, the dose is usually not monitored. The aim of this work was to determine dose rate constants for the quantity H{sub p}(3), which is supposed to estimate the dose to the lens of the eye. For this, H{sub p}(3)-dosemeters were fixed to an Alderson Phantom at different positions. The dosemeters were exposed to radiation from nuclides typically used in nuclear medicine in their geometries analog to their application in nuclear medicine, e.g. syringe or vial. The results show that the handling of high-energy beta (i.e. electron or positron) emitters may lead to a relevant dose to the lens of the eye. For low-energy beta emitters and gamma emitters, an exceeding of the lowered dose limit seems to be unlikely.

  9. Application of Constant Rate of Supply model (CRS) in dating of Guanabara Bay sediments using 210Pb measures

    International Nuclear Information System (INIS)

    Braganca, Maura Julia Camara da Silva

    1992-09-01

    A geochronological study of the Guanabara Bay (Rio de Janeiro, Brazil) based on 210P b dating technique to determine sedimentation rates and using the Constant Rate of Supply model (CRS) is presented in this work. Sediment samples were collected from river-head of Estrela, Sao Joao de Meriti, Guapimirim, Guaxindiba e Imbuacu. A low energy gamma spectrometry ( 210P b, samples taken from the Estrela and Sao Joao de Meriti rivers. Radiochemical method was applied to determine the amount of 210P b in samples collected near Guapimirim, Guaxindiba and Imbuacu Rivers. Atomic absorption spectrometry with air-acetylene flame technique was used to determine the amount of copper in all these samples. Experimental data shown the following variation in the concentration levels of copper and 210P b: (i) copper; from 2.5 μg/g to 37.1 μg/g (Imbuacu River); from 3.6 to 228.1 μg/g (Estrela River); from 11.6 to 73.4 μg/g (Guapimirim River); from 12.0 to 52.9 μg/g (Guaxindiba River) and from 90.8 to to 237.7 μg/g (Sao Joao de Meriti River), (ti) 210P b; from 2.0 Bq/kg to 27.0 Bq/kg (Imbuacu River); from 25.2 to 136.6 Bq/kg (Estrela River); from 40.0 to 90.0 Bq/kg (Sao Joao de Meriti River); from 7.0 to 70.0 Bq/kg (Guapimirim River); from 10.0 to 48.0 Bq/kg (Guaxindiba River). The sedimentation rates ranged from 0.30 cm/y in the Imbuacu River for a depth below of 35 cm to 1.3 cm/y for 0-30 cm depth in Guaxindiba River. It was concluded that the experimental data found in this work are consistent with those published in the scientific literature and that they can be predicted by the CRS model. (author)

  10. A comprehensive test set of epoxidation rate constants for iron(iv)-oxo porphyrin cation radical complexes.

    Science.gov (United States)

    Sainna, Mala A; Kumar, Suresh; Kumar, Devesh; Fornarini, Simonetta; Crestoni, Maria Elisa; de Visser, Sam P

    2015-02-01

    Cytochrome P450 enzymes are heme based monoxygenases that catalyse a range of oxygen atom transfer reactions with various substrates, including aliphatic and aromatic hydroxylation as well as epoxidation reactions. The active species is short-lived and difficult to trap and characterize experimentally, moreover, it reacts in a regioselective manner with substrates leading to aliphatic hydroxylation and epoxidation products, but the origin of this regioselectivity is poorly understood. We have synthesized a model complex and studied it with low-pressure Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometry (MS). A novel approach was devised using the reaction of [Fe III (TPFPP)] + (TPFPP = meso -tetrakis(pentafluorophenyl)porphinato dianion) with iodosylbenzene as a terminal oxidant which leads to the production of ions corresponding to [Fe IV (O)(TPFPP + ˙)] + . This species was isolated in the gas-phase and studied in its reactivity with a variety of olefins. Product patterns and rate constants under Ideal Gas conditions were determined by FT-ICR MS. All substrates react with [Fe IV (O)(TPFPP + ˙)] + by a more or less efficient oxygen atom transfer process. In addition, substrates with low ionization energies react by a charge-transfer channel, which enabled us to determine the electron affinity of [Fe IV (O)(TPFPP + ˙)] + for the first time. Interestingly, no hydrogen atom abstraction pathways are observed for the reaction of [Fe IV (O)(TPFPP + ˙)] + with prototypical olefins such as propene, cyclohexene and cyclohexadiene and also no kinetic isotope effect in the reaction rate is found, which suggests that the competition between epoxidation and hydroxylation - in the gas-phase - is in favour of substrate epoxidation. This notion further implies that P450 enzymes will need to adapt their substrate binding pocket, in order to enable favourable aliphatic hydroxylation over double bond epoxidation pathways. The MS studies yield a large test

  11. Direct measurements of methoxy removal rate constants for collisions with CH4, Ar, N2, Xe, and CF4 in the temperature range 673--973K

    International Nuclear Information System (INIS)

    Wantuck, P.J.; Oldenborg, R.C.; Baugchum, S.L.; Winn, K.R.

    1988-01-01

    Removal rate constants for CH 3 O by CH 4 , Ar, N 2 , Xe, and CF 4 were measured over a 400K temperature range using a laser photolysis/laser-induced fluorescence technique. Rapid methoxy removal rates are observed for the non-reactive collision partners (Ar, N 2 , Xe, and CF 4 ) at elevated temperatures showing that the dissociation and isomerization channels for CH 3 O are indeed important. The total removal rate constant (reaction /plus/ dissociation and/or isomerization) for CH 4 exhibits a linear dependence on temperature and has a removal rate constant, k/sub r/ /equals/ (1.2 +- 0.6) /times/ 10/sup /minus/8/exp[(/minus/101070 +- 350)/T]cm 3 molecule/sup /minus/1/s/sup /minus/1/. Assuming that the removal rate constant due to dissociation and/or isomerization are similar for CH 4 and CF 4 , the reaction rate constant for CH 3 O /plus/ CH 4 is equal to (1.7 +- 1.0) /times/ 10/sup /minus/10/exp[(/minus/7480 +- 1100)/T]cm 3 molecule/sup /minus/1/s/sup /minus/1/. 7 refs., 4 figs

  12. [Kinetics of catalase inactivation induced by ultrasonic cavitation].

    Science.gov (United States)

    Potapovich, M V; Eremin, A N; Metelitsa, D I

    2003-01-01

    Kinetic patterns of sonication-induced inactivation of bovine liver catalase (CAT) were studied in buffer solutions (pH 4-11) within the temperature range from 36 to 55 degrees C. Solutions of CAT were exposed to low-frequency (20.8 kHz) ultrasound (specific power, 48-62 W/cm2). The kinetics of CAT inactivation was characterized by effective first-order rate constants (s-1) of total inactivation (kin), thermal inactivation (*kin), and ultrasonic inactivation (kin(us)). In all cases, the following inequality was valid: kin > *kin. The value of kin(us) increased with the ultrasound power (range, 48-62 W/cm2) and exhibited a strong dependence on pH of the medium. On increasing the initial concentration of CAT (0.4-4.0 nM), kin(us) decreased. The three rate constants were minimum within the range of pH 6.5-8; their values increased considerably at pH 9. At 36-55 degrees C, temperature dependence of kin(us) was characterized by an activation energy (Eact) of 19.7 kcal/mol, whereas the value of Eact for CAT thermoinactivation was equal to 44.2 kcal/mol. Bovine serum and human serum albumins (BSA and HSA, respectively) inhibited sonication-induced CAT inactivation; complete prevention was observed at concentrations above 2.5 micrograms/ml. Dimethyl formamide (DMFA), a scavenger of hydroxyl radicals (HO.), prevented sonication-induced CAT inactivation at 10% (kin and *kin increased with the content of DMFA at concentrations in excess of 3%). The results obtained indicate that free radicals generated in the field of ultrasonic cavitation play a decisive role in the inactivation of CAT, which takes place when its solutions are exposed to low-frequency ultrasound. However, the efficiency of CAT inactivation by the radicals is determined by (1) the degree of association between the enzyme molecules in the reaction medium and (2) the composition thereof.

  13. Evaluation of a romifidine constant rate infusion protocol with or without butorphanol for dentistry and ophthalmologic procedures in standing horses.

    Science.gov (United States)

    Marly, Charlotte; Bettschart-Wolfensberger, Regula; Nussbaumer, Paeivi; Moine, Sebastien; Ringer, Simone K

    2014-09-01

    To compare the clinical usefulness of constant rate infusion (CRI) protocols of romifidine with or without butorphanol for sedation of horses. Prospective 'blinded' controlled trial using block randomization. Forty healthy Freiberger stallions. The horses received either intravenous (IV) romifidine (loading dose: 80 μg kg(-1) ; infusion: 30 μg kg(-1)  hour(-1) ) (treatment R, n = 20) or romifidine combined with butorphanol (romifidine loading: 80 μg kg(-1) ; infusion: 29 μg kg(-1)  hour(-1) , and butorphanol loading: 18 μg kg(-1) ; infusion: 25 μg kg(-1)  hour(-1) ) (treatment RB, n = 20). Twenty-one horses underwent dentistry and ophthalmic procedures, while 19 horses underwent only ophthalmologic procedure and buccal examination. During the procedure, physiologic parameters and occurrence of head/muzzle shaking or twitching and forward movement were recorded. Whenever sedation was insufficient, additional romifidine (20 μg kg(-1) ) was administered IV. Recovery time was evaluated by assessing head height above ground. At the end of the procedure, overall quality of sedation for the procedure was scored by the dentist and anaesthetist using a visual analogue scale. Statistical analyses used two-way anova or linear mixed models as relevant. Sedation quality scores as assessed by the anaesthetist were R: median 7.55, range: 4.9-9.0 cm, RB: 8.8, 4.7-10.0 cm, and by the dentist R: 6.6, 3.0-8.2 cm, RB: 7.9, 6.6-8.8 cm. Horses receiving RB showed clinically more effective sedation as demonstrated by fewer poor scores and a tendency to reduced additional drug requirements. More horses showed forward movement and head shaking in treatment RB than treatment R. Three horses (two RB, one R) had symptoms of colic following sedation. The described protocols provide effective sedation under clinical conditions but for dentistry procedures, the addition of butorphanol is advantageous. © 2014 Association of Veterinary Anaesthetists and the

  14. Catalysis and inactivation of tyrosinase in its action on hydroxyhydroquinone.

    Science.gov (United States)

    del Mar Garcia-Molina, Maria; Muñoz-Muñoz, Jose Luis; Berna, Jose; García-Ruiz, Pedro Antonio; Rodriguez-Lopez, Jose Neptuno; Garcia-Canovas, Francisco

    2014-02-01

    Hydroxyhydroquinone (HHQ) was characterized kinetically as a tyrosinase substrate. A kinetic mechanism is proposed, in which HHQ is considered as a monophenol or as an o-diphenol, depending on the part of the molecule that interacts with the enzyme. The kinetic parameters obtained from an analysis of the measurements of the initial steady state rate of 2-hydroxy p-benzoquinone formation were kcatapp=229.0±7.7 s(-1) and KMapp,HHQ=0.40±0.05 mM. Furthermore, the action of tyrosinase on HHQ led to the enzyme's inactivation through a suicide inactivation mechanism. This suicide inactivation process was characterized kinetically by λmaxapp (the apparent maximum inactivation constant) and r, the number of turnovers made by 1 mol of enzyme before being inactivated. The values of λmaxapp and r were (8.2±0.1)×10(-3) s(-1) and 35,740±2,548, respectively. © 2014 International Union of Biochemistry and Molecular Biology.

  15. High-accuracy measurements of OH reaction rate constants and IR absorption spectra: CH2=CF-CF3 and trans-CHF=CH-CF3.

    Science.gov (United States)

    Orkin, Vladimir L; Martynova, Larissa E; Ilichev, Alexander N

    2010-05-20

    Rate constants for the gas phase reactions of OH radicals with two isomers of tetrafluoropropene, CH(2)=CF-CF(3) (k(1)) and trans-CHF=CH-CF(3) (k(2)); were measured using a flash photolysis resonance-fluorescence technique over the temperature range 220 to 370 K. The Arrhenius plots were found to exhibit a noticeable curvature. The temperature dependences of the rate constants are very weak and can be represented by the following expressions over the indicated temperature intervals: k(1)(220-298 K) = 1.145 x 10(-12) x exp{13/T} cm(3) molecule(-1) s(-1), k(1)(298-370 K) = 4.06 x 10(-13) x (T/298)(1.17) x exp{+296/T} cm(3) molecule(-1) s(-1), k(2)(220-370 K) = 1.115 x 10(-13) x (T/298)(2.03) x exp{+522/T} cm(3) molecule(-1) s(-1). The overall accuracy of the rate constant measurements is estimated to be ca. 2% to 2.5% at the 95% confidence level. The uncertainty of the measured reaction rate constants is discussed in detail. The atmospheric lifetimes due to reactions with tropospheric OH were estimated to be 12 and 19 days respectively under the assumption of a well mixed atmosphere. IR absorption cross-sections were measured for both compounds and their global warming potentials were estimated.

  16. Determination of H-atom reaction rate constants by the competition kinetic technique using riboflavin as a standard solute [Paper No. RD-7

    International Nuclear Information System (INIS)

    Kishore, Kamal; Moorthy, P.N.; Rao, K.N.

    1982-01-01

    Riboflavin has been used as a standard solute to evaluate H-atom rate constants of other solutes by steady state radiolytic competition kinetic method. The bleaching of absorbance of riboflavin at 445 nm as a result of its reaction with H-atoms is made use of in estimating its decomposition. The merits and demerits of this method are discussed. (author)

  17. Room-temperature and temperature-dependent QSRR modelling for predicting the nitrate radical reaction rate constants of organic chemicals using ensemble learning methods.

    Science.gov (United States)

    Gupta, S; Basant, N; Mohan, D; Singh, K P

    2016-07-01

    Experimental determinations of the rate constants of the reaction of NO3 with a large number of organic chemicals are tedious, and time and resource intensive; and the development of computational methods has widely been advocated. In this study, we have developed room-temperature (298 K) and temperature-dependent quantitative structure-reactivity relationship (QSRR) models based on the ensemble learning approaches (decision tree forest (DTF) and decision treeboost (DTB)) for predicting the rate constant of the reaction of NO3 radicals with diverse organic chemicals, under OECD guidelines. Predictive powers of the developed models were established in terms of statistical coefficients. In the test phase, the QSRR models yielded a correlation (r(2)) of >0.94 between experimental and predicted rate constants. The applicability domains of the constructed models were determined. An attempt has been made to provide the mechanistic interpretation of the selected features for QSRR development. The proposed QSRR models outperformed the previous reports, and the temperature-dependent models offered a much wider applicability domain. This is the first report presenting a temperature-dependent QSRR model for predicting the nitrate radical reaction rate constant at different temperatures. The proposed models can be useful tools in predicting the reactivities of chemicals towards NO3 radicals in the atmosphere, hence, their persistence and exposure risk assessment.

  18. Estimating reaction rate constants from a two-step reaction: a comparison between two-way and three-way methods

    NARCIS (Netherlands)

    Bijlsma, S.; Smilde, A. K.

    2000-01-01

    In this paper, two different spectral datasets are used in order to estimate reaction rate constants using different algorithms. Dataset 1 consists of short-wavelength near-infrared (SW NIR) spectra taken in time of the two-step epoxidation of 2,5-di-tert-butyl-1,4-benzoquinone using tert-butyl

  19. USING IN VIVO GAS UPDATE STUDIES TO ESTIMATE METABOLIC RATE CONSTANTS FOR CCL CHEMICALS: 1,1-DICHLOROPROPANE AND 2,2-DICHLOROPROPANE

    Science.gov (United States)

    USING IN VIVO GAS UPTAKE STUDIES TO ESTIMATE METABOLIC RATE CONSTANTS FOR CCL CHEMICALS: 1,1-DICHLOROPROPENE AND 2,2-DICHLOROPROPANE. Mitchell, C T, Evans, M V, Kenyon, E M. NHEERL, U.S. EPA, ORD, ETD, RTP, NC The Safe Drinking Water Act Amendments of 1996 required ...

  20. Fitting the elementary rate constants of the P-gp transporter network in the hMDR1-MDCK confluent cell monolayer using a particle swarm algorithm.

    Directory of Open Access Journals (Sweden)

    Deep Agnani

    Full Text Available P-glycoprotein, a human multidrug resistance transporter, has been extensively studied due to its importance to human health and disease. In order to understand transport kinetics via P-gp, confluent cell monolayers overexpressing P-gp are widely used. The purpose of this study is to obtain the mass action elementary rate constants for P-gp's transport and to functionally characterize members of P-gp's network, i.e., other transporters that transport P-gp substrates in hMDR1-MDCKII confluent cell monolayers and are essential to the net substrate flux. Transport of a range of concentrations of amprenavir, loperamide, quinidine and digoxin across the confluent monolayer of cells was measured in both directions, apical to basolateral and basolateral to apical. We developed a global optimization algorithm using the Particle Swarm method that can simultaneously fit all datasets to yield accurate and exhaustive fits of these elementary rate constants. The statistical sensitivity of the fitted values was determined by using 24 identical replicate fits, yielding simple averages and standard deviations for all of the kinetic parameters, including the efflux active P-gp surface density. Digoxin required additional basolateral and apical transporters, while loperamide required just a basolateral tranporter. The data were better fit by assuming bidirectional transporters, rather than active importers, suggesting that they are not MRP or active OATP transporters. The P-gp efflux rate constants for quinidine and digoxin were about 3-fold smaller than reported ATP hydrolysis rate constants from P-gp proteoliposomes. This suggests a roughly 3∶1 stoichiometry between ATP hydrolysis and P-gp transport for these two drugs. The fitted values of the elementary rate constants for these P-gp substrates support the hypotheses that the selective pressures on P-gp are to maintain a broad substrate range and to keep xenobiotics out of the cytosol, but not out of the

  1. Ratiometric analysis in hyperpolarized NMR (I): test of the two-site exchange model and the quantification of reaction rate constants.

    Science.gov (United States)

    Li, Lin Z; Kadlececk, Stephen; Xu, He N; Daye, Dania; Pullinger, Benjamin; Profka, Harrilla; Chodosh, Lewis; Rizi, Rahim

    2013-10-01

    Conventional methods for the analysis of in vivo hyperpolarized (13) C NMR data from the lactate dehydrogenase (LDH) reaction usually make assumptions on the stability of rate constants and/or the validity of the two-site exchange model. In this study, we developed a framework to test the validity of the assumption of stable reaction rate constants and the two-site exchange model in vivo via ratiometric fitting of the time courses of the signal ratio L(t)/P(t). Our analysis provided evidence that the LDH enzymatic kinetics observed by hyperpolarized NMR are in near-equilibrium and satisfy the two-site exchange model for only a specific time window. In addition, we quantified both the forward and reverse exchange rate constants of the LDH reaction for the transgenic and mouse xenograft models of breast cancer using the ratio fitting method developed, which includes only two modeling parameters and is less sensitive to the influence of instrument settings/protocols, such as flip angles, degree of polarization and tracer dosage. We further compared the ratio fitting method with a conventional two-site exchange modeling method, i.e. the differential equation fitting method, using both the experimental and simulated hyperpolarized NMR data. The ratio fitting method appeared to fit better than the differential equation fitting method for the reverse rate constant on the mouse tumor data, with less relative errors on average, whereas the differential equation fitting method also resulted in a negative reverse rate constant for one tumor. The simulation results indicated that the accuracy of both methods depends on the width of the transport function, noise level and rate constant ratio; one method may be more accurate than the other based on the experimental/biological conditions aforementioned. We were able to categorize our tumor models into specific conditions of the computer simulation and to estimate the errors of rate quantification. We also discussed possible

  2. Determination of rate constants and branching ratios for TCE degradation by zero-valent iron using a chain decay multispecies model.

    Science.gov (United States)

    Hwang, Hyoun-Tae; Jeen, Sung-Wook; Sudicky, Edward A; Illman, Walter A

    2015-01-01

    The applicability of a newly-developed chain-decay multispecies model (CMM) was validated by obtaining kinetic rate constants and branching ratios along the reaction pathways of trichloroethene (TCE) reduction by zero-valent iron (ZVI) from column experiments. Changes in rate constants and branching ratios for individual reactions for degradation products over time for two columns under different geochemical conditions were examined to provide ranges of those parameters expected over the long-term. As compared to the column receiving deionized water, the column receiving dissolved CaCO3 showed higher mean degradation rates for TCE and all of its degradation products. However, the column experienced faster reactivity loss toward TCE degradation due to precipitation of secondary carbonate minerals, as indicated by a higher value for the ratio of maximum to minimum TCE degradation rate observed over time. From the calculated branching ratios, it was found that TCE and cis-dichloroethene (cis-DCE) were dominantly dechlorinated to chloroacetylene and acetylene, respectively, through reductive elimination for both columns. The CMM model, validated by the column test data in this study, provides a convenient tool to determine simultaneously the critical design parameters for permeable reactive barriers and natural attenuation such as rate constants and branching ratios. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Effect of water content and temperature on inactivation kinetics of myrosinase in broccoli (Brassica oleracea var. italica).

    Science.gov (United States)

    Oliviero, T; Verkerk, R; Van Boekel, M A J S; Dekker, M

    2014-11-15

    Broccoli belongs to the Brassicaceae plant family consisting of widely eaten vegetables containing high concentrations of glucosinolates. Enzymatic hydrolysis of glucosinolates by endogenous myrosinase (MYR) can form isothiocyanates with health-promoting activities. The effect of water content (WC) and temperature on MYR inactivation in broccoli was investigated. Broccoli was freeze dried obtaining batches with WC between 10% and 90% (aw from 0.10 to 0.96). These samples were incubated for various times at different temperatures (40-70°C) and MYR activity was measured. The initial MYR inactivation rates were estimated by the first-order reaction kinetic model. MYR inactivation rate constants were lower in the driest samples (10% WC) at all studied temperatures. Samples with 67% and 90% WC showed initial inactivation rate constants all in the same order of magnitude. Samples with 31% WC showed intermediate initial inactivation rate constants. These results are useful to optimise the conditions of drying processes to produce dried broccoli with optimal MYR retention for human health. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Radionuclide mass transfer rates from a pinhole in a waste container for an inventory-limited and a constant concentration source

    International Nuclear Information System (INIS)

    LeNeveu, D.M.

    1996-03-01

    Analytical solutions for transient and steady state diffusive mass transfer rates from a pinhole in a waste container are developed for constant concentration and inventory-limited source conditions. Mass transport in three media are considered, inside the pinhole (medium 2), outside the container (medium 3) and inside the container (medium 1). Simple equations are developed for radionuclide mass transfer rates from a pinhole. It is shown that the medium with the largest mass transfer resistance need only be considered to provide a conservative estimate of mass transfer rates. (author) 11 refs., 3 figs

  5. Calcium dependence of inactivation of calcium release from the sarcoplasmic reticulum in skeletal muscle fibers.

    Science.gov (United States)

    Simon, B J; Klein, M G; Schneider, M F

    1991-03-01

    The steady-state calcium dependence of inactivation of calcium release from the sarcoplasmic reticulum was studied in voltage-clamped, cut segments of frog skeletal muscle fibers containing two calcium indicators, fura-2 and anti-pyrylazo III (AP III). Fura-2 fluorescence was used to monitor resting calcium and relatively small calcium transients during small depolarizations. AP III absorbance signals were used to monitor larger calcium transients during larger depolarizations. The rate of release (Rrel) of calcium from the sarcoplasmic reticulum was calculated from the calcium transients. The equilibrium calcium dependence of inactivation of calcium release was determined using 200-ms prepulses of various amplitudes to elevate [Ca2+] to various steady levels. Each prepulse was followed by a constant test pulse. The suppression of peak Rrel during the test pulse provided a measure of the extent of inactivation of release at the end of the prepulse. The [Ca2+] dependence of inactivation indicated that binding of more than one calcium ion was required to inactivate each release channel. Half-maximal inactivation was produced at a [Ca2+] of approximately 0.3 microM. Variation of the prepulse duration and amplitude showed that the suppression of peak release was consistent with calcium-dependent inactivation of calcium release but not with calcium depletion. The same calcium dependence of inactivation was obtained using different amplitude test pulses to determine the degree of inactivation. Prepulses that produced near maximal inactivation of release during the following test pulse produced no suppression of intramembrane charge movement during the test pulse, indicating that inactivation occurred at a step beyond the voltage sensor for calcium release. Three alternative set of properties that were assumed for the rapidly equilibrating calcium-binding sites intrinsic to the fibers gave somewhat different Rrel records, but gave very similar calcium dependence of

  6. A mathematical model to determine molecular kinetic rate constants under non-steady state conditions using fluorescence recovery after photobleaching (FRAP).

    Science.gov (United States)

    Lele, Tanmay P; Ingber, Donald E

    2006-03-01

    Fluorescence recovery after photobleaching (FRAP) analyses of binding and unbinding of molecules that interact with insoluble scaffolds, such as the cytoskeleton and nuclear matrix, in living cells commonly assume that this process is at equilibrium over the time scale of fluorescence recovery. This assumption breaks down for relatively fast intracellular processes like focal adhesion assembly at the leading edge of a migrating cell, or changes of transcriptional activation in the nucleus, that can occur in a matter of a few minutes. In this paper, we formulate a mathematical model that permits FRAP to be used to determine kinetic rate constants of molecules that interact with insoluble cellular structures under non-steady state conditions. We show that unlike steady state FRAP, fluorescence recovery time scales under these unsteady conditions are determined not only by unbinding rates, but also by the overall assembly and disassembly dynamics of the structural scaffold which supports these binding interactions. Experimental data from FRAP analysis and quantification of scaffold assembly dynamics may be combined and used with our mathematical model to estimate kinetic rate constants, as well as the apparent rate constant of scaffold assembly and disassembly.

  7. [Thermal inactivation and stabilization of lysozyme substrate-- Micrococcus lysodeicticus cells].

    Science.gov (United States)

    Tarun, E I; Eremin, A N; Metelitsa, D I

    1986-01-01

    Heat inactivation of the acetonic powder of Micrococcus lysodeicticus cells suspended in phosphate buffer pH 6.2 was quantitatively characterized in the temperature range from 34 to 52 degrees. The total value of the rate constant for heat inactivation of the cells equals 2.88 X 10(8) exp(-18360/RT) sec-1. The activation parameters of the process at 34 degrees are the following: delta H* = 17.7 kcal/mole; delta S* = 21.8 E. U.; delta F* = 24.4 kcal/mole. The effect of ethylene glycol, mannitol, dextran, polyvinyl alcohol (PVA) and polyethylene glycols with different molecular weights on the lysis rate and cell stability was studied. Polyvinyl alcohol was found to be the most effective stabilizer. At concentrations of about 10(-5) it enhances the thermostability of the cells threefold.

  8. New ab initio potential energy surface for BrH2 and rate constants for the H + HBr → H2 + Br abstraction reaction.

    Science.gov (United States)

    Jiang, Bin; Xie, Changjian; Xie, Daiqian

    2011-03-21

    A global potential energy surface (PES) for the electronic ground state of the BrH(2) system was constructed based on the multireference configuration interaction (MRCI) method including the Davidson's correction using a large basis set. In addition, the spin-orbit correction were computed using the Breit-Pauli Hamiltonian and the unperturbed MRCI wavefunctions in the Br + H(2) channel and the transition state region. Adding the correction to the ground state potential, the lowest spin-orbit correlated adiabatic potential was obtained. The characters of the new potential are discussed. Accurate initial state specified rate constants for the H + HBr → H(2) + Br abstraction reaction were calculated using a time-dependent wave packet method. The predicted rate constants were found to be in excellent agreement with the available experimental values and much better than those obtained from a previous PES.

  9. The chemistry of bromine in the stratosphere: Influence of a new rate constant for the reaction BrO + HO2

    Science.gov (United States)

    Pirre, Michel; Marceau, Francois J.; Lebras, Georges; Maguin, Francoise; Poulet, Gille; Ramaroson, Radiela

    1994-01-01

    The impact of new laboratory data for the reaction BrO + HO2 yields HOBr + O2 in the depletion of global stratospheric ozone has been estimated using a one-dimensional photochemical model taking into account the heterogeneous reaction on sulphate aerosols which converts N2O5 into HNO3. Assuring an aerosol loading 2 times as large as the 'background' and a reaction probability of 0.1 for the above heterogeneous reaction, the 6 fold increase in the measured rate constant for the reaction of BrO with HO2 increases the computed depletion of global ozone produced by 20 ppt of total bromine from 2.01 percent to 2.36 percent. The use of the higher rate constant increases the HOBr mixing ratio and makes the bromine partitioning and the ozone depletion very sensitive to the branching ratio of the potential channel forming HBr in the BrO + HO2 reaction.

  10. Energy disposal and thermal rate constants for the OH + HBr and OH + DBr reactions: quasiclassical trajectory calculations on an accurate potential energy surface.

    Science.gov (United States)

    de Oliveira-Filho, Antonio G S; Ornellas, Fernando R; Bowman, Joel M

    2014-12-26

    We report reaction cross sections, energy disposal, and rate constants for the OH + HBr → Br + H2O and OH + DBr → Br + HDO reactions from quasiclassical trajectory calculations using an ab initio potential energy surface [ de Oliveira-Filho , A. G. S. ; Ornellas , F. R. ; Bowman , J. M. J. Phys. Chem. Lett. 2014 , 5 , 706 - 712 ]. Comparison with available experiments are made and generally show good agreement.

  11. Upper limits for the rate constants of the reactions of CF3O2 and CF3O radicals with ozone at 295 K

    DEFF Research Database (Denmark)

    Nielsen, O.J.; Sehested, J.

    1993-01-01

    Using the pulse radiolysis UV absorption technique and subsequent simulations of experimental absorption transients at 254 and 276 nm, upper limits of the rate constants for the reactions of CF3O2 and CF3O radicals with ozone were determined at 295 K, CF3O2+O3-->CF3O+2O2 (4), CF3O+O3-->CF3O2+O2 (5...

  12. SU-F-T-344: Commissioning Constant Dose Rate VMAT in the Raystation Treatment Planning System for a Varian Clinac IX

    Energy Technology Data Exchange (ETDEWEB)

    Pursley, J; Gueorguiev, G; Prichard, H; Gierga, D [Massachusetts General Hospital, Harvard Medical School, Boston, MA (United States)

    2016-06-15

    Purpose: To demonstrate the commissioning of constant dose rate volumetric modulated arc therapy (VMAT) in the Raystation treatment planning system for a Varian Clinac iX with Exact couch. Methods: Constant dose rate (CDR) VMAT is an option in the Raystation treatment planning system, enabling VMAT delivery on Varian linacs without a RapidArc upgrade. Raystation 4.7 was used to commission CDR-VMAT for a Varian Clinac iX. Raystation arc model parameters were selected to match machine deliverability characteristics. A Varian Exact couch model was added to Raystation 4.7 and commissioned for use in VMAT optimization. CDR-VMAT commissioning checks were performed on the linac, including patient-specific QA measurements for 10 test patients using both the ArcCHECK from Sun Nuclear Corporation and COMPASS from IBA Dosimetry. Multi-criteria optimization (MCO) in Raystation was used for CDR-VMAT planning. Results: Raystation 4.7 generated clinically acceptable and deliverable CDR-VMAT plans for the Varian Clinac. VMAT plans were optimized including a model of the Exact couch with both rails in the out positions. CDR-VMAT plans generated with MCO in Raystation were dosimetrically comparable to Raystation MCO-generated IMRT plans. Patient-specific QA measurements with the ArcCHECK on the couch showed good agreement with the treatment planning system prediction. Patient-specific, structure-specific, multi-statistical parameter 3D QA measurements with gantry-mounted COMPASS also showed good agreement. Conclusion: Constant dose rate VMAT was successfully modeled in Raystation 4.7 for a Varian Clinac iX, and Raystation’s multicriteria optimization generated constant dose rate VMAT plans which were deliverable and dosimetrically comparable to IMRT plans.

  13. Absolute rate constants for the reaction of CF3O2 and CF3O radicals with NO at 295 K

    DEFF Research Database (Denmark)

    Sehested, J.; Nielsen, O.J.

    1993-01-01

    Using a pulse radiolysis UV absorption technique and subsequent simulations of experimental NO2 and FNO absorption transients, rate constants for reaction between CF3O and CF3O2 radicals with NO were determined, CF3O2+NO-->CF3O+NO2 (3), CF3O+NO-->CF2O+FNO (5). k3 was derived to be (1.68+/-0.26)x10...

  14. SU-F-T-344: Commissioning Constant Dose Rate VMAT in the Raystation Treatment Planning System for a Varian Clinac IX

    International Nuclear Information System (INIS)

    Pursley, J; Gueorguiev, G; Prichard, H; Gierga, D

    2016-01-01

    Purpose: To demonstrate the commissioning of constant dose rate volumetric modulated arc therapy (VMAT) in the Raystation treatment planning system for a Varian Clinac iX with Exact couch. Methods: Constant dose rate (CDR) VMAT is an option in the Raystation treatment planning system, enabling VMAT delivery on Varian linacs without a RapidArc upgrade. Raystation 4.7 was used to commission CDR-VMAT for a Varian Clinac iX. Raystation arc model parameters were selected to match machine deliverability characteristics. A Varian Exact couch model was added to Raystation 4.7 and commissioned for use in VMAT optimization. CDR-VMAT commissioning checks were performed on the linac, including patient-specific QA measurements for 10 test patients using both the ArcCHECK from Sun Nuclear Corporation and COMPASS from IBA Dosimetry. Multi-criteria optimization (MCO) in Raystation was used for CDR-VMAT planning. Results: Raystation 4.7 generated clinically acceptable and deliverable CDR-VMAT plans for the Varian Clinac. VMAT plans were optimized including a model of the Exact couch with both rails in the out positions. CDR-VMAT plans generated with MCO in Raystation were dosimetrically comparable to Raystation MCO-generated IMRT plans. Patient-specific QA measurements with the ArcCHECK on the couch showed good agreement with the treatment planning system prediction. Patient-specific, structure-specific, multi-statistical parameter 3D QA measurements with gantry-mounted COMPASS also showed good agreement. Conclusion: Constant dose rate VMAT was successfully modeled in Raystation 4.7 for a Varian Clinac iX, and Raystation’s multicriteria optimization generated constant dose rate VMAT plans which were deliverable and dosimetrically comparable to IMRT plans.

  15. Rate constants and temperature effects for reactions of Cl2sm-bullet- with unsaturated alcohols and hydrocarbons in aqueous and acetonitrile/water solutions

    International Nuclear Information System (INIS)

    Padmaja, S.; Neta, P.; Huie, R.E.

    1992-01-01

    Absolute rate constants for reactions of the dichlorine radical anion, Cl 2 sm-bullet- , with unsaturated alcohols and hydrocarbons have been measured at various temperatures. The alcohol reactions were measured in aqueous solutions and the hydrocarbon reactions in 1:1 aqueous acetonitirle (ACN) solutions. The rate constants for two alcohols and one hydrocarbon were also examined as a function of solvent composition. The room temperature rate constants varied between 10 6 and 10 9 M -1 s -1 . The pre-exponential factors, A, were about (1-5) x 10 9 M -1 s -1 for the alcohols in aqueous solutions and about (0.1-1) x 10 9 M -1 s -1 for the hydrocarbons in aqueous ACN solutions. The activation energies, E a , varied considerably, between 4 and 12 kJ mol -1 for the alcohols and between 2 and 8 kJ mol -1 for the hydrocarbons. The rate constants, k 298 , decrease with increasing ionization potential (IP) of the unsaturated compound, in agreement with an electrophilic addition mechanism. The activation energies for the unsaturated alcohols decrease when the IP decreases from 9.7 to 9.1 eV but appear to level off at lower IP. Most alkenes studied had IP a . Upon addition of ACN to the aqueous solution, the values of log k 298 decreased linearly by more than 1 order of magnitude with increasing ACN mole fraction. This decrease appears to result from a combination of changes in the activation energy and in the pre-exponential factor. The reason for these changes may lie in changes in the solvation shell of the Cl 2 sm-bullet- radical, which will affect the A factor, in combination with changes in solvation of Cl - , which will affect the energetics of the reactions as well. 20 refs., 7 figs., 6 tabs

  16. QSAR models for oxidation of organic micropollutants in water based on ozone and hydroxyl radical rate constants and their chemical classification

    KAUST Repository

    Sudhakaran, Sairam

    2013-03-01

    Ozonation is an oxidation process for the removal of organic micropollutants (OMPs) from water and the chemical reaction is governed by second-order kinetics. An advanced oxidation process (AOP), wherein the hydroxyl radicals (OH radicals) are generated, is more effective in removing a wider range of OMPs from water than direct ozonation. Second-order rate constants (kOH and kO3) are good indices to estimate the oxidation efficiency, where higher rate constants indicate more rapid oxidation. In this study, quantitative structure activity relationships (QSAR) models for O3 and AOP processes were developed, and rate constants, kOH and kO3, were predicted based on target compound properties. The kO3 and kOH values ranged from 5 * 10-4 to 105 M-1s-1 and 0.04 to 18 * (109) M-1 s-1, respectively. Several molecular descriptors which potentially influence O3 and OH radical oxidation were identified and studied. The QSAR-defining descriptors were double bond equivalence (DBE), ionisation potential (IP), electron-affinity (EA) and weakly-polar component of solvent accessible surface area (WPSA), and the chemical and statistical significance of these descriptors was discussed. Multiple linear regression was used to build the QSAR models, resulting in high goodness-of-fit, r2 (>0.75). The models were validated by internal and external validation along with residual plots. © 2012 Elsevier Ltd.

  17. Radiative lifetimes and two-body collisional deactivation rate constants in argon for Kr(4p 55p) and Kr(4p 55p') states

    International Nuclear Information System (INIS)

    Chang, R.S.F.; Horiguchi, H.; Setser, D.W.

    1980-01-01

    The radiative lifetimes and collisional deactivation rate constants, in argon, of eight Kr(4p 5 [ 2 P/sub 1/2/]5p and [ 2 P/sub 3/2/]5p) levels have been measured by a time-resolved laser-induced fluorescence technique in a flowing afterglow apparatus. The measured radiative lifetimes are compared with other experimental values and with theoretical calculations. Radiative branching ratios of these excited states also were measured in order to assign the absolute transition probabilities of the Kr(5p,5p'--5s, 5s') transition array from the radiative lifetimes. In addition to the total deactivation rate constants, product states from two-body collisions between Kr(5p and 5p') atoms and ground state argon atoms were identified from the laser-induced emission spectra, and product formation rate constants were assigned. Two-body intermultiplet transfer from Kr(4p 5 [ 2 P/sub 1/2/]5p) to the Kr(4p 5 [ 2 P/sub 3/2/]4d) levels occurs with ease. Intermultiplet transfer from the lowest level in the (4p 5 5p) configuration to the Kr(4p 5 5s and 5s') manifold was fast despite the large energy defect. However, this was the only Kr(5p) level that gave appreciable transfer to the Kr(5s or 5s') manifold. Generally the favored product states are within a few kT of the entrance channel

  18. Ab initio calculation of the transition-state properties and addition rate constants for H + C2H2 and selected isotopic analogues

    International Nuclear Information System (INIS)

    Harding, L.B.; Wagner, A.F.; Bowman, J.M.; Schatz, G.C.; Christoffel, K.

    1982-01-01

    GVB-POL-CI ab initio calculations of the geometries, energetics, and normal mode frequencies of C 2 H 2 , C 2 H 3 , and the transition state for the addition reaction of H + C 2 H 2 are presented. In addition, normal mode frequencies for the isotopic variants D + C 2 D 2 , D + C 2 H 2 , and H + C 2 D 2 are preented. These results are compared to experimental values for C 2 H 2 and to ab initio values of Hagase and Kern, and semiempirical values of Keil, Lynch, Cowfer, and Michael. The results are also used to calculate the apparent bimolecular addition rate constant using conventional RRKM theory for chemical activation. The calculated rate constants and their isotopic variants are compared as a function of temperature and pressure to available experimental information. The agreement is little different from that obtained by Keil et al. with a similar calculation using semiempirical values for acetylene, transition-state, and vinyl radical properties. In particular, the calculated high-pressure limit of the rate constant appears to be at least 1 order of magnitude higher than the experimental limit. Several possible reasons for this discrepancy are discussed

  19. Rate constant for the H˙ + H2O → ˙OH + H2 reaction at elevated temperatures measured by pulse radiolysis.

    Science.gov (United States)

    Muroya, Y; Yamashita, S; Lertnaisat, P; Sanguanmith, S; Meesungnoen, J; Jay-Gerin, J-P; Katsumura, Y

    2017-11-22

    Maintaining the structural integrity of materials in nuclear power plants is an essential issue associated with safe operation. Hydrogen (H 2 ) addition or injection to coolants is a powerful technique that has been widely applied such that the reducing conditions in the coolant water avoid corrosion and stress corrosion cracking (SCC). Because the radiation-induced reaction of ˙OH + H 2 → H˙ + H 2 O plays a crucial role in these systems, the rate constant has been measured at operation temperatures of the reactors (285-300 °C) by pulse radiolysis, generating sufficient data for analysis. The reverse reaction H˙ + H 2 O → ˙OH + H 2 is negligibly slow at ambient temperature; however, it accelerates considerably quickly at elevated temperatures. Although the reverse reaction reduces the effectiveness of H 2 addition, reliable rate constants have not yet been measured. In this study, the rate constants have been determined in a temperature range of 250-350 °C by pulse radiolysis in an aqueous I - solution.

  20. Growth, inactivation and histamine formation of Morganella psychrotolerans and Morganella morganii - development and evaluation of predictive models

    DEFF Research Database (Denmark)

    Emborg, Jette; Dalgaard, Paw

    2008-01-01

    and histamine formation by Morganella psychrotolerans. International Journal of Food Microbiology. doi:10.1016/j.ijfoodmicro.2008.08.016] Growth rates for M. psychrotolerans and M. morganii were determined at different constant temperatures from 0 degrees C to 42.5 degrees C whereas heat inactivation...

  1. Investigation of the Flow Rate Effect Upstream of the Constant-Geometry Throttle on the Gas Mass Flow

    Directory of Open Access Journals (Sweden)

    Yu. M. Timofeev

    2016-01-01

    Full Text Available The turbulent-flow throttles are used in pneumatic systems and gas-supply ones to restrict or measure gas mass flow. It is customary to install the throttles in joints of pipelines (in teejoints and cross tees or in joints of pipelines with pneumatic automation devices Presently, in designing the pneumatic systems and gas-supply ones a gas mass flow through a throttle is calculated by a known equation derived from the Saint-Venant-Vantсel formula for the adiabatic flow of ideal gas through a nozzle from an unrestrictedly high capacity tank. Neglect of gas velocity at the throttle inlet is one of the assumptions taken in the development of the above equation. As may be seen in practice, in actual systems the diameters of the throttle and the pipe wherein it is mounted can be commensurable. Neglect of the inlet velocity therewith can result in an error when determining the required throttle diameter in design calculation and a flow rate in checking calculation, as well as when measuring a flow rate in the course of the test. The theoretical study has revealed that the flow velocity at the throttle inlet is responsible for two parameter values: the outlet flow velocity and the critical pressure ratio, which in turn determine the gas mass flow value. To calculate the gas mass flow, the dependencies are given in the paper, which allow taking into account the flow rate at the throttle inlet. The analysis of obtained dependencies has revealed that the degree of influence of inlet flow rate upon the mass flow is defined by two parameters: pressure ratio at the throttle and open area ratio of the throttle and the pipe wherein it is mounted. An analytical investigation has been pursued to evaluate the extent to which the gas mass flow through the throttle is affected by the inlet flow rate. The findings of the investigation and the indications for using the present dependencies are given in this paper. By and large the investigation allowed the

  2. Rate constants for collisional quenching of NO (A(2)Σ(+), v = 0) by He, Ne, Ar, Kr, and Xe, and infrared emission accompanying rare gas and impurity quenching.

    Science.gov (United States)

    Few, Julian; Hancock, Gus

    2014-06-14

    The quenching rates of NO (A(2)Σ(+), v = 0) with He, Ne, Ar, Kr and Xe have been studied at room temperature by measurements of the time dependence of the fluorescence decay following laser excitation. The rates are slow, with upper limits of rate constants determined as between 1.2 and 2.0 × 10(-14) cm(3) molecule(-1) s(-1), considerably lower than those reported before in the literature. Such slow rates can be markedly influenced by impurities such as O2 and H2O which have quenching rate constants close to gas kinetic values. Time resolved Fourier transform infrared emission has been used to observe the products of the quenching processes with the rare gases and with impurities. For He, Ne Ar and Kr there is no difference within experimental error of the populations in NO (X(2)Π v ≥ 2) produced with and without rare gas present, but the low quantum yields of such quenching (of the order of 5% for an atmosphere of rare gas) preclude quantitative information on the quantum states being obtained. For quenching by Xe the collisional formation of electronically excited Xe atoms dominates the emission at early times. Vibrationally excited NO (X(2)Π, v) and products of reactive quenching are observed in the presence of O2 and H2O.

  3. Direct determination of rate constants for coupling between aromatic radical anions and alkyl and benzyl radicals by laser-flash photolysis

    DEFF Research Database (Denmark)

    Lund, T.; Christensen, P.; Wilbrandt, Robert Walter

    2003-01-01

    generated by a photoinduced electron transfer reaction between the aromatic compound A and the alkyl or benzyl triphenylborate anion RB(Ph)(3)(-). For the first time the rate constants of the coupling reaction between methyl and benzyl radicals with aromatic radical anions have been obtained. For all...... the measured coupling rate constants an average value of k(1) = 1.9 x 10(9) M-1 s(-1) was found with a relatively small variation in the coupling rates (0.8-2.9 x 10(9) M-1 s(-1)). The results demonstrate that the coupling rate k(1) is insensitive to changes in the steric and electronic properties......Coupling rates between the radicals methyl, n-, sec-, tert-butyl and benzyl (R-.) and the aromatic radical anions of 1,4-dicyanonaphthalene, 9,10-dicyanoanthracene and fluorenone (A(-.)) have been obtained using a new laser-flash photolysis method. The radicals R-. and the radical anions A(-.) were...

  4. Nuclear constants

    International Nuclear Information System (INIS)

    Foos, J.

    1999-01-01

    This paper is written in two tables. The first one describes the different particles (bosons and fermions). The second one gives the isotopes nuclear constants of the different elements, for Z = 1 to 56. (A.L.B.)

  5. Nuclear constants

    International Nuclear Information System (INIS)

    Foos, J.

    2000-01-01

    This paper is written in two tables. The first one describes the different particles (bosons and fermions). The second one gives the isotopes nuclear constants of the different elements, for Z = 56 to 68. (A.L.B.)

  6. Nuclear constants

    International Nuclear Information System (INIS)

    Foos, J.

    1998-01-01

    This paper is made of two tables. The first table describes the different particles (bosons and fermions) while the second one gives the nuclear constants of isotopes from the different elements with Z = 1 to 25. (J.S.)

  7. Nuclear constants

    International Nuclear Information System (INIS)

    Foos, J.

    1999-01-01

    This paper is written in two tables. The first one describes the different particles (bosons and fermions). The second one gives the isotopes nuclear constants of the different elements, for Z = 56 to 68. (A.L.B.)

  8. Modeling of human factor Va inactivation by activated protein C

    Directory of Open Access Journals (Sweden)

    Bravo Maria

    2012-05-01

    Full Text Available Abstract Background Because understanding of the inventory, connectivity and dynamics of the components characterizing the process of coagulation is relatively mature, it has become an attractive target for physiochemical modeling. Such models can potentially improve the design of therapeutics. The prothrombinase complex (composed of the protease factor (FXa and its cofactor FVa plays a central role in this network as the main producer of thrombin, which catalyses both the activation of platelets and the conversion of fibrinogen to fibrin, the main substances of a clot. A key negative feedback loop that prevents clot propagation beyond the site of injury is the thrombin-dependent generation of activated protein C (APC, an enzyme that inactivates FVa, thus neutralizing the prothrombinase complex. APC inactivation of FVa is complex, involving the production of partially active intermediates and “protection” of FVa from APC by both FXa and prothrombin. An empirically validated mathematical model of this process would be useful in advancing the predictive capacity of comprehensive models of coagulation. Results A model of human APC inactivation of prothrombinase was constructed in a stepwise fashion by analyzing time courses of FVa inactivation in empirical reaction systems with increasing number of interacting components and generating corresponding model constructs of each reaction system. Reaction mechanisms, rate constants and equilibrium constants informing these model constructs were initially derived from various research groups reporting on APC inactivation of FVa in isolation, or in the presence of FXa or prothrombin. Model predictions were assessed against empirical data measuring the appearance and disappearance of multiple FVa degradation intermediates as well as prothrombinase activity changes, with plasma proteins derived from multiple preparations. Our work integrates previously published findings and through the cooperative

  9. A mathematical analysis of Prx2-STAT3 disulfide exchange rate constants for a bimolecular reaction mechanism.

    Science.gov (United States)

    Langford, Troy F; Deen, William M; Sikes, Hadley D

    2018-03-22

    Appreciation of peroxiredoxins as the major regulators of H 2 O 2 concentrations in human cells has led to a new understanding of redox signaling. In addition to their status as the primary reducers of H 2 O 2 to water, the oxidized peroxiredoxin byproduct of this reaction has recently been shown capable of participation in H 2 O 2 -mediated signaling pathways through disulfide exchange reactions with the transcription factor STAT3. The dynamics of peroxidase-transcription factor disulfide exchange reactions have not yet been considered in detail with respect to how these reactions fit into the larger network of competing reactions in human cells. In this study, we used a kinetic model of oxidation and reduction reactions related to H 2 O 2 metabolism in the cytosol of human cells to study the dynamics of peroxiredoxin-2 mediated oxidation of the redox-regulated transcription factor STAT3. In combination with previously reported experimental data, the model was used to estimate the rate coefficient of a biomolecular reaction between Prx2 and STAT3 for two sets of assumptions that constitute lower and upper bound cases. Using these estimates, we calculated the relative rates of the reaction of oxidized peroxiredoxin-2 and STAT3 and other competing reactions in the cytosol. These calculations revealed that peroxiredoxin-2-mediated oxidation of STAT3 likely occurs at a much slower rate than competing reactions in the cytosol. This analysis suggests the existence of more complex mechanisms, potentially involving currently unknown protein-protein recognition partners, which facilitate disulfide exchange reactions between peroxiredoxin-2 and STAT3. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Quantum instanton calculation of rate constant for CH4 + OH → CH3 + H2O reaction: torsional anharmonicity and kinetic isotope effect.

    Science.gov (United States)

    Wang, Wenji; Zhao, Yi

    2012-12-07

    Thermal rate constants for the title reaction are calculated by using the quantum instanton approximation within the full dimensional Cartesian coordinates. The results reveal that the quantum effect is remarkable for the reaction at both low and high temperatures, and the obtained rates are in good agreement with experimental measurements at high temperatures. Compared to the harmonic approximation, the torsional anharmonic effect of the internal rotation has a little influence on the rates at low temperatures, however, it enhances the rate by about 20% at 1000 K. In addition, the free energy barriers for the isotopic reactions and the temperature dependence of kinetic isotope effects are also investigated. Generally speaking, for the title reaction, the replacement of OH with OD will reduce the free energy barrier, while substituting D for H (connected to C) will increase the free energy barrier.

  11. Do Insect Populations Die at Constant Rates as They Become Older? Contrasting Demographic Failure Kinetics with Respect to Temperature According to the Weibull Model.

    Directory of Open Access Journals (Sweden)

    Petros Damos

    Full Text Available Temperature implies contrasting biological causes of demographic aging in poikilotherms. In this work, we used the reliability theory to describe the consistency of mortality with age in moth populations and to show that differentiation in hazard rates is related to extrinsic environmental causes such as temperature. Moreover, experiments that manipulate extrinsic mortality were used to distinguish temperature-related death rates and the pertinence of the Weibull aging model. The Newton-Raphson optimization method was applied to calculate parameters for small samples of ages at death by estimating the maximum likelihoods surfaces using scored gradient vectors and the Hessian matrix. The study reveals for the first time that the Weibull function is able to describe contrasting biological causes of demographic aging for moth populations maintained at different temperature regimes. We demonstrate that at favourable conditions the insect death rate accelerates as age advances, in contrast to the extreme temperatures in which each individual drifts toward death in a linear fashion and has a constant chance of passing away. Moreover, slope of hazard rates shifts towards a constant initial rate which is a pattern demonstrated by systems which are not wearing out (e.g. non-aging since the failure, or death, is a random event independent of time. This finding may appear surprising, because, traditionally, it was mostly thought as rule that in aging population force of mortality increases exponentially until all individuals have died. Moreover, in relation to other studies, we have not observed any typical decelerating aging patterns at late life (mortality leveling-off, but rather, accelerated hazard rates at optimum temperatures and a stabilized increase at the extremes.In most cases, the increase in aging-related mortality was simulated reasonably well according to the Weibull survivorship model that is applied. Moreover, semi log- probability hazard

  12. The radiation inactivation of glutamate and isocitrate dehydrogenases

    International Nuclear Information System (INIS)

    El Failat, R.R.A.

    1980-12-01

    The reaction of free radicals produced by ionizing radiation with the enzymes glutamate dehydrogenase (GDH) and NADP + -specific isocitrate dehydrogenase (ICDH) have been studied by steady-state and pulse radiolysis techniques. In de-aerated GDH solutions, hydroxyl radicals have been found to be the most efficient of the primary radicals generated from water in causing inactivation. The effect of reaction with the enzyme of selective free radicals (SCN) 2 - , (Br) 2 - and (I) 2 - on its activity has also been studied. In neutral solutions, the order of inactivating effectiveness is (I) 2 - > (Br) 2 - > (SCN) 2 - . In the case of the thiocyanate radical anion (SCN) 2 - , the inactivation efficiency is found to depend on KSCN concentration. The radiation inactivation of GDH at both neutral and alkaline pH is accompanied by the loss of sulphydryl groups. Pulse radiolysis was also used to determine the rate constants and the transient absorption spectra following the reaction of the free radicals with GDH. 60 Co-γ-radiolysis and pulse radiolysis were also used to study the effect of ionizing radiation on the activity of ICDH. The results obtained were similar to those of GDH. (author)

  13. Differentiating inflamed and normal lungs by the apparent reaction rate constants of lactate dehydrogenase probed by hyperpolarized (13)C labeled pyruvate.

    Science.gov (United States)

    Xu, He N; Kadlececk, Stephen; Shaghaghi, Hoora; Zhao, Huaqing; Profka, Harilla; Pourfathi, Mehrdad; Rizi, Rahim; Li, Lin Z

    2016-02-01

    Clinically translatable hyperpolarized (HP) (13)C-NMR can probe in vivo enzymatic reactions, e.g., lactate dehydrogenase (LDH)-catalyzed reaction by injecting HP (13)C-pyruvate into the subject, which is converted to (13)C labeled lactate by the enzyme. Parameters such as (13)C-lactate signals and lactate-to-pyruvate signal ratio are commonly used for analyzing the HP (13)C-NMR data. However, the biochemical/biological meaning of these parameters remains either unclear or dependent on experimental settings. It is preferable to quantify the reaction rate constants with a clearer physical meaning. Here we report the extraction of the kinetic parameters of the LDH reaction from HP (13)C-NMR data and investigate if they can be potential predictors of lung inflammation. Male Sprague-Dawley rats (12 controls, 14 treated) were used. One dose of bleomycin (2.5 U/kg) was administered intratracheally to the treatment group. The lungs were removed, perfused, and observed by the HP-NMR technique, where a HyperSense dynamic nuclear polarization system was used to generate the HP (13)C-pyruvate for injecting into the lungs. A 20 mm (1)H/(13)C dual-tuned coil in a 9.4-T Varian vertical bore NMR spectrometer was employed to acquire the (13)C spectral data every 1 s over a time period of 300 s using a non-selective, 15-degree radiofrequency pulse. The apparent rate constants of the LDH reaction and their ratio were quantified by applying ratiometric fitting analysis to the time series data of (13)C labeled pyruvate and lactate. The apparent forward rate constant kp =(3.67±3.31)×10(-4) s(-1), reverse rate constant kl =(4.95±2.90)×10(-2) s(-1), rate constant ratio kp /kl =(7.53±5.75)×10(-3) for the control lungs; kp =(11.71±4.35)×10(-4) s(-1), kl =(9.89±3.89)×10(-2) s(-1), and kp /kl =(12.39±4.18)×10(-3) for the inflamed lungs at the 7(th) day post treatment. Wilcoxon rank-sum test showed that the medians of these kinetic parameters of the 7-day cohort were significantly

  14. Standard Glbbs Energy of Formation of the Hydroxyl Radical in Aqueous Solution. Rate Constants for the Reaction C102- -t O3 S 03- -t CIO,

    DEFF Research Database (Denmark)

    Klaning, U. K.; Sehested, Knud; Holcman, J.

    1985-01-01

    The rate constants of the following reactions were determined by pulse radiolysis and stopped-flow experiments: C102- + O3 + C102 + 03-(k f= (4 f 1) X lo6 dm3 mol-' s-', k, = (1.8 f 0.2) X lo5 dm3 mol-' s-]); C102 + OH - C103- + H+ (k = (4.0 * 0.4) X lo9 dm3 mol-' s-l); C102 + 0- - C103- (k = (2.......7 * 0.4) X lo9 dm3 mol-' s-l); and O3 + C102 - C103 + O2 (k = (1.05 f 0.10) X lo3 dm3 mol-l s-'), where kf is the forward rate of reaction and k, is the reverse rate of reaction. The standard Gibbs energy of formation of OH in aqueous solution A&O,,(OH) and the corresponding standard oxidation potential...

  15. Direct measurements of the total rate constant of the reaction NCN + H and implications for the product branching ratio and the enthalpy of formation of NCN.

    Science.gov (United States)

    Fassheber, Nancy; Dammeier, Johannes; Friedrichs, Gernot

    2014-06-21

    The overall rate constant of the reaction (2), NCN + H, which plays a key role in prompt-NO formation in flames, has been directly measured at temperatures 962 K rate constants are best represented by the combination of two Arrhenius expressions, k2/(cm(3) mol(-1) s(-1)) = 3.49 × 10(14) exp(-33.3 kJ mol(-1)/RT) + 1.07 × 10(13) exp(+10.0 kJ mol(-1)/RT), with a small uncertainty of ±20% at T = 1600 K and ±30% at the upper and lower experimental temperature limits.The two Arrhenius terms basically can be attributed to the contributions of reaction channel (2a) yielding CH + N2 and channel (2b) yielding HCN + N as the products. A more refined analysis taking into account experimental and theoretical literature data provided a consistent rate constant set for k2a, its reverse reaction k1a (CH + N2 → NCN + H), k2b as well as a value for the controversial enthalpy of formation of NCN, ΔfH = 450 kJ mol(-1). The analysis verifies the expected strong temperature dependence of the branching fraction ϕ = k2b/k2 with reaction channel (2b) dominating at the experimental high-temperature limit. In contrast, reaction (2a) dominates at the low-temperature limit with a possible minor contribution of the HNCN forming recombination channel (2d) at T < 1150 K.

  16. Nonmonotonic Temperature Dependence of the Pressure-Dependent Reaction Rate Constant and Kinetic Isotope Effect of Hydrogen Radical Reaction with Benzene Calculated by Variational Transition-State Theory.

    Science.gov (United States)

    Zhang, Hui; Zhang, Xin; Truhlar, Donald G; Xu, Xuefei

    2017-11-30

    The reaction between H and benzene is a prototype for reactions of radicals with aromatic hydrocarbons. Here we report calculations of the reaction rate constants and the branching ratios of the two channels of the reaction (H addition and H abstraction) over a wide temperature and pressure range. Our calculations, obtained with an accurate potential energy surface, are based on variational transition-state theory for the high-pressure limit of the addition reaction and for the abstraction reaction and on system-specific quantum Rice-Ramsperger-Kassel theory calibrated by variational transition-state theory for pressure effects on the addition reaction. The latter is a very convenient way to include variational effects, corner-cutting tunneling, and anharmonicity in falloff calculations. Our results are in very good agreement with the limited experimental data and show the importance of including pressure effects in the temperature interval where the mechanism changes from addition to abstraction. We found a negative temperature effect of the total reaction rate constants at 1 atm pressure in the temperature region where experimental data are missing and accurate theoretical data were previously missing as well. We also calculated the H + C 6 H 6 /C 6 D 6 and D + C 6 H 6 /C 6 D 6 kinetic isotope effects, and we compared our H + C 6 H 6 results to previous theoretical data for H + toluene. We report a very novel nonmonotonic dependence of the kinetic isotope effect on temperature. A particularly striking effect is the prediction of a negative temperature dependence of the total rate constant over 300-500 K wide temperature ranges, depending on the pressure but generally in the range from 600 to 1700 K, which includes the temperature range of ignition in gasoline engines, which is important because aromatics are important components of common fuels.

  17. Reaction F + C2H4: Rate Constant and Yields of the Reaction Products as a Function of Temperature over 298-950 K.

    Science.gov (United States)

    Bedjanian, Yuri

    2018-03-29

    The kinetics and products of the reaction of F + C 2 H 4 have been studied in a discharge flow reactor combined with an electron impact ionization mass spectrometer at nearly 2 Torr total pressure of helium in the temperature range 298-950 K. The total rate constant of the reaction, k 1 = (1.78 ± 0.30) × 10 -10 cm 3 molecule -1 s -1 , determined under pseudo-first-order conditions, monitoring the kinetics of F atom consumption in excess of C 2 H 4 , was found to be temperature independent in the temperature range used. H, C 2 H 3 F, and HF were identified as the reaction products. Absolute measurements of the yields of these species allowed to determine the branching ratios, k 1b / k 1 = (0.73 ± 0.07) exp(-(425 ± 45)/ T) and k 1a / k 1 = 1 - (0.73 ± 0.07) exp(-(425 ± 45)/ T) and partial rate constants for addition-elimination (H + C 2 H 3 F) and H atom abstraction (HF + C 2 H 3 ) pathways of the title reaction: k 1a = (0.80 ± 0.07) × 10 -10 exp(189 ± 37/ T) and k 1b = (1.26 ± 0.13) × 10 -10 exp(-414 ± 45/ T) cm 3 molecule -1 s -1 , respectively, at T = 298-950 K and with 2σ quoted uncertainties. The overall reaction rate constant can be adequately described by both the temperature independent value and as a sum of k 1a and k 1b . The kinetic and mechanistic data from the present study are discussed in comparison with previous absolute and relative measurements and theoretical calculations.

  18. Time-Dependent Quantum Wave Packet Study of the Si + OH → SiO + H Reaction: Cross Sections and Rate Constants.

    Science.gov (United States)

    Rivero Santamaría, Alejandro; Dayou, Fabrice; Rubayo-Soneira, Jesus; Monnerville, Maurice

    2017-03-02

    The dynamics of the Si( 3 P) + OH(X 2 Π) → SiO(X 1 Σ + ) + H( 2 S) reaction is investigated by means of the time-dependent wave packet (TDWP) approach using an ab initio potential energy surface recently developed by Dayou et al. ( J. Chem. Phys. 2013 , 139 , 204305 ) for the ground X 2 A' electronic state. Total reaction probabilities have been calculated for the first 15 rotational states j = 0-14 of OH(v=0,j) at a total angular momentum J = 0 up to a collision energy of 1 eV. Integral cross sections and state-selected rate constants for the temperature range 10-500 K were obtained within the J-shifting approximation. The reaction probabilities display highly oscillatory structures indicating the contribution of long-lived quasibound states supported by the deep SiOH/HSiO wells. The cross sections behave with collision energies as expected for a barrierless reaction and are slightly sensitive to the initial rotational excitation of OH. The thermal rate constants show a marked temperature dependence below 200 K with a maximum value around 15 K. The TDWP results globally agree with the results of earlier quasi-classical trajectory (QCT) calculations carried out by Rivero-Santamaria et al. ( Chem. Phys. Lett. 2014 , 610-611 , 335 - 340 ) with the same potential energy surface. In particular, the thermal rate constants display a similar temperature dependence, with TDWP values smaller than the QCT ones over the whole temperature range.

  19. Rates and equilibrium constants of the ligand-induced conformational transition of an HCN ion channel protein domain determined by DEER spectroscopy.

    Science.gov (United States)

    Collauto, Alberto; DeBerg, Hannah A; Kaufmann, Royi; Zagotta, William N; Stoll, Stefan; Goldfarb, Daniella

    2017-06-14

    Ligand binding can induce significant conformational changes in proteins. The mechanism of this process couples equilibria associated with the ligand binding event and the conformational change. Here we show that by combining the application of W-band double electron-electron resonance (DEER) spectroscopy with microfluidic rapid freeze quench (μRFQ) it is possible to resolve these processes and obtain both equilibrium constants and reaction rates. We studied the conformational transition of the nitroxide labeled, isolated carboxy-terminal cyclic-nucleotide binding domain (CNBD) of the HCN2 ion channel upon binding of the ligand 3',5'-cyclic adenosine monophosphate (cAMP). Using model-based global analysis, the time-resolved data of the μRFQ DEER experiments directly provide fractional populations of the open and closed conformations as a function of time. We modeled the ligand-induced conformational change in the protein using a four-state model: apo/open (AO), apo/closed (AC), bound/open (BO), bound/closed (BC). These species interconvert according to AC + L ⇌ AO + L ⇌ BO ⇌ BC. By analyzing the concentration dependence of the relative contributions of the closed and open conformations at equilibrium, we estimated the equilibrium constants for the two conformational equilibria and the open-state ligand dissociation constant. Analysis of the time-resolved μRFQ DEER data gave estimates for the intrinsic rates of ligand binding and unbinding as well as the rates of the conformational change. This demonstrates that DEER can quantitatively resolve both the thermodynamics and the kinetics of ligand binding and the associated conformational change.

  20. Stress corrosion crack initiation of Zircaloy-4 cladding tubes in an iodine vapor environment during creep, relaxation, and constant strain rate tests

    Science.gov (United States)

    Jezequel, T.; Auzoux, Q.; Le Boulch, D.; Bono, M.; Andrieu, E.; Blanc, C.; Chabretou, V.; Mozzani, N.; Rautenberg, M.

    2018-02-01

    During accidental power transient conditions with Pellet Cladding Interaction (PCI), the synergistic effect of the stress and strain imposed on the cladding by thermal expansion of the fuel, and corrosion by iodine released as a fission product, may lead to cladding failure by Stress Corrosion Cracking (SCC). In this study, internal pressure tests were conducted on unirradiated cold-worked stress-relieved Zircaloy-4 cladding tubes in an iodine vapor environment. The goal was to investigate the influence of loading type (constant pressure tests, constant circumferential strain rate tests, or constant circumferential strain tests) and test temperature (320, 350, or 380 °C) on iodine-induced stress corrosion cracking (I-SCC). The experimental results obtained with different loading types were consistent with each other. The apparent threshold hoop stress for I-SCC was found to be independent of the test temperature. SEM micrographs of the tested samples showed many pits distributed over the inner surface, which tended to coalesce into large pits in which a microcrack could initiate. A model for the time-to-failure of a cladding tube was developed using finite element simulations of the viscoplastic mechanical behavior of the material and a modified Kachanov's damage growth model. The times-to-failure predicted by this model are consistent with the experimental data.

  1. Rate constant for the reaction of the H atom with H{sub 2}O{sub 2} in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Ershov, B.G.; Gordeev, A.V.; Kelm, M.; Janata, E. E-mail: janata@hmi.de

    2003-07-01

    The rate constant for the reaction H{sup {center_dot}}+H{sub 2}O{sub 2}{yields}{sup {center_dot}}OH+H{sub 2}O was newly determined to be 3.5x10{sup 7} dm{sup 3} mol{sup -1} s{sup -1} by observing the Cl{sub 2}{sup {center_dot}}{sup -} absorbance in pulse radiolysis experiments involving very pure acidic aqueous solutions of chloride ions and hydrogen peroxide. A reaction mechanism for the generation of Cl{sub 2}{sup {center_dot}}{sup -} is described.

  2. Determination of the absolute second-order rate constant for the reaction Na + O3 → NaO + O2

    International Nuclear Information System (INIS)

    Husain, David; Marshall, Paul; Plane, J.M.C.

    1985-01-01

    The absolute second-order rate constant for the reaction Na + O 3 -> NaO + O 2 (k 1 ) has been determined by time-resolved atomic resonance absorption spectroscopy at lambda = 589 nm [Na(3 2 Psub(j)) 2 Ssub(1/2))] following pulsed irradiation, coupled with monitoring of O 3 by light absorption in the ultra-violet; this yields k 1 (500 K) = 4(+4,-2) x 10 -10 cm 3 molecule -1 s -1 , resolving large differences for various estimates of this important quantity used in modelling the sodium layer in the mesosphere. (author)

  3. Virtual Instrument for Determining Rate Constant of Second-Order Reaction by pX Based on LabVIEW 8.0.

    Science.gov (United States)

    Meng, Hu; Li, Jiang-Yuan; Tang, Yong-Huai

    2009-01-01

    The virtual instrument system based on LabVIEW 8.0 for ion analyzer which can measure and analyze ion concentrations in solution is developed and comprises homemade conditioning circuit, data acquiring board, and computer. It can calibrate slope, temperature, and positioning automatically. When applied to determine the reaction rate constant by pX, it achieved live acquiring, real-time displaying, automatical processing of testing data, generating the report of results; and other functions. This method simplifies the experimental operation greatly, avoids complicated procedures of manual processing data and personal error, and improves veracity and repeatability of the experiment results.

  4. Comments on "Theoretical investigation on H abstraction reaction mechanisms and rate constants of sevoflurane with the OH radical" [Chem. Phys. Lett. 692 (2018) 345-352

    Science.gov (United States)

    Mai, Tam V.-T.; Duong, Minh v.; Huynh, Lam K.

    2018-03-01

    This short communication discusses the role of the newly-found lowest-lying structures of the transition states (∼3.0 kcal/mol lower than those previously reported by Ren et al. (2018), together with the inclusion of the hindered internal rotation correction, in obtaining reliable kinetic data for the hydrogen abstraction from sevoflurane by OH radical. With the new structures and the more rigorous kinetic model, the calculated rate constants agree much better with the experimental data than those suggested by Ren and coworkers.

  5. Theoretical study and rate constant calculation for the reactions of SH (SD) with Cl2, Br2, and BrCl.

    Science.gov (United States)

    Wang, Li; Liu, Jing-Yao; Li, Ze-Sheng; Sun, Chia-Chung

    2005-01-30

    The mechanisms of the SH (SD) radicals with Cl2 (R1), Br2 (R2), and BrCl (R3) are investigated theoretically, and the rate constants are calculated using a dual-level direct dynamics method. The optimized geometries and frequencies of the stationary points are calculated at the MP2/6-311G(d,p) and MPW1K/6-311G(d,p) levels. Higher-level energies are obtained at the approximate QCISD(T)/6-311++G(3df, 2pd) level using the MP2 geometries as well as by the multicoefficient correlation method based on QCISD (MC-QCISD) using the MPW1K geometries. Complexes with energies less than those of the reactants or products are located at the entrance or the exit channels of these reactions, which indicate that the reactions may proceed via an indirect mechanism. The enthalpies of formation for the species XSH/XSD (X = Cl and Br) are evaluated using hydrogenation working reactions method. By canonical variational transition-state theory (CVT), the rate constants of SH and SD radicals with Cl2, Br2, and BrCl are calculated over a wide temperature range of 200-2000 K at the a-QCISD(T)/6-311++G(3df, 2pd)//MP2/6-311G(d, p) level. Good agreement between the calculated and experimental rate constants is obtained in the measured temperature range. Our calculations show that for SH (SD) + BrCl reaction bromine abstraction (R3a or R3a') leading to the formation of BrSH (BrSD) + Cl in a barrierless process dominants the reaction with the branching ratios for channels 3a and 3a' of 99% at 298 K, which is quite different from the experimental result of k3a'/k3' = 54 +/- 10%. Negative activation energies are found at the higher level for the SH + Br2 and SH + BrCl (Br-abstraction) reactions; as a result, the rate constants show a slightly negative temperature dependence, which is consistent with the determination in the literature. The kinetic isotope effects for the three reactions are "inverse". The values of kH/kD are 0.88, 0.91, and 0.69 at room temperature, respectively, and they increase

  6. Site-Specific Rate Constant Measurements for Primary and Secondary H- and D-Abstraction by OH Radicals: Propane and n -Butane

    KAUST Repository

    Badra, Jihad

    2014-07-03

    Site-specific rate constants for hydrogen (H) and deuterium (D) abstraction by hydroxyl (OH) radicals were determined experimentally by monitoring the reaction of OH with two normal and six deuterated alkanes. The studied alkanes include propane (C3H8), propane 2,2 D2 (CH 3CD2CH3), propane 1,1,1-3,3,3 D6 (CD 3CH2CD3), propane D8 (C3D 8), n-butane (n-C4H10), butane 2,2-3,3 D4 (CH3CD2CD2CH3), butane 1,1,1-4,4,4 D6 (CD3CH2CH2CD3), and butane D10 (C4D10). Rate constant measurements were carried out over 840-1470 K and 1.2-2.1 atm using a shock tube and OH laser absorption. Previous low-temperature data were combined with the current high-temperature measurements to generate three-parameter fits which were then used to determine the site-specific rate constants. Two primary (P1,H and P 1,D) and four secondary (S00,H, S00,D, S 01,H, and S01,D) H- and D-abstraction rate constants, in which the subscripts refer to the number of C atoms connected to the next-nearest-neighbor C atom, are obtained. The modified Arrhenius expressions for the six site-specific abstractions by OH radicals are P1,H = 1.90 × 10-18T2.00 exp(-340.87 K/T) cm 3molecule-1s-1 (210-1294 K); P1,D= 2.72 × 10-17 T1.60 exp(-895.57 K/T) cm 3molecule-1s-1 (295-1317 K); S00,H = 4.40 × 10-18 T1.93 exp(121.50 K/T) cm 3molecule-1s-1 (210-1294 K); S00,D = 1.45 × 10-20 T2.69 exp(282.36 K/T) cm 3molecule-1s-1 (295-1341 K); S01,H = 4.65 × 10-17 T1.60 exp(-236.98 K/T) cm 3molecule-1s-1 (235-1407 K); S01,D = 1.26 × 10-18 T2.07 exp(-77.00 K/T) cm 3molecule-1s-1 (294-1412 K). © 2014 American Chemical Society.

  7. Human PIEZO1: removing inactivation.

    Science.gov (United States)

    Bae, Chilman; Gottlieb, Philip A; Sachs, Frederick

    2013-08-20

    PIEZO1 is an inactivating eukaryotic cation-selective mechanosensitive ion channel. Two sites have been located in the channel that when individually mutated lead to xerocytotic anemia by slowing inactivation. By introducing mutations at two sites, one associated with xerocytosis and the other artificial, we were able to remove inactivation. The double mutant (DhPIEZO1) has a substitution of arginine for methionine (M2225R) and lysine for arginine (R2456K). The loss of inactivation was accompanied by ∼30-mmHg shift of the activation curve to lower pressures and slower rates of deactivation. The slope sensitivity of gating was the same for wild-type and mutants, indicating that the dimensional changes between the closed and open state are unaffected by the mutations. The unitary channel conductance was unchanged by mutations, so these sites are not associated with pore. DhPIEZO1 was reversibly inhibited by the peptide GsMTx4 that acted as a gating modifier. The channel kinetics were solved using complex stimulus waveforms and the data fit to a three-state loop in detailed balance. The reaction had two pressure-dependent rates, closed to open and inactivated to closed. Pressure sensitivity of the opening rate with no sensitivity of the closing rate means that the energy barrier between them is located near the open state. Mutant cycle analysis of inactivation showed that the two sites interacted strongly, even though they are postulated to be on opposite sides of the membrane. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. Inactivation Data.xlsx

    Data.gov (United States)

    U.S. Environmental Protection Agency — The data set is a spreadsheet that contains results of inactivation experiments that were conducted to to determine the effectiveness of chlorine in inactivating B....

  9. Thermal rate constants for the O(3P) + HBr and O(3P) + DBr reactions: transition-state theory and quantum mechanical calculations.

    Science.gov (United States)

    de Oliveira-Filho, Antonio G S; Ornellas, Fernando R; Peterson, Kirk A; Mielke, Steven L

    2013-12-05

    The O((3)P) + HBr → OH + Br and O((3)P) + DBr → OD + Br reactions are studied on a recent high-quality ab initio-based potential energy surface. Thermal rate constants over the 200-1000 K temperature range, calculated using variational transition-state theory (VTST) with the small-curvature tunneling (SCT) correction and quantum mechanical methods with the J-shifting approximation (QM/JS) for zero total angular momentum (J = 0), are reported. These results are compared to the available experimental data, which lie in the ranges of 221-554 and 295-419 K for O + HBr and O + DBr, respectively. The rate constants, in cm(3) molecule(-1) s(-1) and at 298 K, for the O + HBr reaction are 3.66 × 10(-14) for VTST, 3.80 × 10(-14) for QM/JS, and 3.66 × 10(-14) for the average of eight experimental measurements.

  10. Mechanism and Kinetics of Methane Combustion, Part I: Thermal Rate Constants for Hydrogen-Abstraction Reaction of CH4+ O(3P).

    Science.gov (United States)

    Peng, Ya; Jiang, Zhong'an; Chen, Jushi

    2017-03-23

    The mechanism and kinetics of gas-phase hydrogen-abstraction by the O( 3 P) from methane are investigated using ab initio calculations and dynamical methods. Not only are the electronic structure properties including the optimized geometries, relative energies, and vibrational frequencies of all the stationary points obtained from state-averaged complete active space self-consistent field calculations, but also the single-point energies for all points on the intrinsic reaction coordinate are evaluated using the internally contracted multireference configuration interaction approach with modified optimized cc-pCVDZ basis sets. Our calculations give a fairly accurate description of the regions around the 3 A″ transition state in the O( 3 P) attacking a near-collinear H-CH 3 direction with a barrier height of 12.53 kcal/mol, which is lower than those reported before. Subsequently, thermal rate constants for this hydrogen-abstraction are calculated using the canonical unified statistical theory method with the temperature ranging from 298 K to 1000 K. These calculated rate constants are in agreement with experiments. The present work reveals the reaction mechanism of hydrogen-abstraction by the O( 3 P) from methane, and it is helpful for the understanding of methane combustion.

  11. Effects of maintenance of propofol-ketamine anesthesia with repeat bolus and constant rate infusion of propofol on physiological, biochemical, anesthetic and analgesic indices in dogs

    Directory of Open Access Journals (Sweden)

    Njoku Uchechukwu Njoku

    2015-12-01

    Full Text Available The research work was aimed at investigating physiological, biochemical, analgesic and anesthetic indices of dogs anesthetized with propofol-ketamine and maintained with repeat bolus and constant infusions of propofol. Eight dogs, assigned to two groups (n=4, were used in this study. All dogs were pre-medicated with atropine (at 0.03 mg/kg bwt and xylazine (at 2 mg/kg bwt. Anesthesia was induced by a concurrent administration of propofol (at 4 mg/kg bwt and ketamine (at 2.5 mg/kg bwt. Maintenance of anesthesia in Group 1 was done with a repeat bolus of propofol (at 2 mg/kg bwt, while in Group 2 it was done with a constant infusion of propofol (at 0.2 mg/kg bwt/min. Gastrotomy was performed in both groups, and anesthesia was maintained for 60 min. Physiological, analgesic, anesthetic parameters and plasma glucose concentration were measured. There was no significant (P>0.05 difference found in the analgesia and pedal reflex scores, durations of analgesia and recumbency, recovery time and standing time between the groups. The heart rate, respiratory rate and rectal temperature reduced significantly (P0.05 between the groups. In conclusion, both maintenance protocols are suitable for dogs, although the repeat bolus technique produces marked cardiopulmonary depression.

  12. Quantum mechanical calculations of state-to-state cross sections and rate constants for the F + DCl → Cl + DF reaction.

    Science.gov (United States)

    Bulut, Niyazi; Kłos, Jacek; Roncero, Octavio

    2015-06-07

    We present accurate state-to-state quantum wave packet calculations of integral cross sections and rate constants for the title reaction. Calculations are carried out on the best available ground 1(2)A' global adiabatic potential energy surface of Deskevich et al. [J. Chem. Phys. 124, 224303 (2006)]. Converged state-to-state reaction cross sections have been calculated for collision energies up to 0.5 eV and different initial rotational and vibrational excitations, DCl(v = 0, j = 0 - 1; v = 1, j = 0). Also, initial-state resolved rate constants of the title reaction have been calculated in a temperature range of 100-400 K. It is found that the initial rotational excitation of the DCl molecule does not enhance reactivity, in contract to the reaction with the isotopologue HCl in which initial rotational excitation produces an important enhancement. These differences between the isotopologue reactions are analyzed in detail and attributed to the presence of resonances for HCl(v = 0, j), absent in the case of DCl(v = 0, j). For vibrational excited DCl(v = 1, j), however, the reaction cross section increases noticeably, what is also explained by another resonance.

  13. Efficiencies of singlet oxygen production and rate constants for oxygen quenching in the S1 state of dicyanonaphthalenes and related compounds.

    Science.gov (United States)

    Tanaka, Fujio; Tsumura, Kazuyuki; Furuta, Tomoaki; Iwamoto, Kenichi; Okamoto, Masami

    2008-01-01

    The quantum yield of singlet oxygen ((1)O(2) ((1)Delta(g))) production (Phi(Delta)) in the oxygen quenching of photoexcited states for 1,2-dicyanonaphthalene (1,2-DCNN), 1,4-dicyanonaphthalene (1,4-DCNN) and 2,3-dicyanonaphthalene (2,3-DCNN) in cyclohexane, benzene, and acetonitrile was measured using a time-resolved thermal lens (TRTL) technique, in order to determine the efficiency of singlet oxygen ((1)Delta(g)) production in the first excited singlet state (S(1)), (f(Delta)(S)). The efficiencies of singlet oxygen ((1)Delta(g)) production from the lowest triplet state (T(1)), (f(Delta)(T)), were nearly unity for all DCNNs in all the solvents. The values of f(Delta)(S) were fairly large for 1,2-DCNN (0.33-0.57) and 1,4-DCNN (0.33-0.66), but were close to zero for 2,3-DCNN. Rate constants for oxygen quenching in the S(1) state (k(q)(S)) obtained for these compounds were significantly smaller than diffusion-controlled rate constants. The kinetics for processes leading to production and no production of singlet oxygen is discussed on the basis of the values of f(Delta)(S) and k(q)(S). The results obtained regarding phenanthrene (PH), 9-cyanophenanthrene (9-CNPH), pyrene (PY) and 1-cyanopyrene (1-CNPY) are also discussed.

  14. Electron exchange by hexakis(tert-butyl-isocyanide)- and hexakis(cyclohexyl isocyanide)manganese(I,II). Solvent effect on the rate constant and the volume of activation

    International Nuclear Information System (INIS)

    Stebler, M.; Nielson, R.M.; Siems, W.F.; Hunt, J.P.; Dodgen, H.W.; Wherland, H.W.

    1988-01-01

    The rate of electron self-exchange of Mn(CNC(CH 3 ) 3 ) 6 +/2+ and Mn(CNC 6 H 11 ) 6 +/2+ as the BF 4 - salts has been measured by 55 Mn NMR line broadening as a function of pressure, temperature, and concentration in acetonitrile, bromobenzene, benzonitrile, acetone, diethyl ketone, methanol, ethanol, methylene chloride, and trimethyl phosphate, and various binary mixtures of methylene chloride, bromobenzene, and acetonitrile. The values of ΔV double dagger obtained are negative and cover a range of ca. 12 cm 3 /mol, which is limited by ion pairing in the solvents of lower dielectric constant. The variation of the ambient pressure rate constant with solvent is qualitatively different for Mn(CNC(CH 3 ) 3 ) 6 +/2+ reaction than was observed for the Mn(CNC 6 H 11 ) 6 +/2+ reaction. This is taken as further evidence for a significant influence of rather subtle differences in solvation on the molecular level that are not approximated by dielectric continuum models. 30 references, 3 tables

  15. On the Theory of Oxidation-Reduction Reactions Involving Electron Transfer. V. Comparison and Properties of Electrochemical and Chemical Rate Constants

    Science.gov (United States)

    Marcus, R. A.

    1962-01-01

    Using a theory of electron transfers which takes cognizance of reorganization of the medium outside the inner coordination shell and of changes of bond lengths inside it, relations between electrochemical and related chemical rate constants are deduced and compared with the experimental data. A correlation is found, without the use of arbitrary parameters. Effects of weak complexes with added electrolytes are included under specified conditions. The deductions offer a way of coordinating a variety of data in the two fields, internally as well as with each those in another. For example, the rate of oxidation or reduction of a series of related reactants by one reagent is correlated with that of another and with that of the corresponding electrochemical oxidation-reduction reaction, under certain specified conditions. These correlations may also provide a test for distinguishing an electron from an atom transfer mechanism. (auth)

  16. The reaction of atomic hydrogen with germane - Temperature dependence of the rate constant and implications for germane photochemistry in the atmospheres of Jupiter and Saturn

    Science.gov (United States)

    Nava, David F.; Payne, Walter A.; Marston, George; Stief, Louis J.

    1993-01-01

    Studies of the formation and loss processes for GeH4 are required in order to provide data to help determine the major chemical form in which germanium exists in the atmospheres of Jupiter and Saturn. The reaction of hydrogen atoms with germane is one of the most important of these reactions. The absolute rate constant for this reaction as a function of temperature and pressure is studied. Flash photolysis of dilute mixtures of GeH4 in argon, combined with time-resolved detection of H atoms via Lyman alpha resonance fluorescence, is employed to measure the reaction rate. The reaction is shown to be moderately rapid, independent of total pressure, but possessing a positive temperature dependence.

  17. Rate Constants of PSII Photoinhibition and its Repair, and PSII Fluorescence Parameters in Field Plants in Relation to their Growth Light Environments.

    Science.gov (United States)

    Miyata, Kazunori; Ikeda, Hiroshi; Nakaji, Masayoshi; Kanel, Dhana Raj; Terashima, Ichiro

    2015-09-01

    The extent of photoinhibition of PSII is determined by a balance between the rate of photodamage to PSII and that of repair of the damaged PSII. It has already been indicated that the rate constants of photodamage (kpi) and repair (krec) of the leaves differ depending on their growth light environment. However, there are no studies using plants in the field. We examined these rate constants and fluorescence parameters of several field-grown plants to determine inter-relationships between these values and the growth environment. The kpi values were strongly related to the excess energy, EY, of the puddle model and non-regulated energy dissipation, Y(NO), of the lake model, both multiplied by the photosynthetically active photon flux density (PPFD) level during the photoinhibitory treatment. In contrast, the krec values corrected against in situ air temperature were very strongly related to the daily PPFD level. The plants from the fields showed higher NPQ than the chamber-grown plants, probably because these field plants acclimated to stronger lightflecks than the averaged growth PPFD. Comparing chamber-grown plants and the field plants, we showed that kpi is determined by the incident light level and the photosynthetic capacities such as in situ rate of PSII electron transport and non-photochemical quenching (NPQ) [e.g. Y(NO)×PPFD] and that krec is mostly determined by the growth light and temperature levels. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. Constant Fault Slip-Rates Over Hundreds of Millenia Constrained By Deformed Quaternary Palaeoshorelines: the Vibo and Capo D'Orlando Faults, Southern Italy.

    Science.gov (United States)

    Meschis, M.; Roberts, G.; Robertson, J.; Houghton, S.; Briant, R. M.

    2017-12-01

    Whether slip-rates on active faults accumulated over multiple seismic events is constant or varying over tens to hundreds of millenia timescales is an open question that can be addressed through study of deformed Quaternary palaeoshorelines. It is important to know the answer so that one can judge whether shorter timescale measurements (e.g. Holocene palaeoseismology or decadal geodesy) are suitable for determining earthquake recurrence intervals for Probabilistic Seismic Hazard Assessment or more suitable for studying temporal earthquake clustering. We present results from the Vibo Fault and the Capo D'Orlando Fault, that lie within the deforming Calabrian Arc, which has experienced damaging seismic events such as the 1908 Messina Strait earthquake ( Mw 7) and the 1905 Capo Vaticano earthquake ( Mw 7). These normal faults deform uplifted Late Quaternary palaeoshorelines, which outcrop mainly within their hangingwalls, but also partially in their footwalls, showing that a regional subduction and mantle-related uplift outpaces local fault-related subsidence. Through (1) field and DEM-based mapping of palaeoshorelines, both up flights of successively higher, older inner edges, and along the strike of the faults, and (2) utilisation of synchronous correlation of non-uniformly-spaced inner edge elevations with non-uniformly spaced sea-level highstand ages, we show that slip-rates decrease towards fault tips and that slip-rates have remained constant since 340 ka (given the time resolution we obtain). The slip-rates for the Capo D'Orlando Fault and Vibo Fault are 0.61mm/yr and 1mm/yr respectively. We show that the along-strike gradients in slip-rate towards fault tips differ for the two faults hinting at fault interaction and also discuss this in terms of other regions of extension like the Gulf of Corinth, Greece, where slip-rate has been shown to change through time through the Quaternary. We make the point that slip-rates may change through time as fault systems grow

  19. Rate constant for the reaction of OH with CH3CCl2F (HCFC-141b) determined by relative rate measurements with CH4 and CH3CCl3

    Science.gov (United States)

    Huder, Karin; Demore, William B.

    1993-01-01

    Determination of accurate rate constants for OH abstraction is of great importance for the calculation of lifetimes for HCFCs and their impact on the atmosphere. For HCFC-141b there has been some disagreement in the literature for absolute measurements of this rate constant. In the present work rate constant ratios for HCFC-141b were measured at atmospheric pressure in the temperature range of 298-358 K, with CH4 and CH3CCl3 as reference gases. Ozone was photolyzed at 254 nm in the presence of water vapor to produce OH radicals. Relative depletions of 141b and the reference gases were measured by FTIR. Arrhenius expressions for 141b were derived from each reference gas and found to be in good agreement with each other. The combined expression for HCFC-141b which we recommend is 1.4 x 10 exp -12 exp(-1630/T) with k at 298 K being 5.9 x 10 exp -15 cu cm/molec-s. This value is in excellent agreement with the JPL 92-20 recommendation.

  20. Heat inactivation kinetics of Hypocrea orientalis β-glucosidase with enhanced thermal stability by glucose.

    Science.gov (United States)

    Xu, Xin-Qi; Shi, Yan; Wu, Xiao-Bing; Zhan, Xi-Lan; Zhou, Han-Tao; Chen, Qing-Xi

    2015-11-01

    Thermal inactivation kinetics of Hypocrea orientalis β-glucosidase and effect of glucose on thermostability of the enzyme have been determined in this paper. Kinetic studies showed that the thermal inactivation was irreversible and first-order reaction. The microscopic rate constants for inactivation of free enzyme and substrate-enzyme complex were both determined, which suggested that substrates can protect β-glucosidase against thermal deactivation effectively. On the other hand, glucose was found to protect β-glucosidase from heat inactivation to remain almost whole activity below 70°C at 20mM concentration, whereas the apparent inactivation rate of BG decreased to be 0.3×10(-3)s(-1) in the presence of 5mM glucose, smaller than that of sugar-free enzyme (1.91×10(-3)s(-1)). The intrinsic fluorescence spectra results showed that glucose also had stabilizing effect on the conformation of BG against thermal denaturation. Docking simulation depicted the interaction mode between glucose and active residues of the enzyme to produce stabilizing effect. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Cosmological constant as integration constant

    Science.gov (United States)

    Treder, H.-J.

    1994-08-01

    Einstein's field theory of elementary particles (Einstein 1919) yields black holes with a mass M approximately G-1 Lambda-1/2 c2 and a charge Q approximately G-1/2 Lambda-1/2 c2, their curvature radius is Lambda-1/2. Here Lambda is an integration constant of Einstein's 'trace-less' gravitation equations. The choice Lambda = G-1 h-1 c3 for this constant defines Planck ions and implies 'strong-gravity'. The choice Lambda = lambda = 3Hinf exp 2 c-2 (where Hinf means the Hubble parameter of a final de Sitter cosmos) involves 'weak-gravity' and describes an electro-vac spherical universe.

  2. The reaction O((3)P) + HOBr: Temperature dependence of the rate constant and importance of the reaction as an HOBr stratospheric loss process

    Science.gov (United States)

    Nesbitt, F. L.; Monks, P. S.; Payne, W. A.; Stief, L. J.; Toumi, R.

    1995-01-01

    The absolute rate constant for the reaction O((3)P) + HOBr has been measured between T = 233K and 423K using the discharge-flow kinetic technique coupled to mass spectrometric detection. The value of the rate coefficient at room temperature is (2.5 +/- 0.6) x 10(exp -11)cu cm/molecule/s and the derived Arrhenius expression is (1.4 +/- 0.5) x 10(exp -10) exp((-430 +/- 260)/T)cu cm/molecule/s. From these rate data the atmospheric lifetime of HOBr with respect to reaction with O((3)P) is about 0.6h at z = 25 km which is comparable to the photolysis lifetime based on recent measurements of the UV cross section for HOBr. Implications for HOBr loss in the stratosphere have been tested using a 1D photochemical box model. With the inclusion of the rate parameters and products for the O + HOBr reaction, calculated concentration profiles of BrO increase by up to 33% around z = 35 km. This result indicates that the inclusion of the O + HOBr reaction in global atmospheric chemistry models may have an impact on bromine partitioning in the middle atmosphere.

  3. Inactivation of Caliciviruses

    Directory of Open Access Journals (Sweden)

    Raymond Nims

    2013-03-01

    Full Text Available The Caliciviridae family of viruses contains clinically important human and animal pathogens, as well as vesivirus 2117, a known contaminant of biopharmaceutical manufacturing processes employing Chinese hamster cells. An extensive literature exists for inactivation of various animal caliciviruses, especially feline calicivirus and murine norovirus. The caliciviruses are susceptible to wet heat inactivation at temperatures in excess of 60 °C with contact times of 30 min or greater, to UV-C inactivation at fluence ≥30 mJ/cm2, to high pressure processing >200 MPa for >5 min at 4 °C, and to certain photodynamic inactivation approaches. The enteric caliciviruses (e.g.; noroviruses display resistance to inactivation by low pH, while the non-enteric species (e.g.; feline calicivirus are much more susceptible. The caliciviruses are inactivated by a variety of chemicals, including alcohols, oxidizing agents, aldehydes, and β-propiolactone. As with inactivation of viruses in general, inactivation of caliciviruses by the various approaches may be matrix-, temperature-, and/or contact time-dependent. The susceptibilities of the caliciviruses to the various physical and chemical inactivation approaches are generally similar to those displayed by other small, non-enveloped viruses, with the exception that the parvoviruses and circoviruses may require higher temperatures for inactivation, while these families appear to be more susceptible to UV-C inactivation than are the caliciviruses.

  4. Ab initio calculation of transition state normal mode properties and rate constants for the H(T)+CH4(CD4) abstraction and exchange reactions

    International Nuclear Information System (INIS)

    Schatz, G.C.; Walch, S.P.; Wagner, A.F.

    1980-01-01

    We present ab initio (GVB--POL--CI) calculations for enough of the region about the abstraction and exchange saddle points for H(T)+CH 4 (CD 4 ) to perform a full normal mode analysis of the transition states. The resulting normal mode frequencies are compared to four other published surfaces: an ab initio UHF--SCF calculation by Carsky and Zahradnik, a semiempirical surface by Raff, and two semiempirical surfaces by Kurylo, Hollinden, and Timmons. Significant quantitative and qualitative differences exist between the POL--CI results and those of the other surfaces. Transition state theory rate constants and vibrationally adiabatic reaction threshold energies were computed for all surfaces and compared to available experimental values. For abstraction, the POL--CI rates are in good agreement with experimental rates and in better agreement than are the rates of any of the other surfaces. For exchange, uncertainties in the experimental values and in the importance of vibrationally nonadiabatic effects cloud the comparison of theory to experiment. Tentative conclusions are that the POL--CI barrier is too low by several kcal. Unless vibrationaly nonadiabatic effects are severe, the POL--CI surface is still in better agreement with experiment than are the other surfaces. The rates for a simple 3-atom transition state theory model (where CH 3 is treated as an atom) are compared to the rates for the full 6-atom model. The kinetic energy coupling of reaction coordinate modes to methyl group modes is identified as being of primary importance in determining the accuracy of the 3-atom model for this system. Substantial coupling in abstraction, but not exchange, causes the model to fail for abstraction but succeed for exchange

  5. Development of a kinetic model, including rate constant estimations, on iodine and caesium behaviour in the primary circuit of LWR's under accident conditions

    International Nuclear Information System (INIS)

    Alonso, A.; Buron, J.M.; Fernandez, S.

    1991-07-01

    In this report, a kinetic model has been developed with the aim to try to reproduce the chemical phenomena that take place in a flowing system containing steam, hydrogen and iodine and caesium vapours. The work is divided into two different parts. The first part consists in the estimation, through the Activited Complex Theory, of the reaction rate constants, for the chosen reactions, and the development of the kinetic model based on the concept of ideal tubular chemical reactor. The second part deals with the application of such model to several cases, which were taken from the Phase B 'Scoping Calculations' of the Phebus-FP Project (sequence AB) and the SFD-ST and SFD1.1 experiments. The main conclusion obtained from this work is that the assumption of instantaneous equilibrium could be inacurrate in order to estimate the iodine and caesium species distribution under severe accidents conditions

  6. The apparent rate constant for the dissociation of force generating myosin crossbridges from actin decreases during Ca2+ activation of skinned muscle fibres.

    Science.gov (United States)

    Kerrick, W G; Potter, J D; Hoar, P E

    1991-02-01

    The effect of Ca2+ activation on the apparent rate constant governing the dissociation of force generating myosin crossbridges was studied in skinned rabbit adductor magnus fibres (fast-twitch) at 21 +/- 1 degree C. Simultaneous measurements of Ca2(+)-activated isometric force and ATPase activity were conducted in parallel with simultaneous measurements of DANZ-labelled troponin C (TnCDANZ) fluorescence and isometric force in fibres whose endogenous troponin C had been partially replaced with TnCDANZ. The Ca2+ activation of isometric force occurred at approximately two times higher Ca2+ concentration than did actomyosin ATPase activity at 2.0 mM MgATP. Since increases in both TnCDANZ fluorescence and ATPase activity occurred over approximately the same Ca2+ concentration range at substantially lower concentrations of Ca2+ than did force, this data suggests that the TnCDANZ fluorescence is associated with the Ca2+ activation of myosin crossbridge turnover (ATPase) rather than force. According to the model of Huxley (1957) and assuming the hydrolysis of one molecule of ATP per cycle of the crossbridge, the apparent rate constant gapp for the dissociation of force generating myosin crossbridges is proportional to the actomyosin ATPase/isometric force ratio. This measure of gapp shows approximately a fivefold decrease during Ca2+ activation of isometric force. This change in gapp is responsible for separation of the Ca2+ sensitivity of the normalized ATPase activity and isometric force curves. If the MgATP concentration is reduced to 0.5 mM, the change in gapp is reduced and consequently the difference in Ca2+ sensitivity between normalized steady state ATPase and force is also reduced.

  7. The rate constant of the reaction NCN + H2 and its role in NCN and NO modeling in low pressure CH4/O2/N2-flames.

    Science.gov (United States)

    Faßheber, Nancy; Lamoureux, Nathalie; Friedrichs, Gernot

    2015-06-28

    Bimolecular reactions of the NCN radical play a key role in modeling prompt-NO formation in hydrocarbon flames. The rate constant of the so-far neglected reaction NCN + H2 has been experimentally determined behind shock waves under pseudo-first order conditions with H2 as the excess component. NCN3 thermal decomposition has been used as a quantitative high temperature source of NCN radicals, which have been sensitively detected by difference UV laser absorption spectroscopy at [small nu, Greek, tilde] = 30383.11 cm(-1). The experiments were performed at two different total densities of ρ≈ 4.1 × 10(-6) mol cm(-3) and ρ≈ 7.4 × 10(-6) mol cm(-3) (corresponding to pressures between p = 324 mbar and p = 1665 mbar) and revealed a pressure independent reaction. In the temperature range 1057 K rate constant can be represented by the Arrhenius expression k/(cm(3) mol(-1) s(-1)) = 4.1 × 10(13) exp(-101 kJ mol(-1)/RT) (Δlog k = ±0.11). The pressure independent reaction as well as the measured activation energy is consistent with a dominating H abstracting reaction channel yielding the products HNCN + H. The reaction NCN + H2 has been implemented together with a set of reactions for subsequent HNCN and HNC chemistry into the detailed GDFkin3.0_NCN mechanism for NOx flame modeling. Two fuel-rich low-pressure CH4/O2/N2-flames served as examples to quantify the impact of the additional chemical pathways. Although the overall NCN consumption by H2 remains small, significant differences have been observed for NO yields with the updated mechanism. A detailed flux analysis revealed that HNC, mainly arising from HCN/HNC isomerization, plays a decisive role and enhances NO formation through a new HNC → HNCO → NH2→ NH → NO pathway.

  8. Heart rate and metabolic responses to moderate-intensity aerobic exercise: a comparison of graded walking and ungraded jogging at a constant perceived exertion.

    Science.gov (United States)

    Kilpatrick, Marcus W; Kraemer, Robert R; Quigley, Edward J; Mears, Jennifer L; Powers, Jeremy M; Dedea, Anthony J; Ferrer, Nicholas F

    2009-03-01

    In this study, we assessed how ungraded jogging and graded walking at the same rating of perceived exertion (RPE) affect heart rate and oxygen consumption ([Vdot]O(2)). Twenty untrained participants completed a treadmill test to determine peak [Vdot]O(2) (mean = 40.3 +/- 6.3 ml . kg(-1) . min(-1)). Participants completed separate 30-min trials of moderate exercise (RPE of 13 on the Borg 6-20 scale) in random order on the treadmill: graded walking and ungraded jogging. Treadmill speed or grade was adjusted throughout the trial by the experimenter based on participant responses to maintain an RPE of 13. The jogging trial produced a significantly higher heart rate (161 +/- 18 vs. 142 +/- 24 beats . min(-1)) and [Vdot]O(2) (7.4 +/- 1.8 vs. 5.8 +/- 1.5 METs) (P jogging trial (5.2 +/- 1.0 miles . h(-1) to 5.0 +/- 0.9 miles . h(-1)) (P > 0.05), in an effort to maintain constant RPE. These findings provide evidence that similar perceptions of effort during graded walking and ungraded jogging do not produce similar cardiovascular and metabolic responses. The results indicate that, for a given prescribed perceived effort, jogging provides a greater stimulus for fitness benefits and caloric expenditure.

  9. Effects of deuterium oxide on the rate and dissociation constants for saxitoxin and tetrodotoxin action. Voltage-clamp studies on frog myelinated nerve

    International Nuclear Information System (INIS)

    Hahin, R.; Strichartz, G.

    1981-01-01

    The actions of tetrodotoxin (TTX) and saxitoxin (STX) in normal water and in deuterium oxide (D 20 ) have been studied in frog myelinated nerve. Substitution of D 20 for H 20 in normal Ringer's solution has no effect on the potency of TTX in blocking action potentials but increases the potency of STX by approximately 50%. Under voltage clamp, the steady-state inhibition of sodium currents by 1 nM STX is doubled in D 20 as a result of a halving of the rate of dissociation of STX from the sodium channel; the rate of block by STX is not measurably changed by D 20 . Neither steady-state inhibition nor the on- or off-rate constants of TTX are changed by D 20 substitution. The isotopic effects on STX binding are observed less than 10 min after the toxin has been added to D 20 , thus eliminating the possibility that slow-exchange (t 1/2 greater than 10 h) hydrogen-binding sites on STX are involved. The results are consistent with a hypothesis that attributes receptor-toxin stabilization to isotopic changes of hydrogen bonding; this interpretation suggests that hydrogen bonds contribute more to the binding of STX than to that of TTX at the sodium channel

  10. Cinética de sinterização para sistemas à base de SnO2 por taxa de aquecimento constante Sintering kinetics for SnO2-based systems by constant heating rate

    Directory of Open Access Journals (Sweden)

    S. M. Tebcheran

    2003-04-01

    in small concentrations as densifying aids for this oxide. In the present study the sintering kinetics of tin oxide was studied considering the effect of sintering atmosphere and of the MnO2 concentration. SnO2-MnO2 systems were prepared from the polymeric precursors method and the obtained powders were characterized by surface area by the BET method. SnO2 powders with varied MnO2 concentrations were pressed in cylindrical shape, and sintered in a dilatometer furnace with constant heating rate and controlled atmospheres. Sintered samples were characterized by scanning electron microscopy. The influence of atmosphere (argon, air or CO2 as well as of the MnO2 concentrations on the sintering kinetics was determined. The kinetics data of linear shrinkage were analyzed in terms of kinetic models for the initial stage of sintering (Woolfrey and Bannister as well as for the global sintering (Su e Johnson allowing the determination of the apparent activation energy. Following the determination of the master sintering curve the apparent activation energy of all sintering process were determined as well as its dependence with the atmosphere and manganese concentrations. Based on these values and on the n exponent, determined by the classical grain growth equation, it was concluded that the most probable sintering mechanism is grain boundary diffusion with surface redistribution controlling the kinetics.

  11. Beta decay rate of 16N(0-, 120 keV): meson exchange currents and the value of the induced pseudoscalar-coupling constant

    International Nuclear Information System (INIS)

    Gagliardi, C.A. III.

    1982-10-01

    The beta-decay branching ratio R(#betta#) for the transition 16 N(0 - , 120 keV) → 16 O (0 + , g.s.) + e - + anti nu is remeasured. The rate of this 0 - → 0 + transition #betta#(#betta#) is expected to receive a large enhancement from pion-exchange-current contributions to the weak axial-vector time component. The beta-decay rate may also be combined with the muon-capture rate #betta#(μ) for the inverse reaction μ - + 16 O(0 + , g.s.) → 16 N(0 - , 120 keV) + nu/sub μ/ to obtain the induced pseudoscalar coupling constant g/sub P/ in finite nuclei. The experimental results are compared to recent realistic calculations of #betta#(#betta#) and #betta#(μ) in which 2-particle, 2-hole components are included in the 16 O ground state and 3-particle, 3-hole components are included in the 16 N 0 - state, while three different residual interactions are utilized to determine the wavefunctions. We find R(#betta#) = (3.42 +- 0.37) x 10 - 6 . This agrees with the only previous measurement R(#betta#) = (3.5 +- 0.7) x 10 - 6 . The beta-decay rate #betta#(#betta#) = (0.45 +- 0.05) sec - 1 , which agrees with the calculations only when pion-exchange currents are included. The nucleons-only impulse approximation underestimates #betta#(#betta#) by more than a factor of 3, independent of the residual interaction. This confirms the important role of pion exchange in the weak axial-vector time component. The measured ratio #betta#(μ)/#betta#(#betta#) implies that g/sub P//g/sub A/ = 11 +- 2 for the nucleon in finite nuclei. This result is model dependent. It assumes that #betta#(μ)/#betta#(#betta#) is independent of the nuclear model used in its calculation, as is approximately true in the recent calculations

  12. Rate Constant and RRKM Product Study for the Reaction Between CH3 and C2H3 at T = 298K

    Science.gov (United States)

    Thorn, R. Peyton, Jr.; Payne, Walter A., Jr.; Chillier, Xavier D. F.; Stief, Louis J.; Nesbitt, Fred L.; Tardy, D. C.

    2000-01-01

    The total rate constant k1 has been determined at P = 1 Torr nominal pressure (He) and at T = 298 K for the vinyl-methyl cross-radical reaction CH3 + C2H3 yields products. The measurements were performed in a discharge flow system coupled with collision-free sampling to a mass spectrometer operated at low electron energies. Vinyl and methyl radicals were generated by the reactions of F with C2H4 and CH4, respectively. The kinetic studies were performed by monitoring the decay of C2H3 with methyl in excess, 6 rate coefficient was determined to be k1(298 K) = (1.02 +/- 0.53)x10(exp -10) cubic cm/molecule/s with the quoted uncertainty representing total errors. Numerical modeling was required to correct for secondary vinyl consumption by reactions such as C2H3 + H and C2H3 + C2H3. The present result for k1 at T = 298 K is compared to two previous studies at high pressure (100-300 Torr He) and to a very recent study at low pressure (0.9-3.7 Torr He). Comparison is also made with the rate constant for the similar reaction CH3 + C2H5 and with a value for k1 estimated by the geometric mean rule employing values for k(CH3 + CH3) and k(C2H3 + C2H3). Qualitative product studies at T = 298 K and 200 K indicated formation of C3H6, C2H2, and C2H5 as products of the combination-stabilization, disproportionation, and combination-decomposition channels, respectively, of the CH3 + C2H3 reaction. We also observed the secondary C4H8 product of the subsequent reaction of C3H5 with excess CH3; this observation provides convincing evidence for the combination-decomposition channel yielding C3H5 + H. RRKM calculations with helium as the deactivator support the present and very recent experimental observations that allylic C-H bond rupture is an important path in the combination reaction. The pressure and temperature dependencies of the branching fractions are also predicted.

  13. Numerical evaluation of lactoperoxidase inactivation during continuous pulsed electric field processing.

    Science.gov (United States)

    Buckow, Roman; Semrau, Julius; Sui, Qian; Wan, Jason; Knoerzer, Kai

    2012-01-01

    A computational fluid dynamics (CFD) model describing the flow, electric field and temperature distribution of a laboratory-scale pulsed electric field (PEF) treatment chamber with co-field electrode configuration was developed. The predicted temperature increase was validated by means of integral temperature studies using thermocouples at the outlet of each flow cell for grape juice and salt solutions. Simulations of PEF treatments revealed intensity peaks of the electric field and laminar flow conditions in the treatment chamber causing local temperature hot spots near the chamber walls. Furthermore, thermal inactivation kinetics of lactoperoxidase (LPO) dissolved in simulated milk ultrafiltrate were determined with a glass capillary method at temperatures ranging from 65 to 80 °C. Temperature dependence of first order inactivation rate constants was accurately described by the Arrhenius equation yielding an activation energy of 597.1 kJ mol(-1). The thermal impact of different PEF processes on LPO activity was estimated by coupling the derived Arrhenius model with the CFD model and the predicted enzyme inactivation was compared to experimental measurements. Results indicated that LPO inactivation during combined PEF/thermal treatments was largely due to thermal effects, but 5-12% enzyme inactivation may be related to other electro-chemical effects occurring during PEF treatments. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  14. Modeling the pH and temperature dependence of aqueousphase hydroxyl radical reaction rate constants of organic micropollutants using QSPR approach.

    Science.gov (United States)

    Gupta, Shikha; Basant, Nikita

    2017-11-01

    Designing of advanced oxidation process (AOP) requires knowledge of the aqueous phase hydroxyl radical ( ● OH) reactions rate constants (k OH ), which are strictly dependent upon the pH and temperature of the medium. In this study, pH- and temperature-dependent quantitative structure-property relationship (QSPR) models based on the decision tree boost (DTB) approach were developed for the prediction of k OH of diverse organic contaminants following the OECD guidelines. Experimental datasets (n = 958) pertaining to the k OH values of aqueous phase reactions at different pH (n = 470; 1.4 × 10 6 to 3.8 × 10 10  M -1  s -1 ) and temperature (n = 171; 1.0 × 10 7 to 2.6 × 10 10  M -1  s -1 ) were considered and molecular descriptors of the compounds were derived. The Sanderson scale electronegativity, topological polar surface area, number of double bonds, and halogen atoms in the molecule, in addition to the pH and temperature, were found to be the relevant predictors. The models were validated and their external predictivity was evaluated in terms of most stringent criteria parameters derived on the test data. High values of the coefficient of determination (R 2 ) and small root mean squared error (RMSE) in respective training (> 0.972, ≤ 0.12) and test (≥ 0.936, ≤ 0.16) sets indicated high generalization and predictivity of the developed QSPR model. Other statistical parameters derived from the training and test data also supported the robustness of the models and their suitability for screening new chemicals within the defined chemical space. The developed QSPR models provide a valuable tool for predicting the ● OH reaction rate constants of emerging new water contaminants for their susceptibility to AOPs.

  15. Rate Constants for the Reactions of OH with CH(sub 3)Cl, CH(sub 2) C1(sub 2), CHC1(sub 3)and CH(sub 3)Br

    Science.gov (United States)

    Hsu, H-J.; DeMore, W.

    1994-01-01

    Rate constants for the reactions of OH with CH3C1, CH2Cl2, CHCl3 and CH3Br have been measured by a relative rate technique in which the reaction rate of each compound was compared to that of HFC-152a (CH3CHF2)and for CH2Cl2, HFC-161 (CH3CH2F).

  16. Convergence of high order memory kernels in the Nakajima-Zwanzig generalized master equation and rate constants: Case study of the spin-boson model

    Science.gov (United States)

    Xu, Meng; Yan, Yaming; Liu, Yanying; Shi, Qiang

    2018-04-01

    The Nakajima-Zwanzig generalized master equation provides a formally exact framework to simulate quantum dynamics in condensed phases. Yet, the exact memory kernel is hard to obtain and calculations based on perturbative expansions are often employed. By using the spin-boson model as an example, we assess the convergence of high order memory kernels in the Nakajima-Zwanzig generalized master equation. The exact memory kernels are calculated by combining the hierarchical equation of motion approach and the Dyson expansion of the exact memory kernel. High order expansions of the memory kernels are obtained by extending our previous work to calculate perturbative expansions of open system quantum dynamics [M. Xu et al., J. Chem. Phys. 146, 064102 (2017)]. It is found that the high order expansions do not necessarily converge in certain parameter regimes where the exact kernel show a long memory time, especially in cases of slow bath, weak system-bath coupling, and low temperature. Effectiveness of the Padé and Landau-Zener resummation approaches is tested, and the convergence of higher order rate constants beyond Fermi's golden rule is investigated.

  17. Calculations with spectroscopic accuracy for energies, transition rates, hyperfine interaction constants, and Landé gJ-factors in nitrogen-like Kr XXX

    Science.gov (United States)

    Wang, K.; Li, S.; Jönsson, P.; Fu, N.; Dang, W.; Guo, X. L.; Chen, C. Y.; Yan, J.; Chen, Z. B.; Si, R.

    2017-01-01

    Extensive self-consistent multi-configuration Dirac-Fock (MCDF) calculations and second-order many-body perturbation theory (MBPT) calculations are performed for the lowest 272 states belonging to the 2s22p3, 2s2p4, 2p5, 2s22p23l, and 2s2p33l (l=s, p, d) configurations of N-like Kr XXX. Complete and consistent data sets of level energies, wavelengths, line strengths, oscillator strengths, lifetimes, AJ, BJ hyperfine interaction constants, Landé gJ-factors, and electric dipole (E1), magnetic dipole (M1), electric quadrupole (E2), magnetic quadrupole (M2) transition rates among all these levels are given. The present MCDF and MBPT results are compared with each other and with other available experimental and theoretical results. The mean relative difference between our two sets of level energies is only about 0.003% for these 272 levels. The accuracy of the present calculations are high enough to facilitate identification of many observed spectral lines. These accurate data can be served as benchmark for other calculations and can be useful for fusion plasma research and astrophysical applications.

  18. Rate Constants and H-Atom Product Yields for the Reactions of O(1D) Atoms with Ethane and Acetylene from 50 to 296 K.

    Science.gov (United States)

    Nunez-Reyes, Dianailys; Hickson, Kevin M

    2018-05-01

    The gas phase reactions of atomic oxygen in its first excited state with ethane and acetylene have been investigated in a continuous supersonic flow reactor over the temperature range 50 K to 296 K. O(1D) atoms were produced by pulsed laser photolysis of ozone at 266 nm. Two different types of experiments, kinetics measurements and H-atom product yield determinations, were performed by detecting O(1D) atoms and H(2S) atoms respectively by vacuum ultraviolet laser induced fluorescence. The measured rate constants are in agreement with previous work at room temperature and little or no temperature dependence was observed as the temperature is decreased to 50 K. H-atoms yields were found to be independent of temperature for the reaction of O(1D) with ethane. These product yields are discussed in the context of earlier dynamics measurements at higher temperature. Due to the influence of secondary reactions, no H-atom yields could be obtained for the reaction of O(1D) with acetylene.

  19. Measurement of rate constants and equilibrium constants of RI reversible R + I, I + RI reversible I2 + R for R = C3H7, iso-C3H7, C6F13, CF3OCF2CF2 or C3F7OCF2CF2

    International Nuclear Information System (INIS)

    Skorobogatov, G.A.; Dymov, B.P.; Tedeev, R.Sh.

    1991-01-01

    By the method of isothermal pyrolysis of RI iodide it proved possible to acquire information on equilibrium constants and rater constants for RI reversible R + I and I + RI reversible R + I 2 with a high precission, provided the rate constant for R + R -> R 2 recombination is known. Using the method, information on absolute rate constants of thermal dissociation of C 3 F 7 I, iso-C 3 F 13 I, CF 3 O(CF 2 ) 2 I and C 3 F 7 O(CF 2 ) 2 I as well as their interaction with atomic iodine has been obtained for the first time. The values of dissociation energy E D (R-I) are equal to 212±2, 201±2, 202±2, 213±2 and 213±2 kJ/mol respectively

  20. Estimation of autotrophic maximum specific growth rate constant--experience from the long-term operation of a laboratory-scale sequencing batch reactor system.

    Science.gov (United States)

    Su, Yu-min; Makinia, Jacek; Pagilla, Krishna R

    2008-04-01

    The autotrophic maximum specific growth rate constant, muA,max, is the critical parameter for design and performance of nitrifying activated sludge systems. In literature reviews (i.e., Henze et al., 1987; Metcalf and Eddy, 1991), a wide range of muA,max values have been reported (0.25 to 3.0 days(-1)); however, recent data from several wastewater treatment plants across North America revealed that the estimated muA,max values remained in the narrow range 0.85 to 1.05 days(-1). In this study, long-term operation of a laboratory-scale sequencing batch reactor system was investigated for estimating this coefficient according to the low food-to-microorganism ratio bioassay and simulation methods, as recommended in the Water Environment Research Foundation (Alexandria, Virginia) report (Melcer et al., 2003). The estimated muA,max values using steady-state model calculations for four operating periods ranged from 0.83 to 0.99 day(-1). The International Water Association (London, United Kingdom) Activated Sludge Model No. 1 (ASM1) dynamic model simulations revealed that a single value of muA,max (1.2 days(-1)) could be used, despite variations in the measured specific nitrification rates. However, the average muA,max was gradually decreasing during the activated sludge chlorination tests, until it reached the value of 0.48 day(-1) at the dose of 5 mg chlorine/(g mixed liquor suspended solids x d). Significant discrepancies between the predicted XA/YA ratios were observed. In some cases, the ASM1 predictions were approximately two times higher than the steady-state model predictions. This implies that estimating this ratio from a complex activated sludge model and using it in simple steady-state model calculations should be accepted with great caution and requires further investigation.

  1. Reaction kinetics aspect of U3O8 kernel with gas H2 on the characteristics of activation energy, reaction rate constant and O/U ratio of UO2 kernel

    International Nuclear Information System (INIS)

    Damunir

    2007-01-01

    The reaction kinetics aspect of U 3 O 8 kernel with gas H 2 on the characteristics of activation energy, reaction rate constant and O/U ratio of UO 2 kernel had been studied. U 3 O 8 kernel was reacted with gas H 2 in a reduction furnace at varied reaction time and temperature. The reaction temperature was varied at 600, 700, 750 and 850 °C with a pressure of 50 mmHg for 3 hours in gas N 2 atmosphere. The reation time was varied at 1, 2, 3 and 4 hours at a temperature of 750 °C using similar conditions. The reaction product was UO 2 kernel. The reaction kinetic aspect between U 3 O 8 and gas H 2 comprised the minimum activation energy (ΔE), the reaction rate constant and the O/U ratio of UO 2 kernel. The minimum activation energy was determined from a straight line slope of equation ln [{D b . R o {(1 - (1 - X b ) ⅓ } / (b.t.Cg)] = -3.9406 x 10 3 / T + 4.044. By multiplying with the straight line slope -3.9406 x 10 3 , the ideal gas constant (R) 1.985 cal/mol and the molarity difference of reaction coefficient 2, a minimum activation energy of 15.644 kcal/mol was obtained. The reaction rate constant was determined from first-order chemical reaction control and Arrhenius equation. The O/U ratio of UO 2 kernel was obtained using gravimetric method. The analysis result of reaction rate constant with chemical reaction control equation yielded reaction rate constants of 0.745 - 1.671 s -1 and the Arrhenius equation at temperatures of 650 - 850 °C yielded reaction rate constants of 0.637 - 2.914 s -1 . The O/U ratios of UO 2 kernel at the respective reaction rate constants were 2.013 - 2.014 and the O/U ratios at reaction time 1 - 4 hours were 2.04 - 2.011. The experiment results indicated that the minimum activation energy influenced the rate constant of first-order reaction and the O/U ratio of UO 2 kernel. The optimum condition was obtained at reaction rate constant of 1.43 s -1 , O/U ratio of UO 2 kernel of 2.01 at temperature of 750 °C and reaction time of 3

  2. Microbial Inactivation by Ultrasound Assisted Supercritical Fluids

    Science.gov (United States)

    Benedito, Jose; Ortuño, Carmen; Castillo-Zamudio, Rosa Isela; Mulet, Antonio

    A method combining supercritical carbon dioxide (SC-CO2) and high power ultrasound (HPU) has been developed and tested for microbial/enzyme inactivation purposes, at different process conditions for both liquid and solid matrices. In culture media, using only SC-CO2, the inactivation rate of E. coli and S. cerevisiae increased with pressure and temperature; and the total inactivation (7-8 log-cycles) was attained after 25 and 140 min of SC-CO2 (350 bar, 36 °C) treatment, respectively. Using SC-CO2+HPU, the time for the total inactivation of both microorganisms was reduced to only 1-2 min, at any condition selected. The SC-CO2+HPU inactivation of both microorganisms was slower in juices (avg. 4.9 min) than in culture media (avg. 1.5 min). In solid samples (chicken, turkey ham and dry-cured pork cured ham) treated with SC-CO2 and SC-CO2+HPU, the inactivation rate of E. coli increased with temperature. The application of HPU to the SC-CO2 treatments accelerated the inactivation rate of E. coli and that effect was more pronounced in treatments with isotonic solution surrounding the solid food samples. The application of HPU enhanced the SC-CO2 inactivation mechanisms of microorganisms, generating a vigorous agitation that facilitated the CO2 solubilization and the mass transfer process. The cavitation generated by HPU could damage the cell walls accelerating the extraction of vital constituents and the microbial death. Thus, using the combined technique, reasonable industrial processing times and mild process conditions could be used which could result into a cost reduction and lead to the minimization in the food nutritional and organoleptic changes.

  3. Evaluation of gastric emptying time, gastrointestinal transit time, sedation score, and nausea score associated with intravenous constant rate infusion of lidocaine hydrochloride in clinically normal dogs.

    Science.gov (United States)

    Johnson, Rebecca A; Kierski, Katharine R; Jones, Brian G

    2017-05-01

    OBJECTIVE To quantify nausea and sedation scores, gastric emptying time, and gastrointestinal transit time after IV administration of a lidocaine hydrochloride bolus followed by a constant rate infusion (CRI) in clinically normal dogs. ANIMALS 6 Beagles. PROCEDURES In a crossover study, dogs were fed thirty 1.5-mm barium-impregnated spheres (BIPS) and received a saline (0.9% NaCl) solution bolus (0.05 mL/kg) IV (time 0) followed by a CRI at 10 mL/h, a lidocaine bolus (1 mg/kg) IV followed by a CRI at 25 μg/kg/min, or a lidocaine bolus (1 mg/kg) IV followed by a CRI at 50 μg/kg/min; CRIs were for 12 hours. Nausea and sedation scores were assessed and abdominal radiographs obtained immediately after feeding of BIPS and every hour for 12 hours and again 16 hours after CRI start. Percentage of BIPSs in the small and large intestines, gastric emptying time, and gastrointestinal transit time were assessed. RESULTS Gastric emptying time did not differ significantly among treatments. Significantly more BIPS were in the large intestine 4 to 7 hours after treatment start for the 50-μg/kg/min treatment than for the other 2 treatments. Six hours after treatment start, significantly more BIPS were in the large intestine for the 25-μg/kg/min treatment than for the saline solution treatment. Higher sedation and nausea scores were associated with the 50-μg/kg/min CRI. CONCLUSIONS AND CLINICAL RELEVANCE In clinically normal dogs, lidocaine CRI did not significantly affect gastric emptying. However, gastrointestinal transit time was mildly decreased and sedation and nausea scores increased in dogs administered a lidocaine CRI at clinically used doses.

  4. Kinetics and thermodynamics of the thermal inactivation and chaperone assisted folding of zebrafish dihydrofolate reductase.

    Science.gov (United States)

    Thapliyal, Charu; Jain, Neha; Rashid, Naira; Chaudhuri Chattopadhyay, Pratima

    2018-01-01

    The maintenance of thermal stability is a major issue in protein engineering as many proteins tend to form inactive aggregates at higher temperatures. Zebrafish DHFR, an essential protein for the survival of cells, shows irreversible thermal unfolding transition. The protein exhibits complete unfolding and loss of activity at 50 °C as monitored by UV-Visible, fluorescence and far UV-CD spectroscopy. The heat induced inactivation of zDHFR follows first-order kinetics and Arrhenius law. The variation in the value of inactivation rate constant, k with increasing temperatures depicts faster inactivation at elevated temperatures. We have attempted to study the chaperoning ability of a shorter variant of GroEL (minichaperone) and compared it with that of conventional GroEL-GroES chaperone system. Both the chaperone system prevented the aggregation and assisted in refolding of zDHFR. The rate of thermal inactivation was significantly retarded in the presence of chaperones which indicate that it enhances the thermal stability of the enzyme. As minichaperone is less complex, and does not require high energy co-factors like ATP, for its function as compared to conventional GroEL-GroES system, it can act as a very good in vitro as well as in vivo chaperone model for monitoring assisted protein folding phenomenon. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. RATE CONSTANTS FOR THE REACTIONS OF OH RADICALS AND CL ATOMS WITH DI-N-PROPYL ETHER AND DI-N-BUTYL ETHER AND THEIR DEUTERATED ANALOGS. (R825252)

    Science.gov (United States)

    Using relative rate methods, rate constants for the gas-phase reactions of OH radicals and Cl atoms with di-n-propyl ether, di-n-propyl ether-d14, di-n-butyl ether and di-n-butyl ether-d18 have been measured at 296 ? 2 K and atmos...

  6. Direct spectroscopic observation of singlet oxygen quenching and kinetic studies of physical and chemical singlet oxygen quenching rate constants of synthetic antioxidants (BHA, BHT, and TBHQ) in methanol.

    Science.gov (United States)

    Lee, Jun Hyun; Jung, Mun Yhung

    2010-08-01

    Singlet oxygen quenching by synthetic antioxidants (BHA, BHT, and TBHQ) was directly observed by spectroscopic monitoring of luminescence at 1268 nm. The luminescence data showed unambiguous evidence of singlet oxygen quenching by synthetic phenolic antioxidants with the highest activity for TBHQ, followed by BHA and BHT. The protective activities of these synthetic antioxidants on alpha-terpinene oxidation with chemically-induced singlet oxygen under dark further confirmed their singlet oxygen quenching abilities. Total singlet oxygen quenching rate constants (k(r) + k(q)) of BHA, BHT, and TBHQ were determined in a system containing alpha-terpinene (as a singlet oxygen trap) and methylene blue (as a sensitizer) during light irradiation, and the values were 5.14 x 10(7), 3.41 x 10(6), and 1.99 x 10(8) M(-1)s(-1), respectively. After the k(r) value of alpha-terpinene was first determined, the k(r) values of the synthetic antioxidants were calculated by measuring their relative reaction rates with singlet oxygen to that of alpha-terpinene under the identical conditions. The k(r) values of the BHA, BHT, and TBHQ were 3.90 x 10(5), 1.23 x 10(5), and 2.93 x 10(6), M(-1)s(-1). The percent partition of chemical quenching over total singlet oxygen quenching (k(r) x 100)/(k(r) + k(q)) for BHA, BHT, and TBHQ were 0.76%, 3.61%, and 1.47%, respectively. The results showed that the synthetic antioxidants quench singlet oxygen almost exclusively through the mechanism of physical quenching. This represents the first report on the singlet oxygen quenching mechanism of these synthetic antioxidants. Practical Application: The synthetic antioxidants, especially TBHQ, have been found to have a strong singlet oxygen quenching ability. This article also clearly showed that singlet oxygen quenching by synthetic antioxidants was mainly by the physical quenching mechanism. The results suggested that these synthetic antioxidants, especially TBHQ, could be used practically for the protection

  7. Inactivation of Mycobacterium tuberculosis l,d-Transpeptidase LdtMt1 by Carbapenems and Cephalosporins

    Science.gov (United States)

    Dubée, Vincent; Triboulet, Sébastien; Mainardi, Jean-Luc; Ethève-Quelquejeu, Mélanie; Gutmann, Laurent; Marie, Arul; Dubost, Lionel

    2012-01-01

    The structure of Mycobacterium tuberculosis peptidoglycan is atypical since it contains a majority of 3→3 cross-links synthesized by l,d-transpeptidases that replace 4→3 cross-links formed by the d,d-transpeptidase activity of classical penicillin-binding proteins. Carbapenems inactivate these l,d-transpeptidases, and meropenem combined with clavulanic acid is bactericidal against extensively drug-resistant M. tuberculosis. Here, we used mass spectrometry and stopped-flow fluorimetry to investigate the kinetics and mechanisms of inactivation of the prototypic M. tuberculosis l,d-transpeptidase LdtMt1 by carbapenems (meropenem, doripenem, imipenem, and ertapenem) and cephalosporins (cefotaxime, cephalothin, and ceftriaxone). Inactivation proceeded through noncovalent drug binding and acylation of the catalytic Cys of LdtMt1, which was eventually followed by hydrolysis of the resulting acylenzyme. Meropenem rapidly inhibited LdtMt1, with a binding rate constant of 0.08 μM−1 min−1. The enzyme was unable to recover from this initial binding step since the dissociation rate constant of the noncovalent complex was low (carbapenem side chains affected both the binding and acylation steps, ertapenem being the most efficient LdtMt1 inactivator. Cephalosporins also formed covalent adducts with LdtMt1, although the acylation reaction was 7- to 1,000-fold slower and led to elimination of one of the drug side chains. Comparison of kinetic constants for drug binding, acylation, and acylenzyme hydrolysis indicates that carbapenems and cephems can both be tailored to optimize peptidoglycan synthesis inhibition in M. tuberculosis. PMID:22615283

  8. Sunlight-induced inactivation of human Wa and porcine OSU rotaviruses in the presence of exogenous photosensitizers

    KAUST Repository

    Romero-Maraccini, Ofelia C.

    2013-10-01

    Human rotavirus Wa and porcine rotavirus OSU solutions were irradiated with simulated solar UV and visible light in the presence of different photosensitizers dissolved in buffered solutions. For human rotavirus, the exogenous effects were greater than the endogenous effects under irradiation with full spectrum and UVA and visible light at 25 C. For porcine rotavirus, the exogenous effects with UVA and visible light irradiation were only observed at high temperatures, >40 C. The results from dark experiments conducted at different temperatures suggest that porcine rotavirus has higher thermostability than human rotavirus. Concentrations of 3′-MAP excited triplet states of 1.8 fM and above resulted in significant human rotavirus inactivation. The measured excited triplet state concentrations of ≤0.45 fM produced by UVA and visible light irradiation of natural dissolved organic matter solutions were likely not directly responsible for rotavirus inactivation. Instead, the linear correlation for human rotavirus inactivation rate constant (kobs) with the phenol degradation rate constant (kexp) found in both 1 mM NaHCO3 and 1 mM phosphate-buffered solutions suggested that OH radical was a major reactive species for the exogenous inactivation of rotaviruses. Linear correlations between rotavirus kobs and specific UV254 nm absorbance of two river-dissolved organic matter and two effluent organic matter isolates indicated that organic matter aromaticity may help predict formation of radicals responsible for rotavirus inactivation. The results from this study also suggested that the differences in rotavirus strains should be considered when predicting solar inactivation of rotavirus in sunlit surface waters. © 2013 American Chemical Society.

  9. N'-formylkynurenine-photosensitized inactivation of bacteriophage

    International Nuclear Information System (INIS)

    Walrant, P.; Santus, R.; Redpath, J.L.; Pileni, M.P.

    1976-01-01

    Measurements have been made of the sensitizing properties of N'-formylkynurenine (FK) on bacteriophages, as part of a wider study of FK photosensitization of systems which have both protein and DNA components. Suspensions of bacteriophages T 6 and T 7 were near-U.V. (lambda > 320 nm) irradiated in solutions saturated with either O 2 or He in the presence of 5 x 10 -4 M FK. The survival curves obtained demonstrated that FK can act as a photosensitizer for biological inactivation. The involvement of singlet oxygen as one factor in this FK sensitized inactivation was clearly demonstrated by the increased rate of inactivation when the phage were suspended in O 2 -saturated D 2 O, in place of water, during irradiation. The complex mechanism of phage inactivation must involve direct interaction between excited FK and substrate, as well as singlet oxygen. FK is therefore a new natural photosensitizer of significance in cell photochemistry induced by sunlight. (U.K.)

  10. Inactivation of clay-associated bacteriophage MS-2 by chlorine.

    Science.gov (United States)

    Stagg, C H; Wallis, C; Ward, C H

    1977-01-01

    The model system consisted of bacteriophage MS-2, bentonite clay, and hypochlorous acid (HOC1). Factors that influenced association of the bacterial virus with bentonite were the titer of unadsorbed viruses, clay concentration, cation concentration, temperature, stirring rate, and the presence of soluble organics. Variation of the kinetic adsorption rate constant with stirring speed indicates that phage attachment is a diffusion-limited process; the attachment reaction has an apparent activation energy of 1 kcal/mol. About 18% of clay-associated bacteriophages was recovered by mixing the suspension with an organic eluent. Inactivation data were obtained from batch reactors operated under those conditions in which loss of HOC1 was minimal during the reaction. Bacteriophages attached to clay were more resistant to HOC1 than were freely suspended phages; for equivalent HOC1 concentrations, clay-associated phages required about twice the time that freely suspended phages required for loss of 99% of the initial virus titer. PMID:192148

  11. Comparison of the rate constants for energy transfer in the light-harvesting protein, C-phycocyanin, calculated from Foerster`s theory and experimentally measured by time-resolved fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Debreczeny, Martin Paul [Univ. of California, Berkeley, CA (United States)

    1994-05-01

    We have measured and assigned rate constants for energy transfer between chromophores in the light-harvesting protein C-phycocyanin (PC), in the monomeric and trimeric aggregation states, isolated from Synechococcus sp. PCC 7002. In order to compare the measured rate constants with those predicted by Fdrster`s theory of inductive resonance in the weak coupling limit, we have experimentally resolved several properties of the three chromophore types ({beta}{sub 155} {alpha}{sub 84}, {beta}{sub 84}) found in PC monomers, including absorption and fluorescence spectra, extinction coefficients, fluorescence quantum yields, and fluorescence lifetimes. The cpcB/C155S mutant, whose PC is missing the {beta}{sub 155} chromophore, was, useful in effecting the resolution of the chromophore properties and in assigning the experimentally observed rate constants for energy transfer to specific pathways.

  12. Multivariate curve resolution-alternating least squares and kinetic modeling applied to near-infrared data from curing reactions of epoxy resins: mechanistic approach and estimation of kinetic rate constants.

    Science.gov (United States)

    Garrido, M; Larrechi, M S; Rius, F X

    2006-02-01

    This study describes the combination of multivariate curve resolution-alternating least squares with a kinetic modeling strategy for obtaining the kinetic rate constants of a curing reaction of epoxy resins. The reaction between phenyl glycidyl ether and aniline is monitored by near-infrared spectroscopy under isothermal conditions for several initial molar ratios of the reagents. The data for all experiments, arranged in a column-wise augmented data matrix, are analyzed using multivariate curve resolution-alternating least squares. The concentration profiles recovered are fitted to a chemical model proposed for the reaction. The selection of the kinetic model is assisted by the information contained in the recovered concentration profiles. The nonlinear fitting provides the kinetic rate constants. The optimized rate constants are in agreement with values reported in the literature.

  13. SU-E-P-55: The Reaserch of Cervical Cancer Delivered with Constant Dose Rate and Gantry Speed Arc Therapy(CDR-CAS-IMAT) On Conventional Linac

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, R; Bai, W; Chi, Z; Gao, C; Xiaomei, F [The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei (China); Gao, Y [Hebei General Hospital, Shijiazhuang, Hebei (China)

    2015-06-15

    Purpose: Postoperative cervical cancer patients with large target volume and the target shape is concave, treatmented with static intensity-modulated radiotherapy (IMRT) is time consuming. The purpose of this study is to investigate using constant dose rate and gantry speed arc therapy(CDR-CAS-IMAT) on conventional linear accelrator, by comparing with the IMRT technology to evaluate the performance of CDR-CAS-IMAT on postoperative cervical cancer patients. Methods: 18 cervical cancer patients treated with IMRT on Varian 23IX were replanted using CDR-CAS-IMAT. The plans were generated on Oncentra v4.1 planning system, PTV was prescribed to 50.4 Gy in 28 fractions. Plans were evaluated based on the ability to meet the dose volume histogram. The homogeneity index (HI), conformity index (CI) of target volume, the dose of organs at risk, radiation delivery time and monitor units were also compared. SPSS 19.0 software paired T-test analysis was carried out on the two sets of data. Results: Compared with the IMRT plans PTV’s CI (t= 3.85, P =0.001), CTV’s CI, HI, D90, D95, D98, V95, V98, V100 (t=4.21, −3.18, 2.13, 4.65, 7.79, 2.29, 6.00, 2.13, p=0.001, 0.005, 0.049, 0.000, 0.000, 0.035, 0.000, 0.049), and cord D2 and rectum V40 (t=−2.65, −2.47, p= P =0.017, 0.025), and treatment time and MU (t=−36.0, −6.26, P =0.000, 0.000) were better than that of IMRT group. But the IMRT plans in terms of decreasing bladder V50, bowel V30 (t=2.14, 3.00, P =0.048, 0.008) and low dose irradiation volume were superior to that of CDR-CAS-IMAT plans. There were no significant differences in other statistical index. Conclusion: Cervical cancer patients with CDR-CAS-IMAT on Varian Clinical 23IX can get equivalent or superior dose distribution compared with the IMRT technology. IMAT have much less treatment time and MU can reduce the uncertainty factor and patient discomfort in treatment. This work was supported by the Medical Science Foundation of the health department of Hebei

  14. Full-dimensional analytical potential energy surface describing the gas-phase Cl + C2H6 reaction and kinetics study of rate constants and kinetic isotope effects.

    Science.gov (United States)

    Rangel, Cipriano; Espinosa-Garcia, Joaquin

    2018-02-07

    Within the Born-Oppenheimer approximation a full-dimensional analytical potential energy surface, PES-2017, was developed for the gas-phase hydrogen abstraction reaction between the chlorine atom and ethane, which is a nine body system. This surface presents a valence-bond/molecular mechanics functional form dependent on 60 parameters and is fitted to high-level ab initio calculations. This reaction presents little exothermicity, -2.30 kcal mol -1 , with a low height barrier, 2.44 kcal mol -1 , and intermediate complexes in the entrance and exit channels. We found that the energetic description was strongly dependent on the ab initio level used and it presented a very flat topology in the entrance channel, which represents a theoretical challenge in the fitting process. In general, PES-2017 reproduces the ab initio information used as input, which is merely a test of self-consistency. As a first test of the quality of the PES-2017, a theoretical kinetics study was performed in the temperature range 200-1400 K using two approaches, i.e. the variational transition-state theory and quasi-classical trajectory calculations, with spin-orbit effects. The rate constants show reasonable agreement with experiments in the whole temperature range, with the largest differences at the lowest temperatures, and this behaviour agrees with previous theoretical studies, thus indicating the inherent difficulties in the theoretical simulation of the kinetics of the title reaction. Different sources of error were analysed, such as the limitations of the PES and theoretical methods, recrossing effects, and the tunnelling effect, which is negligible in this reaction, and the manner in which the spin-orbit effects were included in this non-relativistic study. We found that the variation of spin-orbit coupling along the reaction path, and the influence of the reactivity of the excited Cl( 2 P 1/2 ) state, have relative importance, but do not explain the whole discrepancy. Finally, the

  15. Mechanism of inactivation of human leukocyte elastase by a chloromethyl ketone: kinetic and solvent isotope effect studies

    International Nuclear Information System (INIS)

    Stein, R.L.; Trainor, D.A.

    1986-01-01

    The mechanism of inactivation of human leukocyte elastase (HLE) by the chloromethyl ketone MeOSuc-Ala-Ala-Pro-Val-CH 2 Cl was investigated. The dependence of the first-order rate constant for inactivation on concentration of chloromethyl ketone is hyperbolic and suggests formation of a reversible Michaelis complex prior to covalent interaction between the enzyme and inhibitor. However, the observed Ki value is 10 microM, at least 10-fold lower than dissociation constants for complexes formed from interaction of HLE with structurally related substrates or reversible inhibitors, and suggests that Ki is a complex kinetic constant, reflecting the formation and accumulation of both the Michaelis complex and a second complex. It is proposed that this second complex is a hemiketal formed from attack of the active site serine on the carbonyl carbon of the inhibitor. The accumulation of this intermediate may be a general feature of reactions of serine proteases and chloromethyl ketones derived from specific peptides and accounts for the very low Ki values observed for these reactions. The solvent deuterium isotope effect (SIE) on the inactivation step (ki) is 1.58 +/- 0.07 and is consistent with rate-limiting, general-catalyzed attack of the active site His on the methylene carbon of the inhibitor with displacement of chloride anion. The general catalyst is thought to be the active site Asp. In contrast, the SIE on the second-order rate constant for HLE inactivation, ki/Ki, is inverse and equals 0.64 +/- 0.05

  16. Four-dimensional dose distributions of step-and-shoot IMRT delivered with real-time tumor tracking for patients with irregular breathing: Constant dose rate vs dose rate regulation

    International Nuclear Information System (INIS)

    Yang Xiaocheng; Han-Oh, Sarah; Gui Minzhi; Niu Ying; Yu, Cedric X.; Yi Byongyong

    2012-01-01

    Purpose: Dose-rate-regulated tracking (DRRT) is a tumor tracking strategy that programs the MLC to track the tumor under regular breathing and adapts to breathing irregularities during delivery using dose rate regulation. Constant-dose-rate tracking (CDRT) is a strategy that dynamically repositions the beam to account for intrafractional 3D target motion according to real-time information of target location obtained from an independent position monitoring system. The purpose of this study is to illustrate the differences in the effectiveness and delivery accuracy between these two tracking methods in the presence of breathing irregularities. Methods: Step-and-shoot IMRT plans optimized at a reference phase were extended to remaining phases to generate 10-phased 4D-IMRT plans using segment aperture morphing (SAM) algorithm, where both tumor displacement and deformation were considered. A SAM-based 4D plan has been demonstrated to provide better plan quality than plans not considering target deformation. However, delivering such a plan requires preprogramming of the MLC aperture sequence. Deliveries of the 4D plans using DRRT and CDRT tracking approaches were simulated assuming the breathing period is either shorter or longer than the planning day, for 4 IMRT cases: two lung and two pancreatic cases with maximum GTV centroid motion greater than 1 cm were selected. In DRRT, dose rate was regulated to speed up or slow down delivery as needed such that each planned segment is delivered at the planned breathing phase. In CDRT, MLC is separately controlled to follow the tumor motion, but dose rate was kept constant. In addition to breathing period change, effect of breathing amplitude variation on target and critical tissue dose distribution is also evaluated. Results: Delivery of preprogrammed 4D plans by the CDRT method resulted in an average of 5% increase in target dose and noticeable increase in organs at risk (OAR) dose when patient breathing is either 10% faster or

  17. Discovery of a Significant Acetone•Hydroperoxy Adduct Chaperone Effect and Its Impact on the Determination of Room Temperature Rate Constants for Acetonylperoxy/Hydroperoxy Self-Reactions and Cross Reaction Via Infrared Kinetic Spectroscopy.

    Science.gov (United States)

    Grieman, F. J.; Hui, A. O.; Okumura, M.; Sander, S. P.

    2017-12-01

    In order to model the upper troposphere/lower stratosphere in regions containing acetone properly, the kinetics of the acetonylperoxy/hydroperoxy self-reactions and cross reaction have been studied over a wide temperature range using Infrared Kinetic Spectroscopy. We report here the determination of different rate constants for the acetonylperoxy chemistry that we obtained at 298 K compared to currently accepted values. A considerable increase in the observed HO2 self-reaction rate constant due to rate enhancement via the chaperone effect from the reaction between HO2 and the (CH3)2CO•HO2 hydrogen-bonded adduct, even at room temperature, was discovered that was previously ignored. Correct determination of the acetonylperoxy and hydroperoxy kinetics must include this dependence of the HO2 self-reaction rate on acetone concentration. Via excimer laser flash photolysis to create the radical reactants, HO2 absorption was monitored in the infrared by diode laser wavelength modulation detection simultaneously with CH3C(O)CH2O2absorption monitored in the ultraviolet at 300 nm as a function of time. Resulting decay curves were fit concurrently first over a short time scale to obtain the rate constants minimizing subsequent product reactions. Modeling/fitting with a complete reaction scheme was then performed to refine the rate constants and test their veracity. Experiments were carried out over a variety of concentrations of acetone and methanol. Although no effect due to methanol concentration was found at room temperature, the rate constant for the hydroperoxy self-reaction was found to increase linearly with acetone concentration which is interpreted as the adduct being formed and resulting in a chaperone mechanism that enhances the self-reaction rate: (CH3)2CO·HO2 + HO2 → H2O2 + O2 + (CH3)2CO Including this effect, the resulting room temperature rate constants for the cross reaction and the acetonylperoxy self-reaction were found to be 2-3 times smaller than

  18. Quasiclassical Trajectory Calculations of the Rate Constant of the OH + HBr → Br + H2O Reaction Using a Full-Dimensional Ab Initio Potential Energy Surface Over the Temperature Range 5 to 500 K.

    Science.gov (United States)

    de Oliveira-Filho, Antonio G S; Ornellas, Fernando R; Bowman, Joel M

    2014-02-20

    We report a permutationally invariant, ab initio potential energy surface (PES) for the OH + HBr → Br + H2O reaction. The PES is a fit to roughly 26 000 spin-free UCCSD(T)/cc-pVDZ-F12a energies and has no classical barrier to reaction. It is used in quasiclassical trajectory calculations with a focus on the thermal rate constant, k(T), over the temperature range 5 to 500 K. Comparisons with available experimental data over the temperature range 23 to 416 K are made using three approaches to treat the OH rotational and associated electronic partition function. All display an inverse temperature dependence of k(T) below roughly 160 K and a nearly constant temperature dependence above 160 K, in agreement with experiment. The calculated rate constant with no treatment of spin-orbit coupling is overall in the best agreement with experiment, being (probably fortuitously) within 20% of it.

  19. Fluence of dielectric constant (D), (H/sup +/) and (SO/sub 4/sup -2/) on the rate of redox reaction between tris (2,2-bipyridine) iron (II) and ceric sulphate in aqueous sulphuric acid medium

    International Nuclear Information System (INIS)

    Khattak, R.; Naqvi, I.I.; Farrukh, M.A.

    2007-01-01

    Kinetic of the redox reaction between tris (2,2-bipyridine)iron(II) cation and ceric sulphate has been studied in aqueous sulphuric acid medium. Different methods were employed for the determination of order of reaction. The order of reaction is found to be first with respect to reductant however retarding effect of increasing initial concentration of oxidant is found. Influence of (H/sup +/), (SO/sub 4/sup 2-) and dielectric constant (D) on the rate of redox reaction has also been studied. Increase in (H/sup +/) and dielectric constant of the medium retard the rate while enhancement of the (SO/sub 4/sup 2-/) accelerates the rate first and then the reaction goes towards retardation. Effects of (H/sup +/) and (SO/sub 4/sup 2-/) were studied by using acetic acid-sodium acetate buffer for the first one and varying ionic concentrations of the salt sodium sulphate for the latter one, whereas dielectric constant was varied by using 0%, 10% and 20% ethanol-water mixtures. Results of effects of each one of the factors i.e., H/sup +/, SO/sub 4/sup 2-/ and dielectric constant (D) have been compared and on the basis of these factors, (Ce(SO/sub 4/ )/sub 3/)/sup 2-/ is suggested to be the active species of cerium(IV). However a rate law consistent with the observed kinetic data has also been derived supporting the proposed mechanism. (author)

  20. Determination of the rate constant for the OH(X2Π) + OH(X2Π) → H2O + O(3P) reaction over the temperature range 295 to 701 K.

    Science.gov (United States)

    Altinay, Gokhan; Macdonald, R Glen

    2014-01-09

    The rate constant for the radical-radical reaction OH(X(2)Π) + OH(X(2)Π) → H2O + O((3)P) has been measured over the temperature and pressure ranges 295-701 K and 2-12 Torr, respectively, in mixtures of CF4, N2O, and H2O. The OH radical was produced by the 193 nm laser photolysis of N2O. The resulting O((1)D) atoms reacted rapidly with H2O to produce the OH radical. The OH radical was detected by high-resolution time-resolved infrared absorption spectroscopy using a single Λ-doublet component of the OH(1,0) P1e/f(4.5) fundamental vibrational transition. A detailed kinetic model was used to determine the reaction rate constant as a function of temperature. These experiments were conducted in a new temperature controlled reaction chamber. The values of the measured rate constants are quite similar to the previous measurements from this laboratory of Bahng and Macdonald (J. Phys. Chem. A 2007 , 111 , 3850 - 3861); however, they cover a much larger temperature range. The results of the present work do not agree with recent measurements of Sangwan and Krasnoperov (J. Phys. Chem. A 2012 , 116 , 11817 - 11822). At 295 K the rate constant of the title reaction was found to be (2.52 ± 0.63) × 10(-12) cm(3) molecule(-1) s(-1), where the uncertainty includes both experimental scatter and an estimate of systematic errors at the 95% confidence limit. Over the temperature range of the experiments, the rate constant can be represented by k1a = 4.79 × 10(-18)T(1.79) exp(879.0/T) cm(3) molecule(-1) s(-1) with a uncertainty of ±24% at the 2σ level, including experimental scatter and systematic error.

  1. Suicide inactivation of horseradish peroxidase by excess hydrogen ...

    African Journals Online (AJOL)

    In reactions carried out in sodium acetate buffer, higher inactivation rates were observed when the buffer ion concentration was increased, an indication that peroxidase might be generating reactive radicals from the buffer molecules. Promethazine exerted a modest protective effect against inactivation; however, higher ...

  2. Nitroxides protect horseradish peroxidase from H2O2-induced inactivation and modulate its catalase-like activity.

    Science.gov (United States)

    Samuni, Amram; Maimon, Eric; Goldstein, Sara

    2017-08-01

    Horseradish peroxidase (HRP) catalyzes H 2 O 2 dismutation while undergoing heme inactivation. The mechanism underlying this process has not been fully elucidated. The effects of nitroxides, which protect metmyoglobin and methemoglobin against H 2 O 2 -induced inactivation, have been investigated. HRP reaction with H 2 O 2 was studied by following H 2 O 2 depletion, O 2 evolution and heme spectral changes. Nitroxide concentration was followed by EPR spectroscopy, and its reactions with the oxidized heme species were studied using stopped-flow. Nitroxide protects HRP against H 2 O 2 -induced inactivation. The rate of H 2 O 2 dismutation in the presence of nitroxide obeys zero-order kinetics and increases as [nitroxide] increases. Nitroxide acts catalytically since its oxidized form is readily reduced to the nitroxide mainly by H 2 O 2 . The nitroxide efficacy follows the order 2,2,6,6-tetramethyl-piperidine-N-oxyl (TPO)>4-OH-TPO>3-carbamoyl proxyl>4-oxo-TPO, which correlates with the order of the rate constants of nitroxide reactions with compounds I, II, and III. Nitroxide catalytically protects HRP against inactivation induced by H 2 O 2 while modulating its catalase-like activity. The protective role of nitroxide at μM concentrations is attributed to its efficient oxidation by P940, which is the precursor of the inactivated form P670. Modeling the dismutation kinetics in the presence of nitroxide adequately fits the experimental data. In the absence of nitroxide the simulation fits the observed kinetics only if it does not include the formation of a Michaelis-Menten complex. Nitroxides catalytically protect heme proteins against inactivation induced by H 2 O 2 revealing an additional role played by nitroxide antioxidants in vivo. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Thermal Inactivation of Viruses

    Science.gov (United States)

    1977-10-01

    production. Proc. Soc. Exptl. Biol. Med. 116:174-177. Mayer, V. 1965. Study of the virulence of tick-borne encephalitis virus. IV. Thermosensitivity...inactivation of rabies and other rhabrtoviruses: stabilization of the chelating agent Ethylenediaminetetraacetic acid at physiological temperatures. Infec

  4. Nitroxide radicals as research tools: Elucidating the kinetics and mechanisms of catalase-like and "suicide inactivation" of metmyoglobin.

    Science.gov (United States)

    Samuni, Uri; Czapski, Gideon; Goldstein, Sara

    2016-07-01

    Metmyoglobin (MbFe(III)) reaction with H(2)O(2) has been a subject of study over many years. H(2)O(2) alone promotes heme destruction frequently denoted "suicide inactivation," yet the mechanism underlying H(2)O(2) dismutation associated with MbFe(III) inactivation remains obscure. MbFe(III) reaction with excess H(2)O(2) in the absence and presence of the nitroxide was studied at pH 5.3-8.1 and 25°C by direct determination of reaction rate constants using rapid-mixing stopped-flow technique, by following H(2)O(2) depletion, O(2) evolution, spectral changes of the heme protein, and the fate of the nitroxide by EPR spectroscopy. The rates of both H(2)O(2) dismutation and heme inactivation processes depend on [MbFe(III)], [H(2)O(2)] and pH. Yet the inactivation stoichiometry is independent of these variables and each MbFe(III) molecule catalyzes the dismutation of 50±10 H(2)O(2) molecules until it is inactivated. The nitroxide catalytically enhances the catalase-like activity of MbFe(III) while protecting the heme against inactivation. The rate-determining step in the absence and presence of the nitroxide is the reduction of MbFe(IV)O by H(2)O(2) and by nitroxide, respectively. The nitroxide effects on H(2)O(2) dismutation catalyzed by MbFe(III) demonstrate that MbFe(IV)O reduction by H(2)O(2) is the rate-determining step of this process. The proposed mechanism, which adequately fits the pro-catalytic and protective effects of the nitroxide, implies the intermediacy of a compound I-H(2)O(2) adduct, which decomposes to a MbFe(IV)O and an inactivated heme at a ratio of 25:1. The effects of nitroxides are instrumental in elucidating the mechanism underlying the catalysis and inactivation routes of heme proteins. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Title: Elucidation of Environmental Fate of Artificial Sweeteners (Aspartame, Acesulfame K and Saccharin) by Determining Bimolecular Rate Constants with Hydroxyl Radical at Various pH and Temperature Conditions and Possible Reaction By-Products

    Science.gov (United States)

    Teraji, T.; Arakaki, T.; Suzuka, T.

    2012-12-01

    Use of artificial sweeteners in beverages and food has been rapidly increasing because of their non-calorie nature. In Japan, aspartame, acesulfame K and sucralose are among the most widely used artificial sweeteners. Because the artificial sweeteners are not metabolized in human bodies, they are directly excreted into the environment without chemical transformations. We initiated a study to better understand the fate of artificial sweeteners in the marine environment. The hydroxyl radical (OH), the most potent reactive oxygen species, reacts with various compounds and determines the environmental oxidation capacity and the life-time of many compounds. The steady-state OH concentration and the reaction rate constants between the compound and OH are used to estimate the life-time of the compound. In this study, we determine the bimolecular rate constants between aspartame, acefulfame K and saccharin and OH at various pH and temperature conditions using a competition kinetics technique. We use hydrogen peroxide as a photochemical source of OH. Bimolecular rate constant we obtained so far for aspartame was (2.6±1.2)×109 M-1 s-1 at pH = 3.0 and (4.9±2.3)×109 M-1 s-1 at pH = 5.5. Little effect was seen by changing the temperatures between 15 and 40 oC. Activation energy (Ea) was calculated to be -1.0 kJ mol-1 at pH = 3.0, +8.5 kJ mol-1 at pH = 5.5, which could be regarded as zero. We will report bimolecular rate constants at different pHs and temperatures for acesulfame K and saccharin, as well. Possible reaction by-products for aspartame will be also reported. We will further discuss the fate of aspartame in the coastal environment.

  6. Rate constant and mechanism of the reaction Cl + CFCl₂H → CFCl₂ + HCl over the temperature range 298-670 K in N₂ or N₂/O₂ diluent.

    Science.gov (United States)

    Kaiser, E W; Jawad, Khadija M

    2014-05-08

    The rate constant of the reaction Cl + CFCl2H (k1) has been measured relative to the established rate constant for the reaction Cl + CH4 (k2) at 760 Torr. The measurements were carried out in Pyrex reactors using a mixture of CFCl2H, CH4, and Cl2 in either N2 or N2/O2 diluent. Reactants and products were quantified by GC/FID analysis. Cl atoms were generated by irradiation of the mixture with 360 nm light to dissociate the Cl2 for temperatures up to ~550 K. At higher temperature, the Cl2 dissociated thermally, and no irradiation was used. Over the temperature range 298-670 K, k1 is consistently a factor of ~5 smaller than that of k2 with a nearly identical temperature dependence. The optimum non-Arrhenius rate constant is represented by the expression k1 = 1.14 × 10(-22) T(3.49) e(-241/T) cm(3) molecule(-1) s(-1) with an estimated uncertainty of ±15% including uncertainty in the reference reaction. CFCl3 formed from the reaction CFCl2 + Cl2 (k3) is the sole product in N2 diluent. In ~20% O2 at 298 K, the CFCl3 product is suppressed. The rate constant of reaction 3 was measured relative to that of reaction 4 [CFCl2 + O2 (k4)] giving the result k3/k4 = 0.0031 ± 0.0005 at 298 K. An earlier experiment by others observed C(O)FCl to be the major product of reaction channel 4 [formed via the sequence, CFCl2(O2) → CFCl2O → C(O)FCl + Cl]. Our current experiments verified that there is a Cl atom chain reaction in the presence of O2 as required by this mechanism.

  7. The reaction of fluorine atoms with methanol: yield of CH3O/CH2OH and rate constant of the reactions CH3O + CH3O and CH3O + HO2.

    Science.gov (United States)

    Assaf, Emmanuel; Schoemaecker, Coralie; Vereecken, Luc; Fittschen, Christa

    2018-04-25

    Xenondifluoride, XeF2, has been photolysed in the presence of methanol, CH3OH. Two reaction pathways are possible: F + CH3OH → CH2OH + HF and F + CH3OH → CH3O + HF. Both products, CH2OH and CH3O, will be converted to HO2 in the presence of O2. The rate constants for the reaction of both radicals with O2 differ by more than 3 orders of magnitude, which allows an unequivocal distinction between the two reactions when measuring HO2 concentrations in the presence of different O2 concentrations. The following yields have then been determined from time-resolved HO2 profiles: φCH2OH = (0.497 ± 0.013) and φCH3O = (0.503 ± 0.013). Experiments under low O2 concentrations lead to reaction mixtures containing nearly equal amounts of HO2 (converted from the first reaction) and CH3O (from the second reaction). The subsequent HO2 decays are very sensitive to the rate constants of the reaction between these two radicals and the following rate constants have been obtained: k(CH3O + CH3O) = (7.0 ± 1.4) × 10-11 cm3 s-1 and k(CH3O + HO2) = (1.1 ± 0.2) × 10-10 cm3 s-1. The latter reaction has also been theoretically investigated on the CCSD(T)//M06-2X/aug-cc-pVTZ level of theory and CH3OH + O2 have been identified as the main products. Using μVTST, a virtually pressure independent rate constant of k(CH3O + HO2) = 4.7 × 10-11 cm3 s-1 has been obtained, in good agreement with the experiment.

  8. Roles of singlet oxygen and triplet excited state of dissolved organic matter formed by different organic matters in bacteriophage MS2 inactivation

    KAUST Repository

    Rosado-Lausell, Sahid L.

    2013-09-01

    Inactivation of bacteriophage MS2 by reactive oxygen species (ROS) and triplet excited state of dissolved organic matter (3DOM*) produced by irradiation of natural and synthetic sensitizers with simulated sunlight of wavelengths greater than 320nm was investigated. Natural sensitizers included purified DOM isolates obtained from wastewater and river waters, and water samples collected from Singapore River, Stamford Canal, and Marina Bay Reservoir in Singapore. Linear correlations were found between MS2 inactivation rate constants (kobs) and the photo-induced reaction rate constants of 2,4,6-trimethylphenol (TMP), a probe compound shown to react mainly with 3DOM*. Linear correlations between MS2 kobs and singlet oxygen (1O2) concentrations were also found for both purified DOM isolates and natural water samples. These correlations, along with data from quenching experiments and experiments with synthetic sensitizers, Rose Bengal (RB), 3\\'-methoxyacetophenone (3\\'-MAP), and nitrite (NO2-), suggest that 1O2, 3DOM*, and hydroxyl radicals (•OH) could inactivate bacteriophage MS2. Linear correlations between MS2 kobs and Specific Ultraviolet Absorption determined at 254nm (SUVA254) were also found for both purified DOM isolates and natural samples. These results suggest the potential use of TMP as a chemical probe and SUVA254 as an indicator for virus inactivation in natural and purified DOM water samples. © 2013 Elsevier Ltd.

  9. Hydrolysis rate constants at 10–25 °C can be more than doubled by a short anaerobic pre-hydrolysis at 35 °C

    NARCIS (Netherlands)

    Zhang, L.; Gao, R.; Naka, A.; Hendrickx, T.L.G.; Rijnaarts, H.H.M.; Zeeman, G.

    2016-01-01

    Hydrolysis is the first step of the anaerobic digestion of complex wastewater and considered as the rate limiting step especially at low temperature. Low temperature (10–25 °C) hydrolysis was investigated with and without application of a short pre-hydrolysis at 35 °C. Batch experiments were

  10. DETERMINATION OF RATE CONSTANT AND STABILITY OF ADSORPTION IN COMPETITIVE ADSORPTION OF Cr(III AND Cd(II ON HUMIC ACID BY USING THE NEW MODEL OF KINETIC FORMULATION

    Directory of Open Access Journals (Sweden)

    Suyanta Suyanta

    2010-06-01

    Full Text Available Determination of rate and stability constants of adsorption in competitive adsorption of Cr(III and Cd(II on humic acid by using the new model of kinetic formulation has been done. The new model based on assumption that those adsorption was first order adsorption rearched equilibrium. Humic acid was isolated from Peat moss of Silaut- West Sumatra by modificated Schnitzer method. Humic acid characterization was conducted by using infrared spectrophotometer with KBR pellet method. The experiment of kinetic adsorption was conducted in batch system reactor using erlenmeyer at 25 ± 0.01 oC of water steam bath and in a series of sampling procedure. Initial concentration of both Cr(III and Cd(II was 4x10-4 M. Thirty milligrams of humic acid was added to 200 mL of metal solution, and then stirred continuously. At the fixed periode of time, 10 mL of sample was taken using a syringe, then filterd with 0.45 µm filter paper. Concentration of Cr(III and Cd(II in the filtrate was determinated by AAS, while that was adsorbed by humic acid was equal to difference between initial and equilibrium concentration. It was concluded that competitive adsorption of Cr(III and Cd(II on humic acid was first order adsorption rearched equilibrium as proposed in this research. Adsorption rate constant of Cr(III on humic acid  at competitive condition was greater than of Cd(II, but on the contrary for stability constant (K. Competition between Cr(III and Cd(II to interact with the active side of humic acid was dominated by Cr(III.   Keywords: rate constant, stability and competitive adsorption

  11. The effect of glucosyl-β-cyclodextrin on the hydrogen-deuterium exchange rate constant of the peptide bonds of chicken egg white lysozyme in a D 2O solution

    Science.gov (United States)

    Yoshikiyo, Keisuke; Sugimoto, Masatoshi; Aso, Yuji; Takahashi, Tetsuya; Matsui, Yoshihisa; Yamamoto, Tatsuyuki

    2008-10-01

    FT-IR spectroscopy revealed that the hydrogen-deuterium (H-D) exchange reaction rate of the peptide hydrogen atoms of chicken egg white lysozyme in a deuterated aqueous solution was significantly accelerated in the presence of glucosyl-β-cyclodextrin at 55 °C. The addition of methyl α- D-glucopyranoside, which has no inclusion ability, rather decelerated the H-D exchange reaction rate at the same temperature. The H-D exchange rate constant of lysozyme was evaluated by the time dependence of the absorbance ratio of the amide II infrared band against the amide I'. The H-D exchange rate constant was not influenced by the addition of glucosyl-β-cyclodextrin at 45 °C, however, it became twice larger than that in the absence of the cyclodextrin at 55 °C. These results strongly suggest that peptide bonds of lysozyme become exposed to the aqueous medium due to the inclusion by glucosyl-β-cyclodextrin to accelerate the H-D exchange rate.

  12. Whole-Body Docosahexaenoic Acid Synthesis-Secretion Rates in Rats Are Constant across a Large Range of Dietary α-Linolenic Acid Intakes.

    Science.gov (United States)

    Domenichiello, Anthony F; Kitson, Alex P; Metherel, Adam H; Chen, Chuck T; Hopperton, Kathryn E; Stavro, P Mark; Bazinet, Richard P

    2017-01-01

    Docosahexaenoic acid (DHA) is an ω-3 (n-3) polyunsaturated fatty acid (PUFA) thought to be important for brain function. Although the main dietary source of DHA is fish, DHA can also be synthesized from α-linolenic acid (ALA), which is derived from plants. Enzymes involved in DHA synthesis are also active toward ω-6 (n-6) PUFAs to synthesize docosapentaenoic acid n-6 (DPAn-6). It is unclear whether DHA synthesis from ALA is sufficient to maintain brain DHA. The objective of this study was to determine how different amounts of dietary ALA would affect whole-body DHA and DPAn-6 synthesis rates. Male Long-Evans rats were fed an ALA-deficient diet (ALA-D), an ALA-adequate (ALA-A) diet, or a high-ALA (ALA-H) diet for 8 wk from weaning. Dietary ALA concentrations were 0.07%, 3%, and 10% of the fatty acids, and ALA was the only dietary PUFA that differed between the diets. After 8 wk, steady-state stable isotope infusion of labeled ALA and linoleic acid (LA) was performed to determine the in vivo synthesis-secretion rates of DHA and DPAn-6. Rats fed the ALA-A diet had an ∼2-fold greater capacity to synthesize DHA than did rats fed the ALA-H and ALA-D diets, and a DHA synthesis rate that was similar to that of rats fed the ALA-H diet. However, rats fed the ALA-D diet had a 750% lower DHA synthesis rate than rats fed the ALA-A and ALA-H diets. Despite enrichment into arachidonic acid, we did not detect any labeled LA appearing as DPAn-6. Increasing dietary ALA from 3% to 10% of fatty acids did not increase DHA synthesis rates, because of a decreased capacity to synthesize DHA in rats fed the ALA-H diet. Tissue concentrations of DPAn-6 may be explained at least in part by longer plasma half-lives. © 2017 American Society for Nutrition.

  13. Flash photolytic generation and study of p-quinone methide in aqueous solution. An estimate of rate and equilibrium constants for heterolysis of the carbon-bromine bond in p-hydroxybenzyl bromide.

    Science.gov (United States)

    Chiang, Y; Kresge, A J; Zhu, Y

    2002-06-05

    Flash photolysis of p-hydroxybenzyl acetate in aqueous perchloric acid solution and formic acid, acetic acid, biphosphate ion, and tris(hydroxymethyl)methylammonium ion buffers produced p-quinone methide as a short-lived species that underwent hydration to p-hydroxybenzyl alcohol in hydronium ion catalyzed (k(H(+)) = 5.28 x 10(4) M(-1) s(-1)) and uncatalyzed (k(uc) = 3.33 s(-1)) processes. The inverse nature of the solvent isotope effect on the hydronium ion-catalyzed reaction, k(H(+))/k(D(+)) = 0.41, indicates that this process occurs by rapid and reversible protonation of the quinone methide on its carbonyl carbon atom, followed by rate-determining capture of the p-hydroxybenzyl carbocation so produced by water, while the magnitude of the rate constant on the uncatalyzed process indicates that this reaction occurs by simple nucleophilic addition of water to the methylene group of the quinone methide. p-Quinone methide also underwent hydronium ion-catalyzed and uncatalyzed nucleophilic addition reactions with chloride ion, bromide ion, thiocyanate ion, and thiourea. The solvent isotope effects on the hydronium ion-catalyzed processes again indicate that these reactions occurred by preequilibrium mechanisms involving a p-hydroxybenzyl carbocation intermediate, and assignment of a diffusion-controlled value to the rate constant for reaction of this cation with thiocyanate ion led to K(SH) = 110 M as the acidity constant of oxygen-protonated p-quinone methide. In a certain perchloric acid concentration range, the bromide ion reaction became biphasic, and least-squares analysis of the kinetic data using a double-exponential function provided k(Br(-)) = 3.8 x 10(8) M(-1) s(-1) as the rate constant for nucleophilic capture of the p-hydroxybenzyl carbocation by bromide ion, k(ionz) = 8.5 x 10(2) s(-1) for ionization of the carbon-bromine bond of p-hydroxybenzyl bromide, and K = 4.5 x 10(5) M(-1) as the equilibrium constant for the carbocation-bromide ion combination

  14. Comparative analysis of the heat transfer rates in constant (CAV) and variable (VAV) volumes type multi zone acclimation system operating in hot and humid climate; Analise comparativa das taxas transferencia de calor em sistemas de climatizacao do tipo volume de ar constante (CAV) e volume de ar variavel (VAV) multizona operando em clima quente e umido

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Cesar A.G.; Correa, Jorge E. [Para Univ., Belem (Brazil). Centro Tecnologico. Dept. de Engenharia Mecanica]. E-mails: gsantos@ufpa.br; jecorrea@amazon.com.br

    2000-07-01

    This work performs a comparative analysis among the constant and variable air volume multi zones acclimation systems, used for provide the thermal comfort in buildings. The work used the simulation HVAC2KIT computer program. The results of sensible and latent heats transfer rates on the cooling and dehumidification, inflating fan capacity, and heat transfer on the final heating condenser were obtained and analysed for the climate conditions of the Brazilian city of Belem from Para State, presenting hot and humid climate during all the year.

  15. Effects of PEF and heat pasteurization on PME activity in orange juice with regard to a new inactivation kinetic model.

    Science.gov (United States)

    Agcam, E; Akyıldız, A; Evrendilek, G Akdemir

    2014-12-15

    The inactivation kinetics of pectin methyl esterase (PME) during the shelf life (4°C-180 days) of freshly squeezed orange juice samples processed by both pulsed electric fields (PEF) and heat pasteurization (HP) was evaluated in the study. The PME inactivation level after the PEF (25.26 kV/cm-1206.2 μs) and HP (90°C-20s) treatments were 93.8% and 95.2%, respectively. The PME activity of PEF-processed samples decreased or did not change, while that of HP samples increased during storage (pPME inactivation as a function of the PEF treatment conditions, and this enabled the estimation of the reaction rate constant (587.8-2375.4s(-1)), and the time required for a 90% reduction (De, 3917.7-969.5s). Quantification of the increase in PEF energy to ensure a ten-fold reduction in De (ze, 63.7 J), activation electric fields (-921.2 kV cm(-1)mol(-1)), and electrical activation energy (12.9 kJ mol(-1)) was also carried out. Consequently, PEF processing was very effective for the inactivation of PME and for providing stability of orange juice during storage. Copyright © 2014. Published by Elsevier Ltd.

  16. Cheap but accurate calculation of chemical reaction rate constants from ab initio data, via system-specific, black-box force fields.

    Science.gov (United States)

    Steffen, Julien; Hartke, Bernd

    2017-10-28

    Building on the recently published quantum-mechanically derived force field (QMDFF) and its empirical valence bond extension, EVB-QMDFF, it is now possible to generate a reliable potential energy surface for any given elementary reaction step in an essentially black box manner. This requires a limited and pre-defined set of reference data near the reaction path and generates an accurate approximation of the reference potential energy surface, on and off the reaction path. This intermediate representation can be used to generate reaction rate data, with far better accuracy and reliability than with traditional approaches based on transition state theory (TST) or variational extensions thereof (VTST), even if those include sophisticated tunneling corrections. However, the additional expense at the reference level remains very modest. We demonstrate all this for three arbitrarily chosen example reactions.

  17. Effective rate constants and uptake coefficients for the reactions of organic molecular markers (n-alkanes, hopanes, and steranes) in motor oil and diesel primary organic aerosols with hydroxyl radicals.

    Science.gov (United States)

    Lambe, Andrew T; Miracolo, Marissa A; Hennigan, Christopher J; Robinson, Allen L; Donahue, Neil M

    2009-12-01

    Hydroxyl radical (OH) uptake by organic aerosols, followed by heterogeneous oxidation, happens nearly at the collision frequency. Oxidation complicates the use of organic molecular markers such as hopanes for source apportionment, since receptor models assume markers are stable during transport. We report the oxidation kinetics of organic molecular markers (C(25)-C(32) n-alkanes, hopanes and steranes) in motor oil and primary organic aerosol emitted from a diesel engine at atmospherically relevant conditions inside a smog chamber. A thermal desorption aerosol gas chromatograph/mass spectrometer (TAG) and Aerodyne high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) were used to measure the changes in molecular comosition and bulk primary organic aerosol. From the measured changes in molecular composition, we calculated effective OH rate constants, effective relative rate constants, and effective uptake coefficients for molecular markers. Oxidation rates varied with marker volatility, with more volatile markers being oxidized at rates much faster than could be explained from heterogeneous oxidation. This rapid oxidation can be explained by significant gas-phase OH oxidation that dominates heterogeneous oxidation, resulting in overall oxidation lifetimes of 1 day or less. Based on our results, neglecting oxidation of molecular markers used for source apportionment could introduce significant error, since many common markers such as norhopane appear to be semivolatile under atmospheric conditions.

  18. Inactivation kinetics of formaldehyde on N-acetyl-β-D-glucosaminidase from Nile tilapia (Oreochromis niloticus).

    Science.gov (United States)

    Zhang, Wei-Ni; Bai, Ding-Ping; Lin, Xin-Yu; Chen, Qing-Xi; Huang, Xiao-Hong; Huang, Yi-Fan

    2014-04-01

    Formaldehyde is a widely used sanitizer in aquaculture in China, while the appropriate concentration is not available to be used effectively and without damage to tilapia much less to its reproductive function. N-acetyl-β-D-glucosaminidase (EC 3.2.1.52, NAGase), hydrolyzing the oligomers of N-acetyl-β-D-glucosamine into monomer, is proved to be correlated with reproduction of male animals. In this paper, NAGase from spermary of tilapia was chosen as the material to study the effects of formaldehyde on its activity in order to further investigate the effects of formaldehyde use on tilapia reproduction. The results showed the relationship between the residual enzyme activity and the concentration of formaldehyde was concentration dependent, and the IC50 value was estimated to be 3.2 ± 0.1 %. Appropriate concentration of formaldehyde leaded to competitive reversible inhibition on tilapia NAGase. Moreover, formaldehyde could reduce the thermal and pH stability of the enzyme. The inactivation kinetics of formaldehyde on the enzyme was studied using the kinetic method of substrate reaction. The inactivation model was setup, and the rate constants were determined. The results showed that the inactivation of formaldehyde on tilapia NAGase was a slow, reversible reaction with partially residual activity. The results will give some basis to determine the concentration of formaldehyde used in tilapia culture.

  19. Ion exchange equilibrium constants

    CERN Document Server

    Marcus, Y

    2013-01-01

    Ion Exchange Equilibrium Constants focuses on the test-compilation of equilibrium constants for ion exchange reactions. The book first underscores the scope of the compilation, equilibrium constants, symbols used, and arrangement of the table. The manuscript then presents the table of equilibrium constants, including polystyrene sulfonate cation exchanger, polyacrylate cation exchanger, polymethacrylate cation exchanger, polysterene phosphate cation exchanger, and zirconium phosphate cation exchanger. The text highlights zirconium oxide anion exchanger, zeolite type 13Y cation exchanger, and

  20. Development of a chemical kinetic measurement apparatus and the determination of the reaction rate constants for lithium-lead/water interaction

    International Nuclear Information System (INIS)

    Biney, P.O.

    1993-04-01

    An experimental set-up for accurate measurement of hydrogen generation rate in Lithium-Lead (Li 17 Pb 83 ) Steam or water interactions has been designed. The most important features of the design include a pneumatic actuated quick opening and closing high temperature all stainless steel valve used to control the reaction time and the placement of most measuring devices below a water line to minimize leakage of the hydrogen collected. A PC based data acquisition and control system provides remote process sequencing, acquisition and control of all major components of the set-up. Initial tests indicate that the first design objective of maintaining leakproof gas collection chamber has been achieved. Initial pressure tests indicated that the pressure drop over a time span of 30 minutes was within the tolerance of the pressure transducer used to measure the pressure (within 0.690 kPa) at a nominal system pressure of 685 kPa. The experimental system hardware, data acquisition and control programs and data analysis program have been completed, tested and are currently functional

  1. Determination of the rate constants of the reactions CO/sub 2/+OH/sup -/ -> HCO/sub 3//sup -/ and barbituric acid -> barbiturate anion -> H/sup -/ using the pulse radiolyse technique

    Energy Technology Data Exchange (ETDEWEB)

    Schuchmann, M.N.; von Sonntag, C.

    1982-09-01

    The kinetics of the reactions of CO/sub 2/ + OH /sup -/-> HCO/sub 3//sup -/ (i) and barbituric acid -> barbiturate anion + H/sup +/ (ii) have been remeasured using as a new approach the pulse radiolysis technique with optical and conductivity detection. The rate constants obtained in the present study, ksub(j) (21/sup 0/C) = 6900 +- 700 M/sup -1/ s/sup -1/ and ksub(II) (19/sup 0/C) = 22 +- 2 s/sup -1/ agree within experimental errors with values obtained earlier by other methods.

  2. Determinação da constante cinética de cristalização não-isotérmica de polipropilenos modificados com ácido acrílico e anidrido maleico Determination of the non-isothermal crystallization rate constant of grafted maleic anhydride and grafted acrylic acid polypropylenes

    Directory of Open Access Journals (Sweden)

    Benjamim de M. Carvalho

    2006-12-01

    Full Text Available O propósito do presente trabalho foi testar a validade do Método da Curva Mestre para a determinação da constante de cristalização não-isotérmica de polipropilenos modificados com anidrido maleico e ácido acrílico. Experimentos de cristalização não-isotérmica foram realizados a diversas taxas de resfriamento por meio de Calorimetria Exploratória Diferencial (DSC. Para serem usadas no Método da Curva Mestre, as curvas originais obtidas em DSC foram corrigidas em termos da defasagem de temperatura entre a amostra polimérica e o forno do equipamento. A equação de Nakamura e a constante de cristalização determinada foram utilizadas para simular as curvas de cristalinidade relativa em função da temperatura para as diversas taxas de resfriamento. As curvas simuladas apresentaram boa concordância com as curvas experimentais para ambas as amostras de polipropileno modificado, mostrando que o Método da Curva Mestre pode ser empregado com sucesso para este polímero.The purpose of the present work was to evaluate the Master Curve Approach in the determination of the non-isothermal crystallization constant, for samples of two modified polypropylenes (grafted maleic anhydride and grafted acrylic acid polypropylenes. Non-isothermal crystallization experiments were carried out in a differential scanning calorimeter, DSC, at several cooling rates. The original DSC curves were corrected for the temperature lag between the sample and the DSC furnace. The Nakamura equation and the non-isothermal crystallization constant obtained by the Master Curve Approach were employed to simulate the curves of relative crystallinity as a function of temperature, for the different cooling rates. The generated curves presented good agreement with the experimental data for both samples of grafted polypropylene, showing that the Master Curve Approach can be successfully employed for these polymers.

  3. Inactivation of Aujeszky's disease virus in slurry at various temperatures

    DEFF Research Database (Denmark)

    Bøtner, Anette

    1991-01-01

    Survival of Aujeszky's disease virus in pig slurry was investigated during anaerobic storage at 5, 20, 35, 40, 45, 50 and 55°C using 100-ml laboratory models simulating the conditions in slurry tanks during winter and summer seasons and during anaerobic digestion in batch reactors. The inactivation...... rate was found to increase with increasing temperature. Virus was inactivated at 5 and 20°C in 15 weeks and 2 weeks, respectively. At 35°C (mesophilic conditions) the virus was inactivated in 5 hours and at 55°C (thermophilic conditions) no virus could be detected after 10 minutes....

  4. Synergism of UV Radiation and Heat for Cell Inactivation

    International Nuclear Information System (INIS)

    Kim, Jin-Kyu; Lee, Yun-Jong; Lee, Ju-Woon; Kim, Su-Hyoun; Petin, Vladislav G.

    2006-01-01

    Organisms including human beings are constantly exposed to UV radiation. The potential hazards of UV radiation have risen due to a depletion of the protective ozone layer in the stratosphere and the formation of ozone holes. Moreover, the effect of UV radiation may greatly increase due to synergistic interaction of UV radiation with other environmental factors. Fluence rate is known to constitute a very important parameter in photobiology. While it is generally accepted that lowering the UV radiation fluence rate results in a decrease of the cell killing or mutagenesis efficiency per unit dose, the matter is still unclear with regards to the synergistic interaction of UV radiation and another environmental agent. It is of great interest to investigate whether or not the synergistic interaction can take place at low intensities of such environmental factors. Heat is known to be an important modifier of UV radiation sensitivity. Exposure of skin to UV radiation is often encountered at hot ambient temperatures. Therefore, the elucidation of new fundamental aspects of the simultaneous action of UV radiation and heat is an actual task. Thus, the purpose of the present work was to establish whether the UV fluence rate alters the synergistic interaction between heat and UV radiation for cell inactivation

  5. Role of Temperature and Suwannee River Natural Organic Matter on Inactivation Kinetics of Rotavirus and Bacteriophage MS2 by Solar Irradiation

    KAUST Repository

    Romero, Ofelia C.

    2011-12-15

    Although the sunlight-mediated inactivation of viruses has been recognized as an important process that controls surface water quality, the mechanisms of virus inactivation by sunlight are not yet clearly understood. We investigated the synergistic role of temperature and Suwannee River natural organic matter (SRNOM), an exogenous sensitizer, for sunlight-mediated inactivation of porcine rotavirus and MS2 bacteriophage. Upon irradiation by a full spectrum of simulated sunlight in the absence of SRNOM and in the temperature range of 14-42 °C, high inactivation rate constants, kobs, of MS2 (k obs ≤ 3.8 h-1 or 1-log10 over 0.6 h) and rotavirus (kobs ≤ 11.8 h-1 or ∼1-log10 over 0.2 h) were measured. A weak temperature (14-42 °C) dependence of kobs values was observed for both viruses irradiated by the full sunlight spectrum. Under the same irradiation condition, the presence of SRNOM reduced the inactivation of both viruses due to attenuation of lower wavelengths of the simulated sunlight. For rotavirus and MS2 solutions irradiated by only UVA and visible light in the absence of SRNOM, inactivation kinetics were slow (kobs < 0.3 h-1 or <1-log10 unit reduction over 7 h) and temperature-independent for the range considered. Conversely, under UVA and visible light irradiation and in the presence of SRNOM, temperature-dependent inactivation of MS2 was observed. For rotavirus, the SRNOM-mediated exogenous inactivation was only important at temperatures >33 °C, with low rotavirus kobs values (kobs ≈ 0.2 h-1; 1-log10 unit reduction over 12 h) for the temperature range of 14-33 °C. These kobs values increased to 0.5 h-1 at 43 °C and 1.5 h-1 (1-log10 reduction over 1.6 h) at 50 °C. While SRNOM-mediated exogenous inactivation of MS2 was triggered by singlet oxygen, the presence of hydrogen peroxide was important for rotavirus inactivation in the 40-50 °C range. © 2011 American Chemical Society.

  6. Time-dependent 31P saturation transfer in the phosphoglucomutase reaction. Characterization of the spin system for the Cd(II) enzyme and evaluation of rate constants for the transfer process

    International Nuclear Information System (INIS)

    Post, C.B.; Ray, W.J. Jr.; Gorenstein, D.G.

    1989-01-01

    Time-dependent 31 P saturation-transfer studies were conducted with the Cd 2+ -activated form of muscle phosphoglucomutase to probe the origin of the 100-fold difference between its catalytic efficiency (in terms of k cat ) and that of the more efficient Mg 2+ -activated enzyme. The present paper describes the equilibrium mixture of phosphoglucomutase and its substrate/product pair when the concentration of the Cd 2+ enzyme approaches that of the substrate and how the nine-spin 31 P NMR system provided by this mixture was treated. It shows that the presence of abortive complexes is not a significant factor in the reduced activity of the Cd 2+ enzyme since the complex of the dephosphoenzyme and glucose 1,6-bisphosphate, which accounts for a large majority of the enzyme present at equilibrium, is catalytically competent. It also shows that rate constants for saturation transfer obtained at three different ratios of enzyme to free substrate are mutually compatible. These constants, which were measured at chemical equilibrium, can be used to provide a quantitative kinetic rationale for the reduced steady-state activity elicited by Cd 2+ relative to Mg 2+ . They also provide minimal estimates of 350 and 150 s -1 for the rate constants describing (PO 3 - ) transfer from the Cd 2+ phosphoenzyme to the 6-position of bound glucose 1-phosphate and to the 1-position of bound glucose 6-phosphate, respectively. These minimal estimates are compared with analogous estimates for the Mg 2+ and Li + forms of the enzyme in the accompanying paper

  7. Effect of 12 weeks of once-daily tiotropium/olodaterol on exercise endurance during constant work-rate cycling and endurance shuttle walking in chronic obstructive pulmonary disease.

    Science.gov (United States)

    Maltais, François; O'Donnell, Denis; Gáldiz Iturri, Juan Bautista; Kirsten, Anne-Marie; Singh, Dave; Hamilton, Alan; Tetzlaff, Kay; Zhao, Yihua; Casaburi, Richard

    2018-01-01

    The TORRACTO ® study evaluated the effects of tiotropium/olodaterol versus placebo on endurance time during constant work-rate cycling and constant speed shuttle walking in patients with chronic obstructive pulmonary disease (COPD) after 12 weeks of treatment. The effects of once-daily tiotropium/olodaterol (2.5/5 and 5/5 μg) on endurance time during constant work-rate cycle ergometry (CWRCE) after 6 and 12 weeks of treatment were compared with placebo in patients with COPD in a randomized, double-blind, placebo-controlled, parallel-group clinical trial. Endurance time during the endurance shuttle walk test (ESWT) after 6 and 12 weeks of treatment was also evaluated in a subset of patients. A total of 404 patients received treatment, with 165 participating in the ESWT substudy. A statistically significant improvement in endurance time during CWRCE was observed after 12 weeks (primary endpoint) with tiotropium/olodaterol 5/5 µg [14% ( p = 0.02)] but not with tiotropium/olodaterol 2.5/5 µg [9% ( p = 0.14)] versus placebo. In the ESWT substudy, a trend to improvement in endurance time during ESWT after 12 weeks (key secondary endpoint) was observed with tiotropium/olodaterol 5/5 µg [21% ( p = 0.055)] and tiotropium/olodaterol 2.5/5 µg [21% ( p = 0.056)] versus placebo. Tiotropium/olodaterol 5/5 µg improved endurance time during cycle ergometry versus placebo, with a strong tendency to also improve walking endurance time. [ ClinicalTrials.gov identifier: NCT01525615.].

  8. In vitro studies of chlorin e6-assisted photodynamic inactivation of Helicobacter pylori

    Science.gov (United States)

    Simon, C.; Mohrbacher, C.; Hüttenberger, D.; Bauer-Marschall, Ina; Krickhahn, C.; Stachon, A.; Foth, H.-J.

    2014-03-01

    Helicobacter pylori (HP), a gram-negative microaerophilic bacterium located in gastric mucosa, plays an im- portant role in gastro carcinogenesis. Due to the increasing emergence of antibiotic resistance, photodynamic inactivation of bacteria presents a new approach to treat bacterial infections, like HP. In vitro experiments were performed to determine the irradiation conditions for a complete inactivation of HP with the photosensitizer Chlorin e6 (Ce6). The HP strain CCUG 38770 (Culture Collection, University of Gothenburg, Sweden) was routinely cultured under microaerophilic conditions, suspended in sodium chloride, incubated with Ce6 and irradiated briefly with red light of the appropriate wavelength of λ = 660 nm. Series of measurements of different Ce6-concentrations (0.1 μM - 100 μM) were carried out, whereby the incubation time was kept constant at 1 min. The absorbed energy dose has been selected in varying the irradiation time (1 s - 300 s) and the power density (4.5 mW/cm2 - 31 mW/cm2 ). Quantification of inactivation was performed by enumeration of the grown colonies. In addition, the accumulation of Ce6 in HP cells was studied more precisely by uorescence spectroscopy. With a Ce6 concentration of 100 μM and a power density of 9 mW cm2 , a 6-log10 reduction in the survival rate of HP was achieved within 30 seconds of irradiation. In conclusion the most relevant factor for the inactivation of HP is the exposure time of irradiation, followed by the concentration of Ce6 and the light intensity. Further studies with HP strains obtained from patient specimens are under current investigation.

  9. Estimation of hydrolysis rate constants for carbamates

    Science.gov (United States)

    Cheminformatics based tools, such as the Chemical Transformation Simulator under development in EPA’s Office of Research and Development, are being increasingly used to evaluate chemicals for their potential to degrade in the environment or be transformed through metabolism...

  10. Inactivation of Lassa, Marburg, and Ebola viruses by gamma irradiation

    International Nuclear Information System (INIS)

    Elliott, L.H.; McCormick, J.B.; Johnson, K.M.

    1982-01-01

    Because of the cumbersome conditions experienced in a maximum containment laboratory, methods for inactivating highly pathogenic viruses were investigated. The infectivity of Lassa, Marburg, and Ebola viruses was inactivated without altering the immunological activity after radiation with 60 CO gamma rays. At 4 degrees C, Lassa virus was the most difficult to inactivate with a rate of 5.3 X 10(-6) log 50% tissue culture infective dose per rad of 60 CO radiation, as compared with 6.8 X 10(-6) log 50% tissue culture infective dose per rad for Ebola virus and 8.4 X 10(-6) log 50% tissue culture infective dose per rad for Marburg virus. Experimental inactivation curves, as well as curves giving the total radiation needed to inactivate a given concentration of any of the three viruses, are presented. The authors found this method of inactivation to be superior to UV light or beta-propiolactone inactivation and now routinely use it for preparation of material for protein-chemistry studies or for preparation of immunological reagents

  11. Rating

    OpenAIRE

    Karas, Vladimír

    2006-01-01

    Charakteristika ratingu. Dělení a druhy ratingu (rating emise × rating emitenta; dlouhodobý rating × krátkodobý rating; mezinárodní rating × lokální rating). Obecné požadavky kladené na rating. Proces tvorby ratingu. Vyžádaný rating. Nevyžádaný rating. Ratingový proces na bázi volně přístupných informací. Uplatňované ratingové systémy. Ratingová kriteria. Využití a interpretace ratingové známky. Funkce ratingu. Rating v souvislosti s BASEL II. Rating v souvislosti s hospodářskými krizemi....

  12. ESR melting under constant voltage conditions

    Energy Technology Data Exchange (ETDEWEB)

    Schlienger, M.E.

    1997-02-01

    Typical industrial ESR melting practice includes operation at a constant current. This constant current operation is achieved through the use of a power supply whose output provides this constant current characteristic. Analysis of this melting mode indicates that the ESR process under conditions of constant current is inherently unstable. Analysis also indicates that ESR melting under the condition of a constant applied voltage yields a process which is inherently stable. This paper reviews the process stability arguments for both constant current and constant voltage operation. Explanations are given as to why there is a difference between the two modes of operation. Finally, constant voltage process considerations such as melt rate control, response to electrode anomalies and impact on solidification will be discussed.

  13. A kinetic study of the suicide inactivation of an enzyme measured through coupling reactions. Application to the suicide inactivation of tyrosinase.

    Science.gov (United States)

    Escribano, J; Tudela, J; Garcia-Carmona, F; Garcia-Canovas, F

    1989-01-01

    A systematic procedure for the kinetic study of reaction mechanisms with enzyme inactivation induced by a suicide substrate in the presence or in the absence of an auxiliary substrate, when the enzyme activity is measured through coupling reactions, enzymically catalysed or not, was developed and analysed by using the transient-phase approach. The methodology is established to determine the parameters and kinetic constants corresponding to the enzyme suicide inactivation and the coupling reactions. This approach is illustrated by a study of the suicide inactivation of tyrosinase by catechol in the presence of L-proline. Treatment of the experimental data was carried out by non-linear regression. PMID:2508631

  14. The Fine Structure Constant

    Indian Academy of Sciences (India)

    IAS Admin

    The article discusses the importance of the fine structure constant in quantum mechanics, along with the brief history of how it emerged. Al- though Sommerfelds idea of elliptical orbits has been replaced by wave mechanics, the fine struc- ture constant he introduced has remained as an important parameter in the field of ...

  15. The Cosmological Constant

    Directory of Open Access Journals (Sweden)

    Carroll Sean M.

    2001-01-01

    Full Text Available This is a review of the physics and cosmology of the cosmological constant. Focusing on recent developments, I present a pedagogical overview of cosmology in the presence of a cosmological constant, observational constraints on its magnitude, and the physics of a small (and potentially nonzero vacuum energy.

  16. On Aryabhata's Planetary Constants

    OpenAIRE

    Kak, Subhash

    2001-01-01

    This paper examines the theory of a Babylonian origin of Aryabhata's planetary constants. It shows that Aryabhata's basic constant is closer to the Indian counterpart than to the Babylonian one. Sketching connections between Aryabhata's framework and earlier Indic astronomical ideas on yugas and cyclic calendar systems, it is argued that Aryabhata's system is an outgrowth of an earlier Indic tradition.

  17. Systematics of constant roll inflation

    Science.gov (United States)

    Anguelova, Lilia; Suranyi, Peter; Wijewardhana, L. C. R.

    2018-02-01

    We study constant roll inflation systematically. This is a regime, in which the slow roll approximation can be violated. It has long been thought that this approximation is necessary for agreement with observations. However, recently it was understood that there can be inflationary models with a constant, and not necessarily small, rate of roll that are both stable and compatible with the observational constraint ns ≈ 1. We investigate systematically the condition for such a constant-roll regime. In the process, we find a whole new class of inflationary models, in addition to the known solutions. We show that the new models are stable under scalar perturbations. Finally, we find a part of their parameter space, in which they produce a nearly scale-invariant scalar power spectrum, as needed for observational viability.

  18. Studies on the distribution of radioactivity in the organism during constant intravenous infusion of tracer amino acids and on the calculation of the rate of tissue protein synthesis in rats

    International Nuclear Information System (INIS)

    Simon, O.; Bergner, H.; Wolf, E.

    1978-01-01

    Male wistar rats (100 p body weight) were infused into the tail vein with 14 C-leucine and 14 C-lysine simultaneously for 0.5; 1.0; 2.0; 3.0; 4.5; 6.0 and 7.0 hours. At the end of the infusion the specific radioactivity was determined of the free leucine and lysine in the blood plasma, liver, M. gastrocnemius, small intestine, and colon as well as of the protein-bound leucine and lysine. In all the tissues tested the specific radioactivity of the free amino acids attained a plateau during the 6-hour and 7-hour infusions. The rate constants for the increase were calculated for each organ tested. The two amino acids used are suitable for calculating the fractional rate of protein synthesis in tissues. The values of the fractional rate of protein synthesis calculated on the basis of the 6-hour and 7-hour infusions were: 54+-7.7%/day for the liver, 9.4+-1.2%/day for the muscles, 89+-12.2%/day for the small intestine, and 42+-5.9%/day for the colon. The simultaneous application of two tracer amino acids is recommendable for estimating the precursor pool of the protein synthesis and the more accurate calculation of the rate of protein synthesis. (author)

  19. Use of an exchange method to estimate the association and dissociation rate constants of cadmium complexes formed with low-molecular-weight organic acids commonly exuded by plant roots.

    Science.gov (United States)

    Schneider, André; Nguyen, Christophe

    2011-01-01

    Organic acids released from plant roots can form complexes with cadmium (Cd) in the soil solution and influence metal bioavailability not only due to the nature and concentration of the complexes but also due to their lability. The lability of a complex influences its ability to buffer changes in the concentration of free ions (Cd); it depends on the association (, m mol s) and dissociation (, s) rate constants. A resin exchange method was used to estimate and (m mol s), which is the conditional estimate of depending on the calcium (Ca) concentration in solution. The constants were estimated for oxalate, citrate, and malate, three low-molecular-weight organic acids commonly exuded by plant roots and expected to strongly influence Cd uptake by plants. For all three organic acids, the and estimates were around 2.5 10 m mol s and 1.3 × 10 s, respectively. Based on the literature, these values indicate that the Cd- low-molecular-weight organic acids complexes formed between Cd and low-molecular-weight organic acids may be less labile than complexes formed with soil soluble organic matter but more labile than those formed with aminopolycarboxylic chelates. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  20. The H + HeH(+) → He + H2(+) reaction from the ultra-cold regime to the three-body breakup: exact quantum mechanical integral cross sections and rate constants.

    Science.gov (United States)

    De Fazio, Dario

    2014-06-21

    In this work, we present a quantum mechanical scattering study of the title reaction from 1 mK to 2000 K. Total integral cross sections and thermal rate constants are compared with previous theoretical and experimental data and with simpler theoretical models to understand the range of validity of the approximations used in the previous studies. The obtained quantum reactive observables have been found to be nearly insensitive to the roto-vibrational energy of the reactants at high temperatures. More sensitive to the reactant's roto-vibrational energy are the data in the cold and ultra-cold regimes. The implications of the new data presented here in the early universe scenario are also discussed and analyzed.

  1. Transition state theory thermal rate constants and RRKM-based branching ratios for the N((2)D) + CH(4) reaction based on multi-state and multi-reference ab initio calculations of interest for the Titan's chemistry.

    Science.gov (United States)

    Ouk, Chanda-Malis; Zvereva-Loëte, Natalia; Scribano, Yohann; Bussery-Honvault, Béatrice

    2012-10-30

    Multireference single and double configuration interaction (MRCI) calculations including Davidson (+Q) or Pople (+P) corrections have been conducted in this work for the reactants, products, and extrema of the doublet ground state potential energy surface involved in the N((2)D) + CH(4) reaction. Such highly correlated ab initio calculations are then compared with previous PMP4, CCSD(T), W1, and DFT/B3LYP studies. Large relative differences are observed in particular for the transition state in the entrance channel resolving the disagreement between previous ab initio calculations. We confirm the existence of a small but positive potential barrier (3.86 ± 0.84 kJ mol(-1) (MR-AQCC) and 3.89 kJ mol(-1) (MRCI+P)) in the entrance channel of the title reaction. The correlation is seen to change significantly the energetic position of the two minima and five saddle points of this system together with the dissociation channels but not their relative order. The influence of the electronic correlation into the energetic of the system is clearly demonstrated by the thermal rate constant evaluation and it temperature dependance by means of the transition state theory. Indeed, only MRCI values are able to reproduce the experimental rate constant of the title reaction and its behavior with temperature. Similarly, product branching ratios, evaluated by means of unimolecular RRKM theory, confirm the NH production of Umemoto et al., whereas previous works based on less accurate ab initio calculations failed. We confirm the previous findings that the N((2)D) + CH(4) reaction proceeds via an insertion-dissociation mechanism and that the dominant product channels are CH(2)NH + H and CH(3) + NH. Copyright © 2012 Wiley Periodicals, Inc.

  2. Kinetics of Thermal Inactivation of Peroxidase and Color Degradation of African Cowpea (Vigna unguiculata) Leaves.

    Science.gov (United States)

    Wawire, Michael; Oey, Indrawati; Mathooko, Francis M; Njoroge, Charles K; Shitanda, Douglas; Hendrickx, Marc

    2016-01-01

    Cowpea leaves form an important part of the diet for many Kenyans, and they are normally consumed after a lengthy cooking process leading to the inactivation of peroxidase (POD) that could be used as an indicator for the potential shelf life of the vegetables. However, color degradation can simultaneously occur, leading to poor consumer acceptance of the product. The kinetics of POD in situ thermal (for thermal treatments in the range of 75 to 100 °C/120 min) inactivation showed a biphasic first-order model, with Arrhenius temperature dependence of the rate constant. The kinetic parameters using a reference temperature (Tref ) of 80 °C were determined for both the heat-labile phase (kref = 11.52 ± 0.95 × 10(-2) min(-1) and Ea of 109.67 ± 6.20 kJ/mol) and the heat-stable isoenzyme fraction (kref = 0.29 ± 0.07 × 10(-2) min(-1) and Ea of 256.93 ± 15.27 kJ/mol). Color degradation (L*, a*, and b* value) during thermal treatment was investigated, in particular as the "a*" value (the value of green color). Thermal degradation (thermal treatments between 55 and 80 °C per 90 min) of the green color of the leaves followed a fractional conversion model and the temperature dependence of the inactivation rate constant can be described using the Arrhenius law. The kinetic parameters using a reference temperature (TrefC = 70 °C) were determined as krefC = 13.53 ± 0.01 × 10(-2) min(-1) and EaC = 88.78 ± 3.21 kJ/mol. The results indicate that severe inactivation of POD (as an indicator for improved shelf life of the cooked vegetables) is accompanied by severe color degradation and that conventional cooking methods (typically 10 min/100 °C) lead to a high residual POD activity suggesting a limited shelf life of the cooked vegetables. © 2015 Institute of Food Technologists®

  3. The cosmological constant problem

    International Nuclear Information System (INIS)

    Dolgov, A.D.

    1989-05-01

    A review of the cosmological term problem is presented. Baby universe model and the compensating field model are discussed. The importance of more accurate data on the Hubble constant and the Universe age is stressed. 18 refs

  4. Deconstructing the Cosmological Constant

    CERN Document Server

    Jejjala, V; Minic, D; Jejjala, Vishnu; Leigh, Robert G.; Minic, Djordje

    2003-01-01

    Deconstruction provides a novel way of dealing with the notoriously difficult ultraviolet problems of four-dimensional gravity. This approach also naturally leads to a new perspective on the holographic principle, tying it to the fundamental requirements of unitarity and diffeomorphism invariance, as well as to a new viewpoint on the cosmological constant problem. The numerical smallness of the cosmological constant is implied by a unique combination of holography and supersymmetry, opening a new window into the fundamental physics of the vacuum.

  5. Determinação das constantes cinéticas de degradação do ácido ascórbico em purê de pêssego: efeito da temperatura e concentração Determination of reaction rate constants for ascorbic acid degradation in peach pureé: effect of temperature and concentration

    Directory of Open Access Journals (Sweden)

    Ricardo Peraça Toralles

    2008-03-01

    Full Text Available O ácido ascórbico, vitamina C, é usado extensivamente na indústria de alimentos, não só devido ao seu valor nutricional, mas devido a suas contribuições funcionais na qualidade do produto. Existem muitos estudos sobre a estabilidade cinética do ácido ascórbico em bebidas, mas nenhum estudo foi encontrado sobre as constantes cinéticas de degradação do ácido ascórbico adicionado em purê de pêssego. Neste trabalho, estudou-se a cinética de degradação do ácido ascórbico em purê de pêssego da cultivar Jade, em condições anaeróbicas e na faixa de 70 a 90 °C. As concentrações de purês testadas foram 12, 22 e 32 °Brix. A análise cinética dos dados sugere que a degradação foi significativamente representada pelos modelos cinéticos de zero e primeira ordem. A velocidade de degradação do ácido ascórbico foi dependente da temperatura. A energia de ativação média foi de 45 kJ.mol-1 e independente da concentração de sólidos solúveis.Ascorbic acid (vitamin C is extensively used in the food industry, not only for its nutritional value, but also for its many functional contributions to product quality. There have been many studies on the stability of ascorbic acid in different beverages, but no study was found on the reaction rate constants for ascorbic acid degradation in peach purée. In this work, the degradation of ascorbic acid in Jade peach purée was studied in anaerobic conditions and from 70-90 °C. The peach purée concentrations tested were 12, 22 and 32 °Brix. The kinetic analysis of the data suggests that the degradation was significantly represented by zero and first-order kinetic models. The rate of ascorbic acid degradation in peach purée was temperature dependent. The average activation energy was 45 kJ.mol-1 and independent of the concentration of soluble solids.

  6. Beyond the Hubble Constant

    Science.gov (United States)

    1995-08-01

    about the distances to galaxies and thereby about the expansion rate of the Universe. A simple way to determine the distance to a remote galaxy is by measuring its redshift, calculate its velocity from the redshift and divide this by the Hubble constant, H0. For instance, the measured redshift of the parent galaxy of SN 1995K (0.478) yields a velocity of 116,000 km/sec, somewhat more than one-third of the speed of light (300,000 km/sec). From the universal expansion rate, described by the Hubble constant (H0 = 20 km/sec per million lightyears as found by some studies), this velocity would indicate a distance to the supernova and its parent galaxy of about 5,800 million lightyears. The explosion of the supernova would thus have taken place 5,800 million years ago, i.e. about 1,000 million years before the solar system was formed. However, such a simple calculation works only for relatively ``nearby'' objects, perhaps out to some hundred million lightyears. When we look much further into space, we also look far back in time and it is not excluded that the universal expansion rate, i.e. the Hubble constant, may have been different at earlier epochs. This means that unless we know the change of the Hubble constant with time, we cannot determine reliable distances of distant galaxies from their measured redshifts and velocities. At the same time, knowledge about such change or lack of the same will provide unique information about the time elapsed since the Universe began to expand (the ``Big Bang''), that is, the age of the Universe and also its ultimate fate. The Deceleration Parameter q0 Cosmologists are therefore eager to determine not only the current expansion rate (i.e., the Hubble constant, H0) but also its possible change with time (known as the deceleration parameter, q0). Although a highly accurate value of H0 has still not become available, increasing attention is now given to the observational determination of the second parameter, cf. also the Appendix at the

  7. Constant Proportion Debt Obligations (CPDOs)

    DEFF Research Database (Denmark)

    Cont, Rama; Jessen, Cathrine

    2012-01-01

    be made arbitrarily small—and thus the credit rating arbitrarily high—by increasing leverage, but the ratings obtained strongly depend on assumptions on the credit environment (high spread or low spread). More importantly, CPDO loss distributions are found to exhibit a wide range of tail risk measures......Constant Proportion Debt Obligations (CPDOs) are structured credit derivatives that generate high coupon payments by dynamically leveraging a position in an underlying portfolio of investment-grade index default swaps. CPDO coupons and principal notes received high initial credit ratings from...... the major rating agencies, based on complex models for the joint transition of ratings and spreads for all names in the underlying portfolio. We propose a parsimonious model for analysing the performance of CPDO strategies using a top-down approach that captures the essential risk factors of the CPDO. Our...

  8. Comparative analysis on inactivation kinetics of between piezotolerant and piezosensitive mutant strains of Saccharomyces cerevisiae under combinations of high hydrostatic pressure and temperature.

    Science.gov (United States)

    Nomura, Kazuki; Kuwabara, Yuki; Kuwabara, Wataru; Takahashi, Hiroyuki; Nakajima, Kanako; Hayashi, Mayumi; Iguchi, Akinori; Shigematsu, Toru

    2017-12-01

    We previously obtained a pressure-tolerant (piezotolerant) and a pressure sensitive (piezosensitive) mutant strain, under ambient temperature, from Saccharomyces cerevisiae strain KA31a. The inactivation kinetics of these mutants were analyzed at 150 to 250MPa with 4 to 40°C. By a multiple regression analysis, the pressure and temperature dependency of the inactivation rate constants k values of both mutants, as well as the parent strain KA31a, were well approximated with high correlation coefficients (0.92 to 0.95). For both mutants, as well as strain KA31a, the lowest k value was shown at a low pressure levels with around ambient temperature. The k value approximately increased with increase in pressure level, and with increase and decrease in temperature. The piezosensitive mutant strain a924E1 showed piezosensitivity at all pressure and temperature levels, compared with the parent strain KA31a. In contrast, the piezotolerant mutant strain a2568D8 showed piezotolerance at 4 to 20°C, but did not show significant piezotolerance at 40°C. These results of the variable influence of temperature on pressure inactivation of these strains would be important for better understanding of piezosensitive and piezotolerant mechanisms, as well as the pressure inactivation mechanism of S. cerevisiae. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Kinetic analysis and modelling of combined high-pressure-temperature inactivation of the yeast Zygosaccharomyces bailii.

    Science.gov (United States)

    Reyns, K M; Soontjens, C C; Cornelis, K; Weemaes, C A; Hendrickx, M E; Michiels, C W

    2000-06-01

    Eight foodborne yeasts were screened for sensitivity to high-pressure (HP) inactivation under a limited number of pressure-temperature combinations. The most resistant strains were Zygoascus hellenicus and Zygosaccharomyces bailii. The latter was taken for a detailed study of inactivation kinetics over a wide range of pressures (120-320 MPa) and temperatures (-5 to 45 degrees C). Isobaric and isothermal inactivation experiments were conducted in Tris-HCl buffer pH 6.5 for 48 different combinations of pressure and temperature. Inactivation was biphasic, with a first phase encompassing four to six decades and being described by first-order kinetics, followed by a tailing phase. Decimal reduction times (D) were calculated for the first-order inactivation phase and their temperature and pressure dependence was described. At constant temperature, D decreased with increasing pressure as expected. At constant pressure, D showed a maximum at around 20 degrees C, and decreased both at lower and at higher temperatures. A mathematical expression was developed to describe accurately the inactivation of Z. bailii as a function of pressure and temperature under the experimental conditions employed. A limited number of experiments in buffer at low pH (3-6) suggest that the model is, in principle, applicable at low pH. In apple and orange juice however, higher inactivation than predicted by the model was achieved.

  10. Elastic constants of calcite

    Science.gov (United States)

    Peselnick, L.; Robie, R.A.

    1962-01-01

    The recent measurements of the elastic constants of calcite by Reddy and Subrahmanyam (1960) disagree with the values obtained independently by Voigt (1910) and Bhimasenachar (1945). The present authors, using an ultrasonic pulse technique at 3 Mc and 25??C, determined the elastic constants of calcite using the exact equations governing the wave velocities in the single crystal. The results are C11=13.7, C33=8.11, C44=3.50, C12=4.82, C13=5.68, and C14=-2.00, in units of 1011 dyncm2. Independent checks of several of the elastic constants were made employing other directions and polarizations of the wave velocities. With the exception of C13, these values substantially agree with the data of Voigt and Bhimasenachar. ?? 1962 The American Institute of Physics.

  11. Fundamental physics constants

    International Nuclear Information System (INIS)

    Cohen, E.R.; Taylor, B.N.

    1995-01-01

    Present technological applications require the values used for the fundamental physical and chemical constants to be more and more precise and at the same time coherent. Great importance is then attached to the task of coordinating and comparing the most recent experimental data, extracting from them as a whole, by means of a least square fit, a set of values for the fundamental constants as precise and coherent as possible. The set of values which is at present in usage, derives from a fit performed in 1986, but new experimental results already promise a large reduction in the uncertainties of various constants. A new global fit that will implement such reductions is scheduled for completion in 1995 or 1996

  12. Sunlight inactivation of somatic coliphage in the presence of natural organic matter.

    Science.gov (United States)

    Sun, Chen-Xi; Kitajima, Masaaki; Gin, Karina Yew-Hoong

    2016-01-15

    Long wavelengths of sunlight spectrum (UVA and visible light), as well as natural organic matter (NOM) are important environmental factors affecting survival of viruses in aquatic environment through direct and indirect inactivation. In order to understand the virus inactivation kinetics under such conditions, this study investigated the effects of Suwannee River natural organic matter (NOM) on the inactivation of a somatic coliphage, phiX174, by UVA and visible light. Experiments were carried out to examine the virucidal effects of UVA/visible light, assess the influence of SRNOM at different concentrations, and identify the effective ROS in virus inactivation. The results from this study showed that the presence of NOM could either enhance virus inactivation or reduce virus inactivation depending on the concentration, where the inactivation rate followed a parabolic relationship against NOM concentration. The results indicated that moderate levels of NOM (11 ppm) had the strongest antiviral activity, while very low or very high NOM concentrations prolonged virus survival. The results also showed that OH▪ was the primary ROS in causing phiX174 (ssDNA virus) inactivation, unlike previous findings where (1)O2 was the primary ROS causing MS2 (ssRNA virus) inactivation. The phiX174 inactivation by OH∙ could be described as k=3.7 ✕ 10(13)[OH∙]+1.404 (R(2)=0.8527). Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Radiographic constant exposure technique

    DEFF Research Database (Denmark)

    Domanus, Joseph Czeslaw

    1985-01-01

    The constant exposure technique has been applied to assess various industrial radiographic systems. Different X-ray films and radiographic papers of two producers were compared. Special attention was given to fast film and paper used with fluorometallic screens. Radiographic image quality was tes...... was tested by the use of ISO wire IQI's and ASTM penetrameters used on Al and Fe test plates. Relative speed and reduction of kilovoltage obtained with the constant exposure technique were calculated. The advantages of fast radiographic systems are pointed out...

  14. Radiographic constant exposure technique

    DEFF Research Database (Denmark)

    Domanus, Joseph Czeslaw

    1985-01-01

    The constant exposure technique has been applied to assess various industrial radiographic systems. Different X-ray films and radiographic papers of two producers were compared. Special attention was given to fast film and paper used with fluorometallic screens. Radiographic image quality...... was tested by the use of ISO wire IQI's and ASTM penetrameters used on Al and Fe test plates. Relative speed and reduction of kilovoltage obtained with the constant exposure technique were calculated. The advantages of fast radiographic systems are pointed out...

  15. The Yamabe constant

    International Nuclear Information System (INIS)

    O Murchadha, N.

    1991-01-01

    The set of riemannian three-metrics with positive Yamabe constant defines the space of independent data for the gravitational field. The boundary of this set is investigated, and it is shown that metrics close to the boundary satisfy the positive-energy theorem. (Author) 18 refs

  16. FORMATION CONSTANTS AND THERMODYNAMIC ...

    African Journals Online (AJOL)

    , Ni(II), Cu(II) and Zn(II) ions has been ... A good deal of work has been reported on the preparation and structural investigation of. Schiff base ... Formation constants and thermodynamic parameters of Co, Ni, Cu and Zn complexes. Bull. Chem.

  17. Evolution of the solar constant

    International Nuclear Information System (INIS)

    Newman, M.J.

    1978-01-01

    The ultimate source of the energy utilized by life on Earth is the Sun, and the behavior of the Sun determines to a large extent the conditions under which life originated and continues to thrive. What can be said about the history of the Sun. Has the solar constant, the rate at which energy is received by the Earth from the Sun per unit area per unit time, been constant at its present level since Archean times. Three mechanisms by which it has been suggested that the solar energy output can vary with time are discussed, characterized by long (approx. 10 9 years), intermediate (approx. 10 8 years), and short (approx. years to decades) time scales

  18. [On true and apparent Michaelis constants in enzymology. I. Differences].

    Science.gov (United States)

    Karakhim, S A

    2011-01-01

    Differences between both true and apparent rate constants and Michaelis constants have been examined. Rate constants of elementary stages of real mechanisms are true ones. True Michaelis constant Km is expressed by equation Km = (k(-1) + k2)/k. True constants may be determined for reliable mechanism only for which the equation of initial rate was obtained which displays physical sense of these constants and permits to find the method of their calculation. The true constant values are independent of concentration of reactants, activators, inhibitors, extraneous agents and pH. The apparent rate constants are such constants of the composite reaction which are observed when this reaction is described by the equation of simple reaction. Michaelis constant calculated by a half of the ultimate constant is an apparent constant. The apparent constants may be functions of several true rate constants and/or concentrations of reacting substances. The evident physical sense of apparent constants being absent, only formal relation between the reaction rate and reactant concentration independent of the investigated mechanism is provided.

  19. Sunlight inactivation of Escherichia coli in waste stabilization microcosms in a sahelian region (Ouagadougou, Burkina Faso).

    Science.gov (United States)

    Maïga, Ynoussa; Denyigba, Kokou; Wethe, Joseph; Ouattara, Aboubakar Sidiki

    2009-02-09

    Experiments on sunlight inactivation of Escherichia coli were conducted from November 2006 to June 2007 in eight outdoors microcosms with different depths filled with maturation pond wastewater in order to determine pond depth influence on sunlight inactivation of E. coli. The long-term aim was to maximize sunlight inactivation of waterborne pathogens in waste stabilization ponds (WSPs) in sahelian regions where number of sunny days enable longer exposure of wastewater to sunlight. The inactivation was followed during daylight from 8.00 h to 17.00 h and during the night. Sunlight inactivation rates (K(S)), as a function of cumulative global solar radiation (insolation), were 16 and 24 times higher than the corresponding dark inactivation (K(D)) rates, respectively in cold and warm season. In warm season, E. coli was inactivated far more rapidly. Inactivation of E. coli follows the evolution of radiation during the day. In shallow depth microcosms, E. coli was inactivated far more rapidly than in high depth microcosms. The physical chemical parameters [pH, dissolved oxygen (DO)] of microcosms water were higher in shallow depth microcosms than in high depth microcosms suggesting a synergistic effect of sunlight and these parameters to damage E. coli. To increase the efficiency of the elimination of waterborne bacteria, the use of maturation ponds with intermediate depths (0.4m) would be advisable in view of the high temperatures and thus evaporation recorded in sahelian regions.

  20. Pulsed dielectric barrier discharge for Bacillus subtilis inactivation in water

    International Nuclear Information System (INIS)

    Hernández-Arias, A N; López-Callejas, R; De la Piedad Beneitez, A; Rodríguez-Méndez, B G; Valencia-Alvarado, R; Mercado-Cabrera, A; Peña-Eguiluz, R; Barocio, S R; Muñoz-Castro, A E

    2012-01-01

    The inactivation of Bacillus subtilis bacteria in water has been experimentally studied by means of a pulsed dielectric barrier discharge (PDBD) in a coaxial reactor endowed with an alumina dielectric. The plasma source is capable of operating at atmospheric pressure with gas, water or hybrid gas-liquid media at adjustable 25 kV pulses, 30 μs long and at a 500 Hz frequency. In order to evaluate the inactivation efficiency of the system, a set of experiments were designed on the basis of oxygen flow control. The initial data have showed a significant bacterial rate reduction of 10 3 -10 7 CFU/mL. Additional results proved that applying an oxygen flow for a few seconds during the PDBD treatment inactivates the Bacillus subtilis population with 99.99% effectiveness. As a reference, without gas flow but with the same exposure times, this percentage is reduced to ∼90%. The analysis of the relationship between inactivation rate and chemical species in the discharge has been carried out using optical emission spectroscopy as to identifying the main reactive species. Reactive oxygen species such as atomic oxygen and ozone tuned out to be the dominant germicidal species. Some proposed inactivation mechanisms of this technique are discussed.

  1. Inactivation of viruses in labile blood derivatives. II. Physical methods

    International Nuclear Information System (INIS)

    Horowitz, B.; Wiebe, M.E.; Lippin, A.; Vandersande, J.; Stryker, M.H.

    1985-01-01

    The thermal inactivation of viruses in labile blood derivatives was evaluated by addition of marker viruses (VSV, Sindbis, Sendai, EMC) to anti-hemophilic factor (AHF) concentrates. The rate of virus inactivation at 60 degrees C was decreased by at least 100- to 700-fold by inclusion of 2.75 M glycine and 50 percent sucrose, or 3.0 M potassium citrate, additives which contribute to retention of protein biologic activity. Nonetheless, at least 10(4) infectious units of each virus was inactivated within 10 hours. Increasing the temperature from 60 to 70 or 80 degrees C caused a 90 percent or greater loss in AHF activity. An even greater decline in the rate of virus inactivation was observed on heating AHF in the lyophilized state, although no loss in AHF activity was observed after 72 hours of heating at 60 degrees C. Several of the proteins present in lyophilized AHF concentrates displayed an altered electrophoretic mobility as a result of exposure to 60 degrees C for 24 hours. Exposure of lyophilized AHF to irradiation from a cobalt 60 source resulted in an acceptable yield of AHF at 1.0, but not at 2.0, megarads. At 1 megarad, greater than or equal to 6.0 logs of VSV and 3.3 logs of Sindbis virus were inactivated

  2. Hydrolysis rate constants at 10-25 °C can be more than doubled by a short anaerobic pre-hydrolysis at 35 °C.

    Science.gov (United States)

    Zhang, L; Gao, R; Naka, A; Hendrickx, T L G; Rijnaarts, H H M; Zeeman, G

    2016-11-01

    Hydrolysis is the first step of the anaerobic digestion of complex wastewater and considered as the rate limiting step especially at low temperature. Low temperature (10-25 °C) hydrolysis was investigated with and without application of a short pre-hydrolysis at 35 °C. Batch experiments were executed using cellulose and tributyrin as model substrates for carbohydrates and lipids. The results showed that the low temperature anaerobic hydrolysis rate constants increased by a factor of 1.5-10, when the short anaerobic pre-hydrolysis at 35 °C was applied. After the pre-hydrolysis phase at 35 °C and decreasing the temperature, no lag phase was observed in any case. Without the pre-hydrolysis, the lag phase for cellulose hydrolysis at 35-10 °C was 4-30 days. Tributyrin hydrolysis showed no lag phase at any temperature. The hydrolysis efficiency of cellulose increased from 40 to 62%, and from 9.6 to 40% after 9.1 days at 15 and 10 °C, respectively, when the pre-hydrolysis at 35 °C was applied. The hydrolysis efficiency of tributyrin at low temperatures with the pre-hydrolysis at 35 °C was similar to those without the pre-hydrolysis. The hydrolytic activity of the supernatant collected from the digestate after batch digestion of cellulose and tributyrin at 35 °C was higher than that of the supernatants collected from the low temperature (≤25 °C) digestates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Rate Constant for the Reaction CH3 + CH3 Yields C2H6 at T = 155 K and Model Calculation of the CH3 Abundance in the Atmospheres of Saturn and Neptune

    Science.gov (United States)

    Cody, Regina J.; Romani, Paul N.; Nesbitt, Fred L.; Iannone, Mark A.; Tardy, Dwight C.; Stief, Louis J.

    2003-01-01

    The column abundances of CH3 observed by the Infrared Space Observatory (ISO) satellite on Saturn and Neptune were lower than predicted by atmospheric photochemical models, especially for Saturn. It has been suggested that the models underestimated the loss of CH3 due to poor knowledge of the rate constant k of the CH3 + CH3 self-reaction at the low temperatures and pressures of these atmospheres. Motivated by this suggestion, we undertook a combined experimental and photochemical modeling study of the CH3 + CH3 reaction and its role in determining planetary CH3 abundances. In a discharge flow-mass spectrometer system, k was measured at T = 155 K and three pressures of He. The results in units of cu cm/molecule/s are k(0.6 Torr) = 6.82 x 10(exp -11), k(1.0 Torr) = 6.98 x 10(exp -11), and k(1.5 Torr) = 6.91 x 10(exp -11). Analytical expressions for k were derived that (1) are consistent with the present laboratory data at T = 155 K, our previous data at T = 202 K and 298 K, and those of other studies in He at T = 296-298 K and (2) have some theoretical basis to provide justification for extrapolation. The derived analytical expressions were then used in atmospheric photochemical models for both Saturn and Neptune. These model results reduced the disparity with observations of Saturn, but not with observations of Neptune. However, the disparity for Neptune is much smaller. The solution to the remaining excess CH3 prediction in the models relative to the ISO observations lies, to a large extent, elsewhere in the CH3 photochemistry or transport, not in the CH3 + CH3 rate.

  4. Arterial oxygen tension and pulmonary ventilation in horses placed in the Anderson Sling suspension system after a period of lateral recumbency and anaesthetised with constant rate infusions of romifidine and ketamine.

    Science.gov (United States)

    François, I; Lalèyê, F-X; Micat, M; Benredouane, K; Portier, K

    2014-09-01

    Some controversy exists over whether or not horses' recovery and cardiopulmonary function are affected by suspension in slings. To measure arterial oxygen tension and pulmonary ventilation in anaesthetised horses placed in a standing position in an Anderson Sling (AS) after a period of right lateral recumbency (RLR). Randomised crossover experimental study. Six Standardbred horses were anaesthetised twice. Catheters were inserted into the right jugular vein and the left carotid artery. After premedication with romifidine, anaesthesia was induced with diazepam and ketamine. Following 50 min in RLR, horses were maintained in either RLR or AS for an additional 60 min through to recovery. Anaesthesia was maintained i.v. with a constant rate infusion of romifidine and ketamine. Heart rate, respiratory rate, mean arterial pressure, expiratory tidal volume, minute volumes and end tidal CO2 were monitored continuously. Venous and arterial bloods were sampled for lactate concentration, creatine kinase activity and blood gas analysis before premedication, after induction, every 20 min for 100 min, as soon as the horse was standing (TR), and 24 h later. The data were averaged within 2 anaesthetic periods: P1, 0-20 min; and P2, 40-100 min. During P2, horses in the RLR group had lower arterial oxygen tension (P = 0.001), higher alveolar-arterial oxygen tension gradient (P = 0.005), higher respiratory rate (P = 0.04) and higher minute volumes (P = 0.04) than horses in the AS group. Arterial CO2 tension and mean arterial pressure increased in the AS group during P2 (P = 0.01 and 0.02 respectively). The recoveries were judged better in the AS group than in the RLR group (P = 0.01). During TR, lactate were higher in the RLR group than in the AS group (P = 0.007). Creatine kinase activities were higher in the AS group at 24 h vs. TR (P = 0.02). Anderson Sling suspension after a period of recumbency improves cardiopulmonary function and recovery quality in horses and

  5. Inactivation of Escherichia coli by superoxide radicals and their dismutation products

    NARCIS (Netherlands)

    Hemmen, J.J. van; Meuling, W.J.A.

    1977-01-01

    E. coli cells are inactivated by the products of the reaction between dialuric acid and oxygen, of which the primary product is superoxide. The rate of inactivation is decreased by superoxide dismutase, by catalase, and by EDTA, whereas it is increased by addition of cupric ions or hydrogen

  6. Seasonal Inactivated Influenza Virus Vaccines

    OpenAIRE

    Couch, Robert B.

    2008-01-01

    Inactivated influenza virus vaccines are the primary modality used for prevention of influenza. A system of annual identification of new strains causing illnesses, selections for vaccines, chick embryo growth, inactivation, processing, packaging, distribution and usage has been in place for decades. Current vaccines contain 15 µg of the HA of an A/H1N1, A/H3N2 and B strain and are given parenterally to induce serum anti-HA antibody for prevention of subsequent infection and illness from natur...

  7. Renormalization of Newton's constant

    Science.gov (United States)

    Falls, Kevin

    2015-12-01

    The problem of obtaining a gauge independent beta function for Newton's constant is addressed. By a specific parametrization of metric fluctuations a gauge independent functional integral is constructed for the semiclassical theory around an arbitrary Einstein space. The effective action then has the property that only physical polarizations of the graviton contribute, while all other modes cancel with the functional measure. We are then able to compute a gauge independent beta function for Newton's constant in d dimensions to one-loop order. No Landau pole is present provided Ng<18 , where Ng=d (d -3 )/2 is the number of polarizations of the graviton. While adding a large number of matter fields can change this picture, the absence of a pole persists for the particle content of the standard model in four spacetime dimensions.

  8. Production in constant evolution

    International Nuclear Information System (INIS)

    Lozano, T.

    2009-01-01

    The Cofrentes Nuclear Power Plant now has 25 years of operation behind it: a quarter century adding value and demonstrating the reasons why it is one of the most important energy producing facilities in the Spanish power market. Particularly noteworthy is the enterprising spirit of the plant, which has strived to continuously improve with the large number of modernization projects that it has undertaken over the past 25 years. The plant has constantly evolved thanks to the amount of investments made to improve safety and reliability and the perseverance to stay technologically up to date. Efficiency, training and teamwork have been key to the success of the plant over these 25 years of constant change and progress. (Author)

  9. The Fine Structure Constant

    Indian Academy of Sciences (India)

    IAS Admin

    important parameter in the field of atomic struc- ture. The values of the constants of ... tions in their core that produce carbon. As a result, .... atom in 1913. In other words, the size of a hydrogen atom is a factor α−2 ≈ 20000 times the size of an elec- tron. Another way of looking at α is to consider the ratio of the orbital speed of ...

  10. The cosmological constant

    International Nuclear Information System (INIS)

    Mellor, F.

    1989-01-01

    Astronomical observations predict to an extremely accurate degree that the cosmological term in Einstein's equations should be zero. This conflicts with the predictions from particle theories of a non-zero cosmological term. Attempts to resolve this paradox range from arguments based on the anthropic principle to supersymmetric theories to quantum cosmological proposals. These approaches are discussed here and the history of the cosmological constant is reviewed. (author)

  11. Connecting Fundamental Constants

    International Nuclear Information System (INIS)

    Di Mario, D.

    2008-01-01

    A model for a black hole electron is built from three basic constants only: h, c and G. The result is a description of the electron with its mass and charge. The nature of this black hole seems to fit the properties of the Planck particle and new relationships among basic constants are possible. The time dilation factor in a black hole associated with a variable gravitational field would appear to us as a charge; on the other hand the Planck time is acting as a time gap drastically limiting what we are able to measure and its dimension will appear in some quantities. This is why the Planck time is numerically very close to the gravitational/electric force ratio in an electron: its difference, disregarding a π√(2) factor, is only 0.2%. This is not a coincidence, it is always the same particle and the small difference is between a rotating and a non-rotating particle. The determination of its rotational speed yields accurate numbers for many quantities, including the fine structure constant and the electron magnetic moment

  12. The Hubble Constant.

    Science.gov (United States)

    Jackson, Neal

    2015-01-01

    I review the current state of determinations of the Hubble constant, which gives the length scale of the Universe by relating the expansion velocity of objects to their distance. There are two broad categories of measurements. The first uses individual astrophysical objects which have some property that allows their intrinsic luminosity or size to be determined, or allows the determination of their distance by geometric means. The second category comprises the use of all-sky cosmic microwave background, or correlations between large samples of galaxies, to determine information about the geometry of the Universe and hence the Hubble constant, typically in a combination with other cosmological parameters. Many, but not all, object-based measurements give H 0 values of around 72-74 km s -1 Mpc -1 , with typical errors of 2-3 km s -1 Mpc -1 . This is in mild discrepancy with CMB-based measurements, in particular those from the Planck satellite, which give values of 67-68 km s -1 Mpc -1 and typical errors of 1-2 km s -1 Mpc -1 . The size of the remaining systematics indicate that accuracy rather than precision is the remaining problem in a good determination of the Hubble constant. Whether a discrepancy exists, and whether new physics is needed to resolve it, depends on details of the systematics of the object-based methods, and also on the assumptions about other cosmological parameters and which datasets are combined in the case of the all-sky methods.

  13. Universe of constant

    Science.gov (United States)

    Yongquan, Han

    2016-10-01

    The ideal gas state equation is not applicable to ordinary gas, it should be applied to the Electromagnetic ``gas'' that is applied to the radiation, the radiation should be the ultimate state of matter changes or initial state, the universe is filled with radiation. That is, the ideal gas equation of state is suitable for the Singular point and the universe. Maybe someone consider that, there is no vessel can accommodate radiation, it is because the Ordinary container is too small to accommodate, if the radius of your container is the distance that Light through an hour, would you still think it can't accommodates radiation? Modern scientific determinate that the radius of the universe now is about 1027 m, assuming that the universe is a sphere whose volume is approximately: V = 4.19 × 1081 cubic meters, the temperature radiation of the universe (cosmic microwave background radiation temperature of the universe, should be the closest the average temperature of the universe) T = 3.15k, radiation pressure P = 5 × 10-6 N / m 2, according to the law of ideal gas state equation, PV / T = constant = 6 × 1075, the value of this constant is the universe, The singular point should also equal to the constant Author: hanyongquan

  14. Comparison of glycerolisation with cryopreservation methods on HIV-1 inactivation

    International Nuclear Information System (INIS)

    Van Baare, J.; Pagnon, J.; Cameron, P.; Vardaxis, N.; Middlekoop, E.; Crowe, S.

    1999-01-01

    Cryopreservation and glycerolisation are two successful long-term preservation methods for human cadaveric donor skin, which is used in the treatment of bum patients. High concentrations of glycerol has been shown to be antibacterial and virucidal. Because fear of possible transmission of HIV-1 following allograft transplantation, this study was undertaken to investigate whether HIV can be effectively eliminated from skin explants. HIV-1 Ba-L, which has been shown to infect monocytes in skin explants and also dendritic cells, was. For the experiments we used cell-free virus, exogenously HIV infected peripheral blood mononuclear cells (PBMCs) and exogenously HIV infected cadaver split skin. Different concentrations of glycerol at various temperatures and the glycerolisation procedure as used by the Euro Skin Bank were used to determine the effects on HIV-1 Ba-L infectivity. For the cryopreservation technique we used 10% DMSO and a controlled rate freezer. HIV-1 Ba-L transfer was determined by adding uninfected PBMCs to the infected material and reverse transcriptase was measured. Cell-free HIV-1 Ba-L was not inactivated by 50% glycerol but was effectively inactivated within 30 minutes by 70% and 85% glycerol at 4 degree C, room temperature and 37 degree C. In contrast, cell-free HIV-1 Ba-L was not inactivated by cryopreservation. Most importantly, we have shown that HIV-1 Ba-L present in split skin is inactivated by incubating skin in 70% glycerol for three hours at 37-C. HIV in exogenously infected skin was not inactivated by cryopreservation. High concentrations of glycerol effectively inactivates free HIV-1 Ba-L and intracellular HIV-1 Ba-L. Also the current glycerolisation procedure carried out by the Euro Skin Bank effectively inactivates infectious virus. However, the cryopreservation technique did not show any reduction in HIV-1 Ba-L infectivity

  15. The Hubble Constant

    Directory of Open Access Journals (Sweden)

    Neal Jackson

    2015-09-01

    Full Text Available I review the current state of determinations of the Hubble constant, which gives the length scale of the Universe by relating the expansion velocity of objects to their distance. There are two broad categories of measurements. The first uses individual astrophysical objects which have some property that allows their intrinsic luminosity or size to be determined, or allows the determination of their distance by geometric means. The second category comprises the use of all-sky cosmic microwave background, or correlations between large samples of galaxies, to determine information about the geometry of the Universe and hence the Hubble constant, typically in a combination with other cosmological parameters. Many, but not all, object-based measurements give H_0 values of around 72–74 km s^–1 Mpc^–1, with typical errors of 2–3 km s^–1 Mpc^–1. This is in mild discrepancy with CMB-based measurements, in particular those from the Planck satellite, which give values of 67–68 km s^–1 Mpc^–1 and typical errors of 1–2 km s^–1 Mpc^–1. The size of the remaining systematics indicate that accuracy rather than precision is the remaining problem in a good determination of the Hubble constant. Whether a discrepancy exists, and whether new physics is needed to resolve it, depends on details of the systematics of the object-based methods, and also on the assumptions about other cosmological parameters and which datasets are combined in the case of the all-sky methods.

  16. An ab initio/Rice-Ramsperger-Kassel-Marcus prediction of rate constant and product branching ratios for unimolecular decomposition of propen-2-ol and related H+CH2COHCH2 reaction

    Science.gov (United States)

    Zhou, Chong-Wen; Li, Ze-Rong; Liu, Cun-Xi; Li, Xiang-Yuan

    2008-12-01

    Enols have been found to be important intermediates in the combustion flames of hydrocarbon [C. A. Taatjes et al., Science 308, 1887 (2005)]. The removal mechanism of enols in combustion flame has not been established yet. In this work, the potential energy surface for the unimolecular decomposition of syn-propen-2-ol and H+CH2COHCH2 recombination reactions have been first investigated by CCSD(T) method. The barrier heights, reaction energies, and geometrical parameters of the reactants, products, intermediates, and transition states have been investigated theoretically. The results show that the formation of CH3CO+CH3 via the CH3COCH3 intermediate is dominant for the unimolecular decomposition of syn-propen-2-ol and its branching ratio is over 99% in the whole temperature range from 700 to 3000 K, and its rate constant can be expressed as an analytical form in the range of T =700-3000 K at atmospheric pressure. This can be attributed to the lower energy barrier of this channel compared to the other channels. The association reaction of H with CH2COHCH2 is shown to be a little more complicated than the unimolecular decomposition of syn-propen-2-ol. The channel leading to CH3CO+CH3 takes a key role in the whole temperature range at atmospheric pressure. However at the higher pressure of 100 atm, the recombination by direct formation of syn-propen-2-ol through H addition is important at T 1400 K, the recombination channel leading to CH3CO+CH3 turns out to be significant.

  17. Spaces of constant curvature

    CERN Document Server

    Wolf, Joseph A

    2010-01-01

    This book is the sixth edition of the classic Spaces of Constant Curvature, first published in 1967, with the previous (fifth) edition published in 1984. It illustrates the high degree of interplay between group theory and geometry. The reader will benefit from the very concise treatments of riemannian and pseudo-riemannian manifolds and their curvatures, of the representation theory of finite groups, and of indications of recent progress in discrete subgroups of Lie groups. Part I is a brief introduction to differentiable manifolds, covering spaces, and riemannian and pseudo-riemannian geomet

  18. Structural and Molecular Basis of the Peroxynitrite-mediated Nitration and Inactivation of Trypanosoma cruzi Iron-Superoxide Dismutases (Fe-SODs) A and B

    Science.gov (United States)

    Martinez, Alejandra; Peluffo, Gonzalo; Petruk, Ariel A.; Hugo, Martín; Piñeyro, Dolores; Demicheli, Verónica; Moreno, Diego M.; Lima, Analía; Batthyány, Carlos; Durán, Rosario; Robello, Carlos; Martí, Marcelo A.; Larrieux, Nicole; Buschiazzo, Alejandro; Trujillo, Madia; Radi, Rafael; Piacenza, Lucía

    2014-01-01

    Trypanosoma cruzi, the causative agent of Chagas disease, contains exclusively iron-dependent superoxide dismutases (Fe-SODs) located in different subcellular compartments. Peroxynitrite, a key cytotoxic and oxidizing effector biomolecule, reacted with T. cruzi mitochondrial (Fe-SODA) and cytosolic (Fe-SODB) SODs with second order rate constants of 4.6 ± 0.2 × 104 m−1 s−1 and 4.3 ± 0.4 × 104 m−1 s−1 at pH 7.4 and 37 °C, respectively. Both isoforms are dose-dependently nitrated and inactivated by peroxynitrite. Susceptibility of T. cruzi Fe-SODA toward peroxynitrite was similar to that reported previously for Escherichia coli Mn- and Fe-SODs and mammalian Mn-SOD, whereas Fe-SODB was exceptionally resistant to oxidant-mediated inactivation. We report mass spectrometry analysis indicating that peroxynitrite-mediated inactivation of T. cruzi Fe-SODs is due to the site-specific nitration of the critical and universally conserved Tyr35. Searching for structural differences, the crystal structure of Fe-SODA was solved at 2.2 Å resolution. Structural analysis comparing both Fe-SOD isoforms reveals differences in key cysteines and tryptophan residues. Thiol alkylation of Fe-SODB cysteines made the enzyme more susceptible to peroxynitrite. In particular, Cys83 mutation (C83S, absent in Fe-SODA) increased the Fe-SODB sensitivity toward peroxynitrite. Molecular dynamics, electron paramagnetic resonance, and immunospin trapping analysis revealed that Cys83 present in Fe-SODB acts as an electron donor that repairs Tyr35 radical via intramolecular electron transfer, preventing peroxynitrite-dependent nitration and consequent inactivation of Fe-SODB. Parasites exposed to exogenous or endogenous sources of peroxynitrite resulted in nitration and inactivation of Fe-SODA but not Fe-SODB, suggesting that these enzymes play distinctive biological roles during parasite infection of mammalian cells. PMID:24616096

  19. Lactococcus lactis Thioredoxin Reductase Is Sensitive to Light Inactivation

    DEFF Research Database (Denmark)

    Björnberg, Olof; Viennet, Thibault; Skjoldager, Nicklas

    2015-01-01

    enzymes belong to the same class of low-molecular weight thioredoxin reductases and display similar kcat values (∼25 s-1) with their cognate thioredoxin. Remarkably, however, the L. lactis enzyme is inactivated by visible light and furthermore reduces molecular oxygen 10 times faster than E. coli Trx......R. The rate of light inactivation under standardized conditions (λmax = 460 nm and 4 °C) was reduced at lowered oxygen concentrations and in the presence of iodide. Inactivation was accompanied by a distinct spectral shift of the flavin adenine dinucleotide (FAD) that remained firmly bound. High......-resolution mass spectrometric analysis of heat-extracted FAD from light-damaged TrxR revealed a mass increment of 13.979 Da, relative to that of unmodified FAD, corresponding to the addition of one oxygen atom and the loss of two hydrogen atoms. Tandem mass spectrometry confined the increase in mass...

  20. ALTERNATIVE EQUATIONS FOR DYNAMIC BEHAVIOR OF IONIC CHANNEL ACTIVATION AND INACTIVATION GATES

    Directory of Open Access Journals (Sweden)

    Mahmut ÖZER

    2003-03-01

    Full Text Available In this paper, alternative equations for dynamics of ionic channel activation and inactivation gates are proposed based on the path probability method. Dynamic behavior of a voltage-gated ionic channel is modeled by the conventional Hodgkin-Huxley (H-H mathematical formalism. In that model, conductance of the channel is defined in terms of activation and inactivation gates. Dynamics of the activation and inactivation gates is modeled by first-order differential equations dependent on the gate variable and the membrane potential. In the new approach proposed in this study, dynamic behavior of activation and inactivation gates is modeled by a firstorder differential equation dependent on internal energy and membrane potential by using the path probability method which is widely used in statistical physics. The new model doesn't require the time constant and steadystate values which are used explicitly in the H-H model. The numerical results show validity of the proposed method.

  1. Inactivation of batrachotoxin-modified Na+ channels in GH3 cells. Characterization and pharmacological modification

    Science.gov (United States)

    1992-01-01

    Batrachotoxin (BTX)-modified Na+ currents were characterized in GH3 cells with a reversed Na+ gradient under whole-cell voltage clamp conditions. BTX shifts the threshold of Na+ channel activation by approximately 40 mV in the hyperpolarizing direction and nearly eliminates the declining phase of Na+ currents at all voltages, suggesting that Na+ channel inactivation is removed. Paradoxically, the steady-state inactivation (h infinity) of BTX-modified Na+ channels as determined by a two-pulse protocol shows that inactivation is still present and occurs maximally near -70 mV. About 45% of BTX-modified Na+ channels are inactivated at this voltage. The development of inactivation follows a sum of two exponential functions with tau d(fast) = 10 ms and tau d(slow) = 125 ms at -70 mV. Recovery from inactivation can be achieved after hyperpolarizing the membrane to voltages more negative than -120 mV. The time course of recovery is best described by a sum of two exponentials with tau r(fast) = 6.0 ms and tau r(slow) = 240 ms at -170 mV. After reaching a minimum at -70 mV, the h infinity curve of BTX-modified Na+ channels turns upward to reach a constant plateau value of approximately 0.9 at voltages above 0 mV. Evidently, the inactivated, BTX-modified Na+ channels can be forced open at more positive potentials. The reopening kinetics of the inactivated channels follows a single exponential with a time constant of 160 ms at +50 mV. Both chloramine-T (at 0.5 mM) and alpha-scorpion toxin (at 200 nM) diminish the inactivation of BTX-modified Na+ channels. In contrast, benzocaine at 1 mM drastically enhances the inactivation of BTX-modified Na+ channels. The h infinity curve reaches minimum of less than 0.1 at -70 mV, indicating that benzocaine binds preferentially with inactivated, BTX-modified Na+ channels. Together, these results imply that BTX-modified Na+ channels are governed by an inactivation process. PMID:1311019

  2. Un saludo constante

    OpenAIRE

    Salcedo Ortega, Manuela; Pontificia Universidad Javeriana, Cali

    2013-01-01

    La presencia familiar estará siempre en mi vida: Creo que esa unión va más allá de los lazos que creamos en ese primer abrir de ojos del nacimiento pues los lazos se fortalecen con el tiempo. Es que esos lazos van de la genética al riñón y puede que suene muy raro, pero esta es mi enfermedad, la primera y la constante, la que desaparece y reaparece, la heredada y la que cada vez que me saluda, deja su huella. Comenzó hace 16 años. Mis infecciones urinarias fueron el comienzo de muchas maluque...

  3. The Hubble Constant

    Directory of Open Access Journals (Sweden)

    Jackson Neal

    2007-09-01

    Full Text Available I review the current state of determinations of the Hubble constant, which gives the length scale of the Universe by relating the expansion velocity of objects to their distance. In the last 20 years, much progress has been made and estimates now range between 60 and 75 km s^-1 Mpc^-1, with most now between 70 and 75 km s^-1 Mpc^-1, a huge improvement over the factor-of-2 uncertainty which used to prevail. Further improvements which gave a generally agreed margin of error of a few percent rather than the current 10% would be vital input to much other interesting cosmology. There are several programmes which are likely to lead us to this point in the next 10 years.

  4. Constant Proportion Portfolio Insurance

    DEFF Research Database (Denmark)

    Jessen, Cathrine

    2014-01-01

    Portfolio insurance, as practiced in 1987, consisted of trading between an underlying stock portfolio and cash, using option theory to place a floor on the value of the position, as if it included a protective put. Constant Proportion Portfolio Insurance (CPPI) is an option-free variation...... on the theme, originally proposed by Fischer Black. In CPPI, a financial institution guarantees a floor value for the “insured” portfolio and adjusts the stock/bond mix to produce a leveraged exposure to the risky assets, which depends on how far the portfolio value is above the floor. Plain-vanilla portfolio...... insurance largely died with the crash of 1987, but CPPI is still going strong. In the frictionless markets of finance theory, the issuer’s strategy to hedge its liability under the contract is clear, but in the real world with transactions costs and stochastic jump risk, the optimal strategy is less obvious...

  5. Constant conditional entropy and related hypotheses

    International Nuclear Information System (INIS)

    Ferrer-i-Cancho, Ramon; Dębowski, Łukasz; Moscoso del Prado Martín, Fermín

    2013-01-01

    Constant entropy rate (conditional entropies must remain constant as the sequence length increases) and uniform information density (conditional probabilities must remain constant as the sequence length increases) are two information theoretic principles that are argued to underlie a wide range of linguistic phenomena. Here we revise the predictions of these principles in the light of Hilberg’s law on the scaling of conditional entropy in language and related laws. We show that constant entropy rate (CER) and two interpretations for uniform information density (UID), full UID and strong UID, are inconsistent with these laws. Strong UID implies CER but the reverse is not true. Full UID, a particular case of UID, leads to costly uncorrelated sequences that are totally unrealistic. We conclude that CER and its particular cases are incomplete hypotheses about the scaling of conditional entropies. (letter)

  6. Inactivation of allergens and toxins.

    Science.gov (United States)

    Morandini, Piero

    2010-11-30

    Plants are replete with thousands of proteins and small molecules, many of which are species-specific, poisonous or dangerous. Over time humans have learned to avoid dangerous plants or inactivate many toxic components in food plants, but there is still room for ameliorating food crops (and plants in general) in terms of their allergens and toxins content, especially in their edible parts. Inactivation at the genetic rather than physical or chemical level has many advantages and classical genetic approaches have resulted in significant reduction of toxin content. The capacity, offered by genetic engineering, of turning off (inactivating) specific genes has opened up the possibility of altering the plant content in a far more precise manner than previously available. Different levels of intervention (genes coding for toxins/allergens or for enzymes, transporters or regulators involved in their metabolism) are possible and there are several tools for inactivating genes, both direct (using chemical and physical mutagens, insertion of transposons and other genetic elements) and indirect (antisense RNA, RNA interference, microRNA, eventually leading to gene silencing). Each level/strategy has specific advantages and disadvantages (speed, costs, selectivity, stability, reversibility, frequency of desired genotype and regulatory regime). Paradigmatic examples from classical and transgenic approaches are discussed to emphasize the need to revise the present regulatory process. Reducing the content of natural toxins is a trade-off process: the lesser the content of natural toxins, the higher the susceptibility of a plant to pests and therefore the stronger the need to protect plants. As a consequence, more specific pesticides like Bt are needed to substitute for general pesticides. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Inactivation of enteropathogenic E. coli by solar disinfection (SODIS) under simulated sunlight conditions

    CSIR Research Space (South Africa)

    Ubomba-Jaswa, Eunice

    2008-12-01

    Full Text Available of maintaining the water temperature at a constant maximum as was done for inactivation studies of other organisms. 2. Methods 2.1. Bacterial Growth EPEC E. coli O157 (ATCC 23631) and E.coli K-12 were obtained from frozen stocks and streaked...

  8. Effect of frequency and waveform on inactivation of Escherichia coli O157:H7 and Salmonella enterica Serovar Typhimurium in salsa by ohmic heating.

    Science.gov (United States)

    Lee, Su-Yeon; Ryu, Sangryeol; Kang, Dong-Hyun

    2013-01-01

    The effect of frequency of alternating current during ohmic heating on electrode corrosion, heating rate, inactivation of food-borne pathogens, and quality of salsa was investigated. The impact of waveform on heating rate was also investigated. Salsa was treated with various frequencies (60 Hz to 20 kHz) and waveforms (sine, square, and sawtooth) at a constant electric field strength of 12.5 V/cm. Electrode corrosion did not occur when the frequency exceeded 1 kHz. The heating rate of the sample was dependent on frequency up to 500 Hz, but there was no significant difference (P > 0.05) in the heating rate when the frequency was increased above 1 kHz. The electrical conductivity of the sample increased with a rise in the frequency. At a frequency of 60 Hz, the square wave produced a lower heating rate than that of sine and sawtooth waves. The heating rate between waveforms was not significantly (P > 0.05) different when the frequency was >500 Hz. As the frequency increased, the treatment time required to reduce Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium to below the detection limit (1 log CFU/g) decreased without affecting product quality. These results suggest that ohmic heating can be effectively used to pasteurize salsa and that the effect of inactivation is dependent on frequency and electrical conductivity rather than waveform.

  9. Thermal inactivation of Phytophthora capsici oospores.

    Science.gov (United States)

    Etxeberria, Aitzol; Mendarte, Sorkunde; Larregla, Santiago

    2011-01-01

    Phytophthora capsici is a major fungal plant pathogen that causes root and crown rot of pepper crops and its oospores are the most resistant propagules. To evaluate the effect of different temperature regimes and exposure times on the survival of P. capsici oospores. Thermal inactivation treatments simulated field conditions, through the use of different constant and cycling temperature regimes, in moistened sterilized soil (15-53 °C) and sterilized water (45-53 °C). The plasmolysis method evaluated oospore viability. Relationships between oospores viability and exposure time were statistically determined by linear regression. Interpolation was used to calculate the estimated times required to kill a determined percentage of the population. The required time to reduce P. capsici oospores viability decreased with increasing temperatures. Times required to kill 100% of oospores were 199-22-6.6-4.7-1.0 hours at 40-45-47.5-50-53°C respectively in moistened soil and 31-1.0-0.2 hours at 45-50-53 °C in water. Oospores were scarcely affected at temperatures ≤ 35 °C. With 1,680 hours at 15-35 °C, oospores survival in soil ranged from 88 to 36%. The 4 hours-40 °C regime killed 100% of oospores after 28days, while the 5 hours-35°C regime after 70 days killed only 75%. Time required to achieve total oospores death was remarkably shortened in water when compared with moistened soil. The developed models can be used to predict survival values at any exposure time with constant temperatures ranging from 40 to 53 °C in moistened soil and from 45 to 53 °C in water. The weakening of P. capsici oospores under sublethal heating, is a useful observation that can be applied for pathogen control with solarization. Copyright © 2010 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  10. Determinação da constante cinética de cristalização não-isotérmica de polipropilenos modificados com ácido acrílico e anidrido maleico Determination of the non-isothermal crystallization rate constant of grafted maleic anhydride and grafted acrylic acid polypropylenes

    OpenAIRE

    Benjamim de M. Carvalho; Rosario E. S. Bretas

    2006-01-01

    O propósito do presente trabalho foi testar a validade do Método da Curva Mestre para a determinação da constante de cristalização não-isotérmica de polipropilenos modificados com anidrido maleico e ácido acrílico. Experimentos de cristalização não-isotérmica foram realizados a diversas taxas de resfriamento por meio de Calorimetria Exploratória Diferencial (DSC). Para serem usadas no Método da Curva Mestre, as curvas originais obtidas em DSC foram corrigidas em termos da defasagem de tempera...

  11. Device to detect the presence of a pure signal in a discrete noisy signal measured at an average rate of constant noise with a probability of false detection lower than one predeterminated

    International Nuclear Information System (INIS)

    Poussier, E.; Rambaut, M.

    1986-01-01

    Detection consists of a measurement of a counting rate. A probability of wrong detection is associated with this counting rate and with an average estimated rate of noise. Detection consists also in comparing the wrong detection probability to a predeterminated rate of wrong detection. The comparison can use tabulated values. Application is made to corpuscule radiation detection [fr

  12. Effect of turbulent gas-liquid contact in a static mixer on Cryptosporidium parvum oocyst inactivation by ozone.

    Science.gov (United States)

    Craik, Stephen A; Smith, Daniel W; Chandrakanth, Mysore; Belosevic, Miodrag

    2003-09-01

    Static mixers may be used to dissolve gaseous ozone in water treatment facilities in order to provide protection against the waterborne parasite Cryptosporidium parvum. The objective of this study was to determine the effect of a brief exposure to turbulent gas-liquid mixing conditions in a static mixer on inactivation of C. parvum oocysts by ozone. Inactivation measured in an ozone contacting apparatus that employed a static mixer for ozone dissolution was compared to predictions based on a previously published kinetic model of C. parvum inactivation by dissolved ozone in gently stirred batch reactors. Although initial contact in the static mixer had no immediate effect on the oocysts, a 20% increase in the rate of inactivation during subsequent contact with dissolved ozone was observed. Increasing the degree of turbulence within the static mixer did not yield additional inactivation. Use of static mixers for dissolution of ozone in drinking water treatment systems may provide limited enhancement of C. parvum inactivation by dissolved ozone.

  13. Sunlight inactivation of human viruses and bacteriophages in coastal waters containing natural photosensitizers.

    Science.gov (United States)

    Silverman, Andrea I; Peterson, Britt M; Boehm, Alexandria B; McNeill, Kristopher; Nelson, Kara L

    2013-02-19

    Sunlight inactivation of poliovirus type 3 (PV3), adenovirus type 2 (HAdV2), and two bacteriophage (MS2 and PRD1) was investigated in an array of coastal waters to better understand solar inactivation mechanisms and the effect of natural water constituents on observed inactivation rates (k(obs)). Reactor scale inactivation experiments were conducted using a solar simulator, and k(obs) for each virus was measured in a sensitizer-free control and five unfiltered surface water samples collected from different sources. k(obs) values varied between viruses in the same water matrix, and for each virus in different matrices, with PV3 having the fastest and MS2 the slowest k(obs) in all waters. When exposed to full-spectrum sunlight, the presence of photosensitizers increased k(obs) of HAdV2, PRD1 and MS2, but not PV3, which provides evidence that the exogenous sunlight inactivation mechanism, involving damage by exogenously produced reactive intermediates, played a greater role for these viruses. While PV3 inactivation was observed to be dominated by endogenous mechanisms, this may be due to a masking of exogenous k(obs) by significantly faster endogenous k(obs). Results illustrate that differences in water composition can shift absolute and relative inactivation rates of viruses, which has important implications for natural wastewater treatment systems, solar disinfection (SODIS), and the use of indicator organisms for monitoring water quality.

  14. Disulfiram as a novel inactivator of Giardia lamblia triosephosphate isomerase with antigiardial potential

    Directory of Open Access Journals (Sweden)

    Adriana Castillo-Villanueva

    2017-12-01

    Full Text Available Giardiasis, the infestation of the intestinal tract by Giardia lamblia, is one of the most prevalent parasitosis worldwide. Even though effective therapies exist for it, the problems associated with its use indicate that new therapeutic options are needed. It has been shown that disulfiram eradicates trophozoites in vitro and is effective in vivo in a murine model of giardiasis; disulfiram inactivation of carbamate kinase by chemical modification of an active site cysteine has been proposed as the drug mechanism of action. The triosephosphate isomerase from G. lamblia (GlTIM has been proposed as a plausible target for the development of novel antigiardial pharmacotherapies, and chemical modification of its cysteine 222 (C222 by thiol-reactive compounds is evidenced to inactivate the enzyme. Since disulfiram is a cysteine modifying agent and GlTIM can be inactivated by modification of C222, in this work we tested the effect of disulfiram over the recombinant and trophozoite-endogenous GlTIM. The results show that disulfiram inactivates GlTIM by modification of its C222. The inactivation is species-specific since disulfiram does not affect the human homologue enzyme. Disulfiram inactivation induces only minor conformational changes in the enzyme, but substantially decreases its stability. Recombinant and endogenous GlTIM inactivates similarly, indicating that the recombinant protein resembles the natural enzyme. Disulfiram induces loss of trophozoites viability and inactivation of intracellular GlTIM at similar rates, suggesting that both processes may be related. It is plausible that the giardicidal effect of disulfiram involves the inactivation of more than a single enzyme, thus increasing its potential for repurposing it as an antigiardial drug. Keywords: Giardiasis, Drug repurposing, Neglected disease, Recombinant protein, Enzyme inactivation

  15. Sunlight mediated inactivation mechanisms of Enterococcus faecalis and Escherichia coli in clear water versus waste stabilization pond water.

    Science.gov (United States)

    Kadir, Khalid; Nelson, Kara L

    2014-03-01

    Escherichia coli and enterococci have been previously reported to differ in the mechanisms and conditions that affect their sunlight-mediated inactivation in waste stabilization ponds. This study was undertaken to further characterize these mechanisms, using simulated sunlight and single strains of laboratory-grown E. coli and Enterococcus faecalis, with a focus on characterizing the contribution of exogenous reactive oxygen species to the inactivation process. We found that direct damage by UVB light (280-320 nm) was not a significant inactivation mechanism for either organism. E. coli inactivation was strongly dependent on dissolved oxygen concentrations and the presence of UVB wavelengths but E. coli were not susceptible to inactivation by exogenous sensitizers present in waste stabilization pond water. In contrast, E. faecalis inactivation in pond water occurred primarily through exogenous mechanisms, with strong evidence that singlet oxygen is an important transient reactive species. The exogenous mechanism could utilize wavelengths into the visible spectrum and sensitizers were mainly colloidal, distributed between 0.2 and ∼1 μm in size. Singlet oxygen is likely an important endogenous species in both E. faecalis and E. coli inactivation due to sunlight. Although the two organisms had similar inactivation rates in buffered, clear water, the inactivation rate of E. faecalis was 7 times greater than that of E. coli in air-saturated pond water at circumneutral pH due to its susceptibility to exogenous sensitizers and longer wavelengths. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Reactive hydroxyl radical-driven oral bacterial inactivation by radio frequency atmospheric plasma

    International Nuclear Information System (INIS)

    Kang, Sung Kil; Lee, Jae Koo; Choi, Myeong Yeol; Koo, Il Gyo; Kim, Paul Y.; Kim, Yoonsun; Kim, Gon Jun; Collins, George J.; Mohamed, Abdel-Aleam H.

    2011-01-01

    We demonstrated bacterial (Streptococcus mutans) inactivation by a radio frequency power driven atmospheric pressure plasma torch with H 2 O 2 entrained in the feedstock gas. Optical emission spectroscopy identified substantial excited state OH generation inside the plasma and relative OH formation was verified by optical absorption. The bacterial inactivation rate increased with increasing OH generation and reached a maximum 5-log 10 reduction with 0.6%H 2 O 2 vapor. Generation of large amounts of toxic ozone is drawback of plasma bacterial inactivation, thus it is significant that the ozone concentration falls within recommended safe allowable levels with addition of H 2 O 2 vapor to the plasma.

  17. Evaluation of Different Dose-Response Models for High Hydrostatic Pressure Inactivation of Microorganisms.

    Science.gov (United States)

    Buzrul, Sencer

    2017-09-07

    Modeling of microbial inactivation by high hydrostatic pressure (HHP) requires a plot of the log microbial count or survival ratio versus time data under a constant pressure and temperature. However, at low pressure and temperature values, very long holding times are needed to obtain measurable inactivation. Since the time has a significant effect on the cost of HHP processing it may be reasonable to fix the time at an appropriate value and quantify the inactivation with respect to pressure. Such a plot is called dose-response curve and it may be more beneficial than the traditional inactivation modeling since short holding times with different pressure values can be selected and used for the modeling of HHP inactivation. For this purpose, 49 dose-response curves (with at least 4 log 10 reduction and ≥5 data points including the atmospheric pressure value ( P = 0.1 MPa), and with holding time ≤10 min) for HHP inactivation of microorganisms obtained from published studies were fitted with four different models, namely the Discrete model, Shoulder model, Fermi equation, and Weibull model, and the pressure value needed for 5 log 10 ( P ₅) inactivation was calculated for all the models above. The Shoulder model and Fermi equation produced exactly the same parameter and P ₅ values, while the Discrete model produced similar or sometimes the exact same parameter values as the Fermi equation. The Weibull model produced the worst fit (had the lowest adjusted determination coefficient (R² adj ) and highest mean square error (MSE) values), while the Fermi equation had the best fit (the highest R² adj and lowest MSE values). Parameters of the models and also P ₅ values of each model can be useful for the further experimental design of HHP processing and also for the comparison of the pressure resistance of different microorganisms. Further experiments can be done to verify the P ₅ values at given conditions. The procedure given in this study can also be extended

  18. Inactivation, reactivation and regrowth of indigenous bacteria in reclaimed water after chlorine disinfection of a municipal wastewater treatment plant.

    Science.gov (United States)

    Li, Dan; Zeng, Siyu; Gu, April Z; He, Miao; Shi, Hanchang

    2013-07-01

    Disinfection of reclaimed water prior to reuse is important to prevent the transmission of pathogens. Chlorine is a widely utilized disinfectant and as such is a leading contender for disinfection of reclaimed water. To understand the risks of chlorination resulting from the potential selection of pathogenic bacteria, the inactivation, reactivation and regrowth rates of indigenous bacteria were investigated in reclaimed water after chlorine disinfection. Inactivation of total coliforms, Enterococcus and Salmonella showed linear correlations, with constants of 0.1384, 0.1624 and 0.057 L/(mg.min) and R2 of 0.7617, 0.8316 and 0.845, respectively. However, inactivation of total viable cells by measurement of metabolic activity typically showed a linear correlation at lower chlorine dose (0-22 (mg-min)/L), and a trailing region with chlorine dose increasing from 22 to 69 (mg.min)/L. Reactivation and regrowth of bacteria were most likely to occur after exposure to lower chlorine doses, and extents of reactivation decreased gradually with increasing chlorine dose. In contrast to total coliforms and Enterococcus, Salmonella had a high level of regrowth and reactivation, and still had 2% regrowth even after chlorination of 69 (mg.min)/L and 24 hr storage. The bacterial compositions were also significantly altered by chlorination and storage of reclaimed water, and the ratio of Salmonella was significantly increased from 0.001% to 0.045% after chlorination of 69 (mg.min)/L and 24 hr storage. These trends indicated that chlorination contributes to the selection of chlorine-resistant pathogenic bacteria, and regrowth of pathogenic bacteria after chlorination in reclaimed water with a long retention time could threaten public health security during wastewater reuse.

  19. Calcium sets the physiological value of the dominant time constant of saturated mouse rod photoresponse recovery.

    Directory of Open Access Journals (Sweden)

    Frans Vinberg

    Full Text Available BACKGROUND: The rate-limiting step that determines the dominant time