WorldWideScience

Sample records for inactivation drives genomic

  1. Genetic Competence Drives Genome Diversity in Bacillus subtilis

    Science.gov (United States)

    Chevreux, Bastien; Serra, Cláudia R; Schyns, Ghislain; Henriques, Adriano O

    2018-01-01

    Abstract Prokaryote genomes are the result of a dynamic flux of genes, with increases achieved via horizontal gene transfer and reductions occurring through gene loss. The ecological and selective forces that drive this genomic flexibility vary across species. Bacillus subtilis is a naturally competent bacterium that occupies various environments, including plant-associated, soil, and marine niches, and the gut of both invertebrates and vertebrates. Here, we quantify the genomic diversity of B. subtilis and infer the genome dynamics that explain the high genetic and phenotypic diversity observed. Phylogenomic and comparative genomic analyses of 42 B. subtilis genomes uncover a remarkable genome diversity that translates into a core genome of 1,659 genes and an asymptotic pangenome growth rate of 57 new genes per new genome added. This diversity is due to a large proportion of low-frequency genes that are acquired from closely related species. We find no gene-loss bias among wild isolates, which explains why the cloud genome, 43% of the species pangenome, represents only a small proportion of each genome. We show that B. subtilis can acquire xenologous copies of core genes that propagate laterally among strains within a niche. While not excluding the contributions of other mechanisms, our results strongly suggest a process of gene acquisition that is largely driven by competence, where the long-term maintenance of acquired genes depends on local and global fitness effects. This competence-driven genomic diversity provides B. subtilis with its generalist character, enabling it to occupy a wide range of ecological niches and cycle through them. PMID:29272410

  2. Radiobiological inactivation of Epstein-Barr virus

    International Nuclear Information System (INIS)

    Henderson, E.; Heston, L.; Grogan, E.; Miller, G.

    1978-01-01

    Lymphocyte transforming properties of B95-8 strain Epstein-Barr virus (EBV) are very sensitive to inactivation by either uv or x irradiation. No dose of irradiation increases the transforming capacity of EBV. The x-ray dose needed for inactivation of EBV transformation (dose that results in 37% survival, 60,000 rads) is similar to the dose required for inactivation of plaque formation by herpes simplex virus type 1 (Fischer strain). Although herpes simplex virus is more sensitive than EBV to uv irradiation, this difference is most likely due to differences in the kinetics or mechanisms of repair of uv damage to the two viruses. The results lead to the hypothesis that a large part, or perhaps all, of the EBV genome is in some way needed to initiate transformation. The abilities of EBV to stimulate host cell DNA synthesis, to induce nuclear antigen, and to immortalize are inactivated in parallel. All clones of marmoset cells transformed by irradiated virus produce extracellular transforming virus. These findings suggest that the abilities of the virus to transform and to replicate complete progeny are inactivated together. The amounts of uv and x irradiation that inactivate transformation by B95-8 virus are less than the dose needed to inactivate early antigen induction by the nontransforming P 3 HR-1 strain of EBV. Based on radiobiological inactivation, 10 to 50% of the genome is needed for early antigen induction

  3. A molecular switch driving inactivation in the cardiac K+ channel HERG.

    Directory of Open Access Journals (Sweden)

    David A Köpfer

    Full Text Available K(+ channels control transmembrane action potentials by gating open or closed in response to external stimuli. Inactivation gating, involving a conformational change at the K(+ selectivity filter, has recently been recognized as a major K(+ channel regulatory mechanism. In the K(+ channel hERG, inactivation controls the length of the human cardiac action potential. Mutations impairing hERG inactivation cause life-threatening cardiac arrhythmia, which also occur as undesired side effects of drugs. In this paper, we report atomistic molecular dynamics simulations, complemented by mutational and electrophysiological studies, which suggest that the selectivity filter adopts a collapsed conformation in the inactivated state of hERG. The selectivity filter is gated by an intricate hydrogen bond network around residues S620 and N629. Mutations of this hydrogen bond network are shown to cause inactivation deficiency in electrophysiological measurements. In addition, drug-related conformational changes around the central cavity and pore helix provide a functional mechanism for newly discovered hERG activators.

  4. Inactivating UBE2M impacts the DNA damage response and genome integrity involving multiple cullin ligases.

    Directory of Open Access Journals (Sweden)

    Scott Cukras

    Full Text Available Protein neddylation is involved in a wide variety of cellular processes. Here we show that the DNA damage response is perturbed in cells inactivated with an E2 Nedd8 conjugating enzyme UBE2M, measured by RAD51 foci formation kinetics and cell based DNA repair assays. UBE2M knockdown increases DNA breakages and cellular sensitivity to DNA damaging agents, further suggesting heightened genomic instability and defective DNA repair activity. Investigating the downstream Cullin targets of UBE2M revealed that silencing of Cullin 1, 2, and 4 ligases incurred significant DNA damage. In particular, UBE2M knockdown, or defective neddylation of Cullin 2, leads to a blockade in the G1 to S progression and is associated with delayed S-phase dependent DNA damage response. Cullin 4 inactivation leads to an aberrantly high DNA damage response that is associated with increased DNA breakages and sensitivity of cells to DNA damaging agents, suggesting a DNA repair defect is associated. siRNA interrogation of key Cullin substrates show that CDT1, p21, and Claspin are involved in elevated DNA damage in the UBE2M knockdown cells. Therefore, UBE2M is required to maintain genome integrity by activating multiple Cullin ligases throughout the cell cycle.

  5. Inactivating UBE2M impacts the DNA damage response and genome integrity involving multiple cullin ligases.

    Science.gov (United States)

    Cukras, Scott; Morffy, Nicholas; Ohn, Takbum; Kee, Younghoon

    2014-01-01

    Protein neddylation is involved in a wide variety of cellular processes. Here we show that the DNA damage response is perturbed in cells inactivated with an E2 Nedd8 conjugating enzyme UBE2M, measured by RAD51 foci formation kinetics and cell based DNA repair assays. UBE2M knockdown increases DNA breakages and cellular sensitivity to DNA damaging agents, further suggesting heightened genomic instability and defective DNA repair activity. Investigating the downstream Cullin targets of UBE2M revealed that silencing of Cullin 1, 2, and 4 ligases incurred significant DNA damage. In particular, UBE2M knockdown, or defective neddylation of Cullin 2, leads to a blockade in the G1 to S progression and is associated with delayed S-phase dependent DNA damage response. Cullin 4 inactivation leads to an aberrantly high DNA damage response that is associated with increased DNA breakages and sensitivity of cells to DNA damaging agents, suggesting a DNA repair defect is associated. siRNA interrogation of key Cullin substrates show that CDT1, p21, and Claspin are involved in elevated DNA damage in the UBE2M knockdown cells. Therefore, UBE2M is required to maintain genome integrity by activating multiple Cullin ligases throughout the cell cycle.

  6. Persistence drives gene clustering in bacterial genomes

    Directory of Open Access Journals (Sweden)

    Rocha Eduardo PC

    2008-01-01

    Full Text Available Abstract Background Gene clustering plays an important role in the organization of the bacterial chromosome and several mechanisms have been proposed to explain its extent. However, the controversies raised about the validity of each of these mechanisms remind us that the cause of this gene organization remains an open question. Models proposed to explain clustering did not take into account the function of the gene products nor the likely presence or absence of a given gene in a genome. However, genomes harbor two very different categories of genes: those genes present in a majority of organisms – persistent genes – and those present in very few organisms – rare genes. Results We show that two classes of genes are significantly clustered in bacterial genomes: the highly persistent and the rare genes. The clustering of rare genes is readily explained by the selfish operon theory. Yet, genes persistently present in bacterial genomes are also clustered and we try to understand why. We propose a model accounting specifically for such clustering, and show that indispensability in a genome with frequent gene deletion and insertion leads to the transient clustering of these genes. The model describes how clusters are created via the gene flux that continuously introduces new genes while deleting others. We then test if known selective processes, such as co-transcription, physical interaction or functional neighborhood, account for the stabilization of these clusters. Conclusion We show that the strong selective pressure acting on the function of persistent genes, in a permanent state of flux of genes in bacterial genomes, maintaining their size fairly constant, that drives persistent genes clustering. A further selective stabilization process might contribute to maintaining the clustering.

  7. Apc inactivation, but not obesity, synergizes with Pten deficiency to drive intestinal stem cell-derived tumorigenesis.

    Science.gov (United States)

    Tabrizian, Tahmineh; Wang, Donghai; Guan, Fangxia; Hu, Zunju; Beck, Amanda P; Delahaye, Fabien; Huffman, Derek M

    2017-06-01

    Obesity is a major risk factor for colorectal cancer and can accelerate Lgr5+ intestinal stem cell (ISC)-derived tumorigenesis after the inactivation of Apc However, whether non-canonical pathways involving PI3K-Akt signaling in ISCs can lead to tumor formation, and if this can be further exacerbated by obesity is unknown. Despite the synergy between Pten and Apc inactivation in epithelial cells on intestinal tumor formation, their combined role in Lgr5+-ISCs, which are the most rapidly dividing ISC population in the intestine, is unknown. Lgr5+-GFP mice were provided low-fat diet (LFD) or high-fat diet (HFD) for 8 months, and the transcriptome was evaluated in Lgr5+-ISCs. For tumor studies, Lgr5+-GFP and Lgr5+-GFP- Pten flox/flox mice were tamoxifen treated to inactivate Pten in ISCs and provided LFD or HFD until 14-15 months of age. Finally, various combinations of Lgr5+-ISC-specific, Apc- and Pten -deleted mice were generated and evaluated for histopathology and survival. HFD did not overtly alter Akt signaling in ISCs, but did increase other metabolic pathways. Pten deficiency, but not HFD, increased BrdU-positive cells in the small intestine ( P  Apc deficiency synergistically increased proliferative markers, tumor pathology and mortality, in a dose-dependent fashion ( P  Apc deficiency in ISCs synergistically increases proliferation, tumor formation and mortality. Thus, aberrant Wnt/β-catenin, rather than PI3K-Akt signaling, is requisite for obesity to drive Lgr5+ ISC-derived tumorigenesis. © 2017 Society for Endocrinology.

  8. Comprehensive genomic profiling reveals inactivating SMARCA4 mutations and low tumor mutational burden in small cell carcinoma of the ovary, hypercalcemic-type.

    Science.gov (United States)

    Lin, Douglas I; Chudnovsky, Yakov; Duggan, Bridget; Zajchowski, Deborah; Greenbowe, Joel; Ross, Jeffrey S; Gay, Laurie M; Ali, Siraj M; Elvin, Julia A

    2017-12-01

    Small cell carcinoma of the ovary, hypercalcemic-type (SCCOHT) is a rare, extremely aggressive neoplasm that usually occurs in young women and is characterized by deleterious germline or somatic SMARCA4 mutations. We performed comprehensive genomic profiling (CGP) to potentially identify additional clinically and pathophysiologically relevant genomic alterations in SCCOHT. CGP assessment of all classes of coding alterations in up to 406 genes commonly altered in cancer and intronic regions for up to 31 genes commonly rearranged in cancer was performed on 18 SCCOHT cases (16 exhibiting classic morphology and 2 cases exhibiting exclusive a large cell variant morphology). In addition, a retrospective database search for clinically advanced ovarian tumors with genomic profiles similar to SCCOHT yielded 3 additional cases originally diagnosed as non-SCCOHT. CGP revealed inactivating SMARCA4 alterations and low tumor mutational burden (TMB) (<6mutations/Mb) in 94% (15/16) of SCCOHT with classic morphology. In contrast, both (2/2) cases exhibiting only large cell variant morphology were hypermutated (TMB scores of 90 and 360mut/Mb) and were wildtype for SMARCA4. In our retrospective search, an index ovarian cancer patient harboring inactivating SMARCA4 alterations, initially diagnosed as endometrioid carcinoma, was re-classified as SCCOHT and responded to an SCCOHT chemotherapy regimen. The vast majority of SCCOHT demonstrate genomic SMARCA4 loss with only rare co-occurring alterations. Our data support a role for CGP in the diagnosis and management of SCCOHT and of other lesions with overlapping histological and clinical features, since identifying the former by genomic profile suggests benefit from an appropriate regimen and treatment decisions, as illustrated by an index patient. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Parasitism drives host genome evolution: Insights from the Pasteuria ramosa-Daphnia magna system.

    Science.gov (United States)

    Bourgeois, Yann; Roulin, Anne C; Müller, Kristina; Ebert, Dieter

    2017-04-01

    Because parasitism is thought to play a major role in shaping host genomes, it has been predicted that genomic regions associated with resistance to parasites should stand out in genome scans, revealing signals of selection above the genomic background. To test whether parasitism is indeed such a major factor in host evolution and to better understand host-parasite interaction at the molecular level, we studied genome-wide polymorphisms in 97 genotypes of the planktonic crustacean Daphnia magna originating from three localities across Europe. Daphnia magna is known to coevolve with the bacterial pathogen Pasteuria ramosa for which host genotypes (clonal lines) are either resistant or susceptible. Using association mapping, we identified two genomic regions involved in resistance to P. ramosa, one of which was already known from a previous QTL analysis. We then performed a naïve genome scan to test for signatures of positive selection and found that the two regions identified with the association mapping further stood out as outliers. Several other regions with evidence for selection were also found, but no link between these regions and phenotypic variation could be established. Our results are consistent with the hypothesis that parasitism is driving host genome evolution. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  10. Key tumor suppressor genes inactivated by "greater promoter" methylation and somatic mutations in head and neck cancer

    NARCIS (Netherlands)

    Guerrero-Preston, Rafael; Michailidi, Christina; Marchionni, Luigi; Pickering, Curtis R.; Frederick, Mitchell J.; Myers, Jeffrey N.; Yegnasubramanian, Srinivasan; Hadar, Tal; Noordhuis, Maartje G.; Zizkova, Veronika; Fertig, Elana; Agrawal, Nishant; Westra, William; Koch, Wayne; Califano, Joseph; Velculescu, Victor E.; Sidransky, David

    Tumor suppressor genes (TSGs) are commonly inactivated by somatic mutation and/or promoter methylation; yet, recent high-throughput genomic studies have not identified key TSGs inactivated by both mechanisms. We pursued an integrated molecular analysis based on methylation binding domain sequencing

  11. Some factors affecting urokinase inactivation. [Gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Iwata, Hiroo; Iketa, Yoshito

    1985-10-01

    The enzymatic activity of urokinase adsorbed on various polymer surfaces was measured to study the interaction between protein and polymers. The polymer films on which urokinase was adsorbed were exposed to either a high temperature or ..gamma..-radiation. The thermal inactivation rates were higher on hydrophobic polymers such as poly(ethylene terephthalate), nylon 6, and poly(vinylidene fluoride) than hydrophilic polymers like cellulose and ethylene-vinyl alcohol copolymer, indicating their substantial dependence on the interfacial free energy between the polymer and water. A similar dependence was also seen for the ..gamma..-radiation inactivation. Urokinase adsorbed on the hydrophobic polymers lost more easily its enzymatic activity by exposure to ..gamma..-radiation. The interfacial free energy seems to be one of the driving forces to denaturate proteins on polymers.

  12. Ultraviolet radiation inactivates SV40 by disrupting at least four genetic functions

    International Nuclear Information System (INIS)

    Brown, T.C.; Cerutti, P.A.

    1986-01-01

    The most UV sensitive region within the SV40 viral genome contains the transcriptional promotors and enhancers for the early and late viral genes plus part of the origin of DNA replication. Lesions within this regulatory region are 3.2-fold more effective in inactivating viral DNA than is the same amount of damage randomly distributed throughout the viral genome. The region least sensitive to damage lies within the coding portion of the viral coat protein genes, which are expressed only late in infection and would therefore be transcribed from undamaged progeny viral genomes, provided DNA replication occurs. Damage within this region is only 45% as effective in inactivating viral DNA as are randomly distributed lesions. Thus there is a 7-fold difference in the lethal effect of DNA damage within the most and least sensitive regions of the viral genome. Intermediate sensitivities are observed within the transcribed portion of the viral A gene, coding for the T antigen whose expression is required early in infection, and in a region at the terminus of DNA replication. The sum of the individual sensitivities for all regions of the SV40 genome is equal to the total sensitivity of viral DNA subjected to random damage. (author)

  13. Step-wise and punctuated genome evolution drive phenotype changes of tumor cells

    International Nuclear Information System (INIS)

    Stepanenko, Aleksei; Andreieva, Svitlana; Korets, Kateryna; Mykytenko, Dmytro; Huleyuk, Nataliya; Vassetzky, Yegor; Kavsan, Vadym

    2015-01-01

    genome context. Temozolomide treatment of 293-pcDNA3.1 cells intensified the stochastic punctuated genome changes and CNAs, and significantly reduced viability and CFE. In contrast, temozolomide treatment of HeLa-CHI3L1 cells promoted the step-wise genome changes, CNAs, and increased viability and CFE, which did not correlate with the ectopic CHI3L1 production. Thus, consistent coevolution of karyotypes and phenotypes was observed. CIN as a driving force of genome evolution significantly influences growth characteristics of tumor cells and should be always taken into consideration during the different experimental manipulations

  14. Step-wise and punctuated genome evolution drive phenotype changes of tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Stepanenko, Aleksei, E-mail: a.a.stepanenko@gmail.com [Department of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv 03680 (Ukraine); Andreieva, Svitlana; Korets, Kateryna; Mykytenko, Dmytro [Department of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv 03680 (Ukraine); Huleyuk, Nataliya [Institute of Hereditary Pathology, National Academy of Medical Sciences of Ukraine, Lviv 79008 (Ukraine); Vassetzky, Yegor [CNRS UMR8126, Université Paris-Sud 11, Institut de Cancérologie Gustave Roussy, Villejuif 94805 (France); Kavsan, Vadym [Department of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv 03680 (Ukraine)

    2015-01-15

    genome context. Temozolomide treatment of 293-pcDNA3.1 cells intensified the stochastic punctuated genome changes and CNAs, and significantly reduced viability and CFE. In contrast, temozolomide treatment of HeLa-CHI3L1 cells promoted the step-wise genome changes, CNAs, and increased viability and CFE, which did not correlate with the ectopic CHI3L1 production. Thus, consistent coevolution of karyotypes and phenotypes was observed. CIN as a driving force of genome evolution significantly influences growth characteristics of tumor cells and should be always taken into consideration during the different experimental manipulations.

  15. Chemical Addressability of Ultraviolet-Inactivated Viral Nanoparticles (VNPs)

    Science.gov (United States)

    Rae, Chris; Koudelka, Kristopher J.; Destito, Giuseppe; Estrada, Mayra N.; Gonzalez, Maria J.; Manchester, Marianne

    2008-01-01

    Background Cowpea Mosaic Virus (CPMV) is increasingly being used as a nanoparticle platform for multivalent display of molecules via chemical bioconjugation to the capsid surface. A growing variety of applications have employed the CPMV multivalent display technology including nanoblock chemistry, in vivo imaging, and materials science. CPMV nanoparticles can be inexpensively produced from experimentally infected cowpea plants at high yields and are extremely stable. Although CPMV has not been shown to replicate in mammalian cells, uptake in mammalian cells does occur in vitro and in vivo. Thus, inactivation of the virus RNA genome is important for biosafety considerations, however the surface characteristics and chemical reactivity of the particles must be maintained in order to preserve chemical and structural functionality. Methodology/Principal Findings Short wave (254 nm) UV irradiation was used to crosslink the RNA genome within intact particles. Lower doses of UV previously reported to inactivate CPMV infectivity inhibited symptoms on inoculated leaves but did not prohibit systemic virus spread in plants, whereas higher doses caused aggregation of the particles and an increase in chemical reactivity further indicating broken particles. Intermediate doses of 2.0–2.5 J/cm2 were shown to maintain particle structure and chemical reactivity, and cellular binding properties were similar to CPMV-WT. Conclusions These studies demonstrate that it is possible to inactivate CPMV infectivity while maintaining particle structure and function, thus paving the way for further development of CPMV nanoparticles for in vivo applications. PMID:18830402

  16. Chemical addressability of ultraviolet-inactivated viral nanoparticles (VNPs.

    Directory of Open Access Journals (Sweden)

    Chris Rae

    2008-10-01

    Full Text Available Cowpea Mosaic Virus (CPMV is increasingly being used as a nanoparticle platform for multivalent display of molecules via chemical bioconjugation to the capsid surface. A growing variety of applications have employed the CPMV multivalent display technology including nanoblock chemistry, in vivo imaging, and materials science. CPMV nanoparticles can be inexpensively produced from experimentally infected cowpea plants at high yields and are extremely stable. Although CPMV has not been shown to replicate in mammalian cells, uptake in mammalian cells does occur in vitro and in vivo. Thus, inactivation of the virus RNA genome is important for biosafety considerations, however the surface characteristics and chemical reactivity of the particles must be maintained in order to preserve chemical and structural functionality.Short wave (254 nm UV irradiation was used to crosslink the RNA genome within intact particles. Lower doses of UV previously reported to inactivate CPMV infectivity inhibited symptoms on inoculated leaves but did not prohibit systemic virus spread in plants, whereas higher doses caused aggregation of the particles and an increase in chemical reactivity further indicating broken particles. Intermediate doses of 2.0-2.5 J/cm(2 were shown to maintain particle structure and chemical reactivity, and cellular binding properties were similar to CPMV-WT.These studies demonstrate that it is possible to inactivate CPMV infectivity while maintaining particle structure and function, thus paving the way for further development of CPMV nanoparticles for in vivo applications.

  17. Imprinted X chromosome inactivation: evolution of mechanisms in distantly related mammals

    Directory of Open Access Journals (Sweden)

    Shafagh A. Waters

    2015-03-01

    Full Text Available In females, X chromosome inactivation (XCI ensures transcriptional silencing of one of the two Xs (either in a random or imprinted fashion in somatic cells. Comparing this silencing between species has offered insight into different mechanisms of X inactivation, providing clues into the evolution of this epigenetic process in mammals. Long-noncoding RNAs have emerged as a common theme in XCI of therian mammals (eutherian and marsupial. Eutherian X inactivation is regulated by the noncoding RNA product of XIST, within a cis-acting master control region called the X inactivation center (XIC. Marsupials XCI is XIST independent. Instead, XCI is controlled by the long-noncoding RNA Rsx, which appears to be a functional analog of the eutherian XIST gene, insofar that its transcript coats the inactive X and represses activity of genes in cis. In this review we discuss XCI in eutherians, and contrast imprinted X inactivation in mouse and marsupials. We provide particular focus on the evolution of genomic elements that confer the unique epigenetic features that characterize the inactive X chromosome.

  18. The devil is in the details: Transposable element analysis of the Tasmanian devil genome.

    Science.gov (United States)

    Nilsson, Maria A

    2016-01-01

    The third marsupial genome was sequenced from the Tasmanian devil ( Sarcophilus harrisii ), a species that currently is driven to extinction by a rare transmissible cancer. The transposable element (TE) landscape of the Tasmanian devil genome revealed that the main driver of retrotransposition the L ong IN terspersed E lement 1 (LINE1) seem to have become inactivated during the past 12 million years. Strangely, the S hort IN terspersed E lements (SINE), that normally hijacks the LINE1 retrotransposition system, became inactive prior to LINE1 at around 30 million years ago. The SINE inactivation was in vitro verified in several species. Here I discuss that the apparent LINE1 inactivation might be caused by a genome assembly artifact. The repetitive fraction of any genome is highly complex to assemble and the observed problems are not unique to the Tasmanian devil genome.

  19. High GC Content Cas9-Mediated Genome-Editing and Biosynthetic Gene Cluster Activation in Saccharopolyspora erythraea.

    Science.gov (United States)

    Liu, Yong; Wei, Wen-Ping; Ye, Bang-Ce

    2018-05-18

    The overexpression of bacterial secondary metabolite biosynthetic enzymes is the basis for industrial overproducing strains. Genome editing tools can be used to further improve gene expression and yield. Saccharopolyspora erythraea produces erythromycin, which has extensive clinical applications. In this study, the CRISPR-Cas9 system was used to edit genes in the S. erythraea genome. A temperature-sensitive plasmid containing the PermE promoter, to drive Cas9 expression, and the Pj23119 and PkasO promoters, to drive sgRNAs, was designed. Erythromycin esterase, encoded by S. erythraea SACE_1765, inactivates erythromycin by hydrolyzing the macrolactone ring. Sequencing and qRT-PCR confirmed that reporter genes were successfully inserted into the SACE_1765 gene. Deletion of SACE_1765 in a high-producing strain resulted in a 12.7% increase in erythromycin levels. Subsequent PermE- egfp knock-in at the SACE_0712 locus resulted in an 80.3% increase in erythromycin production compared with that of wild type. Further investigation showed that PermE promoter knock-in activated the erythromycin biosynthetic gene clusters at the SACE_0712 locus. Additionally, deletion of indA (SACE_1229) using dual sgRNA targeting without markers increased the editing efficiency to 65%. In summary, we have successfully applied Cas9-based genome editing to a bacterial strain, S. erythraea, with a high GC content. This system has potential application for both genome-editing and biosynthetic gene cluster activation in Actinobacteria.

  20. Switches in Genomic GC Content Drive Shifts of Optimal Codons under Sustained Selection on Synonymous Sites

    Science.gov (United States)

    Sun, Yu; Tamarit, Daniel

    2017-01-01

    Abstract The major codon preference model suggests that codons read by tRNAs in high concentrations are preferentially utilized in highly expressed genes. However, the identity of the optimal codons differs between species although the forces driving such changes are poorly understood. We suggest that these questions can be tackled by placing codon usage studies in a phylogenetic framework and that bacterial genomes with extreme nucleotide composition biases provide informative model systems. Switches in the background substitution biases from GC to AT have occurred in Gardnerella vaginalis (GC = 32%), and from AT to GC in Lactobacillus delbrueckii (GC = 62%) and Lactobacillus fermentum (GC = 63%). We show that despite the large effects on codon usage patterns by these switches, all three species evolve under selection on synonymous sites. In G. vaginalis, the dramatic codon frequency changes coincide with shifts of optimal codons. In contrast, the optimal codons have not shifted in the two Lactobacillus genomes despite an increased fraction of GC-ending codons. We suggest that all three species are in different phases of an on-going shift of optimal codons, and attribute the difference to a stronger background substitution bias and/or longer time since the switch in G. vaginalis. We show that comparative and correlative methods for optimal codon identification yield conflicting results for genomes in flux and discuss possible reasons for the mispredictions. We conclude that switches in the direction of the background substitution biases can drive major shifts in codon preference patterns even under sustained selection on synonymous codon sites. PMID:27540085

  1. SINEs as driving forces in genome evolution.

    Science.gov (United States)

    Schmitz, J

    2012-01-01

    SINEs are short interspersed elements derived from cellular RNAs that repetitively retropose via RNA intermediates and integrate more or less randomly back into the genome. SINEs propagate almost entirely vertically within their host cells and, once established in the germline, are passed on from generation to generation. As non-autonomous elements, their reverse transcription (from RNA to cDNA) and genomic integration depends on the activity of the enzymatic machinery of autonomous retrotransposons, such as long interspersed elements (LINEs). SINEs are widely distributed in eukaryotes, but are especially effectively propagated in mammalian species. For example, more than a million Alu-SINE copies populate the human genome (approximately 13% of genomic space), and few master copies of them are still active. In the organisms where they occur, SINEs are a challenge to genomic integrity, but in the long term also can serve as beneficial building blocks for evolution, contributing to phenotypic heterogeneity and modifying gene regulatory networks. They substantially expand the genomic space and introduce structural variation to the genome. SINEs have the potential to mutate genes, to alter gene expression, and to generate new parts of genes. A balanced distribution and controlled activity of such properties is crucial to maintaining the organism's dynamic and thriving evolution. Copyright © 2012 S. Karger AG, Basel.

  2. Inactivation of norovirus surrogates on surfaces and raspberries by steam-ultrasound treatment

    DEFF Research Database (Denmark)

    Schultz, Anna Charlotte; Uhrbrand, Katrine; Nørrung, Birgit

    2012-01-01

    of infectious virus and viral genomes were determined by plaque assay and reverse transcription-real time quantitative PCR (RT-qPCR), respectively. On plastic surfaces, an inactivation of >99.99% was obtained for both MS2 and FCV, corresponding to a 9.1-log and >4.8-log reduction after 1 or 3 s of treatment......) resulted in negligible reductions of viral genome titers of MS2, FCV, and MNV on plastic surfaces as well as of MS2 inoculated on raspberries. Steam-ultrasound treatment in its current format does not appear to be an appropriate method to achieve sufficient decontamination of NoV-contaminated raspberries...... treatment that combines pressurized steam and high-power ultrasound (steam-ultrasound) was assessed for its efficacy to inactivate human NoV surrogates: coliphage (MS2), feline calicivirus (FCV), and murine norovirus (MNV) inoculated on plastic surfaces and MS2 inoculated on fresh raspberries. The amounts...

  3. Peripheral drive in Aα/β-fiber neurons is altered in a rat model of osteoarthritis: changes in following frequency and recovery from inactivation

    Directory of Open Access Journals (Sweden)

    Wu Q

    2013-03-01

    Full Text Available Qi Wu, James L HenryDepartment of Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton, ON, CanadaPurpose: To determine conduction fidelity of Aα/β-fiber low threshold mechanoreceptors in a model of osteoarthritis (OA.Methods: Four weeks after cutting the anterior cruciate ligament and removing the medial meniscus to induce the model, in vivo intracellular recordings were made in ipsilateral L4 dorsal root ganglion neurons. L4 dorsal roots were stimulated to determine the refractory interval and the maximum following frequency of the evoked action potential (AP. Neurons exhibited two types of response to paired pulse stimulation. Results: One type of response was characterized by fractionation of the evoked AP into an initial nonmyelinated-spike and a later larger-amplitude somatic-spike at shorter interstimulus intervals. The other type of response was characterized by an all-or-none AP, where the second evoked AP failed altogether at shorter interstimulus intervals. In OA versus control animals, the refractory interval measured in paired pulse testing was less in all low threshold mechanoreceptors. With train stimulation, the maximum rising rate of the nonmyelinated-spike was greater in OA nonmuscle spindle low threshold mechanoreceptors, possibly due to changes in fast kinetics of currents. Maximum following frequency in Pacinian and muscle spindle neurons was greater in model animals compared to controls. Train stimulation also induced an inactivation and fractionation of the AP in neurons that showed fractionation of the AP in paired pulse testing. However, with train stimulation this fractionation followed a different time course, suggesting more than one type of inactivation.Conclusion: The data suggest that joint damage can lead to changes in the fidelity of AP conduction of large diameter sensory neurons, muscle spindle neurons in particular, arising from articular and nonarticular tissues in OA animals compared to

  4. Genome Organization Drives Chromosome Fragility.

    Science.gov (United States)

    Canela, Andres; Maman, Yaakov; Jung, Seolkyoung; Wong, Nancy; Callen, Elsa; Day, Amanda; Kieffer-Kwon, Kyong-Rim; Pekowska, Aleksandra; Zhang, Hongliang; Rao, Suhas S P; Huang, Su-Chen; Mckinnon, Peter J; Aplan, Peter D; Pommier, Yves; Aiden, Erez Lieberman; Casellas, Rafael; Nussenzweig, André

    2017-07-27

    In this study, we show that evolutionarily conserved chromosome loop anchors bound by CCCTC-binding factor (CTCF) and cohesin are vulnerable to DNA double strand breaks (DSBs) mediated by topoisomerase 2B (TOP2B). Polymorphisms in the genome that redistribute CTCF/cohesin occupancy rewire DNA cleavage sites to novel loop anchors. While transcription- and replication-coupled genomic rearrangements have been well documented, we demonstrate that DSBs formed at loop anchors are largely transcription-, replication-, and cell-type-independent. DSBs are continuously formed throughout interphase, are enriched on both sides of strong topological domain borders, and frequently occur at breakpoint clusters commonly translocated in cancer. Thus, loop anchors serve as fragile sites that generate DSBs and chromosomal rearrangements. VIDEO ABSTRACT. Published by Elsevier Inc.

  5. Inactivation of Caliciviruses

    Directory of Open Access Journals (Sweden)

    Raymond Nims

    2013-03-01

    Full Text Available The Caliciviridae family of viruses contains clinically important human and animal pathogens, as well as vesivirus 2117, a known contaminant of biopharmaceutical manufacturing processes employing Chinese hamster cells. An extensive literature exists for inactivation of various animal caliciviruses, especially feline calicivirus and murine norovirus. The caliciviruses are susceptible to wet heat inactivation at temperatures in excess of 60 °C with contact times of 30 min or greater, to UV-C inactivation at fluence ≥30 mJ/cm2, to high pressure processing >200 MPa for >5 min at 4 °C, and to certain photodynamic inactivation approaches. The enteric caliciviruses (e.g.; noroviruses display resistance to inactivation by low pH, while the non-enteric species (e.g.; feline calicivirus are much more susceptible. The caliciviruses are inactivated by a variety of chemicals, including alcohols, oxidizing agents, aldehydes, and β-propiolactone. As with inactivation of viruses in general, inactivation of caliciviruses by the various approaches may be matrix-, temperature-, and/or contact time-dependent. The susceptibilities of the caliciviruses to the various physical and chemical inactivation approaches are generally similar to those displayed by other small, non-enveloped viruses, with the exception that the parvoviruses and circoviruses may require higher temperatures for inactivation, while these families appear to be more susceptible to UV-C inactivation than are the caliciviruses.

  6. Sex drives intracellular conflict in yeast.

    Science.gov (United States)

    Harrison, E; MacLean, R C; Koufopanou, V; Burt, A

    2014-08-01

    Theory predicts that sex can drive the evolution of conflict within the cell. During asexual reproduction, genetic material within the cell is inherited as a single unit, selecting for cooperation both within the genome as well as between the extra-genomic elements within the cell (e.g. plasmids and endosymbionts). Under sexual reproduction, this unity is broken down as parental genomes are distributed between meiotic progeny. Genetic elements able to transmit to more than 50% of meiotic progeny have a transmission advantage over the rest of the genome and are able to spread, even where they reduce the fitness of the individual as a whole. Sexual reproduction is therefore expected to drive the evolution of selfish genetic elements (SGEs). Here, we directly test this hypothesis by studying the evolution of two independent SGEs, the 2-μm plasmid and selfish mitochondria, in populations of Saccharomyces cerevisiae. Following 22 rounds of sexual reproduction, 2-μm copy number increased by approximately 13.2 (±5.6) copies per cell, whereas in asexual populations copy number decreased by approximately 5.1 (±1.5) copies per cell. Given that the burden imposed by this parasite increases with copy number, these results support the idea that sex drives the evolution of increased SGE virulence. Moreover, we found that mitochondria that are respiratory-deficient rapidly invaded sexual but not asexual populations, demonstrating that frequent outcrossed sex can drive the de novo evolution of genetic parasites. Our study highlights the genomic perils of sex and suggests that SGEs may play a key role in driving major evolutionary transitions, such as uniparental inheritance. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  7. PBX1 Genomic Pioneer Function Drives ERα Signaling Underlying Progression in Breast Cancer

    Science.gov (United States)

    Magnani, Luca; Ballantyne, Elizabeth B.; Zhang, Xiaoyang; Lupien, Mathieu

    2011-01-01

    Altered transcriptional programs are a hallmark of diseases, yet how these are established is still ill-defined. PBX1 is a TALE homeodomain protein involved in the development of different types of cancers. The estrogen receptor alpha (ERα) is central to the development of two-thirds of all breast cancers. Here we demonstrate that PBX1 acts as a pioneer factor and is essential for the ERα-mediated transcriptional response driving aggressive tumors in breast cancer. Indeed, PBX1 expression correlates with ERα in primary breast tumors, and breast cancer cells depleted of PBX1 no longer proliferate following estrogen stimulation. Profiling PBX1 recruitment and chromatin accessibility across the genome of breast cancer cells through ChIP-seq and FAIRE-seq reveals that PBX1 is loaded and promotes chromatin openness at specific genomic locations through its capacity to read specific epigenetic signatures. Accordingly, PBX1 guides ERα recruitment to a specific subset of sites. Expression profiling studies demonstrate that PBX1 controls over 70% of the estrogen response. More importantly, the PBX1-dependent transcriptional program is associated with poor-outcome in breast cancer patients. Correspondingly, PBX1 expression alone can discriminate a priori the outcome in ERα-positive breast cancer patients. These features are markedly different from the previously characterized ERα-associated pioneer factor FoxA1. Indeed, PBX1 is the only pioneer factor identified to date that discriminates outcome such as metastasis in ERα-positive breast cancer patients. Together our results reveal that PBX1 is a novel pioneer factor defining aggressive ERα-positive breast tumors, as it guides ERα genomic activity to unique genomic regions promoting a transcriptional program favorable to breast cancer progression. PMID:22125492

  8. SMARCB1/INI1 inactivation in renal medullary carcinoma.

    Science.gov (United States)

    Calderaro, Julien; Moroch, Julien; Pierron, Gaelle; Pedeutour, Florence; Grison, Camille; Maillé, Pascale; Soyeux, Pascale; de la Taille, Alexandre; Couturier, Jérome; Vieillefond, Annick; Rousselet, Marie Christine; Delattre, Olivier; Allory, Yves

    2012-09-01

    Renal medullary carcinoma (RMC), a rare and highly aggressive tumour which occurs in patients with sickle-cell disease, shares many clinicopathological features with collecting duct carcinoma (CDC). The molecular mechanisms underlying RMC and CDC are mainly unknown, and there is ongoing debate about their status as distinct entities. Loss of expression of SMARCB1/INI1, a chromatin remodelling regulator and repressor of cyclin D1 transcription, has been reported recently in RMC. The aim of our study was to investigate if such loss of expression is specific for RMC. SMARCB1/INI1 genetic alterations and cyclin D1 expression were also studied. Using immunochemistry, neoplastic cells showed complete loss of SMARCB1/INI1 expression in all six cases of RMC but in only one of 22 cases of CDC. In two RMC cases investigated, comparative genomic hybridization demonstrated complete loss of one SMARCB1/INI1 allele, with no other genomic imbalances, and no mutations were found on the remaining allele. Cyclin D1 was expressed in all RMCs, suggesting that SMARCB1/INI1 inactivation may result in increased cyclin D1 transcription. The specific SMARCB1/INI1 inactivation observed in RMCs suggests that RMC and CDC are different entities. © 2012 Blackwell Publishing Ltd.

  9. Involvement of Atm and Trp53 in neural cell loss due to Terf2 inactivation during mouse brain development.

    Science.gov (United States)

    Kim, Jusik; Choi, Inseo; Lee, Youngsoo

    2017-11-01

    Maintenance of genomic integrity is one of the critical features for proper neurodevelopment and inhibition of neurological diseases. The signals from both ATM and ATR to TP53 are well-known mechanisms to remove neural cells with DNA damage during neurogenesis. Here we examined the involvement of Atm and Atr in genomic instability due to Terf2 inactivation during mouse brain development. Selective inactivation of Terf2 in neural progenitors induced apoptosis, resulting in a complete loss of the brain structure. This neural loss was rescued partially in both Atm and Trp53 deficiency, but not in an Atr-deficient background in the mouse. Atm inactivation resulted in incomplete brain structures, whereas p53 deficiency led to the formation of multinucleated giant neural cells and the disruption of the brain structure. These giant neural cells disappeared in Lig4 deficiency. These data demonstrate ATM and TP53 are important for the maintenance of telomere homeostasis and the surveillance of telomere dysfunction during neurogenesis.

  10. Studies on the inactivation of human parvovirus 4.

    Science.gov (United States)

    Baylis, Sally A; Tuke, Philip W; Miyagawa, Eiji; Blümel, Johannes

    2013-10-01

    Human parvovirus 4 (PARV4) is a novel parvovirus, which like parvovirus B19 (B19V) can be a contaminant of plasma pools used to prepare plasma-derived medicinal products. Inactivation studies of B19V have shown that it is more sensitive to virus inactivation strategies than animal parvoviruses. However, inactivation of PARV4 has not yet been specifically addressed. Treatment of parvoviruses by heat or low-pH conditions causes externalization of the virus genome. Using nuclease treatment combined with real-time polymerase chain reaction, the extent of virus DNA externalization was used as an indirect measure of the inactivation of PARV4, B19V, and minute virus of mice (MVM) by pasteurization of albumin and by low-pH treatment. Infectivity studies were performed in parallel for B19V and MVM. PARV4 showed greater resistance to pasteurization and low-pH treatment than B19V, although PARV4 was not as resistant as MVM. There was a 2- to 3-log reduction of encapsidated PARV4 DNA after pasteurization and low-pH treatment. In contrast, B19V was effectively inactivated while MVM was stable under these conditions. Divalent cations were found to have a stabilizing effect on PARV4 capsids. In the absence of divalent cations, even at neutral pH, there was a reduction of PARV4 titer, an effect not observed for B19V or MVM. In the case of heat treatment and incubation at low pH, PARV4 shows intermediate resistance when compared to B19V and MVM. Divalent cations seem important for stabilizing PARV4 virus particles. © 2013 American Association of Blood Banks.

  11. Inhibition of host cell protein synthesis by UV-inactivated poliovirus

    International Nuclear Information System (INIS)

    Helentjaris, T.; Ehrenfeld, E.

    1977-01-01

    The ability of poliovirus that was irradiated with UV light at energies up to 2,160 ergs/mm 2 to subsequently inhibit host cell protein synthesis was measured. The inactivation of the host cell shutoff function followed one-hit kinetics. Increasing irradiation did not affect the rate of inhibition until the multiplicity of infection after irradiation was reduced to approximately 1 PFU/cell. At higher functional multiplicities, the rate was unchanged, but an increasing lag before the onset of inhibition was observed with increasing irradiation. The energy levels required to inactivate virus-induced inhibition of host cell protein synthesis suggest that damage to virus RNA rather than to virus capsid proteins is responsible for the loss of function. When the inactivation of host cell shutoff was compared with the inactivation of other viral functions by UV irradiation, it correlated exactly with the loss of infectivity but not with other viral functions measured. Guanidine treatment, which prevents detectable viral RNA and protein synthesis, completely inhibited host cell shutoff by low multiplicities of unirradiated virus infection but not higher multiplicities. When a high multiplicity of virus was first reduced to a low titer by irradiation, host cell shutoff was still evident in the presence of guanidine. The results demonstrate that the complete inhibition of host cell protein synthesis can be accomplished by one infectious viral genome per cell

  12. Female meiotic sex chromosome inactivation in chicken.

    Directory of Open Access Journals (Sweden)

    Sam Schoenmakers

    2009-05-01

    Full Text Available During meiotic prophase in male mammals, the heterologous X and Y chromosomes remain largely unsynapsed, and meiotic sex chromosome inactivation (MSCI leads to formation of the transcriptionally silenced XY body. In birds, the heterogametic sex is female, carrying Z and W chromosomes (ZW, whereas males have the homogametic ZZ constitution. During chicken oogenesis, the heterologous ZW pair reaches a state of complete heterologous synapsis, and this might enable maintenance of transcription of Z- and W chromosomal genes during meiotic prophase. Herein, we show that the ZW pair is transiently silenced, from early pachytene to early diplotene using immunocytochemistry and gene expression analyses. We propose that ZW inactivation is most likely achieved via spreading of heterochromatin from the W on the Z chromosome. Also, persistent meiotic DNA double-strand breaks (DSBs may contribute to silencing of Z. Surprisingly, gammaH2AX, a marker of DSBs, and also the earliest histone modification that is associated with XY body formation in mammalian and marsupial spermatocytes, does not cover the ZW during the synapsed stage. However, when the ZW pair starts to desynapse, a second wave of gammaH2AX accumulates on the unsynapsed regions of Z, which also show a reappearance of the DSB repair protein RAD51. This indicates that repair of meiotic DSBs on the heterologous part of Z is postponed until late pachytene/diplotene, possibly to avoid recombination with regions on the heterologously synapsed W chromosome. Two days after entering diplotene, the Z looses gammaH2AX and shows reactivation. This is the first report of meiotic sex chromosome inactivation in a species with female heterogamety, providing evidence that this mechanism is not specific to spermatogenesis. It also indicates the presence of an evolutionary force that drives meiotic sex chromosome inactivation independent of the final achievement of synapsis.

  13. Virus inactivation studies using ion beams, electron and gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Smolko, Eduardo E. [Laboratorio de Polimeros, Grupo Aplicaciones Industriales, Unidad de Aplicaciones Tecnologicas y Agropecuarias, Centro Atomico Ezeiza, Comision Nacional de Energia Atomica, Pbro. Juan Gonzalez y Aragon 15, C.P. B1802AYA Ezeiza, Buenos Aires (Argentina)]. E-mail: smolko@cae.cnea.gov.ar; Lombardo, Jorge H. [Biotech S.A., C.P. 1754 Buenos Aires (Argentina)

    2005-07-01

    Known methods of virus inactivation are based on the chemical action of some substances such as acetylethylenimine, betapropiolactone, glycidalaldehyde, formaldehyde, etc. In such a process, the viral suspension should be kept at room or higher temperatures for 24-48 h. Under these conditions, physical and chemical agents act to degrade the virus antigenic proteins. On the contrary with ionizing radiations at low temperatures, the treatment does not cause such degradation allowing the study of different viral functions. In this work, particle ({alpha}, d and ss) and {gamma} irradiations were used for partial and total inactivation of Foot and Mouth Disease Virus (FMDV), Rauscher Leukemia Virus (RLV) and Herpes Simplex Virus (HSV). Obtention of the D{sub 37} dose from survival curves and the application of the target theory, permitted the determination of molecular weight of the nucleic acid genomes, EBR values and useful information for vaccine preparation. For RLV virus, a two target model of the RNA genome was deduced in accordance with biological information while from data from the literature and our own work on the structure of the scrapie prion, considering the molecular weight obtained by application of the theory, a new model for prion replication is presented, based on a trimer molecule.

  14. Virus inactivation studies using ion beams, electron and gamma irradiation

    International Nuclear Information System (INIS)

    Smolko, Eduardo E.; Lombardo, Jorge H.

    2005-01-01

    Known methods of virus inactivation are based on the chemical action of some substances such as acetylethylenimine, betapropiolactone, glycidalaldehyde, formaldehyde, etc. In such a process, the viral suspension should be kept at room or higher temperatures for 24-48 h. Under these conditions, physical and chemical agents act to degrade the virus antigenic proteins. On the contrary with ionizing radiations at low temperatures, the treatment does not cause such degradation allowing the study of different viral functions. In this work, particle (α, d and ss) and γ irradiations were used for partial and total inactivation of Foot and Mouth Disease Virus (FMDV), Rauscher Leukemia Virus (RLV) and Herpes Simplex Virus (HSV). Obtention of the D 37 dose from survival curves and the application of the target theory, permitted the determination of molecular weight of the nucleic acid genomes, EBR values and useful information for vaccine preparation. For RLV virus, a two target model of the RNA genome was deduced in accordance with biological information while from data from the literature and our own work on the structure of the scrapie prion, considering the molecular weight obtained by application of the theory, a new model for prion replication is presented, based on a trimer molecule

  15. Pathogen inactivation of Dengue virus in red blood cells using amustaline and glutathione.

    Science.gov (United States)

    Aubry, Maite; Laughhunn, Andrew; Santa Maria, Felicia; Lanteri, Marion C; Stassinopoulos, Adonis; Musso, Didier

    2017-12-01

    Dengue virus (DENV) is an arbovirus primarily transmitted through mosquito bite; however, DENV transfusion-transmitted infections (TTIs) have been reported and asymptomatic DENV RNA-positive blood donors have been identified in endemic countries. DENV is considered a high-risk pathogen for blood safety. One of the mitigation strategies to prevent arbovirus TTIs is pathogen inactivation. In this study we demonstrate that the amustaline and glutathione (S-303/GSH) treatment previously found effective against Zika virus in red blood cells (RBCs) is also effective in inactivating DENV. Red blood cells were spiked with high levels of DENV. Viral RNA loads and infectious titers were measured in the untreated control and before and after pathogen inactivation treatment of RBC samples. DENV infectivity was also assessed over five successive cell culture passages to detect any potential residual replicative virus. The mean ± SD DENV titer in RBCs before inactivation was 6.61 ± 0.19 log 50% tissue culture infectious dose (TCID 50 )/mL and the mean viral RNA load was 8.42 log genome equivalents/mL. No replicative DENV was detected either immediately after completion of treatment using S-303/GSH or after cell culture passages. Treatment using S-303/GSH inactivated high levels of DENV in RBCs to the limit of detection. In combination with previous studies showing the effective inactivation of DENV in plasma and platelets using the licensed amotosalen/UVA system, this study demonstrates that high levels of DENV can be inactivated in all blood components. © 2017 The Authors Transfusion published by Wiley Periodicals, Inc. on behalf of AABB.

  16. Viral inactivation in hemotherapy: systematic review on inactivators with action on nucleic acids

    Directory of Open Access Journals (Sweden)

    Patricia Marial Sobral

    2012-01-01

    Full Text Available The aim of this study was to conduct a systematic review on the photoinactivators used in hemotherapy, with action on viral genomes. The SciELO, Science Direct, PubMed and Lilacs databases were searched for articles. The inclusion criterion was that these should be articles on inactivators with action on genetic material that had been published between 2000 and 2010. The key words used in identifying such articles were "hemovigilance", "viral inactivation", "photodynamics", "chemoprevention" and "transfusion safety". Twenty-four articles on viral photoinactivation were found with the main photoinactivators covered being: methylene blue, amotosalen HCl, S-303 frangible anchor linker effector (FRALE, riboflavin and inactin. The results showed that methylene blue has currently been studied least, because it diminishes coagulation factors and fibrinogen. Riboflavin has been studied most because it is a photoinactivator of endogenous origin and has few collateral effects. Amotosalen HCl is effective for platelets and is also used on plasma, but may cause changes both to plasma and to platelets, although these are not significant for hemostasis. S-303 FRALE may lead to neoantigens in erythrocytes and is less indicated for red-cell treatment; in such cases, PEN 110 is recommended. Thus, none of the methods for pathogen reduction is effective for all classes of agents and for all blood components, but despite the high cost, these photoinactivators may diminish the risk of blood-transmitted diseases.

  17. Metabolic 'engines' of flight drive genome size reduction in birds.

    Science.gov (United States)

    Wright, Natalie A; Gregory, T Ryan; Witt, Christopher C

    2014-03-22

    The tendency for flying organisms to possess small genomes has been interpreted as evidence of natural selection acting on the physical size of the genome. Nonetheless, the flight-genome link and its mechanistic basis have yet to be well established by comparative studies within a volant clade. Is there a particular functional aspect of flight such as brisk metabolism, lift production or maneuverability that impinges on the physical genome? We measured genome sizes, wing dimensions and heart, flight muscle and body masses from a phylogenetically diverse set of bird species. In phylogenetically controlled analyses, we found that genome size was negatively correlated with relative flight muscle size and heart index (i.e. ratio of heart to body mass), but positively correlated with body mass and wing loading. The proportional masses of the flight muscles and heart were the most important parameters explaining variation in genome size in multivariate models. Hence, the metabolic intensity of powered flight appears to have driven genome size reduction in birds.

  18. Mitochondrial mutations drive prostate cancer aggression

    DEFF Research Database (Denmark)

    Hopkins, Julia F.; Sabelnykova, Veronica Y.; Weischenfeldt, Joachim

    2017-01-01

    Nuclear mutations are well known to drive tumor incidence, aggression and response to therapy. By contrast, the frequency and roles of mutations in the maternally inherited mitochondrial genome are poorly understood. Here we sequence the mitochondrial genomes of 384 localized prostate cancer...... in prostate cancer, and suggest interplay between nuclear and mitochondrial mutational profiles in prostate cancer....

  19. Electron beam inactivation of Tulane virus on fresh produce, and mechanism of inactivation of human norovirus surrogates by electron beam irradiation.

    Science.gov (United States)

    Predmore, Ashley; Sanglay, Gabriel C; DiCaprio, Erin; Li, Jianrong; Uribe, R M; Lee, Ken

    2015-04-02

    Ionizing radiation, whether by electron beams or gamma rays, is a non-thermal processing technique used to improve the microbial safety and shelf-life of many different food products. This technology is highly effective against bacterial pathogens, but data on its effect against foodborne viruses is limited. A mechanism of viral inactivation has been proposed with gamma irradiation, but no published study discloses a mechanism for electron beam (e-beam). This study had three distinct goals: 1) evaluate the sensitivity of a human norovirus surrogate, Tulane virus (TV), to e-beam irradiation in foods, 2) compare the difference in sensitivity of TV and murine norovirus (MNV-1) to e-beam irradiation, and 3) determine the mechanism of inactivation of these two viruses by e-beam irradiation. TV was reduced from 7 log10 units to undetectable levels at target doses of 16 kGy or higher in two food matrices (strawberries and lettuce). MNV-1 was more resistant to e-beam treatment than TV. At target doses of 4 kGy, e-beam provided a 1.6 and 1.2 log reduction of MNV-1 in phosphate buffered saline (PBS) and Dulbecco's Modified Eagle Medium (DMEM), compared to a 1.5 and 1.8 log reduction of TV in PBS and Opti-MEM, respectively. Transmission electron microscopy revealed that increased e-beam doses negatively affected the structure of both viruses. Analysis of viral proteins by SDS-PAGE found that irradiation also degraded viral proteins. Using RT-PCR, irradiation was shown to degrade viral genomic RNA. This suggests that the mechanism of inactivation of e-beam was likely the same as gamma irradiation as the damage to viral constituents led to inactivation. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Inactivation Data.xlsx

    Data.gov (United States)

    U.S. Environmental Protection Agency — The data set is a spreadsheet that contains results of inactivation experiments that were conducted to to determine the effectiveness of chlorine in inactivating B....

  1. Inactivation of pathogenic bacteria in food matrices: high pressure processing, photodynamic inactivation and pressure-assisted photodynamic inactivation

    Science.gov (United States)

    Cunha, A.; Couceiro, J.; Bonifácio, D.; Martins, C.; Almeida, A.; Neves, M. G. P. M. S.; Faustino, M. A. F.; Saraiva, J. A.

    2017-09-01

    Traditional food processing methods frequently depend on the application of high temperature. However, heat may cause undesirable changes in food properties and often has a negative impact on nutritional value and organoleptic characteristics. Therefore, reducing the microbial load without compromising the desirable properties of food products is still a technological challenge. High-pressure processing (HPP) can be classified as a cold pasteurization technique, since it is a non-thermal food preservation method that uses hydrostatic pressure to inactivate spoilage microorganisms. At the same time, it increases shelf life and retains the original features of food. Photodynamic inactivation (PDI) is also regarded as promising approach for the decontamination of food matrices. In this case, the inactivation of bacterial cells is achieved by the cytotoxic effects of reactive oxygens species (ROS) produced from the combined interaction of a photosensitizer molecule, light and oxygen. This short review examines some recent developments on the application of HPP and PDI with food-grade photosensitizers for the inactivation of listeriae, taken as a food pathogen model. The results of a proof-of-concept trial of the use of high-pressure as a coadjutant to increase the efficiency of photodynamic inactivation of bacterial endospores is also addressed.

  2. The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia | Office of Cancer Genomics

    Science.gov (United States)

    Genetic alterations that activate NOTCH1 signaling and T cell transcription factors, coupled with inactivation of the INK4/ARF tumor suppressors, are hallmarks of T-lineage acute lymphoblastic leukemia (T-ALL), but detailed genome-wide sequencing of large T-ALL cohorts has not been carried out. Using integrated genomic analysis of 264 T-ALL cases, we identified 106 putative driver genes, half of which had not previously been described in childhood T-ALL (for example, CCND3, CTCF, MYB, SMARCA4, ZFP36L2 and MYCN).

  3. IL26 gene inactivation in Equidae.

    Science.gov (United States)

    Shakhsi-Niaei, M; Drögemüller, M; Jagannathan, V; Gerber, V; Leeb, T

    2013-12-01

    Interleukin-26 (IL26) is a member of the IL10 cytokine family. The IL26 gene is located between two other well-known cytokines genes of this family encoding interferon-gamma (IFNG) and IL22 in an evolutionary conserved gene cluster. In contrast to humans and most other mammals, mice lack a functional Il26 gene. We analyzed the genome sequences of other vertebrates for the presence or absence of functional IL26 orthologs and found that the IL26 gene has also become inactivated in several equid species. We detected a one-base pair frameshift deletion in exon 2 of the IL26 gene in the domestic horse (Equus caballus), Przewalski horse (Equus przewalskii) and donkey (Equus asinus). The remnant IL26 gene in the horse is still transcribed and gives rise to at least five alternative transcripts. None of these transcripts share a conserved open reading frame with the human IL26 gene. A comparative analysis across diverse vertebrates revealed that the IL26 gene has also independently been inactivated in a few other mammals, including the African elephant and the European hedgehog. The IL26 gene thus appears to be highly variable, and the conserved open reading frame has been lost several times during mammalian evolution. © 2013 The Authors, Animal Genetics © 2013 Stichting International Foundation for Animal Genetics.

  4. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae : Implications for the microbial "pan-genome"

    NARCIS (Netherlands)

    Tettelin, H; Masignani, [No Value; Cieslewicz, MJ; Donati, C; Medini, D; Ward, NL; Angiuoli, SV; Crabtree, J; Jones, AL; Durkin, AS; DeBoy, RT; Davidsen, TM; Mora, M; Scarselli, M; Ros, IMY; Peterson, JD; Hauser, CR; Sundaram, JP; Nelson, WC; Madupu, R; Brinkac, LM; Dodson, RJ; Rosovitz, MJ; Sullivan, SA; Daugherty, SC; Haft, DH; Selengut, J; Gwinn, ML; Zhou, LW; Zafar, N; Khouri, H; Radune, D; Dimitrov, G; Watkins, K; O'Connor, KJB; Smith, S; Utterback, TR; White, O; Rubens, CE; Grandi, G; Madoff, LC; Kasper, DL; Telford, JL; Wessels, MR; Rappuoli, R; Fraser, CM

    2005-01-01

    The development of efficient and inexpensive genome sequencing methods has revolutionized the study of human bacterial pathogens and improved vaccine design. Unfortunately, the sequence of a single genome does not reflect how genetic variability drives pathogenesis within a bacterial species and

  5. Non-random X chromosome inactivation in an affected twin in a monozygotic twin pair discordant for Wiedemann-Beckwith syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Oestavik, R.E.; Eiklid, K.; Oerstavik, K.H. [Ulleval Univ. Hospital, Oslo (Norway)] [and others

    1995-03-27

    Wiedemann-Beckwith syndrome (WBS) is a syndrome including exomphalos, macroglossia, and generalized overgrowth. The locus has been assigned to 11p15, and genomic imprinting may play a part in the expression of one or more genes involved. Most cases are sporadic. An excess of female monozygotic twins discordant for WBS have been reported, and it has been proposed that this excess could be related to the process of X chromosome inactivation. We have therefore studied X chromosome inactivation in 13-year-old monozygotic twin girls who were discordant for WBS. In addition, both twins had Tourette syndrome. The twins were monochorionic and therefore the result of a late twinning process. This has also been the case in previously reported discordant twin pairs with information on placentation. X chromosome inactivation was determined in DNA from peripheral blood cells by PCR analysis at the androgen receptor locus. The affected twin had a completely skewed X inactivation, where the paternal allele was on the active X chromosome in all cells. The unaffected twin had a moderately skewed X inactivation in the same direction, whereas the mother had a random pattern. Further studies are necessary to establish a possible association between the expression of WBS and X chromosome inactivation. 18 refs., 2 figs., 1 tab.

  6. Sexually antagonistic "zygotic drive" of the sex chromosomes.

    Directory of Open Access Journals (Sweden)

    William R Rice

    2008-12-01

    Full Text Available Genomic conflict is perplexing because it causes the fitness of a species to decline rather than improve. Many diverse forms of genomic conflict have been identified, but this extant tally may be incomplete. Here, we show that the unusual characteristics of the sex chromosomes can, in principle, lead to a previously unappreciated form of sexual genomic conflict. The phenomenon occurs because there is selection in the heterogametic sex for sex-linked mutations that harm the sex of offspring that does not carry them, whenever there is competition among siblings. This harmful phenotype can be expressed as an antagonistic green-beard effect that is mediated by epigenetic parental effects, parental investment, and/or interactions among siblings. We call this form of genomic conflict sexually antagonistic "zygotic drive", because it is functionally equivalent to meiotic drive, except that it operates during the zygotic and postzygotic stages of the life cycle rather than the meiotic and gametic stages. A combination of mathematical modeling and a survey of empirical studies is used to show that sexually antagonistic zygotic drive is feasible, likely to be widespread in nature, and that it can promote a genetic "arms race" between the homo- and heteromorphic sex chromosomes. This new category of genomic conflict has the potential to strongly influence other fundamental evolutionary processes, such as speciation and the degeneration of the Y and W sex chromosomes. It also fosters a new genetic hypothesis for the evolution of enigmatic fitness-reducing traits like the high frequency of spontaneous abortion, sterility, and homosexuality observed in humans.

  7. Inactivation of Norovirus by Lemongrass Essential Oil Using a Norovirus Surrogate System.

    Science.gov (United States)

    Kim, Ye Won; You, Hyun Ju; Lee, Soyoung; Kim, Bomi; Kim, Do Kyung; Choi, Joo-Bong; Kim, Ji-Ah; Lee, Hee Jung; Joo, In Sun; Lee, Jeong Su; Kang, Dong Hyun; Lee, Giljae; Ko, Gwang Pyo; Lee, Sung-Joon

    2017-08-01

    This study investigated the effect of lemongrass essential oil (LGEO) on the infectivity and viral replication of norovirus. Murine norovirus 1 (MNV-1), a surrogate of human norovirus, was preincubated with LGEO and then used to infect RAW 264.7 cells in a plaque reduction assay. LGEO exhibited a significant reduction in MNV-1 plaque formation in both time- and dose-dependent manners. The quantification of viral genome by quantitative real-time PCR showed similar results in line with those of the plaque reduction assay. It was revealed that citral, a single compound in LGEO, showed dramatic reduction in MNV-1 infectivity (-73.09% when using a treatment of 0.02%, v/v). The inhibitory activity of LGEO on viral replication was further investigated in HG23 cells that harbored a human norovirus replicon. LGEO treatment significantly reduced viral replication in HG23 cells, which suggests that LGEO may have dual inhibitory activities that inactivate viral coat proteins required for viral infection and suppress norovirus genome replication in host cells. In animal experiments, oral administration of murine norovirus preincubated with LGEO significantly suppressed virus infectivity in vivo. Collectively, these results suggest that LGEO, in particular the LGEO component citral, inactivates the norovirus and its subsequent replication in host cells. Thus, LGEO shows promise as a method of inhibiting norovirus within the food industry.

  8. gEVE: a genome-based endogenous viral element database provides comprehensive viral protein-coding sequences in mammalian genomes.

    Science.gov (United States)

    Nakagawa, So; Takahashi, Mahoko Ueda

    2016-01-01

    In mammals, approximately 10% of genome sequences correspond to endogenous viral elements (EVEs), which are derived from ancient viral infections of germ cells. Although most EVEs have been inactivated, some open reading frames (ORFs) of EVEs obtained functions in the hosts. However, EVE ORFs usually remain unannotated in the genomes, and no databases are available for EVE ORFs. To investigate the function and evolution of EVEs in mammalian genomes, we developed EVE ORF databases for 20 genomes of 19 mammalian species. A total of 736,771 non-overlapping EVE ORFs were identified and archived in a database named gEVE (http://geve.med.u-tokai.ac.jp). The gEVE database provides nucleotide and amino acid sequences, genomic loci and functional annotations of EVE ORFs for all 20 genomes. In analyzing RNA-seq data with the gEVE database, we successfully identified the expressed EVE genes, suggesting that the gEVE database facilitates studies of the genomic analyses of various mammalian species.Database URL: http://geve.med.u-tokai.ac.jp. © The Author(s) 2016. Published by Oxford University Press.

  9. Nitrogen gas plasma treatment of bacterial spores induces oxidative stress that damages the genomic DNA.

    Science.gov (United States)

    Sakudo, Akikazu; Toyokawa, Yoichi; Nakamura, Tetsuji; Yagyu, Yoshihito; Imanishi, Yuichiro

    2017-01-01

    Gas plasma, produced by a short high‑voltage pulse generated from a static induction thyristor power supply [1.5 kilo pulse/sec (kpps)], was demonstrated to inactivate Geobacillus stearothermophilus spores (decimal reduction time at 15 min, 2.48 min). Quantitative polymerase chain reaction and enzyme‑linked immunosorbent assays further indicated that nitrogen gas plasma treatment for 15 min decreased the level of intact genomic DNA and increased the level of 8-hydroxy-2'-deoxyguanosine, a major product of DNA oxidation. Three potential inactivation factors were generated during operation of the gas plasma instrument: Heat, longwave ultraviolet-A and oxidative stress (production of hydrogen peroxide, nitrite and nitrate). Treatment of the spores with hydrogen peroxide (3x2‑4%) effectively inactivated the bacteria, whereas heat treatment (100˚C), exposure to UV-A (75‑142 mJ/cm2) and 4.92 mM peroxynitrite (•ONOO‑), which is decomposed into nitrite and nitrate, did not. The results of the present study suggest the gas plasma treatment inactivates bacterial spores primarily by generating hydrogen peroxide, which contributes to the oxidation of the host genomic DNA.

  10. Computational approaches to identify functional genetic variants in cancer genomes

    DEFF Research Database (Denmark)

    Gonzalez-Perez, Abel; Mustonen, Ville; Reva, Boris

    2013-01-01

    The International Cancer Genome Consortium (ICGC) aims to catalog genomic abnormalities in tumors from 50 different cancer types. Genome sequencing reveals hundreds to thousands of somatic mutations in each tumor but only a minority of these drive tumor progression. We present the result of discu......The International Cancer Genome Consortium (ICGC) aims to catalog genomic abnormalities in tumors from 50 different cancer types. Genome sequencing reveals hundreds to thousands of somatic mutations in each tumor but only a minority of these drive tumor progression. We present the result...... of discussions within the ICGC on how to address the challenge of identifying mutations that contribute to oncogenesis, tumor maintenance or response to therapy, and recommend computational techniques to annotate somatic variants and predict their impact on cancer phenotype....

  11. Ultra high pressure homogenization (UHPH) inactivation of Bacillus amyloliquefaciens spores in phosphate buffered saline (PBS) and milk

    Science.gov (United States)

    Dong, Peng; Georget, Erika S.; Aganovic, Kemal; Heinz, Volker; Mathys, Alexander

    2015-01-01

    Ultra high pressure homogenization (UHPH) opens up new areas for dynamic high pressure assisted thermal sterilization of liquids. Bacillus amyloliquefaciens spores are resistant to high isostatic pressure and temperature and were suggested as potential surrogate for high pressure thermal sterilization validation. B. amyloliquefaciens spores suspended in PBS buffer (0.01 M, pH 7.0), low fat milk (1.5%, pH 6.7), and whole milk (3.5%, pH 6.7) at initial concentration of ~106 CFU/mL were subjected to UHPH treatments at 200, 300, and 350 MPa with an inlet temperature at ~80°C. Thermal inactivation kinetics of B. amyloliquefaciens spores in PBS and milk were assessed with thin wall glass capillaries and modeled using first-order and Weibull models. The residence time during UHPH treatments was estimated to determine the contribution of temperature to spore inactivation by UHPH. No sublethal injury was detected after UHPH treatments using sodium chloride as selective component in the nutrient agar medium. The inactivation profiles of spores in PBS buffer and milk were compared and fat provided no clear protective effect for spores against treatments. Treatment at 200 MPa with valve temperatures lower than 125°C caused no reduction of spores. A reduction of 3.5 log10CFU/mL of B. amyloliquefaciens spores was achieved by treatment at 350 MPa with a valve temperature higher than 150°C. The modeled thermal inactivation and observed inactivation during UHPH treatments suggest that temperature could be the main lethal effect driving inactivation. PMID:26236296

  12. Skewed X-inactivation in cloned mice

    International Nuclear Information System (INIS)

    Senda, Sho; Wakayama, Teruhiko; Yamazaki, Yukiko; Ohgane, Jun; Hattori, Naka; Tanaka, Satoshi; Yanagimachi, Ryuzo; Shiota, Kunio

    2004-01-01

    In female mammals, dosage compensation for X-linked genes is accomplished by inactivation of one of two X chromosomes. The X-inactivation ratio (a percentage of the cells with inactivated maternal X chromosomes in the whole cells) is skewed as a consequence of various genetic mutations, and has been observed in a number of X-linked disorders. We previously reported that phenotypically normal full-term cloned mouse fetuses had loci with inappropriate DNA methylation. Thus, cloned mice are excellent models to study abnormal epigenetic events in mammalian development. In the present study, we analyzed X-inactivation ratios in adult female cloned mice (B6C3F1). Kidneys of eight naturally produced controls and 11 cloned mice were analyzed. Although variations in X-inactivation ratio among the mice were observed in both groups, the distributions were significantly different (Ansary-Bradley test, P < 0.01). In particular, 2 of 11 cloned mice showed skewed X-inactivation ratios (19.2% and 86.8%). Similarly, in intestine, 1 of 10 cloned mice had a skewed ratio (75.7%). Skewed X-inactivation was observed to various degrees in different tissues of different individuals, suggesting that skewed X-inactivation in cloned mice is the result of secondary cell selection in combination with stochastic distortion of primary choice. The present study is the first demonstration that skewed X-inactivation occurs in cloned animals. This finding is important for understanding both nuclear transfer technology and etiology of X-linked disorders

  13. Free radical inactivation of trypsin

    International Nuclear Information System (INIS)

    Cudina, Ivana; Jovanovic, S.V.

    1988-01-01

    Reactivities of free radical oxidants, radical OH, Br2-anion radical and Cl 3 COO radical and a reductant, CO2-anion radical, with trypsin and reactive protein components were determined by pulse radiolysis of aqueous solutions at pH 7, 20 0 C. Highly reactive free radicals, radical OH, Br2-anion radical and CO2-anion radical, react with trypsin at diffusion controlled rates. Moderately reactive trichloroperoxy radical, k(Cl 3 COO radical + trypsin) preferentially oxidizes histidine residues. The efficiency of inactivation of trypsin by free radicals is inversely proportional to their reactivity. The yields of inactivation of trypsin by radical OH, Br2-anion radical and CO2-anion radical are low, G(inactivation) = 0.6-0.8, which corresponds to ∼ 10% of the initially produced radicals. In contrast, Cl 3 COO radical inactivates trypsin with ∼ 50% efficiency, i.e. G(inactivation) = 3.2. (author)

  14. Formation of mushrooms and lignocellulose degradation encoded in the genome sequence of Schizophyllum commune

    Energy Technology Data Exchange (ETDEWEB)

    Ohm, Robin A.; de Jong, Jan F.; Lugones, Luis G.; Aerts, Andrea; Kothe, Erika; Stajich, Jason E.; de Vries, Ronald P.; Record, Eric; Levasseur, Anthony; Baker, Scott E.; Bartholomew, Kirk A.; Coutinho, Pedro M.; Erdmann, Susann; Fowler, Thomas J.; Gathman, Allen C.; Lombard, Vincent; Henrissat, Bernard; Knabe, Nicole; Kues, Ursula; Lilly, Walt W.; Lindquist, Erika; Lucas, Susan; Magnuson, Jon K.; Piumi, Francois; Raudaskoski, Marjatta; Salamov, Asaf; Schmutz, Jeremy; Schwarze, Francis W.M.R.; van Kuyk, Patricia A.; Horton, J. Stephen; Grigoriev, Igor V.; Wosten, Han A.B.

    2010-07-12

    The wood degrading fungus Schizophyllum commune is a model system for mushroom development. Here, we describe the 38.5 Mb assembled genome of this basidiomycete and application of whole genome expression analysis to study the 13,210 predicted genes. Comparative analyses of the S. commune genome revealed unique wood degrading machinery and mating type loci with the highest number of reported genes. Gene expression analyses revealed that one third of the 471 identified transcription factor genes were differentially expressed during sexual development. Two of these transcription factor genes were deleted. Inactivation of fst4 resulted in the inability to form mushrooms, whereas inactivation of fst3 resulted in more but smaller mushrooms than wild-type. These data illustrate that mechanisms underlying mushroom formation can be dissected using S. commune as a model. This will impact commercial production of mushrooms and the industrial use of these fruiting bodies to produce enzymes and pharmaceuticals.

  15. Cas9-triggered chain ablation of cas9 as a gene drive brake

    OpenAIRE

    Wu, Bing; Luo, Liqun; Gao, Xiaojing J.

    2016-01-01

    With the advent of clustered, regularly interspaced, short palindromic repeats (CRISPR)–CRISPR-associated protein 9 (Cas9) technology, researchers can construct gene drives that can bias the inheritance of edited alleles to alter entire populations. As demonstrated with the mutagenic chain reaction in Drosophila4, the CRISPR-Cas9 system can propagate genomic modification together with the genome-editing machinery itself. Although gene drives might have the potential to control insect-borne di...

  16. Neuropilin-2 genomic elements drive cre recombinase expression in primitive blood, vascular and neuronal lineages.

    Science.gov (United States)

    Wiszniak, Sophie; Scherer, Michaela; Ramshaw, Hayley; Schwarz, Quenten

    2015-11-01

    We have established a novel Cre mouse line, using genomic elements encompassing the Nrp2 locus, present within a bacterial artificial chromosome clone. By crossing this Cre driver line to R26R LacZ reporter mice, we have documented the temporal expression and lineage traced tissues in which Cre is expressed. Nrp2-Cre drives expression in primitive blood cells arising from the yolk sac, venous and lymphatic endothelial cells, peripheral sensory ganglia, and the lung bud. This mouse line will provide a new tool to researchers wishing to study the development of various tissues and organs in which this Cre driver is expressed, as well as allow tissue-specific knockout of genes of interest to study protein function. This work also presents the first evidence for expression of Nrp2 protein in a mesodermal progenitor with restricted hematopoietic potential, which will significantly advance the study of primitive erythropoiesis. genesis 53:709-717, 2015. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  17. A Taste of Algal Genomes from the Joint Genome Institute

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Alan; Grigoriev, Igor

    2012-06-17

    Algae play profound roles in aquatic food chains and the carbon cycle, can impose health and economic costs through toxic blooms, provide models for the study of symbiosis, photosynthesis, and eukaryotic evolution, and are candidate sources for bio-fuels; all of these research areas are part of the mission of DOE's Joint Genome Institute (JGI). To date JGI has sequenced, assembled, annotated, and released to the public the genomes of 18 species and strains of algae, sampling almost all of the major clades of photosynthetic eukaryotes. With more algal genomes currently undergoing analysis, JGI continues its commitment to driving forward basic and applied algal science. Among these ongoing projects are the pan-genome of the dominant coccolithophore Emiliania huxleyi, the interrelationships between the 4 genomes in the nucleomorph-containing Bigelowiella natans and Guillardia theta, and the search for symbiosis genes of lichens.

  18. Integrative genomic and functional analysis of human oral squamous cell carcinoma cell lines reveals synergistic effects of FAT1 and CASP8 inactivation.

    Science.gov (United States)

    Hayes, Tyler F; Benaich, Nathan; Goldie, Stephen J; Sipilä, Kalle; Ames-Draycott, Ashley; Cai, Wenjun; Yin, Guangliang; Watt, Fiona M

    2016-12-01

    Oral squamous cell carcinoma (OSCC) is genetically highly heterogeneous, which contributes to the challenges of treatment. To create an in vitro model that accurately reflects this heterogeneity, we generated a panel of HPV-negative OSCC cell lines. By whole exome sequencing of the lines and matched patient blood samples, we demonstrate that the mutational spectrum of the lines is representative of primary OSCC in The Cancer Genome Atlas. We show that loss of function mutations in FAT1 (an atypical cadherin) and CASP8 (Caspase 8) frequently occur in the same tumour. OSCC cells with inactivating FAT1 mutations exhibited reduced intercellular adhesion. Knockdown of FAT1 and CASP8 individually or in combination in OSCC cells led to increased cell migration and clonal growth, resistance to Staurosporine-induced apoptosis and, in some cases, increased terminal differentiation. The OSCC lines thus represent a valuable resource for elucidating the impact of different mutations on tumour behaviour. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  19. Randomized, double-blinded clinical trial for human norovirus inactivation in oysters by high hydrostatic pressure processing.

    Science.gov (United States)

    Leon, Juan S; Kingsley, David H; Montes, Julia S; Richards, Gary P; Lyon, G Marshall; Abdulhafid, Gwen M; Seitz, Scot R; Fernandez, Marina L; Teunis, Peter F; Flick, George J; Moe, Christine L

    2011-08-01

    Contamination of oysters with human noroviruses (HuNoV) constitutes a human health risk and may lead to severe economic losses in the shellfish industry. There is a need to identify a technology that can inactivate HuNoV in oysters. In this study, we conducted a randomized, double-blinded clinical trial to assess the effect of high hydrostatic pressure processing (HPP) on Norwalk virus (HuNoV genogroup I.1) inactivation in virus-seeded oysters ingested by subjects. Forty-four healthy, positive-secretor adults were divided into three study phases. Subjects in each phase were randomized into control and intervention groups. Subjects received Norwalk virus (8FIIb, 1.0 × 10(4) genomic equivalent copies) in artificially seeded oysters with or without HPP treatment (400 MPa at 25°C, 600 MPa at 6°C, or 400 MPa at 6°C for 5 min). HPP at 600 MPa, but not 400 MPa (at 6° or 25°C), completely inactivated HuNoV in seeded oysters and resulted in no HuNoV infection among these subjects, as determined by reverse transcription-PCR detection of HuNoV RNA in subjects' stool or vomitus samples. Interestingly, a white blood cell (granulocyte) shift was identified in 92% of the infected subjects and was significantly associated with infection (P = 0.0014). In summary, these data suggest that HPP is effective at inactivating HuNoV in contaminated whole oysters and suggest a potential intervention to inactivate infectious HuNoV in oysters for the commercial shellfish industry.

  20. Ultra high pressure homogenization (UHPH inactivation of Bacillus amyloliquefaciens spores in phosphate buffered saline (PBS and milk

    Directory of Open Access Journals (Sweden)

    Peng eDong

    2015-07-01

    Full Text Available Ultra high pressure homogenization (UHPH opens up new areas for dynamic high pressure assisted thermal sterilization of liquids. Bacillus amyloliquefaciens spores are resistant to high isostatic pressure and temperature and were suggested as potential surrogate for high pressure thermal sterilization validation. B. amyloliquefaciens spores suspended in PBS buffer (0.01 M, pH 7.0, low fat milk (1.5%, pH 6.7 and whole milk (3.5%, pH 6.7 at initial concentration of ~106 CFU/mL were subjected to UHPH treatments at 200, 300 and 350 MPa with an inlet temperature at ~80 °C. Thermal inactivation kinetics of B. amyloliquefaciens spores in PBS and milk were assessed with thin wall glass capillaries and modeled using mechanistic linear first order and Weibull models. The residence time during UHPH treatments was estimated to determine the contribution of temperature to spore inactivation by UHPH. No sublethal injury was detected after UHPH treatments using sodium chloride as selective component in the nutrient agar medium. The inactivation profiles of spores in PBS buffer and milk were compared and fat provided no clear protective effect for spores against treatments. Treatment at 200 MPa with valve temperatures lower than 125 °C caused no reduction of spores. A reduction of 3.5 log10 CFU/mL of B. amyloliquefaciens spores was achieved by treatment at 350 MPa with a valve temperature higher than 150 °C. The modeled thermal inactivation and observed inactivation during UHPH treatments suggest that temperature could be the main lethal effect driving inactivation.

  1. Chlorine inactivation of Tubifex tubifex in drinking water and the synergistic effect of sequential inactivation with UV irradiation and chlorine.

    Science.gov (United States)

    Nie, Xiao-Bao; Li, Zhi-Hong; Long, Yuan-Nan; He, Pan-Pan; Xu, Chao

    2017-06-01

    The inactivation of Tubifex tubifex is important to prevent contamination of drinking water. Chlorine is a widely-used disinfectant and the key factor in the inactivation of T. tubifex. This study investigated the inactivation kinetics of chlorine on T. tubifex and the synergistic effect of the sequential use of chlorine and UV irradiation. The experimental results indicated that the Ct (concentration × time reaction ) concept could be used to evaluate the inactivation kinetics of T. tubifex with chlorine, thus allowing for the use of a simpler Ct approach for the assessment of T. tubifex chlorine inactivation requirements. The inactivation kinetics of T. tubifex by chlorine was found to be well-fitted to a delayed pseudo first-order Chick-Watson expression. Sequential experiments revealed that UV irradiation and chlorine worked synergistically to effectively inactivate T. tubifex as a result of the decreased activation energy, E a , induced by primary UV irradiation. Furthermore, the inactivation effectiveness of T. tubifex by chlorine was found to be affected by several drinking water quality parameters including pH, turbidity, and chemical oxygen demand with potassium permanganate (COD Mn ) concentration. High pH exhibited pronounced inactivation effectiveness and the decrease in turbidity and COD Mn concentrations contributed to the inactivation of T. tubifex. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Inactivation of SACE_3446, a TetR family transcriptional regulator, stimulates erythromycin production in Saccharopolyspora erythraea

    OpenAIRE

    Wu, Hang; Wang, Yansheng; Yuan, Li; Mao, Yongrong; Wang, Weiwei; Zhu, Lin; Wu, Panpan; Fu, Chengzhang; Müller, Rolf; Weaver, David T.; Zhang, Lixin; Zhang, Buchang

    2016-01-01

    Erythromycin A is a widely used antibiotic produced by Saccharopolyspora erythraea; however, its biosynthetic cluster lacks a regulatory gene, limiting the yield enhancement via regulation engineering of S. erythraea. Herein, six TetR family transcriptional regulators (TFRs) belonging to three genomic context types were individually inactivated in S. erythraea A226, and one of them, SACE_3446, was proved to play a negative role in regulating erythromycin biosynthesis. EMSA and qRT-PCR analysi...

  3. Retrotransposon silencing by DNA methylation can drive mammalian genomic imprinting.

    Directory of Open Access Journals (Sweden)

    Shunsuke Suzuki

    2007-04-01

    Full Text Available Among mammals, only eutherians and marsupials are viviparous and have genomic imprinting that leads to parent-of-origin-specific differential gene expression. We used comparative analysis to investigate the origin of genomic imprinting in mammals. PEG10 (paternally expressed 10 is a retrotransposon-derived imprinted gene that has an essential role for the formation of the placenta of the mouse. Here, we show that an orthologue of PEG10 exists in another therian mammal, the marsupial tammar wallaby (Macropus eugenii, but not in a prototherian mammal, the egg-laying platypus (Ornithorhynchus anatinus, suggesting its close relationship to the origin of placentation in therian mammals. We have discovered a hitherto missing link of the imprinting mechanism between eutherians and marsupials because tammar PEG10 is the first example of a differentially methylated region (DMR associated with genomic imprinting in marsupials. Surprisingly, the marsupial DMR was strictly limited to the 5' region of PEG10, unlike the eutherian DMR, which covers the promoter regions of both PEG10 and the adjacent imprinted gene SGCE. These results not only demonstrate a common origin of the DMR-associated imprinting mechanism in therian mammals but provide the first demonstration that DMR-associated genomic imprinting in eutherians can originate from the repression of exogenous DNA sequences and/or retrotransposons by DNA methylation.

  4. Driving towards ecotechnologies.

    Science.gov (United States)

    Najjar, Devora A; Normandin, Avery M; Strait, Elizabeth A; Esvelt, Kevin M

    2017-12-01

    The prospect of using genetic methods to target vector, parasite, and reservoir species offers tremendous potential benefits to public health, but the use of genome editing to alter the shared environment will require special attention to public perception and community governance in order to benefit the world. Public skepticism combined with the media scrutiny of gene drive systems could easily derail unpopular projects entirely, especially given the potential for trade barriers to be raised against countries that employ self-propagating gene drives. Hence, open and community-guided development of thoughtfully chosen applications is not only the most ethical approach, but also the most likely to overcome the economic, social, and diplomatic barriers. Here we review current and past attempts to alter ecosystems using biological methods, identify key determinants of social acceptance, and chart a stepwise path for developers towards safe and widely supported use.

  5. No evidence that sex and transposable elements drive genome size variation in evening primroses.

    Science.gov (United States)

    Ågren, J Arvid; Greiner, Stephan; Johnson, Marc T J; Wright, Stephen I

    2015-04-01

    Genome size varies dramatically across species, but despite an abundance of attention there is little agreement on the relative contributions of selective and neutral processes in governing this variation. The rate of sex can potentially play an important role in genome size evolution because of its effect on the efficacy of selection and transmission of transposable elements (TEs). Here, we used a phylogenetic comparative approach and whole genome sequencing to investigate the contribution of sex and TE content to genome size variation in the evening primrose (Oenothera) genus. We determined genome size using flow cytometry for 30 species that vary in genetic system and find that variation in sexual/asexual reproduction cannot explain the almost twofold variation in genome size. Moreover, using whole genome sequences of three species of varying genome sizes and reproductive system, we found that genome size was not associated with TE abundance; instead the larger genomes had a higher abundance of simple sequence repeats. Although it has long been clear that sexual reproduction may affect various aspects of genome evolution in general and TE evolution in particular, it does not appear to have played a major role in genome size evolution in the evening primroses. © 2015 The Author(s).

  6. Effects of background fluid on the efficiency of inactivating yeast with non-thermal atmospheric pressure plasma.

    Directory of Open Access Journals (Sweden)

    Young-Hyo Ryu

    Full Text Available Non-thermal plasma at atmospheric pressure has been actively applied to sterilization. However, its efficiency for inactivating microorganisms often varies depending on microbial species and environments surrounding the microorganisms. We investigated the influence of environmental factors (surrounding media on the efficiency of microbial inactivation by plasma using an eukaryotic model microbe, Saccharomyces cerevisiae, to elucidate the mechanisms for differential efficiency of sterilization by plasma. Yeast cells treated with plasma in water showed the most severe damage in viability and cell morphology as well as damage to membrane lipids, and genomic DNA. Cells in saline were less damaged compared to those in water, and those in YPD (Yeast extract, Peptone, Dextrose were least impaired. HOG1 mitogen activated protein kinase was activated in cells exposed to plasma in water and saline. Inactivation of yeast cells in water and saline was due to the acidification of the solutions by plasma, but higher survival of yeast cells treated in saline may have resulted from the additional effect related to salt strength. Levels of hydroxyl radical (OH· produced by plasma were the highest in water and the lowest in YPD. This may have resulted in differential inactivation of yeast cells in water, saline, and YPD by plasma. Taken together, our data suggest that the surrounding media (environment can crucially affect the outcomes of yeast cell plasma treatment because plasma modulates vital properties of media, and the toxic nature of plasma can also be altered by the surrounding media.

  7. Genome degradation in Brucella ovis corresponds with narrowing of its host range and tissue tropism.

    Directory of Open Access Journals (Sweden)

    Renee M Tsolis

    Full Text Available Brucella ovis is a veterinary pathogen associated with epididymitis in sheep. Despite its genetic similarity to the zoonotic pathogens B. abortus, B. melitensis and B. suis, B. ovis does not cause zoonotic disease. Genomic analysis of the type strain ATCC25840 revealed a high percentage of pseudogenes and increased numbers of transposable elements compared to the zoonotic Brucella species, suggesting that genome degradation has occurred concomitant with narrowing of the host range of B. ovis. The absence of genomic island 2, encoding functions required for lipopolysaccharide biosynthesis, as well as inactivation of genes encoding urease, nutrient uptake and utilization, and outer membrane proteins may be factors contributing to the avirulence of B. ovis for humans. A 26.5 kb region of B. ovis ATCC25840 Chromosome II was absent from all the sequenced human pathogenic Brucella genomes, but was present in all of 17 B. ovis isolates tested and in three B. ceti isolates, suggesting that this DNA region may be of use for differentiating B. ovis from other Brucella spp. This is the first genomic analysis of a non-zoonotic Brucella species. The results suggest that inactivation of genes involved in nutrient acquisition and utilization, cell envelope structure and urease may have played a role in narrowing of the tissue tropism and host range of B. ovis.

  8. Genome-to-genome analysis highlights the impact of the human innate and adaptive immune systems on the hepatitis C virus

    Science.gov (United States)

    Ip, Camilla; Magri, Andrea; Von Delft, Annette; Bonsall, David; Chaturvedi, Nimisha; Bartha, Istvan; Smith, David; Nicholson, George; McVean, Gilean; Trebes, Amy; Piazza, Paolo; Fellay, Jacques; Cooke, Graham; Foster, Graham R; Hudson, Emma; McLauchlan, John; Simmonds, Peter; Bowden, Rory; Klenerman, Paul; Barnes, Eleanor; Spencer, Chris C. A.

    2018-01-01

    Outcomes of hepatitis C virus (HCV) infection and treatment depend on viral and host genetic factors. We use human genome-wide genotyping arrays and new whole-genome HCV viral sequencing technologies to perform a systematic genome-to-genome study of 542 individuals chronically infected with HCV, predominately genotype 3. We show that both HLA alleles and interferon lambda innate immune system genes drive viral genome polymorphism, and that IFNL4 genotypes determine HCV viral load through a mechanism that is dependent on a specific polymorphism in the HCV polyprotein. We highlight the interplay between innate immune responses and the viral genome in HCV control. PMID:28394351

  9. Association of Exon 10A and 10B inactivating mutation of follicle stimulating hormone receptor gene (FSHR) and Polycystic Ovarian Syndrome in Vellore cohort

    Science.gov (United States)

    Sekar, Nishu; Kulkarni, Rucha; Ozalkar, Sharvari; Prabhu, Yogamaya D.; Renu, Kaviyarasi; Ramgir, Shalaka S.; Abilash, V. G.

    2017-11-01

    Polycystic ovarian syndrome is the most common heterogenous endocrine disorder in women. Follicle stimulating hormone receptor is associated with normal development as well as maturation of follicles and triggers estrogen production in granulosa cells of the ovary. Inactivating mutation in FSHR gene correlated with reduction of ovarian function in women is due to damage to receptor function. This study aims to investigate whether inactivating mutations, in follicle stimulating hormone receptor gene is related to polycystic ovarian morphology in women with PCOS. Genomic DNA isolated from 15 subjects from Sandhya Hospital, Vellore (10 patients with PCOS and 5 healthy controls) was taken for this study. Patient data included a clinical report, hormonal levels, and ovarian morphological details. DNA isolation was followed by DNA amplification by polymerase chain reaction using Exon 10 A and Exon 10 B primers. The PCR-RFLP analysis was performed using Dde1 restriction enzyme. Here we discuss inactivating mutation found in Exon 10 of FSHR gene in patients with PCOS.The absence of inactivating mutation was observed through PCR-RFLP study on Exon 10A and Exon 10B.

  10. Actomyosin drives cancer cell nuclear dysmorphia and threatens genome stability.

    Science.gov (United States)

    Takaki, Tohru; Montagner, Marco; Serres, Murielle P; Le Berre, Maël; Russell, Matt; Collinson, Lucy; Szuhai, Karoly; Howell, Michael; Boulton, Simon J; Sahai, Erik; Petronczki, Mark

    2017-07-24

    Altered nuclear shape is a defining feature of cancer cells. The mechanisms underlying nuclear dysmorphia in cancer remain poorly understood. Here we identify PPP1R12A and PPP1CB, two subunits of the myosin phosphatase complex that antagonizes actomyosin contractility, as proteins safeguarding nuclear integrity. Loss of PPP1R12A or PPP1CB causes nuclear fragmentation, nuclear envelope rupture, nuclear compartment breakdown and genome instability. Pharmacological or genetic inhibition of actomyosin contractility restores nuclear architecture and genome integrity in cells lacking PPP1R12A or PPP1CB. We detect actin filaments at nuclear envelope rupture sites and define the Rho-ROCK pathway as the driver of nuclear damage. Lamin A protects nuclei from the impact of actomyosin activity. Blocking contractility increases nuclear circularity in cultured cancer cells and suppresses deformations of xenograft nuclei in vivo. We conclude that actomyosin contractility is a major determinant of nuclear shape and that unrestrained contractility causes nuclear dysmorphia, nuclear envelope rupture and genome instability.

  11. Genomic and Epigenomic Alterations in Cancer.

    Science.gov (United States)

    Chakravarthi, Balabhadrapatruni V S K; Nepal, Saroj; Varambally, Sooryanarayana

    2016-07-01

    Multiple genetic and epigenetic events characterize tumor progression and define the identity of the tumors. Advances in high-throughput technologies, like gene expression profiling, next-generation sequencing, proteomics, and metabolomics, have enabled detailed molecular characterization of various tumors. The integration and analyses of these high-throughput data have unraveled many novel molecular aberrations and network alterations in tumors. These molecular alterations include multiple cancer-driving mutations, gene fusions, amplification, deletion, and post-translational modifications, among others. Many of these genomic events are being used in cancer diagnosis, whereas others are therapeutically targeted with small-molecule inhibitors. Multiple genes/enzymes that play a role in DNA and histone modifications are also altered in various cancers, changing the epigenomic landscape during cancer initiation and progression. Apart from protein-coding genes, studies are uncovering the critical regulatory roles played by noncoding RNAs and noncoding regions of the genome during cancer progression. Many of these genomic and epigenetic events function in tandem to drive tumor development and metastasis. Concurrent advances in genome-modulating technologies, like gene silencing and genome editing, are providing ability to understand in detail the process of cancer initiation, progression, and signaling as well as opening up avenues for therapeutic targeting. In this review, we discuss some of the recent advances in cancer genomic and epigenomic research. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  12. Photodynamic Inactivation of Mammalian Viruses and Bacteriophages

    Directory of Open Access Journals (Sweden)

    Liliana Costa

    2012-06-01

    Full Text Available Photodynamic inactivation (PDI has been used to inactivate microorganisms through the use of photosensitizers. The inactivation of mammalian viruses and bacteriophages by photosensitization has been applied with success since the first decades of the last century. Due to the fact that mammalian viruses are known to pose a threat to public health and that bacteriophages are frequently used as models of mammalian viruses, it is important to know and understand the mechanisms and photodynamic procedures involved in their photoinactivation. The aim of this review is to (i summarize the main approaches developed until now for the photodynamic inactivation of bacteriophages and mammalian viruses and, (ii discuss and compare the present state of the art of mammalian viruses PDI with phage photoinactivation, with special focus on the most relevant mechanisms, molecular targets and factors affecting the viral inactivation process.

  13. Distinct Mutations Led to Inactivation of Type 1 Fimbriae Expression in Shigella spp.

    Science.gov (United States)

    Bravo, Verónica; Puhar, Andrea; Sansonetti, Philippe; Parsot, Claude; Toro, Cecilia S.

    2015-01-01

    Shigella spp. are responsible for bacillary dysentery in humans. The acquisition or the modification of the virulence plasmid encoding factors promoting entry of bacteria into and dissemination within epithelial cells was a critical step in the evolution of these bacteria from their Escherichia coli ancestor(s). Incorporation of genomic islands (GI) and gene inactivation also shaped interactions between these pathogens and their human host. Sequence analysis of the GI inserted next to the leuX tRNA gene in S. boydii, S. dysenteriae, S. flexneri, S. sonnei and enteroinvasive E. coli (EIEC) suggests that this region initially carried the fec, yjhATS and fim gene clusters. The fim cluster encoding type I fimbriae is systematically inactivated in both reference strains and clinical isolates and distinct mutations are responsible for this inactivation in at least three phylogenetic groups. To investigate consequences of the presence of fimbriae on the outcome of the interaction of Shigella with host cells, we used a S. flexneri strain harboring a plasmid encoding the E. coli fim operon. Production of fimbriae by this recombinant strain increased the ability of bacteria to adhere to and enter into epithelial cells and had no effect on their ability to disseminate from cell to cell. The observations that production of type I fimbriae increases invasion of epithelial cells and that independent mutations abolish fimbriae production in Shigella suggest that these mutations correspond to pathoadaptive events. PMID:25811616

  14. Distinct mutations led to inactivation of type 1 fimbriae expression in Shigella spp.

    Directory of Open Access Journals (Sweden)

    Verónica Bravo

    Full Text Available Shigella spp. are responsible for bacillary dysentery in humans. The acquisition or the modification of the virulence plasmid encoding factors promoting entry of bacteria into and dissemination within epithelial cells was a critical step in the evolution of these bacteria from their Escherichia coli ancestor(s. Incorporation of genomic islands (GI and gene inactivation also shaped interactions between these pathogens and their human host. Sequence analysis of the GI inserted next to the leuX tRNA gene in S. boydii, S. dysenteriae, S. flexneri, S. sonnei and enteroinvasive E. coli (EIEC suggests that this region initially carried the fec, yjhATS and fim gene clusters. The fim cluster encoding type I fimbriae is systematically inactivated in both reference strains and clinical isolates and distinct mutations are responsible for this inactivation in at least three phylogenetic groups. To investigate consequences of the presence of fimbriae on the outcome of the interaction of Shigella with host cells, we used a S. flexneri strain harboring a plasmid encoding the E. coli fim operon. Production of fimbriae by this recombinant strain increased the ability of bacteria to adhere to and enter into epithelial cells and had no effect on their ability to disseminate from cell to cell. The observations that production of type I fimbriae increases invasion of epithelial cells and that independent mutations abolish fimbriae production in Shigella suggest that these mutations correspond to pathoadaptive events.

  15. TFPI-2 is a putative tumor suppressor gene frequently inactivated by promoter hypermethylation in nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Wang, Shumin; Ma, Ning; Murata, Mariko; Huang, Guangwu; Zhang, Zhe; Xiao, Xue; Zhou, Xiaoying; Huang, Tingting; Du, Chunping; Yu, Nana; Mo, Yingxi; Lin, Longde; Zhang, Jinyan

    2010-01-01

    Epigenetic silencing of tumor suppressor genes play important roles in NPC tumorgenesis. Tissue factor pathway inhibitor-2 (TFPI-2), is a protease inhibitor. Recently, TFPI-2 was suggested to be a tumor suppressor gene involved in tumorigenesis and metastasis in some cancers. In this study, we investigated whether TFPI-2 was inactivated epigenetically in nasopharyngeal carcinoma (NPC). Transcriptional expression levels of TFPI-2 was evaluated by RT-PCR. Methylation status were investigated by methylation specific PCR and bisulfate genomic sequencing. The role of TFPI-2 as a tumor suppressor gene in NPC was addressed by re-introducing TFPI-2 expression into the NPC cell line CNE2. TFPI-2 mRNA transcription was inactivated in NPC cell lines. TFPI-2 was aberrantly methylated in 66.7% (4/6) NPC cell lines and 88.6% (62/70) of NPC primary tumors, but not in normal nasopharyngeal epithelia. TFPI-2 expression could be restored in NPC cells after demethylation treatment. Ectopic expression of TFPI-2 in NPC cells induced apoptosis and inhibited cell proliferation, colony formation and cell migration. Epigenetic inactivation of TFPI-2 by promoter hypermethylation is a frequent and tumor specific event in NPC. TFPI-2 might be considering as a putative tumor suppressor gene in NPC

  16. Microbial Inactivation by Ultrasound Assisted Supercritical Fluids

    Science.gov (United States)

    Benedito, Jose; Ortuño, Carmen; Castillo-Zamudio, Rosa Isela; Mulet, Antonio

    A method combining supercritical carbon dioxide (SC-CO2) and high power ultrasound (HPU) has been developed and tested for microbial/enzyme inactivation purposes, at different process conditions for both liquid and solid matrices. In culture media, using only SC-CO2, the inactivation rate of E. coli and S. cerevisiae increased with pressure and temperature; and the total inactivation (7-8 log-cycles) was attained after 25 and 140 min of SC-CO2 (350 bar, 36 °C) treatment, respectively. Using SC-CO2+HPU, the time for the total inactivation of both microorganisms was reduced to only 1-2 min, at any condition selected. The SC-CO2+HPU inactivation of both microorganisms was slower in juices (avg. 4.9 min) than in culture media (avg. 1.5 min). In solid samples (chicken, turkey ham and dry-cured pork cured ham) treated with SC-CO2 and SC-CO2+HPU, the inactivation rate of E. coli increased with temperature. The application of HPU to the SC-CO2 treatments accelerated the inactivation rate of E. coli and that effect was more pronounced in treatments with isotonic solution surrounding the solid food samples. The application of HPU enhanced the SC-CO2 inactivation mechanisms of microorganisms, generating a vigorous agitation that facilitated the CO2 solubilization and the mass transfer process. The cavitation generated by HPU could damage the cell walls accelerating the extraction of vital constituents and the microbial death. Thus, using the combined technique, reasonable industrial processing times and mild process conditions could be used which could result into a cost reduction and lead to the minimization in the food nutritional and organoleptic changes.

  17. Cell inactivation by heavy charged particles

    Energy Technology Data Exchange (ETDEWEB)

    Blakely, E A [Lawrence Berkeley Lab., CA (United States). Cell and Molecular Biology Div.

    1992-06-01

    The inactivation of cells resulting in lethal or aberrant effects by charged particles is of growing interest. Charged particles at extremely high LET are capable of completely eliminating cell-type and cell-line differences in repair capacity. It is still not clear however whether the repair systems are inactivated, or merely that heavy-ion lesions are less repairable. Studies correlating the particle inactivation dose of radioresistant cells with intact DNA analyzed with pulse field gel electrophoresis and other techniques may be useful, but more experiments are also needed to assess the fidelity of repair. For particle irradiations between 40-100 keV/{mu}m there is however evidence for particle-induced activation of specific genes in mammalian cells, and certain repair processes in bacteria. New data are available on the inactivation of developmental processes in several systems including seeds, and cells of the nematode C. elegans. Future experimental and theoretical modeling research emphasis should focus on exploring particle-induced inactivation of endpoints assessing functionality and not just lethality, and on analyzing molecular damage and genetic effects arising in damage but non-inactivated survivors. The discrete nature of selective types of particle damage as a function of radiation quality indicates the value of accelerated ions as probes of normal and aberrant biological processes. Information obtained from molecular analyses of damage and repair must however be integrated into the context of cellular and tissue functions of the organism. (orig.).

  18. APOBEC3 Interference during Replication of Viral Genomes

    Directory of Open Access Journals (Sweden)

    Luc Willems

    2015-06-01

    Full Text Available Co-evolution of viruses and their hosts has reached a fragile and dynamic equilibrium that allows viral persistence, replication and transmission. In response, infected hosts have developed strategies of defense that counteract the deleterious effects of viral infections. In particular, single-strand DNA editing by Apolipoprotein B Editing Catalytic subunits proteins 3 (APOBEC3s is a well-conserved mechanism of mammalian innate immunity that mutates and inactivates viral genomes. In this review, we describe the mechanisms of APOBEC3 editing during viral replication, the viral strategies that prevent APOBEC3 activity and the consequences of APOBEC3 modulation on viral fitness and host genome integrity. Understanding the mechanisms involved reveals new prospects for therapeutic intervention.

  19. Inactivated probiotic Bacillus coagulans GBI-30 induces complex immune activating, anti-inflammatory, and regenerative markers in vitro

    OpenAIRE

    Jensen, Gitte S; Cash, Howard A; Farmer, Sean; Keller, David

    2017-01-01

    Gitte S Jensen,1 Howard A Cash,2 Sean Farmer,2 David Keller2 1NIS Labs, Esplanade, Klamath Falls, OR, USA, 2Ganeden Biotech Inc., Landerbrook Drive Suite, Mayfield Heights, OH, USA Objective: The aim of this study was to document the immune activating and anti-inflammatory effects of inactivated probiotic Bacillus coagulans GBI-30, 6086 (Staimune™) cells on human immune cells in vitro.Methods: In vitro cultures of human peripheral blood mononuclear cells (PBMC) from healthy blood do...

  20. Ultraviolet inactivation of papain

    International Nuclear Information System (INIS)

    Baugher, J.F.; Grossweiner, L.I.

    1975-01-01

    Flash photolysis transient spectra (lambda > 250 nm) of aqueous papain showed that the initial products are the neutral tryptophan radical Trp (lambdasub(max) 510 nm), the tryptophan triplet state 3 Trp (lambdasub(max) 460 nm), the disulfide bridge electron adduct -SS - - (lambdasub(max) 420 nm) and the hydrated electron esub(aq) - . The -SS - - yield was not altered by nitrous oxide or air, indicating that the formation of this product does not involve electrons in the external medium. The original papain preparation was activated by irradiating under nitrogen. The action spectrum supports previous work attributing the low initial activity to blocking of cysteinyl site 25 with a mixed disulfide. Flask lamp irradiation in nitrogen led to activation at low starting activities and inactivation at higher starting activities, while only inactivation at the same quantum yield was observed with air saturation. The results are consistent with photoionization of an essential tryptophyl residue as the key inactivating step. (author)

  1. Landscape genomics: natural selection drives the evolution of mitogenome in penguins

    OpenAIRE

    Ramos, Barbara; González-Acuña, Daniel; Loyola, David E.; Johnson, Warren E.; Parker, Patricia G.; Massaro, Melanie; Dantas, Gisele P. M.; Miranda, Marcelo D.; Vianna, Juliana A.

    2018-01-01

    Background Mitochondria play a key role in the balance of energy and heat production, and therefore the mitochondrial genome is under natural selection by environmental temperature and food availability, since starvation can generate more efficient coupling of energy production. However, selection over mitochondrial DNA (mtDNA) genes has usually been evaluated at the population level. We sequenced by NGS 12 mitogenomes and with four published genomes, assessed genetic variation in ten penguin...

  2. High-Resolution Replication Profiles Define the Stochastic Nature of Genome Replication Initiation and Termination

    Directory of Open Access Journals (Sweden)

    Michelle Hawkins

    2013-11-01

    Full Text Available Eukaryotic genome replication is stochastic, and each cell uses a different cohort of replication origins. We demonstrate that interpreting high-resolution Saccharomyces cerevisiae genome replication data with a mathematical model allows quantification of the stochastic nature of genome replication, including the efficiency of each origin and the distribution of termination events. Single-cell measurements support the inferred values for stochastic origin activation time. A strain, in which three origins were inactivated, confirmed that the distribution of termination events is primarily dictated by the stochastic activation time of origins. Cell-to-cell variability in origin activity ensures that termination events are widely distributed across virtually the whole genome. We propose that the heterogeneity in origin usage contributes to genome stability by limiting potentially deleterious events from accumulating at particular loci.

  3. Complete Genome Sequence of Treponema paraluiscuniculi, Strain Cuniculi A: The Loss of Infectivity to Humans Is Associated with Genome Decay

    Science.gov (United States)

    Šmajs, David; Zobaníková, Marie; Strouhal, Michal; Čejková, Darina; Dugan-Rocha, Shannon; Pospíšilová, Petra; Norris, Steven J.; Albert, Tom; Qin, Xiang; Hallsworth-Pepin, Kym; Buhay, Christian; Muzny, Donna M.; Chen, Lei; Gibbs, Richard A.; Weinstock, George M.

    2011-01-01

    Treponema paraluiscuniculi is the causative agent of rabbit venereal spirochetosis. It is not infectious to humans, although its genome structure is very closely related to other pathogenic Treponema species including Treponema pallidum subspecies pallidum, the etiological agent of syphilis. In this study, the genome sequence of Treponema paraluiscuniculi, strain Cuniculi A, was determined by a combination of several high-throughput sequencing strategies. Whereas the overall size (1,133,390 bp), arrangement, and gene content of the Cuniculi A genome closely resembled those of the T. pallidum genome, the T. paraluiscuniculi genome contained a markedly higher number of pseudogenes and gene fragments (51). In addition to pseudogenes, 33 divergent genes were also found in the T. paraluiscuniculi genome. A set of 32 (out of 84) affected genes encoded proteins of known or predicted function in the Nichols genome. These proteins included virulence factors, gene regulators and components of DNA repair and recombination. The majority (52 or 61.9%) of the Cuniculi A pseudogenes and divergent genes were of unknown function. Our results indicate that T. paraluiscuniculi has evolved from a T. pallidum-like ancestor and adapted to a specialized host-associated niche (rabbits) during loss of infectivity to humans. The genes that are inactivated or altered in T. paraluiscuniculi are candidates for virulence factors important in the infectivity and pathogenesis of T. pallidum subspecies. PMID:21655244

  4. Complete genome sequence of Treponema paraluiscuniculi, strain Cuniculi A: the loss of infectivity to humans is associated with genome decay.

    Directory of Open Access Journals (Sweden)

    David Šmajs

    Full Text Available Treponema paraluiscuniculi is the causative agent of rabbit venereal spirochetosis. It is not infectious to humans, although its genome structure is very closely related to other pathogenic Treponema species including Treponema pallidum subspecies pallidum, the etiological agent of syphilis. In this study, the genome sequence of Treponema paraluiscuniculi, strain Cuniculi A, was determined by a combination of several high-throughput sequencing strategies. Whereas the overall size (1,133,390 bp, arrangement, and gene content of the Cuniculi A genome closely resembled those of the T. pallidum genome, the T. paraluiscuniculi genome contained a markedly higher number of pseudogenes and gene fragments (51. In addition to pseudogenes, 33 divergent genes were also found in the T. paraluiscuniculi genome. A set of 32 (out of 84 affected genes encoded proteins of known or predicted function in the Nichols genome. These proteins included virulence factors, gene regulators and components of DNA repair and recombination. The majority (52 or 61.9% of the Cuniculi A pseudogenes and divergent genes were of unknown function. Our results indicate that T. paraluiscuniculi has evolved from a T. pallidum-like ancestor and adapted to a specialized host-associated niche (rabbits during loss of infectivity to humans. The genes that are inactivated or altered in T. paraluiscuniculi are candidates for virulence factors important in the infectivity and pathogenesis of T. pallidum subspecies.

  5. Genomes in Turmoil: Frugality Drives Microbial Community Structure in Extremely Acidic Environments

    Science.gov (United States)

    Holmes, D. S.

    2016-12-01

    Extremely acidic environments (To gain insight into these issues, we have conducted deep bioinformatic analyses, including metabolic reconstruction of key assimilatory pathways, phylogenomics and network scrutiny of >160 genomes of acidophiles, including representatives from Archaea, Bacteria and Eukarya and at least ten metagenomes of acidic environments [Cardenas JP, et al. pp 179-197 in Acidophiles, eds R. Quatrini and D. B. Johnson, Caister Academic Press, UK (2016)]. Results yielded valuable insights into cellular processes, including carbon and nitrogen management and energy production, linking biogeochemical processes to organismal physiology. They also provided insight into the evolutionary forces that shape the genomic structure of members of acidophile communities. Niche partitioning can explain diversity patterns in rapidly changing acidic environments such as bioleaching heaps. However, in spatially and temporally homogeneous acidic environments genome flux appears to provide deeper insight into the composition and evolution of acidic consortia. Acidophiles have undergone genome streamlining by gene loss promoting mutual coexistence of species that exploit complementarity use of scarce resources consistent with the Black Queen hypothesis [Morris JJ et al. mBio 3: e00036-12 (2012)]. Acidophiles also have a large pool of accessory genes (the microbial super-genome) that can be accessed by horizontal gene transfer. This further promotes dependency relationships as drivers of community structure and the evolution of keystone species. Acknowledgements: Fondecyt 1130683; Basal CCTE PFB16

  6. Inactivation of enteroviruses in sewage with ozone

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, O.E.; Bogdanov, M.V.; Kazantseva, V.A.; Gabrilevskaia, L.N.; Kodkind, G.K.H.

    The study of ozone inactivation of enteroviruses in sewage showed the presence in sewage of suspensions of organic origin and bacterial flora to influence the rate of inactivation. The inactivation rate of poliomyelitis virus in sewage free from organic suspension and bacterial flora was significantly higher than that in sewage containing such suspension and bacterial flora. The inactivation rate of enteroviruses was found not to depend upon the protein and salt composition and pH of sewage or strain appurtenance of viruses. The inactivation rate of enteroviruses directly depended upon the dose of ozone and time of contact with it. Differences in the resistance of different types of poliomyelitis virus, ECHO and Coxsackie viruses to the effect of ozone are likely exist. These differences are manifested within the range of relatively small doses of ozone. E. coli is more resistant to ozone than entero-viruses. The results of laboratory studies were used to choose the regimen of sanitation of urban sewage to be used in technological cycles of industrial enterprises.

  7. Genome sequence analysis of the model grass Brachypodium distachyon: insights into grass genome evolution

    Energy Technology Data Exchange (ETDEWEB)

    Schulman, Al

    2009-08-09

    Three subfamilies of grasses, the Erhardtoideae (rice), the Panicoideae (maize, sorghum, sugar cane and millet), and the Pooideae (wheat, barley and cool season forage grasses) provide the basis of human nutrition and are poised to become major sources of renewable energy. Here we describe the complete genome sequence of the wild grass Brachypodium distachyon (Brachypodium), the first member of the Pooideae subfamily to be completely sequenced. Comparison of the Brachypodium, rice and sorghum genomes reveals a precise sequence- based history of genome evolution across a broad diversity of the grass family and identifies nested insertions of whole chromosomes into centromeric regions as a predominant mechanism driving chromosome evolution in the grasses. The relatively compact genome of Brachypodium is maintained by a balance of retroelement replication and loss. The complete genome sequence of Brachypodium, coupled to its exceptional promise as a model system for grass research, will support the development of new energy and food crops

  8. Mycobacteria inactivation using Engineered Water Nanostructures (EWNS).

    Science.gov (United States)

    Pyrgiotakis, Georgios; McDevitt, James; Gao, Ya; Branco, Alan; Eleftheriadou, Mary; Lemos, Bernardo; Nardell, Edward; Demokritou, Philip

    2014-08-01

    Airborne transmitted pathogens such as Mycobacterium tuberculosis (Mtb) cause serious, often fatal infectious disease with enormous global health implications. Due to their unique cell wall and slow growth, mycobacteria are among the most resilient microbial forms. Herein we evaluate the ability of an emerging, chemical-free, nanotechnology-based method to inactivate M. parafortuitum (Mtb surrogate). This method is based on the transformation of atmospheric water vapor into engineered water nano-structures (EWNS) via electrospray. We demonstrate that the EWNS can interact with and inactivate airborne mycobacteria, reducing their concentration levels significantly. Additionally, EWNS can inactivate M. parafortuitum on surfaces eight times faster than the control. The mechanism of mycobacteria inactivation was also investigated in this study. It was demonstrated that the EWNS effectively deliver the reactive oxygen species, encapsulated during the electrospray process, to the bacteria oxidizing their cell membrane resulting into inactivation. Overall, this is a method with the potential to become an effective intervention technology in the battle against airborne infections. This study demonstrates the feasibility of mycobacterium inactivation in airborne form or on contact surfaces using electrospray activated water nano-structures. Given that the method is free of toxic chemicals, this might become an important tool in the prevention of mycobacterial infections, which are notoriously hard to treat. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Selective forces and mutational biases drive stop codon usage in the human genome: a comparison with sense codon usage.

    Science.gov (United States)

    Trotta, Edoardo

    2016-05-17

    The three stop codons UAA, UAG, and UGA signal the termination of mRNA translation. As a result of a mechanism that is not adequately understood, they are normally used with unequal frequencies. In this work, we showed that selective forces and mutational biases drive stop codon usage in the human genome. We found that, in respect to sense codons, stop codon usage was affected by stronger selective forces but was less influenced by neutral mutational biases. UGA is the most frequent termination codon in human genome. However, UAA was the preferred stop codon in genes with high breadth of expression, high level of expression, AT-rich coding sequences, housekeeping functions, and in gene ontology categories with the largest deviation from expected stop codon usage. Selective forces associated with the breadth and the level of expression favoured AT-rich sequences in the mRNA region including the stop site and its proximal 3'-UTR, but acted with scarce effects on sense codons, generating two regions, upstream and downstream of the stop codon, with strongly different base composition. By favouring low levels of GC-content, selection promoted labile local secondary structures at the stop site and its proximal 3'-UTR. The compositional and structural context favoured by selection was surprisingly emphasized in the class of ribosomal proteins and was consistent with sequence elements that increase the efficiency of translational termination. Stop codons were also heterogeneously distributed among chromosomes by a mechanism that was strongly correlated with the GC-content of coding sequences. In human genome, the nucleotide composition and the thermodynamic stability of stop codon site and its proximal 3'-UTR are correlated with the GC-content of coding sequences and with the breadth and the level of gene expression. In highly expressed genes stop codon usage is compositionally and structurally consistent with highly efficient translation termination signals.

  10. Positive Selection Driving Cytoplasmic Genome Evolution of the Medicinally Important Ginseng Plant Genus Panax.

    Science.gov (United States)

    Jiang, Peng; Shi, Feng-Xue; Li, Ming-Rui; Liu, Bao; Wen, Jun; Xiao, Hong-Xing; Li, Lin-Feng

    2018-01-01

    Panax L. (the ginseng genus) is a shade-demanding group within the family Araliaceae and all of its species are of crucial significance in traditional Chinese medicine. Phylogenetic and biogeographic analyses demonstrated that two rounds of whole genome duplications accompanying with geographic and ecological isolations promoted the diversification of Panax species. However, contributions of the cytoplasmic genomes to the adaptive evolution of Panax species remained largely uninvestigated. In this study, we sequenced the chloroplast and mitochondrial genomes of 11 accessions belonging to seven Panax species. Our results show that heterogeneity in nucleotide substitution rate is abundant in both of the two cytoplasmic genomes, with the mitochondrial genome possessing more variants at the total level but the chloroplast showing higher sequence polymorphisms at the genic regions. Genome-wide scanning of positive selection identified five and 12 genes from the chloroplast and mitochondrial genomes, respectively. Functional analyses further revealed that these selected genes play important roles in plant development, cellular metabolism and adaptation. We therefore conclude that positive selection might be one of the potential evolutionary forces that shaped nucleotide variation pattern of these Panax species. In particular, the mitochondrial genes evolved under stronger selective pressure compared to the chloroplast genes.

  11. NMD Microarray Analysis for Rapid Genome-Wide Screen of Mutated Genes in Cancer

    Directory of Open Access Journals (Sweden)

    Maija Wolf

    2005-01-01

    Full Text Available Gene mutations play a critical role in cancer development and progression, and their identification offers possibilities for accurate diagnostics and therapeutic targeting. Finding genes undergoing mutations is challenging and slow, even in the post-genomic era. A new approach was recently developed by Noensie and Dietz to prioritize and focus the search, making use of nonsense-mediated mRNA decay (NMD inhibition and microarray analysis (NMD microarrays in the identification of transcripts containing nonsense mutations. We combined NMD microarrays with array-based CGH (comparative genomic hybridization in order to identify inactivation of tumor suppressor genes in cancer. Such a “mutatomics” screening of prostate cancer cell lines led to the identification of inactivating mutations in the EPHB2 gene. Up to 8% of metastatic uncultured prostate cancers also showed mutations of this gene whose loss of function may confer loss of tissue architecture. NMD microarray analysis could turn out to be a powerful research method to identify novel mutated genes in cancer cell lines, providing targets that could then be further investigated for their clinical relevance and therapeutic potential.

  12. From genomic variation to personalized medicine

    DEFF Research Database (Denmark)

    Wesolowska, Agata; Schmiegelow, Kjeld

    Genomic variation is the basis of interindividual differences in observable traits and disease susceptibility. Genetic studies are the driving force of personalized medicine, as many of the differences in treatment efficacy can be attributed to our genomic background. The rapid development...... a considerable amount of the phenotype variability, hence the major difficulty of interpretation lies in the complexity of molecular interactions. This PhD thesis describes the state-of-art of the functional human variation research (Chapter 1) and introduces childhood acute lymphoblastic leukaemia (ALL...... the thesis and includes some final remarks on the perspectives of genomic variation research and personalized medicine. In summary, this thesis demonstrates the feasibility of integrative analyses of genomic variations and introduces large-scale hypothesis-driven SNP exploration studies as an emerging...

  13. Cytogenetic and molecular studies on a recombinant human X chromosome: implications for the spreading of X chromosome inactivation

    International Nuclear Information System (INIS)

    Mohandas, T.; Geller, R.L.; Yen, P.H.; Rosendorff, J.; Bernstein, R.; Yoshida, A.; Shapiro, L.J.

    1987-01-01

    A pericentric inversion of human X chromosome and a recombinant X chromosome [rec(X)] derived from crossing-over within the inversion was identified in a family. The rec(X) had a duplication of the segment Xq26.3 → Xqter and a deletion of Xp22.3 → Xpter and was interpreted to be Xqter → Xq26.3::Xp22.3 → Xqter. To characterize the rec(X) chromosome, dosage blots were done on genomic DNA from carriers of this rearranged X chromosome using a number of X chromosome probes. Results showed that anonymous sequences from the distal end of the long arm to which probes 4D8, Hx120A, DX13, and St14 bind as well as the locus for glucose-6-phosphate dehydrogenase (G6PD) wee duplicated on the rec(X). Mouse-human cell hybrids were constructed that retained the rec(X) in the active or inactive state. Analyses of these hybrid clones for markers from the distal short arm of the X chromosome showed that the rec(X) retained the loci for steroid sulfatase (STS) and the cell surface antigen 12E7 (MIC2); but not the pseudoautosomal sequence 113D. These molecular studies confirm that the rec(X) is a duplication-deficiency chromosome as expected. In the inactive state in cell hybrids, STS and MIC2 (which usually escape X chromosome inactivation) were expressed from the rec(X), whereas G6PD was not. Therefore, in the rec(X) X chromosome inactivation has spread through STS and MIC2 leaving these loci unaffected and has inactivated G6PD in the absence of an inactivation center in the q26.3 → qter region of the human X chromosome. The mechanism of spreading of inactivation appears to operate in a sequence-specific fashion. Alternatively, STS and MIC2 may have undergone inactivation initially but could not be maintained in an inactive state

  14. Focus formation and neoplastic transformation by herpes simplex virus type 2 inactivated intracellularly by 5-bromo-2'-deoxyuridine and near UV light

    International Nuclear Information System (INIS)

    Manak, M.M.; Aurelian, L.; Ts'o, P.O.

    1981-01-01

    The induction of focus formation in low serum and of neoplastic transformation of Syrian hamster embryo cells was examined after the expression of herpes simplex virus type 2 functions. Syrian hamster embryo cells infected at a high multiplicity (5 PFU/cell) with 5-bromo-2'-deoxyuridine-labeled herpes simplex virus type 2 (11% substitution of thymidine residues) were exposed to near UV light irradiation at various times postinfection. This procedure specifically inactivated the viral genome, while having little, if any, effect on the unlabeled cellular DNA. Focus formation in 1% serum and neoplastic transformation were observed in cells exposed to virus inactivated before infection, but the frequency was enhanced (15- to 27-fold) in cells in which the virus was inactivated at 4 to 8 h postinfection. Only 2 to 45 independently isolated foci were capable of establishing tumorigenic lines. The established lines exhibited phenotypic alterations characteristic of a transformed state, including reduced serum requirement, anchorage-independent growth, and tumorigenicity. They retained viral DNA sequences and, even at relatively late passage, expressed viral antigens, including ICP 10

  15. Non-genomic effects of vitamin D in human spermatozoa

    DEFF Research Database (Denmark)

    Blomberg Jensen, Martin; Dissing, Steen

    2012-01-01

    The spectrum for vitamin D (VD) mediated effects has expanded in recent years. Activated VD (1,25(OH)(2)D(3)) binds to the VD receptor (VDR) and mediates non-genomic effects through the alternative ligand binding-pocket (VDR-ap) or regulates gene transcription through the genomic binding......-pocket. VDR and VD-metabolizing enzymes are expressed in human testis, male reproductive tract and mature spermatozoa, and VD is considered important for male reproduction. Expression of the VD-inactivating enzyme CYP24A1 at the annulus of human spermatozoa distinguish normal and infertile men with high...... specificity, and CYP24A1 expression is positively correlated with all semen variables and suggested as a marker for both semen quality and VD responsiveness. Moreover, spermatozoa are transcriptionally silent and are therefore a unique model to study non-genomic effects. 1,25(OH)(2)D(3) induced a rapid...

  16. [Kinetics of catalase inactivation induced by ultrasonic cavitation].

    Science.gov (United States)

    Potapovich, M V; Eremin, A N; Metelitsa, D I

    2003-01-01

    Kinetic patterns of sonication-induced inactivation of bovine liver catalase (CAT) were studied in buffer solutions (pH 4-11) within the temperature range from 36 to 55 degrees C. Solutions of CAT were exposed to low-frequency (20.8 kHz) ultrasound (specific power, 48-62 W/cm2). The kinetics of CAT inactivation was characterized by effective first-order rate constants (s-1) of total inactivation (kin), thermal inactivation (*kin), and ultrasonic inactivation (kin(us)). In all cases, the following inequality was valid: kin > *kin. The value of kin(us) increased with the ultrasound power (range, 48-62 W/cm2) and exhibited a strong dependence on pH of the medium. On increasing the initial concentration of CAT (0.4-4.0 nM), kin(us) decreased. The three rate constants were minimum within the range of pH 6.5-8; their values increased considerably at pH 9. At 36-55 degrees C, temperature dependence of kin(us) was characterized by an activation energy (Eact) of 19.7 kcal/mol, whereas the value of Eact for CAT thermoinactivation was equal to 44.2 kcal/mol. Bovine serum and human serum albumins (BSA and HSA, respectively) inhibited sonication-induced CAT inactivation; complete prevention was observed at concentrations above 2.5 micrograms/ml. Dimethyl formamide (DMFA), a scavenger of hydroxyl radicals (HO.), prevented sonication-induced CAT inactivation at 10% (kin and *kin increased with the content of DMFA at concentrations in excess of 3%). The results obtained indicate that free radicals generated in the field of ultrasonic cavitation play a decisive role in the inactivation of CAT, which takes place when its solutions are exposed to low-frequency ultrasound. However, the efficiency of CAT inactivation by the radicals is determined by (1) the degree of association between the enzyme molecules in the reaction medium and (2) the composition thereof.

  17. Non-coding RNAs and epigenome: de novo DNA methylation, allelic exclusion and X-inactivation

    Directory of Open Access Journals (Sweden)

    V. A. Halytskiy

    2013-12-01

    Full Text Available Non-coding RNAs are widespread class of cell RNAs. They participate in many important processes in cells – signaling, posttranscriptional silencing, protein biosynthesis, splicing, maintenance of genome stability, telomere lengthening, X-inactivation. Nevertheless, activity of these RNAs is not restricted to posttranscriptional sphere, but cover also processes that change or maintain the epigenetic information. Non-coding RNAs can directly bind to the DNA targets and cause their repression through recruitment of DNA methyltransferases as well as chromatin modifying enzymes. Such events constitute molecular mechanism of the RNA-dependent DNA methylation. It is possible, that the RNA-DNA interaction is universal mechanism triggering DNA methylation de novo. Allelic exclusion can be also based on described mechanism. This phenomenon takes place, when non-coding RNA, which precursor is transcribed from one allele, triggers DNA methylation in all other alleles present in the cell. Note, that miRNA-mediated transcriptional silencing resembles allelic exclusion, because both miRNA gene and genes, which can be targeted by this miRNA, contain elements with the same sequences. It can be assumed that RNA-dependent DNA methylation and allelic exclusion originated with the purpose of counteracting the activity of mobile genetic elements. Probably, thinning and deregulation of the cellular non-coding RNA pattern allows reactivation of silent mobile genetic elements resulting in genome instability that leads to ageing and carcinogenesis. In the course of X-inactivation, DNA methylation and subsequent hete­rochromatinization of X chromosome can be triggered by direct hybridization of 5′-end of large non-coding RNA Xist with DNA targets in remote regions of the X chromosome.

  18. Cationic antimicrobial peptides inactivate Shiga toxin-encoding bacteriophages

    Science.gov (United States)

    Del Cogliano, Manuel E.; Hollmann, Axel; Martinez, Melina; Semorile, Liliana; Ghiringhelli, Pablo D.; Maffía, Paulo C.; Bentancor, Leticia V.

    2017-12-01

    Shiga toxin (Stx) is the principal virulence factor during Shiga toxin-producing Escherichia coli (STEC) infections. We have previously reported the inactivation of bacteriophage encoding Stx after treatment with chitosan, a linear polysaccharide polymer with cationic properties. Cationic antimicrobial peptides (cAMPs) are short linear aminoacidic sequences, with a positive net charge, which display bactericidal or bacteriostatic activity against a wide range of bacterial species. They are promising novel antibiotics since they have shown bactericidal effects against multiresistant bacteria. To evaluate whether cationic properties are responsible for bacteriophage inactivation, we tested seven cationic peptides with proven antimicrobial activity as anti-bacteriophage agents, and one random sequence cationic peptide with no antimicrobial activity as a control. We observed bacteriophage inactivation after incubation with five cAMPs, but no inactivating activity was observed with the random sequence cationic peptide or with the non alpha helical cAMP Omiganan. Finally, to confirm peptide-bacteriophage interaction, zeta potential was analyzed by following changes on bacteriophage surface charges after peptide incubation. According to our results we could propose that: 1) direct interaction of peptides with phage is a necessary step for bacteriophage inactivation, 2) cationic properties are necessary but not sufficient for bacteriophage inactivation, and 3) inactivation by cationic peptides could be sequence (or structure) specific. Overall our data suggest that these peptides could be considered a new family of molecules potentially useful to decrease bacteriophage replication and Stx expression.

  19. Cationic Antimicrobial Peptides Inactivate Shiga Toxin-Encoding Bacteriophages

    Directory of Open Access Journals (Sweden)

    Manuel E. Del Cogliano

    2017-12-01

    Full Text Available Shiga toxin (Stx is the principal virulence factor during Shiga toxin-producing Escherichia coli (STEC infections. We have previously reported the inactivation of bacteriophage encoding Stx after treatment with chitosan, a linear polysaccharide polymer with cationic properties. Cationic antimicrobial peptides (cAMPs are short linear aminoacidic sequences, with a positive net charge, which display bactericidal or bacteriostatic activity against a wide range of bacterial species. They are promising novel antibiotics since they have shown bactericidal effects against multiresistant bacteria. To evaluate whether cationic properties are responsible for bacteriophage inactivation, we tested seven cationic peptides with proven antimicrobial activity as anti-bacteriophage agents, and one random sequence cationic peptide with no antimicrobial activity as a control. We observed bacteriophage inactivation after incubation with five cAMPs, but no inactivating activity was observed with the random sequence cationic peptide or with the non-alpha helical cAMP Omiganan. Finally, to confirm peptide-bacteriophage interaction, zeta potential was analyzed by following changes on bacteriophage surface charges after peptide incubation. According to our results we could propose that: (1 direct interaction of peptides with phage is a necessary step for bacteriophage inactivation, (2 cationic properties are necessary but not sufficient for bacteriophage inactivation, and (3 inactivation by cationic peptides could be sequence (or structure specific. Overall our data suggest that these peptides could be considered a new family of molecules potentially useful to decrease bacteriophage replication and Stx expression.

  20. Amino Acid Usage Is Asymmetrically Biased in AT- and GC-Rich Microbial Genomes

    DEFF Research Database (Denmark)

    Bohlin, Jon; Brynildsrud, Ola Brønstad; Vesth, Tammi Camilla

    2013-01-01

    frequencies were distributed in over 2000 microbial genomes and how these distributions were affected by base compositional changes. In addition, we wanted to know how genome-wide amino acid usage was biased in the different genomes and how changes to base composition and mutations affected this bias...... purifying selection than genomes with higher AAUB. Conclusion: Genomic base composition has a substantial effect on both amino acid- and codon frequencies in bacterial genomes. While phylogeny influenced amino acid usage more in GC-rich genomes, AT-content was driving amino acid usage in AT-rich genomes. We...

  1. A simple and effective method for construction of Escherichia coli strains proficient for genome engineering.

    Directory of Open Access Journals (Sweden)

    Young Shin Ryu

    Full Text Available Multiplex genome engineering is a standalone recombineering tool for large-scale programming and accelerated evolution of cells. However, this advanced genome engineering technique has been limited to use in selected bacterial strains. We developed a simple and effective strain-independent method for effective genome engineering in Escherichia coli. The method involves introducing a suicide plasmid carrying the λ Red recombination system into the mutS gene. The suicide plasmid can be excised from the chromosome via selection in the absence of antibiotics, thus allowing transient inactivation of the mismatch repair system during genome engineering. In addition, we developed another suicide plasmid that enables integration of large DNA fragments into the lacZ genomic locus. These features enable this system to be applied in the exploitation of the benefits of genome engineering in synthetic biology, as well as the metabolic engineering of different strains of E. coli.

  2. Structure of suicide-inactivated β-hydroxydecanoyl-thioester dehydrase

    International Nuclear Information System (INIS)

    Schwab, J.M.; Ho, C.K.; Li, W.B.; Townsend, C.A.; Salituro, G.M.

    1986-01-01

    β-Hydroxydecanoylthioester dehydrase, the key enzyme in biosynthesis of unsaturated fatty acids under anaerobic conditions, equilibrates thioesters of (R)-3-hydroxydecanoic acid, E-2-decenoic acid, and Z-3-decenoic acid. Dehydrase is irreversibly inactivated by the N-acetylcysteamine thioester of 3-decynoic acid (3-decynoyl-NAC), via dehydrase-catalyzed isomerization to 2,3-decadienoyl-NAC. To probe the relationship between normal catalysis and suicide inactivation, the structure of the inactivated enzyme has been studied. 3-[2- 13 C]Decynoyl-NAC was synthesized and incubated with dehydrase. 13 C NMR showed that attack of 2,3-decadienoyl-NAC by the active site histidine gives 3-histidinyl-3-decenoyl-NAC, which slowly rearranges to the more stable Δ 2 isomer. Model histidine-allene adducts have been made and characterized. Analysis of NMR data show that the C=C configuration of the decenoyl moiety of enzyme-bound inactivator is E. The suggestion that the mechanism of dehydrase inactivation parallels its normal mechanism of action is supported these findings

  3. Modelling and application of the inactivation of microorganism

    International Nuclear Information System (INIS)

    Oğuzhan, P.; Yangılar, F.

    2013-01-01

    Prevention of consuming contaminated food with toxic microorganisms causing infections and consideration of food protection and new microbial inactivation methods are obligatory situations. Food microbiology is mainly related with unwanted microorganisms spoiling foods during processing and transporting stages and causing diseases. Determination of pathogen microorganisms is important for human health to define and prevent dangers and elongate shelf life. Inactivation of pathogen microorganisms can provide food security and reduce nutrient losses. Microbial inactivation which is using methods of food protection such as food safety and fresh. With this aim, various methods are used such as classical thermal processes (pasteurisation, sterilisation), pressured electrical field (PEF), ionised radiation, high pressure, ultrasonic waves and plasma sterilisation. Microbial inactivation modelling is a secure and effective method in food production. A new microbiological application can give useful results for risk assessment in food, inactivation of microorganisms and improvement of shelf life. Application and control methods should be developed and supported by scientific research and industrial applications

  4. Genome-to-genome analysis highlights the effect of the human innate and adaptive immune systems on the hepatitis C virus.

    Science.gov (United States)

    Ansari, M Azim; Pedergnana, Vincent; L C Ip, Camilla; Magri, Andrea; Von Delft, Annette; Bonsall, David; Chaturvedi, Nimisha; Bartha, Istvan; Smith, David; Nicholson, George; McVean, Gilean; Trebes, Amy; Piazza, Paolo; Fellay, Jacques; Cooke, Graham; Foster, Graham R; Hudson, Emma; McLauchlan, John; Simmonds, Peter; Bowden, Rory; Klenerman, Paul; Barnes, Eleanor; Spencer, Chris C A

    2017-05-01

    Outcomes of hepatitis C virus (HCV) infection and treatment depend on viral and host genetic factors. Here we use human genome-wide genotyping arrays and new whole-genome HCV viral sequencing technologies to perform a systematic genome-to-genome study of 542 individuals who were chronically infected with HCV, predominantly genotype 3. We show that both alleles of genes encoding human leukocyte antigen molecules and genes encoding components of the interferon lambda innate immune system drive viral polymorphism. Additionally, we show that IFNL4 genotypes determine HCV viral load through a mechanism dependent on a specific amino acid residue in the HCV NS5A protein. These findings highlight the interplay between the innate immune system and the viral genome in HCV control.

  5. Doc toxin is a kinase that inactivates elongation factor Tu.

    Science.gov (United States)

    Cruz, Jonathan W; Rothenbacher, Francesca P; Maehigashi, Tatsuya; Lane, William S; Dunham, Christine M; Woychik, Nancy A

    2014-03-14

    The Doc toxin from bacteriophage P1 (of the phd-doc toxin-antitoxin system) has served as a model for the family of Doc toxins, many of which are harbored in the genomes of pathogens. We have shown previously that the mode of action of this toxin is distinct from the majority derived from toxin-antitoxin systems: it does not cleave RNA; in fact P1 Doc expression leads to mRNA stabilization. However, the molecular triggers that lead to translation arrest are not understood. The presence of a Fic domain, albeit slightly altered in length and at the catalytic site, provided a clue to the mechanism of P1 Doc action, as most proteins with this conserved domain inactivate GTPases through addition of an adenylyl group (also referred to as AMPylation). We demonstrated that P1 Doc added a single phosphate group to the essential translation elongation factor and GTPase, elongation factor (EF)-Tu. The phosphorylation site was at a highly conserved threonine, Thr-382, which was blocked when EF-Tu was treated with the antibiotic kirromycin. Therefore, we have established that Fic domain proteins can function as kinases. This distinct enzymatic activity exhibited by P1 Doc also solves the mystery of the degenerate Fic motif unique to the Doc family of toxins. Moreover, we have established that all characterized Fic domain proteins, even those that phosphorylate, target pivotal GTPases for inactivation through a post-translational modification at a single functionally critical acceptor site.

  6. Genome technologies and personalized dental medicine.

    Science.gov (United States)

    Eng, G; Chen, A; Vess, T; Ginsburg, G S

    2012-04-01

    The addition of genomic information to our understanding of oral disease is driving important changes in oral health care. It is anticipated that genome-derived information will promote a deeper understanding of disease etiology and permit earlier diagnosis, allowing for preventative measures prior to disease onset rather than treatment that attempts to repair the diseased state. Advances in genome technologies have fueled expectations for this proactive healthcare approach. Application of genomic testing is expanding and has already begun to find its way into the practice of clinical dentistry. To take full advantage of the information and technologies currently available, it is vital that dental care providers, consumers, and policymakers be aware of genomic approaches to understanding of oral diseases and the application of genomic testing to disease diagnosis and treatment. Ethical, legal, clinical, and educational initiatives are also required to responsibly incorporate genomic information into the practice of dentistry. This article provides an overview of the application of genomic technologies to oral health care and introduces issues that require consideration if we are to realize the full potential of genomics to enable the practice of personalized dental medicine. © 2011 John Wiley & Sons A/S.

  7. Novel recombinant adeno-associated viruses for Cre activated and inactivated transgene expression in neurons

    Science.gov (United States)

    Saunders, Arpiar; Johnson, Caroline A.; Sabatini, Bernardo L.

    2012-01-01

    Understanding the organization of the nervous system requires methods for dissecting the contributions of each component cell type to circuit function. One widely used approach combines genetic targeting of Cre recombinase to specific cell populations with infection of recombinant adeno-associated viruses (rAAVs) whose transgene expression is activated by Cre (“Cre-On”). Distinguishing how the Cre-expressing neurons differ functionally from neighboring Cre-negative neurons requires rAAVs that are inactivated by Cre (“Cre-Off”) and can be used in tandem with Cre-On viruses. Here we introduce two rAAV vectors that are inactivated by Cre and carry different fluorophore and optogenetic constructs. We demonstrate single and dual rAAV systems to achieve Cre-On and Cre-Off expression in spatially-intermingled cell populations of the striatum. Using these systems, we uncovered cryptic genomic interactions that occur between multiple Cre-sensitive rAAVs or between Cre-sensitive rAAVs and somatic Cre-conditional alleles and devised methods to avoid these interactions. Our data highlight both important experimental caveats associated with Cre-dependent rAAV use as well as opportunities for the development of improved rAAVs for gene delivery. PMID:22866029

  8. Synthetic lethality between murine DNA repair factors XLF and DNA-PKcs is rescued by inactivation of Ku70

    DEFF Research Database (Denmark)

    Xing, Mengtan; Bjørås, Magnar; Daniel, Jeremy A

    2017-01-01

    DNA double-strand breaks (DSBs) are recognized and repaired by the Classical Non-Homologous End-Joining (C-NHEJ) and Homologous Recombination pathways. C-NHEJ includes the core Ku70 and Ku80 (or Ku86) heterodimer that binds DSBs and thus promotes recruitment of accessory downstream NHEJ factors XLF......, PAXX, DNA-PKcs, Artemis and other core subunits, XRCC4 and DNA Ligase 4 (Lig4). In the absence of core C-NHEJ factors, DNA repair can be performed by Alternative End-Joining, which likely depends on DNA Ligase 1 and DNA Ligase 3. Genetic inactivation of C-NHEJ factors, such as Ku70, Ku80, XLF, PAXX...... with severe apoptosis in the central nervous system. Here, we demonstrate that inactivation of the Ku70 gene rescues the synthetic lethality between XLF and DNA-PKcs, resulting in triple knockout mice that are indistinguishable from Ku70-deficient littermates by size or levels of genomic instability. Moreover...

  9. Estrogen-mediated inactivation of FOXO3a by the G protein-coupled estrogen receptor GPER

    International Nuclear Information System (INIS)

    Zekas, Erin; Prossnitz, Eric R.

    2015-01-01

    Estrogen (17β-estradiol) promotes the survival and proliferation of breast cancer cells and its receptors represent important therapeutic targets. The cellular actions of estrogen are mediated by the nuclear estrogen receptors ERα and ERβ as well as the 7-transmembrane spanning G protein-coupled estrogen receptor (GPER). We previously reported that estrogen activates the phosphoinositide 3-kinase (PI3Kinase) pathway via GPER, resulting in phosphatidylinositol (3,4,5)-trisphosphate (PIP3) production within the nucleus of breast cancer cells; however, the mechanisms and consequences of this activity remained unclear. MCF7 breast cancer cells were transfected with GFP-fused Forkhead box O3 (FOXO3) as a reporter to assess localization in response to estrogen stimulation. Inhibitors of PI3Kinases and EGFR were employed to determine the mechanisms of estrogen-mediated FOXO3a inactivation. Receptor knockdown with siRNA and the selective GPER agonist G-1 elucidated the estrogen receptor(s) responsible for estrogen-mediated FOXO3a inactivation. The effects of selective estrogen receptor modulators and downregulators (SERMs and SERDs) on FOXO3a in MCF7 cells were also determined. Cell survival (inhibition of apoptosis) was assessed by caspase activation. In the estrogen-responsive breast cancer cell line MCF7, FOXO3a inactivation occurs on a rapid time scale as a result of GPER, but not ERα, stimulation by estrogen, established by the GPER-selective agonist G-1 and knockdown of GPER and ERα. GPER-mediated inactivation of FOXO3a is effected by the p110α catalytic subunit of PI3Kinase as a result of transactivation of the EGFR. The SERMs tamoxifen and raloxifene, as well as the SERD ICI182,780, were active in mediating FOXO3a inactivation in a GPER-dependent manner. Additionally, estrogen-and G-1-mediated stimulation of MCF7 cells results in a decrease in caspase activation under proapoptotic conditions. Our results suggest that non-genomic signaling by GPER contributes

  10. Genome organization, instabilities, stem cells, and cancer

    Directory of Open Access Journals (Sweden)

    Senthil Kumar Pazhanisamy

    2009-01-01

    Full Text Available It is now widely recognized that advances in exploring genome organization provide remarkable insights on the induction and progression of chromosome abnormalities. Much of what we know about how mutations evolve and consequently transform into genome instabilities has been characterized in the spatial organization context of chromatin. Nevertheless, many underlying concepts of impact of the chromatin organization on perpetuation of multiple mutations and on propagation of chromosomal aberrations remain to be investigated in detail. Genesis of genome instabilities from accumulation of multiple mutations that drive tumorigenesis is increasingly becoming a focal theme in cancer studies. This review focuses on structural alterations evolve to raise a variety of genome instabilities that are manifested at the nucleotide, gene or sub-chromosomal, and whole chromosome level of genome. Here we explore an underlying connection between genome instability and cancer in the light of genome architecture. This review is limited to studies directed towards spatial organizational aspects of origin and propagation of aberrations into genetically unstable tumors.

  11. Strategies used for genetically modifying bacterial genome: ite-directed mutagenesis, gene inactivation, and gene over-expression*

    Science.gov (United States)

    Xu, Jian-zhong; Zhang, Wei-guo

    2016-01-01

    With the availability of the whole genome sequence of Escherichia coli or Corynebacterium glutamicum, strategies for directed DNA manipulation have developed rapidly. DNA manipulation plays an important role in understanding the function of genes and in constructing novel engineering bacteria according to requirement. DNA manipulation involves modifying the autologous genes and expressing the heterogenous genes. Two alternative approaches, using electroporation linear DNA or recombinant suicide plasmid, allow a wide variety of DNA manipulation. However, the over-expression of the desired gene is generally executed via plasmid-mediation. The current review summarizes the common strategies used for genetically modifying E. coli and C. glutamicum genomes, and discusses the technical problem of multi-layered DNA manipulation. Strategies for gene over-expression via integrating into genome are proposed. This review is intended to be an accessible introduction to DNA manipulation within the bacterial genome for novices and a source of the latest experimental information for experienced investigators. PMID:26834010

  12. Removal of detergents from SDS-inactivated dextransucrase

    International Nuclear Information System (INIS)

    Husman, D.W.; Mayer, R.M.

    1986-01-01

    Dextransucrase, which is rapidly inactivated by SDS, can be reactivated upon the addition of Triton X-100. Purification of the enzyme, in good yield and homogeneity, has been achieved by chromatography in the presence of SDS. The purified enzyme can be reactivated with Triton, but has large amounts of detergents. It was important to develop procedures for their removal. Density gradient centrifugation of SDS-inactivated or Triton-reactivated enzyme, treatment with Extracti-Gel D (Pierce) or chromatography on hydroxyl apatite (HA), have been examined for their effectiveness in providing detergent-free enzyme in good yield. Ultracentrifugation of SDS-inactivated protein provided limited recovery of active enzyme, but suggested that reactivation could be achieved by the simple removal of the detergent. While similar behavior was observed when the enzyme was eluted from Extracti-Gel, it was also shown that the limited recovery was a result of irreversible inactivation of the enzyme. Recovery could be improved if the enzyme was collected in solutions containing Triton, which has been reported to be a stabilizer. Chromatography of SDS-inactivated enzyme on HA also yielded active enzyme. Good recovery was obtained when Triton-reactivated enzyme was employed in these studies. The degree of detergent removal was determined by utilizing radiolabelled SDS and Triton X-100

  13. Modified Carbapenem Inactivation Method for Phenotypic Detection of Carbapenemase Production among Enterobacteriaceae.

    Science.gov (United States)

    Pierce, Virginia M; Simner, Patricia J; Lonsway, David R; Roe-Carpenter, Darcie E; Johnson, J Kristie; Brasso, William B; Bobenchik, April M; Lockett, Zabrina C; Charnot-Katsikas, Angella; Ferraro, Mary Jane; Thomson, Richard B; Jenkins, Stephen G; Limbago, Brandi M; Das, Sanchita

    2017-08-01

    The ability of clinical microbiology laboratories to reliably detect carbapenemase-producing carbapenem-resistant Enterobacteriaceae (CP-CRE) is an important element of the effort to prevent and contain the spread of these pathogens and an integral part of antimicrobial stewardship. All existing methods have limitations. A new, straightforward, inexpensive, and specific phenotypic method for the detection of carbapenemase production, the carbapenem inactivation method (CIM), was recently described. Here we describe a two-stage evaluation of a modified carbapenem inactivation method (mCIM), in which tryptic soy broth was substituted for water during the inactivation step and the length of this incubation was extended. A validation study was performed in a single clinical laboratory to determine the accuracy of the mCIM, followed by a nine-laboratory study to verify the reproducibility of these results and define the zone size cutoff that best discriminated between CP-CRE and members of the family Enterobacteriaceae that do not produce carbapenemases. Bacterial isolates previously characterized through whole-genome sequencing or targeted PCR as to the presence or absence of carbapenemase genes were tested for carbapenemase production using the mCIM; isolates with Ambler class A, B, and D carbapenemases, non-CP-CRE isolates, and carbapenem-susceptible isolates were included. The sensitivity of the mCIM observed in the validation study was 99% (95% confidence interval [95% CI], 93% to 100%), and the specificity was 100% (95% CI, 82% to 100%). In the second stage of the study, the range of sensitivities observed across nine laboratories was 93% to 100%, with a mean of 97%; the range of specificities was 97% to 100%, with a mean of 99%. The mCIM was easy to perform and interpret for Enterobacteriaceae , with results in less than 24 h and excellent reproducibility across laboratories. Copyright © 2017 American Society for Microbiology.

  14. Role of oxidative DNA damage in genome instability and cancer

    International Nuclear Information System (INIS)

    Bignami, M.; Kunkel, T.

    2009-01-01

    Inactivation of mismatch repair (MMR) is associated with a dramatic genomic instability that is observed experimentally as a mutator phenotype and micro satellite instability (MSI). It has been implicit that the massive genetic instability in MMR defective cells simply reflects the accumulation of spontaneous DNA polymerase errors during DNA replication. We recently identified oxidation damage, a common threat to DNA integrity to which purines are very susceptible, as an important cofactor in this genetic instability

  15. Luciferase inactivation in the luminous marine bacterium Vibrio harveyi.

    Science.gov (United States)

    Reeve, C A; Baldwin, T O

    1981-06-01

    Luciferase was rapidly inactivated in stationary-phase cultures of the wild type of the luminous marine bacterium Vibrio harveyi, but was stable in stationary-phase cultures of mutants of V. harveyi that are nonluminous without exogenous aldehyde, termed the aldehyde-deficient mutants. The inactivation in the wild type was halted by cell lysis and was slowed or stopped by O2 deprivation or by addition of KCN and NaF or of chloramphenicol. If KCN and NaF or chloramphenicol were added to a culture before the onset of luciferase inactivation, then luciferase inactivation did not occur. However, if these inhibitors were added after the onset of luciferase inactivation, then luciferase inactivation continued for about 2 to 3 h before the inactivation process stopped. The onset of luciferase inactivation in early stationary-phase cultures of wild-type cell coincided with a slight drop in the intracellular adenosine 5'-triphosphate (ATP) level from a relatively constant log-phase value of 20 pmol of ATP per microgram of soluble cell protein. Addition of KCN and NaF to a culture shortly after this drop in ATP caused a rapid decrease in the ATP level to about 4 pmol of ATP per microgram whereas chloramphenicol added at this same time caused a transient increase in ATP level to about 25 pmol/microgram. The aldehyde-deficient mutant (M17) showed a relatively constant log-phase ATP level identical with that of the wild-type cells, but rather than decreasing in early stationary phase, the ATP level increased to a value twice that in log-phase cells. We suggest that the inactivation of luciferase is dependent on the synthesis of some factor which is produced during stationary phase and is itself unstable, and whose synthesis is blocked by chloramphenicol or cyanide plus fluoride.

  16. Comparison of two different methods for inactivation of viruses in serum

    DEFF Research Database (Denmark)

    Preuss, T.; Kamstrup, Søren; Kyvsgaard, N.C.

    1997-01-01

    enterovirus (PEV) was inactivated within 3 h, The inactivation with electron-beam irradiation resulted in almost linear curves in a semilogarithmic plot of virus titer versus irradiation dose, reflecting a first-order inactivation, The rate of inactivation was almost twice as fast in the liquid samples...

  17. Inactivation of Lassa, Marburg, and Ebola viruses by gamma irradiation

    International Nuclear Information System (INIS)

    Elliott, L.H.; McCormick, J.B.; Johnson, K.M.

    1982-01-01

    Because of the cumbersome conditions experienced in a maximum containment laboratory, methods for inactivating highly pathogenic viruses were investigated. The infectivity of Lassa, Marburg, and Ebola viruses was inactivated without altering the immunological activity after radiation with 60 CO gamma rays. At 4 degrees C, Lassa virus was the most difficult to inactivate with a rate of 5.3 X 10(-6) log 50% tissue culture infective dose per rad of 60 CO radiation, as compared with 6.8 X 10(-6) log 50% tissue culture infective dose per rad for Ebola virus and 8.4 X 10(-6) log 50% tissue culture infective dose per rad for Marburg virus. Experimental inactivation curves, as well as curves giving the total radiation needed to inactivate a given concentration of any of the three viruses, are presented. The authors found this method of inactivation to be superior to UV light or beta-propiolactone inactivation and now routinely use it for preparation of material for protein-chemistry studies or for preparation of immunological reagents

  18. Inactivation of Lassa, Marburg, and Ebola viruses by gamma irradiation

    International Nuclear Information System (INIS)

    Elliott, L.H.; McCormick, J.B.; Johnson, K.M.

    1982-01-01

    Because of the cumbersome conditions experienced in a maximum containment laboratory, methods for inactivating highly pathogenic viruses were investigated. The infectivity of Lassa, Marburg, and Ebola viruses was inactivated without altering the immunological activity after radiation with 60 Co gamma rays. At 4 degrees C, Lassa virus was the most difficult to inactivate with a rate of 5.3 X 10(-6) log 50% tissue culture infective dose per rad of 60 Co radiation, as compared with 6.8 X 10(-6) log 50% tissue culture infective dose per rad for Ebola virus and 8.4 X 10(-6) log 50% tissue culture infective dose per rad for Marburg virus. Experimental inactivation curves, as well as curves giving the total radiation needed to inactivate a given concentration of any of the three viruses, are presented. We found this method of inactivation to be superior to UV light or beta-propiolactone inactivation and now routinely use it for preparation of material for protein-chemistry studies or for preparation of immunological reagents

  19. Mammalian-specific genomic functions: Newly acquired traits generated by genomic imprinting and LTR retrotransposon-derived genes in mammals.

    Science.gov (United States)

    Kaneko-Ishino, Tomoko; Ishino, Fumitoshi

    2015-01-01

    Mammals, including human beings, have evolved a unique viviparous reproductive system and a highly developed central nervous system. How did these unique characteristics emerge in mammalian evolution, and what kinds of changes did occur in the mammalian genomes as evolution proceeded? A key conceptual term in approaching these issues is "mammalian-specific genomic functions", a concept covering both mammalian-specific epigenetics and genetics. Genomic imprinting and LTR retrotransposon-derived genes are reviewed as the representative, mammalian-specific genomic functions that are essential not only for the current mammalian developmental system, but also mammalian evolution itself. First, the essential roles of genomic imprinting in mammalian development, especially related to viviparous reproduction via placental function, as well as the emergence of genomic imprinting in mammalian evolution, are discussed. Second, we introduce the novel concept of "mammalian-specific traits generated by mammalian-specific genes from LTR retrotransposons", based on the finding that LTR retrotransposons served as a critical driving force in the mammalian evolution via generating mammalian-specific genes.

  20. Photodynamic inactivation of foodborne bacteria by eosin Y.

    Science.gov (United States)

    Bonin, E; Dos Santos, A R; Fiori da Silva, A; Ribeiro, L H; Favero, M E; Campanerut-Sá, P A Z; de Freitas, C F; Caetano, W; Hioka, N; Mikcha, J M G

    2018-03-25

    The aim of this study was evaluate the effect of photodynamic inactivation mediated by eosin Y in Salmonella enterica serotype Typhimurium ATCC 14028, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Staphylococcus aureus ATCC 25923 and Bacillus cereus ATCC 11778. Bacteria (10 7 CFU per ml) were incubated with eosin Y at concentrations ranging from 0·1 to 10 μmol l -1 , irradiated by green LED (λ max 490-570 nm) for 5, 10 and 15 min and the cellular viability was determined. Pseudomonas aeruginosa was completely inactivated when treated with 10 μmol l -1 eosin Y for 10 min. Treatments reduced B. cereus and Salm. Typhimurium counts to 2·7 log CFU per ml and 1·7 log CFU per ml, respectively. Escherichia coli counts were slightly reduced. Staphylococcus aureus presented the highest sensitivity, being completely inactivated by eosin Y at 5 μmol l -1 and 5 min of illumination. The reduction of cellular viability of photoinactivated Staph. aureus was also demonstrated by flow cytometry and morphological changes were observed by scanning electron microscopy. Eosin Y in combination with LED produced bacterial inactivation, being a potential candidate for photodynamic inactivation. This study evidenced the efficacy of photodynamic inactivation as a novel and promising alternative to bacterial control. © 2018 The Society for Applied Microbiology.

  1. Integrated genome sequence and linkage map of physic nut (Jatropha curcas L.), a biodiesel plant.

    Science.gov (United States)

    Wu, Pingzhi; Zhou, Changpin; Cheng, Shifeng; Wu, Zhenying; Lu, Wenjia; Han, Jinli; Chen, Yanbo; Chen, Yan; Ni, Peixiang; Wang, Ying; Xu, Xun; Huang, Ying; Song, Chi; Wang, Zhiwen; Shi, Nan; Zhang, Xudong; Fang, Xiaohua; Yang, Qing; Jiang, Huawu; Chen, Yaping; Li, Meiru; Wang, Ying; Chen, Fan; Wang, Jun; Wu, Guojiang

    2015-03-01

    The family Euphorbiaceae includes some of the most efficient biomass accumulators. Whole genome sequencing and the development of genetic maps of these species are important components in molecular breeding and genetic improvement. Here we report the draft genome of physic nut (Jatropha curcas L.), a biodiesel plant. The assembled genome has a total length of 320.5 Mbp and contains 27,172 putative protein-coding genes. We established a linkage map containing 1208 markers and anchored the genome assembly (81.7%) to this map to produce 11 pseudochromosomes. After gene family clustering, 15,268 families were identified, of which 13,887 existed in the castor bean genome. Analysis of the genome highlighted specific expansion and contraction of a number of gene families during the evolution of this species, including the ribosome-inactivating proteins and oil biosynthesis pathway enzymes. The genomic sequence and linkage map provide a valuable resource not only for fundamental and applied research on physic nut but also for evolutionary and comparative genomics analysis, particularly in the Euphorbiaceae. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  2. Mutation inactivation of Nijmegen breakage syndrome gene (NBS1 in hepatocellular carcinoma and intrahepatic cholangiocarcinoma.

    Directory of Open Access Journals (Sweden)

    Yan Wang

    Full Text Available Nijmegen breakage syndrome (NBS with NBS1 germ-line mutation is a human autosomal recessive disease characterized by genomic instability and enhanced cancer predisposition. The NBS1 gene codes for a protein, Nbs1(p95/Nibrin, involved in the processing/repair of DNA double-strand breaks. Hepatocellular carcinoma (HCC is a complex and heterogeneous tumor with several genomic alterations. Recent studies have shown that heterozygous NBS1 mice exhibited a higher incidence of HCC than did wild-type mice. The objective of the present study is to assess whether NBS1 mutations play a role in the pathogenesis of human primary liver cancer, including HBV-associated HCC and intrahepatic cholangiocarcinoma (ICC. Eight missense NBS1 mutations were identified in six of 64 (9.4% HCCs and two of 18 (11.1% ICCs, whereas only one synonymous mutation was found in 89 control cases of cirrhosis and chronic hepatitis B. Analysis of the functional consequences of the identified NBS1 mutations in Mre11-binding domain showed loss of nuclear localization of Nbs1 partner Mre11, one of the hallmarks for Nbs1 deficiency, in one HCC and two ICCs with NBS1 mutations. Moreover, seven of the eight tumors with NBS1 mutations had at least one genetic alteration in the TP53 pathway, including TP53 mutation, MDM2 amplification, p14ARF homozygous deletion and promoter methylation, implying a synergistic effect of Nbs1 disruption and p53 inactivation. Our findings provide novel insight on the molecular pathogenesis of primary liver cancer characterized by mutation inactivation of NBS1, a DNA repair associated gene.

  3. Comparative Inactivation of Murine Norovirus, Human Adenovirus, and Human JC Polyomavirus by Chlorine in Seawater

    Science.gov (United States)

    de Abreu Corrêa, Adriana; Carratala, Anna; Barardi, Celia Regina Monte; Calvo, Miquel; Bofill-Mas, Sílvia

    2012-01-01

    Viruses excreted by humans affect the commercial and recreational use of coastal water. Shellfish produced in contaminated waters have been linked to many episodes and outbreaks of viral gastroenteritis, as well as other food-borne diseases worldwide. The risk can be reduced by appropriate treatment following harvesting and by depuration. The kinetics of inactivation of murine norovirus 1 and human adenovirus 2 in natural and artificial seawater by free available chlorine was studied by quantifying genomic copies (GC) using quantitative PCR and infectious viral particles (PFU). Human JC polyomavirus Mad4 kinetics were evaluated by quantitative PCR. DNase or RNase were used to eliminate free genomes and assess potential viral infectivity when molecular detection was performed. At 30 min of assay, human adenovirus 2 showed 2.6- and 2.7-log10 GC reductions and a 2.3- and 2.4-log10 PFU reductions in natural and artificial seawater, respectively, and infectious viral particles were still observed at the end of the assay. When DNase was used prior to the nucleic acid extraction the kinetic of inactivation obtained by quantitative PCR was statistically equivalent to the one observed by infectivity assays. For murine norovirus 1, 2.5, and 3.5-log10 GC reductions were observed in natural and artificial seawater, respectively, while no viruses remained infectious after 30 min of contact with chlorine. Regarding JC polyomavirus Mad4, 1.5- and 1.1-log10 GC reductions were observed after 30 min of contact time. No infectivity assays were conducted for this virus. The results obtained provide data that might be applicable to seawater used in shellfish depuration. PMID:22773637

  4. PROJECT OF COAGULANT DISPENSER IN PULVERIZATION AERATOR WITH WIND DRIVE

    Directory of Open Access Journals (Sweden)

    Ewa Osuch

    2017-09-01

    Full Text Available Lakes are one of most important freshwater ecosystems, playing significant role in functioning of nature and human economy. Swarzędzkie Lake is good example of ecosystem, which in last half-century was exposed to the influence of strong anthropopressure. Direct inflow of sewage with large number of biogens coming to the lake with water of inflows caused distinct disturbance of its functioning. In autumn 2011 restoration begined on Swarzędzkie Lake for reduction of lake trophy and improvement of water quality. For achieving better and quicker effect, simultaneously combination of some methods was applied, among others method of oxygenation of over-bottom water with help of pulverization aerator and method of precise inactivation of phosphorus in water depths. Characterization and analysis of improved coagulant dispenser applying active substance only during work of pulverization aerator is the aim of this thesis. Principle of dispenser work, its structure and location in pulverization aerator were explained. It was stated, that introduction to water a factor initiating process of phosphorus inactivation causes significant reduction of mineral phosphorus in water and size of coagulant dose correlates with intensity of work of pulverization aerator with wind drive.

  5. Punctuated evolution of prostate cancer genomes.

    Science.gov (United States)

    Baca, Sylvan C; Prandi, Davide; Lawrence, Michael S; Mosquera, Juan Miguel; Romanel, Alessandro; Drier, Yotam; Park, Kyung; Kitabayashi, Naoki; MacDonald, Theresa Y; Ghandi, Mahmoud; Van Allen, Eliezer; Kryukov, Gregory V; Sboner, Andrea; Theurillat, Jean-Philippe; Soong, T David; Nickerson, Elizabeth; Auclair, Daniel; Tewari, Ashutosh; Beltran, Himisha; Onofrio, Robert C; Boysen, Gunther; Guiducci, Candace; Barbieri, Christopher E; Cibulskis, Kristian; Sivachenko, Andrey; Carter, Scott L; Saksena, Gordon; Voet, Douglas; Ramos, Alex H; Winckler, Wendy; Cipicchio, Michelle; Ardlie, Kristin; Kantoff, Philip W; Berger, Michael F; Gabriel, Stacey B; Golub, Todd R; Meyerson, Matthew; Lander, Eric S; Elemento, Olivier; Getz, Gad; Demichelis, Francesca; Rubin, Mark A; Garraway, Levi A

    2013-04-25

    The analysis of exonic DNA from prostate cancers has identified recurrently mutated genes, but the spectrum of genome-wide alterations has not been profiled extensively in this disease. We sequenced the genomes of 57 prostate tumors and matched normal tissues to characterize somatic alterations and to study how they accumulate during oncogenesis and progression. By modeling the genesis of genomic rearrangements, we identified abundant DNA translocations and deletions that arise in a highly interdependent manner. This phenomenon, which we term "chromoplexy," frequently accounts for the dysregulation of prostate cancer genes and appears to disrupt multiple cancer genes coordinately. Our modeling suggests that chromoplexy may induce considerable genomic derangement over relatively few events in prostate cancer and other neoplasms, supporting a model of punctuated cancer evolution. By characterizing the clonal hierarchy of genomic lesions in prostate tumors, we charted a path of oncogenic events along which chromoplexy may drive prostate carcinogenesis. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Symbiotic adaptation drives genome streamlining of the cyanobacterial sponge symbiont "Candidatus Synechococcus pongiarum"

    KAUST Repository

    Gao, Zhao-Ming

    2014-04-01

    "Candidatus Synechococcus spongiarum" is a cyanobacterial symbiont widely distributed in sponges, but its functions at the genome level remain unknown. Here, we obtained the draft genome (1.66 Mbp, 90% estimated genome recovery) of "Ca. Synechococcus spongiarum" strain SH4 inhabiting the Red Sea sponge Carteriospongia foliascens. Phylogenomic analysis revealed a high dissimilarity between SH4 and free-living cyanobacterial strains. Essential functions, such as photosynthesis, the citric acid cycle, and DNA replication, were detected in SH4. Eukaryoticlike domains that play important roles in sponge-symbiont interactions were identified exclusively in the symbiont. However, SH4 could not biosynthesize methionine and polyamines and had lost partial genes encoding low-molecular-weight peptides of the photosynthesis complex, antioxidant enzymes, DNA repair enzymes, and proteins involved in resistance to environmental toxins and in biosynthesis of capsular and extracellular polysaccharides. These genetic modifications imply that "Ca. Synechococcus spongiarum" SH4 represents a low-light-adapted cyanobacterial symbiont and has undergone genome streamlining to adapt to the sponge\\'s mild intercellular environment. 2014 Gao et al.

  7. Symbiotic adaptation drives genome streamlining of the cyanobacterial sponge symbiont "Candidatus Synechococcus pongiarum"

    KAUST Repository

    Gao, Zhao-Ming; Wang, Yong; Tian, Ren-Mao; Wong, Yue Him; Batang, Zenon B.; Al-Suwailem, Abdulaziz M.; Bajic, Vladimir B.; Qian, Pei-Yuan

    2014-01-01

    "Candidatus Synechococcus spongiarum" is a cyanobacterial symbiont widely distributed in sponges, but its functions at the genome level remain unknown. Here, we obtained the draft genome (1.66 Mbp, 90% estimated genome recovery) of "Ca. Synechococcus spongiarum" strain SH4 inhabiting the Red Sea sponge Carteriospongia foliascens. Phylogenomic analysis revealed a high dissimilarity between SH4 and free-living cyanobacterial strains. Essential functions, such as photosynthesis, the citric acid cycle, and DNA replication, were detected in SH4. Eukaryoticlike domains that play important roles in sponge-symbiont interactions were identified exclusively in the symbiont. However, SH4 could not biosynthesize methionine and polyamines and had lost partial genes encoding low-molecular-weight peptides of the photosynthesis complex, antioxidant enzymes, DNA repair enzymes, and proteins involved in resistance to environmental toxins and in biosynthesis of capsular and extracellular polysaccharides. These genetic modifications imply that "Ca. Synechococcus spongiarum" SH4 represents a low-light-adapted cyanobacterial symbiont and has undergone genome streamlining to adapt to the sponge's mild intercellular environment. 2014 Gao et al.

  8. Inactivation of Mycobacterium avium with free chlorine.

    Science.gov (United States)

    Luh, Jeanne; Mariñas, Benito J

    2007-07-15

    The inactivation kinetics of Mycobacterium avium with free chlorine was characterized by two stages: an initial phase at a relatively fast rate followed by a slower second stage of pseudo first-order kinetics. The inactivation rate of each stage was approximately the same for all experiments performed at a certain condition of pH and temperature; however, variability was observed for the disinfectant exposure at which the transition between the two stages occurred. This variability was not a function of the initial disinfectant concentration, the initial bacterial density, or the bacterial stock. However, the transition to the second stage varied more significantly at high temperatures (30 degrees C), while lower variability was observed at lower temperatures (5 and 20 degrees C). Experiments conducted at pH values in the range of 6-9 revealed that the inactivation of M. avium was primarily due to hypochlorous acid, with little contribution from hypochlorite ion within this pH range. The inactivation kinetics was represented with a two-population model. The activation energies for the resulting pseudo first-order rate constants for the populations with fast and slow kinetics were 100.3 and 96.5 kJ/mol, respectively. The magnitude of these values suggested that for waters of relatively high pH and low temperatures, little inactivation of M. avium would be achieved within treatment plants, providing a seeding source for distribution systems.

  9. Inactivation of viruses in municipal effluent by chlorine.

    OpenAIRE

    Hajenian, H. G.; Butler, M.

    1980-01-01

    The influence of pH and temperature on the efficiency of chlorine inactivation of two unrelated picornaviruses in a typical urban wastewater effluent was examined. Temperature, unlike pH, had relatively little effect on the rate of inactivation. The pH effect was complex and the two viruses differed. The f2 coliphage was more sensitive to chlorine at low pH, but at all values there was a threshold above which additional chlorine resulted in very rapid inactivation. The amount of chlorine requ...

  10. The Pediatric Cancer Genome Project

    Science.gov (United States)

    Downing, James R; Wilson, Richard K; Zhang, Jinghui; Mardis, Elaine R; Pui, Ching-Hon; Ding, Li; Ley, Timothy J; Evans, William E

    2013-01-01

    The St. Jude Children’s Research Hospital–Washington University Pediatric Cancer Genome Project (PCGP) is participating in the international effort to identify somatic mutations that drive cancer. These cancer genome sequencing efforts will not only yield an unparalleled view of the altered signaling pathways in cancer but should also identify new targets against which novel therapeutics can be developed. Although these projects are still deep in the phase of generating primary DNA sequence data, important results are emerging and valuable community resources are being generated that should catalyze future cancer research. We describe here the rationale for conducting the PCGP, present some of the early results of this project and discuss the major lessons learned and how these will affect the application of genomic sequencing in the clinic. PMID:22641210

  11. An inactivated vaccine made from a U.S. field isolate of porcine epidemic disease virus is immunogenic in pigs as demonstrated by a dose-titration.

    Science.gov (United States)

    Collin, Emily A; Anbalagan, Srivishnupriya; Okda, Faten; Batman, Ron; Nelson, Eric; Hause, Ben M

    2015-03-15

    Porcine epidemic diarrhea virus (PEDV), a highly pathogenic and transmissible virus in swine, was first detected in the U.S. in May, 2013, and has caused tremendous losses to the swine industry. Due to the difficulty in isolating and growing this virus in cell culture, few vaccine studies using cell culture propagated PEDV have been performed on U.S. strains in pigs. Therefore, the objective of this study was to evaluate the humoral immune response to the selected inactivated PEDV vaccine candidate in a dose-titration manner. PEDV was isolated from a pig with diarrhea and complete genome sequencing found >99% nucleotide identity to other U.S. PEDV. Inactivated adjuvanted monovalent vaccines were administered intramuscularly to five week old pigs in a dose titration experimental design, ranging from 6.0-8.0 log10 tissue culture infective dose (TCID50/mL), to evaluate immunogenicity using a fluorescent foci neutralization assay (FFN), fluorescent microsphere immunoassay (FMIA), and enzyme-linked immunosorbent assay (ELISA) on sera. Pigs vaccinated with 8.0 log10 TCID50/mL inactivated virus showed significantly higher FFN titers as well as FMIA and ELISA values than 6.0 log10 TCID50/mL vaccinates and the negative controls. These results demonstrate the immunogenicity of a PEDV inactivated viral vaccine with a U.S. strain via dose-titration. A future vaccination-challenge study would illustrate the efficacy of an inactivated vaccine and help evaluate protective FFN titers and ELISA and FMIA responses.

  12. Physical inactivation and stabilization of sludges

    International Nuclear Information System (INIS)

    Alexandre, D.

    1979-07-01

    High temperature conditioning of sludge is a stabilization process that insures sterilization. Both thermal pasteurization and irradiation are inactivation processes. Viruses and parasites are inactivated at 70-80 0 C. Total bacterial destruction requires higher temperatures and/or detention time. Radio sensitivity of pathogens and pertinent treatment parameters are examined. If sludge is to be land disposed, disinfection requires irradiation doses ranging 500 Krad; if cattle feeding is considered, the required dose is 1 Mrad

  13. Inactivation of complement by Loxosceles reclusa spider venom.

    Science.gov (United States)

    Gebel, H M; Finke, J H; Elgert, K D; Cambell, B J; Barrett, J T

    1979-07-01

    Zymosan depletion of serum complement in guinea pigs rendered them highly resistant to lesion by Loxosceles reclusa spider venom. Guinea pigs deficient in C4 of the complement system are as sensitive to the venom as normal guinea pigs. The injection of 35 micrograms of whole recluse venom intradermally into guinea pigs lowered their complement level by 35.7%. Brown recluse spider venom in concentrations as slight as 0.02 micrograms protein/ml can totally inactivate one CH50 of guinea pig complement in vitro. Bee, scorpion, and other spider venoms had no influence on the hemolytic titer of complement. Fractionation of recluse spider venom by Sephadex G-200 filtration separated the complement-inactivating property of the venom into three major regions which could be distinguished on the basis of heat stability as well as size. None was neutralized by antivenom. Polyacrylamide gel electrophoresis of venom resolved the complement inactivators into five fractions. Complement inactivated by whole venom or the Sephadex fractions could be restored to hemolytic activity by supplements of fresh serum but not by heat-inactivated serum, pure C3, pure C5, or C3 and C5 in combination.

  14. Genomic Deletion at 10q23 in Prostate Cancer: More Than PTEN Loss?

    Directory of Open Access Journals (Sweden)

    Raghavendra Tejo Karthik Poluri

    2018-06-01

    Full Text Available The PTEN gene encodes for the phosphatase and tensin homolog; it is a tumor suppressor gene that is among the most frequently inactivated genes throughout the human cancer spectrum. The most recent sequencing approaches have allowed the identification of PTEN genomic alterations, including deletion, mutation, or rearrangement in about 50% of prostate cancer (PCa cases. It appears that mechanisms leading to PTEN inactivation are cancer-specific, comprising gene mutations, small insertions/deletions, copy number alterations (CNAs, promoter hypermethylation, and RNA interference. The examination of publicly available results from deep-sequencing studies of various cancers showed that PCa appears to be the only cancer in which PTEN is lost mostly through CNA. Instead of inactivating mutations, which are seen in other cancers, deletion of the 10q23 locus is the most common form of PTEN inactivation in PCa. By investigating the minimal deleted region at 10q23, several other genes appear to be lost simultaneously with PTEN. Expression data indicate that, like PTEN, these genes are also downregulated upon loss of 10q23. These analyses raise the possibility that 10q23 is lost upon selective pressure not only to inactivate PTEN but also to impair the expression of surrounding genes. As such, several genes from this deleted region, which represents about 500 kb, may also act as tumor suppressors in PCa, requiring further studies on their respective functions in that context.

  15. Randomized Trials Comparing Inactivated Vaccine after Medium- or High-titer Measles Vaccine with Standard Titer Measles Vaccine after Inactivated Vaccine

    DEFF Research Database (Denmark)

    Aaby, Peter; Ravn, Henrik; Benn, Christine S.

    2016-01-01

    Background: Observational studies have suggested that girls have higher mortality if their most recent immunization is an inactivated vaccine rather than a live vaccine. We therefore reanalyzed 5 randomized trials of early measles vaccine (MV) in which it was possible to compare an inactivated va...

  16. Germination and Inactivation of Alicyclobacillus acidoterrestris Spores Induced by Moderate Hydrostatic Pressure.

    Science.gov (United States)

    Sokołowska, Barbara; Skapska, Sylwia; Fonberg-Broczek, Monika; Niezgoda, Jolanta; Porebska, Izabela; Dekowska, Agnieszka; Rzoska, Sylwester J

    2015-01-01

    Given the importance of spoilage caused by Alicyclobacillus acidoterrestris for the fruit juice industry, the objective of this work was to study the germination and inactivation of A. acidoterrestris spores induced by moderate hydrostatic pressure. Hydrostatic pressure treatment can induce the germination and inactivation of A. acidoterrestris spores. At low pH, spore germination of up to 3.59-3.75 log and inactivation of 1.85-2.04 log was observed in a low pressure window (200-300 MPa) applied at 50 degrees C for 20 min. Neutral pH suppressed inactivation, the number of spores inactivated at pH 7.0 was only 0.24-1.06 log. The pressurization temperature significantly affected spore germination and inactivation. The degree of germination in apple juice after pressurization for 30 min with 200 MPa at 20 degrees C was 2.04 log, with only 0.61 log of spores being inactivated, while at 70 degrees C spore germination was 5.94 log and inactivation 4.72 log. This temperature strongly stimulated germination and inactivation under higher (500 MPa) than lower (200 MPa) pressure. When the oscillatory mode was used, the degree of germination and inactivation was slightly higher than at continuous mode. The degree of germination and inactivation was inversely proportional to the soluble solids content and was lowest in concentrated apple juice.

  17. Inactivation of human and simian rotaviruses by ozone

    Energy Technology Data Exchange (ETDEWEB)

    Vaughn, J.M.; Chen, Y.S.; Lindburg, K.; Morales, D.

    1987-09-01

    The inactivation of simian rotavirus Sa-11 and human rotavirus type 2 (Wa) by ozone was compared at 4/sup 0/C by using single-particle virus stocks. Although the human strain was clearly more sensitive, both virus types were rapidly inactivated by ozone concentrations of 0.25 mg/liter or greater at all pH levels tested. Comparison of the virucidal activity of ozone with that of chlorine in identical experiments indicated little significant difference in rotavirus-inactivating efficiencies when the disinfectants were used at concentrations of 0.25 mg/liter or greater.

  18. Doc Toxin Is a Kinase That Inactivates Elongation Factor Tu*

    Science.gov (United States)

    Cruz, Jonathan W.; Rothenbacher, Francesca P.; Maehigashi, Tatsuya; Lane, William S.; Dunham, Christine M.; Woychik, Nancy A.

    2014-01-01

    The Doc toxin from bacteriophage P1 (of the phd-doc toxin-antitoxin system) has served as a model for the family of Doc toxins, many of which are harbored in the genomes of pathogens. We have shown previously that the mode of action of this toxin is distinct from the majority derived from toxin-antitoxin systems: it does not cleave RNA; in fact P1 Doc expression leads to mRNA stabilization. However, the molecular triggers that lead to translation arrest are not understood. The presence of a Fic domain, albeit slightly altered in length and at the catalytic site, provided a clue to the mechanism of P1 Doc action, as most proteins with this conserved domain inactivate GTPases through addition of an adenylyl group (also referred to as AMPylation). We demonstrated that P1 Doc added a single phosphate group to the essential translation elongation factor and GTPase, elongation factor (EF)-Tu. The phosphorylation site was at a highly conserved threonine, Thr-382, which was blocked when EF-Tu was treated with the antibiotic kirromycin. Therefore, we have established that Fic domain proteins can function as kinases. This distinct enzymatic activity exhibited by P1 Doc also solves the mystery of the degenerate Fic motif unique to the Doc family of toxins. Moreover, we have established that all characterized Fic domain proteins, even those that phosphorylate, target pivotal GTPases for inactivation through a post-translational modification at a single functionally critical acceptor site. PMID:24448800

  19. Genomic instability--an evolving hallmark of cancer.

    Science.gov (United States)

    Negrini, Simona; Gorgoulis, Vassilis G; Halazonetis, Thanos D

    2010-03-01

    Genomic instability is a characteristic of most cancers. In hereditary cancers, genomic instability results from mutations in DNA repair genes and drives cancer development, as predicted by the mutator hypothesis. In sporadic (non-hereditary) cancers the molecular basis of genomic instability remains unclear, but recent high-throughput sequencing studies suggest that mutations in DNA repair genes are infrequent before therapy, arguing against the mutator hypothesis for these cancers. Instead, the mutation patterns of the tumour suppressor TP53 (which encodes p53), ataxia telangiectasia mutated (ATM) and cyclin-dependent kinase inhibitor 2A (CDKN2A; which encodes p16INK4A and p14ARF) support the oncogene-induced DNA replication stress model, which attributes genomic instability and TP53 and ATM mutations to oncogene-induced DNA damage.

  20. Mutual inactivation of Notch receptors and ligands facilitates developmental patterning.

    Directory of Open Access Journals (Sweden)

    David Sprinzak

    2011-06-01

    Full Text Available Developmental patterning requires juxtacrine signaling in order to tightly coordinate the fates of neighboring cells. Recent work has shown that Notch and Delta, the canonical metazoan juxtacrine signaling receptor and ligand, mutually inactivate each other in the same cell. This cis-interaction generates mutually exclusive sending and receiving states in individual cells. It generally remains unclear, however, how this mutual inactivation and the resulting switching behavior can impact developmental patterning circuits. Here we address this question using mathematical modeling in the context of two canonical pattern formation processes: boundary formation and lateral inhibition. For boundary formation, in a model motivated by Drosophila wing vein patterning, we find that mutual inactivation allows sharp boundary formation across a broader range of parameters than models lacking mutual inactivation. This model with mutual inactivation also exhibits robustness to correlated gene expression perturbations. For lateral inhibition, we find that mutual inactivation speeds up patterning dynamics, relieves the need for cooperative regulatory interactions, and expands the range of parameter values that permit pattern formation, compared to canonical models. Furthermore, mutual inactivation enables a simple lateral inhibition circuit architecture which requires only a single downstream regulatory step. Both model systems show how mutual inactivation can facilitate robust fine-grained patterning processes that would be difficult to implement without it, by encoding a difference-promoting feedback within the signaling system itself. Together, these results provide a framework for analysis of more complex Notch-dependent developmental systems.

  1. Characterizing genomic alterations in cancer by complementary functional associations.

    Science.gov (United States)

    Kim, Jong Wook; Botvinnik, Olga B; Abudayyeh, Omar; Birger, Chet; Rosenbluh, Joseph; Shrestha, Yashaswi; Abazeed, Mohamed E; Hammerman, Peter S; DiCara, Daniel; Konieczkowski, David J; Johannessen, Cory M; Liberzon, Arthur; Alizad-Rahvar, Amir Reza; Alexe, Gabriela; Aguirre, Andrew; Ghandi, Mahmoud; Greulich, Heidi; Vazquez, Francisca; Weir, Barbara A; Van Allen, Eliezer M; Tsherniak, Aviad; Shao, Diane D; Zack, Travis I; Noble, Michael; Getz, Gad; Beroukhim, Rameen; Garraway, Levi A; Ardakani, Masoud; Romualdi, Chiara; Sales, Gabriele; Barbie, David A; Boehm, Jesse S; Hahn, William C; Mesirov, Jill P; Tamayo, Pablo

    2016-05-01

    Systematic efforts to sequence the cancer genome have identified large numbers of mutations and copy number alterations in human cancers. However, elucidating the functional consequences of these variants, and their interactions to drive or maintain oncogenic states, remains a challenge in cancer research. We developed REVEALER, a computational method that identifies combinations of mutually exclusive genomic alterations correlated with functional phenotypes, such as the activation or gene dependency of oncogenic pathways or sensitivity to a drug treatment. We used REVEALER to uncover complementary genomic alterations associated with the transcriptional activation of β-catenin and NRF2, MEK-inhibitor sensitivity, and KRAS dependency. REVEALER successfully identified both known and new associations, demonstrating the power of combining functional profiles with extensive characterization of genomic alterations in cancer genomes.

  2. High pressure inactivation of Brettanomyces bruxellensis in red wine.

    Science.gov (United States)

    van Wyk, Sanelle; Silva, Filipa V M

    2017-05-01

    Brettanomyces bruxellensis ("Brett") is a major spoilage concern for the wine industry worldwide, leading to undesirable sensory properties. Sulphur dioxide, is currently the preferred method for wine preservation. However, due to its negative effects on consumers, the use of new alternative non-thermal technologies are increasingly being investigated. The aim of this study was to determine and model the effect of high pressure processing (HPP) conditions and yeast strain on the inactivation of "Brett" in Cabernet Sauvignon wine. Processing at 200 MPa for 3 min resulted in 5.8 log reductions. However higher pressure is recommended to achieve high throughput in the wine industry, for example >6.0 log reductions were achieved after 400 MPa for 5 s. The inactivation of B. bruxellensis is pressure and time dependent, with increased treatment time and pressure leading to increased yeast inactivation. It was also found that yeast strain had a significant effect on HPP inactivation, with AWRI 1499 being the most resistant strain. The Weibull model successfully described the HPP "Brett" inactivation. HPP is a viable alternative for the inactivation of B. bruxellensis in wine, with the potential to reduce the industry's reliance on sulphur dioxide. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Inactivated probiotic Bacillus coagulans GBI-30 induces complex immune activating, anti-inflammatory, and regenerative markers in vitro

    Directory of Open Access Journals (Sweden)

    Jensen GS

    2017-08-01

    Full Text Available Gitte S Jensen,1 Howard A Cash,2 Sean Farmer,2 David Keller2 1NIS Labs, Esplanade, Klamath Falls, OR, USA, 2Ganeden Biotech Inc., Landerbrook Drive Suite, Mayfield Heights, OH, USA Objective: The aim of this study was to document the immune activating and anti-inflammatory effects of inactivated probiotic Bacillus coagulans GBI-30, 6086 (Staimune™ cells on human immune cells in vitro.Methods: In vitro cultures of human peripheral blood mononuclear cells (PBMC from healthy blood donors were treated with inactivated B. coagulans GBI-30, 6086 cells for 24 hours. After incubation, the PBMC were stained with fluorochrome-labeled monoclonal antibodies for CD3, CD56, and CD69 to monitor cellular activation by flow cytometry. The culture supernatants were tested for cytokine profile using a 27-plex Luminex array, including pro- and anti-inflammatory cytokines, chemokines, and growth factors.Results: Inactivated B. coagulans GBI-30, 6086 cells induced the CD69 early activation marker on CD3+ CD56− T lymphocytes, CD3+ CD56+ NKT cells, CD3−CD56+ NK cells, and also some cells within the CD3−CD56− non-T non-NK cell subset. Culture supernatants showed robust increases in the immune-activating cytokines IL-1β, IL-6, IL-17A, and TNF-α. IFN-γ levels were increased, along with three chemokines, MCP-1, MIP-1α, and MIP-1β. The two anti-inflammatory cytokines IL-1ra and IL-10 showed increases, as well as the G-CSF growth factor involved in repair and stem cell biology. In contrast, GM-CSF levels showed a mild decrease, showing a highly selective growth factor response.Conclusion: The inactivated B. coagulans GBI-30, 6086 cells activated human immune cells and altered the production of both immune activating and anti-inflammatory cytokines and chemokines. Of special importance is the novel demonstration of a selective upregulation of the G-CSF growth factor involved in postinjury and postinflammation repair and regeneration. This suggests that

  4. Female-biased expression of long non-coding RNAs in domains that escape X-inactivation in mouse

    Directory of Open Access Journals (Sweden)

    Lu Lu

    2010-11-01

    Full Text Available Abstract Background Sexual dimorphism in brain gene expression has been recognized in several animal species. However, the relevant regulatory mechanisms remain poorly understood. To investigate whether sex-biased gene expression in mammalian brain is globally regulated or locally regulated in diverse brain structures, and to study the genomic organisation of brain-expressed sex-biased genes, we performed a large scale gene expression analysis of distinct brain regions in adult male and female mice. Results This study revealed spatial specificity in sex-biased transcription in the mouse brain, and identified 173 sex-biased genes in the striatum; 19 in the neocortex; 12 in the hippocampus and 31 in the eye. Genes located on sex chromosomes were consistently over-represented in all brain regions. Analysis on a subset of genes with sex-bias in more than one tissue revealed Y-encoded male-biased transcripts and X-encoded female-biased transcripts known to escape X-inactivation. In addition, we identified novel coding and non-coding X-linked genes with female-biased expression in multiple tissues. Interestingly, the chromosomal positions of all of the female-biased non-coding genes are in close proximity to protein-coding genes that escape X-inactivation. This defines X-chromosome domains each of which contains a coding and a non-coding female-biased gene. Lack of repressive chromatin marks in non-coding transcribed loci supports the possibility that they escape X-inactivation. Moreover, RNA-DNA combined FISH experiments confirmed the biallelic expression of one such novel domain. Conclusion This study demonstrated that the amount of genes with sex-biased expression varies between individual brain regions in mouse. The sex-biased genes identified are localized on many chromosomes. At the same time, sexually dimorphic gene expression that is common to several parts of the brain is mostly restricted to the sex chromosomes. Moreover, the study uncovered

  5. Chlorophyll mediated photodynamic inactivation of blue laser on Streptococcus mutans

    Science.gov (United States)

    Astuti, Suryani Dyah; Zaidan, A.; Setiawati, Ernie Maduratna; Suhariningsih

    2016-03-01

    Photodynamic inactivation is an inactivation method in microbial pathogens that utilize light and photosensitizer. This study was conducted to investigate photodynamic inactivation effects of low intensity laser exposure with various dose energy on Streptococcus mutans bacteria. The photodynamic inactivation was achieved with the addition of chlorophyll as photosensitizers. To determine the survival percentage of Streptococcus mutans bacteria after laser exposure, the total plate count method was used. For this study, the wavelength of the laser is 405 nm and variables of energy doses are 1.44, 2.87, 4.31, 5.74, 7.18, and 8.61 in J/cm2. The results show that exposure to laser with energy dose of 7.18 J/cm2 has the best photodynamic inactivation with a decrease of 78% in Streptococcus

  6. Ectopic Expression of Testis Germ Cell Proteins in Cancer and Its Potential Role in Genomic Instability

    Directory of Open Access Journals (Sweden)

    Aaraby Yoheswaran Nielsen

    2016-06-01

    Full Text Available Genomic instability is a hallmark of human cancer and an enabling factor for the genetic alterations that drive cancer development. The processes involved in genomic instability resemble those of meiosis, where genetic material is interchanged between homologous chromosomes. In most types of human cancer, epigenetic changes, including hypomethylation of gene promoters, lead to the ectopic expression of a large number of proteins normally restricted to the germ cells of the testis. Due to the similarities between meiosis and genomic instability, it has been proposed that activation of meiotic programs may drive genomic instability in cancer cells. Some germ cell proteins with ectopic expression in cancer cells indeed seem to promote genomic instability, while others reduce polyploidy and maintain mitotic fidelity. Furthermore, oncogenic germ cell proteins may indirectly contribute to genomic instability through induction of replication stress, similar to classic oncogenes. Thus, current evidence suggests that testis germ cell proteins are implicated in cancer development by regulating genomic instability during tumorigenesis, and these proteins therefore represent promising targets for novel therapeutic strategies.

  7. Inactivation of RNA Viruses by Gamma Irradiation: A Study on Mitigating Factors

    Directory of Open Access Journals (Sweden)

    Adam J. Hume

    2016-07-01

    Full Text Available Effective inactivation of biosafety level 4 (BSL-4 pathogens is vital in order to study these agents safely. Gamma irradiation is a commonly used method for the inactivation of BSL-4 viruses, which among other advantages, facilitates the study of inactivated yet morphologically intact virions. The reported values for susceptibility of viruses to inactivation by gamma irradiation are sometimes inconsistent, likely due to differences in experimental protocols. We analyzed the effects of common sample attributes on the inactivation of a recombinant vesicular stomatitis virus expressing the Zaire ebolavirus glycoprotein and green fluorescent protein. Using this surrogate virus, we found that sample volume and protein content of the sample modulated viral inactivation by gamma irradiation but that air volume within the sample container and the addition of external disinfectant surrounding the sample did not. These data identify several factors which alter viral susceptibility to inactivation and highlight the usefulness of lower biosafety level surrogate viruses for such studies. Our results underscore the need to validate inactivation protocols of BSL-4 pathogens using “worst-case scenario” procedures to ensure complete sample inactivation.

  8. X inactivation in females with X-linked Charcot-Marie-Tooth disease.

    LENUS (Irish Health Repository)

    Murphy, Sinéad M

    2012-07-01

    X-linked Charcot-Marie-Tooth disease (CMT1X) is the second most common inherited neuropathy, caused by mutations in gap junction beta-1 (GJB1). Males have a uniformly moderately severe phenotype while females have a variable phenotype, suggested to be due to X inactivation. We aimed to assess X inactivation pattern in females with CMT1X and correlate this with phenotype using the CMT examination score to determine whether the X inactivation pattern accounted for the variable phenotype in females with CMT1X. We determined X inactivation pattern in 67 females with CMT1X and 24 controls using the androgen receptor assay. We were able to determine which X chromosome carried the GJB1 mutation in 30 females. There was no difference in X inactivation pattern between patients and controls. In addition, there was no correlation between X inactivation pattern in blood and phenotype. A possible explanation for these findings is that the X inactivation pattern in Schwann cells rather than in blood may explain the variable phenotype in females with CMT1X.

  9. Whole-genome and Transcriptome Sequencing of Prostate Cancer Identify New Genetic Alterations Driving Disease Progression

    DEFF Research Database (Denmark)

    Ren, Shancheng; Wei, Gong-Hong; Liu, Dongbing

    2018-01-01

    BACKGROUND: Global disparities in prostate cancer (PCa) incidence highlight the urgent need to identify genomic abnormalities in prostate tumors in different ethnic populations including Asian men. OBJECTIVE: To systematically explore the genomic complexity and define disease-driven genetic......-scale and comprehensive genomic data of prostate cancer from Asian population. Identification of these genetic alterations may help advance prostate cancer diagnosis, prognosis, and treatment....... alterations in PCa. DESIGN, SETTING, AND PARTICIPANTS: The study sequenced whole-genome and transcriptome of tumor-benign paired tissues from 65 treatment-naive Chinese PCa patients. Subsequent targeted deep sequencing of 293 PCa-relevant genes was performed in another cohort of 145 prostate tumors. OUTCOME...

  10. Inactivation of prion infectivity by ionizing rays

    Energy Technology Data Exchange (ETDEWEB)

    Gominet, M. [Ionisos, ZI les Chatinieres, F01120 Dagneux (France); Vadrot, C.; Austruy, G. [Paris V University, Central Pharmacy of Hospitals, 4 avenue de l' Observatoire, F-75006, Paris (France); Darbord, J.C. [Paris V University, Central Pharmacy of Hospitals, 4 avenue de l' Observatoire, F-75006, Paris (France)], E-mail: darbord@pharmacie.univ-paris5.fr

    2007-11-15

    Inactivation of prion deposits on medical devices or prion contamination in pharmaceutical raw materials is considered as impossible by using gamma irradiation. Early, the guideline WHO/CDS/CSR/APH/2000 has described irradiation as an ineffective process. But, in 2003, S. Miekka et al. noted radiation inactivation of prions in a particular application to purify human albumin, shown by the physical denaturation of the infectious protein (PrP). The aim of our study was to determine the inactivation of prions with a scrapie model (strain C506M3) by irradiating standardised preparations. Results: Gamma irradiation was partially effective, showing a 4-5 log reduction on exposure to 50 kGy. A characteristic effect-dose curve was not observed (25, 50 and 100 kGy), only an increase in the incubation period of the murine disease (229 days with 25 kGy to 290 days with 100 kGy) compared with 170 days without irradiation. Since the inactivation was not a total one, the observed effect is significant. It is proposed that further work be undertaken with the model to investigate the application of gamma radiation known levels of prion contamination.

  11. Inactivation of prion infectivity by ionizing rays

    International Nuclear Information System (INIS)

    Gominet, M.; Vadrot, C.; Austruy, G.; Darbord, J.C.

    2007-01-01

    Inactivation of prion deposits on medical devices or prion contamination in pharmaceutical raw materials is considered as impossible by using gamma irradiation. Early, the guideline WHO/CDS/CSR/APH/2000 has described irradiation as an ineffective process. But, in 2003, S. Miekka et al. noted radiation inactivation of prions in a particular application to purify human albumin, shown by the physical denaturation of the infectious protein (PrP). The aim of our study was to determine the inactivation of prions with a scrapie model (strain C506M3) by irradiating standardised preparations. Results: Gamma irradiation was partially effective, showing a 4-5 log reduction on exposure to 50 kGy. A characteristic effect-dose curve was not observed (25, 50 and 100 kGy), only an increase in the incubation period of the murine disease (229 days with 25 kGy to 290 days with 100 kGy) compared with 170 days without irradiation. Since the inactivation was not a total one, the observed effect is significant. It is proposed that further work be undertaken with the model to investigate the application of gamma radiation known levels of prion contamination

  12. Thermal and high pressure inactivation kinetics of blueberry peroxidase.

    Science.gov (United States)

    Terefe, Netsanet Shiferaw; Delon, Antoine; Versteeg, Cornelis

    2017-10-01

    This study for the first time investigated the stability and inactivation kinetics of blueberry peroxidase in model systems (McIlvaine buffer, pH=3.6, the typical pH of blueberry juice) during thermal (40-80°C) and combined high pressure-thermal processing (0.1-690MPa, 30-90°C). At 70-80°C, the thermal inactivation kinetics was best described by a biphasic model with ∼61% labile and ∼39% stable fractions at temperature between 70 and 75°C. High pressure inhibited the inactivation of the enzyme with no inactivation at pressures as high as 690MPa and temperatures less than 50°C. The inactivation kinetics of the enzyme at 60-70°C, and pressures higher than 500MPa was best described by a first order biphasic model with ∼25% labile fraction and 75% stable fraction. The activation energy values at atmospheric pressure were 548.6kJ/mol and 324.5kJ/mol respectively for the stable and the labile fractions. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  13. Thermal inactivation kinetics of β-galactosidase during bread baking.

    Science.gov (United States)

    Zhang, Lu; Chen, Xiao Dong; Boom, Remko M; Schutyser, Maarten A I

    2017-06-15

    In this study, β-galactosidase was utilized as a model enzyme to investigate the mechanism of enzyme inactivation during bread baking. Thermal inactivation of β-galactosidase was investigated in a wheat flour/water system at varying temperature-moisture content combinations, and in bread during baking at 175 or 205°C. In the wheat flour/water system, the thermostability of β-galactosidase increased with decreased moisture content, and a kinetic model was accurately fitted to the corresponding inactivation data (R 2 =0.99). Interestingly, the residual enzyme activity in the bread crust (about 30%) was hundredfold higher than that in the crumb (about 0.3%) after baking, despite the higher temperature in the crust throughout baking. This result suggested that the reduced moisture content in the crust increased the thermostability of the enzyme. Subsequently, the kinetic model reasonably predicted the enzyme inactivation in the crumb using the same parameters derived from the wheat flour/water system. However, the model predicted a lower residual enzyme activity in the crust compared with the experimental result, which indicated that the structure of the crust may influence the enzyme inactivation mechanism during baking. The results reported can provide a quantitative understanding of the thermal inactivation kinetics of enzyme during baking, which is essential to better retain enzymatic activity in bakery products supplemented with heat-sensitive enzymes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. The genomic structure of the DMBT1 gene

    DEFF Research Database (Denmark)

    Mollenhauer, J; Holmskov, U; Wiemann, S

    1999-01-01

    Increasing evidence has accumulated for an involvement of the inactivation of tumour suppressor genes at chromosome 10q in the carcinogenesis of brain tumours, melanomas, and carcinomas of the lung, the prostate, the pancreas, and the endometrium. The gene DMBT1 (Deleted in Malignant Brain Tumours...... 1) is located at chromosome 10q25.3-q26.1, within one of the putative intervals for tumour suppressor genes. DMBT1 is a member of the scavenger-receptor cysteine-rich (SRCR) superfamily and displays homozygous deletions or lack of expression in glioblastoma multiforme, medulloblastoma......, and in gastrointestinal and lung cancers. Based on these properties, DMBT1 has been proposed to be a candidate tumour suppressor gene. We have determined the genomic sequence of DMBT1 to allow analyses of mutations. The gene has at least 54 exons that span a genomic region of about 80 kb. We have identified a putative...

  15. Modeling-independent elucidation of inactivation pathways in recombinant and native A-type Kv channels

    Science.gov (United States)

    Fineberg, Jeffrey D.; Ritter, David M.

    2012-01-01

    A-type voltage-gated K+ (Kv) channels self-regulate their activity by inactivating directly from the open state (open-state inactivation [OSI]) or by inactivating before they open (closed-state inactivation [CSI]). To determine the inactivation pathways, it is often necessary to apply several pulse protocols, pore blockers, single-channel recording, and kinetic modeling. However, intrinsic hurdles may preclude the standardized application of these methods. Here, we implemented a simple method inspired by earlier studies of Na+ channels to analyze macroscopic inactivation and conclusively deduce the pathways of inactivation of recombinant and native A-type Kv channels. We investigated two distinct A-type Kv channels expressed heterologously (Kv3.4 and Kv4.2 with accessory subunits) and their native counterparts in dorsal root ganglion and cerebellar granule neurons. This approach applies two conventional pulse protocols to examine inactivation induced by (a) a simple step (single-pulse inactivation) and (b) a conditioning step (double-pulse inactivation). Consistent with OSI, the rate of Kv3.4 inactivation (i.e., the negative first derivative of double-pulse inactivation) precisely superimposes on the profile of the Kv3.4 current evoked by a single pulse because the channels must open to inactivate. In contrast, the rate of Kv4.2 inactivation is asynchronous, already changing at earlier times relative to the profile of the Kv4.2 current evoked by a single pulse. Thus, Kv4.2 inactivation occurs uncoupled from channel opening, indicating CSI. Furthermore, the inactivation time constant versus voltage relation of Kv3.4 decreases monotonically with depolarization and levels off, whereas that of Kv4.2 exhibits a J-shape profile. We also manipulated the inactivation phenotype by changing the subunit composition and show how CSI and CSI combined with OSI might affect spiking properties in a full computational model of the hippocampal CA1 neuron. This work unambiguously

  16. Non-homologous end-joining genes are not inactivated in human radiation-induced sarcomas with genomic instability

    International Nuclear Information System (INIS)

    Lefevre, S.H.; Coquelle, A.; Gonin-Laurent, N.

    2005-01-01

    DNA double-strand break (DSB) repair pathways are implicated in the maintenance of genomic stability. However the alterations of these pathways, as may occur in human tumor cells with strong genomic instability, remain poorly characterized. We analyzed the loss of heterozygosity (LOH) and the presence of mutations for a series of genes implicated in DSB repair by non-homologous end-joining in five radiation-induced sarcomas devoid of both active Tp53 and Rb1. LOH was recurrently observed for 8 of the 9 studied genes (KU70, KU80, XRCC4, LIG4, Artemis, MRE11, RAD50, NBS1) but not for DNA-PKcs. No mutation was found in the remaining allele of the genes with LOH and the mRNA expression did not correlate with the allelic status. Our findings suggest that non-homologous end-joining repair pathway alteration is unlikely to be involved in the high genomic instability observed in these tumors. (author)

  17. Thermal inactivation of enzymes and pathogens in biosamples for MS analysis.

    Science.gov (United States)

    Ahnoff, Martin; Cazares, Lisa H; Sköld, Karl

    2015-01-01

    Protein denaturation is the common basis for enzyme inactivation and inactivation of pathogens, necessary for preservation and safe handling of biosamples for downstream analysis. While heat-stabilization technology has been used in proteomic and peptidomic research since its introduction in 2009, the advantages of using the technique for simultaneous pathogen inactivation have only recently been addressed. The time required for enzyme inactivation by heat (≈1 min) is short compared with chemical treatments, and inactivation is irreversible in contrast to freezing. Heat stabilization thus facilitates mass spectrometric studies of biomolecules with a fast conversion rate, and expands the chemical space of potential biomarkers to include more short-lived entities, such as phosphorylated proteins, in tissue samples as well as whole-blood (dried blood sample) samples.

  18. Cortical inactivation by cooling in small animals

    Directory of Open Access Journals (Sweden)

    Ben eCoomber

    2011-06-01

    Full Text Available Reversible inactivation of the cortex by surface cooling is a powerful method for studying the function of a particular area. Implanted cooling cryoloops have been used to study the role of individual cortical areas in auditory processing of awake-behaving cats. Cryoloops have also been used in rodents for reversible inactivation of the cortex, but recently there has been a concern that the cryoloop may also cool non-cortical structures either directly or via the perfusion of blood, cooled as it passed close to the cooling loop. In this study we have confirmed that the loop can inactivate most of the auditory cortex without causing a significant reduction in temperature of the auditory thalamus or other sub-cortical structures. We placed a cryoloop on the surface of the guinea pig cortex, cooled it to 2°C and measured thermal gradients across the neocortical surface. We found that the temperature dropped to 20-24°C among cells within a radius of about 2.5mm away from the loop. This temperature drop was sufficient to reduce activity of most cortical cells and led to the inactivation of almost the entire auditory region. When the temperature of thalamus, midbrain, and middle ear were measured directly during cortical cooling, there was a small drop in temperature (about 4°C but this was not sufficient to directly reduce neural activity. In an effort to visualise the extent of neural inactivation we measured the uptake of thallium ions following an intravenous injection. This confirmed that there was a large reduction of activity across much of the ipsilateral cortex and only a small reduction in subcortical structures.

  19. Inactivation as a new regulatory mechanism for neuronal Kv7 channels

    DEFF Research Database (Denmark)

    Jensen, Henrik Sindal; Grunnet, Morten; Olesen, Søren-Peter

    2007-01-01

    neuronal channels and are important for controlling excitability. Kv7.1 channels have been considered the only Kv7 channels to undergo inactivation upon depolarization. However, here we demonstrate that inactivation is also an intrinsic property of Kv7.4 and Kv7.5 channels, which inactivate to a larger...

  20. Quantum chromodynamics as the sequential fragmenting with inactivation

    International Nuclear Information System (INIS)

    Botet, R.

    1996-01-01

    We investigate the relation between the modified leading log approximation of the perturbative QCD and the sequential binary fragmentation process. We will show that in the absence of inactivation, this process is equivalent to the QCD gluodynamics. The inactivation term yields a precise prescription of how to include the hadronization in the QCD equations. (authors)

  1. Comparative Genomics Reveals the Core Gene Toolbox for the Fungus-Insect Symbiosis

    Science.gov (United States)

    Stata, Matt; Wang, Wei; White, Merlin M.; Moncalvo, Jean-Marc

    2018-01-01

    ABSTRACT Modern genomics has shed light on many entomopathogenic fungi and expanded our knowledge widely; however, little is known about the genomic features of the insect-commensal fungi. Harpellales are obligate commensals living in the digestive tracts of disease-bearing insects (black flies, midges, and mosquitoes). In this study, we produced and annotated whole-genome sequences of nine Harpellales taxa and conducted the first comparative analyses to infer the genomic diversity within the members of the Harpellales. The genomes of the insect gut fungi feature low (26% to 37%) GC content and large genome size variations (25 to 102 Mb). Further comparisons with insect-pathogenic fungi (from both Ascomycota and Zoopagomycota), as well as with free-living relatives (as negative controls), helped to identify a gene toolbox that is essential to the fungus-insect symbiosis. The results not only narrow the genomic scope of fungus-insect interactions from several thousands to eight core players but also distinguish host invasion strategies employed by insect pathogens and commensals. The genomic content suggests that insect commensal fungi rely mostly on adhesion protein anchors that target digestive system, while entomopathogenic fungi have higher numbers of transmembrane helices, signal peptides, and pathogen-host interaction (PHI) genes across the whole genome and enrich genes as well as functional domains to inactivate the host inflammation system and suppress the host defense. Phylogenomic analyses have revealed that genome sizes of Harpellales fungi vary among lineages with an integer-multiple pattern, which implies that ancient genome duplications may have occurred within the gut of insects. PMID:29764946

  2. Scale down of the inactivated polio vaccine production process

    NARCIS (Netherlands)

    Thomassen, Y.E.; Oever, van 't R.; Vinke, C.M.; Spiekstra, A.; Wijffels, R.H.; Pol, van der L.A.; Bakker, W.A.M.

    2013-01-01

    The anticipated increase in the demand for inactivated polio vaccines resulting from the success in the polio eradication program requires an increase in production capacity and cost price reduction of the current inactivated polio vaccine production processes. Improvement of existing production

  3. Genomic insights into the Saccharomyces sensu stricto complex.

    Science.gov (United States)

    Borneman, Anthony R; Pretorius, Isak S

    2015-02-01

    The Saccharomyces sensu stricto group encompasses species ranging from the industrially ubiquitous yeast Saccharomyces cerevisiae to those that are confined to geographically limited environmental niches. The wealth of genomic data that are now available for the Saccharomyces genus is providing unprecedented insights into the genomic processes that can drive speciation and evolution, both in the natural environment and in response to human-driven selective forces during the historical "domestication" of these yeasts for baking, brewing, and winemaking. Copyright © 2015 by the Genetics Society of America.

  4. Cytolytic T lymphocyte responses to metabolically inactivated stimulator cells. I. Metabolic inactivation impairs both CD and LD antigen signals

    International Nuclear Information System (INIS)

    Kelso, A.; Boyle, W.

    1982-01-01

    The effects of metabolic inactivation of spleen cells on antigen presentation to precursors of alloreactive cytolytic T lymphocytes (T/sub c/) were examined. By serological methods, populations inactivated by ultraviolet irradiation, glutaraldehyde fixation or plasma membrane isolation were found to retain normal levels of H-2K/D and Ia antigens. However, comparison of the antigen doses required to stimulate secondary T/sub c/ responses in mixed leukocyte culture showed that the inactivated preparations were approximately 10-fold less immunogenic than X-irradiated spleen cells. Their total inability to stimulate primary cytolytic responses pointed to at least a 100-fold impairment of immunogenicity for unprimed T/sub c/ precursors in the case of uv-irradiated and glutaraldehyde-treated stimulator cells, and at least a 10-fold impairment for membrane fragments. Experiments showing that the capacity of cell monolayers to absorb precursor T/sub c/ from unprimed spleen populations was reduced following uv-irradiation or glutaraldehyde treatment provided direct evidence that this loss of immunogenicity was due in part to suboptimal antigen presentation to precursor T/sub c/. It is concluded that, in addition to the traditional view that these treatments damage the ''LD'' signal to helper T lymphocytes, metabolic inactivation also impairs recognition of ''CD'' determinants by precursor T/sub c/

  5. Quantum chromodynamics as the sequential fragmenting with inactivation

    Energy Technology Data Exchange (ETDEWEB)

    Botet, R. [Paris-11 Univ., 91 - Orsay (France). Lab. de Physique des Solides; Ploszajczak, M. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France)

    1996-12-31

    We investigate the relation between the modified leading log approximation of the perturbative QCD and the sequential binary fragmentation process. We will show that in the absence of inactivation, this process is equivalent to the QCD gluodynamics. The inactivation term yields a precise prescription of how to include the hadronization in the QCD equations. (authors). 15 refs.

  6. The assessment of efficacy of porcine reproductive respiratory syndrome virus inactivated vaccine based on the viral quantity and inactivation methods

    Directory of Open Access Journals (Sweden)

    Lee Byeongchun

    2011-06-01

    Full Text Available Abstract Background There have been many efforts to develop efficient vaccines for the control of porcine reproductive and respiratory syndrome virus (PRRSV. Although inactivated PRRSV vaccines are preferred for their safety, they are weak at inducing humoral immune responses and controlling field PRRSV infection, especially when heterologous viruses are involved. Results In all groups, the sample to positive (S/P ratio of IDEXX ELISA and the virus neutralization (VN titer remained negative until challenge. While viremia did not reduce in the vaccinated groups, the IDEXX-ELISA-specific immunoglobulin G increased more rapidly and to significantly greater levels 7 days after the challenge in all the vaccinated groups compared to the non-vaccinated groups (p 6 PFU/mL PRRSV vaccine-inoculated and binary ethylenimine (BEI-inactivated groups 22 days after challenge (p Conclusions The inactivated vaccine failed to show the humoral immunity, but it showed different immune response after the challenge compared to mock group. Although the 106 PFU/mL-vaccinated and BEI-inactivated groups showed significantly greater VN titers 22 days after challenge, all the groups were already negative for viremia.

  7. Genomic context drives transcription of insertion sequences in the bacterial endosymbiont Wolbachia wVulC.

    Science.gov (United States)

    Cerveau, Nicolas; Gilbert, Clément; Liu, Chao; Garrett, Roger A; Grève, Pierre; Bouchon, Didier; Cordaux, Richard

    2015-06-10

    Transposable elements (TEs) are DNA pieces that are present in almost all the living world at variable genomic density. Due to their mobility and density, TEs are involved in a large array of genomic modifications. In eukaryotes, TE expression has been studied in detail in several species. In prokaryotes, studies of IS expression are generally linked to particular copies that induce a modification of neighboring gene expression. Here we investigated global patterns of IS transcription in the Alphaproteobacterial endosymbiont Wolbachia wVulC, using both RT-PCR and bioinformatic analyses. We detected several transcriptional promoters in all IS groups. Nevertheless, only one of the potentially functional IS groups possesses a promoter located upstream of the transposase gene, that could lead up to the production of a functional protein. We found that the majority of IS groups are expressed whatever their functional status. RT-PCR analyses indicate that the transcription of two IS groups lacking internal promoters upstream of the transposase start codon may be driven by the genomic environment. We confirmed this observation with the transcription analysis of individual copies of one IS group. These results suggest that the genomic environment is important for IS expression and it could explain, at least partly, copy number variability of the various IS groups present in the wVulC genome and, more generally, in bacterial genomes. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. The roles of the various plasma agents in the inactivation of bacteria

    International Nuclear Information System (INIS)

    Lu Xinpei; Xiong Qing; Tang Zhiyuan; Xiong Zhilan; Hu Jing; Jiang Zhonghe; Pan Yuan; Ye Tao; Cao Yingguang; Sun Ziyong

    2008-01-01

    The roles of various plasma agents in the inactivation of bacteria have recently been investigated. However, up to now, the effect of the charged particles on the inactivation of bacteria is not well understood. In this paper, an atmospheric pressure plasma jet device, which generates a cold plasma plume carrying a peak current of 300 mA, is used to investigate the role of the charged particles in the inactivation process. It is found that the charged particles play a minor role in the inactivation process when He/N 2 (3%) is used as working gas. On the other hand, when He/O 2 (3%) is used, the charged particles are expected to play an important role in the inactivation of bacteria. Further analysis shows that the negative ions O 2 - might be the charged particles that are playing the role. Besides, it is found that the active species, including O, O 3 , and metastable state O 2 *, can play a crucial role in the inactivation of the bacteria. However, the excited He*, N 2 C 3 Π u , and N 2 + B 2 Σ u + have no significant direct effect on the inactivation of bacteria. It is also concluded that heat and UV play no or minor role in the inactivation process

  9. Mechanism of Cd2+-coordination during Slow Inactivation in Potassium Channels

    Science.gov (United States)

    Raghuraman, H.; Cordero-Morales, Julio F.; Jogini, Vishwanath; Pan, Albert C.; Kollewe, Astrid; Roux, Benoît; Perozo, Eduardo

    2013-01-01

    Summary In K+ channels, rearrangements of the pore outer-vestibule have been associated with C-type inactivation gating. Paradoxically, the crystal structure of Open/C-type inactivated KcsA suggest these movements to be modest in magnitude. Here, we show that under physiological conditions, the KcsA outer-vestibule undergoes relatively large dynamic rearrangements upon inactivation. External Cd2+ enhances the rate of C-type inactivation in an outer-vestibule cysteine mutant (Y82C) via metal-bridge formation. This effect is not present in a non-inactivating mutant (E71A/Y82C). Tandem dimer and tandem tetramer constructs of equivalent cysteine mutants in KcsA and Shaker K+ channels demonstrate that these Cd2+ metal bridges are formed only between adjacent subunits. This is well supported by molecular dynamics simulations. Based on the crystal structure of Cd2+-bound Y82C-KcsA in the closed state, together with EPR distance measurements in the KcsA outer-vestibule, we suggest that subunits must dynamically come in close proximity as the channels undergo inactivation. PMID:22771214

  10. Quantitative analysis of wet-heat inactivation in bovine spongiform encephalopathy

    International Nuclear Information System (INIS)

    Matsuura, Yuichi; Ishikawa, Yukiko; Bo, Xiao; Murayama, Yuichi; Yokoyama, Takashi; Somerville, Robert A.; Kitamoto, Tetsuyuki; Mohri, Shirou

    2013-01-01

    Highlights: ► We quantitatively analyzed wet-heat inactivation of the BSE agent. ► Infectivity of the BSE macerate did not survive 155 °C wet-heat treatment. ► Once the sample was dehydrated, infectivity was observed even at 170 °C. ► A quantitative PMCA assay was used to evaluate the degree of BSE inactivation. - Abstract: The bovine spongiform encephalopathy (BSE) agent is resistant to conventional microbial inactivation procedures and thus threatens the safety of cattle products and by-products. To obtain information necessary to assess BSE inactivation, we performed quantitative analysis of wet-heat inactivation of infectivity in BSE-infected cattle spinal cords. Using a highly sensitive bioassay, we found that infectivity in BSE cattle macerates fell with increase in temperatures from 133 °C to 150 °C and was not detected in the samples subjected to temperatures above 155 °C. In dry cattle tissues, infectivity was detected even at 170 °C. Thus, BSE infectivity reduces with increase in wet-heat temperatures but is less affected when tissues are dehydrated prior to the wet-heat treatment. The results of the quantitative protein misfolding cyclic amplification assay also demonstrated that the level of the protease-resistant prion protein fell below the bioassay detection limit by wet-heat at 155 °C and higher and could help assess BSE inactivation. Our results show that BSE infectivity is strongly resistant to wet-heat inactivation and that it is necessary to pay attention to BSE decontamination in recycled cattle by-products

  11. Quantitative analysis of wet-heat inactivation in bovine spongiform encephalopathy

    Energy Technology Data Exchange (ETDEWEB)

    Matsuura, Yuichi; Ishikawa, Yukiko; Bo, Xiao; Murayama, Yuichi; Yokoyama, Takashi [Prion Disease Research Center, National Institute of Animal Health, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856 (Japan); Somerville, Robert A. [The Roslin Institute and Royal (Dick) School of Veterinary Studies, Roslin, Midlothian, EH25 9PS (United Kingdom); Kitamoto, Tetsuyuki [Division of CJD Science and Technology, Department of Prion Research, Center for Translational and Advanced Animal Research on Human Diseases, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba, Sendai 980-8575 (Japan); Mohri, Shirou, E-mail: shirou@affrc.go.jp [Prion Disease Research Center, National Institute of Animal Health, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856 (Japan)

    2013-03-01

    Highlights: ► We quantitatively analyzed wet-heat inactivation of the BSE agent. ► Infectivity of the BSE macerate did not survive 155 °C wet-heat treatment. ► Once the sample was dehydrated, infectivity was observed even at 170 °C. ► A quantitative PMCA assay was used to evaluate the degree of BSE inactivation. - Abstract: The bovine spongiform encephalopathy (BSE) agent is resistant to conventional microbial inactivation procedures and thus threatens the safety of cattle products and by-products. To obtain information necessary to assess BSE inactivation, we performed quantitative analysis of wet-heat inactivation of infectivity in BSE-infected cattle spinal cords. Using a highly sensitive bioassay, we found that infectivity in BSE cattle macerates fell with increase in temperatures from 133 °C to 150 °C and was not detected in the samples subjected to temperatures above 155 °C. In dry cattle tissues, infectivity was detected even at 170 °C. Thus, BSE infectivity reduces with increase in wet-heat temperatures but is less affected when tissues are dehydrated prior to the wet-heat treatment. The results of the quantitative protein misfolding cyclic amplification assay also demonstrated that the level of the protease-resistant prion protein fell below the bioassay detection limit by wet-heat at 155 °C and higher and could help assess BSE inactivation. Our results show that BSE infectivity is strongly resistant to wet-heat inactivation and that it is necessary to pay attention to BSE decontamination in recycled cattle by-products.

  12. THE ANTIGENIC POTENCY OF EPIDEMIC INFLUENZA VIRUS FOLLOWING INACTIVATION BY ULTRAVIOLET RADIATION

    Science.gov (United States)

    Salk, Jonas E.; Lavin, G. I.; Francis, Thomas

    1940-01-01

    A study of the antigenic potency of influenza virus inactivated by ultraviolet radiation has been made. Virus so inactivated is still capable of functioning as an immunizing agent when given to mice by the intraperitoneal route. In high concentrations inactivated virus appears to be nearly as effective as active virus but when quantitative comparisons of the immunity induced by different dilutions are made, it is seen that a hundredfold loss in immunizing capacity occurs during inactivation. Virus in suspensions prepared from the lungs of infected mice is inactivated more rapidly than virus in tissue culture medium. A standard for the comparison of vaccines of epidemic influenza virus is proposed. PMID:19871057

  13. Glycogen synthase kinase-3beta (GSK3beta) negatively regulates PTTG1/human securin protein stability, and GSK3beta inactivation correlates with securin accumulation in breast tumors.

    Science.gov (United States)

    Mora-Santos, Mar; Limón-Mortés, M Cristina; Giráldez, Servando; Herrero-Ruiz, Joaquín; Sáez, Carmen; Japón, Miguel Á; Tortolero, Maria; Romero, Francisco

    2011-08-26

    PTTG1, also known as securin, is an inactivating partner of separase, the major effector for chromosome segregation during mitosis. At the metaphase-to-anaphase transition, securin is targeted for proteasomal destruction by the anaphase-promoting complex or cyclosome, allowing activation of separase. In addition, securin is overexpressed in metastatic or genomically instable tumors, suggesting a relevant role for securin in tumor progression. Stability of securin is regulated by phosphorylation; some phosphorylated forms are degraded out of mitosis, by the action of the SKP1-CUL1-F-box protein (SCF) complex. The kinases targeting securin for proteolysis have not been identified, and mechanistic insight into the cause of securin accumulation in human cancers is lacking. Here, we demonstrate that glycogen synthase kinase-3β (GSK3β) phosphorylates securin to promote its proteolysis via SCF(βTrCP) E3 ubiquitin ligase. Importantly, a strong correlation between securin accumulation and GSK3β inactivation was observed in breast cancer tissues, indicating that GSK3β inactivation may account for securin accumulation in breast cancers.

  14. Fullerene C60 and graphene photosensibiles for photodynamic virus inactivation

    Science.gov (United States)

    Belousova, I.; Hvorostovsky, A.; Kiselev, V.; Zarubaev, V.; Kiselev, O.; Piotrovsky, L.; Anfimov, P.; Krisko, T.; Muraviova, T.; Rylkov, V.; Starodubzev, A.; Sirotkin, A.; Grishkanich, A.; Kudashev, I.; Kancer, A.; Kustikova, M.; Bykovskaya, E.; Mayurova, A.; Stupnikov, A.; Ruzankina, J.; Afanasyev, M.; Lukyanov, N.; Redka, D.; Paklinov, N.

    2018-02-01

    A solid-phase photosensitizer based on aggregated C60 fullerene and graphene oxide for photodynamic inactivation of pathogens in biological fluids was studied. The most promising technologies of inactivation include the photodynamic effect, which consists in the inactivation of infectious agents by active oxygen forms (including singlet oxygen), formed when light is activated by the photosensitizer introduced into the plasma. Research shows features of solid-phase systems based on graphene and fullerene C60 oxide, which is a combination of an effective inactivating pathogens (for example, influenza viruses) reactive oxygen species formed upon irradiation of the photosensitizer in aqueous and biological fluids, a high photostability fullerene coatings and the possibility of full recovery photosensitizer from the biological environment after the photodynamic action.

  15. Thermal inactivation kinetics of β-galactosidase during bread baking

    NARCIS (Netherlands)

    Zhang, L.; Chen, Xiao Dong; Boom, R.M.; Schutyser, M.A.I.

    2017-01-01

    In this study, β-galactosidase was utilized as a model enzyme to investigate the mechanism of enzyme inactivation during bread baking. Thermal inactivation of β-galactosidase was investigated in a wheat flour/water system at varying temperature-moisture content combinations, and in bread during

  16. Ebola Virus Inactivation by Detergents Is Annulled in Serum

    NARCIS (Netherlands)

    van Kampen, Jeroen J. A.; Tintu, Andrei; Russcher, Henk; Fraaij, Pieter L. A.; Reusken, Chantal B. E. M.; Rijken, Mikel; van Hellemond, Jaap J.; van Genderen, Perry J. J.; Koelewijn, Rob; de Jong, Menno D.; Haddock, Elaine; Fischer, Robert J.; Munster, Vincent J.; Koopmans, Marion P. G.

    2017-01-01

    Treatment of blood samples from hemorrhagic fever virus (HFV)-infected patients with 0.1% detergents has been recommended for virus inactivation and subsequent safe laboratory testing. However, data on virus inactivation by this procedure are lacking. Here we show the effect of this procedure on

  17. Rapid Bedside Inactivation of Ebola Virus for Safe Nucleic Acid Tests

    DEFF Research Database (Denmark)

    Rosenstierne, Maiken Worsøe; Karlberg, Helen; Bragstad, Karoline

    2016-01-01

    Rapid bedside inactivation of Ebola virus would be a solution for the safety of medical and technical staff, risk containment, sample transport, and high-throughput or rapid diagnostic testing during an outbreak. We show that the commercially available Magna Pure lysis/binding buffer used...... for nucleic acid extraction inactivates Ebola virus. A rapid bedside inactivation method for nucleic acid tests is obtained by simply adding Magna Pure lysis/binding buffer directly into vacuum blood collection EDTA tubes using a thin needle and syringe prior to sampling. The ready-to-use inactivation vacuum...... tubes are stable for more than 4 months, and Ebola virus RNA is preserved in the Magna Pure lysis/binding buffer for at least 5 weeks independent of the storage temperature. We also show that Ebola virus RNA can be manually extracted from Magna Pure lysis/binding buffer-inactivated samples using...

  18. Chromosome-level genome map provides insights into diverse defense mechanisms in the medicinal fungus Ganoderma sinense

    Science.gov (United States)

    Zhu, Yingjie; Xu, Jiang; Sun, Chao; Zhou, Shiguo; Xu, Haibin; Nelson, David R.; Qian, Jun; Song, Jingyuan; Luo, Hongmei; Xiang, Li; Li, Ying; Xu, Zhichao; Ji, Aijia; Wang, Lizhi; Lu, Shanfa; Hayward, Alice; Sun, Wei; Li, Xiwen; Schwartz, David C.; Wang, Yitao; Chen, Shilin

    2015-01-01

    Fungi have evolved powerful genomic and chemical defense systems to protect themselves against genetic destabilization and other organisms. However, the precise molecular basis involved in fungal defense remain largely unknown in Basidiomycetes. Here the complete genome sequence, as well as DNA methylation patterns and small RNA transcriptomes, was analyzed to provide a holistic overview of secondary metabolism and defense processes in the model medicinal fungus, Ganoderma sinense. We reported the 48.96 Mb genome sequence of G. sinense, consisting of 12 chromosomes and encoding 15,688 genes. More than thirty gene clusters involved in the biosynthesis of secondary metabolites, as well as a large array of genes responsible for their transport and regulation were highlighted. In addition, components of genome defense mechanisms, namely repeat-induced point mutation (RIP), DNA methylation and small RNA-mediated gene silencing, were revealed in G. sinense. Systematic bioinformatic investigation of the genome and methylome suggested that RIP and DNA methylation combinatorially maintain G. sinense genome stability by inactivating invasive genetic material and transposable elements. The elucidation of the G. sinense genome and epigenome provides an unparalleled opportunity to advance our understanding of secondary metabolism and fungal defense mechanisms. PMID:26046933

  19. Inactivation of human and simian rotaviruses by chlorine dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu-Shiaw (Brookhaven National Lab., Upton, NY (USA)); Vaughn, J.M. (Univ. of New England College of Medicine, Biddeford, ME (USA))

    1990-05-01

    The inactivation of single-particle stocks of human (type 2, Wa) and simian (SA-11) rotaviruses by chlorine dioxide was investigated. Experiments were conducted at 4{degree}C in a standard phosphate-carbonate buffer. Both virus types were rapidly inactivated, within 20 s under alkaline conditions, when chlorine dioxide concentrations ranging from 0.05 to 0.2 mg/liter were used. Similar reductions of 10{sup 5}-fold in infectivity required additional exposure time of 120 s at 0.2 mg/liter for Wa and at 0.5 mg/liter for SA-11, respectively, at pH 6.0. The inactivation of both virus types was moderate a neutral pH, and the sensitivities to chlorine dioxide were similar. The observed enhancement of virucidal efficiency with increasing pH was contrary to earlier findings with chlorine- and ozone-treated rotavirus particles, where efficiencies decreased with increasing alkalinity. Comparison of 99.9% virus inactivation times revealed ozone to be the most effective virucidal agent among these three disinfectants.

  20. Strategy to inactivate Clostridium perfringens spores in meat products.

    Science.gov (United States)

    Akhtar, Saeed; Paredes-Sabja, Daniel; Torres, J Antonio; Sarker, Mahfuzur R

    2009-05-01

    The current study aimed to develop an inactivation strategy for Clostridium perfringens spores in meat through a combination of spore activation at low pressure (100-200 MPa, 7 min) and elevated temperature (80 degrees C, 10 min); spore germination at high temperatures (55, 60 or 65 degrees C); and inactivation of germinated spores with elevated temperatures (80 and 90 degrees C, 10 and 20 min) and high pressure (586 MPa, at 23 and 73 degrees C, 10 min). Low pressures (100-200 MPa) were insufficient to efficiently activate C. perfringens spores for germination. However, C. perfringens spores were efficiently activated with elevated temperature (80 degrees C, 10 min), and germinated at temperatures lethal for vegetative cells (>or= 55 degrees C) when incubated for 60 min with a mixture of L-asparagine and KCl (AK) in phosphate buffer (pH 7) and in poultry meat. Inactivation of spores (approximately 4 decimal reduction) in meat by elevated temperatures (80-90 degrees C for 20 min) required a long germination period (55 degrees C for 60 min). However, similar inactivation level was reached with shorter germination period (55 degrees C for 15 min) when spore contaminated-meat was treated with pressure-assisted thermal processing (568 MPa, 73 degrees C, 10 min). Therefore, the most efficient strategy to inactivate C. perfringens spores in poultry meat containing 50 mM AK consisted: (i) a primary heat treatment (80 degrees C, 10 min) to pasteurize and denature the meat proteins and to activate C. perfringens spores for germination; (ii) cooling of the product to 55 degrees C in about 20 min and further incubation at 55 degrees C for about 15 min for spore germination; and (iii) inactivation of germinated spores by pressure-assisted thermal processing (586 MPa at 73 degrees C for 10 min). Collectively, this study demonstrates the feasibility of an alternative and novel strategy to inactivate C. perfringens spores in meat products formulated with germinants specific for C

  1. Photodynamic inactivation of rubella virus enhances recombination with a latent virus of a baby hamster kidney cell line BHK21

    International Nuclear Information System (INIS)

    Yamamoto, Nobuto; Urade, Masahiro

    1989-01-01

    Rubella virus is very sensitive to photodynamic action. When tested with 1.2 x 10 -5 M toluidine blue and 8 W fluorescent lamp at a fluence of 11 W/m 2 , inactivation kinetics showed a linear single hit curve with a k value of 1.48 min -1 . Photodynamic inactivation of rubella virus greatly enhanced recombination with a latent virus (R-virus) of baby hamster kidney BHK21 cells. In contrast, no hybrids were detected in lysates of the cells infected with either UV-treated or untreated rubella virus. Therefore, hybrid viruses were readily detected only in lysates of BHK21 cells infected with photodynamically treated rubella virus. Photodynamic damage of rubella virus genomes generated a new hybrid type (hybrid type 3) in addition to a previously described type 2 hybrid (formerly designated as HPV-RV variant). Although both of these hybrid types carry the CF antigens of rubella virus, plaque forming ability of type 3 hybrid is neutralized neither by anti-rubella serum nor by anti-latent virus serum while type 2 hybrid is neutralized by anti-latent virus serum. (author)

  2. The radiation inactivation of glutamate and isocitrate dehydrogenases

    International Nuclear Information System (INIS)

    El Failat, R.R.A.

    1980-12-01

    The reaction of free radicals produced by ionizing radiation with the enzymes glutamate dehydrogenase (GDH) and NADP + -specific isocitrate dehydrogenase (ICDH) have been studied by steady-state and pulse radiolysis techniques. In de-aerated GDH solutions, hydroxyl radicals have been found to be the most efficient of the primary radicals generated from water in causing inactivation. The effect of reaction with the enzyme of selective free radicals (SCN) 2 - , (Br) 2 - and (I) 2 - on its activity has also been studied. In neutral solutions, the order of inactivating effectiveness is (I) 2 - > (Br) 2 - > (SCN) 2 - . In the case of the thiocyanate radical anion (SCN) 2 - , the inactivation efficiency is found to depend on KSCN concentration. The radiation inactivation of GDH at both neutral and alkaline pH is accompanied by the loss of sulphydryl groups. Pulse radiolysis was also used to determine the rate constants and the transient absorption spectra following the reaction of the free radicals with GDH. 60 Co-γ-radiolysis and pulse radiolysis were also used to study the effect of ionizing radiation on the activity of ICDH. The results obtained were similar to those of GDH. (author)

  3. The inactivation of papain by high LET radiations

    International Nuclear Information System (INIS)

    Bisby, R.H.; Cundall, R.B.; Sims, H.E.; Burns, W.G.

    1984-01-01

    The effect of varying LET over a wide range (0.2-1570 eV/nm) on the radiation-induced inactivation of the enzyme papain in dilute aqueous solution has been investigated. Measurements of total, reparable and non-reparable inactivation G values in oxygen, nitrous oxide and argon saturated solutions have allowed the contributions to inactivation from radicals and hydrogen peroxide to be evaluated. At high LET the results demonstrate an increasing component due to reaction of the superoxide radical, formed from oxygen produced in the track as a primary radiolysis product. This effect was not observed in our previous study with ribonuclease due to the insensitivity of ribonuclease to inactivation by superoxide and hydrogen peroxide. The results obtained with papain clearly demonstrate a maximum in G(H 2 O 2 ) at an LET of equivalent to 140 eV/nm. Generation of O 2 within the track as a primary radiolysis product at high LET now appears to be confirmed as an important mechanism leading to reduction in the oxygen enhancement ratio for cellular systems exposed to high LET radiations (Baverstock and Burns 1981). (author)

  4. Extended driving impairs nocturnal driving performances.

    Directory of Open Access Journals (Sweden)

    Patricia Sagaspe

    Full Text Available Though fatigue and sleepiness at the wheel are well-known risk factors for traffic accidents, many drivers combine extended driving and sleep deprivation. Fatigue-related accidents occur mainly at night but there is no experimental data available to determine if the duration of prior driving affects driving performance at night. Participants drove in 3 nocturnal driving sessions (3-5 am, 1-5 am and 9 pm-5 am on open highway. Fourteen young healthy men (mean age [+/-SD] = 23.4 [+/-1.7] years participated Inappropriate line crossings (ILC in the last hour of driving of each session, sleep variables, self-perceived fatigue and sleepiness were measured. Compared to the short (3-5 am driving session, the incidence rate ratio of inappropriate line crossings increased by 2.6 (95% CI, 1.1 to 6.0; P<.05 for the intermediate (1-5 am driving session and by 4.0 (CI, 1.7 to 9.4; P<.001 for the long (9 pm-5 am driving session. Compared to the reference session (9-10 pm, the incidence rate ratio of inappropriate line crossings were 6.0 (95% CI, 2.3 to 15.5; P<.001, 15.4 (CI, 4.6 to 51.5; P<.001 and 24.3 (CI, 7.4 to 79.5; P<.001, respectively, for the three different durations of driving. Self-rated fatigue and sleepiness scores were both positively correlated to driving impairment in the intermediate and long duration sessions (P<.05 and increased significantly during the nocturnal driving sessions compared to the reference session (P<.01. At night, extended driving impairs driving performances and therefore should be limited.

  5. The Genome of the Basidiomycetous Yeast and Human Pathogen Cryptococcus neoformans

    OpenAIRE

    Loftus, Brendan J.; Fung, Eula; Roncaglia, Paola; Rowley, Don; Amedeo, Paolo; Bruno, Dan; Vamathevan, Jessica; Miranda, Molly; Anderson, Iain J.; Fraser, James A.; Allen, Jonathan E.; Bosdet, Ian E.; Brent, Michael R.; Chiu, Readman; Doering, Tamara L.

    2005-01-01

    Cryptococcus neoformans is a basidiomycetous yeast ubiquitous in the environment, a model for fungal pathogenesis, and an opportunistic human pathogen of global importance. We have sequenced its ~20-megabase genome, which contains ~6500 intron-rich gene structures and encodes a transcriptome abundant in alternatively spliced and antisense messages. The genome is rich in transposons, many of which cluster at candidate centromeric regions. The presence of these transposons may drive karyotype i...

  6. The role of duplications in the evolution of genomes highlights the need for evolutionary-based approaches in comparative genomics

    Directory of Open Access Journals (Sweden)

    Levasseur Anthony

    2011-02-01

    Full Text Available Abstract Understanding the evolutionary plasticity of the genome requires a global, comparative approach in which genetic events are considered both in a phylogenetic framework and with regard to population genetics and environmental variables. In the mechanisms that generate adaptive and non-adaptive changes in genomes, segmental duplications (duplication of individual genes or genomic regions and polyploidization (whole genome duplications are well-known driving forces. The probability of fixation and maintenance of duplicates depends on many variables, including population sizes and selection regimes experienced by the corresponding genes: a combination of stochastic and adaptive mechanisms has shaped all genomes. A survey of experimental work shows that the distinction made between fixation and maintenance of duplicates still needs to be conceptualized and mathematically modeled. Here we review the mechanisms that increase or decrease the probability of fixation or maintenance of duplicated genes, and examine the outcome of these events on the adaptation of the organisms. Reviewers This article was reviewed by Dr. Etienne Joly, Dr. Lutz Walter and Dr. W. Ford Doolittle.

  7. Design and mechanism of tetrahydrothiophene-based γ-aminobutyric acid aminotransferase inactivators.

    Science.gov (United States)

    Le, Hoang V; Hawker, Dustin D; Wu, Rui; Doud, Emma; Widom, Julia; Sanishvili, Ruslan; Liu, Dali; Kelleher, Neil L; Silverman, Richard B

    2015-04-08

    Low levels of γ-aminobutyric acid (GABA), one of two major neurotransmitters that regulate brain neuronal activity, are associated with many neurological disorders, such as epilepsy, Parkinson's disease, Alzheimer's disease, Huntington's disease, and cocaine addiction. One of the main methods to raise the GABA level in human brain is to use small molecules that cross the blood-brain barrier and inhibit the activity of γ-aminobutyric acid aminotransferase (GABA-AT), the enzyme that degrades GABA. We have designed a series of conformationally restricted tetrahydrothiophene-based GABA analogues with a properly positioned leaving group that could facilitate a ring-opening mechanism, leading to inactivation of GABA-AT. One compound in the series is 8 times more efficient an inactivator of GABA-AT than vigabatrin, the only FDA-approved inactivator of GABA-AT. Our mechanistic studies show that the compound inactivates GABA-AT by a new mechanism. The metabolite resulting from inactivation does not covalently bind to amino acid residues of GABA-AT but stays in the active site via H-bonding interactions with Arg-192, a π-π interaction with Phe-189, and a weak nonbonded S···O═C interaction with Glu-270, thereby inactivating the enzyme.

  8. Design and Mechanism of Tetrahydrothiophene-Based γ-Aminobutyric Acid Aminotransferase Inactivators

    Energy Technology Data Exchange (ETDEWEB)

    Le, Hoang V. [Departments; Hawker, Dustin D. [Departments; Wu, Rui [Department; Doud, Emma [Departments; Widom, Julia [Departments; Sanishvili, Ruslan [X-ray; Liu, Dali [Department; Kelleher, Neil L. [Departments; Silverman, Richard B. [Departments

    2015-03-25

    Low levels of gamma-aminobutyric acid (GABA), one of two major neurotransmitters that regulate brain neuronal activity, are associated with many neurological disorders, such as epilepsy, Parkinsons disease, Alzheimers disease, Huntingtons disease, and cocaine addiction. One of the main methods to raise the GABA level in human brain is to use small molecules that cross the bloodbrain barrier and inhibit the activity of gamma-aminobutyric acid aminotransferase (GABA-AT), the enzyme that degrades GABA. We have designed a series of conformationally restricted tetrahydrothiophene-based GABA analogues with a properly positioned leaving group that could facilitate a ring-opening mechanism, leading to inactivation of GABA-AT. One compound in the series is 8 times more efficient an inactivator of GABA-AT than vigabatrin, the only FDA-approved inactivator of GABA-AT. Our mechanistic studies show that the compound inactivates GABA-AT by a new mechanism. The metabolite resulting from inactivation does not covalently bind to amino acid residues of GABA-AT but stays in the active site via H-bonding interactions with Arg-192, a pi-pi interaction with Phe-189, and a weak nonbonded (SO)-O-...=C interaction with Glu-270, thereby inactivating the enzyme.

  9. Gamma-irradiation to inactivate thioglucosidase of crucifers

    International Nuclear Information System (INIS)

    Lessman, K.J.; McCaslin, B.D.

    1987-01-01

    The crucifers contain glucosinolates which through enzymatic hydrolysis give rise to toxicants that limit the use of oil-free meal obtainable from this plant family. Seeds from three crucifers were used to test gamma irradiation to inactivate enzyme systems as a step toward detoxification. Seeds of Crambe abyssinica Hochst (crambe), ground seeds of Sinapis alba L. (mustard), and seeds of Brassica napus L. (rape) were subjected to gamma-irradiation (6.25, 12.5, 25.0 and 50.4 Mrad) to inactivate thioglucosidase and/or destroy glucosinolates. Samples of ground seeds, their oil-free meals, previously irradiated ground seeds and their oil-free meals were assayed for glucose, a product of enzymatic hydrolysis of glucosinolates present in the crucifer seeds. The 50.4 Mrad exposure inactivated thioglucosidase but did not destroy glucosinolates. The fatty acid contents of extracted oils were affected. The amino acid profile of defatted crambe protein meal was affected, while that of white mustard was not

  10. Telomeres and viruses: common themes of genome maintenance

    Science.gov (United States)

    Deng, Zhong; Wang, Zhuo; Lieberman, Paul M.

    2012-01-01

    Genome maintenance mechanisms actively suppress genetic instability associated with cancer and aging. Some viruses provoke genetic instability by subverting the host’s control of genome maintenance. Viruses have their own specialized strategies for genome maintenance, which can mimic and modify host cell processes. Here, we review some of the common features of genome maintenance utilized by viruses and host chromosomes, with a particular focus on terminal repeat (TR) elements. The TRs of cellular chromosomes, better known as telomeres, have well-established roles in cellular chromosome stability. Cellular telomeres are themselves maintained by viral-like mechanisms, including self-propagation by reverse transcription, recombination, and retrotransposition. Viral TR elements, like cellular telomeres, are essential for viral genome stability and propagation. We review the structure and function of viral repeat elements and discuss how they may share telomere-like structures and genome protection functions. We consider how viral infections modulate telomere regulatory factors for viral repurposing and can alter normal host telomere structure and chromosome stability. Understanding the common strategies of viral and cellular genome maintenance may provide new insights into viral–host interactions and the mechanisms driving genetic instability in cancer. PMID:23293769

  11. Lipase inactivation in wheat germ by gamma irradiation

    International Nuclear Information System (INIS)

    Jha, Pankaj Kumar; Kudachikar, V.B.; Kumar, Sourav

    2013-01-01

    An attempt was made to improve the shelf life of wheat germ by optimizing processing conditions involving γ-irradiation. Studies were carried out to investigate the effect of γ-irradiation (0–30 kGy doses) on the chemical composition of wheat germ with respect to variation in moisture, total ash, crude fat, free fatty acid, protein and lipase activity. The results demonstrate that shelf stability of wheat germ was achieved by inactivation of lipase at doses of γ-irradiation greater than 12 kGy. - Highlights: Ø γ-irradiation was found to inactivate Lipase present in Wheat Germ. Ø The treatment did not result in significant changes in Total Ash, Moisture and Protein Content of Wheat Germ. Ø The irradiation at 30 kGy resulted in 31.2 % inactivation of Lipase in Wheat Germ

  12. The pulsed light inactivation of veterinary relevant microbial biofilms ...

    African Journals Online (AJOL)

    Results show that both Cryptosporidium and Giardia attach to biofilms in large numbers (100-1000 oo/cysts) in as little as 72 hours. Pulsed light successfully inactivated all test species (Listeria, Salmonella, Bacillus, Escherichia) in planktonic and biofilm form with an increase in inactivation for every increase in UV dose.

  13. Capsid protein oxidation in feline calicivirus using an electrochemical inactivation treatment

    Energy Technology Data Exchange (ETDEWEB)

    Shionoiri, Nozomi; Nogariya, Osamu; Tanaka, Masayoshi; Matsunaga, Tadashi; Tanaka, Tsuyoshi, E-mail: tsuyo@cc.tuat.ac.jp

    2015-02-11

    Highlights: • Feline calicivirus was inactivated electrochemically by a factor of >5 log. • The electrochemical treatment was performed at 0.9 V (vs. Ag/AgCl) for 15 min. • Electrochemical treatment caused oxidation of viral proteins. • Oxidation of viral proteins can lead to loss of viral structural integrity. - Abstract: Pathogenic viral infections are an international public health concern, and viral disinfection has received increasing attention. Electrochemical treatment has been used for treatment of water contaminated by bacteria for several decades, and although in recent years several reports have investigated viral inactivation kinetics, the mode of action of viral inactivation by electrochemical treatment remains unclear. Here, we demonstrated the inactivation of feline calicivirus (FCV), a surrogate for human noroviruses, by electrochemical treatment in a developed flow-cell equipped with a screen-printed electrode. The viral infectivity titer was reduced by over 5 orders of magnitude after 15 min of treatment at 0.9 V vs. Ag/AgCl. Proteomic study of electrochemically inactivated virus revealed oxidation of peptides located in the viral particles; oxidation was not observed in the non-treated sample. Furthermore, transmission electron microscopy revealed that viral particles in the treated sample had irregular structures. These results suggest that electrochemical treatment inactivates FCV via oxidation of peptides in the structural region, causing structural deformation of virus particles. This first report of viral protein damage through electrochemical treatment will contribute to broadening the understanding of viral inactivation mechanisms.

  14. Hierarchical role for transcription factors and chromatin structure in genome organization along adipogenesis

    DEFF Research Database (Denmark)

    Sarusi Portuguez, Avital; Schwartz, Michal; Siersbaek, Rasmus

    2017-01-01

    The three dimensional folding of mammalian genomes is cell type specific and difficult to alter suggesting that it is an important component of gene regulation. However, given the multitude of chromatin-associating factors, the mechanisms driving the colocalization of active chromosomal domains...... by PPARγ and Lpin1, undergoes orchestrated reorganization during adipogenesis. Coupling the dynamics of genome architecture with multiple chromatin datasets indicated that among all the transcription factors (TFs) tested, RXR is central to genome reorganization at the beginning of adipogenesis...

  15. Integrated analysis of whole genome and transcriptome sequencing reveals diverse transcriptomic aberrations driven by somatic genomic changes in liver cancers.

    Directory of Open Access Journals (Sweden)

    Yuichi Shiraishi

    Full Text Available Recent studies applying high-throughput sequencing technologies have identified several recurrently mutated genes and pathways in multiple cancer genomes. However, transcriptional consequences from these genomic alterations in cancer genome remain unclear. In this study, we performed integrated and comparative analyses of whole genomes and transcriptomes of 22 hepatitis B virus (HBV-related hepatocellular carcinomas (HCCs and their matched controls. Comparison of whole genome sequence (WGS and RNA-Seq revealed much evidence that various types of genomic mutations triggered diverse transcriptional changes. Not only splice-site mutations, but also silent mutations in coding regions, deep intronic mutations and structural changes caused splicing aberrations. HBV integrations generated diverse patterns of virus-human fusion transcripts depending on affected gene, such as TERT, CDK15, FN1 and MLL4. Structural variations could drive over-expression of genes such as WNT ligands, with/without creating gene fusions. Furthermore, by taking account of genomic mutations causing transcriptional aberrations, we could improve the sensitivity of deleterious mutation detection in known cancer driver genes (TP53, AXIN1, ARID2, RPS6KA3, and identified recurrent disruptions in putative cancer driver genes such as HNF4A, CPS1, TSC1 and THRAP3 in HCCs. These findings indicate genomic alterations in cancer genome have diverse transcriptomic effects, and integrated analysis of WGS and RNA-Seq can facilitate the interpretation of a large number of genomic alterations detected in cancer genome.

  16. Inactivation of Heterosigma akashiwo in ballast water by circular orifice plate-generated hydrodynamic cavitation.

    Science.gov (United States)

    Feng, Daolun; Zhao, Jie; Liu, Tian

    2016-01-01

    The discharge of alien ballast water is a well-known, major reason for marine species invasion. Here, circular orifice plate-generated hydrodynamic cavitation was used to inactivate Heterosigma akashiwo in ballast water. In comparison with single- and multihole orifice plates, the conical-hole orifice plate yielded the highest inactivation percentage, 51.12%, and consumed only 6.84% energy (based on a 50% inactivation percentage). Repeating treatment, either using double series-connection or circling inactivation, elevated the inactivation percentage, yet consumed much more energy. The results indicate that conical-hole-generated hydrodynamic cavitation shows great potential as a pre-inactivation method for ballast water treatment.

  17. Factors affecting the In Vitro inactivation of adolase by x-rays

    Energy Technology Data Exchange (ETDEWEB)

    Quintiliani, M.; Boccacci, M.

    1962-08-15

    The influence of urea and of various protective compounds on the in vitro inactivation of aldolase by x rays was studied. Low concentrations of urea protect the enzyme from the inactivation, whereas high concentrations, able to induce an unfolding of the protein molecule, increase the degree inactivation by a given dose of radiation. Cysteamine, cystamine, aminoethyl-isothio-uronium, and glutathione, all protect the aldolase in solution from the inactivation by x rays. Cystamine is as protective as cysteamine, in equimolecular concentrations, when high inactivation levels are reached. No protection can be demonstrated when the aldolase, after incubation with the tested compounds, is precipitated and redissolved in a new medium before irradiation. Nevertheless, with S/sup 35/ labeled cystamine, it can be demonstrated that at least seven residues of cysteamine are bound to each aldolase molecule. The protective power of glutathione is reduced by a factor of about 0.2 in the presence of 4 M urea. The possible implications of these findings are discussed. (auth)

  18. Mechanistic and kinetic aspects of microbial inactivation in food irradiation processes

    International Nuclear Information System (INIS)

    Tukenmez, I.

    2004-01-01

    Full text: A proper reaction mechanism was searched by analyzing the inactivation processes of microorganisms during food irradiation by ionizing radiation. By employing transition-state theory, it was assumed that the overall inactivation process involves a reversible sub-lethal stress and repair reactions to form reversibly injured cell or sensitized cell, which then undergoes irreversible injury leading to dead cell. A shoulder in low dose range in survival kinetics was associated with the repair process. Depending on the postulated mechanism, kinetic model equations were derived. The kinetics of cell inactivation by irradiation was expressed as depending on irradiation dose. By using experimental data in the developed model the inactivation parameters including threshold dose, radiation yield, decimal reduction dose and minimum sterilization dose were evaluated and microbial inactivation by irradiation was simulated by using the numerical values of the parameters. Developed model and model parameters may be used for the process control and the assessment of product quality in radiation preservation of food

  19. Comparison of glycerolisation with cryopreservation methods on HIV-1 inactivation

    International Nuclear Information System (INIS)

    Van Baare, J.; Pagnon, J.; Cameron, P.; Vardaxis, N.; Middlekoop, E.; Crowe, S.

    1999-01-01

    Cryopreservation and glycerolisation are two successful long-term preservation methods for human cadaveric donor skin, which is used in the treatment of bum patients. High concentrations of glycerol has been shown to be antibacterial and virucidal. Because fear of possible transmission of HIV-1 following allograft transplantation, this study was undertaken to investigate whether HIV can be effectively eliminated from skin explants. HIV-1 Ba-L, which has been shown to infect monocytes in skin explants and also dendritic cells, was. For the experiments we used cell-free virus, exogenously HIV infected peripheral blood mononuclear cells (PBMCs) and exogenously HIV infected cadaver split skin. Different concentrations of glycerol at various temperatures and the glycerolisation procedure as used by the Euro Skin Bank were used to determine the effects on HIV-1 Ba-L infectivity. For the cryopreservation technique we used 10% DMSO and a controlled rate freezer. HIV-1 Ba-L transfer was determined by adding uninfected PBMCs to the infected material and reverse transcriptase was measured. Cell-free HIV-1 Ba-L was not inactivated by 50% glycerol but was effectively inactivated within 30 minutes by 70% and 85% glycerol at 4 degree C, room temperature and 37 degree C. In contrast, cell-free HIV-1 Ba-L was not inactivated by cryopreservation. Most importantly, we have shown that HIV-1 Ba-L present in split skin is inactivated by incubating skin in 70% glycerol for three hours at 37-C. HIV in exogenously infected skin was not inactivated by cryopreservation. High concentrations of glycerol effectively inactivates free HIV-1 Ba-L and intracellular HIV-1 Ba-L. Also the current glycerolisation procedure carried out by the Euro Skin Bank effectively inactivates infectious virus. However, the cryopreservation technique did not show any reduction in HIV-1 Ba-L infectivity

  20. Whole-genome landscape of pancreatic neuroendocrine tumours.

    Science.gov (United States)

    Scarpa, Aldo; Chang, David K; Nones, Katia; Corbo, Vincenzo; Patch, Ann-Marie; Bailey, Peter; Lawlor, Rita T; Johns, Amber L; Miller, David K; Mafficini, Andrea; Rusev, Borislav; Scardoni, Maria; Antonello, Davide; Barbi, Stefano; Sikora, Katarzyna O; Cingarlini, Sara; Vicentini, Caterina; McKay, Skye; Quinn, Michael C J; Bruxner, Timothy J C; Christ, Angelika N; Harliwong, Ivon; Idrisoglu, Senel; McLean, Suzanne; Nourse, Craig; Nourbakhsh, Ehsan; Wilson, Peter J; Anderson, Matthew J; Fink, J Lynn; Newell, Felicity; Waddell, Nick; Holmes, Oliver; Kazakoff, Stephen H; Leonard, Conrad; Wood, Scott; Xu, Qinying; Nagaraj, Shivashankar Hiriyur; Amato, Eliana; Dalai, Irene; Bersani, Samantha; Cataldo, Ivana; Dei Tos, Angelo P; Capelli, Paola; Davì, Maria Vittoria; Landoni, Luca; Malpaga, Anna; Miotto, Marco; Whitehall, Vicki L J; Leggett, Barbara A; Harris, Janelle L; Harris, Jonathan; Jones, Marc D; Humphris, Jeremy; Chantrill, Lorraine A; Chin, Venessa; Nagrial, Adnan M; Pajic, Marina; Scarlett, Christopher J; Pinho, Andreia; Rooman, Ilse; Toon, Christopher; Wu, Jianmin; Pinese, Mark; Cowley, Mark; Barbour, Andrew; Mawson, Amanda; Humphrey, Emily S; Colvin, Emily K; Chou, Angela; Lovell, Jessica A; Jamieson, Nigel B; Duthie, Fraser; Gingras, Marie-Claude; Fisher, William E; Dagg, Rebecca A; Lau, Loretta M S; Lee, Michael; Pickett, Hilda A; Reddel, Roger R; Samra, Jaswinder S; Kench, James G; Merrett, Neil D; Epari, Krishna; Nguyen, Nam Q; Zeps, Nikolajs; Falconi, Massimo; Simbolo, Michele; Butturini, Giovanni; Van Buren, George; Partelli, Stefano; Fassan, Matteo; Khanna, Kum Kum; Gill, Anthony J; Wheeler, David A; Gibbs, Richard A; Musgrove, Elizabeth A; Bassi, Claudio; Tortora, Giampaolo; Pederzoli, Paolo; Pearson, John V; Waddell, Nicola; Biankin, Andrew V; Grimmond, Sean M

    2017-03-02

    The diagnosis of pancreatic neuroendocrine tumours (PanNETs) is increasing owing to more sensitive detection methods, and this increase is creating challenges for clinical management. We performed whole-genome sequencing of 102 primary PanNETs and defined the genomic events that characterize their pathogenesis. Here we describe the mutational signatures they harbour, including a deficiency in G:C > T:A base excision repair due to inactivation of MUTYH, which encodes a DNA glycosylase. Clinically sporadic PanNETs contain a larger-than-expected proportion of germline mutations, including previously unreported mutations in the DNA repair genes MUTYH, CHEK2 and BRCA2. Together with mutations in MEN1 and VHL, these mutations occur in 17% of patients. Somatic mutations, including point mutations and gene fusions, were commonly found in genes involved in four main pathways: chromatin remodelling, DNA damage repair, activation of mTOR signalling (including previously undescribed EWSR1 gene fusions), and telomere maintenance. In addition, our gene expression analyses identified a subgroup of tumours associated with hypoxia and HIF signalling.

  1. Optimising the inactivation of grape juice spoilage organisms by pulse electric fields.

    Science.gov (United States)

    Marsellés-Fontanet, A Robert; Puig, Anna; Olmos, Paola; Mínguez-Sanz, Santiago; Martín-Belloso, Olga

    2009-04-15

    The effect of some pulsed electric field (PEF) processing parameters (electric field strength, pulse frequency and treatment time), on a mixture of microorganisms (Kloeckera apiculata, Saccharomyces cerevisiae, Lactobacillus plantarum, Lactobacillus hilgardii and Gluconobacter oxydans) typically present in grape juice and wine were evaluated. An experimental design based on response surface methodology (RSM) was used and results were also compared with those of a factorially designed experiment. The relationship between the levels of inactivation of microorganisms and the energy applied to the grape juice was analysed. Yeast and bacteria were inactivated by the PEF treatments, with reductions that ranged from 2.24 to 3.94 log units. All PEF parameters affected microbial inactivation. Optimal inactivation of the mixture of spoilage microorganisms was predicted by the RSM models at 35.0 kV cm(-1) with 303 Hz pulse width for 1 ms. Inactivation was greater for yeasts than for bacteria, as was predicted by the RSM. The maximum efficacy of the PEF treatment for inactivation of microorganisms in grape juice was observed around 1500 MJ L(-1) for all the microorganisms investigated. The RSM could be used in the fruit juice industry to optimise the inactivation of spoilage microorganisms by PEF.

  2. Epigenetic inactivation of CHFR in human tumors.

    Science.gov (United States)

    Toyota, Minoru; Sasaki, Yasushi; Satoh, Ayumi; Ogi, Kazuhiro; Kikuchi, Takefumi; Suzuki, Hiromu; Mita, Hiroaki; Tanaka, Nobuyuki; Itoh, Fumio; Issa, Jean-Pierre J; Jair, Kam-Wing; Schuebel, Kornel E; Imai, Kohzoh; Tokino, Takashi

    2003-06-24

    Cell-cycle checkpoints controlling the orderly progression through mitosis are frequently disrupted in human cancers. One such checkpoint, entry into metaphase, is regulated by the CHFR gene encoding a protein possessing forkhead-associated and RING finger domains as well as ubiquitin-ligase activity. Although defects in this checkpoint have been described, the molecular basis and prevalence of CHFR inactivation in human tumors are still not fully understood. To address this question, we analyzed the pattern of CHFR expression in a number of human cancer cell lines and primary tumors. We found CpG methylation-dependent silencing of CHFR expression in 45% of cancer cell lines, 40% of primary colorectal cancers, 53% of colorectal adenomas, and 30% of primary head and neck cancers. Expression of CHFR was precisely correlated with both CpG methylation and deacetylation of histones H3 and H4 in the CpG-rich regulatory region. Moreover, CpG methylation and thus silencing of CHFR depended on the activities of two DNA methyltransferases, DNMT1 and DNMT3b, as their genetic inactivation restored CHFR expression. Finally, cells with CHFR methylation had an intrinsically high mitotic index when treated with microtubule inhibitor. This means that cells in which CHFR was epigenetically inactivated constitute loss-of-function alleles for mitotic checkpoint control. Taken together, these findings shed light on a pathway by which mitotic checkpoint is bypassed in cancer cells and suggest that inactivation of checkpoint genes is much more widespread than previously suspected.

  3. Translating the cancer genome: Going beyond p values

    Energy Technology Data Exchange (ETDEWEB)

    Chin, Lynda; Chin, Lynda; Gray, Joe W.

    2008-04-03

    Cancer cells are endowed with diverse biological capabilities driven by myriad inherited and somatic genetic and epigenetic aberrations that commandeer key cancer-relevant pathways. Efforts to elucidate these aberrations began with Boveri's hypothesis of aberrant mitoses causing cancer and continue today with a suite of powerful high-resolution technologies that enable detailed catalogues of genomic aberrations and epigenomic modifications. Tomorrow will likely bring the complete atlas of reversible and irreversible alteration in individual cancers. The challenge now is to discern causal molecular abnormalities from genomic and epigenomic 'noise', to understand how the ensemble of these aberrations collaborate to drive cancer pathophysiology. Here, we highlight lessons learned from now classical examples of successful translation of genomic discoveries into clinical practice, lessons that may be used to guide and accelerate translation of emerging genomic insights into practical clinical endpoints that can impact on practice of cancer medicine.

  4. Self-sustained oscillations of complex genomic regulatory networks

    International Nuclear Information System (INIS)

    Ye Weiming; Huang Xiaodong; Huang Xuhui; Li Pengfei; Xia Qinzhi; Hu Gang

    2010-01-01

    Recently, self-sustained oscillations in complex networks consisting of non-oscillatory nodes have attracted great interest in diverse natural and social fields. Oscillatory genomic regulatory networks are one of the most typical examples of this kind. Given an oscillatory genomic network, it is important to reveal the central structure generating the oscillation. However, if the network consists of large numbers of genes and interactions, the oscillation generator is deeply hidden in the complicated interactions. We apply the dominant phase-advanced driving path method proposed in Qian et al. (2010) to reduce complex genomic regulatory networks to one-dimensional and unidirectionally linked network graphs where negative regulatory loops are explored to play as the central generators of the oscillations, and oscillation propagation pathways in the complex networks are clearly shown by tree branches radiating from the loops. Based on the above understanding we can control oscillations of genomic networks with high efficiency.

  5. UK-18,892: resistance to modification by aminoglycoside-inactivating enzymes.

    Science.gov (United States)

    Andrews, R J; Brammer, K W; Cheeseman, H E; Jevons, S

    1978-12-01

    UK-18,892, a new semisynthetic aminoglycoside, was active against bacteria possessing aminoglycoside-inactivating enzymes, with the exception of some known to possess AAC(6') or AAD(4') enzymes. This activity has been rationalized by using cell-free extracts of bacteria containing known inactivating enzymes, where it was shown that UK-18,892 was not a substrate for the APH(3'), AAD(2''), AAC(3), and AAC(2') enzymes. It was also demonstrated that UK-18,892 protected mice against lethal infections caused by organisms possessing aminoglycoside-inactivating enzymes.

  6. Inter- and intra-specific pan-genomes of Borrelia burgdorferi sensu lato: genome stability and adaptive radiation

    Science.gov (United States)

    2013-01-01

    Background Lyme disease is caused by spirochete bacteria from the Borrelia burgdorferi sensu lato (B. burgdorferi s.l.) species complex. To reconstruct the evolution of B. burgdorferi s.l. and identify the genomic basis of its human virulence, we compared the genomes of 23 B. burgdorferi s.l. isolates from Europe and the United States, including B. burgdorferi sensu stricto (B. burgdorferi s.s., 14 isolates), B. afzelii (2), B. garinii (2), B. “bavariensis” (1), B. spielmanii (1), B. valaisiana (1), B. bissettii (1), and B. “finlandensis” (1). Results Robust B. burgdorferi s.s. and B. burgdorferi s.l. phylogenies were obtained using genome-wide single-nucleotide polymorphisms, despite recombination. Phylogeny-based pan-genome analysis showed that the rate of gene acquisition was higher between species than within species, suggesting adaptive speciation. Strong positive natural selection drives the sequence evolution of lipoproteins, including chromosomally-encoded genes 0102 and 0404, cp26-encoded ospC and b08, and lp54-encoded dbpA, a07, a22, a33, a53, a65. Computer simulations predicted rapid adaptive radiation of genomic groups as population size increases. Conclusions Intra- and inter-specific pan-genome sizes of B. burgdorferi s.l. expand linearly with phylogenetic diversity. Yet gene-acquisition rates in B. burgdorferi s.l. are among the lowest in bacterial pathogens, resulting in high genome stability and few lineage-specific genes. Genome adaptation of B. burgdorferi s.l. is driven predominantly by copy-number and sequence variations of lipoprotein genes. New genomic groups are likely to emerge if the current trend of B. burgdorferi s.l. population expansion continues. PMID:24112474

  7. Inactivation and stability of viral diagnostic reagents treated by gamma radiation

    International Nuclear Information System (INIS)

    White, L.A.; Freeman, C.Y.; Hall, H.E.; Forrester, B.D.

    1990-01-01

    The objective of this study was to apply the pertinent findings from gamma inactivation of virus infectivity to the production of high quality diagnostic reagents. A Gammacell 220 was used to subject 38 viruses grown in either susceptible tissue cultures or embryonated chicken eggs to various doses of gamma radiation from a cobalt-60 source. The radiation required to reduce viral infectivity was 0.42 to 3.7 megarads (Mrad). The effect of gamma treatment on the antigenic reactivity of reagents for the complement fixation (CF), hemagglutination (HA) and neuraminadase assays was determined. Influenza antigens inactivated with 1.7 Mrad displayed comparable potency, sensitivity, specificity and stability to those inactivated by standard procedures with beta-propiolactone (BPL). Significant inactivation of influenza N1 and B neuraminidase occurred with >2.4 Mrad radiation at temperatures above 4 0 C. All 38 viruses were inactivated, and CF or HA antigens were prepared successfully. Antigenic potency remained stable with all antigens for 3 years and with 83% after 5 years storage. Influenza HA antigens evaluated after 9 years of storage demonstrated 86% stability. Gamma radiation is safer than chemical inactivation procedures and is a reliable and effective replacement for BPL in preparing diagnostic reagents. (author)

  8. Inactivation and stability of viral diagnostic reagents treated by gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    White, L A; Freeman, C Y; Hall, H E; Forrester, B D [Department of Health and Human Services, Atlanta, GA (USA)

    1990-10-01

    The objective of this study was to apply the pertinent findings from gamma inactivation of virus infectivity to the production of high quality diagnostic reagents. A Gammacell 220 was used to subject 38 viruses grown in either susceptible tissue cultures or embryonated chicken eggs to various doses of gamma radiation from a cobalt-60 source. The radiation required to reduce viral infectivity was 0.42 to 3.7 megarads (Mrad). The effect of gamma treatment on the antigenic reactivity of reagents for the complement fixation (CF), hemagglutination (HA) and neuraminadase assays was determined. Influenza antigens inactivated with 1.7 Mrad displayed comparable potency, sensitivity, specificity and stability to those inactivated by standard procedures with beta-propiolactone (BPL). Significant inactivation of influenza N1 and B neuraminidase occurred with >2.4 Mrad radiation at temperatures above 4{sup 0}C. All 38 viruses were inactivated, and CF or HA antigens were prepared successfully. Antigenic potency remained stable with all antigens for 3 years and with 83% after 5 years storage. Influenza HA antigens evaluated after 9 years of storage demonstrated 86% stability. Gamma radiation is safer than chemical inactivation procedures and is a reliable and effective replacement for BPL in preparing diagnostic reagents. (author).

  9. Concerning RNA-guided gene drives for the alteration of wild populations.

    Science.gov (United States)

    Esvelt, Kevin M; Smidler, Andrea L; Catteruccia, Flaminia; Church, George M

    2014-07-17

    Gene drives may be capable of addressing ecological problems by altering entire populations of wild organisms, but their use has remained largely theoretical due to technical constraints. Here we consider the potential for RNA-guided gene drives based on the CRISPR nuclease Cas9 to serve as a general method for spreading altered traits through wild populations over many generations. We detail likely capabilities, discuss limitations, and provide novel precautionary strategies to control the spread of gene drives and reverse genomic changes. The ability to edit populations of sexual species would offer substantial benefits to humanity and the environment. For example, RNA-guided gene drives could potentially prevent the spread of disease, support agriculture by reversing pesticide and herbicide resistance in insects and weeds, and control damaging invasive species. However, the possibility of unwanted ecological effects and near-certainty of spread across political borders demand careful assessment of each potential application. We call for thoughtful, inclusive, and well-informed public discussions to explore the responsible use of this currently theoretical technology.

  10. Development of inactivated-local isolate vaccine for infectious bronchitis

    Directory of Open Access Journals (Sweden)

    Darminto

    1999-06-01

    Full Text Available Infectious bronchitis (IB is an acute highly contagious viral respiratory disease of poultry caused by coronavirus. The disease causes high mortality in young chicks, reduce body weight gain in broilers and remarkable drop in egg production. IB can only be controlled by vaccination, but due to the antigenic variation among serotypes of IB viruses, the effective IB vaccine should be prepared from local isolates. The aim of this research is to develop inactivated IB vaccine derived from local IB isolates. Local isolates of IB viruses designated as I-37, I-269 and PTS-III were propagated respectively in specific pathogen free (SPF chicken eggs, the viruses then were inactivated by formaline at final concentration of 1:1,000. Subsequently, the inactivated viruses were mixed and emulsified in oil emulsion adjuvant with sorbitant mono-oleic as an emulsifier. The vaccine then was tested for its safety, potency and efficacy in broiler chickens. Birds inoculated twice with a two-week interval by inactivated vaccine did not show any adverse reaction, either systemic or local reaction. The inoculated birds developed antibody responses with high titre, while antibody of the control birds remain negative. In addition, efficacy test which was conducted in broilers demonstrated that birds vaccinated by live-commercial vaccine and boosted three weeks later by Balitvet inactivated vaccine showed high level of antibody production which provided high level of protection against challenged virus (76% against I-37, 92% against I-269 and 68% against PTS-III challenge viruses. From this study, it can be concluded that inactivated local IB vaccine is considered to be safe, potent and efficacious. The vaccine stimulates high titre of antibody responses, which provide high level of protection against challenged viruses.

  11. Modelling fungal solid-state fermentation: The role of inactivation kinetics

    NARCIS (Netherlands)

    Smits, J.P.; Sonsbeek, H.M. van; Knol, W.; Tramper, J.; Geelhoed, W.; Peeters, M.; Rinzema, A.

    1999-01-01

    The theoretical mathematical models described in this paper are used to evaluate the effects of fungal biomass inactivation kinetics on a non- isothermal tray solid-state fermentation (SSF). The inactivation kinetics, derived from previously reported experiments done under isothermal conditions and

  12. A specific inactivator of mammalian C'4 isolated from nurse shark (Ginglymostoma cirratum) serum.

    Science.gov (United States)

    Jensen, J A

    1969-08-01

    A material which specifically inactivates mammalian C'4 was isolated from low ionic strength precipitates of nurse shark serum. The C'4 inactivator was not detected in whole serum. The conditions of its generation and its immunoelectrophoretic behavior seem to indicate that it is an enzymatically formed cleavage product of a precursor contained in whole shark serum. The inactivator was partially purified and characterized. It had an S-value of 3.3 (sucrose gradient) which was in agreement with its retardation on gel filtration, was stable between pH 5.0 and 10.0, had a half-life of 5 min at 56 degrees C, pH 7.5, was inactivated by trypsin and was nontoxic. Its powerful anticomplementary activity in vitro and in vivo was solely due to the rapid inactivation of C'4; no other complement components were affected. No cofactor requirement was observed for the equally rapid inactivation of highly purified human and guinea pig C'4. The kinetics of C'4 inactivation and TAME hydrolysis, the greater anodic mobility of inactivated human C'4, and the influence of temperature on the rate of inactivation suggest that the inactivator is an enzyme and C'4 its substrate. This conclusion was supported by the more recent detection of a split product of C'4. Intravenous administration of the C'4 inactivator could prevent lethal Forssman shock and suppress the Arthus reaction in guinea pigs; it prolonged significantly the rejection time of renal xenografts but had no detectable effect on passive cutaneous anaphylaxis. Anaphylatoxin could be generated in C'4 depleted guinea pig serum with the cobra venom factor, but not with immune precipitates. The possible relationship between C'1 esterase and the C'4 inactivator is discussed on the basis of similarities and dissimilarities.

  13. Inactivation of carbenicillin by some radioresistant mutant strains

    International Nuclear Information System (INIS)

    Zahiera, T.S.; Mahmoud, M.I.; Bashandy, A.A.

    1990-01-01

    Sensitivity test of five bacterial species to carbenicillin was performed microbiologically. The bacterial species were previously isolated from high level radiation environment. All the studied species could either highly decrease the antibiotic activity or even inactivate it completely. Detailed study of the inactivation of carbenicillin by the radioresistant mutant strains B. Laterosporus, B. firmus and M. roseus was performed, in the present study. Using high performace liquid chromatography technique. The gram-positive m. roseus mutant strain seemed to be the most active mutant in degrading the antibiotic. The left over of the antibiotic attained a value of 9% of the original amount after 14 day incubation of the antibiotic with this mutant strain, while the value of the left over reached 36% and 32% after the same period of incubation with the mutants B. laterosporus and B. firmus respectively. In the case of bacillus species, the degradation of the antibiotic started at the same moment when it was added to the bacterial cultures. This fact may indicate that the inactivation of the studied antibiotic by these bacillus species was due to extracellular enzymes extracted rapidly in the surrounding medium. In the case of M. roseus the inactivation process started later. after the addition of the antibiotic to the mutant culture

  14. Deciphering the Code of the Cancer Genome: Mechanisms of Chromosome Rearrangement

    Science.gov (United States)

    Willis, Nicholas A.; Rass, Emilie; Scully, Ralph

    2015-01-01

    Chromosome rearrangement plays a causal role in tumorigenesis by contributing to the inactivation of tumor suppressor genes, the dysregulated expression or amplification of oncogenes and the generation of novel gene fusions. Chromosome breaks are important intermediates in this process. How, when and where these breaks arise and the specific mechanisms engaged in their repair strongly influence the resulting patterns of chromosome rearrangement. Here, we review recent progress in understanding how certain distinctive features of the cancer genome, including clustered mutagenesis, tandem segmental duplications, complex breakpoints, chromothripsis, chromoplexy and chromoanasynthesis may arise. PMID:26726318

  15. Construction and Use of Recombinant Isogenic Cell Libraries in Functional Genomics

    DEFF Research Database (Denmark)

    Christiansen, Helle

      While nowadays robotics enable performing whole genome functional screens within a few days, the availability of suitable cellular systems to investigate the function or pathway of choice represents as a major bottleneck. In most applications, it is desirable to use cell lines with stably...... or inactivation of a gene of choice in a constitutive or tetracycline-inducible fashion. We also provide proof-of-principle that this technique can be used for the construction of double recombinant cell lines, which allows for analyses at advanced levels of complexity, e. g. by the construction of double...

  16. Predicting effects of structural stress in a genome-reduced model bacterial metabolism

    Science.gov (United States)

    Güell, Oriol; Sagués, Francesc; Serrano, M. Ángeles

    2012-08-01

    Mycoplasma pneumoniae is a human pathogen recently proposed as a genome-reduced model for bacterial systems biology. Here, we study the response of its metabolic network to different forms of structural stress, including removal of individual and pairs of reactions and knockout of genes and clusters of co-expressed genes. Our results reveal a network architecture as robust as that of other model bacteria regarding multiple failures, although less robust against individual reaction inactivation. Interestingly, metabolite motifs associated to reactions can predict the propagation of inactivation cascades and damage amplification effects arising in double knockouts. We also detect a significant correlation between gene essentiality and damages produced by single gene knockouts, and find that genes controlling high-damage reactions tend to be expressed independently of each other, a functional switch mechanism that, simultaneously, acts as a genetic firewall to protect metabolism. Prediction of failure propagation is crucial for metabolic engineering or disease treatment.

  17. 37 CFR 11.11 - Administrative suspension, inactivation, resignation, and readmission.

    Science.gov (United States)

    2010-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2010-07-01 2010-07-01 false Administrative suspension, inactivation, resignation, and readmission. 11.11 Section 11.11 Patents, Trademarks, and Copyrights UNITED... Other Non-Patent Law § 11.11 Administrative suspension, inactivation, resignation, and readmission. (a...

  18. Immunogenicity of UV-inactivated measles virus

    International Nuclear Information System (INIS)

    Zahorska, R.; Mazur, N.; Korbecki, M.

    1978-01-01

    By means of the antigen extinction limit test it was shown that a triple dose vaccination of guinea pigs with UV-inactivated measles virus gave better results, than a single dose vaccination which was proved by the very low immunogenicity index. For both vaccination schemes (single and triple) the immune response was only sligthly influenced by a change of dose from 10 5 to 10 6 HadU 50 /ml or by the addition of aluminum adjuvant. In the antigen extinction limit test the antibody levels were determined by two methods (HIT and NT) the results of which were statistically equivalent. The UV-inactivated measles virus was also found to induce hemolysis-inhibiting antibodies. (orig.) [de

  19. Landscape genomics: natural selection drives the evolution of mitogenome in penguins.

    Science.gov (United States)

    Ramos, Barbara; González-Acuña, Daniel; Loyola, David E; Johnson, Warren E; Parker, Patricia G; Massaro, Melanie; Dantas, Gisele P M; Miranda, Marcelo D; Vianna, Juliana A

    2018-01-16

    Mitochondria play a key role in the balance of energy and heat production, and therefore the mitochondrial genome is under natural selection by environmental temperature and food availability, since starvation can generate more efficient coupling of energy production. However, selection over mitochondrial DNA (mtDNA) genes has usually been evaluated at the population level. We sequenced by NGS 12 mitogenomes and with four published genomes, assessed genetic variation in ten penguin species distributed from the equator to Antarctica. Signatures of selection of 13 mitochondrial protein-coding genes were evaluated by comparing among species within and among genera (Spheniscus, Pygoscelis, Eudyptula, Eudyptes and Aptenodytes). The genetic data were correlated with environmental data obtained through remote sensing (sea surface temperature [SST], chlorophyll levels [Chl] and a combination of SST and Chl [COM]) through the distribution of these species. We identified the complete mtDNA genomes of several penguin species, including ND6 and 8 tRNAs on the light strand and 12 protein coding genes, 14 tRNAs and two rRNAs positioned on the heavy strand. The highest diversity was found in NADH dehydrogenase genes and the lowest in COX genes. The lowest evolutionary divergence among species was between Humboldt (Spheniscus humboldti) and Galapagos (S. mendiculus) penguins (0.004), while the highest was observed between little penguin (Eudyptula minor) and Adélie penguin (Pygoscelis adeliae) (0.097). We identified a signature of purifying selection (Ka/Ks penguins. In contrast, COX1 had a signature of strong negative selection. ND4 Ka/Ks ratios were highly correlated with SST (Mantel, p-value: 0.0001; GLM, p-value: 0.00001) and thus may be related to climate adaptation throughout penguin speciation. These results identify mtDNA candidate genes under selection which could be involved in broad-scale adaptations of penguins to their environment. Such knowledge may be

  20. Influenza (flu) vaccine (Inactivated or Recombinant): What you need to know

    Science.gov (United States)

    ... taken in its entirety from the CDC Inactivated Influenza Vaccine Information Statement (VIS) www.cdc.gov/vaccines/hcp/vis/vis-statements/flu.html CDC review information for Inactivated Influenza VIS: ...

  1. Safety, Security, and Policy Considerations for Plant Genome Editing.

    Science.gov (United States)

    Wolt, Jeffrey D

    2017-01-01

    Genome editing with engineered nucleases (GEEN) is increasingly used as a tool for gene discovery and trait development in crops through generation of targeted changes in endogenous genes. The development of the CRISPR-Cas9 system (clustered regularly interspaced short palindromic repeats with associated Cas9 protein), in particular, has enabled widespread use of genome editing. Research to date has not comprehensively addressed genome-editing specificity and off-target mismatches that may result in unintended changes within plant genomes or the potential for gene drive initiation. Governance and regulatory considerations for bioengineered crops derived from using GEEN will require greater clarity as to target specificity, the potential for mismatched edits, unanticipated downstream effects of off-target mutations, and assurance that genome reagents do not occur in finished products. Since governance and regulatory decision making involves robust standards of evidence extending from the laboratory to the postcommercial marketplace, developers of genome-edited crops must anticipate significant engagement and investment to address questions of regulators and civil society. © 2017 Elsevier Inc. All rights reserved.

  2. Quantitative measure of randomness and order for complete genomes

    Science.gov (United States)

    Kong, Sing-Guan; Fan, Wen-Lang; Chen, Hong-Da; Wigger, Jan; Torda, Andrew E.; Lee, H. C.

    2009-06-01

    We propose an order index, ϕ , which gives a quantitative measure of randomness and order of complete genomic sequences. It maps genomes to a number from 0 (random and of infinite length) to 1 (fully ordered) and applies regardless of sequence length. The 786 complete genomic sequences in GenBank were found to have ϕ values in a very narrow range, ϕg=0.031-0.015+0.028 . We show this implies that genomes are halfway toward being completely random, or, at the “edge of chaos.” We further show that artificial “genomes” converted from literary classics have ϕ ’s that almost exactly coincide with ϕg , but sequences of low information content do not. We infer that ϕg represents a high information-capacity “fixed point” in sequence space, and that genomes are driven to it by the dynamics of a robust growth and evolution process. We show that a growth process characterized by random segmental duplication can robustly drive genomes to the fixed point.

  3. Inactivation disinfection property of Moringa Oleifera seed extract: optimization and kinetic studies

    Science.gov (United States)

    Idris, M. A.; Jami, M. S.; Hammed, A. M.

    2017-05-01

    This paper presents the statistical optimization study of disinfection inactivation parameters of defatted Moringa oleifera seed extract on Pseudomonas aeruginosa bacterial cells. Three level factorial design was used to estimate the optimum range and the kinetics of the inactivation process was also carried. The inactivation process involved comparing different disinfection models of Chicks-Watson, Collins-Selleck and Homs models. The results from analysis of variance (ANOVA) of the statistical optimization process revealed that only contact time was significant. The optimum disinfection range of the seed extract was 125 mg/L, 30 minutes and 120rpm agitation. At the optimum dose, the inactivation kinetics followed the Collin-Selleck model with coefficient of determination (R2) of 0.6320. This study is the first of its kind in determining the inactivation kinetics of pseudomonas aeruginosa using the defatted seed extract.

  4. Inactivation Effect of Antibiotic-Resistant Gene Using Chlorine Disinfection

    Directory of Open Access Journals (Sweden)

    Takashi Furukawa

    2017-07-01

    Full Text Available The aim of this study was to elucidate the inactivation effects on the antibiotic-resistance gene (vanA of vancomycin-resistant enterococci (VRE using chlorination, a disinfection method widely used in various water treatment facilities. Suspensions of VRE were prepared by adding VRE to phosphate-buffered saline, or the sterilized secondary effluent of a wastewater treatment plant. The inactivation experiments were carried out at several chlorine concentrations and stirring time. Enterococci concentration and presence of vanA were determined. The enterococci concentration decreased as chlorine concentrations and stirring times increased, with more than 7.0 log reduction occurring under the following conditions: 40 min stirring at 0.5 mg Cl2/L, 20 min stirring at 1.0 mg Cl2/L, and 3 min stirring at 3.0 mg Cl2/L. In the inactivation experiment using VRE suspended in secondary effluent, the culturable enterococci required much higher chlorine concentration and longer treatment time for complete disinfection than the cases of suspension of VRE. However, vanA was detected in all chlorinated suspensions of VRE, even in samples where no enterococcal colonies were present on the medium agar plate. The chlorine disinfection was not able to destroy antibiotic-resistance genes, though it can inactivate and decrease bacterial counts of antibiotic-resistant bacteria (ARB. Therefore, it was suggested that remaining ARB and/or antibiotic-resistance gene in inactivated bacterial cells after chlorine disinfection tank could be discharged into water environments.

  5. Inactivation of basolateral amygdala specifically eliminates palatability-related information in cortical sensory responses.

    Science.gov (United States)

    Piette, Caitlin E; Baez-Santiago, Madelyn A; Reid, Emily E; Katz, Donald B; Moran, Anan

    2012-07-18

    Evidence indirectly implicates the amygdala as the primary processor of emotional information used by cortex to drive appropriate behavioral responses to stimuli. Taste provides an ideal system with which to test this hypothesis directly, as neurons in both basolateral amygdala (BLA) and gustatory cortex (GC)-anatomically interconnected nodes of the gustatory system-code the emotional valence of taste stimuli (i.e., palatability), in firing rate responses that progress similarly through "epochs." The fact that palatability-related firing appears one epoch earlier in BLA than GC is broadly consistent with the hypothesis that such information may propagate from the former to the latter. Here, we provide evidence supporting this hypothesis, assaying taste responses in small GC single-neuron ensembles before, during, and after temporarily inactivating BLA in awake rats. BLA inactivation (BLAx) changed responses in 98% of taste-responsive GC neurons, altering the entirety of every taste response in many neurons. Most changes involved reductions in firing rate, but regardless of the direction of change, the effect of BLAx was epoch-specific: while firing rates were changed, the taste specificity of responses remained stable; information about taste palatability, however, which normally resides in the "Late" epoch, was reduced in magnitude across the entire GC sample and outright eliminated in most neurons. Only in the specific minority of neurons for which BLAx enhanced responses did palatability specificity survive undiminished. Our data therefore provide direct evidence that BLA is a necessary component of GC gustatory processing, and that cortical palatability processing in particular is, in part, a function of BLA activity.

  6. Radical inactivation of a biological sulphydryl molecule

    International Nuclear Information System (INIS)

    Lin, W.S.; Lal, M.; Gaucher, G.M.; Armstrong, D.A.

    1977-01-01

    Reactive species produced from the free radical-induced chain oxidation of low molecular weight sulphydryl-containing molecules in aerated solutions deactivate the sulphydryl-containing enzyme papain, forming both reparable mixed disulphides and non-reparable products. This inactivation is highly efficient for penicillamine and glutathione, but almost negligible with cysteine, which is a protector of papain for [cysteine] / [papain] >= 5 under all conditions used. In the case of glutathione, superoxide dismutase caused only a small reduction in the inactivation and peroxide yields were small, implying that the deactivating species are not .O 2 - but RSOO. radicals or products from them. For penicillamine, however, dimutase was highly effective and the peroxide yields were relatively large, demonstrating that .O 2 - or a radical with similar capabilities for forming H 2 O 2 and being deactivated by dismutase was involved. Although in the presence of dismutase penicillamine is a better protector of non-reparable papain inactivation than glutathione, it suffers from a deficiency in that the papain-penicillamine mixed disulphide, which is always formed, cannot be repaired by spontaneous reaction with RSH molecules. (author)

  7. Genome evolution in an ancient bacteria-ant symbiosis: parallel gene loss among Blochmannia spanning the origin of the ant tribe Camponotini

    Directory of Open Access Journals (Sweden)

    Laura E. Williams

    2015-04-01

    Full Text Available Stable associations between bacterial endosymbionts and insect hosts provide opportunities to explore genome evolution in the context of established mutualisms and assess the roles of selection and genetic drift across host lineages and habitats. Blochmannia, obligate endosymbionts of ants of the tribe Camponotini, have coevolved with their ant hosts for ∼40 MY. To investigate early events in Blochmannia genome evolution across this ant host tribe, we sequenced Blochmannia from two divergent host lineages, Colobopsis obliquus and Polyrhachis turneri, and compared them with four published genomes from Blochmannia of Camponotus sensu stricto. Reconstructed gene content of the last common ancestor (LCA of these six Blochmannia genomes is reduced (690 protein coding genes, consistent with rapid gene loss soon after establishment of the symbiosis. Differential gene loss among Blochmannia lineages has affected cellular functions and metabolic pathways, including DNA replication and repair, vitamin biosynthesis and membrane proteins. Blochmannia of P. turneri (i.e., B. turneri encodes an intact DnaA chromosomal replication initiation protein, demonstrating that loss of dnaA was not essential for establishment of the symbiosis. Based on gene content, B. obliquus and B. turneri are unable to provision hosts with riboflavin. Of the six sequenced Blochmannia, B. obliquus is the earliest diverging lineage (i.e., the sister group of other Blochmannia sampled and encodes the fewest protein-coding genes and the most pseudogenes. We identified 55 genes involved in parallel gene loss, including glutamine synthetase, which may participate in nitrogen recycling. Pathways for biosynthesis of coenzyme A, terpenoids and riboflavin were lost in multiple lineages, suggesting relaxed selection on the pathway after inactivation of one component. Analysis of Illumina read datasets did not detect evidence of plasmids encoding missing functions, nor the presence of

  8. Genome dynamics of short oligonucleotides: the example of bacterial DNA uptake enhancing sequences.

    Directory of Open Access Journals (Sweden)

    Mohammed Bakkali

    Full Text Available Among the many bacteria naturally competent for transformation by DNA uptake-a phenomenon with significant clinical and financial implications- Pasteurellaceae and Neisseriaceae species preferentially take up DNA containing specific short sequences. The genomic overrepresentation of these DNA uptake enhancing sequences (DUES causes preferential uptake of conspecific DNA, but the function(s behind this overrepresentation and its evolution are still a matter for discovery. Here I analyze DUES genome dynamics and evolution and test the validity of the results to other selectively constrained oligonucleotides. I use statistical methods and computer simulations to examine DUESs accumulation in Haemophilus influenzae and Neisseria gonorrhoeae genomes. I analyze DUESs sequence and nucleotide frequencies, as well as those of all their mismatched forms, and prove the dependence of DUESs genomic overrepresentation on their preferential uptake by quantifying and correlating both characteristics. I then argue that mutation, uptake bias, and weak selection against DUESs in less constrained parts of the genome combined are sufficient enough to cause DUESs accumulation in susceptible parts of the genome with no need for other DUES function. The distribution of overrepresentation values across sequences with different mismatch loads compared to the DUES suggests a gradual yet not linear molecular drive of DNA sequences depending on their similarity to the DUES. Other genomically overrepresented sequences, both pro- and eukaryotic, show similar distribution of frequencies suggesting that the molecular drive reported above applies to other frequent oligonucleotides. Rare oligonucleotides, however, seem to be gradually drawn to genomic underrepresentation, thus, suggesting a molecular drag. To my knowledge this work provides the first clear evidence of the gradual evolution of selectively constrained oligonucleotides, including repeated, palindromic and protein

  9. Genomic aberrations in spitzoid tumours and their implications for diagnosis, prognosis and therapy

    Science.gov (United States)

    Wiesner, Thomas; Kutzner, Heinz; Cerroni, Lorenzo; Mihm, Martin J.; Busam, Klaus J.; Murali, Rajmohan

    2016-01-01

    Summary Histopathological evaluation of melanocytic tumours usually allows reliable distinction of benign melanocytic naevi from melanoma. More difficult is the histopathological classification of Spitz tumours, a heterogeneous group of tumours composed of large epithelioid or spindle-shaped melanocytes. Spitz tumours are biologically distinct from conventional melanocytic naevi and melanoma, as exemplified by their distinct patterns of genetic aberrations. Whereas conventional naevi and melanoma often harbour BRAF mutations, NRAS mutations, or inactivation of NF1, Spitz tumours show HRAS mutations, inactivation of BAP1 (often combined with BRAF mutations), or genomic rearrangements involving the kinases ALK, ROS1, NTRK1, BRAF, RET, and MET. In Spitz naevi, which lack significant histological atypia, all of these mitogenic driver aberrations trigger rapid cell proliferation, but after an initial growth phase, various tumour suppressive mechanisms stably block further growth. In some tumours, additional genomic aberrations may abrogate various tumour suppressive mechanisms, such as cell-cycle arrest, telomere shortening, or DNA damage response. The melanocytes then start to grow in a less organised fashion, may spread to regional lymph nodes, and are termed atypical Spitz tumours. Upon acquisition of even more aberrations, which often activate additional oncogenic pathways or reduce and alter cell differentiation, the neoplastic cells become entirely malignant and may colonise and take over distant organs (spitzoid melanoma). The sequential acquisition of genomic aberrations suggests that Spitz tumours represent a continuous biological spectrum, rather than a dichotomy of benign versus malignant, and that tumours with ambiguous histological features (atypical Spitz tumours) might be best classified as low-grade melanocytic tumours. The number of genetic aberrations usually correlates with the degree of histological atypia and explains why existing ancillary genetic

  10. Pulsed dielectric barrier discharge for Bacillus subtilis inactivation in water

    Science.gov (United States)

    Hernández-Arias, A. N.; Rodríguez-Méndez, B. G.; López-Callejas, R.; Valencia-Alvarado, R.; Mercado-Cabrera, A.; Peña-Eguiluz, R.; Barocio, S. R.; Muñoz-Castro, A. E.; de la Piedad Beneitez, A.

    2012-06-01

    The inactivation of Bacillus subtilis bacteria in water has been experimentally studied by means of a pulsed dielectric barrier discharge (PDBD) in a coaxial reactor endowed with an alumina dielectric. The plasma source is capable of operating at atmospheric pressure with gas, water or hybrid gas-liquid media at adjustable 25 kV pulses, 30 μs long and at a 500 Hz frequency. In order to evaluate the inactivation efficiency of the system, a set of experiments were designed on the basis of oxygen flow control. The initial data have showed a significant bacterial rate reduction of 103-107 CFU/mL. Additional results proved that applying an oxygen flow for a few seconds during the PDBD treatment inactivates the Bacillus subtilis population with 99.99% effectiveness. As a reference, without gas flow but with the same exposure times, this percentage is reduced to ~90%. The analysis of the relationship between inactivation rate and chemical species in the discharge has been carried out using optical emission spectroscopy as to identifying the main reactive species. Reactive oxygen species such as atomic oxygen and ozone tuned out to be the dominant germicidal species. Some proposed inactivation mechanisms of this technique are discussed.

  11. Pulsed dielectric barrier discharge for Bacillus subtilis inactivation in water

    International Nuclear Information System (INIS)

    Hernández-Arias, A N; López-Callejas, R; De la Piedad Beneitez, A; Rodríguez-Méndez, B G; Valencia-Alvarado, R; Mercado-Cabrera, A; Peña-Eguiluz, R; Barocio, S R; Muñoz-Castro, A E

    2012-01-01

    The inactivation of Bacillus subtilis bacteria in water has been experimentally studied by means of a pulsed dielectric barrier discharge (PDBD) in a coaxial reactor endowed with an alumina dielectric. The plasma source is capable of operating at atmospheric pressure with gas, water or hybrid gas-liquid media at adjustable 25 kV pulses, 30 μs long and at a 500 Hz frequency. In order to evaluate the inactivation efficiency of the system, a set of experiments were designed on the basis of oxygen flow control. The initial data have showed a significant bacterial rate reduction of 10 3 -10 7 CFU/mL. Additional results proved that applying an oxygen flow for a few seconds during the PDBD treatment inactivates the Bacillus subtilis population with 99.99% effectiveness. As a reference, without gas flow but with the same exposure times, this percentage is reduced to ∼90%. The analysis of the relationship between inactivation rate and chemical species in the discharge has been carried out using optical emission spectroscopy as to identifying the main reactive species. Reactive oxygen species such as atomic oxygen and ozone tuned out to be the dominant germicidal species. Some proposed inactivation mechanisms of this technique are discussed.

  12. Glaucoma and Driving: On-Road Driving Characteristics

    Science.gov (United States)

    Wood, Joanne M.; Black, Alex A.; Mallon, Kerry; Thomas, Ravi; Owsley, Cynthia

    2016-01-01

    Purpose To comprehensively investigate the types of driving errors and locations that are most problematic for older drivers with glaucoma compared to those without glaucoma using a standardized on-road assessment. Methods Participants included 75 drivers with glaucoma (mean = 73.2±6.0 years) with mild to moderate field loss (better-eye MD = -1.21 dB; worse-eye MD = -7.75 dB) and 70 age-matched controls without glaucoma (mean = 72.6 ± 5.0 years). On-road driving performance was assessed in a dual-brake vehicle by an occupational therapist using a standardized scoring system which assessed the types of driving errors and the locations where they were made and the number of critical errors that required an instructor intervention. Driving safety was rated on a 10-point scale. Self-reported driving ability and difficulties were recorded using the Driving Habits Questionnaire. Results Drivers with glaucoma were rated as significantly less safe, made more driving errors, and had almost double the rate of critical errors than those without glaucoma. Driving errors involved lane positioning and planning/approach, and were significantly more likely to occur at traffic lights and yield/give-way intersections. There were few between group differences in self-reported driving ability. Conclusions Older drivers with glaucoma with even mild to moderate field loss exhibit impairments in driving ability, particularly during complex driving situations that involve tactical problems with lane-position, planning ahead and observation. These results, together with the fact that these drivers self-report their driving to be relatively good, reinforce the need for evidence-based on-road assessments for evaluating driving fitness. PMID:27472221

  13. Glaucoma and Driving: On-Road Driving Characteristics.

    Directory of Open Access Journals (Sweden)

    Joanne M Wood

    Full Text Available To comprehensively investigate the types of driving errors and locations that are most problematic for older drivers with glaucoma compared to those without glaucoma using a standardized on-road assessment.Participants included 75 drivers with glaucoma (mean = 73.2±6.0 years with mild to moderate field loss (better-eye MD = -1.21 dB; worse-eye MD = -7.75 dB and 70 age-matched controls without glaucoma (mean = 72.6 ± 5.0 years. On-road driving performance was assessed in a dual-brake vehicle by an occupational therapist using a standardized scoring system which assessed the types of driving errors and the locations where they were made and the number of critical errors that required an instructor intervention. Driving safety was rated on a 10-point scale. Self-reported driving ability and difficulties were recorded using the Driving Habits Questionnaire.Drivers with glaucoma were rated as significantly less safe, made more driving errors, and had almost double the rate of critical errors than those without glaucoma. Driving errors involved lane positioning and planning/approach, and were significantly more likely to occur at traffic lights and yield/give-way intersections. There were few between group differences in self-reported driving ability.Older drivers with glaucoma with even mild to moderate field loss exhibit impairments in driving ability, particularly during complex driving situations that involve tactical problems with lane-position, planning ahead and observation. These results, together with the fact that these drivers self-report their driving to be relatively good, reinforce the need for evidence-based on-road assessments for evaluating driving fitness.

  14. Glaucoma and Driving: On-Road Driving Characteristics.

    Science.gov (United States)

    Wood, Joanne M; Black, Alex A; Mallon, Kerry; Thomas, Ravi; Owsley, Cynthia

    2016-01-01

    To comprehensively investigate the types of driving errors and locations that are most problematic for older drivers with glaucoma compared to those without glaucoma using a standardized on-road assessment. Participants included 75 drivers with glaucoma (mean = 73.2±6.0 years) with mild to moderate field loss (better-eye MD = -1.21 dB; worse-eye MD = -7.75 dB) and 70 age-matched controls without glaucoma (mean = 72.6 ± 5.0 years). On-road driving performance was assessed in a dual-brake vehicle by an occupational therapist using a standardized scoring system which assessed the types of driving errors and the locations where they were made and the number of critical errors that required an instructor intervention. Driving safety was rated on a 10-point scale. Self-reported driving ability and difficulties were recorded using the Driving Habits Questionnaire. Drivers with glaucoma were rated as significantly less safe, made more driving errors, and had almost double the rate of critical errors than those without glaucoma. Driving errors involved lane positioning and planning/approach, and were significantly more likely to occur at traffic lights and yield/give-way intersections. There were few between group differences in self-reported driving ability. Older drivers with glaucoma with even mild to moderate field loss exhibit impairments in driving ability, particularly during complex driving situations that involve tactical problems with lane-position, planning ahead and observation. These results, together with the fact that these drivers self-report their driving to be relatively good, reinforce the need for evidence-based on-road assessments for evaluating driving fitness.

  15. Loss of BRCA1 or BRCA2 markedly increases the rate of base substitution mutagenesis and has distinct effects on genomic deletions

    DEFF Research Database (Denmark)

    Zamborszky, J.; Szikriszt, B.; Gervai, J. Z.

    2017-01-01

    -genome sequencing of multiple isogenic chicken DT40 cell clones to precisely determine the consequences of BRCA1/2 loss on all types of genomic mutagenesis. Spontaneous base substitution mutation rates increased sevenfold upon the disruption of either BRCA1 or BRCA2, and the arising mutation spectra showed strong...... of stalled replication forks as the cause of increased mutagenesis. The high rate of base substitution mutagenesis demonstrated by our experiments is likely to significantly contribute to the oncogenic effect of the inactivation of BRCA1 or BRCA2....

  16. Drosophila MOF controls Checkpoint protein2 and regulates genomic stability during early embryogenesis.

    Science.gov (United States)

    Pushpavalli, Sreerangam N C V L; Sarkar, Arpita; Ramaiah, M Janaki; Chowdhury, Debabani Roy; Bhadra, Utpal; Pal-Bhadra, Manika

    2013-01-24

    In Drosophila embryos, checkpoints maintain genome stability by delaying cell cycle progression that allows time for damage repair or to complete DNA synthesis. Drosophila MOF, a member of MYST histone acetyl transferase is an essential component of male X hyperactivation process. Until recently its involvement in G2/M cell cycle arrest and defects in ionizing radiation induced DNA damage pathways was not well established. Drosophila MOF is highly expressed during early embryogenesis. In the present study we show that haplo-insufficiency of maternal MOF leads to spontaneous mitotic defects like mitotic asynchrony, mitotic catastrophe and chromatid bridges in the syncytial embryos. Such abnormal nuclei are eliminated and digested in the yolk tissues by nuclear fall out mechanism. MOF negatively regulates Drosophila checkpoint kinase 2 tumor suppressor homologue. In response to DNA damage the checkpoint gene Chk2 (Drosophila mnk) is activated in the mof mutants, there by causing centrosomal inactivation suggesting its role in response to genotoxic stress. A drastic decrease in the fall out nuclei in the syncytial embryos derived from mof¹/+; mnkp⁶/+ females further confirms the role of DNA damage response gene Chk2 to ensure the removal of abnormal nuclei from the embryonic precursor pool and maintain genome stability. The fact that mof mutants undergo DNA damage has been further elucidated by the increased number of single and double stranded DNA breaks. mof mutants exhibited genomic instability as evidenced by the occurance of frequent mitotic bridges in anaphase, asynchronous nuclear divisions, disruption of cytoskeleton, inactivation of centrosomes finally leading to DNA damage. Our findings are consistent to what has been reported earlier in mammals that; reduced levels of MOF resulted in increased genomic instability while total loss resulted in lethality. The study can be further extended using Drosophila as model system and carry out the interaction of MOF

  17. Drosophila MOF controls Checkpoint protein2 and regulates genomic stability during early embryogenesis

    Directory of Open Access Journals (Sweden)

    Pushpavalli Sreerangam NCVL

    2013-01-01

    Full Text Available Abstract Background In Drosophila embryos, checkpoints maintain genome stability by delaying cell cycle progression that allows time for damage repair or to complete DNA synthesis. Drosophila MOF, a member of MYST histone acetyl transferase is an essential component of male X hyperactivation process. Until recently its involvement in G2/M cell cycle arrest and defects in ionizing radiation induced DNA damage pathways was not well established. Results Drosophila MOF is highly expressed during early embryogenesis. In the present study we show that haplo-insufficiency of maternal MOF leads to spontaneous mitotic defects like mitotic asynchrony, mitotic catastrophe and chromatid bridges in the syncytial embryos. Such abnormal nuclei are eliminated and digested in the yolk tissues by nuclear fall out mechanism. MOF negatively regulates Drosophila checkpoint kinase 2 tumor suppressor homologue. In response to DNA damage the checkpoint gene Chk2 (Drosophila mnk is activated in the mof mutants, there by causing centrosomal inactivation suggesting its role in response to genotoxic stress. A drastic decrease in the fall out nuclei in the syncytial embryos derived from mof1/+; mnkp6/+ females further confirms the role of DNA damage response gene Chk2 to ensure the removal of abnormal nuclei from the embryonic precursor pool and maintain genome stability. The fact that mof mutants undergo DNA damage has been further elucidated by the increased number of single and double stranded DNA breaks. Conclusion mof mutants exhibited genomic instability as evidenced by the occurance of frequent mitotic bridges in anaphase, asynchronous nuclear divisions, disruption of cytoskeleton, inactivation of centrosomes finally leading to DNA damage. Our findings are consistent to what has been reported earlier in mammals that; reduced levels of MOF resulted in increased genomic instability while total loss resulted in lethality. The study can be further extended using

  18. Inactivation of E. Coli in Water Using Photocatalytic, Nanostructured Films Synthesized by Aerosol Routes

    Directory of Open Access Journals (Sweden)

    Pratim Biswas

    2013-03-01

    Full Text Available TiO2 nanostructured films were synthesized by an aerosol chemical vapor deposition (ACVD method with different controlled morphologies: columnar, granular, and branched structures for the photocatalytic inactivation of Escherichia coli (E. coli in water. Effects of film morphology and external applied voltage on inactivation rate were investigated. As-prepared films were characterized using scanning electron microscopy (SEM, transmission electron microscopy (TEM, X-ray diffractometry (XRD, and UV-VIS. Photocatalytic and photoelectrochemical inactivation of E. coli using as-prepared TiO2 films were performed under irradiation of UVA light (note: UVA has a low efficiency to inactivate E. coli. Inactivation rate constants for each case were obtained from their respective inactivation curve through a 2 h incubation period. Photocatalytic inactivation rate constants of E. coli are 0.02/min (using columnar films, and 0.08/min (using branched films. The inactivation rate constant for the columnar film was enhanced by 330% by applied voltage on the film while that for the branched film was increased only by 30%. Photocatalytic microbial inactivation rate of the columnar and the branched films were also compared taking into account their different surface areas. Since the majority of the UV radiation that reaches the Earth’s surface is UVA, this study provides an opportunity to use sunlight to efficiently decontaminate drinking water.

  19. Stem-Cell Inactivation on Transplantation of Haemopoietic Cell Suspensions from Genetically Different Donors

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, R. V. [Institute of Biophysics, Ministry of Public Health of the USSR, Moscow, USSR (Russian Federation)

    1969-07-15

    The transplantation of a mixture of haemopoietic or lymphoid cells from two genetically different mice into lethally irradiated F{sub 1} recipients results in marked or total inactivation of the colony-forming units of the graft. This phenomenon is observed following transplantation of mixtures of spleen cells or bone-marrow cells from animals of different genotypes: CBA + C57BL, A + CBA, A + C57BL, C3H + C57BL, CBA + (CBA x C57BL) F{sub 1}. Maximum inactivation is observed when lymph-node cells of one genotype are transplanted with spleen or bone-marrow cells of another genotype. Use of non-syngenic kidney cells or lymphoid cells inactivated by irradiation as one component of the mixture shows that inactivation of genetically heterogeneous stem cells requires the participation of viable lymphoid cells. The inactivation phenomenon is also observed with Jerne's method. This shows that inactivation affects not only colony-forming cells but also the immunologically competent precursors of antibody-producing cells. (author)

  20. Inactivation of influenza A virus H1N1 by disinfection process.

    Science.gov (United States)

    Jeong, Eun Kyo; Bae, Jung Eun; Kim, In Seop

    2010-06-01

    Because any patient, health care worker, or visitor is capable of transmitting influenza to susceptible persons within hospitals, hospital-acquired influenza has been a clinical concern. Disinfection and cleaning of medical equipment, surgical instruments, and hospital environment are important measures to prevent transmission of influenza virus from hospitals to individuals. This study was conducted to evaluate the efficacy of disinfection processes, which can be easily operated at hospitals, in inactivating influenza A virus H1N1 (H1N1). The effects of 0.1 mol/L NaOH, 70% ethanol, 70% 1-propanol, solvent/detergent (S/D) using 0.3% tri (n-butyl)-phosphate and 1.0% Triton X-100, heat, and ethylene oxide (EO) treatments in inactivating H1N1 were determined. Inactivation of H1N1 was kinetically determined by the treatment of disinfectants to virus solution. Also, a surface test method, which involved drying an amount of virus on a surface and then applying the inactivation methods for 1 minute of contact time, was used to determine the virucidal activity. H1N1 was completely inactivated to undetectable levels in 1 minute of 70% ethanol, 70% 1-propanol, and solvent/detergent treatments in the surface tests as well as in the suspension tests. H1N1 was completely inactivated in 1 minute of 0.1 mol/L NaOH treatment in the suspension tests and also effectively inactivated in the surface tests with the log reduction factor of 3.7. H1N1 was inactivated to undetectable levels within 5 minutes, 2.5 minutes, and 1 minute of heat treatment at 70, 80, and 90 degrees C, respectively in the suspension tests. Also, H1N1 was completely inactivated by EO treatment in the surface tests. Common disinfectants, heat, and EO tested in this study were effective at inactivating H1N1. These results would be helpful in implementing effective disinfecting measures to prevent hospital-acquired infections. Copyright 2010 Association for Professionals in Infection Control and Epidemiology, Inc

  1. An oncogenic MYB feedback loop drives alternate cell fates in adenoid cystic carcinoma

    Science.gov (United States)

    Drier, Yotam; Cotton, Matthew J.; Williamson, Kaylyn E.; Gillespie, Shawn M.; Ryan, Russell J.H.; Kluk, Michael J.; Carey, Christopher D.; Rodig, Scott J.; Sholl, Lynette M; Afrogheh, Amir H.; Faquin, William C.; Queimado, Lurdes; Qi, Jun; Wick, Michael J.; El-Naggar, Adel K.; Bradner, James E.; Moskaluk, Christopher A.; Aster, Jon C.; Knoechel, Birgit; Bernstein, Bradley E.

    2016-01-01

    Translocation events are frequent in cancer and may create chimeric fusions or ‘regulatory rearrangements’ that drive oncogene overexpression. Here we identify super-enhancer translocations that drive overexpression of the oncogenic transcription factor MYB as a recurrent theme in adenoid cystic carcinoma (ACC). Whole-genome sequencing data and chromatin maps reveal distinct chromosomal rearrangements that juxtapose super-enhancers to the MYB locus. Chromosome conformation capture confirms that the translocated enhancers interact with the MYB promoter. Remarkably, MYB protein binds to the translocated enhancers, creating a positive feedback loop that sustains its expression. MYB also binds enhancers that drive different regulatory programs in alternate cell lineages in ACC, cooperating with TP63 in myoepithelial cells and a Notch program in luminal epithelial cells. Bromodomain inhibitors slow tumor growth in ACC primagraft models in vivo. Thus, our study identifies super-enhancer translocations that drive MYB expression and provides insight into downstream MYB functions in the alternate ACC lineages. PMID:26829750

  2. The Eag domain regulates the voltage-dependent inactivation of rat Eag1 K+ channels.

    Directory of Open Access Journals (Sweden)

    Ting-Feng Lin

    Full Text Available Eag (Kv10 and Erg (Kv11 belong to two distinct subfamilies of the ether-à-go-go K+ channel family (KCNH. While Erg channels are characterized by an inward-rectifying current-voltage relationship that results from a C-type inactivation, mammalian Eag channels display little or no voltage-dependent inactivation. Although the amino (N-terminal region such as the eag domain is not required for the C-type inactivation of Erg channels, an N-terminal deletion in mouse Eag1 has been shown to produce a voltage-dependent inactivation. To further discern the role of the eag domain in the inactivation of Eag1 channels, we generated N-terminal chimeras between rat Eag (rEag1 and human Erg (hERG1 channels that involved swapping the eag domain alone or the complete cytoplasmic N-terminal region. Functional analyses indicated that introduction of the homologous hERG1 eag domain led to both a fast phase and a slow phase of channel inactivation in the rEag1 chimeras. By contrast, the inactivation features were retained in the reverse hERG1 chimeras. Furthermore, an eag domain-lacking rEag1 deletion mutant also showed the fast phase of inactivation that was notably attenuated upon co-expression with the rEag1 eag domain fragment, but not with the hERG1 eag domain fragment. Additionally, we have identified a point mutation in the S4-S5 linker region of rEag1 that resulted in a similar inactivation phenotype. Biophysical analyses of these mutant constructs suggested that the inactivation gating of rEag1 was distinctly different from that of hERG1. Overall, our findings are consistent with the notion that the eag domain plays a critical role in regulating the inactivation gating of rEag1. We propose that the eag domain may destabilize or mask an inherent voltage-dependent inactivation of rEag1 K+ channels.

  3. Studies on disappearance and inactivation of viruses in sewage, 2

    International Nuclear Information System (INIS)

    Yano, Kazuyoshi; Yabuuchi, Kiyoshi; Taguchi, Fumiaki.

    1985-01-01

    Methods of inactivating viruses in wastewater were studied. Polio visuses were added to the distilled water until the number of viruses reached 10sup(6.8) TCID 50 /ml, and liquid layer was 2 mm. The inactivation rate of viruses was determined at each time of ultraviolet (U.V.) irradiation (from 0.425 x 10 4 μw/cm 2 to 10.0 x 10 4 μw/cm 2 ). A linear correlation was seen between the inactivation rate of viruses and the time of U.V. irradiation obtained from logarithmic transformation. The irradiation time required for inactivation of 99.9% viruses was 15 sec when U.V. intensity was 10.0 x 10 4 μw/cm 2 and 9.6 min when it was 0.423 x 10 4 μw/cm 2 . When the U.V. intensity was 0.425 x 10 4 μw/cm 2 , the time required for inactivation was dependent on the number of viruses (120 sec in cases of 10sup(3.8) TCID 50 /ml of viruses and 720 sec in cases of 10sup(7.8) TCID 50 /ml of viruses). When viruses were added to the distilled water until the number reached 10sup(5.8) TCID 50 /ml, and the depth of water was designated as 2 mm, 10 cm, and 15 cm, the U.V. permeability was more than 89% at any depth of water, and a sixteen-min U.V. irradiation inactivated more than 99.99% of viruses. When polio viruses were added to triple step-treated water until the number reached 10sup(5.3) TCID 50 /ml, the irradiation time required for inactivation of more than 99.99% was one min when the U.V. intensity was 10.0 x 10 4 μw/cm 2 and 20 min when it was 0.425 x 10 4 μw/cm 2 . (Namekawa, K.)

  4. Efficient Bacteria Inactivation by Ultrasound in Municipal Wastewater

    Directory of Open Access Journals (Sweden)

    Leonel Ernesto Amabilis-Sosa

    2018-04-01

    Full Text Available The reuse of treated wastewaters could contribute to reducing water stress. In this research, ultrasound application on bacterial inactivation in municipal wastewater (MWW was evaluated. Total and fecal coliforms were used as standard fecal indicators; volatile suspended solids (VSS were analyzed too. Samples were taken from the effluent of secondary clarifiers. In addition, inactivation tests were carried out on pure cultures of E. coli (EC and B. subtilis (BS. Sonication was performed at 20 kHz, 35% amplitude and 600 W/L for 15, 30 and 45 min. After 15 min of sonication, bacterial density was reduced by 1.85 Log10 MPN/100 mL for EC and 3.16 Log10 CFU/mL for BS. After 30 min, no CFU/mL of BS were observed in MWW and, after 45 min, the reduction of total and fecal coliforms was practically 6.45 Log10 MPN/100mL. Inactivation mechanism was made by cavitation, which causes irreversible damage to the cell wall. Although high bacterial densities were employed, percentages of inactivation >99% were reached at 45 min. This research contributes to the implementation of ultrasound as a disinfection technique with high potential due to its high efficiency without producing byproducts. In fact, the water meets the guidelines for reuse in direct human contact services.

  5. Inactivation of bacteria in sewage sludge by gamma radiation

    International Nuclear Information System (INIS)

    Pandya, G.A.; Kapila, Smita; Kelkar, V.B.; Negi, Shobha; Modi, V.V.

    1987-01-01

    The survival of certain bacterial cultures suspended in sewage sludge and exposed to gamma-radiation was studied. The inactivation patterns of most of the organisms were significantly different when irradiation was performed using sewage samples collected in the summer and monsoon seasons. The summer sample collected from the anaerobic digester afforded significant protection to both Gram negative and Gram positive organisms. This was evident by the increase in dose required to bring about a 6 log cycle reduction in viable count of the bacterial cultures, when suspended in sewage samples instead of phosphate buffer. The observations made using monsoon digester samples were quite different. This sewage sludge greatly enhanced inactivation by gamma-radiation in most cases. The effects of certain chemicals on the inactivation patterns of two organisms - Salmonella typhi and Shigella flexneri - were examined. Arsenate, mercury and lead salts sensitised S. typhi, while barium acetate and sodium sulphide protected this culture against gamma-radiation. In the case of Sh. flexneri, barium acetate and iodacetamide proved to be radioprotectors. The effects of some chemicals on the inactivation pattern of Sh. flexneri cells irradiated in sludge are also discussed. (author)

  6. Active-site-directed inactivation of Aspergillus oryzae beta-galactosidase with beta-D-galactopyranosylmethyl-p-nitrophenyltriazene.

    Science.gov (United States)

    Mega, T; Nishijima, T; Ikenaka, T

    1990-04-01

    beta-D-Galactopyranosylmethyl-p-nitrophenyltriazene (beta-GalMNT), a specific inhibitor of beta-galactosidase, was isolated as crystals by HPLC and its chemical and physicochemical characteristics were examined. Aspergillus oryzae beta-galactosidase was inactivated by the compound. We studied the inhibition mechanism in detail. The inhibitor was hydrolyzed by the enzyme to p-nitroaniline and an active intermediate (beta-galactopyranosylmethyl carbonium or beta-galactopyranosylmethyldiazonium), which inactivated the enzyme. The efficiency of inactivation of the enzyme (the ratio of moles of inactivated enzyme to moles of beta-GalMNT hydrolyzed by the enzyme) was 3%; the efficiency of Escherichia coli beta-galactosidase was 49%. In spite of the low efficiency, the rate of inactivation of A. oryzae enzyme was not very different from that of the E. coli enzyme, because the former hydrolyzed beta-GalMNT faster than the latter did. A. oryzae beta-galactosidase was also inactivated by p-chlorophenyl, p-tolyl, and m-nitrophenyl derivatives of beta-galactopyranosylmethyltriazene. However, E. coli beta-galactosidase was not inactivated by these triazene derivatives. The results showed that the inactivation of A. oryzae and E. coli beta-galactosidases by beta-GalMNT was an enzyme-activated and active-site-directed irreversible inactivation. The possibility of inactivation by intermediates produced nonenzymatically was ruled out for E. coli, but not for the A. oryzae enzyme.

  7. Both selective and neutral processes drive GC content evolution in the human genome

    Directory of Open Access Journals (Sweden)

    Cagliani Rachele

    2008-03-01

    Full Text Available Abstract Background Mammalian genomes consist of regions differing in GC content, referred to as isochores or GC-content domains. The scientific debate is still open as to whether such compositional heterogeneity is a selected or neutral trait. Results Here we analyze SNP allele frequencies, retrotransposon insertion polymorphisms (RIPs, as well as fixed substitutions accumulated in the human lineage since its divergence from chimpanzee to indicate that biased gene conversion (BGC has been playing a role in within-genome GC content variation. Yet, a distinct contribution to GC content evolution is accounted for by a selective process. Accordingly, we searched for independent evidences that GC content distribution does not conform to neutral expectations. Indeed, after correcting for possible biases, we show that intron GC content and size display isochore-specific correlations. Conclusion We consider that the more parsimonious explanation for our results is that GC content is subjected to the action of both weak selection and BGC in the human genome with features such as nucleosome positioning or chromatin conformation possibly representing the final target of selective processes. This view might reconcile previous contrasting findings and add some theoretical background to recent evidences suggesting that GC content domains display different behaviors with respect to highly regulated biological processes such as developmentally-stage related gene expression and programmed replication timing during neural stem cell differentiation.

  8. Altered interactions between unicellular and multicellular genes drive hallmarks of transformation in a diverse range of solid tumors.

    Science.gov (United States)

    Trigos, Anna S; Pearson, Richard B; Papenfuss, Anthony T; Goode, David L

    2017-06-13

    Tumors of distinct tissues of origin and genetic makeup display common hallmark cellular phenotypes, including sustained proliferation, suppression of cell death, and altered metabolism. These phenotypic commonalities have been proposed to stem from disruption of conserved regulatory mechanisms evolved during the transition to multicellularity to control fundamental cellular processes such as growth and replication. Dating the evolutionary emergence of human genes through phylostratigraphy uncovered close association between gene age and expression level in RNA sequencing data from The Cancer Genome Atlas for seven solid cancers. Genes conserved with unicellular organisms were strongly up-regulated, whereas genes of metazoan origin were primarily inactivated. These patterns were most consistent for processes known to be important in cancer, implicating both selection and active regulation during malignant transformation. The coordinated expression of strongly interacting multicellularity and unicellularity processes was lost in tumors. This separation of unicellular and multicellular functions appeared to be mediated by 12 highly connected genes, marking them as important general drivers of tumorigenesis. Our findings suggest common principles closely tied to the evolutionary history of genes underlie convergent changes at the cellular process level across a range of solid cancers. We propose altered activity of genes at the interfaces between multicellular and unicellular regions of human gene regulatory networks activate primitive transcriptional programs, driving common hallmark features of cancer. Manipulation of cross-talk between biological processes of different evolutionary origins may thus present powerful and broadly applicable treatment strategies for cancer.

  9. The Genome of the Basidiomycetous Yeast and Human Pathogen Cryptococcus neoformans

    Science.gov (United States)

    Loftus, Brendan J.; Fung, Eula; Roncaglia, Paola; Rowley, Don; Amedeo, Paolo; Bruno, Dan; Vamathevan, Jessica; Miranda, Molly; Anderson, Iain J.; Fraser, James A.; Allen, Jonathan E.; Bosdet, Ian E.; Brent, Michael R.; Chiu, Readman; Doering, Tamara L.; Donlin, Maureen J.; D’Souza, Cletus A.; Fox, Deborah S.; Grinberg, Viktoriya; Fu, Jianmin; Fukushima, Marilyn; Haas, Brian J.; Huang, James C.; Janbon, Guilhem; Jones, Steven J. M.; Koo, Hean L.; Krzywinski, Martin I.; Kwon-Chung, June K.; Lengeler, Klaus B.; Maiti, Rama; Marra, Marco A.; Marra, Robert E.; Mathewson, Carrie A.; Mitchell, Thomas G.; Pertea, Mihaela; Riggs, Florenta R.; Salzberg, Steven L.; Schein, Jacqueline E.; Shvartsbeyn, Alla; Shin, Heesun; Shumway, Martin; Specht, Charles A.; Suh, Bernard B.; Tenney, Aaron; Utterback, Terry R.; Wickes, Brian L.; Wortman, Jennifer R.; Wye, Natasja H.; Kronstad, James W.; Lodge, Jennifer K.; Heitman, Joseph; Davis, Ronald W.; Fraser, Claire M.; Hyman, Richard W.

    2012-01-01

    Cryptococcus neoformans is a basidiomycetous yeast ubiquitous in the environment, a model for fungal pathogenesis, and an opportunistic human pathogen of global importance. We have sequenced its ~20-megabase genome, which contains ~6500 intron-rich gene structures and encodes a transcriptome abundant in alternatively spliced and antisense messages. The genome is rich in transposons, many of which cluster at candidate centromeric regions. The presence of these transposons may drive karyotype instability and phenotypic variation. C. neoformans encodes unique genes that may contribute to its unusual virulence properties, and comparison of two phenotypically distinct strains reveals variation in gene content in addition to sequence polymorphisms between the genomes. PMID:15653466

  10. Whole-genome analyses of speciation events in pathogenic Brucellae

    Energy Technology Data Exchange (ETDEWEB)

    Chain, Patrick S. G. [Lawrence Livermore National Laboratory (LLNL); Comerci, Diego J. [Universidad Nacional de General San Martin; Tolmasky, Marcelo E. [California State University; Larimer, Frank W [ORNL; Malfatti, Stephanie [Lawrence Livermore National Laboratory (LLNL); Vergez, Lisa [Lawrence Livermore National Laboratory (LLNL); Aguero, Fernan [Universidad Nacional de General San Martin; Land, Miriam L [ORNL; Ugalde, Rodolfo A. [Universidad Nacional de General San Martin; Garcia, Emilio [Lawrence Livermore National Laboratory (LLNL)

    2005-12-01

    Despite their high DNA identity and a proposal to group classical Brucella species as biovars of Brucella melitensis, the commonly recognized Brucella species can be distinguished by distinct biochemical and fatty acid characters, as well as by a marked host range (e.g., Brucella suis for swine, B. melitensis for sheep and goats, and Brucella abortus for cattle). Here we present the genome of B. abortus 2308, the virulent prototype biovar 1 strain, and its comparison to the two other human pathogenic Brucella species and to B. abortus field isolate 9-941. The global distribution of pseudogenes, deletions, and insertions supports previous indications that B. abortus and B. melitensis share a common ancestor that diverged from B. suis. With the exception of a dozen genes, the genetic complements of both B. abortus strains are identical, whereas the three species differ in gene content and pseudogenes. The pattern of species-specific gene inactivations affecting transcriptional regulators and outer membrane proteins suggests that these inactivations may play an important role in the establishment of host specificity and may have been a primary driver of speciation in the genus Brucella. Despite being nonmotile, the brucellae contain flagellum gene clusters and display species-specific flagellar gene inactivations, which lead to the putative generation of different versions of flagellum-derived structures and may contribute to differences in host specificity and virulence. Metabolic changes such as the lack of complete metabolic pathways for the synthesis of numerous compounds (e.g., glycogen, biotin, NAD, and choline) are consistent with adaptation of brucellae to an intracellular life-style.

  11. Nanoscale Structural and Mechanical Analysis of Bacillus anthracis Spores Inactivated with Rapid Dry Heating

    Science.gov (United States)

    Felker, Daniel L.; Burggraf, Larry W.

    2014-01-01

    Effective killing of Bacillus anthracis spores is of paramount importance to antibioterrorism, food safety, environmental protection, and the medical device industry. Thus, a deeper understanding of the mechanisms of spore resistance and inactivation is highly desired for developing new strategies or improving the known methods for spore destruction. Previous studies have shown that spore inactivation mechanisms differ considerably depending upon the killing agents, such as heat (wet heat, dry heat), UV, ionizing radiation, and chemicals. It is believed that wet heat kills spores by inactivating critical enzymes, while dry heat kills spores by damaging their DNA. Many studies have focused on the biochemical aspects of spore inactivation by dry heat; few have investigated structural damages and changes in spore mechanical properties. In this study, we have inactivated Bacillus anthracis spores with rapid dry heating and performed nanoscale topographical and mechanical analysis of inactivated spores using atomic force microscopy (AFM). Our results revealed significant changes in spore morphology and nanomechanical properties after heat inactivation. In addition, we also found that these changes were different under different heating conditions that produced similar inactivation probabilities (high temperature for short exposure time versus low temperature for long exposure time). We attributed the differences to the differential thermal and mechanical stresses in the spore. The buildup of internal thermal and mechanical stresses may become prominent only in ultrafast, high-temperature heat inactivation when the experimental timescale is too short for heat-generated vapor to efficiently escape from the spore. Our results thus provide direct, visual evidences of the importance of thermal stresses and heat and mass transfer to spore inactivation by very rapid dry heating. PMID:24375142

  12. Use of In Situ-Generated Dimethyldioxirane for Inactivation of Biological Agents

    National Research Council Canada - National Science Library

    Wallace, William H; Bushway, Karen E; Miller, Susan D; Delcomyn, Carrie A; Renard, Jean J; Henley, Michael V

    2005-01-01

    ...) at neutral pH, was investigated for inactivation of biological warfare agent simulants. The DMDO solution inactivated bacterial spores, fungal spores, vegetative bacterial cells, viruses, and protein by 7 orders of magnitude in less than 10 min...

  13. High pressure processing's potential to inactivate norovirus and other fooodborne viruses

    Science.gov (United States)

    High pressure processing (HPP) can inactivate human norovirus. However, all viruses are not equally susceptible to HPP. Pressure treatment parameters such as required pressure levels, initial pressurization temperatures, and pressurization times substantially affect inactivation. How food matrix ...

  14. Method of inactivating reproducible forms of mycoplasma in biological preparations

    International Nuclear Information System (INIS)

    Veber, P.; Jurmanova, K.; Lesko, J.; Hana, L.; Veber, V.

    1978-01-01

    Inactivation of mycoplasms in biological materials was achieved using gamma radiation with a dose rate of 1x10 4 to 5x10 6 rads/h for 1 to 250 hours. The technique is advantageous for allowing the inactivation of the final form of products (tablets, vaccines, etc.). (J.P.)

  15. Antigenic characterization of a formalin-inactivated poliovirus vaccine derived from live-attenuated Sabin strains.

    Science.gov (United States)

    Tano, Yoshio; Shimizu, Hiroyuki; Martin, Javier; Nishimura, Yorihiro; Simizu, Bunsiti; Miyamura, Tatsuo

    2007-10-10

    A candidate inactivated poliovirus vaccine derived from live-attenuated Sabin strains (sIPV), which are used in the oral poliovirus vaccine (OPV), was prepared in a large-production scale. The modification of viral antigenic epitopes during the formalin inactivation process was investigated by capture ELISA assays using type-specific and antigenic site-specific monoclonal antibodies (MoAbs). The major antigenic site 1 was modified during the formalin inactivation of Sabin 1. Antigenic sites 1-3 were slightly modified during the formalin inactivation of Sabin 2 strain. Sites 1 and 3 were altered on inactivated Sabin 3 virus. These alterations were different to those shown by wild-type Saukett strain, used in conventional IPV (cIPV). It has been previously reported that type 1 sIPV showed higher immunogenicity to type 1 cIPV whereas types 2 and 3 sIPV induced lower level of immunogenicity than their cIPV counterparts. Our results suggest that the differences in epitope structure after formalin inactivation may account, at least in part, for the observed differences in immunogenicity between Sabin and wild-type inactivated poliovaccines.

  16. Chlorine inactivation of fungal spores on cereal grains.

    Science.gov (United States)

    Andrews, S; Pardoel, D; Harun, A; Treloar, T

    1997-04-01

    Although 0.4% chlorine for 2 min has been recommended for surface disinfection of food samples before direct plating for fungal enumeration, this procedure may not be adequate for highly contaminated products. The effectiveness of a range of chlorine solutions was investigated using barley samples artificially contaminated with four different concentrations of Aspergillus flavus. A. niger, A. ochraceus, Eurotium repens, Penicillium brevicompactum P. chrysogenum and Cladosporium cladosporioides. At initial contamination levels greater than 10(4)/g, 0.4% chlorine did not inactivate sufficient spores to produce less than 20% contamination. Of the test fungi, ascospores of E. repens were the most resistant to chlorine inactivation, whereas the conidia of C. cladosporioides were the most sensitive. Rinsing the samples with 70% ethanol improved the effectiveness of the recommended surface disinfection procedure. However, some ethanol appears to permeate into the grains and may inactivate sensitive internal fungi, although a minimal effect only was observed on wheat infected with Alternaria.

  17. Inactivation of alcohol dehydrogenase (ADH) by ferryl derivatives of human hemoglobin.

    Science.gov (United States)

    Kowalczyk, Aleksandra; Puchała, Mieczysław; Wesołowska, Katarzyna; Serafin, Eligiusz

    2007-01-01

    In this paper, inactivation of alcohol dehydrogenase (ADH) by products of reactions of H2O2 with metHb has been studied. Inactivation of the enzyme was studied in two systems corresponding to two kinetic stages of the reaction. In the first system H2O2 was added to the mixture of metHb and ADH [the (metHb+ADH)+H2O2] system (ADH was present in the system since the moment of addition of H2O2 i. e. since the very beginning of the reaction of metHb with H2O2). In the second system ADH was added to the system 5 min after the initiation of the reaction of H2O2 with metHb [the (metHb+H2O2)5 min+ADH] system. In the first case all the products of reaction of H2O2 with metHb (non-peroxyl and peroxyl radicals and non-radical products, viz. hydroperoxides and *HbFe(IV)=O) could react with the enzyme causing its inactivation. In the second system, enzyme reacted almost exclusively with non-radical products (though a small contribution of reactions with peroxyl radicals cannot be excluded). ADH inactivation was observed in both system. Hydrogen peroxide alone did not inactivate ADH at the concentrations employed evidencing that enzyme inactivation was due exclusively to products of reaction of H2O2 with metHb. The rate and extent of ADH inactivation were much higher in the first than in the second system. The dependence of ADH activity on the time of incubation with ferryl derivatives of Hb can be described by a sum of three exponentials in the first system and two exponentials in the second system. Reactions of appropriate forms of the ferryl derivatives of hemoglobin have been tentatively ascribed to these exponentials. The extent of the enzyme inactivation in the second system was dependent on the proton concentration, being at the highest at pH 7.4 and negligible at pH 6.0. The reaction of H2O2 with metHb resulted in the formation of cross-links of Hb subunits (dimers and trimers). The amount of the dimers formed was much lower in the first system i. e. when the radical

  18. A Gene Gravity Model for the Evolution of Cancer Genomes: A Study of 3,000 Cancer Genomes across 9 Cancer Types

    Science.gov (United States)

    Lin, Chen-Ching; Zhao, Junfei; Jia, Peilin; Li, Wen-Hsiung; Zhao, Zhongming

    2015-01-01

    Cancer development and progression result from somatic evolution by an accumulation of genomic alterations. The effects of those alterations on the fitness of somatic cells lead to evolutionary adaptations such as increased cell proliferation, angiogenesis, and altered anticancer drug responses. However, there are few general mathematical models to quantitatively examine how perturbations of a single gene shape subsequent evolution of the cancer genome. In this study, we proposed the gene gravity model to study the evolution of cancer genomes by incorporating the genome-wide transcription and somatic mutation profiles of ~3,000 tumors across 9 cancer types from The Cancer Genome Atlas into a broad gene network. We found that somatic mutations of a cancer driver gene may drive cancer genome evolution by inducing mutations in other genes. This functional consequence is often generated by the combined effect of genetic and epigenetic (e.g., chromatin regulation) alterations. By quantifying cancer genome evolution using the gene gravity model, we identified six putative cancer genes (AHNAK, COL11A1, DDX3X, FAT4, STAG2, and SYNE1). The tumor genomes harboring the nonsynonymous somatic mutations in these genes had a higher mutation density at the genome level compared to the wild-type groups. Furthermore, we provided statistical evidence that hypermutation of cancer driver genes on inactive X chromosomes is a general feature in female cancer genomes. In summary, this study sheds light on the functional consequences and evolutionary characteristics of somatic mutations during tumorigenesis by propelling adaptive cancer genome evolution, which would provide new perspectives for cancer research and therapeutics. PMID:26352260

  19. Inactivation of viruses in labile blood derivatives. II. Physical methods

    International Nuclear Information System (INIS)

    Horowitz, B.; Wiebe, M.E.; Lippin, A.; Vandersande, J.; Stryker, M.H.

    1985-01-01

    The thermal inactivation of viruses in labile blood derivatives was evaluated by addition of marker viruses (VSV, Sindbis, Sendai, EMC) to anti-hemophilic factor (AHF) concentrates. The rate of virus inactivation at 60 degrees C was decreased by at least 100- to 700-fold by inclusion of 2.75 M glycine and 50 percent sucrose, or 3.0 M potassium citrate, additives which contribute to retention of protein biologic activity. Nonetheless, at least 10(4) infectious units of each virus was inactivated within 10 hours. Increasing the temperature from 60 to 70 or 80 degrees C caused a 90 percent or greater loss in AHF activity. An even greater decline in the rate of virus inactivation was observed on heating AHF in the lyophilized state, although no loss in AHF activity was observed after 72 hours of heating at 60 degrees C. Several of the proteins present in lyophilized AHF concentrates displayed an altered electrophoretic mobility as a result of exposure to 60 degrees C for 24 hours. Exposure of lyophilized AHF to irradiation from a cobalt 60 source resulted in an acceptable yield of AHF at 1.0, but not at 2.0, megarads. At 1 megarad, greater than or equal to 6.0 logs of VSV and 3.3 logs of Sindbis virus were inactivated

  20. Efficiency of superoxide anions in the inactivation of selected dehydrogenases

    International Nuclear Information System (INIS)

    Rodacka, Aleksandra; Serafin, Eligiusz; Puchala, Mieczyslaw

    2010-01-01

    The most ubiquitous of the primary reactive oxygen species, formed in all aerobes, is the superoxide free radical. It is believed that the superoxide anion radical shows low reactivity and in oxidative stress it is regarded mainly as an initiator of more reactive species such as · OH and ONOO - . In this paper, the effectiveness of inactivation of selected enzymes by radiation-generated superoxide radicals in comparison with the effectiveness of the other products of water radiolysis is examined. We investigate three enzymes: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), alcohol dehydrogenase (ADH) and lactate dehydrogenase (LDH). We show that the direct contribution of the superoxide anion radical to GAPDH and ADH inactivation is significant. The effectiveness of the superoxide anion in the inactivation of GAPDH and ADG was only 2.4 and 2.8 times smaller, respectively, in comparison with hydroxyl radical. LDH was practically not inactivated by the superoxide anion. Despite the fact that the studied dehydrogenases belong to the same class of enzymes (oxidoreductases), all have a similar molecular weight and are tetramers, their susceptibility to free-radical damage varies. The differences in the radiosensitivity of the enzymes are not determined by the basic structural parameters analyzed. A significant role in inactivation susceptibility is played by the type of amino acid residues and their localization within enzyme molecules.

  1. Efficiency of superoxide anions in the inactivation of selected dehydrogenases

    Energy Technology Data Exchange (ETDEWEB)

    Rodacka, Aleksandra, E-mail: olakow@biol.uni.lodz.p [Department of Molecular Biophysics, University of Lodz, Banacha 12/16, 90-237 Lodz (Poland); Serafin, Eligiusz, E-mail: serafin@biol.uni.lodz.p [Laboratory of Computer and Analytical Techniques, University of Lodz, Banacha 12/16, 90-237 Lodz (Poland); Puchala, Mieczyslaw, E-mail: puchala@biol.uni.lodz.p [Department of Molecular Biophysics, University of Lodz, Banacha 12/16, 90-237 Lodz (Poland)

    2010-09-15

    The most ubiquitous of the primary reactive oxygen species, formed in all aerobes, is the superoxide free radical. It is believed that the superoxide anion radical shows low reactivity and in oxidative stress it is regarded mainly as an initiator of more reactive species such as {sup {center_dot}}OH and ONOO{sup -}. In this paper, the effectiveness of inactivation of selected enzymes by radiation-generated superoxide radicals in comparison with the effectiveness of the other products of water radiolysis is examined. We investigate three enzymes: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), alcohol dehydrogenase (ADH) and lactate dehydrogenase (LDH). We show that the direct contribution of the superoxide anion radical to GAPDH and ADH inactivation is significant. The effectiveness of the superoxide anion in the inactivation of GAPDH and ADG was only 2.4 and 2.8 times smaller, respectively, in comparison with hydroxyl radical. LDH was practically not inactivated by the superoxide anion. Despite the fact that the studied dehydrogenases belong to the same class of enzymes (oxidoreductases), all have a similar molecular weight and are tetramers, their susceptibility to free-radical damage varies. The differences in the radiosensitivity of the enzymes are not determined by the basic structural parameters analyzed. A significant role in inactivation susceptibility is played by the type of amino acid residues and their localization within enzyme molecules.

  2. Acute Vhl gene inactivation induces cardiac HIF-dependent erythropoietin gene expression.

    Directory of Open Access Journals (Sweden)

    Marta Miró-Murillo

    Full Text Available Von Hippel Lindau (Vhl gene inactivation results in embryonic lethality. The consequences of its inactivation in adult mice, and of the ensuing activation of the hypoxia-inducible factors (HIFs, have been explored mainly in a tissue-specific manner. This mid-gestation lethality can be also circumvented by using a floxed Vhl allele in combination with an ubiquitous tamoxifen-inducible recombinase Cre-ER(T2. Here, we characterize a widespread reduction in Vhl gene expression in Vhl(floxed-UBC-Cre-ER(T2 adult mice after dietary tamoxifen administration, a convenient route of administration that has yet to be fully characterized for global gene inactivation. Vhl gene inactivation rapidly resulted in a marked splenomegaly and skin erythema, accompanied by renal and hepatic induction of the erythropoietin (Epo gene, indicative of the in vivo activation of the oxygen sensing HIF pathway. We show that acute Vhl gene inactivation also induced Epo gene expression in the heart, revealing cardiac tissue to be an extra-renal source of EPO. Indeed, primary cardiomyocytes and HL-1 cardiac cells both induce Epo gene expression when exposed to low O(2 tension in a HIF-dependent manner. Thus, as well as demonstrating the potential of dietary tamoxifen administration for gene inactivation studies in UBC-Cre-ER(T2 mouse lines, this data provides evidence of a cardiac oxygen-sensing VHL/HIF/EPO pathway in adult mice.

  3. Genetic and Epigenetic Inactivation of Kruppel-like Factor 4 in Medulloblastoma

    Directory of Open Access Journals (Sweden)

    Yukiko Nakahara

    2010-01-01

    Full Text Available Although medulloblastoma is the most common pediatric malignant brain tumor, its molecular underpinnings are largely unknown. We have identified rare, recurrent homozygous deletions of Kruppel-like Factor 4 (KLF4 in medulloblastoma using high-resolution single nucleotide polymorphism arrays, digital karyotyping, and genomic real-time polymerase chain reaction (PCR. Furthermore, we show that there is loss of physiological KLF4 expression in more than 40% of primary medulloblastomas both at the RNA and protein levels. Medulloblastoma cell lines drastically increase the expression of KLF4 in response to the demethylating agent 5-azacytidine and demonstrate dense methylation of the promoter CpG island by bisulfite sequencing. Methylation-specific PCR targeting the KLF4 promoter demonstrates CpG methylation in approximately 16% of primary medulloblastomas. Reexpression of KLF4 in the D283 medulloblastoma cell line results in significant growth suppression both in vitro and in vivo. We conclude that KLF4 is inactivated by either genetic or epigenetic mechanisms in a large subset of medulloblastomas and that it likely functions as a tumor suppressor gene in the pathogenesis of medulloblastoma.

  4. Inactivation of γ-aminobutyric acid aminotransferase by γ-ethynyl- and γ-vinyl GABA

    International Nuclear Information System (INIS)

    Silverman, R.B.; Burke, J.R.; Nanavati, S.M.

    1989-01-01

    γ-Ethynyl- and γ-vinyl GABA (vigabatrin) are anticonvulsant agents that have been shown to be mechanism-based inactivators of γ-aminobutyric acid aminotransferase (GABA-T). The inactivation mechanisms of these compounds have been investigated. Inactivation of GABA-T by [ 3 H]γ-ethynyl GABA led to the incorporation of 1.0 equiv of 3 H into the enzyme which is not released by enzyme denaturation. Inactivation by γ-ethynyl GABA of GABA-T reconstituted with [ 3 H]PLP followed by denaturation resulted in release of 3 H as PLP. Eight different possible adducts are consistent with that result. Experiments have been carried out to differentiate these possibilities. Similar studies have been carried out with γ-vinyl GABA. Inactivation by [ 14 C]γ-vinyl GABA resulted in the incorporation of 1.0 equiv of 14 C per active site. Unlike the case with γ-ethynyl GABA, γ-vinyl GABA inactivation of GABA-T reconstituted with [ 3 H]PLP followed by denaturation resulted in release of 3 H as PMP

  5. Citrobacter rodentium is an unstable pathogen showing evidence of significant genomic flux.

    Directory of Open Access Journals (Sweden)

    Nicola K Petty

    2011-04-01

    Full Text Available Citrobacter rodentium is a natural mouse pathogen that causes attaching and effacing (A/E lesions. It shares a common virulence strategy with the clinically significant human A/E pathogens enteropathogenic E. coli (EPEC and enterohaemorrhagic E. coli (EHEC and is widely used to model this route of pathogenesis. We previously reported the complete genome sequence of C. rodentium ICC168, where we found that the genome displayed many characteristics of a newly evolved pathogen. In this study, through PFGE, sequencing of isolates showing variation, whole genome transcriptome analysis and examination of the mobile genetic elements, we found that, consistent with our previous hypothesis, the genome of C. rodentium is unstable as a result of repeat-mediated, large-scale genome recombination and because of active transposition of mobile genetic elements such as the prophages. We sequenced an additional C. rodentium strain, EX-33, to reveal that the reference strain ICC168 is representative of the species and that most of the inactivating mutations were common to both isolates and likely to have occurred early on in the evolution of this pathogen. We draw parallels with the evolution of other bacterial pathogens and conclude that C. rodentium is a recently evolved pathogen that may have emerged alongside the development of inbred mice as a model for human disease.

  6. Inactivation of catalase by free radicals derived from oxygen via gamma radiolysis

    International Nuclear Information System (INIS)

    Malhaire, J.P.; Gardes-Albert, M.; Ferradini, C.; Sabourault, D.; Ribiere, C.

    1991-01-01

    The inactivation of catalase (10 -5 mol/l) by OH· or OH·/O 2 - · free radicals, at pH 7.4, has been investigated using γ radiolysis with doses up to 9000 Gy. Maxima initial G-values of catalase inactivation have been determined. These values are inferior to those of the free radicals OH· and O 2 - · produced by water radiolysis. Nevertheless, the presence of O 2 /O 2 - · enhances the inactivation due to OH· radicals. The general shape of the inactivation curves as a function of the radiation dose is biphasic: an initial rapid phase (from 0 to ∼ 500 Gy) followed by a slow phase (from ∼ 500 to 9000 Gy). The addition of H 2 O 2 at the beginning of irradiation decreases the inactivation yield by OH· radicals. This phenomenon could be due to the formation of compound-I (catalase-H 2 O 2 ) which would be less sensitive towards OH· radicals than catalase. In the presence of 0.1 mol/l ethanol, catalase (5 x 10 -6 mol/l) is not inactived by O 2 - · and RO 2 · (from ethanol) radicals for an irradiation dose of 2000 Gy, implying a complete protecting effect by ethanol [fr

  7. Genome-Wide Association Studies In Plant Pathosystems: Toward an Ecological Genomics Approach

    Directory of Open Access Journals (Sweden)

    Claudia Bartoli

    2017-05-01

    Full Text Available The emergence and re-emergence of plant pathogenic microorganisms are processes that imply perturbations in both host and pathogen ecological niches. Global change is largely assumed to drive the emergence of new etiological agents by altering the equilibrium of the ecological habitats which in turn places hosts more in contact with pathogen reservoirs. In this context, the number of epidemics is expected to increase dramatically in the next coming decades both in wild and crop plants. Under these considerations, the identification of the genetic variants underlying natural variation of resistance is a pre-requisite to estimate the adaptive potential of wild plant populations and to develop new breeding resistant cultivars. On the other hand, the prediction of pathogen's genetic determinants underlying disease emergence can help to identify plant resistance alleles. In the genomic era, whole genome sequencing combined with the development of statistical methods led to the emergence of Genome Wide Association (GWA mapping, a powerful tool for detecting genomic regions associated with natural variation of disease resistance in both wild and cultivated plants. However, GWA mapping has been less employed for the detection of genetic variants associated with pathogenicity in microbes. Here, we reviewed GWA studies performed either in plants or in pathogenic microorganisms (bacteria, fungi and oomycetes. In addition, we highlighted the benefits and caveats of the emerging joint GWA mapping approach that allows for the simultaneous identification of genes interacting between genomes of both partners. Finally, based on co-evolutionary processes in wild populations, we highlighted a phenotyping-free joint GWA mapping approach as a promising tool for describing the molecular landscape underlying plant - microbe interactions.

  8. Identifying Method of Drunk Driving Based on Driving Behavior

    Directory of Open Access Journals (Sweden)

    Xiaohua Zhao

    2011-05-01

    Full Text Available Drunk driving is one of the leading causes contributing to traffic crashes. There are numerous issues that need to be resolved with the current method of identifying drunk driving. Driving behavior, with the characteristic of real-time, was extensively researched to identify impaired driving behaviors. In this paper, the drives with BACs above 0.05% were defined as drunk driving state. A detailed comparison was made between normal driving and drunk driving. The experiment in driving simulator was designed to collect the driving performance data of the groups. According to the characteristics analysis for the effect of alcohol on driving performance, seven significant indicators were extracted and the drunk driving was identified by the Fisher Discriminant Method. The discriminant function demonstrated a high accuracy of classification. The optimal critical score to differentiate normal from drinking state was found to be 0. The evaluation result verifies the accuracy of classification method.

  9. Inactivation of bacteria in sewage sludge by ionizing radiation, heat, and thermoradiation

    International Nuclear Information System (INIS)

    Brandon, J.R.; Langley, S.L.

    1976-01-01

    For purposes of animal feeding or fertilizer usage on edible crops, sewage sludge must be free of pathogenic organisms. Bacterial inactivation by a combination of heat and irradiation is shown to be effective. These results must be viewed in conjunction with those from studies of parasite egg inactivation, virus inactivation, and physical-chemical benefits in order to make a fair assessment of the value of the thermoradiation treatment compared to other possible sludge treatment processes

  10. From genes to games: cooperation and cyclic dominance in meiotic drive.

    Science.gov (United States)

    Traulsen, Arne; Reed, Floyd A

    2012-04-21

    Evolutionary change can be described on a genotypic level or a phenotypic level. Evolutionary game theory is typically thought of as a phenotypic approach, although it is frequently argued that it can also be used to describe population genetic evolution. Interpreting the interaction between alleles in a diploid genome as a two player game leads to interesting alternative perspectives on genetic evolution. Here we focus on the case of meiotic drive and illustrate how meiotic drive can be directly and precisely interpreted as a social dilemma, such as the prisoners dilemma or the snowdrift game, in which the drive allele takes more than its fair share. Resistance to meiotic drive can lead to the well understood cyclic dominance found in the rock-paper-scissors game. This perspective is well established for the replicator dynamics, but there is still considerable ground for mutual inspiration between the two fields. For example, evolutionary game theorists can benefit from considering the stochastic evolutionary dynamics arising from finite population size. Population geneticists can benefit from game theoretic tools and perspectives on genetic evolution. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Light-driven photosensitizer uptake increases Candida albicans photodynamic inactivation.

    Science.gov (United States)

    Romano, Renan A; Pratavieira, Sebastião; Silva, Ana P da; Kurachi, Cristina; Guimarães, Francisco E G

    2017-11-01

    Photodynamic Inactivation (PDI) is based on the use of a photosensitizer (PS) and light that results mainly in the production of reactive oxygen species, aiming to produce microorganism cell death. PS incubation time and light dose are key protocol parameters that influence PDI response; the correct choice of them can increase the efficiency of inactivation. The results of this study show that a minor change in the PDI protocol, namely light-driven incubation leads to a higher photosensitizer and more uniform cell uptake inside the irradiated zone. Furthermore, as the uptake increases, the damage caused by PDI also increases. The proposed light-driven incubation prior to the inactivation illumination dose has advantages when compared to the traditional PDI treatments since it can be more selective and effective. Using a violet light as pre-illumination (light-driven incubation) source and a red-light system as PDI source, it was possible to demonstrate that when compared to the traditional protocol of dark incubation, the pre-illuminated cell culture showed an inactivation increase of 7 log units. These in vitro results performed in Candida albicans cells may result in the introduction of a new protocol for PDI. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Inactivation of acetylcholinesterase by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride.

    Science.gov (United States)

    Zang, Lun-Yi; Misra, Hara P

    2003-12-01

    The neurotoxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been shown to reversibly inhibit the activity of acetylcholinesterase. The inactivation of the enzyme was detected by monitoring the accumulation of yellow color produced from the reaction between thiocholine and dithiobisnitrobenzoate ion. The kinetic parameter, Km for the substrate (acetylthiocholine), was found to be 0.216 mM and Ki for MPTP inactivation of acetylcholinesterase was found to be 2.14 mM. The inactivation of enzyme by MPTP was found to be dose-dependent. It was found that MPTP is neither a substrate of AChE nor the time-dependent inactivator. The studies of reaction kinetics indicate the inactivation of AChE to be a linear mixed-type inhibition. The dilution assays indicate that MPTP is a reversible inhibitor for AChE. These data suggest that once MPTP enters the basal ganglia of the brain, it can inactivate the acetylcholinesterase enzyme and thereby increase the acetylcholine level in the basal ganglia of brain, leading to potential cell dysfunction. It appears that the nigrostriatal toxicity by MPTP leading to Parkinson's disease-like syndrome may, in part, be mediated via the acetylcholinesterase inactivation.

  13. Whole-Genome Sequencing in Microbial Forensic Analysis of Gamma-Irradiated Microbial Materials.

    Science.gov (United States)

    Broomall, Stacey M; Ait Ichou, Mohamed; Krepps, Michael D; Johnsky, Lauren A; Karavis, Mark A; Hubbard, Kyle S; Insalaco, Joseph M; Betters, Janet L; Redmond, Brady W; Rivers, Bryan A; Liem, Alvin T; Hill, Jessica M; Fochler, Edward T; Roth, Pierce A; Rosenzweig, C Nicole; Skowronski, Evan W; Gibbons, Henry S

    2016-01-15

    Effective microbial forensic analysis of materials used in a potential biological attack requires robust methods of morphological and genetic characterization of the attack materials in order to enable the attribution of the materials to potential sources and to exclude other potential sources. The genetic homogeneity and potential intersample variability of many of the category A to C bioterrorism agents offer a particular challenge to the generation of attributive signatures, potentially requiring whole-genome or proteomic approaches to be utilized. Currently, irradiation of mail is standard practice at several government facilities judged to be at particularly high risk. Thus, initial forensic signatures would need to be recovered from inactivated (nonviable) material. In the study described in this report, we determined the effects of high-dose gamma irradiation on forensic markers of bacterial biothreat agent surrogate organisms with a particular emphasis on the suitability of genomic DNA (gDNA) recovered from such sources as a template for whole-genome analysis. While irradiation of spores and vegetative cells affected the retention of Gram and spore stains and sheared gDNA into small fragments, we found that irradiated material could be utilized to generate accurate whole-genome sequence data on the Illumina and Roche 454 sequencing platforms. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  14. Self-rated driving and driving safety in older adults.

    Science.gov (United States)

    Ross, Lesley A; Dodson, Joan E; Edwards, Jerri D; Ackerman, Michelle L; Ball, Karlene

    2012-09-01

    Many U.S. states rely on older adults to self-regulate their driving and determine when driving is no longer a safe option. However, the relationship of older adults' self-rated driving in terms of actual driving competency outcomes is unclear. The current study investigates self-rated driving in terms of (1) systematic differences between older adults with high (good/excellent) versus low (poor/fair/average) self-ratings, and (2) the predictive nature of self-rated driving to adverse driving outcomes in older adults (n=350; mean age 73.9, SD=5.25, range 65-91). Adverse driving outcomes included self-reported incidences of (1) being pulled over by the police, (2) receiving a citation, (3) receiving a recommendation to cease or limit driving, (4) crashes, and (5) state-reported crashes. Results found that older drivers with low self-ratings reported more medical conditions, less driving frequency, and had been given more suggestions to stop/limit their driving; there were no other significant differences between low and high self-raters. Logistic regression revealed older drivers were more likely to have a state-reported crash and receive a suggestion to stop or limit driving. Men were more likely to report all adverse driving outcomes except for receiving a suggestion to stop or limit driving. Regarding self-rated driving, older adults with high ratings were 66% less likely (OR=0.34, 95% CI=0.14-0.85) to have received suggestions to limit or stop driving after accounting for demographics, health and driving frequency. Self-ratings were not predictive of other driving outcomes (being pulled over by the police, receiving a citation, self-reported crashes, or state-reported crashes, ps>0.05). Most older drivers (85.14%) rated themselves as either good or excellent drivers regardless of their actual previous citation or crash rates. Self-rated driving is likely not related to actual driving proficiency as indicated by previous crash involvement in older adults

  15. Urease from Helicobacter pylori is inactivated by sulforaphane and other isothiocyanates

    Science.gov (United States)

    Fahey, Jed W.; Stephenson, Katherine K.; Wade, Kristina L.; Talalay, Paul

    2013-01-01

    Infections by Helicobacter pylori are very common, causing gastroduodenal inflammation including peptic ulcers, and increasing the risk of gastric neoplasia. The isothiocyanate (ITC) sulforaphane [SF; 1-isothiocyanato-4-(methylsulfinyl)butane] derived from edible crucifers such as broccoli is potently bactericidal against Helicobacter, including antibiotic-resistant strains, suggesting a possible dietary therapy. Gastric H. pylori infections express high urease activity which generates ammonia, neutralizes gastric acidity, and promotes inflammation. The finding that SF inhibits (inactivates) urease (jack bean and Helicobacter) raised the issue of whether these properties might be functionally related. The rates of inactivation of urease activity depend on enzyme and SF concentrations and show first order kinetics. Treatment with SF results in time-dependent increases in the ultraviolet absorption of partially purified Helicobacter urease in the 280–340 nm region. This provides direct spectroscopic evidence for the formation of dithiocarbamates between the ITC group of SF and cysteine thiols of urease. The potencies of inactivation of Helicobacter urease by isothiocyanates structurally related to SF were surprisingly variable. Natural isothiocyanates closely related to SF, previously shown to be bactericidal (berteroin, hirsutin, phenethyl isothiocyanate, alyssin, and erucin), did not inactivate urease activity. Furthermore, SF is bactericidal against both urease positive and negative H. pylori strains. In contrast, some isothiocyanates such as benzoyl-ITC, are very potent urease inactivators, but are not bactericidal. The bactericidal effects of SF and other ITC against Helicobacter are therefore not obligatorily linked to urease inactivation, but may reduce the inflammatory component of Helicobacter infections. PMID:23583386

  16. An inactivated gE-deleted pseudorabies vaccine provides complete clinical protection and reduces virus shedding against challenge by a Chinese pseudorabies variant.

    Science.gov (United States)

    Wang, Jichun; Guo, Rongli; Qiao, Yongfeng; Xu, Mengwei; Wang, Zhisheng; Liu, Yamei; Gu, Yiqi; Liu, Chang; Hou, Jibo

    2016-12-07

    Since the end of 2011 an outbreak of pseudorabies affected Chinese pig herds that had been vaccinated with the commercial vaccine made of Bartha K61 strain. It is now clear that the outbreak was caused by an emergent PRV variant. Even though vaccines made of PRV Bartha K61 strain can confer certain cross protection against PRV variants based on experimental data, less than optimal clinical protection and virus shedding reduction were observed, making the control or eradication of this disease difficult. An infectious clone of PRV AH02LA strain was constructed to generate a gE deletion mutant PRV(LA-A B ) strain. PRV(LA-A B ) strain can reach a titer of 10 8.43 TCID 50 /mL (50% tissue culture infectious dose) on BHK-21 cells. To evaluate the efficiency of the inactivated vaccine made of PRV(LA-A B ) strain, thirty 3-week-old PRV-negative piglets were divided randomly into six groups for vaccination and challenge test. All five piglets in the challenge control showed typical clinical symptoms of pseudorabies post challenge. Sneezing and nasal discharge were observed in four and three piglets in groups C(vaccinated with inactivated PRV Bartha K61 strain vaccine) and D(vaccinated with live PRV Bartha K61 strain vaccine) respectively. In contrast, piglets in both groups A(vaccinated with inactivated PRV LA-AB strain vaccine) and B(vaccinated with inactivated PRV LA-A B strain vaccine with adjuvant) presented mild or no clinical symptoms. Moreover, viral titers detected via nasal swabs were approximately 100 times lower in group B than in the challenge control, and the duration of virus shedding (3-4 days) was shorter than in either the challenge control (5-10 days) or groups C and D (5-6 days). The infectious clone constructed in this study harbors the whole genome of the PRV variant AH02LA strain. The gE deletion mutant PRV(LA-A B )strain generated from PRV AH02LA strain can reach a high titer on BHK-21 cells. An inactivated vaccine of PRV LA-A B provides clinical

  17. The Drive-Wise Project: Driving Simulator Training increases real driving performance in healthy older drivers

    Directory of Open Access Journals (Sweden)

    Gianclaudio eCasutt

    2014-05-01

    Full Text Available Background: Age-related cognitive decline is often associated with unsafe driving behavior. We hypothesized that 10 active training sessions in a driving simulator increase cognitive and on-road driving performance. In addition, driving simulator training should outperform cognitive training.Methods: Ninety-one healthy active drivers (62 – 87 years were randomly assigned to either (1 a driving simulator training group, (2 an attention training group (vigilance and selective attention, or (3 a control group. The main outcome variables were on-road driving and cognitive performance. Seventy-seven participants (85% completed the training and were included in the analyses. Training gains were analyzed using a multiple regression analysis with planned comparisons.Results: The driving simulator training group showed an improvement in on-road driving performance compared to the attention training group. In addition, both training groups increased cognitive performance compared to the control group. Conclusion: Driving simulator training offers the potential to enhance driving skills in older drivers. Compared to the attention training, the simulator training seems to be a more powerful program for increasing older drivers’ safety on the road.

  18. Molecular signature of epistatic selection: interrogating genetic interactions in the sex-ratio meiotic drive of Drosophila simulans.

    Science.gov (United States)

    Chevin, Luis-Miguel; Bastide, Héloïse; Montchamp-Moreau, Catherine; Hospital, Frédéric

    2009-06-01

    Fine scale analyses of signatures of selection allow assessing quantitative aspects of a species' evolutionary genetic history, such as the strength of selection on genes. When several selected loci lie in the same genomic region, their epistatic interactions may also be investigated. Here, we study how the neutral polymorphism pattern was shaped by two close recombining loci that cause 'sex-ratio' meiotic drive in Drosophila simulans, as an example of strong selection with potentially strong epistasis. We compare the polymorphism data observed in a natural population with the results of forward stochastic simulations under several contexts of epistasis between the candidate loci for the drive. We compute the likelihood of different possible scenarios, in order to determine which configuration is most consistent with the data. Our results highlight that fine scale analyses of well-chosen candidate genomic regions provide information-rich data that can be used to investigate the genotype-phenotype-fitness map, which can hardly be studied in genome-wide analyses. We also emphasize that initial conditions and time of observation (here, time after the interruption of a partial selective sweep) are crucial parameters in the interpretation of real data, while these are often overlooked in theoretical studies.

  19. Luteinizing hormone-releasing hormone inactivation by purified pituitary plasma membranes: effects of receptor-binding studies.

    Science.gov (United States)

    Clayton, R N; Shakespear, R A; Duncan, J A; Marshall, J C

    1979-05-01

    Inactivation of LHRH by purified bovine pituitary plasma membranes was studied in vitro. After incubation of [125I]iodo-LHRH with plasma membranes, the amount of tracer bound to the pellet was measured, and the integrity of the unbound tracer in the supernatant was assessed. Reduction in ability to bind to anti-LHRH serum and to rebind to plasma membranes together with altered electrophoretic mobility on polyacrylamide gels showed that the unbound [125I]iodo-LHRH was inactivated. LHRH inactivation occurred rapidly and was dependent upon membrane concentration and incubation temperature. These results indicate that hormone inactivation must be taken into account in the interpretation of LHRH-receptor interactions. During 37 C incubations, the apparent absence of specific LHRH binding can be explained by inactivation of tracer hormone. Significant LHRH inactivation also occurred at 0 C, which in part explains the insensitivity of LHRH receptor assays. Assessment of LHRH inactivation by different particulate subcellular fractions of pituitary tissue showed that the inactivating enzyme was associated with the plasma membranes; other organelles did not alter LHRH. The enzyme appeared to be an integral part of the plasma membrane structure, since enzymic activity could not be removed by washing without reducing specific LHRH binding. Additionally, reduction of LHRH inactivation by the inhibitors Bacitracin and Trasylol and by magnesium was also accompanied by reduced LHRH binding. Previous studies have shown that the majority of LHRH binding to pituitary plasma membranes is to the low affinity site (approximately 10(-6) M), but the significance of this binding has been uncertain. Our findings indicate that low affinity binding probably represents binding of LHRH to the inactivating enzyme. The LHRH analog, D-Ser6(TBu), des Gly10, ethylamide, has greater biological activity than LHRH and is not inactivated to a significant extent by pituitary plasma membranes. The

  20. The Human Genome Project: applications in the diagnosis and treatment of neurologic disease.

    Science.gov (United States)

    Evans, G A

    1998-10-01

    The Human Genome Project (HGP), an international program to decode the entire DNA sequence of the human genome in 15 years, represents the largest biological experiment ever conducted. This set of information will contain the blueprint for the construction and operation of a human being. While the primary driving force behind the genome project is the potential to vastly expand the amount of genetic information available for biomedical research, the ramifications for other fields of study in biological research, the biotechnology and pharmaceutical industry, our understanding of evolution, effects on agriculture, and implications for bioethics are likely to be profound.

  1. Electrical drives for direct drive renewable energy systems

    CERN Document Server

    Mueller, Markus

    2013-01-01

    Wind turbine gearboxes present major reliability issues, leading to great interest in the current development of gearless direct-drive wind energy systems. Offering high reliability, high efficiency and low maintenance, developments in these direct-drive systems point the way to the next generation of wind power, and Electrical drives for direct drive renewable energy systems is an authoritative guide to their design, development and operation. Part one outlines electrical drive technology, beginning with an overview of electrical generators for direct drive systems. Principles of electrical design for permanent magnet generators are discussed, followed by electrical, thermal and structural generator design and systems integration. A review of power electronic converter technology and power electronic converter systems for direct drive renewable energy applications is then conducted. Part two then focuses on wind and marine applications, beginning with a commercial overview of wind turbine drive systems and a...

  2. Self-rated Driving and Driving Safety in Older Adults

    OpenAIRE

    Ross, Lesley A.; Dodson, Joan; Edwards, Jerri D.; Ackerman, Michelle L.; Ball, Karlene

    2012-01-01

    Many U.S. states rely on older adults to self-regulate their driving and determine when driving is no longer a safe option. However, the relationship of older adults’ self-rated driving in terms of actual driving competency outcomes is unclear. The current study investigates self-rated driving in terms of (1) systematic differences between older adults with high (good/excellent) versus low (poor/fair/average) self-ratings, and (2) the predictive nature of self-rated driving to adverse driving...

  3. Numerical evaluation of lactoperoxidase inactivation during continuous pulsed electric field processing.

    Science.gov (United States)

    Buckow, Roman; Semrau, Julius; Sui, Qian; Wan, Jason; Knoerzer, Kai

    2012-01-01

    A computational fluid dynamics (CFD) model describing the flow, electric field and temperature distribution of a laboratory-scale pulsed electric field (PEF) treatment chamber with co-field electrode configuration was developed. The predicted temperature increase was validated by means of integral temperature studies using thermocouples at the outlet of each flow cell for grape juice and salt solutions. Simulations of PEF treatments revealed intensity peaks of the electric field and laminar flow conditions in the treatment chamber causing local temperature hot spots near the chamber walls. Furthermore, thermal inactivation kinetics of lactoperoxidase (LPO) dissolved in simulated milk ultrafiltrate were determined with a glass capillary method at temperatures ranging from 65 to 80 °C. Temperature dependence of first order inactivation rate constants was accurately described by the Arrhenius equation yielding an activation energy of 597.1 kJ mol(-1). The thermal impact of different PEF processes on LPO activity was estimated by coupling the derived Arrhenius model with the CFD model and the predicted enzyme inactivation was compared to experimental measurements. Results indicated that LPO inactivation during combined PEF/thermal treatments was largely due to thermal effects, but 5-12% enzyme inactivation may be related to other electro-chemical effects occurring during PEF treatments. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  4. Inactivation of Smad4 in gastric carcinomas.

    Science.gov (United States)

    Powell, S M; Harper, J C; Hamilton, S R; Robinson, C R; Cummings, O W

    1997-10-01

    Allelic loss of chromosome 18q has been noted in intestinal type gastric adenocarcinomas. Smad4 is a gene located at 18q that was recently cloned in humans and found to be significantly altered in pancreatic cancers. We sought to determine whether Smad4 genetic alterations played a significant role in gastric tumorigenesis by studying 35 gastric adenocarcinomas of all histopathological types and pathological stages. Microdissected specimens were used for mutational analysis of Smad4 at the nucleotide level, including the entire coding region and intron/exon boundaries. Allelic imbalance was also analyzed at the Smad4 locus using two nearby microsatellite markers. One case of apparent biallelic inactivation of Smad4 was found in our study of 35 gastric carcinomas. A nonsense point mutation at codon 334 was demonstrated, which, similar to other Smad4 mutations, is predicted to truncate the conserved COOH-terminal domain of this protein. This Smad4 C to T transition mutation was proven to be somatically acquired. Allelic loss was also noted on chromosome 18q at a marker near Smad4 in this mutated gastric cancer, apparently producing complete inactivation of Smad4 in this tumor. Significant 18q allelic loss (56% of 34 informative cases) was noted in our gastric carcinomas using microsatellite markers near the Smad4 locus, regardless of histological subtype or pathological stage. Additionally, three cases of microsatellite instability were observed. Thus, Smad4 inactivation was noted in our gastric carcinomas; however, this event was rare. The frequent loss of chromosomal arm 18q observed in gastric cancers suggests the presence of other tumor suppressor genes in this region that are involved in gastric tumorigenesis. Further studies are needed to identify these other targets of inactivation during gastric cancer development.

  5. Pathogen inactivation techniques.

    Science.gov (United States)

    Pelletier, J P R; Transue, S; Snyder, E L

    2006-01-01

    The desire to rid the blood supply of pathogens of all types has led to the development of many technologies aimed at the same goal--eradication of the pathogen(s) without harming the blood cells or generating toxic chemical agents. This is a very ambitious goal, and one that has yet to be achieved. One approach is to shun the 'one size fits all' concept and to target pathogen-reduction agents at the Individual component types. This permits the development of technologies that might be compatible with, for example, plasma products but that would be cytocidal and thus incompatible with platelet concentrates or red blood cell units. The technologies to be discussed include solvent detergent and methylene blue treatments--designed to inactivate plasma components and derivatives; psoralens (S-59--amotosalen) designed to pathogen-reduce units of platelets; and two products aimed at red blood cells, S-303 (a Frale--frangible anchor-linker effector compound) and Inactine (a binary ethyleneimine). A final pathogen-reduction material that might actually allow one material to inactivate all three blood components--riboflavin (vitamin B2)--is also under development. The sites of action of the amotosalen (S-59), the S-303 Frale, Inactine, and riboflavin are all localized in the nucleic acid part of the pathogen. Solvent detergent materials act by dissolving the plasma envelope, thus compromising the integrity of the pathogen membrane and rendering it non-infectious. By disrupting the pathogen's ability to replicate or survive, its infectivity is removed. The degree to which bacteria and viruses are affected by a particular pathogen-reducing technology relates to its Gram-positive or Gram-negative status, to the sporulation characteristics for bacteria, and the presence of lipid or protein envelopes for viruses. Concerns related to photoproducts and other breakdown products of these technologies remain, and the toxicology of pathogen-reduction treatments is a major ongoing area

  6. Predicting Bacillus coagulans spores inactivation in tomato pulp under nonisothermal heat treatments.

    Science.gov (United States)

    Zimmermann, Morgana; Longhi, Daniel A; Schaffner, Donald W; Aragão, Gláucia M F

    2014-05-01

    The knowledge and understanding of Bacillus coagulans inactivation during a thermal treatment in tomato pulp, as well as the influence of temperature variation during thermal processes are essential for design, calculation, and optimization of the process. The aims of this work were to predict B. coagulans spores inactivation in tomato pulp under varying time-temperature profiles with Gompertz-inspired inactivation model and to validate the model's predictions by comparing the predicted values with experimental data. B. coagulans spores in pH 4.3 tomato pulp at 4 °Brix were sealed in capillary glass tubes and heated in thermostatically controlled circulating oil baths. Seven different nonisothermal profiles in the range from 95 to 105 °C were studied. Predicted inactivation kinetics showed similar behavior to experimentally observed inactivation curves when the samples were exposed to temperatures in the upper range of this study (99 to 105 °C). Profiles that resulted in less accurate predictions were those where the range of temperatures analyzed were comparatively lower (inactivation profiles starting at 95 °C). The link between fail prediction and both lower starting temperature and magnitude of the temperature shift suggests some chemical or biological mechanism at work. Statistical analysis showed that overall model predictions were acceptable, with bias factors from 0.781 to 1.012, and accuracy factors from 1.049 to 1.351, and confirm that the models used were adequate to estimate B. coagulans spores inactivation under fluctuating temperature conditions in the range from 95 to 105 °C. How can we estimate Bacillus coagulans inactivation during sudden temperature shifts in heat processing? This article provides a validated model that can be used to predict B. coagulans under changing temperature conditions. B. coagulans is a spore-forming bacillus that spoils acidified food products. The mathematical model developed here can be used to predict the spoilage

  7. Genomic dysregulation in gastric tumors.

    Science.gov (United States)

    Janjigian, Yelena Y; Kelsen, David P

    2013-03-01

    Gastric cancer is among the most common human malignancies and the second leading cause of cancer-related death. The different epidemiologic and histopathology of subtypes of gastric cancer are associated with different genomic patterns. Data suggests that gene expression patterns of proximal, distal gastric cancers-intestinal type, and diffuse/signet cell are well separated. This review summarizes the genetic and epigenetic changes thought to drive gastric cancer and the emerging paradigm of gastric cancer as three unique disease subtypes. Copyright © 2012 Wiley Periodicals, Inc.

  8. A synergism between adaptive effects and evolvability drives whole genome duplication to fixation

    NARCIS (Netherlands)

    Cuypers, Thomas D; Hogeweg, Paulien; Hogeweg, P.

    Whole genome duplication has shaped eukaryotic evolutionary history and has been associated with drastic environmental change and species radiation. While the most common fate of WGD duplicates is a return to single copy, retained duplicates have been found enriched for highly interacting genes.

  9. Inactivation of biological substances by local heating

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Masahiro [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.

    1982-09-01

    Mechanism of inactivation of biological substances caused by local heating was investigated. The effect of hot-zone formation by local heating on reaction of radicals was previously evaluated. The thermal increase in a hot zone due to low energy LET x-rays had little effect on reactibility of the radicals, but, in a hot zone caused by high energy LET x-rays, formed radicals seemed immediately react to active biological molecules to inactivate them. Direct thermal effect on biological molecules was analysed. Thermal increase in a hot zone may induce degenaration of biological molecules which seems to occur in a short time judged from the extension of a hot zone and the duration of high temperature.

  10. Genomic integrity and the ageing brain.

    Science.gov (United States)

    Chow, Hei-man; Herrup, Karl

    2015-11-01

    DNA damage is correlated with and may drive the ageing process. Neurons in the brain are postmitotic and are excluded from many forms of DNA repair; therefore, neurons are vulnerable to various neurodegenerative diseases. The challenges facing the field are to understand how and when neuronal DNA damage accumulates, how this loss of genomic integrity might serve as a 'time keeper' of nerve cell ageing and why this process manifests itself as different diseases in different individuals.

  11. Conformational lock and dissociative thermal inactivation of lentil seedling amine oxidase.

    Science.gov (United States)

    Moosavi-Nejad, S Zahra; Moosavi-Movahedi, Ali-Akbar; Rezaei-Tavirani, Mostafa; Floris, Giovanni; Medda, Rosaria

    2003-03-31

    The kinetics of thermal inactivation of copper-containing amine oxidase from lentil seedlings were studied in a 100 mM potassium phosphate buffer, pH 7, using putrescine as the substrate. The temperature range was between 47-60 degrees C. The thermal inactivation curves were not linear at 52 and 57 degrees C; three linear phases were shown. The first phase gave some information about the number of dimeric forms of the enzyme that were induced by the higher temperatures using the "conformational lock" pertaining theory to oligomeric enzyme. The "conformational lock" caused two additional dimeric forms of the enzyme when the temperature increased to 57 degrees C. The second and third phases were interpreted according to a dissociative thermal inactivation model. These phases showed that lentil amine oxidase was reversibly-dissociated before the irreversible thermal inactivation. Although lentil amine oxidase is not a thermostable enzyme, its dimeric structure can form "conformational lock," conferring a structural tolerance to the enzyme against heat stress.

  12. Hydroxylamine technique for in vitro prevention of penicillin inactivation of tobramycin.

    Science.gov (United States)

    Falkowski, A J; Creger, R J

    1984-01-01

    Hydroxylamine was evaluated and found to be a highly effective agent for the in vitro prevention of penicillin inactivation of tobramycin. This inactivation reaction resulted in an underestimation of tobramycin concentrations and was dependent on time, temperature, amount and type of penicillin, and amount of tobramycin. Plasma samples containing tobramycin and three clinically relevant concentrations of ticarcillin, carbenicillin, azlocillin, or piperacillin were incubated with and without hydroxylamine, and tobramycin concentrations were monitored at 0, 12, 24, 48, and 72 h. The inactivation reaction was found to be completely inhibited by hydroxylamine (1 mg/ml) compared with a 27 to 50% loss of measured tobramycin concentration in the unprotected tobramycin-penicillin samples. Hydroxylamine did not interfere with the Emit enzyme immunoassay (Syva Co.) at either high or low tobramycin concentrations. Hydroxylamine was effective in inhibiting the tobramycin inactivation at both room and refrigerator temperatures and was 100% effective in protecting tobramycin on a 1:1 molar basis. PMID:6393865

  13. Microbial electrolytic disinfection process for highly efficient Escherichia coli inactivation

    DEFF Research Database (Denmark)

    Zhou, Shaofeng; Huang, Shaobin; Li, Xiaohu

    2018-01-01

    extensively studied for recalcitrant organics removal, its application potential towards water disinfection (e.g., inactivation of pathogens) is still unknown. This study investigated the inactivation of Escherichia coli in a microbial electrolysis cell based bio-electro-Fenton system (renamed as microbial......Water quality deterioration caused by a wide variety of recalcitrant organics and pathogenic microorganisms has become a serious concern worldwide. Bio-electro-Fenton systems have been considered as cost-effective and highly efficient water treatment platform technology. While it has been......]OH was identified as one potential mechanism for disinfection. This study successfully demonstrated the feasibility of bio-electro-Fenton process for pathogens inactivation, which offers insight for the future development of sustainable, efficient, and cost-effective biological water treatment technology....

  14. Effect of Coat Layers in Bacillus Subtilis Spores Resistance to Photo-Catalytic Inactivation

    Directory of Open Access Journals (Sweden)

    Luz del Carmen Huesca-Espitia

    2017-10-01

    Full Text Available Different water treatment processes (physical and chemical exist to obtain safe water for human or food industry supply. The advanced oxidation technologies are rising as a new alternative to eliminate undesirable chemicals and waterborne diseases. In this work, we analyze the power of the photo-assisted Fenton process using Fe(II/H2O2 and UV radiation (365 nm to inactivate Bacillus subtilis spores, considered among the most resistant biological structures known. Different concentrations of Fe(II, H2O2 and UV radiation (365 nm were used to inactivate wt and some coat spore mutants of B. subtilis. Wt spores of B. subtilis were inactivated after 60 min using this process. In general, all defective coat mutants were more sensitive than the wt spores and, particularly, the double mutant was 10 folds more sensitive than others being inactivated during the first 10 minutes using soft reaction conditions. Presence of Fe(II ions was found essential for spore inactivating process and, for those spores inactivated using the Fe(II/H2O2 under UV radiation process, it is suggested that coat structures are important to their resistance to the treatment process. The photo-assisted Fenton process using Fe(II, H2O2 and UV radiation (365 nm can be used to inactivate any water microorganisms with the same or less resistance that B. subtilis spores to produce safe drinking water in relatively short treatment time.

  15. Genomic Instability: The Driving Force behind Refractory/Relapsing Hodgkin’s Lymphoma

    International Nuclear Information System (INIS)

    Knecht, Hans; Righolt, Christiaan; Mai, Sabine

    2013-01-01

    In classical Hodgkin’s lymphoma (HL) the malignant mononuclear Hodgkin (H) and multinuclear, diagnostic Reed-Sternberg (RS) cells are rare and generally make up <3% of the total cellular mass of the affected lymph nodes. During recent years, the introduction of laser micro-dissection techniques at the single cell level has substantially improved our understanding of the molecular pathogenesis of HL. Gene expression profiling, comparative genomic hybridization analysis, micro-RNA expression profiling and viral oncogene sequencing have deepened our knowledge of numerous facets of H- and RS-cell gene expression deregulation. The question remains whether disturbed signaling pathways and deregulated transcription factors are at the origin of refractory/relapsing Hodgkin’s lymphoma or whether these hallmarks are at least partially related to another major factor. We recently showed that the 3D nuclear organization of telomeres and chromosomes marked the transition from H- to RS-cells in HL cell lines. This transition is associated with progression of telomere dysfunction, shelterin disruption and progression of complex chromosomal rearrangements. We reported analogous findings in refractory/relapsing HL and identified the shelterin proteins TRF1, TRF2 and POT1 as targets of the LMP1 oncogene in post-germinal center B-cells. Here we summarize our findings, including data not previously published, and propose a model in which progressive disruption of nuclear integrity, a form of genomic instability, is the key-player in refractory/relapsing HL. Therapeutic approaches should take these findings into account

  16. Whole genomes redefine the mutational landscape of pancreatic cancer.

    Science.gov (United States)

    Waddell, Nicola; Pajic, Marina; Patch, Ann-Marie; Chang, David K; Kassahn, Karin S; Bailey, Peter; Johns, Amber L; Miller, David; Nones, Katia; Quek, Kelly; Quinn, Michael C J; Robertson, Alan J; Fadlullah, Muhammad Z H; Bruxner, Tim J C; Christ, Angelika N; Harliwong, Ivon; Idrisoglu, Senel; Manning, Suzanne; Nourse, Craig; Nourbakhsh, Ehsan; Wani, Shivangi; Wilson, Peter J; Markham, Emma; Cloonan, Nicole; Anderson, Matthew J; Fink, J Lynn; Holmes, Oliver; Kazakoff, Stephen H; Leonard, Conrad; Newell, Felicity; Poudel, Barsha; Song, Sarah; Taylor, Darrin; Waddell, Nick; Wood, Scott; Xu, Qinying; Wu, Jianmin; Pinese, Mark; Cowley, Mark J; Lee, Hong C; Jones, Marc D; Nagrial, Adnan M; Humphris, Jeremy; Chantrill, Lorraine A; Chin, Venessa; Steinmann, Angela M; Mawson, Amanda; Humphrey, Emily S; Colvin, Emily K; Chou, Angela; Scarlett, Christopher J; Pinho, Andreia V; Giry-Laterriere, Marc; Rooman, Ilse; Samra, Jaswinder S; Kench, James G; Pettitt, Jessica A; Merrett, Neil D; Toon, Christopher; Epari, Krishna; Nguyen, Nam Q; Barbour, Andrew; Zeps, Nikolajs; Jamieson, Nigel B; Graham, Janet S; Niclou, Simone P; Bjerkvig, Rolf; Grützmann, Robert; Aust, Daniela; Hruban, Ralph H; Maitra, Anirban; Iacobuzio-Donahue, Christine A; Wolfgang, Christopher L; Morgan, Richard A; Lawlor, Rita T; Corbo, Vincenzo; Bassi, Claudio; Falconi, Massimo; Zamboni, Giuseppe; Tortora, Giampaolo; Tempero, Margaret A; Gill, Anthony J; Eshleman, James R; Pilarsky, Christian; Scarpa, Aldo; Musgrove, Elizabeth A; Pearson, John V; Biankin, Andrew V; Grimmond, Sean M

    2015-02-26

    Pancreatic cancer remains one of the most lethal of malignancies and a major health burden. We performed whole-genome sequencing and copy number variation (CNV) analysis of 100 pancreatic ductal adenocarcinomas (PDACs). Chromosomal rearrangements leading to gene disruption were prevalent, affecting genes known to be important in pancreatic cancer (TP53, SMAD4, CDKN2A, ARID1A and ROBO2) and new candidate drivers of pancreatic carcinogenesis (KDM6A and PREX2). Patterns of structural variation (variation in chromosomal structure) classified PDACs into 4 subtypes with potential clinical utility: the subtypes were termed stable, locally rearranged, scattered and unstable. A significant proportion harboured focal amplifications, many of which contained druggable oncogenes (ERBB2, MET, FGFR1, CDK6, PIK3R3 and PIK3CA), but at low individual patient prevalence. Genomic instability co-segregated with inactivation of DNA maintenance genes (BRCA1, BRCA2 or PALB2) and a mutational signature of DNA damage repair deficiency. Of 8 patients who received platinum therapy, 4 of 5 individuals with these measures of defective DNA maintenance responded.

  17. Whole genomes redefine the mutational landscape of pancreatic cancer

    Science.gov (United States)

    Waddell, Nicola; Pajic, Marina; Patch, Ann-Marie; Chang, David K.; Kassahn, Karin S.; Bailey, Peter; Johns, Amber L.; Miller, David; Nones, Katia; Quek, Kelly; Quinn, Michael C. J.; Robertson, Alan J.; Fadlullah, Muhammad Z. H.; Bruxner, Tim J. C.; Christ, Angelika N.; Harliwong, Ivon; Idrisoglu, Senel; Manning, Suzanne; Nourse, Craig; Nourbakhsh, Ehsan; Wani, Shivangi; Wilson, Peter J; Markham, Emma; Cloonan, Nicole; Anderson, Matthew J.; Fink, J. Lynn; Holmes, Oliver; Kazakoff, Stephen H.; Leonard, Conrad; Newell, Felicity; Poudel, Barsha; Song, Sarah; Taylor, Darrin; Waddell, Nick; Wood, Scott; Xu, Qinying; Wu, Jianmin; Pinese, Mark; Cowley, Mark J.; Lee, Hong C.; Jones, Marc D.; Nagrial, Adnan M.; Humphris, Jeremy; Chantrill, Lorraine A.; Chin, Venessa; Steinmann, Angela M.; Mawson, Amanda; Humphrey, Emily S.; Colvin, Emily K.; Chou, Angela; Scarlett, Christopher J.; Pinho, Andreia V.; Giry-Laterriere, Marc; Rooman, Ilse; Samra, Jaswinder S.; Kench, James G.; Pettitt, Jessica A.; Merrett, Neil D.; Toon, Christopher; Epari, Krishna; Nguyen, Nam Q.; Barbour, Andrew; Zeps, Nikolajs; Jamieson, Nigel B.; Graham, Janet S.; Niclou, Simone P.; Bjerkvig, Rolf; Grützmann, Robert; Aust, Daniela; Hruban, Ralph H.; Maitra, Anirban; Iacobuzio-Donahue, Christine A.; Wolfgang, Christopher L.; Morgan, Richard A.; Lawlor, Rita T.; Corbo, Vincenzo; Bassi, Claudio; Falconi, Massimo; Zamboni, Giuseppe; Tortora, Giampaolo; Tempero, Margaret A.; Gill, Anthony J.; Eshleman, James R.; Pilarsky, Christian; Scarpa, Aldo; Musgrove, Elizabeth A.; Pearson, John V.; Biankin, Andrew V.; Grimmond, Sean M.

    2015-01-01

    Pancreatic cancer remains one of the most lethal of malignancies and a major health burden. We performed whole-genome sequencing and copy number variation (CNV) analysis of 100 pancreatic ductal adenocarcinomas (PDACs). Chromosomal rearrangements leading to gene disruption were prevalent, affecting genes known to be important in pancreatic cancer (TP53, SMAD4, CDKN2A, ARID1A and ROBO2) and new candidate drivers of pancreatic carcinogenesis (KDM6A and PREX2). Patterns of structural variation (variation in chromosomal structure) classified PDACs into 4 subtypes with potential clinical utility: the subtypes were termed stable, locally rearranged, scattered and unstable. A significant proportion harboured focal amplifications, many of which contained druggable oncogenes (ERBB2, MET, FGFR1, CDK6, PIK3R3 and PIK3CA), but at low individual patient prevalence. Genomic instability co-segregated with inactivation of DNA maintenance genes (BRCA1, BRCA2 or PALB2) and a mutational signature of DNA damage repair deficiency. Of 8 patients who received platinum therapy, 4 of 5 individuals with these measures of defective DNA maintenance responded. PMID:25719666

  18. Buffer AVL Alone Does Not Inactivate Ebola Virus in a Representative Clinical Sample Type.

    Science.gov (United States)

    Smither, Sophie J; Weller, Simon A; Phelps, Amanda; Eastaugh, Lin; Ngugi, Sarah; O'Brien, Lyn M; Steward, Jackie; Lonsdale, Steve G; Lever, Mark S

    2015-10-01

    Rapid inactivation of Ebola virus (EBOV) is crucial for high-throughput testing of clinical samples in low-resource, outbreak scenarios. The EBOV inactivation efficacy of Buffer AVL (Qiagen) was tested against marmoset serum (EBOV concentration of 1 × 10(8) 50% tissue culture infective dose per milliliter [TCID50 · ml(-1)]) and murine blood (EBOV concentration of 1 × 10(7) TCID50 · ml(-1)) at 4:1 vol/vol buffer/sample ratios. Posttreatment cell culture and enzyme-linked immunosorbent assay (ELISA) analysis indicated that treatment with Buffer AVL did not inactivate EBOV in 67% of samples, indicating that Buffer AVL, which is designed for RNA extraction and not virus inactivation, cannot be guaranteed to inactivate EBOV in diagnostic samples. Murine blood samples treated with ethanol (4:1 [vol/vol] ethanol/sample) or heat (60°C for 15 min) also showed no viral inactivation in 67% or 100% of samples, respectively. However, combined Buffer AVL and ethanol or Buffer AVL and heat treatments showed total viral inactivation in 100% of samples tested. The Buffer AVL plus ethanol and Buffer AVL plus heat treatments were also shown not to affect the extraction of PCR quality RNA from EBOV-spiked murine blood samples. © Crown copyright 2015.

  19. Palaeosymbiosis revealed by genomic fossils of Wolbachia in a strongyloidean nematode.

    Directory of Open Access Journals (Sweden)

    Georgios Koutsovoulos

    2014-06-01

    Full Text Available Wolbachia are common endosymbionts of terrestrial arthropods, and are also found in nematodes: the animal-parasitic filaria, and the plant-parasite Radopholus similis. Lateral transfer of Wolbachia DNA to the host genome is common. We generated a draft genome sequence for the strongyloidean nematode parasite Dictyocaulus viviparus, the cattle lungworm. In the assembly, we identified nearly 1 Mb of sequence with similarity to Wolbachia. The fragments were unlikely to derive from a live Wolbachia infection: most were short, and the genes were disabled through inactivating mutations. Many fragments were co-assembled with definitively nematode-derived sequence. We found limited evidence of expression of the Wolbachia-derived genes. The D. viviparus Wolbachia genes were most similar to filarial strains and strains from the host-promiscuous clade F. We conclude that D. viviparus was infected by Wolbachia in the past, and that clade F-like symbionts may have been the source of filarial Wolbachia infections.

  20. Reaction of uridine diphosphate galactose 4-epimerase with a suicide inactivator

    International Nuclear Information System (INIS)

    Flentke, G.R.; Frey, P.A.

    1990-01-01

    UDPgalactose 4-epimerase from Escherichia coli is rapidly inactivated by the compounds uridine 5'-diphosphate chloroacetol (UDC) and uridine 5'-diphosphate bromoacetol (UCB). Both UDC and UDB inactivate the enzyme in neutral solution concomitant with the appearance of chromophores absorbing maximally at 325 and 328 nm, respectively. The reaction of UDC with the enzyme follows saturation kinetics characterized by a K D of 0.110 mM and k inact of 0.84 min -1 at pH 8.5 and ionic strength 0.2 M. The inactivation by UDC is competitively inhibited by competitive inhibitors of UDPgalactose 4-epimerase, and it is accompanied by the tight but noncovalent binding of UDC to the enzyme in a stoichiometry of 1 mol of UDC/mol of enzyme dimer, corresponding to 1 mol of UDC/mol of enzyme-bound NAD + . The inactivation of epimerase by uridine 5'-diphosphate [ 2 H 2 ]chloroacetol proceeds with a primary kinetic isotope effect (k H /k D ) of 1.4. The inactivation mechanism is proposed to involve a minimum of three steps: (a) reversible binding of UDC to the active site of UDPgalactose 4-epimerase; (b) enolization of the chloroacetol moiety of enzyme-bound UDC, catalyzed by an enzymic general base at the active site; (c) alkylation of the nicotinamide ring of NAD + at the active site by the chloroacetol enolate. The resulting adduct between UDC and NAD + is proposed to be the chromophore with λ max at 325 nm. The enzymic general base required to facilitate proton transfer in redox catalysis by this enzyme may be the general base that facilitates enolization of the chloroacetol moiety of UDC in the inactivation reaction

  1. Rapid and efficient CRISPR/Cas9 gene inactivation in human neurons during human pluripotent stem cell differentiation and direct reprogramming.

    Science.gov (United States)

    Rubio, Alicia; Luoni, Mirko; Giannelli, Serena G; Radice, Isabella; Iannielli, Angelo; Cancellieri, Cinzia; Di Berardino, Claudia; Regalia, Giulia; Lazzari, Giovanna; Menegon, Andrea; Taverna, Stefano; Broccoli, Vania

    2016-11-18

    The CRISPR/Cas9 system is a rapid and customizable tool for gene editing in mammalian cells. In particular, this approach has widely opened new opportunities for genetic studies in neurological disease. Human neurons can be differentiated in vitro from hPSC (human Pluripotent Stem Cells), hNPCs (human Neural Precursor Cells) or even directly reprogrammed from fibroblasts. Here, we described a new platform which enables, rapid and efficient CRISPR/Cas9-mediated genome targeting simultaneously with three different paradigms for in vitro generation of neurons. This system was employed to inactivate two genes associated with neurological disorder (TSC2 and KCNQ2) and achieved up to 85% efficiency of gene targeting in the differentiated cells. In particular, we devised a protocol that, combining the expression of the CRISPR components with neurogenic factors, generated functional human neurons highly enriched for the desired genome modification in only 5 weeks. This new approach is easy, fast and that does not require the generation of stable isogenic clones, practice that is time consuming and for some genes not feasible.

  2. Post-irradiation inactivation, protection, and repair of the sulfhydryl enzyme malate synthase

    International Nuclear Information System (INIS)

    Durchschlag, H.; Zipper, P.

    1985-01-01

    Malate synthase from baker's yeast, a trimeric sulfhydryl enzyme with one essential sulfhydryl group per subunit, was inactivated by 2 kGy X-irradiation in air-saturated aqueous solution (enzyme concentration: 0.5 mg/ml). The radiation induced changes of enzymic activity were registered at about 0,30,60 h after irradiation. To elucidate the role of OH - , O 2 , and H 2 O 2 in the X-ray inactivation of the enzyme, experiments were performed in the absence of presence of different concentrations of specific additives (formate, superoxide dismutase, catalase). These additives were added to malate synthase solutions before or after X-irradiation. Moreover, repairs of inactivated malate synthase were initiated at about 0 or 30 h after irradiation by means of the sulfhydryl agent dithiothreitol. Experiments yielded the following results: 1. Irradiation of malate synthase in the absence of additives inactivated the enzyme immediately to a residual activity Asub(r)=3% (corresponding to a D 37 =0.6 kGy), and led to further slow inactivation in the post-irradiation phase. Repairs, initiated at different times after irradiation, restored enzymic activity considerably. The repair initiated at t=0 led to Asub(r)=21%; repairs started later on resulted in somewhat lower activities. The decay of reparability, however, was found to progress more slowly than post-irradiation inactivation itself. After completion of repair the activities of repaired samples did not decrease significantly. 2. The presence of specific additives during irradiation caused significant protective effects against primary inactivation. The protection by formate was very pronounced (e.g., Asub(r)=72% and D 37 =6 kGy for 100 mM formate). The presence of catalytic amounts of superoxide dismutase and/or catalase exhibited only minor effects, depending on the presence and concentration of formate. (orig.)

  3. Inactivation of 1-aminocyclopropane-1-carboxylate oxidase involves oxidative modifications.

    Science.gov (United States)

    Barlow, J N; Zhang, Z; John, P; Baldwin, J E; Schofield, C J

    1997-03-25

    1-Aminocyclopropane-1-carboxylate (ACC) oxidase catalyzes the final step in the biosynthesis of the plant signaling molecule ethylene. It is a member of the ferrous iron dependent family of oxidases and dioxygenases and is unusual in that it displays a very short half-life under catalytic conditions, typically less than 20 min, and a requirement for CO2 as an activator. The rates of inactivation of purified, recombinant ACC oxidase from tomato under various combinations of substrates and cofactors were measured. Inactivation was relatively slow in the presence of buffer alone (t1/2 > 1 h), but fast in the presence of ferrous iron and ascorbate (t1/2 approximately 10 min). The rate of iron/ascorbate-mediated inactivation was increased by the addition of ACC, unaffected by the addition of CO2 at saturation (supplied as bicarbonate) but decreased by the addition of catalase or ACC + CO2 at saturation (supplied as bicarbonate). Iron/ascorbate-mediated inactivation was accompanied by partial proteolysis as observed by SDS-PAGE analysis. The fragmentation pattern was altered when ACC was also included, suggesting that ACC can bind to ACC oxidase in the absence of bicarbonate. N-terminal sequencing of fragments resulted in identification of an internal cleavage site which we propose is proximate to active-site bound iron. Thus, ACC oxidase inactivates via relatively slow partial unfolding of the catalytically active conformation, oxidative damage mediated via hydrogen peroxide which is catalase protectable and oxidative damage to the active site which results in partial proteolysis and is not catalase protectable.

  4. An inactivated yellow fever 17DD vaccine cultivated in Vero cell cultures.

    Science.gov (United States)

    Pereira, Renata C; Silva, Andrea N M R; Souza, Marta Cristina O; Silva, Marlon V; Neves, Patrícia P C C; Silva, Andrea A M V; Matos, Denise D C S; Herrera, Miguel A O; Yamamura, Anna M Y; Freire, Marcos S; Gaspar, Luciane P; Caride, Elena

    2015-08-20

    Yellow fever is an acute infectious disease caused by prototype virus of the genus Flavivirus. It is endemic in Africa and South America where it represents a serious public health problem causing epidemics of hemorrhagic fever with mortality rates ranging from 20% to 50%. There is no available antiviral therapy and vaccination is the primary method of disease control. Although the attenuated vaccines for yellow fever show safety and efficacy it became necessary to develop a new yellow fever vaccine due to the occurrence of rare serious adverse events, which include visceral and neurotropic diseases. The new inactivated vaccine should be safer and effective as the existing attenuated one. In the present study, the immunogenicity of an inactivated 17DD vaccine in C57BL/6 mice was evaluated. The yellow fever virus was produced by cultivation of Vero cells in bioreactors, inactivated with β-propiolactone, and adsorbed to aluminum hydroxide (alum). Mice were inoculated with inactivated 17DD vaccine containing alum adjuvant and followed by intracerebral challenge with 17DD virus. The results showed that animals receiving 3 doses of the inactivated vaccine (2 μg/dose) with alum adjuvant had neutralizing antibody titers above the cut-off of PRNT50 (Plaque Reduction Neutralization Test). In addition, animals immunized with inactivated vaccine showed survival rate of 100% after the challenge as well as animals immunized with commercial attenuated 17DD vaccine. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Regulation of Na+ channel inactivation by the DIII and DIV voltage-sensing domains.

    Science.gov (United States)

    Hsu, Eric J; Zhu, Wandi; Schubert, Angela R; Voelker, Taylor; Varga, Zoltan; Silva, Jonathan R

    2017-03-06

    Functional eukaryotic voltage-gated Na + (Na V ) channels comprise four domains (DI-DIV), each containing six membrane-spanning segments (S1-S6). Voltage sensing is accomplished by the first four membrane-spanning segments (S1-S4), which together form a voltage-sensing domain (VSD). A critical Na V channel gating process, inactivation, has previously been linked to activation of the VSDs in DIII and DIV. Here, we probe this interaction by using voltage-clamp fluorometry to observe VSD kinetics in the presence of mutations at locations that have been shown to impair Na V channel inactivation. These locations include the DIII-DIV linker, the DIII S4-S5 linker, and the DIV S4-S5 linker. Our results show that, within the 10-ms timeframe of fast inactivation, the DIV-VSD is the primary regulator of inactivation. However, after longer 100-ms pulses, the DIII-DIV linker slows DIII-VSD deactivation, and the rate of DIII deactivation correlates strongly with the rate of recovery from inactivation. Our results imply that, over the course of an action potential, DIV-VSDs regulate the onset of fast inactivation while DIII-VSDs determine its recovery. © 2017 Hsu et al.

  6. Influenza virus inactivated by artificial ribonucleases as a prospective killed virus vaccine.

    Science.gov (United States)

    Fedorova, Antonina A; Goncharova, Elena P; Kovpak, Mikhail P; Vlassov, Valentin V; Zenkova, Marina A

    2012-04-19

    The inactivation of viral particles with agents causing minimal damage to the structure of surface epitopes is a well-established approach for the production of killed virus vaccines. Here, we describe new agents for the inactivation of influenza virus, artificial ribonucleases (aRNases), which are chemical compounds capable of cleaving RNA molecules. Several aRNases were identified, exhibiting significant virucidal activity against the influenza A virus and causing a minimal effect on the affinity of monoclonal antibodies for the inactivated virus. Using a murine model of the influenza virus infection, a high protective activity of the aRNase-inactivated virus as a vaccine was demonstrated. The results of the experiments demonstrate the efficacy of novel chemical agents in the preparation of vaccines against influenza and, perhaps, against other infections caused by RNA viruses. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Influence of pH, Salt and Temperature on Pressure Inactivation of Hepatitis A virus

    Science.gov (United States)

    The effects of pH (3-7), NaCl (0-6%), and temperature on pressure inactivation of hepatitis A virus (HAV) were determined. The HAV samples were treated at 400 MPa for 1 min at 5, 20, and 50C. Decreasing solution pH enhanced pressure inactivation of HAV. This enhanced inactivation effect was most e...

  8. Inactivation of human enteric virus surrogates by high-intensity ultrasound.

    Science.gov (United States)

    Su, Xiaowei; Zivanovic, Svetlana; D'Souza, Doris H

    2010-09-01

    Foodborne viruses, especially human noroviruses, are recognized as leading causes of nonbacterial gastroenteritis worldwide. Development of effective inactivation methods is of great importance to control their spread. In this study, the effect of high-intensity ultrasound (HIUS) on the infectivity of three foodborne virus surrogates was investigated. The three surrogates, murine norovirus (MNV-1), feline calicivirus (FCV-F9), and MS2 bacteriophage, were diluted in phosphate-buffered saline (PBS) or orange juice to a titer of approximately 6 log(10) PFU/mL or approximately 4 log(10) PFU/mL. The ultrasound treatment was performed in duplicate by immersing the HIUS probe in virus-containing solution that was cooled in ice-water and sonicated at 20 kHz for 2, 5, 10, 15, 20, and 30 min with 30 sec on and 30 sec off. The infectivity of the recovered viruses after each ultrasound treatment was evaluated in duplicate using standardized plaque assays and compared to untreated controls. The results show that HIUS effectiveness depended on the virus type, the initial titer of the viruses, and the virus suspension solution. At titers of approximately 4 log(10) PFU/mL in PBS, feline calicivirus (FCV)-F9, MS2, and murine norovirus (MNV)-1 required 5-, 10-, and 30-min treatment, respectively, for complete inactivation. At initial titers of approximately 4 log(10) PFU/mL in orange juice, FCV-F9 required a 15-min treatment for complete inactivation and only a 1.55 log(10) PFU/mL reduction was achieved for MNV-1 in orange juice after 30-min treatment. Thus, inactivation by HIUS in orange juice was much lower than in PBS. Experiments using titers of approximately 6 log(10) PFU/mL showed decreased effects compared to those using titers of approximately 4 log(10) PFU/mL. These results indicate that HIUS alone is not sufficient to inactivate virus in food. Hurdle technologies that combine HIUS with antimicrobials, heat, or pressure should be explored for viral inactivation.

  9. Evaluation of eco-friendly zwitterionic detergents for enveloped virus inactivation.

    Science.gov (United States)

    Conley, Lynn; Tao, Yinying; Henry, Alexis; Koepf, Edward; Cecchini, Douglas; Pieracci, John; Ghose, Sanchayita

    2017-04-01

    Inclusion of a detergent in protein biotherapeutic purification processes is a simple and very robust method for inactivating enveloped viruses. The detergent Triton X-100 has been used for many years and is part of the production process of several commercial therapeutic proteins. However, recent ecological studies have suggested that Triton X-100 and its break-down products can potentially behave as endocrine disrupters in aquatic organisms, raising concerns from an environmental impact perspective. As such, discharge of Triton X-100 into the waste water treatment plants is regulated in some jurisdictions, and alternative detergents for viral inactivation are required. In this work, we report on the identification and evaluation of more eco-friendly detergents as viable replacements for Triton X-100. Five detergent candidates with low to moderate environmental impact were initially identified and evaluated with respect to protein stability, followed by proof-of-concept virus inactivation studies using a model enveloped virus. From the set of candidates lauryldimethylamine N-oxide (LDAO) was identified as the most promising detergent due to its low ecotoxicity, robust anti-viral activity (LRV >4 at validation set-point conditions with X-MuLX), and absence of any negative impact on protein function. This detergent exhibited effective and robust virus inactivation in a broad range of protein concentrations, solution conductivities, pHs, and in several different cell culture fluid matrices. The only process parameter which correlated with reduced virus inactivation potency was LDAO concentration, and then only when the concentration was reduced to below the detergent's critical micelle concentration (CMC). Additionally, this work also demonstrated that LDAO was cleared to below detectable levels after Protein A affinity chromatography, making it suitable for use in a platform process that utilizes this chromatographic mode for protein capture. All these findings

  10. X-linked gene expression and X-chromosome inactivation: marsupials, mouse, and man compared.

    Science.gov (United States)

    VandeBerg, J L; Robinson, E S; Samollow, P B; Johnston, P G

    1987-01-01

    The existence of paternal X inactivation in Australian and American marsupial species suggests that this feature of X-chromosome dosage compensation is not a recent adaptation, but probably predates the evolutionary separation of the Australian and American marsupial lineages. Although it is theoretically possible that the marsupial system is one of random X inactivation with p greater than 0.99 and q less than 0.01 and dependent on parental source, no instance of random X inactivation (p = q or p not equal to q) has ever been verified in any tissue or cell type of any marsupial species. Therefore, we conclude that the most fundamental difference in X inactivation of marsupials and eutherians is whether the inactive X is the paternal one or is determined at random (with p = q in most but not all cases). The only other unequivocal difference between eutherians and marsupials is that both X chromosomes are active in mice and human oocytes, but not in kangaroo oocytes. Apparently, the inactive X is reactivated at a later meiotic stage or during early embryogenesis in kangaroos. X-chromosome inactivation takes place early in embryogenesis of eutherians and marsupials. Extraembryonic membranes of mice exhibit paternal X inactivation, whereas those of humans seem to exhibit random X inactivation with p greater than q (i.e., preferential paternal X inactivation). In general, extraembryonic membranes of marsupial exhibit paternal X inactivation, but the Gpd locus is active on both X chromosomes in at least some cells of kangaroo yolk sac. It is difficult to draw any general conclusion because of major differences in embryogeny of mice, humans, and marsupials, and uncertainties in interpreting the data from humans. Other differences between marsupials and eutherians in patterns of X-linked gene expression and X-chromosome inactivation seem to be quantitative rather than qualitative. Partial expression of some genes on the inactive X is characteristic of marsupials, with

  11. Genome-Wide Approaches to Drosophila Heart Development

    Directory of Open Access Journals (Sweden)

    Manfred Frasch

    2016-05-01

    Full Text Available The development of the dorsal vessel in Drosophila is one of the first systems in which key mechanisms regulating cardiogenesis have been defined in great detail at the genetic and molecular level. Due to evolutionary conservation, these findings have also provided major inputs into studies of cardiogenesis in vertebrates. Many of the major components that control Drosophila cardiogenesis were discovered based on candidate gene approaches and their functions were defined by employing the outstanding genetic tools and molecular techniques available in this system. More recently, approaches have been taken that aim to interrogate the entire genome in order to identify novel components and describe genomic features that are pertinent to the regulation of heart development. Apart from classical forward genetic screens, the availability of the thoroughly annotated Drosophila genome sequence made new genome-wide approaches possible, which include the generation of massive numbers of RNA interference (RNAi reagents that were used in forward genetic screens, as well as studies of the transcriptomes and proteomes of the developing heart under normal and experimentally manipulated conditions. Moreover, genome-wide chromatin immunoprecipitation experiments have been performed with the aim to define the full set of genomic binding sites of the major cardiogenic transcription factors, their relevant target genes, and a more complete picture of the regulatory network that drives cardiogenesis. This review will give an overview on these genome-wide approaches to Drosophila heart development and on computational analyses of the obtained information that ultimately aim to provide a description of this process at the systems level.

  12. Inversion variants in human and primate genomes.

    Science.gov (United States)

    Catacchio, Claudia Rita; Maggiolini, Flavia Angela Maria; D'Addabbo, Pietro; Bitonto, Miriana; Capozzi, Oronzo; Signorile, Martina Lepore; Miroballo, Mattia; Archidiacono, Nicoletta; Eichler, Evan E; Ventura, Mario; Antonacci, Francesca

    2018-05-18

    For many years, inversions have been proposed to be a direct driving force in speciation since they suppress recombination when heterozygous. Inversions are the most common large-scale differences among humans and great apes. Nevertheless, they represent large events easily distinguishable by classical cytogenetics, whose resolution, however, is limited. Here, we performed a genome-wide comparison between human, great ape, and macaque genomes using the net alignments for the most recent releases of genome assemblies. We identified a total of 156 putative inversions, between 103 kb and 91 Mb, corresponding to 136 human loci. Combining literature, sequence, and experimental analyses, we analyzed 109 of these loci and found 67 regions inverted in one or multiple primates, including 28 newly identified inversions. These events overlap with 81 human genes at their breakpoints, and seven correspond to sites of recurrent rearrangements associated with human disease. This work doubles the number of validated primate inversions larger than 100 kb, beyond what was previously documented. We identified 74 sites of errors, where the sequence has been assembled in the wrong orientation, in the reference genomes analyzed. Our data serve two purposes: First, we generated a map of evolutionary inversions in these genomes representing a resource for interrogating differences among these species at a functional level; second, we provide a list of misassembled regions in these primate genomes, involving over 300 Mb of DNA and 1978 human genes. Accurately annotating these regions in the genome references has immediate applications for evolutionary and biomedical studies on primates. © 2018 Catacchio et al.; Published by Cold Spring Harbor Laboratory Press.

  13. Repeat associated mechanisms of genome evolution and function revealed by the Mus caroli and Mus pahari genomes

    Science.gov (United States)

    Thybert, David; Roller, Maša; Navarro, Fábio C.P.; Fiddes, Ian; Streeter, Ian; Feig, Christine; Martin-Galvez, David; Kolmogorov, Mikhail; Janoušek, Václav; Akanni, Wasiu; Aken, Bronwen; Aldridge, Sarah; Chakrapani, Varshith; Chow, William; Clarke, Laura; Cummins, Carla; Doran, Anthony; Dunn, Matthew; Goodstadt, Leo; Howe, Kerstin; Howell, Matthew; Josselin, Ambre-Aurore; Karn, Robert C.; Laukaitis, Christina M.; Jingtao, Lilue; Martin, Fergal; Muffato, Matthieu; Nachtweide, Stefanie; Quail, Michael A.; Sisu, Cristina; Stanke, Mario; Stefflova, Klara; Van Oosterhout, Cock; Veyrunes, Frederic; Ward, Ben; Yang, Fengtang; Yazdanifar, Golbahar; Zadissa, Amonida; Adams, David J.; Brazma, Alvis; Gerstein, Mark; Paten, Benedict; Pham, Son; Keane, Thomas M.; Odom, Duncan T.; Flicek, Paul

    2018-01-01

    Understanding the mechanisms driving lineage-specific evolution in both primates and rodents has been hindered by the lack of sister clades with a similar phylogenetic structure having high-quality genome assemblies. Here, we have created chromosome-level assemblies of the Mus caroli and Mus pahari genomes. Together with the Mus musculus and Rattus norvegicus genomes, this set of rodent genomes is similar in divergence times to the Hominidae (human-chimpanzee-gorilla-orangutan). By comparing the evolutionary dynamics between the Muridae and Hominidae, we identified punctate events of chromosome reshuffling that shaped the ancestral karyotype of Mus musculus and Mus caroli between 3 and 6 million yr ago, but that are absent in the Hominidae. Hominidae show between four- and sevenfold lower rates of nucleotide change and feature turnover in both neutral and functional sequences, suggesting an underlying coherence to the Muridae acceleration. Our system of matched, high-quality genome assemblies revealed how specific classes of repeats can play lineage-specific roles in related species. Recent LINE activity has remodeled protein-coding loci to a greater extent across the Muridae than the Hominidae, with functional consequences at the species level such as reproductive isolation. Furthermore, we charted a Muridae-specific retrotransposon expansion at unprecedented resolution, revealing how a single nucleotide mutation transformed a specific SINE element into an active CTCF binding site carrier specifically in Mus caroli, which resulted in thousands of novel, species-specific CTCF binding sites. Our results show that the comparison of matched phylogenetic sets of genomes will be an increasingly powerful strategy for understanding mammalian biology. PMID:29563166

  14. Dementia & Driving

    Science.gov (United States)

    ... have to give up driving. Many people associate driving with self-reliance and freedom; the loss of driving privileges ... familiar roads and avoid long distances. Avoid heavy traffic and heavily traveled roads. Avoid driving at night and in bad weather. Reduce the ...

  15. Cre Activated and Inactivated Recombinant Adeno-Associated Viral Vectors for Neuronal Anatomical Tracing or Activity Manipulation.

    Science.gov (United States)

    Saunders, Arpiar; Sabatini, Bernardo L

    2015-07-01

    Recombinant adeno-associated viruses (rAAVs) transcriptionally activated by Cre recombinase (Cre-On) are powerful tools for determining the anatomy and function of genetically defined neuronal types in transgenic Cre driver mice. Here we describe how rAAVs transcriptionally inactivated by Cre (Cre-Off) can be used in conjunction with Cre-On rAAVs or genomic Cre-reporter alleles to study brain circuits. Intracranial injection of Cre-On/Cre-Off rAAVs into spatially intermingled Cre(+) and Cre(-) neurons allows these populations to be differentially labeled or manipulated within individual animals. This comparison helps define the unique properties of Cre(+) neurons, highlighting the specialized role they play in their constituent brain circuits. This protocol touches on the conceptual and experimental background of Cre-Off rAAV systems, including caveats and methods of validation. Copyright © 2015 John Wiley & Sons, Inc.

  16. Effect of rising time of rectangular pulse on inactivation of staphylococcus aureus by pulsed electric field

    Science.gov (United States)

    Zhang, Ruobing; Liang, Dapeng; Zheng, Nanchen; Xiao, Jianfu; Mo, Mengbin; Li, Jing

    2013-03-01

    Pulsed electric field (PEF) is a novel non-thermal food processing technology that involves the electric discharge of high voltage short pulses through the food product. In PEF study, rectangular pulses are most commonly used for inactivating microorganisms. However, little information is available on the inactivation effect of rising time of rectangular pulse. In this paper, inactivation effects, electric field strength, treatment time and conductivity on staphylococcus aureus inactivation were investigated when the pulse rising time is reduced from 2.5 μs to 200 ns. Experimental results showed that inactivation effect of PEF increased with electric field strength, solution conductivity and treatment time. Rising time of the rectangular pulse had a significant effect on the inactivation of staphylococcus aureus. Rectangular pulses with a rising time of 200 ns had a better inactivation effect than that with 2 μs. In addition, temperature increase of the solution treated by pulses with 200 ns rising time was lower than that with 2 μs. In order to obtain a given inactivation effect, treatment time required for the rectangular pulse with 200 ns rise time was shorter than that with 2 μs.

  17. Effect of rising time of rectangular pulse on inactivation of staphylococcus aureus by pulsed electric field

    International Nuclear Information System (INIS)

    Zhang, Ruobing; Liang, Dapeng; Xiao, Jianfu; Mo, Mengbin; Li, Jing; Zheng, Nanchen

    2013-01-01

    Pulsed electric field (PEF) is a novel non-thermal food processing technology that involves the electric discharge of high voltage short pulses through the food product. In PEF study, rectangular pulses are most commonly used for inactivating microorganisms. However, little information is available on the inactivation effect of rising time of rectangular pulse. In this paper, inactivation effects, electric field strength, treatment time and conductivity on staphylococcus aureus inactivation were investigated when the pulse rising time is reduced from 2.5 μs to 200 ns. Experimental results showed that inactivation effect of PEF increased with electric field strength, solution conductivity and treatment time. Rising time of the rectangular pulse had a significant effect on the inactivation of staphylococcus aureus. Rectangular pulses with a rising time of 200 ns had a better inactivation effect than that with 2 μs. In addition, temperature increase of the solution treated by pulses with 200 ns rising time was lower than that with 2 μs. In order to obtain a given inactivation effect, treatment time required for the rectangular pulse with 200 ns rise time was shorter than that with 2 μs.

  18. ASSESSING THE EFFECTIVENESS OF LOW PRESSURE ULTRAVIOLET LIGHT FOR INACTIVATING HELICOBACTER PYLORI

    Science.gov (United States)

    Three strains of Helicobacter pylori were exposed to ultraviolet (UV) light from a low-pressure source to determine log inactivation versus applied fluence. Results indicate that H. pylori is readily inactivated at UV fluences typically used in water treatment r...

  19. Inactivation of Staphylococcus aureus and Enterococcus faecalis by a direct-current, cold atmospheric-pressure air plasma microjet.

    Science.gov (United States)

    Tian, Ye; Sun, Peng; Wu, Haiyan; Bai, Na; Wang, Ruixue; Zhu, Weidong; Zhang, Jue; Liu, Fuxiang

    2010-07-01

    A direct-current, cold atmospheric-pressure air plasma microjet (PMJ) was performed to inactivate Staphylococcus aureus (S. aureus) and Enterococcus faecalis (E. faecalis) in air. The process of sterilization and morphology of bacteria was observed. We wish to know the possible inactivation mechanisms of PMJ and explore a potential application in dental and other temperature sensitive treatment. In this study, we employed a direct current, atmospheric pressure, cold air PMJ to inactivate bacterias. Scanning electron microscopy was employed to evaluate the morphology of S. aureus and showed rupture of cell walls after the plasma treatment and Optical emission spectrum (OES) were used to understand the possible inactivation mechanisms of PMJ. The inactivation rates could reach 100% in 5 min. When the distance between the exit nozzle of the PMJ device and Petri dish was extended from 1 cm to 3 cm, effective inactivation was also observed with a similar inactivation curve. The inactivation of bacteria is attributed to the abundant reactive oxygen and nitrogen species, as well as ultroviolet radiation in the plasma. Different life spans and defensibilities of these killing agents may hold the key to understanding the different inactivation curves at different treatment distances.

  20. Uninformative polymorphisms bias genome scans for signatures of selection

    Directory of Open Access Journals (Sweden)

    Roesti Marius

    2012-06-01

    Full Text Available Abstract Background With the establishment of high-throughput sequencing technologies and new methods for rapid and extensive single nucleotide (SNP discovery, marker-based genome scans in search of signatures of divergent selection between populations occupying ecologically distinct environments are becoming increasingly popular. Methods and Results On the basis of genome-wide SNP marker data generated by RAD sequencing of lake and stream stickleback populations, we show that the outcome of such studies can be systematically biased if markers with a low minor allele frequency are included in the analysis. The reason is that these ‘uninformative’ polymorphisms lack the adequate potential to capture signatures of drift and hitchhiking, the focal processes in ecological genome scans. Bias associated with uninformative polymorphisms is not eliminated by just avoiding technical artifacts in the data (PCR and sequencing errors, as a high proportion of SNPs with a low minor allele frequency is a general biological feature of natural populations. Conclusions We suggest that uninformative markers should be excluded from genome scans based on empirical criteria derived from careful inspection of the data, and that these criteria should be reported explicitly. Together, this should increase the quality and comparability of genome scans, and hence promote our understanding of the processes driving genomic differentiation.

  1. Complete genome sequence of Francisella tularensis subspecies holarctica FTNF002-00.

    Directory of Open Access Journals (Sweden)

    Ravi D Barabote

    Full Text Available Francisella tularensis subspecies holarctica FTNF002-00 strain was originally obtained from the first known clinical case of bacteremic F. tularensis pneumonia in Southern Europe isolated from an immunocompetent individual. The FTNF002-00 complete genome contains the RD(23 deletion and represents a type strain for a clonal population from the first epidemic tularemia outbreak in Spain between 1997-1998. Here, we present the complete sequence analysis of the FTNF002-00 genome. The complete genome sequence of FTNF002-00 revealed several large as well as small genomic differences with respect to two other published complete genome sequences of F. tularensis subsp. holarctica strains, LVS and OSU18. The FTNF002-00 genome shares >99.9% sequence similarity with LVS and OSU18, and is also approximately 5 MB smaller by comparison. The overall organization of the FTNF002-00 genome is remarkably identical to those of LVS and OSU18, except for a single 3.9 kb inversion in FTNF002-00. Twelve regions of difference ranging from 0.1-1.5 kb and forty-two small insertions and deletions were identified in a comparative analysis of FTNF002-00, LVS, and OSU18 genomes. Two small deletions appear to inactivate two genes in FTNF002-00 causing them to become pseudogenes; the intact genes encode a protein of unknown function and a drug:H(+ antiporter. In addition, we identified ninety-nine proteins in FTNF002-00 containing amino acid mutations compared to LVS and OSU18. Several non-conserved amino acid replacements were identified, one of which occurs in the virulence-associated intracellular growth locus subunit D protein. Many of these changes in FTNF002-00 are likely the consequence of direct selection that increases the fitness of this subsp. holarctica clone within its endemic population. Our complete genome sequence analyses lay the foundation for experimental testing of these possibilities.

  2. A qualitative exploration of driving stress and driving discourtesy.

    Science.gov (United States)

    Scott-Parker, B; Jones, C M; Rune, K; Tucker, J

    2018-05-31

    Driving courtesy, and conversely driving discourtesy, recently has been of great interest in the public domain. In addition, there has been increasing recognition of the negative impact of stress upon the individual's health and wellbeing, with a plethora of interventions aimed at minimising stress more generally. The research literature regarding driving dis/courtesy, in comparison, is scant, with a handful of studies examining the dis/courteous driving behaviour of road users, and the relationship between driving discourtesy and driving stress. To examine courteous and discourteous driving experiences, and to explore the impact of stress associated with such driving experiences. Thirty-eight drivers (20 females) from the Sunshine Coast region volunteered to participate in one of four 1-1.5 h focus groups. Content analysis used the verbatim utterances captured via an Mp3 device. Three themes pertaining to stressful and discourteous interactions were identified. Theme one pertained to the driving context: road infrastructure (eg, roundabouts, roadwork), vehicles (eg, features), location (eg, country vs city, unfamiliar areas), and temporal aspects (eg, holidays). Theme two pertained to other road users: their behaviour (eg, tailgating, merging), and unknown factors (eg, illicit and licit drug use). Theme three pertained to the self as road user: their own behaviours (eg, deliberate intimidation), and their emotions (eg, angry reaction to other drivers, being in control). Driving dis/courtesy and driving stress is a complex phenomenon, suggesting complex intervention efforts are required. Driving discourtesy was reported as being highly stressful, therefore intervention efforts which encourage driving courtesy and which foster emotional capacity to cope with stressful circumstances appear warranted. Copyright © 2018. Published by Elsevier Ltd.

  3. Carvacrol suppresses high pressure high temperature inactivation of Bacillus cereus spores.

    Science.gov (United States)

    Luu-Thi, Hue; Corthouts, Jorinde; Passaris, Ioannis; Grauwet, Tara; Aertsen, Abram; Hendrickx, Marc; Michiels, Chris W

    2015-03-16

    The inactivation of bacterial spores generally proceeds faster and at lower temperatures when heat treatments are conducted under high pressure, and high pressure high temperature (HPHT) processing is, therefore, receiving an increased interest from food processors. However, the mechanisms of spore inactivation by HPHT treatment are poorly understood, particularly at moderately elevated temperature. In the current work, we studied inactivation of the spores of Bacillus cereus F4430/73 by HPHT treatment for 5 min at 600MPa in the temperature range of 50-100°C, using temperature increments of 5°C. Additionally, we investigated the effect of the natural antimicrobial carvacrol on spore germination and inactivation under these conditions. Spore inactivation by HPHT was less than about 1 log unit at 50 to 70°C, but gradually increased at higher temperatures up to about 5 log units at 100°C. DPA release and loss of spore refractility in the spore population were higher at moderate (≤65°C) than at high (≥70°C) treatment temperatures, and we propose that moderate conditions induced the normal physiological pathway of spore germination resulting in fully hydrated spores, while at higher temperatures this pathway was suppressed and replaced by another mechanism of pressure-induced dipicolinic acid (DPA) release that results only in partial spore rehydration, probably because spore cortex hydrolysis is inhibited. Carvacrol strongly suppressed DPA release and spore rehydration during HPHT treatment at ≤65°C and also partly inhibited DPA release at ≥65°C. Concomitantly, HPHT spore inactivation was reduced by carvacrol at 65-90°C but unaffected at 95-100°C. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Inactivation of Ichthyophonus spores using sodium hypochlorite and polyvinyl pyrrolidone iodine.

    Science.gov (United States)

    Hershberger, P K; Pacheco, C A; Gregg, J L

    2008-11-01

    Chlorine and iodine solutions were effective at inactivating Ichthyophonus spores in vitro. Inactivation in sea water increased directly with halogen concentration and exposure duration, with significant differences (P < 0.05) from controls occurring at all chlorine concentrations and exposure durations tested (1.5-13.3 ppm for 1-60 min) and at most iodine concentrations and exposure durations tested (1.2 ppm for 60 min and 5.9-10.7 ppm for 1-60 min). However, 10-fold reductions in spore viability occurred only after exposure to halogen solutions at higher concentrations and/or longer durations (13 ppm total chlorine for 1-60 min, 5.9 ppm total iodine for 60 min, and 10.7 ppm total iodine for 1-60 min). Inactivation efficacy was greater when halogen solutions were prepared in fresh water, presumably because of combined effects of halogen-induced inactivation and general spore instability in fresh water. The results have practical implications for disinfection and biocontainment in research laboratories and other facilities that handle live Ichthyophonus cultures and/or infected fish.

  5. Glucocorticoid receptor gene inactivation in dopamine-innervated areas selectively decreases behavioral responses to amphetamine

    Science.gov (United States)

    Parnaudeau, Sébastien; Dongelmans, Marie-louise; Turiault, Marc; Ambroggi, Frédéric; Delbes, Anne-Sophie; Cansell, Céline; Luquet, Serge; Piazza, Pier-Vincenzo; Tronche, François; Barik, Jacques

    2014-01-01

    The meso-cortico-limbic system, via dopamine release, encodes the rewarding and reinforcing properties of natural rewards. It is also activated in response to abused substances and is believed to support drug-related behaviors. Dysfunctions of this system lead to several psychiatric conditions including feeding disorders and drug addiction. These disorders are also largely influenced by environmental factors and in particular stress exposure. Stressors activate the corticotrope axis ultimately leading to glucocorticoid hormone (GCs) release. GCs bind the glucocorticoid receptor (GR) a transcription factor ubiquitously expressed including within the meso-cortico-limbic tract. While GR within dopamine-innervated areas drives cocaine's behavioral responses, its implication in responses to other psychostimulants such as amphetamine has never been clearly established. Moreover, while extensive work has been made to uncover the role of this receptor in addicted behaviors, its contribution to the rewarding and reinforcing properties of food has yet to be investigated. Using mouse models carrying GR gene inactivation in either dopamine neurons or in dopamine-innervated areas, we found that GR in dopamine responsive neurons is essential to properly build amphetamine-induced conditioned place preference and locomotor sensitization. c-Fos quantification in the nucleus accumbens further confirmed defective neuronal activation following amphetamine injection. These diminished neuronal and behavioral responses to amphetamine may involve alterations in glutamate transmission as suggested by the decreased MK801-elicited hyperlocomotion and by the hyporeactivity to glutamate of a subpopulation of medium spiny neurons. In contrast, GR inactivation did not affect rewarding and reinforcing properties of food suggesting that responding for natural reward under basal conditions is preserved in these mice. PMID:24574986

  6. Glucocorticoid receptor gene inactivation in dopamine-innervated areas selectively decreases behavioral responses to amphetamine

    Directory of Open Access Journals (Sweden)

    Sebastien eParnaudeau

    2014-02-01

    Full Text Available The meso-cortico-limbic system, via dopamine release, encodes the rewarding and reinforcing properties of natural rewards. It is also activated in response to abused substances and is believed to support drug-related behaviors. Dysfunctions of this system lead to several psychiatric conditions including feeding disorders and drug addiction. These disorders are also largely influenced by environmental factors and in particular stress exposure. Stressors activate the corticotrope axis ultimately leading to glucocorticoid hormone (GCs release. GCs bind the glucocorticoid receptor (GR a transcription factor ubiquitously expressed including within the meso-cortico-limbic tract. While the GR within dopamine-innervated areas drives cocaine’s behavioral responses, its implication in responses to other psychostimulants such as amphetamine has never been clearly established. Moreover, while extensive work has been made to uncover the role of this receptor in addicted behaviors, its contribution to the rewarding and reinforcing properties of food has yet to be investigated. Using mouse models carrying GR gene inactivation in either dopamine neurons or in dopamine-innervated areas, we found that GR in dopamine responsive neurones is essential to properly build amphetamine-induced conditioned place preference and locomotor sensitization. c-Fos quantification in the nucleus accumbens further confirmed defective neuronal activation following amphetamine injection. These diminished neuronal and behavioral responses to amphetamine may involve alterations in glutamate transmission as suggested by the decreased MK801-elicited hyperlocomotion and by the hyporeactivity to glutamate of a subpopulation of medium spiny neurons. In contrast, GR inactivation did not affect rewarding and reinforcing properties of food suggesting that responding for natural reward under basal conditions is preserved in these mice.

  7. Thermal and Carbon Dioxide Inactivation of Alkaline Phosphatase in Buffer and Milk

    Directory of Open Access Journals (Sweden)

    Osman Erkmen

    2004-01-01

    Full Text Available The effects of temperature and CO2 treatment on the inactivation of alkaline phosphatase (ALP were studied. The thermal stability of ALP was found to be significantly (P< 0.05 different in glycine/NaOH buffer, pasteurized milk and raw milk. ALP was completely inactivated in the buffer at 60, 70 and 80 °C but approximately 12 % of activity was present at 50 °C after 55 min of treatment. The time required for complete inactivation of the enzyme in the buffer was reduced from 50 to 4 min as temperature increased from 60 to 80 °C. Complete inactivation of the enzyme in pasteurized milk was achieved at 70 and 80 °C but 28 and 15 % of ALP activity was still present at 50 and 60 °C after 120 min of treatment. Inactivation time for raw milk was reduced nearly 18-fold by increasing temperature from 50 to 70 °C. ALP in the buffer exposed to CO2 (under atmospheric pressure treatment at different temperatures showed a decrease in enzyme activity. Inactivation was found to be higher as the temperature increased from 20 to 50 °C. At the end of a 30-min treatment, residual ALP activity was found to be 84 and 19 % at 20 and 50 °C, respectively. Faster drop in pH and enzyme activity occurred within 5 min. The change in pH and enzyme activity dependant on CO2 treatment was not observed in raw milk mainly due to strong buffering capacity of milk.

  8. Nucleus incertus inactivation impairs spatial learning and memory in rats.

    Science.gov (United States)

    Nategh, Mohsen; Nikseresht, Sara; Khodagholi, Fariba; Motamedi, Fereshteh

    2015-02-01

    Nucleus incertus (NI) is a pontine nucleus which releases mainly GABA and relaxin-3 in rats. Its suggested functions include response to stress, arousal, and modulation of hippocampal theta rhythm. Since the role of NI in learning and memory has not been well characterized, therefore the involvement of this nucleus in spatial learning and memory and the aftermath hippocampal levels of c-fos and pCREB were evaluated. NI was targeted by implanting cannula in male rats. For reference memory, NI was inactivated by lidocaine (0.4 μl, 4%) at three stages of acquisition, consolidation and retrieval in Morris water maze paradigm. For working memory, NI was inactivated in acquisition and retrieval phases. Injection of lidocaine prior to the first training session of reference memory significantly increased the distance moved, suggesting that inactivation of NI delays acquisition in this spatial task. Inactivation also interfered with the retrieval phase of spatial reference memory, as the time in target quadrant for lidocaine group was less, and the escape latency was higher compared to the control group. However, no difference was observed in the consolidation phase. In the working memory task, with inter-trial intervals of 75 min, the escape latency was higher when NI was inactivated in the retrieval phase. In addition, c-fos and pCREB/CREB levels decreased in NI-inhibited rats. This study suggests that nucleus incertus might participate in acquisition of spatial reference, and retrieval of both spatial reference and working memory. Further studies should investigate possible roles of NI in the hippocampal plasticity. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Effective inactivation of a wide range of viruses by pasteurization.

    Science.gov (United States)

    Gröner, Albrecht; Broumis, Connie; Fang, Randel; Nowak, Thomas; Popp, Birgit; Schäfer, Wolfram; Roth, Nathan J

    2018-01-01

    Careful selection and testing of plasma reduces the risk of blood-borne viruses in the starting material for plasma-derived products. Furthermore, effective measures such as pasteurization at 60°C for 10 hours have been implemented in the manufacturing process of therapeutic plasma proteins such as human albumin, coagulation factors, immunoglobulins, and enzyme inhibitors to inactivate blood-borne viruses of concern. A comprehensive compilation of the virus reduction capacity of pasteurization is presented including the effect of stabilizers used to protect the therapeutic protein from modifications during heat treatment. The virus inactivation kinetics of pasteurization for a broad range of viruses were evaluated in the relevant intermediates from more than 15 different plasma manufacturing processes. Studies were carried out under the routine manufacturing target variables, such as temperature and product-specific stabilizer composition. Additional studies were also performed under robustness conditions, that is, outside production specifications. The data demonstrate that pasteurization inactivates a wide range of enveloped and nonenveloped viruses of diverse physicochemical characteristics. After a maximum of 6 hours' incubation, no residual infectivity could be detected for the majority of enveloped viruses. Effective inactivation of a range of nonenveloped viruses, with the exception of nonhuman parvoviruses, was documented. Pasteurization is a very robust and reliable virus inactivation method with a broad effectiveness against known blood-borne pathogens and emerging or potentially emerging viruses. Pasteurization has proven itself to be a highly effective step, in combination with other complementary safety measures, toward assuring the virus safety of final product. © 2017 The Authors Transfusion published by Wiley Periodicals, Inc. on behalf of AABB.

  10. Draft genome sequence of bitter gourd (Momordica charantia), a vegetable and medicinal plant in tropical and subtropical regions.

    Science.gov (United States)

    Urasaki, Naoya; Takagi, Hiroki; Natsume, Satoshi; Uemura, Aiko; Taniai, Naoki; Miyagi, Norimichi; Fukushima, Mai; Suzuki, Shouta; Tarora, Kazuhiko; Tamaki, Moritoshi; Sakamoto, Moriaki; Terauchi, Ryohei; Matsumura, Hideo

    2017-02-01

    Bitter gourd (Momordica charantia) is an important vegetable and medicinal plant in tropical and subtropical regions globally. In this study, the draft genome sequence of a monoecious bitter gourd inbred line, OHB3-1, was analyzed. Through Illumina sequencing and de novo assembly, scaffolds of 285.5 Mb in length were generated, corresponding to ∼84% of the estimated genome size of bitter gourd (339 Mb). In this draft genome sequence, 45,859 protein-coding gene loci were identified, and transposable elements accounted for 15.3% of the whole genome. According to synteny mapping and phylogenetic analysis of conserved genes, bitter gourd was more related to watermelon (Citrullus lanatus) than to cucumber (Cucumis sativus) or melon (C. melo). Using RAD-seq analysis, 1507 marker loci were genotyped in an F2 progeny of two bitter gourd lines, resulting in an improved linkage map, comprising 11 linkage groups. By anchoring RAD tag markers, 255 scaffolds were assigned to the linkage map. Comparative analysis of genome sequences and predicted genes determined that putative trypsin-inhibitor and ribosome-inactivating genes were distinctive in the bitter gourd genome. These genes could characterize the bitter gourd as a medicinal plant. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  11. Whole-genome analyses of the speciation events in the pathogenic Brucellae

    Energy Technology Data Exchange (ETDEWEB)

    Chain, P; Comerci, D; Tolmasky, M; Larimer, F; Malfatti, S; Vergez, L; Aguero, F; Land, M; Ugalde, R; Garcia, E

    2005-07-14

    Despite their high DNA identity and a proposal to group classical Brucella species as biovars of B. melitensis, the commonly recognized Brucella species can be distinguished by distinct biochemical and fatty acid characters as well as by a marked host range (e.g. B. suis for swine, B. melitensis for sheep and goats, B. abortus for cattle). Here we present the genome of B. abortus 2308, the virulent prototype biovar 1 strain, and its comparison to the two other human pathogenic Brucellae species and to the B. abortus field isolate 9-941. The global distribution of pseudogenes, deletions and insertions support previous indications that B. abortus and B. melitensis share a common ancestor that diverged from B. suis. With the exception of a dozen genes, the genetic complement of both B. abortus strains is identical, whereas the three species differ in gene content and pseudogenes. The pattern of species-specific gene inactivations affecting transcriptional regulators and outer membrane proteins suggest that these inactivations may play an important role in the establishment of host-specificity and may have been a primary driver of speciation in the Brucellae. Despite being non-motile, the Brucellae contain flagellum gene clusters and display species-specific flagellar gene inactivations, which lead to the putative generation of different versions of flagellum-derived structures, and may contribute to differences in host-specificity and virulence. Metabolic changes such as the lack of complete metabolic pathways for the synthesis of numerous compounds (e.g. glycogen, biotin, NAD, and choline) are consistent with adaptation of Brucellae to an intracellular lifestyle.

  12. Electric drives

    CERN Document Server

    Boldea, Ion

    2005-01-01

    ENERGY CONVERSION IN ELECTRIC DRIVESElectric Drives: A DefinitionApplication Range of Electric DrivesEnergy Savings Pay Off RapidlyGlobal Energy Savings Through PEC DrivesMotor/Mechanical Load MatchMotion/Time Profile MatchLoad Dynamics and StabilityMultiquadrant OperationPerformance IndexesProblemsELECTRIC MOTORS FOR DRIVESElectric Drives: A Typical ConfigurationElectric Motors for DrivesDC Brush MotorsConventional AC MotorsPower Electronic Converter Dependent MotorsEnergy Conversion in Electric Motors/GeneratorsPOWER ELECTRONIC CONVERTERS (PECs) FOR DRIVESPower Electronic Switches (PESs)The

  13. Sunlight inactivation of Escherichia coli in waste stabilization microcosms in a sahelian region (Ouagadougou, Burkina Faso).

    Science.gov (United States)

    Maïga, Ynoussa; Denyigba, Kokou; Wethe, Joseph; Ouattara, Aboubakar Sidiki

    2009-02-09

    Experiments on sunlight inactivation of Escherichia coli were conducted from November 2006 to June 2007 in eight outdoors microcosms with different depths filled with maturation pond wastewater in order to determine pond depth influence on sunlight inactivation of E. coli. The long-term aim was to maximize sunlight inactivation of waterborne pathogens in waste stabilization ponds (WSPs) in sahelian regions where number of sunny days enable longer exposure of wastewater to sunlight. The inactivation was followed during daylight from 8.00 h to 17.00 h and during the night. Sunlight inactivation rates (K(S)), as a function of cumulative global solar radiation (insolation), were 16 and 24 times higher than the corresponding dark inactivation (K(D)) rates, respectively in cold and warm season. In warm season, E. coli was inactivated far more rapidly. Inactivation of E. coli follows the evolution of radiation during the day. In shallow depth microcosms, E. coli was inactivated far more rapidly than in high depth microcosms. The physical chemical parameters [pH, dissolved oxygen (DO)] of microcosms water were higher in shallow depth microcosms than in high depth microcosms suggesting a synergistic effect of sunlight and these parameters to damage E. coli. To increase the efficiency of the elimination of waterborne bacteria, the use of maturation ponds with intermediate depths (0.4m) would be advisable in view of the high temperatures and thus evaporation recorded in sahelian regions.

  14. Study on the inactivation of intracellular enzyme molecules by X-ray irradiation

    International Nuclear Information System (INIS)

    Lee, S.B.

    1977-01-01

    Inactivation of the glutamic acid dehydrogenase and glucose-6-phosphate dehydrogenase enzyme molecules in the Ehrlich ascites tumor cells of the mouse were studied. The above mentioned intracellular enzyme molecules were irradiated by the X-ray radiation under the condition of 65 kV, 1 Amp under the atmosphere of nitrogen gases and by 4 0 C. Thereby, irradiation doses were 580 KR/min(error: +-3%). After irradiation, the cell homogentes were prepared through liquid air techniques. There after, the activities of the enzymes were measured with photometric method given by O. Warburg and W. Christian. The dose effect curves of the activities of the two enzymes by the X-ray irradiation showed both exponential and the inactivation doses were 6.5x10 6 and 5.0x10 6 R respectively. These results showed one side that the inactivation process of the intracellular enzyme molecules was one hit reaction after target theory, and the other side that this inactivation process could not be the primary causes of the death through X-ray irradiation of the vertebrate animals, because of the high resistance of the intracellular protein molecules against X-ray irradiation. The one hit reaction by the inactivation process of the irradiated intracellular enzyme molecules was discussed. (author)

  15. Mirasol PRT system inactivation efficacy evaluated in platelet concentrates by bacteria-contamination model

    Directory of Open Access Journals (Sweden)

    Jocić Miodrag

    2011-01-01

    Full Text Available Background/Aim. Bacterial contamination of blood components, primarily platelet concentrates (PCs, has been identified as one of the most frequent infectious complications in transfusion practice. PC units have a high risk for bacterial growth/multiplication due to their storage at ambient temperature (20 ± 2°C. Consequences of blood contamination could be effectively prevented or reduced by pathogen inactivation systems. The aim of this study was to determine the Mirasol pathogen reduction technology (PRT system efficacy in PCs using an artificial bacteria-contamination model. Methods. According to the ABO blood groups, PC units (n = 216 were pooled into 54 pools (PC-Ps. PC-Ps were divided into three equal groups, with 18 units in each, designed for an artificial bacteria-contamination. Briefly, PC-Ps were contaminated by Staphylococcus epidermidis, Staphylococcus aureus or Escherichia coli in concentrations 102 to 107 colony forming units (CFU per unit. Afterward, PC-Ps were underwent to inactivation by Mirasol PRT system, using UV (l = 265-370 nm activated riboflavin (RB. All PC-Ps were assayed by BacT/Alert Microbial Detection System for CFU quantification before and after the Mirasol treatment. Samples from non-inactivated PC-P units were tested after preparation and immediately following bacterial contamination. Samples from Mirasol treated units were quantified for CFUs one hour, 3 days and 5 days after inactivation. Results. A complete inactivation of all bacteria species was obtained at CFU concentrations of 102 and 103 per PC-P unit through storage/ investigation period. The most effective inactivation (105 CFU per PC-P unit was obtained in Escherichia coli setting. Contrary, inactivation of all the three tested bacteria species was unworkable in concentrations of ≥ 106 CFU per PC-P unit. Conclusion. Efficient inactivation of investigated bacteria types with a significant CFU depletion in PC-P units was obtained - 3 Log for all

  16. Evaluation of Different Dose-Response Models for High Hydrostatic Pressure Inactivation of Microorganisms

    Directory of Open Access Journals (Sweden)

    Sencer Buzrul

    2017-09-01

    Full Text Available Modeling of microbial inactivation by high hydrostatic pressure (HHP requires a plot of the log microbial count or survival ratio versus time data under a constant pressure and temperature. However, at low pressure and temperature values, very long holding times are needed to obtain measurable inactivation. Since the time has a significant effect on the cost of HHP processing it may be reasonable to fix the time at an appropriate value and quantify the inactivation with respect to pressure. Such a plot is called dose-response curve and it may be more beneficial than the traditional inactivation modeling since short holding times with different pressure values can be selected and used for the modeling of HHP inactivation. For this purpose, 49 dose-response curves (with at least 4 log10 reduction and ≥5 data points including the atmospheric pressure value (P = 0.1 MPa, and with holding time ≤10 min for HHP inactivation of microorganisms obtained from published studies were fitted with four different models, namely the Discrete model, Shoulder model, Fermi equation, and Weibull model, and the pressure value needed for 5 log10 (P5 inactivation was calculated for all the models above. The Shoulder model and Fermi equation produced exactly the same parameter and P5 values, while the Discrete model produced similar or sometimes the exact same parameter values as the Fermi equation. The Weibull model produced the worst fit (had the lowest adjusted determination coefficient (R2adj and highest mean square error (MSE values, while the Fermi equation had the best fit (the highest R2adj and lowest MSE values. Parameters of the models and also P5 values of each model can be useful for the further experimental design of HHP processing and also for the comparison of the pressure resistance of different microorganisms. Further experiments can be done to verify the P5 values at given conditions. The procedure given in this study can also be extended for

  17. Inactivation of Staphylococcus aureus and Enterococcus faecalis by a direct-current, cold atmospheric-pressure air plasma microjet☆

    Science.gov (United States)

    Tian, Ye; Sun, Peng; Wu, Haiyan; Bai, Na; Wang, Ruixue; Zhu, Weidong; Zhang, Jue; Liu, Fuxiang

    2010-01-01

    Objective A direct-current, cold atmospheric-pressure air plasma microjet (PMJ) was performed to inactivate Staphylococcus aureus (S. aureus) and Enterococcus faecalis (E. faecalis) in air. The process of sterilization and morphology of bacteria was observed. We wish to know the possible inactivation mechanisms of PMJ and explore a potential application in dental and other temperature sensitive treatment. Methods In this study, we employed a direct current, atmospheric pressure, cold air PMJ to inactivate bacterias. Scanning electron microscopy was employed to evaluate the morphology of S. aureus and showed rupture of cell walls after the plasma treatment and Optical emission spectrum (OES) were used to understand the possible inactivation mechanisms of PMJ. Results The inactivation rates could reach 100% in 5 min. When the distance between the exit nozzle of the PMJ device and Petri dish was extended from 1 cm to 3 cm, effective inactivation was also observed with a similar inactivation curve. Conclusion The inactivation of bacteria is attributed to the abundant reactive oxygen and nitrogen species, as well as ultroviolet radiation in the plasma. Different life spans and defensibilities of these killing agents may hold the key to understanding the different inactivation curves at different treatment distances. PMID:23554639

  18. Inactivation kinetics and efficiencies of UV-LEDs against Pseudomonas aeruginosa, Legionella pneumophila, and surrogate microorganisms.

    Science.gov (United States)

    Rattanakul, Surapong; Oguma, Kumiko

    2018-03-01

    To demonstrate the effectiveness of UV light-emitting diodes (UV-LEDs) to disinfect water, UV-LEDs at peak emission wavelengths of 265, 280, and 300 nm were adopted to inactivate pathogenic species, including Pseudomonas aeruginosa and Legionella pneumophila, and surrogate species, including Escherichia coli, Bacillus subtilis spores, and bacteriophage Qβ in water, compared to conventional low-pressure UV lamp emitting at 254 nm. The inactivation profiles of each species showed either a linear or sigmoidal survival curve, which both fit well with the Geeraerd's model. Based on the inactivation rate constant, the 265-nm UV-LED showed most effective fluence, except for with E. coli which showed similar inactivation rates at 265 and 254 nm. Electrical energy consumption required for 3-log 10 inactivation (E E,3 ) was lowest for the 280-nm UV-LED for all microbial species tested. Taken together, the findings of this study determined the inactivation profiles and kinetics of both pathogenic bacteria and surrogate species under UV-LED exposure at different wavelengths. We also demonstrated that not only inactivation rate constants, but also energy efficiency should be considered when selecting an emission wavelength for UV-LEDs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Radiation inactivation of T7 phage

    International Nuclear Information System (INIS)

    Becker, D.; Redpath, J.L.; Grossweiner, L.I.

    1978-01-01

    The radiation inactivation of T7 phage by 25-MeV electron pulses has been measured in various media containing a wide concentration range of radical scavenging solutes and in the presence of protective and sensitizing agents. The dependence of sensitivity on pulse dose, from 1 mrad to 3.6 krad, is attributed to radical depletion via bimolecular processes. The survival data are analyzed by extending target theory to include diffusive reactions of primary and secondary radicals generated in the medium. It is concluded that OH radicals are the principal primary inactivating species and that secondary radicals from Br - , CNS - , uracil, glucose, ribose, sucrose, tyrosine, and histidine are lethal to some extent. In nutrient broth or 100 mM histidine, psoralen derivatives, Actinomycin D, and Mitomycin C are anoxic sensitizers. It is proposed that the psoralens promote the formation of non-strand break lesions as the sensitization mechanism. The target theory based on diffusional kinetics is applicable to other systems including single cells

  20. X-chromosome inactivation in development and cancer.

    Science.gov (United States)

    Chaligné, Ronan; Heard, Edith

    2014-08-01

    X-chromosome inactivation represents an epigenetics paradigm and a powerful model system of facultative heterochromatin formation triggered by a non-coding RNA, Xist, during development. Once established, the inactive state of the Xi is highly stable in somatic cells, thanks to a combination of chromatin associated proteins, DNA methylation and nuclear organization. However, sporadic reactivation of X-linked genes has been reported during ageing and in transformed cells and disappearance of the Barr body is frequently observed in cancer cells. In this review we summarise current knowledge on the epigenetic changes that accompany X inactivation and discuss the extent to which the inactive X chromosome may be epigenetically or genetically perturbed in breast cancer. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  1. Older drivers with cognitive impairment: Perceived changes in driving skills, driving-related discomfort and self-regulation of driving

    DEFF Research Database (Denmark)

    Meng, A.; Siren, A.; Teasdale, Thomas William

    2013-01-01

    The results of a previous study indicate that in general, older drivers who recognise cognitive problems show realistic self-assessment of changes in their driving skills and that driving-related discomfort may function as an indirect monitoring of driving ability, contributing to their safe...... drivers may recognise cognitive problems, they tend not to recognise changes to their driving, which may reflect reluctance to acknowledge the impact of cognitive impairment on their driving. Furthermore, the results suggest that driving-related discomfort plays an important role in the self......-regulation of driving among cognitively impaired older drivers. However, it is less clear what triggers driving-related discomfort among cognitively impaired older drivers indicating that it may be a less reliable aspect of their self-monitoring of driving ability....

  2. Effective Thermal Inactivation of the Spores of Bacillus cereus Biofilms Using Microwave.

    Science.gov (United States)

    Park, Hyong Seok; Yang, Jungwoo; Choi, Hee Jung; Kim, Kyoung Heon

    2017-07-28

    Microwave sterilization was performed to inactivate the spores of biofilms of Bacillus cereus involved in foodborne illness. The sterilization conditions, such as the amount of water and the operating temperature and treatment time, were optimized using statistical analysis based on 15 runs of experimental results designed by the Box-Behnken method. Statistical analysis showed that the optimal conditions for the inactivation of B. cereus biofilms were 14 ml of water, 108°C of temperature, and 15 min of treatment time. Interestingly, response surface plots showed that the amount of water is the most important factor for microwave sterilization under the present conditions. Complete inactivation by microwaves was achieved in 5 min, and the inactivation efficiency by microwave was obviously higher than that by conventional steam autoclave. Finally, confocal laser scanning microscopy images showed that the principal effect of microwave treatment was cell membrane disruption. Thus, this study can contribute to the development of a process to control food-associated pathogens.

  3. ALTERNATIVE EQUATIONS FOR DYNAMIC BEHAVIOR OF IONIC CHANNEL ACTIVATION AND INACTIVATION GATES

    Directory of Open Access Journals (Sweden)

    Mahmut ÖZER

    2003-03-01

    Full Text Available In this paper, alternative equations for dynamics of ionic channel activation and inactivation gates are proposed based on the path probability method. Dynamic behavior of a voltage-gated ionic channel is modeled by the conventional Hodgkin-Huxley (H-H mathematical formalism. In that model, conductance of the channel is defined in terms of activation and inactivation gates. Dynamics of the activation and inactivation gates is modeled by first-order differential equations dependent on the gate variable and the membrane potential. In the new approach proposed in this study, dynamic behavior of activation and inactivation gates is modeled by a firstorder differential equation dependent on internal energy and membrane potential by using the path probability method which is widely used in statistical physics. The new model doesn't require the time constant and steadystate values which are used explicitly in the H-H model. The numerical results show validity of the proposed method.

  4. Drive Stands

    Data.gov (United States)

    Federal Laboratory Consortium — The Electrical Systems Laboratory (ESL)houses numerous electrically driven drive stands. A drive stand consists of an electric motor driving a gearbox and a mounting...

  5. Comparing Expert and Novice Driving Behavior in a Driving Simulator

    Directory of Open Access Journals (Sweden)

    Hiran B. Ekanayake

    2014-02-01

    Full Text Available This paper presents a study focused on comparing driving behavior of expert and novice drivers in a mid-range driving simulator with the intention of evaluating the validity of driving simulators for driver training. For the investigation, measurements of performance, psychophysiological measurements, and self-reported user experience under different conditions of driving tracks and driving sessions were analyzed. We calculated correlations between quantitative and qualitative measures to enhance the reliability of the findings. The experiment was conducted involving 14 experienced drivers and 17 novice drivers. The results indicate that driving behaviors of expert and novice drivers differ from each other in several ways but it heavily depends on the characteristics of the task. Moreover, our belief is that the analytical framework proposed in this paper can be used as a tool for selecting appropriate driving tasks as well as for evaluating driving performance in driving simulators.

  6. Modeling of human factor Va inactivation by activated protein C

    Directory of Open Access Journals (Sweden)

    Bravo Maria

    2012-05-01

    Full Text Available Abstract Background Because understanding of the inventory, connectivity and dynamics of the components characterizing the process of coagulation is relatively mature, it has become an attractive target for physiochemical modeling. Such models can potentially improve the design of therapeutics. The prothrombinase complex (composed of the protease factor (FXa and its cofactor FVa plays a central role in this network as the main producer of thrombin, which catalyses both the activation of platelets and the conversion of fibrinogen to fibrin, the main substances of a clot. A key negative feedback loop that prevents clot propagation beyond the site of injury is the thrombin-dependent generation of activated protein C (APC, an enzyme that inactivates FVa, thus neutralizing the prothrombinase complex. APC inactivation of FVa is complex, involving the production of partially active intermediates and “protection” of FVa from APC by both FXa and prothrombin. An empirically validated mathematical model of this process would be useful in advancing the predictive capacity of comprehensive models of coagulation. Results A model of human APC inactivation of prothrombinase was constructed in a stepwise fashion by analyzing time courses of FVa inactivation in empirical reaction systems with increasing number of interacting components and generating corresponding model constructs of each reaction system. Reaction mechanisms, rate constants and equilibrium constants informing these model constructs were initially derived from various research groups reporting on APC inactivation of FVa in isolation, or in the presence of FXa or prothrombin. Model predictions were assessed against empirical data measuring the appearance and disappearance of multiple FVa degradation intermediates as well as prothrombinase activity changes, with plasma proteins derived from multiple preparations. Our work integrates previously published findings and through the cooperative

  7. Repeat associated mechanisms of genome evolution and function revealed by the Mus caroli and Mus pahari genomes.

    Science.gov (United States)

    Thybert, David; Roller, Maša; Navarro, Fábio C P; Fiddes, Ian; Streeter, Ian; Feig, Christine; Martin-Galvez, David; Kolmogorov, Mikhail; Janoušek, Václav; Akanni, Wasiu; Aken, Bronwen; Aldridge, Sarah; Chakrapani, Varshith; Chow, William; Clarke, Laura; Cummins, Carla; Doran, Anthony; Dunn, Matthew; Goodstadt, Leo; Howe, Kerstin; Howell, Matthew; Josselin, Ambre-Aurore; Karn, Robert C; Laukaitis, Christina M; Jingtao, Lilue; Martin, Fergal; Muffato, Matthieu; Nachtweide, Stefanie; Quail, Michael A; Sisu, Cristina; Stanke, Mario; Stefflova, Klara; Van Oosterhout, Cock; Veyrunes, Frederic; Ward, Ben; Yang, Fengtang; Yazdanifar, Golbahar; Zadissa, Amonida; Adams, David J; Brazma, Alvis; Gerstein, Mark; Paten, Benedict; Pham, Son; Keane, Thomas M; Odom, Duncan T; Flicek, Paul

    2018-04-01

    Understanding the mechanisms driving lineage-specific evolution in both primates and rodents has been hindered by the lack of sister clades with a similar phylogenetic structure having high-quality genome assemblies. Here, we have created chromosome-level assemblies of the Mus caroli and Mus pahari genomes. Together with the Mus musculus and Rattus norvegicus genomes, this set of rodent genomes is similar in divergence times to the Hominidae (human-chimpanzee-gorilla-orangutan). By comparing the evolutionary dynamics between the Muridae and Hominidae, we identified punctate events of chromosome reshuffling that shaped the ancestral karyotype of Mus musculus and Mus caroli between 3 and 6 million yr ago, but that are absent in the Hominidae. Hominidae show between four- and sevenfold lower rates of nucleotide change and feature turnover in both neutral and functional sequences, suggesting an underlying coherence to the Muridae acceleration. Our system of matched, high-quality genome assemblies revealed how specific classes of repeats can play lineage-specific roles in related species. Recent LINE activity has remodeled protein-coding loci to a greater extent across the Muridae than the Hominidae, with functional consequences at the species level such as reproductive isolation. Furthermore, we charted a Muridae-specific retrotransposon expansion at unprecedented resolution, revealing how a single nucleotide mutation transformed a specific SINE element into an active CTCF binding site carrier specifically in Mus caroli , which resulted in thousands of novel, species-specific CTCF binding sites. Our results show that the comparison of matched phylogenetic sets of genomes will be an increasingly powerful strategy for understanding mammalian biology. © 2018 Thybert et al.; Published by Cold Spring Harbor Laboratory Press.

  8. Cognitive problems, self-rated changes in driving skills, driving-related discomfort and self-regulation of driving in old drivers

    DEFF Research Database (Denmark)

    Meng, Annette; Siren, Anu Kristiina

    2012-01-01

    Ageing in general is associated with functional decline that may have an adverse effect on driving. Nevertheless, older drivers have been found to show good judgement and to self-regulate their driving, which may enable them to continue driving safely despite functional decline. The process...... of the self-monitoring of driving ability and the awareness of functional decline, and its association with the self-regulation of driving is, however, not fully understood. The aim of the present study was to examine the perceived changes in driving skills, the discomfort experienced in driving, and the self......-related discomfort is an important factor affecting the self-regulation of driving. Finally, the findings indicate that driving-related discomfort functions as an indirect self-monitoring of driving ability and may contribute to the safe driving performance of Danish older drivers....

  9. Inactivation of Bacillus spores inoculated in milk by Ultra High Pressure Homogenization.

    Science.gov (United States)

    Amador Espejo, Genaro Gustavo; Hernández-Herrero, M M; Juan, B; Trujillo, A J

    2014-12-01

    Ultra High-Pressure Homogenization treatments at 300 MPa with inlet temperatures (Ti) of 55, 65, 75 and 85 °C were applied to commercial Ultra High Temperature treated whole milk inoculated with Bacillus cereus, Bacillus licheniformis, Bacillus sporothermodurans, Bacillus coagulans, Geobacillus stearothermophilus and Bacillus subtilis spores in order to evaluate the inactivation level achieved. Ultra High-Pressure Homogenization conditions at 300 MPa with Ti = 75 and 85 °C were capable of a spore inactivation of ∼5 log CFU/mL. Furthermore, under these processing conditions, commercial sterility (evaluated as the complete inactivation of the inoculated spores) was obtained in milk, with the exception of G. stearothermophilus and B. subtilis treated at 300 MPa with Ti = 75 °C. The results showed that G. stearothermophilus and B. subtilis have higher resistance to the Ultra High-Pressure Homogenization treatments applied than the other microorganisms inoculated and that a treatment performed at 300 MPa with Ti = 85 °C was necessary to completely inactivate these microorganisms at the spore level inoculated (∼1 × 10(6) CFU/mL). Besides, a change in the resistance of B. licheniformis, B. sporothermodurans, G. stearothermophilus and B. subtilis spores was observed as the inactivation obtained increased remarkably in treatments performed with Ti between 65 and 75 °C. This study provides important evidence of the suitability of UHPH technology for the inactivation of spores in high numbers, leading to the possibility of obtaining commercially sterile milk. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Inactivation of carotenoid-producing and albino strains of Neurospora crassa by visible light, blacklight, and ultraviolet radiation

    International Nuclear Information System (INIS)

    Blanc, P.L.; Tuveson, R.W.; Sargent, M.L.

    1976-01-01

    Suspensions of Neurospora crassa conidia were inactivated by blacklight (BL) radiation (300 to 425 nm) in the absence of exogenous photosensitizing compounds. Carotenoid-containing wild-type conidia were less sensitive to BL radiation than albino conidia, showing a dose enhancement factor (DEF) of 1.2 for dose levels resulting in less than 10 percent survival. The same strains were about equally sensitive to shortwave ultraviolet (uv) inactivation. The kinetics of BL inactivation are similar to those of photodynamic inactivation by visible light in the presence of a photosensitizing dye (methylene blue). Only limited inactivation by visible light in the absence of exogenous photosensitizers was observed. BL and UV inactivations are probably caused by different mechanisms since wild-type conidia are only slightly more resistant to BL radiation (DEF = 1.2 at 1.0 percent survival) than are conidia from a uv-sensitive strain (upr-1, uvs-3). The BL-induced lethal lesions are probably not cyclobutyl pyrimidine dimers since BL-inactivated Haemophilus influenzae transforming deoxyribonucleic acid is not photoreactivated by N. crassa wild-type enzyme extracts, whereas uv-inactivated transforming deoxyribonucleic acid is photoreactivable with this treatment

  11. Inactivation of Listeria monocytogenes in milk by pulsed electric field.

    Science.gov (United States)

    Reina, L D; Jin, Z T; Zhang, Q H; Yousef, A E

    1998-09-01

    Pasteurized whole, 2%, and skim milk were inoculated with Listeria monocytogenes Scott A and treated with high-voltage pulsed electric field (PEF). The effects of milk composition (fat content) and PEF parameters (electric field strength, treatment time, and treatment temperature) on the inactivation of the bacterium were studied. No significant differences were observed in the inactivation of L. monocytogenes Scott A in three types of milk by PEF treatment. With treatment at 25 degrees C, 1- to 3-log reductions of L. monocytogenes were observed. PEF lethal effect was a function of field strength and treatment time. Higher field strength or longer treatment time resulted in a greater reduction of viable cells. A 4-log reduction of the bacterium was obtained by increasing the treatment temperature to 50 degrees C. Results indicate that the use of a high-voltage PEF is a promising technology for inactivation of foodborne pathogens.

  12. Synergistic inactivation of anaerobic wastewater biofilm by free nitrous acid and hydrogen peroxide

    International Nuclear Information System (INIS)

    Jiang, Guangming; Yuan, Zhiguo

    2013-01-01

    Highlights: ► H 2 O 2 greatly enhances the inactivation of microorganisms in biofilms by FNA. ► About 2-log of inactivation of biofilm microbes was achieved by FNA + H 2 O 2 . ► FNA + H 2 O 2 reduced sulfide production and detached biofilm in reactors. -- Abstract: Free nitrous acid (FNA) was recently revealed to be a strong biocide for microbes in anaerobic biofilm, achieving approximately 1-log (90%) inactivation at a concentration of 0.2–0.3 mgHNO 2 -N/L with an exposure time longer than 6 h. The combined biocidal effects of FNA and hydrogen peroxide (H 2 O 2 ) on anaerobic wastewater biofilm are investigated in this study. H 2 O 2 greatly enhances the inactivation of microorganisms by FNA. About 2-log (99%) of microbial inactivation was achieved when biofilms were exposed to FNA at 0.2 mgN/L or above and H 2 O 2 at 30 mg/L or above for 6 h or longer. It was found, through response surface methodology and ridge analysis, that FNA is the primary inactivation agent and H 2 O 2 enhances its efficiency. The loss and the subsequent slow recovery of biological activity in biofilm reactors subjected to FNA and H 2 O 2 dosing confirmed that the chemical combination could achieve higher microbial inactivation than with FNA alone. Reaction simulation shows that intermediates of reactions between FNA and H 2 O 2 , like peroxynitrite and nitrogen dioxide, would be produced at elevated levels and are likely responsible for the synergism between FNA and H 2 O 2 . The combination of FNA and H 2 O 2 could potentially provide an effective solution to sewer biofilm control

  13. Synergistic inactivation of anaerobic wastewater biofilm by free nitrous acid and hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Guangming, E-mail: gjiang@awmc.uq.edu.au [Advanced Water Management Centre, Gehrmann Building, Research Road, The University of Queensland, St. Lucia, Queensland 4072 (Australia); Yuan, Zhiguo, E-mail: zhiguo@awmc.uq.edu.au [Advanced Water Management Centre, Gehrmann Building, Research Road, The University of Queensland, St. Lucia, Queensland 4072 (Australia)

    2013-04-15

    Highlights: ► H{sub 2}O{sub 2} greatly enhances the inactivation of microorganisms in biofilms by FNA. ► About 2-log of inactivation of biofilm microbes was achieved by FNA + H{sub 2}O{sub 2}. ► FNA + H{sub 2}O{sub 2} reduced sulfide production and detached biofilm in reactors. -- Abstract: Free nitrous acid (FNA) was recently revealed to be a strong biocide for microbes in anaerobic biofilm, achieving approximately 1-log (90%) inactivation at a concentration of 0.2–0.3 mgHNO{sub 2}-N/L with an exposure time longer than 6 h. The combined biocidal effects of FNA and hydrogen peroxide (H{sub 2}O{sub 2}) on anaerobic wastewater biofilm are investigated in this study. H{sub 2}O{sub 2} greatly enhances the inactivation of microorganisms by FNA. About 2-log (99%) of microbial inactivation was achieved when biofilms were exposed to FNA at 0.2 mgN/L or above and H{sub 2}O{sub 2} at 30 mg/L or above for 6 h or longer. It was found, through response surface methodology and ridge analysis, that FNA is the primary inactivation agent and H{sub 2}O{sub 2} enhances its efficiency. The loss and the subsequent slow recovery of biological activity in biofilm reactors subjected to FNA and H{sub 2}O{sub 2} dosing confirmed that the chemical combination could achieve higher microbial inactivation than with FNA alone. Reaction simulation shows that intermediates of reactions between FNA and H{sub 2}O{sub 2}, like peroxynitrite and nitrogen dioxide, would be produced at elevated levels and are likely responsible for the synergism between FNA and H{sub 2}O{sub 2}. The combination of FNA and H{sub 2}O{sub 2} could potentially provide an effective solution to sewer biofilm control.

  14. Immunogenicity of commercial, formaldehyde and binary ethylenimine inactivated Newcastle disease virus vaccines in specific pathogen free chickens

    Directory of Open Access Journals (Sweden)

    Razmaraii, N.

    2012-06-01

    Full Text Available Newcastle disease (ND is one of the most important diseases that affect birds; the epizootic nature of the disease has caused severe economic losses in the poultry industry worldwide. In this experiment ND virus (NDV was inactivated by two different chemicals binary ethylenimine (BEI and formaldehyde. Formaldehyde was used at 0.1%, while BEI was used at concentrations of 1 to 4 mM. NDV inactivation with BEI was done in various incubation temperatures and periods and the best result (30 °C, 4 mM BEI and 21 hrs treatment used as an experimental vaccine. Prepared inactivated NDV vaccines and a commercial vaccine were tested for their efficiency in generating humoral immune response in different groups of specific pathogen free (SPF chicks. Test groups received 0.2 ml formaldehyde inactivated NDV (NDVF, BEI inactivated NDV (NDVEI and Razi institute produced NDV vaccine (NDVR subcutaneously respectively. HI Log 2 total mean titer of NDVEI group (8.42 ± 0.12 were significantly higher than NDVF (7.64 ± 0.16 and NDVR (7.86 ± 0.11 groups (p<0.05. BEI-inactivated vaccine gave higher antibody titers than formaldehyde-inactivated vaccine and preserves both structural integrity and antigenicity of the virus. Thus, it might be possible to use these compounds as an inactivator agent for commercial NDV inactivated vaccines in future.

  15. Domain IV voltage-sensor movement is both sufficient and rate limiting for fast inactivation in sodium channels.

    Science.gov (United States)

    Capes, Deborah L; Goldschen-Ohm, Marcel P; Arcisio-Miranda, Manoel; Bezanilla, Francisco; Chanda, Baron

    2013-08-01

    Voltage-gated sodium channels are critical for the generation and propagation of electrical signals in most excitable cells. Activation of Na(+) channels initiates an action potential, and fast inactivation facilitates repolarization of the membrane by the outward K(+) current. Fast inactivation is also the main determinant of the refractory period between successive electrical impulses. Although the voltage sensor of domain IV (DIV) has been implicated in fast inactivation, it remains unclear whether the activation of DIV alone is sufficient for fast inactivation to occur. Here, we functionally neutralize each specific voltage sensor by mutating several critical arginines in the S4 segment to glutamines. We assess the individual role of each voltage-sensing domain in the voltage dependence and kinetics of fast inactivation upon its specific inhibition. We show that movement of the DIV voltage sensor is the rate-limiting step for both development and recovery from fast inactivation. Our data suggest that activation of the DIV voltage sensor alone is sufficient for fast inactivation to occur, and that activation of DIV before channel opening is the molecular mechanism for closed-state inactivation. We propose a kinetic model of sodium channel gating that can account for our major findings over a wide voltage range by postulating that DIV movement is both necessary and sufficient for fast inactivation.

  16. Reactive hydroxyl radical-driven oral bacterial inactivation by radio frequency atmospheric plasma

    International Nuclear Information System (INIS)

    Kang, Sung Kil; Lee, Jae Koo; Choi, Myeong Yeol; Koo, Il Gyo; Kim, Paul Y.; Kim, Yoonsun; Kim, Gon Jun; Collins, George J.; Mohamed, Abdel-Aleam H.

    2011-01-01

    We demonstrated bacterial (Streptococcus mutans) inactivation by a radio frequency power driven atmospheric pressure plasma torch with H 2 O 2 entrained in the feedstock gas. Optical emission spectroscopy identified substantial excited state OH generation inside the plasma and relative OH formation was verified by optical absorption. The bacterial inactivation rate increased with increasing OH generation and reached a maximum 5-log 10 reduction with 0.6%H 2 O 2 vapor. Generation of large amounts of toxic ozone is drawback of plasma bacterial inactivation, thus it is significant that the ozone concentration falls within recommended safe allowable levels with addition of H 2 O 2 vapor to the plasma.

  17. The inactivating and mutagenic effect of hydroxylamine on bacteriophage φX174

    NARCIS (Netherlands)

    Pol, J.H. van de; Arkel, G.A. van

    1965-01-01

    The inactivation of bacteriophage ΦXI74 by the mutagenic agents nitrous acid and ultraviolet irradiation proceeds according to a single-hit kinetics. However, treatment of purified ΦXI74 by hydroxylamine (HA) at pH 6 and 25° results in an inactivation that is not strictly exponential. The

  18. Radiation-induced inactivation of bovine liver catalase in nitrous oxide-saturated solutions

    International Nuclear Information System (INIS)

    Gebicka, L.; Metodiewa, D.

    1988-01-01

    Radiation-induced inactivation of catalase by . OH/H . radicals was studied. It was found that inactivation yield of catalase depended on the dose. Optical spectrum of irradiated catalase showed that no redox processes in active site of enzyme occurred as a result of . OH/H . interaction. (author) 19 refs.; 3 figs

  19. Sex chromosome-specific regulation in the Drosophila male germline but little evidence for chromosomal dosage compensation or meiotic inactivation.

    Directory of Open Access Journals (Sweden)

    Colin D Meiklejohn

    2011-08-01

    Full Text Available The evolution of heteromorphic sex chromosomes (e.g., XY in males or ZW in females has repeatedly elicited the evolution of two kinds of chromosome-specific regulation: dosage compensation--the equalization of X chromosome gene expression in males and females--and meiotic sex chromosome inactivation (MSCI--the transcriptional silencing and heterochromatinization of the X during meiosis in the male (or Z in the female germline. How the X chromosome is regulated in the Drosophila melanogaster male germline is unclear. Here we report three new findings concerning gene expression from the X in Drosophila testes. First, X chromosome-wide dosage compensation appears to be absent from most of the Drosophila male germline. Second, microarray analysis provides no evidence for X chromosome-specific inactivation during meiosis. Third, we confirm the previous discovery that the expression of transgene reporters driven by autosomal spermatogenesis-specific promoters is strongly reduced when inserted on the X chromosome versus the autosomes; but we show that this chromosomal difference in expression is established in premeiotic cells and persists in meiotic cells. The magnitude of the X-autosome difference in transgene expression cannot be explained by the absence of dosage compensation, suggesting that a previously unrecognized mechanism limits expression from the X during spermatogenesis in Drosophila. These findings help to resolve several previously conflicting reports and have implications for patterns of genome evolution and speciation in Drosophila.

  20. FISH Oracle 2: a web server for integrative visualization of genomic data in cancer research.

    Science.gov (United States)

    Mader, Malte; Simon, Ronald; Kurtz, Stefan

    2014-03-31

    A comprehensive view on all relevant genomic data is instrumental for understanding the complex patterns of molecular alterations typically found in cancer cells. One of the most effective ways to rapidly obtain an overview of genomic alterations in large amounts of genomic data is the integrative visualization of genomic events. We developed FISH Oracle 2, a web server for the interactive visualization of different kinds of downstream processed genomics data typically available in cancer research. A powerful search interface and a fast visualization engine provide a highly interactive visualization for such data. High quality image export enables the life scientist to easily communicate their results. A comprehensive data administration allows to keep track of the available data sets. We applied FISH Oracle 2 to published data and found evidence that, in colorectal cancer cells, the gene TTC28 may be inactivated in two different ways, a fact that has not been published before. The interactive nature of FISH Oracle 2 and the possibility to store, select and visualize large amounts of downstream processed data support life scientists in generating hypotheses. The export of high quality images supports explanatory data visualization, simplifying the communication of new biological findings. A FISH Oracle 2 demo server and the software is available at http://www.zbh.uni-hamburg.de/fishoracle.

  1. Meiotic drive influences the outcome of sexually antagonistic selection at a linked locus.

    Science.gov (United States)

    Patten, M M

    2014-11-01

    Most meiotic drivers, such as the t-haplotype in Mus and the segregation distorter (SD) in Drosophila, act in a sex-specific manner, gaining a transmission advantage through one sex although suffering only the fitness costs associated with the driver in the other. Their inheritance is thus more likely through one of the two sexes, a property they share with sexually antagonistic alleles. Previous theory has shown that pairs of linked loci segregating for sexually antagonistic alleles are more likely to remain polymorphic and that linkage disequilibrium accrues between them. I probe this similarity between drive and sexual antagonism and examine the evolution of chromosomes experiencing these selection pressures simultaneously. Reminiscent of previous theory, I find that: the opportunity for polymorphism increases for a sexually antagonistic locus that is physically linked to a driving locus; the opportunity for polymorphism at a driving locus also increases when linked to a sexually antagonistic locus; and stable linkage disequilibrium accompanies any polymorphic equilibrium. Additionally, I find that drive at a linked locus favours the fixation of sexually antagonistic alleles that benefit the sex in which drive occurs. Further, I show that under certain conditions reduced recombination between these two loci is selectively favoured. These theoretical results provide clear, testable predictions about the nature of sexually antagonistic variation on driving chromosomes and have implications for the evolution of genomic architecture. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  2. Patulin reduction in apple juice by inactivated Alicyclobacillus spp.

    Science.gov (United States)

    Yuan, Y; Wang, X; Hatab, S; Wang, Z; Wang, Y; Luo, Y; Yue, T

    2014-12-01

    This study aimed to investigate the reduction of patulin (PAT) in apple juice by 12 inactivated Alicyclobacillus strains. The reduction rate of PAT by each strain was determined by high-performance liquid chromatography (HPLC). The results indicated that the removal of PAT was strain specific. Alicyclobacillus acidoterrestris 92 and A. acidoterrestris 96 were the most effective ones among the 12 tested strains in the removal of PAT. Therefore, these two strains were selected to study the effects of incubation time, initial PAT concentration and bacteria powder amount on PAT removal abilities of Alicyclobacillus. The highest PAT reduction rates of 88·8 and 81·6% were achieved after 24-h incubation with initial PAT concentration of 100 μg l(-1) and bacteria powder amount of 40 g l(-1) , respectively. Moreover, it was found that the treatment by these 12 inactivated Alicyclobacillus strains had no negative effect on the quality parameters of apple juice. Similar assays were performed in supermarket apple juice, where inactivated Alicyclobacillus cells could efficiently reduce PAT content. Taken together, these data suggest the possible application of this strategy as a means to detoxify PAT-contaminated juices. Inactivated Alicyclobacillus cells can efficiently reduce patulin concentration in apple juice. It provides a theoretical foundation for recycling of Alicyclobacillus cells from spoiled apple juice to reduce the source of pollution and the cost of juice industry. This is the first report on the use of Alicyclobacillus to remove patulin from apple juice. © 2014 The Society for Applied Microbiology.

  3. Inactivation of human norovirus using chemical sanitizers.

    Science.gov (United States)

    Kingsley, David H; Vincent, Emily M; Meade, Gloria K; Watson, Clytrice L; Fan, Xuetong

    2014-02-03

    The porcine gastric mucin binding magnetic bead (PGM-MB) assay was used to evaluate the ability of chlorine, chlorine dioxide, peroxyacetic acid, hydrogen peroxide, and trisodium phosphate to inactivate human norovirus within 10% stool filtrate. One-minute free chlorine treatments at concentrations of 33 and 189 ppm reduced virus binding in the PGM-MB assay by 1.48 and 4.14 log₁₀, respectively, suggesting that chlorine is an efficient sanitizer for inactivation of human norovirus (HuNoV). Five minute treatments with 5% trisodium phosphate (pH~12) reduced HuNoV binding by 1.6 log₁₀, suggesting that TSP, or some other high pH buffer, could be used to treat food and food contact surfaces to reduce HuNoV. One minute treatments with 350 ppm chlorine dioxide dissolved in water did not reduce PGM-MB binding, suggesting that the sanitizer may not be suitable for HuNoV inactivation in liquid form. However a 60-min treatment with 350 ppm chlorine dioxide did reduce human norovirus by 2.8 log₁₀, indicating that chlorine dioxide had some, albeit limited, activity against HuNoV. Results also suggest that peroxyacetic acid has limited effectiveness against human norovirus, since 1-min treatments with up to 195 ppm reduced human norovirus binding by chlorine (sodium hypochlorite) as a HuNoV disinfectant wherever possible. Copyright © 2013. Published by Elsevier B.V.

  4. Pulsed-light inactivation of pathogenic and spoilage bacteria on cheese surface.

    Science.gov (United States)

    Proulx, J; Hsu, L C; Miller, B M; Sullivan, G; Paradis, K; Moraru, C I

    2015-09-01

    Cheese products are susceptible to postprocessing cross-contamination by bacterial surface contamination during slicing, handling, or packaging, which can lead to food safety issues and significant losses due to spoilage. This study examined the effectiveness of pulsed-light (PL) treatment on the inactivation of the spoilage microorganism Pseudomonas fluorescens, the nonenterohemorrhagic Escherichia coli ATCC 25922 (nonpathogenic surrogate of Escherichia coli O157:H7), and Listeria innocua (nonpathogenic surrogate of Listeria monocytogenes) on cheese surface. The effects of inoculum level and cheese surface topography and the presence of clear polyethylene packaging were evaluated in a full factorial experimental design. The challenge microorganisms were grown to early stationary phase and subsequently diluted to reach initial inoculum levels of either 5 or 7 log cfu/slice. White Cheddar and process cheeses were cut into 2.5×5 cm slices, which were spot-inoculated with 100 µL of bacterial suspension. Inoculated cheese samples were exposed to PL doses of 1.02 to 12.29 J/cm(2). Recovered survivors were enumerated by standard plate counting or the most probable number technique, as appropriate. The PL treatments were performed in triplicate and data were analyzed using a general linear model. Listeria innocua was the least sensitive to PL treatment, with a maximum inactivation level of 3.37±0.2 log, followed by P. fluorescens, with a maximum inactivation of 3.74±0.8 log. Escherichia coli was the most sensitive to PL, with a maximum reduction of 5.41±0.1 log. All PL inactivation curves were nonlinear, and inactivation reached a plateau after 3 pulses (3.07 J/cm(2)). The PL treatments through UV-transparent packaging and without packaging consistently resulted in similar inactivation levels. This study demonstrates that PL has strong potential for decontamination of the cheese surface. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc

  5. Integrative Genome Comparison of Primary and Metastatic Melanomas

    Science.gov (United States)

    Feng, Bin; Nazarian, Rosalynn M.; Bosenberg, Marcus; Wu, Min; Scott, Kenneth L.; Kwong, Lawrence N.; Xiao, Yonghong; Cordon-Cardo, Carlos; Granter, Scott R.; Ramaswamy, Sridhar; Golub, Todd; Duncan, Lyn M.; Wagner, Stephan N.; Brennan, Cameron; Chin, Lynda

    2010-01-01

    A cardinal feature of malignant melanoma is its metastatic propensity. An incomplete view of the genetic events driving metastatic progression has been a major barrier to rational development of effective therapeutics and prognostic diagnostics for melanoma patients. In this study, we conducted global genomic characterization of primary and metastatic melanomas to examine the genomic landscape associated with metastatic progression. In addition to uncovering three genomic subclasses of metastastic melanomas, we delineated 39 focal and recurrent regions of amplification and deletions, many of which encompassed resident genes that have not been implicated in cancer or metastasis. To identify progression-associated metastasis gene candidates, we applied a statistical approach, Integrative Genome Comparison (IGC), to define 32 genomic regions of interest that were significantly altered in metastatic relative to primary melanomas, encompassing 30 resident genes with statistically significant expression deregulation. Functional assays on a subset of these candidates, including MET, ASPM, AKAP9, IMP3, PRKCA, RPA3, and SCAP2, validated their pro-invasion activities in human melanoma cells. Validity of the IGC approach was further reinforced by tissue microarray analysis of Survivin showing significant increased protein expression in thick versus thin primary cutaneous melanomas, and a progression correlation with lymph node metastases. Together, these functional validation results and correlative analysis of human tissues support the thesis that integrated genomic and pathological analyses of staged melanomas provide a productive entry point for discovery of melanoma metastases genes. PMID:20520718

  6. Oncogenomic portals for the visualization and analysis of genome-wide cancer data.

    Science.gov (United States)

    Klonowska, Katarzyna; Czubak, Karol; Wojciechowska, Marzena; Handschuh, Luiza; Zmienko, Agnieszka; Figlerowicz, Marek; Dams-Kozlowska, Hanna; Kozlowski, Piotr

    2016-01-05

    Somatically acquired genomic alterations that drive oncogenic cellular processes are of great scientific and clinical interest. Since the initiation of large-scale cancer genomic projects (e.g., the Cancer Genome Project, The Cancer Genome Atlas, and the International Cancer Genome Consortium cancer genome projects), a number of web-based portals have been created to facilitate access to multidimensional oncogenomic data and assist with the interpretation of the data. The portals provide the visualization of small-size mutations, copy number variations, methylation, and gene/protein expression data that can be correlated with the available clinical, epidemiological, and molecular features. Additionally, the portals enable to analyze the gathered data with the use of various user-friendly statistical tools. Herein, we present a highly illustrated review of seven portals, i.e., Tumorscape, UCSC Cancer Genomics Browser, ICGC Data Portal, COSMIC, cBioPortal, IntOGen, and BioProfiling.de. All of the selected portals are user-friendly and can be exploited by scientists from different cancer-associated fields, including those without bioinformatics background. It is expected that the use of the portals will contribute to a better understanding of cancer molecular etiology and will ultimately accelerate the translation of genomic knowledge into clinical practice.

  7. Suicidal function of DNA methylation in age-related genome disintegration.

    Science.gov (United States)

    Mazin, Alexander L

    2009-10-01

    This article is dedicated to the 60th anniversary of 5-methylcytosine discovery in DNA. Cytosine methylation can affect genetic and epigenetic processes, works as a part of the genome-defense system and has mutagenic activity; however, the biological functions of this enzymatic modification are not well understood. This review will put forward the hypothesis that the host-defense role of DNA methylation in silencing and mutational destroying of retroviruses and other intragenomic parasites was extended during evolution to most host genes that have to be inactivated in differentiated somatic cells, where it acquired a new function in age-related self-destruction of the genome. The proposed model considers DNA methylation as the generator of 5mC>T transitions that induce 40-70% of all spontaneous somatic mutations of the multiple classes at CpG and CpNpG sites and flanking nucleotides in the p53, FIX, hprt, gpt human genes and some transgenes. The accumulation of 5mC-dependent mutations explains: global changes in the structure of the vertebrate genome throughout evolution; the loss of most 5mC from the DNA of various species over their lifespan and the Hayflick limit of normal cells; the polymorphism of methylation sites, including asymmetric mCpNpN sites; cyclical changes of methylation and demethylation in genes. The suicidal function of methylation may be a special genetic mechanism for increasing DNA damage and the programmed genome disintegration responsible for cell apoptosis and organism aging and death.

  8. Inactivation of SACE_3446, a TetR family transcriptional regulator, stimulates erythromycin production in Saccharopolyspora erythraea.

    Science.gov (United States)

    Wu, Hang; Wang, Yansheng; Yuan, Li; Mao, Yongrong; Wang, Weiwei; Zhu, Lin; Wu, Panpan; Fu, Chengzhang; Müller, Rolf; Weaver, David T; Zhang, Lixin; Zhang, Buchang

    2016-03-01

    Erythromycin A is a widely used antibiotic produced by Saccharopolyspora erythraea ; however, its biosynthetic cluster lacks a regulatory gene, limiting the yield enhancement via regulation engineering of S. erythraea . Herein, six TetR family transcriptional regulators (TFRs) belonging to three genomic context types were individually inactivated in S. erythraea A226, and one of them, SACE_3446, was proved to play a negative role in regulating erythromycin biosynthesis. EMSA and qRT-PCR analysis revealed that SACE_3446 covering intact N-terminal DNA binding domain specifically bound to the promoter regions of erythromycin biosynthetic gene eryAI , the resistant gene ermE and the adjacent gene SACE_3447 (encoding a long-chain fatty-acid CoA ligase), and repressed their transcription. Furthermore, we explored the interaction relationships of SACE_3446 and previously identified TFRs (SACE_3986 and SACE_7301) associated with erythromycin production. Given demonstrated relatively independent regulation mode of SACE_3446 and SACE_3986 in erythromycin biosynthesis, we individually and concomitantly inactivated them in an industrial S. erythraea WB. Compared with WB, the WBΔ 3446 and WBΔ 3446 Δ 3986 mutants respectively displayed 36% and 65% yield enhancement of erythromycin A, following significantly elevated transcription of eryAI and ermE . When cultured in a 5 L fermentor, erythromycin A of WBΔ 3446 and WBΔ 3446 Δ 3986 successively reached 4095 mg/L and 4670 mg/L with 23% and 41% production improvement relative to WB. The strategy reported here will be useful to improve antibiotics production in other industrial actinomycete.

  9. MPLEx: a method for simultaneous pathogen inactivation and extraction of samples for multi-omics profiling

    Energy Technology Data Exchange (ETDEWEB)

    Burnum-Johnson, Kristin E.; Kyle, Jennifer E.; Eisfeld, Amie J.; Casey, Cameron P.; Stratton, Kelly G.; Gonzalez, Juan F.; Habyarimana, Fabien; Negretti, Nicholas M.; Sims, Amy C.; Chauhan, Sadhana; Thackray, Larissa B.; Halfmann, Peter J.; Walters, Kevin B.; Kim, Young-Mo; Zink, Erika M.; Nicora, Carrie D.; Weitz, Karl K.; Webb-Robertson, Bobbie-Jo M.; Nakayasu, Ernesto S.; Ahmer, Brian; Konkel, Michael E.; Motin, Vladimir; Baric, Ralph S.; Diamond, Michael S.; Kawaoka, Yoshihiro; Waters, Katrina M.; Smith, Richard D.; Metz, Thomas O.

    2017-01-01

    The continued emergence and spread of infectious agents is of increasing concern due to increased population growth and the associated increased livestock production to meet food demands, increased urbanization and land-use changes, and greater travel. A systems biology approach to infectious disease research can significantly advance our understanding of host-pathogen relationships and facilitate the development of new therapies and vaccines. Molecular characterization of infectious samples outside of appropriate biosafety containment can only take place subsequent to pathogen inactivation. Herein, we describe a modified Folch extraction using chloroform/methanol that facilitates the molecular characterization of infectious samples by enabling simultaneous pathogen inactivation and extraction of proteins, metabolites, and lipids for subsequent mass spectrometry-based multi-omics measurements. This metabolite, protein and lipid extraction (MPLEx) method resulted in complete inactivation of bacterial and viral pathogens with exposed lipid membranes, including Yersinia pestis, Salmonella Typhimurium, and Campylobacter jejuni in pure culture, and Yersinia pestis, Campylobacter jejuni, West Nile, MERS-CoV, Ebola, and influenza H7N9 viruses in infection studies. Partial inactivation was observed for pathogens without exposed lipid membranes including 99.99% inactivation of community-associated methicillin-resistant Staphylococcus aureus, 99.6% and >99% inactivation of Clostridium difficile spores and vegetative cells, respectively, and 50% inactivation of adenovirus type 5. To demonstrate that MPLEx yields biomaterial of sufficient quality for subsequent multi-omics analyses, we highlight select proteomics, metabolomics and lipidomics data from human epithelial lung cells infected with wild-type and mutant forms of influenza H7N9. We believe that MPLEx will facilitate systems biology studies of infectious samples by enabling simultaneous pathogen inactivation and multi

  10. Inactivation of Listeria innocua in skim milk by pulsed electric fields and nisin.

    Science.gov (United States)

    Calderón-Miranda, M L; Barbosa-Cánovas, G V; Swanson, B G

    1999-10-01

    Pulsed electric fields (PEF) is an emerging nonthermal processing technology used to inactivate microorganisms in liquid foods such as milk. PEF results in loss of cell membrane functionality that leads to inactivation of the microorganism. There are many processes that aid in the stability and safety of foods. The combination of different preservation factors, such as nisin and PEF, to control microorganisms should be explored. The objective of this research was to study the inactivation of Listeria innocua suspended in skim milk by PEF as well as the sensitization of PEF treated L. innocua to nisin. The selected electric field intensity was 30, 40 and 50 kV/cm and the number of pulses applied was 10.6, 21.3 and 32. The sensitization exhibited by PEF treated L. innocua to nisin was assessed for 10 or 100 IU nisin/ml. A progressive decrease in the population of L. innocua was observed for the selected field intensities, with the greatest reduction being 2 1/2 log cycles (U). The exposure of L. innocua to nisin after PEF had an additive effect on the inactivation of the microorganism as that exhibited by the PEF alone. As the electric field, number of pulses and nisin concentration increased, synergism was observed in the inactivation of L. innocua as a result of exposure to nisin after PEF. The reduction of L. innocua accomplished by exposure to 10 IU nisin/ml after 32 pulsed electric fields was 2, 2.7, and 3.4 U for an electric field intensity of 30, 40, and 50 kV/cm, respectively. Population of L. innocua subjected to 100 IU nisin/ml after PEF was 2.8-3.8 U for the selected electric field intensities and 32 pulses. The designed model for the inactivation of L. innocua as a result of the PEF followed by exposure to nisin proved to be accurate in the prediction of the inactivation of L. innocua in skim milk containing 1.2 or 37 IU nisin/ml. Inactivation of L. innocua in skim milk containing 37 IU nisin/ml resulted in a decrease in population of 3.7 U.

  11. Inactivation of enteropathogenic E. coli by solar disinfection (SODIS) under simulated sunlight conditions

    CSIR Research Space (South Africa)

    Ubomba-Jaswa, Eunice

    2008-12-01

    Full Text Available of limitations. An important limitation is the lack of SODIS inactivation studies on some waterborne pathogens in the developing world. SODIS inactivation of enteropathogenic E. coli (EPEC), a major cause of infantile diarrhoea is reported for the first time...

  12. DrivingSense: Dangerous Driving Behavior Identification Based on Smartphone Autocalibration

    Directory of Open Access Journals (Sweden)

    Chunmei Ma

    2017-01-01

    Full Text Available Since pervasive smartphones own advanced computing capability and are equipped with various sensors, they have been used for dangerous driving behaviors detection, such as drunk driving. However, sensory data gathered by smartphones are noisy, which results in inaccurate driving behaviors estimations. Some existing works try to filter noise from sensor readings, but usually only the outlier data are filtered. The noises caused by hardware of the smartphone cannot be removed from the sensor reading. In this paper, we propose DrivingSense, a reliable dangerous driving behavior identification scheme based on smartphone autocalibration. We first theoretically analyze the impact of the sensor error on the vehicle driving behavior estimation. Then, we propose a smartphone autocalibration algorithm based on sensor noise distribution determination when a vehicle is being driven. DrivingSense leverages the corrected sensor parameters to identify three kinds of dangerous behaviors: speeding, irregular driving direction change, and abnormal speed control. We evaluate the effectiveness of our scheme under realistic environments. The results show that DrivingSense, on average, is able to detect the driving direction change event and abnormal speed control event with 93.95% precision and 90.54% recall, respectively. In addition, the speed estimation error is less than 2.1 m/s, which is an acceptable range.

  13. Emerging Genomic Tools for Legume Breeding: Current Status and Future Prospects

    Science.gov (United States)

    Pandey, Manish K.; Roorkiwal, Manish; Singh, Vikas K.; Ramalingam, Abirami; Kudapa, Himabindu; Thudi, Mahendar; Chitikineni, Anu; Rathore, Abhishek; Varshney, Rajeev K.

    2016-01-01

    Legumes play a vital role in ensuring global nutritional food security and improving soil quality through nitrogen fixation. Accelerated higher genetic gains is required to meet the demand of ever increasing global population. In recent years, speedy developments have been witnessed in legume genomics due to advancements in next-generation sequencing (NGS) and high-throughput genotyping technologies. Reference genome sequences for many legume crops have been reported in the last 5 years. The availability of the draft genome sequences and re-sequencing of elite genotypes for several important legume crops have made it possible to identify structural variations at large scale. Availability of large-scale genomic resources and low-cost and high-throughput genotyping technologies are enhancing the efficiency and resolution of genetic mapping and marker-trait association studies. Most importantly, deployment of molecular breeding approaches has resulted in development of improved lines in some legume crops such as chickpea and groundnut. In order to support genomics-driven crop improvement at a fast pace, the deployment of breeder-friendly genomics and decision support tools seems appear to be critical in breeding programs in developing countries. This review provides an overview of emerging genomics and informatics tools/approaches that will be the key driving force for accelerating genomics-assisted breeding and ultimately ensuring nutritional and food security in developing countries. PMID:27199998

  14. CRISPR-Cas9: tool for qualitative and quantitative plant genome editing

    Directory of Open Access Journals (Sweden)

    Ali Noman

    2016-11-01

    Full Text Available Genome editing advancements have made many unachievable ideas practical. Increased adoption of genome editing has been geared by swiftly developing CRISPR-Cas9 technology. This technique is appearing as driving force for innovative utilization in diverse branches of plant biology. CRISPR mediated genome editing is being used for rapid, easy and efficient alteration of indigenous genes among diverse plant species. With approximate completion of conceptual work about CRISPR/Cas9, plant scientists are applying this genome editing tool for crop attributes enhancement. The capability of CRISPR-Cas9 systems for performing targeted and efficient modifications in genome sequence as well as gene expression will certainly spur novel developments not only in model plants but also in crop plants. Additionally, due to non-involvement of foreign DNA, this technique may help alleviating regulatory issues associated with GM Plants. We expect that prevailing challenges in plant science like genomic region manipulation, crop specific vectors etc. will be addressed along with sustained growth of this genome editing tool. In this review, recent progress of CRISPR/Cas9 technology in plants has been summarized and discussed. We review potential of CRISPR/Cas9 for different aspects of plant life. It also covers strengths of this technique in comparison with other genome editing techniques e.g. ZFNs and TALENs and potential challenges in coming decades have been described.

  15. Heat inactivation kinetics of Hypocrea orientalis β-glucosidase with enhanced thermal stability by glucose.

    Science.gov (United States)

    Xu, Xin-Qi; Shi, Yan; Wu, Xiao-Bing; Zhan, Xi-Lan; Zhou, Han-Tao; Chen, Qing-Xi

    2015-11-01

    Thermal inactivation kinetics of Hypocrea orientalis β-glucosidase and effect of glucose on thermostability of the enzyme have been determined in this paper. Kinetic studies showed that the thermal inactivation was irreversible and first-order reaction. The microscopic rate constants for inactivation of free enzyme and substrate-enzyme complex were both determined, which suggested that substrates can protect β-glucosidase against thermal deactivation effectively. On the other hand, glucose was found to protect β-glucosidase from heat inactivation to remain almost whole activity below 70°C at 20mM concentration, whereas the apparent inactivation rate of BG decreased to be 0.3×10(-3)s(-1) in the presence of 5mM glucose, smaller than that of sugar-free enzyme (1.91×10(-3)s(-1)). The intrinsic fluorescence spectra results showed that glucose also had stabilizing effect on the conformation of BG against thermal denaturation. Docking simulation depicted the interaction mode between glucose and active residues of the enzyme to produce stabilizing effect. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Elective Inactivation of Total Artificial Heart Technology in Non-Futile Situations: Inpatients, Outpatients and Research Participants

    Science.gov (United States)

    Bramstedt, Katrina A.

    2004-01-01

    Total artificial heart technology as a potential clinical therapy raises the issue of elective device inactivation in both futile and non-futile situations. This article explores elective device inactivation in non-futile situations. In reply to such requests for inactivation, the medical team should reflect on the individual's decision-making…

  17. High-pressure processing of apple juice: kinetics of pectin methyl esterase inactivation.

    Science.gov (United States)

    Riahi, Esmaeil; Ramaswamy, Hosahalli S

    2003-01-01

    High-pressure (HP) inactivation kinetics of pectin methyl esterase (PME) in apple juice were evaluated. Commercial PME was dispensed in clarified apple juice, sealed in dual peel sterilizable plastic bags, and subjected to different high-pressure processing conditions (200-400 MPa, 0-180 min). Residual enzyme activity was determined by a titration method estimating the rate of free carboxyl group released by the enzyme acting on pectin substrate at pH 7.5 (30 degrees C). The effects of pressure level and pressure holding time on enzyme inactivation were significant (p < 0.05). PME from the microbial source was found to be more resistant (p < 0.05) to pressure inactivation than PME from the orange peel. Almost a full decimal reduction in the activity of commercial PME was achieved by HP treatment at 400 MPa for 25 min. Inactivation kinetics were evaluated on the basis of a dual effect model involving a pressure pulse effect and a first-order rate model, and the pressure sensitivity of rate constants was modeled by using the z-value concept.

  18. Driving Style Analysis Using Primitive Driving Patterns With Bayesian Nonparametric Approaches

    OpenAIRE

    Wang, Wenshuo; Xi, Junqiang; Zhao, Ding

    2017-01-01

    Analysis and recognition of driving styles are profoundly important to intelligent transportation and vehicle calibration. This paper presents a novel driving style analysis framework using the primitive driving patterns learned from naturalistic driving data. In order to achieve this, first, a Bayesian nonparametric learning method based on a hidden semi-Markov model (HSMM) is introduced to extract primitive driving patterns from time series driving data without prior knowledge of the number...

  19. Microwave-Irradiation-Assisted HVAC Filtration for Inactivation of Viral Aerosols (Postprint)

    Science.gov (United States)

    2012-02-01

    Baggiani, A. and Senesi, S. (2004). Effect of Microwave Radiation on Bacillus subtilis Spores . J. Appl. Microbiol. 97: 1220–1227. Damit, B., Lee, C.N...AFRL-RX-TY-TP-2012-0020 MICROWAVE-IRRADIATION-ASSISTED HVAC FILTRATION FOR INACTIVATION OF VIRAL AEROSOLS POSTPRINT Myung-Heui Woo and...12-APR-2011 -- 11-DEC-2011 Microwave Irradiation-Assisted HVAC Filtration for Inactivation of Viral Aerosols (POSTPRINT) FA8650-06-C-5913 0602102F

  20. Control rod drive

    International Nuclear Information System (INIS)

    Okutani, Tetsuro.

    1988-01-01

    Purpose: To provide a simple and economical control rod drive using a control circuit requiring no pulse circuit. Constitution: Control rods in a BWR type reactor are driven by hydraulic pressure and inserted or withdrawn in the direction of applying the hydraulic pressure. The direction of the hydraulic pressure is controlled by a direction control valve. Since the driving for the control rod is extremely important in view of the operation, a self diagnosis function is disposed for rapid inspection of possible abnormality. In the present invention, two driving contacts are disposed each by one between the both ends of a solenoid valve of the direction control valve for driving the control rod and the driving power source, and diagnosis is conducted by alternately operating them. Therefore, since it is only necessary that the control circuit issues a driving instruction only to one of the two driving contacts, the pulse circuit is no more required. Further, since the control rod driving is conducted upon alignment of the two driving instructions, the reliability of the control rod drive can be improved. (Horiuchi, T.)

  1. Hidden diversity revealed by genome-resolved metagenomics of iron-oxidizing microbial mats from L??ihi Seamount, Hawai?i

    OpenAIRE

    Fullerton, Heather; Hager, Kevin W; McAllister, Sean M; Moyer, Craig L

    2017-01-01

    The Zetaproteobacteria are ubiquitous in marine environments, yet this class of Proteobacteria is only represented by a few closely-related cultured isolates. In high-iron environments, such as diffuse hydrothermal vents, the Zetaproteobacteria are important members of the community driving its structure. Biogeography of Zetaproteobacteria has shown two ubiquitous operational taxonomic units (OTUs), yet much is unknown about their genomic diversity. Genome-resolved metagenomics allows for the...

  2. Weed seed inactivation in soil mesocosms via biosolarization with mature compost and tomato processing waste amendments.

    Science.gov (United States)

    Achmon, Yigal; Fernández-Bayo, Jesús D; Hernandez, Katie; McCurry, Dlinka G; Harrold, Duff R; Su, Joey; Dahlquist-Willard, Ruth M; Stapleton, James J; VanderGheynst, Jean S; Simmons, Christopher W

    2017-05-01

    Biosolarization is a fumigation alternative that combines passive solar heating with amendment-driven soil microbial activity to temporarily create antagonistic soil conditions, such as elevated temperature and acidity, that can inactivate weed seeds and other pest propagules. The aim of this study was to use a mesocosm-based field trial to assess soil heating, pH, volatile fatty acid accumulation and weed seed inactivation during biosolarization. Biosolarization for 8 days using 2% mature green waste compost and 2 or 5% tomato processing residues in the soil resulted in accumulation of volatile fatty acids in the soil, particularly acetic acid, and >95% inactivation of Brassica nigra and Solanum nigrum seeds. Inactivation kinetics data showed that near complete weed seed inactivation in soil was achieved within the first 5 days of biosolarization. This was significantly greater than the inactivation achieved in control soils that were solar heated without amendment or were amended but not solar heated. The composition and concentration of organic matter amendments in soil significantly affected volatile fatty acid accumulation at various soil depths during biosolarization. Combining solar heating with organic matter amendment resulted in accelerated weed seed inactivation compared with either approach alone. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  3. Bat Biology, Genomes, and the Bat1K Project: To Generate Chromosome-Level Genomes for All Living Bat Species.

    Science.gov (United States)

    Teeling, Emma C; Vernes, Sonja C; Dávalos, Liliana M; Ray, David A; Gilbert, M Thomas P; Myers, Eugene

    2018-02-15

    Bats are unique among mammals, possessing some of the rarest mammalian adaptations, including true self-powered flight, laryngeal echolocation, exceptional longevity, unique immunity, contracted genomes, and vocal learning. They provide key ecosystem services, pollinating tropical plants, dispersing seeds, and controlling insect pest populations, thus driving healthy ecosystems. They account for more than 20% of all living mammalian diversity, and their crown-group evolutionary history dates back to the Eocene. Despite their great numbers and diversity, many species are threatened and endangered. Here we announce Bat1K, an initiative to sequence the genomes of all living bat species (n∼1,300) to chromosome-level assembly. The Bat1K genome consortium unites bat biologists (>148 members as of writing), computational scientists, conservation organizations, genome technologists, and any interested individuals committed to a better understanding of the genetic and evolutionary mechanisms that underlie the unique adaptations of bats. Our aim is to catalog the unique genetic diversity present in all living bats to better understand the molecular basis of their unique adaptations; uncover their evolutionary history; link genotype with phenotype; and ultimately better understand, promote, and conserve bats. Here we review the unique adaptations of bats and highlight how chromosome-level genome assemblies can uncover the molecular basis of these traits. We present a novel sequencing and assembly strategy and review the striking societal and scientific benefits that will result from the Bat1K initiative.

  4. Thermal Inactivation of avian influenza virus in poultry litter as a method to decontaminate poultry houses.

    Science.gov (United States)

    Stephens, Christopher B; Spackman, Erica

    2017-09-15

    Removal of contaminated material from a poultry house during recovery from an avian influenza virus (AIV) outbreak is costly and labor intensive. Because AIV is not environmentally stable, heating poultry houses may provide an alternative disinfection method. The objective was to determine the time necessary to inactivate AIV in poultry litter at temperatures achievable in a poultry house. Low pathogenic (LP) AIV inactivation was evaluated between 10.0°-48.9°C, at ∼5.5°C intervals and highly pathogenic (HP) AIV inactivation was evaluated between 10.0°-43.3°C, at ∼11°C intervals. Samples were collected at numerous time points for each temperature. Virus isolation in embryonating chicken eggs was conducted to determine if viable virus was present. Each sample was also tested by real-time RT-PCR. Low pathogenicity AIV was inactivated at 1day at 26.7°C or above. At 10.0, 15.6 and 21.1°C, inactivation times increased to 2-5days. Highly pathogenic AIV followed a similar trend; the virus was inactivated after 1day at 43.3°C and 32.2°C, and required 2 and 5days for inactivation at 21.1°C and 10.0°C respectively. While low pathogenicity AIV appeared to be inactivated at a lower temperature than high pathogenicity AIV, this was not due to any difference in the strains, but due to fewer temperature points being evaluated for high pathogenicity. Endpoints for detection by real-time RT-PCR were not found even weeks after the virus was inactivated. This provides a guideline for the time required, at specific temperatures to inactivate AIV in poultry litter and likely on surfaces within the house. Heat treatment will provide an added level of safety to personnel and against further spread by eliminating infectious virus prior to cleaning a house. Published by Elsevier B.V.

  5. RTEL1 maintains genomic stability by suppressing homologous recombination.

    Science.gov (United States)

    Barber, Louise J; Youds, Jillian L; Ward, Jordan D; McIlwraith, Michael J; O'Neil, Nigel J; Petalcorin, Mark I R; Martin, Julie S; Collis, Spencer J; Cantor, Sharon B; Auclair, Melissa; Tissenbaum, Heidi; West, Stephen C; Rose, Ann M; Boulton, Simon J

    2008-10-17

    Homologous recombination (HR) is an important conserved process for DNA repair and ensures maintenance of genome integrity. Inappropriate HR causes gross chromosomal rearrangements and tumorigenesis in mammals. In yeast, the Srs2 helicase eliminates inappropriate recombination events, but the functional equivalent of Srs2 in higher eukaryotes has been elusive. Here, we identify C. elegans RTEL-1 as a functional analog of Srs2 and describe its vertebrate counterpart, RTEL1, which is required for genome stability and tumor avoidance. We find that rtel-1 mutant worms and RTEL1-depleted human cells share characteristic phenotypes with yeast srs2 mutants: lethality upon deletion of the sgs1/BLM homolog, hyperrecombination, and DNA damage sensitivity. In vitro, purified human RTEL1 antagonizes HR by promoting the disassembly of D loop recombination intermediates in a reaction dependent upon ATP hydrolysis. We propose that loss of HR control after deregulation of RTEL1 may be a critical event that drives genome instability and cancer.

  6. Dimensions of driving anger and their relationships with aberrant driving.

    Science.gov (United States)

    Zhang, Tingru; Chan, Alan H S; Zhang, Wei

    2015-08-01

    The purpose of this study was to investigate the relationship between driving anger and aberrant driving behaviours. An internet-based questionnaire survey was administered to a sample of Chinese drivers, with driving anger measured by a 14-item short Driving Anger Scale (DAS) and the aberrant driving behaviours measured by a 23-item Driver Behaviour Questionnaire (DBQ). The results of Confirmatory Factor Analysis demonstrated that the three-factor model (hostile gesture, arrival-blocking and safety-blocking) of the DAS fitted the driving anger data well. The Exploratory Factor Analysis on DBQ data differentiated four types of aberrant driving, viz. emotional violation, error, deliberate violation and maintaining progress violation. For the anger-aberration relation, it was found that only "arrival-blocking" anger was a significant positive predictor for all four types of aberrant driving behaviours. The "safety-blocking" anger revealed a negative impact on deliberate violations, a finding different from previously established positive anger-aberration relation. These results suggest that drivers with different patterns of driving anger would show different behavioural tendencies and as a result intervention strategies may be differentially effective for drivers of different profiles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Caught in-between: System for in-flow inactivation of enzymes as an intermediary step in “plug-and-play” microfluidic platforms

    DEFF Research Database (Denmark)

    Fernandes, Ana C.; Petersen, Benjamin; Møller, Lars

    2018-01-01

    for rapidenzyme inactivation. The thermal inactivation platform developed is compared with a standard benchtop ThermoMixer in terms of inactivation efficiency for glucose oxidase and catalase. A higher activity loss was observed for enzyme inactivation under flow conditions (inactivation achieved at 120 s...

  8. Pathogens Inactivated by Low-Energy-Electron Irradiation Maintain Antigenic Properties and Induce Protective Immune Responses

    Science.gov (United States)

    Fertey, Jasmin; Bayer, Lea; Grunwald, Thomas; Pohl, Alexandra; Beckmann, Jana; Gotzmann, Gaby; Casado, Javier Portillo; Schönfelder, Jessy; Rögner, Frank-Holm; Wetzel, Christiane; Thoma, Martin; Bailer, Susanne M.; Hiller, Ekkehard; Rupp, Steffen; Ulbert, Sebastian

    2016-01-01

    Inactivated vaccines are commonly produced by incubating pathogens with chemicals such as formaldehyde or β-propiolactone. This is a time-consuming process, the inactivation efficiency displays high variability and extensive downstream procedures are often required. Moreover, application of chemicals alters the antigenic components of the viruses or bacteria, resulting in reduced antibody specificity and therefore stimulation of a less effective immune response. An alternative method for inactivation of pathogens is ionizing radiation. It acts very fast and predominantly damages nucleic acids, conserving most of the antigenic structures. However, currently used irradiation technologies (mostly gamma-rays and high energy electrons) require large and complex shielding constructions to protect the environment from radioactivity or X-rays generated during the process. This excludes them from direct integration into biological production facilities. Here, low-energy electron irradiation (LEEI) is presented as an alternative inactivation method for pathogens in liquid solutions. LEEI can be used in normal laboratories, including good manufacturing practice (GMP)- or high biosafety level (BSL)-environments, as only minor shielding is necessary. We show that LEEI efficiently inactivates different viruses (influenza A (H3N8), porcine reproductive and respiratory syndrome virus (PRRSV), equine herpesvirus 1 (EHV-1)) and bacteria (Escherichia coli) and maintains their antigenicity. Moreover, LEEI-inactivated influenza A viruses elicit protective immune responses in animals, as analyzed by virus neutralization assays and viral load determination upon challenge. These results have implications for novel ways of developing and manufacturing inactivated vaccines with improved efficacy. PMID:27886076

  9. Short interspersed transposable elements (SINEs) are excluded from imprinted regions in the human genome.

    Science.gov (United States)

    Greally, John M

    2002-01-08

    To test whether regions undergoing genomic imprinting have unique genomic characteristics, imprinted and nonimprinted human loci were compared for nucleotide and retroelement composition. Maternally and paternally expressed subgroups of imprinted genes were found to differ in terms of guanine and cytosine, CpG, and retroelement content, indicating a segregation into distinct genomic compartments. Imprinted regions have been normally permissive to L1 long interspersed transposable element retroposition during mammalian evolution but universally and significantly lack short interspersed transposable elements (SINEs). The primate-specific Alu SINEs, as well as the more ancient mammalian-wide interspersed repeat SINEs, are found at significantly low densities in imprinted regions. The latter paleogenomic signature indicates that the sequence characteristics of currently imprinted regions existed before the mammalian radiation. Transitions from imprinted to nonimprinted genomic regions in cis are characterized by a sharp inflection in SINE content, demonstrating that this genomic characteristic can help predict the presence and extent of regions undergoing imprinting. During primate evolution, SINE accumulation in imprinted regions occurred at a decreased rate compared with control loci. The constraint on SINE accumulation in imprinted regions may be mediated by an active selection process. This selection could be because of SINEs attracting and spreading methylation, as has been found at other loci. Methylation-induced silencing could lead to deleterious consequences at imprinted loci, where inactivation of one allele is already established, and expression is often essential for embryonic growth and survival.

  10. Genome-wide mapping of autonomous promoter activity in human cells.

    Science.gov (United States)

    van Arensbergen, Joris; FitzPatrick, Vincent D; de Haas, Marcel; Pagie, Ludo; Sluimer, Jasper; Bussemaker, Harmen J; van Steensel, Bas

    2017-02-01

    Previous methods to systematically characterize sequence-intrinsic activity of promoters have been limited by relatively low throughput and the length of the sequences that could be tested. Here we present 'survey of regulatory elements' (SuRE), a method that assays more than 10 8 DNA fragments, each 0.2-2 kb in size, for their ability to drive transcription autonomously. In SuRE, a plasmid library of random genomic fragments upstream of a 20-bp barcode is constructed, and decoded by paired-end sequencing. This library is used to transfect cells, and barcodes in transcribed RNA are quantified by high-throughput sequencing. When applied to the human genome, we achieve 55-fold genome coverage, allowing us to map autonomous promoter activity genome-wide in K562 cells. By computational modeling we delineate subregions within promoters that are relevant for their activity. We show that antisense promoter transcription is generally dependent on the sense core promoter sequences, and that most enhancers and several families of repetitive elements act as autonomous transcription initiation sites.

  11. Sex differences in DNA methylation and expression in zebrafish brain: a test of an extended 'male sex drive' hypothesis.

    Science.gov (United States)

    Chatterjee, Aniruddha; Lagisz, Malgorzata; Rodger, Euan J; Zhen, Li; Stockwell, Peter A; Duncan, Elizabeth J; Horsfield, Julia A; Jeyakani, Justin; Mathavan, Sinnakaruppan; Ozaki, Yuichi; Nakagawa, Shinichi

    2016-09-30

    The sex drive hypothesis predicts that stronger selection on male traits has resulted in masculinization of the genome. Here we test whether such masculinizing effects can be detected at the level of the transcriptome and methylome in the adult zebrafish brain. Although methylation is globally similar, we identified 914 specific differentially methylated CpGs (DMCs) between males and females (435 were hypermethylated and 479 were hypomethylated in males compared to females). These DMCs were prevalent in gene body, intergenic regions and CpG island shores. We also discovered 15 distinct CpG clusters with striking sex-specific DNA methylation differences. In contrast, at transcriptome level, more female-biased genes than male-biased genes were expressed, giving little support for the male sex drive hypothesis. Our study provides genome-wide methylome and transcriptome assessment and sheds light on sex-specific epigenetic patterns and in zebrafish for the first time. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Pharmacology of the Nav1.1 domain IV voltage sensor reveals coupling between inactivation gating processes.

    Science.gov (United States)

    Osteen, Jeremiah D; Sampson, Kevin; Iyer, Vivek; Julius, David; Bosmans, Frank

    2017-06-27

    The Na v 1.1 voltage-gated sodium channel is a critical contributor to excitability in the brain, where pathological loss of function leads to such disorders as epilepsy, Alzheimer's disease, and autism. This voltage-gated sodium (Na v ) channel subtype also plays an important role in mechanical pain signaling by primary afferent somatosensory neurons. Therefore, pharmacologic modulation of Na v 1.1 represents a potential strategy for treating excitability disorders of the brain and periphery. Inactivation is a complex aspect of Na v channel gating and consists of fast and slow components, each of which may involve a contribution from one or more voltage-sensing domains. Here, we exploit the Hm1a spider toxin, a Na v 1.1-selective modulator, to better understand the relationship between these temporally distinct modes of inactivation and ask whether they can be distinguished pharmacologically. We show that Hm1a inhibits the gating movement of the domain IV voltage sensor (VSDIV), hindering both fast and slow inactivation and leading to an increase in Na v 1.1 availability during high-frequency stimulation. In contrast, ICA-121431, a small-molecule Na v 1.1 inhibitor, accelerates a subsequent VSDIV gating transition to accelerate entry into the slow inactivated state, resulting in use-dependent block. Further evidence for functional coupling between fast and slow inactivation is provided by a Na v 1.1 mutant in which fast inactivation removal has complex effects on slow inactivation. Taken together, our data substantiate the key role of VSDIV in Na v channel fast and slow inactivation and demonstrate that these gating processes are sequential and coupled through VSDIV. These findings provide insight into a pharmacophore on VSDIV through which modulation of inactivation gating can inhibit or facilitate Na v 1.1 function.

  13. Pulsed electric field inactivation in a microreactor

    NARCIS (Netherlands)

    Fox, M.B.

    2006-01-01

    Pulsed electric fields (PEF) is a novel, non-thermal pasteurization method which uses short, high electric field pulses to inactivate microorganisms. The advantage of a pasteurization method like PEF compared to regular heat pasteurization is that the taste, flavour, texture and nutritional value

  14. Gamma radiation inactivation of pathogens in sludge under larger-scale condition

    Energy Technology Data Exchange (ETDEWEB)

    Sermkiattipong, N; Pongpat, S

    1996-12-01

    The effect of gamma radiation on microorganisms in sludge from Huay Kwang Sewage Treatment Plant and Vajira Hospital showed that total bacterial counts were reduced to 2-3 log cycles and 1-2 log cycles at 5 kGy irradiation with and without aeration, respectively. Inactivation of coliform bacteria in sludge required irradiation with and without aeration at the dosages of 3-4.5 and 4-5 kGy, respectively. A dose of 2-3 kGy was sufficient to inactivate fecal coliform bacteria and E. coli. The doses used for inactivation these bacteria depend on the irradiation condition and solid content in sludge sample. Irradiation with aeration led to an increased microbial inactivation. According to our results, the frequency of occurrence of salmonella e contaminated in sludge from Huay Kwang Sewage Treatment Plant and Vajira Hospital was 50% and 75%, respectively. A dose of 2 kGy irradiation with or without aeration, salmonella e could not be detected in any sludge. Clostridium perfringens organisms were also detected in non-irradiated and irradiated sludge from both sources. Moreover, a dose of 5 kGy irradiation with or without aeration was not enough to eliminate C. perfringens. However, no shigella e were isolated from any treatment of sludge

  15. Complicated biallelic inactivation of Pten in radiation-induced mouse thymic lymphomas

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Yu [Department of Biology, Graduate School of Science, Chiba University, Yayoicho, Inage-ku, Chiba 263-8522 (Japan); Experimental Radiobiology for Children' s Health Research Group, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555 (Japan); Takabatake, Takashi; Kakinuma, Shizuko; Amasaki, Yoshiko; Nishimura, Mayumi; Imaoka, Tatsuhiko; Yamauchi, Kazumi; Shang, Yi [Experimental Radiobiology for Children' s Health Research Group, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555 (Japan); Miyoshi-Imamura, Tomoko [Experimental Radiobiology for Children' s Health Research Group, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555 (Japan); Genetic Counseling Program, Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyou-ku, Tokyo 112-8610 (Japan); Nogawa, Hiroyuki [Department of Biology, Graduate School of Science, Chiba University, Yayoicho, Inage-ku, Chiba 263-8522 (Japan); Kobayashi, Yoshiro [Department of Biomolecular Science, Faculty of Science, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510 (Japan); Shimada, Yoshiya, E-mail: y_shimad@nirsgo.jp [Experimental Radiobiology for Children' s Health Research Group, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555 (Japan)

    2010-04-01

    Inactivation of the phosphatase and tensin homolog gene (Pten) occurs via multiple tissue-dependent mechanisms including epigenetic silencing, point mutations, insertions, and deletions. Although frequent loss of heterozygosity around the Pten locus and plausible involvement of epigenetic silencing have been reported in radiation-induced thymic lymphomas, the proportion of lymphomas with inactivated Pten and the spectrum of causal aberrations have not been extensively characterized. Here, we assessed the mode of Pten inactivation by comprehensive analysis of the expression and alteration of Pten in 23 radiation-induced thymic lymphomas developed in B6C3F1 mice. We found no evidence for methylation-associated silencing of Pten; rather, complex structural abnormalities comprised of missense and nonsense mutations, 1- and 3-bp insertions, and focal deletions were identified in 8 of 23 lymphomas (35%). Sequencing of deletion breakpoints suggested that aberrant V(D)J recombination and microhomology-mediated rearrangement were responsible for the focal deletions. Seven of the 8 lymphomas had biallelic alterations, and 4 of them did not express Pten protein. These Pten aberrations coincided with downstream Akt phosphorylation. In conclusion, we demonstrate that Pten inactivation is frequently biallelic and is caused by a variety of structural abnormalities (rather than by epigenetic silencing) and is involved in radiation-induced lymphomagenesis.

  16. Gamma radiation inactivation of pathogens in sludge under larger-scale condition

    International Nuclear Information System (INIS)

    Sermkiattipong, N.; Pongpat, S.

    1996-01-01

    The effect of gamma radiation on microorganisms in sludge from Huay Kwang Sewage Treatment Plant and Vajira Hospital showed that total bacterial counts were reduced to 2-3 log cycles and 1-2 log cycles at 5 kGy irradiation with and without aeration, respectively. Inactivation of coliform bacteria in sludge required irradiation with and without aeration at the dosages of 3-4.5 and 4-5 kGy, respectively. A dose of 2-3 kGy was sufficient to inactivate fecal coliform bacteria and E. coli. The doses used for inactivation these bacteria depend on the irradiation condition and solid content in sludge sample. Irradiation with aeration led to an increased microbial inactivation. According to our results, the frequency of occurrence of salmonella e contaminated in sludge from Huay Kwang Sewage Treatment Plant and Vajira Hospital was 50% and 75%, respectively. A dose of 2 kGy irradiation with or without aeration, salmonella e could not be detected in any sludge. Clostridium perfringens organisms were also detected in non-irradiated and irradiated sludge from both sources. Moreover, a dose of 5 kGy irradiation with or without aeration was not enough to eliminate C. perfringens. However, no shigella e were isolated from any treatment of sludge

  17. A synergism between adaptive effects and evolvability drives whole genome duplication to fixation

    OpenAIRE

    Cuypers, Thomas D; Hogeweg, Paulien; Hogeweg, P.

    2014-01-01

    Whole genome duplication has shaped eukaryotic evolutionary history and has been associated with drastic environmental change and species radiation. While the most common fate of WGD duplicates is a return to single copy, retained duplicates have been found enriched for highly interacting genes. This pattern has been explained by a neutral process of subfunctionalization and more recently, dosage balance selection. However, much about the relationship between environmental change, WGD and ada...

  18. A synergism between adaptive effects and evolvability drives whole genome duplication to fixation.

    OpenAIRE

    Thomas D Cuypers; Paulien Hogeweg

    2014-01-01

    Whole genome duplication has shaped eukaryotic evolutionary history and has been associated with drastic environmental change and species radiation. While the most common fate of WGD duplicates is a return to single copy, retained duplicates have been found enriched for highly interacting genes. This pattern has been explained by a neutral process of subfunctionalization and more recently, dosage balance selection. However, much about the relationship between environmental change, WGD and ada...

  19. Genome-derived insights into the biology of the hepatotoxic bloom-forming cyanobacterium Anabaena sp. strain 90

    Directory of Open Access Journals (Sweden)

    Wang Hao

    2012-11-01

    Full Text Available Abstract Background Cyanobacteria can form massive toxic blooms in fresh and brackish bodies of water and are frequently responsible for the poisoning of animals and pose a health risk for humans. Anabaena is a genus of filamentous diazotrophic cyanobacteria commonly implicated as a toxin producer in blooms in aquatic ecosystems throughout the world. The biology of bloom-forming cyanobacteria is poorly understood at the genome level. Results Here, we report the complete sequence and comprehensive annotation of the bloom-forming Anabaena sp. strain 90 genome. It comprises two circular chromosomes and three plasmids with a total size of 5.3 Mb, encoding a total of 4,738 genes. The genome is replete with mobile genetic elements. Detailed manual annotation demonstrated that almost 5% of the gene repertoire consists of pseudogenes. A further 5% of the genome is dedicated to the synthesis of small peptides that are the products of both ribosomal and nonribosomal biosynthetic pathways. Inactivation of the hassallidin (an antifungal cyclic peptide biosynthetic gene cluster through a deletion event and a natural mutation of the buoyancy-permitting gvpG gas vesicle gene were documented. The genome contains a large number of genes encoding restriction-modification systems. Two novel excision elements were found in the nifH gene that is required for nitrogen fixation. Conclusions Genome analysis demonstrated that this strain invests heavily in the production of bioactive compounds and restriction-modification systems. This well-annotated genome provides a platform for future studies on the ecology and biology of these important bloom-forming cyanobacteria.

  20. Functional size analysis of bioactive materials by radiation inactivation

    International Nuclear Information System (INIS)

    Kume, Tamikazu

    1994-01-01

    When the research on various proteins including enzymes is carried out, first molecular weight is measured. The physical chemical methods used for measuring molecular weight cannot measure it in the state of actually acting in living bodies. Radiation inactivation method is the unique method which can measure the molecular weight of the active substances in living bodies. Paying attention to this point, recently it is attempted to measure the activity unit of enzymes, receptors and others, and to apply to the elucidation of their functions. In this report, the concept of the method of measuring molecular size based on radiation inactivation, the detailed experimental method and the points to which attention must be paid are described. Also its application to the elucidation of living body functions according to the example of the studies by the author is reported. The concept of the measurement of molecular weight by radiation inactivation is based on target theory. The preparation of samples, the effect of oxygen, radiation sources, dosimetry, irradiation temperature, internal standard process and so on are reported. The trend of the research is shown. (K.I.)

  1. Deletion of an X-inactivation boundary disrupts adjacent gene silencing.

    Directory of Open Access Journals (Sweden)

    Lindsay M Horvath

    2013-11-01

    Full Text Available In mammalian females, genes on one X are largely silenced by X-chromosome inactivation (XCI, although some "escape" XCI and are expressed from both Xs. Escapees can closely juxtapose X-inactivated genes and provide a tractable model for assessing boundary function at epigenetically regulated loci. To delimit sequences at an XCI boundary, we examined female mouse embryonic stem cells carrying X-linked BAC transgenes derived from an endogenous escape locus. Previously we determined that large BACs carrying escapee Kdm5c and flanking X-inactivated transcripts are properly regulated. Here we identify two lines with truncated BACs that partially and completely delete the distal Kdm5c XCI boundary. This boundary is not required for escape, since despite integrating into regions that are normally X inactivated, transgenic Kdm5c escapes XCI, as determined by RNA FISH and by structurally adopting an active conformation that facilitates long-range preferential association with other escapees. Yet, XCI regulation is disrupted in the transgene fully lacking the distal boundary; integration site genes up to 350 kb downstream of the transgene now inappropriately escape XCI. Altogether, these results reveal two genetically separable XCI regulatory activities at Kdm5c. XCI escape is driven by a dominant element(s retained in the shortest transgene that therefore lies within or upstream of the Kdm5c locus. Additionally, the distal XCI boundary normally plays an essential role in preventing nearby genes from escaping XCI.

  2. Targeted genome regulation via synthetic programmable transcriptional regulators

    KAUST Repository

    Piatek, Agnieszka Anna

    2016-04-19

    Regulation of gene transcription controls cellular functions and coordinates responses to developmental, physiological and environmental cues. Precise and efficient molecular tools are needed to characterize the functions of single and multiple genes in linear and interacting pathways in a native context. Modular DNA-binding domains from zinc fingers (ZFs) and transcriptional activator-like proteins (TALE) are amenable to bioengineering to bind DNA target sequences of interest. As a result, ZF and TALE proteins were used to develop synthetic programmable transcription factors. However, these systems are limited by the requirement to re-engineer proteins for each new target sequence. The clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR associated 9 (Cas9) genome editing tool was recently repurposed for targeted transcriptional regulation by inactivation of the nuclease activity of Cas9. Due to the facile engineering, simplicity, precision and amenability to library construction, the CRISPR/Cas9 system is poised to revolutionize the functional genomics field across diverse eukaryotic species. In this review, we discuss the development of synthetic customizable transcriptional regulators and provide insights into their current and potential applications, with special emphasis on plant systems, in characterization of gene functions, elucidation of molecular mechanisms and their biotechnological applications. © 2016 Informa UK Limited, trading as Taylor & Francis Group

  3. Enteric virus removal inactivation by coal-based media

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, A.; Chaudhuri, M. [Indian Institute of Technology, Kanpur (India). Dept. of Civil Engineering

    1995-02-01

    Four coal-based media, viz. alum-pretreated or ferric hydroxide-impregnated Giridih bituminous coal and lignite (alum-GBC, Fe-GBC; alum-lignite and Fe-Lignite) were laboratory tested to assess their potential in removing/inactivating enteric viruses in water. Batch-sorption screening tests, employing a poliovirus-spiked canal water, indicated high poliovirus sorption by Fe-GBC and alum-GBC in a short contact time of 5 min. Based on the results of further batch-sorption tests, using silver incorporated media (alum/Ag-GBC, alum-GBC-Ag and Fe-GBC-Ag), as well as aesthetic water quality consideration and previous findings on removal of coliforms and turbidity, alum/Ag-GBC, alum-GBC and alum-GBC-AG were included in downflow column studies employing poliovirus-spiked canal water. All three media showed potential in removing/inactivating enteric viruses. In a separate column study employing a joint challenge of poliovirus and rotavirus, alum/Ag-GBC removed 59.3-86.5% of the viruses along with more than 99% reduction in indigenous heterotrophic bacteria. Alum/silver-pretreated bituminous coal medium appears promising for use in household water filters in rural areas of the developing world. However, improved medium preparation to further enhance its efficiency is needed; also, its efficacy in removing/inactivating indigenous enteric bacteria, viruses and protozoa has to be ensured and practicalities or economics of application need to be considered.

  4. High Pressure Inactivation of HAV within Mussels

    Science.gov (United States)

    The potential of hepatitis A virus (HAV) to be inactivated within Mediterranean mussels (Mytilus galloprovincialis) and blue mussels (Mytilus edulis) by high pressure processing was evaluated. HAV was bioaccumulated within mussels to approximately 6-log10 PFU by exposure of mussels to HAV-contamina...

  5. Sexually localized expression of pseudo-self compatibility (PSC) in Petunia X hybrida Hort : 2. Stylar inactivation.

    Science.gov (United States)

    Dana, M N; Ascher, P D

    1986-01-01

    A previously identified S-linked stylar-inactivation PSC factor (Flaschenriem and Ascher 1979b) was studied for its location relative to S. Plants exhibiting complete stylar-inactivation PSC were those with higher multigenic PSC background level than plants with only S-linked partial stylar-inactivation PSC. A pollen-mediated pseudo-self compatibility (PMPSC) adjustment factor was offered as a device to focus on stylar-inactivation PSC by removing some male origin, multigenic PSC. The stylar inactivation factor was not tightly linked to S but affected expression of only the allele to which it was linked. A three part interacting association of genetic material governing self incompatibility (SI) is proposed. The parts of S are the SI identity gene, S-specific PSC genes and, finally, PSC genes which are not S-specific in action. The complete association is termed the SI-complex.

  6. Natural selection shaped the rise and fall of passenger pigeon genomic diversity.

    Science.gov (United States)

    Murray, Gemma G R; Soares, André E R; Novak, Ben J; Schaefer, Nathan K; Cahill, James A; Baker, Allan J; Demboski, John R; Doll, Andrew; Da Fonseca, Rute R; Fulton, Tara L; Gilbert, M Thomas P; Heintzman, Peter D; Letts, Brandon; McIntosh, George; O'Connell, Brendan L; Peck, Mark; Pipes, Marie-Lorraine; Rice, Edward S; Santos, Kathryn M; Sohrweide, A Gregory; Vohr, Samuel H; Corbett-Detig, Russell B; Green, Richard E; Shapiro, Beth

    2017-11-17

    The extinct passenger pigeon was once the most abundant bird in North America, and possibly the world. Although theory predicts that large populations will be more genetically diverse, passenger pigeon genetic diversity was surprisingly low. To investigate this disconnect, we analyzed 41 mitochondrial and 4 nuclear genomes from passenger pigeons and 2 genomes from band-tailed pigeons, which are passenger pigeons' closest living relatives. Passenger pigeons' large population size appears to have allowed for faster adaptive evolution and removal of harmful mutations, driving a huge loss in their neutral genetic diversity. These results demonstrate the effect that selection can have on a vertebrate genome and contradict results that suggested that population instability contributed to this species's surprisingly rapid extinction. Copyright © 2017, American Association for the Advancement of Science.

  7. Genetic and Functional Heterogeneity of Tumors in Neurofibromatosis 2

    Science.gov (United States)

    2016-07-01

    see Table 2). Table 2 – Isogenic human arachnoidal cell (AC) clones with NF2 (exon 8) inactivating mutations generated by CRISPR / Cas genome editing...Generation and analysis of RNAseq data from isogenic arachnoidal cells with or without inactivation of NF2, generated using CRISPR / Cas genome editing...potential target for therapeutic intervention. Use of CRISPR / Cas -edited arachnoidal cells to compare complete merlin inactivation with the

  8. Conflicting Evolutionary Histories of the Mitochondrial and Nuclear Genomes in New World Myotis Bats.

    Science.gov (United States)

    Platt, Roy N; Faircloth, Brant C; Sullivan, Kevin A M; Kieran, Troy J; Glenn, Travis C; Vandewege, Michael W; Lee, Thomas E; Baker, Robert J; Stevens, Richard D; Ray, David A

    2018-03-01

    The rapid diversification of Myotis bats into more than 100 species is one of the most extensive mammalian radiations available for study. Efforts to understand relationships within Myotis have primarily utilized mitochondrial markers and trees inferred from nuclear markers lacked resolution. Our current understanding of relationships within Myotis is therefore biased towards a set of phylogenetic markers that may not reflect the history of the nuclear genome. To resolve this, we sequenced the full mitochondrial genomes of 37 representative Myotis, primarily from the New World, in conjunction with targeted sequencing of 3648 ultraconserved elements (UCEs). We inferred the phylogeny and explored the effects of concatenation and summary phylogenetic methods, as well as combinations of markers based on informativeness or levels of missing data, on our results. Of the 294 phylogenies generated from the nuclear UCE data, all are significantly different from phylogenies inferred using mitochondrial genomes. Even within the nuclear data, quartet frequencies indicate that around half of all UCE loci conflict with the estimated species tree. Several factors can drive such conflict, including incomplete lineage sorting, introgressive hybridization, or even phylogenetic error. Despite the degree of discordance between nuclear UCE loci and the mitochondrial genome and among UCE loci themselves, the most common nuclear topology is recovered in one quarter of all analyses with strong nodal support. Based on these results, we re-examine the evolutionary history of Myotis to better understand the phenomena driving their unique nuclear, mitochondrial, and biogeographic histories.

  9. Older driver fitness-to-drive evaluation using naturalistic driving data.

    Science.gov (United States)

    Guo, Feng; Fang, Youjia; Antin, Jonathan F

    2015-09-01

    As our driving population continues to age, it is becoming increasingly important to find a small set of easily administered fitness metrics that can meaningfully and reliably identify at-risk seniors requiring more in-depth evaluation of their driving skills and weaknesses. Sixty driver assessment metrics related to fitness-to-drive were examined for 20 seniors who were followed for a year using the naturalistic driving paradigm. Principal component analysis and negative binomial regression modeling approaches were used to develop parsimonious models relating the most highly predictive of the driver assessment metrics to the safety-related outcomes observed in the naturalistic driving data. This study provides important confirmation using naturalistic driving methods of the relationship between contrast sensitivity and crash-related events. The results of this study provide crucial information on the continuing journey to identify metrics and protocols that could be applied to determine seniors' fitness to drive. Published by Elsevier Ltd.

  10. CHLORINE INACTIVATION OF CATEGORY "A" BIO-TERRORISM AGENTS

    Science.gov (United States)

    This poster presents information on the inactivation of select bioterrorist agents. Information will be presented on chlorine disinfection of vegetative cells of Brucella suis, Brucella melitensis, Burkholderia mallei, Burkholderia pseudomallei, Francisella tularensis and endos...

  11. Biochemical mechanism of action of a diketopiperazine inactivator of plasminogen activator inhibitor-1

    DEFF Research Database (Denmark)

    Einholm, Anja P; Pedersen, Katrine E; Wind, Troels

    2003-01-01

    -inactivated PAI-1 is inert to reaction with its target proteases and has a decreased susceptibility to non-target proteases, in spite of a generally increased proteolytic susceptibility of specific peptide bonds elsewhere in PAI-1. The properties of XR5118-inactivated PAI-1 were different from those of the so...

  12. Automated driving safer and more efficient future driving

    CERN Document Server

    Horn, Martin

    2017-01-01

    The main topics of this book include advanced control, cognitive data processing, high performance computing, functional safety, and comprehensive validation. These topics are seen as technological bricks to drive forward automated driving. The current state of the art of automated vehicle research, development and innovation is given. The book also addresses industry-driven roadmaps for major new technology advances as well as collaborative European initiatives supporting the evolvement of automated driving. Various examples highlight the state of development of automated driving as well as the way forward. The book will be of interest to academics and researchers within engineering, graduate students, automotive engineers at OEMs and suppliers, ICT and software engineers, managers, and other decision-makers.

  13. Reactive radical-driven bacterial inactivation by hydrogen-peroxide-enhanced plasma-activated-water

    Science.gov (United States)

    Wu, Songjie; Zhang, Qian; Ma, Ruonan; Yu, Shuang; Wang, Kaile; Zhang, Jue; Fang, Jing

    2017-08-01

    The combined effects of plasma activated water (PAW) and hydrogen peroxide (H2O2), PAW/HP, in sterilization were investigated in this study. To assess the synergistic effects of PAW/HP, S. aureus was selected as the test microorganism to determine the inactivation efficacy. Also, the DNA/RNA and proteins released by the bacterial suspensions under different conditions were examined to confirm membrane integrity. Additionally, the intracellular pH (pHi) of S. aureus was measured in our study. Electron spin resonance spectroscopy (ESR) was employed to identify the presence of radicals. Finally, the oxidation reduction potential (ORP), conductivity and pH were measured. Our results revealed that the inactivation efficacy of PAW/HP is much greater than that of PAW, while increased H2O2 concentration result in higher inactivation potential. More importantly, as compared with PAW, the much stronger intensity ESR signals and higher ORP in PAW/HP suggests that the inactivation mechanism of the synergistic effects of PAW/HP: more reactive oxygen species (ROS) and reactive nitrogen species (RNS), especially OH and NO radicals, are generated in PAW combined with H2O2 resulting in more deaths of the bacteria.

  14. Universal features in the genome-level evolution of protein domains.

    Science.gov (United States)

    Cosentino Lagomarsino, Marco; Sellerio, Alessandro L; Heijning, Philip D; Bassetti, Bruno

    2009-01-01

    Protein domains can be used to study proteome evolution at a coarse scale. In particular, they are found on genomes with notable statistical distributions. It is known that the distribution of domains with a given topology follows a power law. We focus on a further aspect: these distributions, and the number of distinct topologies, follow collective trends, or scaling laws, depending on the total number of domains only, and not on genome-specific features. We present a stochastic duplication/innovation model, in the class of the so-called 'Chinese restaurant processes', that explains this observation with two universal parameters, representing a minimal number of domains and the relative weight of innovation to duplication. Furthermore, we study a model variant where new topologies are related to occurrence in genomic data, accounting for fold specificity. Both models have general quantitative agreement with data from hundreds of genomes, which indicates that the domains of a genome are built with a combination of specificity and robust self-organizing phenomena. The latter are related to the basic evolutionary 'moves' of duplication and innovation, and give rise to the observed scaling laws, a priori of the specific evolutionary history of a genome. We interpret this as the concurrent effect of neutral and selective drives, which increase duplication and decrease innovation in larger and more complex genomes. The validity of our model would imply that the empirical observation of a small number of folds in nature may be a consequence of their evolution.

  15. N-type Cu2O Film for Photocatalytic and Photoelectrocatalytic Processes: Its stability and Inactivation of E. coli

    International Nuclear Information System (INIS)

    Xiong, Liangbin; Ng, Tsz Wai; Yu, Ying; Xia, Dehua; Yip, Ho Yin; Li, Guiying; An, Taicheng; Zhao, Huijun; Wong, Po Keung

    2015-01-01

    Highlights: • Photoelectrocatalytic inactivation of E. coli by Cu 2 O film was firstly reported. • 7 log of E. coli could be completely inactivated in 2 h by Cu 2 O with a 0.1 V bias. • Charge transfer between Cu 2 O and E. coli was monitored by electrochemical technique. • Inactivation of E. coli by electric charges of electrodes was in-depth investigated. • Stability of N-type Cu 2 O as a photocatalyst was studied for the first time. - ABSTRACT: Photoelectrocatalytic (PEC) inactivation of Escherichia coli K-12 by cuprous oxide (Cu 2 O) film irradiated by visible light is firstly reported. A complete inactivation of about 7 log of E. coli was obtained for Cu 2 O film within 6 h. The bacterial inactivation efficiency was significantly improved in a photoelectrochemical cell, in which 7 log of E. coli could be completely inactivated within 2 h by Cu 2 O film with a 0.1 V bias. Electric charge transfer between electrodes and E. coli, and electric charge inactivation towards E. coli were investigated using membrane-separated reactor combined with short circuit photocurrent technique. H 2 O 2 , hole, and toxicity of Cu 2 O film were found responsible for the inactivation of E. coli. Toxicity of copper ions (including Cu 2+ and Cu + ) leakage from Cu 2 O films was determined and the results showed that the amount of leakage copper ions was not toxic to E. coli. Finally, the Cu 2 O film was proved to be effective and reusable for PC and PEC inactivation of E. coli

  16. Function of the activated protein C (APC) autolysis loop in activated FVIII inactivation.

    Science.gov (United States)

    Cramer, Thomas J; Gale, Andrew J

    2011-06-01

    Activated protein C (APC) binds to its substrates activated factor V (FVa) and activated factor VIII (FVIIIa) with a basic exosite that consists of loops 37, 60, 70 and the autolysis loop. These loops have a high density of basic residues, resulting in a positive charge on the surface of APC. Many of these residues are important in the interaction of APC with FVa and FVIIIa. The current study focused on the function of the autolysis loop in the interaction with FVIIIa. This loop was previously shown to interact with FVa, and it inhibits APC inactivation by plasma serpins. Charged residues of the autolysis loop were individually mutated to alanine and the activity of these mutants was assessed in functional FVIIIa inactivation assays. The autolysis loop was functionally important for FVIIIa inactivation. Mutation of R306, K311 and R314 each resulted in significantly reduced FVIIIa inactivation. The inactivating cleavages of FVIIIa at R336 and R562 were affected equally by the mutations. Protein S and FV stimulated cleavage at R562 more than cleavage at R336, independent of mutations in the autolysis loop. Together, these results confirmed that the autolysis loop plays a significant role as part of the basic exosite on APC in the interaction with FVIIIa. © 2011 Blackwell Publishing Ltd.

  17. Use of laser-UV for inactivation of virus in blood products

    International Nuclear Information System (INIS)

    Prodouz, K.N.; Fratantoni, J.C.; Boone, E.J.; Bonner, R.F.

    1987-01-01

    Inactivation of virus by UV radiation was examined as a potential method for sterilization of blood products. Samples of attenuated poliovirus, platelets and plasma were uniformly irradiated with a XeCl excimer laser that delivered 40 nsec pulses of UV at 308 nm (UVB308). Intensities and exposure does were varied from 0.11 to 1.40 MW/cm2 and 0.51 to 56.0 J/cm2, respectively. In studies conducted with low intensity UVB308 (less than or equal to 0.17 MW/cm2), using exposure doses greater than or equal to 10.8 J/cm2, it was possible to inactivate poliovirus by 4 to 6 log10. Platelets irradiated with doses less than or equal to 21.5 J/cm2 exhibited minimal damage as assessed by aggregation activity and spontaneous release of serotonin. Examination of the coagulation activity of irradiated plasma indicated that exposure doses less than or equal to 21.5 J/cm2 resulted in less than 20% increase in prothrombin and partial thromboplastin times. The use of UVB308 at a higher intensity (1.4 MW/cm2) over a similar range of exposure doses did not enhance viral inactivation but did result in increased damage to platelet and plasma proteins. These results demonstrate that at 308 nm there exists a window of efficacy for exposure doses between 10.8 and 21.5 J/cm2 and peak intensities less than or equal to 0.17 MW/cm2 in which a hardy virus is significantly inactivated and platelets and plasma proteins are, by functional criteria, minimally affected. Increased viral inactivation cannot be accomplished with higher UV intensities and will require additional or alternate measures

  18. The mitochondrial genomes of the acoelomorph worms Paratomella rubra, Isodiametra pulchra and Archaphanostoma ylvae.

    Science.gov (United States)

    Robertson, Helen E; Lapraz, François; Egger, Bernhard; Telford, Maximilian J; Schiffer, Philipp H

    2017-05-12

    Acoels are small, ubiquitous - but understudied - marine worms with a very simple body plan. Their internal phylogeny is still not fully resolved, and the position of their proposed phylum Xenacoelomorpha remains debated. Here we describe mitochondrial genome sequences from the acoels Paratomella rubra and Isodiametra pulchra, and the complete mitochondrial genome of the acoel Archaphanostoma ylvae. The P. rubra and A. ylvae sequences are typical for metazoans in size and gene content. The larger I. pulchra  mitochondrial genome contains both ribosomal genes, 21 tRNAs, but only 11 protein-coding genes. We find evidence suggesting a duplicated sequence in the I. pulchra mitochondrial genome. The P. rubra, I. pulchra and A. ylvae mitochondria have a unique genome organisation in comparison to other metazoan mitochondrial genomes. We found a large degree of protein-coding gene and tRNA overlap with little non-coding sequence in the compact P. rubra genome. Conversely, the A. ylvae and I. pulchra genomes have many long non-coding sequences between genes, likely driving genome size expansion in the latter. Phylogenetic trees inferred from mitochondrial genes retrieve Xenacoelomorpha as an early branching taxon in the deuterostomes. Sequence divergence analysis between P. rubra sampled in England and Spain indicates cryptic diversity.

  19. Effects of inactivation of the anterior interpositus nucleus on the kinematic and dynamic control of multijoint movement.

    Science.gov (United States)

    Cooper, S E; Martin, J H; Ghez, C

    2000-10-01

    We previously showed that inactivating the anterior interpositus nucleus in cats disrupts prehension; paw paths, normally straight and accurate, become curved, hypometric, and more variable. In the present study, we determined the joint kinematic and dynamic origins of this impairment. Animals were restrained in a hammock and trained to reach and grasp a cube of meat from a narrow food well at varied heights; movements were monitored using the MacReflex analysis system. The anterior interpositus nucleus was inactivated by microinjection of the GABA agonist muscimol (0.25-0.5 microgram in 0.5 microliter saline). For each joint, we computed the torque due to gravity, inertial resistance (termed self torque), interjoint interactions (termed interaction torque), and the combined effects of active muscle contraction and passive soft tissue stretch (termed generalized muscle torque). Inactivation produced significant reductions in the amplitude, velocity, and acceleration of elbow flexion. However, these movements continued to scale normally with target height. Shoulder extension was reduced by inactivation but wrist angular displacement and velocity were not. Inactivation also produced changes in the temporal coordination between elbow, shoulder, and wrist kinematics. Dynamic analysis showed that elbow flexion both before and during inactivation was produced by the combined action of muscle and interaction torque, but that the timing depended on muscle torque. Elbow interaction and muscle torques were scaled to target height both before and during inactivation. Inactivation produced significant reductions in elbow flexor interaction and muscle torques. The duration of elbow flexor muscle torque was prolonged to compensate for the reduction in flexor interaction torque. Shoulder extension was produced by extensor interaction and muscle torques both before and during inactivation. Inactivation produced a reduction in shoulder extension, primarily by reduced interaction

  20. Mechanistic study of the visible-light-driven photocatalytic inactivation of bacteria by graphene oxide–zinc oxide composite

    International Nuclear Information System (INIS)

    Wu, Dan; An, Taicheng; Li, Guiying; Wang, Wei; Cai, Yuncheng; Yip, Ho Yin; Zhao, Huijun; Wong, Po Keung

    2015-01-01

    Graphical abstract: - Highlights: • The GO–ZnO composites exhibited efficient VLD bacterial inactivation performance. • Strong interfacial interaction existed between GO and ZnO. • GO served as a photosensitizer in the inactivation process. • Excellent antibacterial activity by GO–ZnO composite was shown under sunlight. • An inactivation mechanism based on the GO photosensitizer induction was proposed. - Abstract: The visible-light-driven (VLD) photocatalytic activity of graphene oxide–zinc oxide (GO–ZnO) composite prepared by a simple hydrothermal method was evaluated toward the inactivation of Escherichia coli K-12. The results showed that GO–ZnO composite had excellent VLD photocatalytic bacterial inactivation activity, comparing with those of ZnO and GO, which was attributed to the strong interaction between ZnO and GO in the composite. Accordingly, an interaction induced VLD photocatalytic inactivation mechanism of the strong interaction of GO with ZnO within the GO–ZnO composite was proposed. GO served as a photosensitizer and facilitated the charge separation and transfer, thus boosted the massive production of reactive oxygen species such as ·OH bulk , which was identified as the major reactive species from conduction band of ZnO, and resulted in a remarkable enhancement of bacterial inactivation efficiency. Moreover, GO–ZnO composite showed obviously superior photocatalytic bacterial inactivation within 10 min under natural solar light irradiation, indicating that GO–ZnO composite has great potential in wastewater treatment and environmental protection.

  1. Instrument for Study of Microbial Thermal Inactivation

    Science.gov (United States)

    Dickerson, R. W.; Read, R. B.

    1968-01-01

    An instrument was designed for the study of thermal inactivation of microorganisms using heating times of less than 1 sec. The instrument operates on the principle of rapid automatic displacement of the microorganism to and from a saturated steam atmosphere, and the operating temperature range is 50 to 90 C. At a temperature of 70 C, thermometric lag (time required to respond to 63.2% of a step change) of the fluid sample containing microorganisms was 0.12 sec. Heating time required to heat the sample to within 0.1 C of the exposure temperature was less than 1 sec, permitting exposure periods as brief as 1 sec, provided the proper corrections are made for the lethal effect of heating. The instrument is most useful for heat exposure periods of less than 5 min, and, typically, more than 500 samples can be processed for microbial inactivation determinations within an 8-hr period. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 7 Fig. 8 PMID:4874466

  2. Pile Driving

    Science.gov (United States)

    1987-01-01

    Machine-oriented structural engineering firm TERA, Inc. is engaged in a project to evaluate the reliability of offshore pile driving prediction methods to eventually predict the best pile driving technique for each new offshore oil platform. Phase I Pile driving records of 48 offshore platforms including such information as blow counts, soil composition and pertinent construction details were digitized. In Phase II, pile driving records were statistically compared with current methods of prediction. Result was development of modular software, the CRIPS80 Software Design Analyzer System, that companies can use to evaluate other prediction procedures or other data bases.

  3. Driver headway choice : A comparison between driving simulator and real-road driving

    NARCIS (Netherlands)

    Risto, M.; Martens, M.H.

    2014-01-01

    Driving simulators have become an established tool in driver behaviour research by offering a controllable, safe and cost-effective alternative to real world driving. A challenge for using driving simulators as a research tool has been to elicit driving behaviour that equals real world driving. With

  4. Driver headway choice: a comparison between driving simulator and real-road driving

    NARCIS (Netherlands)

    Risto, Malte; Martens, Marieke Hendrikje

    2014-01-01

    Driving simulators have become an established tool in driver behaviour research by offering a controllable, safe and cost-effective alternative to real world driving. A challenge for using driving simulators as a research tool has been to elicit driving behaviour that equals real world driving. With

  5. A universe of dwarfs and giants: genome size and chromosome evolution in the monocot family Melanthiaceae.

    Science.gov (United States)

    Pellicer, Jaume; Kelly, Laura J; Leitch, Ilia J; Zomlefer, Wendy B; Fay, Michael F

    2014-03-01

    • Since the occurrence of giant genomes in angiosperms is restricted to just a few lineages, identifying where shifts towards genome obesity have occurred is essential for understanding the evolutionary mechanisms triggering this process. • Genome sizes were assessed using flow cytometry in 79 species and new chromosome numbers were obtained. Phylogenetically based statistical methods were applied to infer ancestral character reconstructions of chromosome numbers and nuclear DNA contents. • Melanthiaceae are the most diverse family in terms of genome size, with C-values ranging more than 230-fold. Our data confirmed that giant genomes are restricted to tribe Parideae, with most extant species in the family characterized by small genomes. Ancestral genome size reconstruction revealed that the most recent common ancestor (MRCA) for the family had a relatively small genome (1C = 5.37 pg). Chromosome losses and polyploidy are recovered as the main evolutionary mechanisms generating chromosome number change. • Genome evolution in Melanthiaceae has been characterized by a trend towards genome size reduction, with just one episode of dramatic DNA accumulation in Parideae. Such extreme contrasting profiles of genome size evolution illustrate the key role of transposable elements and chromosome rearrangements in driving the evolution of plant genomes. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  6. Driving Safety and Fitness to Drive in Sleep Disorders.

    Science.gov (United States)

    Tippin, Jon; Dyken, Mark Eric

    2017-08-01

    Driving an automobile while sleepy increases the risk of crash-related injury and death. Neurologists see patients with sleepiness due to obstructive sleep apnea, narcolepsy, and a wide variety of neurologic disorders. When addressing fitness to drive, the physician must weigh patient and societal health risks and regional legal mandates. The Driver Fitness Medical Guidelines published by the National Highway Traffic Safety Administration (NHTSA) and the American Association of Motor Vehicle Administrators (AAMVA) provide assistance to clinicians. Drivers with obstructive sleep apnea may continue to drive if they have no excessive daytime sleepiness and their apnea-hypopnea index is less than 20 per hour. Those with excessive daytime sleepiness or an apnea-hypopnea index of 20 per hour or more may not drive until their condition is effectively treated. Drivers with sleep disorders amenable to pharmaceutical treatment (eg, narcolepsy) may resume driving as long as the therapy has eliminated excessive daytime sleepiness. Following these guidelines, documenting compliance to recommended therapy, and using the Epworth Sleepiness Scale to assess subjective sleepiness can be helpful in determining patients' fitness to drive.

  7. Pan genome of the phytoplankton Emiliania underpins its global distribution.

    Science.gov (United States)

    Read, Betsy A; Kegel, Jessica; Klute, Mary J; Kuo, Alan; Lefebvre, Stephane C; Maumus, Florian; Mayer, Christoph; Miller, John; Monier, Adam; Salamov, Asaf; Young, Jeremy; Aguilar, Maria; Claverie, Jean-Michel; Frickenhaus, Stephan; Gonzalez, Karina; Herman, Emily K; Lin, Yao-Cheng; Napier, Johnathan; Ogata, Hiroyuki; Sarno, Analissa F; Shmutz, Jeremy; Schroeder, Declan; de Vargas, Colomban; Verret, Frederic; von Dassow, Peter; Valentin, Klaus; Van de Peer, Yves; Wheeler, Glen; Dacks, Joel B; Delwiche, Charles F; Dyhrman, Sonya T; Glöckner, Gernot; John, Uwe; Richards, Thomas; Worden, Alexandra Z; Zhang, Xiaoyu; Grigoriev, Igor V

    2013-07-11

    Coccolithophores have influenced the global climate for over 200 million years. These marine phytoplankton can account for 20 per cent of total carbon fixation in some systems. They form blooms that can occupy hundreds of thousands of square kilometres and are distinguished by their elegantly sculpted calcium carbonate exoskeletons (coccoliths), rendering them visible from space. Although coccolithophores export carbon in the form of organic matter and calcite to the sea floor, they also release CO2 in the calcification process. Hence, they have a complex influence on the carbon cycle, driving either CO2 production or uptake, sequestration and export to the deep ocean. Here we report the first haptophyte reference genome, from the coccolithophore Emiliania huxleyi strain CCMP1516, and sequences from 13 additional isolates. Our analyses reveal a pan genome (core genes plus genes distributed variably between strains) probably supported by an atypical complement of repetitive sequence in the genome. Comparisons across strains demonstrate that E. huxleyi, which has long been considered a single species, harbours extensive genome variability reflected in different metabolic repertoires. Genome variability within this species complex seems to underpin its capacity both to thrive in habitats ranging from the equator to the subarctic and to form large-scale episodic blooms under a wide variety of environmental conditions.

  8. HARMONIC DRIVE SELECTION

    Directory of Open Access Journals (Sweden)

    Piotr FOLĘGA

    2014-03-01

    Full Text Available The variety of types and sizes currently in production harmonic drive is a problem in their rational choice. Properly selected harmonic drive must meet certain requirements during operation, and achieve the anticipated service life. The paper discusses the problems associated with the selection of the harmonic drive. It also presents the algorithm correct choice of harmonic drive. The main objective of this study was to develop a computer program that allows the correct choice of harmonic drive by developed algorithm.

  9. Inactivation of B. Pumilus spores by combination hydrostatic pressure-radiation treatment of parenteral solutions

    International Nuclear Information System (INIS)

    Wills, P.A.

    1975-01-01

    Bacterial spores are inactivated by moderate hydrostatic pressures. The radiation dose required to sterilize radiation sensitive pharmaceuticals can be considerably reduced using a combination hydrostatic pressure-radiation treatment. This paper describes a combination pressure-radiation sterilization process using Bacillus pumilus spores suspended in water, 0.9% saline, and 5% dextrose solutions. The optimum temperatures for spore inactivation at 35 MPa and the degree of inactivation at 35, 70 and 105 MPa applied for times up to 100 min have been determined. Inactivation was greatest in saline and least in dextrose. Spores in dextrose were only slightly less radiation resistant than in saline or water. It was calculated that the radiation dose required for sterilization could be halved with appropriate compression treatment. Examples of combinations of pressure-radiation suitable for sterilization are given. One combination is compression at 105 MPa for 18 min for a dose of 1.25 Mrad. (author)

  10. Variation in Linked Selection and Recombination Drive Genomic Divergence during Allopatric Speciation of European and American Aspens.

    Science.gov (United States)

    Wang, Jing; Street, Nathaniel R; Scofield, Douglas G; Ingvarsson, Pär K

    2016-07-01

    Despite the global economic and ecological importance of forest trees, the genomic basis of differential adaptation and speciation in tree species is still poorly understood. Populus tremula and Populus tremuloides are two of the most widespread tree species in the Northern Hemisphere. Using whole-genome re-sequencing data of 24 P. tremula and 22 P. tremuloides individuals, we find that the two species diverged ∼2.2-3.1 million years ago, coinciding with the severing of the Bering land bridge and the onset of dramatic climatic oscillations during the Pleistocene. Both species have experienced substantial population expansions following long-term declines after species divergence. We detect widespread and heterogeneous genomic differentiation between species, and in accordance with the expectation of allopatric speciation, coalescent simulations suggest that neutral evolutionary processes can account for most of the observed patterns of genetic differentiation. However, there is an excess of regions exhibiting extreme differentiation relative to those expected under demographic simulations, which is indicative of the action of natural selection. Overall genetic differentiation is negatively associated with recombination rate in both species, providing strong support for a role of linked selection in generating the heterogeneous genomic landscape of differentiation between species. Finally, we identify a number of candidate regions and genes that may have been subject to positive and/or balancing selection during the speciation process. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  11. Comparison of methods for genomic localization of gene trap sequences

    Directory of Open Access Journals (Sweden)

    Ferrin Thomas E

    2006-09-01

    Full Text Available Abstract Background Gene knockouts in a model organism such as mouse provide a valuable resource for the study of basic biology and human disease. Determining which gene has been inactivated by an untargeted gene trapping event poses a challenging annotation problem because gene trap sequence tags, which represent sequence near the vector insertion site of a trapped gene, are typically short and often contain unresolved residues. To understand better the localization of these sequences on the mouse genome, we compared stand-alone versions of the alignment programs BLAT, SSAHA, and MegaBLAST. A set of 3,369 sequence tags was aligned to build 34 of the mouse genome using default parameters for each algorithm. Known genome coordinates for the cognate set of full-length genes (1,659 sequences were used to evaluate localization results. Results In general, all three programs performed well in terms of localizing sequences to a general region of the genome, with only relatively subtle errors identified for a small proportion of the sequence tags. However, large differences in performance were noted with regard to correctly identifying exon boundaries. BLAT correctly identified the vast majority of exon boundaries, while SSAHA and MegaBLAST missed the majority of exon boundaries. SSAHA consistently reported the fewest false positives and is the fastest algorithm. MegaBLAST was comparable to BLAT in speed, but was the most susceptible to localizing sequence tags incorrectly to pseudogenes. Conclusion The differences in performance for sequence tags and full-length reference sequences were surprisingly small. Characteristic variations in localization results for each program were noted that affect the localization of sequence at exon boundaries, in particular.

  12. Review: Efficiency of physical and chemical treatments on the inactivation of dairy bacteriophages

    Directory of Open Access Journals (Sweden)

    Daniela Marta Guglielmotti

    2012-01-01

    Full Text Available Bacteriophages can cause great economic losses due to fermentation failure in dairy plants. Hence, physical and chemical treatments of raw material and/or equipment are mandatory to maintain phage levels as low as possible. Regarding thermal treatments used to kill pathogenic bacteria or achieve longer shelf-life of dairy products, neither low temperature long time (LTLT nor high temperature short time (HTST pasteurization were able to inactivate most lactic acid bacteria (LAB phages. Even though most phages did not survive 90ºC for 2 min, there were some that resisted 90ºC for more than 15 min (conditions suggested by the International Dairy Federation, IDF, for complete phage destruction. Among biocides tested, ethanol showed variable effectiveness in phage inactivation, since only phages infecting dairy cocci and Lactobacillus helveticus were reasonably inactivated by this alcohol, whereas isopropanol was in all cases highly ineffective. In turn, peracetic acid has consistently proved to be very fast and efficient to inactivate dairy phages, whereas efficiency of sodium hypochlorite was variable, even among different phages infecting the same LAB species. Both alkaline chloride foam and ethoxylated nonylphenol with phosphoric acid were remarkably efficient, trait probably related to their highly alkaline or acidic pH values in solution, respectively. Photocatalysis using UV light and TiO2 has been recently reported as a feasible option to industrially inactivate phages infecting diverse LAB species. Processes involving high pressure were barely used for phage inactivation, but until now most studied phages revealed high resistance to these treatments. To conclude, and given the great phage diversity found on dairies, it is always advisable to combine different anti-phage treatments (biocides, heat, high pressure, photocatalysis, rather than using them separately at extreme conditions.

  13. A novel inactivated gE/gI deleted pseudorabies virus (PRV) vaccine completely protects pigs from an emerged variant PRV challenge.

    Science.gov (United States)

    Gu, Zhenqing; Dong, Jing; Wang, Jichun; Hou, Chengcai; Sun, Haifeng; Yang, Wenping; Bai, Juan; Jiang, Ping

    2015-01-02

    A highly virulent and antigenic variant of pseudorabies virus (PRV) broke out in China at the end of 2011 and caused great economic loss in the pig industry. In this study, an infectious bacterial artificial chromosome (BAC) clone containing the full-length genome of the emerged variant PRV ZJ01 strain was generated. The BAC-derived viruses, vZJ01-GFPΔgE/gI (gE/gI deleted strain, and exhibiting green autofluorescence), vZJ01ΔgE/gI (gE/gI deleted strain), and vZJ01gE/gI-R (gE/gI revertant strain), showed similar in vitro growth to their parent strain. In pigs, inactivated vZJ01ΔgE/gI vaccine generated significantly high levels of neutralizing antibodies against ZJ01 compared with Bartha-K61 live vaccine (pvaccine group survived without exhibiting any clinical sings, but two of five animals exhibited central nervous signs in the Bartha-K61 group. Meanwhile, all the non-vaccinated control animals died at 7 days post-challenge. This indicates that the inactivated vZJ01ΔgE/gI vaccine is a promising vaccine candidate for controlling the variant strains of PRV now circulating in China. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Control rod drives

    International Nuclear Information System (INIS)

    Futatsugi, Masao.

    1980-01-01

    Purpose: To secure the reactor operation safety by the provision of a fluid pressure detecting section for control rod driving fluid and a control rod interlock at the midway of the flow pass for supplying driving fluid to the control rod drives. Constitution: Between a driving line and a direction control valve are provided a pressure detecting portion, an alarm generating device, and a control rod inhibition interlock. The driving fluid from a driving fluid source is discharged by way of a pump and a manual valve into the reactor in which the control rods and reactor fuels are contained. In addition, when the direction control valve is switched and the control rods are inserted and extracted by the control rod drives, the pressure in the driving line is always detected by the pressure detection section, whereby if abnormal pressure is resulted, the alarm generating device is actuated to warn the abnormality and the control rod inhibition interlock is actuated to lock the direction control valve thereby secure the safety operation of the reactor. (Seki, T.)

  15. High Efficiency Gene Correction in Hematopoietic Cells by Donor-Template-Free CRISPR/Cas9 Genome Editing

    Directory of Open Access Journals (Sweden)

    Duran Sürün

    2018-03-01

    Full Text Available The CRISPR/Cas9 prokaryotic adaptive immune system and its swift repurposing for genome editing enables modification of any prespecified genomic sequence with unprecedented accuracy and efficiency, including targeted gene repair. We used the CRISPR/Cas9 system for targeted repair of patient-specific point mutations in the Cytochrome b-245 heavy chain gene (CYBB, whose inactivation causes chronic granulomatous disease (XCGD—a life-threatening immunodeficiency disorder characterized by the inability of neutrophils and macrophages to produce microbicidal reactive oxygen species (ROS. We show that frameshift mutations can be effectively repaired in hematopoietic cells by non-integrating lentiviral vectors carrying RNA-guided Cas9 endonucleases (RGNs. Because about 25% of most inherited blood disorders are caused by frameshift mutations, our results suggest that up to a quarter of all patients suffering from monogenic blood disorders could benefit from gene therapy employing personalized, donor template-free RGNs.

  16. Inactivation of Microorganisms

    Science.gov (United States)

    Alzamora, Stella Maris; Guerrero, Sandra N.; Schenk, Marcela; Raffellini, Silvia; López-Malo, Aurelio

    Minimal processing techniques for food preservation allow better retention of product flavor, texture, color, and nutrient content than comparable conventional treatments. A wide range of novel alternative physical factors have been intensely investigated in the last two decades. These physical factors can cause inactivation of microorganisms at ambient or sublethal temperatures (e.g., high hydrostatic pressure, pulsed electric fields, ultrasound, pulsed light, and ultraviolet light). These technologies have been reported to reduce microorganism population in foods while avoiding the deleterious effects of severe heating on quality. Among technologies, high-energy ultrasound (i.e., intensities higher than 1 W/cm2, frequencies between 18 and 100 kHz) has attracted considerable interest for food preservation applications (Mason et al., 1996; Povey and Mason, 1998).

  17. Inactivation of VHSV by infiltration and salt under experimental conditions

    DEFF Research Database (Denmark)

    Skall, Helle Frank; Jørgensen, Claus; Olesen, Niels Jørgen

    2014-01-01

    At the moment the only legal method in Denmark to sanitize wastewater from fish cutting plants is by infiltration. To evaluate the inactivation effect of infiltration on VHSV an experimental examination was initiated. A column packed with gravel as top- and bottom layer (total of 22 cm) and a mid...... be a valuable method to sanitize VHSV infected water. Changes in temperature, pH, earth types in the area used for infiltration etc. may change the virus reduction, though. As some of the fish cutting plants are also smoking rainbow trout fillets, the question arose whether a brine solution will inactivate VHSV...

  18. Inactivation model for disinfection of biofilms in drinking water

    International Nuclear Information System (INIS)

    Karlicki, A.; O'Leary, K.C.; Gagnon, G.A.

    2002-01-01

    The purpose of the project was to investigate experimentally the effects of free chlorine, monochloramine and chlorine dioxide on the removal of biofilm growth in water as it applies to drinking water in distribution systems. In particular, biofilm kill for a particular dosage of disinfectant was measured as a function of time for each disinfectant over a range of disinfectant concentrations. These results were used to formulate concentration-time (Ct) inactivation values for each disinfectant to compare the efficacy of the three disinfectants for biofilm control. The biofilm reactor system consisted of a 125 mL columns, each containing tightly packed 3 mm glass beads on which heterotrophic bacterial biofilm is established. Following an initial biofilm inoculation period, the glass beads were removed from the columns and placed into glass jars for disinfection with free chlorine, monochloramine and chlorine dioxide. Cell counts were determined on a time series basis with the goal of achieving a Ct inactivation model that is similar to models presently used for inactivation of suspended cells. Ultimately this research could be used to develop a rationale method for setting regulatory values for secondary disinfection in drinking water distribution systems, which presently in only a few states and provinces. (author)

  19. Antimicrobial blue light inactivation of Methicillin-resistant Staphylococcus aureus

    Science.gov (United States)

    Wang, Yucheng; Dai, Tianhong; Gu, Ying

    2016-10-01

    Background: With the increasing emergence of multidrug-resistant (MDR) bacterial strains, there is a pressing need for the development of alternative treatment for infections. Antimicrobial blue light (aBL) has provided a simple and effective approach. Methods: We first investigated the effectiveness of aBL (415 nm) inactivation of USA300 LAClux (a communityacquired Methicillin-resistant Staphylococcus aureus strain) both in the planktonic and biofilm forms. The survival of the bacteria in suspensions was determined by serial dilution and that of the biofilm-embedded bacteria was determined by bioluminescence quantification. Using a mouse model of thermal burn infected with USA300 LAClux, we further assessed the effectiveness of aBL for treating localized infections. Bioluminescence imaging was performed to monitor in real time bacterial viability in vivo. Results: In vitro study showed that, for the planktonic counterpart of the bacteria or the 24-h-old biofilms, an irradiance of 55 mW/cm2 for 60 min resulted in a 4.61 log10 or 2.56 log10 inactivation, respectively. In vivo study using infected mouse burns demonstrated that a 2.56-log10 inactivation was achieved after 100-mW/cm2 irradiation for 62 min. Conclusions: aBL is a potential alternative approach for treating Methicillin-resistant Staphylococcus aureus infections.

  20. A practical guide to environmental association analysis in landscape genomics

    OpenAIRE

    Rellstab Christian; Gugerli Felix; Eckert Andrew J.; Hancock Angela M.; Holderegger Rolf

    2015-01-01

    Landscape genomics is an emerging research field that aims to identify the environmental factors that shape adaptive genetic variation and the gene variants that drive local adaptation. Its development has been facilitated by next generation sequencing which allows for screening thousands to millions of single nucleotide polymorphisms in many individuals and populations at reasonable costs. In parallel data sets describing environmental factors have greatly improved and increasingly become pu...

  1. Non-linear pressure/temperature-dependence of high pressure thermal inactivation of proteolytic Clostridium botulinum type B in foods.

    Directory of Open Access Journals (Sweden)

    Maximilian B Maier

    Full Text Available The effect of high pressure thermal (HPT processing on the inactivation of spores of proteolytic type B Clostridium botulinum TMW 2.357 in four differently composed low-acid foods (green peas with ham, steamed sole, vegetable soup, braised veal was studied in an industrially feasible pressure range and temperatures between 100 and 120°C. Inactivation curves exhibited rapid inactivation during compression and decompression followed by strong tailing effects. The highest inactivation (approx. 6-log cycle reduction was obtained in braised veal at 600 MPa and 110°C after 300 s pressure-holding time. In general, inactivation curves exhibited similar negative exponential shapes, but maximum achievable inactivation levels were lower in foods with higher fat contents. At high treatment temperatures, spore inactivation was more effective at lower pressure levels (300 vs. 600 MPa, which indicates a non-linear pressure/temperature-dependence of the HPT spore inactivation efficiency. A comparison of spore inactivation levels achievable using HPT treatments versus a conventional heat sterilization treatment (121.1°C, 3 min illustrates the potential of combining high pressures and temperatures to replace conventional retorting with the possibility to reduce the process temperature or shorten the processing time. Finally, experiments using varying spore inoculation levels suggested the presence of a resistant fraction comprising approximately 0.01% of a spore population as reason for the pronounced tailing effects in survivor curves. The loss of the high resistance properties upon cultivation indicates that those differences develop during sporulation and are not linked to permanent modifications at the genetic level.

  2. Effects of track structure and cell inactivation on the calculation of heavy ion mutation rates in mammalian cells

    Science.gov (United States)

    Cucinotta, F. A.; Wilson, J. W.; Shavers, M. R.; Katz, R.

    1996-01-01

    It has long been suggested that inactivation severely effects the probability of mutation by heavy ions in mammalian cells. Heavy ions have observed cross sections of inactivation that approach and sometimes exceed the geometric size of the cell nucleus in mammalian cells. In the track structure model of Katz the inactivation cross section is found by summing an inactivation probability over all impact parameters from the ion to the sensitive sites within the cell nucleus. The inactivation probability is evaluated using the dose-response of the system to gamma-rays and the radial dose of the ions and may be equal to unity at small impact parameters for some ions. We show how the effects of inactivation may be taken into account in the evaluation of the mutation cross sections from heavy ions in the track structure model through correlation of sites for gene mutation and cell inactivation. The model is fit to available data for HPRT mutations in Chinese hamster cells and good agreement is found. The resulting calculations qualitatively show that mutation cross sections for heavy ions display minima at velocities where inactivation cross sections display maxima. Also, calculations show the high probability of mutation by relativistic heavy ions due to the radial extension of ions track from delta-rays in agreement with the microlesion concept. The effects of inactivation on mutations rates make it very unlikely that a single parameter such as LET or Z*2/beta(2) can be used to specify radiation quality for heavy ion bombardment.

  3. Modeling the high pressure inactivation kinetics of Listeria monocytogenes on RTE cooked meat products

    DEFF Research Database (Denmark)

    Hereu, A.; Dalgaard, Paw; Garriga, M.

    2012-01-01

    High pressure (HP) inactivation curves of Listeria monocytogenes CTC1034 (ca. 107CFU/g) on sliced RTE cooked meat products (ham and mortadella) were obtained at pressures from 300 to 800MPa. A clear tail shape was observed at pressures above 450MPa and the log-linear with tail primary model...... provided the best fit to the HP-inactivation kinetics. The relationships between the primary kinetic parameters (log kmax and log Nres) and pressure treatments were described by a polynomial secondary model. To estimate HP-inactivation of L. monocytogenes in log (N/N0) over time, a one-step global fitting...

  4. Theoretical studies on the inactivation mechanism of γ-aminobutyric acid aminotransferase.

    Science.gov (United States)

    Durak, A T; Gökcan, H; Konuklar, F A S

    2011-07-21

    The inactivation mechanism of γ-aminobutyric acid aminotransferase (GABA-AT) in the presence of γ-vinyl-aminobutyric acid, an anti-epilepsy drug, has been studied by means of theoretical calculations. Density functional theory methods have been applied to compare the three experimentally proposed inactivation mechanisms (Silverman et al., J. Biol. Chem., 2004, 279, 363). All the calculations were performed at the B3LYP/6-31+G(d,p) level of theory. Single point solvent calculations were carried out in water, by means of an integral equation formalism-polarizable continuum model (IEFPCM) at the B3LYP/6-31+G(d,p) level of theory. The present calculations provide an insight into the mechanistic preferences of the inactivation reaction of GABA-AT. The results also allow us to elucidate the key factors behind the mechanistic preferences. The computations also confirm the importance of explicit water molecules around the reacting center in the proton transfer steps.

  5. Inactivation of Adenomatous Polyposis Coli Reduces Bile Acid/Farnesoid X Receptor Expression through Fxr gene CpG Methylation in Mouse Colon Tumors and Human Colon Cancer Cells.

    Science.gov (United States)

    Selmin, Ornella I; Fang, Changming; Lyon, Adam M; Doetschman, Tom C; Thompson, Patricia A; Martinez, Jesse D; Smith, Jeffrey W; Lance, Peter M; Romagnolo, Donato F

    2016-02-01

    The farnesoid X receptor (FXR) regulates bile acid (BA) metabolism and possesses tumor suppressor functions. FXR expression is reduced in colorectal tumors of subjects carrying inactivated adenomatous polyposis coli (APC). Identifying the mechanisms responsible for this reduction may offer new molecular targets for colon cancer prevention. We investigated how APC inactivation influences the regulation of FXR expression in colonic mucosal cells. We hypothesized that APC inactivation would epigenetically repress nuclear receptor subfamily 1, group H, member 4 (FXR gene name) expression through increased CpG methylation. Normal proximal colonic mucosa and normal-appearing adjacent colonic mucosa and colon tumors were collected from wild-type C57BL/6J and Apc-deficient (Apc(Min) (/+)) male mice, respectively. The expression of Fxr, ileal bile acid-binding protein (Ibabp), small heterodimer partner (Shp), and cyclooxygenase-2 (Cox-2) were determined by real-time polymerase chain reaction. In both normal and adjacent colonic mucosa and colon tumors, we measured CpG methylation of Fxr in bisulfonated genomic DNA. In vitro, we measured the impact of APC inactivation and deoxycholic acid (DCA) treatment on FXR expression in human colon cancer HCT-116 cells transfected with silencing RNA for APC and HT-29 cells carrying inactivated APC. In Apc(Min) (/+) mice, constitutive CpG methylation of the Fxrα3/4 promoter was linked to reduced (60-90%) baseline Fxr, Ibabp, and Shp and increased Cox-2 expression in apparently normal adjacent mucosa and colon tumors. Apc knockdown in HCT-116 cells increased cellular myelocytomatosis (c-MYC) and lowered (∼50%) FXR expression, which was further reduced (∼80%) by DCA. In human HCT-116 but not HT-29 colon cancer cells, DCA induced FXR expression and lowered CpG methylation of FXR. We conclude that the loss of APC function favors the silencing of FXR expression through CpG hypermethylation in mouse colonic mucosa and human colon cells

  6. Inhibition of Retinoblastoma Protein Inactivation

    Science.gov (United States)

    2017-11-01

    CONTRACT NUMBER Inhibition of Retinoblastoma Protein Inactivation 5b. GRANT NUMBER W81XWH-14-1-0329 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Seth M...confirmed 108 compounds as giving a dose-response curve with at least 30% inhibition at 10 µM. The flowchart of hit progression is shown on the...Cancer Research Program under Award No. W81XWH-14-1-0329 to S.M.R. Opinions, interpretations, conclusions, and recommendations are those of the author

  7. No evidence for functional inactivation of wild-type p53 protein by MDM2 overexpression in gastric carcinogenesis

    NARCIS (Netherlands)

    Blok, P.; Craanen, M. E.; Dekker, W.; Offerhaus, G. J.; Tytgat, G. N.

    1998-01-01

    Inactivation of wild-type p53 during gastric carcinogenesis is usually caused by mutations within exons 5-8 of the p53 gene leading to mutated, usually immunohistochemically detectable p53 proteins. However, functional inactivation of wild-type p53, mimicking mutational inactivation, may also result

  8. Inactivation of human immunodeficiency virus (HIV) by ionizing radiation in body fluids and serological evidence

    International Nuclear Information System (INIS)

    Bigbee, P.D.; Sarin, P.S.; Humphreys, J.C.; Eubanks, W.G.; Sun, D.; Hocken, D.G.; Thornton, A.; Adams, D.E.; Simic, M.G.

    1989-01-01

    A method to use ionizing radiation to inactivate HIV (Human Immunodeficiency Virus) in human body fluids was studied in an effort to reduce the risk of accidental infection to forensic science laboratory workers. Experiments conducted indicate that an X-ray absorbed dose of 25 krad was required to completely inactivate HIV. This does not alter forensically important constituents such as enzymes and proteins in body fluids. This method of inactivation of HIV cannot be used on body fluids which will be subjected to deoxyribonucleic acid (DNA) typing

  9. THERMODYNAMICS AND KINETICS OF THERMAL INACTIVATION OF PEROXIDASE FROM MANGOSTEEN (GARCINIA MANGOSTANA L. PERICARP

    Directory of Open Access Journals (Sweden)

    MAHSA ZIABAKHSH DEYLAMI

    2014-06-01

    Full Text Available Mangosteen (Garcinia mangostana L. pericarp is an abundant source of phytochemicals. Blanching prior to further process stabilizes these valuable compounds. In this research, crude peroxidase (POD was extracted from mangosteen peel using Triton X-100. Kinetics of POD inactivation was studied over temperature range of 60- 100°C. The inactivation kinetics followed a monophasic first-order model with k values between 1.93×10-2- 8.14×10-2 min-1. The decreasing trend of k values with increasing temperature indicates a faster inactivation of peroxidase from mangosteen pericarp at higher temperatures. The activation energy (Ea of 35.06 kJ/mol was calculated from the slope of Arrhenius plot. Thermodynamic parameters (∆H, ∆G, ∆S for inactivation of peroxidase at different temperatures (60-100°C were studied in detail. The results of this research will help to design pre-processing conditions of mangosteen pericarp as a source of antioxidants.

  10. Inactivation of hemopoietic stem cells by lymphocytes as related to genotype of interacting cells

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, R V; Seslavina, L S; Panteleev, E I; Egorova, O S

    1975-05-01

    Inoculation of a mixture of bone marrow cells with allogeneic lymphocytes into irradiated mice of inbred strains or into F/sub 1/ hybrids results in the depression of bone marrow cell proliferation in the spleen of the recipient: the effect of inactivation of nonsyngeneic stem cells. The inactivation of stem cells by allogeneic lymphocytes can be detected in all tested combinations of mice strains - donors of lymphocytes and bone marrow cells and mice - recipients but the degree of inactivation differs and depends on the genotype of cell donors rather than on the genotype of the recipient. Lymphocytes of some mice strains (haplotypes H-2sup(k) and H-2sup(a)) are more active killers of bone marrow cells as compared with lymphocytes of other strains (hyplotypes H-2sup(b) and H-2sup(d)). Probably, the degree of stem cells inactivation by lymphocytes depends on the differences of their histocompatibility in H-2 system.

  11. Wastewater disinfection by peracetic acid: assessment of models for tracking residual measurements and inactivation.

    Science.gov (United States)

    Santoro, Domenico; Gehr, Ronald; Bartrand, Timothy A; Liberti, Lorenzo; Notarnicola, Michele; Dell'Erba, Adele; Falsanisi, Dario; Haas, Charles N

    2007-07-01

    With its potential for low (if any) disinfection byproduct formation and easy retrofit for chlorine contactors, peracetic acid (PAA) or use of PAA in combination with other disinfectant technologies may be an attractive alternative to chlorine-based disinfection. Examples of systems that might benefit from use of PAA are water reuse schemes or plants discharging to sensitive receiving water bodies. Though PAA is in use in numerous wastewater treatment plants in Europe, its chemical kinetics, microbial inactivation rates, and mode of action against microorganisms are not thoroughly understood. This paper presents results from experimental studies of PAA demand, PAA decay, and microbial inactivation, with a complementary modeling analysis. Model results are used to evaluate techniques for measurement of PAA concentration and to develop hypotheses regarding the mode of action of PAA in bacterial inactivation. Kinetic and microbial inactivation rate data were collected for typical wastewaters and may be useful for engineers in evaluating whether to convert from chlorine to PAA disinfection.

  12. X-ray induced inactivation of the capacity for photosynthetic oxygen evolution and nitrate reduction in blue-green algae

    International Nuclear Information System (INIS)

    Stevens, S.E. Jr.; Simic, M.G.; Rao, V.S.K.

    1975-01-01

    The level of inactivation of oxygen evolving photosynthesis in the green alga, Chlorella pyrenoidosa was 12 percent in N 2 at a dose of 100 krad of x irradiation. Under similar conditions, as well as under O 2 , there resulted a 20 percent inactivation of the same function in the blue-green algae, Agmenellum quadruplicatum, strains PR-6 and AQ-6. Nitrate reduction capacity in the mutant AQ-6 was inactivated to 40 percent in N 2 and to 7 percent in O 2 . Catalase and formate provided some protection from irradiation in O 2 , suggesting some inactivation by H 2 O 2 . Most of the damage to the nitrate reduction system resulted from the direct action of x irradiation on a constitutive subunit of the nitrate reductase complex. Moreover, the slight inactivation of the O 2 evolving system, a function which is associated with photosystem II, cannot account for the inactivation of nitrate reduction

  13. Electric motor drive unit, especially adjustment drive for vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Litterst, P

    1980-05-29

    An electric motor drive unit, particularly an adjustment drive for vehicles with at least two parallel drive shafts is described, which is compact and saves space, and whose manufacturing costs are low compared with those of well-known drive units of this type. The drive unit contains a suitable number of magnet systems, preferably permanent magnet systems, whose pole axes are spaced and run parallel. The two pole magnet systems have diametrically opposite shell-shaped segments, to which the poles are fixed. In at least one magnet system the two segments are connected by diametrically opposite flat walls parallel to the pole axes to form a single magnetic circuit pole housing. The segments of at least one other magnet system are arranged on this pole housing so that one of these flat walls is a magnetically conducting, connecting component of the magnetic circuit of the other magnet system.

  14. Merkel Cell Polyomavirus Exhibits Dominant Control of the Tumor Genome and Transcriptome in Virus-Associated Merkel Cell Carcinoma.

    Science.gov (United States)

    Starrett, Gabriel J; Marcelus, Christina; Cantalupo, Paul G; Katz, Joshua P; Cheng, Jingwei; Akagi, Keiko; Thakuria, Manisha; Rabinowits, Guilherme; Wang, Linda C; Symer, David E; Pipas, James M; Harris, Reuben S; DeCaprio, James A

    2017-01-03

    Merkel cell polyomavirus is the primary etiological agent of the aggressive skin cancer Merkel cell carcinoma (MCC). Recent studies have revealed that UV radiation is the primary mechanism for somatic mutagenesis in nonviral forms of MCC. Here, we analyze the whole transcriptomes and genomes of primary MCC tumors. Our study reveals that virus-associated tumors have minimally altered genomes compared to non-virus-associated tumors, which are dominated by UV-mediated mutations. Although virus-associated tumors contain relatively small mutation burdens, they exhibit a distinct mutation signature with observable transcriptionally biased kataegic events. In addition, viral integration sites overlap focal genome amplifications in virus-associated tumors, suggesting a potential mechanism for these events. Collectively, our studies indicate that Merkel cell polyomavirus is capable of hijacking cellular processes and driving tumorigenesis to the same severity as tens of thousands of somatic genome alterations. A variety of mutagenic processes that shape the evolution of tumors are critical determinants of disease outcome. Here, we sequenced the entire genome of virus-positive and virus-negative primary Merkel cell carcinomas (MCCs), revealing distinct mutation spectra and corresponding expression profiles. Our studies highlight the strong effect that Merkel cell polyomavirus has on the divergent development of viral MCC compared to the somatic alterations that typically drive nonviral tumorigenesis. A more comprehensive understanding of the distinct mutagenic processes operative in viral and nonviral MCCs has implications for the effective treatment of these tumors. Copyright © 2017 Starrett et al.

  15. Inactivation of bacterial biofilms using visible-light-activated unmodified ZnO nanorods

    Science.gov (United States)

    Aponiene, Kristina; Serevičius, Tomas; Luksiene, Zivile; Juršėnas, Saulius

    2017-09-01

    Various zinc oxide (ZnO) nanostructures are widely used for photocatalytic antibacterial applications. Since ZnO possesses a wide bandgap, it is believed that only UV light may efficiently assist bacterial inactivation, and diverse crystal lattice modifications should be applied in order to narrow the bandgap for efficient visible-light absorption. In this work we show that even unmodified ZnO nanorods grown by an aqueous chemical growth technique are found to possess intrinsic defects that can be activated by visible light (λ = 405 nm) and successfully applied for total inactivation of various highly resistant bacterial biofilms rather than more sensitive planktonic bacteria. Time-resolved fluorescence analysis has revealed that visible-light excitation creates long-lived charge carriers (τ > 1 μs), which might be crucial for destructive biochemical reactions achieving significant bacterial biofilm inactivation. ZnO nanorods covered with bacterial biofilms of Enterococcus faecalis MSCL 302 after illumination by visible light (λ = 405 nm) were inactivated by 2 log, and Listeria monocytogenes ATCL3C 7644 and Escherichia coli O157:H7 biofilms by 4 log. Heterogenic waste-water microbial biofilms, consisting of a mixed population of mesophilic bacteria after illumination with visible light were also completely destroyed.

  16. Reversible Heat-Induced Inactivation of Chimeric β-Glucuronidase in Transgenic Plants1

    Science.gov (United States)

    Almoguera, Concepción; Rojas, Anabel; Jordano, Juan

    2002-01-01

    We compared the expression patterns in transgenic tobacco (Nicotiana tabacum) of two chimeric genes: a translational fusion to β-glucuronidase (GUS) and a transcriptional fusion, both with the same promoter and 5′-flanking sequences of Ha hsp17.7 G4, a small heat shock protein (sHSP) gene from sunflower (Helianthus annuus). We found that immediately after heat shock, the induced expression from the two fusions in seedlings was similar, considering chimeric mRNA or GUS protein accumulation. Surprisingly, we discovered that the chimeric GUS protein encoded by the translational fusion was mostly inactive in such conditions. We also found that this inactivation was fully reversible. Thus, after returning to control temperature, the GUS activity was fully recovered without substantial changes in GUS protein accumulation. In contrast, we did not find differences in the in vitro heat inactivation of the respective GUS proteins. Insolubilization of the chimeric GUS protein correlated with its inactivation, as indicated by immunoprecipitation analyses. The inclusion in another chimeric gene of the 21 amino-terminal amino acids from a different sHSP lead to a comparable reversible inactivation. That effect not only illustrates unexpected post-translational problems, but may also point to sequences involved in interactions specific to sHSPs and in vivo heat stress conditions. PMID:12011363

  17. Polyelectrolyte-Functionalized Nanofiber Mats Control the Collection and Inactivation of Escherichia coli

    Directory of Open Access Journals (Sweden)

    Katrina A. Rieger

    2016-04-01

    Full Text Available Quantifying the effect that nanofiber mat chemistry and hydrophilicity have on microorganism collection and inactivation is critical in biomedical applications. In this study, the collection and inactivation of Escherichia coli K12 was examined using cellulose nanofiber mats that were surface-functionalized using three polyelectrolytes: poly (acrylic acid (PAA, chitosan (CS, and polydiallyldimethylammonium chloride (pDADMAC. The polyelectrolyte functionalized nanofiber mats retained the cylindrical morphology and average fiber diameter (~0.84 µm of the underlying cellulose nanofibers. X-ray photoelectron spectroscopy (XPS and contact angle measurements confirmed the presence of polycations or polyanions on the surface of the nanofiber mats. Both the control cellulose and pDADMAC-functionalized nanofiber mats exhibited a high collection of E. coli K12, which suggests that mat hydrophilicity may play a larger role than surface charge on cell collection. While the minimum concentration of polycations needed to inhibit E. coli K12 was 800 µg/mL for both CS and pDADMAC, once immobilized, pDADMAC-functionalized nanofiber mats exhibited a higher inactivation of E. coli K12, (~97%. Here, we demonstrate that the collection and inactivation of microorganisms by electrospun cellulose nanofiber mats can be tailored through a facile polyelectrolyte functionalization process.

  18. Polyelectrolyte-Functionalized Nanofiber Mats Control the Collection and Inactivation of Escherichia coli

    Science.gov (United States)

    Rieger, Katrina A.; Porter, Michael; Schiffman, Jessica D.

    2016-01-01

    Quantifying the effect that nanofiber mat chemistry and hydrophilicity have on microorganism collection and inactivation is critical in biomedical applications. In this study, the collection and inactivation of Escherichia coli K12 was examined using cellulose nanofiber mats that were surface-functionalized using three polyelectrolytes: poly (acrylic acid) (PAA), chitosan (CS), and polydiallyldimethylammonium chloride (pDADMAC). The polyelectrolyte functionalized nanofiber mats retained the cylindrical morphology and average fiber diameter (~0.84 µm) of the underlying cellulose nanofibers. X-ray photoelectron spectroscopy (XPS) and contact angle measurements confirmed the presence of polycations or polyanions on the surface of the nanofiber mats. Both the control cellulose and pDADMAC-functionalized nanofiber mats exhibited a high collection of E. coli K12, which suggests that mat hydrophilicity may play a larger role than surface charge on cell collection. While the minimum concentration of polycations needed to inhibit E. coli K12 was 800 µg/mL for both CS and pDADMAC, once immobilized, pDADMAC-functionalized nanofiber mats exhibited a higher inactivation of E. coli K12, (~97%). Here, we demonstrate that the collection and inactivation of microorganisms by electrospun cellulose nanofiber mats can be tailored through a facile polyelectrolyte functionalization process. PMID:28773422

  19. Infidelity of SARS-CoV Nsp14-exonuclease mutant virus replication is revealed by complete genome sequencing.

    Directory of Open Access Journals (Sweden)

    Lance D Eckerle

    2010-05-01

    Full Text Available Most RNA viruses lack the mechanisms to recognize and correct mutations that arise during genome replication, resulting in quasispecies diversity that is required for pathogenesis and adaptation. However, it is not known how viruses encoding large viral RNA genomes such as the Coronaviridae (26 to 32 kb balance the requirements for genome stability and quasispecies diversity. Further, the limits of replication infidelity during replication of large RNA genomes and how decreased fidelity impacts virus fitness over time are not known. Our previous work demonstrated that genetic inactivation of the coronavirus exoribonuclease (ExoN in nonstructural protein 14 (nsp14 of murine hepatitis virus results in a 15-fold decrease in replication fidelity. However, it is not known whether nsp14-ExoN is required for replication fidelity of all coronaviruses, nor the impact of decreased fidelity on genome diversity and fitness during replication and passage. We report here the engineering and recovery of nsp14-ExoN mutant viruses of severe acute respiratory syndrome coronavirus (SARS-CoV that have stable growth defects and demonstrate a 21-fold increase in mutation frequency during replication in culture. Analysis of complete genome sequences from SARS-ExoN mutant viral clones revealed unique mutation sets in every genome examined from the same round of replication and a total of 100 unique mutations across the genome. Using novel bioinformatic tools and deep sequencing across the full-length genome following 10 population passages in vitro, we demonstrate retention of ExoN mutations and continued increased diversity and mutational load compared to wild-type SARS-CoV. The results define a novel genetic and bioinformatics model for introduction and identification of multi-allelic mutations in replication competent viruses that will be powerful tools for testing the effects of decreased fidelity and increased quasispecies diversity on viral replication

  20. Covalent Allosteric Inactivation of Protein Tyrosine Phosphatase 1B (PTP1B) by an Inhibitor-Electrophile Conjugate.

    Science.gov (United States)

    Punthasee, Puminan; Laciak, Adrian R; Cummings, Andrea H; Ruddraraju, Kasi Viswanatharaju; Lewis, Sarah M; Hillebrand, Roman; Singh, Harkewal; Tanner, John J; Gates, Kent S

    2017-04-11

    Protein tyrosine phosphatase 1B (PTP1B) is a validated drug target, but it has proven difficult to develop medicinally useful, reversible inhibitors of this enzyme. Here we explored covalent strategies for the inactivation of PTP1B using a conjugate composed of an active site-directed 5-aryl-1,2,5-thiadiazolidin-3-one 1,1-dioxide inhibitor connected via a short linker to an electrophilic α-bromoacetamide moiety. Inhibitor-electrophile conjugate 5a caused time-dependent loss of PTP1B activity consistent with a covalent inactivation mechanism. The inactivation occurred with a second-order rate constant of (1.7 ± 0.3) × 10 2 M -1 min -1 . Mass spectrometric analysis of the inactivated enzyme indicated that the primary site of modification was C121, a residue distant from the active site. Previous work provided evidence that covalent modification of the allosteric residue C121 can cause inactivation of PTP1B [Hansen, S. K., Cancilla, M. T., Shiau, T. P., Kung, J., Chen, T., and Erlanson, D. A. (2005) Biochemistry 44, 7704-7712]. Overall, our results are consistent with an unusual enzyme inactivation process in which noncovalent binding of the inhibitor-electrophile conjugate to the active site of PTP1B protects the nucleophilic catalytic C215 residue from covalent modification, thus allowing inactivation of the enzyme via selective modification of allosteric residue C121.

  1. Drivers’ Age, Gender, Driving Experience, and Aggressiveness as Predictors of Aggressive Driving Behaviour

    Directory of Open Access Journals (Sweden)

    Perepjolkina Viktorija

    2011-12-01

    Full Text Available Recent years have seen a growing interest in the problem of aggressive driving. In the presentstudy two demographic variables (gender and age, two non-psychological driving-experiencerelated variables (annual mileage and legal driving experience in years and aggressiveness asa personality trait (including behavioural and affective components as psychological variableof individual differences were examined as potential predictors of aggressive driving. The aimof the study was to find out the best predictors of aggressive driving behaviour. The study wasbased on an online survey, and 228 vehicle drivers in Latvia participated in it. The questionnaireincluded eight-item Aggressive Driving Scale (Bone & Mowen, 2006, short Latvian versionof the Buss-Perry Aggression Questionnaire (AQ; Buss & Perry, 1992, and questions gainingdemographic and driving experience information. Gender, age and annual mileage predictedaggressive driving: being male, young and with higher annual driving exposure were associatedwith higher scores on aggressive driving. Dispositional aggressiveness due to anger componentwas a significant predictor of aggressive diving score. Physical aggression and hostility wereunrelated to aggressive driving. Altogether, the predictors explained a total of 28% of thevariance in aggressive driving behaviour. Findings show that dispositional aggressiveness,especially the anger component, as well as male gender, young age and higher annual mileagehas a predictive validity in relation to aggressive driving. There is a need to extend the scope ofpotential dispositional predictors pertinent to driving aggression.

  2. Inactivation of rabies diagnostic reagents by gamma radiation

    International Nuclear Information System (INIS)

    Gamble, W.C.; Chappell, W.A.; George, E.H.

    1980-01-01

    Treatment of CVS-11 rabies adsorbing suspensions and street rabies infected mouse brains with gamma radiation resulted in inactivated reagents that are safer to distribute and use. These irradiated reagents were as sensitive and reactive as the nonirradiated control reagents

  3. Fetal calf serum heat inactivation and lipopolysaccharide contamination influence the human T lymphoblast proteome and phosphoproteome

    Directory of Open Access Journals (Sweden)

    Rahman Hazir

    2011-11-01

    Full Text Available Abstract Background The effects of fetal calf serum (FCS heat inactivation and bacterial lipopolysaccharide (LPS contamination on cell physiology have been studied, but their effect on the proteome of cultured cells has yet to be described. This study was undertaken to investigate the effects of heat inactivation of FCS and LPS contamination on the human T lymphoblast proteome. Human T lymphoblastic leukaemia (CCRF-CEM cells were grown in FCS, either non-heated, or heat inactivated, having low ( Results A total of four proteins (EIF3M, PRS7, PSB4, and SNAPA were up-regulated when CCRF-CEM cells were grown in media supplemented with heat inactivated FCS (HE as compared to cells grown in media with non-heated FCS (NHE. Six proteins (TCPD, ACTA, NACA, TCTP, ACTB, and ICLN displayed a differential phosphorylation pattern between the NHE and HE groups. Compared to the low concentration LPS group, regular levels of LPS resulted in the up-regulation of three proteins (SYBF, QCR1, and SUCB1. Conclusion The present study provides new information regarding the effect of FCS heat inactivation and change in FCS-LPS concentration on cellular protein expression, and post-translational modification in human T lymphoblasts. Both heat inactivation and LPS contamination of FCS were shown to modulate the expression and phosphorylation of proteins involved in basic cellular functions, such as protein synthesis, cytoskeleton stability, oxidative stress regulation and apoptosis. Hence, the study emphasizes the need to consider both heat inactivation and LPS contamination of FCS as factors that can influence the T lymphoblast proteome.

  4. Membrane permeabilization in relation to inactivation kinetics of Lactobacillus species due to pulsed electric fields.

    Science.gov (United States)

    Wouters, P C; Bos, A P; Ueckert, J

    2001-07-01

    Membrane permeabilization due to pulsed electric field (PEF) treatment of gram-positive Lactobacillus cells was investigated by using propidium iodide uptake and single-cell analysis with flow cytometry. Electric field strength, energy input, treatment time, and growth phase affected membrane permeabilization of Lactobacillus plantarum during PEF treatment. A correlation between PEF inactivation and membrane permeabilization of L. plantarum cells was demonstrated, whereas no relationship was observed between membrane permeabilization and heat inactivation. The same results were obtained with a Lactobacillus fermentum strain, but the latter organism was more PEF resistant and exhibited less membrane permeabilization, indicating that various bacteria have different responses to PEF treatment. While membrane permeabilization was the main factor involved in the mechanism of inactivation, the growth phase and the acidity of the environment also influenced inactivation. By using flow cytometry it was possible to sort cells in the L. plantarum population based on different cell sizes and shapes, and the results were confirmed by image analysis. An apparent effect of morphology on membrane permeabilization was observed, and larger cells were more easily permeabilized than smaller cells. In conclusion, our results indicate that the ability of PEF treatment to cause membrane permeabilization is an important factor in determining inactivation. This finding should have an effect on the final choice of the processing parameters used so that all microorganisms can be inactivated and, consequently, on the use of PEF treatment as an alternative method for preserving food products.

  5. Membrane Permeabilization in Relation to Inactivation Kinetics of Lactobacillus Species due to Pulsed Electric Fields

    Science.gov (United States)

    Wouters, Patrick C.; Bos, Ad P.; Ueckert, Joerg

    2001-01-01

    Membrane permeabilization due to pulsed electric field (PEF) treatment of gram-positive Lactobacillus cells was investigated by using propidium iodide uptake and single-cell analysis with flow cytometry. Electric field strength, energy input, treatment time, and growth phase affected membrane permeabilization of Lactobacillus plantarum during PEF treatment. A correlation between PEF inactivation and membrane permeabilization of L. plantarum cells was demonstrated, whereas no relationship was observed between membrane permeabilization and heat inactivation. The same results were obtained with a Lactobacillus fermentum strain, but the latter organism was more PEF resistant and exhibited less membrane permeabilization, indicating that various bacteria have different responses to PEF treatment. While membrane permeabilization was the main factor involved in the mechanism of inactivation, the growth phase and the acidity of the environment also influenced inactivation. By using flow cytometry it was possible to sort cells in the L. plantarum population based on different cell sizes and shapes, and the results were confirmed by image analysis. An apparent effect of morphology on membrane permeabilization was observed, and larger cells were more easily permeabilized than smaller cells. In conclusion, our results indicate that the ability of PEF treatment to cause membrane permeabilization is an important factor in determining inactivation. This finding should have an effect on the final choice of the processing parameters used so that all microorganisms can be inactivated and, consequently, on the use of PEF treatment as an alternative method for preserving food products. PMID:11425727

  6. Focusing on function to mine cancer genome data | Center for Cancer Research

    Science.gov (United States)

    CCR scientists have devised a strategy to sift through the tens of thousands of mutations in cancer genome data to find mutations that actually drive the disease. They have used the method to discover that the JNK signaling pathway, which in different contexts can either spur cancerous growth or rein it in, acts as a tumor suppressor in gastric cancers. 

  7. Systems Biology of Immune Response to Live and Inactivated Dengue Virus Vaccines

    Science.gov (United States)

    2017-09-01

    AWARD NUMBER: W81XWH-16-2-0032 TITLE: Systems Biology of Immune Response to Live and Inactivated Dengue Virus Vaccines PRINCIPAL INVESTIGATOR...CONTRACT NUMBER Systems Biology of Immune Response to Live and Inactivated Dengue Virus Vaccines 5b. GRANT NUMBER W81XWH-16-2-0032 5c. PROGRAM ELEMENT...cell) responses will be measured using molecular and cellular approaches and the data analyzed using a systems biology approach. During the first

  8. Endotoxin inactivation via steam-heat treatment in dilute simethicone emulsions used in biopharmaceutical processes.

    Science.gov (United States)

    Britt, Keith A; Galvin, Jeffrey; Gammell, Patrick; Nti-Gyabaah, Joseph; Boras, George; Kolwyck, David; Ramirez, José G; Presente, Esther; Naugle, Gregory

    2014-01-01

    Simethicone emulsion is used to regulate foaming in cell culture operations in biopharmaceutical processes. It is also a potential source of endotoxin contamination. The inactivation of endotoxins in dilute simethicone emulsions was assessed as a function of time at different steam temperatures using a Limulus amebocyte lysate kinetic chromogenic technique. Endotoxin inactivation from steam-heat treatment was fit to a four-parameter double exponential decay model, which indicated that endotoxin inactivation was biphasic, consisting of fast and slow regimes. In the fast regime, temperature-related effects were dominant. Transitioning into the slow regime, the observed temperature dependence diminished, and concentration-related effects became increasingly significant. The change in the Gibbs free energy moving through the transition state indicated that a large energy barrier must be overcome for endotoxin inactivation to occur. The corresponding Arrhenius pre-exponential factor was >10(12) s(-1) suggesting that endotoxins in aqueous solution exist as aggregates. The disorder associated with the endotoxin inactivation reaction pathway was assessed via the change in entropy moving through the transition state. This quantity was positive indicating that endotoxin inactivation may result from hydrolysis of individual endotoxin molecules, which perturbs the conformation of endotoxin aggregates, thereby modulating the biological activity observed. Steam-heat treatment decreased endotoxin levels by 1-2 logarithm (log) reduction (LRV), which may be practically relevant depending on incoming raw material endotoxin levels. Antifoam efficiency and cell culture performance were negligibly impacted following steam-heat treatment. The results from this study show that steam-heat treatment is a viable endotoxin control strategy that can be implemented to support large-scale biopharmaceutical manufacturing. © 2014 American Institute of Chemical Engineers.

  9. Selection of inactivation medium for fungal spores in clinical wastes by supercritical carbon dioxide.

    Science.gov (United States)

    Noman, Efaq; Norulaini Nik Ab Rahman, Nik; Al-Gheethi, Adel; Nagao, Hideyuki; Talip, Balkis A; Ab Kadir, Omar

    2018-05-21

    The present study aimed to select the best medium for inactivation of Aspergillus fumigatus, Aspergillus spp. in section Nigri, A. niger, A. terreus var. terreus, A. tubingensis, Penicillium waksmanii, P. simplicissimum, and Aspergillus sp. strain no. 145 spores in clinical wastes by using supercritical carbon dioxide (SC-CO 2 ). There were three types of solutions used including normal saline, seawater, distilled water, and physiological saline with 1% of methanol; each solution was tested at 5, 10, and 20 mL of the water contents. The experiments were conducted at the optimum operating parameters of supercritical carbon dioxide (30 MPa, 75 °C, 90 min). The results showed that the inactivation rate was more effective in distilled water with the presence of 1% methanol (6 log reductions). Meanwhile, the seawater decreases inactivation rate more than normal saline (4.5 vs. 5.1 log reduction). On the other hand, the experiments performed with different volumes of distilled water (5, 10, and 20 mL) indicated that A. niger spores were completely inactivated with 10 mL of distilled water. The inactivation rate of fungal spores decreased from 6 to 4.5 log as the amount of distilled water increased from 10 to 20 mL. The analysis for the spore morphology of A. fumigatus and Aspergillus spp. in section Nigri using scanning electron microscopy (SEM) has revealed the role of temperature and pressure in the SC-CO 2 in the destruction of the cell walls of the spores. It can be concluded that the distilled water represent the best medium for inactivation of fungal spores in the clinical solid wastes by SC-CO 2 .

  10. Educational Biofeedback Driving Simulator as a Drink-Driving Prevention Strategy.

    Science.gov (United States)

    Howat, Peter; And Others

    1991-01-01

    Used experimental driving simulator as basis for strategy to encourage a reduction in drunk driving prevalence using adult male subjects (n=36) who participated in a study group and controls (n=36). Results indicated study group subjects significantly decreased their drunk driving compared to the control group. (ABL)

  11. Substrate-induced inactivation of the OXA2 beta-lactamase.

    Science.gov (United States)

    Ledent, P; Frère, J M

    1993-01-01

    The hydrolysis time courses of 22 beta-lactam antibiotics by the class D OXA2 beta-lactamase were studied. Among these, only three appeared to correspond to the integrated Henri-Michaelis equation. 'Burst' kinetics, implying branched pathways, were observed with most penicillins, cephalosporins and with flomoxef and imipenem. Kinetic parameters characteristic of the different phases of the hydrolysis were determined for some substrates. Mechanisms generally accepted to explain such reversible partial inactivations involving branches at either the free enzyme or the acyl-enzyme were inadequate to explain the enzyme behaviour. The hydrolysis of imipenem was characterized by the occurrence of two 'bursts', and that of nitrocefin by a partial substrate-induced inactivation complicated by a competitive inhibition by the hydrolysis product. PMID:8240304

  12. Instability of plastid DNA in the nuclear genome.

    Directory of Open Access Journals (Sweden)

    Anna E Sheppard

    2009-01-01

    Full Text Available Functional gene transfer from the plastid (chloroplast and mitochondrial genomes to the nucleus has been an important driving force in eukaryotic evolution. Non-functional DNA transfer is far more frequent, and the frequency of such transfers from the plastid to the nucleus has been determined experimentally in tobacco using transplastomic lines containing, in their plastid genome, a kanamycin resistance gene (neo readymade for nuclear expression. Contrary to expectations, non-Mendelian segregation of the kanamycin resistance phenotype is seen in progeny of some lines in which neo has been transferred to the nuclear genome. Here, we provide a detailed analysis of the instability of kanamycin resistance in nine of these lines, and we show that it is due to deletion of neo. Four lines showed instability with variation between progeny derived from different areas of the same plant, suggesting a loss of neo during somatic cell division. One line showed a consistent reduction in the proportion of kanamycin-resistant progeny, suggesting a loss of neo during meiosis, and the remaining four lines were relatively stable. To avoid genomic enlargement, the high frequency of plastid DNA integration into the nuclear genome necessitates a counterbalancing removal process. This is the first demonstration of such loss involving a high proportion of recent nuclear integrants. We propose that insertion, deletion, and rearrangement of plastid sequences in the nuclear genome are important evolutionary processes in the generation of novel nuclear genes. This work is also relevant in the context of transgenic plant research and crop production, because similar processes to those described here may be involved in the loss of plant transgenes.

  13. Inactivation of Template-Directed Misfolding of Infectious Prion Protein by Ozone

    Science.gov (United States)

    Ding, Ning; Price, Luke M.; Braithwaite, Shannon L.; Balachandran, Aru; Belosevic, Miodrag

    2012-01-01

    Misfolded prions (PrPSc) are well known for their resistance to conventional decontamination processes. The potential risk of contamination of the water environment, as a result of disposal of specified risk materials (SRM), has raised public concerns. Ozone is commonly utilized in the water industry for inactivation of microbial contaminants and was tested in this study for its ability to inactivate prions (263K hamster scrapie = PrPSc). Treatment variables included initial ozone dose (7.6 to 25.7 mg/liter), contact time (5 s and 5 min), temperature (4°C and 20°C), and pH (pH 4.4, 6.0, and 8.0). Exposure of dilute suspensions of the infected 263K hamster brain homogenates (IBH) (0.01%) to ozone resulted in the in vitro destruction of the templating properties of PrPSc, as measured by the protein misfolding cyclic amplification (PMCA) assay. The highest levels of prion inactivation (≥4 log10) were observed with ozone doses of 13.0 mg/liter, at pH 4.4 and 20°C, resulting in a CT (the product of residual ozone concentration and contact time) value as low as 0.59 mg · liter−1 min. A comparison of ozone CT requirements among various pathogens suggests that prions are more susceptible to ozone degradation than some model bacteria and protozoa and that ozone treatment may be an effective solution for inactivating prions in water and wastewater. PMID:22138993

  14. Unilateral lateral entorhinal inactivation impairs memory expression in trace eyeblink conditioning.

    Directory of Open Access Journals (Sweden)

    Stephanie E Tanninen

    Full Text Available Memory in trace eyeblink conditioning is mediated by an inter-connected network that involves the hippocampus (HPC, several neocortical regions, and the cerebellum. This network reorganizes after learning as the center of the network shifts from the HPC to the medial prefrontal cortex (mPFC. Despite the network reorganization, the lateral entorhinal cortex (LEC plays a stable role in expressing recently acquired HPC-dependent memory as well as remotely acquired mPFC-dependent memory. Entorhinal involvement in recent memory expression may be attributed to its previously proposed interactions with the HPC. In contrast, it remains unknown how the LEC participates in memory expression after the network disengages from the HPC. The present study tested the possibility that the LEC and mPFC functionally interact during remote memory expression by examining the impact of pharmacological inactivation of the LEC in one hemisphere and the mPFC in the contralateral hemisphere on memory expression in rats. Memory expression one day and one month after learning was significantly impaired after LEC-mPFC inactivation; however, the degree of impairment was comparable to that after unilateral LEC inactivation. Unilateral mPFC inactivation had no effect on recent or remote memory expression. These results suggest that the integrity of the LEC in both hemispheres is necessary for memory expression. Functional interactions between the LEC and mPFC should therefore be tested with an alternative design.

  15. Inactivation of murine norovirus by chemical biocides on stainless steel

    Science.gov (United States)