WorldWideScience

Sample records for inactivate innate inhibitors

  1. Local innate and adaptive immune responses regulate inflammatory cell influx into the lungs after vaccination with formalin inactivated RSV

    NARCIS (Netherlands)

    Kruijsen, Debby; Schijf, Marcel A.; Lukens, Michaël V.; van Uden, Nathalie O.; Kimpen, Jan L.; Coenjaerts, Frank E.; van Bleek, Grada M.

    2011-01-01

    Inactivated respiratory syncytial virus (RSV) vaccines tend to predispose for immune mediated enhanced disease, characterized by Th2 responses and airway hypersensitivity reactions. We show in a C57BL/6 mouse model that the early innate response elicited by the challenge virus (RSV versus influenza

  2. Effects of dietary inulin and heat-inactivated Bacillus subtilis on gilthead seabream (Sparus aurata L.) innate immune parameters.

    Science.gov (United States)

    Cerezuela, R; Cuesta, A; Meseguer, J; Esteban, M A

    2012-03-01

    In the present study, a feeding trial was conducted to evaluate the effect of inulin and heat-inactivated Bacillus subtilis, single or combined, on several innate immune activities of gilthead seabream (Sparus aurata). Forty-eight specimens were randomly assigned to four dietary treatments: 0 (control), inulin (10 g/kg, prebiotic group), B. subtilis (10(7) cfu/g, probiotic group), or B. subtilis + inulin (10(7) cfu/g + 10 g/kg, synbiotic group). After two and four weeks, six fish of each group were sampled, with the main innate immune parameters (natural haemolytic complement activity, serum and leucocyte peroxidase, phagocytosis, respiratory burst, and cytotoxic activities) being determined. Inulin or heat-inactivated B. subtilis failed to significantly stimulate the innate immune parameters assayed, although some activities showed no significant increase through these treatments. A combination of inulin and B. subtilis resulted in an increase of such parameters, with the haemolytic complement activity being the only one significantly stimulated. To conclude, inulin and B. subtilis, when administered as a synbiotic, have a synergistic effect and enhance some innate immune parameters of gilthead seabream.

  3. Inactivation of soybean trypsin inhibitors and lipoxygenases by high-pressure processing

    NARCIS (Netherlands)

    Ven, van der C.; Matser, A.M.; Berg, van den R.W.

    2005-01-01

    Trypsin inhibitors (TIA), one of the antinutritional factors of soy milk, are usually inactivated by heat treatment. In the current study, high-pressure processing (HPP) was evaluated as an alternative for the inactivation of TIA in soy milk. Moreover, the effect of HPP on lipoxygenase (LOX) in

  4. Inhibitor of apoptosis (IAP) proteins in regulation of inflammation and innate immunity

    DEFF Research Database (Denmark)

    Damgaard, Rune B; Gyrd-Hansen, Mads

    2011-01-01

    Inflammatory and innate immune signaling in response to recognition of pathogens is essential for immunity and host survival. However, deregulation may lead to detrimental pathologies including immunodeficiency, inflammatory diseases, and cancer. Inhibitor of apoptosis (IAP) proteins have emerged...... as important regulators of innate immune signaling downstream of pattern recognition receptors (PRRs) such as Toll-like receptor 4 (TLR4), the nucleotide-binding oligomerization domain 1 (NOD1) and NOD2 receptors, and the retinoic acid-inducible gene (RIG)-I receptor. Recent evidence suggests that cIAP1, cIAP2...

  5. Viral cell death inhibitor MC159 enhances innate immunity against vaccinia virus infection.

    Science.gov (United States)

    Challa, Sreerupa; Woelfel, Melissa; Guildford, Melissa; Moquin, David; Chan, Francis Ka-Ming

    2010-10-01

    Viral inhibitors of host programmed cell death (PCD) are widely believed to promote viral replication by preventing or delaying host cell death. Viral FLIPs (Fas-linked ICE-like protease [FLICE; caspase-8]-like inhibitor proteins) are potent inhibitors of death receptor-induced apoptosis and programmed necrosis. Surprisingly, transgenic expression of the viral FLIP MC159 from molluscum contagiosum virus (MCV) in mice enhanced rather than inhibited the innate immune control of vaccinia virus (VV) replication. This effect of MC159 was specifically manifested in peripheral tissues such as the visceral fat pad, but not in the spleen. VV-infected MC159 transgenic mice mounted an enhanced innate inflammatory reaction characterized by increased expression of the chemokine CCL-2/MCP-1 and infiltration of γδ T cells into peripheral tissues. Radiation chimeras revealed that MC159 expression in the parenchyma, but not in the hematopoietic compartment, is responsible for the enhanced innate inflammatory responses. The increased inflammation in peripheral tissues was not due to resistance of lymphocytes to cell death. Rather, we found that MC159 facilitated Toll-like receptor 4 (TLR4)- and tumor necrosis factor (TNF)-induced NF-κB activation. The increased NF-κB responses were mediated in part through increased binding of RIP1 to TNFRSF1A-associated via death domain (TRADD), two crucial signal adaptors for NF-κB activation. These results show that MC159 is a dual-function immune modulator that regulates host cell death as well as NF-κB responses by innate immune signaling receptors.

  6. Viral Cell Death Inhibitor MC159 Enhances Innate Immunity against Vaccinia Virus Infection▿

    Science.gov (United States)

    Challa, Sreerupa; Woelfel, Melissa; Guildford, Melissa; Moquin, David; Chan, Francis Ka-Ming

    2010-01-01

    Viral inhibitors of host programmed cell death (PCD) are widely believed to promote viral replication by preventing or delaying host cell death. Viral FLIPs (Fas-linked ICE-like protease [FLICE; caspase-8]-like inhibitor proteins) are potent inhibitors of death receptor-induced apoptosis and programmed necrosis. Surprisingly, transgenic expression of the viral FLIP MC159 from molluscum contagiosum virus (MCV) in mice enhanced rather than inhibited the innate immune control of vaccinia virus (VV) replication. This effect of MC159 was specifically manifested in peripheral tissues such as the visceral fat pad, but not in the spleen. VV-infected MC159 transgenic mice mounted an enhanced innate inflammatory reaction characterized by increased expression of the chemokine CCL-2/MCP-1 and infiltration of γδ T cells into peripheral tissues. Radiation chimeras revealed that MC159 expression in the parenchyma, but not in the hematopoietic compartment, is responsible for the enhanced innate inflammatory responses. The increased inflammation in peripheral tissues was not due to resistance of lymphocytes to cell death. Rather, we found that MC159 facilitated Toll-like receptor 4 (TLR4)- and tumor necrosis factor (TNF)-induced NF-κB activation. The increased NF-κB responses were mediated in part through increased binding of RIP1 to TNFRSF1A-associated via death domain (TRADD), two crucial signal adaptors for NF-κB activation. These results show that MC159 is a dual-function immune modulator that regulates host cell death as well as NF-κB responses by innate immune signaling receptors. PMID:20702623

  7. Plasminogen activator inhibitor-1 polymers, induced by inactivating amphipathic organochemical ligands

    DEFF Research Database (Denmark)

    Pedersen, Katrine E; Einholm, Anja P; Christensen, Anni

    2003-01-01

    Negatively charged organochemical inactivators of the anti-proteolytic activity of plasminogen activator inhibitor-1 (PAI-1) convert it to inactive polymers. As investigated by native gel electrophoresis, the size of the PAI-1 polymers ranged from dimers to multimers of more than 20 units...... to beta-sheet A in another molecule. Induction of serpin polymerization by small organochemical ligands is a novel finding and is of protein chemical interest in relation to pathological protein polymerization in general. Udgivelsesdato: 2003-Jun-15...

  8. p19ARF is a critical mediator of both cellular senescence and an innate immune response associated with MYC inactivation in mouse model of acute leukemia

    Science.gov (United States)

    Yetil, Alper; Anchang, Benedict; Gouw, Arvin M.; Adam, Stacey J.; Zabuawala, Tahera; Parameswaran, Ramya; van Riggelen, Jan; Plevritis, Sylvia; Felsher, Dean W.

    2015-01-01

    MYC-induced T-ALL exhibit oncogene addiction. Addiction to MYC is a consequence of both cell-autonomous mechanisms, such as proliferative arrest, cellular senescence, and apoptosis, as well as non-cell autonomous mechanisms, such as shutdown of angiogenesis, and recruitment of immune effectors. Here, we show, using transgenic mouse models of MYC-induced T-ALL, that the loss of either p19ARF or p53 abrogates the ability of MYC inactivation to induce sustained tumor regression. Loss of p53 or p19ARF, influenced the ability of MYC inactivation to elicit the shutdown of angiogenesis; however the loss of p19ARF, but not p53, impeded cellular senescence, as measured by SA-beta-galactosidase staining, increased expression of p16INK4A, and specific histone modifications. Moreover, comparative gene expression analysis suggested that a multitude of genes involved in the innate immune response were expressed in p19ARF wild-type, but not null, tumors upon MYC inactivation. Indeed, the loss of p19ARF, but not p53, impeded the in situ recruitment of macrophages to the tumor microenvironment. Finally, p19ARF null-associated gene signature prognosticated relapse-free survival in human patients with ALL. Therefore, p19ARF appears to be important to regulating cellular senescence and innate immune response that may contribute to the therapeutic response of ALL. PMID:25784651

  9. Biochemical mechanism of action of a diketopiperazine inactivator of plasminogen activator inhibitor-1

    DEFF Research Database (Denmark)

    Einholm, Anja P; Pedersen, Katrine E; Wind, Troels

    2003-01-01

    XR5118 [(3 Z,6 Z )-6-benzylidine-3-(5-(2-dimethylaminoethyl-thio-))-2-(thienyl)methylene-2,5-dipiperazinedione hydrochloride] can inactivate the anti-proteolytic activity of the serpin plasminogen activator inhibitor-1 (PAI-1), a potential therapeutic target in cancer and cardiovascular diseases......, situated above beta-sheet A, and is in agreement with the hypothesis that XR5118 binds laterally to beta-sheet A. These results improve our understanding of the unique conformational flexibility of serpins and the biochemical basis for using PAI-1 as a therapeutic target. Udgivelsesdato: 2003-Aug-1...

  10. Registered report: Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion.

    Science.gov (United States)

    Blum, David; LaBarge, Samuel

    2014-12-10

    The Reproducibility Project: Cancer Biology seeks to address growing concerns about reproducibility in scientific research by conducting replications of 50 papers in the field of cancer biology published between 2010 and 2012. This Registered Report describes the proposed replication plan of key experiments from "Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion" by Straussman and colleagues, published in Nature in 2012 (Straussman et al., 2012). The key experiments being replicated in this study are from Figure 2A, C, and D (and Supplemental Figure 11) and Figure 4C (and Supplemental Figure 19) (Straussman et al., 2012). Figure 2 demonstrates resistance to drug sensitivity conferred by co-culture with some stromal cell lines and identifies the secreted factor responsible as HGF. In Figure 4, Straussman and colleagues show that blocking the HGF receptor MET abrogates HGF’s rescue of drug sensitivity. The Reproducibility Project: Cancer Biology is a collaboration between the Center for Open Science and Science Exchange, and the results of the replications will be published by eLife.

  11. Adjuvant effects of invariant NKT cell ligand potentiates the innate and adaptive immunity to an inactivated H1N1 swine influenza virus vaccine in pigs.

    Science.gov (United States)

    Dwivedi, Varun; Manickam, Cordelia; Dhakal, Santosh; Binjawadagi, Basavaraj; Ouyang, Kang; Hiremath, Jagadish; Khatri, Mahesh; Hague, Jacquelyn Gervay; Lee, Chang Won; Renukaradhya, Gourapura J

    2016-04-15

    Pigs are considered as the source of some of the emerging human flu viruses. Inactivated swine influenza virus (SwIV) vaccine has been in use in the US swine herds, but it failed to control the flu outbreaks. The main reason has been attributed to lack of induction of strong local mucosal immunity in the respiratory tract. Invariant natural killer T (iNKT) cell is a unique T cell subset, and activation of iNKT cell using its ligand α-Galactosylceramide (α-GalCer) has been shown to potentiate the cross-protective immunity to inactivated influenza virus vaccine candidates in mice. Recently, we discovered iNKT cell in pig and demonstrated its activation using α-GalCer. In this study, we evaluated the efficacy of an inactivated H1N1 SwIV coadministered with α-GalCer intranasally against a homologous viral challenge. Our results demonstrated the potent adjuvant effects of α-GalCer in potentiating both innate and adaptive immune responses to SwIV Ags in the lungs of pigs, which resulted in reduction in the lung viral load by 3 logs compared to without adjuvant. Immunologically, in the lungs of pigs vaccinated with α-GalCer an increased virus specific IgA response, IFN-α secretion and NK cell-cytotoxicity was observed. In addition, iNKT cell-stimulation enhanced the secretion of Th1 cytokines (IFN-γ and IL-12) and reduced the production of immunosuppressive cytokines (IL-10 and TGF-β) in the lungs of pigs⋅ In conclusion, we demonstrated for the first time iNKT cell adjuvant effects in pigs to SwIV Ags through augmenting the innate and adaptive immune responses in the respiratory tract. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Small-molecule inhibitor leads of ribosome-inactivating proteins developed using the doorstop approach.

    Directory of Open Access Journals (Sweden)

    Yuan-Ping Pang

    2011-03-01

    Full Text Available Ribosome-inactivating proteins (RIPs are toxic because they bind to 28S rRNA and depurinate a specific adenine residue from the α-sarcin/ricin loop (SRL, thereby inhibiting protein synthesis. Shiga-like toxins (Stx1 and Stx2, produced by Escherichia coli, are RIPs that cause outbreaks of foodborne diseases with significant morbidity and mortality. Ricin, produced by the castor bean plant, is another RIP lethal to mammals. Currently, no US Food and Drug Administration-approved vaccines nor therapeutics exist to protect against ricin, Shiga-like toxins, or other RIPs. Development of effective small-molecule RIP inhibitors as therapeutics is challenging because strong electrostatic interactions at the RIP•SRL interface make drug-like molecules ineffective in competing with the rRNA for binding to RIPs. Herein, we report small molecules that show up to 20% cell protection against ricin or Stx2 at a drug concentration of 300 nM. These molecules were discovered using the doorstop approach, a new approach to protein•polynucleotide inhibitors that identifies small molecules as doorstops to prevent an active-site residue of an RIP (e.g., Tyr80 of ricin or Tyr77 of Stx2 from adopting an active conformation thereby blocking the function of the protein rather than contenders in the competition for binding to the RIP. This work offers promising leads for developing RIP therapeutics. The results suggest that the doorstop approach might also be applicable in the development of other protein•polynucleotide inhibitors as antiviral agents such as inhibitors of the Z-DNA binding proteins in poxviruses. This work also calls for careful chemical and biological characterization of drug leads obtained from chemical screens to avoid the identification of irrelevant chemical structures and to avoid the interference caused by direct interactions between the chemicals being screened and the luciferase reporter used in screening assays.

  13. Plasminogen activator inhibitor-1 polymers, induced by inactivating amphipathic organochemical ligands.

    Science.gov (United States)

    Pedersen, Katrine E; Einholm, Anja P; Christensen, Anni; Schack, Lotte; Wind, Troels; Kenney, John M; Andreasen, Peter A

    2003-06-15

    Negatively charged organochemical inactivators of the anti-proteolytic activity of plasminogen activator inhibitor-1 (PAI-1) convert it to inactive polymers. As investigated by native gel electrophoresis, the size of the PAI-1 polymers ranged from dimers to multimers of more than 20 units. As compared with native PAI-1, the polymers exhibited an increased resistance to temperature-induced unfolding. Polymerization was associated with specific changes in patterns of digestion with non-target proteases. During incubation with urokinase-type plasminogen activator, the polymers were slowly converted to reactive centre-cleaved monomers, indicating substrate behaviour of the terminal PAI-1 molecules in the polymers. A quadruple mutant of PAI-1 with a retarded rate of latency transition also had a retarded rate of polymerization. Studying a number of serpins by native gel electrophoresis, ligand-induced polymerization was observed only with PAI-1 and heparin cofactor II, which were also able to copolymerize. On the basis of these results, we suggest that the binding of ligands in a specific region of PAI-1 leads to so-called loop-sheet polymerization, in which the reactive centre loop of one molecule binds to beta-sheet A in another molecule. Induction of serpin polymerization by small organochemical ligands is a novel finding and is of protein chemical interest in relation to pathological protein polymerization in general.

  14. Platelet-Derived Short-Chain Polyphosphates Enhance the Inactivation of Tissue Factor Pathway Inhibitor by Activated Coagulation Factor XI.

    Directory of Open Access Journals (Sweden)

    Cristina Puy

    Full Text Available Factor (F XI supports both normal human hemostasis and pathological thrombosis. Activated FXI (FXIa promotes thrombin generation by enzymatic activation of FXI, FIX, FX, and FV, and inactivation of alpha tissue factor pathway inhibitor (TFPIα, in vitro. Some of these reactions are now known to be enhanced by short-chain polyphosphates (SCP derived from activated platelets. These SCPs act as a cofactor for the activation of FXI and FV by thrombin and FXIa, respectively. Since SCPs have been shown to inhibit the anticoagulant function of TFPIα, we herein investigated whether SCPs could serve as cofactors for the proteolytic inactivation of TFPIα by FXIa, further promoting the efficiency of the extrinsic pathway of coagulation to generate thrombin.Purified soluble SCP was prepared by size-fractionation of sodium polyphosphate. TFPIα proteolysis was analyzed by western blot. TFPIα activity was measured as inhibition of FX activation and activity in coagulation and chromogenic assays. SCPs significantly accelerated the rate of inactivation of TFPIα by FXIa in both purified systems and in recalcified plasma. Moreover, platelet-derived SCP accelerated the rate of inactivation of platelet-derived TFPIα by FXIa. TFPIα activity was not affected by SCP in recalcified FXI-depleted plasma.Our data suggest that SCP is a cofactor for TFPIα inactivation by FXIa, thus, expanding the range of hemostatic FXIa substrates that may be affected by the cofactor functions of platelet-derived SCP.

  15. Registered report: Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: David Blum, Samuel LaBarge, The Reproducibility Project: Cancer Biology†* ### Abstract The [Reproducibility Project: Cancer Biology](https://osf.io/e81xl/wiki/home/) seeks to address growing concerns about reproducibility in scientific research by conducting replications of 50 papers in the field of cancer biology published between 2010 and 2012. This Registered Report describes the proposed replication plan of key experiments from “Tumour micro-environment elicits innate res...

  16. Regulatory proteins (inhibitors or activators) affect estimates of Msub(r) of enzymes and receptors by radiation inactivation

    International Nuclear Information System (INIS)

    Potier, M.; Giroux, S.

    1985-01-01

    The radiation-inactivation method allows the determination of the Msub(r) of enzymes and receptors by monitoring the decay of biological activity as a function of absorbed dose. The presence of regulatory or effector proteins (inhibitors or activators) associated with an enzyme or receptor, or released in the preparation after tissue homogenization, may affect the decay of biological activity. How the activity is affected, however, will depend on the type of inhibition (competitive or non-competitive), the inhibitor or activator concentration, the dissociation constant of the enzyme-effector system, and the effector Msub(r) relative to that of the enzyme. Since little is known on how effector proteins influence radiation inactivation of enzymes and receptors, we have considered a theoretical model in an effort to provide a framework for the interpretation of experimentally obtained data. Our model predicts that competitive and non-competitive inhibitors of enzymes could be distinguished by analysing irradiated samples with various substrate concentrations. Inhibitors will decrease whereas activators will increase the apparent target size of enzymes or receptors. (author)

  17. Common pharmacophore of structurally distinct small-molecule inhibitors of intracellular retrograde trafficking of ribosome inactivating proteins.

    Science.gov (United States)

    Yu, Shichao; Park, Jewn Giew; Kahn, Jennifer Nielsen; Tumer, Nilgun E; Pang, Yuan-Ping

    2013-12-02

    We reported previously (±)-2-(5-methylthiophen-2-yl)-3-phenyl-2,3-dihydroquinazolin-4(1H)-one [(±)-Retro-2(cycl)] as the chemical structure of Retro-2 that showed mouse protection against ricin, a notorious ribosome inactivating protein (RIP). Herein we report our chemical resolution of (±)-Retro-2(cycl), analog synthesis, and cell-based evaluation showing that the two optically pure enantiomers and their achiral analog have nearly the same degree of cell protection against ricin as (±)-Retro-2(cycl). We also report our computational studies explaining the lack of stereo preference and revealing a common pharmacophore of structurally distinct inhibitors of intracellular retrograde trafficking of RIPs. This pharmacophore comprises a central aromatic ring o-substituted by an aromatic ring and a moiety bearing an O or S atom attached to sp² C atom(s). These results offer new insights into lead identification and optimization for RIP antidote development to minimize the global health threat caused by ribosome-inactivating proteins.

  18. Inactivation of barley limit dextrinase inhibitor by thioredoxin-catalysed disulfide reduction

    DEFF Research Database (Denmark)

    Jensen, Johanne Mørch; Hägglund, Per; Christensen, Hans Erik Mølager

    2012-01-01

    Barley limit dextrinase (LD) that catalyses hydrolysis of α-1,6 glucosidic linkages in starch-derived dextrins is inhibited by limit dextrinase inhibitor (LDI) found in mature seeds. LDI belongs to the chloroform/methanol soluble protein family (CM-protein family) and has four disulfide bridges...

  19. Structural Basis of Wee Kinases Functionality and Inactivation by Diverse Small Molecule Inhibitors.

    Science.gov (United States)

    Zhu, Jin-Yi; Cuellar, Rebecca A; Berndt, Norbert; Lee, Hee Eun; Olesen, Sanne H; Martin, Mathew P; Jensen, Jeffrey T; Georg, Gunda I; Schönbrunn, Ernst

    2017-09-28

    Members of the Wee family of kinases negatively regulate the cell cycle via phosphorylation of CDK1 and are considered potential drug targets. Herein, we investigated the structure-function relationship of human Wee1, Wee2, and Myt1 (PKMYT1). Purified recombinant full-length proteins and kinase domain constructs differed substantially in phosphorylation states and catalytic competency, suggesting complex mechanisms of activation. A series of crystal structures reveal unique features that distinguish Wee1 and Wee2 from Myt1 and establish the structural basis of differential inhibition by the widely used Wee1 inhibitor MK-1775. Kinome profiling and cellular studies demonstrate that, in addition to Wee1 and Wee2, MK-1775 is an equally potent inhibitor of the polo-like kinase PLK1. Several previously unrecognized inhibitors of Wee kinases were discovered and characterized. Combined, the data provide a comprehensive view on the catalytic and structural properties of Wee kinases and a framework for the rational design of novel inhibitors thereof.

  20. Photodynamic therapy for inactivating endodontic bacterial biofilms and effect of tissue inhibitors on antibacterial efficacy

    Science.gov (United States)

    Shrestha, Annie; Kishen, Anil

    Complex nature of bacterial cell membrane and structure of biofilm has challenged the efficacy of antimicrobial photodynamic therapy (APDT) to achieve effective disinfection of infected root canals. In addition, tissue-inhibitors present inside the root canals are known to affect APDT activity. This study was aimed to assess the effect of APDT on bacterial biofilms and evaluate the effect of tissue-inhibitors on the APDT. Rose-bengal (RB) and methylene-blue (MB) were tested on Enterococcus faecalis (gram-positive) and Pseudomonas aeruginosa (gram-negative) biofilms. In vitro 7- day old biofilms were sensitized with RB and MB, and photodynamically activated with 20-60 J/cm2. Photosensitizers were pre-treated with different tissue-inhibitors (dentin, dentin-matrix, pulp tissue, bacterial lipopolysaccharides (LPS), and bovine serum albumin (BSA)) and tested for antibacterial effect of APDT. Microbiological culture based analysis was used to analyze the cell viability, while Laser Scanning Confocal Microscopy (LSCM) was used to examine the structure of biofilm. Photoactivation resulted in significant reduction of bacterial biofilms with RB and MB. The structure of biofilm under LSCM was found to be disrupted with reduced biofilm thickness. Complete biofilm elimination could not be achieved with both tested photosensitizers. APDT effect using MB and RB was inhibited in a decreasing order by dentin-matrix, BSA, pulp, dentin and LPS (Pendodontic environment.

  1. The EED protein–protein interaction inhibitor A-395 inactivates the PRC2 complex

    Energy Technology Data Exchange (ETDEWEB)

    He, Yupeng; Selvaraju, Sujatha; Curtin, Michael L.; Jakob, Clarissa G.; Zhu, Haizhong; Comess, Kenneth M.; Shaw, Bailin; The, Juliana; Lima-Fernandes, Evelyne; Szewczyk, Magdalena M.; Cheng, Dong; Klinge, Kelly L.; Li, Huan-Qiu; Pliushchev, Marina; Algire, Mikkel A.; Maag, David; Guo, Jun; Dietrich, Justin; Panchal, Sanjay C.; Petros, Andrew M.; Sweis, Ramzi F.; Torrent, Maricel; Bigelow, Lance J.; Senisterra, Guillermo; Li, Fengling; Kennedy, Steven; Wu, Qin; Osterling, Donald J.; Lindley, David J.; Gao, Wenqing; Galasinski, Scott; Barsyte-Lovejoy, Dalia; Vedadi, Masoud; Buchanan, Fritz G.; Arrowsmith, Cheryl H.; Chiang, Gary G.; Sun, Chaohong; Pappano , William N. (AbbVie); (Toronto)

    2017-01-30

    Polycomb repressive complex 2 (PRC2) is a regulator of epigenetic states required for development and homeostasis. PRC2 trimethylates histone H3 at lysine 27 (H3K27me3), which leads to gene silencing, and is dysregulated in many cancers. The embryonic ectoderm development (EED) protein is an essential subunit of PRC2 that has both a scaffolding function and an H3K27me3-binding function. Here we report the identification of A-395, a potent antagonist of the H3K27me3 binding functions of EED. Structural studies demonstrate that A-395 binds to EED in the H3K27me3-binding pocket, thereby preventing allosteric activation of the catalytic activity of PRC2. Phenotypic effects observed in vitro and in vivo are similar to those of known PRC2 enzymatic inhibitors; however, A-395 retains potent activity against cell lines resistant to the catalytic inhibitors. A-395 represents a first-in-class antagonist of PRC2 protein–protein interactions (PPI) for use as a chemical probe to investigate the roles of EED-containing protein complexes.

  2. Mutation in the FGFR1 tyrosine kinase domain or inactivation of PTEN is associated with acquired resistance to FGFR inhibitors in FGFR1-driven leukemia/lymphomas.

    Science.gov (United States)

    Cowell, John K; Qin, Haiyan; Hu, Tianxiang; Wu, Qing; Bhole, Aaron; Ren, Mingqiang

    2017-11-01

    Stem cell leukemia/lymphoma syndrome (SCLL) is driven by constitutive activation of chimeric FGFR1 kinases generated by chromosome translocations. We have shown that FGFR inhibitors significantly suppress leukemia and lymphoma development in vivo, and cell viability in vitro. Since resistance to targeted therapies is a major reason for relapse, we developed FGFR1-overexpressing mouse and human cell lines that are resistant to the specific FGFR inhibitors AZD4547 and BGJ398, as well as non-specific inhibitors, such as ponatinib, TKI258 and E3810. Two mutually exclusive mechanisms for resistance were demonstrated; an activating V561M mutation in the FGFR1 kinase domain and mutational inactivation of PTEN resulting in increased PI3K/AKT activity. Ectopic expression of PTEN in the PTEN-mutant cells resensitizes them to FGFR inhibitors. Treatment of resistant cells with BGJ398, in combination with the BEZ235 PI3K inhibitor, shows an additive effect on growth in vitro and prolongs survival in xenograft models in vivo. These studies provide the first direct evidence for both the involvement of the FGFR1 V561M mutation and PTEN inactivation in the development of resistance in leukemias overexpressing chimeric FGFR1. These studies also provide a potential strategy to treat leukemias and lymphomas driven by FGFR1 activation that become resistant to FGFR1 inhibitors. © 2017 UICC.

  3. [The disulfide bridges of the trypsin-kallikrein inhibitor K from snails (Helix pomatia). Thermal inactivation and proteolysis by thermolysin (author's transl)].

    Science.gov (United States)

    Dietl, T; Tschesche, H

    1976-02-01

    Isoinhibitor K is the main component of the complex mixture of isoinhibitors of broad specificity secreted into the mucus by the Roman snail (Helix pomatia). The disulfide pairing was determined after the amino acid sequence had been elucidated. Two cystine-containing peptides with the disulfide bridges Cys32-Cys53 and Cys32-Cys53 plus Cys7-Cys57 were obtained after thermolytic hydrolysis of the native inhibitor at 80 degrees C and chromatographic separation of the peptides using SE-Sephadex. The Cys16-Cys40 disulfide bridge could be reduced selectively by sodium borohydride with no loss in biological activity. This property and the covalent structure correspond to that of the intracellular inhibitor from bovine organs, which is largely homologous in its amino acid sequence to the secretory inhibitor from the snail. The complete covalent structure of isoinhibitor K will be presented. The snail inhibitor is less stable against proteolytic inactivation by thermolysin and against thermal denaturation at pH 8.0 than the inhibitor from bovine organs (Kunitz inhibitor).

  4. The innate immune modulators staphylococcal complement inhibitor and chemotaxis inhibitory protein of Staphylococcus aureus are located on beta-hemolysin-converting bacteriophages.

    Science.gov (United States)

    van Wamel, Willem J B; Rooijakkers, Suzan H M; Ruyken, Maartje; van Kessel, Kok P M; van Strijp, Jos A G

    2006-02-01

    Two newly discovered immune modulators, chemotaxis inhibitory protein of Staphylococcus aureus (CHIPS) and staphylococcal complement inhibitor (SCIN), cluster on the conserved 3' end of beta-hemolysin (hlb)-converting bacteriophages (betaC-phis). Since these betaC-phis also carry the genes for the immune evasion molecules staphylokinase (sak) and enterotoxin A (sea), this 8-kb region at the 3' end of betaC-phi represents an innate immune evasion cluster (IEC). By PCR and Southern analyses of 85 clinical Staphylococcus aureus strains and 5 classical laboratory strains, we show that 90% of S. aureus strains carry a betaC-phi with an IEC. Seven IEC variants were discovered, carrying different combinations of chp, sak, or sea (or sep), always in the same 5'-to-3' orientation and on the 3' end of a betaC-phi. From most IEC variants we could isolate active bacteriophages by mitomycin C treatment, of which lysogens were generated in S. aureus R5 (broad phage host). All IEC-carrying bacteriophages integrated into hlb, as was measured by Southern blotting of R5 lysogens. Large quantities of the different bacteriophages were obtained by mitomycin C treatment of the lysogens, and bacteriophages were collected and used to reinfect all lysogenic R5 strains. In total, five lytic families were found. Furthermore, phage DNA was isolated and digested with EcoR1, revealing that one IEC variant can be found on different betaI-phis. In conclusion, the four human-specific innate immune modulators SCIN, CHIPS, SAK, and SEA form an IEC that is easily transferred among S. aureus strains by a diverse group of beta-hemolysin-converting bacteriophages.

  5. Lkb1 inactivation is sufficient to drive endometrial cancers that are aggressive yet highly responsive to mTOR inhibitor monotherapy

    Science.gov (United States)

    Contreras, Cristina M.; Akbay, Esra A.; Gallardo, Teresa D.; Haynie, J. Marshall; Sharma, Sreenath; Tagao, Osamu; Bardeesy, Nabeel; Takahashi, Masaya; Settleman, Jeff; Wong, Kwok-Kin; Castrillon, Diego H.

    2010-01-01

    SUMMARY Endometrial cancer – the most common malignancy of the female reproductive tract – arises from the specialized epithelial cells that line the inner surface of the uterus. Although significant advances have been made in our understanding of this disease in recent years, one significant limitation has been the lack of a diverse genetic toolkit for the generation of mouse models. We identified a novel endometrial-specific gene, Sprr2f, and developed a Sprr2f-Cre transgene for conditional gene targeting within endometrial epithelium. We then used this tool to generate a completely penetrant Lkb1 (also known as Stk11)-based mouse model of invasive endometrial cancer. Strikingly, female mice with homozygous endometrial Lkb1 inactivation did not harbor discrete endometrial neoplasms, but instead underwent diffuse malignant transformation of their entire endometrium with rapid extrauterine spread and death, suggesting that Lkb1 inactivation was sufficient to promote the development of invasive endometrial cancer. Mice with heterozygous endometrial Lkb1 inactivation only rarely developed tumors, which were focal and arose with much longer latency, arguing against the idea – suggested by some prior studies – that Lkb1 is a haploinsufficient tumor suppressor. Lastly, the finding that endometrial cancer cell lines were especially sensitive to the mTOR (mammalian target of rapamycin) inhibitor rapamycin prompted us to test its efficacy against Lkb1-driven endometrial cancers. Rapamycin monotherapy not only greatly slowed disease progression, but also led to striking regression of pre-existing tumors. These studies demonstrate that Lkb1 is a uniquely potent endometrial tumor suppressor, but also suggest that the clinical responses of some types of invasive cancers to mTOR inhibitors may be linked to Lkb1 status. PMID:20142330

  6. CpG in Combination with an Inhibitor of Notch Signaling Suppresses Formalin-Inactivated Respiratory Syncytial Virus-Enhanced Airway Hyperresponsiveness and Inflammation by Inhibiting Th17 Memory Responses and Promoting Tissue-Resident Memory Cells in Lungs.

    Science.gov (United States)

    Zhang, Lei; Li, Hongyong; Hai, Yan; Yin, Wei; Li, Wenjian; Zheng, Boyang; Du, Xiaomin; Li, Na; Zhang, Zhengzheng; Deng, Yuqing; Zeng, Ruihong; Wei, Lin

    2017-05-15

    Respiratory syncytial virus (RSV) is the leading cause of childhood hospitalizations. The formalin-inactivated RSV (FI-RSV) vaccine-enhanced respiratory disease (ERD) has been an obstacle to the development of a safe and effective killed RSV vaccine. Agonists of Toll-like receptor (TLR) have been shown to regulate immune responses induced by FI-RSV. Notch signaling plays critical roles during the differentiation and effector function phases of innate and adaptive immune responses. Cross talk between TLR and Notch signaling pathways results in fine-tuning of TLR-triggered innate inflammatory responses. We evaluated the impact of TLR and Notch signaling on ERD in a murine model by administering CpG, an agonist of TLR9, in combination with L685,458, an inhibitor of Notch signaling during FI-RSV immunization. Activation with CpG or deficiency of MyD88-dependent TLR signaling did not alleviate airway inflammation in FI-RSV-immunized mice. Activation or inhibition of Notch signaling with Dll4, one of the Notch ligands, or L685,458 did not suppress FI-RSV-enhanced airway inflammation either. However, the CpG together with L685,458 markedly inhibited FI-RSV-enhanced airway hyperresponsiveness, weight loss, and lung inflammation. Interestingly, CpG plus L685,458 completely inhibited FI-RSV-associated Th17 and Th17-associated proinflammatory chemokine responses in lungs following RSV challenge but not Th1 or Th2, memory responses. In addition, FI-RSV plus CpG plus L685,458 promoted protective CD8 + lung tissue-resident memory (TRM) cells. These results indicate that activation of TLR signaling combined with inhibition of Notch signaling prevent FI-RSV ERD, and the mechanism appears to involve suppressing proinflammatory Th17 memory responses and promoting protective TRM in lungs. IMPORTANCE RSV is the most important cause of lower respiratory tract infections in infants. The FI-RSV-enhanced respiratory disease (ERD) is a major impediment to the development of a safe and

  7. Innate immunity

    African Journals Online (AJOL)

    various types of pathogen recognition receptors on epithelial cells and resident cells of the innate immune system, especially macrophages, initiate a localised inflammatory response characterised by an early influx of blood neutrophils.1,2. A comparison of the major characteristics of innate and adaptive immune responses ...

  8. Structural and functional characterization of cleavage and inactivation of human serine protease inhibitors by the bacterial SPATE protease EspPα from enterohemorrhagic E. coli.

    Directory of Open Access Journals (Sweden)

    André Weiss

    Full Text Available EspPα and EspI are serine protease autotransporters found in enterohemorrhagic Escherichia coli. They both belong to the SPATE autotransporter family and are believed to contribute to pathogenicity via proteolytic cleavage and inactivation of different key host proteins during infection. Here, we describe the specific cleavage and functional inactivation of serine protease inhibitors (serpins by EspPα and compare this activity with the related SPATE EspI. Serpins are structurally related proteins that regulate vital protease cascades, such as blood coagulation and inflammatory host response. For the rapid determination of serpin cleavage sites, we applied direct MALDI-TOF-MS or ESI-FTMS analysis of coincubations of serpins and SPATE proteases and confirmed observed cleavage positions using in-gel-digest of SDS-PAGE-separated degradation products. Activities of both serpin and SPATE protease were assessed in a newly developed photometrical assay using chromogenic peptide substrates. EspPα cleaved the serpins α1-protease inhibitor (α1-PI, α1-antichymotrypsin, angiotensinogen, and α2-antiplasmin. Serpin cleavage led to loss of inhibitory function as demonstrated for α1-PI while EspPα activity was not affected. Notably, EspPα showed pronounced specificity and cleaved procoagulatory serpins such as α2-antiplasmin while the anticoagulatory antithrombin III was not affected. Together with recently published research, this underlines the interference of EspPα with hemostasis or inflammatory responses during infection, while the observed interaction of EspI with serpins is likely to be not physiologically relevant. EspPα-mediated serpin cleavage occurred always in flexible loops, indicating that this structural motif might be required for substrate recognition.

  9. Selective Serotonin Reuptake Inhibitor and Substance P Antagonist Enhancement of Natural Killer Cell Innate Immunity in Human Immunodeficiency Virus/Acquired Immunodeficiency Syndrome

    Science.gov (United States)

    Evans, Dwight L.; Lynch, Kevin G.; Benton, Tami; Dubé, Benoit; Gettes, David R.; Tustin, Nancy B.; Lai, Jian Ping; Metzger, David; Douglas, Steven D.

    2010-01-01

    Background Natural killer (NK) cells play an important role in innate immunity and are involved in the host defense against human immunodeficiency virus (HIV) infection. This study examines the potential role of three underlying regulatory systems that have been under investigation in central nervous system research as well as immune and viral research: serotonin, neurokinin, and glucocorticoid systems. Methods Fifty-one HIV-seropositive subjects were recruited to achieve a representative sample of depressed and nondepressed women. The effects of a selective serotonin reuptake inhibitor (SSRI), a substance P (SP) antagonist, and a glucocorticoid antagonist on NK cell function were assessed in a series of ex vivo experiments of peripheral blood mononuclear cells from each HIV-seropositive subject. Results Natural killer cell cytolytic activity was significantly increased by the SSRI citalopram and by the substance P antagonist CP-96345 relative to control conditions; the glucocorticoid antagonist, RU486, showed no effect on NK cytotoxicity. Our results suggest that the effects of the three agents did not differ as a function of depression. Conclusions Our findings provide evidence that NK cell function in HIV infection may be enhanced by serotonin reuptake inhibition and by substance P antagonism. It remains to be determined if HIV-related impairment in not only NK cytolytic activity but also NK noncytolytic activity can be improved by an SSRI or an SP antagonist. Clinical studies are warranted to address these questions and the potential roles of serotonergic agents and SP antagonists in improving NK cell immunity, delaying HIV disease progression, and extending survival with HIV infection. PMID:17945197

  10. Crystal Structure of Fatty Acid Amide Hydrolase Bound to the Carbamate Inhibitor URB597: Discovery of a Deacylating Water Molecule and Insight into Enzyme Inactivation

    Energy Technology Data Exchange (ETDEWEB)

    Mileni, Mauro; Kamtekar, Satwik; Wood, David C.; Benson, Timothy E.; Cravatt, Benjamin F.; Stevens, Raymond C. (Scripps); (Pfizer)

    2010-08-12

    The endocannabinoid system regulates a wide range of physiological processes including pain, inflammation, and cognitive/emotional states. URB597 is one of the best characterized covalent inhibitors of the endocannabinoid-degrading enzyme fatty acid amide hydrolase (FAAH). Here, we report the structure of the FAAH-URB597 complex at 2.3 {angstrom} resolution. The structure provides insights into mechanistic details of enzyme inactivation and experimental evidence of a previously uncharacterized active site water molecule that likely is involved in substrate deacylation. This water molecule is part of an extensive hydrogen-bonding network and is coordinated indirectly to residues lining the cytosolic port of the enzyme. In order to corroborate our hypothesis concerning the role of this water molecule in FAAH's catalytic mechanism, we determined the structure of FAAH conjugated to a urea-based inhibitor, PF-3845, to a higher resolution (2.4 {angstrom}) than previously reported. The higher-resolution structure confirms the presence of the water molecule in a virtually identical location in the active site. Examination of the structures of serine hydrolases that are non-homologous to FAAH, such as elastase, trypsin, or chymotrypsin, shows a similarly positioned hydrolytic water molecule and suggests a functional convergence between the amidase signature enzymes and serine proteases.

  11. Inhibitors

    Science.gov (United States)

    ... Icon View public health webinars on blood disorders Inhibitors Language: English (US) Español (Spanish) Recommend on Facebook ... because treatment of bleeds becomes less effective. About Inhibitors People with hemophilia, and many with VWD type ...

  12. Inheritance of the lysozyme inhibitor Ivy was an important evolutionary step by Yersinia pestis to avoid the host innate immune response.

    Science.gov (United States)

    Derbise, Anne; Pierre, François; Merchez, Maud; Pradel, Elizabeth; Laouami, Sabrina; Ricard, Isabelle; Sirard, Jean-Claude; Fritz, Jill; Lemaître, Nadine; Akinbi, Henry; Boneca, Ivo G; Sebbane, Florent

    2013-05-15

    Yersinia pestis (the plague bacillus) and its ancestor, Yersinia pseudotuberculosis (which causes self-limited bowel disease), encode putative homologues of the periplasmic lysozyme inhibitor Ivy and the membrane-bound lysozyme inhibitor MliC. The involvement of both inhibitors in virulence remains subject to debate. Mutants lacking ivy and/or mliC were generated. We evaluated the mutants' ability to counter lysozyme, grow in serum, and/or counter leukocytes; to produce disease in wild-type, neutropenic, or lysozyme-deficient rodents; and to induce host inflammation. MliC was not required for lysozyme resistance and the development of plague. Deletion of ivy decreased Y. pestis' ability to counter lysozyme and polymorphonuclear neutrophils, but it did not affect the bacterium's ability to grow in serum or resist macrophages. Y. pestis lacking Ivy had attenuated virulence, unless animals were neutropenic or lysozyme deficient. The Ivy mutant induced inflammation to a degree similar to that of the parental strain. Last, Y. pseudotuberculosis did not require Ivy to counter lysozyme and for virulence. Ivy is required to counter lysozyme during infection, but its role as a virulence factor is species dependent. Our study also shows that a gene that is not necessary for the virulence of an ancestral bacterium may become essential in the emergence of a new pathogen.

  13. Identification of a Gamma Interferon-Activated Inhibitor of Translation-Like RNA Motif at the 3′ End of the Transmissible Gastroenteritis Coronavirus Genome Modulating Innate Immune Response

    Science.gov (United States)

    Marquez-Jurado, Silvia; Nogales, Aitor; Zuñiga, Sonia; Almazán, Fernando

    2015-01-01

    ABSTRACT A 32-nucleotide (nt) RNA motif located at the 3′ end of the transmissible gastroenteritis coronavirus (TGEV) genome was found to specifically interact with the host proteins glutamyl-prolyl-tRNA synthetase (EPRS) and arginyl-tRNA synthetase (RRS). This RNA motif has high homology in sequence and secondary structure with the gamma interferon-activated inhibitor of translation (GAIT) element, which is located at the 3′ end of several mRNAs encoding proinflammatory proteins. The GAIT element is involved in the translation silencing of these mRNAs through its interaction with the GAIT complex (EPRS, heterogeneous nuclear ribonucleoprotein Q, ribosomal protein L13a, and glyceraldehyde 3-phosphate dehydrogenase) to favor the resolution of inflammation. Interestingly, we showed that the viral RNA motif bound the GAIT complex and inhibited the in vitro translation of a chimeric mRNA containing this RNA motif. To our knowledge, this is the first GAIT-like motif described in a positive RNA virus. To test the functional role of the GAIT-like RNA motif during TGEV infection, a recombinant coronavirus harboring mutations in this motif was engineered and characterized. Mutations of the GAIT-like RNA motif did not affect virus growth in cell cultures. However, an exacerbated innate immune response, mediated by the melanoma differentiation-associated gene 5 (MDA5) pathway, was observed in cells infected with the mutant virus compared with the response observed in cells infected with the parental virus. Furthermore, the mutant virus was more sensitive to beta interferon than the parental virus. All together, these data strongly suggested that the viral GAIT-like RNA motif modulates the host innate immune response. PMID:25759500

  14. TTI-621 (SIRPαFc): A CD47-Blocking Innate Immune Checkpoint Inhibitor with Broad Antitumor Activity and Minimal Erythrocyte Binding.

    Science.gov (United States)

    Petrova, Penka S; Viller, Natasja Nielsen; Wong, Mark; Pang, Xinli; Lin, Gloria H Y; Dodge, Karen; Chai, Vien; Chen, Hui; Lee, Vivian; House, Violetta; Vigo, Noel T; Jin, Debbie; Mutukura, Tapfuma; Charbonneau, Marilyse; Truong, Tran; Viau, Stephane; Johnson, Lisa D; Linderoth, Emma; Sievers, Eric L; Maleki Vareki, Saman; Figueredo, Rene; Pampillo, Macarena; Koropatnick, James; Trudel, Suzanne; Mbong, Nathan; Jin, Liqing; Wang, Jean C Y; Uger, Robert A

    2017-02-15

    Purpose: The ubiquitously expressed transmembrane glycoprotein CD47 delivers an anti-phagocytic (do not eat) signal by binding signal-regulatory protein α (SIRPα) on macrophages. CD47 is overexpressed in cancer cells and its expression is associated with poor clinical outcomes. TTI-621 (SIRPαFc) is a fully human recombinant fusion protein that blocks the CD47-SIRPα axis by binding to human CD47 and enhancing phagocytosis of malignant cells. Blockade of this inhibitory axis using TTI-621 has emerged as a promising therapeutic strategy to promote tumor cell eradication. Experimental Design: The ability of TTI-621 to promote macrophage-mediated phagocytosis of human tumor cells was assessed using both confocal microscopy and flow cytometry. In vivo antitumor efficacy was evaluated in xenograft and syngeneic models and the role of the Fc region in antitumor activity was evaluated using SIRPαFc constructs with different Fc tails. Results: TTI-621 enhanced macrophage-mediated phagocytosis of both hematologic and solid tumor cells, while sparing normal cells. In vivo , TTI-621 effectively controlled the growth of aggressive AML and B lymphoma xenografts and was efficacious in a syngeneic B lymphoma model. The IgG1 Fc tail of TTI-621 plays a critical role in its antitumor activity, presumably by engaging activating Fcγ receptors on macrophages. Finally, TTI-621 exhibits minimal binding to human erythrocytes, thereby differentiating it from CD47 blocking antibodies. Conclusions: These data indicate that TTI-621 is active across a broad range of human tumors. These results further establish CD47 as a critical regulator of innate immune surveillance and form the basis for clinical development of TTI-621 in multiple oncology indications. Clin Cancer Res; 23(4); 1068-79. ©2016 AACR . ©2016 American Association for Cancer Research.

  15. Characterization and inactivation of an agmatine deiminase from Helicobacter pylori

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Justin E.; Causey, Corey P.; Lovelace, Leslie; Knuckley, Bryan; Flick, Heather; Lebioda, Lukasz; Thompson, Paul R. (SC)

    2010-11-12

    Helicobacter pylori encodes a potential virulence factor, agmatine deiminase (HpAgD), which catalyzes the conversion of agmatine to N-carbamoyl putrescine (NCP) and ammonia - agmatine is decarboxylated arginine. Agmatine is an endogenous human cell signaling molecule that triggers the innate immune response in humans. Unlike H. pylori, humans do not encode an AgD; it is hypothesized that inhibition of this enzyme would increase the levels of agmatine, and thereby enhance the innate immune response. Taken together, these facts suggest that HpAgD is a potential drug target. Herein we describe the optimized expression, isolation, and purification of HpAgD (10-30 mg/L media). The initial kinetic characterization of this enzyme has also been performed. Additionally, the crystal structure of wild-type HpAgD has been determined at 2.1 {angstrom} resolution. This structure provides a molecular basis for the preferential deimination of agmatine, and identifies Asp198 as a key residue responsible for agmatine recognition, which has been confirmed experimentally. Information gathered from these studies led to the development and characterization of a novel class of haloacetamidine-based HpAgD inactivators. These compounds are the most potent AgD inhibitors ever described.

  16. Innate Immune Effectors in Mycobacterial Infection

    Directory of Open Access Journals (Sweden)

    Hiroyuki Saiga

    2011-01-01

    Full Text Available Tuberculosis, which is caused by infection with Mycobacterium tuberculosis (Mtb, remains one of the major bacterial infections worldwide. Host defense against Mtb is mediated by a combination of innate and adaptive immune responses. In the last 15 years, the mechanisms for activation of innate immunity have been elucidated. Toll-like receptors (TLRs have been revealed to be critical for the recognition of pathogenic microorganisms including mycobacteria. Subsequent studies further revealed that NOD-like receptors and C-type lectin receptors are responsible for the TLR-independent recognition of mycobacteria. Several molecules, such as active vitamin D3, secretary leukocyte protease inhibitor, and lipocalin 2, all of which are induced by TLR stimulation, have been shown to direct innate immune responses to mycobacteria. In addition, Irgm1-dependent autophagy has recently been demonstrated to eliminate intracellular mycobacteria. Thus, our understanding of the mechanisms for the innate immune response to mycobacteria is developing.

  17. Innate immunity and adjuvants

    OpenAIRE

    Akira, Shizuo

    2011-01-01

    Innate immunity was for a long time considered to be non-specific because the major function of this system is to digest pathogens and present antigens to the cells involved in acquired immunity. However, recent studies have shown that innate immunity is not non-specific, but is instead sufficiently specific to discriminate self from pathogens through evolutionarily conserved receptors, designated Toll-like receptors (TLRs). Indeed, innate immunity has a crucial role in early host defence aga...

  18. Kidney and innate immunity.

    Science.gov (United States)

    Wang, Ying-Hui; Zhang, Yu-Gen

    2017-03-01

    Innate immune system is an important modulator of the inflammatory response during infection and tissue injury/repair. The kidney as a vital organ with high energy demand plays a key role in regulating the disease related metabolic process. Increasing research interest has focused on the immune pathogenesis of many kidney diseases. However, innate immune cells such as dendritic cells, macrophages, NK cells and a few innate lymphocytes, as well as the complement system are essential for renal immune homeostasis and ensure a coordinated balance between tissue injury and regeneration. The innate immune response provides the first line of host defense initiated by several classes of pattern recognition receptors (PRRs), such as membrane-bound Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs), together with inflammasomes responsible for early innate immune response. Although the innate immune system is well studied, the research on the detailed relationship between innate immunity and kidney is still very limited. In this review, we will focus on the innate immune sensing system in renal immune homeostasis, as well as the corresponding pathogenesis of many kidney diseases. The pivotal roles of innate immunity in renal injury and regeneration with special emphasis on kidney disease related immunoregulatory mechanism are also discussed. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  19. Does the oxidation of methionine residue precede the inactivation of the trypsin inhibitor (LUTI in germinating seeds of common flax (Linum usitatissimum?

    Directory of Open Access Journals (Sweden)

    Irena Lorenc-Kubis

    2011-01-01

    Full Text Available Antitrypsin activity in germinating common seeds of flax (Linum usitatissimum was investigated. At the early stage of germination an increase in antitrypsin activity was observed, followed by its decrease during the development of the seedlings. From 6-day-old seedlings a trypsin inhibitor (gerLUTI was purified. The purification procedure involved fractionation of proteins from seedling homogenate with alcohol and successive chromatography on CM-Sephadex C-25 on immobilised methylchymotrypsin in the presence of 5 M NaCl, and finally on a C18 column in RP-HPLC. The gerLUTI migrated in SDS PAGE as a single band, but in mass spectroscopy analysis it exhibited the presence of at least three forms with molecular masses of 7654 ± 3 Da, 7668/7670 ± 3 Da, and 7687 ± 3 Da. The preparation of LUTI isolated from resting seeds contained only one form, with a molecular mass of 7655 ± 3 Da. LUTI and gerLUTI differed also in methionine contents. LUTI contained two methionine residues, whereas in gerLUTI only a trace of methionine was detected. The obtained results might suggest that during flax seeds germination the inhibitor molecules undergo selective modification, e.g. oxidation at methionine residues, before being degraded by proteolytic enzymes.

  20. Innate Immunity and BK Virus: Prospective Strategies.

    Science.gov (United States)

    Kariminik, Ashraf; Yaghobi, Ramin; Dabiri, Shahriar

    2016-03-01

    Recent information demonstrated that BK virus reactivation is a dominant complication after kidney transplantation, which occurs because of immunosuppression. BK virus reactivation is the main reason of transplanted kidney losing. Immune response against BK virus is the major inhibitor of the virus reactivation. Therefore, improving our knowledge regarding the main parameters that fight against BK viruses can shed light on to direct new treatment strategies to suppress BK infection. Innate immunity consists of numerous cell systems and also soluble molecules, which not only suppress virus replication, but also activate adaptive immunity to eradicate the infection. Additionally, it appears that immune responses against reactivated BK virus are the main reasons for induction of BK virus-associated nephropathy (BKAN). Thus, improving our knowledge regarding the parameters and detailed mechanisms of innate immunity and also the status of innate immunity of the patients with BK virus reactivation and its complications can introduce new prospective strategies to either prevent or as therapy of the complication. Therefore, this review was aimed to collate the most recent data regarding the roles played by innate immunity against BK virus and also the status of innate immunity in the patients with reactivation BK virus and BKAN.

  1. Approaching archetypes: reconsidering innateness.

    Science.gov (United States)

    Goodwyn, Erik

    2010-09-01

    The question of innateness has hounded Jungian psychology since Jung originally postulated the archetype as an a priori structure within the psyche. During his life and after his death he was continually accused of Lamarckianism and criticized for his theory that the archetypes existed as prior structures. More recently, with the advent of genetic research and the human genome project, the idea that psychological structures can be innate has come under even harsher criticism even within Jungian thought. There appears to be a growing consensus that Jung's idea of innate psychological structures was misguided, and that perhaps the archetype-as-such should be abandoned for more developmental and 'emergent' theories of the psyche. The purpose of this essay is to question this conclusion, and introduce some literature on psychological innateness that appears relevant to this discussion. © 2010, The Society of Analytical Psychology.

  2. Innate Immunity and Neurodegeneration.

    Science.gov (United States)

    Labzin, Larisa I; Heneka, Michael T; Latz, Eicke

    2018-01-29

    The innate immune system plays diverse roles in health and disease. It represents the first line of defense against infection and is involved in tissue repair, wound healing, and clearance of apoptotic cells and cellular debris. Excessive or nonresolving innate immune activation can lead to systemic or local inflammatory complications and cause or contribute to the development of inflammatory diseases. In the brain, microglia represent the key innate immune cells, which are involved in brain development, brain maturation, and homeostasis. Impaired microglial function, either through aberrant activation or decreased functionality, can occur during aging and during neurodegeneration, and the resulting inflammation is thought to contribute to neurodegenerative diseases. This review highlights recent advances in our understanding of the influence of innate immunity on neurodegenerative disorders such as Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, and Huntington's disease.

  3. [Innate immunity and transplantation].

    Science.gov (United States)

    Ponticelli, Claudio

    2015-01-01

    Innate immunity is the first barrier against pathogen infection and has also the important function of activating the adaptive immunity. The receptors of innate immunity, such as toll-like receptors and other receptors, recognize as danger signals the molecular patterns of pathogens as well as those of endogenous molecules released by dying cells. The information is transmitted to adapter proteins that, through a chain of kinases that translate the signal to transcription factors regulating inflammatory genes. In the inflammatory milieu dendritic cells become mature, intercept the antigen and migrate to lymphoid organs where they present the antigen to naïve T cells. Complement also exerts an important role of bridge between innate and adaptive immunity. In donor-deceased kidney transplantation, the innate immunity is triggered in the donor by brain death and is aggravated by the cold ischemia and even more by reperfusion. Once activated, innate immunity produces a local inflammatory environment leading to dendritic cell maturation and complement activation. Dendritic cells present the alloantigen to T cells and induce their differentiation towards effector Th1 and Th17 while inhibiting Th2 and T regulatory cells. A main goal of the current research in transplantation is to obtain an immunological tolerance. Experimental studies showed the possibility of inducing operative tolerance in murine models and even in primates with the infusion of regulatory dendritic cells. However, there are no data with this technique in clinical transplantation.

  4. Oral innate immunity in HIV infection in HAART era.

    Science.gov (United States)

    Nittayananta, Wipawee; Tao, Renchuan; Jiang, Lanlan; Peng, Yuanyuan; Huang, Yuxiao

    2016-01-01

    Oral innate immunity, an important component in host defense and immune surveillance in the oral cavity, plays a crucial role in the regulation of oral health. As part of the innate immune system, epithelial cells lining oral mucosal surfaces not only provide a physical barrier but also produce different antimicrobial peptides, including human β-defensins (hBDs), secretory leukocyte protease inhibitor (SLPI), and various cytokines. These innate immune mediators help in maintaining oral homeostasis. When they are impaired either by local or systemic causes, various oral infections and malignancies may be developed. Human immunodeficiency virus (HIV) infection and other co-infections appear to have both direct and indirect effects on systemic and local innate immunity leading to the development of oral opportunistic infections and malignancies. Highly active antiretroviral therapy (HAART), the standard treatment of HIV infection, contributed to a global reduction of HIV-associated oral lesions. However, prolonged use of HAART may lead to adverse effects on the oral innate immunity resulting in the relapse of oral lesions. This review article focused on the roles of oral innate immunity in HIV infection in HAART era. The following five key questions were addressed: (i) What are the roles of oral innate immunity in health and disease?, (ii) What are the effects of HIV infection on oral innate immunity?, (iii) What are the roles of oral innate immunity against other co-infections?, (iv) What are the effects of HAART on oral innate immunity?, and (v) Is oral innate immunity enhanced by HAART? © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Inactivation Data.xlsx

    Data.gov (United States)

    U.S. Environmental Protection Agency — The data set is a spreadsheet that contains results of inactivation experiments that were conducted to to determine the effectiveness of chlorine in inactivating B....

  6. Emerging Concepts in Innate Immunity.

    Science.gov (United States)

    Pelka, Karin; De Nardo, Dominic

    2018-01-01

    This review introduces recent concepts in innate immunity highlighting some of the latest exciting findings. These include: the discovery of the initiator of pyroptosis, Gasdermin D, and mechanisms of inflammatory caspases in innate immune signaling; the formation of oligomeric signalosomes downstream of innate immune receptors; mechanisms that shape innate immune responses, such as cellular homeostasis, cell metabolism, and pathogen viability; rapid methods of cell-to-cell communication; the interplay between the host and its microbiome and the concept of innate immunological memory. Furthermore, we discuss open questions and illustrate how technological advances, such as CRISPR/Cas9, may provide important answers for outstanding questions in the field of innate immunity.

  7. History of Innate Immunity in Neurodegenerative Disorders

    Directory of Open Access Journals (Sweden)

    Patrick eMcGeer

    2011-12-01

    Full Text Available The foundations of innate immunity in neurodegenerative disorders were first laid by Hortega in 1919. He identified and named microglia, recognizing them as cells of mesodermal origin. Van Furth in 1969 elaborated the monocyte phagocytic system with microglia as the brain representatives. Validation of these concepts did not occur until 1987 when HLA-DR was identified on activated microglia in a spectrum of neurological disorders. HLA-DR had already been established as a definitive marker of immunocompetent cells of mesodermal origin. It was soon determined that the observed inflammatory reaction was an innate immune response. A rapid expansion of the field took place as other markers of an innate immune response were found that were made by neurons, astrocytes, oligodendroglia and endothelial cells. The molecules included complement proteins and their regulators, inflammatory cytokines, chemokines, acute phase reactants, prostaglandins, proteases, protease inhibitors, coagulation factors, fibrinolytic factors, anaphylotoxins, integrins, free radical generators, and other unidentified neurotoxins. The Nimmerjahn movies demonstrated that resting microglia were constantly active, sampling the surround and responding rapidly to brain damage. Ways of reducing the neurotoxic innate immune response and stimulating a healing response continue to be sought as a means for ameliorating the pathology in a spectrum of chronic degenerative disorders.

  8. Tick Innate Immunity.

    Czech Academy of Sciences Publication Activity Database

    Kopáček, Petr; Hajdušek, Ondřej; Burešová, Veronika; Daffre, S.

    2010-01-01

    Roč. 708, - (2010), 137-162 ISSN 0065-2598 R&D Projects: GA ČR GAP506/10/2136; GA MŠk(CZ) LC06009 Institutional research plan: CEZ:AV0Z60220518 Keywords : tick * pathogen transmission * innate immunity Subject RIV: EC - Immunology Impact factor: 1.379, year: 2010

  9. Inactivation of Caliciviruses

    Directory of Open Access Journals (Sweden)

    Raymond Nims

    2013-03-01

    Full Text Available The Caliciviridae family of viruses contains clinically important human and animal pathogens, as well as vesivirus 2117, a known contaminant of biopharmaceutical manufacturing processes employing Chinese hamster cells. An extensive literature exists for inactivation of various animal caliciviruses, especially feline calicivirus and murine norovirus. The caliciviruses are susceptible to wet heat inactivation at temperatures in excess of 60 °C with contact times of 30 min or greater, to UV-C inactivation at fluence ≥30 mJ/cm2, to high pressure processing >200 MPa for >5 min at 4 °C, and to certain photodynamic inactivation approaches. The enteric caliciviruses (e.g.; noroviruses display resistance to inactivation by low pH, while the non-enteric species (e.g.; feline calicivirus are much more susceptible. The caliciviruses are inactivated by a variety of chemicals, including alcohols, oxidizing agents, aldehydes, and β-propiolactone. As with inactivation of viruses in general, inactivation of caliciviruses by the various approaches may be matrix-, temperature-, and/or contact time-dependent. The susceptibilities of the caliciviruses to the various physical and chemical inactivation approaches are generally similar to those displayed by other small, non-enveloped viruses, with the exception that the parvoviruses and circoviruses may require higher temperatures for inactivation, while these families appear to be more susceptible to UV-C inactivation than are the caliciviruses.

  10. Inactivation of factor Xia in vivo: studies in chimpanzees and in humans

    NARCIS (Netherlands)

    Wuillemin, W. A.; Hack, C. E.; Bleeker, W. K.; Biemond, B. J.; Levi, M. [=Marcel M.; ten Cate, H.

    1996-01-01

    C1-inhibitor (C1Inh), antithrombin III (ATIII), alpha 1-antitrypsin (a1AT), and alpha 2-antiplasmin (a2AP) are known inhibitors of factor XIa (FXIa). However, their precise contribution to FXIa inactivation in vivo is not known. We investigated FXIa inactivation in chimpanzees and assessed the

  11. Adaptation in the innate immune system and heterologous innate immunity.

    Science.gov (United States)

    Martin, Stefan F

    2014-11-01

    The innate immune system recognizes deviation from homeostasis caused by infectious or non-infectious assaults. The threshold for its activation seems to be established by a calibration process that includes sensing of microbial molecular patterns from commensal bacteria and of endogenous signals. It is becoming increasingly clear that adaptive features, a hallmark of the adaptive immune system, can also be identified in the innate immune system. Such adaptations can result in the manifestation of a primed state of immune and tissue cells with a decreased activation threshold. This keeps the system poised to react quickly. Moreover, the fact that the innate immune system recognizes a wide variety of danger signals via pattern recognition receptors that often activate the same signaling pathways allows for heterologous innate immune stimulation. This implies that, for example, the innate immune response to an infection can be modified by co-infections or other innate stimuli. This "design feature" of the innate immune system has many implications for our understanding of individual susceptibility to diseases or responsiveness to therapies and vaccinations. In this article, adaptive features of the innate immune system as well as heterologous innate immunity and their implications are discussed.

  12. Defensins in innate immunity.

    Science.gov (United States)

    Zhao, Le; Lu, Wuyuan

    2014-01-01

    Defensins are a major family of antimicrobial peptides expressed predominantly in neutrophils and epithelial cells, and play important roles in innate immune defense against infectious pathogens. Their biological functions in and beyond innate immunity, structure and activity relationships, mechanisms of action, and therapeutic potential continue to be interesting research topics. This review examines recent progress in our understanding of alpha and theta-defensins - the two structural classes composed of members of myeloid origin. A novel mode of antibacterial action is described for human enteric alpha-defensin 6, which forms structured nanonets to entrap bacterial pathogens and protect against bacterial invasion of the intestinal epithelium. The functional multiplicity and mechanistic complexity of defensins under different experimental conditions contribute to a debate over the role of enteric alpha-defensins in mucosal immunity against HIV-1 infection. Contrary to common belief, hydrophobicity rather than cationicity plays a dominant functional role in the action of human alpha-defensins; hydrophobicity-mediated high-order assembly endows human alpha-defensins with an extraordinary ability to acquire structural diversity and functional versatility. Growing evidence suggests that theta-defensins offer the best opportunity for therapeutic development as a novel class of broadly active anti-infective and anti-inflammatory agents. Defensins are the 'Swiss army knife' in innate immunity against microbial pathogens. Their modes of action are often reminiscent of the story of 'The Blind Men and the Elephant'. The functional diversity and mechanistic complexity, as well as therapeutic potential of defensins, will continue to attract attention to this important family of antimicrobial peptides.

  13. Curating the innate immunity interactome.

    LENUS (Irish Health Repository)

    Lynn, David J

    2010-01-01

    The innate immune response is the first line of defence against invading pathogens and is regulated by complex signalling and transcriptional networks. Systems biology approaches promise to shed new light on the regulation of innate immunity through the analysis and modelling of these networks. A key initial step in this process is the contextual cataloguing of the components of this system and the molecular interactions that comprise these networks. InnateDB (http:\\/\\/www.innatedb.com) is a molecular interaction and pathway database developed to facilitate systems-level analyses of innate immunity.

  14. Innate and adaptive immunosenescence.

    Science.gov (United States)

    Agarwal, Shradha; Busse, Paula J

    2010-03-01

    To review the effect of increasing age on the immune system and some of its clinical implications. MEDLINE and PubMed searches were performed cross-referencing the keywords immunosenescence, aging, and immunity. Articles were reviewed for additional citations. Articles were reviewed and selected based on relevance to subject matter. The study of immunosenescence is complex and not completely understood. Aging affects both the innate and adaptive arms of the immune response. With increased age, there may be a decrease in phagocytosis, alteration of cellular migration, changes in cell populations and numbers, and a decreased ability to produce specific antibodies. Clinically, these changes potentially increase morbidity and mortality in elderly individuals through an increased rate of infections, malignancy, and autoimmunity. The process of aging is accompanied by diverse changes in immunity. Several therapeutic approaches are under investigation, including cytokine therapy, hormonal replacement, antioxidant supplementation, and caloric restriction, to attenuate or potentially reverse immunosenescence.

  15. Human T-cell leukemia virus type 1 (HTLV-1 tax requires CADM1/TSLC1 for inactivation of the NF-κB inhibitor A20 and constitutive NF-κB signaling.

    Directory of Open Access Journals (Sweden)

    Rajeshree Pujari

    2015-03-01

    Full Text Available Persistent activation of NF-κB by the Human T-cell leukemia virus type 1 (HTLV-1 oncoprotein, Tax, is vital for the development and pathogenesis of adult T-cell leukemia (ATL and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP. K63-linked polyubiquitinated Tax activates the IKK complex in the plasma membrane-associated lipid raft microdomain. Tax also interacts with TAX1BP1 to inactivate the NF-κB negative regulatory ubiquitin-editing A20 enzyme complex. However, the molecular mechanisms of Tax-mediated IKK activation and A20 protein complex inactivation are poorly understood. Here, we demonstrated that membrane associated CADM1 (Cell adhesion molecule1 recruits Ubc13 to Tax, causing K63-linked polyubiquitination of Tax, and IKK complex activation in the membrane lipid raft. The c-terminal cytoplasmic tail containing PDZ binding motif of CADM1 is critical for Tax to maintain persistent NF-κB activation. Finally, Tax failed to inactivate the NF-κB negative regulator ubiquitin-editing enzyme A20 complex, and activate the IKK complex in the lipid raft in absence of CADM1. Our results thus indicate that CADM1 functions as a critical scaffold molecule for Tax and Ubc13 to form a cellular complex with NEMO, TAX1BP1 and NRP, to activate the IKK complex in the plasma membrane-associated lipid rafts, to inactivate NF-κB negative regulators, and maintain persistent NF-κB activation in HTLV-1 infected cells.

  16. Innate immune evasion by filoviruses.

    Science.gov (United States)

    Basler, Christopher F

    2015-05-01

    Ebola viruses and Marburg viruses, members of the filovirus family, cause severe hemorrhagic fever. The ability of these viruses to potently counteract host innate immune responses is thought to be an important component of viral pathogenesis. Several mechanisms of filoviral innate immune evasion have been defined and are reviewed here. These mechanisms include suppression of type I interferon (IFN) production; inhibition of IFN-signaling and mechanisms that either prevent cell stress responses or allow the virus to replicate in the face of such responses. A greater understanding of these innate immune evasion mechanisms may suggest novel therapeutic approaches for these deadly pathogens. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Epigenetic inactivation of CHFR in human tumors.

    Science.gov (United States)

    Toyota, Minoru; Sasaki, Yasushi; Satoh, Ayumi; Ogi, Kazuhiro; Kikuchi, Takefumi; Suzuki, Hiromu; Mita, Hiroaki; Tanaka, Nobuyuki; Itoh, Fumio; Issa, Jean-Pierre J; Jair, Kam-Wing; Schuebel, Kornel E; Imai, Kohzoh; Tokino, Takashi

    2003-06-24

    Cell-cycle checkpoints controlling the orderly progression through mitosis are frequently disrupted in human cancers. One such checkpoint, entry into metaphase, is regulated by the CHFR gene encoding a protein possessing forkhead-associated and RING finger domains as well as ubiquitin-ligase activity. Although defects in this checkpoint have been described, the molecular basis and prevalence of CHFR inactivation in human tumors are still not fully understood. To address this question, we analyzed the pattern of CHFR expression in a number of human cancer cell lines and primary tumors. We found CpG methylation-dependent silencing of CHFR expression in 45% of cancer cell lines, 40% of primary colorectal cancers, 53% of colorectal adenomas, and 30% of primary head and neck cancers. Expression of CHFR was precisely correlated with both CpG methylation and deacetylation of histones H3 and H4 in the CpG-rich regulatory region. Moreover, CpG methylation and thus silencing of CHFR depended on the activities of two DNA methyltransferases, DNMT1 and DNMT3b, as their genetic inactivation restored CHFR expression. Finally, cells with CHFR methylation had an intrinsically high mitotic index when treated with microtubule inhibitor. This means that cells in which CHFR was epigenetically inactivated constitute loss-of-function alleles for mitotic checkpoint control. Taken together, these findings shed light on a pathway by which mitotic checkpoint is bypassed in cancer cells and suggest that inactivation of checkpoint genes is much more widespread than previously suspected.

  18. Innate immune evasion by filoviruses

    OpenAIRE

    Basler, Christopher F.

    2015-01-01

    Ebola viruses and Marburg viruses, members of the filovirus family, cause severe hemorrhagic fever. The ability of these viruses to potently counteract host innate immune responses is thought to be an important component of viral pathogenesis. Several mechanisms of filoviral innate immune evasion have been defined and are reviewed here. These mechanisms inclue suppression of type I interferon (IFN) production; inhibition of IFN-signaling and mechanisms that either prevent cell stress response...

  19. Vitamin D signaling in intestinal innate immunity and homeostasis.

    Science.gov (United States)

    Dimitrov, Vassil; White, John H

    2017-09-15

    The lumen of the gut hosts a plethora of microorganisms that participate in food assimilation, inactivation of harmful particles and in vitamin synthesis. On the other hand, enteric flora, a number of food antigens, and toxins are capable of triggering immune responses causing inflammation, which, when unresolved, may lead to chronic conditions such as inflammatory bowel disease (IBD). It is important, therefore, to contain the gut bacteria within the lumen, control microbial load and composition, as well as ensure adequate innate and adaptive immune responses to pathogenic threats. There is growing evidence that vitamin D signaling has impacts on all these aspects of intestinal physiology, contributing to healthy enteric homeostasis. VD was first discovered as the curative agent for nutritional rickets, and its classical actions are associated with calcium absorption and bone health. However, vitamin D exhibits a number of extra-skeletal effects, particularly in innate immunity. Notably, it stimulates production of pattern recognition receptors, anti-microbial peptides, and cytokines, which are at the forefront of innate immune responses. They play a role in sensing the microbiota, in preventing excessive bacterial overgrowth, and complement the actions of vitamin D signaling in enhancing intestinal barrier function. Vitamin D also favours tolerogenic rather than inflammogenic T cell differentiation and function. Compromised innate immune function and overactive adaptive immunity, as well as defective intestinal barrier function, have been associated with IBD. Importantly, observational and intervention studies support a beneficial role of vitamin D supplementation in patients with Crohn's disease, a form of IBD. This review summarizes the effects of vitamin D signaling on barrier integrity and innate and adaptive immunity in the gut, as well as on microbial load and composition. Collectively, studies to date reveal that vitamin D signaling has widespread effects

  20. 'Towards a Conceptual Framework for Innate Immunity'

    OpenAIRE

    Twycross, Jamie; Aickelin, Uwe

    2005-01-01

    Innate immunity now occupies a central role in immunology. However, artificial immune system models have largely been inspired by adaptive not innate immunity. This paper reviews the biological principles and properties of innate immunity and, adopting a conceptual framework, asks how these can be incorporated into artificial models. The aim is to outline a meta-framework for models of innate immunity.

  1. Innate immune defences in the human endometrium

    Directory of Open Access Journals (Sweden)

    Kelly Rodney W

    2003-11-01

    Full Text Available Abstract The human endometrium is an important site of innate immune defence, giving protection against uterine infection. Such protection is critical to successful implantation and pregnancy. Infection is a major cause of preterm birth and can also cause infertility and ectopic pregnancy. Natural anti-microbial peptides are key mediators of the innate immune system. These peptides, between them, have anti-bacterial, anti-fungal and anti-viral activity and are expressed at epithelial surfaces throughout the female genital tract. Two families of natural anti-microbials, the defensins and the whey acidic protein (WAP motif proteins, appear to be prominent in endometrium. The human endometrial epithelium expresses beta-defensins 1–4 and the WAP motif protein, secretory leukocyte protease inhibitor. Each beta-defensin has a different expression profile in relation to the stage of the menstrual cycle, providing potential protection throughout the cycle. Secretory leukocyte protease inhibitor is expressed during the secretory phase of the cycle and has a range of possible roles including anti-protease and anti-microbial activity as well as having effects on epithelial cell growth. The leukocyte populations in the endometrium are also a source of anti-microbial production. Neutrophils are a particularly rich source of alpha-defensins, lactoferrin, lysozyme and the WAP motif protein, elafin. The presence of neutrophils during menstruation will enhance anti-microbial protection at a time when the epithelial barrier is disrupted. Several other anti-microbials including the natural killer cell product, granulysin, are likely to have a role in endometrium. The sequential production of natural anti-microbial peptides by the endometrium throughout the menstrual cycle and at other sites in the female genital tract will offer protection from many pathogens, including those that are sexually transmitted.

  2. Enterococcus faecalis and pathogenic streptococci inactivate daptomycin by releasing phospholipids.

    Science.gov (United States)

    Ledger, Elizabeth V K; Pader, Vera; Edwards, Andrew M

    2017-10-01

    Daptomycin is a lipopeptide antibiotic with activity against Gram-positive bacteria. We showed previously that Staphylococcus aureus can survive daptomycin exposure by releasing membrane phospholipids that inactivate the antibiotic. To determine whether other pathogens possess this defence mechanism, phospholipid release and daptomycin activity were measured after incubation of Staphylococcus epidermidis, group A or B streptococci, Streptococcus gordonii or Enterococcus faecalis with the antibiotic. All bacteria released phospholipids in response to daptomycin, which resulted in at least partial inactivation of the antibiotic. However, E. faecalis showed the highest levels of lipid release and daptomycin inactivation. As shown previously for S. aureus, phospholipid release by E. faecalis was inhibited by the lipid biosynthesis inhibitor platensimycin. In conclusion, several pathogenic Gram-positive bacteria, including E. faecalis, inactivate daptomycin by releasing phospholipids, which may contribute to the failure of daptomycin to resolve infections caused by these pathogens.

  3. Efficiency of inactivation of trypsin inhibitory activity in some selected ...

    African Journals Online (AJOL)

    Trypsin inhibitor (TI) levels in the crop seeds varied between 0.0 in Adansonia digitata and 40.8 TIU/mg in Pterocarpus osun. Efficiency of inactivation of TI by autoclaving ranged from 58.1% in Millettia thonningii to 100% in Sesbania pachycarpa and Lonchocarpus. sericeus. It is concluded that the effect of heat treatment on ...

  4. Cloning and expression of antiviral/ribosome-inactivating protein ...

    Indian Academy of Sciences (India)

    Madhu urs

    2007-12-16

    Dec 16, 2007 ... Many higher plant species belonging to various taxonomic families are known to produce endogenous, non-stress induced inhibitor proteins called antiviral proteins (AVPs). Many of these AVPs have ribosome-inhibiting rRNA N- glycosidase activity and are known as ribosome-inactivating proteins (RIPs).

  5. Thermal Inactivation of Viruses

    Science.gov (United States)

    1977-10-01

    production. Proc. Soc. Exptl. Biol. Med. 116:174-177. Mayer, V. 1965. Study of the virulence of tick-borne encephalitis virus. IV. Thermosensitivity...inactivation of rabies and other rhabrtoviruses: stabilization of the chelating agent Ethylenediaminetetraacetic acid at physiological temperatures. Infec

  6. Intercellular communication for innate immunity.

    Science.gov (United States)

    Nguyen, Tan A; Pang, Ken C; Masters, Seth L

    2017-06-01

    An effective innate immune response relies on the detection of pathogen associated molecular patterns (PAMPs) by various host pattern recognition receptors (PRRs) that result in the production of pro-inflammatory cytokines and chemokines. Viruses and bacteria have co-evolved with the immune system and developed multiple strategies to usurp or circumvent host machinery and blunt the innate immune response in infected cells. Recently, it has become apparent that infected or dying cells can transmit PAMPs and host PRR signalling proteins to uninfected bystander cells to thereby bypass pathogen evasion strategies, and potentiate innate immune signalling. This bystander activation of innate immunity represents an alternative method by which the host can control infections via cell-to-cell communication. In this review, we discuss what is currently known about the intercellular transfer of pathogen- or host-derived RNA, DNA and proteins from infected cells to neighbouring cells and how this impacts on host innate immunity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Alcohol, aging, and innate immunity.

    Science.gov (United States)

    Boule, Lisbeth A; Kovacs, Elizabeth J

    2017-07-01

    The global population is aging: in 2010, 8% of the population was older than 65 y, and that is expected to double to 16% by 2050. With advanced age comes a heightened prevalence of chronic diseases. Moreover, elderly humans fair worse after acute diseases, namely infection, leading to higher rates of infection-mediated mortality. Advanced age alters many aspects of both the innate and adaptive immune systems, leading to impaired responses to primary infection and poor development of immunologic memory. An often overlooked, yet increasingly common, behavior in older individuals is alcohol consumption. In fact, it has been estimated that >40% of older adults consume alcohol, and evidence reveals that >10% of this group is drinking more than the recommended limit by the National Institute on Alcohol Abuse and Alcoholism. Alcohol consumption, at any level, alters host immune responses, including changes in the number, phenotype, and function of innate and adaptive immune cells. Thus, understanding the effect of alcohol ingestion on the immune system of older individuals, who are already less capable of combating infection, merits further study. However, there is currently almost nothing known about how drinking alters innate immunity in older subjects, despite innate immune cells being critical for host defense, resolution of inflammation, and maintenance of immune homeostasis. Here, we review the effects of aging and alcohol consumption on innate immune cells independently and highlight the few studies that have examined the effects of alcohol ingestion in aged individuals. © Society for Leukocyte Biology.

  8. Innate immune response of human plasmacytoid dendritic cells to poxvirus infection is subverted by vaccinia E3 via its Z-DNA/RNA binding domain.

    Directory of Open Access Journals (Sweden)

    Hua Cao

    Full Text Available Plasmacytoid dendritic cells (pDCs play important roles in antiviral innate immunity by producing type I interferon (IFN. In this study, we assess the immune responses of primary human pDCs to two poxviruses, vaccinia and myxoma virus. Vaccinia, an orthopoxvirus, was used for immunization against smallpox, a contagious human disease with high mortality. Myxoma virus, a Leporipoxvirus, causes lethal disease in rabbits, but is non-pathogenic in humans. We report that myxoma virus infection of human pDCs induces IFN-α and TNF production, whereas vaccinia infection does not. Co-infection of pDCs with myxoma virus plus vaccinia blocks myxoma induction effects. We find that heat-inactivated vaccinia (Heat-VAC; by incubating the virus at 55°C for 1 h gains the ability to induce IFN-α and TNF in primary human pDCs. Induction of IFN-α in pDCs by myxoma virus or Heat-VAC is blocked by chloroquine, which inhibits endosomal acidification required for TLR7/9 signaling, and by inhibitors of cellular kinases PI3K and Akt. Using purified pDCs from genetic knockout mice, we demonstrate that Heat-VAC-induced type I IFN production in pDCs requires the endosomal RNA sensor TLR7 and its adaptor MyD88, transcription factor IRF7 and the type I IFN feedback loop mediated by IFNAR1. These results indicate that (i vaccinia virus, but not myxoma virus, expresses inhibitor(s of the poxvirus sensing pathway(s in pDCs; and (ii Heat-VAC infection fails to produce inhibitor(s but rather produces novel activator(s, likely viral RNA transcripts that are sensed by the TLR7/MyD88 pathway. Using vaccinia gene deletion mutants, we show that the Z-DNA/RNA binding domain at the N-terminus of the vaccinia immunomodulatory E3 protein is an antagonist of the innate immune response of human pDCs to poxvirus infection and TLR agonists. The myxoma virus ortholog of vaccinia E3 (M029 lacks the N-terminal Z-DNA/RNA binding domain, which might contribute to the immunostimulating

  9. Innate Immune Response of Human Plasmacytoid Dendritic Cells to Poxvirus Infection Is Subverted by Vaccinia E3 via Its Z-DNA/RNA Binding Domain

    Science.gov (United States)

    Dai, Peihong; Wang, Weiyi; Li, Hao; Yuan, Jianda; Wang, Fangjin; Fang, Chee-Mun; Pitha, Paula M; Liu, Jia; Condit, Richard C; McFadden, Grant; Merghoub, Taha; Houghton, Alan N; Young, James W; Shuman, Stewart; Deng, Liang

    2012-01-01

    Plasmacytoid dendritic cells (pDCs) play important roles in antiviral innate immunity by producing type I interferon (IFN). In this study, we assess the immune responses of primary human pDCs to two poxviruses, vaccinia and myxoma virus. Vaccinia, an orthopoxvirus, was used for immunization against smallpox, a contagious human disease with high mortality. Myxoma virus, a Leporipoxvirus, causes lethal disease in rabbits, but is non-pathogenic in humans. We report that myxoma virus infection of human pDCs induces IFN-α and TNF production, whereas vaccinia infection does not. Co-infection of pDCs with myxoma virus plus vaccinia blocks myxoma induction effects. We find that heat-inactivated vaccinia (Heat-VAC; by incubating the virus at 55°C for 1 h) gains the ability to induce IFN-α and TNF in primary human pDCs. Induction of IFN-α in pDCs by myxoma virus or Heat-VAC is blocked by chloroquine, which inhibits endosomal acidification required for TLR7/9 signaling, and by inhibitors of cellular kinases PI3K and Akt. Using purified pDCs from genetic knockout mice, we demonstrate that Heat-VAC-induced type I IFN production in pDCs requires the endosomal RNA sensor TLR7 and its adaptor MyD88, transcription factor IRF7 and the type I IFN feedback loop mediated by IFNAR1. These results indicate that (i) vaccinia virus, but not myxoma virus, expresses inhibitor(s) of the poxvirus sensing pathway(s) in pDCs; and (ii) Heat-VAC infection fails to produce inhibitor(s) but rather produces novel activator(s), likely viral RNA transcripts that are sensed by the TLR7/MyD88 pathway. Using vaccinia gene deletion mutants, we show that the Z-DNA/RNA binding domain at the N-terminus of the vaccinia immunomodulatory E3 protein is an antagonist of the innate immune response of human pDCs to poxvirus infection and TLR agonists. The myxoma virus ortholog of vaccinia E3 (M029) lacks the N-terminal Z-DNA/RNA binding domain, which might contribute to the immunostimulating properties of

  10. Psoriasis: dysregulation of innate immunity

    NARCIS (Netherlands)

    Bos, J. D.; de Rie, M. A.; Teunissen, M. B. M.; Piskin, G.

    2005-01-01

    The current understanding of the function of natural killer (NK) T cells in innate immunity and their potential to control acquired specific immunity, as well as the remarkable efficacy of antitumour necrosis factor-alpha biological treatments in psoriasis, forces us to refine the current T-cell

  11. Ambient ozone and pulmonary innate immunity

    Science.gov (United States)

    Al-Hegelan, Mashael; Tighe, Robert M.; Castillo, Christian; Hollingsworth, John W.

    2013-01-01

    Ambient ozone is a criteria air pollutant that impacts both human morbidity and mortality. The effect of ozone inhalation includes both toxicity to lung tissue and alteration of the host immunologic response. The innate immune system facilitates immediate recognition of both foreign pathogens and tissue damage. Emerging evidence supports that ozone can modify the host innate immune response and that this response to inhaled ozone is dependent on genes of innate immunity. Improved understanding of the complex interaction between environmental ozone and host innate immunity will provide fundamental insight into the pathogenesis of inflammatory airways disease. We review the current evidence supporting that environmental ozone inhalation: (1) modifies cell types required for intact innate immunity, (2) is partially dependent on genes of innate immunity, (3) primes pulmonary innate immune responses to LPS, and (4) contributes to innate-adaptive immune system cross-talk. PMID:21132467

  12. Manipulation of Innate Immunity for Cancer Therapy in Dogs

    Directory of Open Access Journals (Sweden)

    Daniel Regan

    2015-12-01

    Full Text Available Over the last one to two decades, the field of cancer immunotherapy has rapidly progressed from early preclinical studies to a successful clinical reality and fourth major pillar of human cancer therapy. While current excitement in the field of immunotherapy is being driven by several major breakthroughs including immune checkpoint inhibitors and adoptive cell therapies, these advances stem from a foundation of pivotal studies demonstrating the immune systems role in tumor control and eradication. The following will be a succinct review on veterinary cancer immunotherapy as it pertains to manipulation of the innate immune system to control tumor growth and metastasis. In addition, we will provide an update on recent progress in our understanding of the innate immune system in veterinary tumor immunology, and how these gains may lead to novel therapies for the treatment of cancer in companion animals.

  13. Manipulation of Innate Immunity for Cancer Therapy in Dogs.

    Science.gov (United States)

    Regan, Daniel; Dow, Steven

    2015-12-01

    Over the last one to two decades, the field of cancer immunotherapy has rapidly progressed from early preclinical studies to a successful clinical reality and fourth major pillar of human cancer therapy. While current excitement in the field of immunotherapy is being driven by several major breakthroughs including immune checkpoint inhibitors and adoptive cell therapies, these advances stem from a foundation of pivotal studies demonstrating the immune systems role in tumor control and eradication. The following will be a succinct review on veterinary cancer immunotherapy as it pertains to manipulation of the innate immune system to control tumor growth and metastasis. In addition, we will provide an update on recent progress in our understanding of the innate immune system in veterinary tumor immunology, and how these gains may lead to novel therapies for the treatment of cancer in companion animals.

  14. Positron emitter labeled enzyme inhibitors

    International Nuclear Information System (INIS)

    Fowler, J.S.; MacGregor, R.R.; Wolf, A.P.; Langstrom, B.

    1990-01-01

    This invention involves a new strategy for imagining and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide inactivators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography

  15. Adiponectin: a versatile player of innate immunity.

    Science.gov (United States)

    Luo, Yan; Liu, Meilian

    2016-04-01

    Adiponectin acts as a key regulator of the innate immune system and plays a major role in the progression of inflammation and metabolic disorders. Macrophages and monocytes are representative components of the innate immune system, and their proliferation, plasticity, and polarization are a key component of metabolic adaption. Innate-like lymphocytes such as group 2 innate lymphoid cells (ILC2s), natural killer T (NKT) cells, and gamma delta T (γδ T) cells are also members of the innate immune system and play important roles in the development of obesity and its related diseases. Adiponectin senses metabolic stress and modulates metabolic adaption by targeting the innate immune system under physiological and pathological conditions. Defining the mechanisms underlying the role of adiponectin in regulating innate immunity is crucial to adiponectin-based therapeutic intervention. © The Author (2016). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. All rights reserved.

  16. The Epitranscriptome and Innate Immunity.

    Directory of Open Access Journals (Sweden)

    Mary A O'Connell

    2015-12-01

    Full Text Available Our knowledge of the variety and abundances of RNA base modifications is rapidly increasing. Modified bases have critical roles in tRNAs, rRNAs, translation, splicing, RNA interference, and other RNA processes, and are now increasingly detected in all types of transcripts. Can new biological principles associated with this diversity of RNA modifications, particularly in mRNAs and long non-coding RNAs, be identified? This review will explore this question by focusing primarily on adenosine to inosine (A-to-I RNA editing by the adenine deaminase acting on RNA (ADAR enzymes that have been intensively studied for the past 20 years and have a wide range of effects. Over 100 million adenosine to inosine editing sites have been identified in the human transcriptome, mostly in embedded Alu sequences that form potentially innate immune-stimulating dsRNA hairpins in transcripts. Recent research has demonstrated that inosine in the epitranscriptome and ADAR1 protein establish innate immune tolerance for host dsRNA formed by endogenous sequences. Innate immune sensors that detect viral nucleic acids are among the readers of epitranscriptome RNA modifications, though this does preclude a wide range of other modification effects.

  17. Marginal zone B-cells, a gatekeeper of innate immunity

    Directory of Open Access Journals (Sweden)

    Moncef eZOUALI

    2011-12-01

    Full Text Available To maintain the integrity of an organism constantly challenged by pathogens, the immune system is endowed with a variety of cell types. B-lymphocytes were initially thought to only play a role in the adaptative branch of immunity. However, a number of converging observations revealed that two B-cell subsets, marginal zone (MZ and B1 cells, exhibit unique developmental and functional characteristics, and can contribute to innate immune responses. In addition to their capacity to mount local antibody response against type 2 T-independent (TI-2 antigens, MZ B-cells can participate to T-dependent (TD immune response through the capture and import of blood-borne antigens to follicular areas of the spleen. Here, we discuss the multiple roles of MZ B-cells in rodents and primates. We also summarize studies —performed in transgenic mice expressing fully human antibodies on their B-cells and macaques whose infection with Simian Immunodeficiency Virus (SIV represents a suitable model for HIV-1 infection in humans— showing that infectious agents have developed strategies to subvert MZ B-cell functions. In these two experimental models, we observed that two microbial superantigens for B-cells (protein A from Staphylococcus aureus and protein L from Peptostreptococcus magnus as well as inactivated AT-2 virions of HIV-1 and infectious SIV preferentially deplete innate-like B-cells —MZ B-cells and/or B1 B-cells— with different consequences on TI and TD antibody responses. These data revealed that viruses and bacteria have developed strategies to deplete innate-like B-cells during the acute phase of infection and to impair the antibody response. Unraveling the intimate mechanisms responsible for targeting MZ B-cells in humans will be important for understanding disease pathogenesis and for designing novel vaccine strategies.

  18. Recall features and allorecognition in innate immunity.

    Science.gov (United States)

    Uehara, Hirofumi; Minami, Koichiro; Quante, Markus; Nian, Yeqi; Heinbokel, Timm; Azuma, Haruhito; Khal, Abdala El; Tullius, Stefan G

    2018-01-01

    Alloimmunity traditionally distinguishes short-lived, rapid and nonspecific innate immune responses from adaptive immune responses that are characterized by a highly specific response initiated in a delayed fashion. Key players of innate immunity such as natural killer (NK) cells and macrophages present the first-line defence of immunity. The concept of unspecific responses in innate immunity has recently been challenged. The discovery of pattern recognition receptors (PRRs) has demonstrated that innate immune cells respond in a semi-specific fashion through the recognition of pathogen-associated molecular patterns (PAMPs) representing conserved molecular structures shared by large groups of microorganisms. Although immunological memory has generally been considered as exclusive to adaptive immunity, recent studies have demonstrated that innate immune cells have the potential to acquire memory. Here, we discuss allospecific features of innate immunity and their relevance in transplantation. © 2017 Steunstichting ESOT.

  19. Innate immunity against hepatitis C virus.

    Science.gov (United States)

    Xu, Yongfen; Zhong, Jin

    2016-10-01

    Hepatitis C virus (HCV) infection tends persistent and causes chronic liver diseases, including inflammation, cirrhosis and hepatocellular carcinoma. Innate immune responses triggered by HCV infection, particularly the production of interferons and pro-inflammatory cytokines, shape the early host antiviral defense, and orchestrate subsequent HCV-specific adaptive immunity. Host has evolved multifaceted means to sense HCV infection to induce innate immune responses, whereas HCV has also developed elaborate strategies to evade immune attack. Recent studies in the field have provided many new insights into the interplay of HCV and innate immunity. In this review, we summarized these recent advances, focusing on pathogen recognition by innate sensors, newly discovered anti-HCV innate effectors and new viral strategies to evade innate immunity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Innate immunity in the pathogenesis of psoriasis.

    LENUS (Irish Health Repository)

    Sweeney, Cheryl M

    2011-12-01

    Psoriasis is a common, immune-mediated inflammatory skin disorder. T helper(h)1 and Th17 lymphocytes contribute to the pathogenesis of psoriasis through the release of inflammatory cytokines that promote further recruitment of immune cells, keratinocyte proliferation and sustained inflammation. The innate immune system is the first line of defence against infection and plays a crucial role in the initiation of the adaptive immune response. The presence of innate immune cells and their products in psoriatic skin plaques suggests a role for innate immunity in this disease. In addition, the innate immune system can direct the development of pathogenic Th cells in psoriasis. In this article, we will summarise the role of the innate immune system in psoriasis with particular emphasis on the role of cytokines, signalling pathways and cells of the innate immune system.

  1. Induction of Apoptosis and Cell Cycle Arrest by Flavokawain C on HT-29 Human Colon Adenocarcinoma via Enhancement of Reactive Oxygen Species Generation, Upregulation of p21, p27, and GADD153, and Inactivation of Inhibitor of Apoptosis Proteins.

    Science.gov (United States)

    Phang, Chung-Weng; Karsani, Saiful Anuar; Abd Malek, Sri Nurestri

    2017-07-01

    cells treated with flavokawain C caused downregulation of XIAP, c-IAP1, and c-IAP2, and upregulation of GADD153. Abbreviations used: FKC: Flavokawain C; SRB: Sulforhodamine B; ROS: Reactive oxygen species; SOD: Superoxide dismutase; PARP: Poly(ADP-ribose) polymerase; ER: Endoplasmic reticulum; IAPs: Inhibitor of apoptosis proteins; TUNEL: Transferase dUTP nick end labeling; Annexin V-FITC: Annexin V conjugated with fluorescein isothicyanate.

  2. Recovery of dopamine neuronal transporter but lack of change of its mRNA in substantia nigra after inactivation by a new irreversible inhibitor characterized in vitro and ex vivo in the rat

    Science.gov (United States)

    Do Régo, Jean-Claude; Syringas, Maria; Leblond, Bertrand; Costentin, Jean; Bonnet, Jean-Jacques

    1999-01-01

    In vitro, the ability of DEEP-NCS {1-[2-(diphenylmethoxy)ethyl]-4-[2-(4-isothiocyanatophenyl)ethyl]-piperazine} to inhibit [3H]-dopamine uptake by rat striatal synaptosomes was concentration-dependent and inversely related to the protein concentration. This inhibition was irreversible and resulted from changes in Vmax and KM. DEEP-NCS was less potent on noradrenaline, serotonin and choline transport. One day after intrastriatal injections of DEEP-NCS (100 and 1000 pmol) in 20% dimethylsulphoxide, moderate decreases in the ex vivo dopamine uptake were observed in synaptosomes obtained from striatum injected with DEEP-NCS or solvent, and the contralateral uninjected striatum. In similar conditions, 300 pmol DEEP-NCS in 45% 2 hydroxypropyl-γ-cyclodextrin–0.5% dimethylsulphoxide solution sub-totally reduced ex vivo dopamine uptake and mazindol binding, and moderately decreased choline and serotonin transport. These reductions were specific to DEEP-NCS-injected striata. A clomipramine pretreatment (16 mg kg−1 i.p. 1 h before) was performed in following experiments, since it reduced the DEEP-NCS-elicited decrease in serotonin uptake without affecting other indices. One day after intrastriatal injection, DEEP-NCS elicited similar dose-dependent decreases in ex vivo dopamine uptake and mazindol binding (ID50=6.9-8 ng striatum−1). Changes in KM and Vmax for ex vivo dopamine transport produced by DEEP-NCS disappeared according to similar time-courses. The t½ for transporter recovery was 6.1 days. This value should correspond to its actual turnover rate in vivo, since no change in transporter mRNA level was observed in substantia nigra ipsilateral to 300 pmol DEEP-NCS-injected striatum. The results indicate that DEEP-NCS behaves as a potent, quite selective, irreversible inhibitor of the DAT, in vitro and in vivo. Its use in vivo suggests that the physiological half-life of the rat striatal DAT is close to 6 days. PMID:10498834

  3. Innate Immunity and Breast Milk

    Directory of Open Access Journals (Sweden)

    Nicole Theresa Cacho

    2017-05-01

    Full Text Available Human milk is a dynamic source of nutrients and bioactive factors; unique in providing for the human infant’s optimal growth and development. The growing infant’s immune system has a number of developmental immune deficiencies placing the infant at increased risk of infection. This review focuses on how human milk directly contributes to the infant’s innate immunity. Remarkable new findings clarify the multifunctional nature of human milk bioactive components. New research techniques have expanded our understanding of the potential for human milk’s effect on the infant that will never be possible with milk formulas. Human milk microbiome directly shapes the infant’s intestinal microbiome, while the human milk oligosaccharides drive the growth of these microbes within the gut. New techniques such as genomics, metabolomics, proteomics, and glycomics are being used to describe this symbiotic relationship. An expanded role for antimicrobial proteins/peptides within human milk in innate immune protection is described. The unique milieu of enhanced immune protection with diminished inflammation results from a complex interaction of anti-inflammatory and antioxidative factors provided by human milk to the intestine. New data support the concept of mucosal-associated lymphoid tissue and its contribution to the cellular content of human milk. Human milk stem cells (hMSCs have recently been discovered. Their direct role in the infant for repair and regeneration is being investigated. The existence of these hMSCs could prove to be an easily harvested source of multilineage stem cells for the study of cancer and tissue regeneration. As the infant’s gastrointestinal tract and immune system develop, there is a comparable transition in human milk over time to provide fewer immune factors and more calories and nutrients for growth. Each of these new findings opens the door to future studies of human milk and its effect on the innate immune system

  4. Interactions between the microbiota and innate and innate-like lymphocytes.

    Science.gov (United States)

    Constantinides, Michael G

    2018-03-01

    The microbiota, which consists of commensal bacteria, fungi, and viruses, limits the colonization of pathogens at barrier tissues and promotes immune homeostasis. The latter is accomplished through the induction and regulation of both innate and adaptive immune responses. Innate lymphocytes, which include the type-1 innate lymphoid cell (ILC1), NK cell, type-2 innate lymphoid cell (ILC2), type-3 innate lymphoid cell (ILC3), and lymphoid tissue inducer (LTi) cell populations, and innate-like lymphocytes, such as NKT cells, mucosal-associated invariant T (MAIT) cells, and γδ T cells, are uniquely capable of responding to the microbiota due to their tissue localization and rapid primary responses. In turn, through their effector functions, these lymphocyte populations modulate the composition of the microbiota and maintain the segregation of commensals. This review will focus on how innate and innate-like lymphocytes mediate the crosstalk with the microbiome. ©2017 Society for Leukocyte Biology.

  5. Proteolysis of plasminogen activator inhibitor-1 by Yersinia pestis remodulates the host environment to promote virulence.

    Science.gov (United States)

    Eddy, J L; Schroeder, J A; Zimbler, D L; Caulfield, A J; Lathem, W W

    2016-09-01

    Essentials Effect of plasminogen activator inhibitor (PAI)-1 on plague and its Y. pestis cleavage is unknown. An intranasal mouse model of infection was used to determine the role of PAI-1 in pneumonic plague. PAI-1 is cleaved and inactivated by the Pla protease of Y. pestis in the lung airspace. PAI-1 impacts both bacterial outgrowth and the immune response to respiratory Y. pestis infection. Click to hear Dr Bock discuss pathogen activators of plasminogen. Background The hemostatic regulator plasminogen activator inhibitor-1 (PAI-1) inactivates endogenous plasminogen activators and aids in the immune response to bacterial infection. Yersinia pestis, the causative agent of plague, produces the Pla protease, a virulence factor that is required during plague. However, the specific hemostatic proteins cleaved by Pla in vivo that contribute to pathogenesis have not yet been fully elucidated. Objectives To determine whether PAI-1 is cleaved by the Pla protease during pneumonic plague, and to define the impact of PAI-1 on Y. pestis respiratory infection in the presence or absence of Pla. Methods An intranasal mouse model of pneumonic plague was used to assess the levels of total and active PAI-1 in the lung airspace, and the impact of PAI-1 deficiency on bacterial pathogenesis, the host immune response and plasmin generation following infection with wild-type or ∆pla Y. pestis. Results We found that Y. pestis cleaves and inactivates PAI-1 in the lungs in a Pla-dependent manner. The loss of PAI-1 enhances Y. pestis outgrowth in the absence of Pla, and is associated with increased conversion of plasminogen to plasmin. Furthermore, we found that PAI-1 regulates immune cell recruitment, cytokine production and tissue permeability during pneumonic plague. Conclusions Our data demonstrate that PAI-1 is an in vivo target of the Pla protease in the lungs, and that PAI-1 is a key regulator of the pulmonary innate immune response. We conclude that the inactivation of PAI-1 by Y

  6. Self-consuming innate immunity in Arabidopsis

    DEFF Research Database (Denmark)

    Hofius, Daniel; Mundy, John; Petersen, Morten

    2009-01-01

    . However, it has been unclear by which molecular mechanisms plants execute PCD during innate immune responses. We recently examined HR PCD in autophagy-deficient Arabidopsis knockout mutants (atg) and find that PCD conditioned by one class of plant innate immune receptors is suppressed in atg mutants...

  7. Neonatal innate immunity - A translational perspective

    NARCIS (Netherlands)

    Belderbos, M.E.

    2012-01-01

    Human newborns are highly susceptible to infections, which appears to be due to immaturity of the neonatal innate immune system. At birth, neonatal innate immune responses are characterized by decreased Th1-polarizing responses, whereas generation of Th2-polarizing and regulatory responses is

  8. Psoriasis, innate immunity, and gene pools

    NARCIS (Netherlands)

    Bos, Jan D.

    2007-01-01

    Recently, emphasis has shifted from T cells to innate (natural) immunity as the possible major culprit in psoriasis. All known elements of innate immune responses are up-regulated in psoriasis lesions, which must have a polygenetic origin. We hypothesize that urbanized populations have been under

  9. [Role of innate immunity in tolerance induction].

    Science.gov (United States)

    Dolgikh, M S

    2015-01-01

    This review considers the role of innate immunity in mechanisms of transplant tolerance and rejection, analyse the role of innate immunity cells (dendritic cells-DC, NK, must and other cells) in these processes, and the pathes of creation of tolerogenic DC for transplant rejection therapy and tolerance.

  10. Innate immunity in the nervous system

    NARCIS (Netherlands)

    Ramaglia, V.; Baas, F.

    2009-01-01

    The complement (C) system plays a central role in innate immunity and bridges innate and adaptive immune responses. A fine balance of C activation and regulation mediates the elimination of invading pathogens and the protection of the host from excessive C deposition on healthy tissues. If this

  11. Innate immunity in vertebrates: an overview.

    Science.gov (United States)

    Riera Romo, Mario; Pérez-Martínez, Dayana; Castillo Ferrer, Camila

    2016-06-01

    Innate immunity is a semi-specific and widely distributed form of immunity, which represents the first line of defence against pathogens. This type of immunity is critical to maintain homeostasis and prevent microbe invasion, eliminating a great variety of pathogens and contributing with the activation of the adaptive immune response. The components of innate immunity include physical and chemical barriers, humoral and cell-mediated components, which are present in all jawed vertebrates. The understanding of innate defence mechanisms in non-mammalian vertebrates is the key to comprehend the general picture of vertebrate innate immunity and its evolutionary history. This is also essential for the identification of new molecules with applications in immunopharmacology and immunotherapy. In this review, we describe and discuss the main elements of vertebrate innate immunity, presenting core findings in this field and identifying areas that need further investigation. © 2016 John Wiley & Sons Ltd.

  12. Innate immunity to Candida albicans

    Directory of Open Access Journals (Sweden)

    Yusuke Kiyoura

    2015-08-01

    Full Text Available Candida albicans is not a pathogen in healthy individuals, but can cause severe systemic candidiasis in immunocompromised patients. C. albicans has various virulence factors and activates the innate immune system. Specifically, C. albicans induces proinflammatory cytokine production in various cell types via many receptors, such as Toll-like receptors (TLRs and C-type lectin receptors (CLRs. This microorganism also promotes phagocytosis via CLRs on macrophages. In a previous study, we found that C. albicans induces the production of galectin-3, which is a known CLR that kills C. albicans. This review indicates that the use of mouthwash containing an antimicrobial peptide or protein might be a useful new oral care method for the prevention of oral candidiasis.

  13. Innate Interferons Regulate CNS Inflammation

    DEFF Research Database (Denmark)

    Dieu, Ruthe; Khorooshi, Reza M. H.; Mariboe, Anne

    Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) whose pathology is characterised by demyelination and axonal damage. This results from interplay between CNS-resident glia, infiltrating leukocytes and a plethora of cytokines and chemokines. Currently......, there is no cure for MS, however a standard first-line therapy is recombinant interferon (IFN)-beta. IFN-beta belongs to the family of type I IFNs, which also include IFN-alpha. These engage to one common receptor, IFNAR. Type I IFNs can be induced by several innate immune receptors, including toll-like receptors...... mass homeostasis. Whether RANK-signaling is capable of inducing type I IFNs within the CNS has not yet been studied. Preliminary data from IFN-beta-luciferase reporter mice already show that RANK-signaling by intrathecally applied RANKL can induce CNS-endogenous IFN-beta. Experiments in IFN...

  14. Tyrosinase inactivation in organic solvents.

    Science.gov (United States)

    Warrington, J C; Saville, B A

    1999-11-05

    The inactivation of the catecholase activity of mushroom tyrosinase was investigated under nonaqueous conditions. The enzyme was immobilized on glass beads, and assays were conducted in chloroform, toluene, amyl acetate, isopropyl ether, and butanol. The reaction components were pre-equilibrated for 2 weeks with a saturated salt solution at a water activity of 0.90. The initial reaction velocity varied between 1.3 x 10(3) mol product/((mol enzyme)(min)) in toluene and 8.7 x 10(3) mol product/((mol enzyme)(min)) in amyl acetate. The turnover number varied between 8.1 x 10(3) mol product/mol enzyme in toluene and 7.2 x 10(4) mol product/mol enzyme in amyl acetate. In each solvent, the tyrosinase reaction inactivation parameters were represented by a probabilistic model. Changes in the probability of inactivation were followed throughout the course of the reaction using a second model which relates the reaction velocity to the amount of product formed. These models reveal that the inactivation rate of tyrosinase decreases as the reaction progresses, and that the inactivation kinetics are independent of the quinone concentration in toluene, chloroform, butanol, and amyl acetate. Significant effects of quinone concentration were, however, observed in isopropyl ether. The likelihood of inactivation of the enzyme was found to be greatest toward the beginning of the reaction. In the latter phase of the reaction, inactivation probability was less and tended to remain constant until the completion of the reaction. Copyright 1999 John Wiley & Sons, Inc.

  15. Addiction, adolescence, and innate immune gene induction

    Directory of Open Access Journals (Sweden)

    Fulton T Crews

    2011-04-01

    Full Text Available Repeated drug use/abuse amplifies psychopathology, progressively reducing frontal lobe behavioral control and cognitive flexibility while simultaneously increasing limbic temporal lobe negative emotionality. The period of adolescence is a neurodevelopmental stage characterized by poor behavioral control as well as strong limbic reward and thrill seeking. Repeated drug abuse and/or stress during this stage increase the risk of addiction and elevate activator innate immune signaling in the brain. Nuclear factor-kappa-light-chain-enhancer of activated B cells (NF-κB is a key glial transcription factor that regulates proinflammatory chemokines, cytokines, oxidases, proteases, and other innate immune genes. Induction of innate brain immune gene expression (e.g., NF-κB facilitates negative affect, depression-like behaviors, and inhibits hippocampal neurogenesis. In addition, innate immune gene induction alters cortical neurotransmission consistent with loss of behavioral control. Studies with anti-oxidant, anti-inflammatory, and anti-depressant drugs as well as opiate antagonists link persistent innate immune gene expression to key behavioral components of addiction, e.g. negative affect-anxiety and loss of frontal cortical behavioral control. This review suggests that persistent and progressive changes in innate immune gene expression contribute to the development of addiction. Innate immune genes may represent a novel new target for addiction therapy.

  16. InnateDB: systems biology of innate immunity and beyond—recent updates and continuing curation

    Science.gov (United States)

    Breuer, Karin; Foroushani, Amir K.; Laird, Matthew R.; Chen, Carol; Sribnaia, Anastasia; Lo, Raymond; Winsor, Geoffrey L.; Hancock, Robert E. W.; Brinkman, Fiona S. L.; Lynn, David J.

    2013-01-01

    InnateDB (http://www.innatedb.com) is an integrated analysis platform that has been specifically designed to facilitate systems-level analyses of mammalian innate immunity networks, pathways and genes. In this article, we provide details of recent updates and improvements to the database. InnateDB now contains >196 000 human, mouse and bovine experimentally validated molecular interactions and 3000 pathway annotations of relevance to all mammalian cellular systems (i.e. not just immune relevant pathways and interactions). In addition, the InnateDB team has, to date, manually curated in excess of 18 000 molecular interactions of relevance to innate immunity, providing unprecedented insight into innate immunity networks, pathways and their component molecules. More recently, InnateDB has also initiated the curation of allergy- and asthma-related interactions. Furthermore, we report a range of improvements to our integrated bioinformatics solutions including web service access to InnateDB interaction data using Proteomics Standards Initiative Common Query Interface, enhanced Gene Ontology analysis for innate immunity, and the availability of new network visualizations tools. Finally, the recent integration of bovine data makes InnateDB the first integrated network analysis platform for this agriculturally important model organism. PMID:23180781

  17. InnateDB: systems biology of innate immunity and beyond--recent updates and continuing curation.

    Science.gov (United States)

    Breuer, Karin; Foroushani, Amir K; Laird, Matthew R; Chen, Carol; Sribnaia, Anastasia; Lo, Raymond; Winsor, Geoffrey L; Hancock, Robert E W; Brinkman, Fiona S L; Lynn, David J

    2013-01-01

    InnateDB (http://www.innatedb.com) is an integrated analysis platform that has been specifically designed to facilitate systems-level analyses of mammalian innate immunity networks, pathways and genes. In this article, we provide details of recent updates and improvements to the database. InnateDB now contains >196 000 human, mouse and bovine experimentally validated molecular interactions and 3000 pathway annotations of relevance to all mammalian cellular systems (i.e. not just immune relevant pathways and interactions). In addition, the InnateDB team has, to date, manually curated in excess of 18 000 molecular interactions of relevance to innate immunity, providing unprecedented insight into innate immunity networks, pathways and their component molecules. More recently, InnateDB has also initiated the curation of allergy- and asthma-related interactions. Furthermore, we report a range of improvements to our integrated bioinformatics solutions including web service access to InnateDB interaction data using Proteomics Standards Initiative Common Query Interface, enhanced Gene Ontology analysis for innate immunity, and the availability of new network visualizations tools. Finally, the recent integration of bovine data makes InnateDB the first integrated network analysis platform for this agriculturally important model organism.

  18. Antimicrobial peptides in innate immune responses

    DEFF Research Database (Denmark)

    Sorensen, O.E.; Borregaard, N.; Cole, A.M.

    2008-01-01

    Antimicrobial peptides (AMPs) are ancient effector molecules in the innate immune response of eukaryotes. These peptides are important for the antimicrobial efficacy of phagocytes and for the innate immune response mounted by epithelia of humans and other mammals. AMPs are generated either by de...... novo synthesis or by proteolytic cleavage from antimicrobially inactive proproteins. Studies of human diseases and animal studies have given important clues to the in vivo role of AMPs. It is now evident that dysregulation of the generation of AMPs in innate immune responses plays a role in certain...

  19. Injury to Allografts: innate immune pathways to acute and chronic rejection

    International Nuclear Information System (INIS)

    Land, W. G.

    2005-01-01

    An emerging body of evidence suggests that innate immunity, as the first line of host defense against invading pathogens or their components [pathogen-associated molecular patterns, (PAMPs)], plays also a critical role in acute and chronic allograft rejection. Injury to the donor organ induces an inflammatory milieu in the allograft, which appears to be the initial key event for activation of the innate immune system. Injury-induced generation of putative endogenous molecular ligand, in terms of damaged/danger-associated molecular patterns (DAMPs) such as heat shock proteins, are recognized by Toll-like receptors (TLRs), a family of pattern recognition receptors on cells of innate immunity. Acute allograft injury (e.g. oxidative stress during donor brain-death condition, post-ischemic reperfusion injury in the recipient) includes DAMPs which may interact with, and activate, innate TLR-bearing dendritic cells (DCs) which, in turn, via direct allo-recognition through donor-derived DCs and indirect allo-recogntion through recipient-derived DCs, initiate the recipient's adaptive alloimmune response leading to acute allograft rejection. Chronic injurious events in the allograft (e.g. hypertension, hyperlipidemia, CMV infection, administration of cell-toxic drugs [calcineurin-inhibitors]) induce the generation of D AMPs , which may interact with and activate innate TLR-bearing vascular cells (endothelial cells, smooth muscle cells) which, in turn, contribute to the development of atherosclerosis of donor organ vessels (alloatherosclerosis), thus promoting chronic allograft rejection. (author)

  20. Human PIEZO1: removing inactivation.

    Science.gov (United States)

    Bae, Chilman; Gottlieb, Philip A; Sachs, Frederick

    2013-08-20

    PIEZO1 is an inactivating eukaryotic cation-selective mechanosensitive ion channel. Two sites have been located in the channel that when individually mutated lead to xerocytotic anemia by slowing inactivation. By introducing mutations at two sites, one associated with xerocytosis and the other artificial, we were able to remove inactivation. The double mutant (DhPIEZO1) has a substitution of arginine for methionine (M2225R) and lysine for arginine (R2456K). The loss of inactivation was accompanied by ∼30-mmHg shift of the activation curve to lower pressures and slower rates of deactivation. The slope sensitivity of gating was the same for wild-type and mutants, indicating that the dimensional changes between the closed and open state are unaffected by the mutations. The unitary channel conductance was unchanged by mutations, so these sites are not associated with pore. DhPIEZO1 was reversibly inhibited by the peptide GsMTx4 that acted as a gating modifier. The channel kinetics were solved using complex stimulus waveforms and the data fit to a three-state loop in detailed balance. The reaction had two pressure-dependent rates, closed to open and inactivated to closed. Pressure sensitivity of the opening rate with no sensitivity of the closing rate means that the energy barrier between them is located near the open state. Mutant cycle analysis of inactivation showed that the two sites interacted strongly, even though they are postulated to be on opposite sides of the membrane. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  1. Seasonal Inactivated Influenza Virus Vaccines

    OpenAIRE

    Couch, Robert B.

    2008-01-01

    Inactivated influenza virus vaccines are the primary modality used for prevention of influenza. A system of annual identification of new strains causing illnesses, selections for vaccines, chick embryo growth, inactivation, processing, packaging, distribution and usage has been in place for decades. Current vaccines contain 15 µg of the HA of an A/H1N1, A/H3N2 and B strain and are given parenterally to induce serum anti-HA antibody for prevention of subsequent infection and illness from natur...

  2. FOXO-dependent regulation of innate immune homeostasis.

    Science.gov (United States)

    Becker, Thomas; Loch, Gerrit; Beyer, Marc; Zinke, Ingo; Aschenbrenner, Anna C; Carrera, Pilar; Inhester, Therese; Schultze, Joachim L; Hoch, Michael

    2010-01-21

    The innate immune system represents an ancient host defence mechanism that protects against invading microorganisms. An important class of immune effector molecules to fight pathogen infections are antimicrobial peptides (AMPs) that are produced in plants and animals. In Drosophila, the induction of AMPs in response to infection is regulated through the activation of the evolutionarily conserved Toll and immune deficiency (IMD) pathways. Here we show that AMP activation can be achieved independently of these immunoregulatory pathways by the transcription factor FOXO, a key regulator of stress resistance, metabolism and ageing. In non-infected animals, AMP genes are activated in response to nuclear FOXO activity when induced by starvation, using insulin signalling mutants, or by applying small molecule inhibitors. AMP induction is lost in foxo null mutants but enhanced when FOXO is overexpressed. Expression of AMP genes in response to FOXO activity can also be triggered in animals unable to respond to immune challenges due to defects in both the Toll and IMD pathways. Molecular experiments at the Drosomycin promoter indicate that FOXO directly binds to its regulatory region, thereby inducing its transcription. In vivo studies in Drosophila, but also studies in human lung, gut, kidney and skin cells indicate that a FOXO-dependent regulation of AMPs is evolutionarily conserved. Our results indicate a new mechanism of cross-regulation of metabolism and innate immunity by which AMP genes can be activated under normal physiological conditions in response to the oscillating energy status of cells and tissues. This regulation seems to be independent of the pathogen-responsive innate immunity pathways whose activation is often associated with tissue damage and repair. The sparse production of AMPs in epithelial tissues in response to FOXO may help modulating the defence reaction without harming the host tissues, in particular when animals are suffering from energy shortage

  3. Mechanisms by which Porphyromonas gingivalis evades innate immunity.

    Directory of Open Access Journals (Sweden)

    Kaveh Abdi

    Full Text Available The oral cavity is home to unique resident microbial communities whose interactions with host immunity are less frequently studied than those of the intestinal microbiome. We examined the stimulatory capacity and the interactions of two oral bacteria, Porphyromonas gingivalis (P. gingivalis and Fusobacterium nucleatum (F. nucleatum, on Dendritic Cell (DC activation, comparing them to the effects of the well-studied intestinal microbe Escherichia coli (E. coli. Unlike F. nucleatum and E. coli, P. gingivalis failed to activate DCs, and in fact silenced DC responses induced by F. nucleatum or E. coli. We identified a variant strain of P. gingivalis (W50 that lacked this immunomodulatory activity. Using biochemical approaches and whole genome sequencing to compare the two substrains, we found a point mutation in the hagA gene. This protein is though to be involved in the alteration of the PorSS/gingipain pathway, which regulates protein secretion into the extracellular environment. A proteomic comparison of the secreted products of the two substrains revealed enzymatic differences corresponding to this phenotype. We found that P. gingivalis secretes gingipain(s that inactivate several key proinflammatory mediators made by DCs and/or T cells, but spare Interleukin-1 (IL-1 and GM-CSF, which can cause capillary leaks that serve as a source of the heme that P. gingivalis requires for its survival, and GM-CSF, which can cause epithelial-cell growth. Taken together, our results suggest that P. gingivalis has evolved potent mechanisms to modulate its virulence factors and dampen the innate immune response by selectively inactivating most proinflammatory cytokines.

  4. Roles for Innate Immunity in Combination Immunotherapies.

    Science.gov (United States)

    Moynihan, Kelly D; Irvine, Darrell J

    2017-10-01

    Immunity to infectious agents involves a coordinated response of innate and adaptive immune cells working in concert, with many feed-forward and regulatory interactions between both arms of the immune system. In contrast, many therapeutic strategies to augment immunity against tumors have focused predominantly on stimulation of adaptive immunity. However, a growing appreciation of the potential contributions of innate immune effectors to antitumor immunity, especially in the context of combination immunotherapy, is leading to novel strategies to elicit a more integrated immune response against cancer. Here we review antitumor activities of innate immune cells, mechanisms of their synergy with adaptive immune responses against tumors, and discuss recent studies highlighting the potential of combination therapies recruiting both innate and adaptive immune effectors to eradicate established tumors. Cancer Res; 77(19); 5215-21. ©2017 AACR . ©2017 American Association for Cancer Research.

  5. MAP kinase cascades in Arabidopsis innate immunity

    DEFF Research Database (Denmark)

    Rasmussen, Magnus Wohlfahrt; Roux, Milena Edna; Petersen, Morten

    2012-01-01

    Plant mitogen-activated protein kinase (MAPK) cascades generally transduce extracellular stimuli into cellular responses. These stimuli include the perception of pathogen-associated molecular patterns (PAMPs) by host transmembrane pattern recognition receptors which trigger MAPK-dependent innate ...

  6. Inactivation of acetylcholinesterase by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride.

    Science.gov (United States)

    Zang, Lun-Yi; Misra, Hara P

    2003-12-01

    The neurotoxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been shown to reversibly inhibit the activity of acetylcholinesterase. The inactivation of the enzyme was detected by monitoring the accumulation of yellow color produced from the reaction between thiocholine and dithiobisnitrobenzoate ion. The kinetic parameter, Km for the substrate (acetylthiocholine), was found to be 0.216 mM and Ki for MPTP inactivation of acetylcholinesterase was found to be 2.14 mM. The inactivation of enzyme by MPTP was found to be dose-dependent. It was found that MPTP is neither a substrate of AChE nor the time-dependent inactivator. The studies of reaction kinetics indicate the inactivation of AChE to be a linear mixed-type inhibition. The dilution assays indicate that MPTP is a reversible inhibitor for AChE. These data suggest that once MPTP enters the basal ganglia of the brain, it can inactivate the acetylcholinesterase enzyme and thereby increase the acetylcholine level in the basal ganglia of brain, leading to potential cell dysfunction. It appears that the nigrostriatal toxicity by MPTP leading to Parkinson's disease-like syndrome may, in part, be mediated via the acetylcholinesterase inactivation.

  7. Innate Immune Sensing and Response to Influenza

    Science.gov (United States)

    Pulendran, Bali; Maddur, Mohan S.

    2015-01-01

    Influenza viruses pose a substantial threat to human and animal health worldwide. Recent studies in mouse models have revealed an indispensable role for the innate immune system in defense against influenza virus. Recognition of the virus by innate immune receptors in a multitude of cell types activates intricate signaling networks, functioning to restrict viral replication. Downstream effector mechanisms include activation of innate immune cells and, induction and regulation of adaptive immunity. However, uncontrolled innate responses are associated with exaggerated disease, especially in pandemic influenza virus infection. Despite advances in the understanding of innate response to influenza in the mouse model, there is a large knowledge gap in humans, particularly in immunocom-promised groups such as infants and the elderly. We propose here, the need for further studies in humans to decipher the role of innate immunity to influenza virus, particularly at the site of infection. These studies will complement the existing work in mice and facilitate the quest to design improved vaccines and therapeutic strategies against influenza. PMID:25078919

  8. Vitally important - does early innate immunity predict recruitment and adult innate immunity?

    Science.gov (United States)

    Vermeulen, Anke; Müller, Wendt; Eens, Marcel

    2016-03-01

    The immune system is one of the most important adaptations that has evolved to protect animals from a wide range of pathogens they encounter from early life onwards. During the early developmental period this is particularly true for the innate immunity, as other components of the immune system are, as yet, poorly developed. But innate immunity may not only be crucial for early life survival, but may also have long-lasting effects, for example if early life immunity reflects the functioning of the immune system as a whole. For this reason, we investigated the importance of four constitutive innate immune parameters (natural antibodies, complement activity, concentrations of haptoglobin, and concentrations of nitric oxide) for recruitment in free-living great tits. We compared nestling immunity of recruits with nestling immunity of their nonrecruited siblings. We also investigated within individual consistency of these innate immune parameters for those individuals that recruited, which may be taken as a measure of immune capacity. In accordance with previous studies, we found a clear effect of tarsus length and a trend for body mass on the likelihood to recruit. Nevertheless, we found no evidence that higher levels of constitutive innate immunity as a nestling facilitated local recruitment. Furthermore, individual innate immunity was not consistent across life stages, that is to say, nestling immune parameters did not determine, or respectively, reflect adult innate immune parameters. This plasticity in innate immune components may explain why we did not find long-lasting survival benefits.

  9. HSV-1 ICP0: An E3 Ubiquitin Ligase That Counteracts Host Intrinsic and Innate Immunity

    Directory of Open Access Journals (Sweden)

    Mirna Perusina Lanfranca

    2014-05-01

    Full Text Available The herpes simplex virus type 1 (HSV-1 encoded E3 ubiquitin ligase, infected cell protein 0 (ICP0, is required for efficient lytic viral replication and regulates the switch between the lytic and latent states of HSV-1. As an E3 ubiquitin ligase, ICP0 directs the proteasomal degradation of several cellular targets, allowing the virus to counteract different cellular intrinsic and innate immune responses. In this review, we will focus on how ICP0’s E3 ubiquitin ligase activity inactivates the host intrinsic defenses, such as nuclear domain 10 (ND10, SUMO, and the DNA damage response to HSV-1 infection. In addition, we will examine ICP0’s capacity to impair the activation of interferon (innate regulatory mediators that include IFI16 (IFN γ-inducible protein 16, MyD88 (myeloid differentiation factor 88, and Mal (MyD88 adaptor-like protein. We will also consider how ICP0 allows HSV-1 to evade activation of the NF-κB (nuclear factor kappa B inflammatory signaling pathway. Finally, ICP0’s paradoxical relationship with USP7 (ubiquitin specific protease 7 and its roles in intrinsic and innate immune responses to HSV-1 infection will be discussed.

  10. Asunaprevir Evokes Hepatocytes Innate Immunity to Restrict the Replication of Hepatitis C and Dengue Virus

    Directory of Open Access Journals (Sweden)

    Wei-Lun Tsai

    2017-04-01

    Full Text Available Type I Interferon-mediated innate immunity against Flaviviridae, such as Hepatitis C virus (HCV and Dengue virus (DENV, involves TLR3, RIG-I-like receptor (RLR and JAK-STAT signal pathways. Asunaprevir is a newly developed HCV protease inhibitor for HCV treatment. Whether, asunaprevir activates innate immunity to restrict viral infection is unclear. Thus, this study investigates the effect of asunaprevir on innate immunity and its influence on HCV and DENV infection. Huh 7.5.1, Hep-G2 cells, JFH-1 infection model, and DENV-2 infection were used for the analysis. The activity of asunaprevir-regulated innate immunity signal pathway was assessed with IFN-β promoter or IFN-stimulated responsive element (ISRE reporter assays and immunoblotting of key signal proteins. siRNA-mediated MAVS and TRIF knockdown of cells was performed to assess the effect of asunaprevir-regulated innate immunity against HCV and DENV. Asunaprevir treatment activated ISRE and IFN-β promoter-luciferase activities and signaling proteins in the JAK-STAT, MAVS, and TRIF pathways in Huh 7.5.1 cells. Asunaprevir-mediated signaling activation was decreased in MAVS-knockdown cells. Importantly, both RNA and protein levels of DENV-2 NS3 were decreased in asunaprevir-treated Huh 7.5.1 and HepG2 cells. In MAVS-knockdown cells, the restrictive effect of asunaprevir on HCV and DENV was attenuated. Our findings reveal an unexpected activity of asunaprevir, the activation of MAVS dependent innate immunity to restrict HCV and DENV infection.

  11. Asunaprevir Evokes Hepatocytes Innate Immunity to Restrict the Replication of Hepatitis C and Dengue Virus.

    Science.gov (United States)

    Tsai, Wei-Lun; Cheng, Jin-Shiung; Shu, Chih-Wen; Lai, Kwok-Hung; Chan, Hoi-Hung; Wu, Chun-Ching; Wu, Jing-Mei; Hsu, Ping-I; Chung, Raymond T; Chang, Tsung-Hsien

    2017-01-01

    Type I Interferon-mediated innate immunity against Flaviviridae , such as Hepatitis C virus (HCV) and Dengue virus (DENV), involves TLR3, RIG-I-like receptor (RLR) and JAK-STAT signal pathways. Asunaprevir is a newly developed HCV protease inhibitor for HCV treatment. Whether, asunaprevir activates innate immunity to restrict viral infection is unclear. Thus, this study investigates the effect of asunaprevir on innate immunity and its influence on HCV and DENV infection. Huh 7.5.1, Hep-G2 cells, JFH-1 infection model, and DENV-2 infection were used for the analysis. The activity of asunaprevir-regulated innate immunity signal pathway was assessed with IFN-β promoter or IFN-stimulated responsive element (ISRE) reporter assays and immunoblotting of key signal proteins. siRNA-mediated MAVS and TRIF knockdown of cells was performed to assess the effect of asunaprevir-regulated innate immunity against HCV and DENV. Asunaprevir treatment activated ISRE and IFN-β promoter-luciferase activities and signaling proteins in the JAK-STAT, MAVS, and TRIF pathways in Huh 7.5.1 cells. Asunaprevir-mediated signaling activation was decreased in MAVS-knockdown cells. Importantly, both RNA and protein levels of DENV-2 NS3 were decreased in asunaprevir-treated Huh 7.5.1 and HepG2 cells. In MAVS-knockdown cells, the restrictive effect of asunaprevir on HCV and DENV was attenuated. Our findings reveal an unexpected activity of asunaprevir, the activation of MAVS dependent innate immunity to restrict HCV and DENV infection.

  12. Corruption of innate immunity by bacterial proteases.

    Science.gov (United States)

    Potempa, Jan; Pike, Robert N

    2009-01-01

    The innate immune system of the human body has developed numerous mechanisms to control endogenous and exogenous bacteria and thus prevent infections by these microorganisms. These mechanisms range from physical barriers such as the skin or mucosal epithelium to a sophisticated array of molecules and cells that function to suppress or prevent bacterial infection. Many bacteria express a variety of proteases, ranging from non-specific and powerful enzymes that degrade many proteins involved in innate immunity to proteases that are extremely precise and specific in their mode of action. Here we have assembled a comprehensive picture of how bacterial proteases affect the host's innate immune system to gain advantage and cause infection. This picture is far from being complete since the numbers of mechanisms utilized are as astonishing as they are diverse, ranging from degradation of molecules vital to innate immune mechanisms to subversion of the mechanisms to allow the bacterium to hide from the system or take advantage of it. It is vital that such mechanisms are elucidated to allow strategies to be developed to aid the innate immune system in controlling bacterial infections.

  13. Corruption of Innate Immunity by Bacterial Proteases

    Science.gov (United States)

    Potempa, Jan; Pike, Robert N.

    2009-01-01

    The innate immune system of the human body has developed numerous mechanisms to control endogenous and exogenous bacteria and thus prevent infections by these microorganisms. These mechanisms range from physical barriers such as the skin or mucosal epithelium to a sophisticated array of molecules and cells that function to suppress or prevent bacterial infection. Many bacteria express a variety of proteases, ranging from non-specific and powerful enzymes that degrade many proteins involved in innate immunity to proteases that are extremely precise and specific in their mode of action. Here we have assembled a comprehensive picture of how bacterial proteases affect the host’s innate immune system to gain advantage and cause infection. This picture is far from being complete since the numbers of mechanisms utilized are as astonishing as they are diverse, ranging from degradation of molecules vital to innate immune mechanisms to subversion of the mechanisms to allow the bacterium to hide from the system or take advantage of it. It is vital that such mechanisms are elucidated to allow strategies to be developed to aid the innate immune system in controlling bacterial infections. PMID:19756242

  14. Inactivation of allergens and toxins.

    Science.gov (United States)

    Morandini, Piero

    2010-11-30

    Plants are replete with thousands of proteins and small molecules, many of which are species-specific, poisonous or dangerous. Over time humans have learned to avoid dangerous plants or inactivate many toxic components in food plants, but there is still room for ameliorating food crops (and plants in general) in terms of their allergens and toxins content, especially in their edible parts. Inactivation at the genetic rather than physical or chemical level has many advantages and classical genetic approaches have resulted in significant reduction of toxin content. The capacity, offered by genetic engineering, of turning off (inactivating) specific genes has opened up the possibility of altering the plant content in a far more precise manner than previously available. Different levels of intervention (genes coding for toxins/allergens or for enzymes, transporters or regulators involved in their metabolism) are possible and there are several tools for inactivating genes, both direct (using chemical and physical mutagens, insertion of transposons and other genetic elements) and indirect (antisense RNA, RNA interference, microRNA, eventually leading to gene silencing). Each level/strategy has specific advantages and disadvantages (speed, costs, selectivity, stability, reversibility, frequency of desired genotype and regulatory regime). Paradigmatic examples from classical and transgenic approaches are discussed to emphasize the need to revise the present regulatory process. Reducing the content of natural toxins is a trade-off process: the lesser the content of natural toxins, the higher the susceptibility of a plant to pests and therefore the stronger the need to protect plants. As a consequence, more specific pesticides like Bt are needed to substitute for general pesticides. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Innate Immune Cells in Liver Inflammation

    Directory of Open Access Journals (Sweden)

    Evaggelia Liaskou

    2012-01-01

    Full Text Available Innate immune system is the first line of defence against invading pathogens that is critical for the overall survival of the host. Human liver is characterised by a dual blood supply, with 80% of blood entering through the portal vein carrying nutrients and bacterial endotoxin from the gastrointestinal tract. The liver is thus constantly exposed to antigenic loads. Therefore, pathogenic microorganism must be efficiently eliminated whilst harmless antigens derived from the gastrointestinal tract need to be tolerized in the liver. In order to achieve this, the liver innate immune system is equipped with multiple cellular components; monocytes, macrophages, granulocytes, natural killer cells, and dendritic cells which coordinate to exert tolerogenic environment at the same time detect, respond, and eliminate invading pathogens, infected or transformed self to mount immunity. This paper will discuss the innate immune cells that take part in human liver inflammation, and their roles in both resolution of inflammation and tissue repair.

  16. Innate predator recognition in giant pandas.

    Science.gov (United States)

    Du, Yiping; Huang, Yan; Zhang, Hemin; Li, Desheng; Yang, Bo; Wei, Ming; Zhou, Yingmin; Liu, Yang

    2012-02-01

    Innate predator recognition confers a survival advantage to prey animals. We investigate whether giant pandas exhibit innate predator recognition. We analyzed behavioral responses of 56 naive adult captive giant pandas (Ailuropoda melanoleuca), to urine from predators and non-predators and water control. Giant pandas performed more chemosensory investigation and displayed flehmen behaviors more frequently in response to predator urine compared to both non-predator urine and water control. Subjects also displayed certain defensive behaviors, as indicated by vigilance, and in certain cases, fleeing behaviors. Our results suggest that there is an innate component to predator recognition in captive giant pandas, although such recognition was only slight to moderate. These results have implications that may be applicable to the conservation and reintroduction of this endangered species.

  17. Antitumor enhancement by adoptive transfer of tumor antigen primed, inactivated MHC-haploidentical lymphocytes.

    Science.gov (United States)

    Shi, Guilan; Zhou, Chunxia; Wang, Dongmei; Ma, Wenbo; Liu, Binlei; Zhang, Shuren

    2014-02-01

    The present study investigated the antitumor effects by adoptive transfer of tumor antigen primed, inactivated MHC-haploidentical lymphocytes in TC-1 lung cancer mouse model. Our studies revealed that the inactivated MHC-haploidentical effecter cells display the antitumor activity in vitro and target the tumor in vivo. After adoptive transferring these effecter cells, the Th1 cytokines such as IL-2 and IFN-γ are elevated in the serum; the recipient tumor-specific cytotoxic T-cells and natural killer cells are activated; tumor specific memory T cells are induced; tumor growth is inhibited and mouse survival is prolonged. The results indicate that MHC-haploidentical lymphocytes provide both effecter cells which can target the tumor cells through the identical MHC molecules and an adjuvant effects through the unmatched allogeneic MHC molecules which induces endogenous innate and adaptive antitumor immune responses. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. Bacterial subversion of host innate immune pathways.

    Science.gov (United States)

    Baxt, Leigh A; Garza-Mayers, Anna Cristina; Goldberg, Marcia B

    2013-05-10

    The pathogenesis of infection is a continuously evolving battle between the human host and the infecting microbe. The past decade has brought a burst of insights into the molecular mechanisms of innate immune responses to bacterial pathogens. In parallel, multiple specific mechanisms by which microorganisms subvert these host responses have been uncovered. This Review highlights recently characterized mechanisms by which bacterial pathogens avoid killing by innate host responses, including autophagy pathways and a proinflammatory cytokine transcriptional response, and by the manipulation of vesicular trafficking to avoid the toxicity of lysosomal enzymes.

  19. [Innate Immune Evasion Mechanisms of Pseudorabies Virus].

    Science.gov (United States)

    Liu, Yaozong; Rui, Ping; Ma, Rui; Ma, Zengjun

    2015-11-01

    Pseudorabies is an economically important disease in a variety ot animals caused by pseudorabies virus. Since 2011, pseudorabies outbreaks occurred in many regions of China. Related researches on this virus become a hot topic in virology and veterinary. One of the difficulties for pseudorabies prevention and control is innate immune evasion. Explorations on this issue are conducive to the development of vaccine and drugs. Therefore, this review summarized the recent research progress on the mechanisms of pseudorabies virus innate immune evasion. Theoretical direction was provided on effetive prevention and control of pseudorabies owing to this review.

  20. Evasion of the Innate Immune Type I Interferon System by Monkeypox Virus.

    Science.gov (United States)

    Arndt, William D; Cotsmire, Samantha; Trainor, Kelly; Harrington, Heather; Hauns, Kevin; Kibler, Karen V; Huynh, Trung P; Jacobs, Bertram L

    2015-10-01

    The vaccinia virus (VACV) E3 protein has been shown to be important for blocking activation of the cellular innate immune system and allowing viral replication to occur unhindered. Mutation or deletion of E3L severely affects viral host range and pathogenesis. While the monkeypox virus (MPXV) genome encodes a homologue of the VACV E3 protein, encoded by the F3L gene, the MPXV gene is predicted to encode a protein with a truncation of 37 N-terminal amino acids. VACV with a genome encoding a similarly truncated E3L protein (VACV-E3LΔ37N) has been shown to be attenuated in mouse models, and infection with VACV-E3LΔ37N has been shown to lead to activation of the host antiviral protein kinase R pathway. In this report, we present data demonstrating that, despite containing a truncated E3 homologue, MPXV phenotypically resembles a wild-type (wt) VACV rather than VACV-E3LΔ37N. Thus, MPXV appears to contain a gene or genes that can suppress the phenotypes associated with an N-terminal truncation in E3. The suppression maps to sequences outside F3L, suggesting that the suppression is extragenic in nature. Thus, MPXV appears to have evolved mechanisms to minimize the effects of partial inactivation of its E3 homologue. Poxviruses have evolved to have many mechanisms to evade host antiviral innate immunity; these mechanisms may allow these viruses to cause disease. Within the family of poxviruses, variola virus (which causes smallpox) is the most pathogenic, while monkeypox virus is intermediate in pathogenicity between vaccinia virus and variola virus. Understanding the mechanisms of monkeypox virus innate immune evasion will help us to understand the evolution of poxvirus innate immune evasion capabilities, providing a better understanding of how poxviruses cause disease. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. The biology of innate lymphoid cells

    NARCIS (Netherlands)

    Artis, David; Spits, Hergen

    2015-01-01

    The innate immune system is composed of a diverse array of evolutionarily ancient haematopoietic cell types, including dendritic cells, monocytes, macrophages and granulocytes. These cell populations collaborate with each other, with the adaptive immune system and with non-haematopoietic cells to

  2. Adrenergic regulation of innate immunity: a review

    Directory of Open Access Journals (Sweden)

    Angela eScanzano

    2015-08-01

    Full Text Available The sympathetic nervous system has a major role in the brain-immune cross-talk, but few information exist on the sympathoadrenergic regulation of innate immune system.The aim of this review is to summarize available knowledge regarding the sympathetic modulation of the innate immune response, providing a rational background for the possible repurposing of adrenergic drugs as immunomodulating agents.The cells of immune system express adrenoceptors (AR, which represent the target for noradrenaline and adrenaline. In human neutrophils, adrenaline and noradrenaline inhibit migration, CD11b/CD18 expression, and oxidative metabolism, possibly through β-AR, although the role of α1- and α2-AR requires further investigation. Natural Killer express β-AR, which are usually inhibitory. Monocytes express β-AR and their activation is usually antiinflammatory. On murine Dentritic cells (DC, β-AR mediate sympathetic influence on DC-T cells interactions. In human DC β2-AR may affect Th1/2 differentiation of CD4+ T cells. In microglia and in astrocytes, β2-AR dysregulation may contribute to neuroinflammation in autoimmune and neurodegenerative disease.In conclusion, extensive evidence supports a critical role for adrenergic mechanisms in the regulation of innate immunity, in peripheral tissues as well as in the CNS. Sympathoadrenergic pathways in the innate immune system may represent novel antiinflammatory and immunomodulating targets with significant therapeutic potential.

  3. Innate Immunity to Mucosal Candida Infections

    Directory of Open Access Journals (Sweden)

    Akash Verma

    2017-10-01

    Full Text Available Mucosal epithelial tissues are exposed to high numbers of microbes, including commensal fungi, and are able to distinguish between those that are avirulent and those that cause disease. Epithelial cells have evolved multiple mechanisms to defend against colonization and invasion by Candida species. The interplay between mucosal epithelial tissues and immune cells is key for control and clearance of fungal infections. Our understanding of the mucosal innate host defense system has expanded recently with new studies bringing to light the importance of epithelial cell responses, innate T cells, neutrophils, and other phagocytes during Candida infections. Epithelial tissues release cytokines, host defense peptides, and alarmins during Candida invasion that act in concert to limit fungal proliferation and recruit immune effector cells. The innate T cell/IL-17 axis and recruitment of neutrophils are of central importance in controlling mucosal fungal infections. Here, we review current knowledge of the innate immunity at sites of mucosal Candida infection, with a focus on infections caused by C. albicans.

  4. Is there an innate need for children

    NARCIS (Netherlands)

    R. Veenhoven (Ruut)

    1974-01-01

    textabstractABSTRACT It is commonly assumed that we have an innate need for children, in particular, that women have a 'mother instinct'. This belief lives in the general public as well as among scientists. In this paper that theory is criticized on two grounds: Firstly, it is argued that the theory

  5. Monotheism versus an innate bias towards mentalizing.

    Science.gov (United States)

    Costello, Fintan John

    2016-01-01

    Norenzayan et al.'s account for the spread of monotheistic "Big God" religions sees these religions originating as by-products of innate cognitive biases. These biases produce polytheistic rather than monotheistic systems, however, and so do not explain the origin of monotheism. Accounts where monotheism arises from polytheism (for political reasons, for example) appear better able to explain the spread of monotheism.

  6. Innate lymphoid cells in inflammation and immunity

    NARCIS (Netherlands)

    McKenzie, Andrew N. J.; Spits, Hergen; Eberl, Gerard

    2014-01-01

    Innate lymphoid cells (ILCs) were first described as playing important roles in the development of lymphoid tissues and more recently in the initiation of inflammation at barrier surfaces in response to infection or tissue damage. It has now become apparent that ILCs play more complex roles

  7. Biliary Innate Immunity: Function and Modulation

    Directory of Open Access Journals (Sweden)

    Kenichi Harada

    2010-01-01

    Full Text Available Biliary innate immunity is involved in the pathogenesis of cholangiopathies in patients with primary biliary cirrhosis (PBC and biliary atresia. Biliary epithelial cells possess an innate immune system consisting of the Toll-like receptor (TLR family and recognize pathogen-associated molecular patterns (PAMPs. Tolerance to bacterial PAMPs such as lipopolysaccharides is also important to maintain homeostasis in the biliary tree, but tolerance to double-stranded RNA (dsRNA is not found. In PBC, CD4-positive Th17 cells characterized by the secretion of IL-17 are implicated in the chronic inflammation of bile ducts and the presence of Th17 cells around bile ducts is causally associated with the biliary innate immune responses to PAMPs. Moreover, a negative regulator of intracellular TLR signaling, peroxisome proliferator-activated receptor-γ (PPARγ, is involved in the pathogenesis of cholangitis. Immunosuppression using PPARγ ligands may help to attenuate the bile duct damage in PBC patients. In biliary atresia characterized by a progressive, inflammatory, and sclerosing cholangiopathy, dsRNA viruses are speculated to be an etiological agent and to directly induce enhanced biliary apoptosis via the expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL. Moreover, the epithelial-mesenchymal transition (EMT of biliary epithelial cells is also evoked by the biliary innate immune response to dsRNA.

  8. The biology of human innate lymphoid cells

    NARCIS (Netherlands)

    Bernink, J.H.J.

    2016-01-01

    In this thesis I performed studies to investigate the contribution of human innate lymphoid cells (ILCs) in maintaining the mucosal homeostasis, initiating and/or propagating inflammatory responses, but also - when not properly regulated - how these cells contribute to immunopathology. First I

  9. Innate Immunity and the 2011 Nobel Prize

    Indian Academy of Sciences (India)

    IAS Admin

    recurring infections in affected children. Also, this coating may lead to the activation of the complement pathway so as to lyse these microbes. ..... of blood cells from the horse shoe crab, Limulus polyphemus, which coagulate in the presence of very small amounts of LPS. This is a good example to illustrate the innate ...

  10. Innate Immune Response to Burkholderia mallei

    Science.gov (United States)

    2017-02-16

    vaccination and therapeutic approaches are necessary for complete protection against B. mallei. Keywords: Innate Immune response, Burkholderia mallei...immune signaling, cellular immunity, vaccine . TR-17-034 DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. UNCLASSIFIED...Currently, no licensed vaccines are available for either disease, and medical therapeutic options are limited. Both B. pseudomallei and B. mallei

  11. Improving microphage innate immunity by modulating protein ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Improving microphage innate immunity by modulating protein tyrosine phosphatases: The complete mouse and human PTPomes. Diseases that result from an infection are most often resolved by cells that use an immune response to clear foreign agents. These cells include macrophages, which are the predominant type of ...

  12. Innate Immunity and the 2011 Nobel Prize

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 10. Innate Immunity and the 2011 Nobel Prize. Mukta Deobagkar Lele Chetana Bhaskarla Rajkumar Dhanaraju Manikandan Ponnusamy Dipankar Nandi. General Article Volume 17 Issue 10 October 2012 pp 974-995 ...

  13. Innate immunity and the new forward genetics.

    Science.gov (United States)

    Beutler, Bruce

    2016-12-01

    As it is a hard-wired system for responses to microbes, innate immunity is particularly susceptible to classical genetic analysis. Mutations led the way to the discovery of many of the molecular elements of innate immune sensing and signaling pathways. In turn, the need for a faster way to find the molecular causes of mutation-induced phenotypes triggered a huge transformation in forward genetics. During the 1980s and 1990s, many heritable phenotypes were ascribed to mutations through positional cloning. In mice, this required three steps. First, a genetic mapping step was used to show that a given phenotype emanated from a circumscribed region of the genome. Second, a physical mapping step was undertaken, in which all of the region was cloned and its gene content determined. Finally, a concerted search for the mutation was performed. Such projects usually lasted for several years, but could produce breakthroughs in our understanding of biological processes. Publication of the annotated mouse genome sequence in 2002 made physical mapping unnecessary. More recently we devised a new technology for automated genetic mapping, which eliminated both genetic mapping and the search for mutations among candidate genes. The cause of phenotype can now be determined instantaneously. We have created more than 100,000 coding/splicing mutations. And by screening for defects of innate and adaptive immunity we have discovered many "new" proteins needed for innate immune function. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Host Genetics: Fine-Tuning Innate Signaling

    OpenAIRE

    Fellay, Jacques; Goldstein, David B.

    2007-01-01

    A polymorphism modulating innate immunity signal transduction has recently been shown to influence human susceptibility to many different infections, providing one more indication of the potential of host genetics to reveal physiological pathways and mechanisms that influence resistance to infectious diseases.

  15. Impaired innate immunity in Crohn's disease

    NARCIS (Netherlands)

    Comalada, Monica; Peppelenbosch, Maikel P.

    The aetiology of Crohn's disease - a chronic intestinal disorder that involves an immune response against the commensal bacterial flora - remains fiercely debated. Two hypotheses exist: (i) those who think that the disease is caused by genetic defects that produce exaggerated innate responses to the

  16. Langerhans cells in innate defense against pathogens

    NARCIS (Netherlands)

    de Jong, Marein A. W. P.; Geijtenbeek, Teunis B. H.

    2010-01-01

    Langerhans cells (LCs) are at the frontline in defense against mucosal infections because they line the mucosal tissues and are ideally situated to intercept pathogens. Recent data suggest that LCs have an innate anti-HIV-1 function. LCs express the LC-specific C-type lectin Langerin that

  17. Innate host defense against intracellular pathogens

    NARCIS (Netherlands)

    Vaart, Michiel van der

    2013-01-01

    This thesis focuses on the recognition of pathogenic bacteria and the defense mechanisms that are activated during the innate immune response to infection. Detection of pathogens, such as bacteria, viruses, and parasites, depends on receptors that bind to evolutionary conserved structures on their

  18. Innate immune responses to environmental allergens

    NARCIS (Netherlands)

    Kauffman, HF

    Aero-allergens, including plant pollens, house dust mite particles, fungal spores, and mycelium fragments, are continuously inhaled and deposited on the airway mucosa. These particles and their soluble components actively interact with innate recognition systems present in the mucosal layer (e.g.,

  19. Synthetic RNAs Mimicking Structural Domains in the Foot-and-Mouth Disease Virus Genome Elicit a Broad Innate Immune Response in Porcine Cells Triggered by RIG-I and TLR Activation

    Directory of Open Access Journals (Sweden)

    Belén Borrego

    2015-07-01

    Full Text Available The innate immune system is the first line of defense against viral infections. Exploiting innate responses for antiviral, therapeutic and vaccine adjuvation strategies is being extensively explored. We have previously described, the ability of small in vitro RNA transcripts, mimicking the sequence and structure of different domains in the non-coding regions of the foot-and-mouth disease virus (FMDV genome (ncRNAs, to trigger a potent and rapid innate immune response. These synthetic non-infectious molecules have proved to have a broad-range antiviral activity and to enhance the immunogenicity of an FMD inactivated vaccine in mice. Here, we have studied the involvement of pattern-recognition receptors (PRRs in the ncRNA-induced innate response and analyzed the antiviral and cytokine profiles elicited in swine cultured cells, as well as peripheral blood mononuclear cells (PBMCs.

  20. Aromatase inactivation by 2-substituted derivatives of the suicide substrate androsta-1,4-diene-3,17-dione.

    Science.gov (United States)

    Takahashi, Madoka; Handa, Wakako; Umeta, Hiromi; Ishikawa, Saki; Yamashita, Kouwa; Numazawa, Mitsuteru

    2009-09-01

    To gain the structure-activity relationship of Delta(1)-androstenediones (Delta(1)-ADs) as mechanism-based inactivator of aromatase, series of 2-alkyl- and 2-alkoxy-substituted Delta(1)-ADs (6 and 9) as well as 2-bromo-Delta(1)-AD (14) were synthesized and tested. All of the inhibitors examined blocked aromatase in human placental microsomes in a competitive manner. In a series of 2-alkyl-Delta(1)-ADs (6), n-hexyl compound 6f was the most powerful inhibitor with an apparent K(i) value of 31 nM. The inhibitory activities of 2-alkoxy steroids 9 decreased in relation to length of the alkyl chain up to n-hexyloxy group (K(i): 95 nM for methoxy 9a). All of the alkyl steroids 6 along with the alkoxy steroid 9, except for the ethyl and n-propyl compounds 6b and 6c, caused a time-dependent inactivation of aromatase. The inactivation rates (k(inact): 0.020-0.084 min(-1)) were comparable to that of the parent compound Delta(1)-AD. The inactivation was prevented by the substrate AD, and no significant effect of l-cysteine on the inactivation was observed in each case. The results indicate that the 2-hexyl compound 6f act as the most powerful mechanism-based inactivator of aromatase among Delta(1)-AD analogs and may be submitted to the preclinical study in estrogen-dependent breast cancer.

  1. Innate Immunity Dysregulation in Myelodysplastic Syndromes

    Science.gov (United States)

    2013-10-01

    manifestations of MDS. Erythroid colony formation is known to be decreased in cultured MDS BM CD34 + cells.23󈧜 We observed that BM CD34 + cells isolated...combined with lupus lgG. J Immune/ 2003; 171: 3296---3302. 43 Lowell CA, Soriano P, Varmus HE. Functional overlap in the src gene family: inactivation of

  2. Innate cell communication kick-starts pathogen-specific immunity.

    Science.gov (United States)

    Rivera, Amariliz; Siracusa, Mark C; Yap, George S; Gause, William C

    2016-04-01

    Innate cells are responsible for the rapid recognition of infection and mediate essential mechanisms of pathogen elimination, and also facilitate adaptive immune responses. We review here the numerous intricate interactions among innate cells that initiate protective immunity. The efficient eradication of pathogens depends on the coordinated actions of multiple cells, including innate cells and epithelial cells. Rather than acting as isolated effector cells, innate cells are in constant communication with other responding cells of the immune system, locally and distally. These interactions are critically important for the efficient control of primary infections as well for the development of 'trained' innate cells that facilitate the rapid elimination of homologous or heterologous infections.

  3. X-chromosome inactivation and escape

    Indian Academy of Sciences (India)

    2015-11-06

    Nov 6, 2015 ... Abstract. X-chromosome inactivation, which was discovered by Mary Lyon in 1961 results in random silencing of one X chromosome in female mammals. This review is dedicated to Mary Lyon, who passed away last year. She predicted many of the features of X inactivation, for e.g., the existence of an X ...

  4. Photodynamic inactivation of mammalian viruses and bacteriophages.

    Science.gov (United States)

    Costa, Liliana; Faustino, Maria Amparo F; Neves, Maria Graça P M S; Cunha, Angela; Almeida, Adelaide

    2012-07-01

    Photodynamic inactivation (PDI) has been used to inactivate microorganisms through the use of photosensitizers. The inactivation of mammalian viruses and bacteriophages by photosensitization has been applied with success since the first decades of the last century. Due to the fact that mammalian viruses are known to pose a threat to public health and that bacteriophages are frequently used as models of mammalian viruses, it is important to know and understand the mechanisms and photodynamic procedures involved in their photoinactivation. The aim of this review is to (i) summarize the main approaches developed until now for the photodynamic inactivation of bacteriophages and mammalian viruses and, (ii) discuss and compare the present state of the art of mammalian viruses PDI with phage photoinactivation, with special focus on the most relevant mechanisms, molecular targets and factors affecting the viral inactivation process.

  5. Photodynamic Inactivation of Mammalian Viruses and Bacteriophages

    Science.gov (United States)

    Costa, Liliana; Faustino, Maria Amparo F.; Neves, Maria Graça P. M. S.; Cunha, Ângela; Almeida, Adelaide

    2012-01-01

    Photodynamic inactivation (PDI) has been used to inactivate microorganisms through the use of photosensitizers. The inactivation of mammalian viruses and bacteriophages by photosensitization has been applied with success since the first decades of the last century. Due to the fact that mammalian viruses are known to pose a threat to public health and that bacteriophages are frequently used as models of mammalian viruses, it is important to know and understand the mechanisms and photodynamic procedures involved in their photoinactivation. The aim of this review is to (i) summarize the main approaches developed until now for the photodynamic inactivation of bacteriophages and mammalian viruses and, (ii) discuss and compare the present state of the art of mammalian viruses PDI with phage photoinactivation, with special focus on the most relevant mechanisms, molecular targets and factors affecting the viral inactivation process. PMID:22852040

  6. Photodynamic Inactivation of Mammalian Viruses and Bacteriophages

    Directory of Open Access Journals (Sweden)

    Liliana Costa

    2012-06-01

    Full Text Available Photodynamic inactivation (PDI has been used to inactivate microorganisms through the use of photosensitizers. The inactivation of mammalian viruses and bacteriophages by photosensitization has been applied with success since the first decades of the last century. Due to the fact that mammalian viruses are known to pose a threat to public health and that bacteriophages are frequently used as models of mammalian viruses, it is important to know and understand the mechanisms and photodynamic procedures involved in their photoinactivation. The aim of this review is to (i summarize the main approaches developed until now for the photodynamic inactivation of bacteriophages and mammalian viruses and, (ii discuss and compare the present state of the art of mammalian viruses PDI with phage photoinactivation, with special focus on the most relevant mechanisms, molecular targets and factors affecting the viral inactivation process.

  7. Skin innate immune response to flaviviral infection.

    Science.gov (United States)

    Garcia, Magali; Wehbe, Michel; Lévêque, Nicolas; Bodet, Charles

    2017-06-01

    Skin is a complex organ and the largest interface of the human body exposed to numerous stress and pathogens. Skin is composed of different cell types that together perform essential functions such as pathogen sensing, barrier maintenance and immunity, at once providing the first line of defense against microbial infections and ensuring skin homeostasis. Being inoculated directly through the epidermis and the dermis during a vector blood meal, emerging Dengue, Zika and West Nile mosquito-borne viruses lead to the initiation of the innate immune response in resident skin cells and to the activation of dendritic cells, which migrate to the draining lymph node to elicit an adaptive response. This literature review aims to describe the inflammatory response and the innate immune signalization pathways involved in human skin cells during Dengue, Zika and West Nile virus infections.

  8. Revisiting the innate preference for consonance.

    Science.gov (United States)

    Plantinga, Judy; Trehub, Sandra E

    2014-02-01

    The origin of the Western preference for consonance remains unresolved, with some suggesting that the preference is innate. In Experiments 1 and 2 of the present study, 6-month-old infants heard six different consonant/dissonant pairs of stimuli, including those tested in previous research. In contrast to the findings of others, infants in the present study failed to listen longer to consonant stimuli. After 3 minutes of exposure to consonant or dissonant stimuli in Experiment 3, 6-month-old infants listened longer to the familiar stimulus, whether consonant or dissonant. Our findings are inconsistent with innate preferences for consonant stimuli. Instead, the effect of short-term exposure is consistent with the view that familiarity underlies the origin of the Western preference for consonant intervals. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  9. Regulation of intestinal homeostasis by innate immune cells.

    Science.gov (United States)

    Kayama, Hisako; Nishimura, Junichi; Takeda, Kiyoshi

    2013-12-01

    The intestinal immune system has an ability to distinguish between the microbiota and pathogenic bacteria, and then activate pro-inflammatory pathways against pathogens for host defense while remaining unresponsive to the microbiota and dietary antigens. In the intestine, abnormal activation of innate immunity causes development of several inflammatory disorders such as inflammatory bowel diseases (IBD). Thus, activity of innate immunity is finely regulated in the intestine. To date, multiple innate immune cells have been shown to maintain gut homeostasis by preventing inadequate adaptive immune responses in the murine intestine. Additionally, several innate immune subsets, which promote Th1 and Th17 responses and are implicated in the pathogenesis of IBD, have recently been identified in the human intestinal mucosa. The demonstration of both murine and human intestinal innate immune subsets contributing to regulation of adaptive immunity emphasizes the conserved innate immune functions across species and might promote development of the intestinal innate immunity-based clinical therapy.

  10. Innate immunity in Sjögren's syndrome.

    Science.gov (United States)

    Kiripolsky, Jeremy; McCabe, Liam G; Kramer, Jill M

    2017-09-01

    Sjögren's syndrome (SS) is an autoimmune disease of exocrine tissue that primarily affects women. Although patients typically experience xerostomia and xerophthalmia, numerous systemic disease manifestations are seen. Innate immune hyperactivity is integral to many autoimmune diseases, including SS. Results from SS mouse models suggest that innate immune dysregulation drives disease and this is a seminal event in SS pathogenesis. Findings in SS patients corroborate those in mouse models, as innate immune cells and pathways are dysregulated both in exocrine tissue and in peripheral blood. We will review the role of the innate immune system in SS pathogenesis. We will discuss the etiology of SS with an emphasis on innate immune dysfunction. Moreover, we will review the innate cells that mediate inflammation in SS, the pathways implicated in disease, and the potential mechanisms governing their dysregulation. Finally, we will discuss emerging therapeutic approaches to target dysregulated innate immune signaling in SS. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Innate Immune Activation in Intestinal Homeostasis

    OpenAIRE

    Harrison, Oliver J.; Maloy, Kevin J.

    2011-01-01

    Loss of intestinal immune regulation leading to aberrant immune responses to the commensal microbiota are believed to precipitate the chronic inflammation observed in the gastrointestinal tract of patients with inflammatory bowel diseases (IBD), Crohn's disease and ulcerative colitis. Innate immune receptors that recognize conserved components derived from the microbiota are widely expressed by both epithelial cells and leucocytes of the gastrointestinal tract and play a key role in host prot...

  12. Innate and intrinsic antiviral immunity in skin.

    Science.gov (United States)

    Kawamura, Tatsuyoshi; Ogawa, Youichi; Aoki, Rui; Shimada, Shinji

    2014-09-01

    As the body's most exposed interface with the environment, the skin is constantly challenged by potentially pathogenic microbes, including viruses. To sense the invading viruses, various types of cells resident in the skin express many different pattern-recognition receptors (PRRs) such as C-type lectin receptors (CLRs), Toll-like receptors (TLRs), nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs), retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) and cytosolic DNA sensors, that can detect the pathogen-associated molecular patterns (PAMPs) of the viruses. The detection of viral PAMPs initiates two major innate immune signaling cascades: the first involves the activation of the downstream transcription factors, such as interferon regulatory factors (IRFs), nuclear factor kappa B (NF-κB) and activator protein 1 (AP-1), which cooperate to induce the transcription of type I interferons and pro-inflammatory cytokines. The second signaling pathway involves the caspase-1-mediated processing of IL-1β and IL-18 through the formation of an inflammasome complex. Cutaneous innate immunity including the production of the innate cytokines constitutes the first line of host defence that limits the virus dissemination from the skin, and also plays an important role in the activation of adaptive immune response, which represents the second line of defence. More recently, the third immunity "intrinsic immunity" has emerged, that provides an immediate and direct antiviral defense mediated by host intrinsic restriction factors. This review focuses on the recent advances regarding the antiviral immune systems, highlighting the innate and intrinsic immunity against the viral infections in the skin, and describes how viral components are recognized by cutaneous immune systems. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Characteristic of innate lymphoid cells (ILC

    Directory of Open Access Journals (Sweden)

    Mateusz Adamiak

    2014-12-01

    Full Text Available Innate lymphoid cells (ILC is a newly described family of immune cells that are part of the natural immunity which is important not only during infections caused by microorganisms, but also in the formation of lymphoid tissue, tissue remodeling after damage due to injury and homeostasis tissue stromal cells. Family ILC cells form NK cells (natural killer and lymphoid tissue inducer T cells (LTi, which, although they have different functions, are evolutionarily related. NK cells are producing mainly IFN-γ, whereas LTi cells as NKR+LTi like, IL-17 and/or IL-22, which suggests that the last two cells, can also represent the innate versions of helper T cell - TH17 and TH22. Third population of ILC is formed by cells with characteristics such as NK cells and LTi (ILC22 - which are named NK22 cells, natural cytotoxicity receptor 22 (NCR22 cells or NK receptor-positive (LTi NKR+ LTi cells. Fourth population of ILC cells are ILC17 - producing IL-17, while the fifth is formed by natural helper type 2 T cells (nTH2, nuocyte, innate type 2 helper cells (IH2 and multi-potent progenitor type 2 cells (MPPtype2. Cells of the last population synthesize IL-5 and IL-13. It is assumed that an extraordinary functional diversity of ILC family, resembles T cells, probably because they are under the control of the corresponding transcription factors - as direct regulation factors, such as the family of lymphocytes T.

  14. Bacterial RNAs activate innate immunity in Arabidopsis.

    Science.gov (United States)

    Lee, Boyoung; Park, Yong-Soon; Lee, Soohyun; Song, Geun Cheol; Ryu, Choong-Min

    2016-01-01

    The common molecular patterns of microbes play a critical role in the regulation of plant innate immunity. However, little is known about the role of nucleic acids in this process in plants. We pre-infiltrated Arabidopsis leaves with total RNAs from Pseudomonas syringae pv. tomato DC3000 (Pto DC3000) and subsequently inoculated these plants with the same bacterial cells. Total Pto DC3000 RNAs pre-infiltrated into Arabidopsis leaves elicited plant immune responses against Pto DC3000. However, sheared RNAs and RNase A application failed to induce immunity, suggesting that intact bacterial RNAs function in plant innate immunity. This notion was supported by the positive regulation of superoxide anion levels, callose deposition, two mitogen-activated protein kinases and defense-related genes observed in bacterial RNA-pre-treated leaves. Intriguingly, the Pto DC3000 population was not compromised in known pattern recognition receptor mutants for chitin, flagellin and elongation factor-Tu (EF-Tu). Plant defense-related mutant analyses further revealed that bacterial RNA-elicited innate immunity was normally required for salicylic and jasmonic acid signaling. Notably, among total RNAs, the abundant bacterial RNA species 16S and 23S ribosomal RNAs were the major determinants of this response. Our findings provide evidence that bacterial RNA serves as a microbe-associated molecular pattern in plants. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  15. Distinct mechanisms of the newborn innate immunity.

    Science.gov (United States)

    Kumar, S Kingsley Manoj; Bhat, B Vishnu

    2016-05-01

    The ontogeny of immunity during early life is of high importance as it shapes the immune system for the entire course of life. The microbiome and the environment contribute to the development of immunity in newborns. As immune responses in newborns are predominantly less experienced they are increasingly susceptible to infections. Though the immune cells in newborns are in 'naïve' state, they have been shown to mount adult-like responses in several circumstances. The innate immunity plays a vital role in providing protection during the neonatal period. Various stimulants have been shown to enhance the potential and functioning of the innate immune cells in newborns. They are biased against the production of pro-inflammatory cytokines and this makes them susceptible to wide variety of intracellular pathogens. The adaptive immunity requires prior antigenic experience which is very limited in newborns. This review discusses in detail the characteristics of innate immunity in newborns and the underlying developmental and functional mechanisms involved in the immune response. A better understanding of the immunological milieu in newborns could help the medical fraternity to find novel methods for prevention and treatment of infection in newborns. Copyright © 2016 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  16. Heme on innate immunity and inflammation

    Directory of Open Access Journals (Sweden)

    Fabianno Ferreira Dutra

    2014-05-01

    Full Text Available Heme is an essential molecule expressed ubiquitously all through our tissues. Heme plays major functions in cellular physiology and metabolism as the prostetic group of diverse proteins. Once released from cells and from hemeproteins free heme causes oxidative damage and inflammation, thus acting as a prototypic damage-associated molecular pattern. In this context, free heme is a critical component of the pathological process of sterile and infectious hemolytic conditions including malaria, hemolytic anemias, ischemia-reperfusion and hemorrhage. The plasma scavanger proteins hemopexin and albumin reduce heme toxicity and are responsible for transporting free heme to intracellular compartments where it is catabolized by heme-oxygenase enzymes. Upon hemolysis or severe cellular damage the serum capacity to scavange heme may saturate and increase free heme to sufficient amounts to cause tissue damage in various organs. The mechanism by which heme causes reactive oxygen generation, activation of cells of the innate immune system and cell death are not fully understood. Although heme can directly promote lipid peroxidation by its iron atom, heme can also induce ROS generation and production of inflammatory mediators through the activation of selective signaling pathways. Heme activates innate immune cells such as macrophages and neutrophils through activation of innate immune receptors. The importance of these events has been demonstrated in infectious and non-infectious diseases models. In this review we will discuss the mechanisms behind heme-induced citotoxicity and inflammation and the consequences of these events on different tissues and diseases.

  17. Training innate immunity: the changing concept of immunological memory in innate host defence.

    Science.gov (United States)

    Netea, Mihai G

    2013-08-01

    The inability of innate immunity to build an immunological memory is considered a main difference with adaptive immunity. This concept has been challenged by studies in plants, invertebrates and mammals. Recently, a paradigm shift in our understanding host defence has been triggered by the mounting evidence for innate immune memory, leading to increased responses to secondary infections. Important differences between the cell populations and the molecular mechanisms exist between the adaptive traits of innate host defence on the one hand and immunological memory of adaptive immunity on the other hand. The lasting state of enhanced innate immunity termed 'trained immunity' is mediated by prototypical innate immune cells such as natural killer cells and monocytes/macrophages. It provides protection against reinfection in a T/B-cell-independent manner, with both specific mechanisms and nonspecific epigenetic reprogramming mediating these effects. This concept represents a paradigm change in immunity, and its putative role in resistance to reinfection may represent the next step in the design of future vaccines. © 2013 Stichting European Society for Clinical Investigation Journal Foundation. Published by John Wiley & Sons Ltd.

  18. Activation of the Innate Immune Receptors: Guardians of the Micro Galaxy : Activation and Functions of the Innate Immune Receptors.

    Science.gov (United States)

    De Nardo, Dominic

    2017-01-01

    The families of innate immune receptors are the frontline responders to danger. These superheroes of the host immune systems populate innate immune cells, surveying the extracellular environment and the intracellular endolysosomal compartments and cytosol for exogenous and endogenous danger signals. As a collective the innate immune receptors recognise a wide array of stimuli, and in response they initiate specific signalling pathways leading to activation of transcriptional or proteolytic pathways and the production of inflammatory molecules to destroy foreign pathogens and/or resolve tissue injury. In this review, I will give an overview of the innate immune system and the activation and effector functions of the families of receptors it comprises. Current key concepts will be described throughout, including innate immune memory, formation of innate immune receptor signalosomes, inflammasome formation and pyroptosis, methods of extrinsic cell communication and examples of receptor cooperation. Finally, several open questions and future directions in the field of innate immunity will be presented and discussed.

  19. Mechanism-based Enzyme Inactivators of Phytosterol Biosynthesis

    Directory of Open Access Journals (Sweden)

    W. David Nes

    2004-03-01

    Full Text Available Current progress on the mechanism and substrate recognition by sterol methyl transferase (SMT, the role of mechanism-based inactivators, other inhibitors of SMT action to probe catalysis and phytosterol synthesis is reported. SMT is a membrane-bound enzyme which catalyzes the coupled C-methylation-deprotonation reaction of sterol acceptor molecules generating the 24-alkyl sterol side chains of fungal ergosterol and plant sitosterol. This C-methylation step can be rate-limiting in the post-lanosterol (fungal or post-cycloartenol (plant pathways. A series of sterol analogs designed to impair SMT activity irreversibly have provided deep insight into the C-methylation reaction and topography of the SMT active site and as reviewed provide leads for the development of antifungal agents.

  20. Post-Translational Modification Control of Innate Immunity.

    Science.gov (United States)

    Liu, Juan; Qian, Cheng; Cao, Xuetao

    2016-07-19

    A coordinated balance between the positive and negative regulation of pattern-recognition receptor (PRR)-initiated innate inflammatory responses is required to ensure the most favorable outcome for the host. Post-translational modifications (PTMs) of innate sensors and downstream signaling molecules influence their activity and function by inducing their covalent linkage to new functional groups. PTMs including phosphorylation and polyubiquitination have been shown to potently regulate innate inflammatory responses through the activation, cellular translocation, and interaction of innate receptors, adaptors, and downstream signaling molecules in response to infectious and dangerous signals. Other PTMs such as methylation, acetylation, SUMOylation, and succinylation are increasingly implicated in the regulation of innate immunity and inflammation. In this review, we focus on the roles of PTMs in controlling PRR-triggered innate immunity and inflammatory responses. The emerging roles of PTMs in the pathogenesis and potential treatment of infectious and inflammatory immune diseases are also discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. [The role of the innate immune system in atopic dermatitis].

    Science.gov (United States)

    Volz, T; Kaesler, S; Skabytska, Y; Biedermann, T

    2015-02-01

    The mechanisms how the innate immune system detects microbes and mounts a rapid immune response have been more and more elucidated in the past years. Subsequently it has been shown that innate immunity also shapes adaptive immune responses and determines their quality that can be either inflammatory or tolerogenic. As atopic dermatitis is characterized by disturbances of innate and adaptive immune responses, colonization with pathogens and defects in skin barrier function, insight into mechanisms of innate immunity has helped to understand the vicious circle of ongoing skin inflammation seen in atopic dermatitis patients. Elucidating general mechanisms of the innate immune system and its functions in atopic dermatitis paves the way for developing new therapies. Especially the novel insights into the human microbiome and potential functional consequences make the innate immune system a very fundamental and promising target. As a result atopic dermatitis manifestations can be attenuated or even resolved. These currently developed strategies will be introduced in the current review.

  2. Activating PTEN by COX-2 inhibitors antagonizes radiation-induced AKT activation contributing to radiosensitization

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Zhen [Central Laboratory, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China); Department of Oral & Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China); Gan, Ye-Hua, E-mail: kqyehuagan@bjmu.edu.cn [Central Laboratory, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China); Department of Oral & Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China)

    2015-05-01

    Radiotherapy is still one of the most effective nonsurgical treatments for many tumors. However, radioresistance remains a major impediment to radiotherapy. Although COX-2 inhibitors can induce radiosensitization, the underlying mechanism is not fully understood. In this study, we showed that COX-2 selective inhibitor celecoxib enhanced the radiation-induced inhibition of cell proliferation and apoptosis in HeLa and SACC-83 cells. Treatment with celecoxib alone dephosphorylated phosphatase and tensin homolog deleted on chromosome ten (PTEN), promoted PTEN membrane translocation or activation, and correspondingly dephosphorylated or inactivated protein kinase B (AKT). By contrast, treatment with radiation alone increased PTEN phosphorylation, inhibited PTEN membrane translocation and correspondingly activated AKT in the two cell lines. However, treatment with celecoxib or another COX-2 selective inhibitor (valdecoxib) completely blocked radiation-induced increase of PTEN phosphorylation, rescued radiation-induced decrease in PTEN membrane translocation, and correspondingly inactivated AKT. Moreover, celecoxib could also upregulate PTEN protein expression by downregulating Sp1 expression, thereby leading to the activation of PTEN transcription. Our results suggested that COX-2 inhibitors could enhance radiosensitization at least partially by activating PTEN to antagonize radiation-induced AKT activation. - Highlights: • COX-2 inhibitor, celecoxib, could enhance radiosensitization. • Radiation induced PTEN inactivation (phosphorylation) and AKT activation. • COX-2 inhibitor induced PTEN expression and activation, and inactivated AKT. • COX-2 inhibitor enhanced radiosensitization through activating PTEN.

  3. Activating PTEN by COX-2 inhibitors antagonizes radiation-induced AKT activation contributing to radiosensitization

    International Nuclear Information System (INIS)

    Meng, Zhen; Gan, Ye-Hua

    2015-01-01

    Radiotherapy is still one of the most effective nonsurgical treatments for many tumors. However, radioresistance remains a major impediment to radiotherapy. Although COX-2 inhibitors can induce radiosensitization, the underlying mechanism is not fully understood. In this study, we showed that COX-2 selective inhibitor celecoxib enhanced the radiation-induced inhibition of cell proliferation and apoptosis in HeLa and SACC-83 cells. Treatment with celecoxib alone dephosphorylated phosphatase and tensin homolog deleted on chromosome ten (PTEN), promoted PTEN membrane translocation or activation, and correspondingly dephosphorylated or inactivated protein kinase B (AKT). By contrast, treatment with radiation alone increased PTEN phosphorylation, inhibited PTEN membrane translocation and correspondingly activated AKT in the two cell lines. However, treatment with celecoxib or another COX-2 selective inhibitor (valdecoxib) completely blocked radiation-induced increase of PTEN phosphorylation, rescued radiation-induced decrease in PTEN membrane translocation, and correspondingly inactivated AKT. Moreover, celecoxib could also upregulate PTEN protein expression by downregulating Sp1 expression, thereby leading to the activation of PTEN transcription. Our results suggested that COX-2 inhibitors could enhance radiosensitization at least partially by activating PTEN to antagonize radiation-induced AKT activation. - Highlights: • COX-2 inhibitor, celecoxib, could enhance radiosensitization. • Radiation induced PTEN inactivation (phosphorylation) and AKT activation. • COX-2 inhibitor induced PTEN expression and activation, and inactivated AKT. • COX-2 inhibitor enhanced radiosensitization through activating PTEN

  4. N'-formylkynurenine-photosensitized inactivation of bacteriophage

    International Nuclear Information System (INIS)

    Walrant, P.; Santus, R.; Redpath, J.L.; Pileni, M.P.

    1976-01-01

    Measurements have been made of the sensitizing properties of N'-formylkynurenine (FK) on bacteriophages, as part of a wider study of FK photosensitization of systems which have both protein and DNA components. Suspensions of bacteriophages T 6 and T 7 were near-U.V. (lambda > 320 nm) irradiated in solutions saturated with either O 2 or He in the presence of 5 x 10 -4 M FK. The survival curves obtained demonstrated that FK can act as a photosensitizer for biological inactivation. The involvement of singlet oxygen as one factor in this FK sensitized inactivation was clearly demonstrated by the increased rate of inactivation when the phage were suspended in O 2 -saturated D 2 O, in place of water, during irradiation. The complex mechanism of phage inactivation must involve direct interaction between excited FK and substrate, as well as singlet oxygen. FK is therefore a new natural photosensitizer of significance in cell photochemistry induced by sunlight. (U.K.)

  5. Outrunning the Red Queen: bystander activation as a means of outpacing innate immune subversion by intracellular pathogens.

    Science.gov (United States)

    Holmgren, Alicia M; McConkey, Cameron A; Shin, Sunny

    2017-01-01

    Originally described by the late evolutionary biologist Leigh Van Valen, the Red Queen hypothesis posits that the evolutionary arms race between hosts and their pathogens selects for discrete, genetically encoded events that lead to competitive advantages over the other species. Examples of immune evasion strategies are seen throughout the co-evolution of the mammalian immune system and pathogens, such as the enzymatic inactivation of nuclear factor-κB signaling or host translation by pathogen-encoded virulence factors. Such immunoevasive maneuvers would be expected to select for the evolution of innate immune counterstrategies. Recent advances in our understanding of host immunity and microbial pathogenesis have provided insight into a particular innate immune adaptation, termed bystander activation. Bystander activation occurs as a consequence of infected cells alerting and instructing neighboring uninfected cells to produce inflammatory mediators, either through direct cell contact or paracrine signals. Thus, bystander activation can allow the immune system to overcome the ability of pathogens to disarm immune signaling in directly infected cells. This review presents an overview of the general hallmarks of bystander activation and their emerging role in innate immunity to intracellular pathogens, as well as examples of recent mechanistic discoveries relating to the bystander activation during infection with specific pathogens relevant to human health and disease.

  6. Physical inactivation and stabilization of sludges

    International Nuclear Information System (INIS)

    Alexandre, D.

    1979-07-01

    High temperature conditioning of sludge is a stabilization process that insures sterilization. Both thermal pasteurization and irradiation are inactivation processes. Viruses and parasites are inactivated at 70-80 0 C. Total bacterial destruction requires higher temperatures and/or detention time. Radio sensitivity of pathogens and pertinent treatment parameters are examined. If sludge is to be land disposed, disinfection requires irradiation doses ranging 500 Krad; if cattle feeding is considered, the required dose is 1 Mrad

  7. Microbial Inactivation by Ultrasound Assisted Supercritical Fluids

    Science.gov (United States)

    Benedito, Jose; Ortuño, Carmen; Castillo-Zamudio, Rosa Isela; Mulet, Antonio

    A method combining supercritical carbon dioxide (SC-CO2) and high power ultrasound (HPU) has been developed and tested for microbial/enzyme inactivation purposes, at different process conditions for both liquid and solid matrices. In culture media, using only SC-CO2, the inactivation rate of E. coli and S. cerevisiae increased with pressure and temperature; and the total inactivation (7-8 log-cycles) was attained after 25 and 140 min of SC-CO2 (350 bar, 36 °C) treatment, respectively. Using SC-CO2+HPU, the time for the total inactivation of both microorganisms was reduced to only 1-2 min, at any condition selected. The SC-CO2+HPU inactivation of both microorganisms was slower in juices (avg. 4.9 min) than in culture media (avg. 1.5 min). In solid samples (chicken, turkey ham and dry-cured pork cured ham) treated with SC-CO2 and SC-CO2+HPU, the inactivation rate of E. coli increased with temperature. The application of HPU to the SC-CO2 treatments accelerated the inactivation rate of E. coli and that effect was more pronounced in treatments with isotonic solution surrounding the solid food samples. The application of HPU enhanced the SC-CO2 inactivation mechanisms of microorganisms, generating a vigorous agitation that facilitated the CO2 solubilization and the mass transfer process. The cavitation generated by HPU could damage the cell walls accelerating the extraction of vital constituents and the microbial death. Thus, using the combined technique, reasonable industrial processing times and mild process conditions could be used which could result into a cost reduction and lead to the minimization in the food nutritional and organoleptic changes.

  8. Mechanisms of resistance to immune checkpoint inhibitors.

    Science.gov (United States)

    Jenkins, Russell W; Barbie, David A; Flaherty, Keith T

    2018-01-01

    Immune checkpoint inhibitors (ICI) targeting CTLA-4 and the PD-1/PD-L1 axis have shown unprecedented clinical activity in several types of cancer and are rapidly transforming the practice of medical oncology. Whereas cytotoxic chemotherapy and small molecule inhibitors ('targeted therapies') largely act on cancer cells directly, immune checkpoint inhibitors reinvigorate anti-tumour immune responses by disrupting co-inhibitory T-cell signalling. While resistance routinely develops in patients treated with conventional cancer therapies and targeted therapies, durable responses suggestive of long-lasting immunologic memory are commonly seen in large subsets of patients treated with ICI. However, initial response appears to be a binary event, with most non-responders to single-agent ICI therapy progressing at a rate consistent with the natural history of disease. In addition, late relapses are now emerging with longer follow-up of clinical trial populations, suggesting the emergence of acquired resistance. As robust biomarkers to predict clinical response and/or resistance remain elusive, the mechanisms underlying innate (primary) and acquired (secondary) resistance are largely inferred from pre-clinical studies and correlative clinical data. Improved understanding of molecular and immunologic mechanisms of ICI response (and resistance) may not only identify novel predictive and/or prognostic biomarkers, but also ultimately guide optimal combination/sequencing of ICI therapy in the clinic. Here we review the emerging clinical and pre-clinical data identifying novel mechanisms of innate and acquired resistance to immune checkpoint inhibition.

  9. Innate Immune Activation Can Trigger Experimental Spondyloarthritis in HLA-B27/Huβ2m Transgenic Rats

    Directory of Open Access Journals (Sweden)

    Melissa N. van Tok

    2017-08-01

    Full Text Available Spondyloarthritis (SpA does not display the typical features of auto-immune disease. Despite the strong association with MHC class I, CD8+ T cells are not required for disease induction in the HLA-B27/Huβ2m transgenic rats. We used Lewis HLA-B27/Huβ2m transgenic rats [21-3 × 283-2]F1, HLA-B7/Huβ2m transgenic rats [120-4 × 283-2]F1, and wild-type rats to test our hypothesis that SpA may be primarily driven by the innate immune response. In vitro, splenocytes were stimulated with heat-inactivated Mycobacterium tuberculosis and cytokine expression and production was measured. In vivo, male and female rats were immunized with 30, 60, or 90 µg of heat-inactivated M. tuberculosis and clinically monitored for spondylitis and arthritis development. After validation of the model, we tested whether prophylactic and therapeutic TNF targeting affected spondylitis and arthritis. In vitro stimulation with heat-inactivated M. tuberculosis strongly induced gene expression of pro-inflammatory cytokines such as TNF, IL-6, IL-1α, and IL-1β, in the HLA-B27 transgenic rats compared with controls. In vivo immunization induced an increased spondylitis and arthritis incidence and an accelerated and synchronized onset of spondylitis and arthritis in HLA-B27 transgenic males and females. Moreover, immunization overcame the protective effect of orchiectomy. Prophylactic TNF targeting resulted in delayed spondylitis and arthritis development and reduced arthritis severity, whereas therapeutic TNF blockade did not affect spondylitis and arthritis severity. Collectively, these data indicate that innate immune activation plays a role in the initiation of HLA-B27-associated disease and allowed to establish a useful in vivo model to study the cellular and molecular mechanisms of disease initiation and progression.

  10. Tweaking Innate Immunity: The Promise of Innate Immunologicals as Anti-Infectives

    Directory of Open Access Journals (Sweden)

    Kenneth L Rosenthal

    2006-01-01

    Full Text Available New and exciting insights into the importance of the innate immune system are revolutionizing our understanding of immune defense against infections, pathogenesis, and the treatment and prevention of infectious diseases. The innate immune system uses multiple families of germline-encoded pattern recognition receptors (PRRs to detect infection and trigger a variety of antimicrobial defense mechanisms. PRRs are evolutionarily highly conserved and serve to detect infection by recognizing pathogen-associated molecular patterns that are unique to microorganisms and essential for their survival. Toll-like receptors (TLRs are transmembrane signalling receptors that activate gene expression programs that result in the production of proinflammatory cytokines and chemokines, type I interferons and antimicrobial factors. Furthermore, TLR activation facilitates and guides activation of adaptive immune responses through the activation of dendritic cells. TLRs are localized on the cell surface and in endosomal/lysosomal compartments, where they detect bacterial and viral infections. In contrast, nucleotide-binding oligomerization domain proteins and RNA helicases are located in the cell cytoplasm, where they serve as intracellular PRRs to detect cytoplasmic infections, particularly viruses. Due to their ability to enhance innate immune responses, novel strategies to use ligands, synthetic agonists or antagonists of PRRs (also known as 'innate immunologicals' can be used as stand-alone agents to provide immediate protection or treatment against bacterial, viral or parasitic infections. Furthermore, the newly appreciated importance of innate immunity in initiating and shaping adaptive immune responses is contributing to our understanding of vaccine adjuvants and promises to lead to improved next-generation vaccines.

  11. Serum proteomics reveals systemic dysregulation of innate immunity in type 1 diabetes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qibin; Fillmore, Thomas L.; Schepmoes, Athena A.; Clauss, Therese RW; Gritsenko, Marina A.; Mueller, Patricia W.; Rewers, Marian; Atkinson, Mark A.; Smith, Richard D.; Metz, Thomas O.

    2013-01-14

    Using global liquid chromatography-mass spectrometry (LC-MS)-based proteomics analyses, we identified 24 serum proteins significantly variant between those with type 1 diabetes and healthy controls. Functionally, these proteins represent innate immune responses, the activation cascade of complement, inflammatory responses and blood coagulation. Targeted verification analyses were performed on 52 surrogate peptides representing these proteins with serum samples from an antibody standardization program cohort of 100 healthy control and 50 type 1 diabetic subjects, and 16 peptides were verified having very good discriminating power, with areas under the receiver operator characteristic curve ≥ 0.8. Further validation with blinded serum samples from an independent cohort (10 healthy control and 10 type 1 diabetic) demonstrated that peptides from platelet basic protein and C1 inhibitor achieved both 100% sensitivity and 100% specificity for classification of samples. The disease specificity of these proteins was assessed using serum from 50 age matched type 2 diabetic individuals, and a subset of proteins, particularly C1 inhibitor were exceptionally good discriminators between these two forms of diabetes. The panel of biomarkers distinguishing those with type 1 diabetes from healthy control and type 2 diabetes suggests dysregulated innate immune responses may be associated with the development of this disorder.

  12. Chemical modulators of the innate immune response alter gypsy moth larval susceptibility to Bacillus thuringiensis

    Directory of Open Access Journals (Sweden)

    Broderick Nichole A

    2010-04-01

    Full Text Available Abstract Background The gut comprises an essential barrier that protects both invertebrate and vertebrate animals from invasion by microorganisms. Disruption of the balanced relationship between indigenous gut microbiota and their host can result in gut bacteria eliciting host responses similar to those caused by invasive pathogens. For example, ingestion of Bacillus thuringiensis by larvae of some species of susceptible Lepidoptera can result in normally benign enteric bacteria exerting pathogenic effects. Results We explored the potential role of the insect immune response in mortality caused by B. thuringiensis in conjunction with gut bacteria. Two lines of evidence support such a role. First, ingestion of B. thuringiensis by gypsy moth larvae led to the depletion of their hemocytes. Second, pharmacological agents that are known to modulate innate immune responses of invertebrates and vertebrates altered larval mortality induced by B. thuringiensis. Specifically, Gram-negative peptidoglycan pre-treated with lysozyme accelerated B. thuringiensis-induced killing of larvae previously made less susceptible due to treatment with antibiotics. Conversely, several inhibitors of the innate immune response (eicosanoid inhibitors and antioxidants increased the host's survival time following ingestion of B. thuringiensis. Conclusions This study demonstrates that B. thuringiensis infection provokes changes in the cellular immune response of gypsy moth larvae. The effects of chemicals known to modulate the innate immune response of many invertebrates and vertebrates, including Lepidoptera, also indicate a role of this response in B. thuringiensis killing. Interactions among B. thuringiensis toxin, enteric bacteria, and aspects of the gypsy moth immune response may provide a novel model to decipher mechanisms of sepsis associated with bacteria of gut origin.

  13. ELISA analysis of soybean trypsin inhibitors in processed foods.

    Science.gov (United States)

    Brandon, D L; Bates, A H; Friedman, M

    1991-01-01

    Soybean proteins are widely used in human foods in a variety of forms, including infant formulas, flour, protein concentrates, protein isolates, soy sauces, textured soy fibers, and tofu. The presence of inhibitors of digestive enzymes in soy proteins impairs the nutritional quality and possibly the safety of soybeans and other legumes. Processing, based on the use of heat or fractionation of protein isolates, does not completely inactivate or remove these inhibitors, so that residual amounts of inhibitors are consumed by animals and humans. New monoclonal antibody-based immunoassays can measure low levels of the soybean Kunitz trypsin inhibitor (KTI) and the Bowman-Birk trypsin and chymotrypsin inhibitor (BBI) and the Bowman-Birk foods. The enzyme-linked immunosorbent assay (ELISA) was used to measure the inhibitor content of soy concentrates, isolates, and flours, both heated and unheated; a commercial soy infant formula; KTI and BBI with rearranged disulfide bonds; browning products derived from heat-treatment of KTI with glucose and starch; and KTI exposed to high pH. The results indicate that even low inhibitor isolates contain significant amounts of specific inhibitors. Thus, infants on soy formula consume about 10 mg of KTI plus BBI per day. The immunoassays complement the established enzymatic assays of trypsin and chymotrypsin inhibitors, and have advantages in (a) measuring low levels of inhibitors in processed foods; and (b) differentiating between the Kunitz and Bowman-Birk inhibitors. The significance of our findings for food safety are discussed.

  14. Candida innate immunity at the mucosa.

    Science.gov (United States)

    Richardson, Jonathan P; Moyes, David L; Ho, Jemima; Naglik, Julian R

    2018-03-08

    The tremendous diversity in microbial species that colonise the mucosal surfaces of the human body is only now beginning to be fully appreciated. Distinguishing between the behaviour of commensal microbes and harmful pathogens that reside at mucosal sites in the body is a complex, and exquisitely fine-tuned process central to mucosal health. The fungal pathobiont Candida albicans is frequently isolated from mucosal surfaces with an asymptomatic carriage rate of approximately 60% in the human population. While normally a benign member of the microbiota, overgrowth of C. albicans often results in localised mucosal infection causing morbidity in otherwise healthy individuals, and invasive infection that often causes death in the absence of effective immune defence. C. albicans triggers numerous innate immune responses at mucosal surfaces, and detection of C. albicans hyphae in particular, stimulates the production of antimicrobial peptides, danger-associated molecular patterns and cytokines that function to reduce fungal burdens during infection. This review will summarise our current understanding of innate immune responses to C. albicans at mucosal surfaces. Copyright © 2018. Published by Elsevier Ltd.

  15. Fish innate immunity against intestinal helminths.

    Science.gov (United States)

    Dezfuli, B S; Bosi, G; DePasquale, J A; Manera, M; Giari, L

    2016-03-01

    Most individual fish in farmed and wild populations are infected with parasites. Upon dissection of fish, helminths from gut are often easily visible. Enteric helminths include several species of digeneans, cestodes, acanthocephalans and nematodes. Some insights into biology, morphology and histopathological effects of the main fish enteric helminths taxa will be described here. The immune system of fish, as that of other vertebrates, can be subdivided into specific and aspecific types, which in vivo act in concert with each other and indeed are interdependent in many ways. Beyond the small number of well-described models that exist, research focusing on innate immunity in fish against parasitic infections is lacking. Enteric helminths frequently cause inflammation of the digestive tract, resulting in a series of chemical and morphological changes in the affected tissues and inducing leukocyte migration to the site of infection. This review provides an overview on the aspecific defence mechanisms of fish intestine against helminths. Emphasis will be placed on the immune cellular response involving mast cells, neutrophils, macrophages, rodlet cells and mucous cells against enteric helminths. Given the relative importance of innate immunity in fish, and the magnitude of economic loss in aquaculture as a consequence of disease, this area deserves considerable attention and support. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Innate immunity orchestrates adipose tissue homeostasis.

    Science.gov (United States)

    Lin, Yi-Wei; Wei, Li-Na

    2017-06-23

    Obesity is strongly associated with multiple diseases including insulin resistance, type 2 diabetes, cardiovascular diseases, fatty liver disease, neurodegenerative diseases and cancers, etc. Adipose tissue (AT), mainly brown AT (BAT) and white AT (WAT), is an important metabolic and endocrine organ that maintains whole-body homeostasis. BAT contributes to non-shivering thermogenesis in a cold environment; WAT stores energy and produces adipokines that fine-tune metabolic and inflammatory responses. Obesity is often characterized by over-expansion and inflammation of WAT where inflammatory cells/mediators are abundant, especially pro-inflammatory (M1) macrophages, resulting in chronic low-grade inflammation and leading to insulin resistance and metabolic complications. Macrophages constitute the major component of innate immunity and can be activated as a M1 or M2 (anti-inflammatory) phenotype in response to environmental stimuli. Polarized M1 macrophage causes AT inflammation, whereas polarized M2 macrophage promotes WAT remodeling into the BAT phenotype, also known as WAT browning/beiging, which enhances insulin sensitivity and metabolic health. This review will discuss the regulation of AT homeostasis in relation to innate immunity.

  17. Innate Immunity Evasion by Dengue Virus

    Directory of Open Access Journals (Sweden)

    Ana Fernandez-Sesma

    2012-03-01

    Full Text Available For viruses to productively infect their hosts, they must evade or inhibit important elements of the innate immune system, namely the type I interferon (IFN response, which negatively influences the subsequent development of antigen-specific adaptive immunity against those viruses. Dengue virus (DENV can inhibit both type I IFN production and signaling in susceptible human cells, including dendritic cells (DCs. The NS2B3 protease complex of DENV functions as an antagonist of type I IFN production, and its proteolytic activity is necessary for this function. DENV also encodes proteins that antagonize type I IFN signaling, including NS2A, NS4A, NS4B and NS5 by targeting different components of this signaling pathway, such as STATs. Importantly, the ability of the NS5 protein to bind and degrade STAT2 contributes to the limited host tropism of DENV to humans and non-human primates. In this review, we will evaluate the contribution of innate immunity evasion by DENV to the pathogenesis and host tropism of this virus.

  18. Innate immunity evasion by Dengue virus.

    Science.gov (United States)

    Morrison, Juliet; Aguirre, Sebastian; Fernandez-Sesma, Ana

    2012-03-01

    For viruses to productively infect their hosts, they must evade or inhibit important elements of the innate immune system, namely the type I interferon (IFN) response, which negatively influences the subsequent development of antigen-specific adaptive immunity against those viruses. Dengue virus (DENV) can inhibit both type I IFN production and signaling in susceptible human cells, including dendritic cells (DCs). The NS2B3 protease complex of DENV functions as an antagonist of type I IFN production, and its proteolytic activity is necessary for this function. DENV also encodes proteins that antagonize type I IFN signaling, including NS2A, NS4A, NS4B and NS5 by targeting different components of this signaling pathway, such as STATs. Importantly, the ability of the NS5 protein to bind and degrade STAT2 contributes to the limited host tropism of DENV to humans and non-human primates. In this review, we will evaluate the contribution of innate immunity evasion by DENV to the pathogenesis and host tropism of this virus.

  19. Reaction of uridine diphosphate galactose 4-epimerase with a suicide inactivator

    International Nuclear Information System (INIS)

    Flentke, G.R.; Frey, P.A.

    1990-01-01

    UDPgalactose 4-epimerase from Escherichia coli is rapidly inactivated by the compounds uridine 5'-diphosphate chloroacetol (UDC) and uridine 5'-diphosphate bromoacetol (UCB). Both UDC and UDB inactivate the enzyme in neutral solution concomitant with the appearance of chromophores absorbing maximally at 325 and 328 nm, respectively. The reaction of UDC with the enzyme follows saturation kinetics characterized by a K D of 0.110 mM and k inact of 0.84 min -1 at pH 8.5 and ionic strength 0.2 M. The inactivation by UDC is competitively inhibited by competitive inhibitors of UDPgalactose 4-epimerase, and it is accompanied by the tight but noncovalent binding of UDC to the enzyme in a stoichiometry of 1 mol of UDC/mol of enzyme dimer, corresponding to 1 mol of UDC/mol of enzyme-bound NAD + . The inactivation of epimerase by uridine 5'-diphosphate [ 2 H 2 ]chloroacetol proceeds with a primary kinetic isotope effect (k H /k D ) of 1.4. The inactivation mechanism is proposed to involve a minimum of three steps: (a) reversible binding of UDC to the active site of UDPgalactose 4-epimerase; (b) enolization of the chloroacetol moiety of enzyme-bound UDC, catalyzed by an enzymic general base at the active site; (c) alkylation of the nicotinamide ring of NAD + at the active site by the chloroacetol enolate. The resulting adduct between UDC and NAD + is proposed to be the chromophore with λ max at 325 nm. The enzymic general base required to facilitate proton transfer in redox catalysis by this enzyme may be the general base that facilitates enolization of the chloroacetol moiety of UDC in the inactivation reaction

  20. Inactivation of pathogenic bacteria in food matrices: high pressure processing, photodynamic inactivation and pressure-assisted photodynamic inactivation

    Science.gov (United States)

    Cunha, A.; Couceiro, J.; Bonifácio, D.; Martins, C.; Almeida, A.; Neves, M. G. P. M. S.; Faustino, M. A. F.; Saraiva, J. A.

    2017-09-01

    Traditional food processing methods frequently depend on the application of high temperature. However, heat may cause undesirable changes in food properties and often has a negative impact on nutritional value and organoleptic characteristics. Therefore, reducing the microbial load without compromising the desirable properties of food products is still a technological challenge. High-pressure processing (HPP) can be classified as a cold pasteurization technique, since it is a non-thermal food preservation method that uses hydrostatic pressure to inactivate spoilage microorganisms. At the same time, it increases shelf life and retains the original features of food. Photodynamic inactivation (PDI) is also regarded as promising approach for the decontamination of food matrices. In this case, the inactivation of bacterial cells is achieved by the cytotoxic effects of reactive oxygens species (ROS) produced from the combined interaction of a photosensitizer molecule, light and oxygen. This short review examines some recent developments on the application of HPP and PDI with food-grade photosensitizers for the inactivation of listeriae, taken as a food pathogen model. The results of a proof-of-concept trial of the use of high-pressure as a coadjutant to increase the efficiency of photodynamic inactivation of bacterial endospores is also addressed.

  1. Innate resistance to avian influenza: Of MHC's and Mx proteins

    Science.gov (United States)

    Avian influenza (AI) is an economically important virus of poultry that has significant impact on global trade. Recently, increased attention to animal genomics has been applied to enhance innate resistance to infectious diseases in poultry. Two known contributors to innate resistance are the host m...

  2. Innate immunological function of TH2 cells in vivo

    Science.gov (United States)

    Th2 cells produce IL-13 when stimulated by papain or house dust mites (HDM) and induce eosinophilic inflammation. This innate response of cells of the adaptive immune system is dependent on IL-33-, not T cell receptor-, based stimulation. While type 2 innate lymphoid cells (ILC2s) are the dominant ...

  3. Cell-autonomous stress responses in innate immunity.

    Science.gov (United States)

    Moretti, Julien; Blander, J Magarian

    2017-01-01

    The innate immune response of phagocytes to microbes has long been known to depend on the core signaling cascades downstream of pattern recognition receptors (PRRs), which lead to expression and production of inflammatory cytokines that counteract infection and induce adaptive immunity. Cell-autonomous responses have recently emerged as important mechanisms of innate immunity. Either IFN-inducible or constitutive, these processes aim to guarantee cell homeostasis but have also been shown to modulate innate immune response to microbes and production of inflammatory cytokines. Among these constitutive cell-autonomous responses, autophagy is prominent and its role in innate immunity has been well characterized. Other stress responses, such as metabolic stress, the ER stress/unfolded protein response, mitochondrial stress, or the DNA damage response, seem to also be involved in innate immunity, although the precise mechanisms by which they regulate the innate immune response are not yet defined. Of importance, these distinct constitutive cell-autonomous responses appear to be interconnected and can also be modulated by microbes and PRRs, which add further complexity to the interplay between innate immune signaling and cell-autonomous responses in the mediation of an efficient innate immune response. © Society for Leukocyte Biology.

  4. Modulation of the innate immune responses in the striped ...

    African Journals Online (AJOL)

    Thus, most of the innate non-specific immune responses are inducible though they are constitutive of fish immune system exhibiting a basal level of activity even in the absence of pathogen challenge. Keywords: Aeromonas hydrophila, Experimental challenge, Innate immune response, Striped snakehead murrel ...

  5. Innatism, Concept Formation, Concept Mastery and Formal Education

    Science.gov (United States)

    Winch, Christopher

    2015-01-01

    This article will consider the claim that the possession of concepts is innate rather than learned. Innatism about concept learning is explained through consideration of the work of Fodor and Chomsky. First, an account of concept formation is developed. Second the argument against the claim that concepts are learned through the construction of a…

  6. Osmolytes protect mitochondrial F(0)F(1)-ATPase complex against pressure inactivation.

    Science.gov (United States)

    Saad-Nehme, J; Silva, J L; Meyer-Fernandes, J R

    2001-03-09

    We have previously reported that carbohydrates and polyols protect different enzymes against thermal inactivation and deleterious effects promoted by guanidinium chloride and urea. Here, we show that these osmolytes (carbohydrates, polyols and methylamines) protect mitochondrial F(0)F(1)-ATPase against pressure inactivation. Pressure stability of mitochondrial F(0)F(1)-ATPase complex by osmolytes was studied using preparations of membrane-bound submitochondrial particles depleted or containing inhibitor protein (IP). Hydrostatic pressure in the range from 0.5 to 2.0 kbar causes inactivation of submitochondrial particles depleted of IP (AS particles). However, the osmolytes prevent pressure inactivation of the complex in a dose-dependent manner, remaining up to 80% of hydrolytic activity at the highest osmolyte concentration. Submitochondrial particles containing IP (MgATP-SMP) exhibit low ATPase activity and dissociation of IP increases the hydrolytic activity of the enzyme. MgATP-SMP subjected to pressure (2.2 kbar, for 1 h) and then preincubated at 42 degrees C to undergo activation did not have an increase in activity. However, particles pressurized in the presence of 1.5 M of sucrose or 3.0 M of glucose were protected and after preincubation at 42 degrees C, showed an activation very similarly to those kept at 1 bar. In accordance with the preferential hydration theory, we believe that osmolytes reduce to a minimum the surface of the macromolecule to be hydrated and oppose pressure-induced alterations of the native fold that are driven by hydration forces.

  7. HIV Exploits Antiviral Host Innate GCN2-ATF4 Signaling for Establishing Viral Replication Early in Infection.

    Science.gov (United States)

    Jiang, Guochun; Santos Rocha, Clarissa; Hirao, Lauren A; Mendes, Erica A; Tang, Yuyang; Thompson, George R; Wong, Joseph K; Dandekar, Satya

    2017-05-02

    Antiviral innate host defenses against acute viral infections include suppression of host protein synthesis to restrict viral protein production. Less is known about mechanisms by which viral pathogens subvert host antiviral innate responses for establishing their replication and dissemination. We investigated early innate defense against human immunodeficiency virus (HIV) infection and viral evasion by utilizing human CD4 + T cell cultures in vitro and a simian immunodeficiency virus (SIV) model of AIDS in vivo Our data showed that early host innate defense against the viral infection involves GCN2-ATF4 signaling-mediated suppression of global protein synthesis, which is exploited by the virus for supporting its own replication during early viral infection and dissemination in the gut mucosa. Suppression of protein synthesis and induction of protein kinase GCN2-ATF4 signaling were detected in the gut during acute SIV infection. These changes diminished during chronic viral infection. HIV replication induced by serum deprivation in CD4 + T cells was linked to the induction of ATF4 that was recruited to the HIV long terminal repeat (LTR) to promote viral transcription. Experimental inhibition of GCN2-ATF4 signaling either by a specific inhibitor or by amino acid supplementation suppressed the induction of HIV expression. Enhancing ATF4 expression through selenium administration resulted in reactivation of latent HIV in vitro as well as ex vivo in the primary CD4 + T cells isolated from patients receiving suppressive antiretroviral therapy (ART). In summary, HIV/SIV exploits the early host antiviral response through GCN2-ATF4 signaling by utilizing ATF4 for activating the viral LTR transcription to establish initial viral replication and is a potential target for HIV prevention and therapy. IMPORTANCE Understanding how HIV overcomes host antiviral innate defense response in order to establish infection and dissemination is critical for developing prevention and

  8. TFPI-2 is a putative tumor suppressor gene frequently inactivated by promoter hypermethylation in nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Wang, Shumin; Ma, Ning; Murata, Mariko; Huang, Guangwu; Zhang, Zhe; Xiao, Xue; Zhou, Xiaoying; Huang, Tingting; Du, Chunping; Yu, Nana; Mo, Yingxi; Lin, Longde; Zhang, Jinyan

    2010-01-01

    Epigenetic silencing of tumor suppressor genes play important roles in NPC tumorgenesis. Tissue factor pathway inhibitor-2 (TFPI-2), is a protease inhibitor. Recently, TFPI-2 was suggested to be a tumor suppressor gene involved in tumorigenesis and metastasis in some cancers. In this study, we investigated whether TFPI-2 was inactivated epigenetically in nasopharyngeal carcinoma (NPC). Transcriptional expression levels of TFPI-2 was evaluated by RT-PCR. Methylation status were investigated by methylation specific PCR and bisulfate genomic sequencing. The role of TFPI-2 as a tumor suppressor gene in NPC was addressed by re-introducing TFPI-2 expression into the NPC cell line CNE2. TFPI-2 mRNA transcription was inactivated in NPC cell lines. TFPI-2 was aberrantly methylated in 66.7% (4/6) NPC cell lines and 88.6% (62/70) of NPC primary tumors, but not in normal nasopharyngeal epithelia. TFPI-2 expression could be restored in NPC cells after demethylation treatment. Ectopic expression of TFPI-2 in NPC cells induced apoptosis and inhibited cell proliferation, colony formation and cell migration. Epigenetic inactivation of TFPI-2 by promoter hypermethylation is a frequent and tumor specific event in NPC. TFPI-2 might be considering as a putative tumor suppressor gene in NPC

  9. Innate immune response development in nestling tree swallows

    Science.gov (United States)

    Stambaugh, T.; Houdek, B.J.; Lombardo, M.P.; Thorpe, P.A.; Caldwell, Hahn D.

    2011-01-01

    We tracked the development of innate immunity in nestling Tree Swallows (Tachycineta bicolor) and compared it to that of adults using blood drawn from nestlings during days 6, 12, and 18 of the ???20-day nestling period and from adults. Innate immunity was characterized using an in vitro assay of the ability of whole blood to kill Escherichia coli. The ability of whole blood to kill E. coli increased as nestlings matured. Neither this component of innate immunity nor right wing chord length on day18 were as developed as in adults indicating that development of the innate immune system and growth both continued after fledging. Narrow sense heritability analyses suggest that females with strong immune responses produced nestlings with strong immune responses. These data suggest nestling Tree Swallows allocated sufficient energy to support rapid growth to enable fledging by day 18, but that further development of innate immunity occurred post-fledging. ?? 2011 by the Wilson Ornithological Society.

  10. Are innate immune signaling pathways in plants and animals conserved?

    Science.gov (United States)

    Ausubel, Frederick M

    2005-10-01

    Although adaptive immunity is unique to vertebrates, the innate immune response seems to have ancient origins. Common features of innate immunity in vertebrates, invertebrate animals and plants include defined receptors for microbe-associated molecules, conserved mitogen-associated protein kinase signaling cascades and the production of antimicrobial peptides. It is commonly reported that these similarities in innate immunity represent a process of divergent evolution from an ancient unicellular eukaryote that pre-dated the divergence of the plant and animal kingdoms. However, at present, data suggest that the seemingly analogous regulatory modules used in plant and animal innate immunity are a consequence of convergent evolution and reflect inherent constraints on how an innate immune system can be constructed.

  11. Innate cell communication kick-starts pathogen-specific immunity

    Science.gov (United States)

    Rivera, Amariliz; Siracusa, Mark C.; Yap, George S.; Gause, William C.

    2016-01-01

    Innate cells are responsible for the rapid recognition of infection and mediate essential mechanisms of pathogen elimination, and also facilitate adaptive immune responses. We review here the numerous intricate interactions among innate cells that initiate protective immunity. The efficient eradication of pathogens depends on the coordinated actions of multiple cells, including innate cells and epithelial cells. Rather than acting as isolated effector cells, innate cells are in constant communication with other responding cells of the immune system, locally and distally. These interactions are critically important for the efficient control of primary infections as well for the development of ‘trained’ innate cells that facilitate the rapid elimination of homologous or heterologous infections. PMID:27002843

  12. Cellular Innate Immunity: An Old Game with New Players.

    Science.gov (United States)

    Gasteiger, Georg; D'Osualdo, Andrea; Schubert, David A; Weber, Alexander; Bruscia, Emanuela M; Hartl, Dominik

    2017-01-01

    Innate immunity is a rapidly evolving field with novel cell types and molecular pathways being discovered and paradigms changing continuously. Innate and adaptive immune responses are traditionally viewed as separate from each other, but emerging evidence suggests that they overlap and mutually interact. Recently discovered cell types, particularly innate lymphoid cells and myeloid-derived suppressor cells, are gaining increasing attention. Here, we summarize and highlight current concepts in the field, focusing on innate immune cells as well as the inflammasome and DNA sensing which appear to be critical for the activation and orchestration of innate immunity, and may provide novel therapeutic opportunities for treating autoimmune, autoinflammatory, and infectious diseases. © 2016 S. Karger AG, Basel.

  13. Innate sexuality determines the mechanisms of telomere maintenance.

    Science.gov (United States)

    Tasaka, Kenta; Yokoyama, Naoki; Nodono, Hanae; Hoshi, Motonori; Matsumoto, Midori

    2013-01-01

    Recently, telomere length has been shown to be differentially regulated in asexually and sexually reproducing planarians. In addition, it was found that asexual worms maintain telomere length somatically during reproduction by fission or when regeneration is induced by amputation, whereas sexual worms only achieve telomere elongation through sexual reproduction. We have established an experimental bioassay system to induce switching from asexual to sexual reproduction in planarians, that is, sexualization. In this study, the relationship between the reproductive mode and telomere maintenance was investigated using innate asexually reproducing worms, innate sexually reproducing worms, and experimentally sexualized worms. Here, we show that innate asexual planarians maintain telomere length during cell division and that innate sexual planarians exhibit telomere shortening. However, experimental sexualized worms maintain telomere length during cell division. These results indicate that innate sexuality is linked to the mechanism of telomere maintenance.

  14. MAP Kinase Cascades in Plant Innate Immunity

    Directory of Open Access Journals (Sweden)

    Magnus Wohlfahrt Rasmussen

    2012-07-01

    Full Text Available Plant mitogen-activated protein kinase (MAPK cascades generally transduce extracellular stimuli into cellular responses. These stimuli include the perception of pathogen-associated molecular patterns (PAMPs by host transmembrane pattern recognition receptors (PRRs which trigger MAPK-dependent innate immune responses. In the model Arabidopsis, molecular genetic evidence implicates a number of MAPK cascade components in PAMP signaling, and in responses to immunity-related phytohormones such as ethylene, jasmonate and salicylate. In a few cases, cascade components have been directly linked to the transcription of target genes or to the regulation of phytohormone synthesis. Thus MAPKs are obvious targets for bacterial effector proteins and are likely guardees of resistance (R proteins, which mediate defense signaling in response to the action of effectors, or effector-triggered immunity (ETI. This mini-review discusses recent progress in this field with a focus on the Arabidopsis MAPKs MPK3, 4, 6 and 11 in their apparent pathways.

  15. Ocular Surface as Barrier of Innate Immunity

    Science.gov (United States)

    Bolaños-Jiménez, Rodrigo; Navas, Alejandro; López-Lizárraga, Erika Paulina; de Ribot, Francesc March; Peña, Alexandra; Graue-Hernández, Enrique O; Garfias, Yonathan

    2015-01-01

    Sight is one of the most important senses that human beings possess. The ocular system is a complex structure equipped with mechanisms that prevent or limit damage caused by physical, chemical, infectious and environmental factors. These mechanisms include a series of anatomical, cellular and humoral factors that have been a matter of study. The cornea is not only the most powerful and important lens of the optical system, but also, it has been involved in many other physiological and pathological processes apart from its refractive nature; the morphological and histological properties of the cornea have been thoroughly studied for the last fifty years; drawing attention in its molecular characteristics of immune response. This paper will review the anatomical and physiological aspects of the cornea, conjunctiva and lacrimal apparatus, as well as the innate immunity at the ocular surface. PMID:26161163

  16. Interactions between Innate Immunity, Microbiota, and Probiotics.

    Science.gov (United States)

    Giorgetti, GianMarco; Brandimarte, Giovanni; Fabiocchi, Federica; Ricci, Salvatore; Flamini, Paolo; Sandri, Giancarlo; Trotta, Maria Cristina; Elisei, Walter; Penna, Antonio; Lecca, Piera Giuseppina; Picchio, Marcello; Tursi, Antonio

    2015-01-01

    The term "microbiota" means genetic inheritance associated with microbiota, which is about 100 times larger than the guest. The tolerance of the resident bacterial flora is an important key element of immune cell function. A key role in the interaction between the host and the microbiota is played by Paneth cell, which is able to synthesize and secrete proteins and antimicrobial peptides, such as α/β defensins, cathelicidin, 14 β-glycosidases, C-type lectins, and ribonuclease, in response to various stimuli. Recent studies found probiotics able to preserve intestinal homeostasis by downmodulating the immune response and inducing the development of T regulatory cells. Specific probiotic strain, as well as probiotic-driven metabolic products called "postbiotics," has been recently recognized and it is able to influence innate immunity. New therapeutic approaches based on probiotics are now available, and further treatments based on postbiotics will come in the future.

  17. Deciphering the Innate Lymphoid Cell Transcriptional Program

    Directory of Open Access Journals (Sweden)

    Cyril Seillet

    2016-10-01

    Full Text Available Innate lymphoid cells (ILCs are enriched at mucosal surfaces, where they provide immune surveillance. All ILC subsets develop from a common progenitor that gives rise to pre-committed progenitors for each of the ILC lineages. Currently, the temporal control of gene expression that guides the emergence of these progenitors is poorly understood. We used global transcriptional mapping to analyze gene expression in different ILC progenitors. We identified PD-1 to be specifically expressed in PLZF+ ILCp and revealed that the timing and order of expression of the transcription factors NFIL3, ID2, and TCF-1 was critical. Importantly, induction of ILC lineage commitment required only transient expression of NFIL3 prior to ID2 and TCF-1 expression. These findings highlight the importance of the temporal program that permits commitment of progenitors to the ILC lineage, and they expand our understanding of the core transcriptional program by identifying potential regulators of ILC development.

  18. Innate immune evasion strategies of influenza viruses.

    Science.gov (United States)

    Hale, Benjamin G; Albrecht, Randy A; García-Sastre, Adolfo

    2010-01-01

    Influenza viruses are globally important human respiratory pathogens. These viruses cause seasonal epidemics and occasional worldwide pandemics, both of which can vary significantly in disease severity. The virulence of a particular influenza virus strain is partly determined by its success in circumventing the host immune response. This article briefly reviews the innate mechanisms that host cells have evolved to resist virus infection, and outlines the plethora of strategies that influenza viruses have developed in order to counteract such powerful defences. The molecular details of this virus-host interplay are summarized, and the ways in which research in this area is being applied to the rational design of protective vaccines and novel antivirals are discussed.

  19. Bim nuclear translocation and inactivation by viral interferon regulatory factor.

    Directory of Open Access Journals (Sweden)

    Young Bong Choi

    2010-08-01

    Full Text Available Viral replication efficiency is in large part governed by the ability of viruses to counteract pro-apoptotic signals induced by infection of the host cell. Human herpesvirus 8 (HHV-8 uses several strategies to block the host's innate antiviral defenses via interference with interferon and apoptotic signaling. Contributors include the four viral interferon regulatory factors (vIRFs 1-4, which function in dominant negative fashion to block cellular IRF activities in addition to targeting IRF signaling-induced proteins such as p53 and inhibiting other inducers of apoptosis such as TGFbeta receptor-activated Smad transcription factors. Here we identify direct targeting by vIRF-1 of BH3-only pro-apoptotic Bcl-2 family member Bim, a key negative regulator of HHV-8 replication, to effect its inactivation via nuclear translocation. vIRF-1-mediated relocalization of Bim was identified in transfected cells, by both immunofluorescence assay and western analysis of fractionated cell extracts. Also, co-localization of vIRF-1 and Bim was detected in nuclei of lytically infected endothelial cells. In vitro co-precipitation assays using purified vIRF-1 and Bim revealed direct interaction between the proteins, and Bim-binding residues of vIRF-1 were mapped by deletion and point mutagenesis. Generation and experimental utilization of Bim-refractory vIRF-1 variants revealed the importance of vIRF-1:Bim interaction, specifically, in pro-replication and anti-apoptotic activity of vIRF-1. Furthermore, blocking of the interaction with cell-permeable peptide corresponding to the Bim-binding region of vIRF-1 confirmed the relevance of vIRF-1:Bim association to vIRF-1 pro-replication activity. To our knowledge, this is the first report of an IRF protein that interacts with a Bcl-2 family member and of nuclear sequestration of Bim or any other member of the family as a means of inactivation. The data presented reveal a novel mechanism utilized by a virus to control

  20. Pulmonary contusion primes systemic innate immunity responses.

    Science.gov (United States)

    Hoth, J Jason; Martin, R S; Yoza, Barbara K; Wells, Jonathan D; Meredith, J W; McCall, Charles E

    2009-07-01

    Traumatic injury may result in an exaggerated response to subsequent immune stimuli such as nosocomial infection. This "second hit" phenomenon and molecular mechanism(s) of immune priming by traumatic lung injury, specifically, pulmonary contusion, remain unknown. We used an animal model of pulmonary contusion to determine whether the injury resulted in priming of the innate immune response and to test the hypothesis that resuscitation fluids could attenuate the primed response to a second hit. Male, 8 to 9 weeks, C57/BL6 mice with a pulmonary contusion were challenged by a second hit of intratracheal administration of the Toll-like receptor 4 agonist, lipopolysaccharide (LPS, 50 microg) 24 hours after injury (injury + LPS). Other experimental groups were injury + vehicle or LPS alone. A separate group was injured and resuscitated by 4 cc/kg of hypertonic saline (HTS) or Lactated Ringer's (LR) resuscitation before LPS challenge. Mice were killed 4 hours after LPS challenge and blood, bronchoalveolar lavage, and tissue were isolated and analyzed. Data were analyzed using one-way analysis of variance with Bonferroni multiple comparison posttest for significant differences (*p < or = 0.05). Injury + LPS showed immune priming observed by lung injury histology and increased bronchoalveolar lavage neutrophilia, lung myeloperoxidase and serum IL-6, CXCL1, and MIP-2 levels when compared with injury + vehicle or LPS alone. After injury, resuscitation with HTS, but not Lactated Ringer's was more effective in attenuating the primed response to a second hit. Pulmonary contusion primes innate immunity for an exaggerated response to a second hit with the Toll-like receptor 4 agonist, LPS. We observed synergistic increases in inflammatory mediator expression in the blood and a more severe lung injury in injured animals challenged with LPS. This priming effect was reduced when HTS was used to resuscitate the animal after lung contusion.

  1. Alzheimer's disease: Innate immunity gone awry?

    Science.gov (United States)

    VanItallie, Theodore B

    2017-04-01

    Inflammation is an immune activity designed to protect the host from pathogens and noxious agents. In its low-intensity form, presence of an inflammatory process must be inferred from appropriate biomarkers. Occult neuroinflammation is not just secondary to Alzheimer's disease (AD) but may contribute to its pathogenesis and promote its progression. A leaky blood-brain barrier (BBB) has been observed in early AD and may play a role in its initiation and development. Studies of the temporal evolution of AD's biomarkers have shown that, in AD, the brain's amyloid burden correlates poorly with cognitive decline. In contrast, cognitive deficits in AD correlate well with synapse loss. Oligomeric forms of amyloid-beta (oAβs) can be synaptotoxic and evidence of their deposition inside synaptic terminals of cognition-associated neurons explains early memory loss in AD better than formation of extracellular Aβ plaques. Among innate immune cells that reside in the brain, microglia sense danger signals represented by proteins like oAβ and become activated by neuronal damage such as that caused by bacterial endotoxins. The resulting reactive microgliosis has been implicated in generating the chronic form of microglial activation believed to promote AD's development. Genome-wide association studies (GWASs) have yielded data from patients with sporadic AD indicating that its causes include genetic variation in the innate immune system. Recent preclinical studies have reported that β-hydroxybutyrate (βOHB) may protect the brain from the adverse effects of both the nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome and the deacetylation of histone. Consequently, there is an urgent need for clinical investigations designed to test whether an orally administered βOHB preparation, such as a ketone ester, can have a similar beneficial effect in human subjects. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Purification, characterization, thermal, and high-pressure inactivation of pectin methylesterase from bananas (cv Cavendish).

    Science.gov (United States)

    Ly Nguyen, B; Van Loey, A; Fachin, D; Verlent, I; Indrawati; Hendrickx, M; Hendrickx, I M

    2002-06-20

    Pectin methylesterase (PME) was extracted from bananas (cv Cavendish) and purified by affinity chromatography on a CNBr-Sepharose-PME inhibitor (PMEI) column. A single protein and PME activity peak was obtained. For banana PME, a biochemical characterization in terms of molar mass (MM), pI, and kinetic parameters was performed. In a second step, the thermal and high-pressure stability of the enzyme was studied. Isothermal inactivation of purified banana PME could be described by a first-order kinetic model in a temperature range of 65 degrees to 72.5 degrees C, whereas its isobaric-isothermal inactivation followed a fractional-conversion model. Banana PME was found to be more thermally stable compared with PMEs extracted from orange, tomato, and apple. Copyright 2002 Wiley Periodicals, Inc.

  3. Evolution of Innate Immunity: Clues from Invertebrates via Fish to Mammals

    Science.gov (United States)

    Buchmann, Kurt

    2014-01-01

    Host responses against invading pathogens are basic physiological reactions of all living organisms. Since the appearance of the first eukaryotic cells, a series of defense mechanisms have evolved in order to secure cellular integrity, homeostasis, and survival of the host. Invertebrates, ranging from protozoans to metazoans, possess cellular receptors, which bind to foreign elements and differentiate self from non-self. This ability is in multicellular animals associated with presence of phagocytes, bearing different names (amebocytes, hemocytes, coelomocytes) in various groups including animal sponges, worms, cnidarians, mollusks, crustaceans, chelicerates, insects, and echinoderms (sea stars and urchins). Basically, these cells have a macrophage-like appearance and function and the repair and/or fight functions associated with these cells are prominent even at the earliest evolutionary stage. The cells possess pathogen recognition receptors recognizing pathogen-associated molecular patterns, which are well-conserved molecular structures expressed by various pathogens (virus, bacteria, fungi, protozoans, helminths). Scavenger receptors, Toll-like receptors, and Nod-like receptors (NLRs) are prominent representatives within this group of host receptors. Following receptor–ligand binding, signal transduction initiates a complex cascade of cellular reactions, which lead to production of one or more of a wide array of effector molecules. Cytokines take part in this orchestration of responses even in lower invertebrates, which eventually may result in elimination or inactivation of the intruder. Important innate effector molecules are oxygen and nitrogen species, antimicrobial peptides, lectins, fibrinogen-related peptides, leucine rich repeats (LRRs), pentraxins, and complement-related proteins. Echinoderms represent the most developed invertebrates and the bridge leading to the primitive chordates, cephalochordates, and urochordates, in which many autologous genes

  4. Role of FAAH-like anandamide transporter in anandamide inactivation.

    Directory of Open Access Journals (Sweden)

    Kwannok Leung

    Full Text Available The endocannabinoid system modulates numerous physiological processes including nociception and reproduction. Anandamide (AEA is an endocannabinoid that is inactivated by cellular uptake followed by intracellular hydrolysis by fatty acid amide hydrolase (FAAH. Recently, FAAH-like anandamide transporter (FLAT, a truncated and catalytically-inactive variant of FAAH, was proposed to function as an intracellular AEA carrier and mediate its delivery to FAAH for hydrolysis. Pharmacological inhibition of FLAT potentiated AEA signaling and produced antinociceptive effects. Given that endocannabinoids produce analgesia through central and peripheral mechanisms, the goal of the current work was to examine the expression of FLAT in the central and peripheral nervous systems. In contrast to the original report characterizing FLAT, expression of FLAT was not observed in any of the tissues examined. To investigate the role of FLAT as a putative AEA binding protein, FLAT was generated from FAAH using polymerase chain reaction and further analyzed. Despite its low cellular expression, FLAT displayed residual catalytic activity that was sensitive to FAAH inhibitors and abolished following mutation of its catalytic serine. Overexpression of FLAT potentiated AEA cellular uptake and this appeared to be dependent upon its catalytic activity. Immunofluorescence revealed that FLAT localizes primarily to intracellular membranes and does not contact the plasma membrane, suggesting that its capability to potentiate AEA uptake may stem from its enzymatic rather than transport activity. Collectively, our data demonstrate that FLAT does not serve as a global intracellular AEA carrier, although a role in mediating localized AEA inactivation in mammalian tissues cannot be ruled out.

  5. Pentraxins in innate immunity: lessons from PTX3.

    Science.gov (United States)

    Deban, Livija; Jaillon, Sebastien; Garlanda, Cecilia; Bottazzi, Barbara; Mantovani, Alberto

    2011-01-01

    The innate immune system constitutes the first line of defence against microorganisms and plays a primordial role in the activation and regulation of adaptive immunity. The innate immune system is composed of a cellular arm and a humoral arm. Components of the humoral arm include members of the complement cascade and soluble pattern recognition molecules (PRMs). These fluid-phase PRMs represent the functional ancestors of antibodies and play a crucial role in the discrimination between self, non-self and modified-self. Moreover, evidence has been presented that these soluble PRMs participate in the regulation of inflammatory responses and interact with the cellular arm of the innate immune system. Pentraxins consist of a set of multimeric soluble proteins and represent the prototypic components of humoral innate immunity. Based on the primary structure of the protomer, pentraxins are divided into two groups: short pentraxins and long pentraxins. The short pentraxins C-reactive protein and serum amyloid P-component are produced by the liver and represent the main acute phase proteins in human and mouse, respectively. The long pentraxin PTX3 is produced by innate immunity cells (e.g. PMN, macrophages, dendritic cells), interacts with several ligands and plays an essential role in innate immunity, tuning inflammation and matrix deposition. PTX3 provides a paradigm for the mode of action of humoral innate immunity.

  6. A New Family of Lysozyme Inhibitors Contributing to Lysozyme Tolerance in Gram-Negative Bacteria

    OpenAIRE

    Callewaert, Lien; Aertsen, Abram; Deckers, Daphne; Vanoirbeek, Kristof G. A.; Vanderkelen, Lise; Van Herreweghe, Joris M.; Masschalck, Barbara; Nakimbugwe, Dorothy; Robben, Johan; Michiels, Chris W.

    2008-01-01

    Lysozymes are ancient and important components of the innate immune system of animals that hydrolyze peptidoglycan, the major bacterial cell wall polymer. Bacteria engaging in commensal or pathogenic interactions with an animal host have evolved various strategies to evade this bactericidal enzyme, one recently proposed strategy being the production of lysozyme inhibitors. We here report the discovery of a novel family of bacterial lysozyme inhibitors with widespread homologs in gram-negative...

  7. Inactivation of prion infectivity by ionizing rays

    Energy Technology Data Exchange (ETDEWEB)

    Gominet, M. [Ionisos, ZI les Chatinieres, F01120 Dagneux (France); Vadrot, C.; Austruy, G. [Paris V University, Central Pharmacy of Hospitals, 4 avenue de l' Observatoire, F-75006, Paris (France); Darbord, J.C. [Paris V University, Central Pharmacy of Hospitals, 4 avenue de l' Observatoire, F-75006, Paris (France)], E-mail: darbord@pharmacie.univ-paris5.fr

    2007-11-15

    Inactivation of prion deposits on medical devices or prion contamination in pharmaceutical raw materials is considered as impossible by using gamma irradiation. Early, the guideline WHO/CDS/CSR/APH/2000 has described irradiation as an ineffective process. But, in 2003, S. Miekka et al. noted radiation inactivation of prions in a particular application to purify human albumin, shown by the physical denaturation of the infectious protein (PrP). The aim of our study was to determine the inactivation of prions with a scrapie model (strain C506M3) by irradiating standardised preparations. Results: Gamma irradiation was partially effective, showing a 4-5 log reduction on exposure to 50 kGy. A characteristic effect-dose curve was not observed (25, 50 and 100 kGy), only an increase in the incubation period of the murine disease (229 days with 25 kGy to 290 days with 100 kGy) compared with 170 days without irradiation. Since the inactivation was not a total one, the observed effect is significant. It is proposed that further work be undertaken with the model to investigate the application of gamma radiation known levels of prion contamination.

  8. Bioinactivation: Software for modelling dynamic microbial inactivation.

    Science.gov (United States)

    Garre, Alberto; Fernández, Pablo S; Lindqvist, Roland; Egea, Jose A

    2017-03-01

    This contribution presents the bioinactivation software, which implements functions for the modelling of isothermal and non-isothermal microbial inactivation. This software offers features such as user-friendliness, modelling of dynamic conditions, possibility to choose the fitting algorithm and generation of prediction intervals. The software is offered in two different formats: Bioinactivation core and Bioinactivation SE. Bioinactivation core is a package for the R programming language, which includes features for the generation of predictions and for the fitting of models to inactivation experiments using non-linear regression or a Markov Chain Monte Carlo algorithm (MCMC). The calculations are based on inactivation models common in academia and industry (Bigelow, Peleg, Mafart and Geeraerd). Bioinactivation SE supplies a user-friendly interface to selected functions of Bioinactivation core, namely the model fitting of non-isothermal experiments and the generation of prediction intervals. The capabilities of bioinactivation are presented in this paper through a case study, modelling the non-isothermal inactivation of Bacillus sporothermodurans. This study has provided a full characterization of the response of the bacteria to dynamic temperature conditions, including confidence intervals for the model parameters and a prediction interval of the survivor curve. We conclude that the MCMC algorithm produces a better characterization of the biological uncertainty and variability than non-linear regression. The bioinactivation software can be relevant to the food and pharmaceutical industry, as well as to regulatory agencies, as part of a (quantitative) microbial risk assessment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Pulsed electric field inactivation in a microreactor

    NARCIS (Netherlands)

    Fox, M.B.

    2006-01-01

    Pulsed electric fields (PEF) is a novel, non-thermal pasteurization method which uses short, high electric field pulses to inactivate microorganisms. The advantage of a pasteurization method like PEF compared to regular heat pasteurization is that the taste, flavour, texture and nutritional value

  10. High Pressure Inactivation of HAV within Mussels

    Science.gov (United States)

    The potential of hepatitis A virus (HAV) to be inactivated within Mediterranean mussels (Mytilus galloprovincialis) and blue mussels (Mytilus edulis) by high pressure processing was evaluated. HAV was bioaccumulated within mussels to approximately 6-log10 PFU by exposure of mussels to HAV-contamina...

  11. Inactivation of Bacillus atrophaeus by OH radicals

    Science.gov (United States)

    Ono, Ryo; Yonetamari, Kenta; Tokumitsu, Yusuke; Yonemori, Seiya; Yasuda, Hachiro; Mizuno, Akira

    2016-08-01

    The inactivation of Bacillus atrophaeus by OH radicals is measured. This study aims to evaluate the bactericidal effects of OH radicals produced by atmospheric-pressure nonthermal plasma widely used for plasma medicine; however, in this study, OH radicals are produced by vacuum ultraviolet (VUV) photolysis of water vapor instead of plasma to allow the production of OH radicals with almost no other reactive species. A 172 nm VUV light from a Xe2 excimer lamp irradiates a He-H2O mixture flowing in a quartz tube to photodissociate H2O to produce OH, H, O, HO2, H2O2, and O3. The produced reactive oxygen species (ROS) flow out of the quartz tube nozzle to the bacteria on an agar plate and cause inactivation. The inactivation by OH radicals among the six ROS is observed by properly setting the experimental conditions with the help of simulations calculating the ROS densities. A 30 s treatment with approximately 0.1 ppm OH radicals causes visible inactivation.

  12. A virtual infection model quantifies innate effector mechanisms and Candida albicans immune escape in human blood.

    Directory of Open Access Journals (Sweden)

    Kerstin Hünniger

    2014-02-01

    Full Text Available Candida albicans bloodstream infection is increasingly frequent and can result in disseminated candidiasis associated with high mortality rates. To analyze the innate immune response against C. albicans, fungal cells were added to human whole-blood samples. After inoculation, C. albicans started to filament and predominantly associate with neutrophils, whereas only a minority of fungal cells became attached to monocytes. While many parameters of host-pathogen interaction were accessible to direct experimental quantification in the whole-blood infection assay, others were not. To overcome these limitations, we generated a virtual infection model that allowed detailed and quantitative predictions on the dynamics of host-pathogen interaction. Experimental time-resolved data were simulated using a state-based modeling approach combined with the Monte Carlo method of simulated annealing to obtain quantitative predictions on a priori unknown transition rates and to identify the main axis of antifungal immunity. Results clearly demonstrated a predominant role of neutrophils, mediated by phagocytosis and intracellular killing as well as the release of antifungal effector molecules upon activation, resulting in extracellular fungicidal activity. Both mechanisms together account for almost [Formula: see text] of C. albicans killing, clearly proving that beside being present in larger numbers than other leukocytes, neutrophils functionally dominate the immune response against C. albicans in human blood. A fraction of C. albicans cells escaped phagocytosis and remained extracellular and viable for up to four hours. This immune escape was independent of filamentation and fungal activity and not linked to exhaustion or inactivation of innate immune cells. The occurrence of C. albicans cells being resistant against phagocytosis may account for the high proportion of dissemination in C. albicans bloodstream infection. Taken together, iterative experiment

  13. A Virtual Infection Model Quantifies Innate Effector Mechanisms and Candida albicans Immune Escape in Human Blood

    Science.gov (United States)

    Bieber, Kristin; Martin, Ronny; Figge, Marc Thilo; Kurzai, Oliver

    2014-01-01

    Candida albicans bloodstream infection is increasingly frequent and can result in disseminated candidiasis associated with high mortality rates. To analyze the innate immune response against C. albicans, fungal cells were added to human whole-blood samples. After inoculation, C. albicans started to filament and predominantly associate with neutrophils, whereas only a minority of fungal cells became attached to monocytes. While many parameters of host-pathogen interaction were accessible to direct experimental quantification in the whole-blood infection assay, others were not. To overcome these limitations, we generated a virtual infection model that allowed detailed and quantitative predictions on the dynamics of host-pathogen interaction. Experimental time-resolved data were simulated using a state-based modeling approach combined with the Monte Carlo method of simulated annealing to obtain quantitative predictions on a priori unknown transition rates and to identify the main axis of antifungal immunity. Results clearly demonstrated a predominant role of neutrophils, mediated by phagocytosis and intracellular killing as well as the release of antifungal effector molecules upon activation, resulting in extracellular fungicidal activity. Both mechanisms together account for almost of C. albicans killing, clearly proving that beside being present in larger numbers than other leukocytes, neutrophils functionally dominate the immune response against C. albicans in human blood. A fraction of C. albicans cells escaped phagocytosis and remained extracellular and viable for up to four hours. This immune escape was independent of filamentation and fungal activity and not linked to exhaustion or inactivation of innate immune cells. The occurrence of C. albicans cells being resistant against phagocytosis may account for the high proportion of dissemination in C. albicans bloodstream infection. Taken together, iterative experiment–model–experiment cycles allowed

  14. Differential mechanism of Escherichia coli Inactivation by (+)-limonene as a function of cell physiological state and drug's concentration.

    Science.gov (United States)

    Chueca, Beatriz; Pagán, Rafael; García-Gonzalo, Diego

    2014-01-01

    (+)-limonene is a lipophilic antimicrobial compound, extracted from citrus fruits' essential oils, that is used as a flavouring agent and organic solvent by the food industry. A recent study has proposed a common and controversial mechanism of cell death for bactericidal antibiotics, in which hydroxyl radicals ultimately inactivated cells. Our objective was to determine whether the mechanism of Escherichia coli MG1655 inactivation by (+)-limonene follows that of bactericidal antibiotics. A treatment with 2,000 μL/L (+)-limonene inactivated 4 log10 cycles of exponentially growing E. coli cells in 3 hours. On one hand, an increase of cell survival in the ΔacnB mutant (deficient in a TCA cycle enzyme), or in the presence of 2,2'-dipyridyl (inhibitor of Fenton reaction by iron chelation), thiourea, or cysteamine (hydroxyl radical scavengers) was observed. Moreover, the ΔrecA mutant (deficient in an enzyme involved in SOS response to DNA damage) was more sensitive to (+)-limonene. Thus, this indirect evidence indicates that the mechanism of exponentially growing E. coli cells inactivation by 2,000 μL/L (+)-limonene is due to the TCA cycle and Fenton-mediated hydroxyl radical formation that caused oxidative DNA damage, as observed for bactericidal drugs. However, several differences have been observed between the proposed mechanism for bactericidal drugs and for (+)-limonene. In this regard, our results demonstrated that E. coli inactivation was influenced by its physiological state and the drug's concentration: experiments with stationary-phase cells or 4,000 μL/L (+)-limonene uncovered a different mechanism of cell death, likely unrelated to hydroxyl radicals. Our research has also shown that drug's concentration is an important factor influencing the mechanism of bacterial inactivation by antibiotics, such as kanamycin. These results might help in improving and spreading the use of (+)-limonene as an antimicrobial compound, and in clarifying the controversy about

  15. Glucose-induced incretin hormone release and inactivation are differently modulated by oral fat and protein in mice

    DEFF Research Database (Denmark)

    Gunnarsson, P Thomas; Winzell, Maria Sörhede; Deacon, Carolyn F

    2006-01-01

    Monounsaturated fatty acids, such as oleic acid (OA), and certain milk proteins, especially whey protein (WP), have insulinotropic effects and can reduce postprandial glycemia. This effect may involve the incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide...... and act as competitive inhibitors. We therefore conclude that fat and protein may serve as exogenous regulators of secretion and inactivation of the incretin hormones with beneficial influences on glucose metabolism....

  16. Mechanism of inactivation of human leukocyte elastase by a chloromethyl ketone: kinetic and solvent isotope effect studies

    International Nuclear Information System (INIS)

    Stein, R.L.; Trainor, D.A.

    1986-01-01

    The mechanism of inactivation of human leukocyte elastase (HLE) by the chloromethyl ketone MeOSuc-Ala-Ala-Pro-Val-CH 2 Cl was investigated. The dependence of the first-order rate constant for inactivation on concentration of chloromethyl ketone is hyperbolic and suggests formation of a reversible Michaelis complex prior to covalent interaction between the enzyme and inhibitor. However, the observed Ki value is 10 microM, at least 10-fold lower than dissociation constants for complexes formed from interaction of HLE with structurally related substrates or reversible inhibitors, and suggests that Ki is a complex kinetic constant, reflecting the formation and accumulation of both the Michaelis complex and a second complex. It is proposed that this second complex is a hemiketal formed from attack of the active site serine on the carbonyl carbon of the inhibitor. The accumulation of this intermediate may be a general feature of reactions of serine proteases and chloromethyl ketones derived from specific peptides and accounts for the very low Ki values observed for these reactions. The solvent deuterium isotope effect (SIE) on the inactivation step (ki) is 1.58 +/- 0.07 and is consistent with rate-limiting, general-catalyzed attack of the active site His on the methylene carbon of the inhibitor with displacement of chloride anion. The general catalyst is thought to be the active site Asp. In contrast, the SIE on the second-order rate constant for HLE inactivation, ki/Ki, is inverse and equals 0.64 +/- 0.05

  17. Entomotoxic and nematotoxic lectins and protease inhibitors from fungal fruiting bodies

    NARCIS (Netherlands)

    Sabotič, Jerica; Ohm, Robin A; Künzler, Markus

    2016-01-01

    Fruiting bodies or sporocarps of dikaryotic (ascomycetous and basidiomycetous) fungi, commonly referred to as mushrooms, are often rich in entomotoxic and nematotoxic proteins that include lectins and protease inhibitors. These protein toxins are thought to act as effectors of an innate defense

  18. Innate lymphoid cells, possible interaction with microbiota.

    Science.gov (United States)

    Moro, Kazuyo; Koyasu, Shigeo

    2015-01-01

    Recent studies have identified novel lymphocyte subsets named innate lymphoid cells (ILCs) lacking antigen-specific receptors. ILCs are present in a wide variety of epithelial compartments and occupy an intermediate position between acquired immune cells and myeloid cells. ILCs are now classified into three groups: group 1 ILC, group 2 ILC, and group 3 ILC based on their cytokine production patterns that correspond to the helper T cell subsets Th1, Th2, and Th17, respectively. ILCs play important roles in protection against various invading microbes including multicellular parasites, and in the maintenance of homeostasis and repair of epithelial layers. Excessive activation of ILCs, however, leads to various inflammatory disease conditions. ILCs have thus attracted interests of many researchers in the fields of infectious immunity, inflammatory diseases, and allergic diseases. Because epithelial cells sense alterations in environmental cues, it is important to understand the functional interaction between epithelial cells, ILCs, and environmental factors such as commensal microbiota. We discuss in this review developmental pathways of ILCs, their functions, and contribution of commensal microbiota to the differentiation and function of ILCs.

  19. Inactivation of Bacillus Anthracis Spores Using Carbon Nanotubes

    Science.gov (United States)

    2014-10-30

    effect of SWNTs in combination with antimicrobial chemicals on inactivation of B. anthracis spores; 4) the effect of CNTs coated surfaces on the...2010 31-May-2014 Approved for Public Release; Distribution Unlimited Final Report: (Life Science Division/ Biochemistry ) Inactivation of Bacillus... Biochemistry ) Inactivation of Bacillus Anthracis Spores Using Carbon Nanotubes Report Title The Specific Aims of the project were to investigate: 1) the

  20. Cortical inactivation by cooling in small animals

    Directory of Open Access Journals (Sweden)

    Ben eCoomber

    2011-06-01

    Full Text Available Reversible inactivation of the cortex by surface cooling is a powerful method for studying the function of a particular area. Implanted cooling cryoloops have been used to study the role of individual cortical areas in auditory processing of awake-behaving cats. Cryoloops have also been used in rodents for reversible inactivation of the cortex, but recently there has been a concern that the cryoloop may also cool non-cortical structures either directly or via the perfusion of blood, cooled as it passed close to the cooling loop. In this study we have confirmed that the loop can inactivate most of the auditory cortex without causing a significant reduction in temperature of the auditory thalamus or other sub-cortical structures. We placed a cryoloop on the surface of the guinea pig cortex, cooled it to 2°C and measured thermal gradients across the neocortical surface. We found that the temperature dropped to 20-24°C among cells within a radius of about 2.5mm away from the loop. This temperature drop was sufficient to reduce activity of most cortical cells and led to the inactivation of almost the entire auditory region. When the temperature of thalamus, midbrain, and middle ear were measured directly during cortical cooling, there was a small drop in temperature (about 4°C but this was not sufficient to directly reduce neural activity. In an effort to visualise the extent of neural inactivation we measured the uptake of thallium ions following an intravenous injection. This confirmed that there was a large reduction of activity across much of the ipsilateral cortex and only a small reduction in subcortical structures.

  1. Trained immunity: a memory for innate host defense

    NARCIS (Netherlands)

    Netea, M.G.; Quintin, J.; Meer, J.W.M. van der

    2011-01-01

    Immune responses in vertebrates are classically divided into innate and adaptive, with only the latter being able to build up immunological memory. However, although lacking adaptive immune responses, plants and invertebrates are protected against reinfection with pathogens, and invertebrates even

  2. The Innate Immune-Related Genes in Catfish

    Science.gov (United States)

    Gao, Lei; He, Chongbo; Liu, Xueguang; Su, Hao; Gao, Xianggang; Li, Yunfeng; Liu, Weidong

    2012-01-01

    Catfish is one of the most important aquaculture species in America (as well as in Asia and Africa). In recent years, the production of catfish has suffered massive financial losses due to pathogen spread and breakouts. Innate immunity plays a crucial role in increasing resistance to pathogenic organisms and has generated increasing interest in the past few years. This review summarizes the current understanding of innate immune-related genes in catfish, including pattern recognition receptors, antimicrobial peptides, complements, lectins, cytokines, transferrin and gene expression profiling using microarrays and next generation sequencing technologies. This review will benefit the understanding of innate immune system in catfish and further efforts in studying the innate immune-related genes in fish. PMID:23203058

  3. Neural regulation of innate and adaptive immunity in the gut

    NARCIS (Netherlands)

    Dhawan, S.

    2017-01-01

    This thesis investigates the role of neurotransmitters acetylcholine (ACh) and norepinephrine (NE), in modulating the innate and adaptive immune function in the intestine, during physiological and pathophysiological conditions. Furthermore, this thesis attempts to advance our current understanding

  4. RNA-virus proteases counteracting host innate immunity.

    Science.gov (United States)

    Lei, Jian; Hilgenfeld, Rolf

    2017-10-01

    Virus invasion triggers host immune responses, in particular, innate immune responses. Pathogen-associated molecular patterns of viruses (such as dsRNA, ssRNA, or viral proteins) released during virus replication are detected by the corresponding pattern-recognition receptors of the host, and innate immune responses are induced. Through production of type-I and type-III interferons as well as various other cytokines, the host innate immune system forms the frontline to protect host cells and inhibit virus infection. Not surprisingly, viruses have evolved diverse strategies to counter this antiviral system. In this review, we discuss the multiple strategies used by proteases of positive-sense single-stranded RNA viruses of the families Picornaviridae, Coronaviridae, and Flaviviridae, when counteracting host innate immune responses. © 2017 Federation of European Biochemical Societies.

  5. Effects of engineered nanoparticles on the innate immune system.

    Science.gov (United States)

    Liu, Yuanchang; Hardie, Joseph; Zhang, Xianzhi; Rotello, Vincent M

    2017-12-01

    Engineered nanoparticles (NPs) have broad applications in industry and nanomedicine. When NPs enter the body, interactions with the immune system are unavoidable. The innate immune system, a non-specific first line of defense against potential threats to the host, immediately interacts with introduced NPs and generates complicated immune responses. Depending on their physicochemical properties, NPs can interact with cells and proteins to stimulate or suppress the innate immune response, and similarly activate or avoid the complement system. NPs size, shape, hydrophobicity and surface modification are the main factors that influence the interactions between NPs and the innate immune system. In this review, we will focus on recent reports about the relationship between the physicochemical properties of NPs and their innate immune response, and their applications in immunotherapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Inactivation of cellular caspases by peptide-derived tryptophan and tyrosine peroxides

    DEFF Research Database (Denmark)

    Hampton, Mark B; Morgan, Philip E; Davies, Michael Jonathan

    2002-01-01

    Peroxides generated on peptides and proteins within cells, as a result of radical attack or reaction with singlet oxygen, are longer-lived than H(2)O(2) due to their poor removal by protective enzymes. These peroxides readily oxidize cysteine residues and can inactivate thiol-dependent enzymes. We...... show here that Trp- and Tyr-derived peptide peroxides, generated by singlet oxygen, inhibit caspase activity in the lysates of apoptotic Jurkat cells. N-Ac-Trp-OMe peroxide was the most effective inhibitor, and was 30-fold more effective than H(2)O(2) under identical conditions. As such, protein...

  7. Strawberry pectin methylesterase (PME): purification, characterization, thermal and high-pressure inactivation.

    Science.gov (United States)

    Ly-Nguyen, Binh; Van Loey, Ann M; Fachin, Diana; Verlent, Isabel; Duvetter, Thomas; Vu, Son T; Smout, Chantal; Hendrickx, Marc E

    2002-01-01

    Pectin methylesterase (PME) was extracted from strawberries (Fragaria ananassa, cv Elsanta) and purified by affinity chromatography on a CNBr-Sepharose 4B-PME-inhibitor column. A single protein and PME activity peak was obtained. A biochemical characterization in terms of molecular mass, pI, and kinetic parameters of strawberry PME was performed. In a second step, the thermal and high-pressure stability of the enzyme was studied. Isothermal and combined isothermal-isobaric inactivation of purified strawberry PME could be described by a fractional-conversion model. Purified strawberry PME is much more stable toward high-pressure treatments in comparison to those from oranges and bananas.

  8. Network topologies and dynamics leading to endotoxin tolerance and priming in innate immune cells.

    Directory of Open Access Journals (Sweden)

    Yan Fu

    Full Text Available The innate immune system, acting as the first line of host defense, senses and adapts to foreign challenges through complex intracellular and intercellular signaling networks. Endotoxin tolerance and priming elicited by macrophages are classic examples of the complex adaptation of innate immune cells. Upon repetitive exposures to different doses of bacterial endotoxin (lipopolysaccharide or other stimulants, macrophages show either suppressed or augmented inflammatory responses compared to a single exposure to the stimulant. Endotoxin tolerance and priming are critically involved in both immune homeostasis and the pathogenesis of diverse inflammatory diseases. However, the underlying molecular mechanisms are not well understood. By means of a computational search through the parameter space of a coarse-grained three-node network with a two-stage Metropolis sampling approach, we enumerated all the network topologies that can generate priming or tolerance. We discovered three major mechanisms for priming (pathway synergy, suppressor deactivation, activator induction and one for tolerance (inhibitor persistence. These results not only explain existing experimental observations, but also reveal intriguing test scenarios for future experimental studies to clarify mechanisms of endotoxin priming and tolerance.

  9. Network Topologies and Dynamics Leading to Endotoxin Tolerance and Priming in Innate Immune Cells

    Science.gov (United States)

    Fu, Yan; Glaros, Trevor; Zhu, Meng; Wang, Ping; Wu, Zhanghan; Tyson, John; Li, Liwu; Xing, Jianhua

    2012-01-01

    The innate immune system, acting as the first line of host defense, senses and adapts to foreign challenges through complex intracellular and intercellular signaling networks. Endotoxin tolerance and priming elicited by macrophages are classic examples of the complex adaptation of innate immune cells. Upon repetitive exposures to different doses of bacterial endotoxin (lipopolysaccharide) or other stimulants, macrophages show either suppressed or augmented inflammatory responses compared to a single exposure to the stimulant. Endotoxin tolerance and priming are critically involved in both immune homeostasis and the pathogenesis of diverse inflammatory diseases. However, the underlying molecular mechanisms are not well understood. By means of a computational search through the parameter space of a coarse-grained three-node network with a two-stage Metropolis sampling approach, we enumerated all the network topologies that can generate priming or tolerance. We discovered three major mechanisms for priming (pathway synergy, suppressor deactivation, activator induction) and one for tolerance (inhibitor persistence). These results not only explain existing experimental observations, but also reveal intriguing test scenarios for future experimental studies to clarify mechanisms of endotoxin priming and tolerance.

  10. IAPs Regulate Distinct Innate Immune Pathways to Co-ordinate the Response to Bacterial Peptidoglycans.

    Science.gov (United States)

    Stafford, Che A; Lawlor, Kate E; Heim, Valentin J; Bankovacki, Aleksandra; Bernardini, Jonathan P; Silke, John; Nachbur, Ueli

    2018-02-06

    Inhibitors of apoptosis (IAPs) proteins are critical regulators of innate immune signaling pathways and therefore have potential as drug targets. X-linked IAP (XIAP) and cellular IAP1 and IAP2 (cIAP1 and cIAP2) are E3 ligases that have been shown to be required for signaling downstream of NOD2, an intracellular receptor for bacterial peptidoglycan. We used genetic and biochemical approaches to compare the responses of IAP-deficient mice and cells to NOD2 stimulation. In all cell types tested, XIAP is the only IAP required for signaling immediately downstream of NOD2, while cIAP1 and cIAP2 are dispensable for NOD2-induced nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) activation. However, mice lacking cIAP1 or TNFR1 have a blunted cytokine response to NOD2 stimulation. We conclude that cIAPs regulate NOD2-dependent autocrine TNF signaling in vivo and highlight the importance of physiological context in the interplay of innate immune signaling pathways. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. Role of Aging on Innate Responses to Viral Infections

    OpenAIRE

    Goldstein, Daniel R.

    2011-01-01

    Older people exhibit increased morbidity and mortality after viral infections than younger people. Additionally, vaccines are less protective in older people than in younger people. As the immune system is critical for host defense to viral infections and for vaccine efficacy, the implications are that aging negatively affects immunity. The immune system is broadly categorized into adaptive and innate systems. The innate immune system acts as a first line of defense to pathogen invasion. In t...

  12. Innate immune functions of microglia isolated from human glioma patients

    Directory of Open Access Journals (Sweden)

    Grimm Elizabeth

    2006-03-01

    Full Text Available Abstract Background Innate immunity is considered the first line of host defense and microglia presumably play a critical role in mediating potent innate immune responses to traumatic and infectious challenges in the human brain. Fundamental impairments of the adaptive immune system in glioma patients have been investigated; however, it is unknown whether microglia are capable of innate immunity and subsequent adaptive anti-tumor immune responses within the immunosuppressive tumor micro-environment of human glioma patients. We therefore undertook a novel characterization of the innate immune phenotype and function of freshly isolated human glioma-infiltrating microglia (GIM. Methods GIM were isolated by sequential Percoll purification from patient tumors immediately after surgical resection. Flow cytometry, phagocytosis and tumor cytotoxicity assays were used to analyze the phenotype and function of these cells. Results GIM expressed significant levels of Toll-like receptors (TLRs, however they do not secrete any of the cytokines (IL-1β, IL-6, TNF-α critical in developing effective innate immune responses. Similar to innate macrophage functions, GIM can mediate phagocytosis and non-MHC restricted cytotoxicity. However, they were statistically less able to mediate tumor cytotoxicity compared to microglia isolated from normal brain. In addition, the expression of Fas ligand (FasL was low to absent, indicating that apoptosis of the incoming lymphocyte population may not be a predominant mode of immunosuppression by microglia. Conclusion We show for the first time that despite the immunosuppressive environment of human gliomas, GIM are capable of innate immune responses such as phagocytosis, cytotoxicity and TLR expression but yet are not competent in secreting key cytokines. Further understanding of these innate immune functions could play a critical role in understanding and developing effective immunotherapies to malignant human gliomas.

  13. Regulation of Intestinal Homeostasis by Innate Immune Cells

    OpenAIRE

    Kayama, Hisako; Nishimura, Junichi; Takeda, Kiyoshi

    2013-01-01

    The intestinal immune system has an ability to distinguish between the microbiota and pathogenic bacteria, and then activate pro-inflammatory pathways against pathogens for host defense while remaining unresponsive to the microbiota and dietary antigens. In the intestine, abnormal activation of innate immunity causes development of several inflammatory disorders such as inflammatory bowel diseases (IBD). Thus, activity of innate immunity is finely regulated in the intestine. To date, multiple...

  14. Interplay between Candida albicans and the Mammalian Innate Host Defense

    Science.gov (United States)

    Cheng, Shih-Chin; Joosten, Leo A. B.; Kullberg, Bart-Jan

    2012-01-01

    Candida albicans is both the most common fungal commensal microorganism in healthy individuals and the major fungal pathogen causing high mortality in at-risk populations, especially immunocompromised patients. In this review, we summarize the interplay between the host innate system and C. albicans, ranging from how the host recognizes, responds, and clears C. albicans infection to how C. albicans evades, dampens, and escapes from host innate immunity. PMID:22252867

  15. Innateness and culture in the evolution of language

    OpenAIRE

    Kirby, Simon; Dowman, Mike; Griffiths, Thomas L.

    2007-01-01

    Human language arises from biological evolution, individual learning, and cultural transmission, but the interaction of these three processes has not been widely studied. We set out a formal framework for analyzing cultural transmission, which allows us to investigate how innate learning biases are related to universal properties of language. We show that cultural transmission can magnify weak biases into strong linguistic universals, undermining one of the arguments for strong innate constra...

  16. An innate antiviral pathway acting before interferons at epithelial surfaces

    DEFF Research Database (Denmark)

    Iversen, Marie B; Reinert, Line S; Thomsen, Martin K

    2016-01-01

    we identify an innate antiviral pathway that works at epithelial surfaces before the IFNs. The pathway is activated independently of known innate sensors of viral infections through a mechanism dependent on viral O-linked glycans, which induce CXCR3 chemokines and stimulate antiviral activity...... in a manner dependent on neutrophils. This study therefore identifies a previously unknown layer of antiviral defense that exerts its action on epithelial surfaces before the classical IFN response is operative....

  17. Dissecting Innate Immune Signaling in Viral Evasion of Cytokine Production

    OpenAIRE

    Zhang, Junjie; Zhu, Lining; Feng, Pinghui

    2014-01-01

    In response to a viral infection, the host innate immune response is activated to up-regulate gene expression and production of antiviral cytokines. Conversely, viruses have evolved intricate strategies to evade and exploit host immune signaling for survival and propagation. Viral immune evasion, entailing host defense and viral evasion, provides one of the most fascinating and dynamic interfaces to discern the host-virus interaction. These studies advance our understanding in innate immune r...

  18. Hepatocytes: a key cell type for innate immunity.

    Science.gov (United States)

    Zhou, Zhou; Xu, Ming-Jiang; Gao, Bin

    2016-05-01

    Hepatocytes, the major parenchymal cells in the liver, play pivotal roles in metabolism, detoxification, and protein synthesis. Hepatocytes also activate innate immunity against invading microorganisms by secreting innate immunity proteins. These proteins include bactericidal proteins that directly kill bacteria, opsonins that assist in the phagocytosis of foreign bacteria, iron-sequestering proteins that block iron uptake by bacteria, several soluble factors that regulate lipopolysaccharide signaling, and the coagulation factor fibrinogen that activates innate immunity. In this review, we summarize the wide variety of innate immunity proteins produced by hepatocytes and discuss liver-enriched transcription factors (e.g. hepatocyte nuclear factors and CCAAT/enhancer-binding proteins), pro-inflammatory mediators (e.g. interleukin (IL)-6, IL-22, IL-1β and tumor necrosis factor-α), and downstream signaling pathways (e.g. signal transducer and activator of transcription factor 3 and nuclear factor-κB) that regulate the expression of these innate immunity proteins. We also briefly discuss the dysregulation of these innate immunity proteins in chronic liver disease, which may contribute to an increased susceptibility to bacterial infection in patients with cirrhosis.

  19. Sepsis syndromes: understanding the role of innate and acquired immunity.

    Science.gov (United States)

    Oberholzer, A; Oberholzer, C; Moldawer, L L

    2001-08-01

    An intact innate and acquired immune response are essential for defeating systemic microbial infections. Recognition molecules, inflammatory cells, and the cytokines they produce are the principal means for host tissues to recognize invading microbes and to initiate intercellular communication between the innate and acquired immune systems. However, activation of host innate immunity may also occur in the absence of microbial recognition, through expression of internal "danger" signals produced by tissue ischemia and necrosis. When activation of the innate immune system is severe enough, the host response itself can propel the patient into a systemic inflammatory response syndrome (SIRS), or even multiple system organ failure (MSOF) and shock. Although most patients survive the initial SIRS insult, these patients remain at increased risk of developing secondary or opportunistic infections because of the frequent onset of a compensatory anti-inflammatory response syndrome (CARS). The initial activation of the innate immune response often leads to macrophage deactivation, T-cell anergy, and the rapid apoptotic loss of lymphoid tissues, which all contribute to the development of this CARS syndrome and its associated morbidity and mortality. Initial efforts to treat the septic patient with anticytokine therapies directed at the SIRS response have been disappointing, and therapeutic efforts to modify the immune response during sepsis syndromes will require a more thorough understanding of the innate and acquired immune responses and the increased apoptosis in the lymphoid tissue.

  20. Stress Hyperglycemia, Insulin Treatment, and Innate Immune Cells

    Directory of Open Access Journals (Sweden)

    Fangming Xiu

    2014-01-01

    Full Text Available Hyperglycemia (HG and insulin resistance are the hallmarks of a profoundly altered metabolism in critical illness resulting from the release of cortisol, catecholamines, and cytokines, as well as glucagon and growth hormone. Recent studies have proposed a fundamental role of the immune system towards the development of insulin resistance in traumatic patients. A comprehensive review of published literatures on the effects of hyperglycemia and insulin on innate immunity in critical illness was conducted. This review explored the interaction between the innate immune system and trauma-induced hypermetabolism, while providing greater insight into unraveling the relationship between innate immune cells and hyperglycemia. Critical illness substantially disturbs glucose metabolism resulting in a state of hyperglycemia. Alterations in glucose and insulin regulation affect the immune function of cellular components comprising the innate immunity system. Innate immune system dysfunction via hyperglycemia is associated with a higher morbidity and mortality in critical illness. Along with others, we hypothesize that reduction in morbidity and mortality observed in patients receiving insulin treatment is partially due to its effect on the attenuation of the immune response. However, there still remains substantial controversy regarding moderate versus intensive insulin treatment. Future studies need to determine the integrated effects of HG and insulin on the regulation of innate immunity in order to provide more effective insulin treatment regimen for these patients.

  1. "Slow" Voltage-Dependent Inactivation of CaV2.2 Calcium Channels Is Modulated by the PKC Activator Phorbol 12-Myristate 13-Acetate (PMA.

    Directory of Open Access Journals (Sweden)

    Lei Zhu

    Full Text Available CaV2.2 (N-type voltage-gated calcium channels (Ca2+ channels play key roles in neurons and neuroendocrine cells including the control of cellular excitability, neurotransmitter / hormone secretion, and gene expression. Calcium entry is precisely controlled by channel gating properties including multiple forms of inactivation. "Fast" voltage-dependent inactivation is relatively well-characterized and occurs over the tens-to- hundreds of milliseconds timeframe. Superimposed on this is the molecularly distinct, but poorly understood process of "slow" voltage-dependent inactivation, which develops / recovers over seconds-to-minutes. Protein kinases can modulate "slow" inactivation of sodium channels, but little is known about if/how second messengers control "slow" inactivation of Ca2+ channels. We investigated this using recombinant CaV2.2 channels expressed in HEK293 cells and native CaV2 channels endogenously expressed in adrenal chromaffin cells. The PKC activator phorbol 12-myristate 13-acetate (PMA dramatically prolonged recovery from "slow" inactivation, but an inactive control (4α-PMA had no effect. This effect of PMA was prevented by calphostin C, which targets the C1-domain on PKC, but only partially reduced by inhibitors that target the catalytic domain of PKC. The subtype of the channel β-subunit altered the kinetics of inactivation but not the magnitude of slowing produced by PMA. Intracellular GDP-β-S reduced the effect of PMA suggesting a role for G proteins in modulating "slow" inactivation. We postulate that the kinetics of recovery from "slow" inactivation could provide a molecular memory of recent cellular activity and help control CaV2 channel availability, electrical excitability, and neurotransmission in the seconds-to-minutes timeframe.

  2. Acquired and innate immunity to polyaromatic hydrocarbons

    International Nuclear Information System (INIS)

    Yusuf, Nabiha; Timares, Laura; Seibert, Megan D.; Xu Hui; Elmets, Craig A.

    2007-01-01

    Polyaromatic hydrocarbons are ubiquitous environmental pollutants that are potent mutagens and carcinogens. Researchers have taken advantage of these properties to investigate the mechanisms by which chemicals cause cancer of the skin and other organs. When applied to the skin of mice, several carcinogenic polyaromatic hydrocarbons have also been shown to interact with the immune system, stimulating immune responses and resulting in the development of antigen-specific T-cell-mediated immunity. Development of cell-mediated immunity is strain-specific and is governed by Ah receptor genes and by genes located within the major histocompatibility complex. CD8 + T cells are effector cells in the response, whereas CD4 + T cells down-regulate immunity. Development of an immune response appears to have a protective effect since strains of mice that develop a cell-mediated immune response to carcinogenic polyaromatic hydrocarbons are less likely to develop tumors when subjected to a polyaromatic hydrocarbon skin carcinogenesis protocol than mice that fail to develop an immune response. With respect to innate immunity, TLR4-deficient C3H/HeJ mice are more susceptible to polyaromatic hydrogen skin tumorigenesis than C3H/HeN mice in which TLR4 is normal. These findings support the hypothesis that immune responses, through their interactions with chemical carcinogens, play an active role in the prevention of chemical skin carcinogenesis during the earliest stages. Efforts to augment immune responses to the chemicals that cause tumors may be a productive approach to the prevention of tumors caused by these agents

  3. The evolutionarily conserved mediator subunit MDT-15/MED15 links protective innate immune responses and xenobiotic detoxification.

    Directory of Open Access Journals (Sweden)

    Read Pukkila-Worley

    2014-05-01

    Full Text Available Metazoans protect themselves from environmental toxins and virulent pathogens through detoxification and immune responses. We previously identified a small molecule xenobiotic toxin that extends survival of Caenorhabditis elegans infected with human bacterial pathogens by activating the conserved p38 MAP kinase PMK-1 host defense pathway. Here we investigate the cellular mechanisms that couple activation of a detoxification response to innate immunity. From an RNAi screen of 1,420 genes expressed in the C. elegans intestine, we identified the conserved Mediator subunit MDT-15/MED15 and 28 other gene inactivations that abrogate the induction of PMK-1-dependent immune effectors by this small molecule. We demonstrate that MDT-15/MED15 is required for the xenobiotic-induced expression of p38 MAP kinase PMK-1-dependent immune genes and protection from Pseudomonas aeruginosa infection. We also show that MDT-15 controls the induction of detoxification genes and functions to protect the host from bacteria-derived phenazine toxins. These data define a central role for MDT-15/MED15 in the coordination of xenobiotic detoxification and innate immune responses.

  4. The evolutionarily conserved mediator subunit MDT-15/MED15 links protective innate immune responses and xenobiotic detoxification.

    Science.gov (United States)

    Pukkila-Worley, Read; Feinbaum, Rhonda L; McEwan, Deborah L; Conery, Annie L; Ausubel, Frederick M

    2014-05-01

    Metazoans protect themselves from environmental toxins and virulent pathogens through detoxification and immune responses. We previously identified a small molecule xenobiotic toxin that extends survival of Caenorhabditis elegans infected with human bacterial pathogens by activating the conserved p38 MAP kinase PMK-1 host defense pathway. Here we investigate the cellular mechanisms that couple activation of a detoxification response to innate immunity. From an RNAi screen of 1,420 genes expressed in the C. elegans intestine, we identified the conserved Mediator subunit MDT-15/MED15 and 28 other gene inactivations that abrogate the induction of PMK-1-dependent immune effectors by this small molecule. We demonstrate that MDT-15/MED15 is required for the xenobiotic-induced expression of p38 MAP kinase PMK-1-dependent immune genes and protection from Pseudomonas aeruginosa infection. We also show that MDT-15 controls the induction of detoxification genes and functions to protect the host from bacteria-derived phenazine toxins. These data define a central role for MDT-15/MED15 in the coordination of xenobiotic detoxification and innate immune responses.

  5. Induction of Siglec-G by RNA viruses inhibits the innate immune response by promoting RIG-I degradation.

    Science.gov (United States)

    Chen, Weilin; Han, Chaofeng; Xie, Bin; Hu, Xiang; Yu, Qian; Shi, Liyun; Wang, Qingqing; Li, Dongling; Wang, Jianli; Zheng, Pan; Liu, Yang; Cao, Xuetao

    2013-01-31

    RIG-I is a critical RNA virus sensor that serves to initiate antiviral innate immunity. However, posttranslational regulation of RIG-I signaling remains to be fully understood. We report here that RNA viruses, but not DNA viruses or bacteria, specifically upregulate lectin family member Siglecg expression in macrophages by RIG-I- or NF-κB-dependent mechanisms. Siglec-G-induced recruitment of SHP2 and the E3 ubiquitin ligase c-Cbl to RIG-I leads to RIG-I degradation via K48-linked ubiquitination at Lys813 by c-Cbl. By increasing type I interferon production, targeted inactivation of Siglecg protects mice against lethal RNA virus infection. Taken together, our data reveal a negative feedback loop of RIG-I signaling and identify a Siglec-G-mediated immune evasion pathway exploited by RNA viruses with implication in antiviral applications. These findings also provide insights into the functions and crosstalk of Siglec-G, a known adaptive response regulator, in innate immunity. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Studies directed towards a mechanistic evaluation of inactivation of aromatase by the suicide substrates androsta-1,4-diene-3,17-diones and its 6-ene derivatives aromatase inactivation by the 19-substituted derivatives and their enzymic aromatization.

    Science.gov (United States)

    Numazawa, Mitsuteru; Nagaoka, Masao; Handa, Wakako; Ogawa, Yoko; Matsuoka, Satomi

    2007-01-01

    To gain insight into the mechanistic features for aromatase inactivation by the typical suicide substrates, androsta-1,4-diene-3,17-dione (ADD, 1) and its 6-ene derivative 2, we synthesized 19-substituted (methyl and halogeno) ADD and 1,4,6-triene derivatives 8 and 10 along with 4,6-diene derivatives 9 and tested for their ability to inhibit aromatase in human placental microsomes as well as their ability to serve as a substrate for the enzyme. 19-Methyl-substituted steroids were the most powerful competitive inhibitors of aromatase (K(i): 8.2-40 nM) in each series. Among the 19-substituted inhibitors examined, 19-chloro-ADD and its 6-ene derivatives (7b and 9b) inactivated aromatase in a time-dependent manner in the presence of NADPH in air while the other ones did not. The time-dependent inactivation was blocked by the substrate AD and required NADPH. Only the time-dependent inactivators 7b and 9b in series of 1,4-diene and 1,4,6-triene steroids as well as all of 4,6-diene steroids 9, except for the methyl compound 9a, served as a substrate for aromatase to yield estradiol and/or its 6-ene estradiol with lower conversion rates compared to the corresponding parent steroids 1,4-diene, 1,4,6-triene and 4,6-diene derivatives. The present findings strongly suggest that the aromatase reaction, 19-oxygenation, at least in part, would be involved in the time-dependent inactivation of aromatase by the suicide substrates 1 and 2, where the 19-substitutent would play a critical role in the aromatase reaction probably though steric and electronic reasons.

  7. Ingestion without inactivation of bacteriophages by Tetrahymena.

    Science.gov (United States)

    Akunyili, Agnes A; Alfatlawi, Miaad; Upadhyaya, Bandana; Rhoads, Laura S; Eichelberger, Henry; Van Bell, Craig T

    2008-01-01

    Tetrahymena has been shown to ingest and inactivate bacteriophages, such as T4, in co-incubation experiments. In this study, Tetrahymena thermophila failed to inactivate phages PhiX174 and MS2 in co-incubations, although PhiX174 were ingested by T. thermophila, as demonstrated by: (1) recovery at defecation in a pulse-chase experiment, (2) recovery from Tetrahymena by detergent lysis, and (3) transmission electron microscopy. We conclude, therefore, that the phages must be digestion-resistant. Internalized PhiX174 were further shown to be partially protected from lethal damage by ultraviolet (UV) C and UVB irradiation. Finally, ingested PhiX174 were shown to be rapidly transported through buffer in a horizontal swimming, race tube-like assay. The transport and protection of phages may confer evolutionary advantages that explain the acquisition of digestion-resistance by some phages.

  8. Immunogenicity of UV-inactivated measles virus

    International Nuclear Information System (INIS)

    Zahorska, R.; Mazur, N.; Korbecki, M.

    1978-01-01

    By means of the antigen extinction limit test it was shown that a triple dose vaccination of guinea pigs with UV-inactivated measles virus gave better results, than a single dose vaccination which was proved by the very low immunogenicity index. For both vaccination schemes (single and triple) the immune response was only sligthly influenced by a change of dose from 10 5 to 10 6 HadU 50 /ml or by the addition of aluminum adjuvant. In the antigen extinction limit test the antibody levels were determined by two methods (HIT and NT) the results of which were statistically equivalent. The UV-inactivated measles virus was also found to induce hemolysis-inhibiting antibodies. (orig.) [de

  9. Deubiquitinase function of arterivirus papain-like protease 2 suppresses the innate immune response in infected host cells.

    Science.gov (United States)

    van Kasteren, Puck B; Bailey-Elkin, Ben A; James, Terrence W; Ninaber, Dennis K; Beugeling, Corrine; Khajehpour, Mazdak; Snijder, Eric J; Mark, Brian L; Kikkert, Marjolein

    2013-02-26

    Protein ubiquitination regulates important innate immune responses. The discovery of viruses encoding deubiquitinating enzymes (DUBs) suggests they remove ubiquitin to evade ubiquitin-dependent antiviral responses; however, this has never been conclusively demonstrated in virus-infected cells. Arteriviruses are economically important positive-stranded RNA viruses that encode an ovarian tumor (OTU) domain DUB known as papain-like protease 2 (PLP2). This enzyme is essential for arterivirus replication by cleaving a site within the viral replicase polyproteins and also removes ubiquitin from cellular proteins. To dissect this dual specificity, which relies on a single catalytic site, we determined the crystal structure of equine arteritis virus PLP2 in complex with ubiquitin (1.45 Å). PLP2 binds ubiquitin using a zinc finger that is uniquely integrated into an exceptionally compact OTU-domain fold that represents a new subclass of zinc-dependent OTU DUBs. Notably, the ubiquitin-binding surface is distant from the catalytic site, which allowed us to mutate this surface to significantly reduce DUB activity without affecting polyprotein cleavage. Viruses harboring such mutations exhibited WT replication kinetics, confirming that PLP2-mediated polyprotein cleavage was intact, but the loss of DUB activity strikingly enhanced innate immune signaling. Compared with WT virus infection, IFN-β mRNA levels in equine cells infected with PLP2 mutants were increased by nearly an order of magnitude. Our findings not only establish PLP2 DUB activity as a critical factor in arteriviral innate immune evasion, but the selective inactivation of DUB activity also opens unique possibilities for developing improved live attenuated vaccines against arteriviruses and other viruses encoding similar dual-specificity proteases.

  10. Female meiotic sex chromosome inactivation in chicken.

    Directory of Open Access Journals (Sweden)

    Sam Schoenmakers

    2009-05-01

    Full Text Available During meiotic prophase in male mammals, the heterologous X and Y chromosomes remain largely unsynapsed, and meiotic sex chromosome inactivation (MSCI leads to formation of the transcriptionally silenced XY body. In birds, the heterogametic sex is female, carrying Z and W chromosomes (ZW, whereas males have the homogametic ZZ constitution. During chicken oogenesis, the heterologous ZW pair reaches a state of complete heterologous synapsis, and this might enable maintenance of transcription of Z- and W chromosomal genes during meiotic prophase. Herein, we show that the ZW pair is transiently silenced, from early pachytene to early diplotene using immunocytochemistry and gene expression analyses. We propose that ZW inactivation is most likely achieved via spreading of heterochromatin from the W on the Z chromosome. Also, persistent meiotic DNA double-strand breaks (DSBs may contribute to silencing of Z. Surprisingly, gammaH2AX, a marker of DSBs, and also the earliest histone modification that is associated with XY body formation in mammalian and marsupial spermatocytes, does not cover the ZW during the synapsed stage. However, when the ZW pair starts to desynapse, a second wave of gammaH2AX accumulates on the unsynapsed regions of Z, which also show a reappearance of the DSB repair protein RAD51. This indicates that repair of meiotic DSBs on the heterologous part of Z is postponed until late pachytene/diplotene, possibly to avoid recombination with regions on the heterologously synapsed W chromosome. Two days after entering diplotene, the Z looses gammaH2AX and shows reactivation. This is the first report of meiotic sex chromosome inactivation in a species with female heterogamety, providing evidence that this mechanism is not specific to spermatogenesis. It also indicates the presence of an evolutionary force that drives meiotic sex chromosome inactivation independent of the final achievement of synapsis.

  11. Epigenetic inactivation of CHFR in human tumors

    OpenAIRE

    Toyota, Minoru; Sasaki, Yasushi; Satoh, Ayumi; Ogi, Kazuhiro; Kikuchi, Takefumi; Suzuki, Hiromu; Mita, Hiroaki; Tanaka, Nobuyuki; Itoh, Fumio; Issa, Jean-Pierre J.; Jair, Kam-Wing; Schuebel, Kornel E.; Imai, Kohzoh; Tokino, Takashi

    2003-01-01

    Cell-cycle checkpoints controlling the orderly progression through mitosis are frequently disrupted in human cancers. One such checkpoint, entry into metaphase, is regulated by the CHFR gene encoding a protein possessing forkhead-associated and RING finger domains as well as ubiquitin–ligase activity. Although defects in this checkpoint have been described, the molecular basis and prevalence of CHFR inactivation in human tumors are still not fully understood. To address this question, w...

  12. Photodynamic inactivation of antibiotic-resistant pathogens

    International Nuclear Information System (INIS)

    Paronyan, M.H.

    2015-01-01

    Nowadays methicillin-resistant strain Staphylococcus aureus (MRSA) is one of the most widespread multiresistant bacteria. Photodynamic inactivation (PDI) of microorganisms by photosensitizers (PS) may be an effective and alternative therapeutic option against antibiotic resistant bacteria. The effectiveness of new PS cationic porphyrin Zn-TBut4PyP was tested on two strains of S. aureus (MRSA and methicillin-sensitive S. aureus). It is shown that Zn-TBut4PyP has high photodynamic activity against both strains

  13. Radiation inactivation target size of rat adipocyte glucose transporters in the plasma membrane and intracellular pools

    International Nuclear Information System (INIS)

    Jacobs, D.B.; Berenski, C.J.; Spangler, R.A.; Jung, C.Y.

    1987-01-01

    The in situ assembly states of the glucose transport carrier protein in the plasma membrane and in the intracellular (microsomal) storage pool of rat adipocytes were assessed by studying radiation-induced inactivation of the D-glucose-sensitive cytochalasin B binding activities. High energy radiation inactivated the glucose-sensitive cytochalasin B binding of each of these membrane preparations by reducing the total number of the binding sites without affecting the dissociation constant. The reduction in total number of binding sites was analyzed as a function of radiation dose based on target theory, from which a radiation-sensitive mass (target size) was calculated. When the plasma membranes of insulin-treated adipocytes were used, a target size of approximately 58,000 daltons was obtained. For adipocyte microsomal membranes, we obtained target sizes of approximately 112,000 and 109,000 daltons prior to and after insulin treatment, respectively. In the case of microsomal membranes, however, inactivation data showed anomalously low radiation sensitivities at low radiation doses, which may be interpreted as indicating the presence of a radiation-sensitive inhibitor. These results suggest that the adipocyte glucose transporter occurs as a monomer in the plasma membrane while existing in the intracellular reserve pool either as a homodimer or as a stoichiometric complex with a protein of an approximately equal size

  14. Early life innate immune signatures of persistent food allergy.

    Science.gov (United States)

    Neeland, Melanie R; Koplin, Jennifer J; Dang, Thanh D; Dharmage, Shyamali C; Tang, Mimi L; Prescott, Susan L; Saffery, Richard; Martino, David J; Allen, Katrina J

    2017-11-14

    Food allergy naturally resolves in a proportion of food-allergic children without intervention; however the underlying mechanisms governing the persistence or resolution of food allergy in childhood are not understood. This study aimed to define the innate immune profiles associated with egg allergy at age 1 year, determine the phenotypic changes that occur with the development of natural tolerance in childhood, and explore the relationship between early life innate immune function and serum vitamin D. This study used longitudinally collected PBMC samples from a population-based cohort of challenge-confirmed egg-allergic infants with either persistent or transient egg allergy outcomes in childhood to phenotype and quantify the functional innate immune response associated with clinical phenotypes of egg allergy. We show that infants with persistent egg allergy exhibit a unique innate immune signature, characterized by increased numbers of circulating monocytes and dendritic cells that produce more inflammatory cytokines both at baseline and following endotoxin exposure when compared with infants with transient egg allergy. Follow-up analysis revealed that this unique innate immune signature continues into childhood in those with persistent egg allergy and that increased serum vitamin D levels correlate with changes in innate immune profiles observed in children who developed natural tolerance to egg. Early life innate immune dysfunction may represent a key immunological driver and predictor of persistent food allergy in childhood. Serum vitamin D may play an immune-modulatory role in the development of natural tolerance. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  15. Targeting Innate Immunity for Type 1 Diabetes Prevention.

    Science.gov (United States)

    Needell, James C; Zipris, Danny

    2017-09-27

    Despite immense research efforts, type 1 diabetes (T1D) remains an autoimmune disease without a known trigger or approved intervention. Over the last three decades, studies have primarily focused on delineating the role of the adaptive immune system in the mechanism of T1D. The discovery of Toll-like receptors in the 1990s has advanced the knowledge on the role of the innate immune system in host defense as well as mechanisms that regulate adaptive immunity including the function of autoreactive T cells. Recent investigations suggest that inflammation plays a key role in promoting a large number of autoimmune disorders including T1D. Data from the LEW1.WR1 rat model of virus-induced disease and the RIP-B7.1 mouse model of diabetes suggest that innate immune signaling plays a key role in triggering disease progression. There is also evidence that innate immunity may be involved in the course of T1D in humans; however, a small number of clinical trials have shown that interfering with the function of the innate immune system following disease onset exerts only a modest effect on β-cell function. The data implying that innate immune pathways are linked with mechanisms of islet autoimmunity hold great promise for the identification of novel disease pathways that may be harnessed for clinical intervention. Nevertheless, more work needs to be done to better understand mechanisms by which innate immunity triggers β-cell destruction and assess the therapeutic value in blocking innate immunity for diabetes prevention.

  16. HIV-1 evades innate immune recognition through specific cofactor recruitment

    Science.gov (United States)

    Rasaiyaah, Jane; Tan, Choon Ping; Fletcher, Adam J.; Price, Amanda J.; Blondeau, Caroline; Hilditch, Laura; Jacques, David A.; Selwood, David L.; James, Leo C.; Noursadeghi, Mahdad; Towers, Greg J.

    2013-11-01

    Human immunodeficiency virus (HIV)-1 is able to replicate in primary human macrophages without stimulating innate immunity despite reverse transcription of genomic RNA into double-stranded DNA, an activity that might be expected to trigger innate pattern recognition receptors. We reasoned that if correctly orchestrated HIV-1 uncoating and nuclear entry is important for evasion of innate sensors then manipulation of specific interactions between HIV-1 capsid and host factors that putatively regulate these processes should trigger pattern recognition receptors and stimulate type 1 interferon (IFN) secretion. Here we show that HIV-1 capsid mutants N74D and P90A, which are impaired for interaction with cofactors cleavage and polyadenylation specificity factor subunit 6 (CPSF6) and cyclophilins (Nup358 and CypA), respectively, cannot replicate in primary human monocyte-derived macrophages because they trigger innate sensors leading to nuclear translocation of NF-κB and IRF3, the production of soluble type 1 IFN and induction of an antiviral state. Depletion of CPSF6 with short hairpin RNA expression allows wild-type virus to trigger innate sensors and IFN production. In each case, suppressed replication is rescued by IFN-receptor blockade, demonstrating a role for IFN in restriction. IFN production is dependent on viral reverse transcription but not integration, indicating that a viral reverse transcription product comprises the HIV-1 pathogen-associated molecular pattern. Finally, we show that we can pharmacologically induce wild-type HIV-1 infection to stimulate IFN secretion and an antiviral state using a non-immunosuppressive cyclosporine analogue. We conclude that HIV-1 has evolved to use CPSF6 and cyclophilins to cloak its replication, allowing evasion of innate immune sensors and induction of a cell-autonomous innate immune response in primary human macrophages.

  17. Increase in the plasma levels of protein Z-dependent protease inhibitor in normal pregnancies but not in non-pregnant patients with unexplained recurrent miscarriage

    NARCIS (Netherlands)

    Souri, Masayoshi; Sugiura-Ogasawara, Mayumi; Saito, Shigeru; Kemkes-Matthes, Bettina; Meijers, Joost C. M.; Ichinose, Akitada

    2012-01-01

    Protein Z (PZ)-dependent p-otease inhibitor (ZPI) is a serine protease inhibitor which efficiently inactivates activated factor X, when ZPI is complexed with PZ in plasma. Reduced plasma levels of ZPI and PZ have been reported in association with thrombosis. It has also been reported that PZ

  18. DMPD: Innate immunity minireview series: making biochemical sense of nucleic acidsensors that trigger antiviral innate immunity. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17395579 Innate immunity minireview series: making biochemical sense of nucleic aci...007 Mar 29. (.png) (.svg) (.html) (.csml) Show Innate immunity minireview series: making biochemical sense o...itle Innate immunity minireview series: making biochemical sense of nucleic acidsensors that trigger antivir

  19. Novel selective phosphodiesterase type 1 inhibitors cause vasodilatation and lower blood pressure in rats

    DEFF Research Database (Denmark)

    Laursen, Morten; Thinggaard, Lilliana Beck; Kehler, Jan

    2017-01-01

    BACKGROUND AND PURPOSE: The PDE enzymes (PDE1-11) hydrolyse and thus inactivate cyclic nucleotides and are important in the regulation of the cardiovascular system. Here,we have investigated the effects on the cardiovascular system, of two novel selective PDE1 inhibitors, Lu AF41228 and Lu AF5802...

  20. Synergistic apoptosis induction in leukemic cells by the phosphatase inhibitor salubrinal and proteasome inhibitors.

    Directory of Open Access Journals (Sweden)

    Hannes C A Drexler

    Full Text Available Cells adapt to endoplasmic reticulum (ER-stress by arresting global protein synthesis while simultaneously activating specific transcription factors and their downstream targets. These processes are mediated in part by the phosphorylation-dependent inactivation of the translation initiation factor eIF2alpha. Following restoration of homeostasis protein synthesis is resumed when the serine/threonine-protein phosphatase PP1 dephosphorylates and reactivates eIF2alpha. Proteasome inhibitors, used to treat multiple myeloma patients evoke ER-stress and apoptosis by blocking the ER-associated degradation of misfolded proteins (ERAD, however, the role of eIF2alpha phosphorylation in leukemic cells under conditions of proteasome inhibitor-mediated ER stress is currently unclear.Bcr-Abl-positive and negative leukemic cell lines were used to investigate the functional implications of PP1-related phosphatase activities on eIF2alpha phosphorylation in proteasome inhibitor-mediated ER stress and apoptosis. Rather unexpectedly, salubrinal, a recently identified PP1 inhibitor capable to protect against ER stress in various model systems, strongly synergized with proteasome inhibitors to augment apoptotic death of different leukemic cell lines. Salubrinal treatment did not affect the phosphorlyation status of eIF2alpha. Furthermore, the proapoptotic effect of salubrinal occurred independently from the chemical nature of the proteasome inhibitor, was recapitulated by a second unrelated phosphatase inhibitor and was unaffected by overexpression of a dominant negative eIF2alpha S51A variant that can not be phosphorylated. Salubrinal further aggravated ER-stress and proteotoxicity inflicted by the proteasome inhibitors on the leukemic cells since characteristic ER stress responses, such as ATF4 and CHOP synthesis, XBP1 splicing, activation of MAP kinases and eventually apoptosis were efficiently abrogated by the translational inhibitor cycloheximide.Although PP1

  1. Interaction of bovine peripheral blood polymorphonuclear cells and Leptospira species; innate responses in the natural bovine reservoir host.

    Directory of Open Access Journals (Sweden)

    Jennifer H Wilson-Welder

    2016-07-01

    Full Text Available Cattle are the reservoir hosts of Leptospira borgpetersenii serovar Hardjo, and can also be reservoir hosts of other Leptospira species such as L. kirschneri, and L. interrogans. As a reservoir host, cattle shed Leptospira, infecting other animals, including humans. Previous studies with human and murine neutrophils have shown activation of neutrophil extracellular trap or NET formation, and upregulation of inflammatory mediators by neutrophils in the presence of Leptospira. Humans, companion animals and most widely studied models of Leptospirosis are of acute infection, hallmarked by systemic inflammatory response, neutrophilia and septicemia. In contrast, cattle exhibit chronic infection with few outward clinical signs aside from reproductive failure. Taking into consideration that there is host species variation in innate immunity, especially in pathogen recognition and response, the interaction of bovine peripheral blood polymorphonuclear cells (PMNs and several Leptospira strains was evaluated. Studies including bovine-adapted strains, human pathogen strains, a saprophyte and inactivated organisms. Incubation of PMNs with Leptospira did induce slight activation of neutrophil NETs, greater than unstimulated cells but less than the quantity from E. coli P4 stimulated PMNs. Very low but significant from non-stimulated, levels of reactive oxygen peroxides were produced in the presence of all Leptospira strains and E. coli P4. Similarly, significant levels of reactive nitrogen intermediaries (NO2 was produced from PMNs when incubated with the Leptospira strains and greater quantities in the presence of E. coli P4. PMNs incubated with Leptospira induced RNA transcripts of IL-1β, MIP-1α, and TNF-α, with greater amounts induced by live organisms when compared to heat-inactivated leptospires. Transcript for inflammatory cytokine IL-8 was also induced, at similar levels regardless of Leptospira strain or viability. However, incubation of

  2. SIRT1 inactivation induces inflammation through the dysregulation of autophagy in human THP-1 cells

    Energy Technology Data Exchange (ETDEWEB)

    Takeda-Watanabe, Ai; Kitada, Munehiro; Kanasaki, Keizo [Diabetology and Endocrinology, Kanazawa Medical University, Kahoku-Gun, Ishikawa (Japan); Koya, Daisuke, E-mail: koya0516@kanazawa-med.ac.jp [Diabetology and Endocrinology, Kanazawa Medical University, Kahoku-Gun, Ishikawa (Japan)

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer SIRT1 inactivation decreases autophagy in THP-1 cell. Black-Right-Pointing-Pointer Inhibition of autophagy induces inflammation. Black-Right-Pointing-Pointer SIRT1 inactivation induces inflammation through NF-{kappa}B activation. Black-Right-Pointing-Pointer The p62/Sqstm1 accumulation by impairment of autophagy is related to NF-{kappa}B activation. Black-Right-Pointing-Pointer SIRT1 inactivation is involved in the activation of mTOR and decreased AMPK activation. -- Abstract: Inflammation plays a crucial role in atherosclerosis. Monocytes/macrophages are some of the cells involved in the inflammatory process in atherogenesis. Autophagy exerts a protective effect against cellular stresses like inflammation, and it is regulated by nutrient-sensing pathways. The nutrient-sensing pathway includes SIRT1, a NAD{sup +}-dependent histone deacetylase, which is implicated in the regulation of a variety of cellular processes including inflammation and autophagy. The mechanism through which the dysfunction of SIRT1 contributes to the regulation of inflammation in relation to autophagy in monocytes/macrophages is unclear. In the present study, we demonstrate that treatment with 2-[(2-Hydroxynaphthalen-1-ylmethylene)amino]-N-(1-phenethyl)benzamide (Sirtinol), a chemical inhibitor of SIRT1, induces the overexpression of inflammation-related genes such as tumor necrosis factor (TNF)-{alpha} and interleukin (IL)-6 through nuclear factor (NF)-{kappa}B signaling activation, which is associated with autophagy dysfunction, as shown through p62/Sqstm1 accumulation and decreased expression of light chain (LC) 3 II in THP-1 cells. The autophagy inhibitor, 3-methyladenine, also induces inflammation-related NF-{kappa}B activation. In p62/Sqstm1 knockdown cells, Sirtinol-induced inflammation through NF-{kappa}B activation is blocked. In addition, inhibition of SIRT1 is involved in the activation of the mammalian target of rapamycin (mTOR) pathway and

  3. Probiotic Modulation of Innate Cell Pathogen Sensing and Signaling Events

    Directory of Open Access Journals (Sweden)

    Amy Llewellyn

    2017-10-01

    Full Text Available There is a growing body of evidence documenting probiotic bacteria to have a beneficial effect to the host through their ability to modulate the mucosal immune system. Many probiotic bacteria can be considered to act as either immune activators or immune suppressors, which have appreciable influence on homeostasis, inflammatory- and suppressive-immunopathology. What is becoming apparent is the ability of these probiotics to modulate innate immune responses via direct or indirect effects on the signaling pathways that drive these activatory or suppressive/tolerogenic mechanisms. This review will focus on the immunomodulatory role of probiotics on signaling pathways in innate immune cells: from positive to negative regulation associated with innate immune cells driving gut mucosal functionality. Research investigations have shown probiotics to modulate innate functionality in many ways including, receptor antagonism, receptor expression, binding to and expression of adaptor proteins, expression of negative regulatory signal molecules, induction of micro-RNAs, endotoxin tolerisation and finally, the secretion of immunomodulatory proteins, lipids and metabolites. The detailed understanding of the immunomodulatory signaling effects of probiotic strains will facilitate strain-specific selective manipulation of innate cell signal mechanisms in the modulation of mucosal adjuvanticity, immune deviation and tolerisation in both healthy subjects and patients with inflammatory and suppressive pathology.

  4. Postnatal Innate Immune Development: From Birth to Adulthood

    Directory of Open Access Journals (Sweden)

    Anastasia Georgountzou

    2017-08-01

    Full Text Available It is well established that adaptive immune responses are deficient in early life, contributing to increased mortality and morbidity. The developmental trajectories of different components of innate immunity are only recently being explored. Individual molecules, cells, or pathways of innate recognition and signaling, within different compartments/anatomical sites, demonstrate variable maturation patterns. Despite some discrepancies among published data, valuable information is emerging, showing that the developmental pattern of cytokine responses during early life is age and toll-like receptor specific, and may be modified by genetic and environmental factors. Interestingly, specific environmental exposures have been linked both to innate function modifications and the occurrence of chronic inflammatory disorders, such as respiratory allergies. As these conditions are on the rise, our knowledge on innate immune development and its modulating factors needs to be expanded. Improved understanding of the sequence of events associated with disease onset and persistence will lead toward meaningful interventions. This review describes the state-of-the-art on normal postnatal innate immune ontogeny and highlights research areas that are currently explored or should be further addressed.

  5. Convergence of the innate and adaptive immunity during human aging

    Directory of Open Access Journals (Sweden)

    Branca Isabel Pereira

    2016-11-01

    Full Text Available Aging is associated with profound changes in the human immune system, a phenomenon referred to as immunosenescence. This complex immune remodeling affects the adaptive immune system and the CD8+ T cell compartment in particular, leading to the accumulation of terminally differentiated T cells, which can rapidly exert their effector functions at the expenses of a limited proliferative potential. In this review we will discuss evidence suggesting that senescent αβCD8+ T cells acquire the hallmarks of innate-like T cells and use recently acquired NK cell receptors as an alternative mechanism to mediate rapid effector functions. These cells concomitantly lose expression of co-stimulatory receptors and exhibit decreased TCR signaling suggesting a functional shift away from antigen specific activation. The convergence of innate and adaptive features in senescent T cells challenges the classic division between innate and adaptive immune systems. Innate-like T cells are particularly important for stress and tumor surveillance and we propose a new role for these cells in aging, where the acquisition of innate-like functions may represent a beneficial adaptation to an increased burden of malignancy with age, although it may also pose a higher risk of autoimmune disorders.

  6. The Critical Role of Innate Immunity in Kidney Transplantation.

    Science.gov (United States)

    Cucchiari, David; Podestà, Manuel Alfredo; Ponticelli, Claudio

    2016-01-01

    For a long time now, kidney transplant rejection has been considered the consequence of either cellular or antibody-mediated reaction as a part of adaptive immunity response. The role of innate immunity, on the other hand, had been unclear for many years and was thought to be only ancillary. There is now consistent evidence that innate immune response is a condition necessary to activate the machinery of rejection. In this setting, the communication between antigen-presenting cells and T lymphocytes is of major importance. Indeed, T cells are unable to cause rejection if innate immunity is not activated. This field is currently being explored and several experiments in animal models have proved that blocking innate immunity activation can promote tolerance of the graft instead of rejection. The aim of this review is to systematically describe all the steps of innate immunity response in kidney transplant rejection, from antigen recognition to T-cells activation, with a focus on clinical consequences and possible future perspectives. © 2016 S. Karger AG, Basel.

  7. Infectious Agents as Stimuli of Trained Innate Immunity.

    Science.gov (United States)

    Rusek, Paulina; Wala, Mateusz; Druszczyńska, Magdalena; Fol, Marek

    2018-02-03

    The discoveries made over the past few years have modified the current immunological paradigm. It turns out that innate immunity cells can mount some kind of immunological memory, similar to that observed in the acquired immunity and corresponding to the defense mechanisms of lower organisms, which increases their resistance to reinfection. This phenomenon is termed trained innate immunity. It is based on epigenetic changes in innate immune cells (monocytes/macrophages, NK cells) after their stimulation with various infectious or non-infectious agents. Many infectious stimuli, including bacterial or fungal cells and their components (LPS, β-glucan, chitin) as well as viruses or even parasites are considered potent inducers of innate immune memory. Epigenetic cell reprogramming occurring at the heart of the phenomenon may provide a useful basis for designing novel prophylactic and therapeutic strategies to prevent and protect against multiple diseases. In this article, we present the current state of art on trained innate immunity occurring as a result of infectious agent induction. Additionally, we discuss the mechanisms of cell reprogramming and the implications for immune response stimulation/manipulation.

  8. Trained immunity: A smart way to enhance innate immune defence.

    Science.gov (United States)

    van der Meer, Jos W M; Joosten, Leo A B; Riksen, Niels; Netea, Mihai G

    2015-11-01

    The innate arm of the immune system is generally viewed as primitive and non-specific and - in contrast to the adaptive immune arm - not to possess memory. However in plants and invertebrate animals that lack adaptive immunity, innate immunity will exhibit a prolonged enhanced functional state after adequate priming. A similar enhancement of function of the innate immunity has occasionally been described in vertebrates, including humans. Over the past few years we have studied this phenomenon in greater detail and we have coined the term 'Trained (innate) immunity' (TI). TI can be induced by a variety of stimuli, of which we have studied BCG and β-glucan in greater detail. The non-specific protective effects of BCG that have been observed in vaccination studies in the literature are probably due to TI. Monocytes and macrophages are among the main cells of the innate immune arm that can be trained. We have discovered that both BCG (via NOD2 signalling) and β-glucan (via dectin-1) induce epigenetic reprogramming, in particular stable changes in histone trimethylation at H3K4. These epigenetic changes lead to cellular activation, enhanced cytokine production and a change in the metabolic state of the cell with a shift from oxidative phosphorylation to aerobic glycolysis. TI is not only important for host defence and vaccine responses, but most probably also for diseases like atherosclerosis. Modulation of TI is a promising area for new treatments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Different impact of heat-inactivated and viable lactic acid bacteria of aquatic origin on turbot (Scophthalmus maximus L.) head-kidney leucocytes.

    Science.gov (United States)

    Muñoz-Atienza, Estefanía; Araújo, Carlos; Lluch, Nuria; Hernández, Pablo E; Herranz, Carmen; Cintas, Luis M; Magadán, Susana

    2015-05-01

    In aquaculture, several criteria should be considered to select an appropriate probiotic, including the aquatic origin and safety of the strain and its ability to modulate the host immune response. The properties and effects of probiotics are strain-specific and some factors such as viability, dose and duration of diet supplementation may regulate their immunomodulatory activities. In this study, we assessed the in vitro effect of eight heat-inactivated and viable lactic acid bacteria (LAB) of aquatic origin belonging to the genera Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Pediococcus and Weissella on the viability and innate immune response of turbot (Scophthalmus maximus L.) leucocytes. Head-kidney leucocytes were incubated with viable and heat-inactivated LAB at different concentrations. After incubation, the viability of leucocytes was evaluated using colorimetric assays (MTT and LDH) and flow cytometry (annexin V/propidium iodide). Heat-inactivated LAB showed no cytotoxic effect while viable LAB exerted variable influence on apoptosis of turbot phagocytes and lymphocytes. Leucocyte respiratory burst activity and phagocytosis were also differentially activated, as viable LAB stimulated leucocytes more efficiently than the heat-inactivated LAB. Our results suggest diverse strain-specific mechanisms of interaction between the evaluated LAB and turbot leucocytes. Furthermore, our work sets up in vitro systems to evaluate the effect of LAB as potential probiotics, which will be useful to develop efficient screening. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. HIV Exploits Antiviral Host Innate GCN2-ATF4 Signaling for Establishing Viral Replication Early in Infection

    Directory of Open Access Journals (Sweden)

    Guochun Jiang

    2017-05-01

    Full Text Available Antiviral innate host defenses against acute viral infections include suppression of host protein synthesis to restrict viral protein production. Less is known about mechanisms by which viral pathogens subvert host antiviral innate responses for establishing their replication and dissemination. We investigated early innate defense against human immunodeficiency virus (HIV infection and viral evasion by utilizing human CD4+ T cell cultures in vitro and a simian immunodeficiency virus (SIV model of AIDS in vivo. Our data showed that early host innate defense against the viral infection involves GCN2-ATF4 signaling-mediated suppression of global protein synthesis, which is exploited by the virus for supporting its own replication during early viral infection and dissemination in the gut mucosa. Suppression of protein synthesis and induction of protein kinase GCN2-ATF4 signaling were detected in the gut during acute SIV infection. These changes diminished during chronic viral infection. HIV replication induced by serum deprivation in CD4+ T cells was linked to the induction of ATF4 that was recruited to the HIV long terminal repeat (LTR to promote viral transcription. Experimental inhibition of GCN2-ATF4 signaling either by a specific inhibitor or by amino acid supplementation suppressed the induction of HIV expression. Enhancing ATF4 expression through selenium administration resulted in reactivation of latent HIV in vitro as well as ex vivo in the primary CD4+ T cells isolated from patients receiving suppressive antiretroviral therapy (ART. In summary, HIV/SIV exploits the early host antiviral response through GCN2-ATF4 signaling by utilizing ATF4 for activating the viral LTR transcription to establish initial viral replication and is a potential target for HIV prevention and therapy.

  11. Reduction of Mycobacterium tuberculosis infection in Bacillus Calmette Guerin immunized people is due to training of innate immunity.

    Science.gov (United States)

    Eisenhut, Michael

    2015-03-01

    The currently used vaccine for prevention of tuberculosis is Bacillus Calmette Guerin, which has been associated with a protective effect of 51% against tuberculosis. New vaccination strategies based on an enhancement of adaptive T-cell based immunity have been unsuccessful in increasing the efficiency of BCG immunisation. The proposed hypothesis is that a reduction of Mycobacterium (M.) tuberculosis infection in Bacillus Calmette Guerin immunized people is due to training of innate immunity. Evidence to support the hypothesis is a systematic review, which showed that BCG protects against M. tuberculosis infection as evident from negative interferon gamma release assay results in BCG immunised exposed people. BCG has been shown to enhance innate immunity in monocytes via nucleotide binding oligomerisation domain 2 receptor activation by muramyldipeptide. An alternative hypothesis may be that T-suppressor cells induced by BCG immunisation may be the reason for the absence of an interferon gamma response mimicking absence of infection in immunized people. In order to test the primary hypothesis an ultra-low dose mouse model of M. tuberculosis infection could be used. Innate immunity could be enhanced by administration of murabutide and groups with and without murabutide enhanced BCG immunisation and with and without elimination of T-suppressor cells compared. The contribution of training of innate immunity in reduction of infection could hereby be demonstrated by treatment of mice prior to immunisation with an inhibitor of epigenetic programming. Confirmation of the hypothesis could provide the foundation of a new approach to an improved vaccine against M. tuberculosis infection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Src drives the Warburg effect and therapy resistance by inactivating pyruvate dehydrogenase through tyrosine-289 phosphorylation

    Science.gov (United States)

    Shenoy, Anitha K.; Lim, Sangbin; Zhang, Ying; Charles, Steve; Tarrash, Miriam; Fu, Xueqi; Kamarajugadda, Sushama; Trevino, Jose G.; Tan, Ming; Lu, Jianrong

    2016-01-01

    The Warburg effect, which reflects cancer cells' preference for aerobic glycolysis over glucose oxidation, contributes to tumor growth, progression and therapy resistance. The restraint on pyruvate flux into mitochondrial oxidative metabolism in cancer cells is in part attributed to the inhibition of pyruvate dehydrogenase (PDH) complex. Src is a prominent oncogenic non-receptor tyrosine kinase that promotes cancer cell proliferation, invasion, metastasis and resistance to conventional and targeted therapies. However, the potential role of Src in tumor metabolism remained unclear. Here we report that activation of Src attenuated PDH activity and generation of reactive oxygen species (ROS). Conversely, Src inhibitors activated PDH and increased cellular ROS levels. Src inactivated PDH through direct phosphorylation of tyrosine-289 of PDH E1α subunit (PDHA1). Indeed, Src was the main kinase responsible for PDHA1 tyrosine phosphorylation in cancer cells. Expression of a tyrosine-289 non-phosphorable PDHA1 mutant in Src-hyperactivated cancer cells restored PDH activity, increased mitochondrial respiration and oxidative stress, decreased experimental metastasis, and sensitized cancer cells to pro-oxidant treatment. The results suggest that Src contributes to the Warburg phenotype by inactivating PDH through tyrosine phosphorylation, and the metabolic effect of Src is essential for Src-driven malignancy and therapy resistance. Combination therapies consisting of both Src inhibitors and pro-oxidants may improve anticancer efficacy. PMID:26848621

  13. Chlorine inactivation of Tubifex tubifex in drinking water and the synergistic effect of sequential inactivation with UV irradiation and chlorine.

    Science.gov (United States)

    Nie, Xiao-Bao; Li, Zhi-Hong; Long, Yuan-Nan; He, Pan-Pan; Xu, Chao

    2017-06-01

    The inactivation of Tubifex tubifex is important to prevent contamination of drinking water. Chlorine is a widely-used disinfectant and the key factor in the inactivation of T. tubifex. This study investigated the inactivation kinetics of chlorine on T. tubifex and the synergistic effect of the sequential use of chlorine and UV irradiation. The experimental results indicated that the Ct (concentration × time reaction ) concept could be used to evaluate the inactivation kinetics of T. tubifex with chlorine, thus allowing for the use of a simpler Ct approach for the assessment of T. tubifex chlorine inactivation requirements. The inactivation kinetics of T. tubifex by chlorine was found to be well-fitted to a delayed pseudo first-order Chick-Watson expression. Sequential experiments revealed that UV irradiation and chlorine worked synergistically to effectively inactivate T. tubifex as a result of the decreased activation energy, E a , induced by primary UV irradiation. Furthermore, the inactivation effectiveness of T. tubifex by chlorine was found to be affected by several drinking water quality parameters including pH, turbidity, and chemical oxygen demand with potassium permanganate (COD Mn ) concentration. High pH exhibited pronounced inactivation effectiveness and the decrease in turbidity and COD Mn concentrations contributed to the inactivation of T. tubifex. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Short- and long-term effects of nicotine and the histone deacetylase inhibitor phenylbutyrate on novel object recognition in zebrafish.

    Science.gov (United States)

    Faillace, M P; Pisera-Fuster, A; Medrano, M P; Bejarano, A C; Bernabeu, R O

    2017-03-01

    Zebrafish have a sophisticated color- and shape-sensitive visual system, so we examined color cue-based novel object recognition in zebrafish. We evaluated preference in the absence or presence of drugs that affect attention and memory retention in rodents: nicotine and the histone deacetylase inhibitor (HDACi) phenylbutyrate (PhB). The objective of this study was to evaluate whether nicotine and PhB affect innate preferences of zebrafish for familiar and novel objects after short- and long-retention intervals. We developed modified object recognition (OR) tasks using neutral novel and familiar objects in different colors. We also tested objects which differed with respect to the exploratory behavior they elicited from naïve zebrafish. Zebrafish showed an innate preference for exploring red or green objects rather than yellow or blue objects. Zebrafish were better at discriminating color changes than changes in object shape or size. Nicotine significantly enhanced or changed short-term innate novel object preference whereas PhB had similar effects when preference was assessed 24 h after training. Analysis of other zebrafish behaviors corroborated these results. Zebrafish were innately reluctant or prone to explore colored novel objects, so drug effects on innate preference for objects can be evaluated changing the color of objects with a simple geometry. Zebrafish exhibited recognition memory for novel objects with similar innate significance. Interestingly, nicotine and PhB significantly modified innate object preference.

  15. Novel adaptive and innate immunity targets in hypertension.

    Science.gov (United States)

    Abais-Battad, Justine M; Dasinger, John Henry; Fehrenbach, Daniel J; Mattson, David L

    2017-06-01

    Hypertension is a worldwide epidemic and global health concern as it is a major risk factor for the development of cardiovascular diseases. A relationship between the immune system and its contributing role to the pathogenesis of hypertension has been long established, but substantial advancements within the last few years have dissected specific causal molecular mechanisms. This review will briefly examine these recent studies exploring the involvement of either innate or adaptive immunity pathways. Such pathways to be discussed include innate immunity factors such as antigen presenting cells and pattern recognition receptors, adaptive immune elements including T and B lymphocytes, and more specifically, the emerging role of T regulatory cells, as well as the potential of cytokines and chemokines to serve as signaling messengers connecting innate and adaptive immunity. Together, we summarize these studies to provide new perspective for what will hopefully lead to more targeted approaches to manipulate the immune system as hypertensive therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Retinoic Acid and Its Role in Modulating Intestinal Innate Immunity.

    Science.gov (United States)

    Czarnewski, Paulo; Das, Srustidhar; Parigi, Sara M; Villablanca, Eduardo J

    2017-01-13

    Vitamin A (VA) is amongst the most well characterized food-derived nutrients with diverse immune modulatory roles. Deficiency in dietary VA has not only been associated with immune dysfunctions in the gut, but also with several systemic immune disorders. In particular, VA metabolite all-trans retinoic acid ( at RA) has been shown to be crucial in inducing gut tropism in lymphocytes and modulating T helper differentiation. In addition to the widely recognized role in adaptive immunity, increasing evidence identifies at RA as an important modulator of innate immune cells, such as tolerogenic dendritic cells (DCs) and innate lymphoid cells (ILCs). Here, we focus on the role of retinoic acid in differentiation, trafficking and the functions of innate immune cells in health and inflammation associated disorders. Lastly, we discuss the potential involvement of at RA during the plausible crosstalk between DCs and ILCs.

  17. Innate Lung Defense during Invasive Aspergillosis: New Mechanisms.

    Science.gov (United States)

    Garth, Jaleesa M; Steele, Chad

    2017-01-01

    Invasive aspergillosis (IA) is one of the most difficult to treat and, consequently, one of the most lethal fungal infections known to man. Continued use of immunosuppressive agents during chemotherapy and organ transplantation often leads to the development of neutropenia, the primary risk factor for IA. However, IA is also becoming more appreciated in chronic diseases associated with corticosteroid therapy. The innate immune response to Aspergillus fumigatus, the primary agent in IA, plays a pivotal role in the recognition and elimination of organisms from the pulmonary system. This review highlights recent findings about innate host defense mechanisms, including novel aspects of innate cellular immunity and pathogen recognition, and the inflammatory mediators that control infection with A. fumigatus. © 2017 S. Karger AG, Basel.

  18. Design and Synthesis of Novel Macrocyclic Mer Tyrosine Kinase Inhibitors.

    Science.gov (United States)

    Wang, Xiaodong; Liu, Jing; Zhang, Weihe; Stashko, Michael A; Nichols, James; Miley, Michael J; Norris-Drouin, Jacqueline; Chen, Zhilong; Machius, Mischa; DeRyckere, Deborah; Wood, Edgar; Graham, Douglas K; Earp, H Shelton; Kireev, Dmitri; Frye, Stephen V

    2016-12-08

    Mer tyrosine kinase (MerTK) is aberrantly elevated in various tumor cells and has a normal anti-inflammatory role in the innate immune system. Inhibition of MerTK may provide dual effects against these MerTK-expressing tumors through reducing cancer cell survival and redirecting the innate immune response. Recently, we have designed novel and potent macrocyclic pyrrolopyrimidines as MerTK inhibitors using a structure-based approach. The most active macrocycles had an EC 50 below 40 nM in a cell-based MerTK phosphor-protein ELISA assay. The X-ray structure of macrocyclic analogue 3 complexed with MerTK was also resolved and demonstrated macrocycles binding in the ATP binding pocket of the MerTK protein as anticipated. In addition, the lead compound 16 (UNC3133) had a 1.6 h half-life and 16% oral bioavailability in a mouse PK study.

  19. Proton pump inhibitors

    Science.gov (United States)

    Proton pump inhibitors (PPIs) are medicines that work by reducing the amount of stomach acid made by ... Proton pump inhibitors are used to: Relieve symptoms of acid reflux, or gastroesophageal reflux disease (GERD). This ...

  20. Analysis of innate defences against Plasmodium falciparum in immunodeficient mice

    Directory of Open Access Journals (Sweden)

    Van Rooijen Nico

    2010-07-01

    Full Text Available Abstract Background Mice with genetic deficiencies in adaptive immunity are used for the grafting of human cells or pathogens, to study human diseases, however, the innate immune responses to xenografts in these mice has received little attention. Using the NOD/SCID Plasmodium falciparum mouse model an analysis of innate defences responsible for the substantial control of P. falciparum which remains in such mice, was performed. Methods NOD/SCID mice undergoing an immunomodulatory protocol that includes, clodronate-loaded liposomes to deplete macrophages and an anti-polymorphonuclear leukocytes antibody, were grafted with human red blood cells and P. falciparum. The systematic and kinetic analysis of the remaining innate immune responses included the number and phenotype of peripheral blood leukocytes as well as inflammatory cytokines/chemokines released in periphery. The innate responses towards the murine parasite Plasmodium yoelii were used as a control. Results Results show that 1 P. falciparum induces a strong inflammation characterized by an increase in circulating leukocytes and the release of inflammatory cytokines; 2 in contrast, the rodent parasite P. yoelii, induces a far more moderate inflammation; 3 human red blood cells and the anti-inflammatory agents employed induce low-grade inflammation; and 4 macrophages seem to bear the most critical function in controlling P. falciparum survival in those mice, whereas polymorphonuclear and NK cells have only a minor role. Conclusions Despite the use of an immunomodulatory treatment, immunodeficient NOD/SCID mice are still able to mount substantial innate responses that seem to be correlated with parasite clearance. Those results bring new insights on the ability of innate immunity from immunodeficient mice to control xenografts of cells of human origin and human pathogens.

  1. Modeling Radiation Effectiveness for Inactivation of Bacillus Spores

    Science.gov (United States)

    2015-09-17

    MODELING RADIATION EFFECTIVENESS FOR INACTIVATION OF BACILLUS SPORES DISSERTATION Emily A. Knight, Major, USAF AFIT-ENC-DS-15-S-001 DEPARTMENT OF THE...not subject to copyright protection in the United States. AFIT-ENC-DS-15-S-001 MODELING RADIATION EFFECTIVENESS FOR INACTIVATION OF BACILLUS SPORES...EFFECTIVENESS FOR INACTIVATION OF BACILLUS SPORES Emily A. Knight, B.A., M.S. Major, USAF Committee Membership: Dr. William P. Baker Chair Dr. Larry W

  2. Interplay of innate lymphoid cells and the microbiota.

    Science.gov (United States)

    Britanova, Liudmila; Diefenbach, Andreas

    2017-09-01

    Innate lymphoid cells (ILC) are a recently identified group of innate lymphocytes that are preferentially located at barrier surfaces. Barrier surfaces are in direct contact with complex microbial ecosystems, collectively referred to as the microbiota. It is now believed that the interplay of the microbiota with host components (i.e. epithelial cells and immune cells) promotes host fitness by regulating organ homeostasis, metabolism, and host defense against pathogens. In this review, we will give an overview of this multifaceted interplay between ILC and components of the microbiota. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Interactions between the intestinal microbiota and innate lymphoid cells.

    Science.gov (United States)

    Chen, Vincent L; Kasper, Dennis L

    2014-01-01

    The mammalian intestine must manage to contain 100 trillion intestinal bacteria without inducing inappropriate immune responses to these microorganisms. The effects of the immune system on intestinal microorganisms are numerous and well-characterized, and recent research has determined that the microbiota influences the intestinal immune system as well. In this review, we first discuss the intestinal immune system and its role in containing and maintaining tolerance to commensal organisms. We next introduce a category of immune cells, the innate lymphoid cells, and describe their classification and function in intestinal immunology. Finally, we discuss the effects of the intestinal microbiota on innate lymphoid cells.

  4. Soluble Host Defense Lectins in Innate Immunity to Influenza Virus

    Science.gov (United States)

    Ng, Wy Ching; Tate, Michelle D.; Brooks, Andrew G.; Reading, Patrick C.

    2012-01-01

    Host defenses against viral infections depend on a complex interplay of innate (nonspecific) and adaptive (specific) components. In the early stages of infection, innate mechanisms represent the main line of host defense, acting to limit the spread of virus in host tissues prior to the induction of the adaptive immune response. Serum and lung fluids contain a range of lectins capable of recognizing and destroying influenza A viruses (IAV). Herein, we review the mechanisms by which soluble endogenous lectins mediate anti-IAV activity, including their role in modulating IAV-induced inflammation and disease and their potential as prophylactic and/or therapeutic treatments during severe IAV-induced disease. PMID:22665991

  5. Cocaine induces a mixed lysosomal lipidosis in cultured fibroblasts, by inactivation of acid sphingomyelinase and inhibition of phospholipase A1.

    Science.gov (United States)

    Nassogne, Marie-Cécile; Lizarraga, Chantal; N'Kuli, Francisca; Van Bambeke, Françoise; Van Binst, Roger; Wallemacq, Pierre; Tulkens, Paul M; Mingeot-Leclercq, Marie-Paule; Levade, Thierry; Courtoy, Pierre J

    2004-01-15

    This paper reports that cocaine may induce a lysosomal storage disorder. Indeed, culture of Rat-1 fibroblasts with 250-500 microM cocaine induced after 2-3 days a major accumulation in lysosomes of electron-dense lamellar structures. By subcellular fractionation, this was reflected by a selective decrease of the buoyant density of several lysosomal enzymes, indicating lysosomal lipid overload. Biochemical analysis confirmed an increased cellular content of major phospholipids and sphingomyelin, but not of cholesterol. Cocaine, a membrane-permeant weak base, is concentrated by acidotropic sequestration, because its accumulation was abrogated by the proton ionophore, monensin and the vacuolar ATPase inhibitor, bafilomycin A1. At its estimated lysosomal concentration, cocaine almost completely inhibited phospholipase A1 activity on liposomes. Cell incubation with cocaine, but not with its inactive metabolite, benzoylecgonine, rapidly inactivated acid sphingomyelinase, as reflected by a 10-fold decrease in Vmax with identical Km. Acid sphingomyelinase inactivation was fully prevented by the thiol proteinases inhibitors, leupeptin and E64, indicating that cocaine induces selective sphingomyelinase proteolysis. Upon cocaine removal, acid sphingomyelinase activity was rapidly restored, pointing to its fast turnover. In contrast, the cellular content of several other lysosomal hydrolases was increased up to 2-fold. Together, these data show that acidotropic accumulation of cocaine in lysosomes rapidly inhibits acid phospholipase A1 and inactivates acid sphingomyelinase, which can explain induction of a mixed lysosomal lipidosis.

  6. Cocaine induces a mixed lysosomal lipidosis in cultured fibroblasts, by inactivation of acid sphingomyelinase and inhibition of phospholipase A1

    International Nuclear Information System (INIS)

    Nassogne, Marie-Cecile; Lizarraga, Chantal; N'Kuli, Francisca; Van Bambeke, Francoise; Van Binst, Roger; Wallemacq, Pierre; Tulkens, Paul M.; Mingeot-Leclercq, Marie-Paule; Levade, Thierry; Courtoy, Pierre J.

    2004-01-01

    This paper reports that cocaine may induce a lysosomal storage disorder. Indeed, culture of Rat-1 fibroblasts with 250-500 μM cocaine induced after 2-3 days a major accumulation in lysosomes of electron-dense lamellar structures. By subcellular fractionation, this was reflected by a selective decrease of the buoyant density of several lysosomal enzymes, indicating lysosomal lipid overload. Biochemical analysis confirmed an increased cellular content of major phospholipids and sphingomyelin, but not of cholesterol. Cocaine, a membrane-permeant weak base, is concentrated by acidotropic sequestration, because its accumulation was abrogated by the proton ionophore, monensin and the vacuolar ATPase inhibitor, bafilomycin A 1 . At its estimated lysosomal concentration, cocaine almost completely inhibited phospholipase A 1 activity on liposomes. Cell incubation with cocaine, but not with its inactive metabolite, benzoylecgonine, rapidly inactivated acid sphingomyelinase, as reflected by a 10-fold decrease in V max with identical K m . Acid sphingomyelinase inactivation was fully prevented by the thiol proteinases inhibitors, leupeptin and E64, indicating that cocaine induces selective sphingomyelinase proteolysis. Upon cocaine removal, acid sphingomyelinase activity was rapidly restored, pointing to its fast turnover. In contrast, the cellular content of several other lysosomal hydrolases was increased up to 2-fold. Together, these data show that acidotropic accumulation of cocaine in lysosomes rapidly inhibits acid phospholipase A 1 and inactivates acid sphingomyelinase, which can explain induction of a mixed lysosomal lipidosis

  7. Radiation inactivation analysis of kidney microvillar peptidases

    International Nuclear Information System (INIS)

    Fulcher, I.S.; Ingram, J.; Kenny, A.J.

    1986-01-01

    Five membrane peptidases were studied by radiation inactivation analysis of pig kidney microvillar membranes. One heterodimeric enzyme, γ-glutamyl transferase, presented a target size corresponding to the dimeric M r . The other enzymes are known to be homodimers. Three of these, aminopeptidase A, aminopeptidase N and dipeptidyl peptidase 4, gave results clearly indicating the monomer to be the target and, hence, in this group the association of the subunits was not essential for activity. The target size for endopeptidase-24.11 was intermediate between those for monomer and dimer and its functional state was not resolved by the experiments. (Auth.)

  8. Gamma ray inactivation of some animal viruses.

    Science.gov (United States)

    Thomas, F C; Davies, A G; Dulac, G C; Willis, N G; Papp-Vid, G; Girard, A

    1981-10-01

    Twenty samples of animal viruses comprising 14 different viruses in 12 families were subjected to varying doses of gamma irradiation from a 60Co source in a Gamma Cell 220 (Atomic Energy of Canada Limited) to determine lethal dose levels. The dose responses appeared linear throughout inactivation. The D10 values, that is the dose necessary to reduce infectivity by one log10, ranged from less than 0.20 Megarads to approximately 0.55 Megarads. There was not a complete inverse correlation between the target size (virion core) and the D10 value.

  9. Gamma ray inactivation of some animal viruses.

    OpenAIRE

    Thomas, F C; Davies, A G; Dulac, G C; Willis, N G; Papp-Vid, G; Girard, A

    1981-01-01

    Twenty samples of animal viruses comprising 14 different viruses in 12 families were subjected to varying doses of gamma irradiation from a 60Co source in a Gamma Cell 220 (Atomic Energy of Canada Limited) to determine lethal dose levels. The dose responses appeared linear throughout inactivation. The D10 values, that is the dose necessary to reduce infectivity by one log10, ranged from less than 0.20 Megarads to approximately 0.55 Megarads. There was not a complete inverse correlation betwee...

  10. X Inactivation and Progenitor Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ruben Agrelo

    2011-04-01

    Full Text Available In mammals, silencing of one of the two X chromosomes is necessary to achieve dosage compensation. The 17 kb non-coding RNA called Xist triggers X inactivation. Gene silencing by Xist can only be achieved in certain contexts such as in cells of the early embryo and in certain hematopoietic progenitors where silencing factors are present. Moreover, these epigenetic contexts are maintained in cancer progenitors in which SATB1 has been identified as a factor related to Xist-mediated chromosome silencing.

  11. Inactivation of virus in solution by cold atmospheric pressure plasma: identification of chemical inactivation pathways

    Science.gov (United States)

    Aboubakr, Hamada A.; Gangal, Urvashi; Youssef, Mohammed M.; Goyal, Sagar M.; Bruggeman, Peter J.

    2016-05-01

    Cold atmospheric pressure plasma (CAP) inactivates bacteria and virus through in situ production of reactive oxygen and nitrogen species (RONS). While the bactericidal and virucidal efficiency of plasmas is well established, there is limited knowledge about the chemistry leading to the pathogen inactivation. This article describes a chemical analysis of the CAP reactive chemistry involved in the inactivation of feline calicivirus. We used a remote radio frequency CAP produced in varying gas mixtures leading to different plasma-induced chemistries. A study of the effects of selected scavengers complemented with positive control measurements of relevant RONS reveal two distinctive pathways based on singlet oxygen and peroxynitrous acid. The first mechanism is favored in the presence of oxygen and the second in the presence of air when a significant pH reduction is induced in the solution by the plasma. Additionally, smaller effects of the H2O2, O3 and \\text{NO}2- produced were also found. Identification of singlet oxygen-mediated 2-imidazolone/2-oxo-His (His  +14 Da)—an oxidative modification of His 262 comprising the capsid protein of feline calicivirus links the plasma induced singlet oxygen chemistry to viral inactivation.

  12. Inhibition of antiviral innate immunity by birnavirus VP3 protein via blockage of viral double-stranded RNA binding to the host cytoplasmic RNA detector MDA5.

    Science.gov (United States)

    Ye, Chengjin; Jia, Lu; Sun, Yanting; Hu, Boli; Wang, Lun; Lu, Xingmeng; Zhou, Jiyong

    2014-10-01

    Chicken MDA5 (chMDA5), the sole known pattern recognition receptor for cytoplasmic viral RNA in chickens, initiates type I interferon (IFN) production. Infectious bursal disease virus (IBDV) evades host innate immunity, but the mechanism is unclear. We report here that IBDV inhibited antiviral innate immunity via the chMDA5-dependent signaling pathway. IBDV infection did not induce efficient type I interferon (IFN) production but antagonized the antiviral activity of beta interferon (IFN-β) in DF-1 cells pretreated with IFN-α/β. Dual-luciferase assays and inducible expression systems demonstrated that IBDV protein VP3 significantly inhibited IFN-β expression stimulated by naked IBDV genomic double-stranded RNA (dsRNA). The VP3 protein competed strongly with chMDA5 to bind IBDV genomic dsRNA in vitro and in vivo, and VP3 from other birnaviruses also bound dsRNA. Site-directed mutagenesis confirmed that deletion of the VP3 dsRNA binding domain restored IFN-β expression. Our data demonstrate that VP3 inhibits antiviral innate immunity by blocking binding of viral genomic dsRNA to MDA5. MDA5, a known pattern recognition receptor and cytoplasmic viral RNA sensor, plays a critical role in host antiviral innate immunity. Many pathogens escape or inhibit the host antiviral immune response, but the mechanisms involved are unclear for most pathogens. We report here that birnaviruses inhibit host antiviral innate immunity via the MDA5-dependent signaling pathway. The antiviral innate immune system involving IFN-β did not function effectively during birnavirus infection, and the viral protein VP3 significantly inhibited IFN-β expression stimulated by naked viral genomic dsRNA. We also show that VP3 blocks MDA5 binding to viral genomic dsRNA in vitro and in vivo. Our data reveal that birnavirus-encoded viral protein VP3 is an inhibitor of the antiviral innate immune response and inhibits the antiviral innate immune response via the MDA5-dependent signaling pathway

  13. Canonical and Alternative Pathways in Cyclin-Dependent Kinase 1/Cyclin B Inactivation upon M-Phase Exit in Xenopus laevis Cell-Free Extracts

    Directory of Open Access Journals (Sweden)

    Jacek Z. Kubiak

    2011-01-01

    Full Text Available Cyclin-Dependent Kinase 1 (CDK1 is the major M-phase kinase known also as the M-phase Promoting Factor or MPF. Studies performed during the last decade have shown many details of how CDK1 is regulated and also how it regulates the cell cycle progression. Xenopus laevis cell-free extracts were widely used to elucidate the details and to obtain a global view of the role of CDK1 in M-phase control. CDK1 inactivation upon M-phase exit is a primordial process leading to the M-phase/interphase transition during the cell cycle. Here we discuss two closely related aspects of CDK1 regulation in Xenopus laevis cell-free extracts: firstly, how CDK1 becomes inactivated and secondly, how other actors, like kinases and phosphatases network and/or specific inhibitors, cooperate with CDK1 inactivation to assure timely exit from the M-phase.

  14. Photodynamic inactivation of pathogens causing infectious keratitis

    Science.gov (United States)

    Simon, Carole; Wolf, G.; Walther, M.; Winkler, K.; Finke, M.; Hüttenberger, D.; Bischoff, Markus; Seitz, B.; Cullum, J.; Foth, H.-J.

    2014-03-01

    The increasing prevalence of antibiotic resistance requires new approaches also for the treatment of infectious keratitis. Photodynamic Inactivation (PDI) using the photosensitizer (PS) Chlorin e6 (Ce6) was investigated as an alternative to antibiotic treatment. An in-vitro cornea model was established using porcine eyes. The uptake of Ce6 by bacteria and the diffusion of the PS in the individual layers of corneal tissue were investigated by fluorescence. After removal of the cornea's epithelium Ce6-concentrations tested in liquid culture against different concentrations of Ce6 (1 - 512 μM) using 10 minutes irradiation (E = 18 J/cm2 ). This demonstrated that a complete inactivation of the pathogen strains were feasible whereby SA was slightly more susceptible than PA. 3909 mutants of the Keio collection of Escherichia coli (E.coli) were screened for potential resistance factors. The sensitive mutants can be grouped into three categories: transport mutants, mutants in lipopolysaccharide synthesis and mutants in the bacterial SOS-response. In conclusion PDI is seen as a promising therapy concept for infectious keratitis.

  15. Memorizing innate instructions requires a sufficiently specific adaptive immune system

    NARCIS (Netherlands)

    Borghans, J.A.M.; Boer, R.J. de

    2002-01-01

    During its primary encounter with a pathogen, the immune system has to decide which type of immune response is most appropriate. Based on signals from the innate immune system and the immunological context in which the pathogen is presented, responding lymphocytes will adopt a particular phenotype,

  16. Pattern Recognition Receptors in Innate Immunity, Host Defense, and Immunopathology

    Science.gov (United States)

    Suresh, Rahul; Mosser, David M.

    2013-01-01

    Infection by pathogenic microbes initiates a set of complex interactions between the pathogen and the host mediated by pattern recognition receptors. Innate immune responses play direct roles in host defense during the early stages of infection, and they also exert a profound influence on the generation of the adaptive immune responses that ensue.…

  17. Innate immunity and the role of defensins in otitis media.

    Science.gov (United States)

    Underwood, Mark; Bakaletz, Lauren

    2011-12-01

    Otitis media is the most common pediatric disease in developed countries and a significant cause of morbidity and hearing loss in developing countries. The innate immune system is essential to protecting the middle ear from infection. Defensins, broad-spectrum cationic antimicrobial peptides, have been implicated in prevention of and the early response to acute otitis media; however, the mechanisms by which defensins and other antimicrobial molecules mediate this protection have not been completely elucidated. In both animal otitis media models and human middle ear epithelial cell culture models, β-defensins are highly induced and effectively kill the common pathogens associated with otitis media. We review the importance of innate immunity in protecting the middle ear and recent advances in understanding the roles of defensins and other antimicrobial molecules in the prevention and treatment of otitis media. The extremely high prevalence of otitis media, in spite of sophisticated innate and adaptive immune systems, is a vexing problem for clinicians and scientists. We therefore also review mechanisms by which bacteria evade innate immune defenses.

  18. Mitochondrial DNA in the regulation of innate immune responses

    Directory of Open Access Journals (Sweden)

    Chunju Fang

    2015-10-01

    Full Text Available Abstract Mitochondrion is known as the energy factory of the cell, which is also a unique mammalian organelle and considered to be evolved from aerobic prokaryotes more than a billion years ago. Mitochondrial DNA, similar to that of its bacterial ancestor’s, consists of a circular loop and contains significant number of unmethylated DNA as CpG islands. The innate immune system plays an important role in the mammalian immune response. Recent research has demonstrated that mitochondrial DNA (mtDNA activates several innate immune pathways involving TLR9, NLRP3 and STING signaling, which contributes to the signaling platforms and results in effector responses. In addition to facilitating antibacterial immunity and regulating antiviral signaling, mounting evidence suggests that mtDNA contributes to inflammatory diseases following cellular damage and stress. Therefore, in addition to its well-appreciated roles in cellular metabolism and energy production, mtDNA appears to function as a key member in the innate immune system. Here, we highlight the emerging roles of mtDNA in innate immunity.

  19. MAMPs/PAMPs - elicitors of innate immunity in plants

    DEFF Research Database (Denmark)

    Erbs, Gitte; Newman, Mari-Anne

    2009-01-01

    Patterns (MAMPs or PAMPs), are recognised by the plant innate immune systems Pattern Recognition Receptors (PRRs). General bacterial elicitors, like lipopolysaccharides (LPS), flagellin (Flg), elongation factor Tu (EF-Tu), cold shock protein (CSP), peptidoglycan (PGN) and the enzyme superoxide dismutase...

  20. Man's nature: innate determinants of response to natural environments

    Science.gov (United States)

    B. L. Driver; Peter Greene

    1977-01-01

    Man's sensory mechanisms evolved by natural selection in natural settings and humans survived as a species not so much by the "club in the hand" but by the "plan in the head." That plan or ability enabled man to remember, interpret, and predict environmental events. Humans have an innate capacity (but not necessarily a developed ability) to...

  1. HIV infection: focus on the innate immune cells.

    Science.gov (United States)

    Espíndola, Milena S; Soares, Luana S; Galvão-Lima, Leonardo J; Zambuzi, Fabiana A; Cacemiro, Maira C; Brauer, Verônica S; Frantz, Fabiani G

    2016-12-01

    Innate immune cells play a critical role during the onset of HIV infection and remain active until the final events that characterize AIDS. The viral impact on innate immune cell response may be a result of direct infection or indirect modulation, and each cell type responds in a specific manner to HIV. During HIV infection, the immune system works in a dynamic way, where innate and adaptive cells contribute with each other stimulating their function and modulating phenotypes and consequently infection resolution. Understanding the alterations in the cell populations induced by the virus is pivotal and can help to combat HIV at the time of infection and above all, to prevent the establishment of viral reservoirs. In this review, we will describe the frequency and the subtypes of infected cells such as of monocytes, DCs, neutrophils, eosinophils, mast cells/basophils, NK cells, NKT cells and γδ T cells, and we discuss the possibility of cell-targeting strategies. Our aim is to consolidate the existing knowledge of the interaction between HIV and cells that constitute the innate immune response.

  2. Hypoxia, innate immunity and infection in the lung.

    LENUS (Irish Health Repository)

    Schaible, Bettina

    2012-02-01

    The mucosal surface of the lung is the key interface between the external atmosphere and the bloodstream. Normally, this well oxygenated tissue is maintained in state of sterility by a number of innate immune processes. These include a physical and dynamic mucus barrier, the production of microbiocidal peptides and the expression of specific pattern recognition receptors on alveolar epithelial cells and resident macrophages and dendritic cells which recognise microbial structures and initiate innate immune responses which promote the clearance of potentially infectious agents. In a range of diseases, the mucosal surface of the lung experiences decreased oxygen tension leading to localised areas of prominent hypoxia which can impact upon innate immune and subsequent infectious and inflammatory processes. Under these conditions, the lung is generally more susceptible to infection and subsequent inflammation. In the current review, we will discuss recent data pertaining to the role of hypoxia in regulating both host and pathogen in the lung during pulmonary disease and how this contributes to innate immunity, infection and inflammation.

  3. Experimental evidence for innate predator recognition in the Seychelles warbler

    NARCIS (Netherlands)

    Veen, Thor; Richardson, David S.; Blaakmeer, Karen; Komdeur, Jan

    2000-01-01

    Nest predation is a major determinant of fitness in birds and costly nest defence behaviours have evolved in order to reduce nest predation. Some avian studies have suggested that predator recognition is innate whereas others hate stressed the importance: of learning. However, none of these studies

  4. Neural regulation of innate and adaptive immunity in the gut

    OpenAIRE

    Dhawan, S.

    2017-01-01

    This thesis investigates the role of neurotransmitters acetylcholine (ACh) and norepinephrine (NE), in modulating the innate and adaptive immune function in the intestine, during physiological and pathophysiological conditions. Furthermore, this thesis attempts to advance our current understanding of the gut-brain immune axis, also known as the cholinergic anti-inflammatory pathway, coined largely due to the cholinergic nature of the vagus nerve.

  5. Breakdown of the innate immune system by bacterial proteases

    NARCIS (Netherlands)

    Laarman, A.J.

    2011-01-01

    Bacteria have developed many strategies to circumvent our immune system to survive and colonize human tissues. One of these strategies is by secreting proteases that specifically target the innate immune system. Aureolysin is a metalloprotease from Staphylococcus aureus which target the main

  6. Lipoprotein Lipase Maintains Microglial Innate Immunity in Obesity

    NARCIS (Netherlands)

    Gao, Yuanqing; Vidal-Itriago, Andrés; Kalsbeek, Martin J; Layritz, Clarita; García-Cáceres, Cristina; Tom, Robby Zachariah; Eichmann, Thomas O; Vaz, Frédéric M; Houtkooper, Riekelt H; van der Wel, Nicole; Verhoeven, Arthur J; Yan, Jie; Kalsbeek, A.; Eckel, Robert H; Hofmann, Susanna M; Yi, Chun-Xia

    2017-01-01

    Consumption of a hypercaloric diet upregulates microglial innate immune reactivity along with a higher expression of lipoprotein lipase (Lpl) within the reactive microglia in the mouse brain. Here, we show that knockdown of the Lpl gene specifically in microglia resulted in deficient microglial

  7. Role of innate immunity in the pathogenesis of otitis media.

    Science.gov (United States)

    Mittal, Rahul; Kodiyan, Joyson; Gerring, Robert; Mathee, Kalai; Li, Jian-Dong; Grati, M'hamed; Liu, Xue Zhong

    2014-12-01

    Otitis media (OM) is a public health problem in both developed and developing countries. It is the leading cause of hearing loss and represents a significant healthcare burden. In some cases, acute OM progresses to chronic suppurative OM (CSOM), characterized by effusion and discharge, despite antimicrobial therapy. The emergence of antibiotic resistance and potential ototoxicity of antibiotics has created an urgent need to design non-conventional therapeutic strategies against OM based on modern insights into its pathophysiology. In this article, we review the role of innate immunity as it pertains to OM and discuss recent advances in understanding the role of innate immune cells in protecting the middle ear. We also discuss the mechanisms utilized by pathogens to subvert innate immunity and thereby overcome defensive responses. A better knowledge about bacterial virulence and host resistance promises to reveal novel targets to design effective treatment strategies against OM. The identification and characterization of small natural compounds that can boost innate immunity may provide new avenues for the treatment of OM. There is also a need to design novel methods for targeted delivery of these compounds into the middle ear, allowing higher therapeutic doses and minimizing systemic side effects. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Role of innate immunity in the pathogenesis of otitis media

    Science.gov (United States)

    Mittal, Rahul; Kodiyan, Joyson; Gerring, Robert; Mathee, Kalai; Li, Jian-Dong; Grati, M’hamed; Liu, Xue Zhong

    2015-01-01

    Summary Otitis media (OM) is a public health problem in both developed and developing countries. It is the leading cause of hearing loss and represents a significant healthcare burden. In some cases, acute OM progresses to chronic suppurative OM (CSOM), characterized by effusion and discharge, despite antimicrobial therapy. The emergence of antibiotic resistance and potential ototoxicity of antibiotics has created an urgent need to design non-conventional therapeutic strategies against OM based on modern insights into its pathophysiology. In this article, we review the role of innate immunity as it pertains to OM and discuss recent advances in understanding the role of innate immune cells in protecting the middle ear. We also discuss the mechanisms utilized by pathogens to subvert innate immunity and thereby overcome defensive responses. A better knowledge about bacterial virulence and host resistance promises to reveal novel targets to design effective treatment strategies against OM. The identification and characterization of small natural compounds that can boost innate immunity may provide new avenues for the treatment of OM. There is also a need to design novel methods for targeted delivery of these compounds into the middle ear, allowing higher therapeutic doses and minimizing systemic side effects. PMID:25447732

  9. Innate lymphoid cells and parasites: Ancient foes with shared history.

    Science.gov (United States)

    Neill, D R; Fallon, P G

    2018-02-01

    This special issue of Parasite Immunology charts the rapid advances made in our understanding of the myriad interactions between innate lymphoid cells and parasites and how these interactions have shaped our evolutionary history. Here, we provide an overview of the issue and highlight key findings from studies in mice and man. © 2017 The Authors. Parasite Immunology Published by John Wiley & Sons Ltd.

  10. Cell-specific innate immunity in lung infection and inflammation

    NARCIS (Netherlands)

    Anas, A.A.

    2017-01-01

    Pneumonia and asthma affect millions of adults and children annually and are responsible for a significant amount of morbidity and mortality worldwide. Our airways are continuously exposed to pathogens and allergens inhaled through air that can potentially cause these serious illnesses. The innate

  11. The immunobiology of Campylobacter jejuni: Innate immunity and autoimmune diseases.

    Science.gov (United States)

    Phongsisay, Vongsavanh

    2016-04-01

    The Gram-negative bacterium Campylobacter jejuni causes gastroenteritis and Guillain-Barré syndrome in humans. Recent advances in the immunobiology of C. jejuni have been made. This review summarizes C. jejuni-binding innate receptors and highlights the role of innate immunity in autoimmune diseases. This human pathogen produces a variety of glycoconjugates, including human ganglioside-like determinants and multiple activators of Toll-like receptors (TLRs). Furthermore, C. jejuni targets MyD88, NLRP3 inflammasome, TIR-domain-containing adapter-inducing interferon-β (TRIF), sialic acid-binding immunoglobulin-like lectins (Siglecs), macrophage galactose-type lectin (MGL), and immunoglobulin-like receptors (TREM2, LMIR5/CD300b). The roles of these innate receptors and signaling molecules have been extensively studied. MyD88-mediated TLR activation or inflammasome-dependent IL-1β secretion is essential for autoimmune induction. TRIF mediates the production of type I interferons that promote humoral immune responses and immunoglobulin class-switching. Siglec-1 and Siglec-7 interact directly with gangliosides. Siglec-1 activation enhances phagocytosis and inflammatory responses. MGL internalizes GalNAc-containing glycoconjugates. TREM2 is well-known for its role in phagocytosis. LMIR5 recognizes C. jejuni components and endogenous sulfoglycolipids. Several lines of evidence from animal models of autoimmune diseases suggest that simultaneous activation of innate immunity in the presence of autoreactive lymphocytes or antigen mimicry may link C. jejuni to immunopathology. Copyright © 2015 Elsevier GmbH. All rights reserved.

  12. Innate, adaptive and regulatory responses in schistosomiasis: Relationship to allergy

    NARCIS (Netherlands)

    Hartgers, F.C.; Smits, H.H.; Kleij, D. van der; Yazdanbakhsh, M.

    2006-01-01

    Helminth infections have profound effects on the immune system. Here, recent insights in the molecular interactions between schistosomes and the host are described with respect to adaptive but also with respect to innate immune responses. Furthermore, the different mechanisms of immune

  13. Innate immune responses in central nervous system inflammation

    DEFF Research Database (Denmark)

    Finsen, Bente; Owens, Trevor

    2011-01-01

    In autoimmune diseases of the central nervous system (CNS), innate glial cell responses play a key role in determining the outcome of leukocyte infiltration. Access of leukocytes is controlled via complex interactions with glial components of the blood-brain barrier that include angiotensin II...

  14. Dental metal-induced innate reactivity in keratinocytes

    NARCIS (Netherlands)

    Rachmawati, D.; Buskermolen, J.K.; Scheper, R.J.; Gibbs, S.; von Blomberg, B.M.E.; van Hoogstraten, I.M.W.

    2015-01-01

    Gold, nickel, copper and mercury, i.e. four metals frequently used in dental applications, were explored for their capacity to induce innate immune activation in keratinocytes (KC). Due to their anatomical location the latter epithelial cells are key in primary local irritative responses of skin and

  15. Mycobacteria and innate cells: critical encounter for immunogenicity

    Indian Academy of Sciences (India)

    Protective immunity against mycobacterial infections such as Mycobacterium tuberculosis is mediated by interactions between specific T cells and activated macrophages. To date, many aspects of mycobacterial immunity have shown that innate cells are the key elements that substantially influence the subsequent adaptive ...

  16. Glycoconjugates as elicitors or suppressors of plant innate immunity

    DEFF Research Database (Denmark)

    Silipo, Alba; Erbs, Gitte; Shinya, Tomonori

    2010-01-01

    Innate immunity is the first line of defense against invading microorganisms in vertebrates and the only line of defense in invertebrates and plants. Bacterial glyco-conjugates, such as lipopolysaccharides (LPS) from the outer membrane of Gram-negative bacteria and peptidoglycan (PGN) from the ce...

  17. Anthrax Lethal Toxin Impairs Innate Immune Functions of Alveolar Macrophages and Facilitates Bacillus anthracis Survival

    National Research Council Canada - National Science Library

    Ribot, Wilson J; Panchal, Rekha G; Brittingham, Katherine C; Ruthel, Gordon; Kenny, Tara A; Lane, Douglas; Curry, Bob; Hoover, Timothy A; Friedlander, Arthur M; Bavari, Sina

    2006-01-01

    Alveolar macrophages (AM) are very important for pulmonary innate immune responses against invading inhaled pathogens because they directly kill the organisms and initiate a cascade of innate and adaptive immune responses...

  18. DMPD: Innate immune responses during infection. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15576198 Innate immune responses during infection. Ulevitch RJ, Mathison JC, da Sil...ses during infection. PubmedID 15576198 Title Innate immune responses during infection. Authors Ulevitch RJ, Math

  19. Inactivation of STAT3 Signaling Impairs Hair Cell Differentiation in the Developing Mouse Cochlea

    Directory of Open Access Journals (Sweden)

    Qianqian Chen

    2017-07-01

    Full Text Available Although STAT3 signaling is demonstrated to regulate sensory cell differentiation and regeneration in the zebrafish, its exact role is still unclear in mammalian cochleae. Here, we report that STAT3 and its activated form are specifically expressed in hair cells during mouse cochlear development. Importantly, conditional cochlear deletion of Stat3 leads to an inhibition on hair cell differentiation in mice in vivo and in vitro. By cell fate analysis, inactivation of STAT3 signaling shifts the cell division modes from asymmetric to symmetric divisions from supporting cells. Moreover, inhibition of Notch signaling stimulates STAT3 phosphorylation, and inactivation of STAT3 signaling attenuates production of supernumerary hair cells induced by a Notch pathway inhibitor. Our findings highlight an important role of the STAT3 signaling during mouse cochlear hair cell differentiation and may have clinical implications for the recovery of hair cell loss-induced hearing impairment.

  20. Inactivation of Ehrlich ascites tumor cells by heavy ions

    International Nuclear Information System (INIS)

    Bertsche, U.; Iliakis, G.; Kraft, G.

    1983-01-01

    Exponentially growing and plateau-phase cultures of Ehrlich ascites tumor cells were irradiated with heavy ions (Z greater than or equal to 20) and assayed for loss of reproductive capacity either immediately or at delayed times after irradiation. The results indicated no modification of the exponential dose response due to conditions which usually favor the repair of potentially lethal damage at low ionization density. Postirradiation treatment of the cells with a DNA synthesis inhibitor known to act on PLD repair resulted in effects similar to those observed without this drug and confirmed the hypothesis that at such high values of ionization density only lethal, unmodifiable damage can be expressed. The inactivation cross-section values calculated from the slope of the measured survival curves showed no significant correlations with commonly used parameters of radiation quality. Instead, a functional dependence on the primary ion energy was indicated, being smaller by a factor of two at low energies (less than or equal to 2 MeV/amu) compared with values at energies above 4 MeV/amu, where agreement with the morphological nuclear cross section of the culture was found. This suggests that at higher specific ion energies energetic secondary electrons contribute to the induction of lethal damage, and that interaction of damaged sites between the primary track and the track ends of delta electrons may occur. The data are therefore also discussed in terms of the penumbra model which emphasizes the role of delta electrons in cell killing when radiations with very high ionization density are applied

  1. Inactivation of Ehrlich ascites tumor cells by heavy ions

    International Nuclear Information System (INIS)

    Bertsche, U.; Iliakis, G.; Kraft, G.

    1983-01-01

    Exponentially growing and plateau-phase cultures of Ehrlich ascites tumor cells were irradiated with heavy ions (Z greater than or equal to 20) and assayed for loss of reproductive capacity either immediately or at delayed times after irradiation. The results indicated no modification of the exponential dose response due to conditions which usually favor the repair of potentially lethal damage at low ionization density. Postirradiation treatment of the cells with beta-arabinofuranosyladenine, a DNA synthesis inhibitor known to act on PLD repair, resulted in effects similar to those observed without this drug and confirmed the hypothesis that at such high values of ionization density only lethal, unmodifiable damage can be expressed. The inactivation cross-section values calculated from the slope of the measured survival curves showed no significant correlations with commonly used parameters of radiation quality such as LET or z 2 /beta 2. Instead, a functional dependence on the primary ion energy was indicated, being smaller by a factor of two at low energies (less than or equal to 2 MeV/amu) compared with values at energies above 4 MeV/amu, where agreement with the morphological nuclear cross section of the culture was found. This suggests that at higher specific ion energies energetic secondary electrons contribute to the induction of lethal damage, and that interaction of damaged sites between the primary track and the track ends of delta electrons may occur. The data are therefore also discussed in terms of the ''penumbra model'' which emphasizes the role of delta electrons in cell killing when radiations with very high ionization density are applied

  2. Leukotriene B4 Enhances NOD2-Dependent Innate Response against Influenza Virus Infection.

    Directory of Open Access Journals (Sweden)

    Manon Le Bel

    Full Text Available Leukotriene B4 (LTB4, a central mediator of inflammation, is well known for its chemoattractant properties on effectors cells of the immune system. LTB4 also has the ability to control microbial infection by improving host innate defenses through the release of antimicrobial peptides and modulation of intracellular Toll-like receptors (TLRs expression in response to agonist challenge. In this report, we provide evidences that LTB4 acts on nucleotide-binging oligomerization domain 2 (NOD2 pathway to enhance immune response against influenza A infection. Infected mice receiving LTB4 show improved survival, lung architecture and reduced lung viral loads as compared to placebo-treated animals. NOD2 and its downstream adaptor protein IPS-1 have been found to be essential for LTB4-mediated effects against IAV infection, as absence of NOD2 or IPS-1 diminished its capacity to control viral infection. Treatment of IAV-infected mice with LTB4 induces an increased activation of IPS-1-IRF3 axis leading to an enhanced production of IFNβ in lungs of infected mice. LTB4 also has the ability to act on the RICK-NF-κB axis since administration of LTB4 to mice challenged with MDP markedly increases the secretion of IL-6 and TNFα in lungs of mice. TAK1 appears to be essential to the action of LTB4 on NOD2 pathway since pretreatment of MEFs with TAK1 inhibitor prior stimulation with IAV or MDP strongly abrogated the potentiating effects of LTB4 on both IFNβ and cytokine secretion. Together, our results demonstrate that LTB4, through its ability to activate TAK1, potentiates both IPS-1 and RICK axis of the NOD2 pathway to improve host innate responses.

  3. Mitochondria as Molecular Platforms Integrating Multiple Innate Immune Signalings.

    Science.gov (United States)

    Monlun, Marie; Hyernard, Caroline; Blanco, Patrick; Lartigue, Lydia; Faustin, Benjamin

    2017-01-06

    The immune system of vertebrates confers protective mechanisms to the host through the sensing of stress-induced agents expressed during infection or cell stress. Among them, the first line of host defense composed of the innate immune sensing of these agents by pattern recognition receptors enables downstream adaptive immunity to be primed, mediating the body's appropriate response to clear infection and tissue damage. Mitochondria are «bacteria within» that allowed the emergence of functional eukaryotic cells by positioning themselves as the cell powerhouse and an initiator of cell death programs. It is striking to consider that such ancestral bacteria, which had to evade host defense at some point to develop evolutionary endosymbiosis, have become instrumental for the modern eukaryotic cell in alerting the immune system against various insults including infection by other pathogens. Mitochondria have indeed become critical regulators of innate immune responses to both pathogens and cell stress. They host numerous modulators, which play a direct role into the assembly of innate sensing machineries that trigger host immune response in both sterile and non-sterile conditions. Several lines of evidence indicate the existence of a complex molecular interplay between mechanisms involved in inflammation and metabolism. Mitochondrial function seems to participate in innate immunity at various stages as diverse as the transcriptional regulation of inflammatory cytokines and chemokines and their maturation by inflammasomes. Here, we review the mechanisms by which mitochondria orchestrate innate immune responses at different levels by promoting a cellular metabolic reprogramming and the cytosolic immune signaling cascades. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Innate immune interferon responses to human immunodeficiency virus-1 infection.

    Science.gov (United States)

    Hughes, Rose; Towers, Greg; Noursadeghi, Mahdad

    2012-07-01

    Type I interferon (IFN) responses represent the canonical host innate immune response to viruses, which serves to upregulate expression of antiviral restriction factors and augment adaptive immune defences. There is clear evidence for type I IFN activity in both acute and chronic HIV-1 infection in vivo, and plasmacytoid dendritic cells have been identified as one important source for these responses, through innate immune detection of viral RNA by Toll-like receptor 7. In addition, new insights into the molecular mechanisms that trigger induction of type I IFNs suggest innate immune receptors for viral DNA may also mediate these responses. It is widely recognised that HIV-1 restriction factors share the characteristic of IFN-inducible expression, and that the virus has evolved to counteract these antiviral mechanisms. However, in some target cells, such as macrophages, IFN can still effectively restrict virus. In this context, HIV-1 shows the ability to evade innate immune recognition and thereby avoid induction of type I IFN in order to successfully establish productive infection. The relative importance of evasion of innate immune detection and evasion of IFN-inducible restriction in the natural history of HIV-1 infection is not known, and the data suggest that type I IFN responses may play a role in both viral control and in the immunopathogenesis of progressive disease. Further study of the relationship between HIV-1 infection and type I IFN responses is required to unravel these issues and inform the development of novel therapeutics or vaccine strategies. Copyright © 2012 John Wiley & Sons, Ltd.

  5. Ebola Virus Inactivation by Detergents Is Annulled in Serum

    NARCIS (Netherlands)

    van Kampen, Jeroen J. A.; Tintu, Andrei; Russcher, Henk; Fraaij, Pieter L. A.; Reusken, Chantal B. E. M.; Rijken, Mikel; van Hellemond, Jaap J.; van Genderen, Perry J. J.; Koelewijn, Rob; de Jong, Menno D.; Haddock, Elaine; Fischer, Robert J.; Munster, Vincent J.; Koopmans, Marion P. G.

    2017-01-01

    Treatment of blood samples from hemorrhagic fever virus (HFV)-infected patients with 0.1% detergents has been recommended for virus inactivation and subsequent safe laboratory testing. However, data on virus inactivation by this procedure are lacking. Here we show the effect of this procedure on

  6. US Naval nuclear powering submarine inactivation, disposal and recycling

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    The US NAVY report dealing with the problem of American nuclear submarine inactivation after service life ending is discussed. 31 submarines were inactivated in 1993 accomplishing the treaty on strategic weapons reduction. The technologies of dismantling, weapon, components and equipment removing, submarine hull cutting, transportation of nuclear compartments contaminated with residual radioactivity and their disposal in Hanford are described. 3 figs

  7. Suicide inactivation of horseradish peroxidase by excess hydrogen ...

    African Journals Online (AJOL)

    In reactions carried out in sodium acetate buffer, higher inactivation rates were observed when the buffer ion concentration was increased, an indication that peroxidase might be generating reactive radicals from the buffer molecules. Promethazine exerted a modest protective effect against inactivation; however, higher ...

  8. The pulsed light inactivation of veterinary relevant microbial biofilms ...

    African Journals Online (AJOL)

    Results show that both Cryptosporidium and Giardia attach to biofilms in large numbers (100-1000 oo/cysts) in as little as 72 hours. Pulsed light successfully inactivated all test species (Listeria, Salmonella, Bacillus, Escherichia) in planktonic and biofilm form with an increase in inactivation for every increase in UV dose.

  9. "Studies on the Mechanism of Ultraviolet Inactivation of Enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Ghiron, Dr. Camillo A. [Univ. of Missouri, Columbia, MO (United States)

    1968-08-19

    The research proposal accompanying this progress report represents a second renewal. This progress report will be divided into the following parts; (I) Serological properties of enzymes subsequent to inactivation by various methods, (II) Studies on the mechanism of ultraviolet inactivation of enzymes.

  10. Mutual inactivation of Notch receptors and ligands facilitates developmental patterning.

    Directory of Open Access Journals (Sweden)

    David Sprinzak

    2011-06-01

    Full Text Available Developmental patterning requires juxtacrine signaling in order to tightly coordinate the fates of neighboring cells. Recent work has shown that Notch and Delta, the canonical metazoan juxtacrine signaling receptor and ligand, mutually inactivate each other in the same cell. This cis-interaction generates mutually exclusive sending and receiving states in individual cells. It generally remains unclear, however, how this mutual inactivation and the resulting switching behavior can impact developmental patterning circuits. Here we address this question using mathematical modeling in the context of two canonical pattern formation processes: boundary formation and lateral inhibition. For boundary formation, in a model motivated by Drosophila wing vein patterning, we find that mutual inactivation allows sharp boundary formation across a broader range of parameters than models lacking mutual inactivation. This model with mutual inactivation also exhibits robustness to correlated gene expression perturbations. For lateral inhibition, we find that mutual inactivation speeds up patterning dynamics, relieves the need for cooperative regulatory interactions, and expands the range of parameter values that permit pattern formation, compared to canonical models. Furthermore, mutual inactivation enables a simple lateral inhibition circuit architecture which requires only a single downstream regulatory step. Both model systems show how mutual inactivation can facilitate robust fine-grained patterning processes that would be difficult to implement without it, by encoding a difference-promoting feedback within the signaling system itself. Together, these results provide a framework for analysis of more complex Notch-dependent developmental systems.

  11. Thermal inactivation kinetics of β-galactosidase during bread baking

    NARCIS (Netherlands)

    Zhang, L.; Chen, Xiao Dong; Boom, R.M.; Schutyser, M.A.I.

    2017-01-01

    In this study, β-galactosidase was utilized as a model enzyme to investigate the mechanism of enzyme inactivation during bread baking. Thermal inactivation of β-galactosidase was investigated in a wheat flour/water system at varying temperature-moisture content combinations, and in bread during

  12. [Polyphenolic antioxidants efficiently protect urease from inactivation by ultrasonic cavitation].

    Science.gov (United States)

    Metelitsa, D I; Tarun, E I; Losev, Iu P

    2002-01-01

    Inactivation of urease (25 nM) in aqueous solutions (pH 5.0-6.0) treated with low-frequency ultrasound (LFUS; 27 kHz, 60 Wt/cm2, 36-56 degrees C) or high-frequency ultrasound (HFUS; 2.64 MHz, 1 Wt/cm2, 36 or 56 degrees C) has been characterized quantitatively, using first-order rate constants: kin, aggregate inactivation; kin*, thermal inactivation; and kin* (US), ultrasonic inactivation. Within the range from 1 nM to 10 microM, propyl gallate (PG) decreases approximately threefold the rate of LFUS-induced inactivation of urease (56 degrees C), whereas resorcinol poly-2-disulfide prevents this process at 1 nM or higher concentrations. PG completely inhibits HFUS-induced inactivation of urease at 1 nM (36 degrees C) or 10 nM (56 degrees C). At 0.2-10 microM, human serum albumin (HSA) increases the resistance of urease (at 56 degrees C) treated with HFUS to temperature- and cavitation-induced inactivation. Complexes of gallic acid polydisulfide (GAPDS) with HSA (GAPDS-HSA), formed by conjugation of 1.0 nM PGDS with 0.33 nM HSA, prevent HFUS-induced urease inactivation (56 degrees C).

  13. Quantum chromodynamics as the sequential fragmenting with inactivation

    International Nuclear Information System (INIS)

    Botet, R.

    1996-01-01

    We investigate the relation between the modified leading log approximation of the perturbative QCD and the sequential binary fragmentation process. We will show that in the absence of inactivation, this process is equivalent to the QCD gluodynamics. The inactivation term yields a precise prescription of how to include the hadronization in the QCD equations. (authors)

  14. RSV-Induced H3K4 Demethylase KDM5B Leads to Regulation of Dendritic Cell-Derived Innate Cytokines and Exacerbates Pathogenesis In Vivo

    DEFF Research Database (Denmark)

    Ptaschinski, Catherine; Mukherjee, Sumanta; Moore, Martin L

    2015-01-01

    -transfected cells. The generation of Kdm5bfl/fl-CD11c-Cre+ mice recapitulated the latter results during in vitro DC activation showing innate cytokine modulation. In vivo, infection of Kdm5bfl/fl-CD11c-Cre+ mice with RSV resulted in higher production of IFN-γ and reduced IL-4 and IL-5 compared to littermate....../fl-CD11c-CRE mice were used, the exacerbated response was abrogated. Importantly, human monocyte-derived DCs treated with a chemical inhibitor for KDM5B resulted in increased innate cytokine levels as well as elicited decreased Th2 cytokines when co-cultured with RSV reactivated CD4+ T cells...

  15. Quorum sensing Inhibitors as anti-pathogenic drugs

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Bovbjerg; Givskov, Michael Christian

    2006-01-01

    as well as elevated tolerance to the activity of the innate immune system. Gram-negative bacteria commonly use N-acyl homoserine lactones (AHL) as QS signal molecules. The use of signal molecule based drugs to attenuate bacterial pathogenecity rather than bacterial growth is attractive for several reasons......, particularly considering the emergence of increasingly antibiotic-resistant bacteria. Compounds capable of this type of interference have been termed anti-pathogenic drugs. A large variety of synthetic AHL analogues and natural products libraries have been screened and a number of QS inhibitors (QSI) have been...

  16. DMPD: Innate immune response to viral infection. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18694646 Innate immune response to viral infection. Koyama S, Ishii KJ, Coban C, Ak...ira S. Cytokine. 2008 Sep;43(3):336-41. Epub 2008 Aug 9. (.png) (.svg) (.html) (.csml) Show Innate immune response to viral infection.... PubmedID 18694646 Title Innate immune response to viral infection. Authors Koyama

  17. DMPD: Innate immune recognition of, and regulation by, DNA. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16979939 Innate immune recognition of, and regulation by, DNA. Ishii KJ, Akira S. T...rends Immunol. 2006 Nov;27(11):525-32. Epub 2006 Sep 18. (.png) (.svg) (.html) (.csml) Show Innate immune reco...gnition of, and regulation by, DNA. PubmedID 16979939 Title Innate immune recognition of, and regulation b

  18. Unravelling the nature of non-specific effects of vaccines-A challenge for innate immunologists

    DEFF Research Database (Denmark)

    Jensen, Kristoffer Jarlov; Benn, Christine Stabell; van Crevel, Reinout

    2016-01-01

    ) of vaccines, including heterologous T-cell reactivity and innate immune memory or 'trained innate immunity', which involves epigenetic reprogramming of innate immune cells. Here, we review the epidemiological evidence for NSE as well as human, animal and in vitro immunological data that could explain...

  19. DMPD: Innate immune responses: crosstalk of signaling and regulation of genetranscription. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16753195 Innate immune responses: crosstalk of signaling and regulation of genetran...l) (.csml) Show Innate immune responses: crosstalk of signaling and regulation of genetranscription. PubmedI...D 16753195 Title Innate immune responses: crosstalk of signaling and regulation o

  20. Modelling and application of the inactivation of microorganism

    International Nuclear Information System (INIS)

    Oğuzhan, P.; Yangılar, F.

    2013-01-01

    Prevention of consuming contaminated food with toxic microorganisms causing infections and consideration of food protection and new microbial inactivation methods are obligatory situations. Food microbiology is mainly related with unwanted microorganisms spoiling foods during processing and transporting stages and causing diseases. Determination of pathogen microorganisms is important for human health to define and prevent dangers and elongate shelf life. Inactivation of pathogen microorganisms can provide food security and reduce nutrient losses. Microbial inactivation which is using methods of food protection such as food safety and fresh. With this aim, various methods are used such as classical thermal processes (pasteurisation, sterilisation), pressured electrical field (PEF), ionised radiation, high pressure, ultrasonic waves and plasma sterilisation. Microbial inactivation modelling is a secure and effective method in food production. A new microbiological application can give useful results for risk assessment in food, inactivation of microorganisms and improvement of shelf life. Application and control methods should be developed and supported by scientific research and industrial applications

  1. Chlorophyll mediated photodynamic inactivation of blue laser on Streptococcus mutans

    Science.gov (United States)

    Astuti, Suryani Dyah; Zaidan, A.; Setiawati, Ernie Maduratna; Suhariningsih

    2016-03-01

    Photodynamic inactivation is an inactivation method in microbial pathogens that utilize light and photosensitizer. This study was conducted to investigate photodynamic inactivation effects of low intensity laser exposure with various dose energy on Streptococcus mutans bacteria. The photodynamic inactivation was achieved with the addition of chlorophyll as photosensitizers. To determine the survival percentage of Streptococcus mutans bacteria after laser exposure, the total plate count method was used. For this study, the wavelength of the laser is 405 nm and variables of energy doses are 1.44, 2.87, 4.31, 5.74, 7.18, and 8.61 in J/cm2. The results show that exposure to laser with energy dose of 7.18 J/cm2 has the best photodynamic inactivation with a decrease of 78% in Streptococcus

  2. Abscinazole-E3M, a practical inhibitor of abscisic acid 8?-hydroxylase for improving drought tolerance

    OpenAIRE

    Takeuchi, Jun; Okamoto, Masanori; Mega, Ryosuke; Kanno, Yuri; Ohnishi, Toshiyuki; Seo, Mitsunori; Todoroki, Yasushi

    2016-01-01

    Abscisic acid (ABA) is an essential phytohormone that regulates plant water use and drought tolerance. However, agricultural applications of ABA have been limited because of its rapid inactivation in plants, which involves hydroxylation of ABA by ABA 8?-hydroxylase (CYP707A). We previously developed a selective inhibitor of CYP707A, (?)-Abz-E2B, by structurally modifying S-uniconazole, which functions as an inhibitor of CYP707A and as a gibberellin biosynthetic enzyme. However, its synthetic ...

  3. Kinetic modelling of enzyme inactivation : kinetics of heat inactivation of the extracellular proteinase from Pseudomonas fluorescens 22F

    NARCIS (Netherlands)

    Schokker, E.P.

    1997-01-01

    The kinetics of heat inactivation of the extracellular proteinase from Pseudomonas fluorescens 22F was studied. It was established, by making use of kinetic modelling, that heat inactivation in the temperature range 35 - 70 °C was most likely caused

  4. Inactivation of mitochondrial ATPase by ultraviolet light

    International Nuclear Information System (INIS)

    Chavez, E.; Cuellar, A.

    1984-01-01

    The present work describes experiments that show that far-ultraviolet irradiation induce the inhibition of ATPase activity in both membrane-bound and soluble F1. It was also found that ultraviolet light promotes the release of tightly bound adenine nucleotides from F1-ATPase. Experiments carried out with submitochondrial particles indicate that succinate partially protects against these effects of ultraviolet light. Titration of sulfhydryl groups in both irradiated submitochondrial particles and soluble F1-ATPase indicates that a conformational change induced by photochemical modifications of amino acid residues appears involved in the inactivation of the enzyme. Finally, experiments are described which show that the tyrosine residue located in the active site of F1-ATPase is modified by ultraviolet irradiation

  5. Prophage induction and inactivation by uv light

    International Nuclear Information System (INIS)

    Barnhart, B.J.; Cox, S.H.; Jett, J.H.

    1976-01-01

    Analysis of the induction curves for uv light-irradiated Haemophilus influenzae lysogens and the distribution of pyrimidine dimers in a repair-deficient lysogen suggests that one dimer per prophage-size segment of the host bacterial chromosome is necessary as a preinduction event. The close correlations obtained prompted a renewed consideration of the possibility that direct prophage induction occurs when one dimer is stabilized within the prophage genome. The host excision-repair system apparently functions to reduce the probability of stabilizing within the prophage those dimers that are necessary for induction and inactivation. The presence of the inducible defective prophage in strain Rd depresses the inducibility of prophage HP1c1

  6. UV inactivation of pathogenic and indicator microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Chang, J.C.; Ossoff, S.F.; Lobe, D.C.; Dorfman, M.H.; Dumais, C.M.; Qualls, R.G.; Johnson, J.D.

    1985-06-01

    Survival was measured as a function of the dose of germicidal UV light for the bacteria Escherichia coli, Salmonella typhi, Shigella sonnei, Streptococcus faecalis, Staphylococcus aureus, and Bacillus subtilis spores, the enteric viruses poliovirus type 1 and simian rotavirus SA11, the cysts of the protozoan Acanthamoeba castellanii, as well as for total coliforms and standard plate count microorganisms from secondary effluent. The doses of UV light necessary for a 99.9% inactivation of the cultured vegetative bacteria, total coliforms, and standard plate count microorganisms were comparable. However, the viruses, the bacterial spores, and the amoebic cysts required about 3 to 4 times, 9 times, and 15 times, respectively, the dose required for E. coli. These ratios covered a narrower relative dose range than that previously reported for chlorine disinfection of E. coli, viruses, spores, and cysts.

  7. Inactivation of Coxiella burnetii by gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Scott, G.H.; McCaul, T.F. (Army Medical Research Inst. of Infectious Diseases, Fort Detrick, Frederick, MD (USA)); Williams, J.C. (National Inst. of Allergy and Infectious Diseases, Bethesda, MD (USA))

    1989-12-01

    The gamma radiation inactivation kinetics for Coxiella burnetii at - 79{sup 0}C were exponential. The radiation dose needed to reduce the number of infective C. burnetii by 90% varied from 0.64 to 1.2 kGy depending on the phase of the micro-organism, purity of the culture and composition of suspending menstruum. The viability of preparations containing 10{sup 11} C. burnetii ml{sup -1} was completely abolished by 10 kGy without diminishing antigenicity or ability to elicit a protective immune response in vaccinated mice. Immunocytochemical examinations using monoclonal antibodies and electron microscopy demonstrated that radiation doses of 20 kGy did not alter cell-wall morphology or cell-surface antigenic epitopes. (author).

  8. Inactivation of Coxiella burnetti by gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Scott, G.H.; McCaul, T.F.; Williams, J.C.

    1989-01-01

    The gamma radiation inactivation kinetics for Coxiella burnetii at - 79 C were exponential. The radiation dose needed to reduce the number of infective C. burnetii by 90% varied from 0-64 to 1.2 kGy depending on the phase of hte micro-organism, purity of the culture and composition of suspending menstruum. The viability of preparations containing C. burnetti was completely abolished by 10 kGy without diminishing antigenicity or ability to elicit a protective immune response in vaccinated mice. Immunocytochemical examinations using monoclonal antibodies and electron microscopy demonstrated that radiation doses of 20 kGy did not alter cell-wall morphology or cell-surface antigenic epitopes.

  9. Esterase resistant to inactivation by heavy metals

    KAUST Repository

    El, Dorry Hamza

    2014-09-25

    EstATII is an esterase that a halotolerant, thermophilic and resistant to a spectrum of heavy metals including toxic concentration of metals. It was isolated from the lowest convective layer of the Atlantis II Red Sea brine pool. The Atlantis II brine pool is an extreme environment that possesses multiple harsh conditions such as; high temperature, salinity, pH and high concentration of metals, including toxic heavy metals. A fosmid metagenomic library using DNA isolated from the lowest convective layer this pool was used to identify EstATII. Polynucleotides encoding EstATII and similar esterases are disclosed and can be used to make EstATII. EstATII or compositions or apparatuses that contain it may be used in various processes employing lipases/esterases especially when these processes are performed under harsh conditions that inactivate other kinds of lipases or esterases.

  10. UV inactivation of pathogenic and indicator microorganisms

    International Nuclear Information System (INIS)

    Chang, J.C.; Ossoff, S.F.; Lobe, D.C.; Dorfman, M.H.; Dumais, C.M.; Qualls, R.G.; Johnson, J.D.

    1985-01-01

    Survival was measured as a function of the dose of germicidal UV light for the bacteria Escherichia coli, Salmonella typhi, Shigella sonnei, Streptococcus faecalis, Staphylococcus aureus, and Bacillus subtilis spores, the enteric viruses poliovirus type 1 and simian rotavirus SA11, the cysts of the protozoan Acanthamoeba castellanii, as well as for total coliforms and standard plate count microorganisms from secondary effluent. The doses of UV light necessary for a 99.9% inactivation of the cultured vegetative bacteria, total coliforms, and standard plate count microorganisms were comparable. However, the viruses, the bacterial spores, and the amoebic cysts required about 3 to 4 times, 9 times, and 15 times, respectively, the dose required for E. coli. These ratios covered a narrower relative dose range than that previously reported for chlorine disinfection of E. coli, viruses, spores, and cysts

  11. Lack of innate interferon responses during SARS coronavirus infection in a vaccination and reinfection ferret model.

    Directory of Open Access Journals (Sweden)

    Mark J Cameron

    Full Text Available In terms of its highly pathogenic nature, there remains a significant need to further define the immune pathology of SARS-coronavirus (SARS-CoV infection, as well as identify correlates of immunity to help develop vaccines for severe coronaviral infections. Here we use a SARS-CoV infection-reinfection ferret model and a functional genomics approach to gain insight into SARS immunopathogenesis and to identify correlates of immune protection during SARS-CoV-challenge in ferrets previously infected with SARS-CoV or immunized with a SARS virus vaccine. We identified gene expression signatures in the lungs of ferrets associated with primary immune responses to SARS-CoV infection and in ferrets that received an identical second inoculum. Acute SARS-CoV infection prompted coordinated innate immune responses that were dominated by antiviral IFN response gene (IRG expression. Reinfected ferrets, however, lacked the integrated expression of IRGs that was prevalent during acute infection. The expression of specific IRGs was also absent upon challenge in ferrets immunized with an inactivated, Al(OH(3-adjuvanted whole virus SARS vaccine candidate that protected them against SARS-CoV infection in the lungs. Lack of IFN-mediated immune enhancement in infected ferrets that were previously inoculated with, or vaccinated against, SARS-CoV revealed 9 IRG correlates of protective immunity. This data provides insight into the molecular pathogenesis of SARS-CoV and SARS-like-CoV infections and is an important resource for the development of CoV antiviral therapeutics and vaccines.

  12. The insect metalloproteinase inhibitor gene of the lepidopteran Galleria mellonella encodes two distinct inhibitors.

    Science.gov (United States)

    Wedde, Marianne; Weise, Christoph; Nuck, Rolf; Altincicek, Boran; Vilcinskas, Andreas

    2007-01-01

    The insect metalloproteinase inhibitor (IMPI) from the greater wax moth, Galleria mellonella, represents the first and to date only specific inhibitor of microbial metalloproteinases reported from animals. Here, we report on the characterization including carbohydrate analysis of two recombinant constructs encoded by impi cDNA either upstream or downstream of the furin cleavage site identified. rIMPI-1, corresponding to native IMPI purified from hemolymph, is encoded by the N-terminal part of the impi sequence, whereas rIMPI-2 is encoded by its C-terminal part. rIMPI-1 is glycosylated at N48 with GlcNAc2Man3, showing fucosylation to different extents. Similarly, rIMPI-2 is glycosylated at N149 with GlcNAc2Man3, but is fully fucosylated. rIMPI-1 represents a promising template for the design of second-generation antibiotics owing to its specific activity against thermolysin-like metalloproteinases produced by human pathogenic bacteria such as Vibrio vulnificus. In contrast, rIMPI-2 does not inhibit bacterial metalloproteinases, but is moderately active against recombinant human matrix metalloproteinases (MMPs). Both microbial metalloproteinases and MMPs induce expression of the impi gene when injected into G. mellonella larvae. These findings provide evidence that the impi gene encodes two distinct inhibitors, one inhibiting microbial metalloproteinases and contributing to innate immunity, the other putatively mediating regulation of endogenous MMPs during metamorphosis.

  13. N-chlorotaurine, a long-lived oxidant produced by human leukocytes, inactivates Shiga toxin of enterohemorrhagic Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Christian Eitzinger

    Full Text Available N-chlorotaurine (NCT, the main representative of long-lived oxidants produced by granulocytes and monocytes, is known to exert broad-spectrum microbicidal activity. Here we show that NCT directly inactivates Shiga toxin 2 (Stx2, used as a model toxin secreted by enterohemorrhagic Escherichia coli (EHEC. Bacterial growth and Stx2 production were both inhibited by 2 mM NCT. The cytotoxic effect of Stx2 on Vero cells was removed by ≥5.5 mM NCT. Confocal microscopy and FACS analyses showed that the binding of Stx2 to human kidney glomerular endothelial cells was inhibited, and no NCT-treated Stx2 entered the cytosol. Mass spectrometry displayed oxidation of thio groups and aromatic amino acids of Stx2 by NCT. Therefore, long-lived oxidants may act as powerful tools of innate immunity against soluble virulence factors of pathogens. Moreover, inactivation of virulence factors may contribute to therapeutic success of NCT and novel analogs, which are in development as topical antiinfectives.

  14. Activation-Inactivation Cycling of Rab35 and ARF6 Is Required for Phagocytosis of Zymosan in RAW264 Macrophages

    Directory of Open Access Journals (Sweden)

    Youhei Egami

    2015-01-01

    Full Text Available Phagocytosis of zymosan by phagocytes is a widely used model of microbial recognition by the innate immune system. Live-cell imaging showed that fluorescent protein-fused Rab35 accumulated in the membranes of phagocytic cups and then dissociated from the membranes of newly formed phagosomes. By our novel pull-down assay for Rab35 activity, we found that Rab35 is deactivated immediately after zymosan internalization into the cells. Phagosome formation was inhibited in cells expressing the GDP- or GTP-locked Rab35 mutant. Moreover, the simultaneous expression of ACAP2—a Rab35 effector protein—with GTP-locked Rab35 or the expression of plasma membrane-targeted ACAP2 showed a marked inhibitory effect on phagocytosis through ARF6 inactivation by the GAP activity of ACAP2. ARF6, a substrate for ACAP2, was also localized on the phagocytic cups and dissociated from the membranes of internalized phagosomes. In support of the microscopic observations, ARF6-GTP pull-down experiments showed that ARF6 is transiently activated during phagosome formation. Furthermore, the expression of GDP- or GTP-locked ARF6 mutants also suppresses the uptake of zymosan. These data suggest that the activation-inactivation cycles of Rab35 and ARF6 are required for the uptake of zymosan and that ACAP2 is an important component that links Rab35/ARF6 signaling during phagocytosis of zymosan.

  15. Influenza virus inactivation for studies of antigenicity and phenotypic neuraminidase inhibitor resistance profiling

    NARCIS (Netherlands)

    M. Jonges (Marcel); W.M. Liu; E. van der Vries (Erhard); R. Jacobi (Ronald); I. Pronk (Inge); C. Boog (Claire); M.P.G. Koopmans D.V.M. (Marion); A. Meijer (Adam); E. Soethout (Ernst)

    2010-01-01

    textabstractIntroduction of a new influenza virus in humans urges quick analysis of its virological and immunological characteristics to determine the impact on public health and to develop protective measures for the human population. At present, however, the necessity of executing pandemic

  16. Inactivation of Lassa, Marburg, and Ebola viruses by gamma irradiation

    International Nuclear Information System (INIS)

    Elliott, L.H.; McCormick, J.B.; Johnson, K.M.

    1982-01-01

    Because of the cumbersome conditions experienced in a maximum containment laboratory, methods for inactivating highly pathogenic viruses were investigated. The infectivity of Lassa, Marburg, and Ebola viruses was inactivated without altering the immunological activity after radiation with 60 CO gamma rays. At 4 degrees C, Lassa virus was the most difficult to inactivate with a rate of 5.3 X 10(-6) log 50% tissue culture infective dose per rad of 60 CO radiation, as compared with 6.8 X 10(-6) log 50% tissue culture infective dose per rad for Ebola virus and 8.4 X 10(-6) log 50% tissue culture infective dose per rad for Marburg virus. Experimental inactivation curves, as well as curves giving the total radiation needed to inactivate a given concentration of any of the three viruses, are presented. The authors found this method of inactivation to be superior to UV light or beta-propiolactone inactivation and now routinely use it for preparation of material for protein-chemistry studies or for preparation of immunological reagents

  17. Significance of Inactivated Genes in Leukemia: Pathogenesis and Prognosis

    Science.gov (United States)

    Heidari, Nazanin; Abroun, Saeid; Bertacchini, Jessika; Vosoughi, Tina; Rahim, Fakher; Saki, Najmaldin

    2017-01-01

    Epigenetic and genetic alterations are two mechanisms participating in leukemia, which can inactivate genes involved in leukemia pathogenesis or progression. The purpose of this review was to introduce various inactivated genes and evaluate their possible role in leukemia pathogenesis and prognosis. By searching the mesh words “Gene, Silencing AND Leukemia” in PubMed website, relevant English articles dealt with human subjects as of 2000 were included in this study. Gene inactivation in leukemia is largely mediated by promoter’s hypermethylation of gene involving in cellular functions such as cell cycle, apoptosis, and gene transcription. Inactivated genes, such as ASPP1, TP53, IKZF1 and P15, may correlate with poor prognosis in acute lymphoid leukemia (ALL), chronic lymphoid leukemia (CLL), chronic myelogenous leukemia (CML) and acute myeloid leukemia (AML), respectively. Gene inactivation may play a considerable role in leukemia pathogenesis and prognosis, which can be considered as complementary diagnostic tests to differentiate different leukemia types, determine leukemia prognosis, and also detect response to therapy. In general, this review showed some genes inactivated only in leukemia (with differences between B-ALL, T-ALL, CLL, AML and CML). These differences could be of interest as an additional tool to better categorize leukemia types. Furthermore; based on inactivated genes, a diverse classification of Leukemias could represent a powerful method to address a targeted therapy of the patients, in order to minimize side effects of conventional therapies and to enhance new drug strategies. PMID:28580304

  18. [Ultrasonic inactivation of Aspergillus niger glucose oxidase in aqueous solutions].

    Science.gov (United States)

    Karaseva, E I; Tarun, E I; Metelitsa, D I

    2009-01-01

    The inactivation of Aspergillus niger glucose oxidase (GO) was studied in 0.02 M phosphate-citrate buffer (PCB) at various pH, temperatures of 37-59 degrees C, and sonication with low frequency (27 kHz, LF-US) and high frequency (2.64 MHz, HF-US) ultrasound. The GO inactivation was characterized by the effective first-order inactivation rate constants k(in), k(in)*, and k(in)(us), reflecting the total, thermal, and ultrasonic inactivation components. The constants strongly depended on the pH and temperature of solution, GO concentration, and the presence of acceptors of the free radicals HO* -DMF, DMSO, ethanol, butanol, octanol, and mannitol, confirming that the active radicals formed in the ultrasonic cavitation field played an important role in the GO inactivation. The activation energy in the loss of GO catalytic activity considerably decreased when the enzyme solution was treated with LF-US or HF-US. The dissociative scheme of GO inactivation is discussed. Mannitol can be used for protection of GO from inactivation with LF-US or HF-US in the food industry and immunobiotechnology.

  19. Cationic Antimicrobial Peptides Inactivate Shiga Toxin-Encoding Bacteriophages

    Directory of Open Access Journals (Sweden)

    Manuel E. Del Cogliano

    2017-12-01

    Full Text Available Shiga toxin (Stx is the principal virulence factor during Shiga toxin-producing Escherichia coli (STEC infections. We have previously reported the inactivation of bacteriophage encoding Stx after treatment with chitosan, a linear polysaccharide polymer with cationic properties. Cationic antimicrobial peptides (cAMPs are short linear aminoacidic sequences, with a positive net charge, which display bactericidal or bacteriostatic activity against a wide range of bacterial species. They are promising novel antibiotics since they have shown bactericidal effects against multiresistant bacteria. To evaluate whether cationic properties are responsible for bacteriophage inactivation, we tested seven cationic peptides with proven antimicrobial activity as anti-bacteriophage agents, and one random sequence cationic peptide with no antimicrobial activity as a control. We observed bacteriophage inactivation after incubation with five cAMPs, but no inactivating activity was observed with the random sequence cationic peptide or with the non-alpha helical cAMP Omiganan. Finally, to confirm peptide-bacteriophage interaction, zeta potential was analyzed by following changes on bacteriophage surface charges after peptide incubation. According to our results we could propose that: (1 direct interaction of peptides with phage is a necessary step for bacteriophage inactivation, (2 cationic properties are necessary but not sufficient for bacteriophage inactivation, and (3 inactivation by cationic peptides could be sequence (or structure specific. Overall our data suggest that these peptides could be considered a new family of molecules potentially useful to decrease bacteriophage replication and Stx expression.

  20. Inactivation of p53 Is Sufficient to Induce Development of Pulmonary Hypertension in Rats.

    Directory of Open Access Journals (Sweden)

    S Jacquin

    Full Text Available Pulmonary artery smooth muscle cells (PA-SMCs in pulmonary arterial hypertension (PAH show similarities to cancer cells. Due to the growth-suppressive and pro-apoptotic effects of p53 and its inactivation in cancer, we hypothesized that the p53 pathway could be altered in PAH. We therefore explored the involvement of p53 in the monocrotaline (MCT rat model of pulmonary hypertension (PH and the pathophysiological consequences of p53 inactivation in response to animal treatment with pifithrin-α (PFT, an inhibitor of p53 activity.PH development was assessed by pulmonary arterial pressure, right ventricular hypertrophy and arterial wall thickness. The effect of MCT and PFT on lung p53 pathway expression was evaluated by western blot. Fourteen days of daily PFT treatment (2.2 mg/kg/day, similar to a single injection of MCT (60 mg/kg, induced PH and aggravated MCT-induced PH. In the first week after MCT administration and prior to PH development, p53, p21 and MDM2 protein levels were significantly reduced; whereas PFT administration effectively altered the protein level of p53 targets. Anti-apoptotic and pro-proliferative effects of PFT were revealed by TUNEL and MTT assays on cultured human PA-SMCs treated with 50 μM PFT.Pharmacological inactivation of p53 is sufficient to induce PH with a chronic treatment by PFT, an effect related to its anti-apoptotic and pro-proliferative properties. The p53 pathway was down-regulated during the first week in the rat MCT model. These in vivo experiments implicate the p53 pathway at the initiation stages of PH pathogenesis.

  1. Osteopontin Bridging Innate and Adaptive Immunity in Autoimmune Diseases

    Science.gov (United States)

    Raineri, Davide; Boggio, Elena; Favero, Francesco; Soluri, Maria Felicia

    2016-01-01

    Osteopontin (OPN) regulates the immune response at multiple levels. Physiologically, it regulates the host response to infections by driving T helper (Th) polarization and acting on both innate and adaptive immunity; pathologically, it contributes to the development of immune-mediated and inflammatory diseases. In some cases, the mechanisms of these effects have been described, but many aspects of the OPN function remain elusive. This is in part ascribable to the fact that OPN is a complex molecule with several posttranslational modifications and it may act as either an immobilized protein of the extracellular matrix or a soluble cytokine or an intracytoplasmic molecule by binding to a wide variety of molecules including crystals of calcium phosphate, several cell surface receptors, and intracytoplasmic molecules. This review describes the OPN structure, isoforms, and functions and its role in regulating the crosstalk between innate and adaptive immunity in autoimmune diseases. PMID:28097158

  2. Cannabinoids and Innate Immunity: Taking a Toll on Neuroinflammation

    Directory of Open Access Journals (Sweden)

    Eric J. Downer

    2011-01-01

    Full Text Available The biologically active components of cannabis have therapeutic potential in neuroinflammatory disorders due to their anti-inflammatory propensity. Cannabinoids influence immune function in both the peripheral and the central nervous system (CNS, and the components of the cannabinoid system, the cannabinoid receptors and their endogenous ligands (endocannabinoids, have been detected on immune cells as well as in brain glia. Neuroinflammation is the complex innate immune response of neural tissue to control infection and eliminate pathogens, and Toll-like receptors (TLRs, a major family of pattern recognition receptors (PRRs that mediate innate immunity, have emerged as players in the neuroinflammatory processes underpinning various CNS diseases. This review will highlight evidence that cannabinoids interact with the immune system by impacting TLR-mediated signaling events, which may provide cues for devising novel therapeutic approaches for cannabinoid ligands.

  3. Crosstalk between microbiota, pathogens and the innate immune responses.

    Science.gov (United States)

    Günther, Claudia; Josenhans, Christine; Wehkamp, Jan

    2016-08-01

    Research in the last decade has convincingly demonstrated that the microbiota is crucial in order to prime and orchestrate innate and adaptive immune responses of their host and influence barrier function as well as multiple developmental and metabolic parameters of the host. Reciprocally, host reactions and immune responses instruct the composition of the microbiota. This review summarizes recent evidence from experimental and human studies which supports these arms of mutual relationship and crosstalk between host and resident microbiota, with a focus on innate immune responses in the gut, the role of cell death pathways and antimicrobial peptides. We also provide some recent examples on how dysbiosis and pathogens can act in concert to promote intestinal infection, inflammatory pathologies and cancer. The future perspectives of these combined research efforts include the discovery of protective species within the microbiota and specific traits and factors of microbes that weaken or enforce host intestinal homeostasis. Copyright © 2016 Elsevier GmbH. All rights reserved.

  4. The multilayered innate immune defense of the gut.

    Science.gov (United States)

    El Chamy, Laure; Matt, Nicolas; Ntwasa, Monde; Reichhart, Jean-Marc

    2015-01-01

    In the wild, the fruit fly Drosophila melanogaster thrives on rotten fruit. The digestive tract maintains a powerful gut immune barrier to regulate the ingested microbiota, including entomopathogenic bacteria. This gut immune barrier includes a chitinous peritrophic matrix that isolates the gut contents from the epithelial cells. In addition, the epithelial cells are tightly sealed by septate junctions and can mount an inducible immune response. This local response can be activated by invasive bacteria, or triggered by commensal bacteria in the gut lumen. As with chronic inflammation in mammals, constitutive activation of the gut innate immune response is detrimental to the health of flies. Accordingly, the Drosophila gut innate immune response is tightly regulated to maintain the endogenous microbiota, while preventing infections by pathogenic microorganisms.

  5. Tissue-Resident Cytolytic Innate Lymphocytes in Cancer.

    Science.gov (United States)

    Nixon, Briana G; Li, Ming O

    2018-01-15

    Innate lymphoid cells (ILCs) are critical components of tissues in the body, providing a first line of defense against challenges to host integrity. In contrast to strictly cytokine-producing helper ILCs, resident innate lymphocyte populations with cytolytic potential have been identified in multiple tissues in both mouse and human. These cells express the transcription factor Tbet, NK cell receptors, granzymes, perforin, and death receptors, and can directly kill tumor cells. Signals in the tumor microenvironment may promote this response, including the cytokine IL-15 and stress-associated ligands for activating NK receptors. Although there is evidence that these cells are tissue and tumor resident, their lineage remains unclear. Whether they are derived from the NK or helper ILC lineages or represent a third differentiation pathway remains to be determined. A better understanding of their lineage will help clarify their regulation and function in the context of antitumor immunity. Copyright © 2018 by The American Association of Immunologists, Inc.

  6. MAMPs/PAMPs - elicitors of innate immunity in plants

    DEFF Research Database (Denmark)

    Erbs, Gitte; Newman, Mari-Anne

    2009-01-01

    Patterns (MAMPs or PAMPs), are recognised by the plant innate immune systems Pattern Recognition Receptors (PRRs). General bacterial elicitors, like lipopolysaccharides (LPS), flagellin (Flg), elongation factor Tu (EF-Tu), cold shock protein (CSP), peptidoglycan (PGN) and the enzyme superoxide dismutase...... elicitors have, in recent years, been identified. Here, the current knowledge regarding bacterial elicitors of innate immunity in plants is presented...... (SodM) are known to act as MAMPs and induce immune responses in plants or plant cells (Gómez-Gómez and Boller, 2000; Erbs and Newman, 2003; Felix and Boller, 2003; Kunze et al., 2004; Watt et al., 2006, Gust et al., 2007; Erbs et al., unpublished). The corresponding PRRs for some of these bacterial...

  7. Autophagy and Retromer Components in Plant Innate Immunity

    DEFF Research Database (Denmark)

    Munch, David

    Innate immunity depends on the recognition of pathogens and subsequent regulation of complex interactions that ultimately leads to production of compounds to deter microbial innovation. This thesis presents different aspects of immunity-associated cell death with focus on autophagy in the plant...... metabolism and its role in plant innate immunity will be presented. A homolog of ACD11 in humans is FOUR-PHOSPHATE ADAPTOR PROTEIN2 (FAPP2) and it has also been shown to be involved in cell death regulation in human Jurkat T cells. The data presented here show that FAPP2 does not appear to be involved......, a component of the retromer complex, was discovered as a relatively weak suppressor. Here I show redundancy between the three VPS35 homologs present in Arabidopsis in regulation of immunity-associated cell death, with a focus on the catabolic pathway autophagy. In addition a role for ACD11 in sphingolipid...

  8. The innate immune response during urinary tract infection and pyelonephritis.

    Science.gov (United States)

    Spencer, John David; Schwaderer, Andrew L; Becknell, Brian; Watson, Joshua; Hains, David S

    2014-07-01

    Despite its proximity to the fecal flora, the urinary tract is considered sterile. The precise mechanisms by which the urinary tract maintains sterility are not well understood. Host immune responses are critically important in the antimicrobial defense of the urinary tract. During recent years, considerable advances have been made in our understanding of the mechanisms underlying immune homeostasis of the kidney and urinary tract. Dysfunctions in these immune mechanisms may result in acute disease, tissue destruction and overwhelming infection. The objective of this review is to provide an overview of the innate immune response in the urinary tract in response to microbial assault. In doing so, we focus on the role of antimicrobial peptides-a ubiquitous component of the innate immune response.

  9. MAP Kinase 4 Substrates and Plant Innate Immunity

    DEFF Research Database (Denmark)

    Rasmussen, Magnus Wohlfahrt

    recognition, which also induce its localization to cytoplasmic processing bodies. All three proteins; PAT1, AOC3 and eIF4E also interacts with MPK4 in vivo although the functional outcome of these interactions are still elusive. The thesis comprise a general introduction to plant innate immunity followed...... by two review articles “MAP kinase cascades in Arabidopsis innate immunity” published in Frontiers in Plant Science and “mRNA decay in plant immunity” under revision for Cellular and Molecular Life Science. Together these sections gives a comprehensive overview of Arabidopsis defense signaling......Multi-layered defense responses are activated in plants upon recognition of invading pathogens. Transmembrane receptors recognize conserved pathogen-associated molecular patterns and activate MAP kinase cascades, which regulate changes in gene expression to produce appropriate immune responses...

  10. Bilingualism changes children's beliefs about what is innate.

    Science.gov (United States)

    Byers-Heinlein, Krista; Garcia, Bianca

    2015-03-01

    Young children engage in essentialist reasoning about natural kinds, believing that many traits are innately determined. This study investigated whether personal experience with second language acquisition could alter children's essentialist biases. In a switched-at-birth paradigm, 5- and 6-year-old monolingual and simultaneous bilingual children expected that a baby's native language, an animal's vocalizations, and an animal's physical traits would match those of a birth rather than of an adoptive parent. We predicted that sequential bilingual children, who had been exposed to a new language after age 3, would show greater understanding that languages are learned. Surprisingly, sequential bilinguals showed reduced essentialist beliefs about all traits: they were significantly more likely than other children to believe that human language, animal vocalizations, and animal physical traits would be learned through experience rather than innately endowed. These findings suggest that bilingualism in the preschool years can profoundly change children's essentialist biases. © 2014 John Wiley & Sons Ltd.

  11. Sublethal Heavy Metal Stress Stimulates Innate Immunity in Tomato

    Directory of Open Access Journals (Sweden)

    Nilanjan Chakraborty

    2015-01-01

    Full Text Available Effect of sublethal heavy metal stress as plant biotic elicitor for triggering innate immunity in tomato plant was investigated. Copper in in vivo condition induced accumulation of defense enzymes like peroxidase (PO, polyphenol oxidase (PPO, phenylalanine ammonia-lyase (PAL, and β-1,3 glucanase along with higher accumulation of total phenol, antioxidative enzymes (catalase and ascorbate peroxidase, and total chlorophyll content. Furthermore, the treatment also induced nitric oxide (NO production which was confirmed by realtime visualization of NO burst using a fluorescent probe 4,5-diaminofluorescein diacetate (DAF-2DA and spectrophotometric analysis. The result suggested that the sublethal dose of heavy metal can induce an array of plant defense responses that lead to the improvement of innate immunity in plants.

  12. The Interface between Fungal Biofilms and Innate Immunity

    Directory of Open Access Journals (Sweden)

    John F. Kernien

    2018-01-01

    Full Text Available Fungal biofilms are communities of adherent cells surrounded by an extracellular matrix. These biofilms are commonly found during infection caused by a variety of fungal pathogens. Clinically, biofilm infections can be extremely difficult to eradicate due to their resistance to antifungals and host defenses. Biofilm formation can protect fungal pathogens from many aspects of the innate immune system, including killing by neutrophils and monocytes. Altered immune recognition during this phase of growth is also evident by changes in the cytokine profiles of monocytes and macrophages exposed to biofilm. In this manuscript, we review the host response to fungal biofilms, focusing on how these structures are recognized by the innate immune system. Biofilms formed by Candida, Aspergillus, and Cryptococcus have received the most attention and are highlighted. We describe common themes involved in the resilience of fungal biofilms to host immunity and give examples of biofilm defenses that are pathogen-specific.

  13. Innate spatial-temporal reasoning and the identification of genius.

    Science.gov (United States)

    Peterson, Matthew R; Balzarini, Doreen; Bodner, Mark; Jones, Edward G; Phillips, Tiffany; Richardson, Debra; Shaw, Gordon L

    2004-01-01

    The teaching of mathematics is invariably language-based, but spatial-temporal (ST) reasoning (making a mental image and thinking ahead in space and time) is crucial to the understanding of math. Here we report that Big Seed, a demanding ST video game, based upon the mathematics of knot theory and previously applied to understanding DNA structure and function, can be used to reveal innate ST reasoning. Big Seed studies with middle and elementary school children provide strong evidence that ST reasoning ability is not only innate but far exceeds optimistic expectations based on age, the percentage of children achieving exceptional ST performance in less than 7 h of training, and retention of ability. A third grader has been identified as a genius (functionally defined) in ST performance. Big Seed may be used for training and assessing 'creativity' (functionally defined) and ST reasoning as well as discovering genius.

  14. Pathogen subversion of cell-intrinsic innate immunity.

    Science.gov (United States)

    Roy, Craig R; Mocarski, Edward S

    2007-11-01

    The mammalian immune system has evolved under continuous selective pressure from a wide range of microorganisms that colonize and replicate in animal hosts. A complex set of signaling networks initiate both innate and adaptive immunity in response to the diverse pathogens that mammalian hosts encounter. In response, viral and microbial pathogens have developed or acquired sophisticated mechanisms to avoid, counteract and subvert sensors, signaling networks and a range of effector functions that constitute the host immune response. This balance of host response and pathogen countermeasures contributes to chronic infection in highly adapted pathogens that have coevolved with their host. In this review we outline some of the themes that are beginning to emerge in the mechanisms by which pathogens subvert the early innate immune response.

  15. Innate Immunity and Immune Evasion by Enterovirus 71.

    Science.gov (United States)

    Pathinayake, Prabuddha S; Hsu, Alan C-Y; Wark, Peter A B

    2015-12-14

    Enterovirus 71 (EV71) is a major infectious disease affecting millions of people worldwide and it is the main etiological agent for outbreaks of hand foot and mouth disease (HFMD). Infection is often associated with severe gastroenterological, pulmonary, and neurological diseases that are most prevalent in children. Currently, no effective vaccine or antiviral drugs exist against EV71 infection. A lack of knowledge on the molecular mechanisms of EV71 infection in the host and the virus-host interactions is a major constraint to developing specific antiviral strategies against this infection. Previous studies have identified and characterized the function of several viral proteins produced by EV71 that interact with the host innate immune proteins, including type I interferon signaling and microRNAs. These interactions eventually promote efficient viral replication and increased susceptibility to the disease. In this review we discuss the functions of EV71 viral proteins in the modulation of host innate immune responses to facilitate viral replication.

  16. Innate immune evasion strategies of DNA and RNA viruses.

    Science.gov (United States)

    Beachboard, Dia C; Horner, Stacy M

    2016-08-01

    Upon infection, both DNA and RNA viruses can be sensed by pattern recognition receptors (PRRs) in the cytoplasm or the nucleus to activate antiviral innate immunity. Sensing of viral products leads to the activation of a signaling cascade that ultimately results in transcriptional activation of type I and III interferons, as well as other antiviral genes that together mediate viral clearance and inhibit viral spread. Therefore, in order for viruses to replicate and spread efficiently, they must inhibit the host signaling pathways that induce the innate antiviral immune response. In this review, we will highlight recent advances in the understanding of the mechanisms by which viruses evade PRR detection, intermediate signaling molecule activation, transcription factor activation, and the actions of antiviral proteins. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Innate Immune Evasion Mediated by Flaviviridae Non-Structural Proteins.

    Science.gov (United States)

    Chen, Shun; Wu, Zhen; Wang, Mingshu; Cheng, Anchun

    2017-10-07

    Flaviviridae-caused diseases are a critical, emerging public health problem worldwide. Flaviviridae infections usually cause severe, acute or chronic diseases, such as liver damage and liver cancer resulting from a hepatitis C virus (HCV) infection and high fever and shock caused by yellow fever. Many researchers worldwide are investigating the mechanisms by which Flaviviridae cause severe diseases. Flaviviridae can interfere with the host's innate immunity to achieve their purpose of proliferation. For instance, dengue virus (DENV) NS2A, NS2B3, NS4A, NS4B and NS5; HCV NS2, NS3, NS3/4A, NS4B and NS5A; and West Nile virus (WNV) NS1 and NS4B proteins are involved in immune evasion. This review discusses the interplay between viral non-structural Flaviviridae proteins and relevant host proteins, which leads to the suppression of the host's innate antiviral immunity.

  18. Inactivation of TRPM2 channels by extracellular divalent copper.

    Directory of Open Access Journals (Sweden)

    Wenyue Yu

    Full Text Available Cu2+ is an essential metal ion that plays a critical role in the regulation of a number of ion channels and receptors in addition to acting as a cofactor in a variety of enzymes. Here, we showed that human melastatin transient receptor potential 2 (hTRPM2 channel is sensitive to inhibition by extracellular Cu2+. Cu2+ at concentrations as low as 3 µM inhibited the hTRPM2 channel completely and irreversibly upon washing or using Cu2+ chelators, suggesting channel inactivation. The Cu2+-induced inactivation was similar when the channels conducted inward or outward currents, indicating the permeating ions had little effect on Cu2+-induced inactivation. Furthermore, Cu2+ had no effect on singe channel conductance. Alanine substitution by site-directed mutagenesis of His995 in the pore-forming region strongly attenuated Cu2+-induced channel inactivation, and mutation of several other pore residues to alanine altered the kinetics of channel inactivation by Cu2+. In addition, while introduction of the P1018L mutation is known to result in channel inactivation, exposure to Cu2+ accelerated the inactivation of this mutant channel. In contrast with the hTRPM2, the mouse TRPM2 (mTRPM2 channel, which contains glutamine at the position equivalent to His995, was insensitive to Cu2+. Replacement of His995 with glutamine in the hTRPM2 conferred loss of Cu2+-induced channel inactivation. Taken together, these results suggest that Cu2+ inactivates the hTRPM2 channel by interacting with the outer pore region. Our results also indicate that the amino acid residue difference in this region gives rise to species-dependent effect by Cu2+ on the human and mouse TRPM2 channels.

  19. Trauma: the role of the innate immune system

    Directory of Open Access Journals (Sweden)

    Rijkers GT

    2006-05-01

    Full Text Available Abstract Immune dysfunction can provoke (multiple organ failure in severely injured patients. This dysfunction manifests in two forms, which follow a biphasic pattern. During the first phase, in addition to the injury by trauma, organ damage is caused by the immune system during a systemic inflammatory response. During the second phase the patient is more susceptible for sepsis due to host defence failure (immune paralysis. The pathophysiological model outlined in this review encompasses etiological factors and the contribution of the innate immune system in the end organ damage. The etiological factors can be divided into intrinsic (genetic predisposition and physiological status and extrinsic components (type of injury or "traumaload" and surgery or "intervention load". Of all the factors, the intervention load is the only one which, can be altered by the attending emergency physician. Adjustment of the therapeutic approach and choice of the most appropriate treatment strategy can minimize the damage caused by the immune response and prevent the development of immunological paralysis. This review provides a pathophysiological basis for the damage control concept, in which a staged approach of surgery and post-traumatic immunomonitoring have become important aspects of the treatment protocol. The innate immune system is the main objective of immunomonitoring as it has the most prominent role in organ failure after trauma. Polymorphonuclear phagocytes and monocytes are the main effector-cells of the innate immune system in the processes that lead to organ failure. These cells are controlled by cytokines, chemokines, complement factors and specific tissue signals. The contribution of tissue barrier integrity and its interaction with the innate immune system is further evaluated.

  20. Innate Immunity and the Role of Defensins in Otitis Media

    OpenAIRE

    Underwood, Mark; Bakaletz, Lauren

    2011-01-01

    Otitis media is the most common pediatric disease in developed countries and a significant cause of morbidity and hearing loss in developing countries. The innate immune system is essential to protecting the middle ear from infection. Defensins, broad-spectrum cationic antimicrobial peptides, have been implicated in prevention of and the early response to acute otitis media; however, the mechanisms by which defensins and other antimicrobial molecules mediate this protection have not been comp...

  1. Innate immunity in CKD-associated vascular diseases.

    Science.gov (United States)

    Zewinger, Stephen; Schumann, Timo; Fliser, Danilo; Speer, Thimoteus

    2016-11-01

    Chronic kidney disease (CKD) is associated with an increased risk for cardiovascular events. Therefore, the activation of the innate immune system plays an important role. In contrast to the adaptive immunity, unspecific recognition of conserved endogenous and exogenous structures by pattern recognition receptors (PRRs) represents a key feature of the innate immunity. Of these PRRs, Toll-like receptors (TLRs) as well as the inflammasome complex have been documented to be involved in the pathogenesis of cardiovascular diseases (CVDs). They are not only expressed in leukocytes but also in a variety of cell types such as endothelial cells or fibroblasts. While activation of TLRs on the cell surface leads to nuclear factor κB-dependent expression of pro-inflammatory mediators, the inflammasome is a cytosolic multimeric protein complex, which cleaves cytokines such as interleukin-1β into their biologically active forms. Several endogenous ligands for these PRRs have been identified as contributing to the development of a CKD-specific pro-inflammatory microenvironment. Notably, activation of TLRs as well as the inflammasome is associated with arterial hypertension, formation of atherosclerotic vascular lesions and vascular calcification. However, detailed molecular mechanisms on how the innate immune system contributes to CKD-associated CVDs are as yet poorly understood. Currently, several agents modulating the activation of the innate immune system are the focus of cardiovascular research. Large clinical studies will provide further information on the therapeutic applicability of these substances to reduce cardiovascular morbidity and mortality in the general population. Further trials including patients with CKD will be necessary to assess their effects on CKD-associated CVD. © The Author 2015. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  2. Dissecting innate immune signaling in viral evasion of cytokine production.

    Science.gov (United States)

    Zhang, Junjie; Zhu, Lining; Feng, Pinghui

    2014-03-02

    In response to a viral infection, the host innate immune response is activated to up-regulate gene expression and production of antiviral cytokines. Conversely, viruses have evolved intricate strategies to evade and exploit host immune signaling for survival and propagation. Viral immune evasion, entailing host defense and viral evasion, provides one of the most fascinating and dynamic interfaces to discern the host-virus interaction. These studies advance our understanding in innate immune regulation and pave our way to develop novel antiviral therapies. Murine γHV68 is a natural pathogen of murine rodents. γHV68 infection of mice provides a tractable small animal model to examine the antiviral response to human KSHV and EBV of which perturbation of in vivo virus-host interactions is not applicable. Here we describe a protocol to determine the antiviral cytokine production. This protocol can be adapted to other viruses and signaling pathways. Recently, we have discovered that γHV68 hijacks MAVS and IKKβ, key innate immune signaling components downstream of the cytosolic RIG-I and MDA5, to abrogate NFΚB activation and antiviral cytokine production. Specifically, γHV68 infection activates IKKβ and that activated IKKβ phosphorylates RelA to accelerate RelA degradation. As such, γHV68 efficiently uncouples NFΚB activation from its upstream activated IKKβ, negating antiviral cytokine gene expression. This study elucidates an intricate strategy whereby the upstream innate immune activation is intercepted by a viral pathogen to nullify the immediate downstream transcriptional activation and evade antiviral cytokine production.

  3. DPP-4 inhibitors

    DEFF Research Database (Denmark)

    Deacon, Carolyn F.

    2016-01-01

    Dipeptidyl peptidase (DPP)-4 inhibitors inhibit the activity of the enzyme responsible for the initial rapid degradation of the incretin hormones, thereby enhancing their antihyperglycemic effects.......Dipeptidyl peptidase (DPP)-4 inhibitors inhibit the activity of the enzyme responsible for the initial rapid degradation of the incretin hormones, thereby enhancing their antihyperglycemic effects....

  4. β-Lactone natural products and derivatives inactivate homoserine transacetylase, a target for antimicrobial agents.

    Science.gov (United States)

    De Pascale, Gianfranco; Nazi, Ishac; Harrison, Paul H M; Wright, Gerard D

    2011-07-01

    Homoserine transacetylase (HTA) catalyzes the transfer of an acetyl group from acetyl-CoA to the hydroxyl group of homoserine. This is the first committed step in the biosynthesis of methionine (Met) from aspartic acid in many fungi, Gram-positive and some Gram-negative bacteria. The enzyme is absent in higher eukaryotes and is important for microorganism growth in Met-poor environments, such as blood serum, making HTA an attractive target for new antimicrobial agents. HTA catalyzes acetyl transfer via a double displacement mechanism facilitated by a classic Ser-His-Asp catalytic triad located at the bottom of a narrow actives site tunnel. We explored the inhibitory activity of several β-lactones to block the activity of HTA. In particular, the natural product ebelactone A, a β-lactone with a hydrophobic tail was found to be a potent inactivator of HTA from Haemophilus influenzae. Synthetic analogs of ebelactone A demonstrated improved inactivation characteristics. Covalent modification of HTA was confirmed by mass spectrometry, and peptide mapping identified Ser143 as the modified residue, consistent with the known structure and mechanism of the enzyme. These results demonstrate that β-lactone inhibitors are excellent biochemical probes of HTA and potential leads for new antimicrobial agents.

  5. Innate immune recognition and activation during HIV infection

    Directory of Open Access Journals (Sweden)

    Larsen Carsten S

    2010-06-01

    Full Text Available Abstract The pathogenesis of HIV infection, and in particular the development of immunodeficiency, remains incompletely understood. Whichever intricate molecular mechanisms are at play between HIV and the host, it is evident that the organism is incapable of restricting and eradicating the invading pathogen. Both innate and adaptive immune responses are raised, but they appear to be insufficient or too late to eliminate the virus. Moreover, the picture is complicated by the fact that the very same cells and responses aimed at eliminating the virus seem to play deleterious roles by driving ongoing immune activation and progressive immunodeficiency. Whereas much knowledge exists on the role of adaptive immunity during HIV infection, it has only recently been appreciated that the innate immune response also plays an important part in HIV pathogenesis. In this review, we present current knowledge on innate immune recognition and activation during HIV infection based on studies in cell culture, non-human primates, and HIV-infected individuals, and discuss the implications for the understanding of HIV immunopathogenesis.

  6. Antimicrobial Peptides as Mediators of Innate Immunity in Teleosts

    Directory of Open Access Journals (Sweden)

    Barbara A. Katzenback

    2015-09-01

    Full Text Available Antimicrobial peptides (AMPs have been identified throughout the metazoa suggesting their evolutionarily conserved nature and their presence in teleosts is no exception. AMPs are short (18–46 amino acids, usually cationic, amphipathic peptides. While AMPs are diverse in amino acid sequence, with no two AMPs being identical, they collectively appear to have conserved functions in the innate immunity of animals towards the pathogens they encounter in their environment. Fish AMPs are upregulated in response to pathogens and appear to have direct broad-spectrum antimicrobial activity towards both human and fish pathogens. However, an emerging role for AMPs as immunomodulatory molecules has become apparent—the ability of AMPs to activate the innate immune system sheds light onto the multifaceted capacity of these small peptides to combat pathogens through direct and indirect means. Herein, this review focuses on the role of teleost AMPs as modulators of the innate immune system and their regulation in response to pathogens or other exogenous molecules. The capacity to regulate AMP expression by exogenous factors may prove useful in modulating AMP expression in fish to prevent disease, particularly in aquaculture settings where crowded conditions and environmental stress pre-dispose these fish to infection.

  7. Interactions between bile salts, gut microbiota, and hepatic innate immunity.

    Science.gov (United States)

    Schubert, Kristin; Olde Damink, Steven W M; von Bergen, Martin; Schaap, Frank G

    2017-09-01

    Bile salts are the water-soluble end products of hepatic cholesterol catabolism that are released into the duodenum and solubilize lipids due to their amphipathic structure. Bile salts also act as endogenous ligands for dedicated nuclear receptors that exert a plethora of biological processes, mostly related to metabolism. Bile salts are actively reclaimed in the distal part of the small intestine, released into the portal system, and subsequently extracted by the liver. This enterohepatic cycle is critically dependent on dedicated bile salt transporters. In the intestinal lumen, bile salts exert direct antimicrobial activity based on their detergent property and shape the gut microbiota. Bile salt metabolism by gut microbiota serves as a mechanism to counteract this toxicity and generates bile salt species that are distinct from those of the host. Innate immune cells of the liver play an important role in the early recognition and effector response to invading microbes. Bile salts signal primarily via the membrane receptor TGR5 and the intracellular farnesoid-x receptor, both present in innate immune cells. In this review, the interactions between bile salts, gut microbiota, and hepatic innate immunity are discussed. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. The interplay between the innate immune system and the microbiota.

    Science.gov (United States)

    Thaiss, Christoph A; Levy, Maayan; Suez, Jotham; Elinav, Eran

    2014-02-01

    The human gastrointestinal tract harbors one of the highest densities of microorganisms on earth, called the microbiota. In fact, the number of microbial cells in the intestine outnumbers the amount of human cells of the entire organism by a factor of 10. As such, a human being is more and more perceived as a super-organism consisting of a eukaryotic and a prokaryotic part. The compartment mediating the communication between both parts is the innate immune system and its various microbe-sensing pattern-recognition receptors. Co-evolution of the microbiota with the innate immune system has resulted in elaborate interdependency and feedback mechanisms by which both systems control mutual homeostasis. Here, we review the most important innate immune-microbiota interdependencies known to date. While microbial sensing by pattern-recognition receptors is required for stable microbial composition, the presence of the microbiota, in turn, is necessary for proper development and function of the immune system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. E. fischeriana Root Compound Dpo Activates Antiviral Innate Immunity

    Directory of Open Access Journals (Sweden)

    Jingxuan Chen

    2017-10-01

    Full Text Available E. fischeriana has long been used as a traditional Chinese medicine. Recent studies reported that some compounds of E. fischeriana exhibited antimicrobial and immune enhance activity. Innate immune system is essential for the immune surveillance of inner and outer threats, initial host defense responses and immune modulation. The role of natural drug compounds, including E. fischeriana, in innate immune regulation is largely unknown. Here we demonstrated that E. fischeriana compound Dpo is involved in antiviral signaling. The genome wide RNA-seq analysis revealed that the induction of ISGs by viral infection could be synergized by Dpo. Consistently, Dpo enhanced the antiviral immune responses and protected the mice from death during viral infection. Dpo however was not able to rescue STING deficient mice lethality caused by HSV-1 infection. The enhancement of ISG15 by Dpo was also impaired in STING, IRF3, IRF7, or ELF4 deficient cells, demonstrating that Dpo activates innate immune responses in a STING/IRFs/ELF4 dependent way. The STING/IRFs/ELF4 axis is therefore important for Dpo induced ISGs expression, and can be used by host to counteract infection.

  10. Origin of Toll-like receptor-mediated innate immunity.

    Science.gov (United States)

    Kanzok, Stefan M; Hoa, Ngo T; Bonizzoni, Mariangela; Luna, Coralia; Huang, Yaming; Malacrida, Anna R; Zheng, Liangbiao

    2004-04-01

    Toll-related receptors (TLR) have been found in four animal phyla: Nematoda, Arthropoda, Echinodermata, and Chordata. No TLR has been identified thus far in acoelomates. TLR genes play a pivotal role in the innate immunity in both fruit fly and mammals. The prevailing view is that TLR-mediated immunity is ancient. The two pseudocoelomate TLRs, one each from Caenorhabditis elegans and Strongyloides stercoralis, were distinct from the coelomate ones. Further, the only TLR gene (Tol-1) in Ca. elegans did not appear to play a role in innate immunity. We argue that TLR-mediated innate immunity developed only in the coelomates, after they split from pseudocoelomates and acoelomates. We hypothesize that the function of TLR-mediated immunity is to prevent microbial infection in the body cavity present only in the coelomates. Phylogenetic analysis showed that almost all arthropod TLRs form a separate cluster from the mammalian counterparts. We further hypothesize that TLR-mediated immunity developed independently in the protostomia and deuterostomia coelomates.

  11. Group 2 innate lymphoid cells in the lung.

    Science.gov (United States)

    Drake, Li Yin; Kita, Hirohito

    2014-01-01

    As the first line of defense, innate immunity plays an important role in protecting the host against pathogens. Innate lymphoid cells (ILCs) are emerging as important effector cells in the innate immune system and the cell type that regulate immune and tissue homeostases. Group 2 ILCs (ILC2s) are a subset of ILCs and are characterized by their capacity to produce large quantities of type 2 cytokines and certain tissue growth factors. In animal models, lung ILC2s are involved in allergic airway inflammation induced by exposure to allergens even in the absence of CD4(+) T cells and are likely responsible for tissue repair and recovery after respiratory virus infection. ILC2s are also identified in various organs in humans, and the numbers are increased in mucosal tissues from patients with allergic disorders. Further investigations of this novel cell type will provide major conceptual advances in our understanding of the mechanisms of asthma and allergic diseases. © 2014 Elsevier Inc. All rights reserved.

  12. Wandering pathways in the regulation of innate immunity and inflammation.

    Science.gov (United States)

    Mantovani, Alberto

    2017-12-01

    Tumor-associated macrophages (TAM) have served as a paradigm of cancer-related inflammation. Moreover, investigations on TAM have led to the dissection of macrophage plasticity and polarization and to the discovery and analysis of molecular pathways of innate immunity, in particular cytokines, chemokines and PTX3 as a prototypic fluid phase pattern recognition molecule. Mechanisms of negative regulation are complex and include decoy receptors, receptor antagonists, anti-inflammatory cytokines and the signalling regulator IL-1R8. In this review, topics and open issues in relation to regulation of innate immunity and inflammation are discussed: 1) how macrophage and neutrophil plasticity and polarization underlie diverse pathological conditions ranging from autoimmunity to cancer and may pave the way to innovative diagnostic and therapeutic approaches; 2) the key role of decoy receptors and negative regulators (e.g. IL-1R2, ACKR2, IL-1R8) in striking a balance between amplification of immunity and resolution versus uncontrolled inflammation and tissue damage; 3) role of humoral innate immunity, illustrated by PTX3, in resistance against selected microbes, regulation of inflammation and immunity and tissue repair, with implications for diagnostic and therapeutic translation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Hepatitis C, innate immunity and alcohol: friends or foes?

    Science.gov (United States)

    Osna, Natalia A; Ganesan, Murali; Kharbanda, Kusum K

    2015-02-05

    Hepatitis C and alcohol are the most widespread causes of liver disease worldwide. Approximately 80% of patients with a history of hepatitis C and alcohol abuse develop chronic liver injury. Alcohol consumption in hepatitis C virus (HCV)-infected patients exacerbates liver disease leading to rapid progression of fibrosis, cirrhosis and even hepatocellular carcinoma. Hepatocytes are the main sites of HCV-infection and ethanol metabolism, both of which generate oxidative stress. Oxidative stress levels affect HCV replication and innate immunity, resulting in a greater susceptibility for HCV-infection and virus spread in the alcoholic patients. In this review paper, we analyze the effects of ethanol metabolism and other factors on HCV replication. In addition, we illustrate the mechanisms of how HCV hijacks innate immunity and how ethanol exposure regulates this process. We also clarify the effects of HCV and ethanol metabolism on interferon signaling-a crucial point for activation of anti-viral genes to protect cells from virus-and the role that HCV- and ethanol-induced impairments play in adaptive immunity which is necessary for recognition of virally-infected hepatocytes. In conclusion, ethanol exposure potentiates the suppressive effects of HCV on innate immunity, which activates viral spread in the liver and finally, leads to impairments in adaptive immunity. The dysregulation of immune response results in impaired elimination of HCV-infected cells, viral persistence, progressive liver damage and establishment of chronic infection that worsens the outcomes of chronic hepatitis C in alcoholic patients.

  14. Innate Immunity to Respiratory Infection in Early Life.

    Science.gov (United States)

    Lambert, Laura; Culley, Fiona J

    2017-01-01

    Early life is a period of particular susceptibility to respiratory infections and symptoms are frequently more severe in infants than in adults. The neonatal immune system is generally held to be deficient in most compartments; responses to innate stimuli are weak, antigen-presenting cells have poor immunostimulatory activity and adaptive lymphocyte responses are limited, leading to poor immune memory and ineffective vaccine responses. For mucosal surfaces such as the lung, which is continuously exposed to airborne antigen and to potential pathogenic invasion, the ability to discriminate between harmless and potentially dangerous antigens is essential, to prevent inflammation that could lead to loss of gaseous exchange and damage to the developing lung tissue. We have only recently begun to define the differences in respiratory immunity in early life and its environmental and developmental influences. The innate immune system may be of relatively greater importance than the adaptive immune system in the neonatal and infant period than later in life, as it does not require specific antigenic experience. A better understanding of what constitutes protective innate immunity in the respiratory tract in this age group and the factors that influence its development should allow us to predict why certain infants are vulnerable to severe respiratory infections, design treatments to accelerate the development of protective immunity, and design age specific adjuvants to better boost immunity to infection in the lung.

  15. The Role of Innate Immune System Receptors in Epilepsy Research.

    Science.gov (United States)

    Cordero-Arreola, Jessica; West, Rachel M; Mendoza-Torreblanca, Julieta; Mendez-Hernandez, Edna; Salas-Pacheco, Jose; Menendez-Gonzalez, Manuel; Freire, Rafael C; Machado, Sergio; Murillo-Rodriguez, Eric; Nardi, Antonio E; Arias-Carrion, Oscar

    2017-01-01

    Epilepsy is one of the most complex neurological disorders and its study requires a broad knowledge of neurology and neuroscience. It comprises a diverse group of neurological disorders that share the central feature of spontaneous recurrent seizures, and are often accompanied by cognitive deficits and mood disorder. This condition is one of the most common neurological disorders. Until recently, alterations of neuronal activities had been the focus of epilepsy research. This neurocentric emphasis did not address issues that arise in more complex models of epileptogenesis. An important factor in epilepsy that is not regulated directly by neurons is inflammation and the immune response of the brain. Recent evidence obtained in rodent epilepsy models supports the role of immune responses in the initiation and maintenance of epilepsy. Recognition of exogenous pathogens by the innate immune system is mediated by some pattern recognition receptors such as Toll-like receptors leading to cell activation and cytokine production. Currently, these receptors have been the focus of epilepsy studies looking to determine whether the innate immune activation is neuroprotective or neurotoxic for the brain. Here, we present the evidence in the literature of the involvement of key innate immune receptors in the development of epilepsy. We address some of the contradictory findings in these studies and also mention possible avenues for research into epilepsy treatments that target these receptors. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Optimal Control Strategy for Abnormal Innate Immune Response

    Directory of Open Access Journals (Sweden)

    Jinying Tan

    2015-01-01

    Full Text Available Innate immune response plays an important role in control and clearance of pathogens following viral infection. However, in the majority of virus-infected individuals, the response is insufficient because viruses are known to use different evasion strategies to escape immune response. In this study, we use optimal control theory to investigate how to control the innate immune response. We present an optimal control model based on an ordinary-differential-equation system from a previous study, which investigated the dynamics and regulation of virus-triggered innate immune signaling pathways, and we prove the existence of a solution to the optimal control problem involving antiviral treatment or/and interferon therapy. We conduct numerical experiments to investigate the treatment effects of different control strategies through varying the cost function and control efficiency. The results show that a separate treatment, that is, only inhibiting viral replication (u1(t or enhancing interferon activity (u2(t, has more advantages for controlling viral infection than a mixed treatment, that is, controlling both (u1(t and (u2(t simultaneously, including the smallest cost and operability. These findings would provide new insight for developing effective strategies for treatment of viral infectious diseases.

  17. Inactivation of Aujeszky's disease virus in slurry at various temperatures

    DEFF Research Database (Denmark)

    Bøtner, Anette

    1991-01-01

    Survival of Aujeszky's disease virus in pig slurry was investigated during anaerobic storage at 5, 20, 35, 40, 45, 50 and 55°C using 100-ml laboratory models simulating the conditions in slurry tanks during winter and summer seasons and during anaerobic digestion in batch reactors. The inactivation...... rate was found to increase with increasing temperature. Virus was inactivated at 5 and 20°C in 15 weeks and 2 weeks, respectively. At 35°C (mesophilic conditions) the virus was inactivated in 5 hours and at 55°C (thermophilic conditions) no virus could be detected after 10 minutes....

  18. Microbial electrolytic disinfection process for highly efficient Escherichia coli inactivation

    DEFF Research Database (Denmark)

    Zhou, Shaofeng; Huang, Shaobin; Li, Xiaohu

    2018-01-01

    extensively studied for recalcitrant organics removal, its application potential towards water disinfection (e.g., inactivation of pathogens) is still unknown. This study investigated the inactivation of Escherichia coli in a microbial electrolysis cell based bio-electro-Fenton system (renamed as microbial...... electrolytic-Fenton cell) with the aim to broad the application of microbial electrochemistry. Results showed that a 4-log reduction of Escherichia coli (107 to hundreds CFU/mL) was achieved with an external applied voltage of 0.2 V, 0.3 mM Fe2+ and cathodic pH of 3.0. However, non-notable inactivation...

  19. Inactivation of human and simian rotaviruses by ozone

    Energy Technology Data Exchange (ETDEWEB)

    Vaughn, J.M.; Chen, Y.S.; Lindburg, K.; Morales, D.

    1987-09-01

    The inactivation of simian rotavirus Sa-11 and human rotavirus type 2 (Wa) by ozone was compared at 4/sup 0/C by using single-particle virus stocks. Although the human strain was clearly more sensitive, both virus types were rapidly inactivated by ozone concentrations of 0.25 mg/liter or greater at all pH levels tested. Comparison of the virucidal activity of ozone with that of chlorine in identical experiments indicated little significant difference in rotavirus-inactivating efficiencies when the disinfectants were used at concentrations of 0.25 mg/liter or greater.

  20. Cleavage of nicotinamide adenine dinucleotide by the ribosome-inactivating protein from Momordica charantia.

    Science.gov (United States)

    Vinkovic, M; Dunn, G; Wood, G E; Husain, J; Wood, S P; Gill, R

    2015-09-01

    The interaction of momordin, a type 1 ribosome-inactivating protein from Momordica charantia, with NADP(+) and NADPH has been investigated by X-ray diffraction analysis of complexes generated by co-crystallization and crystal soaking. It is known that the proteins of this family readily cleave the adenine-ribose bond of adenosine and related nucleotides in the crystal, leaving the product, adenine, bound to the enzyme active site. Surprisingly, the nicotinamide-ribose bond of oxidized NADP(+) is cleaved, leaving nicotinamide bound in the active site in the same position but in a slightly different orientation to that of the five-membered ring of adenine. No binding or cleavage of NADPH was observed at pH 7.4 in these experiments. These observations are in accord with current views of the enzyme mechanism and may contribute to ongoing searches for effective inhibitors.

  1. Inhibition of the cluster of differentiation 14 innate immunity pathway with IAXO-101 improves chronic microelectrode performance

    Science.gov (United States)

    Hermann, John K.; Ravikumar, Madhumitha; Shoffstall, Andrew J.; Ereifej, Evon S.; Kovach, Kyle M.; Chang, Jeremy; Soffer, Arielle; Wong, Chun; Srivastava, Vishnupriya; Smith, Patrick; Protasiewicz, Grace; Jiang, Jingle; Selkirk, Stephen M.; Miller, Robert H.; Sidik, Steven; Ziats, Nicholas P.; Taylor, Dawn M.; Capadona, Jeffrey R.

    2018-04-01

    Objective. Neuroinflammatory mechanisms are hypothesized to contribute to intracortical microelectrode failures. The cluster of differentiation 14 (CD14) molecule is an innate immunity receptor involved in the recognition of pathogens and tissue damage to promote inflammation. The goal of the study was to investigate the effect of CD14 inhibition on intracortical microelectrode recording performance and tissue integration. Approach. Mice implanted with intracortical microelectrodes in the motor cortex underwent electrophysiological characterization for 16 weeks, followed by endpoint histology. Three conditions were examined: (1) wildtype control mice, (2) knockout mice lacking CD14, and (3) wildtype control mice administered a small molecule inhibitor to CD14 called IAXO-101. Main results. The CD14 knockout mice exhibited acute but not chronic improvements in intracortical microelectrode performance without significant differences in endpoint histology. Mice receiving IAXO-101 exhibited significant improvements in recording performance over the entire 16 week duration without significant differences in endpoint histology. Significance. Full removal of CD14 is beneficial at acute time ranges, but limited CD14 signaling is beneficial at chronic time ranges. Innate immunity receptor inhibition strategies have the potential to improve long-term intracortical microelectrode performance.

  2. Nitric oxide-mediated maintenance of redox homeostasis contributes to NPR1-dependent plant innate immunity triggered by lipopolysaccharides.

    Science.gov (United States)

    Sun, Aizhen; Nie, Shengjun; Xing, Da

    2012-10-01

    The perception of lipopolysaccharides (LPS) by plant cells can lead to nitric oxide (NO) production and defense gene induction. However, the signaling cascades underlying these cellular responses have not yet been resolved. This work investigated the biosynthetic origin of NO and the role of NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (NPR1) to gain insight into the mechanism involved in LPS-induced resistance of Arabidopsis (Arabidopsis thaliana). Analysis of inhibitors and mutants showed that LPS-induced NO synthesis was mainly mediated by an arginine-utilizing source of NO generation. Furthermore, LPS-induced NO caused transcript accumulation of alternative oxidase genes and increased antioxidant enzyme activity, which enhanced antioxidant capacity and modulated redox state. We also analyzed the subcellular localization of NPR1 to identify the mechanism for protein-modulated plant innate immunity triggered by LPS. LPS-activated defense responses, including callose deposition and defense-related gene expression, were found to be regulated through an NPR1-dependent pathway. In summary, a significant NO synthesis induced by LPS contributes to the LPS-induced defense responses by up-regulation of defense genes and modulation of cellular redox state. Moreover, NPR1 plays an important role in LPS-triggered plant innate immunity.

  3. (-)-Epigallocatechin-3-Gallate Enhances Hepatitis C Virus Double-Stranded RNA Intermediates-Triggered Innate Immune Responses in Hepatocytes.

    Science.gov (United States)

    Wang, Yizhong; Li, Jieliang; Wang, Xu; Peña, Juliet C; Li, Kui; Zhang, Ting; Ho, Wenzhe

    2016-02-16

    (-)-Epigallocatechin-3-gallate (EGCG), a major polyphenol component of green tea, has recently been identified as an inhibitor of hepatitis C virus (HCV) entry. Here, we examined whether EGCG can enhance hepatocyte-mediated intracellular innate immunity against HCV. HCV dsRNAs (Core, E1-P7, NS-3'NTR and NS5A) induced interferon-λ1 (IFN-λ1) expression in human hepatocytes. These HCV dsRNAs also induced the expression of Toll-like receptor 3 (TLR3), retinoic acid-inducible gene I (RIG-I) and several antiviral IFN-stimulated genes (ISGs) expression. Although EGCG treatment of hepatocytes alone had little effect on TLR3 and RIG-I signaling pathways, EGCG significantly enhanced HCV dsRNAs-induced the expression of IFN-λ1, TLR3, RIG-I and antiviral ISGs in hepatocytes. Furthermore, treatment of HCV-infected hepatocytes with EGCG and HCV dsRNAs inhibited viral replication. Given that EGCG has the ability to enhance HCV dsRNAs-induced intracellular antiviral innate immunity against HCV, suggesting the potential application of EGCG as a new anti-HCV agent for HCV therapy.

  4. Beneficial and Harmful Interactions of Antibiotics with Microbial Pathogens and the Host Innate Immune System

    Directory of Open Access Journals (Sweden)

    Ronald Anderson

    2010-05-01

    Full Text Available In general antibiotics interact cooperatively with host defences, weakening and decreasing the virulence of microbial pathogens, thereby increasing vulnerability to phagocytosis and eradication by the intrinsic antimicrobial systems of the host. Antibiotics, however, also interact with host defences by several other mechanisms, some harmful, others beneficial. Harmful activities include exacerbation of potentially damaging inflammatory responses, a property of cell-wall targeted agents, which promotes the release of pro-inflammatory microbial cytotoxins and cell-wall components. On the other hand, inhibitors of bacterial protein synthesis, especially macrolides, possess beneficial anti-inflammatory/cytoprotective activities, which result from interference with the production of microbial virulence factors/cytotoxins. In addition to these pathogen-directed, anti-inflammatory activities, some classes of antimicrobial agent possess secondary anti-inflammatory properties, unrelated to their conventional antimicrobial activities, which target cells of the innate immune system, particularly neutrophils. This is a relatively uncommon, potentially beneficial property of antibiotics, which has been described for macrolides, imidazole anti-mycotics, fluoroquinolones, and tetracyclines. Although of largely unproven significance in the clinical setting, increasing awareness of the pro-inflammatory and anti-inflammatory properties of antibiotics may contribute to a more discerning and effective use of these agents.

  5. Axl Mediates ZIKA Virus Entry in Human Glial Cells and Modulates Innate Immune Responses.

    Science.gov (United States)

    Meertens, Laurent; Labeau, Athena; Dejarnac, Ophelie; Cipriani, Sara; Sinigaglia, Laura; Bonnet-Madin, Lucie; Le Charpentier, Tifenn; Hafirassou, Mohamed Lamine; Zamborlini, Alessia; Cao-Lormeau, Van-Mai; Coulpier, Muriel; Missé, Dorothée; Jouvenet, Nolwenn; Tabibiazar, Ray; Gressens, Pierre; Schwartz, Olivier; Amara, Ali

    2017-01-10

    ZIKA virus (ZIKV) is an emerging pathogen responsible for neurological disorders and congenital microcephaly. However, the molecular basis for ZIKV neurotropism remains poorly understood. Here, we show that Axl is expressed in human microglia and astrocytes in the developing brain and that it mediates ZIKV infection of glial cells. Axl-mediated ZIKV entry requires the Axl ligand Gas6, which bridges ZIKV particles to glial cells. Following binding, ZIKV is internalized through clathrin-mediated endocytosis and traffics to Rab5+ endosomes to establish productive infection. During entry, the ZIKV/Gas6 complex activates Axl kinase activity, which downmodulates interferon signaling and facilitates infection. ZIKV infection of human glial cells is inhibited by MYD1, an engineered Axl decoy receptor, and by the Axl kinase inhibitor R428. Our results highlight the dual role of Axl during ZIKV infection of glial cells: promoting viral entry and modulating innate immune responses. Therefore, inhibiting Axl function may represent a potential target for future antiviral therapies. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  6. Aspirin Modulates Innate Inflammatory Response and Inhibits the Entry of Trypanosoma cruzi in Mouse Peritoneal Macrophages

    Directory of Open Access Journals (Sweden)

    Aparecida Donizette Malvezi

    2014-01-01

    Full Text Available The intracellular protozoan parasite Trypanosoma cruzi causes Chagas disease, a serious disorder that affects millions of people in Latin America. Cell invasion by T. cruzi and its intracellular replication are essential to the parasite’s life cycle and for the development of Chagas disease. Here, we present evidence suggesting the involvement of the host’s cyclooxygenase (COX enzyme during T. cruzi invasion. Pharmacological antagonist for COX-1, aspirin (ASA, caused marked inhibition of T. cruzi infection when peritoneal macrophages were pretreated with ASA for 30 min at 37°C before inoculation. This inhibition was associated with increased production of IL-1β and nitric oxide (NO∙ by macrophages. The treatment of macrophages with either NOS inhibitors or prostaglandin E2 (PGE2 restored the invasive action of T. cruzi in macrophages previously treated with ASA. Lipoxin ALX-receptor antagonist Boc2 reversed the inhibitory effect of ASA on trypomastigote invasion. Our results indicate that PGE2, NO∙, and lipoxins are involved in the regulation of anti-T. cruzi activity by macrophages, providing a better understanding of the role of prostaglandins in innate inflammatory response to T. cruzi infection as well as adding a new perspective to specific immune interventions.

  7. Axl Mediates ZIKA Virus Entry in Human Glial Cells and Modulates Innate Immune Responses

    Directory of Open Access Journals (Sweden)

    Laurent Meertens

    2017-01-01

    Full Text Available ZIKA virus (ZIKV is an emerging pathogen responsible for neurological disorders and congenital microcephaly. However, the molecular basis for ZIKV neurotropism remains poorly understood. Here, we show that Axl is expressed in human microglia and astrocytes in the developing brain and that it mediates ZIKV infection of glial cells. Axl-mediated ZIKV entry requires the Axl ligand Gas6, which bridges ZIKV particles to glial cells. Following binding, ZIKV is internalized through clathrin-mediated endocytosis and traffics to Rab5+ endosomes to establish productive infection. During entry, the ZIKV/Gas6 complex activates Axl kinase activity, which downmodulates interferon signaling and facilitates infection. ZIKV infection of human glial cells is inhibited by MYD1, an engineered Axl decoy receptor, and by the Axl kinase inhibitor R428. Our results highlight the dual role of Axl during ZIKV infection of glial cells: promoting viral entry and modulating innate immune responses. Therefore, inhibiting Axl function may represent a potential target for future antiviral therapies.

  8. Dry-heat inactivation of "Mycobacterium canettii".

    Science.gov (United States)

    Aboubaker Osman, Djaltou; Garnotel, Eric; Drancourt, Michel

    2017-06-09

    "Mycobacterium canettii" is responsible for non-transmissible lymph node and pulmonary tuberculosis in persons exposed in the Horn of Africa. In the absence of direct human transmission, contaminated water and foodstuffs could be sources of contamination. We investigated the dry-heat inactivation of "M. canettii" alone and mixed into mock-infected foodstuffs by inoculating agar cylinders and milk with 10 4 colony-forming units of "M. canettii" CIPT140010059 and two "M. canettii" clinical strains with Mycobacterium tuberculosis H37Rv as a control. Exposed to 35 °C, M. tuberculosis H37Rv, "M canettii" CIPT140010059 and "M. canettii" 157 exhibited a survival rate of 108, 95 and 81%, which is significantly higher than that of "M. canettii" 173. However, all tested mycobacteria tolerated a 90-min exposure at 45 °C. In the foodstuff models set at 70 °C, no growing mycobacteria were visualized. This study supports the premise that "M. canettii" may survive up to 45 °C; and suggests that contaminated raw drinks and foodstuffs but not cooked ones may be sources of infection for populations.

  9. Operation method for inactivated reactor container

    International Nuclear Information System (INIS)

    Kodama, Tasuku.

    1991-01-01

    Inert gases are filled in a container incorporating a reactor pressure vessel and a reactor is operated under the inactivated state. Upon normal operation of the plant, the pressure in the reactor container is controlled so that it is within a range of slightly positive or slightly negative relative to the pressure outside of the container and within an allowable operation range of the container. With such a constitution, a pressure control operation in the reactor container depending on the fluctuation of the atmospheric pressure is no more necessary. In this case, when a high atmospheric pressure approaches rapidly to the district where the power plant is situated, the pressure in the container becomes slightly negative temporarily relative to the surrounding atmospheric pressure. However, the increase of oxygen concentration due to the air flown to the container during the time is within the allowable range. Further, if the pressure control operation is unnecessary, the amount of nitrogen gases consumed and the amount of radioactive materials released from the container to the atmosphere are reduced. As a result, safety and reliability of reactor operation are improved. (I.S.)

  10. Inactivation of rabies diagnostic reagents by gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Gamble, W.C.; Chappell, W.A.; George, E.H.

    1980-11-01

    Treatment of CVS-11 rabies adsorbing suspensions and street rabies infected mouse brains with gamma radiation resulted in inactivated reagents that are safer to distribute and use. These irradiated reagents were as sensitive and reactive as the nonirradiated control reagents.

  11. CHLORINE INACTIVATION OF CATEGORY "A" BIO-TERRORISM AGENTS

    Science.gov (United States)

    This poster presents information on the inactivation of select bioterrorist agents. Information will be presented on chlorine disinfection of vegetative cells of Brucella suis, Brucella melitensis, Burkholderia mallei, Burkholderia pseudomallei, Francisella tularensis and endos...

  12. Inactivation Strategies for Clostridium perfringens Spores and Vegetative Cells.

    Science.gov (United States)

    Talukdar, Prabhat K; Udompijitkul, Pathima; Hossain, Ashfaque; Sarker, Mahfuzur R

    2017-01-01

    Clostridium perfringens is an important pathogen to human and animals and causes a wide array of diseases, including histotoxic and gastrointestinal illnesses. C. perfringens spores are crucial in terms of the pathogenicity of this bacterium because they can survive in a dormant state in the environment and return to being live bacteria when they come in contact with nutrients in food or the human body. Although the strategies to inactivate C. perfringens vegetative cells are effective, the inactivation of C. perfringens spores is still a great challenge. A number of studies have been conducted in the past decade or so toward developing efficient inactivation strategies for C. perfringens spores and vegetative cells, which include physical approaches and the use of chemical preservatives and naturally derived antimicrobial agents. In this review, different inactivation strategies applied to control C. perfringens cells and spores are summarized, and the potential limitations and challenges of these strategies are discussed. Copyright © 2016 American Society for Microbiology.

  13. Biocontrol interventions for inactivation of foodborne pathogens on produce

    Science.gov (United States)

    Post-harvest interventions for control of foodborne pathogens on minimally processed foods are crucial for food safety. Biocontrol interventions have the primary objective of developing novel antagonists in combinations with physical and chemical interventions to inactivate pathogenic microbes. Ther...

  14. Inactivation of rabies diagnostic reagents by gamma radiation

    International Nuclear Information System (INIS)

    Gamble, W.C.; Chappell, W.A.; George, E.H.

    1980-01-01

    Treatment of CVS-11 rabies adsorbing suspensions and street rabies infected mouse brains with gamma radiation resulted in inactivated reagents that are safer to distribute and use. These irradiated reagents were as sensitive and reactive as the nonirradiated control reagents

  15. Use of genetic algorithms for high hydrostatic pressure inactivation ...

    African Journals Online (AJOL)

    ) for high hydrostatic pressure (HHP) inactivation of Bacillus cereus spores, Bacillus subtilis spores and cells, Staphylococcus aureus and Listeria monocytogenes, all in milk buffer, were used to demonstrate the utility of genetic algorithms ...

  16. 21 CFR 610.11a - Inactivated influenza vaccine, general safety test.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Inactivated influenza vaccine, general safety test... Inactivated influenza vaccine, general safety test. For inactivated influenza vaccine, the general safety test... subcutaneous or intraperitoneal injection of 5.0 milliliters of inactivated influenza vaccine into each guinea...

  17. Orchestrated Action of PP2A Antagonizes Atg13 Phosphorylation and Promotes Autophagy after the Inactivation of TORC1.

    Directory of Open Access Journals (Sweden)

    Akter Mst Yeasmin

    Full Text Available Target of rapamycin complex 1 (TORC1 phosphorylates autophagy-related Atg13 and represses autophagy under nutrient-rich conditions. However, when TORC1 becomes inactive upon nutrient depletion or treatment with the TORC1 inhibitor rapamycin, Atg13 dephosphorylation occurs rapidly, and autophagy is induced. At present, the phosphatases involved in Atg13 dephosphorylation remain unknown. Here, we show that two protein phosphatase 2A (PP2A phosphatases, PP2A-Cdc55 and PP2A-Rts1, which are activated by inactivation of TORC1, are required for sufficient Atg13 dephosphorylation and autophagy induction after TORC1 inactivation in budding yeast. After rapamycin treatment, dephosphorylation of Atg13, activation of Atg1 kinase, pre-autophagosomal structure (PAS formation and autophagy induction are all impaired in PP2A-deleted cells. Conversely, overexpression of non-phosphorylatable Atg13 suppressed defects in autophagy in PP2A mutant. This study revealed that the orchestrated action of PP2A antagonizes Atg13 phosphorylation and promotes autophagy after the inactivation of TORC1.

  18. Increased inactivation of Saccharomyces cerevisiae by protraction of UV irradiation.

    OpenAIRE

    Sommer, R; Haider, T; Cabaj, A; Heidenreich, E; Kundi, M

    1996-01-01

    The principle of equi-effectivity of the product of intensity and exposure time (principle of Bunsen-Roscoe) of UV irradiation has been assumed to be valid for the inactivation of microorganisms in general. Earlier studies claimed higher survival of Escherichia coli B/r with fractionated irradiation compared with single-exposure survival. However, data on the inactivation effect of protraction of UV irradiation are not available. By means of a specially designed UV irradiation apparatus which...

  19. Tankyrase inhibitors suppress hepatocellular carcinoma cell growth via modulating the Hippo cascade.

    Directory of Open Access Journals (Sweden)

    Jiaoyuan Jia

    Full Text Available Previous data indicate that Tankyrase inhibitors exert anti-growth functions in many cancer cell lines due to their ability to inactivate the YAP protooncogene. In the present manuscript, we investigated the effect of Tankyrase inhibitors on the growth of hepatocellular carcinoma (HCC cell lines and the molecular mechanisms involved. For this purpose, we performed cell proliferation assay by colony-forming ability in seven human HCC cells subjected to XAV-939 and G007-LK Tankyrase inhibitors. Noticeably, the two Tankyrase inhibitors suppressed the HCC cell growth in a dose-dependent manner. Furthermore, we found that Tankyrase inhibitors synergized with MEK and AKT inhibitors to suppress HCC cell proliferation. At the molecular level, Tankyrase inhibitors significantly decreased YAP protein levels, reduced the expression of YAP target genes, and inhibited YAP/TEAD luciferase reporter activity. In addition, Tankyrase inhibitors administration was accompanied by upregulation of Angiomotin-like 1 (AMOTL1 and Angiomotin-like 2 (AMOTL2 proteins, two major negative regulators of YAP. Altogether, the present data indicate that XAV-939 and G007-LK Tankyrase inhibitors could suppress proliferation of hepatocellular carcinoma cells and downregulate YAP/TAZ by stabilizing AMOTL1 and AMOTL2 proteins, thus representing new potential anticancer drugs against hepatocellular carcinoma.

  20. High pressure inactivation of Brettanomyces bruxellensis in red wine.

    Science.gov (United States)

    van Wyk, Sanelle; Silva, Filipa V M

    2017-05-01

    Brettanomyces bruxellensis ("Brett") is a major spoilage concern for the wine industry worldwide, leading to undesirable sensory properties. Sulphur dioxide, is currently the preferred method for wine preservation. However, due to its negative effects on consumers, the use of new alternative non-thermal technologies are increasingly being investigated. The aim of this study was to determine and model the effect of high pressure processing (HPP) conditions and yeast strain on the inactivation of "Brett" in Cabernet Sauvignon wine. Processing at 200 MPa for 3 min resulted in 5.8 log reductions. However higher pressure is recommended to achieve high throughput in the wine industry, for example >6.0 log reductions were achieved after 400 MPa for 5 s. The inactivation of B. bruxellensis is pressure and time dependent, with increased treatment time and pressure leading to increased yeast inactivation. It was also found that yeast strain had a significant effect on HPP inactivation, with AWRI 1499 being the most resistant strain. The Weibull model successfully described the HPP "Brett" inactivation. HPP is a viable alternative for the inactivation of B. bruxellensis in wine, with the potential to reduce the industry's reliance on sulphur dioxide. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Thermal Inactivation of Feline Calicivirus in Pet Food Processing.

    Science.gov (United States)

    Haines, J; Patel, M; Knight, A I; Corley, D; Gibson, G; Schaaf, J; Moulin, J; Zuber, S

    2015-12-01

    Extrusion is the most common manufacturing process used to produce heat-treated dry dog and cat food (pet food) for domestic use and international trade. Due to reoccurring outbreaks of notifiable terrestrial animal diseases and their impact on international trade, experiments were undertaken to demonstrate the effectiveness of heat-treated extruded pet food on virus inactivation. The impact of extrusion processing in a pet food matrix on virus inactivation has not been previously reported and very few inactivation studies have examined the thermal inactivation of viruses in complex food matrices. The feline calicivirus vaccine strain FCV F-9 was used as a surrogate model RNA virus pathogen. Small-scale heat inactivation experiments using animal-derived pet food raw materials showed that a > 4 log10 reduction (log10 R) in infectivity occurred at 70 °C prior to reaching the minimum extrusion manufacturing operating temperature of 100 °C. As anticipated, small-scale pressure studies at extrusion pressure (1.6 MPa) showed no apparent effect on FCV F-9 inactivation. Additionally, FCV F-9 was shown not to survive the acidic conditions used to produce pet food palatants of animal origin that are typically used as a coating after the extrusion process.

  2. Oxidation of multiple methionine residues impairs rapid sodium channel inactivation

    Science.gov (United States)

    Kassmann, Mario; Hansel, Alfred; Leipold, Enrico; Birkenbeil, Jan; Lu, Song-Qing; Hoshi, Toshinori; Heinemann, Stefan H.

    2010-01-01

    Reactive oxygen species (ROS) readily oxidize the sulfur-containing amino acids cysteine and methionine (Met). The impact of Met oxidation on the fast inactivation of the skeletal muscle sodium channel NaV1.4 expressed in human embryonic kidney cells was studied by applying the Met-preferring oxidant chloramine-T (ChT) or by irradiating the ROS-producing dye Lucifer Yellow in the patch pipettes. Both interventions dramatically slowed down inactivation of the sodium channels. Replacement of Met in the Ile-Phe-Met inactivation motif with Leu (M1305L) strongly attenuated the oxidizing effect on inactivation but did not eliminate it completely. Mutagenesis of conserved Met residues in the intracellular linkers connecting the membrane-spanning segments of the channel (M1469L and M1470L) also markedly diminished the oxidation sensitivity of the channel, while that of other conserved Met residues (442, 1139, 1154, 1316) were without any noticeable effect. The results of mutagenesis of results, assays of other NaV channel isoforms (NaV1.2, NaV1.5, NaV1.7) and the kinetics of the oxidation-induced removal of inactivation collectively indicate that multiple Met target residues need to be oxidized to completely impair inactivation. This arrangement using multiple Met residues confers a finely graded oxidative modulation of NaV channels and allows organisms to adapt to a variety of oxidative stress conditions, such as ischemic reperfusion. PMID:18369661

  3. Thermal inactivation kinetics of β-galactosidase during bread baking.

    Science.gov (United States)

    Zhang, Lu; Chen, Xiao Dong; Boom, Remko M; Schutyser, Maarten A I

    2017-06-15

    In this study, β-galactosidase was utilized as a model enzyme to investigate the mechanism of enzyme inactivation during bread baking. Thermal inactivation of β-galactosidase was investigated in a wheat flour/water system at varying temperature-moisture content combinations, and in bread during baking at 175 or 205°C. In the wheat flour/water system, the thermostability of β-galactosidase increased with decreased moisture content, and a kinetic model was accurately fitted to the corresponding inactivation data (R 2 =0.99). Interestingly, the residual enzyme activity in the bread crust (about 30%) was hundredfold higher than that in the crumb (about 0.3%) after baking, despite the higher temperature in the crust throughout baking. This result suggested that the reduced moisture content in the crust increased the thermostability of the enzyme. Subsequently, the kinetic model reasonably predicted the enzyme inactivation in the crumb using the same parameters derived from the wheat flour/water system. However, the model predicted a lower residual enzyme activity in the crust compared with the experimental result, which indicated that the structure of the crust may influence the enzyme inactivation mechanism during baking. The results reported can provide a quantitative understanding of the thermal inactivation kinetics of enzyme during baking, which is essential to better retain enzymatic activity in bakery products supplemented with heat-sensitive enzymes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Trans-inactivation: Repression in a wrong place.

    Science.gov (United States)

    Shatskikh, Aleksei S; Abramov, Yuriy A; Lavrov, Sergey A

    2017-04-03

    Trans-inactivation is the repression of genes on a normal chromosome under the influence of a rearranged homologous chromosome demonstrating the position effect variegation (PEV). This phenomenon was studied in detail on the example of brown Dominant allele causing the repression of wild-type brown gene on the opposite chromosome. We have investigated another trans-inactivation-inducing chromosome rearrangement, In(2)A4 inversion. In both cases, brown Dominant and In(2)A4, the repression seems to be the result of dragging of the euchromatic region of the normal chromosome into the heterochromatic environment. It was found that cis-inactivation (classical PEV) and trans-inactivation show different patterns of distribution along the chromosome and respond differently to PEV modifying genes. It appears that the causative mechanism of trans-inactivation is de novo heterochromatin assembly on euchromatic sequences dragged into the heterochromatic nuclear compartment. Trans-inactivation turns out to be the result of a combination of heterochromatin-induced position effect and the somatic interphase chromosome pairing that is widespread in Diptera.

  5. Innate Immune Response to Streptococcus pyogenes Depends on the Combined Activation of TLR13 and TLR2

    Science.gov (United States)

    Fieber, Christina; Janos, Marton; Koestler, Tina; Gratz, Nina; Li, Xiao-Dong; Castiglia, Virginia; Aberle, Marion; Sauert, Martina; Wegner, Mareike; Alexopoulou, Lena; Kirschning, Carsten J.; Chen, Zhijian J.; von Haeseler, Arndt; Kovarik, Pavel

    2015-01-01

    Innate immune recognition of the major human-specific Gram-positive pathogen Streptococcus pyogenes is not understood. Here we show that mice employ Toll-like receptor (TLR) 2- and TLR13-mediated recognition of S. pyogenes. These TLR pathways are non-redundant in the in vivo context of animal infection, but are largely redundant in vitro, as only inactivation of both of them abolishes inflammatory cytokine production by macrophages and dendritic cells infected with S. pyogenes. Mechanistically, S. pyogenes is initially recognized in a phagocytosis-independent manner by TLR2 and subsequently by TLR13 upon internalization. We show that the TLR13 response is specifically triggered by S. pyogenes rRNA and that Tlr13−/− cells respond to S. pyogenes infection solely by engagement of TLR2. TLR13 is absent from humans and, remarkably, we find no equivalent route for S. pyogenes RNA recognition in human macrophages. Phylogenetic analysis reveals that TLR13 occurs in all kingdoms but only in few mammals, including mice and rats, which are naturally resistant against S. pyogenes. Our study establishes that the dissimilar expression of TLR13 in mice and humans has functional consequences for recognition of S. pyogenes in these organisms. PMID:25756897

  6. Quorum sensing inhibitors

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Bovbjerg; Givskov, Michael Christian

    2006-01-01

    Many opportunistic pathogenic bacteria rely on quorum sensing (QS) circuits as central regulators of virulence expression. In Pseudomonas aeruginosa, QS-regulated gene expression contributes to the formation and maintenance of biofilms and their tolerance to conventional antimicrobials and the host...... of plant pathogens in several models....... innate immune system. Therefore, QS is an obvious target for a novel class of antimicrobial drugs which would function to efficiently block reception of the cognate QS signals in vivo, and thereby be capable of inducing chemical attenuation of pathogens. As QS is not directly involved in processes...

  7. Viral inactivation in hemotherapy: systematic review on inactivators with action on nucleic acids

    Directory of Open Access Journals (Sweden)

    Patricia Marial Sobral

    2012-01-01

    Full Text Available The aim of this study was to conduct a systematic review on the photoinactivators used in hemotherapy, with action on viral genomes. The SciELO, Science Direct, PubMed and Lilacs databases were searched for articles. The inclusion criterion was that these should be articles on inactivators with action on genetic material that had been published between 2000 and 2010. The key words used in identifying such articles were "hemovigilance", "viral inactivation", "photodynamics", "chemoprevention" and "transfusion safety". Twenty-four articles on viral photoinactivation were found with the main photoinactivators covered being: methylene blue, amotosalen HCl, S-303 frangible anchor linker effector (FRALE, riboflavin and inactin. The results showed that methylene blue has currently been studied least, because it diminishes coagulation factors and fibrinogen. Riboflavin has been studied most because it is a photoinactivator of endogenous origin and has few collateral effects. Amotosalen HCl is effective for platelets and is also used on plasma, but may cause changes both to plasma and to platelets, although these are not significant for hemostasis. S-303 FRALE may lead to neoantigens in erythrocytes and is less indicated for red-cell treatment; in such cases, PEN 110 is recommended. Thus, none of the methods for pathogen reduction is effective for all classes of agents and for all blood components, but despite the high cost, these photoinactivators may diminish the risk of blood-transmitted diseases.

  8. Novel Histone Deacetylase Inhibitors

    National Research Council Canada - National Science Library

    Strobl, Jeannie

    2001-01-01

    The research goal is to demonstrate HDACl is a new chemotherapeutic target for human breast tumor cells and to identify new HDACl inhibitors on the basis of the structure of quinoline antimalarials...

  9. Estrogen-mediated inactivation of FOXO3a by the G protein-coupled estrogen receptor GPER

    International Nuclear Information System (INIS)

    Zekas, Erin; Prossnitz, Eric R.

    2015-01-01

    Estrogen (17β-estradiol) promotes the survival and proliferation of breast cancer cells and its receptors represent important therapeutic targets. The cellular actions of estrogen are mediated by the nuclear estrogen receptors ERα and ERβ as well as the 7-transmembrane spanning G protein-coupled estrogen receptor (GPER). We previously reported that estrogen activates the phosphoinositide 3-kinase (PI3Kinase) pathway via GPER, resulting in phosphatidylinositol (3,4,5)-trisphosphate (PIP3) production within the nucleus of breast cancer cells; however, the mechanisms and consequences of this activity remained unclear. MCF7 breast cancer cells were transfected with GFP-fused Forkhead box O3 (FOXO3) as a reporter to assess localization in response to estrogen stimulation. Inhibitors of PI3Kinases and EGFR were employed to determine the mechanisms of estrogen-mediated FOXO3a inactivation. Receptor knockdown with siRNA and the selective GPER agonist G-1 elucidated the estrogen receptor(s) responsible for estrogen-mediated FOXO3a inactivation. The effects of selective estrogen receptor modulators and downregulators (SERMs and SERDs) on FOXO3a in MCF7 cells were also determined. Cell survival (inhibition of apoptosis) was assessed by caspase activation. In the estrogen-responsive breast cancer cell line MCF7, FOXO3a inactivation occurs on a rapid time scale as a result of GPER, but not ERα, stimulation by estrogen, established by the GPER-selective agonist G-1 and knockdown of GPER and ERα. GPER-mediated inactivation of FOXO3a is effected by the p110α catalytic subunit of PI3Kinase as a result of transactivation of the EGFR. The SERMs tamoxifen and raloxifene, as well as the SERD ICI182,780, were active in mediating FOXO3a inactivation in a GPER-dependent manner. Additionally, estrogen-and G-1-mediated stimulation of MCF7 cells results in a decrease in caspase activation under proapoptotic conditions. Our results suggest that non-genomic signaling by GPER contributes

  10. Laser-induced inactivation of Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    LeBlanc Danielle

    2012-08-01

    Full Text Available Abstract Background Haemozoin crystals, produced by Plasmodium during its intra-erythrocytic asexual reproduction cycle, can generate UV light via the laser-induced, non-linear optical process of third harmonic generation (THG. In the current study the feasibility of using haemozoin, constitutively stored in the parasite’s food vacuole, to kill the parasite by irradiation with a near IR laser was evaluated. Methods Cultured Plasmodium parasites at different stages of development were irradiated with a pulsed NIR laser and the viability of parasites at each stage was evaluated from their corresponding growth curves using the continuous culture method. Additional testing for germicidal effects of haemozoin and NIR laser was performed by adding synthetic haemozoin crystals to Escherichia coli in suspension. Cell suspensions were then irradiated with the laser and small aliquots taken and spread on agar plates containing selective agents to determine cell viability (CFU. Results Parasites in the late-trophozoites form as well as trophozoites in early-stage of DNA synthesis were found to be the most sensitive to the treatment with ~4-log reduction in viability after six passes through the laser beam; followed by parasites in ring phase (~2-log reduction. A ~1-log reduction in E. coli viability was obtained following a 60 min irradiation regimen of the bacteria in the presence of 1 μM synthetic haemozoin and a ~2-log reduction in the presence of 10 μM haemozoin. Minimal (≤15% cell kill was observed in the presence of 10 μM haemin. Conclusions Laser-induced third-harmonic generation by haemozoin can be used to inactivate Plasmodium. This result may have clinical implications for treating severe malaria symptoms by irradiating the patient’s blood through the skin or through dialysis tubing with a NIR laser.

  11. Thermal inactivation of Phytophthora capsici oospores.

    Science.gov (United States)

    Etxeberria, Aitzol; Mendarte, Sorkunde; Larregla, Santiago

    2011-01-01

    Phytophthora capsici is a major fungal plant pathogen that causes root and crown rot of pepper crops and its oospores are the most resistant propagules. To evaluate the effect of different temperature regimes and exposure times on the survival of P. capsici oospores. Thermal inactivation treatments simulated field conditions, through the use of different constant and cycling temperature regimes, in moistened sterilized soil (15-53 °C) and sterilized water (45-53 °C). The plasmolysis method evaluated oospore viability. Relationships between oospores viability and exposure time were statistically determined by linear regression. Interpolation was used to calculate the estimated times required to kill a determined percentage of the population. The required time to reduce P. capsici oospores viability decreased with increasing temperatures. Times required to kill 100% of oospores were 199-22-6.6-4.7-1.0 hours at 40-45-47.5-50-53°C respectively in moistened soil and 31-1.0-0.2 hours at 45-50-53 °C in water. Oospores were scarcely affected at temperatures ≤ 35 °C. With 1,680 hours at 15-35 °C, oospores survival in soil ranged from 88 to 36%. The 4 hours-40 °C regime killed 100% of oospores after 28days, while the 5 hours-35°C regime after 70 days killed only 75%. Time required to achieve total oospores death was remarkably shortened in water when compared with moistened soil. The developed models can be used to predict survival values at any exposure time with constant temperatures ranging from 40 to 53 °C in moistened soil and from 45 to 53 °C in water. The weakening of P. capsici oospores under sublethal heating, is a useful observation that can be applied for pathogen control with solarization. Copyright © 2010 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  12. Structural analysis of an innate immunostimulant from broccoli, Brassica oleracea var. italica.

    Science.gov (United States)

    Urai, Makoto; Kataoka, Keiko; Nishida, Satoshi; Sekimizu, Kazuhisa

    2017-11-22

    Vegetables are eaten as part of a healthy diet throughout the world, and some are also applied topically as a traditional medicine. We evaluated the innate immunostimulating activities of hot water extracts of various vegetables using the silkworm muscle contraction assay system, and found that broccoli, Brassica oleracea var. italica, contains a strong innate immunostimulant. We purified the innate immunostimulant from broccoli, and characterized the chemical structure by chemical analyses and NMR spectroscopy. The innate immunostimulant comprised galacturonic acid, galactose, glucose, arabinose, and rhamnose, and had a pectic-like polysaccharide structure. To determine the structural motif involved in the innate immunostimulating activity, we modified the structure by chemical and enzymatic treatment, and found that the activity was attenuated by pectinase digestion. These findings suggest that a pectic-like polysaccharide purified from broccoli has innate immune-stimulating activity, for which the polygalacturonic acid structure is necessary.

  13. Role of innate immunity in the pathogenesis of type 1 and type 2 diabetes.

    Science.gov (United States)

    Lee, Myung-Shik

    2014-08-01

    The importance of innate immunity in host defense is becoming clear after discovery of innate immune receptors such as Toll-like receptor or Nod-like receptor. Innate immune system plays an important role in diverse pathological situations such as autoimmune diseases. Role of innate immunity in the pathogenesis of metabolic disorders such as type 2 diabetes, metabolic syndrome or atherosclerosis that has not been previously considered as inflammatory disorders, is also being appreciated. Here, the role of innate immunity in the development of type 1 diabetes, a classical organ-specific autoimmune disease, and type 2 diabetes will be discussed, focusing on the role of specific innate immune receptors involved in these disease processes.

  14. Innate immunity, hemostasis and matrix remodeling: PTX3 as a link.

    Science.gov (United States)

    Doni, Andrea; Garlanda, Cecilia; Mantovani, Alberto

    2016-12-01

    Innate immunity is evolutionarily connected with hemostasis. PTX3 is an essential fluid-phase pattern recognition molecule of the innate immune system that acts as a functional ancestor of antibodies. PTX3 by interacting with defense collagens and fibrinogens amplifies effector functions of the innate immune system. At wound sites, PTX3 regulates the injury-induced thrombotic response and promotes wound healing by favoring timely fibrinolysis. Therefore, PTX3 interacts with ancestral domains conserved in innate immunity, hemostasis and extracellular matrix and exerts functions related to both antimicrobial resistance and tissue repair. These findings strengthen the connection between innate immune system and hemostasis, and suggest that recognition of microbes and extracellular matrix are evolutionarily conserved and integrated functions of the innate immune system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Mitochondria-Endoplasmic Reticulum Contact Sites Mediate Innate Immune Responses.

    Science.gov (United States)

    Misawa, Takuma; Takahama, Michihiro; Saitoh, Tatsuya

    2017-01-01

    Mitochondria and the endoplasmic reticulum (ER) are fundamental organelles that coordinate high-order cell functions. Mitochondria are centers of energy production, whereas the ER is responsible for folding, transport, and degradation of proteins. In addition to their specific functions, mitochondria and ER actively communicate with each other to promote a variety of cellular events, such as material transfer and signal transduction. Recent studies have shown the critical involvement of these organelles in regulation of the innate immune system, which functions in host defense. The innate immune system utilizes a wide range of germ-line-encoded pattern recognition receptors (PRRs) to recognize pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) and induces inflammatory and antiviral responses. Contact sites between mitochondria and the ER function in assembly of the NLR family pyrin domain containing 3 (NLRP3)-inflammasome to promote the inflammatory response. The NLRP3-inflammasome is a protein complex composed of the receptor NLRP3 on the ER side and the adaptor apoptosis-associated speck-like protein containing a CARD on the mitochondrial side; it induces caspase-1-dependent maturation of proinflammatory cytokines such as interleukin (IL)-1β and IL-18. Furthermore, ER-mitochondria contact sites function in initiation and mediation of signal transduction pathways downstream of intracellular PRRs, such as retinoic acid-inducible gene I-like receptor and cyclic GMP-AMP synthase, to promote the antiviral response. Therefore, ER-mitochondria contact sites, also known as mitochondria-associated membranes, play key roles in regulation of innate immune responses.

  16. Candesartan ameliorates impaired fear extinction induced by innate immune activation.

    Science.gov (United States)

    Quiñones, María M; Maldonado, Lizette; Velazquez, Bethzaly; Porter, James T

    2016-02-01

    Patients with post-traumatic stress disorder (PTSD) tend to show signs of a relatively increased inflammatory state suggesting that activation of the immune system may contribute to the development of PTSD. In the present study, we tested whether activation of the innate immune system can disrupt acquisition or recall of auditory fear extinction using an animal model of PTSD. Male adolescent rats received auditory fear conditioning in context A. The next day, an intraperitoneal injection of lipopolysaccharide (LPS; 100 μg/kg) prior to auditory fear extinction in context B impaired acquisition and recall of extinction. LPS (100 μg/kg) given after extinction training did not impair extinction recall suggesting that LPS did not affect consolidation of extinction. In contrast to cued fear extinction, contextual fear extinction was not affected by prior injection of LPS (100 μg/kg). Although LPS also reduced locomotion, we could dissociate the effects of LPS on extinction and locomotion by using a lower dose of LPS (50 μg/kg) which impaired locomotion without affecting extinction. In addition, 15 h after an injection of 250 μg/kg LPS in adult rats, extinction learning and recall were impaired without affecting locomotion. A sub-chronic treatment with candesartan, an angiotensin II type 1 receptor blocker, prevented the LPS-induced impairment of extinction in adult rats. Our results demonstrate that activation of the innate immune system can disrupt auditory fear extinction in adolescent and adult animals. These findings also provide direction for clinical studies of novel treatments that modulate the innate immune system for stress-related disorders like PTSD. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Innate Immune Responses of Drosophila melanogaster Are Altered by Spaceflight

    Science.gov (United States)

    Marcu, Oana; Lera, Matthew P.; Sanchez, Max E.; Levic, Edina; Higgins, Laura A.; Shmygelska, Alena; Fahlen, Thomas F.; Nichol, Helen; Bhattacharya, Sharmila

    2011-01-01

    Alterations and impairment of immune responses in humans present a health risk for space exploration missions. The molecular mechanisms underpinning innate immune defense can be confounded by the complexity of the acquired immune system of humans. Drosophila (fruit fly) innate immunity is simpler, and shares many similarities with human innate immunity at the level of molecular and genetic pathways. The goals of this study were to elucidate fundamental immune processes in Drosophila affected by spaceflight and to measure host-pathogen responses post-flight. Five containers, each containing ten female and five male fruit flies, were housed and bred on the space shuttle (average orbit altitude of 330.35 km) for 12 days and 18.5 hours. A new generation of flies was reared in microgravity. In larvae, the immune system was examined by analyzing plasmatocyte number and activity in culture. In adults, the induced immune responses were analyzed by bacterial clearance and quantitative real-time polymerase chain reaction (qPCR) of selected genes following infection with E. coli. The RNA levels of relevant immune pathway genes were determined in both larvae and adults by microarray analysis. The ability of larval plasmatocytes to phagocytose E. coli in culture was attenuated following spaceflight, and in parallel, the expression of genes involved in cell maturation was downregulated. In addition, the level of constitutive expression of pattern recognition receptors and opsonins that specifically recognize bacteria, and of lysozymes, antimicrobial peptide (AMP) pathway and immune stress genes, hallmarks of humoral immunity, were also reduced in larvae. In adults, the efficiency of bacterial clearance measured in vivo following a systemic infection with E. coli post-flight, remained robust. We show that spaceflight altered both cellular and humoral immune responses in Drosophila and that the disruption occurs at multiple interacting pathways. PMID:21264297

  18. Subversion and utilization of host innate defense by Leishmania amazonensis

    Directory of Open Access Journals (Sweden)

    Lynn eSoong

    2012-03-01

    Full Text Available Infection with Leishmania amazonensis and other members of the L. mexicana complex can lead to diverse clinical manifestations, some of which are relatively difficult to control, even with standard chemotherapy. Diffuse cutaneous leishmaniasis is a rare but severe form, and its clinical hallmark is excessive parasitic growth in infected cells accompanied by profound impairments in host immune responses to the parasites. Since these parasites also cause non-healing cutaneous leishmaniasis in most inbred strains of mice, these animals are valuable models for dissecting the mechanisms of persistent infection and disease pathogenesis. In comparison to other Leishmania species, L. amazonensis infections are most remarkable for their ability to repress the activation and effector functions of macrophages, dendritic cells and CD4+ T cells, implying discrete mechanisms at work. In addition to this multilateral suppression of host innate and adaptive immunity, the activation of types I and II interferon-mediated responses and autophagic/lipid metabolic pathways actually promotes rather than restrains L. amazonensis infection. These seemingly contradictory findings reflect the remarkable adaptation of the parasites to the ancient defense machinery of the host, as well as the complex parasite-host interactions at different stages of infection, which collectively contribute to non-healing leishmaniasis in the New World. This review article highlights new evidence that reveals the strategies utilized by L. amazonensis parasites to subvert or modulate host innate defense machinery in neutrophils and macrophages, as well as the regulatory roles of host innate responses in promoting parasite survival and replication within the huge parasitophorous vacuoles. A better understanding of unique features in host responses to these parasites at early and late stages of infection is important for the rational design of control strategies for non-healing leishmaniasis.

  19. Subversion and Utilization of Host Innate Defense by Leishmania amazonensis.

    Science.gov (United States)

    Soong, Lynn

    2012-01-01

    Infection with Leishmania amazonensis and other members of the Leishmania mexicana complex can lead to diverse clinical manifestations, some of which are relatively difficult to control, even with standard chemotherapy. Diffuse cutaneous leishmaniasis (CL) is a rare but severe form, and its clinical hallmark is excessive parasitic growth in infected cells accompanied by profound impairments in host immune responses to the parasites. Since these parasites also cause non-healing CL in most inbred strains of mice, these animals are valuable models for dissecting the mechanisms of persistent infection and disease pathogenesis. In comparison to other Leishmania species, L. amazonensis infections are most remarkable for their ability to repress the activation and effector functions of macrophages, dendritic cells, and CD4(+) T cells, implying discrete mechanisms at work. In addition to this multilateral suppression of host innate and adaptive immunity, the activation of types I and II interferon-mediated responses and autophagic/lipid metabolic pathways actually promotes rather than restrains L. amazonensis infection. These seemingly contradictory findings reflect the remarkable adaptation of the parasites to the ancient defense machinery of the host, as well as the complex parasite-host interactions at different stages of infection, which collectively contribute to non-healing leishmaniasis in the New World. This review article highlights new evidence that reveals the strategies utilized by L. amazonensis parasites to subvert or modulate host innate defense machinery in neutrophils and macrophages, as well as the regulatory roles of host innate responses in promoting parasite survival and replication within the huge parasitophorous vacuoles. A better understanding of unique features in host responses to these parasites at early and late stages of infection is important for the rational design of control strategies for non-healing leishmaniasis.

  20. Yersinia type III effectors perturb host innate immune responses

    Science.gov (United States)

    Pha, Khavong; Navarro, Lorena

    2016-01-01

    The innate immune system is the first line of defense against invading pathogens. Innate immune cells recognize molecular patterns from the pathogen and mount a response to resolve the infection. The production of proinflammatory cytokines and reactive oxygen species, phagocytosis, and induced programmed cell death are processes initiated by innate immune cells in order to combat invading pathogens. However, pathogens have evolved various virulence mechanisms to subvert these responses. One strategy utilized by Gram-negative bacterial pathogens is the deployment of a complex machine termed the type III secretion system (T3SS). The T3SS is composed of a syringe-like needle structure and the effector proteins that are injected directly into a target host cell to disrupt a cellular response. The three human pathogenic Yersinia spp. (Y. pestis, Y. enterocolitica, and Y. pseudotuberculosis) are Gram-negative bacteria that share in common a 70 kb virulence plasmid which encodes the T3SS. Translocation of the Yersinia effector proteins (YopE, YopH, YopT, YopM, YpkA/YopO, and YopP/J) into the target host cell results in disruption of the actin cytoskeleton to inhibit phagocytosis, downregulation of proinflammatory cytokine/chemokine production, and induction of cellular apoptosis of the target cell. Over the past 25 years, studies on the Yersinia effector proteins have unveiled tremendous knowledge of how the effectors enhance Yersinia virulence. Recently, the long awaited crystal structure of YpkA has been solved providing further insights into the activation of the YpkA kinase domain. Multisite autophosphorylation by YpkA to activate its kinase domain was also shown and postulated to serve as a mechanism to bypass regulation by host phosphatases. In addition, novel Yersinia effector protein targets, such as caspase-1, and signaling pathways including activation of the inflammasome were identified. In this review, we summarize the recent discoveries made on Yersinia

  1. Review: Gp-340/DMBT1 in mucosal innate immunity

    DEFF Research Database (Denmark)

    Madsen, Jens; Mollenhauer, Jan; Holmskov, Uffe

    2010-01-01

    ) is secreted into broncho-alveolar surface lining fluid whereas DMBT(SAG) is present in the saliva. The two molecules were shown to be identical and both interact with and agglutinate several Gram-negative and Gram-positive bacteria including Streptococcus mutans, a bacterium responsible for caries in the oral...... proteins, including serum and secretory IgA, C1q, lactoferrin, MUC5B and trefoil factor 2 (TFF2), all molecules with involvement in innate immunity and/or wound-healing processes. Recent generation of Dmbt1-deficient mice has provided the research field of DMBT1 with a model that allows research...

  2. Role of heat shock protein 70 in innate alloimmunity

    Directory of Open Access Journals (Sweden)

    Walter G. eLand

    2012-01-01

    Full Text Available This article briefly describes our own experience with the proven demonstration of heat shock protein 70 in reperfused renal allografts from brain-deaddonors and reflects about its potential role as a typical damage-associated molecular pattern (DAMP in the setting of innate alloimmunity. In fact, our group was able to demonstrate a dramatic up-regulation of heat shock protein 70 expression after postischemic reperfusion of renal allografts. Of note, up-regulation of this stress protein expression, although to a lesser extent, was already observed after cold storage of the organ indicating that this molecule is already induced in the stressed organism of a brain-dead donor. However, whether or not the dramatic up-regulation of heat shock protein 70 expression contributes to mounting an innate alloimmune response cannot be judged in view of these clinical findings.Nevertheless, heat shock protein 70, since generated in association with postischemic reperfusion-induced allograft injury, can be called a typical DAMP - as can everymolecule be termed a DAMP that is generated in associationwith any stressful tissue injury regardless of its final positive or negative regulatory function within the innate immune response elicited by it.In fact, as we discuss in this article, the context-dependent, even contradistinctive activities of heat shock protein 70 reflect the biological phenomenon that, throughout evolution, mammals have developed an elaborate network of positive and negative regulatory mechanisms, which provide balance between defensive and protective measures against unwarranted destruction of the host. In this sense, up-regulated expression of heat shock protein 70 in an injured allograft might reflect a pure protective response against the severe oxidative injury of a reperfused donor organ. On the other hand, up-regulated expression of this stress protein in an injured allograft might reflect a(futile attempt of the innate immune system to

  3. Native and aspirin-triggered lipoxins control innate immunity by inducing proteasomal degradation of TRAF6

    OpenAIRE

    Machado, Fabiana S.; Esper, L?sia; Dias, Alexandra; Madan, Rajat; Gu, YuanYuan; Hildeman, David; Serhan, Charles N.; Karp, Christopher L.; Aliberti, J?lio

    2008-01-01

    Innate immune signaling is critical for the development of protective immunity. Such signaling is, perforce, tightly controlled. Lipoxins (LXs) are eicosanoid mediators that play key counterregulatory roles during infection. The molecular mechanisms underlying LX-mediated control of innate immune signaling are of interest. In this study, we show that LX and aspirin (ASA)-triggered LX (ATL) inhibit innate immune signaling by inducing suppressor of cytokine signaling (SOCS) 2–dependent ubiquiti...

  4. [Development of aromatase inhibitors and analysis of their inhibitory activities].

    Science.gov (United States)

    Numazawa, M

    1998-12-01

    Inhibitors of aromatase are of interest in the treatment of advanced estrogen-dependent breast cancers. In addition, the inhibitors are promising to play as conformational and catalytic probes for the active site of this enzyme, aromatase. There fore, we synthesized a number of steroidal aromatase inhibitors, including suicide substrates, and also studied the mechanism for a time-dependent inactivation of aromatase by the suicide substrates. The mechanism for the aromatase inactivation by 6-oxo-androstenedione (AD) (1), one of the first discovered suicide substrates, was explored using the 19-substituted analogs 2-5 as well as stereo- and/or regio-specifically labeled [3H, 14C]-compound 1. The results indicated that the 4 beta,5 beta-epoxy-19-oxo derivative 7 is a reactive electrophile that irreversibly binds to the active site of aromatase. Studies on the aromatase inhibition by regioisomers of AD, 4-en-6-one 17, 5-en-4-one 18 and 5-en-7-one 19, revealed that the C-3 carbonyl function is not essential for the tight binding of an inhibitor to the active site. 3-Deoxy AD (22) and its 6 alpha,7 alpha-cyclopropano steroid 24 as well as some of 6-alkyl-ADs are among the most potent competitive inhibitors reported so for (K(m) for AD/Ki > 6). Structure-activity relationships of the 6-alkyl-ADs and their 3-deoxy-, delta 1-, delta 6-, and delta 1,6-analogs as aromatase inhibitors showed that aromatase has a hydrophobic binding pocket with a limited accessible volume in the active site in the region corresponding to the beta-side rather than the alpha-side of the C-6 position of the substrate. The 6-alkyl-ADs and their delta 1-analogs were converted into the corresponding estrogens with human placental aromatase, whereas the 3-deoxy steroids 22 and 25 were metabolized to the corresponding 19-oxygenated compounds. The relative apparent K(m) values for the androgens are different from the relative Ki values, indicating that there is a difference between the ability to serve

  5. Potent and Selective Peptidyl Boronic Acid Inhibitors of the Serine Protease Prostate-Specific Antigen

    Science.gov (United States)

    LeBeau, Aaron M.; Singh, Pratap; Isaacs, John T.; Denmeade, Samuel R.

    2012-01-01

    SUMMARY Prostate cancer cells produce high (microgram to milligram/milliliter) levels of the serine protease Prostate-Specific Antigen (PSA). PSA is enzymatically active in the extracellular fluid surrounding prostate cancers but is found at 1,000- to 10,000-fold lower concentrations in the circulation, where it is inactivated due to binding to abundant serum protease inhibitors. The exclusive presence of high levels of active PSA within prostate cancer sites makes PSA an attractive candidate for targeted imaging and therapeutics. A synthetic approach based on a peptide substrate identified first peptide aldehyde and then boronic acid inhibitors of PSA. The best of these had the sequence Cbz-Ser-Ser-Lys-Leu-(boro)Leu, with a Ki for PSA of 65 nM. The inhibitor had a 60-fold higher Ki for chymotrypsin. A validated model of PSA’s catalytic site confirmed the critical interactions between the inhibitor and residues within the PSA enzyme. PMID:18635003

  6. Different Regulation of Interleukin-1 Production and Activity in Monocytes and Macrophages: Innate Memory as an Endogenous Mechanism of IL-1 Inhibition

    Directory of Open Access Journals (Sweden)

    Mariusz P. Madej

    2017-06-01

    Full Text Available Production and activity of interleukin (IL-1β are kept under strict control in our body, because of its powerful inflammation-promoting capacity. Control of IL-1β production and activity allows IL-1 to exert its defensive activities without causing extensive tissue damage. Monocytes are the major producers of IL-1β during inflammation, but they are also able to produce significant amounts of IL-1 inhibitors such as IL-1Ra and the soluble form of the decoy receptor IL-1R2, in an auto-regulatory feedback loop. Here, we investigated how innate immune memory could modulate production and activity of IL-1β by human primary monocytes and monocyte-derived tissue-like/deactivated macrophages in vitro. Cells were exposed to Gram-negative (Escherichia coli and Gram-positive (Lactobacillus acidophilus bacteria for 24 h, then allowed to rest, and then re-challenged with the same stimuli. The presence of biologically active IL-1β in cell supernatants was calculated as the ratio between free IL-1β (i.e., the cytokine that is not bound/inhibited by sIL-1R2 and its receptor antagonist IL-1Ra. As expected, we observed that the responsiveness of tissue-like/deactivated macrophages to bacterial stimuli was lower than that of monocytes. After resting and re-stimulation, a memory effect was evident for the production of inflammatory cytokines, whereas production of alarm signals (chemokines was minimally affected. We observed a high variability in the innate memory response among individual donors. This is expected since innate memory largely depends on the previous history of exposure or infections, which is different in different subjects. Overall, innate memory appeared to limit the amount of active IL-1β produced by macrophages in response to a bacterial challenge, while enhancing the responsiveness of monocytes. The functional re-programming of mononuclear phagocytes through modulation of innate memory may provide innovative approaches in the management

  7. Anopheles stephensi p38 MAPK signaling regulates innate immunity and bioenergetics during Plasmodium falciparum infection.

    Science.gov (United States)

    Wang, Bo; Pakpour, Nazzy; Napoli, Eleonora; Drexler, Anna; Glennon, Elizabeth K K; Surachetpong, Win; Cheung, Kong; Aguirre, Alejandro; Klyver, John M; Lewis, Edwin E; Eigenheer, Richard; Phinney, Brett S; Giulivi, Cecilia; Luckhart, Shirley

    2015-08-19

    Fruit flies and mammals protect themselves against infection by mounting immune and metabolic responses that must be balanced against the metabolic needs of the pathogens. In this context, p38 mitogen-activated protein kinase (MAPK)-dependent signaling is critical to regulating both innate immunity and metabolism during infection. Accordingly, we asked to what extent the Asian malaria mosquito Anopheles stephensi utilizes p38 MAPK signaling during infection with the human malaria parasite Plasmodium falciparum. A. stephensi p38 MAPK (AsP38 MAPK) was identified and patterns of signaling in vitro and in vivo (midgut) were analyzed using phospho-specific antibodies and small molecule inhibitors. Functional effects of AsP38 MAPK inhibition were assessed using P. falciparum infection, quantitative real-time PCR, assays for reactive oxygen species and survivorship under oxidative stress, proteomics, and biochemical analyses. The genome of A. stephensi encodes a single p38 MAPK that is activated in the midgut in response to parasite infection. Inhibition of AsP38 MAPK signaling significantly reduced P. falciparum sporogonic development. This phenotype was associated with AsP38 MAPK regulation of mitochondrial physiology and stress responses in the midgut epithelium, a tissue critical for parasite development. Specifically, inhibition of AsP38 MAPK resulted in reduction in mosquito protein synthesis machinery, a shift in glucose metabolism, reduced mitochondrial metabolism, enhanced production of mitochondrial reactive oxygen species, induction of an array of anti-parasite effector genes, and decreased resistance to oxidative stress-mediated damage. Hence, P. falciparum-induced activation of AsP38 MAPK in the midgut facilitates parasite infection through a combination of reduced anti-parasite immune defenses and enhanced host protein synthesis and bioenergetics to minimize the impact of infection on the host and to maximize parasite survival, and ultimately, transmission

  8. Comparison of glycerolisation with cryopreservation methods on HIV-1 inactivation

    International Nuclear Information System (INIS)

    Van Baare, J.; Pagnon, J.; Cameron, P.; Vardaxis, N.; Middlekoop, E.; Crowe, S.

    1999-01-01

    Cryopreservation and glycerolisation are two successful long-term preservation methods for human cadaveric donor skin, which is used in the treatment of bum patients. High concentrations of glycerol has been shown to be antibacterial and virucidal. Because fear of possible transmission of HIV-1 following allograft transplantation, this study was undertaken to investigate whether HIV can be effectively eliminated from skin explants. HIV-1 Ba-L, which has been shown to infect monocytes in skin explants and also dendritic cells, was. For the experiments we used cell-free virus, exogenously HIV infected peripheral blood mononuclear cells (PBMCs) and exogenously HIV infected cadaver split skin. Different concentrations of glycerol at various temperatures and the glycerolisation procedure as used by the Euro Skin Bank were used to determine the effects on HIV-1 Ba-L infectivity. For the cryopreservation technique we used 10% DMSO and a controlled rate freezer. HIV-1 Ba-L transfer was determined by adding uninfected PBMCs to the infected material and reverse transcriptase was measured. Cell-free HIV-1 Ba-L was not inactivated by 50% glycerol but was effectively inactivated within 30 minutes by 70% and 85% glycerol at 4 degree C, room temperature and 37 degree C. In contrast, cell-free HIV-1 Ba-L was not inactivated by cryopreservation. Most importantly, we have shown that HIV-1 Ba-L present in split skin is inactivated by incubating skin in 70% glycerol for three hours at 37-C. HIV in exogenously infected skin was not inactivated by cryopreservation. High concentrations of glycerol effectively inactivates free HIV-1 Ba-L and intracellular HIV-1 Ba-L. Also the current glycerolisation procedure carried out by the Euro Skin Bank effectively inactivates infectious virus. However, the cryopreservation technique did not show any reduction in HIV-1 Ba-L infectivity

  9. Molecular Viability Testing of UV-Inactivated Bacteria.

    Science.gov (United States)

    Weigel, Kris M; Nguyen, Felicia K; Kearney, Moira R; Meschke, John S; Cangelosi, Gerard A

    2017-05-15

    PCR is effective in detecting bacterial DNA in samples, but it is unable to differentiate viable bacteria from inactivated cells or free DNA fragments. New PCR-based analytical strategies have been developed to address this limitation. Molecular viability testing (MVT) correlates bacterial viability with the ability to rapidly synthesize species-specific rRNA precursors (pre-rRNA) in response to brief nutritional stimulation. Previous studies demonstrated that MVT can assess bacterial inactivation by chlorine, serum, and low-temperature pasteurization. Here, we demonstrate that MVT can detect inactivation of Escherichia coli , Aeromonas hydrophila , and Enterococcus faecalis cells by UV irradiation. Some UV-inactivated E. coli cells transiently retained the ability to synthesize pre-rRNA postirradiation (generating false-positive MVT results), but this activity ceased within 1 h following UV exposure. Viable but transiently undetectable (by culture) E. coli cells were consistently detected by MVT. An alternative viability testing method, viability PCR (vPCR), correlates viability with cell envelope integrity. This method did not distinguish viable bacteria from UV-inactivated bacteria under some conditions, indicating that the inactivated cells retained intact cell envelopes. MVT holds promise as a means to rapidly assess microbial inactivation by UV treatment. IMPORTANCE UV irradiation is increasingly being used to disinfect water, food, and other materials for human use. Confirming the effectiveness of UV disinfection remains a challenging task. In particular, microbiological methods that rely on rapid detection of microbial DNA can yield misleading results, due to the detection of remnant DNA associated with dead microbial cells. This report describes a novel method that rapidly distinguishes living microbial cells from dead microbial cells after UV disinfection. Copyright © 2017 American Society for Microbiology.

  10. Green Tea Catechin-Inactivated Viral Vaccine Platform

    Directory of Open Access Journals (Sweden)

    Yun H. Lee

    2017-12-01

    Full Text Available Traditionally, chemical agents such as formalin (FA and β-propiolactone (BPL have long been used for the preparation of inactivated vaccines or toxoids. It has been shown that FA extensively modifies vaccine antigens and thus affects immunogenicity profiles, sometimes compromising the protective efficacy of the vaccines or even exacerbating the disease upon infection. In this study, we show that natural catechins from green tea extracts (GT can be used as an inactivating agent to prepare inactivated viral vaccines. GT treatment resulted in complete and irreversible inactivation of influenza virus as well as dengue virus. In contrast to FA that reacted extensively with multiple amino acids including lysine, a major anchor residue for epitope binding to MHC molecules, GT catechin epigallocatechin-3-gallate (EGCG crosslinked primarily with cysteine residues and thus preserved the major epitopes of the influenza hemagglutinin. In a mouse model, vaccination with GT-inactivated influenza virus (GTi virus elicited higher levels of viral neutralizing antibodies than FA-inactivated virus (FAi virus. The vaccination completely protected the mice from a lethal challenge and restricted the challenge viral replication in the lungs. Of note, the quality of antibody responses of GTi virus was superior to that with FAi virus, in terms of the magnitude of antibody titer, cross-reactivity to hetero-subtypes of influenza viruses, and the avidity to viral antigens. As the first report of using non-toxic natural compounds for the preparation of inactivated viral vaccines, the present results could be translated into a clinically relevant vaccine platform with improved efficacy, safety, productivity, and public acceptance.

  11. Anthrax Lethal Toxin Impairs Innate Immune Functions of Alveolar Macrophages and Facilitates Bacillus anthracis Survival

    National Research Council Canada - National Science Library

    Ribot, Wilson J; Panchal, Rekha G; Brittingham, Katherine C; Ruthel, Gordon; Kenny, Tara A; Lane, Douglas; Curry, Bob; Hoover, Timothy A; Friedlander, Arthur M; Bavari, Sina

    2006-01-01

    .... Although several factors contribute to inhalational anthrax, we hypothesized that unimpeded infection of Bacillus anthracis is directly linked to disabling the innate immune functions contributed by AM...

  12. Innate Control of Adaptive Immunity: Beyond the Three-Signal Paradigm.

    Science.gov (United States)

    Jain, Aakanksha; Pasare, Chandrashekhar

    2017-05-15

    Activation of cells in the adaptive immune system is a highly orchestrated process dictated by multiples cues from the innate immune system. Although the fundamental principles of innate control of adaptive immunity are well established, it is not fully understood how innate cells integrate qualitative pathogenic information to generate tailored protective adaptive immune responses. In this review, we discuss complexities involved in the innate control of adaptive immunity that extend beyond TCR engagement, costimulation, and priming cytokine production but are critical for the generation of protective T cell immunity. Copyright © 2017 by The American Association of Immunologists, Inc.

  13. Generalized selection to overcome innate immunity selects for host breadth in an RNA virus.

    Science.gov (United States)

    Wasik, Brian R; Muñoz-Rojas, Andrés R; Okamoto, Kenichi W; Miller-Jensen, Kathryn; Turner, Paul E

    2016-02-01

    Virus-host coevolution has selected for generalized host defense against viruses, exemplified by interferon production/signaling and other innate immune function in eukaryotes such as humans. Although cell-surface binding primarily limits virus infection success, generalized adaptation to counteract innate immunity across disparate hosts may contribute to RNA virus emergence potential. We examined this idea using vesicular stomatitis virus (VSV) populations previously evolved on strictly immune-deficient (HeLa) cells, strictly immune competent (MDCK) cells, or on alternating deficient/competent cells. By measuring viral fitness in unselected human cancer cells of differing innate immunity, we confirmed that HeLa-adapted populations were specialized for innate immune-deficient hosts, whereas MDCK-adapted populations were relatively more generalized for fitness on hosts of differing innate immune capacity and of different species origin. We also confirmed that HeLa-evolved populations maintained fitness in immune-deficient nonhuman primate cells. These results suggest that innate immunity is more prominent than host species in determining viral fitness at the host-cell level. Finally, our prediction was inexact that selection on alternating deficient/competent hosts should produce innate viral generalists. Rather, fitness differences among alternating host-evolved VSV populations indicated variable capacities to evade innate immunity. Our results suggest that the evolutionary history of innate immune selection can affect whether RNA viruses evolve greater host-breadth. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  14. Comparative genomics RNAi screen identifies Eftud2 as a novel regulator of innate immunity.

    Science.gov (United States)

    De Arras, Lesly; Laws, Rebecca; Leach, Sonia M; Pontis, Kyle; Freedman, Jonathan H; Schwartz, David A; Alper, Scott

    2014-06-01

    The extent of the innate immune response is regulated by many positively and negatively acting signaling proteins. This allows for proper activation of innate immunity to fight infection while ensuring that the response is limited to prevent unwanted complications. Thus mutations in innate immune regulators can lead to immune dysfunction or to inflammatory diseases such as arthritis or atherosclerosis. To identify novel innate immune regulators that could affect infectious or inflammatory disease, we have taken a comparative genomics RNAi screening approach in which we inhibit orthologous genes in the nematode Caenorhabditis elegans and murine macrophages, expecting that genes with evolutionarily conserved function also will regulate innate immunity in humans. Here we report the results of an RNAi screen of approximately half of the C. elegans genome, which led to the identification of many candidate genes that regulate innate immunity in C. elegans and mouse macrophages. One of these novel conserved regulators of innate immunity is the mRNA splicing regulator Eftud2, which we show controls the alternate splicing of the MyD88 innate immunity signaling adaptor to modulate the extent of the innate immune response. Copyright © 2014 by the Genetics Society of America.

  15. Viral Infection: An Evolving Insight into the Signal Transduction Pathways Responsible for the Innate Immune Response

    Directory of Open Access Journals (Sweden)

    Girish J. Kotwal

    2012-01-01

    Full Text Available The innate immune response is initiated by the interaction of stereotypical pathogen components with genetically conserved receptors for extracytosolic pathogen-associated molecular patterns (PAMPs or intracytosolic nucleic acids. In multicellular organisms, this interaction typically clusters signal transduction molecules and leads to their activations, thereby initiating signals that activate innate immune effector mechanisms to protect the host. In some cases programmed cell death—a fundamental form of innate immunity—is initiated in response to genotoxic or biochemical stress that is associated with viral infection. In this paper we will summarize innate immune mechanisms that are relevant to viral pathogenesis and outline the continuing evolution of viral mechanisms that suppress the innate immunity in mammalian hosts. These mechanisms of viral innate immune evasion provide significant insight into the pathways of the antiviral innate immune response of many organisms. Examples of relevant mammalian innate immune defenses host defenses include signaling to interferon and cytokine response pathways as well as signaling to the inflammasome. Understanding which viral innate immune evasion mechanisms are linked to pathogenesis may translate into therapies and vaccines that are truly effective in eliminating the morbidity and mortality associated with viral infections in individuals.

  16. Viral Infection: An Evolving Insight into the Signal Transduction Pathways Responsible for the Innate Immune Response

    Science.gov (United States)

    Kotwal, Girish J.; Hatch, Steven; Marshall, William L.

    2012-01-01

    The innate immune response is initiated by the interaction of stereotypical pathogen components with genetically conserved receptors for extracytosolic pathogen-associated molecular patterns (PAMPs) or intracytosolic nucleic acids. In multicellular organisms, this interaction typically clusters signal transduction molecules and leads to their activations, thereby initiating signals that activate innate immune effector mechanisms to protect the host. In some cases programmed cell death—a fundamental form of innate immunity—is initiated in response to genotoxic or biochemical stress that is associated with viral infection. In this paper we will summarize innate immune mechanisms that are relevant to viral pathogenesis and outline the continuing evolution of viral mechanisms that suppress the innate immunity in mammalian hosts. These mechanisms of viral innate immune evasion provide significant insight into the pathways of the antiviral innate immune response of many organisms. Examples of relevant mammalian innate immune defenses host defenses include signaling to interferon and cytokine response pathways as well as signaling to the inflammasome. Understanding which viral innate immune evasion mechanisms are linked to pathogenesis may translate into therapies and vaccines that are truly effective in eliminating the morbidity and mortality associated with viral infections in individuals. PMID:22997518

  17. Mechanism-based inactivation of benzo[a]pyrene hydroxylase by aryl acetylenes and aryl olefins

    International Nuclear Information System (INIS)

    Gan, L.S.; Lu, J.Y.L.; Alworth, W.L.

    1986-01-01

    A series of aryl acetylenes and aryl olefins have been examined as substrates and inhibitors of cytochrome P-450 dependent monooxgenases in liver microsomes from 5,6-benzoflavone or phenobarbital pretreated rats. 1-Ethynylpyrene, 3-ethynylperylene, 2-ethynylfluorene, methyl 1-pyrenyl acetylene, cis- and trans-1-(2-bromovinyl)pyrene, and 1-allylpyrene serve as mechanism-based irreversible inactivators (suicide inhibitors) of benzo[a]pyrene hydroxylase, while 1-vinylpyrene and phenyl 1-pyrenyl acetylene do not cause a detectable suicide inhibition of benzo[a]pyrene hydroxylase. The mechanism-based loss of benzo[a]pyrene hydroxylase caused by the aryl acetylenes is not accompanied by a corresponding loss of the P-450 content of the microsomes (suicide destruction). The suicide inhibition by these aryl acetylenes therefore does not involve covalent binding to the heme moiety of the monooxygenase. Nevertheless, in the presence of NADPH, 3 H-labeled 1-ethynylpyrene becomes covalently attached to the cytochrome P-450 protein; the measured stoichiometry of binding is one 1-ethynylpyrene per P-450 heme unit. The authors conclude that the inhibition of benzo[a]pyrene hydroxylase produced by 1-ethynylpyrene may be related to the mechanism of suicide inhibition of P-450 activity by chloramphenicol rather than the mechanism of suicide destruction of P-450 previously described for acetylene and propyne

  18. John Stuart Mill, innate differences, and the regulation of reproduction.

    Science.gov (United States)

    Paul, Diane B; Day, Benjamin

    2008-06-01

    In this paper, we show that the question of the relative importance of innate characteristics and institutional arrangements in explaining human difference was vehemently contested in Britain during the first half of the nineteenth century. Thus Sir Francis Galton's work of the 1860s should be seen as an intervention in a pre-existing controversy. The central figure in these earlier debates-as well as many later ones-was the philosopher and economist John Stuart Mill. In Mill's view, human nature was fundamentally shaped by history and culture, factors that accounted for most mental and behavioral differences between men and women and among people of different classes, nationalities, and races. Indeed, Mill's whole program of social reform depended on the assumption that human differences were not fixed by nature. To identify the leading figures in these disputes about difference and the concrete context in which they occurred, we explore three debates in which Mill played a key role: over the capacities and rights of women, the viability of peasant proprietorship in India and Ireland, and the status of black labor in Jamaica. The last two draw our attention to the important colonial context of the nature-nurture debate. We also show that ideas that for us seem of a piece were not always linked for these earlier thinkers, nor did views on innateness necessarily have the political correlates that we now take for granted.

  19. Differential activity of innate defense antimicrobial peptides against Nocardia species.

    Science.gov (United States)

    Rieg, Siegbert; Meier, Benjamin; Fähnrich, Eva; Huth, Anja; Wagner, Dirk; Kern, Winfried V; Kalbacher, Hubert

    2010-02-23

    Members of the genus Nocardia are ubiquitous environmental saprophytes capable to cause human pulmonary, disseminated and cutaneous nocardiosis or bovine mastitis. Innate immunity appears to play an important role in early defense against Nocardia species. To elucidate the contribution of antimicrobial peptides (AMPs) in innate defense against Nocardia, the activity of human alpha-defensins human neutrophil peptides (HNPs) 1-3, human beta-defensin (hBD)-3 and cathelicidin LL-37 as well as bovine beta-defensins lingual and tracheal antimicrobial peptides (LAP, TAP) and bovine neutrophil-derived indolicidin against four important Nocardia species was investigated. Whereas N. farcinica ATCC 3318 and N. nova ATCC 33726 were found to be susceptible to all investigated human and bovine AMPs, N. asteroides ATCC 19247 was killed exclusively by neutrophil-derived human alpha-defensins HNP 1-3 and bovine indolicidin. N. brasiliensis ATCC 19296 was found to exhibit complete resistance to investigated human AMPs and to be susceptible only to bovine indolicidin. Selected AMPs are capable to contribute to the first line of defense against Nocardia, yet, susceptibility appears to vary across different Nocardia species. Obtained results of neutrophil-derived AMPs to possess the broadest antinocardial spectrum are remarkable, since nocardiosis is characterized by a neutrophil-rich infiltrate in vivo.

  20. Antimicrobial proteins and polypeptides in pulmonary innate defence

    Directory of Open Access Journals (Sweden)

    Taggart Clifford C

    2006-02-01

    Full Text Available Abstract Inspired air contains a myriad of potential pathogens, pollutants and inflammatory stimuli. In the normal lung, these pathogens are rarely problematic. This is because the epithelial lining fluid in the lung is rich in many innate immunity proteins and peptides that provide a powerful anti-microbial screen. These defensive proteins have anti-bacterial, anti- viral and in some cases, even anti-fungal properties. Their antimicrobial effects are as diverse as inhibition of biofilm formation and prevention of viral replication. The innate immunity proteins and peptides also play key immunomodulatory roles. They are involved in many key processes such as opsonisation facilitating phagocytosis of bacteria and viruses by macrophages and monocytes. They act as important mediators in inflammatory pathways and are capable of binding bacterial endotoxins and CPG motifs. They can also influence expression of adhesion molecules as well as acting as powerful anti-oxidants and anti-proteases. Exciting new antimicrobial and immunomodulatory functions are being elucidated for existing proteins that were previously thought to be of lesser importance. The potential therapeutic applications of these proteins and peptides in combating infection and preventing inflammation are the subject of ongoing research that holds much promise for the future.

  1. Interplay Between Innate Immunity and the Plant Microbiota.

    Science.gov (United States)

    Hacquard, Stéphane; Spaepen, Stijn; Garrido-Oter, Ruben; Schulze-Lefert, Paul

    2017-08-04

    The innate immune system of plants recognizes microbial pathogens and terminates their growth. However, recent findings suggest that at least one layer of this system is also engaged in cooperative plant-microbe interactions and influences host colonization by beneficial microbial communities. This immune layer involves sensing of microbe-associated molecular patterns (MAMPs) by pattern recognition receptors (PRRs) that initiate quantitative immune responses to control host-microbial load, whereas diversification of MAMPs and PRRs emerges as a mechanism that locally sculpts microbial assemblages in plant populations. This suggests a more complex microbial management role of the innate immune system for controlled accommodation of beneficial microbes and in pathogen elimination. The finding that similar molecular strategies are deployed by symbionts and pathogens to dampen immune responses is consistent with this hypothesis but implies different selective pressures on the immune system due to contrasting outcomes on plant fitness. The reciprocal interplay between microbiota and the immune system likely plays a critical role in shaping beneficial plant-microbiota combinations and maintaining microbial homeostasis.

  2. Microbiota activation and regulation of innate and adaptive immunity.

    Science.gov (United States)

    Alexander, Katie L; Targan, Stephan R; Elson, Charles O

    2014-07-01

    The human host has coevolved with the collective of bacteria species, termed microbiota, in a complex fashion that affects both innate and adaptive immunity. Differential regulation of regulatory T-cell and effector T-cell responses are a direct result of specific microbial species present within the gut, and this relationship is subject to dysregulation during inflammation and disease. The microbiota varies widely between individuals and has a profound effect on how one reacts to various environmental stimuli, particularly if a person is genetically predisposed to an immune-mediated inflammatory disorder such as inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC). Approximately, half of all CD patients have elevated antibodies to CBir1, a microbiota flagellin common to mice and humans, demonstrating flagellins as immunodominant antigens in the intestines. This review focuses on the use of flagellins as probes to study microbiota-specific responses in the context of health and disease as well as probes of innate and adaptive responses employed by the host to deal with the overwhelming bacterial presence of the microbiota. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Nipah and hendra virus interactions with the innate immune system.

    Science.gov (United States)

    Basler, Christopher F

    2012-01-01

    Nipah virus and Hendra virus are related, highly pathogenic paramyxoviruses with unusually broad host ranges. Henipaviruses encode several proteins that block innate immune responses, and these are likely to serve as virulence factors. Specfically, four virus-encoded proteins, the phosphoprotein (P), the V protein, the W protein, and the C protein have each been demonstrated to counteract aspects of the interferon (IFN)-α/β response, a key component of the innate immune response to virus infection. The available data indicate that V and W can inhibit the production of IFNα/β in response to various stimuli, while the P, V, and W proteins also block the ability of IFNs to signal and induce an antiviral state in cells. The C protein also inhibits the antiviral effects of IFNα/β by a poorly characterized mechanism. Reverse genetics systems, which allow the generation of recombinant viruses bearing specific mutations, have demonstrated the importance of the viral IFN-antagonists for replication. With these systems in hand, the field is now poised to define how specific viral IFN-antagonist functions influence viral pathogenesis.

  4. Initiation of innate immune responses by surveillance of homeostasis perturbations.

    Science.gov (United States)

    Colaço, Henrique G; Moita, Luis F

    2016-07-01

    Pathogen recognition, signaling transduction pathways, and effector mechanisms are necessary steps of innate immune responses that play key roles in the early phase of defense and in the stimulation of the later specific response of adaptive immunity. Here, we argue that in addition to the direct recognition of conserved common structural and functional molecular signatures of microorganisms using pattern recognition receptors, hosts can mount an immune response following the sensing of disruption in homeostasis as proximal reporters for infections. Surveillance of disruption of core cellular activities leading to defense responses is a flexible strategy that requires few additional components and that can effectively detect relevant threats. It is likely to be evolutionarily very conserved and ancient because it is operational in organisms that lack pattern recognition triggered immunity. A homeostasis disruption model of immune response initiation and modulation has broad implications for pathophysiology and treatment of disease and might constitute an often overlooked but central component of a comprehensive conceptual framework for innate immunity. © 2016 Federation of European Biochemical Societies.

  5. Regulation of intestinal homeostasis by innate and adaptive immunity.

    Science.gov (United States)

    Kayama, Hisako; Takeda, Kiyoshi

    2012-11-01

    The intestine is a unique tissue where an elaborate balance is maintained between tolerance and immune responses against a variety of environmental factors such as food and the microflora. In a healthy individual, the microflora stimulates innate and adaptive immune systems to maintain gut homeostasis. However, the interaction of environmental factors with particular genetic backgrounds can lead to dramatic changes in the composition of the microflora (i.e. dysbiosis). Many of the specific commensal-bacterial products and the signaling pathways they trigger have been characterized. The role of T(h)1, T(h)2 and T(h)17 cells in inflammatory bowel disease has been widely investigated, as has the contribution of epithelial cells and subsets of dendritic cells and macrophages. To date, multiple regulatory cells in adaptive immunity, such as regulatory T cells and regulatory B cells, have been shown to maintain gut homeostasis by preventing inappropriate innate and adaptive immune responses to commensal bacteria. Additionally, regulatory myeloid cells have recently been identified that prevent intestinal inflammation by inhibiting T-cell proliferation. An increasing body of evidence has shown that multiple regulatory mechanisms contribute to the maintenance of gut homeostasis.

  6. Autophagy, Innate Immunity and Tissue Repair in Acute Kidney Injury

    Directory of Open Access Journals (Sweden)

    Pu Duann

    2016-05-01

    Full Text Available Kidney is a vital organ with high energy demands to actively maintain plasma hemodynamics, electrolytes and water homeostasis. Among the nephron segments, the renal tubular epithelium is endowed with high mitochondria density for their function in active transport. Acute kidney injury (AKI is an important clinical syndrome and a global public health issue with high mortality rate and socioeconomic burden due to lack of effective therapy. AKI results in acute cell death and necrosis of renal tubule epithelial cells accompanied with leakage of tubular fluid and inflammation. The inflammatory immune response triggered by the tubular cell death, mitochondrial damage, associative oxidative stress, and the release of many tissue damage factors have been identified as key elements driving the pathophysiology of AKI. Autophagy, the cellular mechanism that removes damaged organelles via lysosome-mediated degradation, had been proposed to be renoprotective. An in-depth understanding of the intricate interplay between autophagy and innate immune response, and their roles in AKI pathology could lead to novel therapies in AKI. This review addresses the current pathophysiology of AKI in aspects of mitochondrial dysfunction, innate immunity, and molecular mechanisms of autophagy. Recent advances in renal tissue regeneration and potential therapeutic interventions are also discussed.

  7. Innate Lymphoid Cells in HIV/SIV Infections

    Directory of Open Access Journals (Sweden)

    Spandan V. Shah

    2017-12-01

    Full Text Available Over the past several years, new populations of innate lymphocytes have been described in mice and primates that are critical for mucosal homeostasis, microbial regulation, and immune defense. Generally conserved from mice to humans, innate lymphoid cells (ILC have been divided primarily into three subpopulations based on phenotypic and functional repertoires: ILC1 bear similarities to natural killer cells; ILC2 have overlapping functions with TH2 cells; and ILC3 that share many functions with TH17/TH22 cells. ILC are specifically enriched at mucosal surfaces and are possibly one of the earliest responders during viral infections besides being involved in the homeostasis of gut-associated lymphoid tissue and maintenance of gut epithelial barrier integrity. Burgeoning evidence also suggests that there is an early and sustained abrogation of ILC function and numbers during HIV and pathogenic SIV infections, most notably ILC3 in the gastrointestinal tract, which leads to disruption of the mucosal barrier and dysregulation of the local immune system. A better understanding of the direct or indirect mechanisms of loss and dysfunction will be critical to immunotherapeutics aimed at restoring these cells. Herein, we review the current literature on ILC with a particular emphasis on ILC3 and their role(s in mucosal immunology and the significance of disrupting the ILC niche during HIV and SIV infections.

  8. Joint replacement surgery and the innate immune system.

    Science.gov (United States)

    Goodman, Stuart B; Konttinen, Yrjo T; Takagi, Michiaki

    2014-01-01

    Total joint replacement is a highly successful, cost-effective surgical procedure that relieves pain and improves function for patients with end-stage arthritis. The most commonly used materials for modern joint replacements include metal alloys such as cobalt chrome and titanium alloys, polymers including polymethylmethacrylate and polyethylene, and ceramics. Implantation of a joint prosthesis incites an acute inflammatory reaction that is regulated by the innate immune system, a preprogrammed non-antigen specific biological response composed of cells, proteins, and other factors. This "frontline" immune mechanism was originally designed to combat invading microorganisms, but now responds to both pathogen-associated molecular patterns or PAMPS (by-products from microorganisms), and damage associated molecular patterns or DAMPS (molecular by-products from cells), via pattern recognition receptors (PRRs). In this way, potentially injurious stimuli that might disrupt the normal homeostatic regulatory mechanisms of the organism are efficiently dealt with, ensuring the survival of the host. Initial surgical implantation of the joint replacement, as well as ongoing generation of wear debris and byproducts during usage of the joint, activates the innate immune system. Understanding and potentially modulating these events may lead to improved function and increased longevity of joint replacements in the future.

  9. Hematopoietic Stem and Progenitor Cells as Effectors in Innate Immunity

    Directory of Open Access Journals (Sweden)

    Jennifer L. Granick

    2012-01-01

    Full Text Available Recent research has shed light on novel functions of hematopoietic stem and progenitor cells (HSPC. While they are critical for maintenance and replenishment of blood cells in the bone marrow, these cells are not limited to the bone marrow compartment and function beyond their role in hematopoiesis. HSPC can leave bone marrow and circulate in peripheral blood and lymph, a process often manipulated therapeutically for the purpose of transplantation. Additionally, these cells preferentially home to extramedullary sites of inflammation where they can differentiate to more mature effector cells. HSPC are susceptible to various pathogens, though they may participate in the innate immune response without being directly infected. They express pattern recognition receptors for detection of endogenous and exogenous danger-associated molecular patterns and respond not only by the formation of daughter cells but can themselves secrete powerful cytokines. This paper summarizes the functional and phenotypic characterization of HSPC, their niche within and outside of the bone marrow, and what is known regarding their role in the innate immune response.

  10. Feliform carnivores have a distinguished constitutive innate immune response

    Directory of Open Access Journals (Sweden)

    Sonja K. Heinrich

    2016-05-01

    Full Text Available Determining the immunological phenotype of endangered and threatened populations is important to identify those vulnerable to novel pathogens. Among mammals, members of the order Carnivora are particularly threatened by diseases. We therefore examined the constitutive innate immune system, the first line of protection against invading microbes, of six free-ranging carnivore species; the black-backed jackal (Canis mesomelas, the brown hyena (Hyena brunnea, the caracal (Caracal caracal, the cheetah (Acinonyx jubatus, the leopard (Panthera pardus and the lion (Panthera leo using a bacterial killing assay. The differences in immune responses amongst the six species were independent of their foraging behaviour, body mass or social organisation but reflected their phylogenetic relatedness. The bacterial killing capacity of black-backed jackals, a member of the suborder Caniformia, followed the pattern established for a wide variety of vertebrates. In contrast, the five representatives of the suborder Feliformia demonstrated a killing capacity at least an order of magnitude higher than any species reported previously, with a particularly high capacity in caracals and cheetahs. Our results suggest that the immunocompetence of threatened felids such as the cheetah has been underestimated and its assessment ought to consider both innate and adaptive components of the immune system.

  11. Antagonism of Innate Immunity by Paramyxovirus Accessory Proteins

    Directory of Open Access Journals (Sweden)

    Raychel Chambers

    2009-10-01

    Full Text Available Paramyxovirinae, a subfamily of Paramyxoviridae, are negative strand RNA viruses comprised of many important human and animal pathogens, which share a high degree of genetic and structural homology. The accessory proteins expressed from the P/V/C gene are major factors in the pathogenicity of the viruses, because of their ability to abrogate various facets of type I interferon (IFN induction and signaling. Most of the paramyxoviruses exhibit a commonality in their ability to antagonize innate immunity by blocking IFN induction and the Jak/STAT pathway. However, the manner in which the accessory proteins inhibit the pathway differs among viruses. Similarly, there are variations in the capability of the viruses to counteract intracellular detectors (RNA helicases, mda-5 and RIG-I. Furthermore, a functional specificity in the antagonism of the IFN response has been reported, suggesting that specificity in the circumvention of innate immunity restricts viral host range. Available evidence indicates that paramyxoviruses employ specific strategies to antagonize the IFN response of their specific hosts, which is one of the major factors that determine viral pathogenicity and host range.

  12. Hantaan virus triggers TLR4-dependent innate immune responses.

    Science.gov (United States)

    Yu, Hai-Tao; Jiang, Hong; Zhang, Ye; Nan, Xue-Ping; Li, Yu; Wang, Wei; Jiang, Wei; Yang, Dong-Qiang; Su, Wen-Jing; Wang, Jiu-Ping; Wang, Ping-Zhong; Bai, Xue-Fan

    2012-10-01

    The innate immune response induced by Hantavirus is responsible for endothelial cell dysfunction and viral pathogenicity. Recent studies demonstrate that TLR4 expression is upregulated and mediates the secretion of several cytokines in Hantaan virus (HTNV)-infected endothelial cells. To examine viral interactions with host endothelial cells and characterize the innate antiviral responses associated with Toll-like receptors, we selected TLR4 as the target molecule to investigate anti-hantavirus immunity. TLR4 mRNA-silenced EVC-304 (EVC-304 TLR4-) cells and EVC-304 cells were used to investigate signaling molecules downstream of TLR4. The expression of the adaptor protein TRIF was higher in HTNV-infected EVC-304 cells than in EVC-304 TLR4- cells. However, there was no apparent difference in the expression of MyD88 in either cell line. The transcription factors for NF-κB and IRF-3 were translocated from the cytoplasm into the nucleus in HTNV-infected EVC-304 cells, but not in HTNV-infected EVC-304 TLR4- cells. Our results demonstrate that TLR4 may play an important role in the antiviral immunity of the host against HTNV infection through an MyD88-independent signaling pathway.

  13. Cytokine Networks between Innate Lymphoid Cells and Myeloid Cells

    Directory of Open Access Journals (Sweden)

    Arthur Mortha

    2018-02-01

    Full Text Available Innate lymphoid cells (ILCs are an essential component of the innate immune system in vertebrates. They are developmentally rooted in the lymphoid lineage and can diverge into at least three transcriptionally distinct lineages. ILCs seed both lymphoid and non-lymphoid tissues and are locally self-maintained in tissue-resident pools. Tissue-resident ILCs execute important effector functions making them key regulator in tissue homeostasis, repair, remodeling, microbial defense, and anti-tumor immunity. Similar to T lymphocytes, ILCs possess only few sensory elements for the recognition of non-self and thus depend on extrinsic cellular sensory elements residing within the tissue. Myeloid cells, including mononuclear phagocytes (MNPs, are key sentinels of the tissue and are able to translate environmental cues into an effector profile that instructs lymphocyte responses. The adaptation of myeloid cells to the tissue state thus influences the effector program of ILCs and serves as an example of how environmental signals are integrated into the function of ILCs via a tissue-resident immune cell cross talks. This review summarizes our current knowledge on the role of myeloid cells in regulating ILC functions and discusses how feedback communication between ILCs and myeloid cells contribute to stabilize immune homeostasis in order to maintain the healthy state of an organ.

  14. Mechanisms of Borrelia burgdorferi internalization and intracellular innate immune signaling

    Directory of Open Access Journals (Sweden)

    Tanja ePetnicki-Ocwieja

    2014-12-01

    Full Text Available Lyme disease is a long-term infection whose most severe pathology is characterized by inflammatory arthritis of the lower bearing joints, carditis and neuropathy. The inflammatory cascades are initiated through the early recognition of invading Borrelia burgdorferi spirochetes by cells of the innate immune response, such as neutrophils and macrophage. B. burgdorferi does not have an intracellular niche and thus much research has focused on immune pathways activated by pathogen recognition molecules at the cell surface, such as the Toll-like receptors (TLRs. However, in recent years, studies have shown that internalization of the bacterium by host cells is an important component of the defense machinery in response to B. burgdorferi. Upon internalization, B. burgdorferi is trafficked through an endo/lysosomal pathway resulting in the activation of a number of intracellular pathogen recognition receptors including TLRs and Nod-like receptors (NLRs. Here we will review the innate immune molecules that participate in both cell surface and intracellular immune activation by B. burgdorferi.

  15. Differential activity of innate defense antimicrobial peptides against Nocardia species

    Directory of Open Access Journals (Sweden)

    Wagner Dirk

    2010-02-01

    Full Text Available Abstract Background Members of the genus Nocardia are ubiquitous environmental saprophytes capable to cause human pulmonary, disseminated and cutaneous nocardiosis or bovine mastitis. Innate immunity appears to play an important role in early defense against Nocardia species. To elucidate the contribution of antimicrobial peptides (AMPs in innate defense against Nocardia, the activity of human α-defensins human neutrophil peptides (HNPs 1-3, human β-defensin (hBD-3 and cathelicidin LL-37 as well as bovine β-defensins lingual and tracheal antimicrobial peptides (LAP, TAP and bovine neutrophil-derived indolicidin against four important Nocardia species was investigated. Results Whereas N. farcinica ATCC 3318 and N. nova ATCC 33726 were found to be susceptible to all investigated human and bovine AMPs, N. asteroides ATCC 19247 was killed exclusively by neutrophil-derived human α-defensins HNP 1-3 and bovine indolicidin. N. brasiliensis ATCC 19296 was found to exhibit complete resistance to investigated human AMPs and to be susceptible only to bovine indolicidin. Conclusion Selected AMPs are capable to contribute to the first line of defense against Nocardia, yet, susceptibility appears to vary across different Nocardia species. Obtained results of neutrophil-derived AMPs to possess the broadest antinocardial spectrum are remarkable, since nocardiosis is characterized by a neutrophil-rich infiltrate in vivo.

  16. Innate lymphoid cells at the interface between obesity and asthma.

    Science.gov (United States)

    Everaere, Laetitia; Ait Yahia, Saliha; Bouté, Mélodie; Audousset, Camille; Chenivesse, Cécile; Tsicopoulos, Anne

    2018-01-01

    Obesity and asthma prevalence has dramatically and concomitantly increased over the last 25 years, and many epidemiological studies have highlighted obesity as an important risk factor for asthma. Although many studies have been performed, the underlying mechanisms remain poorly understood. Innate mechanisms have been involved in both diseases, in particular through the recently described innate lymphoid cells (ILCs). ILCs are subdivided into three groups that are defined by their cytokine production and by their master transcription factor expression, in sharp correlation with their T helper counterparts. However, unlike T helper cells, ILCs do not express antigen-specific receptors, but respond to damage-induced signals. ILCs have been found in target tissues of both diseases, and data have implicated these cells in the pathogenesis of both diseases. In particular group 2 ILCs (ILC2) are activated in both the adipose and lung tissues under the effect of interleukin-33 and interleukin-25 expression. However, counter-intuitively to the well-known association between obesity and asthma, ILC2 are beneficial for obesity but deleterious for asthma. This review will examine the roles of ILCs in each disease and recent data highlighting ILCs as a putative link between obesity and asthma. © 2017 John Wiley & Sons Ltd.

  17. Antiviral Defense and Innate Immune Memory in the Oyster

    Science.gov (United States)

    Speck, Peter

    2018-01-01

    The Pacific oyster, Crassostrea gigas, is becoming a valuable model for investigating antiviral defense in the Lophotrochozoa superphylum. In the past five years, improvements to laboratory-based experimental infection protocols using Ostreid herpesvirus I (OsHV-1) from naturally infected C. gigas combined with next-generation sequencing techniques has revealed that oysters have a complex antiviral response involving the activation of all major innate immune pathways. Experimental evidence indicates C. gigas utilizes an interferon-like response to limit OsHV-1 replication and spread. Oysters injected with a viral mimic (polyI:C) develop resistance to OsHV-1. Improved survival following polyI:C injection was found later in life (within-generational immune priming) and in the next generation (multi-generational immune priming). These studies indicate that the oyster’s antiviral defense system exhibits a form of innate immune-memory. An important priority is to identify the molecular mechanisms responsible for this phenomenon. This knowledge will motivate the development of practical and cost-effective treatments for improving oyster health in aquaculture. PMID:29547519

  18. Innate Immunity and Immune Evasion by Enterovirus 71

    Directory of Open Access Journals (Sweden)

    Prabuddha S. Pathinayake

    2015-12-01

    Full Text Available Enterovirus 71 (EV71 is a major infectious disease affecting millions of people worldwide and it is the main etiological agent for outbreaks of hand foot and mouth disease (HFMD. Infection is often associated with severe gastroenterological, pulmonary, and neurological diseases that are most prevalent in children. Currently, no effective vaccine or antiviral drugs exist against EV71 infection. A lack of knowledge on the molecular mechanisms of EV71 infection in the host and the virus-host interactions is a major constraint to developing specific antiviral strategies against this infection. Previous studies have identified and characterized the function of several viral proteins produced by EV71 that interact with the host innate immune proteins, including type I interferon signaling and microRNAs. These interactions eventually promote efficient viral replication and increased susceptibility to the disease. In this review we discuss the functions of EV71 viral proteins in the modulation of host innate immune responses to facilitate viral replication.

  19. ERADIKASI POLIO DAN IPV (INACTIVATED POLIO VACCINE

    Directory of Open Access Journals (Sweden)

    Gendrowahyuhono Gendrowahyuhono

    2012-09-01

    Full Text Available In the year 1988, World Health Organization (WHO claims that polio viruses should be eradicated after year 2000. However, until year 2010 the world have not been free from polio viruses circulation. So many effort had been achieved and it is estimated that the world will be free from polio virus after the year 2013. Control of poliomyelitis in Indonesia has been commenced since 1982 with routine immunization of polio program and the National Immunization Days (NID has been commenced since 1995,1996,2005 and 2006. When the world is free from polio virus, WHO suggests several alternative effort to maintain the world free from polio viruses : I stop the OPV (Oral Polio Vaccine and no polio immunization, 2 stop OPV and stock pile mOPV (monovalent OPV, 3 use OPV and IPV (Inactivated Polio Vaccine in a certain times, 4 use IPV only in a certain times. IPV has been used routinely in develop countries but has not been used in the developing countries. Several studies in development countries has been conducted, but had not been done in the developing countries. Indonesia collaboration with WHO has conducted the study of IPV in Yogyakarta Province since year 2002 until year 2010. The overall aim of the study is to compile the necessary data that will inform global and national decision-making regarding future polio immunization policies for the OPV cessation era. The data generated from the study will be particularly important to make decisions regarding optimal IPV use in developing tropical countries. It is unlikely that this data can be assembled through other means than through this study. The tentative result of the study shows that OPV immunization coverage in the year 2004 is 99% in four district and 93 % in the Yogyakarta city. Environment surveillance shows that there are 65.7% polio virus detected from 137 sewage samples pre IPV swich, and 4.8% polio virus detected from 83 sewage samples post IPV swich. Survey polio antibody serologis shows

  20. [Kinetics of catalase inactivation induced by ultrasonic cavitation].

    Science.gov (United States)

    Potapovich, M V; Eremin, A N; Metelitsa, D I

    2003-01-01

    Kinetic patterns of sonication-induced inactivation of bovine liver catalase (CAT) were studied in buffer solutions (pH 4-11) within the temperature range from 36 to 55 degrees C. Solutions of CAT were exposed to low-frequency (20.8 kHz) ultrasound (specific power, 48-62 W/cm2). The kinetics of CAT inactivation was characterized by effective first-order rate constants (s-1) of total inactivation (kin), thermal inactivation (*kin), and ultrasonic inactivation (kin(us)). In all cases, the following inequality was valid: kin > *kin. The value of kin(us) increased with the ultrasound power (range, 48-62 W/cm2) and exhibited a strong dependence on pH of the medium. On increasing the initial concentration of CAT (0.4-4.0 nM), kin(us) decreased. The three rate constants were minimum within the range of pH 6.5-8; their values increased considerably at pH 9. At 36-55 degrees C, temperature dependence of kin(us) was characterized by an activation energy (Eact) of 19.7 kcal/mol, whereas the value of Eact for CAT thermoinactivation was equal to 44.2 kcal/mol. Bovine serum and human serum albumins (BSA and HSA, respectively) inhibited sonication-induced CAT inactivation; complete prevention was observed at concentrations above 2.5 micrograms/ml. Dimethyl formamide (DMFA), a scavenger of hydroxyl radicals (HO.), prevented sonication-induced CAT inactivation at 10% (kin and *kin increased with the content of DMFA at concentrations in excess of 3%). The results obtained indicate that free radicals generated in the field of ultrasonic cavitation play a decisive role in the inactivation of CAT, which takes place when its solutions are exposed to low-frequency ultrasound. However, the efficiency of CAT inactivation by the radicals is determined by (1) the degree of association between the enzyme molecules in the reaction medium and (2) the composition thereof.

  1. Pulsed dielectric barrier discharge for Bacillus subtilis inactivation in water

    International Nuclear Information System (INIS)

    Hernández-Arias, A N; López-Callejas, R; De la Piedad Beneitez, A; Rodríguez-Méndez, B G; Valencia-Alvarado, R; Mercado-Cabrera, A; Peña-Eguiluz, R; Barocio, S R; Muñoz-Castro, A E

    2012-01-01

    The inactivation of Bacillus subtilis bacteria in water has been experimentally studied by means of a pulsed dielectric barrier discharge (PDBD) in a coaxial reactor endowed with an alumina dielectric. The plasma source is capable of operating at atmospheric pressure with gas, water or hybrid gas-liquid media at adjustable 25 kV pulses, 30 μs long and at a 500 Hz frequency. In order to evaluate the inactivation efficiency of the system, a set of experiments were designed on the basis of oxygen flow control. The initial data have showed a significant bacterial rate reduction of 10 3 -10 7 CFU/mL. Additional results proved that applying an oxygen flow for a few seconds during the PDBD treatment inactivates the Bacillus subtilis population with 99.99% effectiveness. As a reference, without gas flow but with the same exposure times, this percentage is reduced to ∼90%. The analysis of the relationship between inactivation rate and chemical species in the discharge has been carried out using optical emission spectroscopy as to identifying the main reactive species. Reactive oxygen species such as atomic oxygen and ozone tuned out to be the dominant germicidal species. Some proposed inactivation mechanisms of this technique are discussed.

  2. Thermal and high pressure inactivation kinetics of blueberry peroxidase.

    Science.gov (United States)

    Terefe, Netsanet Shiferaw; Delon, Antoine; Versteeg, Cornelis

    2017-10-01

    This study for the first time investigated the stability and inactivation kinetics of blueberry peroxidase in model systems (McIlvaine buffer, pH=3.6, the typical pH of blueberry juice) during thermal (40-80°C) and combined high pressure-thermal processing (0.1-690MPa, 30-90°C). At 70-80°C, the thermal inactivation kinetics was best described by a biphasic model with ∼61% labile and ∼39% stable fractions at temperature between 70 and 75°C. High pressure inhibited the inactivation of the enzyme with no inactivation at pressures as high as 690MPa and temperatures less than 50°C. The inactivation kinetics of the enzyme at 60-70°C, and pressures higher than 500MPa was best described by a first order biphasic model with ∼25% labile fraction and 75% stable fraction. The activation energy values at atmospheric pressure were 548.6kJ/mol and 324.5kJ/mol respectively for the stable and the labile fractions. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  3. Removal of detergents from SDS-inactivated dextransucrase

    International Nuclear Information System (INIS)

    Husman, D.W.; Mayer, R.M.

    1986-01-01

    Dextransucrase, which is rapidly inactivated by SDS, can be reactivated upon the addition of Triton X-100. Purification of the enzyme, in good yield and homogeneity, has been achieved by chromatography in the presence of SDS. The purified enzyme can be reactivated with Triton, but has large amounts of detergents. It was important to develop procedures for their removal. Density gradient centrifugation of SDS-inactivated or Triton-reactivated enzyme, treatment with Extracti-Gel D (Pierce) or chromatography on hydroxyl apatite (HA), have been examined for their effectiveness in providing detergent-free enzyme in good yield. Ultracentrifugation of SDS-inactivated protein provided limited recovery of active enzyme, but suggested that reactivation could be achieved by the simple removal of the detergent. While similar behavior was observed when the enzyme was eluted from Extracti-Gel, it was also shown that the limited recovery was a result of irreversible inactivation of the enzyme. Recovery could be improved if the enzyme was collected in solutions containing Triton, which has been reported to be a stabilizer. Chromatography of SDS-inactivated enzyme on HA also yielded active enzyme. Good recovery was obtained when Triton-reactivated enzyme was employed in these studies. The degree of detergent removal was determined by utilizing radiolabelled SDS and Triton X-100

  4. Structure of suicide-inactivated β-hydroxydecanoyl-thioester dehydrase

    International Nuclear Information System (INIS)

    Schwab, J.M.; Ho, C.K.; Li, W.B.; Townsend, C.A.; Salituro, G.M.

    1986-01-01

    β-Hydroxydecanoylthioester dehydrase, the key enzyme in biosynthesis of unsaturated fatty acids under anaerobic conditions, equilibrates thioesters of (R)-3-hydroxydecanoic acid, E-2-decenoic acid, and Z-3-decenoic acid. Dehydrase is irreversibly inactivated by the N-acetylcysteamine thioester of 3-decynoic acid (3-decynoyl-NAC), via dehydrase-catalyzed isomerization to 2,3-decadienoyl-NAC. To probe the relationship between normal catalysis and suicide inactivation, the structure of the inactivated enzyme has been studied. 3-[2- 13 C]Decynoyl-NAC was synthesized and incubated with dehydrase. 13 C NMR showed that attack of 2,3-decadienoyl-NAC by the active site histidine gives 3-histidinyl-3-decenoyl-NAC, which slowly rearranges to the more stable Δ 2 isomer. Model histidine-allene adducts have been made and characterized. Analysis of NMR data show that the C=C configuration of the decenoyl moiety of enzyme-bound inactivator is E. The suggestion that the mechanism of dehydrase inactivation parallels its normal mechanism of action is supported these findings

  5. Catalysis and inactivation of tyrosinase in its action on hydroxyhydroquinone.

    Science.gov (United States)

    del Mar Garcia-Molina, Maria; Muñoz-Muñoz, Jose Luis; Berna, Jose; García-Ruiz, Pedro Antonio; Rodriguez-Lopez, Jose Neptuno; Garcia-Canovas, Francisco

    2014-02-01

    Hydroxyhydroquinone (HHQ) was characterized kinetically as a tyrosinase substrate. A kinetic mechanism is proposed, in which HHQ is considered as a monophenol or as an o-diphenol, depending on the part of the molecule that interacts with the enzyme. The kinetic parameters obtained from an analysis of the measurements of the initial steady state rate of 2-hydroxy p-benzoquinone formation were kcatapp=229.0±7.7 s(-1) and KMapp,HHQ=0.40±0.05 mM. Furthermore, the action of tyrosinase on HHQ led to the enzyme's inactivation through a suicide inactivation mechanism. This suicide inactivation process was characterized kinetically by λmaxapp (the apparent maximum inactivation constant) and r, the number of turnovers made by 1 mol of enzyme before being inactivated. The values of λmaxapp and r were (8.2±0.1)×10(-3) s(-1) and 35,740±2,548, respectively. © 2014 International Union of Biochemistry and Molecular Biology.

  6. Efficiency of superoxide anions in the inactivation of selected dehydrogenases

    International Nuclear Information System (INIS)

    Rodacka, Aleksandra; Serafin, Eligiusz; Puchala, Mieczyslaw

    2010-01-01

    The most ubiquitous of the primary reactive oxygen species, formed in all aerobes, is the superoxide free radical. It is believed that the superoxide anion radical shows low reactivity and in oxidative stress it is regarded mainly as an initiator of more reactive species such as · OH and ONOO - . In this paper, the effectiveness of inactivation of selected enzymes by radiation-generated superoxide radicals in comparison with the effectiveness of the other products of water radiolysis is examined. We investigate three enzymes: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), alcohol dehydrogenase (ADH) and lactate dehydrogenase (LDH). We show that the direct contribution of the superoxide anion radical to GAPDH and ADH inactivation is significant. The effectiveness of the superoxide anion in the inactivation of GAPDH and ADG was only 2.4 and 2.8 times smaller, respectively, in comparison with hydroxyl radical. LDH was practically not inactivated by the superoxide anion. Despite the fact that the studied dehydrogenases belong to the same class of enzymes (oxidoreductases), all have a similar molecular weight and are tetramers, their susceptibility to free-radical damage varies. The differences in the radiosensitivity of the enzymes are not determined by the basic structural parameters analyzed. A significant role in inactivation susceptibility is played by the type of amino acid residues and their localization within enzyme molecules.

  7. Efficiency of superoxide anions in the inactivation of selected dehydrogenases

    Energy Technology Data Exchange (ETDEWEB)

    Rodacka, Aleksandra, E-mail: olakow@biol.uni.lodz.p [Department of Molecular Biophysics, University of Lodz, Banacha 12/16, 90-237 Lodz (Poland); Serafin, Eligiusz, E-mail: serafin@biol.uni.lodz.p [Laboratory of Computer and Analytical Techniques, University of Lodz, Banacha 12/16, 90-237 Lodz (Poland); Puchala, Mieczyslaw, E-mail: puchala@biol.uni.lodz.p [Department of Molecular Biophysics, University of Lodz, Banacha 12/16, 90-237 Lodz (Poland)

    2010-09-15

    The most ubiquitous of the primary reactive oxygen species, formed in all aerobes, is the superoxide free radical. It is believed that the superoxide anion radical shows low reactivity and in oxidative stress it is regarded mainly as an initiator of more reactive species such as {sup {center_dot}}OH and ONOO{sup -}. In this paper, the effectiveness of inactivation of selected enzymes by radiation-generated superoxide radicals in comparison with the effectiveness of the other products of water radiolysis is examined. We investigate three enzymes: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), alcohol dehydrogenase (ADH) and lactate dehydrogenase (LDH). We show that the direct contribution of the superoxide anion radical to GAPDH and ADH inactivation is significant. The effectiveness of the superoxide anion in the inactivation of GAPDH and ADG was only 2.4 and 2.8 times smaller, respectively, in comparison with hydroxyl radical. LDH was practically not inactivated by the superoxide anion. Despite the fact that the studied dehydrogenases belong to the same class of enzymes (oxidoreductases), all have a similar molecular weight and are tetramers, their susceptibility to free-radical damage varies. The differences in the radiosensitivity of the enzymes are not determined by the basic structural parameters analyzed. A significant role in inactivation susceptibility is played by the type of amino acid residues and their localization within enzyme molecules.

  8. Inactivation of viruses in labile blood derivatives. II. Physical methods

    International Nuclear Information System (INIS)

    Horowitz, B.; Wiebe, M.E.; Lippin, A.; Vandersande, J.; Stryker, M.H.

    1985-01-01

    The thermal inactivation of viruses in labile blood derivatives was evaluated by addition of marker viruses (VSV, Sindbis, Sendai, EMC) to anti-hemophilic factor (AHF) concentrates. The rate of virus inactivation at 60 degrees C was decreased by at least 100- to 700-fold by inclusion of 2.75 M glycine and 50 percent sucrose, or 3.0 M potassium citrate, additives which contribute to retention of protein biologic activity. Nonetheless, at least 10(4) infectious units of each virus was inactivated within 10 hours. Increasing the temperature from 60 to 70 or 80 degrees C caused a 90 percent or greater loss in AHF activity. An even greater decline in the rate of virus inactivation was observed on heating AHF in the lyophilized state, although no loss in AHF activity was observed after 72 hours of heating at 60 degrees C. Several of the proteins present in lyophilized AHF concentrates displayed an altered electrophoretic mobility as a result of exposure to 60 degrees C for 24 hours. Exposure of lyophilized AHF to irradiation from a cobalt 60 source resulted in an acceptable yield of AHF at 1.0, but not at 2.0, megarads. At 1 megarad, greater than or equal to 6.0 logs of VSV and 3.3 logs of Sindbis virus were inactivated

  9. Innate immune response of human alveolar macrophages during influenza A infection.

    Directory of Open Access Journals (Sweden)

    Jieru Wang

    Full Text Available Alveolar macrophages (AM are one of the key cell types for initiating inflammatory and immune responses to influenza virus in the lung. However, the genome-wide changes in response to influenza infection in AM have not been defined. We performed gene profiling of human AM in response to H1N1 influenza A virus PR/8 using Affymetrix HG-U133 Plus 2.0 chips and verified the changes at both mRNA and protein levels by real-time RT-PCR and ELISA. We confirmed the response with a contemporary H3N2 influenza virus A/New York/238/2005 (NY/238. To understand the local cellular response, we also evaluated the impact of paracrine factors on virus-induced chemokine and cytokine secretion. In addition, we investigated the changes in the expression of macrophage receptors and uptake of pathogens after PR/8 infection. Although macrophages fail to release a large amount of infectious virus, we observed a robust induction of type I and type III interferons and several cytokines and chemokines following influenza infection. CXCL9, 10, and 11 were the most highly induced chemokines by influenza infection. UV-inactivation abolished virus-induced cytokine and chemokine response, with the exception of CXCL10. The contemporary influenza virus NY/238 infection of AM induced a similar response as PR/8. Inhibition of TNF and/or IL-1β activity significantly decreased the secretion of the proinflammatory chemokines CCL5 and CXCL8 by over 50%. PR/8 infection also significantly decreased mRNA levels of macrophage receptors including C-type lectin domain family 7 member A (CLEC7A, macrophage scavenger receptor 1 (MSR1, and CD36, and reduced uptake of zymosan. In conclusion, influenza infection induced an extensive proinflammatory response in human AM. Targeting local components of innate immune response might provide a strategy for controlling influenza A infection-induced proinflammatory response in vivo.

  10. Divergent Roles of Interferon-γ and Innate Lymphoid Cells in Innate and Adaptive Immune Cell-Mediated Intestinal Inflammation

    Science.gov (United States)

    Brasseit, Jennifer; Kwong Chung, Cheong K. C.; Noti, Mario; Zysset, Daniel; Hoheisel-Dickgreber, Nina; Genitsch, Vera; Corazza, Nadia; Mueller, Christoph

    2018-01-01

    Aberrant interferon gamma (IFNγ) expression is associated with the pathogenesis of numerous autoimmune- and inflammatory disorders, including inflammatory bowel diseases (IBD). However, the requirement of IFNγ for the pathogenesis of chronic intestinal inflammation remains controversial. The aim of this study was thus to investigate the role of IFNγ in experimental mouse models of innate and adaptive immune cell-mediated intestinal inflammation using genetically and microbiota-stabilized hosts. While we find that IFNγ drives acute intestinal inflammation in the anti-CD40 colitis model in an innate lymphoid cell (ILC)-dependent manner, IFNγ secreted by both transferred CD4 T cells and/or cells of the lymphopenic Rag1−/− recipient mice was dispensable for CD4 T cell-mediated colitis. In the absence of IFNγ, intestinal inflammation in CD4 T cell recipient mice was associated with enhanced IL17 responses; consequently, targeting IL17 signaling in IFNγ-deficient mice reduced T cell-mediated colitis. Intriguingly, in contrast to the anti-CD40 model of colitis, depletion of ILC in the Rag1−/− recipients of colitogenic CD4 T cells did not prevent induction of colonic inflammation. Together, our findings demonstrate that IFNγ represents an essential, or a redundant, pro-inflammatory cytokine for the induction of intestinal inflammation, depending on the experimental mouse model used and on the nature of the critical disease inducing immune cell populations involved. PMID:29416538

  11. The Human Cytomegalovirus Tegument Protein pp65 (pUL83) Dampens Type I Interferon Production by Inactivating the DNA Sensor cGAS without Affecting STING

    DEFF Research Database (Denmark)

    Biolatti, Matteo; Dell'Oste, Valentina; Pautasso, Sara

    2017-01-01

    at the cGAS level. Notably, within the first 24 hours of HCMV infection, STING undergoes proteasome degradation independent of the presence or absence of pp65. Collectively, our data provide mechanistic insights into the interplay between HCMV pp65 and cGAS, leading to subsequent immune evasion...... a viral evasion factor. This study demonstrates that HCMV tegument protein pp65 inhibits IFN-β production by binding and inactivating cGAS early during infection. In addition, this inhibitory activity specifically targets cGAS since it can be bypassed via the addition of exogenous cGAMP, even in presence...... of pp65. Notably, STING proteasome-mediated degradation was observed in both the presence and absence of pp65. Collectively, our data underscore the important role of tegument protein pp65 as a critical molecular hub in HCMV's evasion strategy to the innate immune response....

  12. Oscillatory high hydrostatic pressure inactivation of Zygosaccharomyces bailii.

    Science.gov (United States)

    Palou, E; López-Malo, A; Barbosa-Cánovas, G V; Welti-Chanes, J; Swanson, B G

    1998-09-01

    Zygosaccharomyces bailii inactivation was evaluated in oscillatory high hydrostatic pressure (HHP) treatments at sublethal pressures (207, 241, or 276 MPa) and compared with continuous HHP treatments in laboratory model systems with a water activity (aw) of 0.98 and pH 3.5. The yeast was inoculated into laboratory model systems and subjected to HHP in sterile bags. Two HHP treatments were conducted: continuous (holding times of 5, 10, 15, 20, 30, 60, or 90 min) and oscillatory (two, three, or four cycles with holding times of 5 min and two cycles with holding times of 10 min). Oscillatory pressure treatments increased the effectiveness of HHP processing. For equal holding times, Z. bailii counts decreased as the number of cycles increased. Holding times of 20 min in HHP oscillatory treatments at 276 MPa assured inactivation (bailii initial inoculum. Oscillatory pressurization could be useful to decrease Z. bailii inactivation time.

  13. Inactivation of Listeria monocytogenes in milk by pulsed electric field.

    Science.gov (United States)

    Reina, L D; Jin, Z T; Zhang, Q H; Yousef, A E

    1998-09-01

    Pasteurized whole, 2%, and skim milk were inoculated with Listeria monocytogenes Scott A and treated with high-voltage pulsed electric field (PEF). The effects of milk composition (fat content) and PEF parameters (electric field strength, treatment time, and treatment temperature) on the inactivation of the bacterium were studied. No significant differences were observed in the inactivation of L. monocytogenes Scott A in three types of milk by PEF treatment. With treatment at 25 degrees C, 1- to 3-log reductions of L. monocytogenes were observed. PEF lethal effect was a function of field strength and treatment time. Higher field strength or longer treatment time resulted in a greater reduction of viable cells. A 4-log reduction of the bacterium was obtained by increasing the treatment temperature to 50 degrees C. Results indicate that the use of a high-voltage PEF is a promising technology for inactivation of foodborne pathogens.

  14. Lipase inactivation in wheat germ by gamma irradiation

    International Nuclear Information System (INIS)

    Jha, Pankaj Kumar; Kudachikar, V.B.; Kumar, Sourav

    2013-01-01

    An attempt was made to improve the shelf life of wheat germ by optimizing processing conditions involving γ-irradiation. Studies were carried out to investigate the effect of γ-irradiation (0–30 kGy doses) on the chemical composition of wheat germ with respect to variation in moisture, total ash, crude fat, free fatty acid, protein and lipase activity. The results demonstrate that shelf stability of wheat germ was achieved by inactivation of lipase at doses of γ-irradiation greater than 12 kGy. - Highlights: Ø γ-irradiation was found to inactivate Lipase present in Wheat Germ. Ø The treatment did not result in significant changes in Total Ash, Moisture and Protein Content of Wheat Germ. Ø The irradiation at 30 kGy resulted in 31.2 % inactivation of Lipase in Wheat Germ

  15. Mechanistic studies of the inactivation of tyrosinase by resorcinol.

    Science.gov (United States)

    Stratford, Michael R L; Ramsden, Christopher A; Riley, Patrick A

    2013-03-01

    The inactivation of tyrosinase by resorcinol (1,3-dihydroxybenzene) and seventeen simple derivatives has been investigated using combined spectrophotometry and oximetry together with hplc/ms examination of the oxidation products. The results are consistent with a Quintox mechanism, analogous to that proposed for catechol inactivation of tyrosinase, in which the resorcinol substrate is oxidised via the monooxygenase route leading to a hydroxy intermediate that undergoes deprotonation and results in irreversible elimination of Cu(0) from the active site. Hplc/ms evidence for formation of the resorcinol monooxygenase product (3-hydroxy-ortho-quinone) is presented and the relationship between the ring position of simple resorcinol substituents (H, Me, F, Cl) and tyrosinase inactivation is rationalised. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Lactococcus lactis Thioredoxin Reductase Is Sensitive to Light Inactivation

    DEFF Research Database (Denmark)

    Björnberg, Olof; Viennet, Thibault; Skjoldager, Nicklas

    2015-01-01

    enzymes belong to the same class of low-molecular weight thioredoxin reductases and display similar kcat values (∼25 s-1) with their cognate thioredoxin. Remarkably, however, the L. lactis enzyme is inactivated by visible light and furthermore reduces molecular oxygen 10 times faster than E. coli Trx......R. The rate of light inactivation under standardized conditions (λmax = 460 nm and 4 °C) was reduced at lowered oxygen concentrations and in the presence of iodide. Inactivation was accompanied by a distinct spectral shift of the flavin adenine dinucleotide (FAD) that remained firmly bound. High......-resolution mass spectrometric analysis of heat-extracted FAD from light-damaged TrxR revealed a mass increment of 13.979 Da, relative to that of unmodified FAD, corresponding to the addition of one oxygen atom and the loss of two hydrogen atoms. Tandem mass spectrometry confined the increase in mass...

  17. Thermal inactivation kinetics of partially purified mango pectin methylesterase

    Directory of Open Access Journals (Sweden)

    Claudio Alonso DÍAZ-CRUZ

    2016-01-01

    Full Text Available Abstract Kinetic parameters of thermal inactivation of pectin methylesterase (PME in a partially purified mango enzyme extract were determined. The PME of mango partially purified by salting out showed different patterns of thermal inactivation, indicating the presence of a thermostable fraction at 70 °C and a thermolabile fraction at lower temperatures. The inactivation of the thermostable fraction exhibited a linear behavior that yielded a z-value of 9.44 °C and an activation energy (Ea of 245.6 kJ mol-1 K-1 using the Arrhenius model. The thermostable mango PME fraction represented 17% of total crude enzyme extract, which emphasizes the importance of residual enzyme activity after heat treatment.

  18. Cathepsin D inhibitors

    Directory of Open Access Journals (Sweden)

    M. Gacko

    2007-11-01

    Full Text Available Inhibitors of cathepsin D belong to chemical compounds that estrify carboxyl groups of the Asp33 and Asp231residues of its catalytic site, penta-peptides containing statin, i.e. the amino acid similar in structure to the tetraedric indirectproduct, and polypeptides found in the spare organs of many plants and forming permanent noncovalent complexes withcathepsin. Cathepsin D activity is also inhibited by alpha2-macroglobulin and antibodies directed against this enzyme.Methods used to determine the activity and concentration of these inhibitors and their analytical, preparative and therapeuticapplications are discussed.

  19. Aminocyclopentanols - Potential glycosidase inhibitors

    DEFF Research Database (Denmark)

    Lauritsen, Marie

    Recently several aminocyclopentanols having the aminogroup adjacent to a carbon sidechain, proved to be potent and anomer-selective glycosidase inhibitors.1 The bicyclic lactone 1, which has been synthesised in our group from sugar-derived starting materials, was found to be suited for further...... in the desired position, 3 and 4 were easily converted into the aminocyclopentanols 5 and 6. Other aminocyclopentanols, which have been synthesised from 1, will be presented, and their activities and specificities as glycosidase inhibitors will be discussed....

  20. Aberrant innate immune activation following tissue injury impairs pancreatic regeneration.

    Directory of Open Access Journals (Sweden)

    Alexandra E Folias

    Full Text Available Normal tissue architecture is disrupted following injury, as resident tissue cells become damaged and immune cells are recruited to the site of injury. While injury and inflammation are critical to tissue remodeling, the inability to resolve this response can lead to the destructive complications of chronic inflammation. In the pancreas, acinar cells of the exocrine compartment respond to injury by transiently adopting characteristics of progenitor cells present during embryonic development. This process of de-differentiation creates a window where a mature and stable cell gains flexibility and is potentially permissive to changes in cellular fate. How de-differentiation can turn an acinar cell into another cell type (such as a pancreatic β-cell, or a cell with cancerous potential (as in cases of deregulated Kras activity is of interest to both the regenerative medicine and cancer communities. While it is known that inflammation and acinar de-differentiation increase following pancreatic injury, it remains unclear which immune cells are involved in this process. We used a combination of genetically modified mice, immunological blockade and cellular characterization to identify the immune cells that impact pancreatic regeneration in an in vivo model of pancreatitis. We identified the innate inflammatory response of macrophages and neutrophils as regulators of pancreatic regeneration. Under normal conditions, mild innate inflammation prompts a transient de-differentiation of acinar cells that readily dissipates to allow normal regeneration. However, non-resolving inflammation developed when elevated pancreatic levels of neutrophils producing interferon-γ increased iNOS levels and the pro-inflammatory response of macrophages. Pancreatic injury improved following in vivo macrophage depletion, iNOS inhibition as well as suppression of iNOS levels in macrophages via interferon-γ blockade, supporting the impairment in regeneration and the