WorldWideScience

Sample records for in28 mitosis key

  1. 53BP1 and USP28 mediate p53-dependent cell cycle arrest in response to centrosome loss and prolonged mitosis.

    Science.gov (United States)

    Fong, Chii Shyang; Mazo, Gregory; Das, Tuhin; Goodman, Joshua; Kim, Minhee; O'Rourke, Brian P; Izquierdo, Denisse; Tsou, Meng-Fu Bryan

    2016-07-02

    Mitosis occurs efficiently, but when it is disturbed or delayed, p53-dependent cell death or senescence is often triggered after mitotic exit. To characterize this process, we conducted CRISPR-mediated loss-of-function screens using a cell-based assay in which mitosis is consistently disturbed by centrosome loss. We identified 53BP1 and USP28 as essential components acting upstream of p53, evoking p21-dependent cell cycle arrest in response not only to centrosome loss, but also to other distinct defects causing prolonged mitosis. Intriguingly, 53BP1 mediates p53 activation independently of its DNA repair activity, but requiring its interacting protein USP28 that can directly deubiquitinate p53 in vitro and ectopically stabilize p53 in vivo. Moreover, 53BP1 can transduce prolonged mitosis to cell cycle arrest independently of the spindle assembly checkpoint (SAC), suggesting that while SAC protects mitotic accuracy by slowing down mitosis, 53BP1 and USP28 function in parallel to select against disturbed or delayed mitosis, promoting mitotic efficiency.

  2. Meiosis: An Overview of Key Differences from Mitosis

    Science.gov (United States)

    Ohkura, Hiroyuki

    2015-01-01

    Meiosis is the specialized cell division that generates gametes. In contrast to mitosis, molecular mechanisms and regulation of meiosis are much less understood. Meiosis shares mechanisms and regulation with mitosis in many aspects, but also has critical differences from mitosis. This review highlights these differences between meiosis and mitosis. Recent studies using various model systems revealed differences in a surprisingly wide range of aspects, including cell-cycle regulation, recombination, postrecombination events, spindle assembly, chromosome–spindle interaction, and chromosome segregation. Although a great degree of diversity can be found among organisms, meiosis-specific processes, and regulation are generally conserved. PMID:25605710

  3. Identification of Mitosis-Specific Phosphorylation in Mitotic Chromosome-Associated Proteins.

    Science.gov (United States)

    Ohta, Shinya; Kimura, Michiko; Takagi, Shunsuke; Toramoto, Iyo; Ishihama, Yasushi

    2016-09-02

    During mitosis, phosphorylation of chromosome-associated proteins is a key regulatory mechanism. Mass spectrometry has been successfully applied to determine the complete protein composition of mitotic chromosomes, but not to identify post-translational modifications. Here, we quantitatively compared the phosphoproteome of isolated mitotic chromosomes with that of chromosomes in nonsynchronized cells. We identified 4274 total phosphorylation sites and 350 mitosis-specific phosphorylation sites in mitotic chromosome-associated proteins. Significant mitosis-specific phosphorylation in centromere/kinetochore proteins was detected, although the chromosomal association of these proteins did not change throughout the cell cycle. This mitosis-specific phosphorylation might play a key role in regulation of mitosis. Further analysis revealed strong dependency of phosphorylation dynamics on kinase consensus patterns, thus linking the identified phosphorylation sites to known key mitotic kinases. Remarkably, chromosomal axial proteins such as non-SMC subunits of condensin, TopoIIα, and Kif4A, together with the chromosomal periphery protein Ki67 involved in the establishment of the mitotic chromosomal structure, demonstrated high phosphorylation during mitosis. These findings suggest a novel mechanism for regulation of chromosome restructuring in mitosis via protein phosphorylation. Our study generated a large quantitative database on protein phosphorylation in mitotic and nonmitotic chromosomes, thus providing insights into the dynamics of chromatin protein phosphorylation at mitosis onset.

  4. The SUMO Pathway in Mitosis.

    Science.gov (United States)

    Mukhopadhyay, Debaditya; Dasso, Mary

    2017-01-01

    Mitosis is the stage of the cell cycle during which replicated chromosomes must be precisely divided to allow the formation of two daughter cells possessing equal genetic material. Much of the careful spatial and temporal organization of mitosis is maintained through post-translational modifications, such as phosphorylation and ubiquitination, of key cellular proteins. Here, we will review evidence that sumoylation, conjugation to the SUMO family of small ubiquitin-like modifiers, also serves essential regulatory roles during mitosis. We will discuss the basic biology of sumoylation, how the SUMO pathway has been implicated in particular mitotic functions, including chromosome condensation, centromere/kinetochore organization and cytokinesis, and what cellular proteins may be the targets underlying these phenomena.

  5. SnapShot: Phosphoregulation of Mitosis.

    Science.gov (United States)

    Burgess, Andrew; Vuong, Jenny; Rogers, Samuel; Malumbres, Marcos; O'Donoghue, Seán I

    2017-06-15

    During mitosis, a cell divides its duplicated genome into two identical daughter cells. This process must occur without errors to prevent proliferative diseases (e.g., cancer). A key mechanism controlling mitosis is the precise timing of more than 32,000 phosphorylation and dephosphorylation events by a network of kinases and counterbalancing phosphatases. The identity, magnitude, and temporal regulation of these events have emerged recently, largely from advances in mass spectrometry. Here, we show phosphoevents currently believed to be key regulators of mitosis. For an animated version of this SnapShot, please see http://www.cell.com/cell/enhanced/odonoghue2. Copyright © 2017. Published by Elsevier Inc.

  6. Kinases Involved in Both Autophagy and Mitosis.

    Science.gov (United States)

    Li, Zhiyuan; Zhang, Xin

    2017-08-31

    Both mitosis and autophagy are highly regulated dynamic cellular processes and involve various phosphorylation events catalysed by kinases, which play vital roles in almost all physiological and pathological conditions. Mitosis is a key event during the cell cycle, in which the cell divides into two daughter cells. Autophagy is a process in which the cell digests its own cellular contents. Although autophagy regulation has mainly been studied in asynchronous cells, increasing evidence indicates that autophagy is in fact tightly regulated in mitosis. Here in this review, we will discuss kinases that were originally identified to be involved in only one of either mitosis or autophagy, but were later found to participate in both processes, such as CDKs (cyclin-dependent kinases), Aurora kinases, PLK-1 (polo-like kinase 1), BUB1 (budding uninhibited by benzimidazoles 1), MAPKs (mitogen-activated protein kinases), mTORC1 (mechanistic target of rapamycin complex 1), AMPK (AMP-activated protein kinase), PI3K (phosphoinositide-3 kinase) and protein kinase B (AKT). By focusing on kinases involved in both autophagy and mitosis, we will get a more comprehensive understanding about the reciprocal regulation between the two key cellular events, which will also shed light on their related therapeutic investigations.

  7. Kinases Involved in Both Autophagy and Mitosis

    Directory of Open Access Journals (Sweden)

    Zhiyuan Li

    2017-08-01

    Full Text Available Both mitosis and autophagy are highly regulated dynamic cellular processes and involve various phosphorylation events catalysed by kinases, which play vital roles in almost all physiological and pathological conditions. Mitosis is a key event during the cell cycle, in which the cell divides into two daughter cells. Autophagy is a process in which the cell digests its own cellular contents. Although autophagy regulation has mainly been studied in asynchronous cells, increasing evidence indicates that autophagy is in fact tightly regulated in mitosis. Here in this review, we will discuss kinases that were originally identified to be involved in only one of either mitosis or autophagy, but were later found to participate in both processes, such as CDKs (cyclin-dependent kinases, Aurora kinases, PLK-1 (polo-like kinase 1, BUB1 (budding uninhibited by benzimidazoles 1, MAPKs (mitogen-activated protein kinases, mTORC1 (mechanistic target of rapamycin complex 1, AMPK (AMP-activated protein kinase, PI3K (phosphoinositide-3 kinase and protein kinase B (AKT. By focusing on kinases involved in both autophagy and mitosis, we will get a more comprehensive understanding about the reciprocal regulation between the two key cellular events, which will also shed light on their related therapeutic investigations.

  8. Foci of cyclin A2 interact with actin and RhoA in mitosis.

    Science.gov (United States)

    Loukil, Abdelhalim; Izard, Fanny; Georgieva, Mariya; Mashayekhan, Shaereh; Blanchard, Jean-Marie; Parmeggiani, Andrea; Peter, Marion

    2016-06-09

    Cyclin A2 is a key player in the regulation of the cell cycle. Its degradation in mid-mitosis depends primarily on the ubiquitin-proteasome system (UPS), while autophagy also contributes. However, a fraction of cyclin A2 persists beyond metaphase. In this work, we focus on cyclin A2-rich foci detected in mitosis by high resolution imaging and analyse their movements. We demonstrate that cyclin A2 interacts with actin and RhoA during mitosis, and that cyclin A2 depletion induces a dramatic decrease in active RhoA in mitosis. Our data suggest cyclin A2 participation in RhoA activation in late mitosis.

  9. Poly(ADP-ribosyl)ation is recognized by ECT2 during mitosis.

    Science.gov (United States)

    Li, Mo; Bian, Chunjing; Yu, Xiaochun

    2014-01-01

    Poly(ADP-ribosyl)ation is an unique posttranslational modification and required for spindle assembly and function during mitosis. However, the molecular mechanism of poly(ADP-ribose) (PAR) in mitosis remains elusive. Here, we show the evidence that PAR is recognized by ECT2, a key guanine nucleotide exchange factor in mitosis. The BRCT domain of ECT2 directly binds to PAR both in vitro and in vivo. We further found that α-tubulin is PARylated during mitosis. PARylation of α-tubulin is recognized by ECT2 and recruits ECT2 to mitotic spindle for completing mitosis. Taken together, our study reveals a novel mechanism by which PAR regulates mitosis.

  10. Rescue from replication stress during mitosis.

    Science.gov (United States)

    Fragkos, Michalis; Naim, Valeria

    2017-04-03

    Genomic instability is a hallmark of cancer and a common feature of human disorders, characterized by growth defects, neurodegeneration, cancer predisposition, and aging. Recent evidence has shown that DNA replication stress is a major driver of genomic instability and tumorigenesis. Cells can undergo mitosis with under-replicated DNA or unresolved DNA structures, and specific pathways are dedicated to resolving these structures during mitosis, suggesting that mitotic rescue from replication stress (MRRS) is a key process influencing genome stability and cellular homeostasis. Deregulation of MRRS following oncogene activation or loss-of-function of caretaker genes may be the cause of chromosomal aberrations that promote cancer initiation and progression. In this review, we discuss the causes and consequences of replication stress, focusing on its persistence in mitosis as well as the mechanisms and factors involved in its resolution, and the potential impact of incomplete replication or aberrant MRRS on tumorigenesis, aging and disease.

  11. DeepMitosis: Mitosis detection via deep detection, verification and segmentation networks.

    Science.gov (United States)

    Li, Chao; Wang, Xinggang; Liu, Wenyu; Latecki, Longin Jan

    2018-04-01

    Mitotic count is a critical predictor of tumor aggressiveness in the breast cancer diagnosis. Nowadays mitosis counting is mainly performed by pathologists manually, which is extremely arduous and time-consuming. In this paper, we propose an accurate method for detecting the mitotic cells from histopathological slides using a novel multi-stage deep learning framework. Our method consists of a deep segmentation network for generating mitosis region when only a weak label is given (i.e., only the centroid pixel of mitosis is annotated), an elaborately designed deep detection network for localizing mitosis by using contextual region information, and a deep verification network for improving detection accuracy by removing false positives. We validate the proposed deep learning method on two widely used Mitosis Detection in Breast Cancer Histological Images (MITOSIS) datasets. Experimental results show that we can achieve the highest F-score on the MITOSIS dataset from ICPR 2012 grand challenge merely using the deep detection network. For the ICPR 2014 MITOSIS dataset that only provides the centroid location of mitosis, we employ the segmentation model to estimate the bounding box annotation for training the deep detection network. We also apply the verification model to eliminate some false positives produced from the detection model. By fusing scores of the detection and verification models, we achieve the state-of-the-art results. Moreover, our method is very fast with GPU computing, which makes it feasible for clinical practice. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Movie Mitosis

    Science.gov (United States)

    Bogiages, Christopher; Hitt, Austin M.

    2008-01-01

    Mitosis and meiosis are essential for the growth, development, and reproduction of organisms. Because these processes are essential to life, both are emphasized in biology texts, state standards, and the National Science Education Standards. In this article, the authors present their methodology for teaching mitosis by having students produce…

  13. Presenting Mitosis

    Science.gov (United States)

    Roche, Stephanie; Sterling, Donna R.

    2005-01-01

    When the topic of cell division is introduced in the classroom, students can showcase their interpretations of the stages of mitosis by creating a slide show illustrating prophase, metaphase, anaphase, and telophase (see samples in Figure 1). With the help of a computer, they can create a model of mitosis that will help them distinguish the…

  14. Dysregulation of the mitosis-meiosis switch in testicular carcinoma in situ

    DEFF Research Database (Denmark)

    Jørgensen, Anne; Nielsen, John E; Almstrup, Kristian

    2013-01-01

    , except in spermatocytic seminoma (not derived from CIS). In conclusion, this study indicates that meiosis signalling is dysregulated in CIS cells and that a key regulator of the mitosis-meiosis switch, DMRT1, is expressed in 'early-stage' CIS cells but is down-regulated with further invasive...

  15. Apoptosis and mitosis in the small intestine at radiation injury

    International Nuclear Information System (INIS)

    Hashiguchi, Junichiro; Ito, Masahiro; Onizuka, Shinya; Sekine, Ichiro; Uchida, Shinji

    1990-01-01

    A single whole body irradiation was given at a dose rate of 0.298 Gy/min in 6-week-old male mice. Intestinal crypt apoptosis and mitosis cells were determined by delivering radiation doses of 0.4, 0.6, 1.0, 1.5, 2.0, 5.0, 10.0, and 20.0 Gy. The incidence of apoptosis was linearly increased in a dose-dependent manner up to 5.0 Gy, and thereafter, it was gradually decreased. There was a decreased tendency for mitosis with delivering higher radiation doses. The incidence of apoptosis rapidly increased 2 hours after irradiation with either 0.6 Gy or 2.0 Gy, and reached to the peak 4 hours later. It brought about a 18-fold and 28-fold increase for 0.6 Gy and 2.0 Gy, respectively, relative to that before irradiation. Mitosis cells decreased by half one hour after irradiation with 0.6 Gy, and then returned to the pre-irradiation value through synchronization 24 hours later. The number of cells positive to BrdU was 776 in the group of mice without irradiation and 479 in the group of mice irradiated with 2.0 Gy. (N.K.)

  16. Calcium and Mitosis

    Science.gov (United States)

    Hepler, P.

    1983-01-01

    Although the mechanism of calcium regulation is not understood, there is evidence that calcium plays a role in mitosis. Experiments conducted show that: (1) the spindle apparatus contains a highly developed membrane system that has many characteristics of sarcoplasmic reticulum of muscle; (2) this membrane system contains calcium; and (3) there are ionic fluxes occurring during mitosis which can be seen by a variety of fluorescence probes. Whether the process of mitosis can be modulated by experimentally modulating calcium is discussed.

  17. Parkin Regulates Mitosis and Genomic Stability through Cdc20/Cdh1.

    Science.gov (United States)

    Lee, Seung Baek; Kim, Jung Jin; Nam, Hyun-Ja; Gao, Bowen; Yin, Ping; Qin, Bo; Yi, Sang-Yeop; Ham, Hyoungjun; Evans, Debra; Kim, Sun-Hyun; Zhang, Jun; Deng, Min; Liu, Tongzheng; Zhang, Haoxing; Billadeau, Daniel D; Wang, Liewei; Giaime, Emilie; Shen, Jie; Pang, Yuan-Ping; Jen, Jin; van Deursen, Jan M; Lou, Zhenkun

    2015-10-01

    Mutations in the E3 ubiquitin ligase Parkin have been linked to familial Parkinson's disease. Parkin has also been implicated in mitosis through mechanisms that are unclear. Here we show that Parkin interacts with anaphase promoting complex/cyclosome (APC/C) coactivators Cdc20 and Cdh1 to mediate the degradation of several key mitotic regulators independent of APC/C. We demonstrate that ordered progression through mitosis is orchestrated by two distinct E3 ligases through the shared use of Cdc20 and Cdh1. Furthermore, Parkin is phosphorylated and activated by polo-like kinase 1 (Plk1) during mitosis. Parkin deficiency results in overexpression of its substrates, mitotic defects, genomic instability, and tumorigenesis. These results suggest that the Parkin-Cdc20/Cdh1 complex is an important regulator of mitosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Raptor is phosphorylated by cdc2 during mitosis.

    Directory of Open Access Journals (Sweden)

    Dana M Gwinn

    2010-02-01

    Full Text Available The appropriate control of mitotic entry and exit is reliant on a series of interlocking signaling events that coordinately drive the biological processes required for accurate cell division. Overlaid onto these signals that promote orchestrated cell division are checkpoints that ensure appropriate mitotic spindle formation, a lack of DNA damage, kinetochore attachment, and that each daughter cell has the appropriate complement of DNA. We recently discovered that AMP-activated protein kinase (AMPK modulates the G2/M phase of cell cycle progression in part through its suppression of mammalian target of rapamycin (mTOR signaling. AMPK directly phosphorylates the critical mTOR binding partner raptor inhibiting mTORC1 (mTOR-raptor rapamycin sensitive mTOR kinase complex 1. As mTOR has been previously tied to mitotic control, we examined further how raptor may contribute to this process.We have discovered that raptor becomes highly phosphorylated in cells in mitosis. Utilizing tandem mass spectrometry, we identified a number of novel phosphorylation sites in raptor, and using phospho-specific antibodies demonstrated that raptor becomes phosphorylated on phospho-serine/threonine-proline sites in mitosis. A combination of site-directed mutagenesis in a tagged raptor cDNA and analysis with a series of new phospho-specific antibodies generated against different sites in raptor revealed that Serine 696 and Threonine 706 represent two key sites in raptor phosphorylated in mitosis. We demonstrate that the mitotic cyclin-dependent kinase cdc2/CDK1 is the kinase responsible for phosphorylating these sites, and its mitotic partner Cyclin B efficiently coimmunoprecipitates with raptor in mitotic cells.This study demonstrates that the key mTOR binding partner raptor is directly phosphorylated during mitosis by cdc2. This reinforces previous studies suggesting that mTOR activity is highly regulated and important for mitotic progression, and points to a direct

  19. Nonanaplastic follicular cell-derived thyroid carcinoma: mitosis and necrosis in long-term follow-up.

    Science.gov (United States)

    Skansing, Daniel Bräuner; Londero, Stefano Christian; Asschenfeldt, Pia; Larsen, Stine Rosenkilde; Godballe, Christian

    2017-06-01

    Nonanaplastic follicular cell-derived thyroid carcinoma (NAFCTC) includes differentiated- (DTC) and poorly differentiated thyroid carcinoma (PDTC). DTC has an excellent prognosis, while PDTC is situated between DTC and anaplastic carcinomas. Short-term studies suggest that PDTC patients diagnosed only on tumor necrosis and/or mitosis have a prognosis similar to those diagnosed according to the TURIN proposal. The purpose of this study was to evaluate prognosis for NAFCTC based on long-term follow-up illuminating the significance of tumor necrosis and mitosis. A cohort of 225 patients with NAFCTC was followed more than 20 years. Age, sex, distant metastasis, histology, tumor size, extrathyroidal invasion, lymph node metastasis, tumor necrosis and mitosis were examined as possible prognostic factors. Median follow-up time for patients alive was 28 years (range 20-43 years). Age, distant metastasis, extrathyroidal invasion, tumor size, tumor necrosis and mitosis were independent prognostic factors in multivariate analysis for overall survival (OS). In disease specific survival (DSS) age was not significant. Using only necrosis and/or mitosis as criteria for PDTC the 5-, 10- and 20-year OS for DTC was 87, 79 and 69%, respectively. In DSS it was 95, 92 and 90%. For PDTC the 5-, 10- and 20-year OS was 57, 40 and 25%, respectively. In DSS it was 71, 55 and 48%. Tumor necrosis and mitosis are highly significant prognostic indicators in analysis of long time survival of nonanaplastic follicular cell-derived thyroid carcinoma indicating that a simplification of the actually used criteria for poorly differentiated carcinomas may be justified.

  20. Mitotic Transcriptional Activation: Clearance of Actively Engaged Pol II via Transcriptional Elongation Control in Mitosis.

    Science.gov (United States)

    Liang, Kaiwei; Woodfin, Ashley R; Slaughter, Brian D; Unruh, Jay R; Box, Andrew C; Rickels, Ryan A; Gao, Xin; Haug, Jeffrey S; Jaspersen, Sue L; Shilatifard, Ali

    2015-11-05

    Although it is established that some general transcription factors are inactivated at mitosis, many details of mitotic transcription inhibition (MTI) and its underlying mechanisms are largely unknown. We have identified mitotic transcriptional activation (MTA) as a key regulatory step to control transcription in mitosis for genes with transcriptionally engaged RNA polymerase II (Pol II) to activate and transcribe until the end of the gene to clear Pol II from mitotic chromatin, followed by global impairment of transcription reinitiation through MTI. Global nascent RNA sequencing and RNA fluorescence in situ hybridization demonstrate the existence of transcriptionally engaged Pol II in early mitosis. Both genetic and chemical inhibition of P-TEFb in mitosis lead to delays in the progression of cell division. Together, our study reveals a mechanism for MTA and MTI whereby transcriptionally engaged Pol II can progress into productive elongation and finish transcription to allow proper cellular division. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Apoptosis and mitosis as prognostic factors in pathologically staged N1 nonsmall cell lung cancer

    International Nuclear Information System (INIS)

    Komaki, Ritsuko; Fujii, Takashi; Perkins, Penny; Ro, Jae Y.; Allen, Pamela K.; Mason, Kathryn A.; Mountain, Clifton F.; Milas, Luka

    1996-01-01

    Purpose: This study aimed to establish whether spontaneous apoptosis or mitosis has prognostic value among patients with pathologically staged N1 nonsmall cell lung carcinoma (NSCLC) treated with surgical resection with or without adjuvant therapy. Methods and Materials: Material from 173 patients who had resections between 1970 and 1988 was analyzed for apoptosis and mitosis. There were 128 men and 45 women, with a median age of 61 years. There were 86 squamous cell carcinomas (SQ), 73 adenocarcinomas (AC), 3 large-cell carcinomas (LC), 6 SQ-AC, and 5 unclassified. Patients were observed from 2 to 209 months (median 27). Actuarial methods were used to assess survival and freedom from distant metastasis. Results: In NSCLC, apoptosis was found to range from 0.2% to 2.8% (median 1.0%) and mitosis from 0 to 1.8% (median 0.4%). Tumors having higher levels of apoptosis also had higher levels of mitosis (p = 0.001). The values of neither apoptosis nor mitosis depended on size, location, differentiation of tumors, age, performance status, or weight loss of patients. However, the values of apoptosis depended on tumor histology in that high values (greater than or equal to the median) were more frequent in SQ (49%) than in AC/LC (29%) (p 0.01). The overall survival for NSCLC patients, which was 33% at 5 years, did not depend on the level of either apoptosis or mitosis. The 5-year survival of patients having SQ was higher (43%) than that of patients having AC/LC (21%) (p = 0.03). Patients with high apoptosis showed significantly better 5-year overall (p = 0.008) and DMF (p = 0.0012) survivals in the SQ group compared to the AC/LC group. High mitosis compared to low mitosis was a significantly better predictor for 5-year survival (62% vs. 29%, respectively) (p = 0.035) in the SQ. However, high mitosis was a significantly worse 5-year DMF survival predictor compared to low mitosis: 13% vs. 56%, respectively (p = 0.05) in AC/LC. In the multivariate models for AC/LC, mitosis

  2. p21 is Responsible for Ionizing Radiation-induced Bypass of Mitosis.

    Science.gov (United States)

    Zhang, Xu Rui; Liu, Yong Ai; Sun, Fang; Li, He; Lei, Su Wen; Wang, Ju Fang

    2016-07-01

    To explore the role of p21 in ionizing radiation-induced changes in protein levels during the G2/M transition and long-term G2 arrest. Protein expression levels were assessed by western blot in the human uveal melanoma 92-1 cells after treatment with ionizing radiation. Depletion of p21 was carried out by employing the siRNA technique. Cell cycle distribution was determined by flow cytometry combined with histone H3 phosphorylation at Ser28, an M-phase marker. Senescence was assessed by senescence- associated-β-galactosidase (SA-β-gal) staining combined with Ki67 staining, a cell proliferation marker. Accompanying increased p21, the protein levels of G2/M transition genes declined significantly in 92-1 cells irradiated with 5 Gy of X-rays. Furthermore, these irradiated cells were blocked at the G2 phase followed by cellular senescence. Depletion of p21 rescued radiation-induced G2 arrest as demonstrated by the upregulation of G2/M transition kinases, as well as the high expression of histone H3 phosphorylated at Ser28. Knockdown of p21 resulted in entry into mitosis of irradiated 92-1 cells. However, cells with serious DNA damage failed to undergo cytokinesis, leading to the accumulation of multinucleated cells. Our results indicated that p21 was responsible for the downregulation of G2/M transition regulatory proteins and the bypass of mitosis induced by irradiation. Downregulation of p21 by siRNA resulted in G2-arrested cells entering into mitosis with serious DNA damage. This is the first report on elucidating the role of p21 in the bypass of mitosis. Copyright © 2016 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  3. Imaging Mitosis in the Moss Physcomitrella patens.

    Science.gov (United States)

    Yamada, Moé; Miki, Tomohiro; Goshima, Gohta

    2016-01-01

    At first glance, mitosis in plants looks quite different from that in animals. In fact, terrestrial plants have lost the centrosome during evolution, and the mitotic spindle is assembled independently of a strong microtubule organizing center. The phragmoplast is a plant-specific mitotic apparatus formed after anaphase, which expands centrifugally towards the cell cortex. However, the extent to which plant mitosis differs from that of animals at the level of the protein repertoire is uncertain, largely because of the difficulty in the identification and in vivo characterization of mitotic genes of plants. Here, we discuss protocols for mitosis imaging that can be combined with endogenous green fluorescent protein (GFP) tagging or conditional RNA interference (RNAi) in the moss Physcomitrella patens, which is an emergent model plant for cell and developmental biology. This system has potential for use in the high-throughput study of mitosis and other intracellular processes, as is being done with various animal cell lines.

  4. Cdc15 Phosphorylates the C-terminal Domain of RNA Polymerase II for Transcription during Mitosis.

    Science.gov (United States)

    Singh, Amit Kumar; Rastogi, Shivangi; Shukla, Harish; Asalam, Mohd; Rath, Srikanta Kumar; Akhtar, Md Sohail

    2017-03-31

    In eukaryotes, the basal transcription in interphase is orchestrated through the regulation by kinases (Kin28, Bur1, and Ctk1) and phosphatases (Ssu72, Rtr1, and Fcp1), which act through the post-translational modification of the C-terminal domain (CTD) of the largest subunit of RNA polymerase II. The CTD comprises the repeated Tyr-Ser-Pro-Thr-Ser-Pro-Ser motif with potential epigenetic modification sites. Despite the observation of transcription and periodic expression of genes during mitosis with entailing CTD phosphorylation and dephosphorylation, the associated CTD specific kinase(s) and its role in transcription remains unknown. Here we have identified Cdc15 as a potential kinase phosphorylating Ser-2 and Ser-5 of CTD for transcription during mitosis in the budding yeast. The phosphorylation of CTD by Cdc15 is independent of any prior Ser phosphorylation(s). The inactivation of Cdc15 causes reduction of global CTD phosphorylation during mitosis and affects the expression of genes whose transcript levels peak during mitosis. Cdc15 also influences the complete transcription of clb2 gene and phosphorylates Ser-5 at the promoter and Ser-2 toward the 3' end of the gene. The observation that Cdc15 could phosphorylate Ser-5, as well as Ser-2, during transcription in mitosis is in contrast to the phosphorylation marks put by the kinases in interphase (G 1 , S, and G 2 ), where Cdck7/Kin28 phosphorylates Ser-5 at promoter and Bur1/Ctk1 phosphorylates Ser-2 at the 3' end of the genes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Live imaging of mitosis in the developing mouse embryonic cortex.

    Science.gov (United States)

    Pilaz, Louis-Jan; Silver, Debra L

    2014-06-04

    Although of short duration, mitosis is a complex and dynamic multi-step process fundamental for development of organs including the brain. In the developing cerebral cortex, abnormal mitosis of neural progenitors can cause defects in brain size and function. Hence, there is a critical need for tools to understand the mechanisms of neural progenitor mitosis. Cortical development in rodents is an outstanding model for studying this process. Neural progenitor mitosis is commonly examined in fixed brain sections. This protocol will describe in detail an approach for live imaging of mitosis in ex vivo embryonic brain slices. We will describe the critical steps for this procedure, which include: brain extraction, brain embedding, vibratome sectioning of brain slices, staining and culturing of slices, and time-lapse imaging. We will then demonstrate and describe in detail how to perform post-acquisition analysis of mitosis. We include representative results from this assay using the vital dye Syto11, transgenic mice (histone H2B-EGFP and centrin-EGFP), and in utero electroporation (mCherry-α-tubulin). We will discuss how this procedure can be best optimized and how it can be modified for study of genetic regulation of mitosis. Live imaging of mitosis in brain slices is a flexible approach to assess the impact of age, anatomy, and genetic perturbation in a controlled environment, and to generate a large amount of data with high temporal and spatial resolution. Hence this protocol will complement existing tools for analysis of neural progenitor mitosis.

  6. Live Imaging of Mitosis in the Developing Mouse Embryonic Cortex

    OpenAIRE

    Pilaz, Louis-Jan; Silver, Debra L.

    2014-01-01

    Although of short duration, mitosis is a complex and dynamic multi-step process fundamental for development of organs including the brain. In the developing cerebral cortex, abnormal mitosis of neural progenitors can cause defects in brain size and function. Hence, there is a critical need for tools to understand the mechanisms of neural progenitor mitosis. Cortical development in rodents is an outstanding model for studying this process. Neural progenitor mitosis is commonly examined in fixe...

  7. Promoters active in interphase are bookmarked during mitosis by ubiquitination

    Science.gov (United States)

    Arora, Mansi; Zhang, Jie; Heine, George F.; Ozer, Gulcin; Liu, Hui-wen; Huang, Kun; Parvin, Jeffrey D.

    2012-01-01

    We analyzed modification of chromatin by ubiquitination in human cells and whether this mark changes through the cell cycle. HeLa cells were synchronized at different stages and regions of the genome with ubiquitinated chromatin were identified by affinity purification coupled with next-generation sequencing. During interphase, ubiquitin marked the chromatin on the transcribed regions of ∼70% of highly active genes and deposition of this mark was sensitive to transcriptional inhibition. Promoters of nearly half of the active genes were highly ubiquitinated specifically during mitosis. The ubiquitination at the coding regions in interphase but not at promoters during mitosis was enriched for ubH2B and dependent on the presence of RNF20. Ubiquitin labeling of both promoters during mitosis and transcribed regions during interphase, correlated with active histone marks H3K4me3 and H3K36me3 but not a repressive histone modification, H3K27me3. The high level of ubiquitination at the promoter chromatin during mitosis was transient and was removed within 2 h after the cells exited mitosis and entered the next cell cycle. These results reveal that the ubiquitination of promoter chromatin during mitosis is a bookmark identifying active genes during chromosomal condensation in mitosis, and we suggest that this process facilitates transcriptional reactivation post-mitosis. PMID:22941662

  8. Nucleocytoplasmic protein translocation during mitosis in the social amoebozoan Dictyostelium discoideum.

    Science.gov (United States)

    O'Day, Danton H; Budniak, Aldona

    2015-02-01

    Mitosis is a fundamental and essential life process. It underlies the duplication and survival of all cells and, as a result, all eukaryotic organisms. Since uncontrolled mitosis is a dreaded component of many cancers, a full understanding of the process is critical. Evolution has led to the existence of three types of mitosis: closed, open, and semi-open. The significance of these different mitotic species, how they can lead to a full understanding of the critical events that underlie the asexual duplication of all cells, and how they may generate new insights into controlling unregulated cell division remains to be determined. The eukaryotic microbe Dictyostelium discoideum has proved to be a valuable biomedical model organism. While it appears to utilize closed mitosis, a review of the literature suggests that it possesses a form of mitosis that lies in the middle between truly open and fully closed mitosis-it utilizes a form of semi-open mitosis. Here, the nucleocytoplasmic translocation patterns of the proteins that have been studied during mitosis in the social amoebozoan D. discoideum are detailed followed by a discussion of how some of them provide support for the hypothesis of semi-open mitosis. © 2014 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.

  9. The DNA damage response during mitosis

    International Nuclear Information System (INIS)

    Heijink, Anne Margriet; Krajewska, Małgorzata; Vugt, Marcel A.T.M. van

    2013-01-01

    Cells are equipped with a cell-intrinsic signaling network called the DNA damage response (DDR). This signaling network recognizes DNA lesions and initiates various downstream pathways to coordinate a cell cycle arrest with the repair of the damaged DNA. Alternatively, the DDR can mediate clearance of affected cells that are beyond repair through apoptosis or senescence. The DDR can be activated in response to DNA damage throughout the cell cycle, although the extent of DDR signaling is different in each cell cycle phase. Especially in response to DNA double strand breaks, only a very marginal response was observed during mitosis. Early on it was recognized that cells which are irradiated during mitosis continued division without repairing broken chromosomes. Although these initial observations indicated diminished DNA repair and lack of an acute DNA damage-induced cell cycle arrest, insight into the mechanistic re-wiring of DDR signaling during mitosis was only recently provided. Different mechanisms appear to be at play to inactivate specific signaling axes of the DDR network in mitosis. Importantly, mitotic cells not simply inactivate the entire DDR, but appear to mark their DNA damage for repair after mitotic exit. Since the treatment of cancer frequently involves agents that induce DNA damage as well as agents that block mitotic progression, it is clinically relevant to obtain a better understanding of how cancer cells deal with DNA damage during interphase versus mitosis. In this review, the molecular details concerning DDR signaling during mitosis as well as the consequences of encountering DNA damage during mitosis for cellular fate are discussed

  10. The DNA damage response during mitosis

    Energy Technology Data Exchange (ETDEWEB)

    Heijink, Anne Margriet; Krajewska, Małgorzata; Vugt, Marcel A.T.M. van, E-mail: m.vugt@umcg.nl

    2013-10-15

    Cells are equipped with a cell-intrinsic signaling network called the DNA damage response (DDR). This signaling network recognizes DNA lesions and initiates various downstream pathways to coordinate a cell cycle arrest with the repair of the damaged DNA. Alternatively, the DDR can mediate clearance of affected cells that are beyond repair through apoptosis or senescence. The DDR can be activated in response to DNA damage throughout the cell cycle, although the extent of DDR signaling is different in each cell cycle phase. Especially in response to DNA double strand breaks, only a very marginal response was observed during mitosis. Early on it was recognized that cells which are irradiated during mitosis continued division without repairing broken chromosomes. Although these initial observations indicated diminished DNA repair and lack of an acute DNA damage-induced cell cycle arrest, insight into the mechanistic re-wiring of DDR signaling during mitosis was only recently provided. Different mechanisms appear to be at play to inactivate specific signaling axes of the DDR network in mitosis. Importantly, mitotic cells not simply inactivate the entire DDR, but appear to mark their DNA damage for repair after mitotic exit. Since the treatment of cancer frequently involves agents that induce DNA damage as well as agents that block mitotic progression, it is clinically relevant to obtain a better understanding of how cancer cells deal with DNA damage during interphase versus mitosis. In this review, the molecular details concerning DDR signaling during mitosis as well as the consequences of encountering DNA damage during mitosis for cellular fate are discussed.

  11. Preferential Phosphorylation on Old Histones during Early Mitosis in Human Cells.

    Science.gov (United States)

    Lin, Shu; Yuan, Zuo-Fei; Han, Yumiao; Marchione, Dylan M; Garcia, Benjamin A

    2016-07-15

    How histone post-translational modifications (PTMs) are inherited through the cell cycle remains poorly understood. Canonical histones are made in the S phase of the cell cycle. Combining mass spectrometry-based technologies and stable isotope labeling by amino acids in cell culture, we question the distribution of multiple histone PTMs on old versus new histones in synchronized human cells. We show that histone PTMs can be grouped into three categories according to their distributions. Most lysine mono-methylation and acetylation PTMs are either symmetrically distributed on old and new histones or are enriched on new histones. In contrast, most di- and tri-methylation PTMs are enriched on old histones, suggesting that the inheritance of different PTMs is regulated distinctly. Intriguingly, old and new histones are distinct in their phosphorylation status during early mitosis in the following three human cell types: HeLa, 293T, and human foreskin fibroblast cells. The mitotic hallmark H3S10ph is predominantly associated with old H3 at early mitosis and becomes symmetric with the progression of mitosis. This same distribution was observed with other mitotic phosphorylation marks, including H3T3/T6ph, H3.1/2S28ph, and H1.4S26ph but not S28/S31ph on the H3 variant H3.3. Although H3S10ph often associates with the neighboring Lys-9 di- or tri-methylations, they are not required for the asymmetric distribution of Ser-10 phosphorylation on the same H3 tail. Inhibition of the kinase Aurora B does not change the distribution despite significant reduction of H3S10ph levels. However, K9me2 abundance on the new H3 is significantly reduced after Aurora B inhibition, suggesting a cross-talk between H3S10ph and H3K9me2. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Preferential Phosphorylation on Old Histones during Early Mitosis in Human Cells*

    Science.gov (United States)

    Lin, Shu; Yuan, Zuo-Fei; Han, Yumiao; Marchione, Dylan M.; Garcia, Benjamin A.

    2016-01-01

    How histone post-translational modifications (PTMs) are inherited through the cell cycle remains poorly understood. Canonical histones are made in the S phase of the cell cycle. Combining mass spectrometry-based technologies and stable isotope labeling by amino acids in cell culture, we question the distribution of multiple histone PTMs on old versus new histones in synchronized human cells. We show that histone PTMs can be grouped into three categories according to their distributions. Most lysine mono-methylation and acetylation PTMs are either symmetrically distributed on old and new histones or are enriched on new histones. In contrast, most di- and tri-methylation PTMs are enriched on old histones, suggesting that the inheritance of different PTMs is regulated distinctly. Intriguingly, old and new histones are distinct in their phosphorylation status during early mitosis in the following three human cell types: HeLa, 293T, and human foreskin fibroblast cells. The mitotic hallmark H3S10ph is predominantly associated with old H3 at early mitosis and becomes symmetric with the progression of mitosis. This same distribution was observed with other mitotic phosphorylation marks, including H3T3/T6ph, H3.1/2S28ph, and H1.4S26ph but not S28/S31ph on the H3 variant H3.3. Although H3S10ph often associates with the neighboring Lys-9 di- or tri-methylations, they are not required for the asymmetric distribution of Ser-10 phosphorylation on the same H3 tail. Inhibition of the kinase Aurora B does not change the distribution despite significant reduction of H3S10ph levels. However, K9me2 abundance on the new H3 is significantly reduced after Aurora B inhibition, suggesting a cross-talk between H3S10ph and H3K9me2. PMID:27226594

  13. The DNA damage response during mitosis.

    Science.gov (United States)

    Heijink, Anne Margriet; Krajewska, Małgorzata; van Vugt, Marcel A T M

    2013-10-01

    Cells are equipped with a cell-intrinsic signaling network called the DNA damage response (DDR). This signaling network recognizes DNA lesions and initiates various downstream pathways to coordinate a cell cycle arrest with the repair of the damaged DNA. Alternatively, the DDR can mediate clearance of affected cells that are beyond repair through apoptosis or senescence. The DDR can be activated in response to DNA damage throughout the cell cycle, although the extent of DDR signaling is different in each cell cycle phase. Especially in response to DNA double strand breaks, only a very marginal response was observed during mitosis. Early on it was recognized that cells which are irradiated during mitosis continued division without repairing broken chromosomes. Although these initial observations indicated diminished DNA repair and lack of an acute DNA damage-induced cell cycle arrest, insight into the mechanistic re-wiring of DDR signaling during mitosis was only recently provided. Different mechanisms appear to be at play to inactivate specific signaling axes of the DDR network in mitosis. Importantly, mitotic cells not simply inactivate the entire DDR, but appear to mark their DNA damage for repair after mitotic exit. Since the treatment of cancer frequently involves agents that induce DNA damage as well as agents that block mitotic progression, it is clinically relevant to obtain a better understanding of how cancer cells deal with DNA damage during interphase versus mitosis. In this review, the molecular details concerning DDR signaling during mitosis as well as the consequences of encountering DNA damage during mitosis for cellular fate are discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. TopBP1-mediated DNA processing during mitosis.

    Science.gov (United States)

    Gallina, Irene; Christiansen, Signe Korbo; Pedersen, Rune Troelsgaard; Lisby, Michael; Oestergaard, Vibe H

    2016-01-01

    Maintenance of genome integrity is crucial to avoid cancer and other genetic diseases. Thus faced with DNA damage, cells mount a DNA damage response to avoid genome instability. The DNA damage response is partially inhibited during mitosis presumably to avoid erroneous processing of the segregating chromosomes. Yet our recent study shows that TopBP1-mediated DNA processing during mitosis is highly important to reduce transmission of DNA damage to daughter cells. (1) Here we provide an overview of the DNA damage response and DNA repair during mitosis. One role of TopBP1 during mitosis is to stimulate unscheduled DNA synthesis at underreplicated regions. We speculated that such genomic regions are likely to hold stalled replication forks or post-replicative gaps, which become the substrate for DNA synthesis upon entry into mitosis. Thus, we addressed whether the translesion pathways for fork restart or post-replicative gap filling are required for unscheduled DNA synthesis in mitosis. Using genetics in the avian DT40 cell line, we provide evidence that unscheduled DNA synthesis in mitosis does not require the translesion synthesis scaffold factor Rev1 or PCNA ubiquitylation at K164, which serve to recruit translesion polymerases to stalled forks. In line with this finding, translesion polymerase η foci do not colocalize with TopBP1 or FANCD2 in mitosis. Taken together, we conclude that TopBP1 promotes unscheduled DNA synthesis in mitosis independently of the examined translesion polymerases.

  15. Mitosis-associated repression in development.

    Science.gov (United States)

    Esposito, Emilia; Lim, Bomyi; Guessous, Ghita; Falahati, Hanieh; Levine, Michael

    2016-07-01

    Transcriptional repression is a pervasive feature of animal development. Here, we employ live-imaging methods to visualize the Snail repressor, which establishes the boundary between the presumptive mesoderm and neurogenic ectoderm of early Drosophila embryos. Snail target enhancers were attached to an MS2 reporter gene, permitting detection of nascent transcripts in living embryos. The transgenes exhibit initially broad patterns of transcription but are refined by repression in the mesoderm following mitosis. These observations reveal a correlation between mitotic silencing and Snail repression. We propose that mitosis and other inherent discontinuities in transcription boost the activities of sequence-specific repressors, such as Snail. © 2016 Esposito et al.; Published by Cold Spring Harbor Laboratory Press.

  16. Effects of copper on mitosis

    Energy Technology Data Exchange (ETDEWEB)

    Kostal, L

    1971-01-01

    The author deals with the effects of copper on mitosis. He found that a Cu concentration of 1 mg per liter is very toxic and strongly inhibits the course of mitosis in Vicia fabia. The effects of 0.5 mg and 0.25 mg Cu concentrations per liter were similar but a much weaker character.

  17. Students as "Humans Chromosomes" in Role-Playing Mitosis and Meiosis

    Science.gov (United States)

    Chinnici, Joseph P.; Yue, Joyce W.; Torres, Kieron M.

    2004-01-01

    Students often find it challenging to understand mitosis and meiosis and determine their processes. To develop an easier way to understand these terms, students are asked to role-play mitosis and meiosis and students themselves act as human chromosomes, which help students to learn differences between mitosis and meiosis.

  18. Regulation of mRNA translation during mitosis.

    Science.gov (United States)

    Tanenbaum, Marvin E; Stern-Ginossar, Noam; Weissman, Jonathan S; Vale, Ronald D

    2015-08-25

    Passage through mitosis is driven by precisely-timed changes in transcriptional regulation and protein degradation. However, the importance of translational regulation during mitosis remains poorly understood. Here, using ribosome profiling, we find both a global translational repression and identified ~200 mRNAs that undergo specific translational regulation at mitotic entry. In contrast, few changes in mRNA abundance are observed, indicating that regulation of translation is the primary mechanism of modulating protein expression during mitosis. Interestingly, 91% of the mRNAs that undergo gene-specific regulation in mitosis are translationally repressed, rather than activated. One of the most pronounced translationally-repressed genes is Emi1, an inhibitor of the anaphase promoting complex (APC) which is degraded during mitosis. We show that full APC activation requires translational repression of Emi1 in addition to its degradation. These results identify gene-specific translational repression as a means of controlling the mitotic proteome, which may complement post-translational mechanisms for inactivating protein function.

  19. Mitosis.

    Science.gov (United States)

    Henderson, Paula

    Cytology is the subject that is dealt with in this autoinstructional program. The process to be understood by secondary school students who are taking biology is mitosis. The material is presented to be adequate for achievers at the middle level. Knowledge of the structure of the DNA molecule and of the parts of the cell are considered as…

  20. Anther-preferential expressing gene PMR is essential for the mitosis of pollen development in rice.

    Science.gov (United States)

    Liu, Yaqin; Xu, Ya; Ling, Sheng; Liu, Shasha; Yao, Jialing

    2017-06-01

    Phenotype identification, expression examination, and function prediction declared that the anther-preferential expressing gene PMR may participate in regulation of male gametophyte development in rice. Male germline development in flowering plants produces the pair of sperm cells for double fertilization and the pollen mitosis is a key process of it. Although the structural features of male gametophyte have been defined, the molecular mechanisms regulating the mitotic cell cycle are not well elucidated in rice. Here, we reported an anther-preferential expressing gene in rice, PMR (Pollen Mitosis Relative), playing an essential role in male gametogenesis. When PMR gene was suppressed via RNAi, the mitosis of microspore was severely damaged, and the plants formed unmatured pollens containing only one or two nucleuses at the anthesis, ultimately leading to serious reduction of pollen fertility and seed-setting. The CRISPR mutants, pmr-1 and pmr-2, both showed the similar defects as the PMR-RNAi lines. Further analysis revealed that PMR together with its co-expressing genes were liable to participate in the regulation of DNA metabolism in the nucleus, and affected the activities of some enzymes related to the cell cycle. We finally discussed that unknown protein PMR contained the PHD, SWIB and Plus-3 domains and they might have coordinating functions in regulation pathway of the pollen mitosis in rice.

  1. Fresh WNT into the regulation of mitosis.

    Science.gov (United States)

    Stolz, Ailine; Bastians, Holger

    2015-01-01

    Canonical Wnt signaling triggering β-catenin-dependent gene expression contributes to cell cycle progression, in particular at the G1/S transition. Recently, however, it became clear that the cell cycle can also feed back on Wnt signaling at the G2/M transition. This is illustrated by the fact that mitosis-specific cyclin-dependent kinases can phosphorylate the Wnt co-receptor LRP6 to prime the pathway for incoming Wnt signals when cells enter mitosis. In addition, there is accumulating evidence that various Wnt pathway components might exert additional, Wnt-independent functions that are important for proper regulation of mitosis. The importance of Wnt pathways during mitosis was most recently enforced by the discovery of Wnt signaling contributing to the stabilization of proteins other than β-catenin, specifically at G2/M and during mitosis. This Wnt-mediated stabilization of proteins, now referred to as Wnt/STOP, might on one hand contribute to maintaining a critical cell size required for cell division and, on the other hand, for the faithful execution of mitosis itself. In fact, most recently we have shown that Wnt/STOP is required for ensuring proper microtubule dynamics within mitotic spindles, which is pivotal for accurate chromosome segregation and for the maintenance of euploidy.

  2. Action of mercury in plant mitosis II

    Energy Technology Data Exchange (ETDEWEB)

    Lorente, R

    1972-01-01

    The cytological abnormalities induced by mercurochrome on mitosis and meiosis of Allium cepa are studied and the capacity of the chemical agent to induce c-mitosis is shown. Inhibition of the cytokinetic process as well as alterations of the nucleoli and pollen-mother cells (from pachytene to division II) have also been observed. These cytological effects may be ascribed to the affinity of the mercurial compounds for the thyolic groups existing in the nucleoproteins and protoplasmic proteins, with the subsequent inhibitory effect on the enzymatic mechanisms.

  3. Role-Playing Mitosis.

    Science.gov (United States)

    Wyn, Mark A.; Stegink, Steven J.

    2000-01-01

    Introduces a role playing activity that actively engages students in the learning process of mitosis. Students play either chromosomes carrying information, or cells in the cell membrane. (Contains 11 references.) (Author/YDS)

  4. Meeting report--Getting Into and Out of Mitosis.

    Science.gov (United States)

    Mchedlishvili, Nunu; Jonak, Katarzyna; Saurin, Adrian T

    2015-11-15

    The Company of Biologists Workshop 'Getting Into and Out of Mitosis' was held 10-13 May 2015 at Wiston House in West Sussex, UK. The workshop brought together researchers from wide-ranging disciplines and provided a forum to discuss their latest work on the control of cell division from mitotic entry to exit. This report highlights the main topics and summarises the discussion around the key themes and questions that emerged from the meeting. © 2015. Published by The Company of Biologists Ltd.

  5. The role of model organisms in the history of mitosis research.

    Science.gov (United States)

    Yanagida, Mitsuhiro

    2014-09-02

    Mitosis is a cell-cycle stage during which condensed chromosomes migrate to the middle of the cell and segregate into two daughter nuclei before cytokinesis (cell division) with the aid of a dynamic mitotic spindle. The history of mitosis research is quite long, commencing well before the discovery of DNA as the repository of genetic information. However, great and rapid progress has been made since the introduction of recombinant DNA technology and discovery of universal cell-cycle control. A large number of conserved eukaryotic genes required for the progression from early to late mitotic stages have been discovered, confirming that DNA replication and mitosis are the two main events in the cell-division cycle. In this article, a historical overview of mitosis is given, emphasizing the importance of diverse model organisms that have been used to solve fundamental questions about mitosis. Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved.

  6. The Functional Role of TopBP1 in DNA Maintenance at Mitosis

    DEFF Research Database (Denmark)

    Pedersen, Rune Troelsgaard

    When cells traverse mitosis, genome integrity of the emerging daughter cells is dependent on replication of the entire genome during the preceding S-phase and accurate chromosome segregation in mitosis. Replication stress may cause cells to enter mitosis with underreplicated loci, consisting...... can lead to anaphase bridges that impair accurate chromosome segregation. The recent decade featured many advances in our understanding of how cells cope with underreplicated loci in mitosis. A major advance was the description of ultra-fine anaphase bridges (UFBs), a class of anaphase bridges...... established Saccharomyces cerevisiae as a model organism to study anaphase bridges, and we identified Dpb11/TopBP1 as a novel UFB-associated protein in yeast and avian DT40 cells, respectively. TopBP1 localized to confined areas on replication-stress induced UFBs. Upon onset of mitosis we observed a burst...

  7. Bora and Aurora-A continue to activate Plk1 in mitosis.

    Science.gov (United States)

    Bruinsma, Wytse; Macurek, Libor; Freire, Raimundo; Lindqvist, Arne; Medema, René H

    2014-02-15

    Polo-like kinase-1 (Plk1) is required for proper cell division. Activation of Plk1 requires phosphorylation on a conserved threonine in the T-loop of the kinase domain (T210). Plk1 is first phosphorylated on T210 in G2 phase by the kinase Aurora-A, in concert with its cofactor Bora. However, Bora was shown to be degraded prior to entry into mitosis, and it is currently unclear how Plk1 activity is sustained in mitosis. Here we show that the Bora-Aurora-A complex remains the major activator of Plk1 in mitosis. We show that a small amount of Aurora-A activity is sufficient to phosphorylate and activate Plk1 in mitosis. In addition, a fraction of Bora is retained in mitosis, which is essential for continued Aurora-A-dependent T210 phosphorylation of Plk1. We find that once Plk1 is activated, minimal amounts of the Bora-Aurora-A complex are sufficient to sustain Plk1 activity. Thus, the activation of Plk1 by Aurora-A may function as a bistable switch; highly sensitive to inhibition of Aurora-A in its initial activation, but refractory to fluctuations in Aurora-A activity once Plk1 is fully activated. This provides a cell with robust Plk1 activity once it has committed to mitosis.

  8. Autophagic flux is highly active in early mitosis and differentially regulated throughout the cell cycle.

    Science.gov (United States)

    Li, Zhiyuan; Ji, Xinmiao; Wang, Dongmei; Liu, Juanjuan; Zhang, Xin

    2016-06-28

    Mitosis is a fast process that involves dramatic cellular remodeling and has a high energy demand. Whether autophagy is active or inactive during the early stages of mitosis in a naturally dividing cell is still debated. Here we aimed to use multiple assays to resolve this apparent discrepancy. Although the LC3 puncta number was reduced in mitosis, the four different cell lines we tested all have active autophagic flux in both interphase and mitosis. In addition, the autophagic flux was highly active in nocodazole-induced, double-thymidine synchronization released as well as naturally occurring mitosis in HeLa cells. Multiple autophagy proteins are upregulated in mitosis and the increased Beclin-1 level likely contributes to the active autophagic flux in early mitosis. It is interesting that although the autophagic flux is active throughout the cell cycle, early mitosis and S phase have relatively higher autophagic flux than G1 and late G2 phases, which might be helpful to degrade the damaged organelles and provide energy during S phase and mitosis.

  9. Comparative proteomics of mitosis and meiosis in Saccharomyces cerevisiae.

    Science.gov (United States)

    Kumar, Ravinder; Dhali, Snigdha; Srikanth, Rapole; Ghosh, Santanu Kumar; Srivastava, Sanjeeva

    2014-09-23

    Precise and timely segregation of genetic material and conservation of ploidy are the two foremost requirements for survival of a eukaryotic organism. Two highly regulated cell division processes, namely mitosis and meiosis are central to achieve this objective. The modes of chromosome segregation are distinct in these two processes that generate progeny cells of equal ploidy and half the ploidy in mitosis and meiosis, respectively. Additionally, the nutritional requirement and intracellular processing of biological cue also differ in these two processes. From this, it can be envisaged that proteome of mitotic and meiotic cells will differ significantly. Therefore, identification of proteins that differ in their level of expression between mitosis and meiosis would further reveal the mechanistic detail of these processes. In the present study, we have investigated the protein expression profile of mitosis and meiosis by comparing proteome of budding yeast cultures arrested at mitotic metaphase and metaphase-I of meiosis using proteomic approach. Approximately 1000 and 2000 protein spots were visualized on 2-DE and 2D-DIGE gels respectively, out of which 14 protein spots were significant in 2-DE and 22 in 2D-DIGE (pmitosis, an up-regulation of actin cytoskeleton and its negative regulator occurs in meiosis. Mitosis and meiosis are two different types of cell division cycles with entirely different outcomes with definite biological implication for almost all eukaryotic species. In this work, we investigated, for the first time, the differential proteomic profile of Saccharomyces cerevisiae culture arrested at mitotic metaphase (M) and metaphase-I (MI) of meiosis using 2-DE and 2D-DIGE. Our findings of up-regulation of actin and its negative regulator cofilin during meiosis suggest that the rate of actin cytoskeleton turnover is more in meiosis and actin cytoskeleton may play more crucial role during meiosis compared to mitosis. Present study also suggests that actin

  10. Tradescantia cytogenetic tests (root-tip mitosis, pollen mitosis, pollen mother-cell meiosis). A report of the US Environmental Protection Agency gene-tox program

    Energy Technology Data Exchange (ETDEWEB)

    Ma, T H

    1982-01-01

    3 kinds of cytogenetic tests for screening of environmental mutagens were established for Tradescantia, namely, root-tip mitosis, pollen mitosis, and pollen mother-cell meiosis (commonly referred to as the Tradescantia-micronucleus (Trad-MCN) test). All these tests are technically simple, inexpensive, and can yield reliable results in a relatively short time (36 to 72 h). The root-tip mitosis test is suitable only for liquid agents, while pollen mitosis is suitable for both liquid and gaseous agents. Pollen tube mitotic chromosomes are extremely sensitive to mutagens; therefore, they are good materials for detecting very low concentrations of mutagens. Both root-tip mitosis and pollen mitosis tests use chromosome and/or chromatid aberrations as end points for scoring. The Trad-MCN test is suitable for both liquid and gaseous agents. In addition, it is especially suitable for in situ monitoring of water and air pollutants. Of the 12 chemicals tested, 5-fluorouracil and 1,2-dibromoethane indicate that they are very potent mutagens based on the effective dosages used to produce a positive response. Sulfur dioxide, ethyl methanesulfonate, sodium azide, Phosdrin, and Bladex rank next in potency.

  11. Genome accessibility is widely preserved and locally modulated during mitosis.

    Science.gov (United States)

    Hsiung, Chris C-S; Morrissey, Christapher S; Udugama, Maheshi; Frank, Christopher L; Keller, Cheryl A; Baek, Songjoon; Giardine, Belinda; Crawford, Gregory E; Sung, Myong-Hee; Hardison, Ross C; Blobel, Gerd A

    2015-02-01

    Mitosis entails global alterations to chromosome structure and nuclear architecture, concomitant with transient silencing of transcription. How cells transmit transcriptional states through mitosis remains incompletely understood. While many nuclear factors dissociate from mitotic chromosomes, the observation that certain nuclear factors and chromatin features remain associated with individual loci during mitosis originated the hypothesis that such mitotically retained molecular signatures could provide transcriptional memory through mitosis. To understand the role of chromatin structure in mitotic memory, we performed the first genome-wide comparison of DNase I sensitivity of chromatin in mitosis and interphase, using a murine erythroblast model. Despite chromosome condensation during mitosis visible by microscopy, the landscape of chromatin accessibility at the macromolecular level is largely unaltered. However, mitotic chromatin accessibility is locally dynamic, with individual loci maintaining none, some, or all of their interphase accessibility. Mitotic reduction in accessibility occurs primarily within narrow, highly DNase hypersensitive sites that frequently coincide with transcription factor binding sites, whereas broader domains of moderate accessibility tend to be more stable. In mitosis, proximal promoters generally maintain their accessibility more strongly, whereas distal regulatory elements tend to lose accessibility. Large domains of DNA hypomethylation mark a subset of promoters that retain accessibility during mitosis and across many cell types in interphase. Erythroid transcription factor GATA1 exerts site-specific changes in interphase accessibility that are most pronounced at distal regulatory elements, but has little influence on mitotic accessibility. We conclude that features of open chromatin are remarkably stable through mitosis, but are modulated at the level of individual genes and regulatory elements. © 2015 Hsiung et al.; Published by

  12. Deciphering the evolutionary history of open and closed mitosis.

    Science.gov (United States)

    Sazer, Shelley; Lynch, Michael; Needleman, Daniel

    2014-11-17

    The origin of the nucleus at the prokaryote-to-eukaryote transition represents one of the most important events in the evolution of cellular organization. The nuclear envelope encircles the chromosomes in interphase and is a selectively permeable barrier between the nucleoplasm and cytoplasm and an organizational scaffold for the nucleus. It remains intact in the 'closed' mitosis of some yeasts, but loses its integrity in the 'open' mitosis of mammals. Instances of both types of mitosis within two evolutionary clades indicate multiple evolutionary transitions between open and closed mitosis, although the underlying genetic changes that influenced these transitions remain unknown. A survey of the diversity of mitotic nuclei that fall between these extremes is the starting point from which to determine the physiologically relevant characteristics distinguishing open from closed mitosis and to understand how they evolved and why they are retained in present-day organisms. The field is now poised to begin addressing these issues by defining and documenting patterns of mitotic nuclear variation within and among species and mapping them onto a phylogenic tree. Deciphering the evolutionary history of open and closed mitosis will complement cell biological and genetic approaches aimed at deciphering the fundamental organizational principles of the nucleus. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Spatial signals link exit from mitosis to spindle position.

    Science.gov (United States)

    Falk, Jill Elaine; Tsuchiya, Dai; Verdaasdonk, Jolien; Lacefield, Soni; Bloom, Kerry; Amon, Angelika

    2016-05-11

    In budding yeast, if the spindle becomes mispositioned, cells prevent exit from mitosis by inhibiting the mitotic exit network (MEN). The MEN is a signaling cascade that localizes to spindle pole bodies (SPBs) and activates the phosphatase Cdc14. There are two competing models that explain MEN regulation by spindle position. In the 'zone model', exit from mitosis occurs when a MEN-bearing SPB enters the bud. The 'cMT-bud neck model' posits that cytoplasmic microtubule (cMT)-bud neck interactions prevent MEN activity. Here we find that 1) eliminating cMT- bud neck interactions does not trigger exit from mitosis and 2) loss of these interactions does not precede Cdc14 activation. Furthermore, using binucleate cells, we show that exit from mitosis occurs when one SPB enters the bud despite the presence of a mispositioned spindle. We conclude that exit from mitosis is triggered by a correctly positioned spindle rather than inhibited by improper spindle position.

  14. Promyelocytic leukemia bodies tether to early endosomes during mitosis.

    Science.gov (United States)

    Palibrk, Vuk; Lång, Emma; Lång, Anna; Schink, Kay Oliver; Rowe, Alexander D; Bøe, Stig Ove

    2014-01-01

    During mitosis the nuclear envelope breaks down, leading to potential interactions between cytoplasmic and nuclear components. PML bodies are nuclear structures with tumor suppressor and antiviral functions. Early endosomes, on the other hand, are cytoplasmic vesicles involved in transport and growth factor signaling. Here we demonstrate that PML bodies form stable interactions with early endosomes immediately following entry into mitosis. The 2 compartments remain stably associated throughout mitosis and dissociate in the cytoplasm of newly divided daughter cells. We also show that a minor subset of PML bodies becomes anchored to the mitotic spindle poles during cell division. The study demonstrates a stable mitosis-specific interaction between a cytoplasmic and a nuclear compartment.

  15. Distinct chromatin environment associated with phosphorylated H3S10 histone during pollen mitosis I in orchids.

    Science.gov (United States)

    Sharma, Santosh Kumar; Yamamoto, Maki; Mukai, Yasuhiko

    2017-01-01

    Pollen developmental pathway in plants involving synchronized transferal of cellular divisions from meiosis (microsporogenesis) to mitosis (pollen mitosis I/II) eventually offers a unique "meiosis-mitosis shift" at pollen mitosis I. Since the cell type (haploid microspore) and fate of pollen mitosis I differ from typical mitosis (in meristem cells), it is immensely important to analyze the chromosomal distribution of phosphorylated H3S10 histone during atypical pollen mitosis I to comprehend the role of histone phosphorylation in pollen development. We investigated the chromosomal phosphorylation of H3S10 histone during pollen mitosis I in orchids using immunostaining technique. The chromosomal distribution of H3S10ph during pollen mitosis I revealed differential pattern than that of typical mitosis in plants, however, eventually following the similar trends of mitosis in animals where H3S10 phosphorylation begins in the pericentromeric regions first, later extending to the whole chromosomes, and finally declining at anaphase/early cytokinesis (differentiation of vegetative and generative cells). The study suggests that the chromosomal distribution of H3S10ph during cell division is not universal and can be altered between different cell types encoded for diverse cellular processes. During pollen development, phosphorylation of histone might play a critical role in chromosome condensation events throughout pollen mitosis I in plants.

  16. Resumption of mitosis in frozen-thawed embryos is not related to the chromosomal constitution

    DEFF Research Database (Denmark)

    Agerholm, Inge E; Kølvrå, Steen; Crüger, Dorthe G

    2007-01-01

    OBJECTIVE: To study the relation between the resumption of mitosis after thaw and chromosomal constitution in frozen-thawed embryos. In addition, to evaluate the correlation among the three parameters of resumption of mitosis after thaw, postthaw blastomere loss, and multinucleation. DESIGN: Frozen......(S): Forty IVF and/or intracytoplasmic sperm injection patients. INTERVENTION(S): Embryo thawing, morphological evaluation, and fluorescence in situ hybridization analysis for aneuploidy screening. MAIN OUTCOME MEASURE(S): Resumption of mitosis, blastomere loss, multinucleation, and chromosome enumeration....... RESULT(S): No difference was observed in the chromosomal constitution of embryos with and without resumption of mitosis. Neither was the postthaw blastomere loss connected to the chromosomal constitution. The resumption of mitosis was not associated with postthaw loss of blastomeres...

  17. Maximized Inter-Class Weighted Mean for Fast and Accurate Mitosis Cells Detection in Breast Cancer Histopathology Images.

    Science.gov (United States)

    Nateghi, Ramin; Danyali, Habibollah; Helfroush, Mohammad Sadegh

    2017-08-14

    Based on the Nottingham criteria, the number of mitosis cells in histopathological slides is an important factor in diagnosis and grading of breast cancer. For manual grading of mitosis cells, histopathology slides of the tissue are examined by pathologists at 40× magnification for each patient. This task is very difficult and time-consuming even for experts. In this paper, a fully automated method is presented for accurate detection of mitosis cells in histopathology slide images. First a method based on maximum-likelihood is employed for segmentation and extraction of mitosis cell. Then a novel Maximized Inter-class Weighted Mean (MIWM) method is proposed that aims at reducing the number of extracted non-mitosis candidates that results in reducing the false positive mitosis detection rate. Finally, segmented candidates are classified into mitosis and non-mitosis classes by using a support vector machine (SVM) classifier. Experimental results demonstrate a significant improvement in accuracy of mitosis cells detection in different grades of breast cancer histopathological images.

  18. Automated mitosis detection using texture, SIFT features and HMAX biologically inspired approach.

    Science.gov (United States)

    Irshad, Humayun; Jalali, Sepehr; Roux, Ludovic; Racoceanu, Daniel; Hwee, Lim Joo; Naour, Gilles Le; Capron, Frédérique

    2013-01-01

    According to Nottingham grading system, mitosis count in breast cancer histopathology is one of three components required for cancer grading and prognosis. Manual counting of mitosis is tedious and subject to considerable inter- and intra-reader variations. The aim is to investigate the various texture features and Hierarchical Model and X (HMAX) biologically inspired approach for mitosis detection using machine-learning techniques. We propose an approach that assists pathologists in automated mitosis detection and counting. The proposed method, which is based on the most favorable texture features combination, examines the separability between different channels of color space. Blue-ratio channel provides more discriminative information for mitosis detection in histopathological images. Co-occurrence features, run-length features, and Scale-invariant feature transform (SIFT) features were extracted and used in the classification of mitosis. Finally, a classification is performed to put the candidate patch either in the mitosis class or in the non-mitosis class. Three different classifiers have been evaluated: Decision tree, linear kernel Support Vector Machine (SVM), and non-linear kernel SVM. We also evaluate the performance of the proposed framework using the modified biologically inspired model of HMAX and compare the results with other feature extraction methods such as dense SIFT. The proposed method has been tested on Mitosis detection in breast cancer histological images (MITOS) dataset provided for an International Conference on Pattern Recognition (ICPR) 2012 contest. The proposed framework achieved 76% recall, 75% precision and 76% F-measure. Different frameworks for classification have been evaluated for mitosis detection. In future work, instead of regions, we intend to compute features on the results of mitosis contour segmentation and use them to improve detection and classification rate.

  19. Prolonged Mitosis of Neural Progenitors Alters Cell Fate in the Developing Brain.

    Science.gov (United States)

    Pilaz, Louis-Jan; McMahon, John J; Miller, Emily E; Lennox, Ashley L; Suzuki, Aussie; Salmon, Edward; Silver, Debra L

    2016-01-06

    Embryonic neocortical development depends on balanced production of progenitors and neurons. Genetic mutations disrupting progenitor mitosis frequently impair neurogenesis; however, the link between altered mitosis and cell fate remains poorly understood. Here we demonstrate that prolonged mitosis of radial glial progenitors directly alters neuronal fate specification and progeny viability. Live imaging of progenitors from a neurogenesis mutant, Magoh(+/-), reveals that mitotic delay significantly correlates with preferential production of neurons instead of progenitors, as well as apoptotic progeny. Independently, two pharmacological approaches reveal a causal relationship between mitotic delay and progeny fate. As mitotic duration increases, progenitors produce substantially more apoptotic progeny or neurons. We show that apoptosis, but not differentiation, is p53 dependent, demonstrating that these are distinct outcomes of mitotic delay. Together our findings reveal that prolonged mitosis is sufficient to alter fates of radial glia progeny and define a new paradigm to understand how mitosis perturbations underlie brain size disorders such as microcephaly. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Pathologic mitoses and pathology of mitosis in tumorigenesis

    Directory of Open Access Journals (Sweden)

    RG Steinbeck

    2009-12-01

    Full Text Available The gist of my hypothesis (.. is a certain abnormal chromatin constitution. Each process, which brings about this chromatin constitution, would result in the origin of a malignant tumour. Certainly, I consider irregularities with mitosis as the normal mode of the origin of an incorrectly assembled nucleus. This statement by Boveri (1914 has considered earlier observations of asymmetric divisions in human cancers (Hansemann, 1890. The hypothesis is based on the understanding of mitosis as an equational bipartition of the hereditary substance (Flemming, 1879; Roux, 1883. Latest since it was known that genes are located on chromosomes (Sturtevant, 1913, their balanced transport in anaphase appeared as a condition of correct somatic proliferation. True mitoses guarantee the constancy of terminally differentiated tissues. Politzer (1934 has performed X-ray experiments to investigate abnormal karyokinesis with regard to anomalous chromatin condensation, chromosome breakage, spindle malformation, and failure in cytokinesis. On the basis of light microscopy, further significant progress in understanding the pathology of mitosis was not possible. Tumour cases with reduced chromosome numbers seduced to the idea that mitotic activity is rather under cytoplasmic than under nuclear control (Koller, 1947.

  1. Automated mitosis detection using texture, SIFT features and HMAX biologically inspired approach

    Directory of Open Access Journals (Sweden)

    Humayun Irshad

    2013-01-01

    Full Text Available Context: According to Nottingham grading system, mitosis count in breast cancer histopathology is one of three components required for cancer grading and prognosis. Manual counting of mitosis is tedious and subject to considerable inter- and intra-reader variations. Aims: The aim is to investigate the various texture features and Hierarchical Model and X (HMAX biologically inspired approach for mitosis detection using machine-learning techniques. Materials and Methods: We propose an approach that assists pathologists in automated mitosis detection and counting. The proposed method, which is based on the most favorable texture features combination, examines the separability between different channels of color space. Blue-ratio channel provides more discriminative information for mitosis detection in histopathological images. Co-occurrence features, run-length features, and Scale-invariant feature transform (SIFT features were extracted and used in the classification of mitosis. Finally, a classification is performed to put the candidate patch either in the mitosis class or in the non-mitosis class. Three different classifiers have been evaluated: Decision tree, linear kernel Support Vector Machine (SVM, and non-linear kernel SVM. We also evaluate the performance of the proposed framework using the modified biologically inspired model of HMAX and compare the results with other feature extraction methods such as dense SIFT. Results: The proposed method has been tested on Mitosis detection in breast cancer histological images (MITOS dataset provided for an International Conference on Pattern Recognition (ICPR 2012 contest. The proposed framework achieved 76% recall, 75% precision and 76% F-measure. Conclusions: Different frameworks for classification have been evaluated for mitosis detection. In future work, instead of regions, we intend to compute features on the results of mitosis contour segmentation and use them to improve detection and

  2. Mcl-1 dynamics influence mitotic slippage and death in mitosis.

    Science.gov (United States)

    Sloss, Olivia; Topham, Caroline; Diez, Maria; Taylor, Stephen

    2016-02-02

    Microtubule-binding drugs such as taxol are frontline treatments for a variety of cancers but exactly how they yield patient benefit is unclear. In cell culture, inhibiting microtubule dynamics prevents spindle assembly, leading to mitotic arrest followed by either apoptosis in mitosis or slippage, whereby a cell returns to interphase without dividing. Myeloid cell leukaemia-1 (Mcl-1), a pro-survival member of the Bcl-2 family central to the intrinsic apoptosis pathway, is degraded during a prolonged mitotic arrest and may therefore act as a mitotic death timer. Consistently, we show that blocking proteasome-mediated degradation inhibits taxol-induced mitotic apoptosis in a Mcl-1-dependent manner. However, this degradation does not require the activity of either APC/C-Cdc20, FBW7 or MULE, three separate E3 ubiquitin ligases implicated in targeting Mcl-1 for degradation. This therefore challenges the notion that Mcl-1 undergoes regulated degradation during mitosis. We also show that Mcl-1 is continuously synthesized during mitosis and that blocking protein synthesis accelerates taxol induced death-in-mitosis. Modulating Mcl-1 levels also influences slippage; overexpressing Mcl-1 extends the time from mitotic entry to mitotic exit in the presence of taxol, while inhibiting Mcl-1 accelerates it. We suggest that Mcl-1 competes with Cyclin B1 for binding to components of the proteolysis machinery, thereby slowing down the slow degradation of Cyclin B1 responsible for slippage. Thus, modulating Mcl-1 dynamics influences both death-in-mitosis and slippage. However, because mitotic degradation of Mcl-1 appears not to be under the control of an E3 ligase, we suggest that the notion of network crosstalk is used with caution.

  3. Testing of mitosis and meiosis in female and male gametes

    Directory of Open Access Journals (Sweden)

    L. F. Kurilo

    2016-01-01

    Full Text Available Method of quantitative evaluation of the immature germ cells, their pathology in mitosis and meiosis (in semen, embryo and fetal ovaries, of gonad biopsies or fragments of sectioned material is informative method and should be introduced into the clinical practice in andrology and gynecology and fundamental research. Quantitative analysis of mitosis and female meiosis development was initiated on experimental animals and fetal gonads from spontaneous or therapeutic abortions.

  4. p53 Dependent Centrosome Clustering Prevents Multipolar Mitosis in Tetraploid Cells

    Science.gov (United States)

    Yi, Qiyi; Zhao, Xiaoyu; Huang, Yun; Ma, Tieliang; Zhang, Yingyin; Hou, Heli; Cooke, Howard J.; Yang, Da-Qing; Wu, Mian; Shi, Qinghua

    2011-01-01

    Background p53 abnormality and aneuploidy often coexist in human tumors, and tetraploidy is considered as an intermediate between normal diploidy and aneuploidy. The purpose of this study was to investigate whether and how p53 influences the transformation from tetraploidy to aneuploidy. Principal Findings Live cell imaging was performed to determine the fates and mitotic behaviors of several human and mouse tetraploid cells with different p53 status, and centrosome and spindle immunostaining was used to investigate centrosome behaviors. We found that p53 dominant-negative mutation, point mutation, or knockout led to a 2∼ 33-fold increase of multipolar mitosis in N/TERT1, 3T3 and mouse embryonic fibroblasts (MEFs), while mitotic entry and cell death were not significantly affected. In p53-/- tetraploid MEFs, the ability of centrosome clustering was compromised, while centrosome inactivation was not affected. Suppression of RhoA/ROCK activity by specific inhibitors in p53-/- tetraploid MEFs enhanced centrosome clustering, decreased multipolar mitosis from 38% to 20% and 16% for RhoA and ROCK, respectively, while expression of constitutively active RhoA in p53+/+ tetraploid 3T3 cells increased the frequency of multipolar mitosis from 15% to 35%. Conclusions p53 could not prevent tetraploid cells entering mitosis or induce tetraploid cell death. However, p53 abnormality impaired centrosome clustering and lead to multipolar mitosis in tetraploid cells by modulating the RhoA/ROCK signaling pathway. PMID:22076149

  5. Phosphorylation of CPAP by Aurora-A Maintains Spindle Pole Integrity during Mitosis

    OpenAIRE

    En-Ju Chou; Liang-Yi Hung; Chieh-Ju C. Tang; Wen-Bin Hsu; Hsin-Yi Wu; Pao-Chi Liao; Tang K. Tang

    2016-01-01

    CPAP is required for centriole elongation during S/G2 phase, but the role of CPAP in mitosis is incompletely understood. Here, we show that CPAP maintains spindle pole integrity through its phosphorylation by Aurora-A during mitosis. Depletion of CPAP induced a prolonged delay in mitosis, pericentriolar material (PCM) dispersion, and multiple mitotic abnormalities. Further studies demonstrated that CPAP directly interacts with and is phosphorylated by Aurora-A at serine 467 during mitosis. In...

  6. How protein kinases co-ordinate mitosis in animal cells.

    Science.gov (United States)

    Ma, Hoi Tang; Poon, Randy Y C

    2011-04-01

    Mitosis is associated with profound changes in cell physiology and a spectacular surge in protein phosphorylation. To accomplish these, a remarkably large portion of the kinome is involved in the process. In the present review, we will focus on classic mitotic kinases, such as cyclin-dependent kinases, Polo-like kinases and Aurora kinases, as well as more recently characterized players such as NIMA (never in mitosis in Aspergillus nidulans)-related kinases, Greatwall and Haspin. Together, these kinases co-ordinate the proper timing and fidelity of processes including centrosomal functions, spindle assembly and microtubule-kinetochore attachment, as well as sister chromatid separation and cytokinesis. A recurrent theme of the mitotic kinase network is the prevalence of elaborated feedback loops that ensure bistable conditions. Sequential phosphorylation and priming phosphorylation on substrates are also frequently employed. Another important concept is the role of scaffolds, such as centrosomes for protein kinases during mitosis. Elucidating the entire repertoire of mitotic kinases, their functions, regulation and interactions is critical for our understanding of normal cell growth and in diseases such as cancers.

  7. Linking abnormal mitosis to the acquisition of DNA damage

    Science.gov (United States)

    Pellman, David

    2012-01-01

    Cellular defects that impair the fidelity of mitosis promote chromosome missegregation and aneuploidy. Increasing evidence reveals that errors in mitosis can also promote the direct and indirect acquisition of DNA damage and chromosome breaks. Consequently, deregulated cell division can devastate the integrity of the normal genome and unleash a variety of oncogenic stimuli that may promote transformation. Recent work has shed light on the mechanisms that link abnormal mitosis with the development of DNA damage, how cells respond to such affronts, and the potential impact on tumorigenesis. PMID:23229895

  8. Mitosis-specific phosphorylation of PML at T409 regulates spindle checkpoint.

    Science.gov (United States)

    Jin, J; Liu, J

    2016-08-31

    During mitosis, Promyelocytic leukemia nuclear bodies (PML NBs) change dramatically in morphology and composition, but little is known about function of PML in mitosis. Here, we show that PML is phosphorylated at T409 (PML p409) in a mitosis-specific manner. More importantly, PML p409 contributes to maintain the duration of pro-metaphase and regulates spindle checkpoint. Deficient PML p409 caused a shortening of pro-metaphase and challenged the nocodazole-triggered mitotic arrest. T409A mutation led to a higher frequency of misaligned chromosomes on metaphase plate, and subsequently death in late mitosis. In addition, inhibition of PML p409 repressed growth of tumor cells, suggesting that PML p409 is a potential target for cancer therapy. Collectively, our study demonstrated an important phosphorylated site of PML, which contributed to explore the role of PML in mitosis.

  9. A hyperactive transcriptional state marks genome reactivation at the mitosis-G1 transition.

    Science.gov (United States)

    Hsiung, Chris C-S; Bartman, Caroline R; Huang, Peng; Ginart, Paul; Stonestrom, Aaron J; Keller, Cheryl A; Face, Carolyne; Jahn, Kristen S; Evans, Perry; Sankaranarayanan, Laavanya; Giardine, Belinda; Hardison, Ross C; Raj, Arjun; Blobel, Gerd A

    2016-06-15

    During mitosis, RNA polymerase II (Pol II) and many transcription factors dissociate from chromatin, and transcription ceases globally. Transcription is known to restart in bulk by telophase, but whether de novo transcription at the mitosis-G1 transition is in any way distinct from later in interphase remains unknown. We tracked Pol II occupancy genome-wide in mammalian cells progressing from mitosis through late G1. Unexpectedly, during the earliest rounds of transcription at the mitosis-G1 transition, ∼50% of active genes and distal enhancers exhibit a spike in transcription, exceeding levels observed later in G1 phase. Enhancer-promoter chromatin contacts are depleted during mitosis and restored rapidly upon G1 entry but do not spike. Of the chromatin-associated features examined, histone H3 Lys27 acetylation levels at individual loci in mitosis best predict the mitosis-G1 transcriptional spike. Single-molecule RNA imaging supports that the mitosis-G1 transcriptional spike can constitute the maximum transcriptional activity per DNA copy throughout the cell division cycle. The transcriptional spike occurs heterogeneously and propagates to cell-to-cell differences in mature mRNA expression. Our results raise the possibility that passage through the mitosis-G1 transition might predispose cells to diverge in gene expression states. © 2016 Hsiung et al.; Published by Cold Spring Harbor Laboratory Press.

  10. Mitosis Counting in Breast Cancer: Object-Level Interobserver Agreement and Comparison to an Automatic Method.

    Science.gov (United States)

    Veta, Mitko; van Diest, Paul J; Jiwa, Mehdi; Al-Janabi, Shaimaa; Pluim, Josien P W

    2016-01-01

    Tumor proliferation speed, most commonly assessed by counting of mitotic figures in histological slide preparations, is an important biomarker for breast cancer. Although mitosis counting is routinely performed by pathologists, it is a tedious and subjective task with poor reproducibility, particularly among non-experts. Inter- and intraobserver reproducibility of mitosis counting can be improved when a strict protocol is defined and followed. Previous studies have examined only the agreement in terms of the mitotic count or the mitotic activity score. Studies of the observer agreement at the level of individual objects, which can provide more insight into the procedure, have not been performed thus far. The development of automatic mitosis detection methods has received large interest in recent years. Automatic image analysis is viewed as a solution for the problem of subjectivity of mitosis counting by pathologists. In this paper we describe the results from an interobserver agreement study between three human observers and an automatic method, and make two unique contributions. For the first time, we present an analysis of the object-level interobserver agreement on mitosis counting. Furthermore, we train an automatic mitosis detection method that is robust with respect to staining appearance variability and compare it with the performance of expert observers on an "external" dataset, i.e. on histopathology images that originate from pathology labs other than the pathology lab that provided the training data for the automatic method. The object-level interobserver study revealed that pathologists often do not agree on individual objects, even if this is not reflected in the mitotic count. The disagreement is larger for objects from smaller size, which suggests that adding a size constraint in the mitosis counting protocol can improve reproducibility. The automatic mitosis detection method can perform mitosis counting in an unbiased way, with substantial

  11. The nucleoporin MEL-28 promotes RanGTP-dependent γ-tubulin recruitment and microtubule nucleation in mitotic spindle formation.

    Science.gov (United States)

    Yokoyama, Hideki; Koch, Birgit; Walczak, Rudolf; Ciray-Duygu, Fulya; González-Sánchez, Juan Carlos; Devos, Damien P; Mattaj, Iain W; Gruss, Oliver J

    2014-01-01

    The GTP-bound form of the Ran GTPase (RanGTP), produced around chromosomes, drives nuclear envelope and nuclear pore complex (NPC) re-assembly after mitosis. The nucleoporin MEL-28/ELYS binds chromatin in a RanGTP-regulated manner and acts to seed NPC assembly. Here we show that, upon mitotic NPC disassembly, MEL-28 dissociates from chromatin and re-localizes to spindle microtubules and kinetochores. MEL-28 directly binds microtubules in a RanGTP-regulated way via its C-terminal chromatin-binding domain. Using Xenopus egg extracts, we demonstrate that MEL-28 is essential for RanGTP-dependent microtubule nucleation and spindle assembly, independent of its function in NPC assembly. Specifically, MEL-28 interacts with the γ-tubulin ring complex and recruits it to microtubule nucleation sites. Our data identify MEL-28 as a RanGTP target that functions throughout the cell cycle. Its cell cycle-dependent binding to chromatin or microtubules discriminates MEL-28 functions in interphase and mitosis, and ensures that spindle assembly occurs only after NPC breakdown.

  12. Mathematical imaging methods for mitosis analysis in live-cell phase contrast microscopy.

    Science.gov (United States)

    Grah, Joana Sarah; Harrington, Jennifer Alison; Koh, Siang Boon; Pike, Jeremy Andrew; Schreiner, Alexander; Burger, Martin; Schönlieb, Carola-Bibiane; Reichelt, Stefanie

    2017-02-15

    In this paper we propose a workflow to detect and track mitotic cells in time-lapse microscopy image sequences. In order to avoid the requirement for cell lines expressing fluorescent markers and the associated phototoxicity, phase contrast microscopy is often preferred over fluorescence microscopy in live-cell imaging. However, common specific image characteristics complicate image processing and impede use of standard methods. Nevertheless, automated analysis is desirable due to manual analysis being subjective, biased and extremely time-consuming for large data sets. Here, we present the following workflow based on mathematical imaging methods. In the first step, mitosis detection is performed by means of the circular Hough transform. The obtained circular contour subsequently serves as an initialisation for the tracking algorithm based on variational methods. It is sub-divided into two parts: in order to determine the beginning of the whole mitosis cycle, a backwards tracking procedure is performed. After that, the cell is tracked forwards in time until the end of mitosis. As a result, the average of mitosis duration and ratios of different cell fates (cell death, no division, division into two or more daughter cells) can be measured and statistics on cell morphologies can be obtained. All of the tools are featured in the user-friendly MATLAB®Graphical User Interface MitosisAnalyser. Copyright © 2017. Published by Elsevier Inc.

  13. Shape Transformation of the Nuclear Envelope during Closed Mitosis.

    Science.gov (United States)

    Zhu, Qian; Zheng, Fan; Liu, Allen P; Qian, Jin; Fu, Chuanhai; Lin, Yuan

    2016-11-15

    The nuclear envelope (NE) in lower eukaryotes such as Schizosaccharomyces pombe undergoes large morphology changes during closed mitosis. However, which physical parameters are important in governing the shape evolution of the NE, and how defects in the dividing chromosomes/microtubules are reflected in those parameters, are fundamental questions that remain unresolved. In this study, we show that improper separation of chromosomes in genetically deficient cells leads to membrane tethering or asymmetric division in contrast to the formation of two equal-sized daughter nuclei in wild-type cells. We hypothesize that the poleward force is transmitted to the nuclear membrane through its physical contact with the separated sister chromatids at the two spindle poles. A theoretical model is developed to predict the morphology evolution of the NE where key factors such as the work done by the poleward force and bending and surface energies stored in the membrane have been taken into account. Interestingly, the predicted phase diagram, summarizing the dependence of nuclear shape on the size of the load transmission regions, and the pole-to-pole distance versus surface area relationship all quantitatively agree well with our experimental observations, suggesting that this model captures the essential physics involved in closed mitosis. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. Regulatory functional territory of PLK-1 and their substrates beyond mitosis.

    Science.gov (United States)

    Kumar, Shiv; Sharma, Garima; Chakraborty, Chiranjib; Sharma, Ashish Ranjan; Kim, Jaebong

    2017-06-06

    Polo-like kinase 1 (PLK-1) is a well-known (Ser/Thr) mitotic protein kinase and is considered as a proto-oncogene. As hyper-activation of PLK-1 is broadly associated with poor prognosis and cancer progression, it is one of the most extensively studied mitotic kinases. During mitosis, PLK-1 regulates various cell cycle events, such as spindle pole maturation, chromosome segregation and cytokinesis. However, studies have demonstrated that the role of PLK-1 is not only restricted to mitosis, but PLK-1 can also regulate other vital events beyond mitosis, including transcription, translation, ciliogenesis, checkpoint adaptation and recovery, apoptosis, chromosomes dynamics etc. Recent reviews have tried to define the regulatory role of PLK-1 during mitosis progression and tumorigenesis, but its' functional role beyond mitosis is still largely unexplored. PLK-1 can regulate the activity of many proteins that work outside of its conventional territory. The dysregulation of these proteins can cause diseases such as Alzheimer's disease, tumorigenesis etc. and may also lead to drug resistance. Thus, in this review, we discussed the versatile role of PLK-1 and tried to collect data to validate its' functional role in cell cycle regulation apart from mitosis.

  15. Tripolar mitosis in human cells and embryos: occurrence, pathophysiology and medical implications.

    Science.gov (United States)

    Kalatova, Beata; Jesenska, Renata; Hlinka, Daniel; Dudas, Marek

    2015-01-01

    Tripolar mitosis is a specific case of cell division driven by typical molecular mechanisms of mitosis, but resulting in three daughter cells instead of the usual count of two. Other variants of multipolar mitosis show even more mitotic poles and are relatively rare. In nature, this phenomenon was frequently observed or suspected in multiple common cancers, infected cells, the placenta, and in early human embryos with impaired pregnancy-yielding potential. Artificial causes include radiation and various toxins. Here we combine several pieces of the most recent evidence for the existence of different types of multipolar mitosis in preimplantation embryos together with a detailed review of the literature. The related molecular and cellular mechanisms are discussed, including the regulation of centriole duplication, mitotic spindle biology, centromere functions, cell cycle checkpoints, mitotic autocorrection mechanisms, and the related complicating factors in healthy and affected cells, including post-mitotic cell-cell fusion often associated with multipolar cell division. Clinical relevance for oncology and embryo selection in assisted reproduction is also briefly discussed in this context. Copyright © 2014 Elsevier GmbH. All rights reserved.

  16. DNA-damage response during mitosis induces whole-chromosome missegregation.

    Science.gov (United States)

    Bakhoum, Samuel F; Kabeche, Lilian; Murnane, John P; Zaki, Bassem I; Compton, Duane A

    2014-11-01

    Many cancers display both structural (s-CIN) and numerical (w-CIN) chromosomal instabilities. Defective chromosome segregation during mitosis has been shown to cause DNA damage that induces structural rearrangements of chromosomes (s-CIN). In contrast, whether DNA damage can disrupt mitotic processes to generate whole chromosomal instability (w-CIN) is unknown. Here, we show that activation of the DNA-damage response (DDR) during mitosis selectively stabilizes kinetochore-microtubule (k-MT) attachments to chromosomes through Aurora-A and PLK1 kinases, thereby increasing the frequency of lagging chromosomes during anaphase. Inhibition of DDR proteins, ATM or CHK2, abolishes the effect of DNA damage on k-MTs and chromosome segregation, whereas activation of the DDR in the absence of DNA damage is sufficient to induce chromosome segregation errors. Finally, inhibiting the DDR during mitosis in cancer cells with persistent DNA damage suppresses inherent chromosome segregation defects. Thus, the DDR during mitosis inappropriately stabilizes k-MTs, creating a link between s-CIN and w-CIN. The genome-protective role of the DDR depends on its ability to delay cell division until damaged DNA can be fully repaired. Here, we show that when DNA damage is induced during mitosis, the DDR unexpectedly induces errors in the segregation of entire chromosomes, thus linking structural and numerical chromosomal instabilities. ©2014 American Association for Cancer Research.

  17. A nutrient dependant switch explains mutually exclusive existence of meiosis and mitosis initiation in budding yeast.

    Science.gov (United States)

    Wannige, C T; Kulasiri, D; Samarasinghe, S

    2014-01-21

    Nutrients from living environment are vital for the survival and growth of any organism. Budding yeast diploid cells decide to grow by mitosis type cell division or decide to create unique, stress resistant spores by meiosis type cell division depending on the available nutrient conditions. To gain a molecular systems level understanding of the nutrient dependant switching between meiosis and mitosis initiation in diploid cells of budding yeast, we develop a theoretical model based on ordinary differential equations (ODEs) including the mitosis initiator and its relations to budding yeast meiosis initiation network. Our model accurately and qualitatively predicts the experimentally revealed temporal variations of related proteins under different nutrient conditions as well as the diverse mutant studies related to meiosis and mitosis initiation. Using this model, we show how the meiosis and mitosis initiators form an all-or-none type bistable switch in response to available nutrient level (mainly nitrogen). The transitions to and from meiosis or mitosis initiation states occur via saddle node bifurcation. This bidirectional switch helps the optimal usage of available nutrients and explains the mutually exclusive existence of meiosis and mitosis pathways. © 2013 Elsevier Ltd. All rights reserved.

  18. Characterization of mitosis-specific phosphorylation of tumor-associated microtubule-associated protein.

    Science.gov (United States)

    Hong, Kyung Uk; Kim, Hyun-Jun; Bae, Chang-Dae; Park, Joobae

    2009-11-30

    Tumor-associated microtubule-associated protein (TMAP), also known as cytoskeleton associated protein 2 (CKAP2), has been recently shown to be involved in the assembly and maintenance of mitotic spindle and also plays an essential role in maintaining the fidelity of chromosome segregation during mitosis. We have previously reported that TMAP is phosphorylated at multiple residues specifically during mitosis, and characterized the mechanism and functional importance of phosphorylation at one of the mitosis-specific phosphorylation residues (i.e., Thr-622). However, the phosphorylation events at the remaining mitotic phosphorylation sites of TMAP have not been fully characterized in detail. Here, we report on generation and characterization of phosphorylated Thr-578- and phosphorylated Thr-596-specific antibodies. Using the antibodies, we show that phosphorylation of TMAP at Thr-578 and Thr-596 indeed occurs specifically during mitosis. Immunofluorescent staining using the antibodies shows that these residues become phosphorylated starting at prophase and then become rapidly dephosphorylated soon after initiation of anaphase. Subtle differences in the kinetics of phosphorylation between Thr-578 and Thr-596 imply that they may be under different mechanisms of phosphorylation during mitosis. Unlike the phosphorylation-deficient mutant form for Thr-622, the mutant in which both Thr-578 and Thr-596 had been mutated to alanines did not induce significant delay in progression of mitosis. These results show that the majority of mitosis-specific phosphorylation of TMAP is limited to pre-anaphase stages and suggest that the multiple phosphorylation may not act in concert but serve diverse functions.

  19. Aurora-A regulates MCRS1 function during mitosis.

    Science.gov (United States)

    Meunier, Sylvain; Timón, Krystal; Vernos, Isabelle

    2016-07-02

    The mitotic spindle is made of microtubules (MTs) nucleated through different pathways involving the centrosomes, the chromosomes or the walls of pre-existing MTs. MCRS1 is a RanGTP target that specifically associates with the chromosome-driven MTs protecting them from MT depolymerases. MCRS1 is also needed for the control of kinetochore fiber (K-fiber) MT minus-ends dynamics in metaphase. Here, we investigated the regulation of MCRS1 activity in M-phase. We show that MCRS1 is phosphorylated by the Aurora-A kinase in mitosis on Ser35/36. Although this phosphorylation has no role on MCRS1 localization to chromosomal MTs and K-fiber minus-ends, we show that it regulates MCRS1 activity in mitosis. We conclude that Aurora-A activity is particularly important in the tuning of K-fiber minus-ends dynamics in mitosis.

  20. The duration of mitosis and daughter cell size are modulated by nutrients in budding yeast.

    Science.gov (United States)

    Leitao, Ricardo M; Kellogg, Douglas R

    2017-11-06

    The size of nearly all cells is modulated by nutrients. Thus, cells growing in poor nutrients can be nearly half the size of cells in rich nutrients. In budding yeast, cell size is thought to be controlled almost entirely by a mechanism that delays cell cycle entry until sufficient growth has occurred in G1 phase. Here, we show that most growth of a new daughter cell occurs in mitosis. When the rate of growth is slowed by poor nutrients, the duration of mitosis is increased, which suggests that cells compensate for slow growth in mitosis by increasing the duration of growth. The amount of growth required to complete mitosis is reduced in poor nutrients, leading to a large reduction in cell size. Together, these observations suggest that mechanisms that control the extent of growth in mitosis play a major role in cell size control in budding yeast. © 2017 Leitao and Kellogg.

  1. ERK5 pathway regulates the phosphorylation of tumour suppressor hDlg during mitosis

    Energy Technology Data Exchange (ETDEWEB)

    Inesta-Vaquera, Francisco A. [Departamento de Inmunologia y Oncologia, Centro Nacional de Biotecnologia-CSIC, Campus de Cantoblanco-UAM, 28049 Madrid (Spain); Campbell, David G.; Arthur, J. Simon C. [MRC Protein Phosphorylation Unit, Sir James Black Building, School of Life Sciences, University of Dundee, Dundee DD1 5EH (United Kingdom); Cuenda, Ana, E-mail: acuenda@cnb.csic.es [Departamento de Inmunologia y Oncologia, Centro Nacional de Biotecnologia-CSIC, Campus de Cantoblanco-UAM, 28049 Madrid (Spain)

    2010-08-13

    Research highlights: {yields} hDlg is phosphorylated during mitosis in multiple residues. {yields} Prospho-hDlg is excluded from the midbody during mitosis. {yields} hDlg is not phosphorylated by p38{gamma} or JNK1/2 during mitosis. {yields} ERK5 pathway mediates hDlg phosphorylation in mitosis. -- Abstract: Human disc-large (hDlg) is a scaffold protein critical for the maintenance of cell polarity and adhesion. hDlg is thought to be a tumour suppressor that regulates the cell cycle and proliferation. However, the mechanism and pathways involved in hDlg regulation during these processes is still unclear. Here we report that hDlg is phosphorylated during mitosis, and we establish the identity of at least three residues phosphorylated in hDlg; some are previously unreported. Phosphorylation affects hDlg localisation excluding it from the contact point between the two daughter cells. Our results reveal a previously unreported pathway for hDlg phosphorylation in mitosis and show that ERK5 pathway mediates hDlg cell cycle dependent phosphorylation. This is likely to have important implications in the correct timely mitotic entry and mitosis progression.

  2. ERK5 pathway regulates the phosphorylation of tumour suppressor hDlg during mitosis

    International Nuclear Information System (INIS)

    Inesta-Vaquera, Francisco A.; Campbell, David G.; Arthur, J. Simon C.; Cuenda, Ana

    2010-01-01

    Research highlights: → hDlg is phosphorylated during mitosis in multiple residues. → Prospho-hDlg is excluded from the midbody during mitosis. → hDlg is not phosphorylated by p38γ or JNK1/2 during mitosis. → ERK5 pathway mediates hDlg phosphorylation in mitosis. -- Abstract: Human disc-large (hDlg) is a scaffold protein critical for the maintenance of cell polarity and adhesion. hDlg is thought to be a tumour suppressor that regulates the cell cycle and proliferation. However, the mechanism and pathways involved in hDlg regulation during these processes is still unclear. Here we report that hDlg is phosphorylated during mitosis, and we establish the identity of at least three residues phosphorylated in hDlg; some are previously unreported. Phosphorylation affects hDlg localisation excluding it from the contact point between the two daughter cells. Our results reveal a previously unreported pathway for hDlg phosphorylation in mitosis and show that ERK5 pathway mediates hDlg cell cycle dependent phosphorylation. This is likely to have important implications in the correct timely mitotic entry and mitosis progression.

  3. Positive Feedback Keeps Duration of Mitosis Temporally Insulated from Upstream Cell-Cycle Events.

    Science.gov (United States)

    Araujo, Ana Rita; Gelens, Lendert; Sheriff, Rahuman S M; Santos, Silvia D M

    2016-10-20

    Cell division is characterized by a sequence of events by which a cell gives rise to two daughter cells. Quantitative measurements of cell-cycle dynamics in single cells showed that despite variability in G1-, S-, and G2 phases, duration of mitosis is short and remarkably constant. Surprisingly, there is no correlation between cell-cycle length and mitotic duration, suggesting that mitosis is temporally insulated from variability in earlier cell-cycle phases. By combining live cell imaging and computational modeling, we showed that positive feedback is the molecular mechanism underlying the temporal insulation of mitosis. Perturbing positive feedback gave rise to a sluggish, variable entry and progression through mitosis and uncoupled duration of mitosis from variability in cell cycle length. We show that positive feedback is important to keep mitosis short, constant, and temporally insulated and anticipate it might be a commonly used regulatory strategy to create modularity in other biological systems. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Using a Case-Study Article to Effectively Introduce Mitosis

    Science.gov (United States)

    Van Hoewyk, Doug

    2007-01-01

    Community college students in a nonmajors biology class are introduced to mitosis by reading a case-study article that allows them to gauge how many times various parts of their bodies have been regenerated. The case-study article allows students to develop a conceptual framework of the cell cycle prior to a lecture on mitosis. (Contains 1 figure.)

  5. The Biochemistry of Mitosis

    Science.gov (United States)

    Wieser, Samuel; Pines, Jonathon

    2015-01-01

    In this article, we will discuss the biochemistry of mitosis in eukaryotic cells. We will focus on conserved principles that, importantly, are adapted to the biology of the organism. It is vital to bear in mind that the structural requirements for division in a rapidly dividing syncytial Drosophila embryo, for example, are markedly different from those in a unicellular yeast cell. Nevertheless, division in both systems is driven by conserved modules of antagonistic protein kinases and phosphatases, underpinned by ubiquitin-mediated proteolysis, which create molecular switches to drive each stage of division forward. These conserved control modules combine with the self-organizing properties of the subcellular architecture to meet the specific needs of the cell. Our discussion will draw on discoveries in several model systems that have been important in the long history of research on mitosis, and we will try to point out those principles that appear to apply to all cells, compared with those in which the biochemistry has been specifically adapted in a particular organism. PMID:25663668

  6. Abnormal mitosis triggers p53-dependent cell cycle arrest in human tetraploid cells.

    Science.gov (United States)

    Kuffer, Christian; Kuznetsova, Anastasia Yurievna; Storchová, Zuzana

    2013-08-01

    Erroneously arising tetraploid mammalian cells are chromosomally instable and may facilitate cell transformation. An increasing body of evidence shows that the propagation of mammalian tetraploid cells is limited by a p53-dependent arrest. The trigger of this arrest has not been identified so far. Here we show by live cell imaging of tetraploid cells generated by an induced cytokinesis failure that most tetraploids arrest and die in a p53-dependent manner after the first tetraploid mitosis. Furthermore, we found that the main trigger is a mitotic defect, in particular, chromosome missegregation during bipolar mitosis or spindle multipolarity. Both a transient multipolar spindle followed by efficient clustering in anaphase as well as a multipolar spindle followed by multipolar mitosis inhibited subsequent proliferation to a similar degree. We found that the tetraploid cells did not accumulate double-strand breaks that could cause the cell cycle arrest after tetraploid mitosis. In contrast, tetraploid cells showed increased levels of oxidative DNA damage coinciding with the p53 activation. To further elucidate the pathways involved in the proliferation control of tetraploid cells, we knocked down specific kinases that had been previously linked to the cell cycle arrest and p53 phosphorylation. Our results suggest that the checkpoint kinase ATM phosphorylates p53 in tetraploid cells after abnormal mitosis and thus contributes to proliferation control of human aberrantly arising tetraploids.

  7. Cancer: Mitosis Run Amok

    Science.gov (United States)

    Science Scope, 2005

    2005-01-01

    Virtually every student knows someone who has battled cancer. It is a topic that is of great interest to many students because of their personal connection to the subject. Mitosis is an important topic in a middle school unit on cells and cell processes (National Science Standards, Grades 5?8: Life Sciences: Content Standard C). Studying cancer…

  8. Rho proteins − the key regulators of cytoskeleton in the progression of mitosis and cytokinesis

    Directory of Open Access Journals (Sweden)

    Anna Klimaszewska

    2011-11-01

    Full Text Available The Rho proteins are members of the Ras superfamily of small GTPases. They are thought to be crucial regulators of multiple signal transduction pathways that influence a wide range of cellular functions, including migration, membrane trafficking, adhesion, polarity and cell shape changes. Thanks to their ability to control the assembly and organization of the actin and microtubule cytoskeletons, Rho GTPases are known to regulate mitosis and cytokinesis progression. These proteins are required for formation and rigidity of the cortex during mitotic cell rounding, mitotic spindle formation and attachment of the spindle microtubules to the kinetochore. In addition, during cytokinesis, they are involved in promoting division plane determination, contractile ring and cleavage furrow formation and abscission. They are also known as regulators of cell cycle progression at the G1/S and G2/M transition. Thus, the signal transduction pathways in which Rho proteins participate, appear to connect dynamics of actin and microtubule cytoskeletons to cell cycle progression. We review the current state of knowledge concerning the molecular mechanisms by which Rho GTPase signaling regulates remodeling of actin and microtubule cytoskeletons in order to control cell division progression.

  9. EWSR1 regulates mitosis by dynamically influencing microtubule acetylation.

    Science.gov (United States)

    Wang, Yi-Long; Chen, Hui; Zhan, Yi-Qun; Yin, Rong-Hua; Li, Chang-Yan; Ge, Chang-Hui; Yu, Miao; Yang, Xiao-Ming

    2016-08-17

    EWSR1, participating in transcription and splicing, has been identified as a translocation partner for various transcription factors, resulting in translocation, which in turn plays crucial roles in tumorigenesis. Recent studies have investigated the role of EWSR1 in mitosis. However, the effect of EWSR1 on mitosis is poorly understood. Here, we observed that depletion of EWSR1 resulted in cell cycle arrest in the mitotic phase, mainly due to an increase in the time from nuclear envelope breakdown to metaphase, resulting in a high percentage of unaligned chromosomes and multipolar spindles. We also demonstrated that EWSR1 is a spindle-associated protein that interacts with α-tubulin during mitosis. EWSR1 depletion increased the cold-sensitivity of spindle microtubules, and decreased the rate of spindle assembly. EWSR1 regulated the level of microtubule acetylation in the mitotic spindle; microtubule acetylation was rescued in EWSR1-depleted mitotic cells following suppression of HDAC6 activity by its specific inhibitor or siRNA treatment. In summary, these results suggest that EWSR1 regulates the acetylation of microtubules in a cell cycle-dependent manner through its dynamic location on spindle MTs, and may be a novel regulator for mitosis progress independent of its translocation.

  10. Excess free histone H3 localizes to centrosomes for proteasome-mediated degradation during mitosis in metazoans.

    Science.gov (United States)

    Wike, Candice L; Graves, Hillary K; Wason, Arpit; Hawkins, Reva; Gopalakrishnan, Jay; Schumacher, Jill; Tyler, Jessica K

    2016-08-17

    The cell tightly controls histone protein levels in order to achieve proper packaging of the genome into chromatin, while avoiding the deleterious consequences of excess free histones. Our accompanying study has shown that a histone modification that loosens the intrinsic structure of the nucleosome, phosphorylation of histone H3 on threonine 118 (H3 T118ph), exists on centromeres and chromosome arms during mitosis. Here, we show that H3 T118ph localizes to centrosomes in humans, flies, and worms during all stages of mitosis. H3 abundance at the centrosome increased upon proteasome inhibition, suggesting that excess free histone H3 localizes to centrosomes for degradation during mitosis. In agreement, we find ubiquitinated H3 specifically during mitosis and within purified centrosomes. These results suggest that targeting of histone H3 to the centrosome for proteasome-mediated degradation is a novel pathway for controlling histone supply, specifically during mitosis.

  11. Phosphorylation of p37 is important for Golgi disassembly at mitosis

    International Nuclear Information System (INIS)

    Kaneko, Yayoi; Tamura, Kaori; Totsukawa, Go; Kondo, Hisao

    2010-01-01

    Research highlights: → p37 is phosphorylated on Serine-56 and Threonine-59 by Cdc2 at mitosis. → Phosphorylated p37 does not bind to Golgi membranes. → p37 phosphorylation inhibits p97/p37-mediated Golgi membrane fusion. -- Abstract: In mammals, the Golgi apparatus is disassembled at early mitosis and reassembled at the end of mitosis. For Golgi disassembly, membrane fusion needs to be blocked. Golgi biogenesis requires two distinct p97ATPase-mediated membrane fusion, the p97/p47 and p97/p37 pathways. We previously reported that p47 phosphorylation on Serine-140 by Cdc2 results in mitotic inhibition of the p97/p47 pathway . In this study, we demonstrate that p37 is phosphorylated on Serine-56 and Threonine-59 by Cdc2 at mitosis, and this phosphorylated p37 does not bind to Golgi membranes. Using an in vitro Golgi reassembly assay, we show that mutated p37(S56D, T59D), which mimics mitotic phosphorylation, does not cause any cisternal regrowth, indicating that p37 phosphorylation inhibits the p97/p37 pathway. Our results demonstrate that p37 phosphorylation on Serine-56 and Threonine-59 is important for Golgi disassembly at mitosis.

  12. Phosphorylation of AIB1 at Mitosis Is Regulated by CDK1/CYCLIN B

    Science.gov (United States)

    Ferrero, Macarena; Ferragud, Juan; Orlando, Leonardo; Valero, Luz; Sánchez del Pino, Manuel; Farràs, Rosa; Font de Mora, Jaime

    2011-01-01

    Background Although the AIB1 oncogene has an important role during the early phase of the cell cycle as a coactivator of E2F1, little is known about its function during mitosis. Methodology/Principal Findings Mitotic cells isolated by nocodazole treatment as well as by shake-off revealed a post-translational modification occurring in AIB1 specifically during mitosis. This modification was sensitive to the treatment with phosphatase, suggesting its modification by phosphorylation. Using specific inhibitors and in vitro kinase assays we demonstrate that AIB1 is phosphorylated on Ser728 and Ser867 by Cdk1/cyclin B at the onset of mitosis and remains phosphorylated until exit from M phase. Differences in the sensitivity to phosphatase inhibitors suggest that PP1 mediates dephosphorylation of AIB1 at the end of mitosis. The phosphorylation of AIB1 during mitosis was not associated with ubiquitylation or degradation, as confirmed by western blotting and flow cytometry analysis. In addition, luciferase reporter assays showed that this phosphorylation did not alter the transcriptional properties of AIB1. Importantly, fluorescence microscopy and sub-cellular fractionation showed that AIB1 phosphorylation correlated with the exclusion from the condensed chromatin, thus preventing access to the promoters of AIB1-dependent genes. Phospho-specific antibodies developed against Ser728 further demonstrated the presence of phosphorylated AIB1 only in mitotic cells where it was localized preferentially in the periphery of the cell. Conclusions Collectively, our results describe a new mechanism for the regulation of AIB1 during mitosis, whereby phosphorylation of AIB1 by Cdk1 correlates with the subcellular redistribution of AIB1 from a chromatin-associated state in interphase to a more peripheral localization during mitosis. At the exit of mitosis, AIB1 is dephosphorylated, presumably by PP1. This exclusion from chromatin during mitosis may represent a mechanism for governing the

  13. PICH promotes sister chromatid disjunction and co-operates with topoisomerase II in mitosis

    DEFF Research Database (Denmark)

    Nielsen, Christian Thomas Friberg; Huttner, Diana; Bizard, Anna H

    2015-01-01

    PICH is a SNF2 family DNA translocase that binds to ultra-fine DNA bridges (UFBs) in mitosis. Numerous roles for PICH have been proposed from protein depletion experiments, but a consensus has failed to emerge. Here, we report that deletion of PICH in avian cells causes chromosome structural......-193-treated cells. We propose that PICH and Topo II cooperate to prevent chromosome missegregation events in mitosis....

  14. Evolutionary consequences of polyploidy in prokaryotes and the origin of mitosis and meiosis.

    Science.gov (United States)

    Markov, Alexander V; Kaznacheev, Ilya S

    2016-06-08

    The origin of eukaryote-specific traits such as mitosis and sexual reproduction remains disputable. There is growing evidence that both mitosis and eukaryotic sex (i.e., the alternation of syngamy and meiosis) may have already existed in the basal eukaryotes. The mating system of the halophilic archaeon Haloferax volcanii probably represents an intermediate stage between typical prokaryotic and eukaryotic sex. H. volcanii is highly polyploid, as well as many other Archaea. Here, we use computer simulation to explore genetic and evolutionary outcomes of polyploidy in amitotic prokaryotes and its possible role in the origin of mitosis, meiosis and eukaryotic sex. Modeling suggests that polyploidy can confer strong short-term evolutionary advantage to amitotic prokaryotes. However, it also promotes the accumulation of recessive deleterious mutations and the risk of extinction in the long term, especially in highly mutagenic environment. There are several possible strategies that amitotic polyploids can use in order to reduce the genetic costs of polyploidy while retaining its benefits. Interestingly, most of these strategies resemble different components or aspects of eukaryotic sex. They include asexual ploidy cycles, equalization of genome copies by gene conversion, high-frequency lateral gene transfer between relatives, chromosome exchange coupled with homologous recombination, and the evolution of more accurate chromosome distribution during cell division (mitosis). Acquisition of mitosis by an amitotic polyploid results in chromosome diversification and specialization. Ultimately, it transforms a polyploid cell into a functionally monoploid one with multiple unique, highly redundant chromosomes. Specialization of chromosomes makes the previously evolved modes of promiscuous chromosome shuffling deleterious. This can result in selective pressure to develop accurate mechanisms of homolog pairing, and, ultimately, meiosis. Emergence of mitosis and the first

  15. Relocalization of human chromatin remodeling cofactor TIP48 in mitosis

    International Nuclear Information System (INIS)

    Sigala, Barbara; Edwards, Mina; Puri, Teena; Tsaneva, Irina R.

    2005-01-01

    TIP48 is a highly conserved eukaryotic AAA + protein which is an essential cofactor for several complexes involved in chromatin acetylation and remodeling, transcriptional and developmental regulation and nucleolar organization and trafficking. We show that TIP48 abundance in HeLa cells did not change during the cell cycle, nor did its distribution in various biochemical fractions. However, we observed distinct changes in the subcellular localization of TIP48 during M phase using immunofluorescence microscopy. Our studies demonstrate that in interphase cells TIP48 was found mainly in the nucleus and exhibited a distinct localization in the nuclear periphery. As the cells entered mitosis, TIP48 was excluded from the condensing chromosomes but showed association with the mitotic apparatus. During anaphase, some TIP48 was detected in the centrosome colocalizing with tubulin but the strongest staining appeared in the mitotic equator associated with the midzone central spindle. Accumulation of TIP48 in the midzone and the midbody was observed in late telophase and cytokinesis. This redeployment of TIP48 during anaphase and cytokinesis was independent of microtubule assembly. The relocation of endogenous TIP48 to the midzone/midbody under physiological conditions suggests a novel and distinct function for TIP48 in mitosis and possible involvement in the exit of mitosis

  16. Monitoring the elasticity changes of HeLa cells during mitosis by atomic force microscopy

    Science.gov (United States)

    Jiang, Ningcheng; Wang, Yuhua; Zeng, Jinshu; Ding, Xuemei; Xie, Shusen; Yang, Hongqin

    2016-10-01

    Cell mitosis plays a crucial role in cell life activity, which is one of the important phases in cell division cycle. During the mitosis, the cytoskeleton micro-structure of the cell changed and the biomechanical properties of the cell may vary depending upon different mitosis stages. In this study, the elasticity property of HeLa cells during mitosis was monitored by atomic force microscopy. Also, the actin filaments in different mitosis stages of the cells were observed by confocal imaging. Our results show that the cell in anaphase is stiffer than that in metaphase and telophase. Furthermore, lots of actin filaments gathered in cells' center area in anaphase, which contributes to the rigidity of the cell in this phase. Our findings demonstrate that the nano-biomechanics of living cells could provide a new index for characterizing cell physiological states.

  17. Cascaded ensemble of convolutional neural networks and handcrafted features for mitosis detection

    Science.gov (United States)

    Wang, Haibo; Cruz-Roa, Angel; Basavanhally, Ajay; Gilmore, Hannah; Shih, Natalie; Feldman, Mike; Tomaszewski, John; Gonzalez, Fabio; Madabhushi, Anant

    2014-03-01

    Breast cancer (BCa) grading plays an important role in predicting disease aggressiveness and patient outcome. A key component of BCa grade is mitotic count, which involves quantifying the number of cells in the process of dividing (i.e. undergoing mitosis) at a specific point in time. Currently mitosis counting is done manually by a pathologist looking at multiple high power fields on a glass slide under a microscope, an extremely laborious and time consuming process. The development of computerized systems for automated detection of mitotic nuclei, while highly desirable, is confounded by the highly variable shape and appearance of mitoses. Existing methods use either handcrafted features that capture certain morphological, statistical or textural attributes of mitoses or features learned with convolutional neural networks (CNN). While handcrafted features are inspired by the domain and the particular application, the data-driven CNN models tend to be domain agnostic and attempt to learn additional feature bases that cannot be represented through any of the handcrafted features. On the other hand, CNN is computationally more complex and needs a large number of labeled training instances. Since handcrafted features attempt to model domain pertinent attributes and CNN approaches are largely unsupervised feature generation methods, there is an appeal to attempting to combine these two distinct classes of feature generation strategies to create an integrated set of attributes that can potentially outperform either class of feature extraction strategies individually. In this paper, we present a cascaded approach for mitosis detection that intelligently combines a CNN model and handcrafted features (morphology, color and texture features). By employing a light CNN model, the proposed approach is far less demanding computationally, and the cascaded strategy of combining handcrafted features and CNN-derived features enables the possibility of maximizing performance by

  18. Regulation of nuclear envelope dynamics via APC/C is necessary for the progression of semi-open mitosis in Schizosaccharomyces japonicus.

    Science.gov (United States)

    Aoki, Keita; Shiwa, Yuh; Takada, Hiraku; Yoshikawa, Hirofumi; Niki, Hironori

    2013-09-01

    Three types of mitosis, which are open, closed or semi-open mitosis, function in eukaryotic cells, respectively. The open mitosis involves breakage of the nuclear envelope before nuclear division, whereas the closed mitosis proceeds with an intact nuclear envelope. To understand the mechanism and significance of three types of mitotic division in eukaryotes, we investigated the process of semi-open mitosis, in which the nuclear envelope is only partially broken, in the fission yeast Schizosaccharomyces japonicus. In anaphase-promoting complex/cyclosome (APC/C) mutants of Sz. japonicus, the nuclear envelope remained relatively intact during anaphase, resulting in impaired semi-open mitosis. As a suppressor of apc2 mutant, a mutation of Oar2, which was a 3-oxoacyl-[acyl carrier protein] reductase, was obtained. The level of the Oar2, which had two destruction-box motifs recognized by APC/C, was increased in APC/C mutants. Furthermore, the defective semi-open mitosis observed in an apc2 mutant was restored by mutated oar2+. Based on these findings, we propose that APC/C regulates the dynamics of the nuclear envelope through degradation of Oar2 dependent on APC/C during the metaphase-to-anaphase transition of semi-open mitosis in Sz. japonicus. © 2013 The Authors Genes to Cells © 2013 by the Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd.

  19. Unsuccessful mitosis in multicellular tumour spheroids.

    Science.gov (United States)

    Molla, Annie; Couvet, Morgane; Coll, Jean-Luc

    2017-04-25

    Multicellular spheroids are very attractive models in oncology because they mimic the 3D organization of the tumour cells with their microenvironment. We show here using 3 different cell types (mammary TSA/pc, embryonic kidney Hek293 and cervical cancer HeLa), that when the cells are growing as spheroids the frequency of binucleated cells is augmented as occurs in some human tumours.We therefore describe mitosis in multicellular spheroids by following mitotic markers and by time-lapse experiments. Chromosomes alignment appears to be correct on the metaphasic plate and the passenger complex is well localized on centromere. Moreover aurora kinases are fully active and histone H3 is phosphorylated on Ser 10. Consequently, the mitotic spindle checkpoint is satisfied and, anaphase proceeds as illustrated by the transfer of survivin on the spindle and by the segregation of the two lots of chromosomes. However, the segregation plane is not well defined and oscillations of the dividing cells are observed. Finally, cytokinesis fails and the absence of separation of the two daughter cells gives rise to binucleated cells.Division orientation is specified during interphase and persists throughout mitosis. Our data indicate that the cancer cells, in multicellular spheroids, lose their ability to regulate their orientation, a feature commonly encountered in tumours.Moreover, multicellular spheroid expansion is still sensitive to mitotic drugs as pactlitaxel and aurora kinase inhibitors. The spheroids thus represent a highly relevant model for studying drug efficiency in tumours.

  20. Expression of HSF2 decreases in mitosis to enable stress-inducible transcription and cell survival

    Science.gov (United States)

    Elsing, Alexandra N.; Aspelin, Camilla; Björk, Johanna K.; Bergman, Heidi A.; Himanen, Samu V.; Kallio, Marko J.; Roos-Mattjus, Pia

    2014-01-01

    Unless mitigated, external and physiological stresses are detrimental for cells, especially in mitosis, resulting in chromosomal missegregation, aneuploidy, or apoptosis. Heat shock proteins (Hsps) maintain protein homeostasis and promote cell survival. Hsps are transcriptionally regulated by heat shock factors (HSFs). Of these, HSF1 is the master regulator and HSF2 modulates Hsp expression by interacting with HSF1. Due to global inhibition of transcription in mitosis, including HSF1-mediated expression of Hsps, mitotic cells are highly vulnerable to stress. Here, we show that cells can counteract transcriptional silencing and protect themselves against proteotoxicity in mitosis. We found that the condensed chromatin of HSF2-deficient cells is accessible for HSF1 and RNA polymerase II, allowing stress-inducible Hsp expression. Consequently, HSF2-deficient cells exposed to acute stress display diminished mitotic errors and have a survival advantage. We also show that HSF2 expression declines during mitosis in several but not all human cell lines, which corresponds to the Hsp70 induction and protection against stress-induced mitotic abnormalities and apoptosis. PMID:25202032

  1. Quantitative comparison of a human cancer cell surface proteome between interphase and mitosis.

    Science.gov (United States)

    Özlü, Nurhan; Qureshi, Mohammad H; Toyoda, Yusuke; Renard, Bernhard Y; Mollaoglu, Gürkan; Özkan, Nazlı E; Bulbul, Selda; Poser, Ina; Timm, Wiebke; Hyman, Anthony A; Mitchison, Timothy J; Steen, Judith A

    2015-01-13

    The cell surface is the cellular compartment responsible for communication with the environment. The interior of mammalian cells undergoes dramatic reorganization when cells enter mitosis. These changes are triggered by activation of the CDK1 kinase and have been studied extensively. In contrast, very little is known of the cell surface changes during cell division. We undertook a quantitative proteomic comparison of cell surface-exposed proteins in human cancer cells that were tightly synchronized in mitosis or interphase. Six hundred and twenty-eight surface and surface-associated proteins in HeLa cells were identified; of these, 27 were significantly enriched at the cell surface in mitosis and 37 in interphase. Using imaging techniques, we confirmed the mitosis-selective cell surface localization of protocadherin PCDH7, a member of a family with anti-adhesive roles in embryos. We show that PCDH7 is required for development of full mitotic rounding pressure at the onset of mitosis. Our analysis provided basic information on how cell cycle progression affects the cell surface. It also provides potential pharmacodynamic biomarkers for anti-mitotic cancer chemotherapy. © 2014 The Authors.

  2. Phosphorylation of CPAP by Aurora-A Maintains Spindle Pole Integrity during Mitosis

    Directory of Open Access Journals (Sweden)

    En-Ju Chou

    2016-03-01

    Full Text Available CPAP is required for centriole elongation during S/G2 phase, but the role of CPAP in mitosis is incompletely understood. Here, we show that CPAP maintains spindle pole integrity through its phosphorylation by Aurora-A during mitosis. Depletion of CPAP induced a prolonged delay in mitosis, pericentriolar material (PCM dispersion, and multiple mitotic abnormalities. Further studies demonstrated that CPAP directly interacts with and is phosphorylated by Aurora-A at serine 467 during mitosis. Interestingly, the dispersal of the PCM was effectively rescued by ectopic expression of wild-type CPAP or a phospho-mimic CPAP-S467D mutant, but not a non-phosphorylated CPAP-S467A mutant. Finally, we found that CPAP-S467D has a low affinity for microtubule binding but a high affinity for PCM proteins. Together, our results support a model wherein CPAP is required for proper mitotic progression, and phosphorylation of CPAP by Aurora-A is essential for maintaining spindle pole integrity.

  3. Duck hepatitis B virus covalently closed circular DNA appears to survive hepatocyte mitosis in the growing liver

    International Nuclear Information System (INIS)

    Reaiche-Miller, Georget Y.; Thorpe, Michael; Low, Huey Chi; Qiao, Qiao; Scougall, Catherine A.; Mason, William S.; Litwin, Samuel; Jilbert, Allison R.

    2013-01-01

    Nucleos(t)ide analogues that inhibit hepatitis B virus (HBV) DNA replication are typically used as monotherapy for chronically infected patients. Treatment with a nucleos(t)ide analogue eliminates most HBV DNA replication intermediates and produces a gradual decline in levels of covalently closed circular DNA (cccDNA), the template for viral RNA synthesis. It remains uncertain if levels of cccDNA decline primarily through hepatocyte death, or if loss also occurs during hepatocyte mitosis. To determine if cccDNA survives mitosis, growing ducklings infected with duck hepatitis B virus (DHBV) were treated with the nucleoside analogue, Entecavir. Viremia was suppressed at least 10 5 -fold, during a period when average liver mass increased 23-fold. Analysis of the data suggested that if cccDNA synthesis was completely inhibited, at least 49% of cccDNA survived hepatocyte mitosis. However, there was a large duck-to-duck variation in cccDNA levels, suggesting that low level cccDNA synthesis may contribute to this apparent survival through mitosis. - Highlights: • The hepatitis B virus nuclear template is covalently closed circular DNA (cccDNA). • cccDNA was studied during liver growth in duck hepatitis B virus infected ducks. • Virus DNA replication and new cccDNA synthesis were inhibited with Entecavir. • At least 49% of cccDNA appeared to survive hepatocyte mitosis. • Low level virus DNA synthesis may contribute to survival of cccDNA through mitosis

  4. Duck hepatitis B virus covalently closed circular DNA appears to survive hepatocyte mitosis in the growing liver

    Energy Technology Data Exchange (ETDEWEB)

    Reaiche-Miller, Georget Y.; Thorpe, Michael; Low, Huey Chi; Qiao, Qiao; Scougall, Catherine A. [School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005 (Australia); Mason, William S.; Litwin, Samuel [Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111 (United States); Jilbert, Allison R., E-mail: allison.jilbert@adelaide.edu.au [School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005 (Australia)

    2013-11-15

    Nucleos(t)ide analogues that inhibit hepatitis B virus (HBV) DNA replication are typically used as monotherapy for chronically infected patients. Treatment with a nucleos(t)ide analogue eliminates most HBV DNA replication intermediates and produces a gradual decline in levels of covalently closed circular DNA (cccDNA), the template for viral RNA synthesis. It remains uncertain if levels of cccDNA decline primarily through hepatocyte death, or if loss also occurs during hepatocyte mitosis. To determine if cccDNA survives mitosis, growing ducklings infected with duck hepatitis B virus (DHBV) were treated with the nucleoside analogue, Entecavir. Viremia was suppressed at least 10{sup 5}-fold, during a period when average liver mass increased 23-fold. Analysis of the data suggested that if cccDNA synthesis was completely inhibited, at least 49% of cccDNA survived hepatocyte mitosis. However, there was a large duck-to-duck variation in cccDNA levels, suggesting that low level cccDNA synthesis may contribute to this apparent survival through mitosis. - Highlights: • The hepatitis B virus nuclear template is covalently closed circular DNA (cccDNA). • cccDNA was studied during liver growth in duck hepatitis B virus infected ducks. • Virus DNA replication and new cccDNA synthesis were inhibited with Entecavir. • At least 49% of cccDNA appeared to survive hepatocyte mitosis. • Low level virus DNA synthesis may contribute to survival of cccDNA through mitosis.

  5. EGF stimulates the activation of EGF receptors and the selective activation of major signaling pathways during mitosis.

    Science.gov (United States)

    Wee, Ping; Shi, Huaiping; Jiang, Jennifer; Wang, Yuluan; Wang, Zhixiang

    2015-03-01

    Mitosis and epidermal growth factor (EGF) receptor (EGFR) are both targets for cancer therapy. The role of EGFR signaling in mitosis has been rarely studied and poorly understood. The limited studies indicate that the activation of EGFR and downstream signaling pathways is mostly inhibited during mitosis. However, we recently showed that EGFR is phosphorylated in response to EGF stimulation in mitosis. Here we studied EGF-induced EGFR activation and the activation of major signaling pathways downstream of EGFR during mitosis. We showed that EGFR was strongly activated by EGF during mitosis as all the five major tyrosine residues including Y992, Y1045, Y1068, Y1086, and Y1173 were phosphorylated to a level similar to that in the interphase. We further showed that the activated EGFR is able to selectively activate some downstream signaling pathways while avoiding others. Activated EGFR is able to activate PI3K and AKT2, but not AKT1, which may be responsible for the observed effects of EGF against nocodazole-induced cell death. Activated EGFR is also able to activate c-Src, c-Cbl and PLC-γ1 during mitosis. However, activated EGFR is unable to activate ERK1/2 and their downstream substrates RSK and Elk-1. While it activated Ras, EGFR failed to fully activate Raf-1 in mitosis due to the lack of phosphorylation at Y341 and the lack of dephosphorylation at pS259. We conclude that contrary to the dogma, EGFR is activated by EGF during mitosis. Moreover, EGFR-mediated cell signaling is regulated differently from the interphase to specifically serve the needs of the cell in mitosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Characterization of mitosis-specific phosphorylation of tumor-associated microtubule-associated protein

    OpenAIRE

    Hong, Kyung Uk; Kim, Hyun-Jun; Bae, Chang-Dae; Park, Joobae

    2009-01-01

    Tumor-associated microtubule-associated protein (TMAP), also known as cytoskeleton associated protein 2 (CKAP2), has been recently shown to be involved in the assembly and maintenance of mitotic spindle and also plays an essential role in maintaining the fidelity of chromosome segregation during mitosis. We have previously reported that TMAP is phosphorylated at multiple residues specifically during mitosis, and characterized the mechanism and functional importance of phosphorylation at one o...

  7. Downregulation of Wip1 phosphatase modulates the cellular threshold of DNA damage signaling in mitosis

    Science.gov (United States)

    Macurek, Libor; Benada, Jan; Müllers, Erik; Halim, Vincentius A.; Krejčíková, Kateřina; Burdová, Kamila; Pecháčková, Sona; Hodný, Zdeněk; Lindqvist, Arne; Medema, René H.; Bartek, Jiri

    2013-01-01

    Cells are constantly challenged by DNA damage and protect their genome integrity by activation of an evolutionary conserved DNA damage response pathway (DDR). A central core of DDR is composed of a spatiotemporally ordered net of post-translational modifications, among which protein phosphorylation plays a major role. Activation of checkpoint kinases ATM/ATR and Chk1/2 leads to a temporal arrest in cell cycle progression (checkpoint) and allows time for DNA repair. Following DNA repair, cells re-enter the cell cycle by checkpoint recovery. Wip1 phosphatase (also called PPM1D) dephosphorylates multiple proteins involved in DDR and is essential for timely termination of the DDR. Here we have investigated how Wip1 is regulated in the context of the cell cycle. We found that Wip1 activity is downregulated by several mechanisms during mitosis. Wip1 protein abundance increases from G1 phase to G2 and declines in mitosis. Decreased abundance of Wip1 during mitosis is caused by proteasomal degradation. In addition, Wip1 is phosphorylated at multiple residues during mitosis, and this leads to inhibition of its enzymatic activity. Importantly, ectopic expression of Wip1 reduced γH2AX staining in mitotic cells and decreased the number of 53BP1 nuclear bodies in G1 cells. We propose that the combined decrease and inhibition of Wip1 in mitosis decreases the threshold necessary for DDR activation and enables cells to react adequately even to modest levels of DNA damage encountered during unperturbed mitotic progression. PMID:23255129

  8. Phosphorylation of CPAP by Aurora-A Maintains Spindle Pole Integrity during Mitosis.

    Science.gov (United States)

    Chou, En-Ju; Hung, Liang-Yi; Tang, Chieh-Ju C; Hsu, Wen-Bin; Wu, Hsin-Yi; Liao, Pao-Chi; Tang, Tang K

    2016-03-29

    CPAP is required for centriole elongation during S/G2 phase, but the role of CPAP in mitosis is incompletely understood. Here, we show that CPAP maintains spindle pole integrity through its phosphorylation by Aurora-A during mitosis. Depletion of CPAP induced a prolonged delay in mitosis, pericentriolar material (PCM) dispersion, and multiple mitotic abnormalities. Further studies demonstrated that CPAP directly interacts with and is phosphorylated by Aurora-A at serine 467 during mitosis. Interestingly, the dispersal of the PCM was effectively rescued by ectopic expression of wild-type CPAP or a phospho-mimic CPAP-S467D mutant, but not a non-phosphorylated CPAP-S467A mutant. Finally, we found that CPAP-S467D has a low affinity for microtubule binding but a high affinity for PCM proteins. Together, our results support a model wherein CPAP is required for proper mitotic progression, and phosphorylation of CPAP by Aurora-A is essential for maintaining spindle pole integrity. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Water droplet excess free energy determined by cluster mitosis using guided molecular dynamics

    Science.gov (United States)

    Lau, Gabriel V.; Hunt, Patricia A.; Müller, Erich A.; Jackson, George; Ford, Ian J.

    2015-12-01

    Atmospheric aerosols play a vital role in affecting climate by influencing the properties and lifetimes of clouds and precipitation. Understanding the underlying microscopic mechanisms involved in the nucleation of aerosol droplets from the vapour phase is therefore of great interest. One key thermodynamic quantity in nucleation is the excess free energy of cluster formation relative to that of the saturated vapour. In our current study, the excess free energy is extracted for clusters of pure water modelled with the TIP4P/2005 intermolecular potential using a method based on nonequilibrium molecular dynamics and the Jarzynski relation. The change in free energy associated with the "mitosis" or division of a cluster of N water molecules into two N/2 sub-clusters is evaluated. This methodology is an extension of the disassembly procedure used recently to calculate the excess free energy of argon clusters [H. Y. Tang and I. J. Ford, Phys. Rev. E 91, 023308 (2015)]. Our findings are compared to the corresponding excess free energies obtained from classical nucleation theory (CNT) as well as internally consistent classical theory (ICCT). The values of the excess free energy that we obtain with the mitosis method are consistent with CNT for large cluster sizes but for the smallest clusters, the results tend towards ICCT; for intermediate sized clusters, we obtain values between the ICCT and CNT predictions. Furthermore, the curvature-dependent surface tension which can be obtained by regarding the clusters as spherical droplets of bulk density is found to be a monotonically increasing function of cluster size for the studied range. The data are compared to other values reported in the literature, agreeing qualitatively with some but disagreeing with the values determined by Joswiak et al. [J. Phys. Chem. Lett. 4, 4267 (2013)] using a biased mitosis approach; an assessment of the differences is the main motivation for our current study.

  10. A mitosis-specific and R loop-driven ATR pathway promotes faithful chromosome segregation.

    Science.gov (United States)

    Kabeche, Lilian; Nguyen, Hai Dang; Buisson, Rémi; Zou, Lee

    2018-01-05

    The ataxia telangiectasia mutated and Rad3-related (ATR) kinase is crucial for DNA damage and replication stress responses. Here, we describe an unexpected role of ATR in mitosis. Acute inhibition or degradation of ATR in mitosis induces whole-chromosome missegregation. The effect of ATR ablation is not due to altered cyclin-dependent kinase 1 (CDK1) activity, DNA damage responses, or unscheduled DNA synthesis but to loss of an ATR function at centromeres. In mitosis, ATR localizes to centromeres through Aurora A-regulated association with centromere protein F (CENP-F), allowing ATR to engage replication protein A (RPA)-coated centromeric R loops. As ATR is activated at centromeres, it stimulates Aurora B through Chk1, preventing formation of lagging chromosomes. Thus, a mitosis-specific and R loop-driven ATR pathway acts at centromeres to promote faithful chromosome segregation, revealing functions of R loops and ATR in suppressing chromosome instability. Copyright © 2018, American Association for the Advancement of Science.

  11. PLK1 Activation in Late G2 Sets Up Commitment to Mitosis.

    Science.gov (United States)

    Gheghiani, Lilia; Loew, Damarys; Lombard, Bérangère; Mansfeld, Jörg; Gavet, Olivier

    2017-06-06

    Commitment to mitosis must be tightly coordinated with DNA replication to preserve genome integrity. While we have previously established that the timely activation of CyclinB1-Cdk1 in late G2 triggers mitotic entry, the upstream regulatory mechanisms remain unclear. Here, we report that Polo-like kinase 1 (Plk1) is required for entry into mitosis during an unperturbed cell cycle and is rapidly activated shortly before CyclinB1-Cdk1. We determine that Plk1 associates with the Cdc25C1 phosphatase and induces its phosphorylation before mitotic entry. Plk1-dependent Cdc25C1 phosphosites are sufficient to promote mitotic entry, even when Plk1 activity is inhibited. Furthermore, we find that activation of Plk1 during G2 relies on CyclinA2-Cdk activity levels. Our findings thus elucidate a critical role for Plk1 in CyclinB1-Cdk1 activation and mitotic entry and outline how CyclinA2-Cdk, an S-promoting factor, poises cells for commitment to mitosis. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Uncoupling of S phase and mitosis in cardiomyocytes and hepatocytes lacking the winged-helix transcription factor Trident

    NARCIS (Netherlands)

    Korver, W.; Schilham, M. W.; Moerer, P.; van den Hoff, M. J.; Dam, K.; Lamers, W. H.; Medema, R. H.; Clevers, H.

    1998-01-01

    In order to maintain a stable karyotype, the eukaryotic cell cycle is coordinated such that only one round of S phase precedes each mitosis, and mitosis is not initiated until DNA replication is completed. Several checkpoints and regulatory proteins have been defined in lower eukaryotes that govern

  13. Incoming human papillomavirus type 16 genome resides in a vesicular compartment throughout mitosis.

    Science.gov (United States)

    DiGiuseppe, Stephen; Luszczek, Wioleta; Keiffer, Timothy R; Bienkowska-Haba, Malgorzata; Guion, Lucile G M; Sapp, Martin J

    2016-05-31

    During the entry process, the human papillomavirus (HPV) capsid is trafficked to the trans-Golgi network (TGN), whereupon it enters the nucleus during mitosis. We previously demonstrated that the minor capsid protein L2 assumes a transmembranous conformation in the TGN. Here we provide evidence that the incoming viral genome dissociates from the TGN and associates with microtubules after the onset of mitosis. Deposition onto mitotic chromosomes is L2-mediated. Using differential staining of an incoming viral genome by small molecular dyes in selectively permeabilized cells, nuclease protection, and flotation assays, we found that HPV resides in a membrane-bound vesicle until mitosis is completed and the nuclear envelope has reformed. As a result, expression of the incoming viral genome is delayed. Taken together, these data provide evidence that HPV has evolved a unique strategy for delivering the viral genome to the nucleus of dividing cells. Furthermore, it is unlikely that nuclear vesicles are unique to HPV, and thus we may have uncovered a hitherto unrecognized cellular pathway that may be of interest for future cell biological studies.

  14. Phosphorylation of DEPDC1 at Ser110 is required to maintain centrosome organization during mitosis.

    Science.gov (United States)

    Chen, Dan; Ito, Satoko; Hyodo, Toshinori; Asano-Inami, Eri; Yuan, Hong; Senga, Takeshi

    2017-09-15

    DEPDC1 (DEP domain containing 1) is overexpressed in multiple cancers and is associated with cell cycle progression. In this report, we have investigated the expression, localization, phosphorylation and function of DEPDC1 during mitosis. DEPDC1 has two isoforms (isoform a and isoform b), and both of them are increased in mitosis and degraded once cells exit mitosis. DEPDC1a is localized to the centrosome in metaphase, whereas DEPDC1b is localized to the entire cell cortex during mitosis. DEPDC1a, but not DEPDC1b, was required for the integrity of centrosome and organization of the bipolar spindle. Mass spectrometry and biochemical analyses revealed phosphorylation of DEPDC1 at Ser110. The phosphorylation of Ser110 is essential for localization of DEPDC1a to the centrosome. Consistently, non-phosphorylation mutants of DEPDC1a did not rescue disruption of centrosome organization by depletion of endogenous DEPDC1. Our results show a novel role for DEPDC1 in maintaining centrosome integrity during mitosis for the accurate distribution of chromosomes. Copyright © 2017. Published by Elsevier Inc.

  15. How unfinished business from S-phase affects mitosis and beyond

    DEFF Research Database (Denmark)

    Mankouri, H.W.; Huttner, D.; Hickson, I.D.

    2013-01-01

    The eukaryotic cell cycle is conventionally viewed as comprising several discrete steps, each of which must be completed before the next one is initiated. However, emerging evidence suggests that incompletely replicated, or unresolved, chromosomes from S-phase can persist into mitosis, where...... they present a potential threat to the faithful segregation of sister chromatids. In this review, we provide an overview of the different classes of loci where this 'unfinished S-phase business' can lead to a variety of cytogenetically distinct DNA structures throughout the various steps of mitosis...

  16. Effects of tyrosine kinase and phosphatase inhibitors on mitosis progression in synchronized tobacco BY-2 cells.

    Science.gov (United States)

    Sheremet, Ya A; Yemets, A I; Azmi, A; Vissenberg, K; Verbelen, J P; Blume, Ya B

    2012-01-01

    To test whether reversible tubulin phosphorylation plays any role in the process of plant mitosis the effects of inhibitors of tyrosine kinases, herbimycin A, genistein and tyrphostin AG 18, and of an inhibitor of tyrosine phosphatases, sodium orthovanadate, on microtubule organization and mitosis progression in a synchronized BY-2 culture has been investigated. It was found that treatment with inhibitors of tyrosine kinases of BY-2 cells at the G2/M transition did not lead to visible disturbances of mitotic microtubule structures, while it did reduce the frequency of their appearance. We assume that a decreased tyrosine phosphorylation level could alter the microtubule dynamic instability parameters during interphase/prophase transition. All types of tyrosine kinase inhibitors used caused a prophase delay: herbimycin A and genistein for 2 h, and tyrphostin AG18 for 1 h. Thereafter the peak of mitosis was displaced for 1 h by herbimycin A or genistein exposure, but after tyrphostin AG18 treatment the timing of the mitosis-peak was comparable to that in control cells. Enhancement of tyrosine phosphorylation induced by the tyrosine phosphatase inhibitor resulted in the opposite effect on BY-2 mitosis transition. Culture treatment with sodium orthovanadate during 1 h resulted in an accelerated start of the prophase and did not lead to the alteration in time of the mitotic index peak formation, as compared to control cells. We suppose that the reversible tyrosine phosphorylation can be involved in the regulation of interphase to M phase transition possibly through regulation of microtubule dynamics in plant cells.

  17. Ase1p Organizes Antiparallel Microtubule Arrays during Interphase and Mitosis in Fission YeastV⃞

    OpenAIRE

    Loïodice, Isabelle; Staub, Jayme; Setty, Thanuja Gangi; Nguyen, Nam-Phuong T.; Paoletti, Anne; Tran, P. T.

    2005-01-01

    Proper microtubule organization is essential for cellular processes such as organelle positioning during interphase and spindle formation during mitosis. The fission yeast Schizosaccharomyces pombe presents a good model for understanding microtubule organization. We identify fission yeast ase1p, a member of the conserved ASE1/PRC1/MAP65 family of microtubule bundling proteins, which functions in organizing the spindle midzone during mitosis. Using fluorescence live cell imaging, we show that ...

  18. TMBP200, a XMAP215 homologue of tobacco BY-2 cells, has an essential role in plant mitosis.

    Science.gov (United States)

    Yasuhara, Hiroki; Oe, Yuki

    2011-07-01

    TMBP200 from tobacco BY-2 cells is a member of the highly conserved family of microtubule-associated proteins that includes Xenopus XMAP215, human TOGp, and Arabidopsis MOR1/GEM1. XMAP215 homologues have an essential role in spindle assembly and function in animals and yeast, but their role in plant mitosis is not fully clarified. Here, we show by immunoblot analysis that TMBP200 levels in synchronously cultured BY-2 cells increased when the cells entered mitosis, thus indicating that TMBP200 plays an important role in mitosis in tobacco. To investigate the role of TMBP200 in mitosis, we employed inducible RNA interference to silence TMBP200 expression in BY-2 cells. The resulting depletion of TMBP200 caused severe defects in bipolar spindle formation and resulted in the appearance of multinucleated cells with variable-sized nuclei. This finding indicates that TMBP200 has an essential role in bipolar spindle formation and function.

  19. Phosphorylation by CK2 regulates MUS81/EME1 in mitosis and after replication stress.

    Science.gov (United States)

    Palma, Anita; Pugliese, Giusj Monia; Murfuni, Ivana; Marabitti, Veronica; Malacaria, Eva; Rinalducci, Sara; Minoprio, Anna; Sanchez, Massimo; Mazzei, Filomena; Zolla, Lello; Franchitto, Annapaola; Pichierri, Pietro

    2018-06-01

    The MUS81 complex is crucial for preserving genome stability through the resolution of branched DNA intermediates in mitosis. However, untimely activation of the MUS81 complex in S-phase is dangerous. Little is known about the regulation of the human MUS81 complex and how deregulated activation affects chromosome integrity. Here, we show that the CK2 kinase phosphorylates MUS81 at Serine 87 in late-G2/mitosis, and upon mild replication stress. Phosphorylated MUS81 interacts with SLX4, and this association promotes the function of the MUS81 complex. In line with a role in mitosis, phosphorylation at Serine 87 is suppressed in S-phase and is mainly detected in the MUS81 molecules associated with EME1. Loss of CK2-dependent MUS81 phosphorylation contributes modestly to chromosome integrity, however, expression of the phosphomimic form induces DSBs accumulation in S-phase, because of unscheduled targeting of HJ-like DNA intermediates, and generates a wide chromosome instability phenotype. Collectively, our findings describe a novel regulatory mechanism controlling the MUS81 complex function in human cells. Furthermore, they indicate that, genome stability depends mainly on the ability of cells to counteract targeting of branched intermediates by the MUS81/EME1 complex in S-phase, rather than on a correct MUS81 function in mitosis.

  20. Polo-like kinase 1 (PLK1) and protein phosphatase 6 (PP6) regulate DNA-dependent protein kinase catalytic subunit (DNA-PKcs) phosphorylation in mitosis.

    Science.gov (United States)

    Douglas, Pauline; Ye, Ruiqiong; Trinkle-Mulcahy, Laura; Neal, Jessica A; De Wever, Veerle; Morrice, Nick A; Meek, Katheryn; Lees-Miller, Susan P

    2014-06-25

    The protein kinase activity of the DNA-PKcs (DNA-dependent protein kinase catalytic subunit) and its autophosphorylation are critical for DBS (DNA double-strand break) repair via NHEJ (non-homologous end-joining). Recent studies have shown that depletion or inactivation of DNA-PKcs kinase activity also results in mitotic defects. DNA-PKcs is autophosphorylated on Ser2056, Thr2647 and Thr2609 in mitosis and phosphorylated DNA-PKcs localize to centrosomes, mitotic spindles and the midbody. DNA-PKcs also interacts with PP6 (protein phosphatase 6), and PP6 has been shown to dephosphorylate Aurora A kinase in mitosis. Here we report that DNA-PKcs is phosphorylated on Ser3205 and Thr3950 in mitosis. Phosphorylation of Thr3950 is DNA-PK-dependent, whereas phosphorylation of Ser3205 requires PLK1 (polo-like kinase 1). Moreover, PLK1 phosphorylates DNA-PKcs on Ser3205 in vitro and interacts with DNA-PKcs in mitosis. In addition, PP6 dephosphorylates DNA-PKcs at Ser3205 in mitosis and after IR (ionizing radiation). DNA-PKcs also phosphorylates Chk2 on Thr68 in mitosis and both phosphorylation of Chk2 and autophosphorylation of DNA-PKcs in mitosis occur in the apparent absence of Ku and DNA damage. Our findings provide mechanistic insight into the roles of DNA-PKcs and PP6 in mitosis and suggest that DNA-PKcs' role in mitosis may be mechanistically distinct from its well-established role in NHEJ.

  1. Comprehensive Identification of SUMO2/3 Targets and Their Dynamics during Mitosis

    DEFF Research Database (Denmark)

    Schou, Julie; Kelstrup, Christian D; Hayward, Daniel G

    2014-01-01

    During mitosis large alterations in cellular structures occur rapidly, which to a large extent is regulated by post-translational modification of proteins. Modification of proteins with the small ubiquitin-related protein SUMO2/3 regulates mitotic progression, but few mitotic targets have been...... identified so far. To deepen our understanding of SUMO2/3 during this window of the cell cycle, we undertook a comprehensive proteomic characterization of SUMO2/3 modified proteins in mitosis and upon mitotic exit. We developed an efficient tandem affinity purification strategy of SUMO2/3 modified proteins...... from mitotic cells. Combining this purification strategy with cell synchronization procedures and quantitative mass spectrometry allowed for the mapping of numerous novel targets and their dynamics as cells progressed out of mitosis. This identified RhoGDIα as a major SUMO2/3 modified protein...

  2. Mitosis, double strand break repair, and telomeres: a view from the end: how telomeres and the DNA damage response cooperate during mitosis to maintain genome stability.

    Science.gov (United States)

    Cesare, Anthony J

    2014-11-01

    Double strand break (DSB) repair is suppressed during mitosis because RNF8 and downstream DNA damage response (DDR) factors, including 53BP1, do not localize to mitotic chromatin. Discovery of the mitotic kinase-dependent mechanism that inhibits DSB repair during cell division was recently reported. It was shown that restoring mitotic DSB repair was detrimental, resulting in repair dependent genome instability and covalent telomere fusions. The telomere DDR that occurs naturally during cellular aging and in cancer is known to be refractory to G2/M checkpoint activation. Such DDR-positive telomeres, and those that occur as part of the telomere-dependent prolonged mitotic arrest checkpoint, normally pass through mitosis without covalent ligation, but result in cell growth arrest in G1 phase. The discovery that suppressing DSB repair during mitosis may function primarily to protect DDR-positive telomeres from fusing during cell division reinforces the unique cooperation between telomeres and the DDR to mediate tumor suppression. © 2014 The Author. Bioessays published by WILEY Periodicals, Inc.

  3. Differential Regulation of Smad3 and of the Type II Transforming Growth Factor-β Receptor in Mitosis: Implications for Signaling

    Science.gov (United States)

    Hirschhorn, Tal; Barizilay, Lior; Smorodinsky, Nechama I.; Ehrlich, Marcelo

    2012-01-01

    The response to transforming growth factor-β (TGF-β) depends on cellular context. This context is changed in mitosis through selective inhibition of vesicle trafficking, reduction in cell volume and the activation of mitotic kinases. We hypothesized that these alterations in cell context may induce a differential regulation of Smads and TGF-β receptors. We tested this hypothesis in mesenchymal-like ovarian cancer cells, arrested (or not) in mitosis with 2-methoxyestradiol (2ME2). In mitosis, without TGF-β stimulation, Smad3 was phosphorylated at the C-terminus and linker regions and localized to the mitotic spindle. Phosphorylated Smad3 interacted with the negative regulators of Smad signaling, Smurf2 and Ski, and failed to induce a transcriptional response. Moreover, in cells arrested in mitosis, Smad3 levels were progressively reduced. These phosphorylations and reduction in the levels of Smad3 depended on ERK activation and Mps1 kinase activity, and were abrogated by increasing the volume of cells arrested in mitosis with hypotonic medium. Furthermore, an Mps1-dependent phosphorylation of GFP-Smad3 was also observed upon its over-expression in interphase cells, suggesting a mechanism of negative regulation which counters increases in Smad3 concentration. Arrest in mitosis also induced a block in the clathrin-mediated endocytosis of the type II TGF-β receptor (TβRII). Moreover, following the stimulation of mitotic cells with TGF-β, the proteasome-mediated attenuation of TGF-β receptor activity, the degradation and clearance of TβRII from the plasma membrane, and the clearance of the TGF-β ligand from the medium were compromised, and the C-terminus phosphorylation of Smad3 was prolonged. We propose that the reduction in Smad3 levels, its linker phosphorylation, and its association with negative regulators (observed in mitosis prior to ligand stimulation) represent a signal attenuating mechanism. This mechanism is balanced by the retention of active TGF

  4. Nuclear envelope expansion is crucial for proper chromosomal segregation during a closed mitosis.

    Science.gov (United States)

    Takemoto, Ai; Kawashima, Shigehiro A; Li, Juan-Juan; Jeffery, Linda; Yamatsugu, Kenzo; Elemento, Olivier; Nurse, Paul

    2016-03-15

    Here, we screened a 10,371 library of diverse molecules using a drug-sensitive fission yeast strain to identify compounds which cause defects in chromosome segregation during mitosis. We identified a phosphorium-ylide-based compound Cutin-1 which inhibits nuclear envelope expansion and nuclear elongation during the closed mitosis of fission yeast, and showed that its target is the β-subunit of fatty acid synthase. A point mutation in the dehydratase domain of Fas1 conferred in vivo and in vitro resistance to Cutin-1. Time-lapse photomicrography showed that the bulk of the chromosomes were only transiently separated during mitosis, and nucleoli separation was defective. Subsequently sister chromatids re-associated leading to chromosomal mis-segregation. These segregation defects were reduced when the nuclear volume was increased and were increased when the nuclear volume was reduced. We propose that there needs to be sufficient nuclear volume to allow the nuclear elongation necessary during a closed mitosis to take place for proper chromosome segregation, and that inhibition of fatty acid synthase compromises nuclear elongation and leads to defects in chromosomal segregation. © 2016. Published by The Company of Biologists Ltd.

  5. Phosphorylation of SAF-A/hnRNP-U Serine 59 by Polo-Like Kinase 1 Is Required for Mitosis.

    Science.gov (United States)

    Douglas, Pauline; Ye, Ruiqiong; Morrice, Nicholas; Britton, Sébastien; Trinkle-Mulcahy, Laura; Lees-Miller, Susan P

    2015-08-01

    Scaffold attachment factor A (SAF-A), also called heterogenous nuclear ribonuclear protein U (hnRNP-U), is phosphorylated on serine 59 by the DNA-dependent protein kinase (DNA-PK) in response to DNA damage. Since SAF-A, DNA-PK catalytic subunit (DNA-PKcs), and protein phosphatase 6 (PP6), which interacts with DNA-PKcs, have all been shown to have roles in mitosis, we asked whether DNA-PKcs phosphorylates SAF-A in mitosis. We show that SAF-A is phosphorylated on serine 59 in mitosis, that phosphorylation requires polo-like kinase 1 (PLK1) rather than DNA-PKcs, that SAF-A interacts with PLK1 in nocodazole-treated cells, and that serine 59 is dephosphorylated by protein phosphatase 2A (PP2A) in mitosis. Moreover, cells expressing SAF-A in which serine 59 is mutated to alanine have multiple characteristics of aberrant mitoses, including misaligned chromosomes, lagging chromosomes, polylobed nuclei, and delayed passage through mitosis. Our findings identify serine 59 of SAF-A as a new target of both PLK1 and PP2A in mitosis and reveal that both phosphorylation and dephosphorylation of SAF-A serine 59 by PLK1 and PP2A, respectively, are required for accurate and timely exit from mitosis. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. Centrosomes split in the presence of impaired DNA integrity during mitosis

    NARCIS (Netherlands)

    Hut, HMJ; Lemstra, W; Blaauw, EH; van Cappellen, GWA; Kampinga, HH; Sibon, OCM

    A well-established function of centrosomes is their role in accomplishing a successful mitosis that gives rise to a pair of identical daughter cells. We recently showed that DNA replication defects and DNA damage in Drosophila embryos trigger centrosomal changes, but it remained unclear whether

  7. Novel functions for the endocytic regulatory proteins MICAL-L1 and EHD1 in mitosis.

    Science.gov (United States)

    Reinecke, James B; Katafiasz, Dawn; Naslavsky, Naava; Caplan, Steve

    2015-01-01

    During interphase, recycling endosomes mediate the transport of internalized cargo back to the plasma membrane. However, in mitotic cells, recycling endosomes are essential for the completion of cytokinesis, the last phase of mitosis that promotes the physical separation the two daughter cells. Despite recent advances, our understanding of the molecular determinants that regulate recycling endosome dynamics during cytokinesis remains incomplete. We have previously demonstrated that Molecule Interacting with CasL Like-1 (MICAL-L1) and C-terminal Eps15 Homology Domain protein 1 (EHD1) coordinately regulate receptor transport from tubular recycling endosomes during interphase. However, their potential roles in controlling cytokinesis had not been addressed. In this study, we show that MICAL-L1 and EHD1 regulate mitosis. Depletion of either protein resulted in increased numbers of bi-nucleated cells. We provide evidence that bi-nucleation in MICAL-L1- and EHD1-depleted cells is a consequence of impaired recycling endosome transport during late cytokinesis. However, depletion of MICAL-L1, but not EHD1, resulted in aberrant chromosome alignment and lagging chromosomes, suggesting an EHD1-independent function for MICAL-L1 earlier in mitosis. Moreover, we provide evidence that MICAL-L1 and EHD1 differentially influence microtubule dynamics during early and late mitosis. Collectively, our new data suggest several unanticipated roles for MICAL-L1 and EHD1 during the cell cycle. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Elimination of radiation-induced chromosome damages in human peripheral blood lymphocyte cultures. 2. The frequency of aberrations in the first-fifth post-irradiation mitosis

    International Nuclear Information System (INIS)

    Pyatkin, E.K.; Pokrovskaya, V.N.; Nugis, V.Yu.

    1982-01-01

    The number of chromosome aberrations in 1.-5. mitoses cultivated from lymphocyte PHA of peripheric man blood after gamma irradiation in vitro in 1e5; 3 and 6 Gy has been determined. For all the doses, as the cells passed 1. and successive postradiation divisiops, observed was the decrease in the number of aberrant metaphases and all the aberrations of the chromosomal typee at that their elimination rate increases with the dose increase. No considerable differences in the frequency of pair fragments in 1.-4. mitosis after irradiation in 1,5 Gy dose, in 1.-3. mitoses after irradiation in 3 Gy dose and in 1.-2. mitoses after irradiation in 6 Gy dose were found. In lymphocyte cultures irradiated in 3 and 6 Gy doses the number of dicentries in 2. mitosis was approximately 2 times smaller than in 1. mitosis and in 3. mitosis two times smaller than in 2. mitosis. In 1. mitosis almost all the dicentrics have accompanying pair fragments in 2. and 3. mitoses a share of the dicentrics without fragments constituted about 30-70 %, and in 4.-5. mitoses amounted to 95-100 %. The reduction of the number of irregular chromosomes in the process of cell passing of 1. and successive postradiation mitosis was noted only during lymphocyte investigation irradiated in 6 Gy. At 1,5 and 3 Gy doses these aberration frequency in 1.-5. and 1.-4. mitoses were nearly the same

  9. The roles of cohesins in mitosis, meiosis, and human health and disease

    Science.gov (United States)

    Brooker, Amanda S.; Berkowitz, Karen M.

    2015-01-01

    Summary Mitosis and meiosis are essential processes that occur during development. Throughout these processes, cohesion is required to keep the sister chromatids together until their separation at anaphase. Cohesion is created by multi-protein subunit complexes called cohesins. Although the subunits differ slightly in mitosis and meiosis, the canonical cohesin complex is composed of four subunits that are quite diverse. The cohesin complexes are also important for DNA repair, gene expression, development, and genome integrity. Here we provide an overview of the roles of cohesins during these different events, as well as their roles in human health and disease, including the cohesinopathies. Although the exact roles and mechanisms of these proteins are still being elucidated, this review will serve as a guide for the current knowledge of cohesins. PMID:24906316

  10. Assessment of algorithms for mitosis detection in breast cancer histopathology images

    NARCIS (Netherlands)

    Veta, M.; Diest, van P.J.; Willems, S.M.; Wang, Haibo; Madabhushi, A. (Anant); Cruz-Roa, A. (Angel); González, F.; Larsen, A.B.L. (Anders); Vestergaard, J.S. (Jacob); Dahl, A.B. (Anders); Ciresan, D.C. (Dan); Schmidhuber, J.; Giusti, A. (Alessandro); Gambardella, L.M. (Luca); Tek, F. Boray; Walter, Th. (Thomas); Wang, Ching-Wei; Kondo, Satoshi; Matuszewski, B.J. (Bogdan); Precioso, F. (Frederic); Snell, V. (Violet); Kittler, Josef; de Campos, Teofilo E.; Khan, Adnan M.; Rajpoot, Nasir M.; Arkoumani, Evdokia; Lacle, Miangela M.; Viergever, M.A.; Pluim, J.P.W.

    2015-01-01

    The proliferative activity of breast tumors, which is routinely estimated by counting of mitotic figures in hematoxylin and eosin stained histology sections, is considered to be one of the most important prognostic markers. However, mitosis counting is laborious, subjective and may suffer from low

  11. Assessment of algorithms for mitosis detection in breast cancer histopathology images

    DEFF Research Database (Denmark)

    Veta, Mitko; van Diest, Paul J.; Willems, Stefan M.

    2014-01-01

    The proliferative activity of breast tumors, which is routinely estimated by counting of mitotic figures in hematoxylin and eosin stained histology sections, is considered to be one of the most important prognostic markers. However, mitosis counting is laborious, subjective and may suffer from lo...

  12. Human geminin promotes pre-RC formation and DNA replication by stabilizing CDT1 in mitosis

    DEFF Research Database (Denmark)

    Ballabeni, Andrea; Melixetian, Marina; Zamponi, Raffaella

    2004-01-01

    -mediated degradation by inhibiting its ubiquitination. In particular, Geminin ensures basal levels of CDT1 during S phase and its accumulation during mitosis. Consistently, inhibition of Geminin synthesis during M phase leads to impairment of pre-RC formation and DNA replication during the following cell cycle....... Moreover, we show that inhibition of CDK1 during mitosis, and not Geminin depletion, is sufficient for premature formation of pre-RCs, indicating that CDK activity is the major mitotic inhibitor of licensing in human cells. Taken together with recent data from our laboratory, our results demonstrate...

  13. Elimination of radiation-induced chromosomal damages in numan peripheral blood lymphocyte cultures. 1. The frequency of aberrations in the first and second mitosis

    International Nuclear Information System (INIS)

    Pyatkin, E.K.; Nugis, V.Yu.

    1981-01-01

    A comparative analysis of chromosomal aberrations in the first and second mitosis of cultivated human peripheral blood lymphocytes after gamma irradiation in vitro at 1-5 Gy doses has been made. Irradiated blood lymphocytes were incubated for 58 to 66 h at 37 deg with PGA and BDU (20 μg /ml). The first, second and third postradiation mitosises were identified using the distinguishing staining of sister chromatids. The share of the cells in the first mitosis fluctuated from 32 to 77 %, in the second - from 23 to 68 %, and the third - from 0 to 9 %. At all radiation doses significant differences in the frequency of the aberration cells passing the first and second mitosises were revealed as well as in the total number of chromosomal aberrations in all the cells. The frequency of pair fragments and dicentrics chromosomes in the first mitosis was on the average 1.6 and 2 times as high as in the second one, respectively. In the first mitosis almost all dicentric chromosomes occurred with accompanying pair fragments, and in the second mitosis the share of dicentric chromosomes without accompanying fragments was 25 to 50 %. The distribution of the dicentric chromosomes in the cells in the first and second mitosis did not differ from Poison distribution for the 2 to 5 Gy dose range

  14. VISUALIZACIÓN DE LA MITOSIS CON EL MICROSCOPIO DE FUERZA ATÓMICA

    Directory of Open Access Journals (Sweden)

    María de Lourdes Segura-Valdez

    2008-01-01

    Full Text Available En eucariontes, la división celular generalmente ocurre por medio de la mitosis. En estudios previos hemos documentado la posibilidad de estudiar la estructura celular in situ con el microscopio de fuerza atómica, con énfasis en la estructura nuclear en interfase. En este trabajo mostramos que las diferentes etapas de la mitosis pueden ser visualizadas con este instrumento, lo que abre la posibilidad de estudiar este fenómeno en el rango nanométrico.

  15. Direct evidence that radiation induced micronuclei of early embryos require a mitosis for expression

    International Nuclear Information System (INIS)

    Mueller, W.U.; Schlusen, I.; Streffer, C.

    1991-01-01

    The naturally synchronous development of early mouse embryos was exploited to address the question, whether micronuclei require a mitosis for expression or whether they can be expressed in the same cell cycle, in which exposure to X-rays or caffeine took place. Experiments with 2-cell and with 4-cell embryos showed that micronulcei are expressed only if a mitosis is completed. There was no indication, even after doses up to 20 Gy, that micronuclei can be expressed before the mitosis was reached, which followed exposure. Furthermore, no nuclear fragmentation pointing to apoptosis could be detected in the cycle, in which cells were exposed. The same results were obtained when caffeine (5 mM) was used as micronucleus inducing agent. (orig.)

  16. Cytosolic Cl- Affects the Anticancer Activity of Paclitaxel in the Gastric Cancer Cell Line, MKN28 Cell

    Directory of Open Access Journals (Sweden)

    Sachie Tanaka

    2017-05-01

    Full Text Available Background/Aims: Our previous study revealed that cytosolic Cl- affected neurite elongation promoted via assembly of microtubule in rat pheochromocytoma PC12D cells and Cl-–induced blockade of intrinsic GTPase enhanced tubulin polymerization in vitro. Paclitaxel (PTX is a microtubule-targeted chemotherapeutic drug and stabilizes microtubules resulting in mainly blockade of mitosis at the metaphase-anaphase transition and induction of apoptosis. In the present study, we tried to clarify whether the cytosolic Cl- affected PTX ability to inhibit cell growth in the gastric cancer cell line, MKN28. Methods: To clarify the cytosolic Cl- action on PTX-induced cell death and metaphase-anaphase transition in the gastric cancer cell line, MKN28 cell, and PTX-induced tubulin polymerization, we performed cell proliferation assay, cytosolic Cl- concentration measurement, immunofluorescence microscopy, and in vitro tubulin polymerization assay. Results: The decline of cytosolic Cl- weakened the cytotoxic effect of PTX on cell proliferation of MKN28 cells, which could pass through the metaphase-anaphase transition. Moreover, in vitro PTX-induced tubulin polymerization was diminished under the low Cl- condition. Conclusions: Our results strongly suggest that the upregulation of cytosolic Cl- concentration would enhance the antitumor effect of PTX, and that the cytosolic Cl- would be one of the key targets for anti-cancer therapy.

  17. The mitosis-regulating and protein-protein interaction activities of astrin are controlled by aurora-A-induced phosphorylation.

    Science.gov (United States)

    Chiu, Shao-Chih; Chen, Jo-Mei Maureen; Wei, Tong-You Wade; Cheng, Tai-Shan; Wang, Ya-Hui Candice; Ku, Chia-Feng; Lian, Chiao-Hsuan; Liu, Chun-Chih Jared; Kuo, Yi-Chun; Yu, Chang-Tze Ricky

    2014-09-01

    Cells display dramatic morphological changes in mitosis, where numerous factors form regulatory networks to orchestrate the complicated process, resulting in extreme fidelity of the segregation of duplicated chromosomes into two daughter cells. Astrin regulates several aspects of mitosis, such as maintaining the cohesion of sister chromatids by inactivating Separase and stabilizing spindle, aligning and segregating chromosomes, and silencing spindle assembly checkpoint by interacting with Src kinase-associated phosphoprotein (SKAP) and cytoplasmic linker-associated protein-1α (CLASP-1α). To understand how Astrin is regulated in mitosis, we report here that Astrin acts as a mitotic phosphoprotein, and Aurora-A phosphorylates Astrin at Ser(115). The phosphorylation-deficient mutant Astrin S115A abnormally activates spindle assembly checkpoint and delays mitosis progression, decreases spindle stability, and induces chromosome misalignment. Mechanistic analyses reveal that Astrin phosphorylation mimicking mutant S115D, instead of S115A, binds and induces ubiquitination and degradation of securin, which sequentially activates Separase, an enzyme required for the separation of sister chromatids. Moreover, S115A fails to bind mitosis regulators, including SKAP and CLASP-1α, which results in the mitotic defects observed in Astrin S115A-transfected cells. In conclusion, Aurora-A phosphorylates Astrin and guides the binding of Astrin to its cellular partners, which ensures proper progression of mitosis. Copyright © 2014 the American Physiological Society.

  18. Polo-like kinase 1 inhibits DNA damage response during mitosis.

    Science.gov (United States)

    Benada, Jan; Burdová, Kamila; Lidak, Tomáš; von Morgen, Patrick; Macurek, Libor

    2015-01-01

    In response to genotoxic stress, cells protect their genome integrity by activation of a conserved DNA damage response (DDR) pathway that coordinates DNA repair and progression through the cell cycle. Extensive modification of the chromatin flanking the DNA lesion by ATM kinase and RNF8/RNF168 ubiquitin ligases enables recruitment of various repair factors. Among them BRCA1 and 53BP1 are required for homologous recombination and non-homologous end joining, respectively. Whereas mechanisms of DDR are relatively well understood in interphase cells, comparatively less is known about organization of DDR during mitosis. Although ATM can be activated in mitotic cells, 53BP1 is not recruited to the chromatin until cells exit mitosis. Here we report mitotic phosphorylation of 53BP1 by Plk1 and Cdk1 that impairs the ability of 53BP1 to bind the ubiquitinated H2A and to properly localize to the sites of DNA damage. Phosphorylation of 53BP1 at S1618 occurs at kinetochores and in cytosol and is restricted to mitotic cells. Interaction between 53BP1 and Plk1 depends on the activity of Cdk1. We propose that activity of Cdk1 and Plk1 allows spatiotemporally controlled suppression of 53BP1 function during mitosis.

  19. The master Greatwall kinase, a critical regulator of mitosis and meiosis.

    Science.gov (United States)

    Vigneron, Suzanne; Robert, Perle; Hached, Khaled; Sundermann, Lena; Charrasse, Sophie; Labbé, Jean-Claude; Castro, Anna; Lorca, Thierry

    2016-01-01

    Entry into mitosis requires the coordinated activation of various protein kinases and phosphatases that together activate sequential signaling pathways allowing entry, progression and exit of mitosis. The limiting step is thought to be the activation of the mitotic Cdk1-cyclin B kinase. However, this model has recently evolved with new data showing that in addition to the Cdk1-cyclin B complex, Greatwall (Gwl) kinase is also required to enter into and maintain mitosis. This new concept proposes that entry into mitosis is now based on the combined activation of both kinases Cdk1-cyclin B and Gwl, the former promoting massive phosphorylation of mitotic substrates and the latter inhibiting PP2A-B55 phosphatase responsible for dephosphorylation of these substrates. Activated Gwl phosphorylates both Arpp19 and ENSA, which associate and inhibit PP2A-B55. This pathway seems relatively well conserved from yeast to humans, although some differences appear based on models or techniques used. While Gwl is activated by phosphorylation, its inactivation requires dephosphorylation of critical residues. Several phosphatases such as PP1, PP2A-B55 and FCP1 are required to control the dephosphorylation and inactivation of Gwl and a properly regulated mitotic exit. Gwl has also been reported to be involved in cancer processes and DNA damage recovery. These new findings support the idea that the Gwl-Arpp19/ENSA-PP2A-B55 pathway is essential to achieve an efficient division of cells and to maintain genomic stability.

  20. MiR-210 disturbs mitotic progression through regulating a group of mitosis-related genes.

    Science.gov (United States)

    He, Jie; Wu, Jiangbin; Xu, Naihan; Xie, Weidong; Li, Mengnan; Li, Jianna; Jiang, Yuyang; Yang, Burton B; Zhang, Yaou

    2013-01-07

    MiR-210 is up-regulated in multiple cancer types but its function is disputable and further investigation is necessary. Using a bioinformatics approach, we identified the putative target genes of miR-210 in hypoxia-induced CNE cells from genome-wide scale. Two functional gene groups related to cell cycle and RNA processing were recognized as the major targets of miR-210. Here, we investigated the molecular mechanism and biological consequence of miR-210 in cell cycle regulation, particularly mitosis. Hypoxia-induced up-regulation of miR-210 was highly correlated with the down-regulation of a group of mitosis-related genes, including Plk1, Cdc25B, Cyclin F, Bub1B and Fam83D. MiR-210 suppressed the expression of these genes by directly targeting their 3'-UTRs. Over-expression of exogenous miR-210 disturbed mitotic progression and caused aberrant mitosis. Furthermore, miR-210 mimic with pharmacological doses reduced tumor formation in a mouse metastatic tumor model. Taken together, these results implicate that miR-210 disturbs mitosis through targeting multi-genes involved in mitotic progression, which may contribute to its inhibitory role on tumor formation.

  1. Regularity of mitosis in different varieties of winter bread wheat under the action of herbicides

    Directory of Open Access Journals (Sweden)

    Tatyana Eugenivna KOPYTCHUK

    2012-05-01

    Full Text Available The influence of the most widespread herbicides on winter wheat in Ukraine was studied by anaphase test. Treatment with herbicides reduced the germination of the seeds and disturbed the regularity of mitosis in all varieties of wheat. The range of violations of mitosis was demonstrated by the formation of chromosomal aberrations and dysfunctions of cell cytoskeleton which occurred while processing herbicides. Varietal differences between investigated wheat by sensitivity to herbicides were discovered. The most resistant to herbicides was variety Fantasya Odesskaya, and the most sensitive – Nikoniya, while the most harmful herbicide for wheat was Napalm.

  2. Systematic Analysis of the Crosstalk between Mitosis and DNA Damage by a Live Cell siRNA Screen

    DEFF Research Database (Denmark)

    Pedersen, Ronni Sølvhøi

    Recent research has shown, that the biological processes of DNA replication, DNA damage, cell cycle and mitosis cannot be considered as isolated cellular functions but are mechanistically linked in many ways. For instance, when cells are exposed to replication stress and enter mitosis...... propose that this strong p53 response, which often occurs without detectable increase in DNA damage, is caused by the acute increase in chromosomal aneuploidy. Finally, our systematic approach to the DNA damage-mitosis crosstalk reveals widespread cell death in response to mitotic pertubations, showing...

  3. Cycling with BRCA2 from DNA repair to mitosis

    International Nuclear Information System (INIS)

    Lee, Hyunsook

    2014-01-01

    Genetic integrity in proliferating cells is guaranteed by the harmony of DNA replication, appropriate DNA repair, and segregation of the duplicated genome. Breast cancer susceptibility gene BRCA2 is a unique tumor suppressor that is involved in all three processes. Hence, it is critical in genome maintenance. The functions of BRCA2 in DNA repair and homology-directed recombination (HDR) have been reviewed numerous times. Here, I will briefly go through the functions of BRCA2 in HDR and focus on the emerging roles of BRCA2 in telomere homeostasis and mitosis, then discuss how BRCA2 exerts distinct functions in a cell-cycle specific manner in the maintenance of genomic integrity. - Highlights: • BRCA2 is a multifaceted tumor suppressor and is crucial in genetic integrity. • BRCA2 exerts distinct functions in cell cycle-specific manner. • Mitotic kinases regulate diverse functions of BRCA2 in mitosis and cytokinesis

  4. Cycling with BRCA2 from DNA repair to mitosis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyunsook, E-mail: HL212@snu.ac.kr

    2014-11-15

    Genetic integrity in proliferating cells is guaranteed by the harmony of DNA replication, appropriate DNA repair, and segregation of the duplicated genome. Breast cancer susceptibility gene BRCA2 is a unique tumor suppressor that is involved in all three processes. Hence, it is critical in genome maintenance. The functions of BRCA2 in DNA repair and homology-directed recombination (HDR) have been reviewed numerous times. Here, I will briefly go through the functions of BRCA2 in HDR and focus on the emerging roles of BRCA2 in telomere homeostasis and mitosis, then discuss how BRCA2 exerts distinct functions in a cell-cycle specific manner in the maintenance of genomic integrity. - Highlights: • BRCA2 is a multifaceted tumor suppressor and is crucial in genetic integrity. • BRCA2 exerts distinct functions in cell cycle-specific manner. • Mitotic kinases regulate diverse functions of BRCA2 in mitosis and cytokinesis.

  5. A new theory of the origin of cancer: quantum coherent entanglement, centrioles, mitosis, and differentiation.

    Science.gov (United States)

    Hameroff, Stuart R

    2004-11-01

    Malignant cells are characterized by abnormal segregation of chromosomes during mitosis ("aneuploidy"), generally considered a result of malignancy originating in genetic mutations. However, recent evidence supports a century-old concept that maldistribution of chromosomes (and resultant genomic instability) due to abnormalities in mitosis itself is the primary cause of malignancy rather than a mere byproduct. In normal mitosis chromosomes replicate into sister chromatids which are then precisely separated and transported into mirror-like sets by structural protein assemblies called mitotic spindles and centrioles, both composed of microtubules. The elegant yet poorly understood ballet-like movements and geometric organization occurring in mitosis have suggested guidance by some type of organizing field, however neither electromagnetic nor chemical gradient fields have been demonstrated or shown to be sufficient. It is proposed here that normal mirror-like mitosis is organized by quantum coherence and quantum entanglement among microtubule-based centrioles and mitotic spindles which ensure precise, complementary duplication of daughter cell genomes and recognition of daughter cell boundaries. Evidence and theory supporting organized quantum states in cytoplasm/nucleoplasm (and quantum optical properties of centrioles in particular) at physiological temperature are presented. Impairment of quantum coherence and/or entanglement among microtubule-based mitotic spindles and centrioles can result in abnormal distribution of chromosomes, abnormal differentiation and uncontrolled growth, and account for all aspects of malignancy. New approaches to cancer therapy and stem cell production are suggested via non-thermal laser-mediated effects aimed at quantum optical states of centrioles.

  6. Role of substrate concentration in mitosis and hyphal extension of Aspergillus

    DEFF Research Database (Denmark)

    Müller, Christian; Spohr, Anders Bendsen; Nielsen, Jens

    2000-01-01

    The filamentous fungi Aspergillus oryzae and A. niger grow by apical extension of multinucleate hyphae that are subdivided into compartments by cross-walls called septa. Submerged cultivation, image analysis, and fluorescence microscopy were used to study the role of the carbon source on mitosis...

  7. The Role of Drosophila Merlin in the Control of Mitosis Exit and Development

    National Research Council Canada - National Science Library

    Chang, Long-Sheng

    2007-01-01

    To better understand the mechanism by which Merlin functions as a tumor suppressor we have shown that mutations in the Drosophila Merlin gene lead to increased mitosis and alter the duration of the G2...

  8. The importance of G1/S-border and mitosis in the fixation

    International Nuclear Information System (INIS)

    Iliakis, G.; Nuesse, M.

    1983-01-01

    The ability of synchronized Ehrlich ascites tumour cells to repair PLD was measured by introducing delays in their progression through the cell cycle either in the same phase as that where the irradiation was given or in a subsequent phase. Cells were incubated for this purpose either in balanced salt solution which nonspecifically delayed progression in all cell cycle phases or with 0.5 μg/ml aphidicolin which delayed cells in S-phase. Cells which had been delayed in their progression through the cell cycle were able to repair PLD irrespective of the phase at which they were held. In cases where the delay in the progression through the cell cycle was introduced in a phase subsequent to that of the exposure to irradiation, repair of PLD was observed only if the cells had not passed the G1/S-border or mitosis. Based on these results, the importance of G1/S-border and mitosis in the fixation of PLD is suggested. (orig.)

  9. Seasonal temperature variations influence tapetum mitosis patterns associated with reproductive fitness.

    Science.gov (United States)

    Lavania, Umesh C; Basu, Surochita; Kushwaha, Jyotsana Singh; Lavania, Seshu

    2014-09-01

    Environmental stress in plants impacts many biological processes, including male gametogenesis, and affects several cytological mechanisms that are strongly interrelated. To understand the likely impact of rising temperature on reproductive fitness in the climate change regime, a study of tapetal mitosis and its accompanying meiosis over seasons was made to elucidate the influence of temperature change on the cytological events occurring during microsporogenesis. For this we used two species of an environmentally sensitive plant system, i.e., genus Cymbopogon Sprengel (Poaceae), namely Cymbopogon nardus (L.) Rendle var. confertiflorus (Steud.) Bor (2n = 20) and Cymbopogon jwaruncusha (Jones) Schult. (2n = 20). Both species flower profusely during extreme summer (48 °C) and mild winter (15 °C) but support low and high seed fertility, respectively, in the two seasons. We have shown that tapetal mitotic patterns over seasons entail differential behavior for tapetal mitosis. During the process of tapetum development there are episodes of endomitosis that form either (i) an endopolyploid genomically imbalanced uninucleate and multinucleate tapetum, and (or) (ii) an acytokinetic multinucleate genomically balanced tapetum, with the progression of meiosis in the accompanying sporogenous tissue. The relative frequency of occurrence of the two types of tapetum mitosis patterns is significantly different in the two seasons, and it is found to be correlated with the temperature conditions. Whereas, the former (genomically imbalanced tapetum) are prevalent during the hot summer, the latter (genomically balanced tapetum) are frequent under optimal conditions. Such a differential behaviour in tapetal mitosis vis-à-vis temperature change is also correspondingly accompanied by substantial disturbances or regularity in meiotic anaphase disjunction. Both species show similar patterns. The study underpins that tapetal mitotic behaviour per se could be a reasonable indicator to

  10. Aurora B kinase inhibition in mitosis: strategies for optimising the use of aurora kinase inhibitors such as AT9283.

    Science.gov (United States)

    Curry, Jayne; Angove, Hayley; Fazal, Lynsey; Lyons, John; Reule, Matthias; Thompson, Neil; Wallis, Nicola

    2009-06-15

    Aurora kinases play a key role in regulating mitotic division and are attractive oncology targets. AT9283, a multi-targeted kinase inhibitor with potent activity against Aurora A and B kinases, inhibited growth and survival of multiple solid tumor cell lines and was efficacious in mouse xenograft models. AT9283-treatment resulted in endoreduplication and ablation of serine-10 histone H3 phosphorylation in both cells and tumor samples, confirming that in these models it acts as an Aurora B kinase inhibitor. In vitro studies demonstrated that exposure to AT9283 for one complete cell cycle committed an entire population of p53 checkpoint-compromised cells (HCT116) to multinucleation and death whereas treatment of p53 checkpoint-competent cells (HMEC, A549) for a similar length of time led to a reversible arrest of cells with 4N DNA. Further studies in synchronized cell populations suggested that exposure to AT9283 during mitosis was critical for optimal cytotoxicity. We therefore investigated ways in which these properties might be exploited to optimize the efficacy and therapeutic index of Aurora kinase inhibitors for p53 checkpoint compromised tumors in vivo. Combining Aurora B kinase inhibition with paclitaxel, which arrests cells in mitosis, in a xenograft model resulted in promising efficacy without additional toxicity. These findings have implications for optimizing the efficacy of Aurora kinase inhibitors in clinical practice.

  11. Restraint of apoptosis during mitosis through interdomain phosphorylation of caspase-2

    Science.gov (United States)

    Andersen, Joshua L; Johnson, Carrie E; Freel, Christopher D; Parrish, Amanda B; Day, Jennifer L; Buchakjian, Marisa R; Nutt, Leta K; Thompson, J Will; Moseley, M Arthur; Kornbluth, Sally

    2009-01-01

    The apoptotic initiator caspase-2 has been implicated in oocyte death, in DNA damage- and heat shock-induced death, and in mitotic catastrophe. We show here that the mitosis-promoting kinase, cdk1–cyclin B1, suppresses apoptosis upstream of mitochondrial cytochrome c release by phosphorylating caspase-2 within an evolutionarily conserved sequence at Ser 340. Phosphorylation of this residue, situated in the caspase-2 interdomain, prevents caspase-2 activation. S340 was susceptible to phosphatase 1 dephosphorylation, and an interaction between phosphatase 1 and caspase-2 detected during interphase was lost in mitosis. Expression of S340A non-phosphorylatable caspase-2 abrogated mitotic suppression of caspase-2 and apoptosis in various settings, including oocytes induced to undergo cdk1-dependent maturation. Moreover, U2OS cells treated with nocodazole were found to undergo mitotic catastrophe more readily when endogenous caspase-2 was replaced with the S340A mutant to lift mitotic inhibition. These data demonstrate that for apoptotic stimuli transduced by caspase-2, cell death is prevented during mitosis through the inhibitory phosphorylation of caspase-2 and suggest that under conditions of mitotic arrest, cdk1–cyclin B1 activity must be overcome for apoptosis to occur. PMID:19730412

  12. Mutations in genes encoding condensin complex proteins cause microcephaly through decatenation failure at mitosis.

    Science.gov (United States)

    Martin, Carol-Anne; Murray, Jennie E; Carroll, Paula; Leitch, Andrea; Mackenzie, Karen J; Halachev, Mihail; Fetit, Ahmed E; Keith, Charlotte; Bicknell, Louise S; Fluteau, Adeline; Gautier, Philippe; Hall, Emma A; Joss, Shelagh; Soares, Gabriela; Silva, João; Bober, Michael B; Duker, Angela; Wise, Carol A; Quigley, Alan J; Phadke, Shubha R; Wood, Andrew J; Vagnarelli, Paola; Jackson, Andrew P

    2016-10-01

    Compaction of chromosomes is essential for accurate segregation of the genome during mitosis. In vertebrates, two condensin complexes ensure timely chromosome condensation, sister chromatid disentanglement, and maintenance of mitotic chromosome structure. Here, we report that biallelic mutations in NCAPD2, NCAPH, or NCAPD3, encoding subunits of these complexes, cause microcephaly. In addition, hypomorphic Ncaph2 mice have significantly reduced brain size, with frequent anaphase chromatin bridge formation observed in apical neural progenitors during neurogenesis. Such DNA bridges also arise in condensin-deficient patient cells, where they are the consequence of failed sister chromatid disentanglement during chromosome compaction. This results in chromosome segregation errors, leading to micronucleus formation and increased aneuploidy in daughter cells. These findings establish "condensinopathies" as microcephalic disorders, with decatenation failure as an additional disease mechanism for microcephaly, implicating mitotic chromosome condensation as a key process ensuring mammalian cerebral cortex size. © 2016 Martin et al.; Published by Cold Spring Harbor Laboratory Press.

  13. The G2/M DNA damage checkpoint inhibits mitosis through Tyr15 phosphorylation of p34cdc2 in Aspergillus nidulans.

    Science.gov (United States)

    Ye, X S; Fincher, R R; Tang, A; Osmani, S A

    1997-01-02

    It is possible to cause G2 arrest in Aspergillus nidulans by inactivating either p34cdc2 or NIMA. We therefore investigated the negative control of these two mitosis-promoting kinases after DNA damage. DNA damage caused rapid Tyr15 phosphorylation of p34cdc2 and transient cell cycle arrest but had little effect on the activity of NIMA. Dividing cells deficient in Tyr15 phosphorylation of p34cdc2 were sensitive to both MMS and UV irradiation and entered lethal premature mitosis with damaged DNA. However, non-dividing quiescent conidiospores of the Tyr15 mutant strain were not sensitive to DNA damage. The UV and MMS sensitivity of cells unable to tyrosine phosphorylate p34cdc2 is therefore caused by defects in DNA damage checkpoint regulation over mitosis. Both the nimA5 and nimT23 temperature-sensitive mutations cause an arrest in G2 at 42 degrees C. Addition of MMS to nimT23 G2-arrested cells caused a marked delay in their entry into mitosis upon downshift to 32 degrees C and this delay was correlated with a long delay in the dephosphorylation and activation of p34cdc2. Addition of MMS to nimA5 G2-arrested cells caused inactivation of the H1 kinase activity of p34cdc2 due to an increase in its Tyr15 phosphorylation level and delayed entry into mitosis upon return to 32 degrees C. However, if Tyr15 phosphorylation of p34cdc2 was prevented then its H1 kinase activity was not inactivated upon MMS addition to nimA5 G2-arrested cells and they rapidly progressed into a lethal mitosis upon release to 32 degrees C. Thus, Tyr15 phosphorylation of p34cdc2 in G2 arrests initiation of mitosis after DNA damage in A. nidulans.

  14. Planar Cell Polarity Breaks the Symmetry of PAR Protein Distribution prior to Mitosis in Drosophila Sensory Organ Precursor Cells.

    Science.gov (United States)

    Besson, Charlotte; Bernard, Fred; Corson, Francis; Rouault, Hervé; Reynaud, Elodie; Keder, Alyona; Mazouni, Khalil; Schweisguth, François

    2015-04-20

    During development, cell-fate diversity can result from the unequal segregation of fate determinants at mitosis. Polarization of the mother cell is essential for asymmetric cell division (ACD). It often involves the formation of a cortical domain containing the PAR complex proteins Par3, Par6, and atypical protein kinase C (aPKC). In the fly notum, sensory organ precursor cells (SOPs) divide asymmetrically within the plane of the epithelium and along the body axis to generate two distinct cells. Fate asymmetry depends on the asymmetric localization of the PAR complex. In the absence of planar cell polarity (PCP), SOPs divide with a random planar orientation but still asymmetrically, showing that PCP is dispensable for PAR asymmetry at mitosis. To study when and how the PAR complex localizes asymmetrically, we have used a quantitative imaging approach to measure the planar polarization of the proteins Bazooka (Baz, fly Par3), Par6, and aPKC in living pupae. By using imaging of functional GFP-tagged proteins with image processing and computational modeling, we find that Baz, Par6, and aPKC become planar polarized prior to mitosis in a manner independent of the AuroraA kinase and that PCP is required for the planar polarization of Baz, Par6, and aPKC during interphase. This indicates that a "mitosis rescue" mechanism establishes asymmetry at mitosis in PCP mutants. This study therefore identifies PCP as the initial symmetry-breaking signal for the planar polarization of PAR proteins in asymmetrically dividing SOPs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Phosphorylation of the centrosomal protein, Cep169, by Cdk1 promotes its dissociation from centrosomes in mitosis.

    Science.gov (United States)

    Mori, Yusuke; Inoue, Yoko; Taniyama, Yuki; Tanaka, Sayori; Terada, Yasuhiko

    2015-12-25

    Cep169 is a centrosomal protein conserved among vertebrates. In our previous reports, we showed that mammalian Cep169 interacts and collaborates with CDK5RAP2 to regulate microtubule (MT) dynamics and stabilization. Although Cep169 is required for MT regulation, its precise cellular function remains largely elusive. Here we show that Cep169 associates with centrosomes during interphase, but dissociates from these structures from the onset of mitosis, although CDK5RAP2 (Cep215) is continuously located at the centrosomes throughout cell cycle. Interestingly, treatment with purvalanol A, a Cdk1 inhibitor, nearly completely blocked the dissociation of Cep169 from centrosomes during mitosis. In addition, mass spectrometry analyses identified 7 phosphorylated residues of Cep169 corresponding to consensus phosphorylation sequence for Cdk1. These data suggest that the dissociation of Cep169 from centrosomes is controlled by Cdk1/Cyclin B during mitosis, and that Cep169 might regulate MT dynamics of mitotic spindle. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Role of endothelial permeability hotspots and endothelial mitosis in determining age-related patterns of macromolecule uptake by the rabbit aortic wall near branch points.

    Science.gov (United States)

    Chooi, K Yean; Comerford, Andrew; Cremers, Stephanie J; Weinberg, Peter D

    2016-07-01

    Transport of macromolecules between plasma and the arterial wall plays a key role in atherogenesis. Scattered hotspots of elevated endothelial permeability to macromolecules occur in the aorta; a fraction of them are associated with dividing cells. Hotspots occur particularly frequently downstream of branch points, where lesions develop in young rabbits and children. However, the pattern of lesions varies with age, and can be explained by similar variation in the pattern of macromolecule uptake. We investigated whether patterns of hotspots and mitosis also change with age. Evans' Blue dye-labeled albumin was injected intravenously into immature or mature rabbits and its subsequent distribution in the aortic wall around intercostal branch ostia examined by confocal microscopy and automated image analysis. Mitosis was detected by immunofluorescence after adding 5-bromo-2-deoxiuridine to drinking water. Hotspots were most frequent downstream of branches in immature rabbits, but a novel distribution was observed in mature rabbits. Neither pattern was explained by mitosis. Hotspot uptake correlated spatially with the much greater non-hotspot uptake (p hotspots were considered. The pattern of hotspots changes with age. The data are consistent with there being a continuum of local permeabilities rather than two distinct mechanisms. The distribution of the dye, which binds to elastin and collagen, was similar to that of non-binding tracers and to lesions apart from a paucity at the lateral margins of branches that can be explained by lower levels of fibrous proteins in those regions. Copyright © 2016. Published by Elsevier Ireland Ltd.

  17. Histone H3 Serine 28 Is Essential for Efficient Polycomb-Mediated Gene Repression in Drosophila

    Directory of Open Access Journals (Sweden)

    Philip Yuk Kwong Yung

    2015-06-01

    Full Text Available Trimethylation at histone H3K27 is central to the polycomb repression system. Juxtaposed to H3K27 is a widely conserved phosphorylatable serine residue (H3S28 whose function is unclear. To assess the importance of H3S28, we generated a Drosophila H3 histone mutant with a serine-to-alanine mutation at position 28. H3S28A mutant cells lack H3S28ph on mitotic chromosomes but support normal mitosis. Strikingly, all methylation states of H3K27 drop in H3S28A cells, leading to Hox gene derepression and to homeotic transformations in adult tissues. These defects are not caused by active H3K27 demethylation nor by the loss of H3S28ph. Biochemical assays show that H3S28A nucleosomes are a suboptimal substrate for PRC2, suggesting that the unphosphorylated state of serine 28 is important for assisting in the function of polycomb complexes. Collectively, our data indicate that the conserved H3S28 residue in metazoans has a role in supporting PRC2 catalysis.

  18. Mitosis detection in breast cancer histological images An ICPR 2012 contest

    Directory of Open Access Journals (Sweden)

    Ludovic Roux

    2013-01-01

    Full Text Available Introduction: In the framework of the Cognitive Microscope (MICO project, we have set up a contest about mitosis detection in images of H and E stained slides of breast cancer for the conference ICPR 2012. Mitotic count is an important parameter for the prognosis of breast cancer. However, mitosis detection in digital histopathology is a challenging problem that needs a deeper study. Indeed, mitosis detection is difficult because mitosis are small objects with a large variety of shapes, and they can thus be easily confused with some other objects or artefacts present in the image. We added a further dimension to the contest by using two different slide scanners having different resolutions and producing red-green-blue (RGB images, and a multi-spectral microscope producing images in 10 different spectral bands and 17 layers Z-stack. 17 teams participated in the study and the best team achieved a recall rate of 0.7 and precision of 0.89. Context: Several studies on automatic tools to process digitized slides have been reported focusing mainly on nuclei or tubule detection. Mitosis detection is a challenging problem that has not yet been addressed well in the literature. Aims: Mitotic count is an important parameter in breast cancer grading as it gives an evaluation of the aggressiveness of the tumor. However, consistency, reproducibility and agreement on mitotic count for the same slide can vary largely among pathologists. An automatic tool for this task may help for reaching a better consistency, and at the same time reducing the burden of this demanding task for the pathologists. Subjects and Methods: Professor Frιdιrique Capron team of the pathology department at Pitiι-Salpκtriθre Hospital in Paris, France, has selected a set of five slides of breast cancer. The slides are stained with H and E. They have been scanned by three different equipments: Aperio ScanScope XT slide scanner, Hamamatsu NanoZoomer 2.0-HT slide scanner and 10 bands

  19. Induction of mitosis in the cultured rabbit lens initiated by the addition of insulin to medium KEI-4

    Energy Technology Data Exchange (ETDEWEB)

    Reddan, J R; Unakar, N J; Harding, C V; Bagchi, M; Saldana, G

    1975-01-01

    The epithelium of lenses cultured in KEI-4, a completely defined medium formulated with specific reference to the biochemistry and physiology of the rabbit lens, exhibits a pattern of cell division similar to that noted for the organ in situ. Initial fluctuations in mitotic activity occurred in the area of the germinative zone during the first 24 hr of culture. Mitosis decreased at 1 hr, was extremely low at 3 hr and returned to values comparable for lens in vivo by 22 hr. The precipitous drop in mitosis noted at 3 hr is in part attributable to the isolation of the lens from adjoining tissue. The addition of insulin to KEI-4 triggers a parasynchronous burst of DNA synthesis throughout the central lens epithelium. The activation requires the intact hormone; neither proinsulin nor the A and/or B chains of insulin, nor glucagon nor zinc chloride can initiate mitosis. The gamma-globulin-rich fraction of rabbit serum can also stimulate mitosis. The addition of dibutyryl adenosine 3':5' cyclic monophosphate (DBeAMP) plus theophylline to KEI-4-insulin inhibits mitosis and prevents the cells from entering the synthetic phase of the cell cycle. Theophylline alone or DBeAMP alone brings about a 90 percent reduction in the insulin-induced mitotic responses. Lenses exposed to insulin show a marked increase in RNA synthesis and also exhibit an increased binding of tritiated actinomycin D at 1 and 3 hr of culture relative to KEI-4 controls. The hormone apparently activates the genome including those genes governing cell division. The system is amenable for long-term culture of the mammalian lens and since the constituents of the medium are known it should be possible to determine the factor(s) in the medium which, in conjunction with insulin, are needed for the induction of cell division.

  20. Real-time fluorescence imaging of the DNA damage repair response during mitosis.

    Science.gov (United States)

    Miwa, Shinji; Yano, Shuya; Yamamoto, Mako; Matsumoto, Yasunori; Uehara, Fuminari; Hiroshima, Yukihiko; Toneri, Makoto; Murakami, Takashi; Kimura, Hiroaki; Hayashi, Katsuhiro; Yamamoto, Norio; Efimova, Elena V; Tsuchiya, Hiroyuki; Hoffman, Robert M

    2015-04-01

    The response to DNA damage during mitosis was visualized using real-time fluorescence imaging of focus formation by the DNA-damage repair (DDR) response protein 53BP1 linked to green fluorescent protein (GFP) (53BP1-GFP) in the MiaPaCa-2(Tet-On) pancreatic cancer cell line. To observe 53BP1-GFP foci during mitosis, MiaPaCa-2(Tet-On) 53BP1-GFP cells were imaged every 30 min by confocal microscopy. Time-lapse imaging demonstrated that 11.4 ± 2.1% of the mitotic MiaPaCa-2(Tet-On) 53BP1-GFP cells had increased focus formation over time. Non-mitotic cells did not have an increase in 53BP1-GFP focus formation over time. Some of the mitotic MiaPaCa-2(Tet-On) 53BP1-GFP cells with focus formation became apoptotic. The results of the present report suggest that DNA strand breaks occur during mitosis and undergo repair, which may cause some of the mitotic cells to enter apoptosis in a phenomenon possibly related to mitotic catastrophe. © 2014 Wiley Periodicals, Inc.

  1. Breast cancer mitosis detection in histopathological images with spatial feature extraction

    Science.gov (United States)

    Albayrak, Abdülkadir; Bilgin, Gökhan

    2013-12-01

    In this work, cellular mitosis detection in histopathological images has been investigated. Mitosis detection is very expensive and time consuming process. Development of digital imaging in pathology has enabled reasonable and effective solution to this problem. Segmentation of digital images provides easier analysis of cell structures in histopathological data. To differentiate normal and mitotic cells in histopathological images, feature extraction step is very crucial step for the system accuracy. A mitotic cell has more distinctive textural dissimilarities than the other normal cells. Hence, it is important to incorporate spatial information in feature extraction or in post-processing steps. As a main part of this study, Haralick texture descriptor has been proposed with different spatial window sizes in RGB and La*b* color spaces. So, spatial dependencies of normal and mitotic cellular pixels can be evaluated within different pixel neighborhoods. Extracted features are compared with various sample sizes by Support Vector Machines using k-fold cross validation method. According to the represented results, it has been shown that separation accuracy on mitotic and non-mitotic cellular pixels gets better with the increasing size of spatial window.

  2. Heterologous expression of mammalian Plk1 in Drosophila reveals divergence from Polo during late mitosis

    International Nuclear Information System (INIS)

    Pearson, John; Godinho, Susana A.; Tavares, Alvaro; Glover, David M.

    2006-01-01

    Drosophila Polo kinase is the founder member of a conserved kinase family required for multiple stages of mitosis. We assessed the ability of mouse Polo-like kinase 1 (Plk1) to perform the multiple mitotic functions of Polo kinase, by expressing a Plk1-GFP fusion in Drosophila. Consistent with the previously reported localization of Polo kinase, Plk1-GFP was strongly localized to centrosomes and recruited to the centromeric regions of condensing chromosomes during early mitosis. However, in contrast to a functional Polo-GFP fusion, Plk1-GFP failed to localize to the central spindle midzone in both syncytial embryo mitosis and the conventional mitoses of cellularized embryos and S2 cells. Moreover, unlike endogenous Polo kinase and Polo-GFP, Plk1-GFP failed to associate with the contractile ring. Expression of Plk1-GFP enhanced the lethality of hypomorphic polo mutants and disrupted the organization of the actinomyosin cytoskeleton in a dominant-negative manner. Taken together, our results suggest that endogenous Polo kinase has specific roles in regulating actinomyosin rearrangements during Drosophila mitoses that its mammalian counterpart, Plk1, cannot fulfill. Consistent with this hypothesis, we observed defects in the cortical recruitment of myosin and myosin regulatory light chain in Polo deficient cells

  3. Cdk1-cyclin B1-mediated phosphorylation of tumor-associated microtubule-associated protein/cytoskeleton-associated protein 2 in mitosis.

    Science.gov (United States)

    Hong, Kyung Uk; Kim, Hyun-Jun; Kim, Hyo-Sil; Seong, Yeon-Sun; Hong, Kyeong-Man; Bae, Chang-Dae; Park, Joobae

    2009-06-12

    During mitosis, establishment of structurally and functionally sound bipolar spindles is necessary for maintaining the fidelity of chromosome segregation. Tumor-associated microtubule-associated protein (TMAP), also known as cytoskeleton-associated protein 2 (CKAP2), is a mitotic spindle-associated protein whose level is frequently up-regulated in various malignancies. Previous reports have suggested that TMAP is a potential regulator of mitotic spindle assembly and dynamics and that it is required for chromosome segregation to occur properly. So far, there have been no reports on how its mitosis-related functions are regulated. Here, we report that TMAP is hyper-phosphorylated at the C terminus specifically during mitosis. At least four different residues (Thr-578, Thr-596, Thr-622, and Ser-627) were responsible for the mitosis-specific phosphorylation of TMAP. Among these, Thr-622 was specifically phosphorylated by Cdk1-cyclin B1 both in vitro and in vivo. Interestingly, compared with the wild type, a phosphorylation-deficient mutant form of TMAP, in which Thr-622 had been replaced with an alanine (T622A), induced a significant increase in the frequency of metaphase cells with abnormal bipolar spindles, which often displayed disorganized, asymmetrical, or narrow and elongated morphologies. Formation of these abnormal bipolar spindles subsequently resulted in misalignment of metaphase chromosomes and ultimately caused a delay in the entry into anaphase. Moreover, such defects resulting from the T622A mutation were associated with a decrease in the rate of protein turnover at spindle microtubules. These findings suggest that Cdk1-cyclin B1-mediated phosphorylation of TMAP is important for and contributes to proper regulation of microtubule dynamics and establishment of functional bipolar spindles during mitosis.

  4. Cdk1-Cyclin B1-mediated Phosphorylation of Tumor-associated Microtubule-associated Protein/Cytoskeleton-associated Protein 2 in Mitosis*

    Science.gov (United States)

    Uk Hong, Kyung; Kim, Hyun-Jun; Kim, Hyo-Sil; Seong, Yeon-Sun; Hong, Kyeong-Man; Bae, Chang-Dae; Park, Joobae

    2009-01-01

    During mitosis, establishment of structurally and functionally sound bipolar spindles is necessary for maintaining the fidelity of chromosome segregation. Tumor-associated microtubule-associated protein (TMAP), also known as cytoskeleton-associated protein 2 (CKAP2), is a mitotic spindle-associated protein whose level is frequently up-regulated in various malignancies. Previous reports have suggested that TMAP is a potential regulator of mitotic spindle assembly and dynamics and that it is required for chromosome segregation to occur properly. So far, there have been no reports on how its mitosis-related functions are regulated. Here, we report that TMAP is hyper-phosphorylated at the C terminus specifically during mitosis. At least four different residues (Thr-578, Thr-596, Thr-622, and Ser-627) were responsible for the mitosis-specific phosphorylation of TMAP. Among these, Thr-622 was specifically phosphorylated by Cdk1-cyclin B1 both in vitro and in vivo. Interestingly, compared with the wild type, a phosphorylation-deficient mutant form of TMAP, in which Thr-622 had been replaced with an alanine (T622A), induced a significant increase in the frequency of metaphase cells with abnormal bipolar spindles, which often displayed disorganized, asymmetrical, or narrow and elongated morphologies. Formation of these abnormal bipolar spindles subsequently resulted in misalignment of metaphase chromosomes and ultimately caused a delay in the entry into anaphase. Moreover, such defects resulting from the T622A mutation were associated with a decrease in the rate of protein turnover at spindle microtubules. These findings suggest that Cdk1-cyclin B1-mediated phosphorylation of TMAP is important for and contributes to proper regulation of microtubule dynamics and establishment of functional bipolar spindles during mitosis. PMID:19369249

  5. Mitosis, diffusible crosslinkers, and the ideal gas law.

    Science.gov (United States)

    Odde, David J

    2015-03-12

    During mitosis, molecular motors hydrolyze ATP to generate sliding forces between adjacent microtubules and form the bipolar mitotic spindle. Lansky et al. now show that the diffusible microtubule crosslinker Ase1p can generate sliding forces between adjacent microtubules, and it does so without ATP hydrolysis. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Asymmetrical distribution of the transcriptionally competent NORs in mitosis

    Czech Academy of Sciences Publication Activity Database

    Kalmárová, Markéta; Kováčik, Lubomír; Popov, Alexey; Testillano, P. S.; Smirnov, Evgeny

    2008-01-01

    Roč. 163, č. 1 (2008), s. 40-44 ISSN 1047-8477 R&D Projects: GA ČR(CZ) GA304/06/1691 Grant - others:Wellcome Trust(XE) 075834/04/Z; GA MŠk(CZ) LC535; GA ČR(CZ) GA304/06/1662; C.S.I.C.(ES) CS-ES2007-8/16 Program:LC Institutional research plan: CEZ:AV0Z50110509 Keywords : mitosis * NORs * asymmetry Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.059, year: 2008

  7. Thrombopoietin-induced Polyploidization of Bone Marrow Megakaryocytes Is Due to a Unique Regulatory Mechanism in Late Mitosis

    Science.gov (United States)

    Nagata, Yuka; Muro, Yoshinao; Todokoro, Kazuo

    1997-01-01

    Megakaryocytes undergo a unique differentiation program, becoming polyploid through repeated cycles of DNA synthesis without concomitant cell division. However, the mechanism underlying this polyploidization remains totally unknown. It has been postulated that polyploidization is due to a skipping of mitosis after each round of DNA replication. We carried out immunohistochemical studies on mouse bone marrow megakaryocytes during thrombopoietin- induced polyploidization and found that during this process megakaryocytes indeed enter mitosis and progress through normal prophase, prometaphase, metaphase, and up to anaphase A, but not to anaphase B, telophase, or cytokinesis. It was clearly observed that multiple spindle poles were formed as the polyploid megakaryocytes entered mitosis; the nuclear membrane broke down during prophase; the sister chromatids were aligned on a multifaced plate, and the centrosomes were symmetrically located on either side of each face of the plate at metaphase; and a set of sister chromatids moved into the multiple centrosomes during anaphase A. We further noted that the pair of spindle poles in anaphase were located in close proximity to each other, probably because of the lack of outward movement of spindle poles during anaphase B. Thus, the reassembling nuclear envelope may enclose all the sister chromatids in a single nucleus at anaphase and then skip telophase and cytokinesis. These observations clearly indicate that polyploidization of megakaryocytes is not simply due to a skipping of mitosis, and that the megakaryocytes must have a unique regulatory mechanism in anaphase, e.g., factors regulating anaphase such as microtubule motor proteins might be involved in this polyploidization process. PMID:9334347

  8. The FANC pathway and BLM collaborate during mitosis to prevent micro-nucleation and chromosome abnormalities.

    Science.gov (United States)

    Naim, Valeria; Rosselli, Filippo

    2009-06-01

    Loss-of-function of caretaker genes characterizes a group of cancer predisposition diseases that feature cellular hypersensitivity to DNA damage and chromosome fragility; this group includes Fanconi anaemia and Bloom syndrome. The products of the 13 FANC genes (mutated in Fanconi anaemia), which constitute the 'FANC' pathway, and BLM (the RecQ helicase mutated in Bloom syndrome) are thought to collaborate during the S phase of the cell cycle, preventing chromosome instability. Recently, BLM has been implicated in the completion of sister chromatid separation during mitosis, a complex process in which precise regulation and execution is crucial to preserve genomic stability. Here we show for the first time a role for the FANC pathway in chromosome segregation during mitotic cell division. FANCD2, a key component of the pathway, localizes to discrete spots on mitotic chromosomes. FANCD2 chromosomal localization is responsive to replicative stress and specifically targets aphidicolin (APH)-induced chromatid gaps and breaks. Our data indicate that the FANC pathway is involved in rescuing abnormal anaphase and telophase (ana-telophase) cells, limiting aneuploidy and reducing chromosome instability in daughter cells. We further address a cooperative role for the FANC pathway and BLM in preventing micronucleation, through FANC-dependent targeting of BLM to non-centromeric abnormal structures induced by replicative stress. We reveal new crosstalk between FANC and BLM proteins, extending their interaction beyond the S-phase rescue of damaged DNA to the safeguarding of chromosome stability during mitosis.

  9. Transcriptional intermediary factor 1γ binds to the anaphase-promoting complex/cyclosome and promotes mitosis

    DEFF Research Database (Denmark)

    Sedgwick, G.G.; Townsend, K.; Martin, A.

    2013-01-01

    The anaphase-promoting complex/cyclosome (APC/C) is an ubiquitin ligase that functions during mitosis. Here we identify the transcriptional regulator, transcriptional intermediary factor 1γ, TIF1γ, as an APC/C-interacting protein that regulates APC/C function. TIF1γ is not a substrate for APC....../C-dependent ubiquitylation but instead, associates specifically with the APC/C holoenzyme and Cdc20 to affect APC/C activity and progression through mitosis. RNA interference studies indicate that TIF1γ knockdown results in a specific reduction in APC/C ubiquitin ligase activity, the stabilization of APC/C substrates......, and an increase in the time taken for cells to progress through mitosis from nuclear envelope breakdown to anaphase. TIF1γ knockdown cells are also characterized by the inappropriate presence of cyclin A at metaphase, and an increase in the number of cells that fail to undergo metaphase-to-anaphase transition...

  10. Effects of radiation and porphyrin on mitosis and chromosomes in human hematopoietic cell lines

    International Nuclear Information System (INIS)

    Tan, J.C.; Huang, C.C.; Fiel, R.J.

    1976-01-01

    The effect on mitosis of a human hematopoietic cell line RPMI-1788 treated with a metal chelate (Zn ++ ) of meso-tetra (p-carboxyphenyl) porphine (Zn-TCPP) alone at various concentrations or in combination with gamma-irradiation at various doses were studied. The results showed that both Zn-TCPP and radiation were effective in interfering with normal mitosis and that the effect of radiation was relatively more effective. Data also suggest interacting effects between Zn-TCPP and gamma-irradiation. At low doses of radiation, Zn-TCPP potentiated the effect of radiation. The reverse seemed to be true at a high dose of radiation. The effects of two porphyrins (Zn-TCPP and hematoporphyrin) and radiation on chromosomes were also studied. Chromosomal aberrations characteristic of radiation were observed. The porphyrins were found not to be effective chromosome-breaking agents under the experimental conditions tested

  11. Specific primary sequence requirements for Aurora B kinase-mediated phosphorylation and subcellular localization of TMAP during mitosis.

    Science.gov (United States)

    Kim, Hyun-Jun; Kwon, Hye-Rim; Bae, Chang-Dae; Park, Joobae; Hong, Kyung U

    2010-05-15

    During mitosis, regulation of protein structures and functions by phosphorylation plays critical roles in orchestrating a series of complex events essential for the cell division process. Tumor-associated microtubule-associated protein (TMAP), also known as cytoskeleton-associated protein 2 (CKAP2), is a novel player in spindle assembly and chromosome segregation. We have previously reported that TMAP is phosphorylated at multiple residues specifically during mitosis. However, the mechanisms and functional importance of phosphorylation at most of the sites identified are currently unknown. Here, we report that TMAP is a novel substrate of the Aurora B kinase. Ser627 of TMAP was specifically phosphorylated by Aurora B both in vitro and in vivo. Ser627 and neighboring conserved residues were strictly required for efficient phosphorylation of TMAP by Aurora B, as even minor amino acid substitutions of the phosphorylation motif significantly diminished the efficiency of the substrate phosphorylation. Nearly all mutations at the phosphorylation motif had dramatic effects on the subcellular localization of TMAP. Instead of being localized to the chromosome region during late mitosis, the mutants remained associated with microtubules and centrosomes throughout mitosis. However, the changes in the subcellular localization of these mutants could not be completely explained by the phosphorylation status on Ser627. Our findings suggest that the motif surrounding Ser627 ((625) RRSRRL (630)) is a critical part of a functionally important sequence motif which not only governs the kinase-substrate recognition, but also regulates the subcellular localization of TMAP during mitosis.

  12. Double-strand break repair-adox: Restoration of suppressed double-strand break repair during mitosis induces genomic instability.

    Science.gov (United States)

    Terasawa, Masahiro; Shinohara, Akira; Shinohara, Miki

    2014-12-01

    Double-strand breaks (DSBs) are one of the severest types of DNA damage. Unrepaired DSBs easily induce cell death and chromosome aberrations. To maintain genomic stability, cells have checkpoint and DSB repair systems to respond to DNA damage throughout most of the cell cycle. The failure of this process often results in apoptosis or genomic instability, such as aneuploidy, deletion, or translocation. Therefore, DSB repair is essential for maintenance of genomic stability. During mitosis, however, cells seem to suppress the DNA damage response and proceed to the next G1 phase, even if there are unrepaired DSBs. The biological significance of this suppression is not known. In this review, we summarize recent studies of mitotic DSB repair and discuss the mechanisms of suppression of DSB repair during mitosis. DSB repair, which maintains genomic integrity in other phases of the cell cycle, is rather toxic to cells during mitosis, often resulting in chromosome missegregation and aberration. Cells have multiple safeguards to prevent genomic instability during mitosis: inhibition of 53BP1 or BRCA1 localization to DSB sites, which is important to promote non-homologous end joining or homologous recombination, respectively, and also modulation of the non-homologous end joining core complex to inhibit DSB repair. We discuss how DSBs during mitosis are toxic and the multiple safeguard systems that suppress genomic instability. © 2014 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  13. The key role of U{sub 28} in the aqueous self-assembly of uranyl peroxide nanocages

    Energy Technology Data Exchange (ETDEWEB)

    Falaise, Clement; Nyman, May [Energy Frontier Research Center, Materials Science of Actinides, Department of Chemistry, Oregon State University, Corvallis, OR (United States)

    2016-10-04

    For 11 years now, the structural diversity and aesthetic beauty of uranyl-peroxide capsules have fascinated researchers from the diverse fields of mineralogy, polyoxometalate chemistry, and nuclear fuel technologies. There is still much to be learned about the mechanisms of the self-assembly process, and the role of solution parameters including pH, alkali template, temperature, time, and others. Here we have exploited the high solubility of the UO{sub 2}{sup 2+}/H{sub 2}O{sub 2}/LiOH aqueous system to address the effect of the hydroxide concentration. Important techniques of this study are single-crystal X-ray diffraction, small-angle X-ray scattering, and Raman spectroscopy. Three key phases dominate the solution speciation as a function of time and the LiOH/UO{sub 2}{sup 2+} ratio: the uranyl-triperoxide monomer [UO{sub 2}(O{sub 2}){sub 3}]{sup 4-}and the two capsules [(UO{sub 2})(O{sub 2})(OH)]{sub 24}{sup 24-}(U{sub 24}) and [(UO{sub 2})(O{sub 2}){sub 1.5}]{sub 28}{sup 28-}(U{sub 28}). When the LiOH/U ratio is around three, U{sub 28} forms rapidly and this cluster can be isolated in high yield and purity. This result was most surprising and challenges the hypothesis that alkali templating is the most important determinant in the cluster geometry. Moreover, analogous experiments with KOH, NH{sub 4}OH, and TEAOH (TEA=tetraethylammonium) also rapidly yield U{sub 28}, which suggests that U{sub 28} is the kinetically favored species. Complete mapping of the pH-time phase space reveals only a narrow window of the U{sub 28} dominance, which is why it was previously overlooked as an important kinetic species in this chemical system, as well as others with different counterions. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Evolutionary conservation and network structure characterize genes of phenotypic relevance for mitosis in human.

    Directory of Open Access Journals (Sweden)

    Marek Ostaszewski

    Full Text Available The impact of gene silencing on cellular phenotypes is difficult to establish due to the complexity of interactions in the associated biological processes and pathways. A recent genome-wide RNA knock-down study both identified and phenotypically characterized a set of important genes for the cell cycle in HeLa cells. Here, we combine a molecular interaction network analysis, based on physical and functional protein interactions, in conjunction with evolutionary information, to elucidate the common biological and topological properties of these key genes. Our results show that these genes tend to be conserved with their corresponding protein interactions across several species and are key constituents of the evolutionary conserved molecular interaction network. Moreover, a group of bistable network motifs is found to be conserved within this network, which are likely to influence the network stability and therefore the robustness of cellular functioning. They form a cluster, which displays functional homogeneity and is significantly enriched in genes phenotypically relevant for mitosis. Additional results reveal a relationship between specific cellular processes and the phenotypic outcomes induced by gene silencing. This study introduces new ideas regarding the relationship between genotype and phenotype in the context of the cell cycle. We show that the analysis of molecular interaction networks can result in the identification of genes relevant to cellular processes, which is a promising avenue for future research.

  15. [Effect of inhibitors serine/threonine protein kinases and protein phosphatases on mitosis progression of synchronized tobacco by-2 cells].

    Science.gov (United States)

    Sheremet, Ia A; Emets, A I; Azmi, A; Vissenberg, K; Verbelen, J-P; Blium, Ia B

    2012-01-01

    In order to investigate the role of various serine/ threonine protein kinases and protein phosphatases in the regulation of mitosis progression in plant cells the influence of cyclin-dependent (olomoucine) and Ca2+ -calmodulin-dependent (W7) protein kinases inhibitors, as well as protein kinase C inhibitors (H7 and staurosporine) and protein phosphatases inhibitor (okadaic acid) on mitosis progression in synchronized tobacco BY-2 cells has been studied. It was found that BY-2 culture treatment with inhibitors of cyclin dependent protein kinases and protein kinase C causes prophase delay, reduces the mitotic index and displaces of mitotic peak as compare with control cells. Inhibition of Ca2+ -calmodulin dependent protein kinases enhances the cell entry into prophase and delays their exit from mitosis. Meanwhile inhibition of serine/threonine protein phosphatases insignificantly enhances of synchronized BY-2 cells entering into all phases of mitosis.

  16. Bora and Aurora-A continue to activate Plk1 in mitosis

    Czech Academy of Sciences Publication Activity Database

    Bruinsma, W.; Macůrek, Libor; Freire, R.; Lindqvist, A.; Medema, R.H.

    2014-01-01

    Roč. 127, č. 4 (2014), s. 801-811 ISSN 0021-9533 R&D Projects: GA ČR GA13-18392S Grant - others:Ministerio de Economía y Competitividad(ES) SAF2010-22357; CONSOLIDER-Ingenio(NL) CDS2007-0015 Keywords : Aurora-A * Bora * Mitosis * Plk1 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.432, year: 2014

  17. Use of unstable chromosome aberrations for biological dosimetry after the first postirradiation mitosis

    International Nuclear Information System (INIS)

    Doloy, M.T.; Malarbet, J.L.; Guedeney, G.; Bourguignon, M.; Leroy, A.; Reillaudou, M.; Masse, R.

    1991-01-01

    The loss of unstable chromosome aberrations after the first postirradiation mitosis makes their use difficult in radiation dosimetry. We describe here a method which, in a cell population observed at this stage, allows retrospective estimation of the frequencies of the unstable aberrations induced at the time of irradiation, and their use as a dosimeter. The laws controlling the behavior of unstable aberrations during mitosis were defined from a large-scale experiment on irradiated human lymphocytes. For cells undergoing the first, second, or third mitosis after irradiation, relationships were determined between the frequency, at irradiation time, of acentric fragments not arising from formation of dicentrics or rings, and the ratio of dicentrics and centric rings appearing without acentric fragments to the total number of dicentrics plus rings. On the basis of this ratio, the method described here provides an assessment of the postirradiation mitotic activity in a cell population. This assessment permitted estimation of the cell distribution and frequency of dicentrics plus centric rings, and of the frequency of acentric fragments at the time of irradiation. The use of this method for retrospective dosimetry after whole-body irradiation under various conditions of exposure is illustrated

  18. JMJD5 (Jumonji Domain-containing 5) Associates with Spindle Microtubules and Is Required for Proper Mitosis.

    Science.gov (United States)

    He, Zhimin; Wu, Junyu; Su, Xiaonan; Zhang, Ye; Pan, Lixia; Wei, Huimin; Fang, Qiang; Li, Haitao; Wang, Da-Liang; Sun, Fang-Lin

    2016-02-26

    Precise mitotic spindle assembly is a guarantee of proper chromosome segregation during mitosis. Chromosome instability caused by disturbed mitosis is one of the major features of various types of cancer. JMJD5 has been reported to be involved in epigenetic regulation of gene expression in the nucleus, but little is known about its function in mitotic process. Here we report the unexpected localization and function of JMJD5 in mitotic progression. JMJD5 partially accumulates on mitotic spindles during mitosis, and depletion of JMJD5 results in significant mitotic arrest, spindle assembly defects, and sustained activation of the spindle assembly checkpoint (SAC). Inactivating SAC can efficiently reverse the mitotic arrest caused by JMJD5 depletion. Moreover, JMJD5 is found to interact with tubulin proteins and associate with microtubules during mitosis. JMJD5-depleted cells show a significant reduction of α-tubulin acetylation level on mitotic spindles and fail to generate enough interkinetochore tension to satisfy the SAC. Further, JMJD5 depletion also increases the susceptibility of HeLa cells to the antimicrotubule agent. Taken together, these results suggest that JMJD5 plays an important role in regulating mitotic progression, probably by modulating the stability of spindle microtubules. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Chromosome Bridges Maintain Kinetochore-Microtubule Attachment throughout Mitosis and Rarely Break during Anaphase.

    Science.gov (United States)

    Pampalona, Judit; Roscioli, Emanuele; Silkworth, William T; Bowden, Brent; Genescà, Anna; Tusell, Laura; Cimini, Daniela

    2016-01-01

    Accurate chromosome segregation during cell division is essential to maintain genome stability, and chromosome segregation errors are causally linked to genetic disorders and cancer. An anaphase chromosome bridge is a particular chromosome segregation error observed in cells that enter mitosis with fused chromosomes/sister chromatids. The widely accepted Breakage/Fusion/Bridge cycle model proposes that anaphase chromosome bridges break during mitosis to generate chromosome ends that will fuse during the following cell cycle, thus forming new bridges that will break, and so on. However, various studies have also shown a link between chromosome bridges and aneuploidy and/or polyploidy. In this study, we investigated the behavior and properties of chromosome bridges during mitosis, with the idea to gain insight into the potential mechanism underlying chromosome bridge-induced aneuploidy. We find that only a small number of chromosome bridges break during anaphase, whereas the rest persist through mitosis into the subsequent cell cycle. We also find that the microtubule bundles (k-fibers) bound to bridge kinetochores are not prone to breakage/detachment, thus supporting the conclusion that k-fiber detachment is not the cause of chromosome bridge-induced aneuploidy. Instead, our data suggest that while the microtubules bound to the kinetochores of normally segregating chromosomes shorten substantially during anaphase, the k-fibers bound to bridge kinetochores shorten only slightly, and may even lengthen, during anaphase. This causes some of the bridge kinetochores/chromosomes to lag behind in a position that is proximal to the cell/spindle equator and may cause the bridged chromosomes to be segregated into the same daughter nucleus or to form a micronucleus.

  20. The Set1/COMPASS histone H3 methyltransferase helps regulate mitosis with the CDK1 and NIMA mitotic kinases in Aspergillus nidulans.

    Science.gov (United States)

    Govindaraghavan, Meera; Anglin, Sarah Lea; Osmani, Aysha H; Osmani, Stephen A

    2014-08-01

    Mitosis is promoted and regulated by reversible protein phosphorylation catalyzed by the essential NIMA and CDK1 kinases in the model filamentous fungus Aspergillus nidulans. Protein methylation mediated by the Set1/COMPASS methyltransferase complex has also been shown to regulate mitosis in budding yeast with the Aurora mitotic kinase. We uncover a genetic interaction between An-swd1, which encodes a subunit of the Set1 protein methyltransferase complex, with NIMA as partial inactivation of nimA is poorly tolerated in the absence of swd1. This genetic interaction is additionally seen without the Set1 methyltransferase catalytic subunit. Importantly partial inactivation of NIMT, a mitotic activator of the CDK1 kinase, also causes lethality in the absence of Set1 function, revealing a functional relationship between the Set1 complex and two pivotal mitotic kinases. The main target for Set1-mediated methylation is histone H3K4. Mutational analysis of histone H3 revealed that modifying the H3K4 target residue of Set1 methyltransferase activity phenocopied the lethality seen when either NIMA or CDK1 are partially functional. We probed the mechanistic basis of these genetic interactions and find that the Set1 complex performs functions with CDK1 for initiating mitosis and with NIMA during progression through mitosis. The studies uncover a joint requirement for the Set1 methyltransferase complex with the CDK1 and NIMA kinases for successful mitosis. The findings extend the roles of the Set1 complex to include the initiation of mitosis with CDK1 and mitotic progression with NIMA in addition to its previously identified interactions with Aurora and type 1 phosphatase in budding yeast. Copyright © 2014 by the Genetics Society of America.

  1. Remodeling of bovine oviductal epithelium by mitosis of secretory cells.

    Science.gov (United States)

    Ito, Sayaka; Kobayashi, Yoshihiko; Yamamoto, Yuki; Kimura, Koji; Okuda, Kiyoshi

    2016-11-01

    Two types of oviductal epithelial cells, secretory and ciliated, play crucial roles in the first days after fertilization in mammals. Secretory cells produce various molecules promoting embryo development, while ciliated cells facilitate transport of oocytes and zygotes by ciliary beating. The proportions of the two cell types change during the estrous cycle. The proportion of ciliated cells on the oviductal luminal surface is abundant at the follicular phase, whereas the proportion of secretory cells gradually increases with the formation of the corpus luteum. In the present study, we hypothesize that the proportions of ciliated and secretory epithelial cells are regulated by mitosis. The proportion of the cells being positive for FOXJ1 (a ciliated cell marker) or Ki67 (a mitosis marker) in epithelial cells during the estrous cycle were immunohistochemically examined. Ki67 and FOXJ1 or PAX8 (a secretory cell marker), were double-stained to clarify which types of epithelial cells undergo mitosis. In the ampulla, the percentage of FOXJ1-positive cells was highest at the day of ovulation (Day 0) and decreased by about 50 % by Days 8-12, while in the isthmus it did not change during the estrous cycle. The proportion of Ki67-positive cells was highest at around the time of ovulation in both the ampulla and isthmus. All the Ki67-positive cells were PAX8-positive and FOXJ1-negative in both the ampulla and isthmus. These findings suggest that epithelial remodeling, which is regulated by differentiation and/or proliferation of secretory cells of the oviduct, provides the optimal environment for gamete transport, fertilization and embryonic development.

  2. TopBP1 is required at mitosis to reduce transmission of DNA damage to G1 daughter cells

    DEFF Research Database (Denmark)

    Pedersen, Rune Troelsgaard; Kruse, Thomas; Nilsson, Jakob

    2015-01-01

    mitotic entry. In early mitosis, TopBP1 marks sites of and promotes unscheduled DNA synthesis. Moreover, TopBP1 is required for focus formation of the structure-selective nuclease and scaffold protein SLX4 in mitosis. Persistent TopBP1 foci transition into 53BP1 nuclear bodies (NBs) in G1 and precise...... temporal depletion of TopBP1 just before mitotic entry induced formation of 53BP1 NBs in the next cell cycle, showing that TopBP1 acts to reduce transmission of DNA damage to G1 daughter cells. Based on these results, we propose that TopBP1 maintains genome integrity in mitosis by controlling chromatin...

  3. Requirements of cyclin a for mitosis are independent of its subcellular localization.

    Science.gov (United States)

    Dienemann, Axel; Sprenger, Frank

    2004-06-22

    Cyclin A (CycA), the only essential mitotic cyclin in Drosophila, is cytoplasmic during interphase and accumulates in the nucleus during prophase. We show that interphase localization is mediated by Leptomycin B (LMB)-sensitive nuclear export. This is a feature shared with human CyclinB1, and it is assumed that nuclear accumulation is necessary for mitotic entry. Here, we tested if the unique mitotic function of CycA requires nuclear accumulation. We fused subcellular localization signals to CycA and tested their mitotic capability. Surprisingly, nuclear accumulation was not required, and even a membrane-tethered form of CycA was able to induce mitosis. We noted that Cyclin B (CycB) protein disappears prematurely in CycA mutants, reminiscent of rca1 mutants. Rca1 is an inhibitor of Fizzy-related-APC/C activity, and in rca1 mutants, mitotic cyclins are degraded in G2 of the 16(th) embryonic cell cycle. Overexpression of Rca1 can restore mitosis in CycA mutants, indicating that the mitotic failure of CycA mutants is caused by premature activation of the APC/C. The essential mitotic function of CycA is therefore not the activation of numerous mitotic substrates by Cdk1-dependent phosphorylation. Rather, CycA-dependent kinase activity is required to inhibit one inhibitor of mitosis, the Fzr protein.

  4. Possible mechanisms of chromosomal aberrations: VII. Comparative dynamics of sister chromatid disjunction and realization of radiation-induced chromosomal aberrations during mitosis

    International Nuclear Information System (INIS)

    Lebedeva, L.I.; Akhmamet'eva, E.M.

    1994-01-01

    An increase in radiation-induced chromosomal aberrations during c-metaphase sister chromatid disjunction was demonstrated in murine bone marrow cells exposed to a total γ-irradiation at 0.5 Gy. Caffeine (Cf) treatment during mitosis partially suppressed the chromatid disjunction rate and increased the number of radiation-induced aberrations in this mitosis. Nalidixic acid (NA) treatment of c-metaphase cells completely suppressed chromatid disjunction and the realization of induced aberrations. Topoisomerase 2 was assumed to be involved during mitosis in both processes

  5. Kindlin1 regulates microtubule function to ensure normal mitosis.

    Science.gov (United States)

    Patel, Hitesh; Stavrou, Ifigeneia; Shrestha, Roshan L; Draviam, Viji; Frame, Margaret C; Brunton, Valerie G

    2016-08-01

    Loss of Kindlin 1 (Kin1) results in the skin blistering disorder Kindler Syndrome (KS), whose symptoms also include skin atrophy and reduced keratinocyte proliferation. Kin1 binds to integrins to modulate their activation and more recently it has been shown to regulate mitotic spindles and cell survival in a Plk1-dependent manner. Here we report that short-term Kin1 deletion in mouse skin results in impaired mitosis, which is associated with reduced acetylated tubulin (ac-tub) levels and cell proliferation. In cells, impaired mitosis and reduced ac-tub levels are also accompanied by reduced microtubule stability, all of which are rescued by HDAC6 inhibition. The ability of Kin1 to regulate HDAC6-dependent cellular ac-tub levels is dependent on its phosphorylation by Plk1. Taken together, these data define a novel role for Kin1 in microtubule acetylation and stability and offer a mechanistic insight into how certain KS phenotypes, such as skin atrophy and reduced cell proliferation, arise. © The Author (2016). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS.

  6. Experimental study of mutagenous and mitosis modifying activity of silver nanoparticles

    Directory of Open Access Journals (Sweden)

    B. S. Kirbik

    2015-01-01

    Full Text Available Mutagenous and mitosis modifying impact of silver nanoparticles has been studied on outbred mice. Nanoparticles were of round shape with dimensions of 5-50 nm, size of generated organic shell of 2-5 nm, the quantity in 1 mcm3 makes 120-270. Metaphasic analysis of mice bone marrow cells was used as a testing technique. The frequency of chromosome aberrations and mitotic index of preparations were accounted. During single intraperitoneal administration of the agent in the dose of 250 mcg/kg the silver nanoparticles demonstrated mitosis stimulating activity. No mutagenous effect of silver nanoparticles by daily administration for 4 days of 25 mcg/kg and single administration in the dose of 250 mcg/kg has been registered, but there is statistically insignificant tendency of aberrant metaphases increase. Consequently silver nanoparticles in the investigated doses demonstrated no mutagenous activity and can be considered safe for mammalian cells.

  7. Regulation of mitosis-meiosis transition by the ubiquitin ligase β-TrCP in male germ cells.

    Science.gov (United States)

    Nakagawa, Tadashi; Zhang, Teng; Kushi, Ryo; Nakano, Seiji; Endo, Takahiro; Nakagawa, Makiko; Yanagihara, Noriko; Zarkower, David; Nakayama, Keiko

    2017-11-15

    The mitosis-meiosis transition is essential for spermatogenesis. Specific and timely downregulation of the transcription factor DMRT1, and consequent induction of Stra8 expression, is required for this process in mammals, but the molecular mechanism has remained unclear. Here, we show that β-TrCP, the substrate recognition component of an E3 ubiquitin ligase complex, targets DMRT1 for degradation and thereby controls the mitosis-meiosis transition in mouse male germ cells. Conditional inactivation of β-TrCP2 in male germ cells of β-TrCP1 knockout mice resulted in sterility due to a lack of mature sperm. The β-TrCP-deficient male germ cells did not enter meiosis, but instead underwent apoptosis. The induction of Stra8 expression was also attenuated in association with the accumulation of DMRT1 at the Stra8 promoter in β-TrCP-deficient testes. DMRT1 contains a consensus β-TrCP degron sequence that was found to bind β-TrCP. Overexpression of β-TrCP induced the ubiquitylation and degradation of DMRT1. Heterozygous deletion of Dmrt1 in β-TrCP-deficient spermatogonia increased meiotic cells with a concomitant reduction of apoptosis. Collectively, our data indicate that β-TrCP regulates the transition from mitosis to meiosis in male germ cells by targeting DMRT1 for degradation. © 2017. Published by The Company of Biologists Ltd.

  8. Clathrin is spindle-associated but not essential for mitosis.

    Directory of Open Access Journals (Sweden)

    Joana Borlido

    Full Text Available Clathrin is a multimeric protein involved in vesicle coat assembly. Recently clathrin distribution was reported to change during the cell cycle and was found to associate with the mitotic spindle. Here we test whether the recruitment of clathrin to the spindle is indicative of a critical functional contribution to mitosis.Previously a chicken pre-B lymphoma cell line (DKO-R was developed in which the endogenous clathrin heavy chain alleles were replaced with the human clathrin heavy chain under the control of a tetracycline-regulatable promoter. Receptor-mediated and fluid-phase endocytosis were significantly inhibited in this line following clathrin knockout, and we used this to explore the significance of clathrin heavy chain expression for cell cycle progression. We confirmed using confocal microscopy that clathrin colocalised with tubulin at mitotic spindles. Using a propidium iodide flow cytometric assay we found no statistical difference in the cell cycle distribution of the knockout cells versus the wild-type. Additionally, we showed that the ploidy and the recovery kinetics following cell cycle arrest with nocodazole were unchanged by repressing clathrin heavy chain expression.We conclude that the association of clathrin with the mitotic spindle and the contribution of clathrin to endocytosis are evolutionarily conserved. However we find that the contribution of clathrin to mitosis is less robust and dependent on cellular context. In other cell-lines silencing RNA has been used by others to knockdown clathrin expression resulting in an increase in the mitotic index of the cells. We show an effect on the G2/M phase population of clathrin knockdown in HEK293 cells but show that repressing clathrin expression in the DKO-R cell-line has no effect on the size of this population. Consequently this work highlights the need for a more detailed molecular understanding of the recruitment and function of clathrin at the spindle, since the

  9. RECQ5 Helicase Cooperates with MUS81 Endonuclease in Processing Stalled Replication Forks at Common Fragile Sites during Mitosis

    DEFF Research Database (Denmark)

    Di Marco, Stefano; Hasanova, Zdenka; Kanagaraj, Radhakrishnan

    2017-01-01

    The MUS81-EME1 endonuclease cleaves late replication intermediates at common fragile sites (CFSs) during early mitosis to trigger DNA-repair synthesis that ensures faithful chromosome segregation. Here, we show that these DNA transactions are promoted by RECQ5 DNA helicase in a manner dependent...... on its Ser727 phosphorylation by CDK1. Upon replication stress, RECQ5 associates with CFSs in early mitosis through its physical interaction with MUS81 and promotes MUS81-dependent mitotic DNA synthesis. RECQ5 depletion or mutational inactivation of its ATP-binding site, RAD51-interacting domain...

  10. Localization of spindle checkpoint proteins in cells undergoing mitosis with unreplicated genomes.

    Science.gov (United States)

    Johnson, Mary Kathrine; Cooksey, Amanda M; Wise, Dwayne A

    2008-11-01

    CHO cells can be arrested with hydoxyurea at the beginning of the DNA synthesis phase of the cell cycle. Subsequent treatment with the xanthine, caffeine, induces cells to bypass the S-phase checkpoint and enter unscheduled mitosis [Schlegel and Pardee,1986, Science 232:1264-1266]. These treated cells build a normal spindle and distribute kinetochores, unattached to chromosomes, to their daughter cells [Brinkley et al.,1988, Nature 336:251-254; Zinkowski et al.,1991, J Cell Biol 113:1091-1110; Wise and Brinkley,1997, Cell Motil Cytoskeleton 36:291-302; Balczon et al.,2003, Chromosoma 112:96-102]. To investigate how these cells distribute kinetochores to daughter cells, we analyzed the spindle checkpoint components, Mad2, CENP-E, and the 3F3 phosphoepitope, using immunofluorescence and digital microscopy. Even though the kinetochores were unpaired and DNA was fragmented, the tension, alignment, and motor components of the checkpoint were found to be present and localized as predicted in prometaphase and metaphase. This unusual mitosis proves that a cell can successfully localize checkpoint proteins and divide even when kinetochores are unpaired and fragmented. (c) 2008 Wiley-Liss, Inc.

  11. INPP5E Preserves Genomic Stability through Regulation of Mitosis.

    Science.gov (United States)

    Sierra Potchanant, Elizabeth A; Cerabona, Donna; Sater, Zahi Abdul; He, Ying; Sun, Zejin; Gehlhausen, Jeff; Nalepa, Grzegorz

    2017-03-15

    The partially understood phosphoinositide signaling cascade regulates multiple aspects of cellular metabolism. Previous studies revealed that INPP5E, the inositol polyphosphate-5-phosphatase that is mutated in the developmental disorders Joubert and MORM syndromes, is essential for the function of the primary cilium and maintenance of phosphoinositide balance in nondividing cells. Here, we report that INPP5E further contributes to cellular homeostasis by regulating cell division. We found that silencing or genetic knockout of INPP5E in human and murine cells impairs the spindle assembly checkpoint, centrosome and spindle function, and maintenance of chromosomal integrity. Consistent with a cell cycle regulatory role, we found that INPP5E expression is cell cycle dependent, peaking at mitotic entry. INPP5E localizes to centrosomes, chromosomes, and kinetochores in early mitosis and shuttles to the midzone spindle at mitotic exit. Our findings identify the previously unknown, essential role of INPP5E in mitosis and prevention of aneuploidy, providing a new perspective on the function of this phosphoinositide phosphatase in health and development. Copyright © 2017 Sierra Potchanant et al.

  12. Water droplet excess free energy determined by cluster mitosis using guided molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Gabriel V.; Müller, Erich A.; Jackson, George [Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Hunt, Patricia A. [Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Ford, Ian J. [Department of Physics and Astronomy and London Centre for Nanotechnology, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2015-12-28

    Atmospheric aerosols play a vital role in affecting climate by influencing the properties and lifetimes of clouds and precipitation. Understanding the underlying microscopic mechanisms involved in the nucleation of aerosol droplets from the vapour phase is therefore of great interest. One key thermodynamic quantity in nucleation is the excess free energy of cluster formation relative to that of the saturated vapour. In our current study, the excess free energy is extracted for clusters of pure water modelled with the TIP4P/2005 intermolecular potential using a method based on nonequilibrium molecular dynamics and the Jarzynski relation. The change in free energy associated with the “mitosis” or division of a cluster of N water molecules into two N/2 sub-clusters is evaluated. This methodology is an extension of the disassembly procedure used recently to calculate the excess free energy of argon clusters [H. Y. Tang and I. J. Ford, Phys. Rev. E 91, 023308 (2015)]. Our findings are compared to the corresponding excess free energies obtained from classical nucleation theory (CNT) as well as internally consistent classical theory (ICCT). The values of the excess free energy that we obtain with the mitosis method are consistent with CNT for large cluster sizes but for the smallest clusters, the results tend towards ICCT; for intermediate sized clusters, we obtain values between the ICCT and CNT predictions. Furthermore, the curvature-dependent surface tension which can be obtained by regarding the clusters as spherical droplets of bulk density is found to be a monotonically increasing function of cluster size for the studied range. The data are compared to other values reported in the literature, agreeing qualitatively with some but disagreeing with the values determined by Joswiak et al. [J. Phys. Chem. Lett. 4, 4267 (2013)] using a biased mitosis approach; an assessment of the differences is the main motivation for our current study.

  13. Mitosis counting in breast cancer : object-level interobserver agreement and comparison to an automatic method

    NARCIS (Netherlands)

    Veta, M.; van Diest, P.J.; Jiwa, M.; Al-Janabi, S.; Pluim, J.P.W.

    2016-01-01

    BACKGROUND: Tumor proliferation speed, most commonly assessed by counting of mitotic figures in histological slide preparations, is an important biomarker for breast cancer. Although mitosis counting is routinely performed by pathologists, it is a tedious and subjective task with poor

  14. Mitosis Counting in Breast Cancer : Object-Level Interobserver Agreement and Comparison to an Automatic Method

    NARCIS (Netherlands)

    Veta, Mitko; van Diest, Paul J; Jiwa, Mehdi; Al-Janabi, Shaimaa; Pluim, JPW

    2016-01-01

    BACKGROUND: Tumor proliferation speed, most commonly assessed by counting of mitotic figures in histological slide preparations, is an important biomarker for breast cancer. Although mitosis counting is routinely performed by pathologists, it is a tedious and subjective task with poor

  15. LOX is a novel mitotic spindle-associated protein essential for mitosis.

    Science.gov (United States)

    Boufraqech, Myriem; Wei, Darmood; Weyemi, Urbain; Zhang, Lisa; Quezado, Martha; Kalab, Petr; Kebebew, Electron

    2016-05-17

    LOX regulates cancer progression in a variety of human malignancies. It is overexpressed in aggressive cancers and higher expression of LOX is associated with higher cancer mortality. Here, we report a new function of LOX in mitosis. We show that LOX co-localizes to mitotic spindles from metaphase to telophase, and p-H3(Ser10)-positive cells harbor strong LOX staining. Further, purification of mitotic spindles from synchronized cells show that LOX fails to bind to microtubules in the presence of nocodazole, whereas paclitaxel treated samples showed enrichment in LOX expression, suggesting that LOX binds to stabilized microtubules. LOX knockdown leads to G2/M phase arrest; reduced p-H3(Ser10), cyclin B1, CDK1, and Aurora B. Moreover, LOX knockdown significantly increased sensitivity of cancer cells to chemotherapeutic agents that target microtubules. Our findings suggest that LOX has a role in cancer cell mitosis and may be targeted to enhance the activity of microtubule inhibitors for cancer therapy.

  16. Replication stress activates DNA repair synthesis in mitosis

    DEFF Research Database (Denmark)

    Minocherhomji, Sheroy; Ying, Songmin; Bjerregaard, Victoria A

    2015-01-01

    Oncogene-induced DNA replication stress has been implicated as a driver of tumorigenesis. Many chromosomal rearrangements characteristic of human cancers originate from specific regions of the genome called common fragile sites (CFSs). CFSs are difficult-to-replicate loci that manifest as gaps...... into mitotic prophase triggers the recruitment of MUS81 to CFSs. The nuclease activity of MUS81 then promotes POLD3-dependent DNA synthesis at CFSs, which serves to minimize chromosome mis-segregation and non-disjunction. We propose that the attempted condensation of incompletely duplicated loci in early...... mitosis serves as the trigger for completion of DNA replication at CFS loci in human cells. Given that this POLD3-dependent mitotic DNA synthesis is enhanced in aneuploid cancer cells that exhibit intrinsically high levels of chromosomal instability (CIN(+)) and replicative stress, we suggest...

  17. Parkin Regulates Mitosis and Genomic Stability through Cdc20/Cdh1

    NARCIS (Netherlands)

    Lee, S.B.; Kim, J.J.; Nam, H.J.; Gao, B.; Yin, P.; Qin, B.; Yi, S.Y.; Ham, H.; Evans, D.; Kim, S.H.; Zhang, J.; Deng, M.; Liu, T.; Zhang, H.; Billadeau, D.D.; Wang, L.; Giaime, E.; Shen, J.; Pang, Y.P.; Jen, J.; Deursen, J.M.A. van; Lou, Z.

    2015-01-01

    Mutations in the E3 ubiquitin ligase Parkin have been linked to familial Parkinson's disease. Parkin has also been implicated in mitosis through mechanisms that are unclear. Here we show that Parkin interacts with anaphase promoting complex/cyclosome (APC/C) coactivators Cdc20 and Cdh1 to mediate

  18. Tau excess impairs mitosis and kinesin-5 function, leading to aneuploidy and cell death.

    Science.gov (United States)

    Bougé, Anne-Laure; Parmentier, Marie-Laure

    2016-03-01

    In neurodegenerative diseases such as Alzheimer's disease (AD), cell cycle defects and associated aneuploidy have been described. However, the importance of these defects in the physiopathology of AD and the underlying mechanistic processes are largely unknown, in particular with respect to the microtubule (MT)-binding protein Tau, which is found in excess in the brain and cerebrospinal fluid of affected individuals. Although it has long been known that Tau is phosphorylated during mitosis to generate a lower affinity for MTs, there is, to our knowledge, no indication that an excess of this protein could affect mitosis. Here, we studied the effect of an excess of human Tau (hTau) protein on cell mitosis in vivo. Using the Drosophila developing wing disc epithelium as a model, we show that an excess of hTau induces a mitotic arrest, with the presence of monopolar spindles. This mitotic defect leads to aneuploidy and apoptotic cell death. We studied the mechanism of action of hTau and found that the MT-binding domain of hTau is responsible for these defects. We also demonstrate that the effects of hTau occur via the inhibition of the function of the kinesin Klp61F, the Drosophila homologue of kinesin-5 (also called Eg5 or KIF11). We finally show that this deleterious effect of hTau is also found in other Drosophila cell types (neuroblasts) and tissues (the developing eye disc), as well as in human HeLa cells. By demonstrating that MT-bound Tau inhibits the Eg5 kinesin and cell mitosis, our work provides a new framework to consider the role of Tau in neurodegenerative diseases. © 2016. Published by The Company of Biologists Ltd.

  19. PGRMC1 participates in late events of bovine granulosa cells mitosis and oocyte meiosis.

    Science.gov (United States)

    Terzaghi, L; Tessaro, I; Raucci, F; Merico, V; Mazzini, G; Garagna, S; Zuccotti, M; Franciosi, F; Lodde, V

    2016-08-02

    Progesterone Receptor Membrane Component 1 (PGRMC1) is expressed in both oocyte and ovarian somatic cells, where it is found in multiple cellular sub-compartments including the mitotic spindle apparatus. PGRMC1 localization in the maturing bovine oocytes mirrors its localization in mitotic cells, suggesting a possible common action in mitosis and meiosis. To test the hypothesis that altering PGRMC1 activity leads to similar defects in mitosis and meiosis, PGRMC1 function was perturbed in cultured bovine granulosa cells (bGC) and maturing oocytes and the effect on mitotic and meiotic progression assessed. RNA interference-mediated PGRMC1 silencing in bGC significantly reduced cell proliferation, with a concomitant increase in the percentage of cells arrested at G2/M phase, which is consistent with an arrested or prolonged M-phase. This observation was confirmed by time-lapse imaging that revealed defects in late karyokinesis. In agreement with a role during late mitotic events, a direct interaction between PGRMC1 and Aurora Kinase B (AURKB) was observed in the central spindle at of dividing cells. Similarly, treatment with the PGRMC1 inhibitor AG205 or PGRMC1 silencing in the oocyte impaired completion of meiosis I. Specifically the ability of the oocyte to extrude the first polar body was significantly impaired while meiotic figures aberration and chromatin scattering within the ooplasm increased. Finally, analysis of PGRMC1 and AURKB localization in AG205-treated oocytes confirmed an altered localization of both proteins when meiotic errors occur. The present findings demonstrate that PGRMC1 participates in late events of both mammalian mitosis and oocyte meiosis, consistent with PGRMC1's localization at the mid-zone and mid-body of the mitotic and meiotic spindle.

  20. Nucleolus disassembly in mitosis and apoptosis: dynamic redistribution of phosphorylated-c-Myc, fibrillarin and Ki-67

    Directory of Open Access Journals (Sweden)

    C Soldani

    2009-06-01

    Full Text Available The nucleolus may undergo disassembly either reversibly during mitosis, or irreversibly in apoptosis, thus allowing the redistribution of the nucleolar proteins.We investigated here by immunocytochemistry the fate of three representative proteins, namely phosphorylated c-Myc, fibrillarin and Ki-67, and found that they behave independently in both processes: they relocate in distinct compartments during mitosis, whereas during apoptosis they may either be cleaved (Ki-67 or be extruded into the cytoplasm with a different kinetics and following an ordered, non chaotic program. The separation of these nucleolar proteins which occurs in early apoptotic nuclei continues also in the cytoplasm, and culminates in the final formation of apoptotic blebs containing different nucleolar proteins: this evidence confirms that the apoptotic bodies may be variable in size, content and surface reactivity, and include heterogeneous aggregates of nuclear proteins and/or nucleic acids.

  1. Mitosis delay in cells of the root meristem of pea seedlings in S and G2-phases when irradiated with gamma-rays

    International Nuclear Information System (INIS)

    Gudkov, I.N.; Zezina, N.V.

    1976-01-01

    Irradiation (800 rads) of pea seedlings, synchronized by a 24-hr treatment with 0.03% hydroxyurea, at the stage of G 1 →S, induced a 12-hr delay of mitosis peak; an 8-hr delay, in the early S-phase; a 4-hr delay, in the middle of S-phase; a 10-hr delay in the late S- and a 14-16-hr delay, in G 2 -phase. The number of cells having chromosome aberrations at the mitosis peak was similar in all the phases under study

  2. PCTAIRE1 phosphorylates p27 and regulates mitosis in cancer cells.

    Science.gov (United States)

    Yanagi, Teruki; Krajewska, Maryla; Matsuzawa, Shu-ichi; Reed, John C

    2014-10-15

    PCTAIRE1 is distant relative of the cyclin-dependent kinase family that has been implicated in spermatogenesis and neuronal development, but it has not been studied in cancer. Here, we report that PCTAIRE1 is expressed in prostate, breast, and cervical cancer cells, where its RNAi-mediated silencing causes growth inhibition with aberrant mitosis due to defects in centrosome dynamics. PCTAIRE1 was not similarly involved in proliferation of nontransformed cells, including diploid human IMR-90 fibroblasts. Through yeast two-hybrid screening, we identified tumor suppressor p27 as a PCTAIRE1 interactor. In vitro kinase assays showed PCTAIRE1 phosphorylates p27 at Ser10. PCTAIRE1 silencing modulated Ser10 phosphorylation on p27 and led to its accumulation in cancer cells but not in nontransformed cells. In a mouse xenograft model of PPC1 prostate cancer, conditional silencing of PCTAIRE1 restored p27 protein expression and suppressed tumor growth. Mechanistic studies in HeLa cells showed that PCTAIRE1 phosphorylates p27 during the S and M phases of the cell cycle. Notably, p27 silencing was sufficient to rescue cells from mitotic arrest caused by PCTAIRE1 silencing. Clinically, PCTAIRE1 was highly expressed in primary breast and prostate tumors compared with adjacent normal epithelial tissues. Together our findings reveal an unexpected role for PCTAIRE1 in regulating p27 stability, mitosis, and tumor growth, suggesting PCTAIRE1 as a candidate cancer therapeutic target. ©2014 American Association for Cancer Research.

  3. Phospho-Bcl-xL(Ser62) influences spindle assembly and chromosome segregation during mitosis.

    Science.gov (United States)

    Wang, Jianfang; Beauchemin, Myriam; Bertrand, Richard

    2014-01-01

    Functional analysis of a series of phosphorylation mutants reveals that Bcl-xL(Ser62Ala) influences cell entry into anaphase and mitotic exit in taxol-exposed cells compared with cells expressing wild-type Bcl-xL or a series of other phosphorylation mutants, an effect that appears to be independent of its anti-apoptotic activity. During normal mitosis progression, Bcl-xL(Ser62) is strongly phosphorylated by PLK1 and MAPK14/SAPKp38α at the prometaphase, metaphase, and the anaphase boundaries, while it is de-phosphorylated at telophase and cytokinesis. Phospho-Bcl-xL(Ser62) localizes in centrosomes with γ-tubulin and in the mitotic cytosol with some spindle-assembly checkpoint signaling components, including PLK1, BubR1, and Mad2. In taxol- and nocodazole-exposed cells, phospho-Bcl-xL(Ser62) also binds to Cdc20- Mad2-, BubR1-, and Bub3-bound complexes, while Bcl-xL(Ser62Ala) does not. Silencing Bcl-xL expression and expressing the phosphorylation mutant Bcl-xL(Ser62Ala) lead to an increased number of cells harboring mitotic spindle defects including multipolar spindle, chromosome lagging and bridging, aneuploidy with micro-, bi-, or multi-nucleated cells, and cells that fail to resolve undergo mitosis within 6 h. Together, the data indicate that during mitosis, Bcl-xL(Ser62) phosphorylation impacts on spindle assembly and chromosome segregation, influencing chromosome stability. Observations of mitotic cells harboring aneuploidy with micro-, bi-, or multi-nucleated cells, and cells that fail to resolve undergo mitosis within 6 h were also made with cells expressing the phosphorylation mutant Bcl-xL(Ser49Ala) and dual mutant Bcl-xL(Ser49/62Ala).

  4. A thermodynamic approach to the 'mitosis/apoptosis' ratio in cancer

    Science.gov (United States)

    Lucia, Umberto; Ponzetto, Antonio; Deisboeck, Thomas S.

    2015-10-01

    Cancer can be considered as an open, complex, (bio-thermo)dynamic and self-organizing system. Consequently, an entropy generation approach has been employed to analyze its mitosis/apoptosis ratio. Specifically, a novel thermodynamic anticancer strategy is suggested, based on the variation of entropy generation caused by the application of external fields, for example electro-magnetic fields, for therapeutic purposes. Eventually, this innovative approach could support conventional therapies, particularly for inoperable tumors or advanced stages of cancer, when larger tumor burden is diagnosed, and therapeutic options are often limited.

  5. Centriole distribution during tripolar mitosis in Chinese hamster ovary cells

    Science.gov (United States)

    1984-01-01

    During bipolar mitosis a pair of centrioles is distributed to each cell but the activities of the two centrioles within the pair are not equivalent. The parent is normally surrounded by a cloud of pericentriolar material that serves as a microtubule-organizing center. The daughter does not become associated with pericentriolar material until it becomes a parent in the next cell cycle (Rieder, C.L., and G. G. Borisy , 1982, Biol. Cell., 44:117-132). We asked whether the microtubule-organizing activity associated with a centriole was dependent on its becoming a parent. We induced multipolar mitosis in Chinese hamster ovary cells by treatment with 0.04 micrograms/ml colcemid for 4 h. After recovery from this colcemid block, the majority of cells divided into two, but 40% divided into three and 2% divided into four. The tripolar mitotic cells were examined by antitubulin immunofluorescence and by high voltage electron microscopy of serial thick (0.25-micron) sections. The electron microscope analysis showed that centriole number was conserved and that the centrioles were distributed among the three spindle poles, generally in a 2:1:1 or 2:2:0 pattern. The first pattern shows that centriole parenting is not prerequisite for association with pole function; the second pattern indicates that centrioles per se are not required at all. However, the frequency of midbody formation and successful division was higher when centrioles were present in the 2:1:1 pattern. We suggest that the centrioles may help the proper distribution and organization of the pericentriolar cloud, which is needed for the formation of a functional spindle pole. PMID:6373793

  6. O-Linked N-Acetylglucosamine Transiently Elevates in HeLa Cells during Mitosis

    Directory of Open Access Journals (Sweden)

    Viktória Fisi

    2018-05-01

    Full Text Available O-linked N-acetylglucosamine (O-GlcNAc is a dynamic post-translational modification of serine and threonine residues on nuclear and cytoplasmic proteins. O-GlcNAc modification influences many cellular mechanisms, including carbohydrate metabolism, signal transduction and protein degradation. Multiple studies also showed that cell cycle might be modulated by O-GlcNAc. Although the role of O-GlcNAc in the regulation of some cell cycle processes such as mitotic spindle organization or histone phosphorylation is well established, the general behaviour of O-GlcNAc regulation during cell cycle is still controversial. In this study, we analysed the dynamic changes of overall O-GlcNAc levels in HeLa cells using double thymidine block. O-GlcNAc levels in G1, S, G2 and M phase were measured. We observed that O-GlcNAc levels are significantly increased during mitosis in comparison to the other cell cycle phases. However, this change could only be detected when mitotic cells were enriched by harvesting round shaped cells from the G2/M fraction of the synchronized cells. Our data verify that O-GlcNAc is elevated during mitosis, but also emphasize that O-GlcNAc levels can significantly change in a short period of time. Thus, selection and collection of cells at specific cell-cycle checkpoints is a challenging, but necessary requirement for O-GlcNAc studies.

  7. Automatic Detection of Mitosis and Nuclei from Cytogenetic Images by CellProfiler Software for Mitotic Index Estimation

    International Nuclear Information System (INIS)

    Gonzalez, Jorge Ernesto; Romero, Ivonne; Garcia, Omar; Radl, Analia; Di Giorgio, Marina; Barquinero, Joan Francesc

    2016-01-01

    Mitotic Index (MI) estimation expressed as percentage of mitosis plays an important role as quality control endpoint. To this end, MI is applied to check the lot of media and reagents to be used throughout the assay and also to check cellular viability after blood sample shipping, indicating satisfactory/unsatisfactory conditions for the progression of cell culture. The objective of this paper was to apply the CellProfiler open-source software for automatic detection of mitotic and nuclei figures from digitized images of cultured human lymphocytes for MI assessment, and to compare its performance to that performed through semi-automatic and visual detection. Lymphocytes were irradiated and cultured for mitosis detection. Sets of images from cultures were analyzed visually and findings were compared with those using CellProfiler software. The CellProfiler pipeline includes the detection of nuclei and mitosis with 80% sensitivity and more than 99% specificity. We conclude that CellProfiler is a reliable tool for counting mitosis and nuclei from cytogenetic images, saves considerable time compared to manual operation and reduces the variability derived from the scoring criteria of different scorers. The CellProfiler automated pipeline achieves good agreement with visual counting workflow, i.e. it allows fully automated mitotic and nuclei scoring in cytogenetic images yielding reliable information with minimal user intervention. (authors)

  8. From equator to pole: splitting chromosomes in mitosis and meiosis

    Science.gov (United States)

    Duro, Eris

    2015-01-01

    During eukaryotic cell division, chromosomes must be precisely partitioned to daughter cells. This relies on a mechanism to move chromosomes in defined directions within the parental cell. While sister chromatids are segregated from one another in mitosis and meiosis II, specific adaptations enable the segregation of homologous chromosomes during meiosis I to reduce ploidy for gamete production. Many of the factors that drive these directed chromosome movements are known, and their molecular mechanism has started to be uncovered. Here we review the mechanisms of eukaryotic chromosome segregation, with a particular emphasis on the modifications that ensure the segregation of homologous chromosomes during meiosis I. PMID:25593304

  9. The G2/M DNA damage checkpoint inhibits mitosis through Tyr15 phosphorylation of p34cdc2 in Aspergillus nidulans.

    OpenAIRE

    Ye, X S; Fincher, R R; Tang, A; Osmani, S A

    1997-01-01

    It is possible to cause G2 arrest in Aspergillus nidulans by inactivating either p34cdc2 or NIMA. We therefore investigated the negative control of these two mitosis-promoting kinases after DNA damage. DNA damage caused rapid Tyr15 phosphorylation of p34cdc2 and transient cell cycle arrest but had little effect on the activity of NIMA. Dividing cells deficient in Tyr15 phosphorylation of p34cdc2 were sensitive to both MMS and UV irradiation and entered lethal premature mitosis with damaged DN...

  10. iDermatoPath - a novel software tool for mitosis detection in H&E-stained tissue sections of malignant melanoma.

    Science.gov (United States)

    Andres, C; Andres-Belloni, B; Hein, R; Biedermann, T; Schäpe, A; Brieu, N; Schönmeyer, R; Yigitsoy, M; Ring, J; Schmidt, G; Harder, N

    2017-07-01

    Malignant Melanoma (MM) is characterized by a growing incidence and a high malignant potential. Besides well-defined prognostic factors such as tumour thickness and ulceration, the Mitotic Rate (MR) was included in the AJCC recommendations for diagnosis and treatment of MM. In daily routine, the identification of a single mitosis can be difficult on haematoxylin and eosin slides alone. Several studies showed a big inter- and intra-individual variability in detecting the MR in MM even by very experienced investigators, thus raising the question for a computer-assisted method. The objective was to develop a software system for mitosis detection in MM on H&E slides based on machine learning for diagnostic support. We developed a computer-aided staging support system based on image analysis and machine learning on the basis of 59 MM specimens. Our approach automatically detects tumour regions, identifies mitotic nuclei and classifies them with respect to their diagnostic relevance. A convenient user interface enables the investigator to browse through the proposed mitoses for fast and efficient diagnosing. A quantitative evaluation on manually labelled ground truth data revealed that the tumour region detection yields a medium spatial overlap index (dice coefficient) of 0.72. For the mitosis detection, we obtained high accuracies of above 83%. On the technical side, the developed iDermatoPath software tool provides a novel approach for mitosis detection in MM, which can be further improved using more training data such as dermatopathologist annotations. On the practical side, a first evaluation of the clinical utility was positive, albeit this approach provides most benefit for difficult cases in a research setting. Assuming all slides to be digitally processed and reported in the near future, this method could become a helpful additional tool for the pathologist. © 2017 European Academy of Dermatology and Venereology.

  11. Dance of the Chromosomes: A Kinetic Learning Approach to Mitosis and Meiosis

    Science.gov (United States)

    Kreiser, Brian; Hairston, Rosalina

    2007-01-01

    Understanding mitosis and meiosis is fundamental to understanding the basics of Mendelian inheritance, yet many students find these concepts challenging or confusing. Here we present a visually and physically stimulating activity using minimal supplies to supplement traditional instruction in order to engage the students and facilitate…

  12. Automatic Detection of Mitosis and Nuclei From Cytogenetic Images by CellProfiler Software for Mitotic Index Estimation.

    Science.gov (United States)

    González, Jorge Ernesto; Radl, Analía; Romero, Ivonne; Barquinero, Joan Francesc; García, Omar; Di Giorgio, Marina

    2016-12-01

    Mitotic Index (MI) estimation expressed as percentage of mitosis plays an important role as quality control endpoint. To this end, MI is applied to check the lot of media and reagents to be used throughout the assay and also to check cellular viability after blood sample shipping, indicating satisfactory/unsatisfactory conditions for the progression of cell culture. The objective of this paper was to apply the CellProfiler open-source software for automatic detection of mitotic and nuclei figures from digitized images of cultured human lymphocytes for MI assessment, and to compare its performance to that performed through semi-automatic and visual detection. Lymphocytes were irradiated and cultured for mitosis detection. Sets of images from cultures were analyzed visually and findings were compared with those using CellProfiler software. The CellProfiler pipeline includes the detection of nuclei and mitosis with 80% sensitivity and more than 99% specificity. We conclude that CellProfiler is a reliable tool for counting mitosis and nuclei from cytogenetic images, saves considerable time compared to manual operation and reduces the variability derived from the scoring criteria of different scorers. The CellProfiler automated pipeline achieves good agreement with visual counting workflow, i.e. it allows fully automated mitotic and nuclei scoring in cytogenetic images yielding reliable information with minimal user intervention. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Continuation of mitosis after selective laser microbeam destruction of the centriolar region

    Energy Technology Data Exchange (ETDEWEB)

    Berns, N.W.; Richardson, S.M.

    1977-12-01

    The centriole regions of prophase PTK2 cells were irradiated with a laser microbeam. Cells continued through mitosis normally. Ultrastructural analysis revealed either an absence of centrioles or severely damaged centrioles at the irradiated poles. Microtubules appeared to focus into pericentriolar cloud material.

  14. Continuation of mitosis after selective laser microbeam destruction of the centriolar region

    International Nuclear Information System (INIS)

    Berns, N.W.; Richardson, S.M.

    1977-01-01

    The centriole regions of prophase PTK2 cells were irradiated with a laser microbeam. Cells continued through mitosis normally. Ultrastructural analysis revealed either an absence of centrioles or severely damaged centrioles at the irradiated poles. Microtubules appeared to focus into pericentriolar cloud material

  15. Control of mitosis in Physarum polycephalum. The effect of lowering the DNA: mass ratio by uv irradiation

    International Nuclear Information System (INIS)

    Sudbery, P.E.; Grant, W.D.

    1975-01-01

    A model for the control of mitosis is presented and, along with four other models described previously, is tested by the response of Physarum polycephalum to uv irradiation. Plasmodia were irradiated following the second mitosis (M II) after fusion of microplasmodia. As shown by other authors, the onset of the next mitosis (M III) was delayed but the period M III-M IV was shortened relative to control plasmodia. It is shown that the period M III-M IV cannot be shortened beyond a minimum of 6 h despite increasing doses of uv. This minimum length is shown to be relatively independent of growth rate. If conditions were such that the length of M III-M IV was shortened to this minimum value the length of M IV-M V was also shorter than the corresponding control period. If the period M II-M IV was longer than the minimum following irradiation then the length of M IV-M V was not shortened. It is argued that only the latter situation allows models to be tested and it is shown how the observed result is consistent with only two of the five models considered. A further test compared the length of M III-M IV under these conditions with that predicted from the amount of DNA destroyed by the uv. This result was consistent only with the same two models

  16. Proteomic analysis of polyribosomes identifies splicing factors as potential regulators of translation during mitosis.

    Science.gov (United States)

    Aviner, Ranen; Hofmann, Sarah; Elman, Tamar; Shenoy, Anjana; Geiger, Tamar; Elkon, Ran; Ehrlich, Marcelo; Elroy-Stein, Orna

    2017-06-02

    Precise regulation of mRNA translation is critical for proper cell division, but little is known about the factors that mediate it. To identify mRNA-binding proteins that regulate translation during mitosis, we analyzed the composition of polysomes from interphase and mitotic cells using unbiased quantitative mass-spectrometry (LC-MS/MS). We found that mitotic polysomes are enriched with a subset of proteins involved in RNA processing, including alternative splicing and RNA export. To demonstrate that these may indeed be regulators of translation, we focused on heterogeneous nuclear ribonucleoprotein C (hnRNP C) as a test case and confirmed that it is recruited to elongating ribosomes during mitosis. Then, using a combination of pulsed SILAC, metabolic labeling and ribosome profiling, we showed that knockdown of hnRNP C affects both global and transcript-specific translation rates and found that hnRNP C is specifically important for translation of mRNAs that encode ribosomal proteins and translation factors. Taken together, our results demonstrate how proteomic analysis of polysomes can provide insight into translation regulation under various cellular conditions of interest and suggest that hnRNP C facilitates production of translation machinery components during mitosis to provide daughter cells with the ability to efficiently synthesize proteins as they enter G1 phase. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Progesterone Receptor Membrane Component 1 (PGRMC1 in cell division: its role in bovine granulosa cells mitosis

    Directory of Open Access Journals (Sweden)

    Laura Terzaghi

    2015-07-01

    Full Text Available The present studies were aimed to assess Progesterone Receptor Membrane Component-1 (PGRMC1 role in regulating bovine granulosa cells (bGC mitosis. First, we performed immunofluorescence studies on in vitro cultured bGC collected from antral follicles, which showed that PGRMC1 localizes to the spindle apparatus in mitotic cells. Then, to evaluate PGRMC1 effect on cell proliferation we silenced its expression with RNA interference technique (RNAi. Quantitative RT-PCR and immunoblotting confirmed down-regulation of PGRMC1 expression, when compared to CTRL-RNAi treated bGC (p<0.05. After 72h of culture, PGRMC1 silencing determined a lower growth rate (p<0.05 and a higher percentage of cells arrested at G2/M phase as assessed by flowcytometry (p<0.05. Accordingly, live imaging studies revealed more aberrant mitosis and a delayed M-phase in PGRMC1-RNAi treated cells compared to CTRL-RNAi group (p<0.05. These data confirmed that PGRMC1 is directly involved in bGC mitosis and ongoing preliminary studies are aimed to elucidate its putative mechanisms of action. Since PGRMC1 is a membrane protein, we hypothesize its possible involvement in vesicular trafficking and endocytosis, which is in turn an important process to assure proper cell division. To assess this hypothesis, we have preliminarily conducted immunofluorescence and in situ proximity ligation assay experiments that showed PGRMC1 co-localization and direct interaction with clathrin. This is important since clathrin is an essential protein for both endosomes formation, and cell division acting directly on the spindle apparatus. Thus our studies set the stage for analysis aimed to further characterize PGRMC1’s mechanism of action in mitotic cell.

  18. Creating a Double-Spring Model to Teach Chromosome Movement during Mitosis & Meiosis

    Science.gov (United States)

    Luo, Peigao

    2012-01-01

    The comprehension of chromosome movement during mitosis and meiosis is essential for understanding genetic transmission, but students often find this process difficult to grasp in a classroom setting. I propose a "double-spring model" that incorporates a physical demonstration and can be used as a teaching tool to help students understand this…

  19. The spatio-temporal dynamics of PKA activity profile during mitosis and its correlation to chromosome segregation

    Science.gov (United States)

    Vandame, Pauline; Spriet, Corentin; Trinel, Dave; Gelaude, Armance; Caillau, Katia; Bompard, Coralie; Biondi, Emanuele; Bodart, Jean-François

    2014-01-01

    The cyclic adenosine monophosphate dependent kinase protein (PKA) controls a variety of cellular processes including cell cycle regulation. Here, we took advantages of genetically encoded FRET-based biosensors, using an AKAR-derived biosensor to characterize PKA activity during mitosis in living HeLa cells using a single-cell approach. We measured PKA activity changes during mitosis. HeLa cells exhibit a substantial increase during mitosis, which ends with telophase. An AKAREV T>A inactive form of the biosensor and H89 inhibitor were used to ascertain for the specificity of the PKA activity measured. On a spatial point of view, high levels of activity near to chromosomal plate during metaphase and anaphase were detected. By using the PKA inhibitor H89, we assessed the role of PKA in the maintenance of a proper division phenotype. While this treatment in our hands did not impaired cell cycle progression in a drastic manner, inhibition of PKA leads to a dramatic increase in chromososme misalignement on the spindle during metaphase that could result in aneuploidies. Our study emphasizes the insights that can be gained with genetically encoded FRET-based biosensors, which enable to overcome the shortcomings of classical methologies and unveil in vivo PKA spatiotemporal profiles in HeLa cells. PMID:25485503

  20. The spatio-temporal dynamics of PKA activity profile during mitosis and its correlation to chromosome segregation.

    Science.gov (United States)

    Vandame, Pauline; Spriet, Corentin; Trinel, Dave; Gelaude, Armance; Caillau, Katia; Bompard, Coralie; Biondi, Emanuele; Bodart, Jean-François

    2014-01-01

    The cyclic adenosine monophosphate dependent kinase protein (PKA) controls a variety of cellular processes including cell cycle regulation. Here, we took advantages of genetically encoded FRET-based biosensors, using an AKAR-derived biosensor to characterize PKA activity during mitosis in living HeLa cells using a single-cell approach. We measured PKA activity changes during mitosis. HeLa cells exhibit a substantial increase during mitosis, which ends with telophase. An AKAREV T>A inactive form of the biosensor and H89 inhibitor were used to ascertain for the specificity of the PKA activity measured. On a spatial point of view, high levels of activity near to chromosomal plate during metaphase and anaphase were detected. By using the PKA inhibitor H89, we assessed the role of PKA in the maintenance of a proper division phenotype. While this treatment in our hands did not impaired cell cycle progression in a drastic manner, inhibition of PKA leads to a dramatic increase in chromososme misalignement on the spindle during metaphase that could result in aneuploidies. Our study emphasizes the insights that can be gained with genetically encoded FRET-based biosensors, which enable to overcome the shortcomings of classical methologies and unveil in vivo PKA spatiotemporal profiles in HeLa cells.

  1. Analysis of structural and numerical chromosomal aberrations at the first and second mitosis after X irradiation of two-cell mouse embryos

    International Nuclear Information System (INIS)

    Weissenborn, U.; Streffer, C.

    1989-01-01

    Two-cell mouse embryos were X-irradiated in the late G2 phase in vivo. The first and second postradiation mitoses were analyzed for chromosomal anomalies. The majority of structural aberrations visible at the first mitosis after irradiation were chromatid breaks and chromatid gaps; only a few interchanges and dicentrics were observed. The aberration frequency resulted in a dose-effect relationship which was well described by a linear model. At the second mitosis 29% of the structural aberrations of the first mitosis were counted; the aberration quality changed only slightly. It is discussed whether these aberrations are to be considered new, derived, or unchanged transmitted aberrations. Contrary to the results obtained after irradiation of one-cell embryos, little chromosome loss was induced by radiation in two-cell embryos

  2. Spatial Reorganization of the Endoplasmic Reticulum during Mitosis Relies on Mitotic Kinase Cyclin A in the Early Drosophila Embryo

    Science.gov (United States)

    Bergman, Zane J.; Mclaurin, Justin D.; Eritano, Anthony S.; Johnson, Brittany M.; Sims, Amanda Q.; Riggs, Blake

    2015-01-01

    Mitotic cyclin-dependent kinase with their cyclin partners (cyclin:Cdks) are the master regulators of cell cycle progression responsible for regulating a host of activities during mitosis. Nuclear mitotic events, including chromosome condensation and segregation have been directly linked to Cdk activity. However, the regulation and timing of cytoplasmic mitotic events by cyclin:Cdks is poorly understood. In order to examine these mitotic cytoplasmic events, we looked at the dramatic changes in the endoplasmic reticulum (ER) during mitosis in the early Drosophila embryo. The dynamic changes of the ER can be arrested in an interphase state by inhibition of either DNA or protein synthesis. Here we show that this block can be alleviated by micro-injection of Cyclin A (CycA) in which defined mitotic ER clusters gathered at the spindle poles. Conversely, micro-injection of Cyclin B (CycB) did not affect spatial reorganization of the ER, suggesting CycA possesses the ability to initiate mitotic ER events in the cytoplasm. Additionally, RNAi-mediated simultaneous inhibition of all 3 mitotic cyclins (A, B and B3) blocked spatial reorganization of the ER. Our results suggest that mitotic ER reorganization events rely on CycA and that control and timing of nuclear and cytoplasmic events during mitosis may be defined by release of CycA from the nucleus as a consequence of breakdown of the nuclear envelope. PMID:25689737

  3. TopBP1 is required at mitosis to reduce transmission of DNA damage to G1 daughter cells

    Science.gov (United States)

    Pedersen, Rune Troelsgaard; Kruse, Thomas; Nilsson, Jakob

    2015-01-01

    Genome integrity is critically dependent on timely DNA replication and accurate chromosome segregation. Replication stress delays replication into G2/M, which in turn impairs proper chromosome segregation and inflicts DNA damage on the daughter cells. Here we show that TopBP1 forms foci upon mitotic entry. In early mitosis, TopBP1 marks sites of and promotes unscheduled DNA synthesis. Moreover, TopBP1 is required for focus formation of the structure-selective nuclease and scaffold protein SLX4 in mitosis. Persistent TopBP1 foci transition into 53BP1 nuclear bodies (NBs) in G1 and precise temporal depletion of TopBP1 just before mitotic entry induced formation of 53BP1 NBs in the next cell cycle, showing that TopBP1 acts to reduce transmission of DNA damage to G1 daughter cells. Based on these results, we propose that TopBP1 maintains genome integrity in mitosis by controlling chromatin recruitment of SLX4 and by facilitating unscheduled DNA synthesis. PMID:26283799

  4. Mto2 multisite phosphorylation inactivates non-spindle microtubule nucleation complexes during mitosis

    Science.gov (United States)

    Borek, Weronika E.; Groocock, Lynda M.; Samejima, Itaru; Zou, Juan; de Lima Alves, Flavia; Rappsilber, Juri; Sawin, Kenneth E.

    2015-01-01

    Microtubule nucleation is highly regulated during the eukaryotic cell cycle, but the underlying molecular mechanisms are largely unknown. During mitosis in fission yeast Schizosaccharomyces pombe, cytoplasmic microtubule nucleation ceases simultaneously with intranuclear mitotic spindle assembly. Cytoplasmic nucleation depends on the Mto1/2 complex, which binds and activates the γ-tubulin complex and also recruits the γ-tubulin complex to both centrosomal (spindle pole body) and non-centrosomal sites. Here we show that the Mto1/2 complex disassembles during mitosis, coincident with hyperphosphorylation of Mto2 protein. By mapping and mutating multiple Mto2 phosphorylation sites, we generate mto2-phosphomutant strains with enhanced Mto1/2 complex stability, interaction with the γ-tubulin complex and microtubule nucleation activity. A mutant with 24 phosphorylation sites mutated to alanine, mto2[24A], retains interphase-like behaviour even in mitotic cells. This provides a molecular-level understanding of how phosphorylation ‘switches off' microtubule nucleation complexes during the cell cycle and, more broadly, illuminates mechanisms regulating non-centrosomal microtubule nucleation. PMID:26243668

  5. Origin of the cell nucleus, mitosis and sex: roles of intracellular coevolution.

    Science.gov (United States)

    Cavalier-Smith, Thomas

    2010-02-04

    in naked growing cells, probably as indirect consequences of the origin of phagotrophy. The first eukaryote had 1-2 cilia and also walled resting cysts; I outline how encystation may have promoted the origin of meiotic sex. I also explain why many alternative ideas are inadequate. Nuclear pore complexes are evolutionary chimaeras of endomembrane- and mitosis-related chromatin-associated proteins. The keys to understanding eukaryogenesis are a proper phylogenetic context and understanding organelle coevolution: how innovations in one cell component caused repercussions on others.

  6. INDEKS MITOSIS UJUNG AKAR KECAMBAH CABE BESAR (Capsicum annuum L. SETELAH PERLAKUAN SUSPENSI Trichoderma sp.

    Directory of Open Access Journals (Sweden)

    PetroneLa Deno Raja

    2016-06-01

    Full Text Available Penelitian ini bertujuan untuk mengetahui indeks mitosis ujung akar kecambah cabe besar (Capsicum annuum L. setelah perlakuan suspensi Trichoderma sp. Penelitian ini dilakukan di laboratorium Struktur Perkembangan Tumbuhan Jurusan Biologi FMIPA, Universitas Udayana dari Oktober 2013-November 2013. Metode yang digunakan adalah metode squash, biji cabe untuk kontrol direndam dalam air ± 6 jam, untuk perlakuan biji setelah direndam air, direndam lagi dalam suspensi Trichoderma sp. 10-7 selama ± 6 jam, selanjutnya dikecambahkan. Ujung akar kecambah 2 mm dipotong, difiksasi dalam larutan farmer ± 2-24 jam, dihidrolisis dalam larutan 3N HCL ± 2-5 menit dan kemudian pewarnaan dengan aceto orcein ± 5 menit. Pengamatan dilakukan dengan mikroskop binokuler, data pembelahan tiap fase mitosis dihitung (%, dicatat dan difoto, dan dianalisis dengan menggunakan uji paired T tes.Hasil penelitian menunjukkan bahwa Trichoderma sp. berpengaruh terhadap indeks mitosis sel ujung akar Capsicum annuum L.,  pada fase metafase berbeda nyata antara kontrol dan perlakuan, sedangkan pada fase profase, anafase dan telofase berbeda tidak nyata.  Pada perlakuan persentase fase profase, metafase, anafase dan telofase (77,14%; 12,96 %; 5,88 % dan 5,23 % lebih tinggi dari kontrol (66,40 %; 5,44 %; 4,96 % dan 4,66 %.

  7. Golgi twins in late mitosis revealed by genetically encoded tags for live cell imaging and correlated electron microscopy

    NARCIS (Netherlands)

    Gaietta, Guido M; Giepmans, Ben N G; Deerinck, Thomas J; Smith, W Bryan; Ngan, Lucy; Llopis, Juan; Adams, Stephen R; Tsien, Roger Y; Ellisman, Mark H

    2006-01-01

    Combinations of molecular tags visible in light and electron microscopes become particularly advantageous in the analysis of dynamic cellular components like the Golgi apparatus. This organelle disassembles at the onset of mitosis and, after a sequence of poorly understood events, reassembles after

  8. Population control of resident and immigrant microglia by mitosis and apoptosis.

    Science.gov (United States)

    Wirenfeldt, Martin; Dissing-Olesen, Lasse; Anne Babcock, Alicia; Nielsen, Marianne; Meldgaard, Michael; Zimmer, Jens; Azcoitia, Iñigo; Leslie, Robert Graham Quinton; Dagnaes-Hansen, Frederik; Finsen, Bente

    2007-08-01

    Microglial population expansion occurs in response to neural damage via processes that involve mitosis and immigration of bone marrow-derived cells. However, little is known of the mechanisms that regulate clearance of reactive microglia, when microgliosis diminishes days to weeks later. We have investigated the mechanisms of microglial population control in a well-defined model of reactive microgliosis in the mouse dentate gyrus after perforant pathway axonal lesion. Unbiased stereological methods and flow cytometry demonstrate significant lesion-induced increases in microglial numbers. Reactive microglia often occurred in clusters, some having recently incorporated bromodeoxyuridine, showing that proliferation had occurred. Annexin V labeling and staining for activated caspase-3 and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling showed that apoptotic mechanisms participate in dissolution of the microglial response. Using bone marrow chimeric mice, we found that the lesion-induced proliferative capacity of resident microglia superseded that of immigrant microglia, whereas lesion-induced kinetics of apoptosis were comparable. Microglial numbers and responses were severely reduced in bone marrow chimeric mice. These results broaden our understanding of the microglial response to neural damage by demonstrating that simultaneously occurring mitosis and apoptosis regulate expansion and reduction of both resident and immigrant microglial cell populations.

  9. The NIMA Kinase Is Required To Execute Stage-Specific Mitotic Functions after Initiation of Mitosis

    Science.gov (United States)

    Govindaraghavan, Meera; Lad, Alisha A.

    2014-01-01

    The G2-M transition in Aspergillus nidulans requires the NIMA kinase, the founding member of the Nek kinase family. Inactivation of NIMA results in a late G2 arrest, while overexpression of NIMA is sufficient to promote mitotic events independently of cell cycle phase. Endogenously tagged NIMA-GFP has dynamic mitotic localizations appearing first at the spindle pole body and then at nuclear pore complexes before transitioning to within nuclei and the mitotic spindle and back at the spindle pole bodies at mitotic exit, suggesting that it functions sequentially at these locations. Since NIMA is indispensable for mitotic entry, it has been difficult to determine the requirement of NIMA for subaspects of mitosis. We show here that when NIMA is partially inactivated, although mitosis can be initiated, a proportion of cells fail to successfully generate two daughter nuclei. We further define the mitotic defects to show that normal NIMA function is required for the formation of a bipolar spindle, nuclear pore complex disassembly, completion of chromatin segregation, and the normal structural rearrangements of the nuclear envelope required to generate two nuclei from one. In the remaining population of cells that enter mitosis with inadequate NIMA, two daughter nuclei are generated in a manner dependent on the spindle assembly checkpoint, indicating highly penetrant defects in mitotic progression without sufficient NIMA activity. This study shows that NIMA is required not only for mitotic entry but also sequentially for successful completion of stage-specific mitotic events. PMID:24186954

  10. An integrated overview of spatiotemporal organization and regulation in mitosis in terms of the proteins in the functional supercomplexes

    Directory of Open Access Journals (Sweden)

    Yueyuan eZheng

    2014-10-01

    Full Text Available Eukaryotic cells may divide via the critical cellular process of cell division/mitosis, resulting in two daughter cells with the same genetic information. A large number of dedicated proteins are involved in this process and spatiotemporally assembled into three distinct super-complex structures/organelles, including the centrosome/spindle pole body, kinetochore/centromere and cleavage furrow/midbody/bud neck, so as to precisely modulate the cell division/mitosis events of chromosome alignment, chromosome segregation and cytokinesis in an orderly fashion. In recent years, many efforts have been made to identify the protein components and architecture of these subcellular organelles, aiming to uncover the organelle assembly pathways, determine the molecular mechanisms underlying the organelle functions, and thereby provide new therapeutic strategies for a variety of diseases. However, the organelles are highly dynamic structures, making it difficult to identify the entire components. Here, we review the current knowledge of the identified protein components governing the organization and functioning of organelles, especially in human and yeast cells, and discuss the multi-localized protein components mediating the communication between organelles during cell division.

  11. Regulators of alternative polyadenylation operate at the transition from mitosis to meiosis.

    Science.gov (United States)

    Shan, Lingjuan; Wu, Chan; Chen, Di; Hou, Lei; Li, Xin; Wang, Lixia; Chu, Xiao; Hou, Yifeng; Wang, Zhaohui

    2017-02-20

    In the sexually reproductive organisms, gametes are produced by meiosis following a limited mitotic amplification. However, the intrinsic program switching cells from mitotic to meiotic cycle is unclear. Alternative polyadenylation (APA) is a highly conserved means of gene regulation and is achieved by the RNA 3'-processing machinery to generate diverse 3'UTR profiles. In Drosophila spermatogenesis, we observed distinct profiles of transcriptome-wide 3'UTR between mitotic and meiotic cells. In mutant germ cells stuck in mitosis, 3'UTRs of hundreds of genes were consistently shifted. Remarkably, altering the levels of multiple 3'-processing factors disrupted germline's progression to meiosis, indicative of APA's active role in this transition. An RNA-binding protein (RBP) Tut could directly bind 3'UTRs of 3'-processing factors whose expressions were repressed in the presence of Tut-containing complex. Further, we demonstrated that this RBP complex could execute the repression post-transcriptionally by recruiting CCR4/Twin of deadenylation complex. Thus, we propose that an RBP complex regulates the dynamic APA profile to promote the mitosis-to-meiosis transition. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Przebieg mitozy w korzeniach siewek pszenicy pod wpływem rubidu [Course of mitosis in root seedlings of Triticum aestivum L. under the influence of rubidium

    Directory of Open Access Journals (Sweden)

    Kazimierz Olech

    2015-06-01

    Full Text Available The depresion of mitosis as a result of rubidium action illustrated by the lower frequency of mitosis was found in an investigation made on roots of wheat seedlings grown on a nutrient medium which the total amount of potassium or a half of it was replaced by rubidium. The lower mitotic activity was caused by limited number of nuclei beginning prophase and by a prolonged duration of metaphase.

  13. Dll1 maintains quiescence of adult neural stem cells and segregates asymmetrically during mitosis.

    Science.gov (United States)

    Kawaguchi, Daichi; Furutachi, Shohei; Kawai, Hiroki; Hozumi, Katsuto; Gotoh, Yukiko

    2013-01-01

    Stem cells often divide asymmetrically to produce one stem cell and one differentiating cell, thus maintaining the stem cell pool. Although neural stem cells (NSCs) in the adult mouse subventricular zone have been suggested to divide asymmetrically, intrinsic cell fate determinants for asymmetric NSC division are largely unknown. Stem cell niches are important for stem cell maintenance, but the niche for the maintenance of adult quiescent NSCs has remained obscure. Here we show that the Notch ligand Delta-like 1 (Dll1) is required to maintain quiescent NSCs in the adult mouse subventricular zone. Dll1 protein is induced in activated NSCs and segregates to one daughter cell during mitosis. Dll1-expressing cells reside in close proximity to quiescent NSCs, suggesting a feedback signal for NSC maintenance by their sister cells and progeny. Our data suggest a model in which NSCs produce their own niche cells for their maintenance through asymmetric Dll1 inheritance at mitosis.

  14. Mitotic accumulation of dimethylated lysine 79 of histone H3 is important for maintaining genome integrity during mitosis in human cells.

    Science.gov (United States)

    Guppy, Brent J; McManus, Kirk J

    2015-02-01

    The loss of genome stability is an early event that drives the development and progression of virtually all tumor types. Recent studies have revealed that certain histone post-translational modifications exhibit dynamic and global increases in abundance that coincide with mitosis and exhibit essential roles in maintaining genomic stability. Histone H2B ubiquitination at lysine 120 (H2Bub1) is regulated by RNF20, an E3 ubiquitin ligase that is altered in many tumor types. Through an evolutionarily conserved trans-histone pathway, H2Bub1 is an essential prerequisite for subsequent downstream dimethylation events at lysines 4 (H3K4me2) and 79 (H3K79me2) of histone H3. Although the role that RNF20 plays in tumorigenesis has garnered much attention, the downstream components of the trans-histone pathway, H3K4me2 and H3K79me2, and their potential contributions to genome stability remain largely overlooked. In this study, we employ single-cell imaging and biochemical approaches to investigate the spatial and temporal patterning of RNF20, H2Bub1, H3K4me2, and H3K79me2 throughout the cell cycle, with a particular focus on mitosis. We show that H2Bub1, H3K4me2, and H3K79me2 exhibit distinct temporal progression patterns throughout the cell cycle. Most notably, we demonstrate that H3K79me2 is a highly dynamic histone post-translational modification that reaches maximal abundance during mitosis in an H2Bub1-independent manner. Using RNAi and chemical genetic approaches, we identify DOT1L as a histone methyltransferase required for the mitotic-associated increases in H3K79me2. We also demonstrate that the loss of mitotic H3K79me2 levels correlates with increases in chromosome numbers and increases in mitotic defects. Collectively, these data suggest that H3K79me2 dynamics during mitosis are normally required to maintain genome stability and further implicate the loss of H3K79me2 during mitosis as a pathogenic event that contributes to the development and progression of tumors

  15. Plant WEE1 kinase is cell cycle regulated and removed at mitosis via the 26S proteasome machinery

    Science.gov (United States)

    Cook, Gemma S.; Grønlund, Anne Lentz; Siciliano, Ilario; Spadafora, Natasha; Amini, Maryam; Herbert, Robert J.; Bitonti, M. Beatrice; Graumann, Katja; Francis, Dennis; Rogers, Hilary J.

    2013-01-01

    In yeasts and animals, premature entry into mitosis is prevented by the inhibitory phosphorylation of cyclin-dependent kinase (CDK) by WEE1 kinase, and, at mitosis, WEE1 protein is removed through the action of the 26S proteasome. Although in higher plants WEE1 function has been confirmed in the DNA replication checkpoint, Arabidopsis wee1 insertion mutants grow normally, and a role for the protein in the G2/M transition during an unperturbed plant cell cycle is yet to be confirmed. Here data are presented showing that the inhibitory effect of WEE1 on CDK activity in tobacco BY-2 cell cultures is cell cycle regulated independently of the DNA replication checkpoint: it is high during S-phase but drops as cells traverse G2 and enter mitosis. To investigate this mechanism further, a yeast two-hybrid screen was undertaken to identify proteins interacting with Arabidopsis WEE1. Three F-box proteins and a subunit of the proteasome complex were identified, and bimolecular fluorescence complementation confirmed an interaction between AtWEE1 and the F-box protein SKP1 INTERACTING PARTNER 1 (SKIP1). Furthermore, the AtWEE1–green fluorescent protein (GFP) signal in Arabidopsis primary roots treated with the proteasome inhibitor MG132 was significantly increased compared with mock-treated controls. Expression of AtWEE1–YFPC (C-terminal portion of yellow fluorescent protein) or AtWEE1 per se in tobacco BY-2 cells resulted in a premature increase in the mitotic index compared with controls, whereas co-expression of AtSKIP1–YFPN negated this effect. These data support a role for WEE1 in a normal plant cell cycle and its removal at mitosis via the 26S proteasome. PMID:23536609

  16. The terminal basal mitosis of chicken retinal Lim1 horizontal cells is not sensitive to cisplatin-induced cell cycle arrest.

    Science.gov (United States)

    Shirazi Fard, Shahrzad; Thyselius, Malin; All-Ericsson, Charlotta; Hallböök, Finn

    2014-01-01

    For proper development, cells need to coordinate proliferation and cell cycle-exit. This is mediated by a cascade of proteins making sure that each phase of the cell cycle is controlled before the initiation of the next. Retinal progenitor cells divide during the process of interkinetic nuclear migration, where they undergo S-phase on the basal side, followed by mitoses on the apical side of the neuroepithelium. The final cell cycle of chicken retinal horizontal cells (HCs) is an exception to this general cell cycle behavior. Lim1 expressing (+) horizontal progenitor cells (HPCs) have a heterogenic final cell cycle, with some cells undergoing a terminal mitosis on the basal side of the retina. The results in this study show that this terminal basal mitosis of Lim1+ HPCs is not dependent on Chk1/2 for its regulation compared to retinal cells undergoing interkinetic nuclear migration. Neither activating nor blocking Chk1 had an effect on the basal mitosis of Lim1+ HPCs. Furthermore, the Lim1+ HPCs were not sensitive to cisplatin-induced DNA damage and were able to continue into mitosis in the presence of γ-H2AX without activation of caspase-3. However, Nutlin3a-induced expression of p21 did reduce the mitoses, suggesting the presence of a functional p53/p21 response in HPCs. In contrast, the apical mitoses were blocked upon activation of either Chk1/2 or p21, indicating the importance of these proteins during the process of interkinetic nuclear migration. Inhibiting Cdk1 blocked M-phase transition both for apical and basal mitoses. This confirmed that the cyclin B1-Cdk1 complex was active and functional during the basal mitosis of Lim1+ HPCs. The regulation of the final cell cycle of Lim1+ HPCs is of particular interest since it has been shown that the HCs are able to sustain persistent DNA damage, remain in the cell cycle for an extended period of time and, consequently, survive for months.

  17. Cdc42 is not essential for filopodium formation, directed migration, cell polarization, and mitosis in fibroblastoid cells

    DEFF Research Database (Denmark)

    Czuchra, Aleksandra; Wu, Xunwei; Meyer, Hannelore

    2005-01-01

    of Cdc42 did not affect filopodium or lamellipodium formation and had no significant influence on the speed of directed migration nor on mitosis. Cdc42-deficient cells displayed a more elongated cell shape and had a reduced area. Furthermore, directionality during migration and reorientation of the Golgi...

  18. CSL protein regulates transcription of genes required to prevent catastrophic mitosis in fission yeast.

    Science.gov (United States)

    Převorovský, Martin; Oravcová, Martina; Zach, Róbert; Jordáková, Anna; Bähler, Jürg; Půta, František; Folk, Petr

    2016-11-16

    For every eukaryotic cell to grow and divide, intricately coordinated action of numerous proteins is required to ensure proper cell-cycle progression. The fission yeast Schizosaccharomyces pombe has been instrumental in elucidating the fundamental principles of cell-cycle control. Mutations in S. pombe 'cut' (cell untimely torn) genes cause failed coordination between cell and nuclear division, resulting in catastrophic mitosis. Deletion of cbf11, a fission yeast CSL transcription factor gene, triggers a 'cut' phenotype, but the precise role of Cbf11 in promoting mitotic fidelity is not known. We report that Cbf11 directly activates the transcription of the acetyl-coenzyme A carboxylase gene cut6, and the biotin uptake/biosynthesis genes vht1 and bio2, with the former 2 implicated in mitotic fidelity. Cbf11 binds to a canonical, metazoan-like CSL response element (GTGGGAA) in the cut6 promoter. Expression of Cbf11 target genes shows apparent oscillations during the cell cycle using temperature-sensitive cdc25-22 and cdc10-M17 block-release experiments, but not with other synchronization methods. The penetrance of catastrophic mitosis in cbf11 and cut6 mutants is nutrient-dependent. We also show that drastic decrease in biotin availability arrests cell proliferation but does not cause mitotic defects. Taken together, our results raise the possibility that CSL proteins play conserved roles in regulating cell-cycle progression, and they could guide experiments into mitotic CSL functions in mammals.

  19. Origin of the cell nucleus, mitosis and sex: roles of intracellular coevolution

    Directory of Open Access Journals (Sweden)

    Cavalier-Smith Thomas

    2010-02-01

    advantages. These successive changes took place in naked growing cells, probably as indirect consequences of the origin of phagotrophy. The first eukaryote had 1-2 cilia and also walled resting cysts; I outline how encystation may have promoted the origin of meiotic sex. I also explain why many alternative ideas are inadequate. Conclusion Nuclear pore complexes are evolutionary chimaeras of endomembrane- and mitosis-related chromatin-associated proteins. The keys to understanding eukaryogenesis are a proper phylogenetic context and understanding organelle coevolution: how innovations in one cell component caused repercussions on others. Reviewers This article was reviewed by Anthony Poole, Gáspár Jékely and Eugene Koonin.

  20. MIIP, a cytoskeleton regulator that blocks cell migration and invasion, delays mitosis, and suppresses tumorogenesis.

    Science.gov (United States)

    Wang, Yingmei; Wen, Jing; Zhang, Wei

    2011-02-01

    The migration and invasion inhibitory protein (MIIP) was initially discovered in a yeast two-hybrid screen for proteins that interact and inhibit the migration and invasion-promoting protein insulin-like growth factor binding protein 2 (IGFBP2). Recent studies have shown that MIIP not only modulates IGFBP2 but also regulates microtubule by binding to and inhibiting HDAC6, a class 2 histone deacetylase that deacetylates α-tubulin, heat-shock protein 90 (HSP90), and cortactin. In addition, MIIP also regulates the mitosis checkpoint, another microtubule-associated process. The location of the MIIP gene in chromosomal region 1p36, a commonly deleted region in a broad spectrum of human cancers, and the observation that MIIP attenuates tumorigenesis in a mouse model suggest that it functions as a tumor-suppressor gene. This review summarizes the recent progress in characterizing this novel protein, which regulates cell migration and mitosis, two processes that rely on the highly coordinated dynamics of the microtubule and cytoskeleton systems.

  1. How-to-Do-It: Hands-on Activity for Mitosis, Meiosis and the Fundamentals of Heredity.

    Science.gov (United States)

    Taylor, Mark F.

    1988-01-01

    Described is an exercise which uses inexpensive and easy-to-make materials to demonstrate the basic fundamentals of heredity. Discusses two approaches using a hypothetical insert to demonstrate inheritance, mitosis, meiosis, and genotypic and phenotypic frequencies. (CW)

  2. Arrest of irradiated G1, S, or G2 cells at mitosis using nocodazole promotes repair of potentially lethal damage

    International Nuclear Information System (INIS)

    Iliakis, G.; Nuesse, M.

    1984-01-01

    The ability of synchronized Ehrlich ascites tumor cells, irradiated in G1, S, and G2 phases, to repair potentially lethal damage when arrested at mitosis by using 0.4 μg/ml nocodazole, a specific inhibitor of microtubule polymerization, has been studied. Cells irradiated in these phases were found to repair potentially lethal damage at mitosis. The extent of this repair was similar to that observed for cells irradiated at the same stages in the cell cycle but allowed to repair potentially lethal damage by incubating in balanced salt solution for 6 hr after X irradiation

  3. Cholesterol is essential for mitosis progression and its deficiency induces polyploid cell formation

    International Nuclear Information System (INIS)

    Fernandez, Carlos; Lobo, Maria del Val T.; Gomez-Coronado, Diego; Lasuncion, Miguel A.

    2004-01-01

    As an essential component of mammalian cell membranes, cells require cholesterol for proliferation, which is either obtained from plasma lipoproteins or synthesized intracellularly from acetyl-CoA. In addition to cholesterol, other non-sterol mevalonate derivatives are necessary for DNA synthesis, such as the phosphorylated forms of isopentane, farnesol, geranylgeraniol, and dolichol. The aim of the present study was to elucidate the role of cholesterol in mitosis. For this, human leukemia cells (HL-60) were incubated in a cholesterol-free medium and treated with SKF 104976, which inhibits cholesterol biosynthesis by blocking sterol 14α-demethylase, and the expression of relevant cyclins in the different phases of the cell cycle was analyzed by flow cytometry. Prolonged cholesterol starvation induced the inhibition of cytokinesis and the formation of polyploid cells, which were multinucleated and had mitotic aberrations. Supplementing the medium with cholesterol completely abolished these effects, demonstrating they were specifically due to cholesterol deficiency. This is the first evidence that cholesterol is essential for mitosis completion and that, in the absence of cholesterol, the cells fail to undergo cytokinesis, entered G1 phase at higher DNA ploidy (tetraploidy), and then progressed through S (rereplication) into G2, generating polyploid cells

  4. CS2164, a novel multi-target inhibitor against tumor angiogenesis, mitosis and chronic inflammation with anti-tumor potency.

    Science.gov (United States)

    Zhou, You; Shan, Song; Li, Zhi-Bin; Xin, Li-Jun; Pan, De-Si; Yang, Qian-Jiao; Liu, Ying-Ping; Yue, Xu-Peng; Liu, Xiao-Rong; Gao, Ji-Zhou; Zhang, Jin-Wen; Ning, Zhi-Qiang; Lu, Xian-Ping

    2017-03-01

    Although inhibitors targeting tumor angiogenic pathway have provided improvement for clinical treatment in patients with various solid tumors, the still very limited anti-cancer efficacy and acquired drug resistance demand new agents that may offer better clinical benefits. In the effort to find a small molecule potentially targeting several key pathways for tumor development, we designed, discovered and evaluated a novel multi-kinase inhibitor, CS2164. CS2164 inhibited the angiogenesis-related kinases (VEGFR2, VEGFR1, VEGFR3, PDGFRα and c-Kit), mitosis-related kinase Aurora B and chronic inflammation-related kinase CSF-1R in a high potency manner with the IC 50 at a single-digit nanomolar range. Consequently, CS2164 displayed anti-angiogenic activities through suppression of VEGFR/PDGFR phosphorylation, inhibition of ligand-dependent cell proliferation and capillary tube formation, and prevention of vasculature formation in tumor tissues. CS2164 also showed induction of G2/M cell cycle arrest and suppression of cell proliferation in tumor tissues through the inhibition of Aurora B-mediated H3 phosphorylation. Furthermore, CS2164 demonstrated the inhibitory effect on CSF-1R phosphorylation that led to the suppression of ligand-stimulated monocyte-to-macrophage differentiation and reduced CSF-1R + cells in tumor tissues. The in vivo animal efficacy studies revealed that CS2164 induced remarkable regression or complete inhibition of tumor growth at well-tolerated oral doses in several human tumor xenograft models. Collectively, these results indicate that CS2164 is a highly selective multi-kinase inhibitor with potent anti-tumor activities against tumor angiogenesis, mitosis and chronic inflammation, which may provide the rationale for further clinical assessment of CS2164 as a therapeutic agent in the treatment of cancer. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  5. The multiple roles of Bub1 in chromosome segregation during mitosis and meiosis

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, Francesco; Venkatachalam, Sundaresan

    2009-06-19

    Aneuploidy, any deviation from an exact multiple of the haploid number of chromosomes, is a common occurrence in cancer and represents the most frequent chromosomal disorder in newborns. Eukaryotes have evolved mechanisms to assure the fidelity of chromosome segregation during cell division that include a multiplicity of checks and controls. One of the main cell division control mechanisms is the spindle assembly checkpoint (SAC) that monitors the proper attachment of chromosomes to spindle fibers and prevents anaphase until all kinetochores are properly attached. The mammalian SAC is composed by at least 14 evolutionary-conserved proteins that work in a coordinated fashion to monitor the establishment of amphitelic attachment of all chromosomes before allowing cell division to occur. Among the SAC proteins, the budding uninhibited by benzimidazole protein 1 (Bub1), is a highly conserved protein of prominent importance for the proper functioning of the SAC. Studies have revealed many roles for Bub1 in both mitosis and meiosis, including the localization of other SAC proteins to the kinetochore, SAC signaling, metaphase congression and the protection of the sister chromatid cohesion. Recent data show striking sex specific differences in the response to alterations in Bub1 activity. Proper Bub1 functioning is particularly important during oogenesis in preventing the generation of aneuploid gametes that can have detrimental effects on the health status of the fetus and the newborn. These data suggest that Bub1 is a master regulator of SAC and chromosomal segregation in both mitosis and meiosis. Elucidating its many essential functions in regulating proper chromosome segregation can have important consequences for preventing tumorigenesis and developmental abnormalities.

  6. Centrioles: active players or passengers during mitosis?

    Science.gov (United States)

    Debec, Alain; Sullivan, William; Bettencourt-Dias, Monica

    2010-07-01

    Centrioles are cylinders made of nine microtubule (MT) triplets present in many eukaryotes. Early studies, where centrosomes were seen at the poles of the mitotic spindle led to their coining as "the organ for cell division". However, a variety of subsequent observational and functional studies showed that centrosomes might not always be essential for mitosis. Here we review the arguments in this debate. We describe the centriole structure and its distribution in the eukaryotic tree of life and clarify its role in the organization of the centrosome and cilia, with an historical perspective. An important aspect of the debate addressed in this review is how centrioles are inherited and the role of the spindle in this process. In particular, germline inheritance of centrosomes, such as their de novo formation in parthenogenetic species, poses many interesting questions. We finish by discussing the most likely functions of centrioles and laying out new research avenues.

  7. Blocking Internalization of Phosphatidylethanolamine at Cleavage Furrow of Mitosis as a Novel Mechanism of Anti-Breast Cancer Strategy

    National Research Council Canada - National Science Library

    Cui, Zhen

    2002-01-01

    During the formation of cleavage furrow of mitosis, phosphatidylethanolamine (PE) flips from inner leaflet of the plasma membrane to the outer leaflet specifically in the furrow region near the contractile ring...

  8. Blocking Internalization of Phosphatidylethanolamine at Cleavage Furrow of Mitosis as a Novel Mechanism of Anti-Breast-Cancer Strategy

    National Research Council Canada - National Science Library

    Cui, Zheng

    2003-01-01

    During the formation of cleavage furrow of mitosis, phosphatidylethanolamine (PE) flips from inner leaflet of the plasma membrane to the outer leaflet specifically in the furrow region near the contractile ring...

  9. Dbf4-dependent kinase and the Rtt107 scaffold promote Mus81-Mms4 resolvase activation during mitosis.

    Science.gov (United States)

    Princz, Lissa N; Wild, Philipp; Bittmann, Julia; Aguado, F Javier; Blanco, Miguel G; Matos, Joao; Pfander, Boris

    2017-03-01

    DNA repair by homologous recombination is under stringent cell cycle control. This includes the last step of the reaction, disentanglement of DNA joint molecules (JMs). Previous work has established that JM resolving nucleases are activated specifically at the onset of mitosis. In case of budding yeast Mus81-Mms4, this cell cycle stage-specific activation is known to depend on phosphorylation by CDK and Cdc5 kinases. Here, we show that a third cell cycle kinase, Cdc7-Dbf4 (DDK), targets Mus81-Mms4 in conjunction with Cdc5-both kinases bind to as well as phosphorylate Mus81-Mms4 in an interdependent manner. Moreover, DDK-mediated phosphorylation of Mms4 is strictly required for Mus81 activation in mitosis, establishing DDK as a novel regulator of homologous recombination. The scaffold protein Rtt107, which binds the Mus81-Mms4 complex, interacts with Cdc7 and thereby targets DDK and Cdc5 to the complex enabling full Mus81 activation. Therefore, Mus81 activation in mitosis involves at least three cell cycle kinases, CDK, Cdc5 and DDK Furthermore, tethering of the kinases in a stable complex with Mus81 is critical for efficient JM resolution. © 2017 The Authors. Published under the terms of the CC BY NC ND 4.0 license.

  10. Nonperiodic activity of the human anaphase-promoting complex-Cdh1 ubiquitin ligase results in continuous DNA synthesis uncoupled from mitosis

    DEFF Research Database (Denmark)

    Lukas, C; Kramer, E R; Peters, J M

    2000-01-01

    , in Saccharomyces cerevisiae and Drosophila spp., triggers exit from mitosis and during G(1) prevents unscheduled DNA replication. In this study we investigated the importance of periodic oscillation of the APC-Cdh1 activity for the cell cycle progression in human cells. We show that conditional interference...

  11. Antagonism between the dynein and Ndc80 complexes at kinetochores controls the stability of kinetochore-microtubule attachments during mitosis.

    Science.gov (United States)

    Amin, Mohammed A; McKenney, Richard J; Varma, Dileep

    2018-04-20

    Chromosome alignment and segregation during mitosis require kinetochore-microtubule (kMT) attachments that are mediated by the molecular motor dynein and the kMT-binding complex Ndc80. The Rod-ZW10-Zwilch (RZZ) complex is central to this coordination as it has an important role in dynein recruitment and has recently been reported to have a key function in the regulation of stable kMT attachments in Caenorhabditis elegans besides its role in activating the spindle assembly checkpoint (SAC). However, the mechanism by which these protein complexes control kMT attachments to drive chromosome motility during early mitosis is still unclear. Here, using in vitro total internal reflection fluorescence microscopy, we observed that higher concentrations of Ndc80 inhibited dynein binding to MTs, providing evidence that Ndc80 and dynein antagonize each other's function. High-resolution microscopy and siRNA-mediated functional disruption revealed that severe defects in chromosome alignment induced by depletion of dynein or the dynein adapter Spindly are rescued by codepletion of the RZZ component Rod in human cells. Interestingly, rescue of the chromosome alignment defects was independent of Rod function in SAC activation and was accompanied by a remarkable restoration of stable kMT attachments. Furthermore, the chromosome alignment rescue depended on the plus-end-directed motility of centromere protein E (CENP-E) because cells codepleted of CENP-E, Rod, and dynein could not establish stable kMT attachments or align their chromosomes properly. Our findings support the idea that dynein may control the function of the Ndc80 complex in stabilizing kMT attachments directly by interfering with Ndc80-MT binding or indirectly by controlling the Rod-mediated inhibition of Ndc80. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. New weak keys in simplified IDEA

    Science.gov (United States)

    Hafman, Sari Agustini; Muhafidzah, Arini

    2016-02-01

    Simplified IDEA (S-IDEA) is simplified version of International Data Encryption Algorithm (IDEA) and useful teaching tool to help students to understand IDEA. In 2012, Muryanto and Hafman have found a weak key class in the S-IDEA by used differential characteristics in one-round (0, ν, 0, ν) → (0,0, ν, ν) on the first round to produce input difference (0,0, ν, ν) on the fifth round. Because Muryanto and Hafman only use three differential characteristics in one-round, we conducted a research to find new differential characteristics in one-round and used it to produce new weak key classes of S-IDEA. To find new differential characteristics in one-round of S-IDEA, we applied a multiplication mod 216+1 on input difference and combination of active sub key Z1, Z4, Z5, Z6. New classes of weak keys are obtained by combining all of these characteristics and use them to construct two new differential characteristics in full-round of S-IDEA with or without the 4th round sub key. In this research, we found six new differential characteristics in one round and combined them to construct two new differential characteristics in full-round of S-IDEA. When two new differential characteristics in full-round of S-IDEA are used and the 4th round sub key required, we obtain 2 new classes of weak keys, 213 and 28. When two new differential characteristics in full-round of S-IDEA are used, yet the 4th round sub key is not required, the weak key class of 213 will be 221 and 28 will be 210. Membership test can not be applied to recover the key bits in those weak key classes. The recovery of those unknown key bits can only be done by using brute force attack. The simulation result indicates that the bit of the key can be recovered by the longest computation time of 0,031 ms.

  13. [Tripartite motif-containing protein 34 (TRIM34) colocalized with micronuclei chromosome and hampers its movement to equatorial plate during the metaphase stage of mitosis].

    Science.gov (United States)

    Sun, Dakang; An, Xinye; Ji, Bing; Cheng, Yanli; Gao, Honglian; Tian, Mingming

    2016-06-01

    Objective To examine whether tripartite motif-containing protein 34 (TRIM34) is colocalized with micronuclei and investigate the influence on the movement of micronuclei chromosome in mitosis. Methods The eukaryotic expression vector TRIM34-pEGFP-N3 was constructed, identified and then transfected into HEK293T cells. With 4', 6-diamidino-2-phenylindole 2HCI (DAPI) staining, the colocalization between TRIM34 and micronuclei was observed under a fluorescence microscope. Moreover, MitoTracker(R)Deep Red was used to identify the colocalization between the complex of TRIM34-micronulei and mitochondria under a confocal microscope. Finally, the effect of TRIM34 on the movement of micronuclei chromosome in mitosis was examined. Results DNA sequencing confirmed that the vector TRIM34-pEGFP-N3 was constructed successfully. A fluorescence microscope revealed that TRIM34 could be colocalized with micronuclei in HEK293T cells transfected with TRIM34-pEGFP-N3. In the same manner, a confocal microscope distinctly showed that TRIM34 was colocalized with micronuclei similarly in appearance. However, there was no distinguished colocalization relationship between the complex of TRIM34-micronulei and mitochondria. Interestingly, the micronuclei chromosome conjugated with TRIM34 was hardly transferred to equatorial plate during the metaphase stage of mitosis. Conclusion TRIM34 is colocalized with micronuclei chromosome and hampers its movement to equatorial plate in mitosis.

  14. The roles of BDNF, pCREB and Wnt3a in the latent period preceding activation of progenitor cell mitosis in the adult dentate gyrus by fluoxetine.

    Directory of Open Access Journals (Sweden)

    Scarlett B Pinnock

    2010-10-01

    Full Text Available The formation of new neurons continues into adult life in the dentate gyrus of the rat hippocampus, as in many other species. Neurogenesis itself turns out to be highly labile, and is regulated by a number of factors. One of these is the serotoninergic system: treatment with drugs (such as the SSRI fluoxetine markedly stimulates mitosis in the progenitor cells of the dentate gyrus. But this process has one remarkable feature: it takes at least 14 days of continuous treatment to be effective. This is despite the fact that the pharmacological action of fluoxetine occurs within an hour or so of first administration. This paper explores the role of BDNF in this process, using the effect of a Trk antagonist (K252a on the labelling of progenitor cells with the mitosis marker Ki67 and the associated expression of pCREB and Wnt3a. These experiments show that (i Fluoxetine increased Ki67 counts, as well as pCREB and Wnt3a expression in the dentate gyrus. The action of fluoxetine on the progenitor cells and on pCREB (but not Wnt3a depends upon Trk receptor activation, since it was prevented by icv infusion of K252a. (ii These receptors are required for both the first 7 days of fluoxetine action, during which no apparent change in progenitor mitosis occurs, as well as the second 7 days. Increased pCREB was always associated with progenitor cell mitosis, but Wnt3a expression may be necessary but not sufficient for increased progenitor cell proliferation. These results shed new light on the action of fluoxetine on neurogenesis in the adult dentate gyrus, and have both clinical and experimental interest.

  15. Regulatory Control of the Resolution of DNA Recombination Intermediates during Meiosis and Mitosis

    OpenAIRE

    Matos, Joao; Blanco, Miguel G.; Maslen, Sarah; Skehel, J. Mark; West, Stephen C.

    2011-01-01

    The efficient and timely resolution of DNA recombination intermediates is essential for bipolar chromosome segregation. Here, we show that the specialized chromosome segregation patterns of meiosis and mitosis, which require the coordination of recombination with cell-cycle progression, are achieved by regulating the timing of activation of two crossover-promoting endonucleases. In yeast meiosis, Mus81-Mms4 and Yen1 are controlled by phosphorylation events that lead to their sequential activa...

  16. Expression of progesterone receptor membrane component-2 within the immature rat ovary and its role in regulating mitosis and apoptosis of spontaneously immortalized granulosa cells.

    Science.gov (United States)

    Griffin, Daniel; Liu, Xiufang; Pru, Cindy; Pru, James K; Peluso, John J

    2014-08-01

    Progesterone receptor membrane component 2 (Pgrmc2) mRNA was detected in the immature rat ovary. By 48 h after eCG, Pgrmc2 mRNA levels decreased by 40% and were maintained at 48 h post-hCG. Immunohistochemical studies detected PGRMC2 in oocytes and ovarian surface epithelial, interstitial, thecal, granulosa, and luteal cells. PGRMC2 was also present in spontaneously immortalized granulosa cells, localizing to the cytoplasm of interphase cells and apparently to the mitotic spindle of cells in metaphase. Interestingly, PGRMC2 levels appeared to decrease during the G1 stage of the cell cycle. Moreover, overexpression of PGRMC2 suppressed entry into the cell cycle, possibly by binding the p58 form of cyclin dependent kinase 11b. Conversely, Pgrmc2 small interfering RNA (siRNA) treatment increased the percentage of cells in G1 and M stage but did not increase the number of cells, which was likely due to an increase in apoptosis. Depleting PGRMC2 did not inhibit cellular (3)H-progesterone binding, but attenuated the ability of progesterone to suppress mitosis and apoptosis. Taken together these studies suggest that PGRMC2 affects granulosa cell mitosis by acting at two specific stages of the cell cycle. First, PGRMC2 regulates the progression from the G0 into the G1 stage of the cell cycle. Second, PGRMC2 appears to localize to the mitotic spindle, where it likely promotes the final stages of mitosis. Finally, siRNA knockdown studies indicate that PGRMC2 is required for progesterone to slow the rate of granulosa cell mitosis and apoptosis. These findings support a role for PGRMC2 in ovarian follicle development. © 2014 by the Society for the Study of Reproduction, Inc.

  17. Novel functions of plant cyclin-dependent kinase inhibitors, ICK1/KRP1, can act non-cell-autonomously and inhibit entry into mitosis

    DEFF Research Database (Denmark)

    Weinl, Christina; Marquardt, Sebastian; Kuijt, Suzanne J H

    2005-01-01

    numbers of cells consistent with a function of CKIs in blocking the G1-S cell cycle transition. Here, we demonstrate that at least one inhibitor from Arabidopsis, ICK1/KRP1, can also block entry into mitosis but allows S-phase progression causing endoreplication. Our data suggest that plant CKIs act...... independently from ICK1/KRP1-induced endoreplication. Strikingly, we found that endoreplicated cells were able to reenter mitosis, emphasizing the high degree of flexibility of plant cells during development. Moreover, we show that in contrast with animal CDK inhibitors, ICK1/KRP1 can move between cells...

  18. Mitosis can drive cell cannibalism through entosis

    Science.gov (United States)

    Durgan, Joanne; Tseng, Yun-Yu; Hamann, Jens C; Domart, Marie-Charlotte; Collinson, Lucy; Overholtzer, Michael; Florey, Oliver

    2017-01-01

    Entosis is a form of epithelial cell cannibalism that is prevalent in human cancer, typically triggered by loss of matrix adhesion. Here, we report an alternative mechanism for entosis in human epithelial cells, driven by mitosis. Mitotic entosis is regulated by Cdc42, which controls mitotic morphology. Cdc42 depletion enhances mitotic deadhesion and rounding, and these biophysical changes, which depend on RhoA activation and are phenocopied by Rap1 inhibition, permit subsequent entosis. Mitotic entosis occurs constitutively in some human cancer cell lines and mitotic index correlates with cell cannibalism in primary human breast tumours. Adherent, wild-type cells can act efficiently as entotic hosts, suggesting that normal epithelia may engulf and kill aberrantly dividing neighbours. Finally, we report that Paclitaxel/taxol promotes mitotic rounding and subsequent entosis, revealing an unconventional activity of this drug. Together, our data uncover an intriguing link between cell division and cannibalism, of significance to both cancer and chemotherapy. DOI: http://dx.doi.org/10.7554/eLife.27134.001 PMID:28693721

  19. Model-based investigation of the circadian clock and cell cycle coupling in mouse embryonic fibroblasts: Prediction of RevErb-α up-regulation during mitosis.

    Science.gov (United States)

    Traynard, Pauline; Feillet, Céline; Soliman, Sylvain; Delaunay, Franck; Fages, François

    2016-11-01

    Experimental observations have put in evidence autonomous self-sustained circadian oscillators in most mammalian cells, and proved the existence of molecular links between the circadian clock and the cell cycle. Some mathematical models have also been built to assess conditions of control of the cell cycle by the circadian clock. However, recent studies in individual NIH3T3 fibroblasts have shown an unexpected acceleration of the circadian clock together with the cell cycle when the culture medium is enriched with growth factors, and the absence of such acceleration in confluent cells. In order to explain these observations, we study a possible entrainment of the circadian clock by the cell cycle through a regulation of clock genes around the mitosis phase. We develop a computational model and a formal specification of the observed behavior to investigate the conditions of entrainment in period and phase. We show that either the selective activation of RevErb-α or the selective inhibition of Bmal1 transcription during the mitosis phase, allow us to fit the experimental data on both period and phase, while a uniform inhibition of transcription during mitosis seems incompatible with the phase data. We conclude on the arguments favoring the RevErb-α up-regulation hypothesis and on some further predictions of the model. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Epimorphin regulates bile duct formation via effects on mitosis orientation in rat liver epithelial stem-like cells.

    Directory of Open Access Journals (Sweden)

    Junnian Zhou

    Full Text Available Understanding how hepatic precursor cells can generate differentiated bile ducts is crucial for studies on epithelial morphogenesis and for development of cell therapies for hepatobiliary diseases. Epimorphin (EPM is a key morphogen for duct morphogenesis in various epithelial organs. The role of EPM in bile duct formation (DF from hepatic precursor cells, however, is not known. To address this issue, we used WB-F344 rat epithelial stem-like cells as model for bile duct formation. A micropattern and a uniaxial static stretch device was used to investigate the effects of EPM and stress fiber bundles on the mitosis orientation (MO of WB cells. Immunohistochemistry of liver tissue sections demonstrated high EPM expression around bile ducts in vivo. In vitro, recombinant EPM selectively induced DF through upregulation of CK19 expression and suppression of HNF3alpha and HNF6, with no effects on other hepatocytic genes investigated. Our data provide evidence that EPM guides MO of WB-F344 cells via effects on stress fiber bundles and focal adhesion assembly, as supported by blockade EPM, beta1 integrin, and F-actin assembly. These blockers can also inhibit EPM-induced DF. These results demonstrate a new biophysical action of EPM in bile duct formation, during which determination of MO plays a crucial role.

  1. Seed priming with iron and zinc in bread wheat: effects in germination, mitosis and grain yield.

    Science.gov (United States)

    Reis, Sara; Pavia, Ivo; Carvalho, Ana; Moutinho-Pereira, José; Correia, Carlos; Lima-Brito, José

    2018-07-01

    Currently, the biofortification of crops like wheat with micronutrients such as iron (Fe) and zinc (Zn) is extremely important due to the deficiencies of these micronutrients in the human diet and in soils. Agronomic biofortification with Fe and Zn can be done through different exogenous strategies such as soil application, foliar spraying, and seed priming. However, the excess of these micronutrients can be detrimental to the plants. Therefore, in the last decade, a high number of studies focused on the evaluation of their phytotoxic effects to define the best strategies for biofortification of bread wheat. In this study, we investigated the effects of seed priming with different dosages (1 mg L -1 to 8 mg L -1 ) of Fe and/or Zn in germination, mitosis and yield of bread wheat cv. 'Jordão' when compared with control. Overall, our results showed that: micronutrient dosages higher than 4 mg L -1 negatively affect the germination; Fe and/or Zn concentrations higher than 2 mg L -1 significantly decrease the mitotic index and increase the percentage of dividing cells with anomalies; treatments performed with 8 mg L -1 of Fe and/or 8 mg L -1 Zn caused negative effects in germination, mitosis and grain yield. Moreover, seed priming with 2 mg L -1 Fe + 2 mg L -1 Zn has been shown to be non-cytotoxic, ensuring a high rate of germination (80%) and normal dividing cells (90%) as well as improving tillering and grain yield. This work revealed that seed priming with Fe and Zn micronutrients constitutes a useful and alternative approach for the agronomic biofortification of bread wheat.

  2. Cellular Tug-of-War: Forces at Work and DNA Stretching in Mitosis

    Science.gov (United States)

    Griffin, Brian; Kilfoil, Maria L.

    2013-03-01

    In the microscopic world of the cell dominated by thermal noise, a cell must be able to successfully segregate its DNA with high fidelity in order to pass its genetic information on to its progeny. In this process of mitosis in eukaryotes, driving forces act on the cytoskeleton-based architecture called the mitotic spindle to promote this division. Our preliminary data demonstrates that the dynamics of this process in yeast cells is universal. Moreover, the dynamics suggest an increasing load as the chromosomes are pulled apart. To investigate this, we use three-dimensional imaging to track the dynamics of the poles of this architecture and the points of attachment to chromosomes simultaneously and with high spatial resolution. We analyze the relative motions of chromosomes as they are organized before segregation and as they are pulled apart, using this data to investigate the force-response behavior of this cytoskeleton-chromosome polymer system.

  3. Population control of resident and immigrant microglia by mitosis and apoptosis

    DEFF Research Database (Denmark)

    Wirenfeldt, Martin; Dissing-Olesen, Lasse; Babcock, Alicia

    2007-01-01

    microglia often occurred in clusters, some having recently incorporated bromodeoxyuridine, showing that proliferation had occurred. Annexin V labeling and staining for activated caspase-3 and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling showed that apoptotic mechanisms participate...... in dissolution of the microglial response. Using bone marrow chimeric mice, we found that the lesion-induced proliferative capacity of resident microglia superseded that of immigrant microglia, whereas lesion-induced kinetics of apoptosis were comparable. Microglial numbers and responses were severely reduced...... in bone marrow chimeric mice. These results broaden our understanding of the microglial response to neural damage by demonstrating that simultaneously occurring mitosis and apoptosis regulate expansion and reduction of both resident and immigrant microglial cell populations....

  4. Liver fatty acid binding protein is the mitosis-associated polypeptide target of a carcinogen in rat hepatocytes

    International Nuclear Information System (INIS)

    Bassuk, J.A.; Tsichlis, P.N.; Sorof, S.

    1987-01-01

    Hepatocytes in normal rat liver were found previously to contain a cytoplasmic 14,000-dalton polypeptide (p14) that is associated with mitosis and is the principal early covalent target of activated metabolites of the carcinogen N-2-fluorenylacetamide (2-acetylaminofluorene). The level of immunohistochemically detected p14 was low when growth activity of hepatocytes was low, was markedly elevated during mitosis in normal and regenerating livers, but was very high throughout interphase during proliferation of hyperplastic and malignant hepatocytes induced in rat liver by a carcinogen (N-2-fluorenylacetamide or 3'-methyl-4-dimethylaminoazobenzene). The authors report here that p14 is the liver fatty acid binding protein. The nucleotide sequence of p14 cDNA clones, isolated by screening a rat liver cDNA library in bacteriophage λgt11 using p14 antiserum, was completely identical to part of the sequence reported for liver fatty acid binding protein. Furthermore, the two proteins shared the following properties: size of mRNA, amino acid composition, molecular size according to NaDodSO 4 gel electrophoresis, and electrophoretic mobilities in a Triton X-100/acetic acid/urea gel. The two polypeptides bound oleic acid similarly. Finally, identical elevations of cytoplasmic immunostain were detected specifically in mitotic hepatocytes with either antiserum. The collected findings are suggestive that liver fatty acid binding protein may carry ligands that promote hepatocyte division and may transport certain activated chemical carcinogens

  5. Translocation of the papillomavirus L2/vDNA complex across the limiting membrane requires the onset of mitosis.

    Science.gov (United States)

    Calton, Christine M; Bronnimann, Matthew P; Manson, Ariana R; Li, Shuaizhi; Chapman, Janice A; Suarez-Berumen, Marcela; Williamson, Tatum R; Molugu, Sudheer K; Bernal, Ricardo A; Campos, Samuel K

    2017-05-01

    The human papillomavirus type 16 (HPV16) L2 protein acts as a chaperone to ensure that the viral genome (vDNA) traffics from endosomes to the trans-Golgi network (TGN) and eventually the nucleus, where HPV replication occurs. En route to the nucleus, the L2/vDNA complex must translocate across limiting intracellular membranes. The details of this critical process remain poorly characterized. We have developed a system based on subcellular compartmentalization of the enzyme BirA and its cognate substrate to detect membrane translocation of L2-BirA from incoming virions. We find that L2 translocation requires transport to the TGN and is strictly dependent on entry into mitosis, coinciding with mitotic entry in synchronized cells. Cell cycle arrest causes retention of L2/vDNA at the TGN; only release and progression past G2/M enables translocation across the limiting membrane and subsequent infection. Microscopy of EdU-labeled vDNA reveals a rapid and dramatic shift in vDNA localization during early mitosis. At late G2/early prophase vDNA egresses from the TGN to a pericentriolar location, accumulating there through prometaphase where it begins to associate with condensed chromosomes. By metaphase and throughout anaphase the vDNA is seen bound to the mitotic chromosomes, ensuring distribution into both daughter nuclei. Mutations in a newly defined chromatin binding region of L2 potently blocked translocation, suggesting that translocation is dependent on chromatin binding during prometaphase. This represents the first time a virus has been shown to functionally couple the penetration of limiting membranes to cellular mitosis, explaining in part the tropism of HPV for mitotic basal keratinocytes.

  6. Cdk1-Cyclin B1-mediated Phosphorylation of Tumor-associated Microtubule-associated Protein/Cytoskeleton-associated Protein 2 in Mitosis*

    OpenAIRE

    Uk Hong, Kyung; Kim, Hyun-Jun; Kim, Hyo-Sil; Seong, Yeon-Sun; Hong, Kyeong-Man; Bae, Chang-Dae; Park, Joobae

    2009-01-01

    During mitosis, establishment of structurally and functionally sound bipolar spindles is necessary for maintaining the fidelity of chromosome segregation. Tumor-associated microtubule-associated protein (TMAP), also known as cytoskeleton-associated protein 2 (CKAP2), is a mitotic spindle-associated protein whose level is frequently up-regulated in various malignancies. Previous reports have suggested that TMAP is a potential regulator of mitotic spindle assembly and dynamics and that it is re...

  7. Regulation of mitosis by the NIMA kinase involves TINA and its newly discovered partner, An-WDR8, at spindle pole bodies

    Science.gov (United States)

    Shen, Kuo-Fang; Osmani, Stephen A.

    2013-01-01

    The NIMA kinase is required for mitotic nuclear pore complex disassembly and potentially controls other mitotic-specific events. To investigate this possibility, we imaged NIMA–green fluorescent protein (GFP) using four-dimensional spinning disk confocal microscopy. At mitosis NIMA-GFP locates to spindle pole bodies (SPBs), which contain Cdk1/cyclin B, followed by Aurora, TINA, and the BimC kinesin. NIMA promotes NPC disassembly in a spatially regulated manner starting near SPBs. NIMA is also required for TINA, a NIMA-interacting protein, to locate to SPBs during initiation of mitosis, and TINA is then necessary for locating NIMA back to SPBs during mitotic progression. To help expand the NIMA-TINA pathway, we affinity purified TINA and found it to uniquely copurify with An-WDR8, a WD40-domain protein conserved from humans to plants. Like TINA, An-WDR8 accumulates within nuclei during G2 but disperses from nuclei before locating to mitotic SPBs. Without An-WDR8, TINA levels are greatly reduced, whereas TINA is necessary for mitotic targeting of An-WDR8. Finally, we show that TINA is required to anchor mitotic microtubules to SPBs and, in combination with An-WDR8, for successful mitosis. The findings provide new insights into SPB targeting and indicate that the mitotic microtubule-anchoring system at SPBs involves WDR8 in complex with TINA. PMID:24152731

  8. The structure of the mitotic spindle and nucleolus during mitosis in the amebo-flagellate Naegleria.

    Science.gov (United States)

    Walsh, Charles J

    2012-01-01

    Mitosis in the amebo-flagellate Naegleria pringsheimi is acentrosomal and closed (the nuclear membrane does not break down). The large central nucleolus, which occupies about 20% of the nuclear volume, persists throughout the cell cycle. At mitosis, the nucleolus divides and moves to the poles in association with the chromosomes. The structure of the mitotic spindle and its relationship to the nucleolus are unknown. To identify the origin and structure of the mitotic spindle, its relationship to the nucleolus and to further understand the influence of persistent nucleoli on cellular division in acentriolar organisms like Naegleria, three-dimensional reconstructions of the mitotic spindle and nucleolus were carried out using confocal microscopy. Monoclonal antibodies against three different nucleolar regions and α-tubulin were used to image the nucleolus and mitotic spindle. Microtubules were restricted to the nucleolus beginning with the earliest prophase spindle microtubules. Early spindle microtubules were seen as short rods on the surface of the nucleolus. Elongation of the spindle microtubules resulted in a rough cage of microtubules surrounding the nucleolus. At metaphase, the mitotic spindle formed a broad band completely embedded within the nucleolus. The nucleolus separated into two discreet masses connected by a dense band of microtubules as the spindle elongated. At telophase, the distal ends of the mitotic spindle were still completely embedded within the daughter nucleoli. Pixel by pixel comparison of tubulin and nucleolar protein fluorescence showed 70% or more of tubulin co-localized with nucleolar proteins by early prophase. These observations suggest a model in which specific nucleolar binding sites for microtubules allow mitotic spindle formation and attachment. The fact that a significant mass of nucleolar material precedes the chromosomes as the mitotic spindle elongates suggests that spindle elongation drives nucleolar division.

  9. The duration of G1, S, G2, and mitosis at four different temperatures in Zea mays L. as measured with 3H-thymidine

    International Nuclear Information System (INIS)

    Verma, R.S.

    1980-01-01

    The effect of different temperatures on the duration of nuclear cycle in Zea mays (single cross hybrid 'Seneca 60') root meristem cells, was studied with autoradiographic techniques and it was shown that all component phases of the nuclear cycle are shortened by an increase in temperature from 20 to 35 0 C. The durations of total nuclear cycle at 20, 25, 30, and 35 0 C were 16.5, 9.9, 7.0, and 4.4 hours respectively while the durations of mitosis were 2.68, 1.10, 0.83, and 0.43 hours respectively. 85 - 90 percent of the nuclear cycle is required for interphase, while the remaining 10 - 15 percent of the cycle is occupied by mitosis. The mean mitotic indices at 20, 25, 30, and 35 0 C were 9.8, 9.1, 5.3, and 4.9 percent respectively. (author)

  10. Unique properties of multiple tandem copies of the M26 recombination hotspot in mitosis and meiosis in Schizosaccharomyces pombe.

    Science.gov (United States)

    Steiner, Walter W; Recor, Chelsea L; Zakrzewski, Bethany M

    2016-11-15

    The M26 hotspot of the fission yeast Schizosaccharomyces pombe is one of the best-characterized eukaryotic hotspots of recombination. The hotspot requires a seven bp sequence, ATGACGT, that serves as a binding site for the Atf1-Pcr1 transcription factor, which is also required for activity. The M26 hotspot is active in meiosis but not mitosis and is active in some but not all chromosomal contexts and not on a plasmid. A longer palindromic version of M26, ATGACGTCAT, shows significantly greater activity than the seven bp sequence. Here, we tested whether the properties of the seven bp sequence were also true of the longer sequence by placing one, two, or three copies of the sequence into the ade6 gene, where M26 was originally discovered. These constructs were tested for activity when located on a plasmid or on a chromosome in mitosis and meiosis. We found that two copies of the 10bp M26 motif on a chromosome were significantly more active for meiotic recombination than one, but no further increase was observed with three copies. However, three copies of M26 on a chromosome created an Atf1-dependent mitotic recombination hotspot. When located on a plasmid, M26 also appears to behave as a mitotic recombination hotspot; however, this behavior most likely results from Atf1-dependent inter-allelic complementation between the plasmid and chromosomal ade6 alleles. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Phospho-H1 Decorates the Inter-chromatid Axis and Is Evicted along with Shugoshin by SET during Mitosis.

    Science.gov (United States)

    Krishnan, Swathi; Smits, Arne H; Vermeulen, Michiel; Reinberg, Danny

    2017-08-17

    Precise control of sister chromatid separation during mitosis is pivotal to maintaining genomic integrity. Yet, the regulatory mechanisms involved are not well understood. Remarkably, we discovered that linker histone H1 phosphorylated at S/T18 decorated the inter-chromatid axial DNA on mitotic chromosomes. Sister chromatid resolution during mitosis required the eviction of such H1S/T18ph by the chaperone SET, with this process being independent of and most likely downstream of arm-cohesin dissociation. SET also directed the disassembly of Shugoshins in a polo-like kinase 1-augmented manner, aiding centromere resolution. SET ablation compromised mitotic fidelity as evidenced by unresolved sister chromatids with marked accumulation of H1S/T18ph and centromeric Shugoshin. Thus, chaperone-assisted eviction of linker histones and Shugoshins is a fundamental step in mammalian mitotic progression. Our findings also elucidate the functional implications of the decades-old observation of mitotic linker histone phosphorylation, serving as a paradigm to explore the role of linker histones in bio-signaling processes. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Self-organization of intracellular gradients during mitosis

    Directory of Open Access Journals (Sweden)

    Fuller Brian G

    2010-01-01

    Full Text Available Abstract Gradients are used in a number of biological systems to transmit spatial information over a range of distances. The best studied are morphogen gradients where information is transmitted over many cell lengths. Smaller mitotic gradients reflect the need to organize several distinct events along the length of the mitotic spindle. The intracellular gradients that characterize mitosis are emerging as important regulatory paradigms. Intracellular gradients utilize intrinsic auto-regulatory feedback loops and diffusion to establish stable regions of activity within the mitotic cytosol. We review three recently described intracellular mitotic gradients. The Ran GTP gradient with its elaborate cascade of nuclear transport receptors and cargoes is the best characterized, yet the dynamics underlying the robust gradient of Ran-GTP have received little attention. Gradients of phosphorylation have been observed on Aurora B kinase substrates both before and after anaphase onset. In both instances the phosphorylation gradient appears to result from a soluble gradient of Aurora B kinase activity. Regulatory properties that support gradient formation are highlighted. Intracellular activity gradients that regulate localized mitotic events bare several hallmarks of self-organizing biologic systems that designate spatial information during pattern formation. Intracellular pattern formation represents a new paradigm in mitotic regulation.

  13. Cytogenetic analysis of the first two mitosis in seedling root meristems of stored for a long period seeds of Crepis tectorum populations subjected to chronic irradiation in 30-km zone of Chernobyl

    International Nuclear Information System (INIS)

    Grinikh, L.I.; Shevchenko, V.V.

    1994-01-01

    Seeds of Crepis tectorum natural populations 1 and 3 subjected to chronic irradiation in 1986 during 4 months in 30-kilometers zone of Chernobyl were stored for 6 years in a laboratory. In analysis of chromosome aberrations in the first tetraploid cells was made as it was done in 1987 just after finishing of a dromant period of seeds. By extrapolation from the data obtained by studing cells of the second colchicine mitosis to the cells of the previous mitosis from which they derived it was shown that the frequency of chromaid type aberrations in the early dividing cells after 6 year storage remained at the level which was observed just after finishing of a dormant period

  14. The effect of oleander glycosides on the germination of pollen grains and the mitosis of the generative nucleus in Tradescantia bracteata Small and Allium cepa L.

    Directory of Open Access Journals (Sweden)

    J. A. Tarkowska

    2015-01-01

    Full Text Available The effect of water solution of a mixture of glycosides from oleander (Nerium oleander L. on the germination of pollen grains and on the mitosis of the generative nucleus in Tradescantia bracteata Small and Allium cepa L. has been studied. An inhibition of the germination and of the growth of pollen tubes was observed, proportionally to the concentration of glycosides. The pollen grains of A. cepa are more sensitive. The disturbances in mitosis lead to the formation of two or more uneven-sized doughter nuclei, or to the formation of restitution nuclei. These anomalies are more numerous in T. bracteata. From these results d t appears that pollen grains of A. cepa are characterized by a generally high physiological sensitivity and a small mitotic sensitivity, wheras for T. bracteata the opposite is true.

  15. Unconventional actin conformations localize on intermediate filaments in mitosis

    International Nuclear Information System (INIS)

    Hubert, Thomas; Vandekerckhove, Joel; Gettemans, Jan

    2011-01-01

    Research highlights: → Unconventional actin conformations colocalize with vimentin on a cage-like structure in metaphase HEK 293T cells. → These conformations are detected with the anti-actin antibodies 1C7 ('lower dimer') and 2G2 ('nuclear actin'), but not C4 (monomeric actin). → Mitotic unconventional actin cables are independent of filamentous actin or microtubules. → Unconventional actin colocalizes with vimentin on a nocodazole-induced perinuclear dense mass of cables. -- Abstract: Different structural conformations of actin have been identified in cells and shown to reside in distinct subcellular locations of cells. In this report, we describe the localization of actin on a cage-like structure in metaphase HEK 293T cells. Actin was detected with the anti-actin antibodies 1C7 and 2G2, but not with the anti-actin antibody C4. Actin contained in this structure is independent of microtubules and actin filaments, and colocalizes with vimentin. Taking advantage of intermediate filament collapse into a perinuclear dense mass of cables when microtubules are depolymerized, we were able to relocalize actin to such structures. We hypothesize that phosphorylation of intermediate filaments at mitosis entry triggers the recruitment of different actin conformations to mitotic intermediate filaments. Storage and partition of the nuclear actin and antiparallel 'lower dimer' actin conformations between daughter cells possibly contribute to gene transcription and transient actin filament dynamics at G1 entry.

  16. RPL41, a Small Ribosomal Peptide Deregulated in Tumors, Is Essential for Mitosis and Centrosome Integrity

    Directory of Open Access Journals (Sweden)

    Shan Wang

    2010-03-01

    Full Text Available Ribosomal large subunit protein RPL41 is a basic (positively charged peptide consisting of only 25 amino acids. An antisense-based functional screening revealed that the down-regulation of RPL41 led to an anchorage-independent growth of NIH3T3 cells in soft agar plates. RPL41 depletion with gene-specific small interfering RNA also resulted in malignant transformation of NIH3T3 cells including increased tumor growth in mice. RPL41 deletion was detected in 59% of tumor cell lines by fluorescence in situ hybridization analyses and RPL41 down-regulation in 75% of primary breast cancers by real-time quantitative reverse transcription-polymerase chain reaction. These studies suggest a tumor suppression role for RPL41. By mass spectrometry, RPL41 was associated with several cytoskeleton components including tubulin β, γ, and myosin IIA, which was confirmed by Western blot analysis on both cellular lysis and individually in vitro-expressed proteins. RPL41 also bound directly to polymerized tubulins. Cells overexpressing a GFP-RPL41 were resistant to nocodazole-induced microtubule depolymerization. A synthetic RPL41 induced cellular α-tubulin acetylation and G2/M cell cycle arrest. These results indicate a stabilizing role of RPL41 on microtubule. Microtubule spindles are essential for chromosome segregation during mitosis. Cells with RPL41 knock-down showed abnormal spindles, frequent failure of cytokinesis, and formation of polynuclear cells. In interphase cells, RPL41-depleted cells had premature splitting of centrosome. Our results provide evidence that RPL41 is a microtubule-associated protein essential for functional spindles and for the integrity of centrosome and that the abnormal mitosis and disrupted centrosome associated with the RPL41 down-regulation may be related to malignant transformation.

  17. Cellular responses to a prolonged delay in mitosis are determined by a DNA damage response controlled by Bcl-2 family proteins.

    Science.gov (United States)

    Colin, Didier J; Hain, Karolina O; Allan, Lindsey A; Clarke, Paul R

    2015-03-01

    Anti-cancer drugs that disrupt mitosis inhibit cell proliferation and induce apoptosis, although the mechanisms of these responses are poorly understood. Here, we characterize a mitotic stress response that determines cell fate in response to microtubule poisons. We show that mitotic arrest induced by these drugs produces a temporally controlled DNA damage response (DDR) characterized by the caspase-dependent formation of γH2AX foci in non-apoptotic cells. Following exit from a delayed mitosis, this initial response results in activation of DDR protein kinases, phosphorylation of the tumour suppressor p53 and a delay in subsequent cell cycle progression. We show that this response is controlled by Mcl-1, a regulator of caspase activation that becomes degraded during mitotic arrest. Chemical inhibition of Mcl-1 and the related proteins Bcl-2 and Bcl-xL by a BH3 mimetic enhances the mitotic DDR, promotes p53 activation and inhibits subsequent cell cycle progression. We also show that inhibitors of DDR protein kinases as well as BH3 mimetics promote apoptosis synergistically with taxol (paclitaxel) in a variety of cancer cell lines. Our work demonstrates the role of mitotic DNA damage responses in determining cell fate in response to microtubule poisons and BH3 mimetics, providing a rationale for anti-cancer combination chemotherapies.

  18. The PP2AB56 phosphatase promotes the association of Cdc20 with APC/C in mitosis.

    Science.gov (United States)

    Lee, Sun Joo; Rodriguez-Bravo, Veronica; Kim, Hyunjung; Datta, Sutirtha; Foley, Emily A

    2017-05-15

    PP2A comprising B56 regulatory subunit isoforms (PP2A B56 ) is a serine/threonine phosphatase essential for mitosis. At the kinetochore, PP2A B56 both stabilizes microtubule binding and promotes silencing of the spindle assembly checkpoint (SAC) through its association with the SAC protein BubR1. Cells depleted of the B56 regulatory subunits of PP2A are delayed in activation of Cdc20-containing APC/C (APC/C Cdc20 ), which is an essential step for mitotic exit. It has been hypothesized that this delay arises from increased production of the mitotic checkpoint complex (MCC), an APC/C Cdc20 inhibitor formed at unattached kinetochores through SAC signaling. In contrast to this prediction, we show that depletion of B56 subunits does not increase the amount or stability of the MCC. Rather, delays in APC/C Cdc20 activation in B56-depleted cells correlate with impaired Cdc20 binding to APC/C. Stimulation of APC/C Cdc20 assembly does not require binding between PP2A B56 and BubR1, and thus this contribution of PP2A B56 towards mitotic exit is distinct from its functions at kinetochores. PP2A B56 associates with APC/C constitutively in a BubR1-independent manner. A mitotic phosphorylation site on Cdc20, known to be a substrate of PP2A B56 , modulates APC/C Cdc20 assembly. These results elucidate the contributions of PP2A B56 towards completion of mitosis. © 2017. Published by The Company of Biologists Ltd.

  19. Adhesion of axolemmal fragments to Schwann cells: a signal- and target-specific process closely linked to axolemmal induction of Schwann cell mitosis

    International Nuclear Information System (INIS)

    Sobue, G.; Pleasure, D.

    1985-01-01

    Radioiodinated rat CNS axolemmal fragments adhered to cultured rat Schwann cells by a time-, temperature-, and concentration-dependent process independent of extracellular ionized calcium. Adhesion showed target and signal specificity; axolemmal fragments adhered to endoneurial or dermal fibroblasts to a much lesser extent than to Schwann cells, and plasma membrane fragments from skeletal muscle, erythrocytes, or PNS myelin adhered to Schwann cells to a lesser extent than did axolemmal fragments. Brief trypsinization removed 94 to 97% of bound radioactivity from Schwann cells previously incubated with 125 I-axolemmal fragments for up to 24 hr, indicating that adhesion was largely a surface phenomenon rather than the result of rapid internalization of axolemmal fragments by the Schwann cells. When adhesion was compared to the axolemmal mitogenic response of Schwann cells, the concentration of axolemmal fragments yielding half-maximal adhesion was the same as the concentration producing half-maximal stimulation of Schwann cell mitosis. Trypsin digestion, homogenization, or heating of axolemmal fragments before application to cultured Schwann cells diminished adhesion and axolemmal fragment-induced stimulation of Schwann cell mitosis in a parallel fashion. Whereas adhesion of axolemmal fragments to the surfaces of the cultured Schwann cells reached completion within 4 hr in this assay system, induction of Schwann cell mitosis by the fragments required contact with Schwann cells for a minimum of 6 to 8 hr and reached a maximum when the axolemmal fragments had adhered to the Schwann cells for 24 hr or more

  20. Atypical growth, abonormal mitosis and polyploidy induced by ethyl-mercury-chloride

    Energy Technology Data Exchange (ETDEWEB)

    Kostoff, D

    1940-01-01

    Experiments were performed to study the effect of ethyl mercury chloride upon the atypical growths of plants. Seeds of peas, flax, rye, and wheat were treated with 2% ethyl mercury chloride. The fungicide suppressed the development of the seedlings. Cytological studies revealed that the fungicide had also significantly affected the procedure of mitosis in most of the treated seedlings. The chromosomes did not become arranged into a proper equatorial plate when the nucleus membrane and the nucleolei disappeared, but occupied a position similar to that which they had during the prophase. The chromosomes split, then the centromeres divided so that from each one chromosome, two chromosomes originated, situated side by side without polar separation, chiefly due to the absence of normal achromatic figures. Thus, chromosome division without cell division takes place.

  1. PSK, a biological response modifier, modifies p53 expression, mitosis and apoptosis in X-ray irradiated mouse embryos. Possible cellular mechanism of the anti-teratogenic effect

    International Nuclear Information System (INIS)

    Kagohashi, Yukiko; Naora, Hiroyuki; Otani, Hiroki

    2002-01-01

    We previously showed that PSK, a biological response modifier, suppressed X-ray irradiation induced ocular anomalies in mouse embryos. In the present study, in mouse embryos irradiated at E7.5, PSK, when administered immediately after irradiation, suppressed mitosis and increased apoptosis as compared with embryos not treated with PSK at 12 hrs after irradiation. In the irradiated embryos, p53, which is normally expressed at a high level in early embryos, increased at 6 hrs and decreased at 12 hrs after irradiation. In the irradiated and PSK-treated embryos, the p53 level did not change at 6 hrs, increased at 12 hrs and decreased at 24 hrs after irradiation. This timing of PSK-induced delayed increase of p53 coincided with that of the PSK-induced decrease in mitosis and increase in apoptosis. These results suggested that PSK modified the p53 level and affected cell proliferation and apoptosis, which might contribute to the suppression of teratogenesis. (author)

  2. MLL/WDR5 Complex Regulates Kif2A Localization to Ensure Chromosome Congression and Proper Spindle Assembly during Mitosis.

    Science.gov (United States)

    Ali, Aamir; Veeranki, Sailaja Naga; Chinchole, Akash; Tyagi, Shweta

    2017-06-19

    Mixed-lineage leukemia (MLL), along with multisubunit (WDR5, RbBP5, ASH2L, and DPY30) complex catalyzes the trimethylation of H3K4, leading to gene activation. Here, we characterize a chromatin-independent role for MLL during mitosis. MLL and WDR5 localize to the mitotic spindle apparatus, and loss of function of MLL complex by RNAi results in defects in chromosome congression and compromised spindle formation. We report interaction of MLL complex with several kinesin and dynein motors. We further show that the MLL complex associates with Kif2A, a member of the Kinesin-13 family of microtubule depolymerase, and regulates the spindle localization of Kif2A during mitosis. We have identified a conserved WDR5 interaction (Win) motif, so far unique to the MLL family, in Kif2A. The Win motif of Kif2A engages in direct interactions with WDR5 for its spindle localization. Our findings highlight a non-canonical mitotic function of MLL complex, which may have a direct impact on chromosomal stability, frequently compromised in cancer. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Stress induced by premature chromatin condensation triggers chromosome shattering and chromothripsis at DNA sites still replicating in micronuclei or multinucleate cells when primary nuclei enter mitosis.

    Science.gov (United States)

    Terzoudi, Georgia I; Karakosta, Maria; Pantelias, Antonio; Hatzi, Vasiliki I; Karachristou, Ioanna; Pantelias, Gabriel

    2015-11-01

    Combination of next-generation DNA sequencing, single nucleotide polymorphism array analyses and bioinformatics has revealed the striking phenomenon of chromothripsis, described as complex genomic rearrangements acquired in a single catastrophic event affecting one or a few chromosomes. Via an unproven mechanism, it is postulated that mechanical stress causes chromosome shattering into small lengths of DNA, which are then randomly reassembled by DNA repair machinery. Chromothripsis is currently examined as an alternative mechanism of oncogenesis, in contrast to the present paradigm that considers a stepwise development of cancer. While evidence for the mechanism(s) underlying chromosome shattering during cancer development remains elusive, a number of hypotheses have been proposed to explain chromothripsis, including ionizing radiation, DNA replication stress, breakage-fusion-bridge cycles, micronuclei formation and premature chromosome compaction. In the present work, we provide experimental evidence on the mechanistic basis of chromothripsis and on how chromosomes can get locally shattered in a single catastrophic event. Considering the dynamic nature of chromatin nucleoprotein complex, capable of rapid unfolding, disassembling, assembling and refolding, we first show that chromatin condensation at repairing or replicating DNA sites induces the mechanical stress needed for chromosome shattering to ensue. Premature chromosome condensation is then used to visualize the dynamic nature of interphase chromatin and demonstrate that such mechanical stress and chromosome shattering can also occur in chromosomes within micronuclei or asynchronous multinucleate cells when primary nuclei enter mitosis. Following an aberrant mitosis, chromosomes could find themselves in the wrong place at the wrong time so that they may undergo massive DNA breakage and rearrangement in a single catastrophic event. Specifically, our results support the hypothesis that premature chromosome

  4. Demand for programs for key populations in Africa from countries ...

    African Journals Online (AJOL)

    Owen Ryan, John Macom, and Michelle Moses-Eisenstein

    2012-11-28

    Nov 28, 2012 ... Keywords: PEPFAR, Global Fund, key population, MSM, IDU, SW. Résumé ... geographical contexts (e.g. MSM in Asia and IDU in Eastern. Europe) ..... Implementation of the investment framework in Africa will require two ...

  5. The DNA-dependent protein kinase: a multifunctional protein kinase with roles in DNA double strand break repair and mitosis

    Science.gov (United States)

    Jette, Nicholas; Lees-Miller, Susan P.

    2015-01-01

    The DNA-dependent protein kinase (DNA-PK) is a serine/threonine protein kinase composed of a large catalytic subunit (DNA-PKcs) and the Ku70/80 heterodimer. Over the past two decades, significant progress has been made in elucidating the role of DNA-PK in non-homologous end joining (NHEJ), the major pathway for repair of ionizing radiation-induced DNA double strand breaks in human cells and recently, additional roles for DNA-PK have been reported. In this review, we will describe the biochemistry, structure and function of DNA-PK, its roles in DNA double strand break repair and its newly described roles in mitosis and other cellular processes. PMID:25550082

  6. Non-coding RNAs enter mitosis: functions, conservation and implications

    Directory of Open Access Journals (Sweden)

    Kai Toshie

    2011-02-01

    Full Text Available Abstract Nuage (or commonly known as chromatoid body in mammals is a conserved germline-specific organelle that has been linked to the Piwi-interacting RNA (piRNA pathway. piRNAs are a class of gonadal-specific RNAs that are ~23-29 nucleotides in length and protect genome stability by repressing the expression of deleterious retrotransposons. More recent studies in Drosophila have implicated the piRNA pathway in other functions including canalization of embryonic development, regulation of maternal gene expression and telomere protection. We have recently shown that Vasa (known as Mouse Vasa Homolog in mouse, a nuage component, plays a mitotic role in promoting chromosome condensation and segregation by facilitating robust chromosomal localization of condensin I in the Drosophila germline. Vasa functions together with Aubergine (a PIWI family protein and Spindle-E/mouse TDRD-9, two other nuage components that are involved in the piRNA pathway, therefore providing a link between the piRNA pathway and mitotic chromosome condensation. Here, we propose and discuss possible models for the role of Vasa and the piRNA pathway during mitosis. We also highlight relevant studies implicating mitotic roles for RNAs and/or nuage in other model systems and their implications for cancer development.

  7. Precise and economic FIB/SEM for CLEM: with 2 nm voxels through mitosis.

    Science.gov (United States)

    Luckner, Manja; Wanner, Gerhard

    2018-05-23

    A portfolio is presented documenting economic, high-resolution correlative focused ion beam scanning electron microscopy (FIB/SEM) in routine, comprising: (i) the use of custom-labeled slides and coverslips, (ii) embedding of cells in thin, or ultra-thin resin layers for correlative light and electron microscopy (CLEM) and (iii) the claim to reach the highest resolution possible with FIB/SEM in xyz. Regions of interest (ROIs) defined in light microscope (LM), can be relocated quickly and precisely in SEM. As proof of principle, HeLa cells were investigated in 3D context at all stages of the cell cycle, documenting ultrastructural changes during mitosis: nuclear envelope breakdown and reassembly, Golgi degradation and reconstitution and the formation of the midzone and midbody.

  8. Lamin A reassembly at the end of mitosis is regulated by its SUMO-interacting motif

    Energy Technology Data Exchange (ETDEWEB)

    Moriuchi, Takanobu; Kuroda, Masaki; Kusumoto, Fumiya; Osumi, Takashi; Hirose, Fumiko, E-mail: fhirose@sci.u-hyogo.ac.jp

    2016-03-01

    Modification of proteins with small ubiquitin-related modifier (SUMO; SUMOylation) is involved in the regulation of various biological processes. Recent studies have demonstrated that noncovalent associations between SUMOylated proteins and co-operative proteins containing SUMO-interacting motifs (SIMs) are important for the spatiotemporal organization of many protein complexes. In this study, we demonstrate that interactions between lamin A, a major component of the nuclear lamina, and SUMO isoforms are dependent on one of the four SIMs (SIM3) resided in lamin A polypeptide in vitro. Live cell imaging and immunofluorescence staining showed that SIM3 is required for accumulation of lamin A on the chromosomes during telophase, and subsequent evaluation of a panel of deletion mutants determined that a 156-amino acid region spanning the carboxyl-terminal Ig-fold domain of lamin A is sufficient for this accumulation. Notably, mutation of SIM3 abrogated the dephosphorylation of mitosis-specific phosphorylation at Ser-22 of lamin A, which normally occurs during telophase, and the subsequent nuclear lamina reorganization. Furthermore, expression of a conjugation-defective SUMO2 mutant, which was previously shown to inhibit endogenous SUMOylation in a dominant-negative manner, also impaired the accumulation of wild type lamin A on telophase chromosomes. These findings suggest that interactions between SIM3 of lamin A and a putative SUMO2-modified protein plays an important role in the reorganization of the nuclear lamina at the end of mitosis. - Highlights: • Lamin A interacts with SUMO2 via a SUMO-interacting motif (SIM) in the Ig domain. • SIM3 of lamin A is responsible for chromosomal accumulation during telophase. • A 156-aa region spanning the Ig domain is sufficient for chromosomal accumulation. • Accumulation of lamin A is required for timely dephosphorylation on chromosomes. • A putative SUMO2-modified protein may mediate chromosomal accumulation of lamin

  9. Lamin A reassembly at the end of mitosis is regulated by its SUMO-interacting motif

    International Nuclear Information System (INIS)

    Moriuchi, Takanobu; Kuroda, Masaki; Kusumoto, Fumiya; Osumi, Takashi; Hirose, Fumiko

    2016-01-01

    Modification of proteins with small ubiquitin-related modifier (SUMO; SUMOylation) is involved in the regulation of various biological processes. Recent studies have demonstrated that noncovalent associations between SUMOylated proteins and co-operative proteins containing SUMO-interacting motifs (SIMs) are important for the spatiotemporal organization of many protein complexes. In this study, we demonstrate that interactions between lamin A, a major component of the nuclear lamina, and SUMO isoforms are dependent on one of the four SIMs (SIM3) resided in lamin A polypeptide in vitro. Live cell imaging and immunofluorescence staining showed that SIM3 is required for accumulation of lamin A on the chromosomes during telophase, and subsequent evaluation of a panel of deletion mutants determined that a 156-amino acid region spanning the carboxyl-terminal Ig-fold domain of lamin A is sufficient for this accumulation. Notably, mutation of SIM3 abrogated the dephosphorylation of mitosis-specific phosphorylation at Ser-22 of lamin A, which normally occurs during telophase, and the subsequent nuclear lamina reorganization. Furthermore, expression of a conjugation-defective SUMO2 mutant, which was previously shown to inhibit endogenous SUMOylation in a dominant-negative manner, also impaired the accumulation of wild type lamin A on telophase chromosomes. These findings suggest that interactions between SIM3 of lamin A and a putative SUMO2-modified protein plays an important role in the reorganization of the nuclear lamina at the end of mitosis. - Highlights: • Lamin A interacts with SUMO2 via a SUMO-interacting motif (SIM) in the Ig domain. • SIM3 of lamin A is responsible for chromosomal accumulation during telophase. • A 156-aa region spanning the Ig domain is sufficient for chromosomal accumulation. • Accumulation of lamin A is required for timely dephosphorylation on chromosomes. • A putative SUMO2-modified protein may mediate chromosomal accumulation of lamin

  10. Rab5 GTPase controls chromosome alignment through Lamin disassembly and relocation of the NuMA-like protein Mud to the poles during mitosis

    Science.gov (United States)

    Capalbo, Luisa; D'Avino, Pier Paolo; Archambault, Vincent; Glover, David M.

    2011-01-01

    The small GTPase Rab5 is a conserved regulator of membrane trafficking; it regulates the formation of early endosomes, their transport along microtubules, and the fusion to the target organelles. Although several members of the endocytic pathway were recently implicated in spindle organization, it is unclear whether Rab5 has any role during mitosis. Here, we describe that Rab5 is required for proper chromosome alignment during Drosophila mitoses. We also found that Rab5 associated in vivo with nuclear Lamin and mushroom body defect (Mud), the Drosophila counterpart of nuclear mitotic apparatus protein (NuMA). Consistent with this finding, Rab5 was required for the disassembly of the nuclear envelope at mitotic entry and the accumulation of Mud at the spindle poles. Furthermore, Mud depletion caused chromosome misalignment defects that resembled the defects of Rab5 RNAi cells, and double-knockdown experiments indicated that the two proteins function in a linear pathway. Our results indicate a role for Rab5 in mitosis and reinforce the emerging view of the contributions made by cell membrane dynamics to spindle function. PMID:21987826

  11. Defects in Histone H3.3 Phosphorylation and ATRX Recruitment to Misaligned Chromosomes during Mitosis Contribute to the Development of Pediatric Glioblastomas

    Science.gov (United States)

    2015-09-01

    aneuploidy. 2. Keywords: aneuploidy, ATRX, cell cycle, chromosome missegregation, CRISPR /Cas9, DAXX, glioblastoma, histone H3.3, microinjection, mitosis...histone H3.3 with mutant constructs. We have switched from shRNA hairpins to CRISPR /Cas9 gene editing to silence both alleles of H3.3 (and an H3.3...plasmids against H3F3B. Both plasmids had the Cas9 gene and a soluble GFP reporter. The CRISPR guide sequence in one of these plasmids was 100% match

  12. Chinese hamster ovary cell mitosis and its response to ionizing radiation: A morphological analysis of the living cell

    International Nuclear Information System (INIS)

    Carlson, J.G.

    1989-01-01

    Repeated microscopic observations of exponentially growing Chinese hamster ovary cells were made and the times and mitotic stages were recorded in control and irradiated cultures at 37 degree C. As determined by autoradiography, the time from the end of S phase to early prophase (the G2 phase) was 46 min, to breakdown of the nuclear envelope was 91 min, and to restoration of the nuclear envelope was 116 min. The time spent in morphologically distinguishable phases of mitosis and the effects of 0.5, 1.0, 1.5, 2.0, and 4.0 Gy of gamma or X radiation on cells at each phase were determined. Affected cells were found to be delayed without or with reversion to an earlier mitotic stage before recovering and advancing through mitosis. Cells were timed in the five steps comprising delay with reversion: inertia, cessation I, regression, cessation II, and reprogression. No cells treated in late prophase, i.e., within 8-10 min of nuclear envelope breakdown, were delayed by the doses used; therefore the critical or transition point must be situated in middle prophase. Cells irradiated in this stage were not delayed by 0.5 or 1.0 Gy, but suffered a dose-dependent delay with or without reversion after 1.5, 2.0, and 4.0 Gy. Cells irradiated in early prophase and very late interphase responded similarly, but a greater percentage of the latter reverted

  13. Nonanaplastic follicular cell-derived thyroid carcinoma

    DEFF Research Database (Denmark)

    Skansing, Daniel Bräuner; Londero, Stefano Christian; Asschenfeldt, Pia

    2017-01-01

    only on tumor necrosis and/or mitosis have a prognosis similar to those diagnosed according to the TURIN proposal. The purpose of this study was to evaluate prognosis for NAFCTC based on long-term follow-up illuminating the significance of tumor necrosis and mitosis. A cohort of 225 patients...... with NAFCTC was followed more than 20 years. Age, sex, distant metastasis, histology, tumor size, extrathyroidal invasion, lymph node metastasis, tumor necrosis and mitosis were examined as possible prognostic factors. Median follow-up time for patients alive was 28 years (range 20–43 years). Age, distant...... metastasis, extrathyroidal invasion, tumor size, tumor necrosis and mitosis were independent prognostic factors in multivariate analysis for overall survival (OS). In disease specific survival (DSS) age was not significant. Using only necrosis and/or mitosis as criteria for PDTC the 5-, 10- and 20-year OS...

  14. Role of cyclins in controlling progression of mammalian spermatogenesis

    OpenAIRE

    WOLGEMUTH, DEBRA J.; MANTEROLA, MARCIA; VASILEVA, ANA

    2013-01-01

    Cyclins are key regulators of the mammalian cell cycle, functioning primarily in concert with their catalytic partners, the cyclin-dependent kinases (Cdks). While their function during mitosis in somatic cells has been extensively documented, their function during both mitosis and meiosis in the germ line is poorly understood. From the perspective of cell cycle regulation there are several aspects of mammalian spermatogenesis that suggest unique modes of regulation and hence, possible unique ...

  15. Positioning of the NOR-bearing chromosomes in relation to nucleoli in daughter cells after mitosis.

    Science.gov (United States)

    Kalmárová, M; Smirnov, E; Kovácik, L; Popov, A; Raska, I

    2008-01-01

    It is known that chromosomes occupy non-random positions in the cell nucleus. However, it is not clear to what extent their nuclear positions, together with their neighborhood, are conserved in daughter cells. To address specific aspects of this problem, we used the model of the chromosomes carrying ribosomal genes that are organized in clusters termed Nucleolus Organizer Regions (NORs). We compared the association of chosen NOR-bearing chromosomes (NOR-chromosomes) with nucleoli, as well as the numbers of nucleoli, in the pairs of daughter cells, and established how frequently the daughter cells had equal numbers of the homologs of certain NOR-chromosomes associated with individual nucleoli. The daughter cells typically had different numbers of nucleoli. At the same time, using immuno-FISH with probes for chromosomes 14 and 15 in HeLa cells, we found that the cell pairs with identical combinations appeared significantly more frequently than predicted by the random model. Thus, although the total number of chromosomes associated with nucleoli is variable, our data indicate that the position of the NOR-bearing chromosomes in relation to nucleoli is partly conserved through mitosis.

  16. A plant cyclin B2 is degraded early in mitosis and its ectopic expression shortens G2-phase and alleviates the DNA-damage checkpoint

    Czech Academy of Sciences Publication Activity Database

    Weingartner, M.; Pelayo, H. R.; Binarová, Pavla; Zwerger, K.; Melikant, B.; Torre, C.; Heberle-Bors, E.; Bogre, L.

    2003-01-01

    Roč. 116, č. 3 (2003), s. 487-498 ISSN 0021-9533 R&D Projects: GA MŠk LN00A081 Grant - others:GA Ministerio de Ciencia y Tecnologia(ES) BMC2001-2195; Biotechnology and Biological Science Research Council(AU) 111/P133340 Institutional research plan: CEZ:AV0Z5020903 Keywords : cyclin B * mitosis * checkpoint Subject RIV: EE - Microbiology, Virology Impact factor: 7.250, year: 2003

  17. Histochemical applications of x-ray microanalysis: the simultaneous assessment of mitosis and cell death

    International Nuclear Information System (INIS)

    Bowen, I.D.; Lewis, G.H.

    1980-01-01

    The principles of x-ray microanalytical histochemistry are reviewed. The use of labelling and precipitation techniques are examined, and particular attention is paid to the localization of enzymatic activity. A new method is described for the simultaneous assessment of mitosis as represented by the incorporation of ( 3 H) thymidine, and cell death as represented by the localization of free acid phosphatase, in the same tissue section. The thymidine incorporation is demonstrated by the appearance of topographically and microanalytically detectable silver grains in an overlying emulsion and the cell lysis associated acid phosphatase activity is detected optically and microanalytically by means of a bromine-rich azo dye deposited as a result of coupling naphthol AS BI, enzymatically released from naphthyl AS BI phosphoric acid, with diazotized 2,5-dibromoaniline

  18. Arabidopsis ASYMMETRIC LEAVES2 protein required for leaf morphogenesis consistently forms speckles during mitosis of tobacco BY-2 cells via signals in its specific sequence.

    Science.gov (United States)

    Luo, Lilan; Ando, Sayuri; Sasabe, Michiko; Machida, Chiyoko; Kurihara, Daisuke; Higashiyama, Tetsuya; Machida, Yasunori

    2012-09-01

    Leaf primordia with high division and developmental competencies are generated around the periphery of stem cells at the shoot apex. Arabidopsis ASYMMETRIC-LEAVES2 (AS2) protein plays a key role in the regulation of many genes responsible for flat symmetric leaf formation. The AS2 gene, expressed in leaf primordia, encodes a plant-specific nuclear protein containing an AS2/LOB domain with cysteine repeats (C-motif). AS2 proteins are present in speckles in and around the nucleoli, and in the nucleoplasm of some leaf epidermal cells. We used the tobacco cultured cell line BY-2 expressing the AS2-fused yellow fluorescent protein to examine subnuclear localization of AS2 in dividing cells. AS2 mainly localized to speckles (designated AS2 bodies) in cells undergoing mitosis and distributed in a pairwise manner during the separation of sets of daughter chromosomes. Few interphase cells contained AS2 bodies. Deletion analyses showed that a short stretch of the AS2 amino-terminal sequence and the C-motif play negative and positive roles, respectively, in localizing AS2 to the bodies. These results suggest that AS2 bodies function to properly distribute AS2 to daughter cells during cell division in leaf primordia; and this process is controlled at least partially by signals encoded by the AS2 sequence itself.

  19. Centrioles are freed from cilia by severing prior to mitosis.

    Science.gov (United States)

    Parker, Jeremy D K; Hilton, Laura K; Diener, Dennis R; Rasi, M Qasim; Mahjoub, Moe R; Rosenbaum, Joel L; Quarmby, Lynne M

    2010-07-01

    Cilia are necessary for normal tissue development and homeostasis and are generally present during interphase, but not in mitosis. The precise mechanism of premitotic ciliary loss has been controversial, with data supporting either sequential disassembly through the transition zone or, alternatively, a severing event at the base of the cilia. Here we show by live cell imaging and immunofluorescence microscopy that resorbing flagella of Chlamydomonas leave remnants associated with the mother cell wall. We postulated that the remnants are the product of severing of doublet microtubules between the basal bodies and the flagellar transition zone, thereby freeing the centrioles to participate in spindle organization. We show via TEM that flagellar remnants are indeed flagellar transition zones encased in vesicles derived from the flagellar membrane. This transition zone vesicle can be lodged within the cell wall or it can be expelled into the environment. This process is observable in Chlamydomonas, first because the released flagellar remnants can remain associated with the cell by virtue of attachments to the cell wall, and second because the Chlamydomonas transition zone is particularly rich with electron-dense structure. However, release of basal bodies for spindle-associated function is likely to be conserved among the eukaryotes. 2010 Wiley-Liss, Inc.

  20. Transient phosphorylation of tumor associated microtubule associated protein (TMAP)/cytoskeleton associated protein 2 (CKAP2) at Thr-596 during early phases of mitosis.

    Science.gov (United States)

    Hong, Kyung Uk; Choi, Yong-Bock; Lee, Jung-Hwa; Kim, Hyun-Jun; Kwon, Hye-Rim; Seong, Yeon-Sun; Kim, Heung Tae; Park, Joobae; Bae, Chang-Dae; Hong, Kyeong-Man

    2008-08-31

    Tumor associated microtubule associated protein (TMAP), also known as cytoskeleton associated protein 2 (CKAP2) is a mitotic spindle-associated protein whose expression is cell cycle-regulated and also frequently deregulated in cancer cells. Two monoclonal antibodies (mAbs) against TMAP/CKAP2 were produced: B-1-13 and D-12-3. Interestingly, the reactivity of mAb D-12-3 to TMAP/CKAP2 was markedly decreased specifically in mitotic cell lysate. The epitope mapping study showed that mAb D-12-3 recognizes the amino acid sequence between 569 and 625 and that phosphorylation at T596 completely abolishes the reactivity of the antibody, suggesting that the differential reactivity originates from the phosphorylation status at T596. Immunofluorescence staining showed that mAb D-12-3 fails to detect TMAP/CKAP2 in mitotic cells between prophase and metaphase, but the staining becomes evident again in anaphase, suggesting that phosphorylation at T596 occurs transiently during early phases of mitosis. These results suggest that the cellular functions of TMAP/CKAP2 might be regulated by timely phosphorylation and dephosphorylation during the course of mitosis.

  1. A 2D/3D image analysis system to track fluorescently labeled structures in rod-shaped cells: application to measure spindle pole asymmetry during mitosis.

    Science.gov (United States)

    Schmitter, Daniel; Wachowicz, Paulina; Sage, Daniel; Chasapi, Anastasia; Xenarios, Ioannis; Simanis; Unser, Michael

    2013-01-01

    The yeast Schizosaccharomyces pombe is frequently used as a model for studying the cell cycle. The cells are rod-shaped and divide by medial fission. The process of cell division, or cytokinesis, is controlled by a network of signaling proteins called the Septation Initiation Network (SIN); SIN proteins associate with the SPBs during nuclear division (mitosis). Some SIN proteins associate with both SPBs early in mitosis, and then display strongly asymmetric signal intensity at the SPBs in late mitosis, just before cytokinesis. This asymmetry is thought to be important for correct regulation of SIN signaling, and coordination of cytokinesis and mitosis. In order to study the dynamics of organelles or large protein complexes such as the spindle pole body (SPB), which have been labeled with a fluorescent protein tag in living cells, a number of the image analysis problems must be solved; the cell outline must be detected automatically, and the position and signal intensity associated with the structures of interest within the cell must be determined. We present a new 2D and 3D image analysis system that permits versatile and robust analysis of motile, fluorescently labeled structures in rod-shaped cells. We have designed an image analysis system that we have implemented as a user-friendly software package allowing the fast and robust image-analysis of large numbers of rod-shaped cells. We have developed new robust algorithms, which we combined with existing methodologies to facilitate fast and accurate analysis. Our software permits the detection and segmentation of rod-shaped cells in either static or dynamic (i.e. time lapse) multi-channel images. It enables tracking of two structures (for example SPBs) in two different image channels. For 2D or 3D static images, the locations of the structures are identified, and then intensity values are extracted together with several quantitative parameters, such as length, width, cell orientation, background fluorescence and

  2. Molecular networks linked by Moesin drive remodeling of the cell cortex during mitosis

    Science.gov (United States)

    Roubinet, Chantal; Decelle, Barbara; Chicanne, Gaëtan; Dorn, Jonas F.; Payrastre, Bernard; Payre, François; Carreno, Sébastien

    2011-01-01

    The cortical mechanisms that drive the series of mitotic cell shape transformations remain elusive. In this paper, we identify two novel networks that collectively control the dynamic reorganization of the mitotic cortex. We demonstrate that Moesin, an actin/membrane linker, integrates these two networks to synergize the cortical forces that drive mitotic cell shape transformations. We find that the Pp1-87B phosphatase restricts high Moesin activity to early mitosis and down-regulates Moesin at the polar cortex, after anaphase onset. Overactivation of Moesin at the polar cortex impairs cell elongation and thus cytokinesis, whereas a transient recruitment of Moesin is required to retract polar blebs that allow cortical relaxation and dissipation of intracellular pressure. This fine balance of Moesin activity is further adjusted by Skittles and Pten, two enzymes that locally produce phosphoinositol 4,5-bisphosphate and thereby, regulate Moesin cortical association. These complementary pathways provide a spatiotemporal framework to explain how the cell cortex is remodeled throughout cell division. PMID:21969469

  3. Wound-induced endogenous jasmonates stunt plant growth by inhibiting mitosis.

    Directory of Open Access Journals (Sweden)

    Yi Zhang

    Full Text Available When plants are repeatedly injured their growth is stunted and the size of organs such as leaves is greatly reduced. The basis of this effect is not well-understood however, even though it reduces yield of crops injured by herbivory, and produces dramatic effects exemplified in ornamental bonsai plants. We have investigated the genetic and physiological basis of this "bonsai effect" by repeatedly wounding leaves of the model plant Arabidopsis. This treatment stunted growth by 50% and increased the endogenous content of jasmonate (JA, a growth inhibitor, by seven-fold. Significantly, repeated wounding did not stunt the growth of the leaves of mutants unable to synthesise JA, or unable to respond to JA including coi1, jai3, myc2, but not jar1. The stunted growth did not result from reduced cell size, but resulted instead from reduced cell number, and was associated with reduced expression of CycB1;2. Wounding caused systemic disappearance of constitutively expressed JAZ1::GUS. Wounding also activates plant immunity. We show that a gene, 12-oxo-phytodienoate reductase, which catalyses a step in JA biosynthesis, and which we confirm is not required for defence, is however required for wound-induced stunting. Our data suggest that intermediates in the JA biosynthetic pathway activate defence, but a primary function of wound-induced JA is to stunt growth through the suppression of mitosis.

  4. Wound-induced endogenous jasmonates stunt plant growth by inhibiting mitosis.

    Science.gov (United States)

    Zhang, Yi; Turner, John G

    2008-01-01

    When plants are repeatedly injured their growth is stunted and the size of organs such as leaves is greatly reduced. The basis of this effect is not well-understood however, even though it reduces yield of crops injured by herbivory, and produces dramatic effects exemplified in ornamental bonsai plants. We have investigated the genetic and physiological basis of this "bonsai effect" by repeatedly wounding leaves of the model plant Arabidopsis. This treatment stunted growth by 50% and increased the endogenous content of jasmonate (JA), a growth inhibitor, by seven-fold. Significantly, repeated wounding did not stunt the growth of the leaves of mutants unable to synthesise JA, or unable to respond to JA including coi1, jai3, myc2, but not jar1. The stunted growth did not result from reduced cell size, but resulted instead from reduced cell number, and was associated with reduced expression of CycB1;2. Wounding caused systemic disappearance of constitutively expressed JAZ1::GUS. Wounding also activates plant immunity. We show that a gene, 12-oxo-phytodienoate reductase, which catalyses a step in JA biosynthesis, and which we confirm is not required for defence, is however required for wound-induced stunting. Our data suggest that intermediates in the JA biosynthetic pathway activate defence, but a primary function of wound-induced JA is to stunt growth through the suppression of mitosis.

  5. Zika Virus Disrupts Phospho-TBK1 Localization and Mitosis in Human Neuroepithelial Stem Cells and Radial Glia

    Directory of Open Access Journals (Sweden)

    Marco Onorati

    2016-09-01

    Full Text Available The mechanisms underlying Zika virus (ZIKV-related microcephaly and other neurodevelopment defects remain poorly understood. Here, we describe the derivation and characterization, including single-cell RNA-seq, of neocortical and spinal cord neuroepithelial stem (NES cells to model early human neurodevelopment and ZIKV-related neuropathogenesis. By analyzing human NES cells, organotypic fetal brain slices, and a ZIKV-infected micrencephalic brain, we show that ZIKV infects both neocortical and spinal NES cells as well as their fetal homolog, radial glial cells (RGCs, causing disrupted mitoses, supernumerary centrosomes, structural disorganization, and cell death. ZIKV infection of NES cells and RGCs causes centrosomal depletion and mitochondrial sequestration of phospho-TBK1 during mitosis. We also found that nucleoside analogs inhibit ZIKV replication in NES cells, protecting them from ZIKV-induced pTBK1 relocalization and cell death. We established a model system of human neural stem cells to reveal cellular and molecular mechanisms underlying neurodevelopmental defects associated with ZIKV infection and its potential treatment.

  6. The Cell Cycle Timing of Centromeric Chromatin Assembly in Drosophila Meiosis Is Distinct from Mitosis Yet Requires CAL1 and CENP-C

    Science.gov (United States)

    Gorgescu, Walter; Tang, Jonathan; Costes, Sylvain V.; Karpen, Gary H.

    2012-01-01

    CENP-A (CID in flies) is the histone H3 variant essential for centromere specification, kinetochore formation, and chromosome segregation during cell division. Recent studies have elucidated major cell cycle mechanisms and factors critical for CENP-A incorporation in mitosis, predominantly in cultured cells. However, we do not understand the roles, regulation, and cell cycle timing of CENP-A assembly in somatic tissues in multicellular organisms and in meiosis, the specialized cell division cycle that gives rise to haploid gametes. Here we investigate the timing and requirements for CID assembly in mitotic tissues and male and female meiosis in Drosophila melanogaster, using fixed and live imaging combined with genetic approaches. We find that CID assembly initiates at late telophase and continues during G1 phase in somatic tissues in the organism, later than the metaphase assembly observed in cultured cells. Furthermore, CID assembly occurs at two distinct cell cycle phases during male meiosis: prophase of meiosis I and after exit from meiosis II, in spermatids. CID assembly in prophase I is also conserved in female meiosis. Interestingly, we observe a novel decrease in CID levels after the end of meiosis I and before meiosis II, which correlates temporally with changes in kinetochore organization and orientation. We also demonstrate that CID is retained on mature sperm despite the gross chromatin remodeling that occurs during protamine exchange. Finally, we show that the centromere proteins CAL1 and CENP-C are both required for CID assembly in meiosis and normal progression through spermatogenesis. We conclude that the cell cycle timing of CID assembly in meiosis is different from mitosis and that the efficient propagation of CID through meiotic divisions and on sperm is likely to be important for centromere specification in the developing zygote. PMID:23300382

  7. 49 CFR 28.152-28.159 - [Reserved

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false [Reserved] 28.152-28.159 Section 28.152-28.159 Transportation Office of the Secretary of Transportation ENFORCEMENT OF NONDISCRIMINATION ON THE BASIS OF HANDICAP IN PROGRAMS OR ACTIVITIES CONDUCTED BY THE DEPARTMENT OF TRANSPORTATION §§ 28.152-28.159 [Reserved] ...

  8. 49 CFR 28.171-28.999 - [Reserved

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false [Reserved] 28.171-28.999 Section 28.171-28.999 Transportation Office of the Secretary of Transportation ENFORCEMENT OF NONDISCRIMINATION ON THE BASIS OF HANDICAP IN PROGRAMS OR ACTIVITIES CONDUCTED BY THE DEPARTMENT OF TRANSPORTATION §§ 28.171-28.999 [Reserved] ...

  9. 49 CFR 28.132-28.139 - [Reserved

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false [Reserved] 28.132-28.139 Section 28.132-28.139 Transportation Office of the Secretary of Transportation ENFORCEMENT OF NONDISCRIMINATION ON THE BASIS OF HANDICAP IN PROGRAMS OR ACTIVITIES CONDUCTED BY THE DEPARTMENT OF TRANSPORTATION §§ 28.132-28.139 [Reserved] ...

  10. 49 CFR 28.161-28.169 - [Reserved

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false [Reserved] 28.161-28.169 Section 28.161-28.169 Transportation Office of the Secretary of Transportation ENFORCEMENT OF NONDISCRIMINATION ON THE BASIS OF HANDICAP IN PROGRAMS OR ACTIVITIES CONDUCTED BY THE DEPARTMENT OF TRANSPORTATION §§ 28.161-28.169 [Reserved] ...

  11. 49 CFR 28.141-28.148 - [Reserved

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false [Reserved] 28.141-28.148 Section 28.141-28.148 Transportation Office of the Secretary of Transportation ENFORCEMENT OF NONDISCRIMINATION ON THE BASIS OF HANDICAP IN PROGRAMS OR ACTIVITIES CONDUCTED BY THE DEPARTMENT OF TRANSPORTATION §§ 28.141-28.148 [Reserved] ...

  12. 49 CFR 28.104-28.109 - [Reserved

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false [Reserved] 28.104-28.109 Section 28.104-28.109 Transportation Office of the Secretary of Transportation ENFORCEMENT OF NONDISCRIMINATION ON THE BASIS OF HANDICAP IN PROGRAMS OR ACTIVITIES CONDUCTED BY THE DEPARTMENT OF TRANSPORTATION §§ 28.104-28.109 [Reserved] ...

  13. 49 CFR 28.112-28.129 - [Reserved

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false [Reserved] 28.112-28.129 Section 28.112-28.129 Transportation Office of the Secretary of Transportation ENFORCEMENT OF NONDISCRIMINATION ON THE BASIS OF HANDICAP IN PROGRAMS OR ACTIVITIES CONDUCTED BY THE DEPARTMENT OF TRANSPORTATION §§ 28.112-28.129 [Reserved] ...

  14. Sequential activities of Dynein, Mud and Asp in centrosome-spindle coupling maintain centrosome number upon mitosis.

    Science.gov (United States)

    Bosveld, Floris; Ainslie, Anna; Bellaïche, Yohanns

    2017-10-15

    Centrosomes nucleate microtubules and are tightly coupled to the bipolar spindle to ensure genome integrity, cell division orientation and centrosome segregation. While the mechanisms of centrosome-dependent microtubule nucleation and bipolar spindle assembly have been the focus of numerous works, less is known about the mechanisms ensuring the centrosome-spindle coupling. The conserved NuMA protein (Mud in Drosophila ) is best known for its role in spindle orientation. Here, we analyzed the role of Mud and two of its interactors, Asp and Dynein, in the regulation of centrosome numbers in Drosophila epithelial cells. We found that Dynein and Mud mainly initiate centrosome-spindle coupling prior to nuclear envelope breakdown (NEB) by promoting correct centrosome positioning or separation, while Asp acts largely independently of Dynein and Mud to maintain centrosome-spindle coupling. Failure in the centrosome-spindle coupling leads to mis-segregation of the two centrosomes into one daughter cell, resulting in cells with supernumerary centrosomes during subsequent divisions. Altogether, we propose that Dynein, Mud and Asp operate sequentially during the cell cycle to ensure efficient centrosome-spindle coupling in mitosis, thereby preventing centrosome mis-segregation to maintain centrosome number. © 2017. Published by The Company of Biologists Ltd.

  15. Mechanism of RhoB/FTI Action in Breast Cancer

    National Research Council Canada - National Science Library

    Kamasani, Uma R; Prendergast, George

    2004-01-01

    .... What factors dictate FTI efficacy? In this period, we advanced our studies of the role of cyclin B1, a key regulator of mitosis, as a critical target for RhoB suppression in FTI-induced apoptosis...

  16. Hypothetical physicochemical mechanisms of some intracellular processes: The hydrate hypothesis of mitosis and DNA replication

    International Nuclear Information System (INIS)

    Kadyshevich, E.A.; Ostrovskii, V.E.

    2007-01-01

    A DNA replication, mitosis, and binary fission hydrate hypothesis (MRH hypothesis) allowing non-trivial explanations for the physicochemical mechanisms of some intracellular processes is proposed. The hypothesis has a thermodynamic basis and is initiated by original experimental calorimetric and kinetic studies of the behavior of functional organic polymer and monomer substances in highly concentrated aqueous solutions. Experimental data demonstrating the occurrence of a short-range ordering in concentrated aqueous solutions of such substances are included. Hypothetical simple non-enzymatic unified mechanisms for the natural processes of DNA local unwinding preceding the start of duplication, DNA replication, formation and disappearance of the protein bonds between sister chromatids in the centromere region of eukaryotic DNA and in the centromere-like region of prokaryotic DNA, moving of daughter chromosomes apart to the opposite sides of cells in late anaphase, and formation of the nuclear envelopes in telophase and intracellular membranes between the newly formed nuclei in cytokinesis are formulated. The nature of a number of other intracellular phenomena is discussed

  17. 28 CFR 16.28 - Procedure in the event of an adverse ruling.

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Procedure in the event of an adverse ruling. 16.28 Section 16.28 Judicial Administration DEPARTMENT OF JUSTICE PRODUCTION OR DISCLOSURE OF MATERIAL OR INFORMATION Production or Disclosure in Federal and State Proceedings § 16.28 Procedure in the...

  18. Noninvasive three-dimensional live imaging methodology for the spindles at meiosis and mitosis

    Science.gov (United States)

    Zheng, Jing-gao; Huo, Tiancheng; Tian, Ning; Chen, Tianyuan; Wang, Chengming; Zhang, Ning; Zhao, Fengying; Lu, Danyu; Chen, Dieyan; Ma, Wanyun; Sun, Jia-lin; Xue, Ping

    2013-05-01

    The spindle plays a crucial role in normal chromosome alignment and segregation during meiosis and mitosis. Studying spindles in living cells noninvasively is of great value in assisted reproduction technology (ART). Here, we present a novel spindle imaging methodology, full-field optical coherence tomography (FF-OCT). Without any dye labeling and fixation, we demonstrate the first successful application of FF-OCT to noninvasive three-dimensional (3-D) live imaging of the meiotic spindles within the mouse living oocytes at metaphase II as well as the mitotic spindles in the living zygotes at metaphase and telophase. By post-processing of the 3-D dataset obtained with FF-OCT, the important morphological and spatial parameters of the spindles, such as short and long axes, spatial localization, and the angle of meiotic spindle deviation from the first polar body in the oocyte were precisely measured with the spatial resolution of 0.7 μm. Our results reveal the potential of FF-OCT as an imaging tool capable of noninvasive 3-D live morphological analysis for spindles, which might be useful to ART related procedures and many other spindle related studies.

  19. Mitosis in neurons: Roughex and APC/C maintain cell cycle exit to prevent cytokinetic and axonal defects in Drosophila photoreceptor neurons.

    Directory of Open Access Journals (Sweden)

    Robert Ruggiero

    Full Text Available The mechanisms of cell cycle exit by neurons remain poorly understood. Through genetic and developmental analysis of Drosophila eye development, we found that the cyclin-dependent kinase-inhibitor Roughex maintains G1 cell cycle exit during differentiation of the R8 class of photoreceptor neurons. The roughex mutant neurons re-enter the mitotic cell cycle and progress without executing cytokinesis, unlike non-neuronal cells in the roughex mutant that perform complete cell divisions. After mitosis, the binucleated R8 neurons usually transport one daughter nucleus away from the cell body into the developing axon towards the brain in a kinesin-dependent manner resembling anterograde axonal trafficking. Similar cell cycle and photoreceptor neuron defects occurred in mutants for components of the Anaphase Promoting Complex/Cyclosome. These findings indicate a neuron-specific defect in cytokinesis and demonstrate a critical role for mitotic cyclin downregulation both to maintain cell cycle exit during neuronal differentiation and to prevent axonal defects following failed cytokinesis.

  20. Inhibitory activity of Lactobacillus curvatus CWBI-B28 against ...

    African Journals Online (AJOL)

    user

    2006-11-16

    Nov 16, 2006 ... A bacteriocin-producing strain of Lactobacillus curvatus CWBI-B28 isolated from raw meat was shown ... Key words: Lactobacillus curvatus, Bacteriocin, hydrogen peroxide, ... Lactic acid bacteria (LAB) have long been used in food .... Pronase and catalase solutions were added to two of these tubes to.

  1. 28 CFR 0.28 - General functions.

    Science.gov (United States)

    2010-07-01

    ... Affairs § 0.28 General functions. The Office of Public Affairs is headed by a Director of Public Affairs who shall: (a) Handle matters pertaining to relations with the public generally. (b) Disseminate... 28 Judicial Administration 1 2010-07-01 2010-07-01 false General functions. 0.28 Section 0.28...

  2. Neuroprotection of brain-permeable iron chelator VK-28 against intracerebral hemorrhage in mice.

    Science.gov (United States)

    Li, Qian; Wan, Jieru; Lan, Xi; Han, Xiaoning; Wang, Zhongyu; Wang, Jian

    2017-09-01

    Iron overload plays a key role in the secondary brain damage that develops after intracerebral hemorrhage (ICH). The significant increase in iron deposition is associated with the generation of reactive oxygen species (ROS), which leads to oxidative brain damage. In this study, we examined the protective effects of VK-28, a brain-permeable iron chelator, against hemoglobin toxicity in an ex vivo organotypic hippocampal slice culture (OHSC) model and in middle-aged mice subjected to an in vivo, collagenase-induced ICH model. We found that the effects of VK-28 were similar to those of deferoxamine (DFX), a well-studied iron chelator. Both decreased cell death and ROS production in OHSCs and in vivo, decreased iron-deposition and microglial activation around hematoma in vivo, and improved neurologic function. Moreover, compared with DFX, VK-28 polarized microglia to an M2-like phenotype, reduced brain water content, deceased white matter injury, improved neurobehavioral performance, and reduced overall death rate after ICH. The protection of VK-28 was confirmed in a blood-injection ICH model and in aged-male and young female mice. Our findings indicate that VK-28 is protective against iron toxicity after ICH and that, at the dosage tested, it has better efficacy and less toxicity than DFX does.

  3. AoS28D, a proline-Xaa carboxypeptidase secreted by Aspergillus oryzae.

    Science.gov (United States)

    Salamin, Karine; Eugster, Philippe J; Jousson, Olivier; Waridel, Patrice; Grouzmann, Eric; Monod, Michel

    2017-05-01

    Prolyl peptidases of the MEROPS S28 family are of particular interest because they are key enzymes in the digestion of proline-rich peptides. A BLAST analysis of the Aspergillus oryzae genome revealed sequences coding for four proteases of the S28 family. Three of these proteases, AoS28A, AoS28B, and AoS28C, were previously characterized as acidic prolyl endopeptidases. The fourth protease, AoS28D, showed high sequence divergence with other S28 proteases and belongs to a phylogenetically distinct cluster together with orthologous proteases from other Aspergillus species. The objective of the present paper was to characterize AoS28D protease in terms of substrate specificity and activity. AoS28D produced by gene overexpression in A. oryzae and in Pichia pastoris was a 70-kDa glycoprotein with a 10-kDa sugar moiety. In contrast with other S28 proteases, AoS28D did not hydrolyze internal Pro-Xaa bonds of several tested peptides. Similarly, to human lysosomal Pro-Xaa carboxypeptidase, AoS28D demonstrated selectivity for cleaving C-terminal Pro-Xaa bonds which are resistant to carboxypeptidases of the S10 family concomitantly secreted by A. oryzae. Therefore, AoS28D could act in synergy with these enzymes during sequential degradation of a peptide from its C-terminus.

  4. Energy-efficient key distribution using electrocardiograph biometric set for secure communications in wireless body healthcare networks.

    Science.gov (United States)

    Shi, Jinyang; Lam, Kwok-Yan; Gu, Ming; Li, Mingze; Chung, Siu-Leung

    2011-10-01

    Wireless body sensor network (WBSN) has gained significant interests as an important infrastructure for real-time biomedical healthcare systems, while the security of the sensitive health information becomes one of the main challenges. Due to the constraints of limited power, traditional cryptographic key distribution schemes are not suitable for WBSN. This paper proposes a novel energy-efficient approach, BodyKey, which can distribute the keys using the electrocardiograph biometrics. BodyKey represents the biometric features as ordered set, and deals with the biometric variations using set reconciliation. In this way, only limited necessary information needs to be communicated for key agreement, and the total energy consumption for key distribution can thus be reduced. Experiments on the PhysioBank Database show that BodyKey can perform an energy consumption rate of 0.01 mJ/bit with an equal accuracy rate of 97.28%, allowing the system to be used as an energy-efficient key distribution scheme for secure communications in WBSN.

  5. Omcg1 is critically required for mitosis in rapidly dividing mouse intestinal progenitors and embryonic stem cells.

    Science.gov (United States)

    Léguillier, Teddy; Vandormael-Pournin, Sandrine; Artus, Jérôme; Houlard, Martin; Picard, Christel; Bernex, Florence; Robine, Sylvie; Cohen-Tannoudji, Michel

    2012-07-15

    Recent studies have shown that factors involved in transcription-coupled mRNA processing are important for the maintenance of genome integrity. How these processes are linked and regulated in vivo remains largely unknown. In this study, we addressed in the mouse model the function of Omcg1, which has been shown to participate in co-transcriptional processes, including splicing and transcription-coupled repair. Using inducible mouse models, we found that Omcg1 is most critically required in intestinal progenitors. In absence of OMCG1, proliferating intestinal epithelial cells underwent abnormal mitosis followed by apoptotic cell death. As a consequence, the crypt proliferative compartment of the small intestine was quickly and totally abrogated leading to the rapid death of the mice. Lack of OMCG1 in embryonic stem cells led to a similar cellular phenotype, with multiple mitotic defects and rapid cell death. We showed that mutant intestinal progenitors and embryonic stem cells exhibited a reduced cell cycle arrest following irradiation, suggesting that mitotic defects may be consecutive to M phase entry with unrepaired DNA damages. These findings unravel a crucial role for pre-mRNA processing in the homeostasis of the small intestine and point to a major role of OMCG1 in the maintenance of genome integrity.

  6. Omcg1 is critically required for mitosis in rapidly dividing mouse intestinal progenitors and embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Teddy Léguillier

    2012-05-01

    Recent studies have shown that factors involved in transcription-coupled mRNA processing are important for the maintenance of genome integrity. How these processes are linked and regulated in vivo remains largely unknown. In this study, we addressed in the mouse model the function of Omcg1, which has been shown to participate in co-transcriptional processes, including splicing and transcription-coupled repair. Using inducible mouse models, we found that Omcg1 is most critically required in intestinal progenitors. In absence of OMCG1, proliferating intestinal epithelial cells underwent abnormal mitosis followed by apoptotic cell death. As a consequence, the crypt proliferative compartment of the small intestine was quickly and totally abrogated leading to the rapid death of the mice. Lack of OMCG1 in embryonic stem cells led to a similar cellular phenotype, with multiple mitotic defects and rapid cell death. We showed that mutant intestinal progenitors and embryonic stem cells exhibited a reduced cell cycle arrest following irradiation, suggesting that mitotic defects may be consecutive to M phase entry with unrepaired DNA damages. These findings unravel a crucial role for pre-mRNA processing in the homeostasis of the small intestine and point to a major role of OMCG1 in the maintenance of genome integrity.

  7. Identification of a novel centrosomal protein CrpF46 involved in cell cycle progression and mitosis

    International Nuclear Information System (INIS)

    Wei Yi; Shen Enzhi; Zhao Na; Liu Qian; Fan Jinling; Marc, Jan; Wang Yongchao; Sun Le; Liang Qianjin

    2008-01-01

    A novel centrosome-related protein Crp F46 was detected using a serum F46 from a patient suffering from progressive systemic sclerosis. We identified the protein by immunoprecipitation and Western blotting followed by tandem mass spectrometry sequencing. The protein Crp F46 has an apparent molecular mass of ∼ 60 kDa, is highly homologous to a 527 amino acid sequence of the C-terminal portion of the protein Golgin-245, and appears to be a splice variant of Golgin-245. Immunofluorescence microscopy of synchronized HeLa cells labeled with an anti-Crp F46 monoclonal antibody revealed that Crp F46 localized exclusively to the centrosome during interphase, although it dispersed throughout the cytoplasm at the onset of mitosis. Domain analysis using Crp F46 fragments in GFP-expression vectors transformed into HeLa cells revealed that centrosomal targeting is conferred by a C-terminal coiled-coil domain. Antisense Crp F46 knockdown inhibited cell growth and proliferation and the cell cycle typically stalled at S phase. The knockdown also resulted in the formation of poly-centrosomal and multinucleate cells, which finally became apoptotic. These results suggest that Crp F46 is a novel centrosome-related protein that associates with the centrosome in a cell cycle-dependent manner and is involved in the progression of the cell cycle and M phase mechanism

  8. Conformational Landscape of the p28-Bound Human Proteasome Regulatory Particle.

    Science.gov (United States)

    Lu, Ying; Wu, Jiayi; Dong, Yuanchen; Chen, Shuobing; Sun, Shuangwu; Ma, Yong-Bei; Ouyang, Qi; Finley, Daniel; Kirschner, Marc W; Mao, Youdong

    2017-07-20

    The proteasome holoenzyme is activated by its regulatory particle (RP) consisting of two subcomplexes, the lid and the base. A key event in base assembly is the formation of a heterohexameric ring of AAA-ATPases, which is guided by at least four RP assembly chaperones in mammals: PAAF1, p28/gankyrin, p27/PSMD9, and S5b. Using cryogenic electron microscopy, we analyzed the non-AAA structure of the p28-bound human RP at 4.5 Å resolution and determined seven distinct conformations of the Rpn1-p28-AAA subcomplex within the p28-bound RP at subnanometer resolutions. Remarkably, the p28-bound AAA ring does not form a channel in the free RP and spontaneously samples multiple "open" and "closed" topologies at the Rpt2-Rpt6 and Rpt3-Rpt4 interfaces. Our analysis suggests that p28 assists the proteolytic core particle to select a specific conformation of the ATPase ring for RP engagement and is released in a shoehorn-like fashion in the last step of the chaperone-mediated proteasome assembly. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Restriction endonucleases from invasive Neisseria gonorrhoeae cause double-strand breaks and distort mitosis in epithelial cells during infection.

    Directory of Open Access Journals (Sweden)

    Linda Weyler

    Full Text Available The host epithelium is both a barrier against, and the target for microbial infections. Maintaining regulated cell growth ensures an intact protective layer towards microbial-induced cellular damage. Neisseria gonorrhoeae infections disrupt host cell cycle regulation machinery and the infection causes DNA double strand breaks that delay progression through the G2/M phase. We show that intracellular gonococci upregulate and release restriction endonucleases that enter the nucleus and damage human chromosomal DNA. Bacterial lysates containing restriction endonucleases were able to fragment genomic DNA as detected by PFGE. Lysates were also microinjected into the cytoplasm of cells in interphase and after 20 h, DNA double strand breaks were identified by 53BP1 staining. In addition, by using live-cell microscopy and NHS-ester stained live gonococci we visualized the subcellular location of the bacteria upon mitosis. Infected cells show dysregulation of the spindle assembly checkpoint proteins MAD1 and MAD2, impaired and prolonged M-phase, nuclear swelling, micronuclei formation and chromosomal instability. These data highlight basic molecular functions of how gonococcal infections affect host cell cycle regulation, cause DNA double strand breaks and predispose cellular malignancies.

  10. Restriction endonucleases from invasive Neisseria gonorrhoeae cause double-strand breaks and distort mitosis in epithelial cells during infection.

    Science.gov (United States)

    Weyler, Linda; Engelbrecht, Mattias; Mata Forsberg, Manuel; Brehwens, Karl; Vare, Daniel; Vielfort, Katarina; Wojcik, Andrzej; Aro, Helena

    2014-01-01

    The host epithelium is both a barrier against, and the target for microbial infections. Maintaining regulated cell growth ensures an intact protective layer towards microbial-induced cellular damage. Neisseria gonorrhoeae infections disrupt host cell cycle regulation machinery and the infection causes DNA double strand breaks that delay progression through the G2/M phase. We show that intracellular gonococci upregulate and release restriction endonucleases that enter the nucleus and damage human chromosomal DNA. Bacterial lysates containing restriction endonucleases were able to fragment genomic DNA as detected by PFGE. Lysates were also microinjected into the cytoplasm of cells in interphase and after 20 h, DNA double strand breaks were identified by 53BP1 staining. In addition, by using live-cell microscopy and NHS-ester stained live gonococci we visualized the subcellular location of the bacteria upon mitosis. Infected cells show dysregulation of the spindle assembly checkpoint proteins MAD1 and MAD2, impaired and prolonged M-phase, nuclear swelling, micronuclei formation and chromosomal instability. These data highlight basic molecular functions of how gonococcal infections affect host cell cycle regulation, cause DNA double strand breaks and predispose cellular malignancies.

  11. NLRP3 activation and mitosis are mutually exclusive events coordinated by NEK7, a new inflammasome component.

    Science.gov (United States)

    Shi, Hexin; Wang, Ying; Li, Xiaohong; Zhan, Xiaoming; Tang, Miao; Fina, Maggy; Su, Lijing; Pratt, David; Bu, Chun Hui; Hildebrand, Sara; Lyon, Stephen; Scott, Lindsay; Quan, Jiexia; Sun, Qihua; Russell, Jamie; Arnett, Stephanie; Jurek, Peter; Chen, Ding; Kravchenko, Vladimir V; Mathison, John C; Moresco, Eva Marie Y; Monson, Nancy L; Ulevitch, Richard J; Beutler, Bruce

    2016-03-01

    The NLRP3 inflammasome responds to microbes and danger signals by processing and activating proinflammatory cytokines, including interleukin 1β (IL-1β) and IL-18. We found here that activation of the NLRP3 inflammasome was restricted to interphase of the cell cycle by NEK7, a serine-threonine kinase previously linked to mitosis. Activation of the NLRP3 inflammasome required NEK7, which bound to the leucine-rich repeat domain of NLRP3 in a kinase-independent manner downstream of the induction of mitochondrial reactive oxygen species (ROS). This interaction was necessary for the formation of a complex containing NLRP3 and the adaptor ASC, oligomerization of ASC and activation of caspase-1. NEK7 promoted the NLRP3-dependent cellular inflammatory response to intraperitoneal challenge with monosodium urate and the development of experimental autoimmune encephalitis in mice. Our findings suggest that NEK7 serves as a cellular switch that enforces mutual exclusivity of the inflammasome response and cell division.

  12. NEK11: linking CHK1 and CDC25A in DNA damage checkpoint signaling

    DEFF Research Database (Denmark)

    Sørensen, Claus Storgaard; Melixetian, Marina; Klein, Ditte Kjaersgaard

    2010-01-01

    The DNA damage induced G(2)/M checkpoint is an important guardian of the genome that prevents cell division when DNA lesions are present. The checkpoint prevents cells from entering mitosis by degrading CDC25A, a key CDK activator. CDC25A proteolysis is controlled by direct phosphorylation events...... is required for beta-TrCP mediated CDC25A polyubiquitylation and degradation. The activity of NEK11 is in turn controlled by CHK1 that activates NEK11 via phosphorylation on serine 273. Since inhibition of NEK11 activity forces checkpoint-arrested cells into mitosis and cell death, NEK11 is, like CHK1...

  13. Nonperiodic activity of the human anaphase-promoting complex-Cdh1 ubiquitin ligase results in continuous DNA synthesis uncoupled from mitosis

    DEFF Research Database (Denmark)

    Lukas, C; Kramer, E R; Peters, J M

    2000-01-01

    Ubiquitin-proteasome-mediated destruction of rate-limiting proteins is required for timely progression through the main cell cycle transitions. The anaphase-promoting complex (APC), periodically activated by the Cdh1 subunit, represents one of the major cellular ubiquitin ligases which, in Saccha......Ubiquitin-proteasome-mediated destruction of rate-limiting proteins is required for timely progression through the main cell cycle transitions. The anaphase-promoting complex (APC), periodically activated by the Cdh1 subunit, represents one of the major cellular ubiquitin ligases which......, in Saccharomyces cerevisiae and Drosophila spp., triggers exit from mitosis and during G(1) prevents unscheduled DNA replication. In this study we investigated the importance of periodic oscillation of the APC-Cdh1 activity for the cell cycle progression in human cells. We show that conditional interference...... transition and lowered the rate of DNA synthesis during S phase, some of the activities essential for DNA replication became markedly amplified, mainly due to a progressive increase of E2F-dependent cyclin E transcription and a rapid turnover of the p27(Kip1) cyclin-dependent kinase inhibitor. Consequently...

  14. 28 CFR 28.12 - Collection of DNA samples.

    Science.gov (United States)

    2010-07-01

    ... Homeland Security, collecting DNA samples from: (1) Aliens lawfully in, or being processed for lawful... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Collection of DNA samples. 28.12 Section 28.12 Judicial Administration DEPARTMENT OF JUSTICE DNA IDENTIFICATION SYSTEM DNA Sample Collection...

  15. 1.28-Tb/s Demultiplexing of an OTDM DPSK Data Signal Using a Silicon Waveguide

    DEFF Research Database (Denmark)

    Ji, Hua; Galili, Michael; Hu, Hao

    2010-01-01

    This letter demonstrates optical demultiplexing of a 1.28-Tb/s serial differential phase-shift-keying data signal using a nano-engineered silicon waveguide. We first present error-free performance at 640 Gb/s and then at 1.28 Tb/s with characterization of all 128 channels. Bit-error rates below $10...

  16. Electronic structure of C28, Pa at sign C28, and U at sign C28

    International Nuclear Information System (INIS)

    Zhao, K.; Pitzer, R.M.

    1996-01-01

    Electronic structure calculations, including relativistic core potentials and the spin-orbit interaction, have been carried out on the C 28 , Pa at sign C 28 , and U at sign C 28 species. Excitation energies, spin-orbit splittings, the electron affinity, and the ionization potential are computed for C 28 . The ground state of C 28 is described well by the Hartree-Fock wave functions, but other states are not. The computed electron affinity and ionization potential are similar to those of C 60 . Strong metal-cage binding is found for Pa at sign C 28 and U at sign C 28 , similar to that in U(C 8 H 8 ) 2 . The ground electronic states depend on the order of the lowest-energy cage π * and metal 5f orbitals, with (π * ) 1 and (π * ) 1 (5f) 1 found to be the ground electronic configurations for the two complexes. U at sign C 28 is found to be diamagnetic. 30 refs., 1 fig., 13 tabs

  17. CDK-mediated activation of the SCF(FBXO) (28) ubiquitin ligase promotes MYC-driven transcription and tumourigenesis and predicts poor survival in breast cancer

    DEFF Research Database (Denmark)

    Cepeda, Diana; Ng, Hwee-Fang; Sharifi, Hamid Reza

    2013-01-01

    SCF (Skp1/Cul1/F-box) ubiquitin ligases act as master regulators of cellular homeostasis by targeting key proteins for ubiquitylation. Here, we identified a hitherto uncharacterized F-box protein, FBXO28 that controls MYC-dependent transcription by non-proteolytic ubiquitylation. SCF(FBXO28...... results in an impairment of MYC-driven transcription, transformation and tumourigenesis. Finally, in human breast cancer, high FBXO28 expression and phosphorylation are strong and independent predictors of poor outcome. In conclusion, our data suggest that SCF(FBXO28) plays an important role...... in transmitting CDK activity to MYC function during the cell cycle, emphasizing the CDK-FBXO28-MYC axis as a potential molecular drug target in MYC-driven cancers, including breast cancer....

  18. Zeatin is indispensable for the G2-M transition in tobacco BY-2 cells.

    Science.gov (United States)

    Laureys, F; Dewitte, W; Witters, E; Van Montagu, M; Inzé, D; Van Onckelen, H

    1998-04-10

    The importance of N6-isoprenoid cytokinins in the G2-M transition of Nicotiana tabacum BY-2 cells was investigated. Both cytokinin biosynthesis and entry in mitosis were partially blocked by application at early or late G2 of lovastatin (10 microM), an inhibitor of mevalonic acid synthesis. LC-MS/MS quantification of endogenous cytokinins proved that lovastatin affects cytokinin biosynthesis by inhibiting HMG-CoA reductase. Out of eight different aminopurines and a synthetic auxin tested for their ability to override lovastatin inhibition of mitosis, only zeatin was active. Our data point to a key role for a well-defined cytokinin (here, zeatin) in the G2-M transition of tobacco BY-2 cells.

  19. Correlation between conductivity and prognostic factors in invasive breast cancer using magnetic resonance electric properties tomography (MREPT)

    International Nuclear Information System (INIS)

    Kim, Soo-Yeon; Kim, Min Jung; Kim, Eun-Kyung; Moon, Hee Jung; Yoon, Jung Hyun; Shin, Jaewook; Kim, Dong-Hyun

    2016-01-01

    To investigate the correlation between conductivity and prognostic factors of invasive breast cancer using magnetic resonance electric properties tomography (MREPT). This retrospective study was approved by the Institutional Review Board, and verbal informed consent was obtained prior to breast MRI. This study included 65 women with surgically confirmed invasive breast cancers measuring 1 cm or larger on T2-weighted fast spin echo (FSE). Phase-based MREPT and the coil combination technique were used to reconstruct conductivity. Simple and multiple linear regression analysis were used to find an independent factor associated with conductivity. In total tumours, tumours with HER-2 overexpression showed lower conductivity than those without, and HER-2 overexpression was independently associated with conductivity. In 37 tumours 2 cm or larger, tumours with high mitosis or PR positivity showed higher conductivity than those without, and high mitosis and PR positivity were independently associated with conductivity. In 28 tumours 1-2 cm in size, there were no differences in conductivity according to the prognostic factors. Conductivity values measured using MREPT are associated with the HER-2 overexpression status, and may provide information about mitosis and the PR status of invasive breast cancers 2 cm or larger. (orig.)

  20. Mediator Subunit Med28 Is Essential for Mouse Peri-Implantation Development and Pluripotency.

    Directory of Open Access Journals (Sweden)

    Lin Li

    Full Text Available The multi-subunit mammalian Mediator complex acts as an integrator of transcriptional regulation by RNA Polymerase II, and has emerged as a master coordinator of development and cell fate determination. We previously identified the Mediator subunit, MED28, as a cytosolic binding partner of merlin, the Neurofibromatosis 2 (NF2 tumor suppressor, and thus MED28 is distinct in having a cytosolic role as an NF2 interacting protein as well as a nuclear role as a Mediator complex subunit. Although limited in vitro studies have been performed on MED28, its in vivo function remains unknown. Employing a knockout mouse model, we describe for the first time the requirement for Med28 in the developing mouse embryo. Med28-deficiency causes peri-implantation lethality resulting from the loss of pluripotency of the inner cell mass accompanied by reduced expression of key pluripotency transcription factors Oct4 and Nanog. Further, overexpression of Med28 in mouse embryonic fibroblasts enhances the efficiency of their reprogramming to pluripotency. Cre-mediated inactivation of Med28 in induced pluripotent stem cells shows that Med28 is required for their survival. Intriguingly, heterozygous loss of Med28 results in differentiation of induced pluripotent stem cells into extraembryonic trophectoderm and primitive endoderm lineages. Our findings document the essential role of Med28 in the developing embryo as well as in acquisition and maintenance of pluripotency during reprogramming.

  1. Resolution of telomere associations by TRF1 cleavage in mouse embryonic stem cells

    NARCIS (Netherlands)

    Lisaingo, Kathleen; Uringa, Evert-Jan; Lansdorp, Peter M.

    2014-01-01

    Telomere associations have been observed during key cellular processes such as mitosis, meiosis, and carcinogenesis and must be resolved before cell division to prevent genome instability. Here we establish that telomeric repeat-binding factor 1 (TRF1), a core component of the telomere protein

  2. TACC3 Is Important for Correct Progression of Meiosis in Bovine Oocytes

    NARCIS (Netherlands)

    Mahdipour, Mahdi; Leitoguinho, Ana Rita Canhoto; Zacarias Silva, Ricardo A; van Tol, Helena T A; Stout, Tom A E; Rodrigues, Gabriela; Roelen, Bernard A J

    2015-01-01

    Transforming acidic coiled-coil (TACC) proteins are key players during mitosis via stabilization of the spindle. The roles of TACCs during meiosis are however less clear. We used bovine oocytes to study the expression and function of TACC3 during meiosis. TACC3 mRNA was detected in bovine oocytes

  3. Cytoskeletal dynamics in interphase, mitosis and cytokinesis analysed through Agrobacterium-mediated transient transformation of tobacco BY-2 cells.

    Science.gov (United States)

    Buschmann, H; Green, P; Sambade, A; Doonan, J H; Lloyd, C W

    2011-04-01

    Transient transformation with Agrobacterium is a widespread tool allowing rapid expression analyses in plants. However, the available methods generate expression in interphase and do not allow the routine analysis of dividing cells. Here, we present a transient transformation method (termed 'TAMBY2') to enable cell biological studies in interphase and cell division. Agrobacterium-mediated transient gene expression in tobacco BY-2 was analysed by Western blotting and quantitative fluorescence microscopy. Time-lapse microscopy of cytoskeletal markers was employed to monitor cell division. Double-labelling in interphase and mitosis enabled localization studies. We found that the transient transformation efficiency was highest when BY-2/Agrobacterium co-cultivation was performed on solid medium. Transformants produced in this way divided at high frequency. We demonstrated the utility of the method by defining the behaviour of a previously uncharacterized microtubule motor, KinG, throughout the cell cycle. Our analyses demonstrated that TAMBY2 provides a flexible tool for the transient transformation of BY-2 with Agrobacterium. Fluorescence double-labelling showed that KinG localizes to microtubules and to F-actin. In interphase, KinG accumulates on microtubule lagging ends, suggesting a minus-end-directed function in vivo. Time-lapse studies of cell division showed that GFP-KinG strongly labels preprophase band and phragmoplast, but not the metaphase spindle. © 2010 The Authors. New Phytologist © 2010 New Phytologist Trust.

  4. Residential Energy Efficiency Research Planning Meeting Summary Report: Washington, D.C. - October 27-28, 2011

    Energy Technology Data Exchange (ETDEWEB)

    2012-02-01

    This report summarizes key findings and outcomes from the U.S. Department of Energy's Building America Residential Energy Efficiency Research Planning meeting, held on October 28-29, 2011, in Washington, D.C.

  5. Methamidophos alters sperm function and DNA at different stages of spermatogenesis in mice

    International Nuclear Information System (INIS)

    Urióstegui-Acosta, Mayrut; Hernández-Ochoa, Isabel; Sánchez-Gutiérrez, Manuel; Piña-Guzmán, Belem; Rafael-Vázquez, Leticia; Solís-Heredia, M.J.; Martínez-Aguilar, Gerardo; Quintanilla-Vega, Betzabet

    2014-01-01

    Methamidophos (MET) is a highly toxic organophosphate (OP) pesticide that is widely used in developing countries. MET has male reproductive effects, including decreased fertility. We evaluated MET effects on sperm quality, fertilization and DNA integrity, exploring the sensitivity of different stages of spermatogenesis. Adult male mice received MET (3.75 or 5 mg/kg-bw/ip/day/4 days) and were euthanized 1, 28 or 45 days post-treatment (dpt) to evaluate MET's effects on epididymal maturation, meiosis or mitosis, respectively. Spermatozoa were obtained from the cauda epididymis–vas deferens and were evaluated for sperm quality, acrosome reaction (AR; Coomassie staining), mitochondrial membrane potential (by JC-1), DNA damage (comet assay), oxidative damage (malondialdehyde (MDA) production), in vitro fertilization and protein phosphorylation (immunodetection), and erythrocyte acetylcholinesterase (AChE) activity. At 1-dpt, MET inhibited AChE (43–57%) and increased abnormal cells (6%). While at 28- and 45-dpt, sperm motility and viability were significantly reduced with an increasing MET dose, and abnormal morphology increased at 5 mg/kg/day/4 days. MDA and mitochondrial activity were not affected at any dose or time. DNA damage (OTM and %DNA) was observed at 5 mg/kg/day/4 days in a time-dependent manner, whereas both parameters were altered in cells from mice exposed to 3.75 mg/kg/day/4 days only at 28-dpt. Depending on the time of collection, initial-, spontaneous- and induced-AR were altered at 5 mg/kg/day/4 days, and the fertilization capacity also decreased. Sperm phosphorylation (at serine and tyrosine residues) was observed at all time points. Data suggest that meiosis and mitosis are the more sensitive stages of spermatogenesis for MET reproductive toxicity compared to epididymal maturation. - Highlights: • Methamidophos alters sperm cell function at different stages of spermatogenesis. • Testicular stages of spermatogenesis are more sensitive to

  6. Methamidophos alters sperm function and DNA at different stages of spermatogenesis in mice

    Energy Technology Data Exchange (ETDEWEB)

    Urióstegui-Acosta, Mayrut; Hernández-Ochoa, Isabel [Departamento de Toxicología, CINVESTAV-IPN, D.F. (Mexico); Sánchez-Gutiérrez, Manuel [Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Hidalgo (Mexico); Piña-Guzmán, Belem [Instituto Politécnico Nacional-UPIBI, D.F. (Mexico); Rafael-Vázquez, Leticia; Solís-Heredia, M.J.; Martínez-Aguilar, Gerardo [Departamento de Toxicología, CINVESTAV-IPN, D.F. (Mexico); Quintanilla-Vega, Betzabet, E-mail: mquintan@cinvestav.mx [Departamento de Toxicología, CINVESTAV-IPN, D.F. (Mexico)

    2014-09-15

    Methamidophos (MET) is a highly toxic organophosphate (OP) pesticide that is widely used in developing countries. MET has male reproductive effects, including decreased fertility. We evaluated MET effects on sperm quality, fertilization and DNA integrity, exploring the sensitivity of different stages of spermatogenesis. Adult male mice received MET (3.75 or 5 mg/kg-bw/ip/day/4 days) and were euthanized 1, 28 or 45 days post-treatment (dpt) to evaluate MET's effects on epididymal maturation, meiosis or mitosis, respectively. Spermatozoa were obtained from the cauda epididymis–vas deferens and were evaluated for sperm quality, acrosome reaction (AR; Coomassie staining), mitochondrial membrane potential (by JC-1), DNA damage (comet assay), oxidative damage (malondialdehyde (MDA) production), in vitro fertilization and protein phosphorylation (immunodetection), and erythrocyte acetylcholinesterase (AChE) activity. At 1-dpt, MET inhibited AChE (43–57%) and increased abnormal cells (6%). While at 28- and 45-dpt, sperm motility and viability were significantly reduced with an increasing MET dose, and abnormal morphology increased at 5 mg/kg/day/4 days. MDA and mitochondrial activity were not affected at any dose or time. DNA damage (OTM and %DNA) was observed at 5 mg/kg/day/4 days in a time-dependent manner, whereas both parameters were altered in cells from mice exposed to 3.75 mg/kg/day/4 days only at 28-dpt. Depending on the time of collection, initial-, spontaneous- and induced-AR were altered at 5 mg/kg/day/4 days, and the fertilization capacity also decreased. Sperm phosphorylation (at serine and tyrosine residues) was observed at all time points. Data suggest that meiosis and mitosis are the more sensitive stages of spermatogenesis for MET reproductive toxicity compared to epididymal maturation. - Highlights: • Methamidophos alters sperm cell function at different stages of spermatogenesis. • Testicular stages of spermatogenesis are more sensitive to

  7. Securing quantum key distribution systems using fewer states

    Science.gov (United States)

    Islam, Nurul T.; Lim, Charles Ci Wen; Cahall, Clinton; Kim, Jungsang; Gauthier, Daniel J.

    2018-04-01

    Quantum key distribution (QKD) allows two remote users to establish a secret key in the presence of an eavesdropper. The users share quantum states prepared in two mutually unbiased bases: one to generate the key while the other monitors the presence of the eavesdropper. Here, we show that a general d -dimension QKD system can be secured by transmitting only a subset of the monitoring states. In particular, we find that there is no loss in the secure key rate when dropping one of the monitoring states. Furthermore, it is possible to use only a single monitoring state if the quantum bit error rates are low enough. We apply our formalism to an experimental d =4 time-phase QKD system, where only one monitoring state is transmitted, and obtain a secret key rate of 17.4 ±2.8 Mbits/s at a 4 dB channel loss and with a quantum bit error rate of 0.045 ±0.001 and 0.037 ±0.001 in time and phase bases, respectively, which is 58.4% of the secret key rate that can be achieved with the full setup. This ratio can be increased, potentially up to 100%, if the error rates in time and phase basis are reduced. Our results demonstrate that it is possible to substantially simplify the design of high-dimensional QKD systems, including those that use the spatial or temporal degrees of freedom of the photon, and still outperform qubit-based (d =2 ) protocols.

  8. Cyclin F suppresses B-Myb activity to promote cell cycle checkpoint control

    DEFF Research Database (Denmark)

    Klein, Ditte Kjærsgaard; Hoffmann, Saskia; Ahlskog, Johanna K

    2015-01-01

    an important role in checkpoint control following ionizing radiation. Cyclin F-depleted cells initiate checkpoint signalling after ionizing radiation, but fail to maintain G2 phase arrest and progress into mitosis prematurely. Importantly, cyclin F suppresses the B-Myb-driven transcriptional programme...... that promotes accumulation of crucial mitosis-promoting proteins. Cyclin F interacts with B-Myb via the cyclin box domain. This interaction is important to suppress cyclin A-mediated phosphorylation of B-Myb, a key step in B-Myb activation. In summary, we uncover a regulatory mechanism linking the F-box protein...

  9. Structural and functional analysis of the human spliceosomal DEAD-box helicase Prp28

    Energy Technology Data Exchange (ETDEWEB)

    Möhlmann, Sina [Georg-August-University Göttingen, Justus-von-Liebig Weg 11, 37077 Göttingen (Germany); Mathew, Rebecca [Max-Planck-Institute for Biophysical Chemistry, Am Fassberg, 37077 Göttingen (Germany); Neumann, Piotr; Schmitt, Andreas [Georg-August-University Göttingen, Justus-von-Liebig Weg 11, 37077 Göttingen (Germany); Lührmann, Reinhard [Max-Planck-Institute for Biophysical Chemistry, Am Fassberg, 37077 Göttingen (Germany); Ficner, Ralf, E-mail: rficner@uni-goettingen.de [Georg-August-University Göttingen, Justus-von-Liebig Weg 11, 37077 Göttingen (Germany)

    2014-06-01

    The crystal structure of the helicase domain of the human spliceosomal DEAD-box protein Prp28 was solved by SAD. The binding of ADP and ATP by Prp28 was studied biochemically and analysed with regard to the crystal structure. The DEAD-box protein Prp28 is essential for pre-mRNA splicing as it plays a key role in the formation of an active spliceosome. Prp28 participates in the release of the U1 snRNP from the 5′-splice site during association of the U5·U4/U6 tri-snRNP, which is a crucial step in the transition from a pre-catalytic spliceosome to an activated spliceosome. Here, it is demonstrated that the purified helicase domain of human Prp28 (hPrp28ΔN) binds ADP, whereas binding of ATP and ATPase activity could not be detected. ATP binding could not be observed for purified full-length hPrp28 either, but within an assembled spliceosomal complex hPrp28 gains ATP-binding activity. In order to understand the structural basis for the ATP-binding deficiency of isolated hPrp28, the crystal structure of hPrp28ΔN was determined at 2.0 Å resolution. In the crystal the helicase domain adopts a wide-open conformation, as the two RecA-like domains are extraordinarily displaced from the productive ATPase conformation. Binding of ATP is hindered by a closed conformation of the P-loop, which occupies the space required for the γ-phosphate of ATP.

  10. Molecular resonances in 28SI + 28Si - Wobbling motions observed by angular correlation measurements

    International Nuclear Information System (INIS)

    Uegaki, E.; Abe, Y.

    2014-01-01

    High-spin resonances observed in 28 Si+ 28 Si collisions are studied with a dinuclear molecular model. At high spins, a stable dinuclear configuration of the oblate-oblate system ( 28 Si+ 28 Si) is found to be an equator-equator (E-E) touching one. Normal modes have been investigated around the equilibrium, which are expected to be an origin of a large number of the resonances observed. Analyses of physical quantities are made and compared with the recent experimental data measured at Strasbourg. Since the E-E configuration is slightly triaxial, rotations of the total system induce mixing of K quantum numbers, called wobbling motion, which clearly explains the particle-γ angular correlations observed as well as the misalignments observed in the angular distributions, in a simple and natural way. Furthermore, predictions are given for the angular correlations of the wobbling excited states. The importance of the angular correlation measurements is stressed, which provide identification of the dinuclear configurations by spin orientations of the constituent nuclei 28 Si. (authors)

  11. CDK-mediated activation of the SCFFBXO28 ubiquitin ligase promotes MYC-driven transcription and tumourigenesis and predicts poor survival in breast cancer

    Science.gov (United States)

    Cepeda, Diana; Ng, Hwee-Fang; Sharifi, Hamid Reza; Mahmoudi, Salah; Cerrato, Vanessa Soto; Fredlund, Erik; Magnusson, Kristina; Nilsson, Helén; Malyukova, Alena; Rantala, Juha; Klevebring, Daniel; Viñals, Francesc; Bhaskaran, Nimesh; Zakaria, Siti Mariam; Rahmanto, Aldwin Suryo; Grotegut, Stefan; Nielsen, Michael Lund; Szigyarto, Cristina Al-Khalili; Sun, Dahui; Lerner, Mikael; Navani, Sanjay; Widschwendter, Martin; Uhlén, Mathias; Jirström, Karin; Pontén, Fredrik; Wohlschlegel, James; Grandér, Dan; Spruck, Charles; Larsson, Lars-Gunnar; Sangfelt, Olle

    2013-01-01

    SCF (Skp1/Cul1/F-box) ubiquitin ligases act as master regulators of cellular homeostasis by targeting key proteins for ubiquitylation. Here, we identified a hitherto uncharacterized F-box protein, FBXO28 that controls MYC-dependent transcription by non-proteolytic ubiquitylation. SCFFBXO28 activity and stability are regulated during the cell cycle by CDK1/2-mediated phosphorylation of FBXO28, which is required for its efficient ubiquitylation of MYC and downsteam enhancement of the MYC pathway. Depletion of FBXO28 or overexpression of an F-box mutant unable to support MYC ubiquitylation results in an impairment of MYC-driven transcription, transformation and tumourigenesis. Finally, in human breast cancer, high FBXO28 expression and phosphorylation are strong and independent predictors of poor outcome. In conclusion, our data suggest that SCFFBXO28 plays an important role in transmitting CDK activity to MYC function during the cell cycle, emphasizing the CDK-FBXO28-MYC axis as a potential molecular drug target in MYC-driven cancers, including breast cancer. PMID:23776131

  12. Two-Dimensional Key Table-Based Group Key Distribution in Advanced Metering Infrastructure

    Directory of Open Access Journals (Sweden)

    Woong Go

    2014-01-01

    Full Text Available A smart grid provides two-way communication by using the information and communication technology. In order to establish two-way communication, the advanced metering infrastructure (AMI is used in the smart grid as the core infrastructure. This infrastructure consists of smart meters, data collection units, maintenance data management systems, and so on. However, potential security problems of the AMI increase owing to the application of the public network. This is because the transmitted information is electricity consumption data for charging. Thus, in order to establish a secure connection to transmit electricity consumption data, encryption is necessary, for which key distribution is required. Further, a group key is more efficient than a pairwise key in the hierarchical structure of the AMI. Therefore, we propose a group key distribution scheme using a two-dimensional key table through the analysis result of the sensor network group key distribution scheme. The proposed scheme has three phases: group key predistribution, selection of group key generation element, and generation of group key.

  13. Using "Chromosomal Socks" to Demonstrate Ploidy in Mitosis and Meiosis

    Science.gov (United States)

    Chinnici, Joseph P.; Neth, Somalin Zaroh; Sherman, Leah R.

    2006-01-01

    Today, many biology instructors use visual models to help students understand abstract concepts like cell division. For all biology instructors, dealing with student misconceptions of cell division may seem hopeless at times--even after using visual models. Although student errors in cell division are built around the three key events of cell…

  14. Tripolar acytokinetic mitosis and formation of feto-maternal syncytia in the bovine placentome: different modes of the generation of multinuclear cells.

    Science.gov (United States)

    Klisch, K; Pfarrer, C; Schuler, G; Hoffmann, B; Leiser, R

    1999-08-01

    The vast majority of trophoblast giant cells in the ruminant placenta are binuclear and are believed to derive from mononuclear trophoblastic cells by a single acytokinetic mitosis. There is no satisfactory explanation for the generation of the small proportion of trophoblast giant cells with one, three, or more nuclei. In this light-and electronmicroscopic study of bovine placentomal tissue from the second half of gestation, developmental stages of the trophoblast giant cells are investigated. Large mitotic figures indicate mitotic polyploidization, which is proposed to be due to two subsequent acytokinetic mitoses. Tripolar mitoses offer an explanation for the development of trinucleate trophoblast giant cells. Measurements of nuclear volumes in a series of semithin sections revealed that three size classes of trophoblast giant cells occur. The approximately doubling of nuclear volume between each class is thought to reflect different levels of DNA content that result from polyploidization in this cell type. Although trinuclear feto-maternal hybrid cells are the standard outcome of the fusion of binuclear trophoblast giant cells with uterine epithelial cells, some syncytia with at least five nuclei were observed in the uterine epithelium.

  15. 28 CFR 68.28 - Authority of Administrative Law Judge.

    Science.gov (United States)

    2010-07-01

    ....28 Section 68.28 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) RULES OF PRACTICE AND... UNLAWFUL EMPLOYMENT OF ALIENS, UNFAIR IMMIGRATION-RELATED EMPLOYMENT PRACTICES, AND DOCUMENT FRAUD § 68.28... so, any pertinent book, paper, or document, or refuses to appear after having been subpoenaed, or...

  16. Therapeutic intervention scoring system-28 (TISS-28: diretrizes para aplicação Therapeutic intervention scoring system-28 (tiss-28: directrices para su aplicación Therapeutic intervention scoring system-28 (tiss-28: directions for application

    Directory of Open Access Journals (Sweden)

    Katia Grillo Padilha

    2005-06-01

    Full Text Available O Therapeutic Intervention Scoring System-28 (TISS-28 é um instrumento que permite dimensionar carga de trabalho de enfermagem em Unidade de Terapia Intensiva e estimar gravidade da doença. Apresenta-se nesta publicação as definições operacionais para sua aplicação, proposta por um grupo de especialistas na área, com vistas a uniformizar o significado de cada um dos itens e evitar vieses de interpretação.El Therapeutic Intervention Scoring System-28 (TISS-28 es un instrumento que permite dimensionar carga de trabajo de enfermería en una Unidad de Terapia Intensiva y estimar la gravedad de la enfermedad. Se presenta en esta publicación las definiciones operacionales para su aplicación, propuesta por un grupo de especialistas en el área, con vistas a uniformizar el significado de cada uno de los items y evitar sesgos de interpretación.Therapeutic Intervention Scoring System-28 (TISS-28 is a tool that enables the measurement of the nursing work load in Intensive Care Units and the estimate of how grave the disease is. In this study are presented the operational definitions for its application, proposed by a group of specialists in the area, with the aim of rendering uniform the meaning of each of the items and preventing interpretation biases.

  17. The Aurora A-HP1γ pathway regulates gene expression and mitosis in cells from the sperm lineage.

    Science.gov (United States)

    Leonard, Phoebe H; Grzenda, Adrienne; Mathison, Angela; Morbeck, Dean E; Fredrickson, Jolene R; de Assuncao, Thiago M; Christensen, Trace; Salisbury, Jeffrey; Calvo, Ezequiel; Iovanna, Juan; Coddington, Charles C; Urrutia, Raul; Lomberk, Gwen

    2015-05-29

    HP1γ, a well-known regulator of gene expression, has been recently identified to be a target of Aurora A, a mitotic kinase which is important for both gametogenesis and embryogenesis. The purpose of this study was to define whether the Aurora A-HP1γ pathway supports cell division of gametes and/or early embryos, using western blot, immunofluorescence, immunohistochemistry, electron microscopy, shRNA-based knockdown, site-directed mutagenesis, and Affymetrix-based genome-wide expression profiles. We find that the form of HP1γ phosphorylated by Aurora A, P-Ser83 HP1γ, is a passenger protein, which localizes to the spermatozoa centriole and axoneme. In addition, disruption in this pathway causes centrosomal abnormalities and aberrations in cell division. Expression profiling of male germ cell lines demonstrates that HP1γ phosphorylation is critical for the regulation of mitosis-associated gene expression networks. In female gametes, we observe that P-Ser83-HP1γ is not present in meiotic centrosomes of M2 oocytes, but after syngamy, it becomes detectable during cleavage divisions, coinciding with early embryonic genome activation. These results support the idea that phosphorylation of HP1γ by Aurora A plays a role in the regulation of gene expression and mitotic cell division in cells from the sperm lineage and in early embryos. Combined, this data is relevant to better understanding the function of HP1γ in reproductive biology.

  18. The Cytokinin Requirement for Cell Division in Cultured Nicotiana plumbaginifolia Cells Can Be Satisfied by Yeast Cdc25 Protein Tyrosine Phosphatase. Implications for Mechanisms of Cytokinin Response and Plant Development

    Science.gov (United States)

    Zhang, Kerong; Diederich, Ludger; John, Peter C.L.

    2005-01-01

    Cultured cells of Nicotiana plumbaginifolia, when deprived of exogenous cytokinin, arrest in G2 phase prior to mitosis and then contain cyclin-dependent protein kinase (CDK) that is inactive because phosphorylated on tyrosine (Tyr). The action of cytokinin in stimulating the activation of CDK by removal of inhibitory phosphorylation from Tyr is not a secondary downstream consequence of other hormone actions but is the key primary effect of the hormone in its stimulation of cell proliferation, since cytokinin could be replaced by expression of cdc25, which encodes the main Cdc2 (CDK)-Tyr dephosphorylating enzyme of yeast (Saccharomyces cerevisiae). The cdc25 gene, under control of a steroid-inducible promoter, induced a rise in cdc25 mRNA, accumulation of p67Cdc25 protein, and increase in Cdc25 phosphatase activity that was measured in vitro with Tyr-phosphorylated Cdc2 as substrate. Cdc25 phosphatase activity peaked during mitotic prophase at the time CDK activation was most rapid. Mitosis that was induced by cytokinin also involved increase in endogenous plant CDK Tyr phosphatase activity during prophase, therefore indicating that this is a normal part of plant mitosis. These results suggest a biochemical mechanism for several previously described transgene phenotypes in whole plants and suggest that a primary signal from cytokinin leading to progression through mitosis is the activation of CDK by dephosphorylation of Tyr. PMID:15618425

  19. The cytokinin requirement for cell division in cultured Nicotiana plumbaginifolia cells can be satisfied by yeast Cdc25 protein tyrosine phosphatase: implications for mechanisms of cytokinin response and plant development.

    Science.gov (United States)

    Zhang, Kerong; Diederich, Ludger; John, Peter C L

    2005-01-01

    Cultured cells of Nicotiana plumbaginifolia, when deprived of exogenous cytokinin, arrest in G2 phase prior to mitosis and then contain cyclin-dependent protein kinase (CDK) that is inactive because phosphorylated on tyrosine (Tyr). The action of cytokinin in stimulating the activation of CDK by removal of inhibitory phosphorylation from Tyr is not a secondary downstream consequence of other hormone actions but is the key primary effect of the hormone in its stimulation of cell proliferation, since cytokinin could be replaced by expression of cdc25, which encodes the main Cdc2 (CDK)-Tyr dephosphorylating enzyme of yeast (Saccharomyces cerevisiae). The cdc25 gene, under control of a steroid-inducible promoter, induced a rise in cdc25 mRNA, accumulation of p67(Cdc25) protein, and increase in Cdc25 phosphatase activity that was measured in vitro with Tyr-phosphorylated Cdc2 as substrate. Cdc25 phosphatase activity peaked during mitotic prophase at the time CDK activation was most rapid. Mitosis that was induced by cytokinin also involved increase in endogenous plant CDK Tyr phosphatase activity during prophase, therefore indicating that this is a normal part of plant mitosis. These results suggest a biochemical mechanism for several previously described transgene phenotypes in whole plants and suggest that a primary signal from cytokinin leading to progression through mitosis is the activation of CDK by dephosphorylation of Tyr.

  20. Ciona intestinalis as a Marine Model System to Study Some Key Developmental Genes Targeted by the Diatom-Derived Aldehyde Decadienal

    Directory of Open Access Journals (Sweden)

    Anna Lettieri

    2015-03-01

    Full Text Available The anti-proliferative effects of diatoms, described for the first time in copepods, have also been demonstrated in benthic invertebrates such as polychaetes, sea urchins and tunicates. In these organisms PUAs (polyunsaturated aldehydes induce the disruption of gametogenesis, gamete functionality, fertilization, embryonic mitosis, and larval fitness and competence. These inhibitory effects are due to the PUAs, produced by diatoms in response to physical damage as occurs during copepod grazing. The cell targets of these compounds remain largely unknown. Here we identify some of the genes targeted by the diatom PUA 2-trans-4-trans-decadienal (DD using the tunicate Ciona intestinalis. The tools, techniques and genomic resources available for Ciona, as well as the suitability of Ciona embryos for medium-to high-throughput strategies, are key to their employment as model organisms in different fields, including the investigation of toxic agents that could interfere with developmental processes. We demonstrate that DD can induce developmental aberrations in Ciona larvae in a dose-dependent manner. Moreover, through a preliminary analysis, DD is shown to affect the expression level of genes involved in stress response and developmental processes.

  1. ''Protective'' effect of cells gamma-irradiation at the metaphase of mitosis after UV-irradiation at the S-period

    Energy Technology Data Exchange (ETDEWEB)

    Lebedeva, L I; Chubykin, V L [AN SSSR, Novosibirsk. Inst. Tsitologii i Genetiki

    1975-10-01

    As a result of the ultraviolet irradiation in vitro of the embryo fibroblasts of BALB mice in the S-stage with an incident dose of 40 erg/mm/sup 2/, 20.1% cells showed chromosome aberrations. Additional gamma irradiation of cells in the metaphase of the first mitosis with a dose of 5 krad leads with a high degree of certainty to a decrease to 11.7% in the frequency of aberrant cells observed in the same mitotic stage. The frequency of spontaneous aberrations does not change during the first few minutes after the gamma irradiation of intact cells. The ''protective'' effect of gamma rays cannot be attributed to non-uniform changes in the duration of the mitotic stages for aberrant and normal cells, to the adhesion of chromosome fragments or to the breaking of bridges in the anaphase. The destruction of cells during irradiation is also an unlikely explanation of the observed effect. It is assumed that the decrease in the frequency of aberrations is a result of the previously predicted modification of the processes involved, when potential chromosome damage becomes visible abberations during metaphase.

  2. Colorectal cancer screening in countries of European Council outside of the EU-28.

    Science.gov (United States)

    Altobelli, Emma; D'Aloisio, Francesco; Angeletti, Paolo Matteo

    2016-05-28

    To provide an update on colorectal cancer (CRC) screening programmes in non-European Union (EU)-28 Council of Europe member states as of December 2015. The mission of the Council of Europe is to protect and promote human rights in its 47 member countries. Its 19 non-EU member states are Albania, Andorra, Armenia, Azerbaijan, Bosnia and Herzegovina, Republika Srpska, Georgia, Iceland, Liechtenstein, Republic of Moldova, Monaco, Montenegro, Norway, Russian Federation, San Marino, Serbia, Switzerland, FYR of Macedonia, Turkey, and Ukraine (EU-19). The main data source were GLOBOCAN, IARC, WHO, EUCAN, NORDCAN, ENCR, volume X of the CI5, the ministerial and Public Health Agency websites of the individual countries, PubMed, EMBASE, registries of some websites and the www.cochranelibrary.com, Scopus, www.clinicaltrials.gov, www.clinicaltrialsregister.eu, Research gate, Google and data extracted from screening programme results. Our results show that epidemiological data quality varies broadly between EU-28 and EU-19 countries. In terms of incidence, only 30% of EU-19 countries rank high in data quality as opposed to 86% of EU-28 states. The same applies to mortality data, since 52% of EU-19 countries as against all EU-28 countries are found in the high ranks. Assessment of the method of collection of incidence data showed that only 32% of EU-19 countries are found in the top three quality classes as against 89% of EU-28 countries. For the mortality data, 63% of EU-19 countries are found in the highest ranks as opposed to all EU-28 member states. Interestingly, comparison of neighbouring countries offering regional screening shows, for instance, that incidence and mortality rates are respectively 38.9 and 13.0 in Norway and 29.2 and 10.9 in Sweden, whereas in Finland, where a national organised programme is available, they are respectively 23.5 and 9.3. Cancer screening should be viewed as a key health care tool, also because investing in screening protects the weakest in

  3. Comparative Statistical Analysis of Gender Equality on the Labour Markets of Romania and EU28

    Directory of Open Access Journals (Sweden)

    Daniela PAŞNICU

    2015-06-01

    Full Text Available To achieve the employment target set in the Europe 2020 Strategy is necessary that women's potential and talent to be used optimally. Increasing employment for both men and women is the main way to achieve autonomy, financial independence and poverty reduction. This paper presents a comparative statistical analysis of gender equality on the labour markets of Romania and EU28 based on official statistics records and specific key labour market indicators. The aim was to highlight the gender gap on activity rates, employment rates by age, work time and unemployment rate, including long-term unemployment. The analyses undertaken shows that in the last ten years activity and employment rates of women in Romania had a slightly decreasing trend, while at the EU28 level had an upward trend, which led to the widening gap than the average EU28. The gender gap for the same indicators rose in the period under review, in the case of Romania, while at the EU28 level decreased.

  4. Inhibitions of mTORC1 and 4EBP-1 are key events orchestrated by Rottlerin in SK-Mel-28 cell killing.

    Science.gov (United States)

    Daveri, E; Maellaro, E; Valacchi, G; Ietta, F; Muscettola, M; Maioli, E

    2016-09-28

    Earlier studies demonstrated that Rottlerin exerts a time- and dose-dependent antiproliferative effect on SK-Mel-28 melanoma cells during 24 h of treatment, but cytotoxicity due to cell death began only after a 48 h exposure. In the current study, in order to identify the type of cell death in this cell line, which is notoriously refractory to most anticancer therapies, and to clarify the underlying mechanisms of this delayed outcome, we searched for apoptotic, necrotic/necroptotic and autophagic traits in Rottlerin-exposed cells. Although SK-Mel-28 cells are both apoptosis and autophagy competent, Western blotting analysis, caspase activity assay, nuclear imaging and the effects of autophagy, apoptosis and necroptosis inhibitors, indicated that Rottlerin cytotoxicity was due to none of the aforementioned death mechanisms. Nevertheless, in growth arrested cells, the death did occur after a prolonged treatment and most likely ensued from the observed blockage of protein synthesis that reached levels expected to be incompatible with cell survival. From a mechanistic point of view, we ascribed this effect to the documented inhibition of mTORC1 activity; mTORC1 inhibition on the one hand led to a not deadly, rather protective autophagic response but, on the other hand caused a near complete arrest of protein synthesis. Interestingly, no cytotoxicity was found towards normal skin fibroblasts, which only resulted mildly growth arrested by the drug. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Dietary flavonoid fisetin induces a forced exit from mitosis by targeting the mitotic spindle checkpoint

    Science.gov (United States)

    Salmela, Anna-Leena; Pouwels, Jeroen; Varis, Asta; Kukkonen, Anu M.; Toivonen, Pauliina; Halonen, Pasi K.; Perälä, Merja; Kallioniemi, Olli; Gorbsky, Gary J.; Kallio, Marko J.

    2009-01-01

    Fisetin is a natural flavonol present in edible vegetables, fruits and wine at 2–160 μg/g concentrations and an ingredient in nutritional supplements with much higher concentrations. The compound has been reported to exert anticarcinogenic effects as well as antioxidant and anti-inflammatory activity via its ability to act as an inhibitor of cell proliferation and free radical scavenger, respectively. Our cell-based high-throughput screen for small molecules that override chemically induced mitotic arrest identified fisetin as an antimitotic compound. Fisetin rapidly compromised microtubule drug-induced mitotic block in a proteasome-dependent manner in several human cell lines. Moreover, in unperturbed human cancer cells fisetin caused premature initiation of chromosome segregation and exit from mitosis without normal cytokinesis. To understand the molecular mechanism behind these mitotic errors, we analyzed the consequences of fisetin treatment on the localization and phoshorylation of several mitotic proteins. Aurora B, Bub1, BubR1 and Cenp-F rapidly lost their kinetochore/centromere localization and others became dephosphorylated upon addition of fisetin to the culture medium. Finally, we identified Aurora B kinase as a novel direct target of fisetin. The activity of Aurora B was significantly reduced by fisetin in vitro and in cells, an effect that can explain the observed forced mitotic exit, failure of cytokinesis and decreased cell viability. In conclusion, our data propose that fisetin perturbs spindle checkpoint signaling, which may contribute to the antiproliferative effects of the compound. PMID:19395653

  6. Analysis of meiosis regulators in human gonads

    DEFF Research Database (Denmark)

    Jørgensen, Anne; Nielsen, John E; Jensen, Martin Blomberg

    2012-01-01

    The mitosis-meiosis switch is a key event in the differentiation of germ cells. In humans, meiosis is initiated in fetal ovaries, whereas in testes meiotic entry is inhibited until puberty. The purpose of this study was to examine the expression pattern of meiosis regulators in human gonads...... with their role in initiation and progression of meiosis. The putative meiosis inhibitors, CYP26B1 and NANOS2, were primarily expressed in Leydig cells and spermatocytes, respectively. In conclusion, the expression pattern of the investigated meiotic regulators is largely conserved in the human gonads compared...... with rodents, but with some minor differences, such as a stable expression of CYP26B1 in human fetal ovaries. The sexually dimorphic expression pattern of DMRT1 indicates a similar role in the mitosis-meiosis switch in human gonads as previously demonstrated in mice. The biological importance of the changes...

  7. The radiation hypersensitivity of cells at mitosis.

    Science.gov (United States)

    Stobbe, C C; Park, S J; Chapman, J D

    2002-12-01

    Mitotic cells are hypersensitive to ionizing radiation, exhibiting single-hit inactivation coefficients near to those of repair deficient cell lines and lymphocytes. To elucidate possible mechanisms for this hypersensitivity, the kinetics of oxygen radiosensitization, the proportion of indirect effect by OH radicals and the kinetics of radiation-induced DNA strand breakage in the chromatin of mitotic cells were investigated. Synchronized populations of >90% mitotic HT-29 cells were obtained by the mitotic shake-off method. Cells were irradiated at indirect effect of OH radicals was investigated with the radical scavenger, DMSO. DNA strand breakage was measured by the comet assay. Mitotic HT-29 cell inactivation is well described by a single-hit inactivation coefficient (alpha) of 1.14 +/- 0.06 Gy(-1). The oxygen enhancement ratio of mitotic cells (at 10% survival) was found to be approximately 2.0, significantly lower than the value of 2.8 measured for interphase (asynchronous) cells. More than 60% of mitotic cell killing was eliminated when the media contained 2 M DMSO, indicating that indirect effect is as important in the killing of mitotic cells as it is for interphase cells. The chromatin in mitotic cells was found to be ~2.8 times more sensitive to radiation-induced DNA single-strand breakage than the chromatin of interphase cells. The alpha-inactivation coefficient of mitotic HT-29 cells was ~30 times larger than that of interphase cells. Mitotic cell chromatin appears to contain intrinsic DNA breaks that are not lethal. In addition, chromatin in mitotic cells was found to be more susceptible to radiation-induced DNA strand-breakage than the dispersed chromatin of interphase cells. How the enhanced production of these simple DNA lesions (that are usually reparable) translates into the lethal (non-reparable) events associated with alpha-inactivation is not known. The compaction/dispersion status of DNA throughout the cell cycle appears to be an important

  8. Fe-S cluster coordination of the chromokinesin KIF4A alters its sub-cellular localization during mitosis.

    Science.gov (United States)

    Ben-Shimon, Lilach; Paul, Viktoria D; David-Kadoch, Galit; Volpe, Marina; Stümpfig, Martin; Bill, Eckhard; Mühlenhoff, Ulrich; Lill, Roland; Ben-Aroya, Shay

    2018-05-30

    Fe-S clusters act as co-factors of proteins with diverse functions, e.g. in DNA repair. Down-regulation of the cytosolic iron-sulfur protein assembly (CIA) machinery promotes genomic instability by the inactivation of multiple DNA repair pathways. Furthermore, CIA deficiencies are associated with so far unexplained mitotic defects. Here, we show that CIA2B and MMS19, constituents of the CIA targeting complex involved in facilitating Fe-S cluster insertion into cytosolic and nuclear target proteins, co-localize with components of the mitotic machinery. Down-regulation of CIA2B and MMS19 impairs the mitotic cycle. We identify the chromokinesin KIF4A as a mitotic component involved in these effects. KIF4A binds a Fe-S cluster in vitro through its conserved cysteine-rich domain. We demonstrate in vivo that this domain is required for the mitosis-related KIF4A localization and for the mitotic defects associated with KIF4A knockout. KIF4A is the first identified mitotic component carrying such a post-translational modification. These findings suggest that the lack of Fe-S clusters in KIF4A upon down-regulation of the CIA targeting complex contributes to the mitotic defects. © 2018. Published by The Company of Biologists Ltd.

  9. MiR-509-3-5p causes aberrant mitosis and anti-proliferative effect by suppression of PLK1 in human lung cancer A549 cells

    International Nuclear Information System (INIS)

    Wang, Xian-Hui; Lu, Yao; Liang, Jing-Jing; Cao, Ji-Xiang; Jin, Ya-Qiong; An, Guo-Shun; Ni, Ju-Hua; Jia, Hong-Ti; Li, Shu-Yan

    2016-01-01

    MicroRNAs (miRNAs) are potent post-transcriptional regulators of gene expression and play roles in DNA damage response (DDR). PLK1 is identified as a modulator of DNA damage checkpoint. Although down-regulation of PLK1 by certain microRNAs has been reported, little is known about the interplay between PLK1 and miR-509-3-5p in DDR. Here we have demonstrated that miR-509-3-5p repressed PLK1 expression by targeting PLK1 3′-UTR, thereby causing mitotic aberration and growth arrest of human lung cancer A549 cells. Repression of PLK1 by miR-509-3-5p was further evidenced by over-expression of miR-509-3-5p in A549, HepG2 and HCT116p53 −/− cancer cells, in which PLK1 protein was suppressed. Consistently, miR-509-3-5p was stimulated, while PLK1 protein was down-regulated in A549 cells exposed to CIS and ADR, suggesting that suppression of PLK1 by miR-509-3-5p is a component of CIS/ADR-induced DDR pathway. Flow cytometry and immunofluorescence labeling showed that over-expression of miR-509-3-5p in A549 induced G2/M arrest and aberrant mitosis characterized by abnormal bipolar mitotic spindles, condensed chromosomes, lagging DNA and chromosome bridges. In addition, over-expression of miR-509-3-5p markedly blocked A549 cell proliferation and sensitized the cells to CIS and ADR treatment. Taken together, miR-509-3-5p is a feasible suppressor for cancer by targeting PLK1. Our data may provide aid in potential design of combined chemotherapy and in our better understanding of the roles of microRNAs in response to DNA damage. - Highlights: • MiR-509-3-5p represses PLK1 expression by targeting PLK1 3ГЉВ№-UTR. • Expression of miR-509-3-5p is induced and PLK1 repressed upon DNA damage. • Overexpression of miR-509-3-5p induces G2/M arrest and aberrant mitosis. • MiR-509-3-5p inhibits cell proliferation and sensitizes cells to DNA damage agents.

  10. Phosphorylation of Cytochrome c Threonine 28 Regulates Electron Transport Chain Activity in Kidney: IMPLICATIONS FOR AMP KINASE.

    Science.gov (United States)

    Mahapatra, Gargi; Varughese, Ashwathy; Ji, Qinqin; Lee, Icksoo; Liu, Jenney; Vaishnav, Asmita; Sinkler, Christopher; Kapralov, Alexandr A; Moraes, Carlos T; Sanderson, Thomas H; Stemmler, Timothy L; Grossman, Lawrence I; Kagan, Valerian E; Brunzelle, Joseph S; Salomon, Arthur R; Edwards, Brian F P; Hüttemann, Maik

    2017-01-06

    Mammalian cytochrome c (Cytc) plays a key role in cellular life and death decisions, functioning as an electron carrier in the electron transport chain and as a trigger of apoptosis when released from the mitochondria. However, its regulation is not well understood. We show that the major fraction of Cytc isolated from kidneys is phosphorylated on Thr 28 , leading to a partial inhibition of respiration in the reaction with cytochrome c oxidase. To further study the effect of Cytc phosphorylation in vitro, we generated T28E phosphomimetic Cytc, revealing superior behavior regarding protein stability and its ability to degrade reactive oxygen species compared with wild-type unphosphorylated Cytc Introduction of T28E phosphomimetic Cytc into Cytc knock-out cells shows that intact cell respiration, mitochondrial membrane potential (ΔΨ m ), and ROS levels are reduced compared with wild type. As we show by high resolution crystallography of wild-type and T28E Cytc in combination with molecular dynamics simulations, Thr 28 is located at a central position near the heme crevice, the most flexible epitope of the protein apart from the N and C termini. Finally, in silico prediction and our experimental data suggest that AMP kinase, which phosphorylates Cytc on Thr 28 in vitro and colocalizes with Cytc to the mitochondrial intermembrane space in the kidney, is the most likely candidate to phosphorylate Thr 28 in vivo We conclude that Cytc phosphorylation is mediated in a tissue-specific manner and leads to regulation of electron transport chain flux via "controlled respiration," preventing ΔΨ m hyperpolarization, a known cause of ROS and trigger of apoptosis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Bovine CCL28 Mediates Chemotaxis via CCR10 and Demonstrates Direct Antimicrobial Activity against Mastitis Causing Bacteria.

    Directory of Open Access Journals (Sweden)

    Kyler B Pallister

    Full Text Available In addition to the well characterized function of chemokines in mediating the homing and accumulation of leukocytes to tissues, some chemokines also exhibit potent antimicrobial activity. Little is known of the potential role of chemokines in bovine mammary gland health and disease. The chemokine CCL28 has previously been shown to play a key role in the homing and accumulation of IgA antibody secreting cells to the lactating murine mammary gland. CCL28 has also been shown to act as an antimicrobial peptide with activity demonstrated against a wide range of pathogens including bacteria, fungi and protozoans. Here we describe the cloning and function of bovine CCL28 and document the concentration of this chemokine in bovine milk. Bovine CCL28 was shown to mediate cellular chemotaxis via the CCR10 chemokine receptor and exhibited antimicrobial activity against a variety of bovine mastitis causing organisms. The concentration of bovine CCL28 in milk was found to be highly correlated with the lactation cycle. Highest concentrations of CCL28 were observed soon after parturition, with levels decreasing over time. These results suggest a potential role for CCL28 in the prevention/resolution of bovine mastitis.

  12. ADAM28 is expressed by epithelial cells in human normal tissues and protects from C1q-induced cell death.

    Science.gov (United States)

    Miyamae, Yuka; Mochizuki, Satsuki; Shimoda, Masayuki; Ohara, Kentaro; Abe, Hitoshi; Yamashita, Shuji; Kazuno, Saiko; Ohtsuka, Takashi; Ochiai, Hiroki; Kitagawa, Yuko; Okada, Yasunori

    2016-05-01

    ADAM28 (disintegrin and metalloproteinase 28), which was originally reported to be lymphocyte-specific, is over-expressed by carcinoma cells and plays a key role in cell proliferation and progression in human lung and breast carcinomas. We studied ADAM28 expression in human normal tissues and examined its biological function. By using antibodies specific to ADAM28, ADAM28 was immunolocalized mainly to epithelial cells in several tissues, including epididymis, bronchus and stomach, whereas lymphocytes in lymph nodes and spleen were negligibly immunostained. RT-PCR, immunoblotting and ELISA analyses confirmed the expression in these tissues, and low or negligible expression by lymphocytes was found in the lymph node and spleen. C1q was identified as a candidate ADAM28-binding protein from a human lung cDNA library by yeast two-hybrid system, and specific binding was demonstrated by binding assays, immunoprecipitation and surface plasmon resonance. C1q treatment of normal bronchial epithelial BEAS-2B and NHBE cells, both of which showed low-level expression of ADAM28, caused apoptosis through activation of p38 and caspase-3, and cell death with autophagy through accumulation of LC3-II and autophagosomes, respectively. C1q-induced cell death was attenuated by treatment of the cells with antibodies against the C1q receptor gC1qR/p33 or cC1qR/calreticulin. Treatment of C1q with recombinant ADAM28 prior to addition to culture media reduced C1q-induced cell death, and knockdown of ADAM28 using siRNAs increased cell death. These data demonstrate that ADAM28 is expressed by epithelial cells of several normal organs, and suggest that ADAM28 plays a role in cell survival by suppression of C1q-induced cytotoxicity in bronchial epithelial cells. © 2016 Federation of European Biochemical Societies.

  13. CDK-mediated activation of the SCF(FBXO) (28) ubiquitin ligase promotes MYC-driven transcription and tumourigenesis and predicts poor survival in breast cancer.

    Science.gov (United States)

    Cepeda, Diana; Ng, Hwee-Fang; Sharifi, Hamid Reza; Mahmoudi, Salah; Cerrato, Vanessa Soto; Fredlund, Erik; Magnusson, Kristina; Nilsson, Helén; Malyukova, Alena; Rantala, Juha; Klevebring, Daniel; Viñals, Francesc; Bhaskaran, Nimesh; Zakaria, Siti Mariam; Rahmanto, Aldwin Suryo; Grotegut, Stefan; Nielsen, Michael Lund; Szigyarto, Cristina Al-Khalili; Sun, Dahui; Lerner, Mikael; Navani, Sanjay; Widschwendter, Martin; Uhlén, Mathias; Jirström, Karin; Pontén, Fredrik; Wohlschlegel, James; Grandér, Dan; Spruck, Charles; Larsson, Lars-Gunnar; Sangfelt, Olle

    2013-07-01

    SCF (Skp1/Cul1/F-box) ubiquitin ligases act as master regulators of cellular homeostasis by targeting key proteins for ubiquitylation. Here, we identified a hitherto uncharacterized F-box protein, FBXO28 that controls MYC-dependent transcription by non-proteolytic ubiquitylation. SCF(FBXO28) activity and stability are regulated during the cell cycle by CDK1/2-mediated phosphorylation of FBXO28, which is required for its efficient ubiquitylation of MYC and downsteam enhancement of the MYC pathway. Depletion of FBXO28 or overexpression of an F-box mutant unable to support MYC ubiquitylation results in an impairment of MYC-driven transcription, transformation and tumourigenesis. Finally, in human breast cancer, high FBXO28 expression and phosphorylation are strong and independent predictors of poor outcome. In conclusion, our data suggest that SCF(FBXO28) plays an important role in transmitting CDK activity to MYC function during the cell cycle, emphasizing the CDK-FBXO28-MYC axis as a potential molecular drug target in MYC-driven cancers, including breast cancer. © 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.

  14. Entrance channel excitations in the 28Si + 28Si reaction

    International Nuclear Information System (INIS)

    Decowski, P.; Gierlik, E.; Box, P.F.; Kamermans, R.; Nieuwenhuizen, G.J. van; Meijer, R.J.; Griffioen, K.A.; Wilschut, H.W.; Giorni, A.; Morand, C.; Demeyer, A.; Guinet, D.

    1991-01-01

    Velocity spectra of heavy ions produced in the 28 Si + 28 Si reaction at bombarding energies of 19.7 and 30 MeV/nucleon were measured and interpreted within the Q-optimum model extended by the inclusion of particle evaporation from excited fragments. Regions of forward angle spectra corresponding to the mutual excitation of the reaction partners with net mass transfer zero projected onto the Q-value variable show an enhancement at Q-values of -60 - -80 MeV (excitation energies of the reaction partners equal to 30 - 40 MeV). This energy range coincides with the region of 2ℎω - 3ℎω excitations characteristic for giant osciallations. This selective excitation, which occurs at a very early stage of the reaction (the cross section is the largest at very forward angles), provides an important doorway to other dissipative processes

  15. Proteasome Activators, PA28α and PA28β, Govern Development of Microvascular Injury in Diabetic Nephropathy and Retinopathy

    Directory of Open Access Journals (Sweden)

    Saeed Yadranji Aghdam

    2016-01-01

    Full Text Available Diabetic nephropathy (DN and diabetic retinopathy (DR are major complications of type 1 and type 2 diabetes. DN and DR are mainly caused by injury to the perivascular supporting cells, the mesangial cells within the glomerulus, and the pericytes in the retina. The genes and molecular mechanisms predisposing retinal and glomerular pericytes to diabetic injury are poorly characterized. In this study, the genetic deletion of proteasome activator genes, PA28α and PA28β genes, protected the diabetic mice in the experimental STZ-induced diabetes model against renal injury and retinal microvascular injury and prolonged their survival compared with wild type STZ diabetic mice. The improved wellbeing and reduced renal damage was associated with diminished expression of Osteopontin (OPN and Monocyte Chemoattractant Protein-1 (MCP-1 in the glomeruli of STZ-injected PA28α/PA28β double knockout (Pa28αβDKO mice and also in cultured mesangial cells and retinal pericytes isolated from Pa28αβDKO mice that were grown in high glucose. The mesangial PA28-mediated expression of OPN under high glucose conditions was suppressed by peptides capable of inhibiting the binding of PA28 to the 20S proteasome. Collectively, our findings demonstrate that diabetic hyperglycemia promotes PA28-mediated alteration of proteasome activity in vulnerable perivascular cells resulting in microvascular injury and development of DN and DR.

  16. Mitotic Stress Is an Integral Part of the Oncogene-Induced Senescence Program that Promotes Multinucleation and Cell Cycle Arrest

    Directory of Open Access Journals (Sweden)

    Dina Dikovskaya

    2015-09-01

    Full Text Available Oncogene-induced senescence (OIS is a tumor suppression mechanism that blocks cell proliferation in response to oncogenic signaling. OIS is frequently accompanied by multinucleation; however, the origin of this is unknown. Here, we show that multinucleate OIS cells originate mostly from failed mitosis. Prior to senescence, mutant H-RasV12 activation in primary human fibroblasts compromised mitosis, concordant with abnormal expression of mitotic genes functionally linked to the observed mitotic spindle and chromatin defects. Simultaneously, H-RasV12 activation enhanced survival of cells with damaged mitoses, culminating in extended mitotic arrest and aberrant exit from mitosis via mitotic slippage. ERK-dependent transcriptional upregulation of Mcl1 was, at least in part, responsible for enhanced survival and slippage of cells with mitotic defects. Importantly, mitotic slippage and oncogene signaling cooperatively induced senescence and key senescence effectors p21 and p16. In summary, activated Ras coordinately triggers mitotic disruption and enhanced cell survival to promote formation of multinucleate senescent cells.

  17. 31 CFR 28.310 - Recruitment.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Recruitment. 28.310 Section 28.310... Basis of Sex in Admission and Recruitment Prohibited § 28.310 Recruitment. (a) Nondiscriminatory recruitment. A recipient to which §§ 28.300 through 28.310 apply shall not discriminate on the basis of sex in...

  18. Key-value store with internal key-value storage interface

    Science.gov (United States)

    Bent, John M.; Faibish, Sorin; Ting, Dennis P. J.; Tzelnic, Percy; Gupta, Uday; Grider, Gary; Bonnie, David J.

    2018-01-16

    A key-value store is provided having one or more key-value storage interfaces. A key-value store on at least one compute node comprises a memory for storing a plurality of key-value pairs; and an abstract storage interface comprising a software interface module that communicates with at least one persistent storage device providing a key-value interface for persistent storage of one or more of the plurality of key-value pairs, wherein the software interface module provides the one or more key-value pairs to the at least one persistent storage device in a key-value format. The abstract storage interface optionally processes one or more batch operations on the plurality of key-value pairs. A distributed embodiment for a partitioned key-value store is also provided.

  19. Legislation on violence against women: overview of key components.

    Science.gov (United States)

    Ortiz-Barreda, Gaby; Vives-Cases, Carmen

    2013-01-01

    This study aimed to determine if legislation on violence against women (VAW) worldwide contains key components recommended by the Pan American Health Organization (PAHO) and the United Nations (UN) to help strengthen VAW prevention and provide better integrated victim protection, support, and care. A systematic search for VAW legislation using international legal databases and other electronic sources plus data from previous research identified 124 countries/territories with some type of VAW legislation. Full legal texts were found for legislation from 104 countries/territories. Those available in English, Portuguese, and Spanish were downloaded and compiled and the selection criteria applied (use of any of the common terms related to VAW, including intimate partner violence (IPV), and reference to at least two of six sectors (education, health, judicial system, mass media, police, and social services) with regard to VAW interventions (protection, support, and care). A final sample from 80 countries/territories was selected and analyzed for the presence of key components recommended by PAHO and the UN (reference to the term "violence against women" in the title; definitions of different types of VAW; identification of women as beneficiaries; and promotion of (reference to) the participation of multiple sectors in VAW interventions). Few countries/territories specifically identified women as the beneficiaries of their VAW legislation, including those that labeled their legislation "domestic violence" law ( n = 51), of which only two explicitly mentioned women as complainants/survivors. Only 28 countries/territories defined the main forms of VAW (economic, physical, psychological, and sexual) in their VAW legislation. Most highlighted the role of the judicial system, followed by that of social services and the police. Only 28 mentioned the health sector. Despite considerable efforts worldwide to strengthen VAW legislation, most VAW laws do not incorporate the key

  20. Key Distribution and Changing Key Cryptosystem Based on Phase Retrieval Algorithm and RSA Public-Key Algorithm

    Directory of Open Access Journals (Sweden)

    Tieyu Zhao

    2015-01-01

    Full Text Available The optical image encryption has attracted more and more researchers’ attention, and the various encryption schemes have been proposed. In existing optical cryptosystem, the phase functions or images are usually used as the encryption keys, and it is difficult that the traditional public-key algorithm (such as RSA, ECC, etc. is used to complete large numerical key transfer. In this paper, we propose a key distribution scheme based on the phase retrieval algorithm and the RSA public-key algorithm, which solves the problem for the key distribution in optical image encryption system. Furthermore, we also propose a novel image encryption system based on the key distribution principle. In the system, the different keys can be used in every encryption process, which greatly improves the security of the system.

  1. Lin28B promotes Müller glial cell de-differentiation and proliferation in the regenerative rat retinas

    Science.gov (United States)

    Tao, Zui; Zhao, Chen; Jian, Qian; Gillies, Mark; Xu, Haiwei; Yin, Zheng Qin

    2016-01-01

    Retinal regeneration and repair are severely impeded in higher mammalian animals. Although Müller cells can be activated and show some characteristics of progenitor cells when injured or under pathological conditions, they quickly form gliosis scars. Unfortunately, the basic mechanisms that impede retinal regeneration remain unknown. We studied retinas from Royal College of Surgeon (RCS) rats and found that let-7 family molecules, let-7e and let-7i, were significantly overexpressed in Müller cells of degenerative retinas. It demonstrated that down-regulation of the RNA binding protein Lin28B was one of the key factors leading to the overexpression of let-7e and let-7i. Lin28B ectopic expression in the Müller cells suppressed overexpression of let-7e and let-7i, stimulated and mobilized Müller glia de-differentiation, proliferation, promoted neuronal commitment, and inhibited glial fate acquisition of de-differentiated Müller cells. ERG recordings revealed that the amplitudes of a-wave and b-wave were improved significantly after Lin28B was delivered into the subretinal space of RCS rats. In summary, down-regulation of Lin28B as well as up-regulation of let-7e and let-7i may be the main factors that impede Müller cell de-differentiation and proliferation in the retina of RCS rats. PMID:27384999

  2. Water clarity in the Florida Keys, USA, as observed from space (1984-2002)

    Science.gov (United States)

    Palandro, D. A.; Hu, C.; Andrefouet, S.; Muller-Karger, F. E.; Hallock, P.

    2007-12-01

    Landsat TM and ETM+ satellite data were used to derive the diffuse attenuation coefficient (Kd, m-1), a measure of water clarity, for 29 sites throughout the Florida Keys Reef Tract. A total of 28 individual Landsat images between 1984 and 2002 were used, with imagery gathered every two years for spring seasons and every six years for fall seasons. Useful information was obtained by Landsat bands 1 (blue) and 2 (green), except when sites were covered by clouds or showed turbid water. Landsat band 3 (red) provided no consistent data due to the high absorption of red light by water. Because image sampling represented only one or two samples per year on specific days, and because water turbidity may change over short time scales, it was not possible to assess temporal trends at the sites with the Landsat data. Kd values in band 1 were higher in the spring (mean spring = 0.034 m-1, mean fall = 0.031 m-1) and band 2 were higher in the fall (mean spring = 0.056 m-1, mean fall = 0.058 m-1), but the differences were not statistically significant. Spatial variability was high between sites and between regions (Upper, Middle and Lower Keys), with band 1 ranges of 0.019 m-1 - 0.060 m-1 and band 2 ranges of 0.036 m-1 - 0.076 m-1. The highest Kd values were found in the Upper Keys, followed by the Middle Keys and Lower Keys, respectively. This result must be taken in context however, two Middle Keys sites were found to be inconsistent due to high turbidity, obscuring the benthos and altering our assumption of a visible seafloor, which the algorithm is dependent upon. If all Middle Keys data were valid it is likely that this region would have the highest Kd values for both bands. The Landsat-derived Kd values, and inherent variability, may be influenced by the dominant water mass associated with each Florida Keys region, as well as localized oceanic variables. The methodology used here may be applied to other reef areas and used with satellites that offer higher temporal

  3. Phosphorylation of Cytochrome c Threonine 28 Regulates Electron Transport Chain Activity in Kidney: IMPLICATIONS FOR AMP KINASE

    Energy Technology Data Exchange (ETDEWEB)

    Mahapatra, Gargi; Varughese, Ashwathy; Ji, Qinqin; Lee, Icksoo; Liu, Jenney; Vaishnav, Asmita; Sinkler, Christopher; Kapralov, Alexandr A.; Moraes, Carlos T.; Sanderson, Thomas H.; Stemmler, Timothy L.; Grossman, Lawrence I.; Kagan, Valerian E.; Brunzelle, Joseph S.; Salomon, Arthur R.; Edwards, Brian F. P.; Hüttemann, Maik

    2016-10-07

    Mammalian cytochrome c (Cytc) plays a key role in cellular life and death decisions, functioning as an electron carrier in the electron transport chain and as a trigger of apoptosis when released from the mitochondria. However, its regulation is not well understood. We show that the major fraction of Cytc isolated from kidneys is phosphorylated on Thr28, leading to a partial inhibition of respiration in the reaction with cytochrome c oxidase. To further study the effect of Cytc phosphorylation in vitro, we generated T28E phosphomimetic Cytc, revealing superior behavior regarding protein stability and its ability to degrade reactive oxygen species compared with wild-type unphosphorylated Cytc. Introduction of T28E phosphomimetic Cytc into Cytc knock-out cells shows that intact cell respiration, mitochondrial membrane potential (ΔΨm), and ROS levels are reduced compared with wild type. As we show by high resolution crystallography of wild-type and T28E Cytc in combination with molecular dynamics simulations, Thr28 is located at a central position near the heme crevice, the most flexible epitope of the protein apart from the N and C termini. Finally, in silico prediction and our experimental data suggest that AMP kinase, which phosphorylates Cytc on Thr28 in vitro and colocalizes with Cytc to the mitochondrial intermembrane space in the kidney, is the most likely candidate to phosphorylate Thr28 in vivo. We conclude that Cytc phosphorylation is mediated in a tissue-specific manner and leads to regulation of electron transport chain flux via “controlled respiration,” preventing ΔΨm hyperpolarization, a known cause of ROS and trigger of apoptosis.

  4. 3D analysis of mitosis distribution highlights the longitudinal zonation and diarch symmetry in proliferation activity of the Arabidopsis thaliana root meristem.

    Science.gov (United States)

    Lavrekha, Viktoriya V; Pasternak, Taras; Ivanov, Victor B; Palme, Klaus; Mironova, Victoria V

    2017-12-01

    To date CYCB1;1 marker and cortex cell lengths have been conventionally used to determine the proliferation activity of the Arabidopsis root meristem. By creating a 3D map of mitosis distribution we showed that these markers overlooked that stele and endodermis save their potency to divide longer than the cortex and epidermis. Cessation of cell divisions is not a random process, so that mitotic activity within the endodermis and stele shows a diarch pattern. Mitotic activity of all root tissues peaked at the same distance from the quiescent center (QC); however, different tissues stopped dividing at different distances, with cells of the protophloem exiting the cell cycle first and the procambial cells being the last. The robust profile of mitotic activity in the root tip defines the longitudinal zonation in the meristem with the proliferation domain, where all cells are able to divide; and the transition domain, where the cell files cease to divide. 3D analysis of cytokinin deficient and cytokinin signaling mutants showed that their proliferation domain is similar to that of the wild type, but the transition domain is much longer. Our data suggest a strong inhibitory effect of cytokinin on anticlinal cell divisions in the stele. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  5. The distinction between key ideas in teaching school physics and key ideas in the discipline of physics

    Science.gov (United States)

    Deng, Zongyi

    2001-05-01

    The distinction between key ideas in teaching a high school science and key ideas in the corresponding discipline of science has been largely ignored in scholarly discourse about what science teachers should teach and about what they should know. This article clarifies this distinction through exploring how and why key ideas in teaching high school physics differ from key ideas in the discipline of physics. Its theoretical underpinnings include Dewey's (1902/1990) distinction between the psychological and the logical and Harré's (1986) epistemology of science. It analyzes how and why the key ideas in teaching color, the speed of light, and light interference at the high school level differ from the key ideas at the disciplinary level. The thesis is that key ideas in teaching high school physics can differ from key ideas in the discipline in some significant ways, and that the differences manifest Dewey's distinction. As a result, the article challenges the assumption of equating key ideas in teaching a high school science with key ideas in the corresponding discipline of science, and the assumption that having a college degree in science is sufficient to teach high school science. Furthermore, the article expands the concept of pedagogical content knowledge by arguing that key ideas in teaching high school physics constitute an essential component.

  6. Observation and characterization of the smallest borospherene, B28− and B28

    International Nuclear Information System (INIS)

    Wang, Ying-Jin; Chen, Qiang; You, Xue-Rui; Ou, Ting; Zhao, Xiao-Yun; Li, Si-Dian; Zhao, Ya-Fan; Li, Jun; Li, Wei-Li; Jian, Tian; Wang, Lai-Sheng; Zhai, Hua-Jin

    2016-01-01

    Free-standing boron nanocages or borospherenes have been observed recently for B 40 − and B 40 . There is evidence that a family of borospherenes may exist. However, the smallest borospherene is still not known. Here, we report experimental and computational evidence of a seashell-like borospherene cage for B 28 − and B 28 . Photoelectron spectrum of B 28 − indicated contributions from different isomers. Theoretical calculations showed that the seashell-like B 28 − borospherene is competing for the global minimum with a planar isomer and it is shown to be present in the cluster beam, contributing to the observed photoelectron spectrum. The seashell structure is found to be the global minimum for neutral B 28 and the B 28 − cage represents the smallest borospherene observed to date. It is composed of two triangular close-packed B 15 sheets, interconnected via the three corners by sharing two boron atoms. The B 28 borospherene was found to obey the 2(n + 1) 2 electron-counting rule for spherical aromaticity

  7. The Metalloproteinase ADAM28 Promotes Metabolic Dysfunction in Mice

    Directory of Open Access Journals (Sweden)

    Lakshini Herat

    2017-04-01

    Full Text Available Obesity and diabetes are major causes of morbidity and mortality globally. The current study builds upon our previous association studies highlighting that A Disintegrin And Metalloproteinase 28 (ADAM28 appears to be implicated in the pathogenesis of obesity and type 2 diabetes in humans. Our novel study characterised the expression of ADAM28 in mice with the metabolic syndrome and used molecular inhibition approaches to investigate the functional role of ADAM28 in the pathogenesis of high fat diet-induced obesity. We identified that ADAM28 mRNA and protein expression was markedly increased in the livers of mice with the metabolic syndrome. In addition, noradrenaline, the major neurotransmitter of the sympathetic nervous system, results in elevated Adam28 mRNA expression in human monocytes. Downregulation of ADAM28 with siRNA technology resulted in a lack of weight gain, promotion of insulin sensitivity/glucose tolerance and decreased liver tumour necrosis factor-α (TNF-α levels in our diet-induced obesity mouse model as well as reduced blood urea nitrogen, alkaline phosphatase and aspartate aminotransferase. In addition, we show that ADAM28 knock-out mice also displayed reduced body weight, elevated high density lipoprotein cholesterol levels, and reductions in blood urea nitrogen, alkaline phosphatase, and aspartate aminotransferase. The results of this study provide important insights into the pathogenic role of the metalloproteinase ADAM28 in the metabolic syndrome and suggests that downregulation of ADAM28 may be a potential therapeutic strategy in the metabolic syndrome.

  8. Cell proliferation and radiosensitivity of cow lymphocytes in culture

    International Nuclear Information System (INIS)

    Modave, C.; Fabry, L.; Leonard, A.

    1982-01-01

    The harlequin-staining technique has been used to study, after PHA-stimulation, the cell proliferation of cow lymphocytes in culture and to assess the radiosensitivity in first mitosis cells. At the 48 h fixation time, only 34% of the cells are in first mitosis whereas 55% are already in second and 11% in third mitosis. The exposure of cow lymphocytes to 200 rad X-rays result in the production of 16% dicentric chromosomes in first mitosis cells [fr

  9. MYCN-driven regulatory mechanisms controlling LIN28B in neuroblastoma

    Science.gov (United States)

    Beckers, Anneleen; Van Peer, Gert; Carter, Daniel R.; Gartlgruber, Moritz; Herrmann, Carl; Agarwal, Saurabh; Helsmoortel, Hetty H.; Althoff, Kristina; Molenaar, Jan J.; Cheung, Belamy B.; Schulte, Johannes H.; Benoit, Yves; Shohet, Jason M.; Westermann, Frank; Marshall, Glenn M.; Vandesompele, Jo; De Preter, Katleen; Speleman, Frank

    2016-01-01

    LIN28B has been identified as an oncogene in various tumor entities, including neuroblastoma, a childhood cancer that originates from neural crest-derived cells, and is characterized by amplification of the MYCN oncogene. Recently, elevated LIN28B expression levels were shown to contribute to neuroblastoma tumorigenesis via let-7 dependent de-repression of MYCN. However, additional insight in the regulation of LIN28B in neuroblastoma is lacking. Therefore, we have performed a comprehensive analysis of the regulation of LIN28B in neuroblastoma, with a specific focus on the contribution of miRNAs. We show that MYCN regulates LIN28B expression in neuroblastoma tumors via two distinct parallel mechanisms. First, through an unbiased LIN28B-3′UTR reporter screen, we found that miR-26a-5p and miR-26b-5p regulate LIN28B expression. Next, we demonstrated that MYCN indirectly affects the expression of miR-26a-5p, and hence regulates LIN28B, therefor establishing a MYCN-miR-26a-5p-LIN28B regulatory axis. Second, we provide evidence that MYCN regulates LIN28B expression via interaction with the LIN28B promotor, establishing a direct MYCN-LIN28B regulatory axis. We believe that these findings mark LIN28B as an important effector of the MYCN oncogenic phenotype and underlines the importance of MYCN-regulated miRNAs in establishing the MYCN-driven oncogenic process. PMID:26123663

  10. Green Spaces as an Indicator of Urban Health: Evaluating Its Changes in 28 Mega-Cities

    Directory of Open Access Journals (Sweden)

    Conghong Huang

    2017-12-01

    Full Text Available Urban green spaces can yield considerable health benefits to urban residents. Assessing these health benefits is a key step for managing urban green spaces for human health and wellbeing in cities. In this study, we assessed the change of health benefits generated by urban green spaces in 28 megacities worldwide between 2005 and 2015 by using availability and accessibility as proxy indicators. We first mapped land covers of 28 megacities using 10,823 scenes of Landsat images and a random forest classifier running on Google Earth Engine. We then calculated the availability and accessibility of urban green spaces using the land cover maps and gridded population data. The results showed that the mean availability of urban green spaces in these megacities increased from 27.63% in 2005 to 31.74% in 2015. The mean accessibility of urban green spaces increased from 65.76% in 2005 to 72.86% in 2015. The increased availability and accessibility of urban green spaces in megacities have brought more health benefits to their residents.

  11. Proton-threshold states in /sup 28/Si

    Energy Technology Data Exchange (ETDEWEB)

    Champagne, A E; Pitt, M L; Zhang, P H; Lee, Jr, L L; Levine, M J

    1986-10-27

    The /sup 27/Al(/sup 3/He, d)/sup 28/Si reaction has been used to locate candidates for resonances in the /sup 27/Al+p system residing near the proton-capture threshold in the energy region characteristic of quiescent stellar hydrogen burning. Two such states are observed at excitation energies E/sub x/=11.658 MeV (J/sup ..pi../=2/sup +/) and 11.671 MeV (J/sup ..pi../=1/sup -/). A comparison of the cross sections for the /sup 27/Al(/sup 3/He, d)/sup 28/Si and the /sup 27/Al(..cap alpha.., t)/sup 28/Si reactions implies angular-momentum transfers of l=2 and l=3, respectively, for the two states of interest. Using this result, an astrophysically significant upper limit on the thermonuclear reaction rate has been calculated for the /sup 27/Al(p, ..gamma..)/sup 28/Si reaction which is found to be too slow to affect the /sup 27/Al abundance in red giants.

  12. Reactor neutron activation analysis for aluminium in the presence of phosphorus and silicon. Contributions of /sup 28/Al activities from /sup 31/P (n,. cap alpha. ) /sup 28/Al and /sup 28/Si (n,p) /sup 28/Al reactions

    Energy Technology Data Exchange (ETDEWEB)

    Mizumoto, Yoshihiko (Kinki Univ., Higashi-Osaka, Osaka (Japan). Faculty of Science and Technology); Iwata, Shiro; Sasajima, Kazuhisa; Yoshimasu, Fumio; Yase, Yoshiro

    1984-01-01

    Reactor neutron activation analysis for aluminium in samples containing phosphorus and silicon was studied. The experiments were performed by using pneumatic tube of the Kyoto University Reactor (KUR). At first, the ratios of the /sup 28/Al activity produced from /sup 27/Al(n, ..gamma..) /sup 28/Al reaction by thermal neutrons to that from /sup 31/P(n, ..cap alpha..)/sup 28/Al reaction by fast neutrons, and to that from /sup 28/Si(n, p)/sup 28/Al reaction were measured by ..gamma..-ray spectrometry. With a ratio of about 5 for the thermal to fast neutron flux of KUR, the ratio of the /sup 28/Al activity from aluminium to that from phosphorus was to be 812 +- 7, and to that from silicon 282 +- 3. Secondly, the contributions of /sup 28/Al activities from phosphorus and silicon and the determination limit of aluminium were calculated for various parameters, such as fast neutron flux, thermal to fast neutron flux ratio, amounts of phosphorus and silicon, etc. Thirdly, on the basis of these results, aluminium contents in spinal cords and brains of amyotrophic lateral sclerosis, Parkinsonism-dementia complex and control cases were determined.

  13. 31 CFR 28.200 - Application.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Application. 28.200 Section 28.200 Money and Finance: Treasury Office of the Secretary of the Treasury NONDISCRIMINATION ON THE BASIS OF... Application. Except as provided in §§ 28.205 through 28.235(a), these Title IX regulations apply to every...

  14. The let-7/Lin28 axis regulates activation of hepatic stellate cells in alcoholic liver injury.

    Science.gov (United States)

    McDaniel, Kelly; Huang, Li; Sato, Keisaku; Wu, Nan; Annable, Tami; Zhou, Tianhao; Ramos-Lorenzo, Sugeily; Wan, Ying; Huang, Qiaobing; Francis, Heather; Glaser, Shannon; Tsukamoto, Hidekazu; Alpini, Gianfranco; Meng, Fanyin

    2017-07-07

    The let-7/Lin28 axis is associated with the regulation of key cellular regulatory genes known as microRNAs in various human disorders and cancer development. This study evaluated the role of the let-7/Lin28 axis in regulating a mesenchymal phenotype of hepatic stellate cells in alcoholic liver injury. We identified that ethanol feeding significantly down-regulated several members of the let-7 family in mouse liver, including let-7a and let-7b. Similarly, the treatment of human hepatic stellate cells (HSCs) with lipopolysaccharide (LPS) and transforming growth factor-β (TGF-β) significantly decreased the expressions of let-7a and let-7b. Conversely, overexpression of let-7a and let-7b suppressed the myofibroblastic activation of cultured human HSCs induced by LPS and TGF-β, as evidenced by repressed ACTA2 (α-actin 2), COL1A1 (collagen 1A1), TIMP1 (TIMP metallopeptidase inhibitor 1), and FN1 (fibronectin 1); this supports the notion that HSC activation is controlled by let-7. A combination of bioinformatics, dual-luciferase reporter assay, and Western blot analysis revealed that Lin28B and high-mobility group AT-hook (HMGA2) were the direct targets of let-7a and let-7b. Furthermore, Lin28B deficiency increased the expression of let-7a/let-7b as well as reduced HSC activation and liver fibrosis in mice with alcoholic liver injury. This feedback regulation of let-7 by Lin28B is verified in hepatic stellate cells isolated by laser capture microdissection from the model. The identification of the let-7/Lin28 axis as an important regulator of HSC activation as well as its upstream modulators and down-stream targets will provide insights into the involvement of altered microRNA expression in contributing to the pathogenesis of alcoholic liver fibrosis and novel therapeutic approaches for human alcoholic liver diseases. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. III. Cellular ultrastructures in situ as key to understanding tumor energy metabolism: biological significance of the Warburg effect.

    Science.gov (United States)

    Witkiewicz, Halina; Oh, Phil; Schnitzer, Jan E

    2013-01-01

    Despite the universality of metabolic pathways, malignant cells were found to have their metabolism reprogrammed to generate energy by glycolysis even under normal oxygen concentrations (the Warburg effect). Therefore, the pathway energetically 18 times less efficient than oxidative phosphorylation was implicated to match increased energy requirements of growing tumors. The paradox was explained by an abnormally high rate of glucose uptake, assuming unlimited availability of substrates for tumor growth in vivo. However, ultrastructural analysis of tumor vasculature morphogenesis showed that the growing tissue regions did not have continuous blood supply and intermittently depended on autophagy for survival. Erythrogenic autophagy, and resulting ATP generation by glycolysis, appeared critical to initiating vasculature formation where it was missing. This study focused on ultrastructural features that reflected metabolic switch from aerobic to anaerobic. Morphological differences between and within different types of cells were evident in tissue sections. In cells undergoing nucleo-cytoplasmic conversion into erythrosomes (erythrogenesis), gradual changes led to replacing mitochondria with peroxisomes, through an intermediate form connected to endoplasmic reticulum. Those findings related to the issue of peroxisome biogenesis and to the phenomenon of hemogenic endothelium. Mitochondria were compacted also during mitosis. In vivo, cells that lost and others that retained capability to use oxygen coexisted side-by-side; both types were important for vasculature morphogenesis and tissue growth. Once passable, the new vasculature segment could deliver external oxygen and nutrients. Nutritional and redox status of microenvironment had similar effect on metabolism of malignant and non-malignant cells demonstrating the necessity to maintain structure-energy equivalence in all living cells. The role of glycolysis in initiating vasculature formation, and in progression of

  16. Altering the Rate of Mitosis by Introducing Low-Gigahertz Radiation to Saccharomyces cerevisiae Cells

    Science.gov (United States)

    Garg, S.; Ashby, C.

    2017-12-01

    This experiment aims to assess the impact of low-frequency radiation (from common technological tools such as cell phones, scanners, and wifi) on the mitotic rates of cells. In particular, the focus of the study was on the growth and development of Saccharomyces cerevisiae cultures that were exposed to radio waves from a wifi router, which were then compared to a cohort of the same species without exposure. Though routers emit a low gigahertz frequency, they are categorized as Group 2B radiation (possibly carcinogenic) by the International Agency for Research on Cancer of the World Health Organization, signifying that constant exposure poses a potential risk to humans. Twelve agar dishes of active Saccharomyces cerevisiae solution were prepared, with six dishes acting as the control under no added radiation and six acting as the experimental group under 2.4 GHz of radiation due to their proximity to the router. Data on how many cultures proliferated in each dish was collected every three days, with the experiment running for a total of twelve days. All subjects experienced growth curves until day 9 when the experimental group's growth peaked with an average of 62 colonies/dish. Three of the six dishes in this group lost colonies in the following three days, leaving the experimental group with an average of 61 colonies/dish on day 12, while the control group was still increasing by day 12 with an average of 48 colonies/dish, with only one dish undergoing a loss of colonies. Exposing the Saccharomyces cerevisiae cells to low grade radiation resulted in accelerated mitosis, and though the experimental group faced colony death after nine days, the loss was likely due to overpopulation in the dish.

  17. 77 FR 67015 - Center for Scientific Review; Notice of Closed Meetings

    Science.gov (United States)

    2012-11-08

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Center for Scientific Review... public in accordance with the provisions set forth in sections 552b(c)(4) and 552b(c)(6), Title 5 U.S.C...: Mitosis and Meiosis. Date: November 27-28, 2012. Time: 8:00 a.m. to 5:00 p.m. Agenda: To review and...

  18. Finite key analysis in quantum cryptography

    International Nuclear Information System (INIS)

    Meyer, T.

    2007-01-01

    In view of experimental realization of quantum key distribution schemes, the study of their efficiency becomes as important as the proof of their security. The latter is the subject of most of the theoretical work about quantum key distribution, and many important results such as the proof of unconditional security have been obtained. The efficiency and also the robustness of quantum key distribution protocols against noise can be measured by figures of merit such as the secret key rate (the fraction of input signals that make it into the key) and the threshold quantum bit error rate (the maximal error rate such that one can still create a secret key). It is important to determine these quantities because they tell us whether a certain quantum key distribution scheme can be used at all in a given situation and if so, how many secret key bits it can generate in a given time. However, these figures of merit are usually derived under the ''infinite key limit'' assumption, that is, one assumes that an infinite number of quantum states are send and that all sub-protocols of the scheme (in particular privacy amplification) are carried out on these infinitely large blocks. Such an assumption usually eases the analysis, but also leads to (potentially) too optimistic values for the quantities in question. In this thesis, we are explicitly avoiding the infinite key limit for the analysis of the privacy amplification step, which plays the most important role in a quantum key distribution scheme. We still assume that an optimal error correction code is applied and we do not take into account any statistical errors that might occur in the parameter estimation step. Renner and coworkers derived an explicit formula for the obtainable key rate in terms of Renyi entropies of the quantum states describing Alice's, Bob's, and Eve's systems. This results serves as a starting point for our analysis, and we derive an algorithm that efficiently computes the obtainable key rate for any

  19. Finite key analysis in quantum cryptography

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, T.

    2007-10-31

    In view of experimental realization of quantum key distribution schemes, the study of their efficiency becomes as important as the proof of their security. The latter is the subject of most of the theoretical work about quantum key distribution, and many important results such as the proof of unconditional security have been obtained. The efficiency and also the robustness of quantum key distribution protocols against noise can be measured by figures of merit such as the secret key rate (the fraction of input signals that make it into the key) and the threshold quantum bit error rate (the maximal error rate such that one can still create a secret key). It is important to determine these quantities because they tell us whether a certain quantum key distribution scheme can be used at all in a given situation and if so, how many secret key bits it can generate in a given time. However, these figures of merit are usually derived under the ''infinite key limit'' assumption, that is, one assumes that an infinite number of quantum states are send and that all sub-protocols of the scheme (in particular privacy amplification) are carried out on these infinitely large blocks. Such an assumption usually eases the analysis, but also leads to (potentially) too optimistic values for the quantities in question. In this thesis, we are explicitly avoiding the infinite key limit for the analysis of the privacy amplification step, which plays the most important role in a quantum key distribution scheme. We still assume that an optimal error correction code is applied and we do not take into account any statistical errors that might occur in the parameter estimation step. Renner and coworkers derived an explicit formula for the obtainable key rate in terms of Renyi entropies of the quantum states describing Alice's, Bob's, and Eve's systems. This results serves as a starting point for our analysis, and we derive an algorithm that efficiently computes

  20. Exploring Middle School Students' Conceptions of the Relationship between Genetic Inheritance and Cell Division

    Science.gov (United States)

    Williams, Michelle; DeBarger, Angela Haydel; Montgomery, Beronda L.; Zhou, Xuechun; Tate, Erika

    2012-01-01

    This study examines students' understanding of the normative connections between key concepts of cell division, including both mitosis and meiosis, and underlying biological principles that are critical for an in-depth understanding of genetic inheritance. Using a structural equation modeling method, we examine middle school students'…

  1. Simple Web-based interactive key development software (WEBiKEY) and an example key for Kuruna (Poaceae: Bambusoideae).

    Science.gov (United States)

    Attigala, Lakshmi; De Silva, Nuwan I; Clark, Lynn G

    2016-04-01

    Programs that are user-friendly and freely available for developing Web-based interactive keys are scarce and most of the well-structured applications are relatively expensive. WEBiKEY was developed to enable researchers to easily develop their own Web-based interactive keys with fewer resources. A Web-based multiaccess identification tool (WEBiKEY) was developed that uses freely available Microsoft ASP.NET technologies and an SQL Server database for Windows-based hosting environments. WEBiKEY was tested for its usability with a sample data set, the temperate woody bamboo genus Kuruna (Poaceae). WEBiKEY is freely available to the public and can be used to develop Web-based interactive keys for any group of species. The interactive key we developed for Kuruna using WEBiKEY enables users to visually inspect characteristics of Kuruna and identify an unknown specimen as one of seven possible species in the genus.

  2. The Aurora B kinase in chromosome biorientation and spindle checkpoint signalling

    Directory of Open Access Journals (Sweden)

    Veronica eKrenn

    2015-10-01

    Full Text Available Aurora B, a member of the Aurora family of serine/threonine protein kinases, is a key player in chromosome segregation. As part of a macromolecular complex known as the chromosome passenger complex, Aurora B concentrates early during mitosis in the proximity of centromeres and kinetochores, the sites of attachment of chromosomes to spindle microtubules. There, it contributes to a number of processes that impart fidelity to cell division, including kinetochore stabilization, kinetochore-microtubule attachment, and the regulation of a surveillance mechanism named the spindle assembly checkpoint. In the regulation of these processes, Aurora B is the fulcrum of a remarkably complex network of interactions that feed back on its localization and activation state. In this review we discuss the multiple roles of Aurora B during mitosis, focusing in particular on its role at centromeres and kinetochores. Many details of the network of interactions at these locations remain poorly understood, and we focus here on several crucial outstanding questions.

  3. Informed Forces for Environmental Quality, Conference Proceedings (University of Wisconsin, Green Bay, Wisconsin, March 28-29, 1968).

    Science.gov (United States)

    Wisconsin Univ., Green Bay.

    To increase understanding of the dimensions of man's impact on his environment and the key issues involved in improving that environment through education and action was the goal of the environmental quality conference held at the University of Wisconsin, Green Bay, on March 28-29, 1968. Contained in this document are the conference…

  4. 46 CFR 28.120 - Survival craft.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Survival craft. 28.120 Section 28.120 Shipping COAST... VESSELS Requirements for All Vessels § 28.120 Survival craft. (a) Except as provided in paragraphs (b) through (h) of this section and 28.305, each vessel must carry the survival craft specified in Table 28...

  5. Calpastatin is regulated by protein never in mitosis gene A interacting-1 (PIN1) in endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tongzheng, E-mail: liu.tongzheng@mayo.edu [Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN 55905 (United States); Schneider, Ryan A., E-mail: schneiderr@findlay.edu [College of Pharmacy, The University of Findlay, Findlay, OH 45840 (United States); Hoyt, Dale G., E-mail: hoyt.27@osu.edu [The Dorothy M. Davis Heart and Lung Research Institute, and the Division of Pharmacology, College of Pharmacy, The Ohio State University, 500 West Twelfth Avenue, Columbus, OH 43210 (United States)

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer Depletion of PIN1 increases inhibitory effect of calpastatin against calpain in endothelial cells. Black-Right-Pointing-Pointer PIN1 associates with calpastatin. Black-Right-Pointing-Pointer PIN1, but not mutants, reduces the inhibitory activity of calpastatin in vitro. Black-Right-Pointing-Pointer Depletion of calpastatin shows that it is required for PIN1 depletion to reduce calpain activity. -- Abstract: The peptidyl-proline isomerase, protein never in mitosis gene A interacting-1 (PIN1) binds and isomerizes proteins phosphorylated on serine/threonine before a proline. It was previously found that depletion of PIN1 greatly increased induction of cyclooxygenase-2 and inducible nitric oxide synthase by lowering calpain activity in murine aortic endothelial cells (MAEC). Here we investigated the effect of PIN1 on the endogenous inhibitor of heterodimeric {mu}- and m-calpains, calpastatin. MAEC were transduced with small hairpin (sh) RNA to knock down PIN1 (KD) or an inactive Control shRNA. Cells were also treated with non-targeted double stranded small inhibitory RNA (siRNA) or siRNA designed to deplete calpastatin. Despite reducing calpain activity, PIN1 KD did not significantly affect the expression of {mu}- and m-calpains, or calpastatin, compared to Control shRNA. Instead, depletion of PIN1 increased the inhibitory activity of calpastatin. Calpastatin co-immunoprecipitated with endogenous PIN1 and was pulled down with glutathione-S-transferase (GST)-PIN1 fusion protein. Adding GST-PIN1 to KD cell extracts lacking PIN1 reduced calpastatin inhibitory activity. Substrate binding and catalytic domain mutants of PIN1 failed to do so. These results suggest that protein interaction and the proline isomerase functions of PIN1 are required for it to inhibit calpastatin. Furthermore, depletion of calpastatin raised calpain activity and reduced calpain inhibitory activity to similar levels in KD and Control MAEC, indicating that

  6. Calpastatin is regulated by protein never in mitosis gene A interacting-1 (PIN1) in endothelial cells

    International Nuclear Information System (INIS)

    Liu, Tongzheng; Schneider, Ryan A.; Hoyt, Dale G.

    2011-01-01

    Highlights: ► Depletion of PIN1 increases inhibitory effect of calpastatin against calpain in endothelial cells. ► PIN1 associates with calpastatin. ► PIN1, but not mutants, reduces the inhibitory activity of calpastatin in vitro. ► Depletion of calpastatin shows that it is required for PIN1 depletion to reduce calpain activity. -- Abstract: The peptidyl-proline isomerase, protein never in mitosis gene A interacting-1 (PIN1) binds and isomerizes proteins phosphorylated on serine/threonine before a proline. It was previously found that depletion of PIN1 greatly increased induction of cyclooxygenase-2 and inducible nitric oxide synthase by lowering calpain activity in murine aortic endothelial cells (MAEC). Here we investigated the effect of PIN1 on the endogenous inhibitor of heterodimeric μ- and m-calpains, calpastatin. MAEC were transduced with small hairpin (sh) RNA to knock down PIN1 (KD) or an inactive Control shRNA. Cells were also treated with non-targeted double stranded small inhibitory RNA (siRNA) or siRNA designed to deplete calpastatin. Despite reducing calpain activity, PIN1 KD did not significantly affect the expression of μ- and m-calpains, or calpastatin, compared to Control shRNA. Instead, depletion of PIN1 increased the inhibitory activity of calpastatin. Calpastatin co-immunoprecipitated with endogenous PIN1 and was pulled down with glutathione-S-transferase (GST)–PIN1 fusion protein. Adding GST–PIN1 to KD cell extracts lacking PIN1 reduced calpastatin inhibitory activity. Substrate binding and catalytic domain mutants of PIN1 failed to do so. These results suggest that protein interaction and the proline isomerase functions of PIN1 are required for it to inhibit calpastatin. Furthermore, depletion of calpastatin raised calpain activity and reduced calpain inhibitory activity to similar levels in KD and Control MAEC, indicating that calpastatin is required for PIN1 depletion to lower calpain activity. Thus, PIN1 apparently restrains

  7. A Role for the Chaperone Complex BAG3-HSPB8 in Actin Dynamics, Spindle Orientation and Proper Chromosome Segregation during Mitosis.

    Science.gov (United States)

    Fuchs, Margit; Luthold, Carole; Guilbert, Solenn M; Varlet, Alice Anaïs; Lambert, Herman; Jetté, Alexandra; Elowe, Sabine; Landry, Jacques; Lavoie, Josée N

    2015-10-01

    The co-chaperone BAG3, in complex with the heat shock protein HSPB8, plays a role in protein quality control during mechanical strain. It is part of a multichaperone complex that senses damaged cytoskeletal proteins and orchestrates their seclusion and/or degradation by selective autophagy. Here we describe a novel role for the BAG3-HSPB8 complex in mitosis, a process involving profound changes in cell tension homeostasis. BAG3 is hyperphosphorylated at mitotic entry and localizes to centrosomal regions. BAG3 regulates, in an HSPB8-dependent manner, the timely congression of chromosomes to the metaphase plate by influencing the three-dimensional positioning of the mitotic spindle. Depletion of BAG3 caused defects in cell rounding at metaphase and dramatic blebbing of the cortex associated with abnormal spindle rotations. Similar defects were observed upon silencing of the autophagic receptor p62/SQSTM1 that contributes to BAG3-mediated selective autophagy pathway. Mitotic cells depleted of BAG3, HSPB8 or p62/SQSTM1 exhibited disorganized actin-rich retraction fibres, which are proposed to guide spindle orientation. Proper spindle positioning was rescued in BAG3-depleted cells upon addition of the lectin concanavalin A, which restores cortex rigidity. Together, our findings suggest the existence of a so-far unrecognized quality control mechanism involving BAG3, HSPB8 and p62/SQSTM1 for accurate remodelling of actin-based mitotic structures that guide spindle orientation.

  8. A Role for the Chaperone Complex BAG3-HSPB8 in Actin Dynamics, Spindle Orientation and Proper Chromosome Segregation during Mitosis.

    Directory of Open Access Journals (Sweden)

    Margit Fuchs

    2015-10-01

    Full Text Available The co-chaperone BAG3, in complex with the heat shock protein HSPB8, plays a role in protein quality control during mechanical strain. It is part of a multichaperone complex that senses damaged cytoskeletal proteins and orchestrates their seclusion and/or degradation by selective autophagy. Here we describe a novel role for the BAG3-HSPB8 complex in mitosis, a process involving profound changes in cell tension homeostasis. BAG3 is hyperphosphorylated at mitotic entry and localizes to centrosomal regions. BAG3 regulates, in an HSPB8-dependent manner, the timely congression of chromosomes to the metaphase plate by influencing the three-dimensional positioning of the mitotic spindle. Depletion of BAG3 caused defects in cell rounding at metaphase and dramatic blebbing of the cortex associated with abnormal spindle rotations. Similar defects were observed upon silencing of the autophagic receptor p62/SQSTM1 that contributes to BAG3-mediated selective autophagy pathway. Mitotic cells depleted of BAG3, HSPB8 or p62/SQSTM1 exhibited disorganized actin-rich retraction fibres, which are proposed to guide spindle orientation. Proper spindle positioning was rescued in BAG3-depleted cells upon addition of the lectin concanavalin A, which restores cortex rigidity. Together, our findings suggest the existence of a so-far unrecognized quality control mechanism involving BAG3, HSPB8 and p62/SQSTM1 for accurate remodelling of actin-based mitotic structures that guide spindle orientation.

  9. Mutation of Asn28 Disrupts the Dimerization and Enzymatic Activity of SARS 3CL

    Energy Technology Data Exchange (ETDEWEB)

    Barrila, J.; Gabelli, S; Bacha, U; Amzel, M; Freire, E

    2010-01-01

    Coronaviruses are responsible for a significant proportion of annual respiratory and enteric infections in humans and other mammals. The most prominent of these viruses is the severe acute respiratory syndrome coronavirus (SARS-CoV) which causes acute respiratory and gastrointestinal infection in humans. The coronavirus main protease, 3CL{sup pro}, is a key target for broad-spectrum antiviral development because of its critical role in viral maturation and high degree of structural conservation among coronaviruses. Dimerization is an indispensable requirement for the function of SARS 3CL{sup pro} and is regulated through mechanisms involving both direct and long-range interactions in the enzyme. While many of the binding interactions at the dimerization interface have been extensively studied, those that are important for long-range control are not well-understood. Characterization of these dimerization mechanisms is important for the structure-based design of new treatments targeting coronavirus-based infections. Here we report that Asn28, a residue 11 {angstrom} from the closest residue in the opposing monomer, is essential for the enzymatic activity and dimerization of SARS 3CLpro. Mutation of this residue to alanine almost completely inactivates the enzyme and results in a 19.2-fold decrease in the dimerization K{sub d}. The crystallographic structure of the N28A mutant determined at 2.35 {angstrom} resolution reveals the critical role of Asn28 in maintaining the structural integrity of the active site and in orienting key residues involved in binding at the dimer interface and substrate catalysis. These findings provide deeper insight into complex mechanisms regulating the activity and dimerization of SARS 3CL{sup pro}.

  10. 31 CFR 28.540 - Advertising.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Advertising. 28.540 Section 28.540... Basis of Sex in Employment in Education Programs or Activities Prohibited § 28.540 Advertising. A recipient shall not in any advertising related to employment indicate preference, limitation, specification...

  11. Aberration of mitosis by hexavalent chromium in some Fabaceae members is mediated by species-specific microtubule disruption.

    Science.gov (United States)

    Eleftheriou, Eleftherios P; Michalopoulou, Vasiliki A; Adamakis, Ioannis-Dimosthenis S

    2015-05-01

    Because the detrimental effects of chromium (Cr) to higher plants have been poorly investigated, the present study was undertaken to verify the toxic attributes of hexavalent chromium [Cr(VI)] to plant mitotic microtubules (MTs), to determine any differential disruption of MTs during mitosis of taxonomically related species and to clarify the relationship between the visualized chromosomal aberrations and the Cr(VI)-induced MT disturbance. For this purpose, 5-day-old uniform seedlings of Vicia faba, Pisum sativum, Vigna sinensis and Vigna angularis, all belonging to the Fabaceae family, were exposed to 250 μM Cr(VI) supplied as potassium dichromate (K₂Cr₂O₇) for 24, 72 and 120 h and others in distilled water serving as controls. Root tip samples were processed for tubulin immunolabelling (for MT visualization) and DNA fluorescent staining (for chromosomal visualization). Microscopic preparations of cell squashes were then examined and photographed by confocal laser scanning microscopy (CLSM). Cr(VI) halted seedling growth turning roots brown and necrotic. Severe chromosomal abnormalities and differential disturbance of the corresponding MT arrays were found in all mitotic phases. In particular, in V. faba MTs were primarily depolymerized and replaced by atypical tubulin conformations, whereas in P. sativum, V. sinensis and V. angularis they became bundled in a time-dependent manner. In P. sativum, the effects were milder compared to those of the other species, but in all cases MT disturbance adversely affected the proper aggregation of chromosomes on the metaphase plate, their segregation at anaphase and organization of the new nuclei at telophase. Cr(VI) is very toxic to seedling growth. The particular effect depends on the exact stage the cell is found at the time of Cr(VI) entrance and is species-specific. Mitotic MT arrays are differentially deranged by Cr(VI) in the different species examined, even if they are taxonomically related, while their

  12. 27 CFR 28.290 - Receipt in foreign trade zone.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Receipt in foreign trade zone. 28.290 Section 28.290 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE... in Foreign-Trade Zone § 28.290 Receipt in foreign trade zone. On receipt at the zone, the shipment...

  13. Shape coexistence in N = 28 isotones

    International Nuclear Information System (INIS)

    Saxena, G.; Kaushik, M.; Kumawat, M.; Jain, S.K.

    2016-01-01

    Shape coexistence is one of the important nuclear phenomenon which appears throughout the periodic chart from light mass nuclei to superheavy nuclei. The evolution of ground-state shapes in an isotopic or isotonic chain is governed by changes of the shell structure of single-nucleon orbitals. In recent past, evolution of shell structure guiding shape coexistence, has been observed in the N = 20 and N = 28 isotones around proton drip line. In this paper we have investigated shape coexistence phenomenon for N = 28 isotones in the vicinity of proton drip line using Relativistic Mean Field plus BCS approach

  14. 49 CFR 28.160 - Communications.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Communications. 28.160 Section 28.160 Transportation Office of the Secretary of Transportation ENFORCEMENT OF NONDISCRIMINATION ON THE BASIS OF HANDICAP IN PROGRAMS OR ACTIVITIES CONDUCTED BY THE DEPARTMENT OF TRANSPORTATION § 28.160 Communications...

  15. 31 CFR 28.510 - Recruitment.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Recruitment. 28.510 Section 28.510... Basis of Sex in Employment in Education Programs or Activities Prohibited § 28.510 Recruitment. (a) Nondiscriminatory recruitment and hiring. A recipient shall not discriminate on the basis of sex in the recruitment...

  16. 31 CFR 28.405 - Housing.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Housing. 28.405 Section 28.405 Money... in Education Programs or Activities Prohibited § 28.405 Housing. (a) Generally. A recipient shall not... offer different services or benefits related to housing, except as provided in this section (including...

  17. Study of neutron-rich nuclei structure around the N=28 shell closure using the in-beam gamma spectroscopy technique

    International Nuclear Information System (INIS)

    Bastin, B.

    2007-10-01

    For a few years now, a loss of magicity in neutron-rich nuclei near the neutron drip-line at N=28 has been suggested and observed. Deformation in these nuclei has been observed. The deformation was explained in S isotopes as being due to a moderate reduction of the N=28 shell closure together with a proton induced collectivity originating from the near degeneracy of the proton d3/2 and s1/2 orbitals. As a consequence, the observed deformation seems to result from a subtle interplay between neutron and proton excitations. Since the proton configuration in the Si isotopes is expected to be more stable due to the Z=14 sub-shell gap, 42 Si was considered as a key nucleus in order to distinguish the different effects responsible for the structural changes observed at N=28. Even if it is at the limits of our technical possibilities, an in-beam gamma-spectroscopy experiment using two-step fragmentation and one or several nucleons knockout reaction mechanisms was performed at GANIL. The measurement of the energy of the first excited state in 42 Si, combined with the observation of 38,40 Si and the spectroscopy of 41,43 P, has given evidence for the loss of magicity at N=28 far from stability. Modifications of the effective interaction used in modern shell model calculations have been completed following this investigation, increasing its predictive character. This study confirms the role of the tensor force and the density dependence of the spin-orbit interaction in the collapse of the N=28 shell closure. (author)

  18. Deficiency in chromosome congression by the inhibition of Plk1 polo box domain-dependent recognition.

    Science.gov (United States)

    Watanabe, Nobumoto; Sekine, Tomomi; Takagi, Masatoshi; Iwasaki, Jun-ichi; Imamoto, Naoko; Kawasaki, Hisashi; Osada, Hiroyuki

    2009-01-23

    Polo-like kinase 1 (Plk1) is one of the key regulators of mitotic cell division. In addition to an N-terminal protein kinase catalytic domain, Plk1 possesses a phosphopeptide binding domain named polo box domain (PBD) at its C terminus. PBD is postulated to be essential for Plk1 localization and substrate targeting. Here, we developed a high-throughput screening system to identify inhibitors of PBD-dependent binding and screened a chemical library. We isolated a benzotropolone-containing natural compound derived from nutgalls (purpurogallin (PPG)) that inhibited PBD-dependent binding in vitro and in vivo. PPG not only delayed the onset of mitosis but also prolonged the progression of mitosis in HeLa cells. Although apparently normal bipolar spindles were formed even in the presence of PPG, the perturbation of chromosome alignment at metaphase plates activated the spindle assembly checkpoint pathway. These results demonstrate the predominant role of PBD-dependent binding on smooth chromosome congression at metaphase.

  19. 19 CFR 210.28 - Depositions.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 3 2010-04-01 2010-04-01 false Depositions. 210.28 Section 210.28 Customs Duties UNITED STATES INTERNATIONAL TRADE COMMISSION INVESTIGATIONS OF UNFAIR PRACTICES IN IMPORT TRADE ADJUDICATION AND ENFORCEMENT Discovery and Compulsory Process § 210.28 Depositions. (a) When depositions may be...

  20. 49 CFR 28.102 - Application.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Application. 28.102 Section 28.102 Transportation Office of the Secretary of Transportation ENFORCEMENT OF NONDISCRIMINATION ON THE BASIS OF HANDICAP IN PROGRAMS OR ACTIVITIES CONDUCTED BY THE DEPARTMENT OF TRANSPORTATION § 28.102 Application. This part...

  1. UVB-induced epidermal hyperproliferation is modified by a single, topical treatment with a mitosis inhibitory epidermal pentapeptide

    International Nuclear Information System (INIS)

    Olsen, W.M.; Elgjo, K.

    1990-01-01

    A single application of a water-miscible cream base containing the recently identified mitosis inhibitory epidermal pentapeptide pyroGlu-Glu-Asp-Ser-GlyOH (EPP) to hairless mouse skin is followed by a long-lasting period of reduced epidermal cell proliferation. To examine if a similar growth inhibition could be achieved in stimulated and rapidly proliferating epidermis, EPP was applied at two different concentrations, 0.005 or 0.02%, to hairless mouse skin immediately after exposure of the left flank to an erythemic dose of ultraviolet B light (UVB). This dose of UVB alone induces a sustained period of rapid epidermal cell proliferation, starting at about 18 h after the irradiation. Epidermal cell proliferation was followed from 18 to 54 h (0.005% cream) or from 18 to 30 h (0.02% cream) after the treatment by estimating the rate of G2-M cell flux (the mitotic rate) by means of Colcemid, and epidermal DNA synthesis by counting labeled cells after pulse-labeling with 3H-thymidine. The unirradiated side of the mice was used as reference. The results showed that topical treatment with a 0.02% EPP cream partially inhibited UVB-induced epidermal hyperproliferation, while the 0.005% EPP cream inhibited as well as stimulated the UVB-induced hyperproliferation. Thus, EPP is effective even in rapidly proliferating epidermal cell populations, but the outcome is obviously dose-dependent in this test system

  2. Control of the mitotic exit network during meiosis

    Science.gov (United States)

    Attner, Michelle A.; Amon, Angelika

    2012-01-01

    The mitotic exit network (MEN) is an essential GTPase signaling pathway that triggers exit from mitosis in budding yeast. We show here that during meiosis, the MEN is dispensable for exit from meiosis I but contributes to the timely exit from meiosis II. Consistent with a role for the MEN during meiosis II, we find that the signaling pathway is active only during meiosis II. Our analysis further shows that MEN signaling is modulated during meiosis in several key ways. Whereas binding of MEN components to spindle pole bodies (SPBs) is necessary for MEN signaling during mitosis, during meiosis MEN signaling occurs off SPBs and does not require the SPB recruitment factor Nud1. Furthermore, unlike during mitosis, MEN signaling is controlled through the regulated interaction between the MEN kinase Dbf20 and its activating subunit Mob1. Our data lead to the conclusion that a pathway essential for vegetative growth is largely dispensable for the specialized meiotic divisions and provide insights into how cell cycle regulatory pathways are modulated to accommodate different modes of cell division. PMID:22718910

  3. 32 CFR 28.105 - Definitions.

    Science.gov (United States)

    2010-07-01

    ... services in the private sector. (o) Recipient includes all contractors, subcontractors at any tier, and... 32 National Defense 1 2010-07-01 2010-07-01 false Definitions. 28.105 Section 28.105 National... RESTRICTIONS ON LOBBYING General § 28.105 Definitions. For purposes of this part: (a) Agency, as defined in 5 U...

  4. Overexpression of the E2 ubiquitin-conjugating enzyme UbcH10 causes chromosome missegregation and tumor formation.

    NARCIS (Netherlands)

    Ree, J.H.; Jeganathan, K.B.; Malureanu, L.; Deursen, J.M.A. van

    2010-01-01

    The anaphase-promoting complex/cyclosome (APC/C) E3 ubiquitin ligase functions with the E2 ubiquitin-conjugating enzyme UbcH10 in the orderly progression through mitosis by marking key mitotic regulators for destruction by the 26-S proteasome. UbcH10 is overexpressed in many human cancer types and

  5. The emotional importance of key: do Beatles songs written in different keys convey different emotional tones?

    Science.gov (United States)

    Whissel, R; Whissel, C

    2000-12-01

    Lyrics from 155 songs written by the Lennon-McCartney team were scored using the Dictionary of Affect in Language. Resultant scores (pleasantness, activation, and imagery of words) were compared across key signatures using one way analyses of variance. Words from songs written in minor keys were less pleasant and less active than those from songs written in major keys. Words from songs written in the key of F scored extremely low on all three measures. Lyrics from the keys of C, D, and G were relatively active in tone. Results from Dictionary scoring were compared with assignments of character to keys made more than one century ago and with current musicians' opinions.

  6. Designing key-dependent chaotic S-box with larger key space

    International Nuclear Information System (INIS)

    Yin Ruming; Yuan Jian; Wang Jian; Shan Xiuming; Wang Xiqin

    2009-01-01

    The construction of cryptographically strong substitution boxes (S-boxes) is an important concern in designing secure cryptosystems. The key-dependent S-boxes designed using chaotic maps have received increasing attention in recent years. However, the key space of such S-boxes does not seem to be sufficiently large due to the limited parameter range of discretized chaotic maps. In this paper, we propose a new key-dependent S-box based on the iteration of continuous chaotic maps. We explore the continuous-valued state space of chaotic systems, and devise the discrete mapping between the input and the output of the S-box. A key-dependent S-box is constructed with the logistic map in this paper. We show that its key space could be much larger than the current key-dependent chaotic S-boxes.

  7. 30 CFR 281.28 - Royalty.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Royalty. 281.28 Section 281.28 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE LEASING OF MINERALS OTHER THAN OIL, GAS, AND SULPHUR IN THE OUTER CONTINENTAL SHELF Financial Considerations § 281.28 Royalty. (a...

  8. 49 CFR 28.111 - Notice.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Notice. 28.111 Section 28.111 Transportation Office of the Secretary of Transportation ENFORCEMENT OF NONDISCRIMINATION ON THE BASIS OF HANDICAP IN PROGRAMS OR ACTIVITIES CONDUCTED BY THE DEPARTMENT OF TRANSPORTATION § 28.111 Notice. The Department shall...

  9. 49 CFR 28.140 - Employment.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Employment. 28.140 Section 28.140 Transportation Office of the Secretary of Transportation ENFORCEMENT OF NONDISCRIMINATION ON THE BASIS OF HANDICAP IN PROGRAMS OR ACTIVITIES CONDUCTED BY THE DEPARTMENT OF TRANSPORTATION § 28.140 Employment. (a) No qualified...

  10. 49 CFR 28.101 - Purpose.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Purpose. 28.101 Section 28.101 Transportation Office of the Secretary of Transportation ENFORCEMENT OF NONDISCRIMINATION ON THE BASIS OF HANDICAP IN PROGRAMS OR ACTIVITIES CONDUCTED BY THE DEPARTMENT OF TRANSPORTATION § 28.101 Purpose. The purpose of this...

  11. Key handling in wireless sensor networks

    International Nuclear Information System (INIS)

    Li, Y; Newe, T

    2007-01-01

    With the rapid growth of Wireless Sensor Networks (WSNs), many advanced application areas have received significant attention. However, security will be an important factor for their full adoption. Wireless sensor nodes pose unique challenges and as such traditional security protocols, used in traditional networks cannot be applied directly. Some new protocols have been published recently with the goal of providing both privacy of data and authentication of sensor nodes for WSNs. Such protocols can employ private-key and/or public key cryptographic algorithms. Public key algorithms hold the promise of simplifying the network infrastructure required to provide security services such as: privacy, authentication and non-repudiation, while symmetric algorithms require less processing power on the lower power wireless node. In this paper a selection of key establishment/agreement protocols are reviewed and they are broadly divided into two categories: group key agreement protocols and pair-wise key establishment protocols. A summary of the capabilities and security related services provided by each protocol is provided

  12. Key handling in wireless sensor networks

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y; Newe, T [Optical Fibre Sensors Research Centre, Department of Electronic and Computer Engineering, University of Limerick, Limerick (Ireland)

    2007-07-15

    With the rapid growth of Wireless Sensor Networks (WSNs), many advanced application areas have received significant attention. However, security will be an important factor for their full adoption. Wireless sensor nodes pose unique challenges and as such traditional security protocols, used in traditional networks cannot be applied directly. Some new protocols have been published recently with the goal of providing both privacy of data and authentication of sensor nodes for WSNs. Such protocols can employ private-key and/or public key cryptographic algorithms. Public key algorithms hold the promise of simplifying the network infrastructure required to provide security services such as: privacy, authentication and non-repudiation, while symmetric algorithms require less processing power on the lower power wireless node. In this paper a selection of key establishment/agreement protocols are reviewed and they are broadly divided into two categories: group key agreement protocols and pair-wise key establishment protocols. A summary of the capabilities and security related services provided by each protocol is provided.

  13. 46 CFR 28.10 - Authority.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Authority. 28.10 Section 28.10 Shipping COAST GUARD... General Provisions § 28.10 Authority. The regulations in this part are prescribed by the Commandant of the Coast Guard, pursuant to a delegation of authority by the Secretary of Homeland Security set forth in...

  14. Energy dependence of fusion evaporation-residue cross sections in the 28Si+28Si reaction

    International Nuclear Information System (INIS)

    Vineyard, M.F.; Bauer, J.S.; Gosdin, C.H.; Trotter, R.S.; Kovar, D.G.; Beck, C.; Henderson, D.J.; Janssens, R.V.F.; Wilkins, B.D.; Rosner, G.; Chowdhury, P.; Ikezoe, H.; Kuhn, W.; Kolata, J.J.; Hinnefeld, J.D.; Maguire, C.F.; Mateja, J.F.; Prosser, F.W.; Stephans, G.S.F.

    1990-01-01

    Velocity distributions of mass-identified evaporation residues produced in the 28 Si+ 28 Si reaction have been measured at bombarding energies of 174, 215, 240, 309, 397, and 452 MeV using time-of-flight techniques. These distributions were used to identify evaporation residues and to separate the complete-fusion and incomplete-fusion components. Angular distributions and total cross sections were extracted at all six bombarding energies. The complete-fusion evaporation-residue cross sections and the deduced critical angular momenta are compared with lower energy data and the predictions of existing models

  15. Quantum key management

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Richard John; Thrasher, James Thomas; Nordholt, Jane Elizabeth

    2016-11-29

    Innovations for quantum key management harness quantum communications to form a cryptography system within a public key infrastructure framework. In example implementations, the quantum key management innovations combine quantum key distribution and a quantum identification protocol with a Merkle signature scheme (using Winternitz one-time digital signatures or other one-time digital signatures, and Merkle hash trees) to constitute a cryptography system. More generally, the quantum key management innovations combine quantum key distribution and a quantum identification protocol with a hash-based signature scheme. This provides a secure way to identify, authenticate, verify, and exchange secret cryptographic keys. Features of the quantum key management innovations further include secure enrollment of users with a registration authority, as well as credential checking and revocation with a certificate authority, where the registration authority and/or certificate authority can be part of the same system as a trusted authority for quantum key distribution.

  16. Key distillation in quantum cryptography

    Science.gov (United States)

    Slutsky, Boris Aron

    1998-11-01

    Quantum cryptography is a technique which permits two parties to communicate over an open channel and establish a shared sequence of bits known only to themselves. This task, provably impossible in classical cryptography, is accomplished by encoding the data on quantum particles and harnessing their unique properties. It is believed that no eavesdropping attack consistent with the laws of quantum theory can compromise the secret data unknowingly to the legitimate users of the channel. Any attempt by a hostile actor to monitor the data carrying particles while in transit reveals itself through transmission errors it must inevitably introduce. Unfortunately, in practice a communication is not free of errors even when no eavesdropping is present. Key distillation is a technique that permits the parties to overcome this difficulty and establish a secret key despite channel defects, under the assumption that every particle is handled independently from other particles by the enemy. In the present work, key distillation is described and its various aspects are studied. A relationship is derived between the average error rate resulting from an eavesdropping attack and the amount of information obtained by the attacker. Formal definition is developed of the security of the final key. The net throughput of secret bits in a quantum cryptosystem employing key distillation is assessed. An overview of quantum cryptographic protocols and related information theoretical results is also given.

  17. Chemical composition and mutagenic assessment of petrochemical ...

    African Journals Online (AJOL)

    ... could serve as indicator of the deleterious effects of these wastewaters on other organisms at the point of discharge – either on land or water bodies. The need for sound sewerage system that would protect flora and fauna in the ecosystem is advocated. Key words: Chromosome, ecosystem, heavy metal, mitosis, mutation.

  18. Centromere separation and association in the nuclei of an interspecific hybrid between Torenia fournieri and T. baillonii (Scrophulariaceae) during mitosis and meiosis.

    Science.gov (United States)

    Kikuchi, Shinji; Tanaka, Hiroyuki; Wako, Toshiyuki; Tsujimoto, Hisashi

    2007-10-01

    In the nuclei of some interspecific hybrid and allopolyploid plant species, each genome occupies a separate spatial domain. To analyze this phenomenon, we studied localization of the centromeres in the nuclei of a hybrid between Torenia fournieri and T. baillonii during mitosis and meiosis using three-dimensional fluorescence in situ hybridization (3D-FISH) probed with species-specific centromere repeats. Centromeres of each genome were located separately in undifferentiated cells but not differentiated cells, suggesting that cell division might be the possible force causing centromere separation. However, no remarkable difference of dividing distance was detected between chromatids with different centromeres in anaphase and telophase, indicating that tension of the spindle fiber attached to each chromatid is not the cause of centromere separation in Torenia. In differentiated cells, centromeres in both genomes were not often observed for the expected chromosome number, indicating centromere association. In addition, association of centromeres from the same genome was observed at a higher frequency than between different genomes. This finding suggests that centromeres within one genome are spatially separated from those within the other. This close position may increase possibility of association between centromeres of the same genome. In meiotic prophase, all centromeres irrespective of the genome were associated in a certain portion of the nucleus. Since centromere association in the interspecific hybrid and amphiploid was tighter than that in the diploid parents, it is possible that this phenomenon may be involved in sorting and pairing of homologous chromosomes.

  19. Is the Green Key standard the golden key for sustainability measurement in the hospitality sector?

    NARCIS (Netherlands)

    Rietbergen, M.G.; Van Rheede, A.

    2014-01-01

    The Green Key is an eco-rating program that aims at promoting sustainable business practices in the hospitality sector. The Green Key assesses amongst others the sustainable management of energy, water and waste within hotels and other hospitality firms. The Green Key standard awards points if

  20. 6th world congress of Nuclear Medicine and Biology, October 23-28, 1994, Sydney, Australia. Abstracts

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    The supplement presents 962 abstracts of papers or posters presented at the 6th World Congress of Nuclear Medicine and Biology, held from 23-28 October 1994 in Sydney, Australia. The key subjects of the conference are diagnostic nuclear medicine, with emphasis on scintiscanning, SPET and PET in all fields of medicine. There is an alphabetical author index to facilitate retrieval of individual papers [de

  1. β-catenin at the centrosome: discrete pools of β-catenin communicate during mitosis and may co-ordinate centrosome functions and cell cycle progression.

    Science.gov (United States)

    Mbom, Bertrade C; Nelson, W James; Barth, Angela

    2013-09-01

    Beta-catenin is a multifunctional protein with critical roles in cell-cell adhesion, Wnt-signaling and the centrosome cycle. Whereas the roles of β-catenin in cell-cell adhesion and Wnt-signaling have been studied extensively, the mechanism(s) involving β-catenin in centrosome functions are poorly understood. β-Catenin localizes to centrosomes and promotes mitotic progression. NIMA-related protein kinase 2 (Nek2), which stimulates centrosome separation, binds to and phosphorylates β-catenin. β-Catenin interacting proteins involved in Wnt signaling such as adenomatous polyposis coli, Axin, and GSK3β, are also localized at centrosomes and play roles in promoting mitotic progression. Additionally, proteins associated with cell-cell adhesion sites, such as dynein, regulate mitotic spindle positioning. These roles of proteins at the cell cortex and Wnt signaling that involve β-catenin indicate a cross-talk between different sub-cellular sites in the cell at mitosis, and that different pools of β-catenin may co-ordinate centrosome functions and cell cycle progression. © 2013 WILEY Periodicals, Inc.

  2. The phosphorylation-dependent regulation of nuclear SREBP1 during mitosis links lipid metabolism and cell growth

    Science.gov (United States)

    Bengoechea-Alonso, Maria Teresa; Ericsson, Johan

    2016-01-01

    ABSTRACT The SREBP transcription factors are major regulators of lipid metabolism. Disturbances in lipid metabolism are at the core of several health issues facing modern society, including cardiovascular disease, obesity and diabetes. In addition, the role of lipid metabolism in cancer cell growth is receiving increased attention. Transcriptionally active SREBP molecules are unstable and rapidly degraded in a phosphorylation-dependent manner by Fbw7, a ubiquitin ligase that targets several cell cycle regulatory proteins for degradation. We have previously demonstrated that active SREBP1 is stabilized during mitosis. We have now delineated the mechanisms involved in the stabilization of SREBP1 in mitotic cells. This process is initiated by the phosphorylation of a specific serine residue in nuclear SREBP1 by the mitotic kinase Cdk1. The phosphorylation of this residue creates a docking site for a separate mitotic kinase, Plk1. Plk1 interacts with nuclear SREBP1 in mitotic cells and phosphorylates a number of residues in the C-terminal domain of the protein, including a threonine residue in close proximity of the Fbw7 docking site in SREBP1. The phosphorylation of these residues by Plk1 blocks the interaction between SREBP1 and Fbw7 and attenuates the Fbw7-dependent degradation of nuclear SREBP1 during cell division. Inactivation of SREBP1 results in a mitotic defect, suggesting that SREBP1 could regulate cell division. We propose that the mitotic phosphorylation and stabilization of nuclear SREBP1 during cell division provides a link between lipid metabolism and cell proliferation. Thus, the current study provides additional support for the emerging hypothesis that SREBP-dependent lipid metabolism may be important for cell growth. PMID:27579997

  3. 27 CFR 28.110 - Losses.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Losses. 28.110 Section 28... Manufacturing Bonded Warehouse Losses § 28.110 Losses. Where there has been a loss of distilled spirits while in... of subpart O of this part, with respect to losses of spirits after withdrawal without payment of tax...

  4. 27 CFR 28.149 - Losses.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Losses. 28.149 Section 28... Exportation, Use as Supplies on Vessels and Aircraft, or Transfer to a Foreign-Trade Zone § 28.149 Losses. When there has been a loss of beer or beer concentrate while in transit from the brewery to a port for...

  5. 27 CFR 28.127 - Losses.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Losses. 28.127 Section 28... to a Manufacturing Bonded Warehouse § 28.127 Losses. Where there has been a loss of wine while in..., with respect to losses of wine after withdrawal without payment of tax and to claims for remission of...

  6. 27 CFR 28.156 - Losses.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Losses. 28.156 Section 28... Exportation or Transfer to a Foreign-Trade Zone § 28.156 Losses. Where there has been a loss of specially... or a foreign-trade zone, the exporter shall file claim for allowance of the loss in accordance with...

  7. Key Exchange Trust Evaluation in Peer-to-Peer Sensor Networks With Unconditionally Secure Key Exchange

    Science.gov (United States)

    Gonzalez, Elias; Kish, Laszlo B.

    2016-03-01

    As the utilization of sensor networks continue to increase, the importance of security becomes more profound. Many industries depend on sensor networks for critical tasks, and a malicious entity can potentially cause catastrophic damage. We propose a new key exchange trust evaluation for peer-to-peer sensor networks, where part of the network has unconditionally secure key exchange. For a given sensor, the higher the portion of channels with unconditionally secure key exchange the higher the trust value. We give a brief introduction to unconditionally secured key exchange concepts and mention current trust measures in sensor networks. We demonstrate the new key exchange trust measure on a hypothetical sensor network using both wired and wireless communication channels.

  8. Manet key management via Mobile Ficlke Key protocol (MFK ...

    African Journals Online (AJOL)

    Manet key management via Mobile Ficlke Key protocol (MFK) ... Journal of Fundamental and Applied Sciences. Journal Home · ABOUT THIS JOURNAL ... No Abstract. Keywords: MANET; key management scheme; simulation environment ...

  9. Robust Public Key Cryptography — A New Cryptosystem Surviving Private Key Compromise

    Science.gov (United States)

    Shaik, Cheman

    A weakness of the present-day public key cryptosystems is that these cryptosystems do not survive private-key compromise attacks resulting from an internal breach of trust. In a competitive business environment, private key compromise is a common incident that voids the strength of public key cryptosystems such as RSA and ECC. Bribing corporate employees to disclose their secret keys and inadvertently disclosing secret information are among a plethora of practical attacks that occur at the implementation level. Once a breach of trust takes place and subsequently the private key is revealed, any public key cryptosystem fails to secure electronic data in Internet communications. The revealed key may be used by an attacker to decipher the intercepted data at an intermediary router. This weakness of public key cryptography calls for an additional security measure that enables encryptions to survive private key compromise attacks.

  10. JNK Controls the Onset of Mitosis in Planarian Stem Cells and Triggers Apoptotic Cell Death Required for Regeneration and Remodeling

    Science.gov (United States)

    Almuedo-Castillo, María; Crespo, Xenia; Seebeck, Florian; Bartscherer, Kerstin; Salò, Emili; Adell, Teresa

    2014-01-01

    Regeneration of lost tissues depends on the precise interpretation of molecular signals that control and coordinate the onset of proliferation, cellular differentiation and cell death. However, the nature of those molecular signals and the mechanisms that integrate the cellular responses remain largely unknown. The planarian flatworm is a unique model in which regeneration and tissue renewal can be comprehensively studied in vivo. The presence of a population of adult pluripotent stem cells combined with the ability to decode signaling after wounding enable planarians to regenerate a complete, correctly proportioned animal within a few days after any kind of amputation, and to adapt their size to nutritional changes without compromising functionality. Here, we demonstrate that the stress-activated c-jun–NH2–kinase (JNK) links wound-induced apoptosis to the stem cell response during planarian regeneration. We show that JNK modulates the expression of wound-related genes, triggers apoptosis and attenuates the onset of mitosis in stem cells specifically after tissue loss. Furthermore, in pre-existing body regions, JNK activity is required to establish a positive balance between cell death and stem cell proliferation to enable tissue renewal, remodeling and the maintenance of proportionality. During homeostatic degrowth, JNK RNAi blocks apoptosis, resulting in impaired organ remodeling and rescaling. Our findings indicate that JNK-dependent apoptotic cell death is crucial to coordinate tissue renewal and remodeling required to regenerate and to maintain a correctly proportioned animal. Hence, JNK might act as a hub, translating wound signals into apoptotic cell death, controlled stem cell proliferation and differentiation, all of which are required to coordinate regeneration and tissue renewal. PMID:24922054

  11. Secret key rates in quantum key distribution using Renyi entropies

    Energy Technology Data Exchange (ETDEWEB)

    Abruzzo, Silvestre; Kampermann, Hermann; Mertz, Markus; Bratzik, Sylvia; Bruss, Dagmar [Institut fuer Theoretische Physik III, Heinrich-Heine-Universitaet Duesseldorf (Germany)

    2010-07-01

    The secret key rate r of a quantum key distribution protocol depends on the involved number of signals and the accepted ''failure probability''. We reconsider a method to calculate r focusing on the analysis of the privacy amplification given by R. Renner and R. Koenig (2005). This approach involves an optimization problem with an objective function depending on the Renyi entropy of the density operator describing the classical outcomes and the eavesdropper system. This problem is analyzed for a generic class of QKD protocols and the current research status is presented.

  12. Ionizing radiation-dependent and independent phosphorylation of the 32-kDa subunit of replication protein A during mitosis.

    LENUS (Irish Health Repository)

    Stephan, Holger

    2009-10-01

    The human single-stranded DNA-binding protein, replication protein A (RPA), is regulated by the N-terminal phosphorylation of its 32-kDa subunit, RPA2. RPA2 is hyperphosphorylated in response to various DNA-damaging agents and also phosphorylated in a cell-cycle-dependent manner during S- and M-phase, primarily at two CDK consensus sites, S23 and S29. Here we generated two monoclonal phospho-specific antibodies directed against these CDK sites. These phospho-specific RPA2-(P)-S23 and RPA2-(P)-S29 antibodies recognized mitotically phosphorylated RPA2 with high specificity. In addition, the RPA2-(P)-S23 antibody recognized the S-phase-specific phosphorylation of RPA2, suggesting that during S-phase only S23 is phosphorylated, whereas during M-phase both CDK sites, S23 and S29, are phosphorylated. Immunofluorescence microscopy revealed that the mitotic phosphorylation of RPA2 starts at the onset of mitosis, and dephosphorylation occurs during late cytokinesis. In mitotic cells treated with ionizing radiation (IR), we observed a rapid hyperphosphorylation of RPA2 in addition to its mitotic phosphorylation at S23 and S29, associated with a significant change in the subcellular localization of RPA. Our data also indicate that the RPA2 hyperphosphorylation in response to IR is facilitated by the activity of both ATM and DNA-PK, and is associated with activation of the Chk2 pathway.

  13. Angular momentum effects in the fusion of "2"8Si+"2"8Si system

    International Nuclear Information System (INIS)

    Choudhary, Atul; Verma, Dalip Singh

    2016-01-01

    In the heavy ion fusion reactions the interaction potential plays an important role as it provides the characteristics like barrier height, barrier position and barrier width in the calculations of fusion cross section. This means different types of interaction potential gives different fusion cross sections or potential parameters are predicted w.r.t the experimental data. In the literature, number of formalism for the calculation of fusion cross sections assumes that the potential barrier position and width is independent of angular momentum (ℓ). However, all the three potential characteristics are ℓ-dependent and are used in the calculation the fusion cross section for a positive Q-value system, "2"8Si+"2"8Si (Q = 10.9 MeV) and is compared with the recently measured fusion cross section

  14. Mad2 binding to Mad1 and Cdc20, rather than oligomerization, is required for the spindle checkpoint

    DEFF Research Database (Denmark)

    Sironi, L; Melixetian, M; Faretta, M

    2001-01-01

    Mad2 is a key component of the spindle checkpoint, a device that controls the fidelity of chromosome segregation in mitosis. The ability of Mad2 to form oligomers in vitro has been correlated with its ability to block the cell cycle upon injection into Xenopus embryos. Here we show that Mad2 forms...

  15. Loss of the Greatwall Kinase Weakens the Spindle Assembly Checkpoint.

    Directory of Open Access Journals (Sweden)

    M Kasim Diril

    2016-09-01

    Full Text Available The Greatwall kinase/Mastl is an essential gene that indirectly inhibits the phosphatase activity toward mitotic Cdk1 substrates. Here we show that although Mastl knockout (MastlNULL MEFs enter mitosis, they progress through mitosis without completing cytokinesis despite the presence of misaligned chromosomes, which causes chromosome segregation defects. Furthermore, we uncover the requirement of Mastl for robust spindle assembly checkpoint (SAC maintenance since the duration of mitotic arrest caused by microtubule poisons in MastlNULL MEFs is shortened, which correlates with premature disappearance of the essential SAC protein Mad1 at the kinetochores. Notably, MastlNULL MEFs display reduced phosphorylation of a number of proteins in mitosis, which include the essential SAC kinase MPS1. We further demonstrate that Mastl is required for multi-site phosphorylation of MPS1 as well as robust MPS1 kinase activity in mitosis. In contrast, treatment of MastlNULL cells with the phosphatase inhibitor okadaic acid (OKA rescues the defects in MPS1 kinase activity, mislocalization of phospho-MPS1 as well as Mad1 at the kinetochore, and premature SAC silencing. Moreover, using in vitro dephosphorylation assays, we demonstrate that Mastl promotes persistent MPS1 phosphorylation by inhibiting PP2A/B55-mediated MPS1 dephosphorylation rather than affecting Cdk1 kinase activity. Our findings establish a key regulatory function of the Greatwall kinase/Mastl->PP2A/B55 pathway in preventing premature SAC silencing.

  16. Loss of the Greatwall Kinase Weakens the Spindle Assembly Checkpoint.

    Science.gov (United States)

    Diril, M Kasim; Bisteau, Xavier; Kitagawa, Mayumi; Caldez, Matias J; Wee, Sheena; Gunaratne, Jayantha; Lee, Sang Hyun; Kaldis, Philipp

    2016-09-01

    The Greatwall kinase/Mastl is an essential gene that indirectly inhibits the phosphatase activity toward mitotic Cdk1 substrates. Here we show that although Mastl knockout (MastlNULL) MEFs enter mitosis, they progress through mitosis without completing cytokinesis despite the presence of misaligned chromosomes, which causes chromosome segregation defects. Furthermore, we uncover the requirement of Mastl for robust spindle assembly checkpoint (SAC) maintenance since the duration of mitotic arrest caused by microtubule poisons in MastlNULL MEFs is shortened, which correlates with premature disappearance of the essential SAC protein Mad1 at the kinetochores. Notably, MastlNULL MEFs display reduced phosphorylation of a number of proteins in mitosis, which include the essential SAC kinase MPS1. We further demonstrate that Mastl is required for multi-site phosphorylation of MPS1 as well as robust MPS1 kinase activity in mitosis. In contrast, treatment of MastlNULL cells with the phosphatase inhibitor okadaic acid (OKA) rescues the defects in MPS1 kinase activity, mislocalization of phospho-MPS1 as well as Mad1 at the kinetochore, and premature SAC silencing. Moreover, using in vitro dephosphorylation assays, we demonstrate that Mastl promotes persistent MPS1 phosphorylation by inhibiting PP2A/B55-mediated MPS1 dephosphorylation rather than affecting Cdk1 kinase activity. Our findings establish a key regulatory function of the Greatwall kinase/Mastl->PP2A/B55 pathway in preventing premature SAC silencing.

  17. 46 CFR 28.565 - Water on deck.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Water on deck. 28.565 Section 28.565 Shipping COAST... VESSELS Stability § 28.565 Water on deck. (a) Each vessel with bulwarks must comply with the requirements... energy, “b” in Figure 28.565, must not be less than the water on deck heeling energy, “a” in Figure 28...

  18. High-efficiency Gaussian key reconciliation in continuous variable quantum key distribution

    Science.gov (United States)

    Bai, ZengLiang; Wang, XuYang; Yang, ShenShen; Li, YongMin

    2016-01-01

    Efficient reconciliation is a crucial step in continuous variable quantum key distribution. The progressive-edge-growth (PEG) algorithm is an efficient method to construct relatively short block length low-density parity-check (LDPC) codes. The qua-sicyclic construction method can extend short block length codes and further eliminate the shortest cycle. In this paper, by combining the PEG algorithm and qua-si-cyclic construction method, we design long block length irregular LDPC codes with high error-correcting capacity. Based on these LDPC codes, we achieve high-efficiency Gaussian key reconciliation with slice recon-ciliation based on multilevel coding/multistage decoding with an efficiency of 93.7%.

  19. Identification and characterisation of the IL-27 p28 subunits in fish: Cloning and comparative expression analysis of two p28 paralogues in Atlantic salmon Salmo salar.

    Science.gov (United States)

    Husain, Mansourah; Martin, Samuel A M; Wang, Tiehui

    2014-11-01

    Interleukin (IL)-27 is an IL-6/IL-12 family member with pro-inflammatory and anti-inflammatory properties. It is a heterodimeric cytokine composed of an α-chain p28 and a β-chain Ebi3 (Epstein-Barr virus induce gene 3). The p28 subunit can also be secreted as a monomer and function as IL-30 that acts as an inhibitor of IL-27 signalling. At present, the p28 gene has only been described in mammals. Thus, for the first time outwith mammals, we have identified seven p28 molecules in six divergent teleost fish species, Atlantic salmon, two cichlids, two cyprinids and a yellowtail. The fish p28 molecules have higher similarities to mammalian p28 than other IL-6/12 family members. Critical residues involved in the interaction with Ebi3 and the receptor gp130 are highly conserved. The prediction that these are true orthologues is supported by phylogenetic and synteny analysis. Two p28 paralogues (p28a and p28b) sharing 72% aa identity have been identified and characterised in Atlantic salmon. There are multiple upstream ATGs in the 5'-UTR and ATTTA motifs in the 3'-UTR of both cDNA sequences, suggesting regulation at the post-transcriptional and translational level. Both salmon p28 genes are highly expressed in immune relevant tissues, such as thymus, gills, spleen and head kidney. Conversely salmon Ebi3 is highly expressed in other organs, such as liver and caudal kidney. The expression of p28 but not Ebi3 was induced by PAMPs and recombinant cytokines in head kidney cells, and in spleen by Poly I:C challenge in vivo. The dissociation of the expression and modulation of p28 and Ebi3 suggest that both p28 and Ebi3 may be secreted alone or with other partners. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. 27 CFR 28.291 - Customs Form 6001.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Customs Form 6001. 28.291... OF THE TREASURY LIQUORS EXPORTATION OF ALCOHOL Proceedings at Ports of Export Customs Gauge § 28.291 Customs Form 6001. When spirits or wines are gauged as required in §§ 28.264, 28.285, or 28.290, the...

  1. 7 CFR 28.909 - Costs.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Costs. 28.909 Section 28.909 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing..., TESTING, AND STANDARDS Cotton Classification and Market News Service for Producers Sampling § 28.909 Costs...

  2. 32 CFR 651.28 - Introduction.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Introduction. 651.28 Section 651.28 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) ENVIRONMENTAL QUALITY ENVIRONMENTAL ANALYSIS OF ARMY ACTIONS (AR 200-2) Categorical Exclusions § 651.28 Introduction. Categorical...

  3. 32 CFR 147.28 - Introduction.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 1 2010-07-01 2010-07-01 false Introduction. 147.28 Section 147.28 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE PERSONNEL, MILITARY AND CIVILIAN... Temporary Access § 147.28 Introduction. The following minimum investigative standards, implementing section...

  4. Study of neutron-rich nuclei structure around the N=28 shell closure using the in-beam gamma spectroscopy technique; Etude de la structure des noyaux riches en neutrons autour de la fermeture de couches N=28 par spectroscopie gamma en ligne

    Energy Technology Data Exchange (ETDEWEB)

    Bastin, B

    2007-10-15

    For a few years now, a loss of magicity in neutron-rich nuclei near the neutron drip-line at N=28 has been suggested and observed. Deformation in these nuclei has been observed. The deformation was explained in S isotopes as being due to a moderate reduction of the N=28 shell closure together with a proton induced collectivity originating from the near degeneracy of the proton d3/2 and s1/2 orbitals. As a consequence, the observed deformation seems to result from a subtle interplay between neutron and proton excitations. Since the proton configuration in the Si isotopes is expected to be more stable due to the Z=14 sub-shell gap, {sup 42}Si was considered as a key nucleus in order to distinguish the different effects responsible for the structural changes observed at N=28. Even if it is at the limits of our technical possibilities, an in-beam gamma-spectroscopy experiment using two-step fragmentation and one or several nucleons knockout reaction mechanisms was performed at GANIL. The measurement of the energy of the first excited state in {sup 42}Si, combined with the observation of {sup 38,40}Si and the spectroscopy of {sup 41,43}P, has given evidence for the loss of magicity at N=28 far from stability. Modifications of the effective interaction used in modern shell model calculations have been completed following this investigation, increasing its predictive character. This study confirms the role of the tensor force and the density dependence of the spin-orbit interaction in the collapse of the N=28 shell closure. (author)

  5. Nuclear transport factor directs localization of protein synthesis during mitosis

    NARCIS (Netherlands)

    Bogaart, Geert van den; Meinema, Anne C.; Krasnikov, Viktor; Veenhoff, Liesbeth M.; Poolman, Bert

    Export of messenger RNA from the transcription site in the nucleus and mRNA targeting to the translation site in the cytoplasm are key regulatory processes in protein synthesis. In yeast, the mRNA-binding proteins Nab2p and Nab4p/Hrp1p accompany transcripts to their translation site, where the

  6. Observation and characterization of the smallest borospherene, B{sub 28}{sup −} and B{sub 28}

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ying-Jin; Chen, Qiang; You, Xue-Rui; Ou, Ting; Zhao, Xiao-Yun; Li, Si-Dian, E-mail: hj.zhai@sxu.edu.cn, E-mail: lisidian@sxu.edu.cn, E-mail: junli@tsinghua.edu.cn, E-mail: lai-sheng-wang@brown.edu [Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006 (China); Zhao, Ya-Fan; Li, Jun, E-mail: hj.zhai@sxu.edu.cn, E-mail: lisidian@sxu.edu.cn, E-mail: junli@tsinghua.edu.cn, E-mail: lai-sheng-wang@brown.edu [Department of Chemistry and Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084 (China); Li, Wei-Li; Jian, Tian; Wang, Lai-Sheng, E-mail: hj.zhai@sxu.edu.cn, E-mail: lisidian@sxu.edu.cn, E-mail: junli@tsinghua.edu.cn, E-mail: lai-sheng-wang@brown.edu [Department of Chemistry, Brown University, Providence, Rhode Island 02912 (United States); Zhai, Hua-Jin, E-mail: hj.zhai@sxu.edu.cn, E-mail: lisidian@sxu.edu.cn, E-mail: junli@tsinghua.edu.cn, E-mail: lai-sheng-wang@brown.edu [Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006 (China); State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan 030006 (China)

    2016-02-14

    Free-standing boron nanocages or borospherenes have been observed recently for B{sub 40}{sup −} and B{sub 40}. There is evidence that a family of borospherenes may exist. However, the smallest borospherene is still not known. Here, we report experimental and computational evidence of a seashell-like borospherene cage for B{sub 28}{sup −} and B{sub 28}. Photoelectron spectrum of B{sub 28}{sup −} indicated contributions from different isomers. Theoretical calculations showed that the seashell-like B{sub 28}{sup −} borospherene is competing for the global minimum with a planar isomer and it is shown to be present in the cluster beam, contributing to the observed photoelectron spectrum. The seashell structure is found to be the global minimum for neutral B{sub 28} and the B{sub 28}{sup −} cage represents the smallest borospherene observed to date. It is composed of two triangular close-packed B{sub 15} sheets, interconnected via the three corners by sharing two boron atoms. The B{sub 28} borospherene was found to obey the 2(n + 1){sup 2} electron-counting rule for spherical aromaticity.

  7. Key management of the double random-phase-encoding method using public-key encryption

    Science.gov (United States)

    Saini, Nirmala; Sinha, Aloka

    2010-03-01

    Public-key encryption has been used to encode the key of the encryption process. In the proposed technique, an input image has been encrypted by using the double random-phase-encoding method using extended fractional Fourier transform. The key of the encryption process have been encoded by using the Rivest-Shamir-Adelman (RSA) public-key encryption algorithm. The encoded key has then been transmitted to the receiver side along with the encrypted image. In the decryption process, first the encoded key has been decrypted using the secret key and then the encrypted image has been decrypted by using the retrieved key parameters. The proposed technique has advantage over double random-phase-encoding method because the problem associated with the transmission of the key has been eliminated by using public-key encryption. Computer simulation has been carried out to validate the proposed technique.

  8. 29 CFR 1905.28 - Exceptions.

    Science.gov (United States)

    2010-07-01

    ... OCCUPATIONAL SAFETY AND HEALTH ACT OF 1970 Hearings § 1905.28 Exceptions. Within 20 days after service of a... 29 Labor 5 2010-07-01 2010-07-01 false Exceptions. 1905.28 Section 1905.28 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR RULES OF...

  9. 7 CFR 1216.28 - State.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false State. 1216.28 Section 1216.28 Agriculture... INFORMATION ORDER Peanut Promotion, Research, and Information Order Definitions § 1216.28 State. State means any of the 50 states, the District of Columbia, the Commonwealth of Puerto Rico, or any territory or...

  10. 27 CFR 28.213 - [Reserved

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false [Reserved] 28.213 Section 28.213 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS EXPORTATION OF ALCOHOL Exportation of Wine With Benefit of Drawback § 28.213...

  11. Synthesis of the C1-C28 Portion of Spongistatin 1 (Altohyrtin A).

    Science.gov (United States)

    Claffey, Michelle M.; Hayes, Christopher J.; Heathcock, Clayton H.

    1999-10-29

    A synthetic approach was developed to the C1-C28 subunit of spongistatin 1 (altohyrtin A, 65). The key step was the coupling of the AB and CD spiroketal moieties via an anti-aldol reaction of aldehyde 62 and ethyl ketone 57. The development of a method for the construction of the AB spiroketal fragment is described and included the desymmetrization of C(2)-symmetric diketone 10 and the differentiation of the two primary alcohols of 16. Further elaboration of this advanced intermediate to the desired aldehyde 62 included an Evans' syn-aldol reaction and Tebbe olefination. The synthesis of the CD spiroketal fragment 56 involved the ketalization of a triol-dione, generated in situ by deprotection of 45, to provide a favorable ratio (6-7:1) of spiroketal isomers 46 and 47, respectively. The overall protecting group strategy, involving many selective manipulations of silyl protecting groups, was successfully developed to provide the desired C1-C28 subunit of spongistatin 1 (altohyrtin A) (65).

  12. 49 CFR 28.110 - Self-evaluation.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Self-evaluation. 28.110 Section 28.110 Transportation Office of the Secretary of Transportation ENFORCEMENT OF NONDISCRIMINATION ON THE BASIS OF HANDICAP IN PROGRAMS OR ACTIVITIES CONDUCTED BY THE DEPARTMENT OF TRANSPORTATION § 28.110 Self-evaluation...

  13. 49 CFR 28.170 - Compliance procedures.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Compliance procedures. 28.170 Section 28.170 Transportation Office of the Secretary of Transportation ENFORCEMENT OF NONDISCRIMINATION ON THE BASIS OF HANDICAP IN PROGRAMS OR ACTIVITIES CONDUCTED BY THE DEPARTMENT OF TRANSPORTATION § 28.170 Compliance...

  14. 31 CFR 28.525 - Fringe benefits.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Fringe benefits. 28.525 Section 28... the Basis of Sex in Employment in Education Programs or Activities Prohibited § 28.525 Fringe benefits. (a) “Fringe benefits” defined. For purposes of these Title IX regulations, fringe benefits means: Any...

  15. 7 CFR 283.28 - Discovery.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 4 2010-01-01 2010-01-01 false Discovery. 283.28 Section 283.28 Agriculture Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE... Appeals of QC Claims of Less Than $50,000 § 283.28 Discovery. Upon motion and as ordered by the ALJ...

  16. Enhancement of soluble CD28 levels in the serum of Graves' disease.

    Science.gov (United States)

    Sun, Zhongwen; Yi, Lixian; Tao, Hong; Huang, Jingfang; Jin, Zhenghong; Xiao, Yang; Feng, Caiyun; Sun, Jing

    2014-01-01

    Graves' disease is an autoimmune disease of the thyroid gland mediated by T cells. CD28, a member of costimulatory molecules, plays a pivotal role in regulating T-cell responses. Plasma-soluble CD28 is one form of CD28 in peripheral blood. To investigate the concentrations of soluble CD28 in patients with Graves' disease, we used a sensitive dual monoclonal antibody sandwich enzyme-linked immunosorbent assay (ELISA) to detect the soluble form of CD28. Our results suggested that mean concentrations of soluble CD28 in plasma of patients with Graves' disease were 1.79 ±1.52 ng/ml, and levels of soluble CD28 in healthy subjects were only 0.83 ±1.35 ng/ml. Concentrations of soluble CD28 detected in patients with Graves' disease were significantly higher than those of healthy subjects (p Graves' disease. Therefore, aberrant elevation of plasma-soluble CD28 in patients with Graves' disease may reflect the dysregulation of immune system, and may serve as a useful biomarker in Graves' disease diagnosis.

  17. 46 CFR 28.73 - Accepted organizations.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Accepted organizations. 28.73 Section 28.73 Shipping... INDUSTRY VESSELS General Provisions § 28.73 Accepted organizations. An organization desiring to be designated by the Commandant as an accepted organization must request such designation in writing. As a...

  18. KEY TOPICS IN SPORTS MEDICINE

    Directory of Open Access Journals (Sweden)

    Amir Ali Narvani

    2006-12-01

    Full Text Available Key Topics in Sports Medicine is a single quick reference source for sports and exercise medicine. It presents the essential information from across relevant topic areas, and includes both the core and emerging issues in this rapidly developing field. It covers: 1 Sports injuries, rehabilitation and injury prevention, 2 Exercise physiology, fitness testing and training, 3 Drugs in sport, 4 Exercise and health promotion, 5 Sport and exercise for special and clinical populations, 6 The psychology of performance and injury. PURPOSE The Key Topics format provides extensive, concise information in an accessible, easy-to-follow manner. AUDIENCE The book is targeted the students and specialists in sports medicine and rehabilitation, athletic training, physiotherapy and orthopaedic surgery. The editors are authorities in their respective fields and this handbook depends on their extensive experience and knowledge accumulated over the years. FEATURES The book contains the information for clinical guidance, rapid access to concise details and facts. It is composed of 99 topics which present the information in an order that is considered logical and progressive as in most texts. Chapter headings are: 1. Functional Anatomy, 2. Training Principles / Development of Strength and Power, 3. Biomechanical Principles, 4. Biomechanical Analysis, 5. Physiology of Training, 6. Monitoring of Training Progress, 7. Nutrition, 8. Hot and Cold Climates, 9. Altitude, 10. Sport and Travelling, 11. Principles of Sport Injury Diagnosis, 12. Principles of Sport and Soft Tissue Management, 13. Principles of Physical Therapy and Rehabilitation, 14. Principles of Sport Injury Prevention, 15. Sports Psychology, 16. Team Sports, 17. Psychological Aspects of Injury in Sport, 18. Injury Repair Process, 19. Basic Biomechanics of Tissue Injury, 20. Plain Film Radiography in Sport, 21. Nuclear Medicine, 22. Diagnostic Ultrasound, 23. MRI Scan, 24. Other Imaging, 5. Head Injury, 26. Eye

  19. Study of the fusion process in 28Si + 28Si and 28Si + 12C reactions: search for deformation effects in the 56Ni and 40Ca compound nuclei

    International Nuclear Information System (INIS)

    Rousseau, M.

    2000-12-01

    The initial purpose of this work was to find likely deformed configurations in light nuclei with alpha sub-structure, through the study of light particle emission during the decay of 56 Ni and 40 Ca nuclei produced in the 28 Si + 28 Si and 28 Si + 12 C reactions respectively. The first chapter is an introduction and this work is presented as a contribution to the study of fusion-fission processes that have been recently discovered in light heavy ion reactions. The second chapter is dedicated to experimental methods and particularly to the ICARE multi-detector that operates on a Vivitron Tandem accelerator. In the third chapter we present and discuss experimental observables, we show that most experimental data can be interpreted as the consequence of the formation of a completely balanced (in all its freedom degrees) system (the compound nucleus) that de-excites through the statistical emission of light particles. In the chapter 4 we interpret the energy spectra and angular correlation for both reactions in the framework of the statistical model through the use of codes based on the Hauser-Feshbach method. We show that it is necessary to introduce a dependence in terms of angular moment for the moment of inertia to fit well experimental data. Important disagreements concerning the 28 Si + 12 C reactions back the idea of a significant emission of 8 Be cluster in the exit channel 32 S + 8 Be. We show that this emission is due to an alpha transfer. (A.C.)

  20. 6 CFR 13.28 - Motions.

    Science.gov (United States)

    2010-01-01

    ... 6 Domestic Security 1 2010-01-01 2010-01-01 false Motions. 13.28 Section 13.28 Domestic Security DEPARTMENT OF HOMELAND SECURITY, OFFICE OF THE SECRETARY PROGRAM FRAUD CIVIL REMEDIES § 13.28 Motions. (a) Any application to the ALJ for an order or ruling will be by motion. Motions will state the relief...

  1. Optimizing Key Updates in Sensor Networks

    DEFF Research Database (Denmark)

    Yuksel, Ender; Nielson, Hanne Riis; Nielson, Flemming

    2011-01-01

    Sensor networks offer the advantages of simple and low–resource communication. Nevertheless, security is of particular importance in many cases such as when sensitive data is communicated or tamper-resistance is required. Updating the security keys is one of the key points in security, which...

  2. 46 CFR 28.580 - Unintentional flooding.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Unintentional flooding. 28.580 Section 28.580 Shipping... INDUSTRY VESSELS Stability § 28.580 Unintentional flooding. (a) Applicability. Except for an open boat that... survive the assumed damage and unintentional flooding described in paragraphs (d) and (e) of this section...

  3. 24 CFR 28.45 - Settlements.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Settlements. 28.45 Section 28.45... IMPLEMENTATION OF THE PROGRAM FRAUD CIVIL REMEDIES ACT OF 1986 § 28.45 Settlements. (a) HUD and the respondent may enter into a settlement agreement at any time prior to the issuing of a notice of final...

  4. Page 28

    African Journals Online (AJOL)

    ezra

    7 (2)2007. Page 28. Serials Management In Polytechnic Libraries in Nigeria: A Comparative ... Despite the strategic position of serials publications amongst the materials .... the formulation of routines and procedures for ..... other professional librarian in the section classify ... probably due to dwindling finance given to both.

  5. 5 CFR 2422.28 - Runoff elections.

    Science.gov (United States)

    2010-01-01

    ... 5 Administrative Personnel 3 2010-01-01 2010-01-01 false Runoff elections. 2422.28 Section 2422.28... FEDERAL LABOR RELATIONS AUTHORITY REPRESENTATION PROCEEDINGS § 2422.28 Runoff elections. (a) When a runoff may be held. A runoff election is required in an election involving at least three (3) choices, one of...

  6. Modular Connector Keying Concept

    Science.gov (United States)

    Ishman, Scott; Dukes, Scott; Warnica, Gary; Conrad, Guy; Senigla, Steven

    2013-01-01

    For panel-mount-type connectors, keying is usually "built-in" to the connector body, necessitating different part numbers for each key arrangement. This is costly for jobs that require small quantities. This invention was driven to provide a cost savings and to reduce documentation of individual parts. The keys are removable and configurable in up to 16 combinations. Since the key parts are separate from the connector body, a common design can be used for the plug, receptacle, and key parts. The keying can then be set at the next higher assembly.

  7. Group key management

    Energy Technology Data Exchange (ETDEWEB)

    Dunigan, T.; Cao, C.

    1997-08-01

    This report describes an architecture and implementation for doing group key management over a data communications network. The architecture describes a protocol for establishing a shared encryption key among an authenticated and authorized collection of network entities. Group access requires one or more authorization certificates. The implementation includes a simple public key and certificate infrastructure. Multicast is used for some of the key management messages. An application programming interface multiplexes key management and user application messages. An implementation using the new IP security protocols is postulated. The architecture is compared with other group key management proposals, and the performance and the limitations of the implementation are described.

  8. Formal Analysis of Key Integrity in PKCS#11

    Science.gov (United States)

    Falcone, Andrea; Focardi, Riccardo

    PKCS#11 is a standard API to cryptographic devices such as smarcards, hardware security modules and usb crypto-tokens. Though widely adopted, this API has been shown to be prone to attacks in which a malicious user gains access to the sensitive keys stored in the devices. In 2008, Delaune, Kremer and Steel proposed a model to formally reason on this kind of attacks. We extend this model to also describe flaws that are based on integrity violations of the stored keys. In particular, we consider scenarios in which a malicious overwriting of keys might fool honest users into using attacker's own keys, while performing sensitive operations. We further enrich the model with a trusted key mechanism ensuring that only controlled, non-tampered keys are used in cryptographic operations, and we show how this modified API prevents the above mentioned key-replacement attacks.

  9. 46 CFR 28.835 - Fuel systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Fuel systems. 28.835 Section 28.835 Shipping COAST GUARD... Aleutian Trade Act Vessels § 28.835 Fuel systems. (a) Portable fuel systems including portable tanks and... impurities from diesel fuel oil systems are permitted in the machinery space provided they are away from any...

  10. Key Management in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Ismail Mansour

    2015-09-01

    Full Text Available Wireless sensor networks are a challenging field of research when it comes to security issues. Using low cost sensor nodes with limited resources makes it difficult for cryptographic algorithms to function without impacting energy consumption and latency. In this paper, we focus on key management issues in multi-hop wireless sensor networks. These networks are easy to attack due to the open nature of the wireless medium. Intruders could try to penetrate the network, capture nodes or take control over particular nodes. In this context, it is important to revoke and renew keys that might be learned by malicious nodes. We propose several secure protocols for key revocation and key renewal based on symmetric encryption and elliptic curve cryptography. All protocols are secure, but have different security levels. Each proposed protocol is formally proven and analyzed using Scyther, an automatic verification tool for cryptographic protocols. For efficiency comparison sake, we implemented all protocols on real testbeds using TelosB motes and discussed their performances.

  11. Breaking chaotic shift key communication via adaptive key identification

    International Nuclear Information System (INIS)

    Ren Haipeng; Han Chongzhao; Liu Ding

    2008-01-01

    This paper proposes an adaptive parameter identification method for breaking chaotic shift key communication from the transmitted signal in public channel. The sensitive dependence property of chaos on parameter mismatch is used for chaos adaptive synchronization and parameter identification. An index function about the synchronization error is defined and conjugate gradient method is used to minimize the index function and to search the transmitter's parameter (key). By using proposed method, secure key is recovered from transmitted signal generated by low dimensional chaos and hyper chaos switching communication. Multi-parameters can also be identified from the transmitted signal with noise

  12. 28 CFR 513.31 - Limitations.

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Limitations. 513.31 Section 513.31 Judicial Administration BUREAU OF PRISONS, DEPARTMENT OF JUSTICE GENERAL MANAGEMENT AND ADMINISTRATION... published in 5 CFR part 297 and by Department of Justice regulations published in 28 CFR part 16. ...

  13. 7 CFR 28.162 - Procedure.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Procedure. 28.162 Section 28.162 Agriculture..., TESTING, AND STANDARDS Regulations Under the United States Cotton Standards Act Adjustment of Contract... and in instituting and conducting arbitrations and appeals shall be as prescribed in the articles...

  14. miR-29b, miR-205 and miR-221 enhance chemosensitivity to gemcitabine in HuH28 human cholangiocarcinoma cells.

    Directory of Open Access Journals (Sweden)

    Kinya Okamoto

    Full Text Available BACKGROUND AND AIMS: Cholangiocarcinoma (CCA is highly resistant to chemotherapy, including gemcitabine (Gem treatment. MicroRNAs (miRNAs are endogenous, non-coding, short RNAs that can regulate multiple genes expression. Some miRNAs play important roles in the chemosensitivity of tumors. Here, we examined the relationship between miRNA expression and the sensitivity of CCA cells to Gem. METHODS: Microarray analysis was used to determine the miRNA expression profiles of two CCA cell lines, HuH28 and HuCCT1. To determine the effect of candidate miRNAs on Gem sensitivity, expression of each candidate miRNA was modified via either transfection of a miRNA mimic or transfection of an anti-oligonucleotide. Ontology-based programs were used to identify potential target genes of candidate miRNAs that were confirmed to affect the Gem sensitivity of CCA cells. RESULTS: HuCCT1 cells were more sensitive to Gem than were HuH28 cells, and 18 miRNAs were differentially expressed whose ratios over ± 2log2 between HuH28 and HuCCT1. Among these 18 miRNAs, ectopic overexpression of each of three downregulated miRNAs in HuH28 (miR-29b, miR-205, miR-221 restored Gem sensitivity to HuH28. Suppression of one upregulated miRNA in HuH28, miR-125a-5p, inhibited HuH28 cell proliferation independently to Gem treatment. Selective siRNA-mediated downregulation of either of two software-predicted targets, PIK3R1 (target of miR-29b and miR-221 or MMP-2 (target of miR-29b, also conferred Gem sensitivity to HuH28. CONCLUSIONS: miRNA expression profiling was used to identify key miRNAs that regulate Gem sensitivity in CCA cells, and software that predicts miRNA targets was used to identify promising target genes for anti-tumor therapies.

  15. A minimal number of MELT repeats supports all functions of KNL1 in chromosome segregation

    DEFF Research Database (Denmark)

    Zhang, Gang; Lischetti, Tiziana; Nilsson, Jakob

    2013-01-01

    The Bub1-Bub3 and BubR1-Bub3 checkpoint complexes, or the Bubs, contribute to the accurate segregation of chromosomes during mitosis by promoting chromosome bi-orientation and halting exit from mitosis if this fails. The complexes associate with kinetochores during mitosis, which is required...

  16. Wobbling excitation of triaxial nuclear molecule 28Si – 28Si

    International Nuclear Information System (INIS)

    Uegaki, E; Abe, Y

    2013-01-01

    High-spin resonances observed in the 28 Si + 28 Si collisions are investigated with a molecular model. At high spins, a stable dinuclear configuration is found to be an equator-equator touching one. Since the E-E configuration is slightly triaxial, rotations of the total system induce mixing of K quantum numbers, called wobbling motion, which clearly explains the particle-γ angular correlations observed as well as the disalignments in a simple and natural way. Furthermore, predictions are given for the angular correlations of the wobbling excited states. The first excited state of wobbling shows strong alignments, which is quite different from the molecular ground state.

  17. 28 CFR 70.28 - Period of availability of funds.

    Science.gov (United States)

    2010-07-01

    ... REQUIREMENTS FOR GRANTS AND AGREEMENTS (INCLUDING SUBAWARDS) WITH INSTITUTIONS OF HIGHER EDUCATION, HOSPITALS AND OTHER NON-PROFIT ORGANIZATIONS Post-Award Requirements Financial and Program Management § 70.28...

  18. 27 CFR 28.94 - Containers.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Containers. 28.94 Section... Manufacturing Bonded Warehouse § 28.94 Containers. Distilled spirits authorized to be withdrawn without payment... be withdrawn from such establishment in such containers as may be authorized in part 19 of this...

  19. 31 CFR 28.500 - Employment.

    Science.gov (United States)

    2010-07-01

    ... benefits of, or be subjected to discrimination in employment, or recruitment, consideration, or selection... §§ 28.500 through 28.550 apply to: (1) Recruitment, advertising, and the process of application for...-sponsored activities, including social or recreational programs; and (10) Any other term, condition, or...

  20. The nematode homologue of Mediator complex subunit 28, F28F8.5, is a critical regulator of C. elegans development.

    Science.gov (United States)

    Kostrouchová, Markéta; Kostrouch, David; Chughtai, Ahmed A; Kaššák, Filip; Novotný, Jan P; Kostrouchová, Veronika; Benda, Aleš; Krause, Michael W; Saudek, Vladimír; Kostrouchová, Marta; Kostrouch, Zdeněk

    2017-01-01

    The evolutionarily conserved Mediator complex is a critical player in regulating transcription. Comprised of approximately two dozen proteins, the Mediator integrates diverse regulatory signals through direct protein-protein interactions that, in turn, modulate the influence of Mediator on RNA Polymerase II activity. One Mediator subunit, MED28, is known to interact with cytoplasmic structural proteins, providing a potential direct link between cytoplasmic dynamics and the control of gene transcription. Although identified in many animals and plants, MED28 is not present in yeast; no bona fide MED28 has been described previously in Caenorhabditis elegans. Here, we identify bioinformatically F28F8.5, an uncharacterized predicted protein, as the nematode homologue of MED28. As in other Metazoa, F28F8.5 has dual nuclear and cytoplasmic localization and plays critical roles in the regulation of development. F28F8.5 is a vital gene and its null mutants have severely malformed gonads and do not reproduce. F28F8.5 interacts on the protein level with the Mediator subunits MDT-6 and MDT-30. Our results indicate that F28F8.5 is an orthologue of MED28 and suggest that the potential to link cytoplasmic and nuclear events is conserved between MED28 vertebrate and nematode orthologues.