WorldWideScience

Sample records for in-situ subsurface characterization

  1. In-situ Planetary Subsurface Imaging System

    Science.gov (United States)

    Song, W.; Weber, R. C.; Dimech, J. L.; Kedar, S.; Neal, C. R.; Siegler, M.

    2017-12-01

    Geophysical and seismic instruments are considered the most effective tools for studying the detailed global structures of planetary interiors. A planet's interior bears the geochemical markers of its evolutionary history, as well as its present state of activity, which has direct implications to habitability. On Earth, subsurface imaging often involves massive data collection from hundreds to thousands of geophysical sensors (seismic, acoustic, etc) followed by transfer by hard links or wirelessly to a central location for post processing and computing, which will not be possible in planetary environments due to imposed mission constraints on mass, power, and bandwidth. Emerging opportunities for geophysical exploration of the solar system from Venus to the icy Ocean Worlds of Jupiter and Saturn dictate that subsurface imaging of the deep interior will require substantial data reduction and processing in-situ. The Real-time In-situ Subsurface Imaging (RISI) technology is a mesh network that senses and processes geophysical signals. Instead of data collection then post processing, the mesh network performs the distributed data processing and computing in-situ, and generates an evolving 3D subsurface image in real-time that can be transmitted under bandwidth and resource constraints. Seismic imaging algorithms (including traveltime tomography, ambient noise imaging, and microseismic imaging) have been successfully developed and validated using both synthetic and real-world terrestrial seismic data sets. The prototype hardware system has been implemented and can be extended as a general field instrumentation platform tailored specifically for a wide variety of planetary uses, including crustal mapping, ice and ocean structure, and geothermal systems. The team is applying the RISI technology to real off-world seismic datasets. For example, the Lunar Seismic Profiling Experiment (LSPE) deployed during the Apollo 17 Moon mission consisted of four geophone instruments

  2. Characterization of nano-bubbles as an oxygen carrier for in-situ bioremediation of organic pollutants in the subsurface

    Science.gov (United States)

    KIM, E.; Jung, J.; Kang, S.; Choi, Y.

    2016-12-01

    In-situ bioremediation using bubbles as an oxygen carrier has shown its applicability for aerobic biodegradation of organic pollutants in the subsurface. By recent progresses, generation of nano-sized bubbles is possible, which have enhanced oxygen transfer efficiencies due to their high interfacial area and stability. We are developing an in-situ bioremediation technique using nano-bubbles as an oxygen carrier. In this study, nano-bubbles were characterized for their size and oxygen supply capacity. Nano-bubbles were generated with pure oxygen and pure helium gas. The stable nano-bubbles suspended in water were sonicated to induce the bubbles to coalesce, making them to rise and be released out of the water. By removing the bubbles, the water volume was decreased by 0.006%. The gas released from the bubble suspension was collected to measure the amount of gas in the nano-bubbles. For sparingly soluble helium gas 17.9 mL/L was released from the bubble suspension, while for oxygen 46.2 mL/L was collected. For the oxygen nano-bubble suspension, it is likely that the release of dissolved oxygen (DO) contributed to the collected gas volume. After removing the oxygen nano-bubbles, 36.0 mg/L of DO was still present in water. Altogether, the oxygen nano-bubble suspension was estimated to have 66.2 mg/L of oxygen in a dissolved form and 25.6 mg/L as nano-bubbles. A high DO level in the water was possible because of their large Laplace pressure difference across the fluid interface. Applying Young-Laplace equation and ideal gas law, the bubble diameter was estimated to be approximately 10 nm, having an internal pressure of 323 atm. Considering the saturation DO of 8.26 mg/L for water in equilibrium with the atmosphere, the total oxygen content of 91.8 mg/L in the nano-bubble suspension suggests its great potential as an oxygen carrier. Studies are underway to verify the enhanced aerobic biodegradation of organic pollutants in soils by injecting nano-bubble suspensions.

  3. In situ sensing of subsurface contamination--part I: near-infrared spectral characterization of alkanes, aromatics, and chlorinated hydrocarbons.

    Science.gov (United States)

    Klavarioti, Maria; Kostarelos, Konstantinos; Pourjabbar, Anahita; Ghandehari, Masoud

    2014-05-01

    There is an imperative need for a chemical sensor capable of remote, in situ, long-term monitoring of chemical species at sites containing toxic chemical spills, specifically at chemical waste dumps, landfills, and locations with underground storage tanks. In the current research, a series of experiments were conducted measuring the near-infrared optical absorption of alkanes, aromatics, and chlorinated hydrocarbons. A spectral library was then developed to characterize the optical spectra of liquid hydrocarbons. Near-infrared analysis was chosen due to compatibility with optical fibers. The goal was to differentiate between classes of hydrocarbons and to also discriminate between compounds within a class of similar molecular structures. It was observed that unique absorption spectra can be obtained for each hydrocarbon, and this uniqueness can be used to discriminate between hydrocarbons from different families. Statistical analyses, namely, principal component analysis (PCA) and correlation coefficient (Spearman and Pearson methods), were attempted to match absorption spectra from an unknown hydrocarbon with the database with limited success. An algorithm was subsequently written to identify the characteristic peaks of each hydrocarbon that could be used to match data from an unknown chemical species with the database.

  4. Challenges in subsurface in situ remediation of chlorinated solvents

    DEFF Research Database (Denmark)

    Broholm, Mette Martina; Fjordbøge, Annika Sidelmann; Christiansen, Camilla Maymann

    2014-01-01

    Chlorinated solvent source zones in the subsurface pose a continuous threat to groundwater quality at many sites worldwide. In situ remediation of these sites is particularly challenging in heterogeneous fractured media and where the solvents are present as DNAPL. In situ remediation by chemical...

  5. ENGINEERING ISSUE: IN SITU BIOREMEDIATION OF CONTAMINATED UNSATURATED SUBSURFACE SOILS

    Science.gov (United States)

    An emerging technology for the remediation of unsaturated subsurface soils involves the use of microorganisms to degrade contaminants which are present in such soils. Understanding the processes which drive in situ bioremediation, as well as the effectiveness and efficiency of th...

  6. In situ detection of anaerobic alkane metabolites in subsurface environments

    Directory of Open Access Journals (Sweden)

    Lisa eGieg

    2013-06-01

    Full Text Available Alkanes comprise a substantial fraction of crude oil and refined fuels. As such, they are prevalent within deep subsurface fossil fuel deposits and in shallow subsurface environments such as aquifers that are contaminated with hydrocarbons. These environments are typically anaerobic, and host diverse microbial communities that can potentially use alkanes as substrates. Anaerobic alkane biodegradation has been reported to occur under nitrate-reducing, sulfate-reducing, and methanogenic conditions. Elucidating the pathways of anaerobic alkane metabolism has been of interest in order to understand how microbes can be used to remediate contaminated sites. Alkane activation primarily occurs by addition to fumarate, yielding alkylsuccinates, unique anaerobic metabolites that can be used to indicate in situ anaerobic alkane metabolism. These metabolites have been detected in hydrocarbon-contaminated shallow aquifers, offering strong evidence for intrinsic anaerobic bioremediation. Recently, studies have also revealed that alkylsuccinates are present in oil and coal seam production waters, indicating that anaerobic microbial communities can utilize alkanes in these deeper subsurface environments. In many crude oil reservoirs, the in situ anaerobic metabolism of hydrocarbons such as alkanes may be contibuting to modern-day detrimental effects such as oilfield souring, or may lead to more benefical technologies such as enhanced energy recovery from mature oilfields. In this review, we briefly describe the key metabolic pathways for anaerobic alkane (including n-alkanes, isoalkanes, and cyclic alkanes metabolism and highlight several field reports wherein alkylsuccinates have provided evidence for anaerobic in situ alkane metabolism in shallow and deep subsurface environments.

  7. Geophysical characterization of subsurface barriers

    International Nuclear Information System (INIS)

    Borns, D.J.

    1995-08-01

    An option for controlling contaminant migration from plumes and buried waste sites is to construct a subsurface barrier of a low-permeability material. The successful application of subsurface barriers requires processes to verify the emplacement and effectiveness of barrier and to monitor the performance of a barrier after emplacement. Non destructive and remote sensing techniques, such as geophysical methods, are possible technologies to address these needs. The changes in mechanical, hydrologic and chemical properties associated with the emplacement of an engineered barrier will affect geophysical properties such a seismic velocity, electrical conductivity, and dielectric constant. Also, the barrier, once emplaced and interacting with the in situ geologic system, may affect the paths along which electrical current flows in the subsurface. These changes in properties and processes facilitate the detection and monitoring of the barrier. The approaches to characterizing and monitoring engineered barriers can be divided between (1) methods that directly image the barrier using the contrasts in physical properties between the barrier and the host soil or rock and (2) methods that reflect flow processes around or through the barrier. For example, seismic methods that delineate the changes in density and stiffness associated with the barrier represents a direct imaging method. Electrical self potential methods and flow probes based on heat flow methods represent techniques that can delineate the flow path or flow processes around and through a barrier

  8. Final Report: DoE SBIR Phase 2 Low-Cost Small Diameter NMR Technologies for In-Situ Subsurface Characterization and Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, David Oliver [Vista Clara Inc., Mukilteo, WA (United States)

    2010-09-03

    In this Phase 2 SBIR program, Vista Clara successfully developed and field-tested small diameter NNR logging tools for subsurface characterization and monitoring. This effort involved the design and development surface electronics, a winch with 470ft cable, and three interchangeable downhole probes: a 3.5â diameter borehole NMR probe, a 1.67â diameter borehole NMR probe, and a 2.5â diameter NMR probe that can be deployed using a Geoprobe direct push machine. The 3.5â probe was tested extensively over a 6 week period including 4â to 8â boreholes in Washington, Idaho, Nebraska, Colorado, Kansas, Connecticut and Massachusetts. The field test campaign was highly successful. The 1.67â probe was assembled, tested and calibrated in the laboratory. The 2.5â Geoprobe probe is in final assembly and testing at the time of this report. The completed Phase 2 R&D program has resulted in the first NMR logging tool that can be deployed in boreholes of 4â diameter, the first NMR logging tool that can be deployed in boreholes on 2â diameter, and the first NMR logging tool that can be deployed by a direct push machine. These small diameter tools make NMR logging technically and economically feasible, for the first time. Previously available NMR logging tools were developed for oilfield applications and are prohibitively large and expensive for the majority of near surface groundwater characterization problems.

  9. Augmented In Situ Subsurface Bioremediation Process™BIO-REM, Inc. - Demonstration Bulletin

    Science.gov (United States)

    The Augmented In Situ Subsurface Bioremediation Process™ developed by BIO-REM, Inc., uses microaerophilic bacteria and micronutrients (H-10) and surface tension depressants/penetrants for the treatment of hydrocarbon contaminated soils and groundwater. The bacteria utilize hydroc...

  10. In situ mapping of radionuclides in subsurface and surface soils: 1994 Summary report

    International Nuclear Information System (INIS)

    Schilk, A.J.; Hubbard, C.W.; Knopf, M.A.; Abel, K.H.

    1995-04-01

    Uranium production and support facilities at several DOE sites occasionally caused local contamination of some surface and subsurface soils. The thorough cleanup of these sites is a major public concern and a high priority for the US Department of Energy, but before any effective remedial protocols can be established, the three-dimensional distributions of target contaminants must be characterized. Traditional means of measuring radionuclide activities in soil are cumbersome, expensive, time-consuming, and often do not accurately reflect conditions over very large areas. New technologies must be developed, or existing ones improved, to allow cheaper, faster, and safer characterization of radionuclides in soils at these sites. The Pacific Northwest Laboratory (PNL) was tasked with adapting, developing, and demonstrating technologies to measure uranium in surface and subsurface soils. In partial completion of this effort, PNL developed an improved in situ gamma-ray spectrometry system to satisfy the technical requirements. This document summarizes fiscal-year 1994 efforts at PNL to fulfill requirements for TTP number-sign 321103 (project number-sign 19307). These requirements included (a) developing a user-friendly software package for reducing field-acquired gamma-ray spectra, (b) constructing an improved data-acquisition hardware system for use with high-purity germanium detectors, (c) ensuring readiness to conduct field mapping exercises as specified by the sponsor, (d) evaluating the in situ gamma-ray spectrometer for the determination of uranium depth distribution, and (e) documenting these efforts

  11. In-situ characterization of heterogeneous catalysts

    CERN Document Server

    Rodriguez, Jose A; Chupas, Peter J

    2013-01-01

    Helps researchers develop new catalysts for sustainable fuel and chemical production Reviewing the latest developments in the field, this book explores the in-situ characterization of heterogeneous catalysts, enabling readers to take full advantage of the sophisticated techniques used to study heterogeneous catalysts and reaction mechanisms. In using these techniques, readers can learn to improve the selectivity and the performance of catalysts and how to prepare catalysts as efficiently as possible, with minimum waste. In-situ Characterization of Heterogeneous Catalysts feat

  12. Development of subsurface characterization method for decommissioning site remediation

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sang Bum; Nam, Jong Soo; Choi, Yong Suk; Seo, Bum Kyoung; Moon, Jei Kwon; Choi, Jong Won [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In situ measurement of peak to valley method based on the ratio of counting rate between the full energy peak and Compton region was applied to identify the depth distribution of 137Cs. The In situ measurement and sampling results were applied to evaluate a residual radioactivity before and after remediation in decommissioning KRR site. Spatial analysis based on the Geostatistics method provides a reliable estimating the volume of contaminated soil with a graphical analysis, which was applied to the site characterization in the decommissioning KRR site. The in situ measurement and spatial analysis results for characterization of subsurface contamination are presented. The objective of a remedial action is to reduce risks to human health to acceptable levels by removing the source of contamination. Site characterization of the subsurface contamination is an important factor for planning and implementation of site remediation. Radiological survey and evaluation technology are required to ensure the reliability of the results, and the process must be easily applied during field measurements. In situ gamma-ray spectrometry is a powerful method for site characterization that can be used to identify the depth distribution and quantify radionuclides directly at the measurement site. The in situ measurement and Geostatistics method was applied to the site characterization for remediation and final status survey in decommissioning KRR site.

  13. Method for in situ determination cation exchange capacities of subsurface formations

    International Nuclear Information System (INIS)

    Fertl, W.H.; Welker, D.W.

    1980-01-01

    A method is disclosed for the in situ examination of each subsurface formation penetrated by a borehole to ascertain the cation exchange capacity of such formations within a geological region. Natural γ ray logging is used to develop signals functionally related to the total γ radiation and to the potassium-40, uranium and thorium energy-band radiations. A first borehole is traversed by a potential γ ray spectrometer to provide selected measurements of natural γ radiation. Core samples are taken from the logged formation and laboratory tests performed to determine the cation exchange capacity thereof. The cation exchange capacities thus are developed then correlated with selected parameters provided by the γ ray spectrometer to establish functional relationships. Cation exchange capacities of formations in subsequent boreholes within the region are then determined in situ by use of the natural γ ray spectrometer and these established relationships. (author)

  14. Application of in situ vitrification in the soil subsurface: Engineering-scale testing

    International Nuclear Information System (INIS)

    Luey, J.; Seiler, D.K.

    1995-03-01

    Engineering-scale testing to evaluate the initiation and propagation of the in situ vitrification (ISV) process in the soil subsurface has been completed. Application of ISV in the soil subsurface both increases the applicable treatment depth (beyond a demonstrated 5 m) and allows treatment of local contamination, such as liquid seepage trenches (found on many US Department of Energy sites) that were designed to remove contamination at the bottom of the trench. The following observations and conclusions resulted from the test data: the ISV process can be initiated in the soil subsurface and propagated in both vertical directions, with the downward direction providing greater ease of operation; energy efficiency to process a kilogram of soil was 20% better than for an ISV melt initiated at the soil surface, increased efficiency was attributed to insulation from the soil overburden; the feasibility of initiating the process with a planar starter path was confirmed, thus increasing the number of options for initiating the process in the field; soil subsidence was pronounced and requires attention before field demonstration of subsurface ISV. Further field work at pilot-scale is recommended for this new ISV application. The key step will be the placement of starter material at depth to initiate the process

  15. Technical issues associated with in situ vitrification of the INEL Subsurface Disposal Area

    International Nuclear Information System (INIS)

    Stoots, C.M.; Bates, S.O.; Callow, R.A.; Campbell, K.A.; Farnsworth, R.K.; Gratson, G.K.; McKellar, M.G.; Nickelson, D.F.; Slater, C.E.

    1991-12-01

    In situ vitrification (ISV) has been identified as an alternative technology for remediation of the Acid Pit and Transuranic Pits and Trenches (TRU-PTs) that are present at the Idaho National Engineering Laboratory (INEL) Subsurface Disposal Area (SDA). However, a number of technical issues exist that must be resolved before ISV can be considered applicable to these waste sites. To assist in the ISV technology evaluation, an ISV Steering Committee was formed to identify, prioritize, and develop closure roadmaps for technical issues associated with ISV application at the INEL SDA. The activities of the ISV Steering Committee are summarized in three volumes of this report. This document, Volume 1, identifies the systematic approach used to identify and prioritize the ISV technical issues, and briefly discusses the methodology that will be employed to resolve these issues

  16. In situ hydrogen consumption kinetics as an indicator of subsurface microbial activity

    Science.gov (United States)

    Harris, S.H.; Smith, R.L.; Suflita, J.M.

    2007-01-01

    There are few methods available for broadly assessing microbial community metabolism directly within a groundwater environment. In this study, hydrogen consumption rates were estimated from in situ injection/withdrawal tests conducted in two geochemically varying, contaminated aquifers as an approach towards developing such a method. The hydrogen consumption first-order rates varied from 0.002 nM h-1 for an uncontaminated, aerobic site to 2.5 nM h-1 for a contaminated site where sulfate reduction was a predominant process. The method could accommodate the over three orders of magnitude range in rates that existed between subsurface sites. In a denitrifying zone, the hydrogen consumption rate (0.02 nM h-1) was immediately abolished in the presence of air or an antibiotic mixture, suggesting that such measurements may also be sensitive to the effects of environmental perturbations on field microbial activities. Comparable laboratory determinations with sediment slurries exhibited hydrogen consumption kinetics that differed substantially from the field estimates. Because anaerobic degradation of organic matter relies on the rapid consumption of hydrogen and subsequent maintenance at low levels, such in situ measures of hydrogen turnover can serve as a key indicator of the functioning of microbial food webs and may be more reliable than laboratory determinations. ?? 2007 Federation of European Microbiological Societies.

  17. The in-situ vitrification of subsurface containment barriers: An overview

    International Nuclear Information System (INIS)

    Murphy, M.; Stottlemyre, J.A.

    1990-11-01

    In situ vitrification (ISV) is an environmental engineering process in which soil or soil/waste mixtures are melted through the direct application of electrical current and subsequently cooled to a glassy solid. The technology was developed by Pacific Northwest Laboratory (PNL) in the 1980s and has been tested on transuranic, mixed-hazardous, and PCB/organic waste similar to that found at US Department of Energy (DOE) and other facilities nationwide. PNL is conducting a wide range of field tests, expanding the scientific basis of ISV, and assessing its extension into new applications. One such project is ISV--Selective Barriers, an investigation into the construction and performance of ISV--generated, vertical and/or horizontal subsurface barriers to ground-water flow and biogenic intrusion. In some situations, it may be impractical or unnecessary to either excavate or vitrify an entire waste site. Vitrified barriers could minimize the diffusive or fluid transport of hazardous components with either a ground-water diversion wall or an in situ, ''box-like'' structure. During the first year of this project, engineering-scale tests are being conducted between graphite electrodes within a 1.8-m-diameter, 2.4-m-high test cell. Several methods are being tested, including passive metal electrodes, electrode feeding systems, fluxed soil, and fluxed boreholes. In addition, basic data have been collected on the thermal and material properties of ISV melt and solidified glass. 7 refs., 6 figs

  18. Electrical imaging of subsurface nanoparticle propagation for in-situ groundwater remediation

    Science.gov (United States)

    Flores Orozco, Adrián; Gallistl, Jakob; Schmid, Doris; Micic Batka, Vesna; Bücker, Matthias; Hofmann, Thilo

    2017-04-01

    Application of nanoparticles has emerged as a promising in situ remediation technology for the remediation of contaminated groundwater, particularly for areas difficult to access by other remediation techniques. The performance of nanoparticle injections, as a foremost step within this technology, is usually assessed through the geochemical analysis of soil and groundwater samples. This approach is not well suited for a real-time monitoring, and often suffers from a poor spatio-temporal resolution and only provides information from areas close to the sampling points. To overcome these limitations we propose the application of non-invasive Induced Polarization (IP) imaging, a geophysical method that provides information on the electrical properties of the subsurface. The analysis of temporal changes in the electrical images allows tracking the propagation of the injected nanoparticle suspension and detection of the induced bio-geochemical changes in the subsurface. Here, we present IP monitoring results for data collected during the injection of Nano-Goethite particles (NGP) used for simulation of biodegradation of a BTEX plume (i.e., benzene, toluene, ethylbenzene, and xylene) at the Spolchemie II site, CZ. Frequency-domain IP measurements were collected parallel to the groundwater flow direction and centred on the NGP injection point. Pre-injection imaging results revealed high electrical conductivities (> 10 S/m) and negligible polarization effects in the BTEX-contaminated part of the saturated zone (below 5 m depth). The apparently contradictory observation - BTEX compounds are poor electrical conductors - can be explained by the release of carbonic acids (a metabolic by-product of the biodegradation of hydrocarbons), which leads to an increase of the electrical conductivity. Post-injection images revealed a significant decrease (> 50%) of the electrical conductivity, with even larger changes in the proximity of the injection points, most likely due to the

  19. Resolving Key Uncertainties in Subsurface Energy Recovery: One Role of In Situ Experimentation and URLs (Invited)

    Science.gov (United States)

    Elsworth, D.

    2013-12-01

    Significant uncertainties remain and influence the recovery of energy from the subsurface. These uncertainties include the fate and transport of long-lived radioactive wastes that result from the generation of nuclear power and have been the focus of an active network of international underground research laboratories dating back at least 35 years. However, other nascent carbon-free energy technologies including conventional and EGS geothermal methods, carbon-neutral methods such as carbon capture and sequestration and the utilization of reduced-carbon resources such as unconventional gas reservoirs offer significant challenges in their effective deployment. We illustrate the important role that in situ experiments may play in resolving behaviors at extended length- and time-scales for issues related to chemical-mechanical interactions. Significantly, these include the evolution of transport and mechanical characteristics of stress-sensitive fractured media and their influence of the long-term behavior of the system. Importantly, these interests typically relate to either creating reservoirs (hydroshearing in EGS reservoirs, artificial fractures in shales and coals) or maintaining seals at depth where the permeating fluids may include mixed brines, CO2, methane and other hydrocarbons. Critical questions relate to the interaction of these various fluid mixtures and compositions with the fractured substrate. Important needs are in understanding the roles of key processes (transmission, dissolution, precipitation, sorption and dynamic stressing) on the modification of effective stresses and their influence on the evolution of permeability, strength and induced seismicity on the resulting development of either wanted or unwanted fluid pathways. In situ experimentation has already contributed to addressing some crucial issues of these complex interactions at field scale. Important contributions are noted in understanding the fate and transport of long-lived wastes

  20. Techniques for assessing the performance of in situ bioreduction and immobilization of metals and radionuclides in contaminated subsurface environments

    Energy Technology Data Exchange (ETDEWEB)

    Jardine, P.M.; Watson, D.B.; Blake, D.A.; Beard, L.P.; Brooks, S.C.; Carley, J.M.; Criddle, C.S.; Doll, W.E.; Fields, M.W.; Fendorf, S.E.; Geesey, G.G.; Ginder-Vogel, M.; Hubbard, S.S.; Istok, J.D.; Kelly, S.; Kemner, K.M.; Peacock, A.D.; Spalding, B.P.; White, D.C.; Wolf, A.; Wu, W.; Zhou, J.

    2004-11-14

    Department of Energy (DOE) facilities within the weapons complex face a daunting challenge of remediating huge below inventories of legacy radioactive and toxic metal waste. More often than not, the scope of the problem is massive, particularly in the high recharge, humid regions east of the Mississippi river, where the off-site migration of contaminants continues to plague soil water, groundwater, and surface water sources. As of 2002, contaminated sites are closing rapidly and many remediation strategies have chosen to leave contaminants in-place. In situ barriers, surface caps, and bioremediation are often the remedial strategies of chose. By choosing to leave contaminants in-place, we must accept the fact that the contaminants will continue to interact with subsurface and surface media. Contaminant interactions with the geosphere are complex and investigating long term changes and interactive processes is imperative to verifying risks. We must be able to understand the consequences of our action or inaction. The focus of this manuscript is to describe recent technical developments for assessing the performance of in situ bioremediation and immobilization of subsurface metals and radionuclides. Research within DOE's NABIR and EMSP programs has been investigating the possibility of using subsurface microorganisms to convert redox sensitive toxic metals and radionuclides (e.g. Cr, U, Tc, Co) into a less soluble, less mobile forms. Much of the research is motivated by the likelihood that subsurface metal-reducing bacteria can be stimulated to effectively alter the redox state of metals and radionuclides so that they are immobilized in situ for long time periods. The approach is difficult, however, since subsurface media and waste constituents are complex with competing electron acceptors and hydrogeological conditions making biostimulation a challenge. Performance assessment of in situ biostimulation strategies is also difficult and typically requires detailed

  1. Technical issues associated with in situ vitrification of the INEL Subsurface Disposal Area

    International Nuclear Information System (INIS)

    Stoots, C.M.; Bates, S.O.; Callow, R.A.; Campbell, K.A.; Farnsworth, R.K.; Krisman, G.K.; McKellar, M.G.; Nickelson, D.F.; Slater, C.E.

    1992-07-01

    In situ vitrification (ISV) has been identified as an alternative technology for remediation of the acid pit and transuranic pits and trenches (TRU-PTs) at the Idaho National Engineering Laboratory (INEL) Subsurface Disposal Area (SDA). However, a number of technical issues must be resolved before ISV can be considered applicable to these waste sites. To assist in the ISV technology evaluation, an ISV Steering Committee was formed to identify, prioritize, and develop closure roadmaps for technical issues lated with ISV application at the SDA. The activities of the ISV Steering Committee are summarized in a three-volume report. Volume I identifies the systematic approach used to identify and prioritize the ISV technical issues and briefly discusses the methodology that will be employed to resolve these issues. Volumes 2 and 3 discuss each technical issue in greater detail and suggest specific closure roadmaps to be used in resolving technical issues associated with ISV at the SDA Acid Pit and TRU-PTS, respectively. The three-volume report is a working document that will be updated as necessary to reflect current evaluation strategy for the ISV technology. This is Volume 3

  2. Technical issues associated with in situ vitrification of the INEL Subsurface Disposal Area

    International Nuclear Information System (INIS)

    Stoots, C.M.; Bates, S.O.; Callow, R.A.; Campbell, K.A.; Farnsworth, R.K.; Gratson, G.K.; McKellar, M.G.; Nickelson, D.F.; Slater, C.E.

    1992-01-01

    In situ vitrification (ISV) has been identified as an alternative technology for remediation of the Acid Pit and Transuranic Pits and Trenches (TRU-PTs) that are present at the Idaho National Engineering Laboratory (INEL) Subsurface Disposal Area (SDA). However, a number of technical issues exist that must be resolved before ISV can be considered applicable to these waste sites. To assist in the ISV technology evaluation, an ISV Steering Committee was formed to identify, prioritize, and develop closure roadmaps for technical issues associated with ISV application at the INEL SDA. The activities of the ISV Steering Committee are summarized in three volumes of this report. Volume 1 identifies the systematic approach used to identify and prioritize the ISV technical issues, and briefly discusses the methodology that will be employed to resolve these issues. This document Volume 2 and Volume 3 discusses each technical issue in greater detail and suggest specific closure roadmaps to be used in resolving technical issues associated with ISV at the SDA Acid Pit and TRU-PTs, respectively

  3. Creation of a subsurface permeable treatment barrier using in situ redox manipulation

    International Nuclear Information System (INIS)

    Fruchter, J.S.; Cole, C.R.; Williams, M.D.

    1997-01-01

    The goal of in situ redox manipulation is to create a permeable treatment zone in the subsurface for remediating redox-sensitive contaminants in groundwater. The permeable treatment zone is created just downstream of the contaminant plume or contaminant source through the injection of reagents and/or microbial nutrients to alter the redox potential of the aquifer fluids and sediments. Contaminant plumes migrating through this manipulated zone can then be destroyed or immobilized. In a field test at the Hanford Site, ∼77,000 L of buffered sodium dithionite solution were successfully injected into the unconfined aquifer at the 100-H Area in September 1995. The target contaminant was chromate. No significant plugging of the well screen or the formation was detected during any phase of the test. Dithionite was detected in monitoring wells at least 7.5 m from the injection point. Data were obtained from all three phases of the test (i.e., injection, reaction, withdrawal). Preliminary core data show that from 60% to 100% of the available reactive iron in the targeted aquifer sediments was reduced by the injected dithionite. One year after the injection, groundwater in the treatment zone remains anoxic. Total and hexavalent chromium levels in groundwater have been reduced from a preexperiment concentration of ∼60 μg/L to below the detection limit of the analytical methods

  4. Immunological techniques as tools to characterize the subsurface microbial community at a trichloroethylene contaminated site

    Energy Technology Data Exchange (ETDEWEB)

    Fliermans, C.B.; Dougherty, J.M.; Franck, M.M.; McKinzey, P.C.; Hazen, T.C.

    1992-01-01

    Effective in situ bioremediation strategies require an understanding of the effects pollutants and remediation techniques have on subsurface microbial communities. Therefore, detailed characterization of a site's microbial communities is important. Subsurface sediment borings and water samples were collected from a trichloroethylene (TCE) contaminated site, before and after horizontal well in situ air stripping and bioventing, as well as during methane injection for stimulation of methane-utilizing microorganisms. Subsamples were processed for heterotrophic plate counts, acridine orange direct counts (AODC), community diversity, direct fluorescent antibodies (DFA) enumeration for several nitrogen-transforming bacteria, and Biolog [reg sign] evaluation of enzyme activity in collected water samples. Plate counts were higher in near-surface depths than in the vadose zone sediment samples. During the in situ air stripping and bioventing, counts increased at or near the saturated zone, remained elevated throughout the aquifer, but did not change significantly after the air stripping. Sporadic increases in plate counts at different depths as well as increased diversity appeared to be linked to differing lithologies. AODCs were orders of magnitude higher than plate counts and remained relatively constant with depth except for slight increases near the surface depths and the capillary fringe. Nitrogen-transforming bacteria, as measured by serospecific DFA, were greatly affected both by the in situ air stripping and the methane injection. Biolog[reg sign] activity appeared to increase with subsurface stimulation both by air and methane. The complexity of subsurface systems makes the use of selective monitoring tools imperative.

  5. Immunological techniques as tools to characterize the subsurface microbial community at a trichloroethylene contaminated site

    Energy Technology Data Exchange (ETDEWEB)

    Fliermans, C.B.; Dougherty, J.M.; Franck, M.M.; McKinzey, P.C.; Hazen, T.C.

    1992-12-31

    Effective in situ bioremediation strategies require an understanding of the effects pollutants and remediation techniques have on subsurface microbial communities. Therefore, detailed characterization of a site`s microbial communities is important. Subsurface sediment borings and water samples were collected from a trichloroethylene (TCE) contaminated site, before and after horizontal well in situ air stripping and bioventing, as well as during methane injection for stimulation of methane-utilizing microorganisms. Subsamples were processed for heterotrophic plate counts, acridine orange direct counts (AODC), community diversity, direct fluorescent antibodies (DFA) enumeration for several nitrogen-transforming bacteria, and Biolog {reg_sign} evaluation of enzyme activity in collected water samples. Plate counts were higher in near-surface depths than in the vadose zone sediment samples. During the in situ air stripping and bioventing, counts increased at or near the saturated zone, remained elevated throughout the aquifer, but did not change significantly after the air stripping. Sporadic increases in plate counts at different depths as well as increased diversity appeared to be linked to differing lithologies. AODCs were orders of magnitude higher than plate counts and remained relatively constant with depth except for slight increases near the surface depths and the capillary fringe. Nitrogen-transforming bacteria, as measured by serospecific DFA, were greatly affected both by the in situ air stripping and the methane injection. Biolog{reg_sign} activity appeared to increase with subsurface stimulation both by air and methane. The complexity of subsurface systems makes the use of selective monitoring tools imperative.

  6. Voltammetric, in-situ spectroelectrochemical and in-situ electrocolorimetric characterization of phthalocyanines

    Energy Technology Data Exchange (ETDEWEB)

    Koca, Atif [Department of Chemical Engineering, Faculty of Engineering, Marmara University, Goeztepe, 34722 Istanbul (Turkey)], E-mail: akoca@eng.marmara.edu.tr; Bayar, Serife; Dincer, Hatice A. [Department of Chemistry, Technical University of Istanbul, Maslak, 34469 Istanbul (Turkey); Gonca, Erguen [Department of Chemistry, Fatih University, TR34500 B.Cekmece, Istanbul (Turkey)

    2009-04-01

    In this work, electrochemical, and in-situ spectroelectrochemical characterization of the metallophthalocyanines bearing tetra-(1,1-(dicarbethoxy)-2-(2-methylbenzyl))-ethyl 3,10,17,24-tetra chloro groups were performed. Voltammetric and in-situ spectroelectrochemical measurements show that while cobalt phthalocyanine complex gives both metal-based and ring-based redox processes, zinc and copper phthalocyanines show only ring-based reduction and oxidation processes. The redox processes are generally diffusion-controlled, reversible and one-electron transfer processes. Differently lead phthalocyanine demetallized during second oxidation reaction while it was stable during reduction processes. An in-situ electrocolorimetric method, based on the 1931 CIE (Commission Internationale de l'Eclairage) system of colorimetry, has been applied to investigate the color of the electro-generated anionic and cationic forms of the complexes for the first time in this study.

  7. Advanced core-analyses for subsurface characterization

    Science.gov (United States)

    Pini, R.

    2017-12-01

    The heterogeneity of geological formations varies over a wide range of length scales and represents a major challenge for predicting the movement of fluids in the subsurface. Although they are inherently limited in the accessible length-scale, laboratory measurements on reservoir core samples still represent the only way to make direct observations on key transport properties. Yet, properties derived on these samples are of limited use and should be regarded as sample-specific (or `pseudos'), if the presence of sub-core scale heterogeneities is not accounted for in data processing and interpretation. The advent of imaging technology has significantly reshaped the landscape of so-called Special Core Analysis (SCAL) by providing unprecedented insight on rock structure and processes down to the scale of a single pore throat (i.e. the scale at which all reservoir processes operate). Accordingly, improved laboratory workflows are needed that make use of such wealth of information by e.g., referring to the internal structure of the sample and in-situ observations, to obtain accurate parameterisation of both rock- and flow-properties that can be used to populate numerical models. We report here on the development of such workflow for the study of solute mixing and dispersion during single- and multi-phase flows in heterogeneous porous systems through a unique combination of two complementary imaging techniques, namely X-ray Computed Tomography (CT) and Positron Emission Tomography (PET). The experimental protocol is applied to both synthetic and natural porous media, and it integrates (i) macroscopic observations (tracer effluent curves), (ii) sub-core scale parameterisation of rock heterogeneities (e.g., porosity, permeability and capillary pressure), and direct 3D observation of (iii) fluid saturation distribution and (iv) the dynamic spreading of the solute plumes. Suitable mathematical models are applied to reproduce experimental observations, including both 1D and 3D

  8. Reduction and immobilization of uranium in the subsurface: controls, mechanisms, and implications for in situ bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Stylo, M. A.

    2015-07-01

    (IV) product, and with an understanding of the relationship between the biofilm matrix and the formation of non-crystalline U(IV), we embarked on a project to validate the mechanism responsible for non-crystalline U(IV) formation in the subsurface. Results show that regardless whether U is reduced enzymatically or though abiotic agents, the formed U(IV) species are always non-crystalline if the biofilm matrix is present. However, according to our experiments, biological U reduction resulted in better immobilization and overall reduction of U. The mechanism of U reduction in our systems was shown to be controlled by U speciation, which in turn, is govern by the presence of bicarbonate. Under low carbonate concentrations, the majority of U(VI) adsorbs onto the mineral phase thus promoting abiotic U reduction mediated by redox active minerals. However, at higher carbonate concentrations, most of U(VI) is present as aqueous U(VI)-carbonate complexes precluding sorption and thus allowing for enhanced enzymatic U reduction. The results obtained here shed light on the processes occurring at U-contaminated sites and have several field implications. The effectiveness of applied bioremediation was shown to depend on the geochemical conditions at the field site. However, the injection of bicarbonate during in situ clean-up operation enhances microbial U reduction and by this, the overall reductive immobilization of U. (author)

  9. Reduction and immobilization of uranium in the subsurface: controls, mechanisms, and implications for in situ bioremediation

    International Nuclear Information System (INIS)

    Stylo, M. A.

    2015-01-01

    , and with an understanding of the relationship between the biofilm matrix and the formation of non-crystalline U(IV), we embarked on a project to validate the mechanism responsible for non-crystalline U(IV) formation in the subsurface. Results show that regardless whether U is reduced enzymatically or though abiotic agents, the formed U(IV) species are always non-crystalline if the biofilm matrix is present. However, according to our experiments, biological U reduction resulted in better immobilization and overall reduction of U. The mechanism of U reduction in our systems was shown to be controlled by U speciation, which in turn, is govern by the presence of bicarbonate. Under low carbonate concentrations, the majority of U(VI) adsorbs onto the mineral phase thus promoting abiotic U reduction mediated by redox active minerals. However, at higher carbonate concentrations, most of U(VI) is present as aqueous U(VI)-carbonate complexes precluding sorption and thus allowing for enhanced enzymatic U reduction. The results obtained here shed light on the processes occurring at U-contaminated sites and have several field implications. The effectiveness of applied bioremediation was shown to depend on the geochemical conditions at the field site. However, the injection of bicarbonate during in situ clean-up operation enhances microbial U reduction and by this, the overall reductive immobilization of U. (author)

  10. In-Situ Anaerobic Biosurfactant Production Process For Remediation Of DNAPL Contamination In Subsurface Aquifers

    Science.gov (United States)

    Albino, J. D.; Nambi, I. M.

    2009-12-01

    microbial cultures. The microorganisms responsible for biosurfactant production was isolated and identified as Pseudomonas Sp (designated as Pseudomonas Sp ANBIOSURF-1, Gene bank no: FJ930079), Pseudomonas stutzeri (MTCC 10033), Pseudomonas Sp (MTCC 10032) from groundwater, soil and municipal sewage sludge enrichments respectively. This study confirms that biosurfactants can be produced under anaerobic conditions and also in sufficient quantities. The cultures were also able to cometabolically degrade PCE to Ethylene. The isolated microorganisms can be used for remediation of DNAPL contaminated sites by in-situ biosurfactant production.

  11. Characterization of subsurface sediments at a site of gasoline contamination

    International Nuclear Information System (INIS)

    Bishop, D.J.; Krauter, P.W.; Jovanovich, M.C.; Lee, K.; Nelson, S.C.; Noyes, C.

    1992-02-01

    The Dynamic Underground Stripping Project combines monitored steam injection and electrical heating to treat in situ a gasoline plume resulting from leakage of an underground storage tank. A preliminary field demonstration of this system was performed at an uncontaminated site (Clean Site) a few hundred feet away with similar geology to that at the Gasoline Spill (GS) area. This paper describes characterization efforts at both sites and highlights what we rearmed at the Clean Site that helped us plan our operations more effectively at the GS. To validate the success of the Dynamic Underground Stripping Project, we require a detailed understanding of the physical, geological, hydrological, chemical, and biological nature of the demonstration sites and how these parameters change as a result of the Dynamic Stripping processes. The characterization process should also provide data to estimate the masses of contaminants present and their spatial distribution before and after the remedial process to (1) aid in the planning for placement of injection and extraction wells, (2) provide physical data to develop conceptual models, (3) validate subsurface imaging techniques, and (4) confirm regulatory compliance

  12. Dual-gas tracers for subsurface characterization and NAPL detection

    International Nuclear Information System (INIS)

    Gauglitz, P.A.; Peurrung, L.M.; Mendoza, D.P.; Pillay, G.

    1994-11-01

    Effective design of in situ remediation technologies often requires an understanding of the mass transfer limitations that control the removal of contaminants from the soil. In addition, the presence of nonaqueous phase liquids (NAPLs) in soils will affect the ultimate success or failure of remediation processes. Knowing the location of NAPLs within the subsurface is critical to designing the most effective remediation approach. This work focuses on demonstrating that gas tracers can detect the location of the NAPLs in the subsurface and elucidating the mass transfer limitations associated with the removal of contaminants from soils

  13. In-Situ Subsurface Coating of Corroded Steel Sheet Pile Structures: Final Report on Project F08-AR06

    Science.gov (United States)

    2017-09-01

    shrink cement grout or epoxy resin in the gap between old and new steel , shown in Figure 19. This was the reason why the perforated piles needed to...be made liquid-tight with cement grout or epoxy. Other- wise, the material injected between the old and new steel would be lost be- hind the old steel ...ER D C/ CE RL T R- 17 -3 5 DoD Corrosion Prevention and Control Program In-Situ Subsurface Coating of Corroded Steel Sheet Pile

  14. Ma_MISS on ExoMars: Mineralogical Characterization of the Martian Subsurface

    Science.gov (United States)

    De Sanctis, Maria Cristina; Altieri, Francesca; Ammannito, Eleonora; Biondi, David; De Angelis, Simone; Meini, Marco; Mondello, Giuseppe; Novi, Samuele; Paolinetti, Riccardo; Soldani, Massimo; Mugnuolo, Raffaele; Pirrotta, Simone; Vago, Jorge L.; Ma_MISS Team

    2017-07-01

    The Ma_MISS (Mars Multispectral Imager for Subsurface Studies) experiment is the visible and near infrared (VNIR) miniaturized spectrometer hosted by the drill system of the ExoMars 2020 rover. Ma_MISS will perform IR spectral reflectance investigations in the 0.4-2.2 μm range to characterize the mineralogy of excavated borehole walls at different depths (between 0 and 2 m). The spectral sampling is about 20 nm, whereas the spatial resolution over the target is 120 μm. Making use of the drill's movement, the instrument slit can scan a ring and build up hyperspectral images of a borehole. The main goal of the Ma_MISS instrument is to study the martian subsurface environment. Access to the martian subsurface is crucial to our ability to constrain the nature, timing, and duration of alteration and sedimentation processes on Mars, as well as habitability conditions. Subsurface deposits likely host and preserve H2O ice and hydrated materials that will contribute to our understanding of the H2O geochemical environment (both in the liquid and in the solid state) at the ExoMars 2020 landing site. The Ma_MISS spectral range and sampling capabilities have been carefully selected to allow the study of minerals and ices in situ before the collection of samples. Ma_MISS will be implemented to accomplish the following scientific objectives: (1) determine the composition of subsurface materials, (2) map the distribution of subsurface H2O and volatiles, (3) characterize important optical and physical properties of materials (e.g., grain size), and (4) produce a stratigraphic column that will inform with regard to subsurface geological processes. The Ma_MISS findings will help to refine essential criteria that will aid in our selection of the most interesting subsurface formations from which to collect samples.

  15. An in Situ method for establishing the presence and predicting the activity of heavy metal-reducing microbes in the subsurface. Final Report

    International Nuclear Information System (INIS)

    Hatfield, K.

    2003-01-01

    Tracer method to establish presence and distribution of chromium reducing microbes. The primary objective of this research was to establish an in situ tracer method for detecting the presence. distribution. and activity of subsurface heavy metal-reducing microorganisms. Research focused on microbial systems responsible for the reduction of chromium and a suite of biotracers coupled to the reduction process. The tracer method developed may be used to characterize sites contaminated with chromium or expedite bioremediation: and although research focused on chromium. the method can be easily extended to other metals, organics, and radionuclides. This brief final report contains three major sections. The first identifies specific products of the research effort such as students supported and publications. The second section briefly presents major research findings, while the last section summarizes the overall research effort

  16. In Situ Tracer method for establishing the presence and predicting the activity of heavy metal-reducing microbes in the subsurface. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Hatfield, K.

    2003-07-01

    Tracer method to establish presence and distribution of chromium reducing microbes. The primary objective of this research was to establish an in situ tracer method for detecting the presence. distribution. and activity of subsurface heavy metal-reducing microorganisms. Research focused on microbial systems responsible for the reduction of chromium and a suite of biotracers coupled to the reduction process. The tracer method developed may be used to characterize sites contaminated with chromium or expedite bioremediation: and although research focused on chromium. the method can be easily extended to other metals, organics, and radionuclides. This brief final report contains three major sections. The first identifies specific products of the research effort such as students supported and publications. The second section briefly presents major research findings, while the last section summarizes the overall research effort.

  17. Form and function in hillslope hydrology: in situ imaging and characterization of flow-relevant structures

    Directory of Open Access Journals (Sweden)

    C. Jackisch

    2017-07-01

    Full Text Available The study deals with the identification and characterization of rapid subsurface flow structures through pedo- and geo-physical measurements and irrigation experiments at the point, plot and hillslope scale. Our investigation of flow-relevant structures and hydrological responses refers to the general interplay of form and function, respectively. To obtain a holistic picture of the subsurface, a large set of different laboratory, exploratory and experimental methods was used at the different scales. For exploration these methods included drilled soil core profiles, in situ measurements of infiltration capacity and saturated hydraulic conductivity, and laboratory analyses of soil water retention and saturated hydraulic conductivity. The irrigation experiments at the plot scale were monitored through a combination of dye tracer, salt tracer, soil moisture dynamics, and 3-D time-lapse ground penetrating radar (GPR methods. At the hillslope scale the subsurface was explored by a 3-D GPR survey. A natural storm event and an irrigation experiment were monitored by a dense network of soil moisture observations and a cascade of 2-D time-lapse GPR trenches. We show that the shift between activated and non-activated state of the flow paths is needed to distinguish structures from overall heterogeneity. Pedo-physical analyses of point-scale samples are the basis for sub-scale structure inference. At the plot and hillslope scale 3-D and 2-D time-lapse GPR applications are successfully employed as non-invasive means to image subsurface response patterns and to identify flow-relevant paths. Tracer recovery and soil water responses from irrigation experiments deliver a consistent estimate of response velocities. The combined observation of form and function under active conditions provides the means to localize and characterize the structures (this study and the hydrological processes (companion study Angermann et al., 2017, this issue.

  18. Form and function in hillslope hydrology: in situ imaging and characterization of flow-relevant structures

    Science.gov (United States)

    Jackisch, Conrad; Angermann, Lisa; Allroggen, Niklas; Sprenger, Matthias; Blume, Theresa; Tronicke, Jens; Zehe, Erwin

    2017-07-01

    The study deals with the identification and characterization of rapid subsurface flow structures through pedo- and geo-physical measurements and irrigation experiments at the point, plot and hillslope scale. Our investigation of flow-relevant structures and hydrological responses refers to the general interplay of form and function, respectively. To obtain a holistic picture of the subsurface, a large set of different laboratory, exploratory and experimental methods was used at the different scales. For exploration these methods included drilled soil core profiles, in situ measurements of infiltration capacity and saturated hydraulic conductivity, and laboratory analyses of soil water retention and saturated hydraulic conductivity. The irrigation experiments at the plot scale were monitored through a combination of dye tracer, salt tracer, soil moisture dynamics, and 3-D time-lapse ground penetrating radar (GPR) methods. At the hillslope scale the subsurface was explored by a 3-D GPR survey. A natural storm event and an irrigation experiment were monitored by a dense network of soil moisture observations and a cascade of 2-D time-lapse GPR trenches. We show that the shift between activated and non-activated state of the flow paths is needed to distinguish structures from overall heterogeneity. Pedo-physical analyses of point-scale samples are the basis for sub-scale structure inference. At the plot and hillslope scale 3-D and 2-D time-lapse GPR applications are successfully employed as non-invasive means to image subsurface response patterns and to identify flow-relevant paths. Tracer recovery and soil water responses from irrigation experiments deliver a consistent estimate of response velocities. The combined observation of form and function under active conditions provides the means to localize and characterize the structures (this study) and the hydrological processes (companion study Angermann et al., 2017, this issue).

  19. In situ permeable flow sensor - OST reference No. 99. Subsurface contaminants focus area

    International Nuclear Information System (INIS)

    1998-02-01

    This summary reports describes the In Situ Permeable Flow Sensor (ISPFS) developed to directly measure the direction and velocity of groundwater flow at a point in saturated soil sediments. The ISPFS provides information for locating, designing, and monitoring waste disposal sites, and for monitoring remediated waste sites. The design and performance are described and compared to alternative methods. Economic, regulatory, and policy issues are discussed. Applicability of the ISPFS to specific situations is also summarized. 8 refs., 7 figs., 3 tabs

  20. 10p Duplication characterized by fluorescence in situ hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Wiktor, A.; Feldman, G.L.; Van Dyke, D.L.; Kratkoczki, P.; Ditmars, D.M. Jr. [Henry Ford Hospital, Detroit, MI (United States)

    1994-09-01

    We describe a patient with severe failure to thrive, mild-moderate developmental delay, cleft lip and palate, and other anomalies. Routine cytogenetic analysis documented a de novo chromosome rearrangement involving chromosome 4, but the origin of the derived material was unknown. Using chromosome specific painting probes, the karyotype was defined as 46,XY,der(4)t(4;10)(q35;p11.23). Characterization of the dup(10p) by fluorescence in situ hybridization (FISH) analysis provides another example of the usefulness of this technology in identifying small deletions, duplications, or supernumerary marker chromosomes. 19 refs., 4 figs.

  1. New technology of In-Situ-Alcohol-Flushing (ISAF) for mobilizing residual LNAPL in the subsurface by using swelling alcohol

    Energy Technology Data Exchange (ETDEWEB)

    Uhlig, U.; Tranckner, S.; Luckner, L. [GFI Groundwater research centre, Dresden (Germany); Zschiedrich, K. [LMBV Lausitz and Central-German Mining Administration Company, Berlin (Germany)

    2005-07-01

    of pollution high concentrations of phenols (1000 mg/L), BTEX (200 mg/L) and petroleum hydrocarbons (200 mg/L) were measured in the groundwater. During the field test, 20.15 t of 1-propanol was infiltrated into the depth of 8 m bgs, using 12 infiltration lances. After injecting the 1-propanol within 48 hours, water was infiltrated by using the same lances over a period of about two years. For the monitoring of the field test 14 observation wells, two observation points at the extraction well (one for each screen) and 5 gas sampling systems (GASSYS) were continuously observed. A hydraulic groundwater model (MODFLOW) was running for determining the necessary pumping rates at the two screens of the extraction well and for the arrangement of the 12 infiltration lances. Furthermore, a special predictive model was built to determine the concentration of 1- propanol in the groundwater depending on the time. The effect of mobilization, caused by the alcohol-infiltration, could be seen shortly after the infiltration. During the first four months about 6 t of residuals were mobilized and extracted as floatings. The concentration of Propanol in the extracted floatings rose from 10 g/l up to the maximum of 90 g/l after two months, continuously decreasing afterwards. Therefore, this period is called mobilization phase. During the subsequent remediation the concentration of phenols decreased from values of 1000 mg/l to about 500 mg/l. During a period of 2 years no significant solution of residual LNAPL-components could be observed in the groundwater. The aquifer was only influenced by the infiltrated Propanol. In opposition to the LNAPL contaminants the Propanol was dissolved into the upper groundwater where its concentration rose up to 4500 mg/L for a short time and decreased continuously afterwards. The calculated decrease of the 1-propanol concentration by means of the predictive model compared to the measured values are in good agreement. The In-situ-Alcohol-Flushing (ISAF) is

  2. New technology of In-Situ-Alcohol-Flushing (ISAF) for mobilizing residual LNAPL in the subsurface by using swelling alcohol

    International Nuclear Information System (INIS)

    Uhlig, U.; Tranckner, S.; Luckner, L.; Zschiedrich, K.

    2005-01-01

    high concentrations of phenols (1000 mg/L), BTEX (200 mg/L) and petroleum hydrocarbons (200 mg/L) were measured in the groundwater. During the field test, 20.15 t of 1-propanol was infiltrated into the depth of 8 m bgs, using 12 infiltration lances. After injecting the 1-propanol within 48 hours, water was infiltrated by using the same lances over a period of about two years. For the monitoring of the field test 14 observation wells, two observation points at the extraction well (one for each screen) and 5 gas sampling systems (GASSYS) were continuously observed. A hydraulic groundwater model (MODFLOW) was running for determining the necessary pumping rates at the two screens of the extraction well and for the arrangement of the 12 infiltration lances. Furthermore, a special predictive model was built to determine the concentration of 1- propanol in the groundwater depending on the time. The effect of mobilization, caused by the alcohol-infiltration, could be seen shortly after the infiltration. During the first four months about 6 t of residuals were mobilized and extracted as floatings. The concentration of Propanol in the extracted floatings rose from 10 g/l up to the maximum of 90 g/l after two months, continuously decreasing afterwards. Therefore, this period is called mobilization phase. During the subsequent remediation the concentration of phenols decreased from values of 1000 mg/l to about 500 mg/l. During a period of 2 years no significant solution of residual LNAPL-components could be observed in the groundwater. The aquifer was only influenced by the infiltrated Propanol. In opposition to the LNAPL contaminants the Propanol was dissolved into the upper groundwater where its concentration rose up to 4500 mg/L for a short time and decreased continuously afterwards. The calculated decrease of the 1-propanol concentration by means of the predictive model compared to the measured values are in good agreement. The In-situ-Alcohol-Flushing (ISAF) is a promising

  3. Characterization of alginate-brushite in-situ hydrogel composites

    Energy Technology Data Exchange (ETDEWEB)

    Dabiri, Seyed Mohammad Hossein [Department of Informatics, Bioengineering, Robotics, and System Engineering, University of Genoa, Genoa (Italy); Lagazzo, Alberto; Barberis, Fabrizio [Department of Civil, Chemical and Environmental Engineering, University of Genoa, Genoa (Italy); Farokhi, Mehdi [National Cell Bank of Iran, Pasteur Institute of Iran, Tehran (Iran, Islamic Republic of); Finochio, Elisabetta [Department of Civil, Chemical and Environmental Engineering, University of Genoa, Genoa (Italy); Pastorino, Laura [Department of Informatics, Bioengineering, Robotics, and System Engineering, University of Genoa, Genoa (Italy)

    2016-10-01

    In the present study alginate-brushite composite hydrogels were in-situ synthetized and characterized with respect to preparation parameters. Specifically, the influence of initial pH value and initial concentration of phosphate precursor on the in-situ fabrication of the composite hydrogel were taken into account. The composite hydrogels were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric (TGA, DTG) and differential thermal analysis (DTA). Finally, the cell viability tests were carried out (MTT) over the incubation time period of 3, 7, and 14 days. The results revealed that the formation and the crystalline stability of brushite were highly dependent on the initial pH value. It was shown that as the pH reached to the value of 6, characteristics peaks of brushite appeared in the FTIR spectra. Besides, the XRD and thermal analysis results were in a good accordance with those of FTIR. In addition, the SEM images demonstrated that the plate like brushite was formed inside the alginate matrix. Also, a considerable impact of pH variation on the biocompatibility of samples was noticed so that the majority of samples especially those prepared in the acidic conditions were toxic. - Highlights: • Alginate-brushite hydrogel composites were obtained through an in-situ process • The brushite crystals started forming at pH value of 6 • The increase in the initial concentration of phosphate precursor resulted in more crystalline structure • Samples prepared at pH value of 8 had the most stable crystalline structure • Brushite crystals promoted the biocompatibility of alginate.

  4. Hydrodynamics of foam flows for in situ bioremediation of DNAPL-contaminated subsurface

    International Nuclear Information System (INIS)

    Bouillard, J.X.; Enzien, M.; Peters, R.W.; Frank, J.; Botto, R.E.; Cody, G.

    1995-01-01

    In situ remediation technologies such as (1) pump-and-treat, (2) soil vacuum extraction, (3) soil flushing/washing, and (4) bioremediation are being promoted for cleanup of contaminated sites. However, these technologies are limited by flow channeling of chemical treatment agents. Argonne National Laboratory (ANL), the Gas Research Institute, and the Institute of Gas Technology are collaboratively investigating a new bioremediation technology using foams. The ability of a foam to block pores and limit flow bypassing makes it ideal for DNAPL remediation. The hydrodynamics of gas/liquid foam flows differ significantly from the hydrodynamics of single and multiphase nonfoaming flows. This is illustrated using a multiphase flow hydrodynamic computer model and a two-dimensional flow visualization cell. A state-of-the-art, nonintrusive, three-dimensional magnetic resonance imaging technique was developed to visualize DNAPL mobilization in three dimensions. Mechanisms to be investigated are in situ DNAPL interactions with the foam, DNAPL emulsification, DNAPL scouring by the foam, and subsequent DNAPL mobilization/redeposition in the porous media

  5. DOE capabilities for in-situ characterization and monitoring of formation properties in the vadose zone

    International Nuclear Information System (INIS)

    Hearst, J.R.; Brodeur, J.R.; Koizumi, C.J.; Conaway, J.G.; Mikesell, J.L.; Nelson, P.H.; Stromswold, D.C.; Wilson, R.D.

    1993-09-01

    The DOE Environmental Restoration (ER) Program faces the difficult task of characterizing the properties of the subsurface and identifying and mapping a large number of contaminants at landfills, surface disposal areas, spill sites, nuclear waste tanks, and subsurface contaminant plumes throughout the complex of DOE facilities. Geophysical borehole logs can measure formation properties such as bulk density, water content, and lithology, and can quantitatively analyze for radionuclides and such elements as chlorine and heavy metals. Since these measurements can be replaced as desired, they can be used for both initial characterization and monitoring of changes in contaminant concentration and water content (sometimes linked to contaminant migration), at a fraction of the cost of conventional sampling. The techniques develop at several DOE laboratories, and the experience that the authors have gained in making in-situ measurements in the vadose zone, are applicable to problems at many other DOE sites. Moreover, they can capitalize on existing inventories of boreholes. By building on this experience workers involved in ER projects at those sites should be able to obtain high-quality data at substantial reductions in cost and time

  6. In situ, subsurface monitoring of vapor-phase TCE using fiber optics

    International Nuclear Information System (INIS)

    Rossabi, J.; Colston, B. Jr.; Brown, S.; Milanovich, F.; Lee, L.T. Jr.

    1993-01-01

    A vapor-phase, reagent-based, fiber optic trichloroethylene (TCE) sensor developed by Lawrence Livermore National Laboratory (LLNL) was demonstrated at the Savannah River Site (SRS) in two configurations. The first incorporated the sensor into a down-well instrument bounded by two inflatable packers capable of sealing an area for discrete depth analysis. The second involved an integration of the sensor into the probe tip of the Army Corps of Engineers Waterways Experiment Station (WES) cone penetrometry system. Discrete depth measurements of vapor-phase concentrations of TCE in the vadose zone were successfully made using both configurations. These measurements demonstrate the first successful in situ sensing (as opposed to sampling) of TCE at a field site

  7. Integration of pneumatic fracturing and in situ vitrification in the soil subsurface

    International Nuclear Information System (INIS)

    Luey, J.; Seiler, D.K.; Schuring, J.R.

    1995-02-01

    Pacific Northwest Laboratory is evaluating ways to increase the applicability of the in situ vitrification (ISV) process at hazardous and radioactive waste sites. One innovation is the placement of a conductive material that will facilitate initiating the ISV process at a target depth. A series of laboratory tests performed at the New Jersey Institute of Technology (NJIT) assessed the feasibility of pneumatic fracturing (PF) in the highly permeable soils of the Hanford Site. The NJIT tests included an analysis of Hanford soils, a series of PF injection tests, and a parametric analysis to determine how soil properties affect the PF process. Results suggest that the PF process can be applied to Hanford soils and that dry medium (e.g., conductive material such as graphite flake) can be injected into the fracture. This paper describes the laboratory testing performed at NJIT, its results, and the application of those results to plans for a field demonstration at Hanford

  8. In-situ materials characterization across spatial and temporal scales

    CERN Document Server

    Graafsma, Heinz; Zhang, Xiao; Frenken, Joost

    2014-01-01

    The behavior of nanoscale materials can change rapidly with time either because the environment changes rapidly, or because the influence of the environment propagates quickly across the intrinsically small dimensions of nanoscale materials. Extremely fast time resolution studies using X-rays, electrons and neutrons are of very high interest to many researchers and is a fast-evolving and interesting field for the study of dynamic processes. Therefore, in situ structural characterization and measurements of structure-property relationships covering several decades of length and time scales (from atoms to millimeters and femtoseconds to hours) with high spatial and temporal resolutions are crucially important to understand the synthesis and behavior of multidimensional materials. The techniques described in this book will permit access to the real-time dynamics of materials, surface processes, and chemical and biological reactions at various time scales. This book provides an interdisciplinary reference for res...

  9. In situ characterization of the microbiota in Yucca Mountain sediments

    International Nuclear Information System (INIS)

    Ringelberg, D.B.; Stair, J.O.; White, D.C.

    1996-01-01

    A specific goal of the research being performed at the Exploratory Study Facility (ESF), Yucca Mountain, NV, is the characterization of the microbiota surrounding the proposed high level nuclear waste repository site. Research has been initiated whereby not only the magnitude but also the extent of microbial colonization of the volcanic tuffs is being measured. By performing this research it was postulated that assessments of the potential for microbially facilitated transport of radioactive material away from the repository site could be made. In order to quantify the extant microbiota in situ, it was necessary to utilize techniques independent of the need for culture and isolation of the organisms. Through the analysis of cellular lipid components we were able to provide an estimation of microbial cell numbers and community composition in these volcanic tuff sediments

  10. Nanorobotic end-effectors: Design, fabrication, and in situ characterization

    Science.gov (United States)

    Fan, Zheng

    abilities in investigating the in situ nanotechnology, providing efficient ways in in situ nanostructure fabrication and the advanced characterization of the nanomaterials.

  11. Sample environment for in situ synchrotron XRD measurements for CO2 interaction with subsurface materials

    Science.gov (United States)

    Elbakhshwan, M.; Gill, S.; Weidner, R.; Ecker, L.

    2017-12-01

    Sequestration of CO2 in geological formations requires a deep understanding of its interaction with the cement-casing components in the depleted oil and gas wells. Portland cement is used to seal the wellbores; however it tends to interact with the CO2. Therefore it is critical to investigate the wellbore integrity over long term exposure to CO2. Studies showed that, CO2 leakage is due to the flow through the casing-cement microannulus, cement-cement fractures, or the cement-caprock interface. The objective of this work is to gain a better understanding of the dissolution process of the cement-casing in the CO2 flow channels alongside with the carbonation reactions at the interfaces using XRF, XANES and X-ray tomography techniques. In this study, a synthetic wellbore system, consisting of cement with an embedded rectangular length of steel casing that had grooves to accommodate fluid flow, was used to investigate the casing-cement microannulus through core-flood experiments. The objective of this work is to gain a better understanding of the dissolution process of the cement-casing in the CO2 flow channels alongside with the carbonation reactions at the interfaces using a sample environment designed and built for in situ X-ray diffraction in the National Synchrotron Light Source II (NSLS II). The formation of carbonate phases at cement -fluid and cement-steel/fluid interfaces will be monitored in real time. Samples may be exposed to super critical CO2 at pressures above 1100 psi and temperatures around 50°C. The reaction cell is built from hastealloy to provide corrosion resistance, while the experimental temperature and pressure are controlled with thermocouples and pressure vessel.

  12. Characterization of accumulated precipitates during subsurface iron removal

    KAUST Repository

    Van Halem, Doris

    2011-01-01

    The principle of subsurface iron removal for drinking water supply is that aerated water is periodically injected into the aquifer through a tube well. On its way into the aquifer, the injected O2-rich water oxidizes adsorbed Fe 2+, creating a subsurface oxidation zone. When groundwater abstraction is resumed, the soluble Fe 2+ is adsorbed and water with reduced Fe concentrations is abstracted for multiple volumes of the injection water. In this article, Fe accumulation deposits in the aquifer near subsurface treatment wells were identified and characterized to assess the sustainability of subsurface iron removal regarding clogging of the aquifer and the potential co-accumulation of other groundwater constituents, such as As. Chemical extraction of soil samples, with Acid-Oxalate and HNO3, showed that Fe had accumulated at specific depths near subsurface iron removal wells after 12 years of operation. Whether it was due to preferred flow paths or geochemical mineralogy conditions; subsurface iron removal clearly favoured certain soil layers. The total Fe content increased between 11.5 and 390.8 mmol/kg ds in the affected soil layers, and the accumulated Fe was found to be 56-100% crystalline. These results suggest that precipitated amorphous Fe hydroxides have transformed to Fe hydroxides of higher crystallinity. These crystalline, compact Fe hydroxides have not noticeably clogged the investigated well and/or aquifer between 1996 and 2008. The subsurface iron removal wells even need less frequent rehabilitation, as drawdown increases more slowly than in normal production wells. Other groundwater constituents, such as Mn, As and Sr were found to co-accumulate with Fe. Acid extraction and ESEM-EDX showed that Ca occurred together with Fe and by X-ray Powder Diffraction it was identified as calcite. © 2010 Elsevier Ltd. All rights reserved.

  13. Characterization of accumulated precipitates during subsurface iron removal

    International Nuclear Information System (INIS)

    Halem, Doris van; Vet, Weren de; Verberk, Jasper; Amy, Gary; Dijk, Hans van

    2011-01-01

    Research highlights: → Accumulated iron was not found to clog the well or aquifer after 12 years of subsurface iron removal. → 56-100% of accumulated iron hydroxides were found to be crystalline. → Subsurface iron removal favoured certain soil layers, either due to hydraulics or mineralogy. → Other groundwater constituents, such as manganese and arsenic were found to co-accumulate with iron. - Abstract: The principle of subsurface iron removal for drinking water supply is that aerated water is periodically injected into the aquifer through a tube well. On its way into the aquifer, the injected O 2 -rich water oxidizes adsorbed Fe 2+ , creating a subsurface oxidation zone. When groundwater abstraction is resumed, the soluble Fe 2+ is adsorbed and water with reduced Fe concentrations is abstracted for multiple volumes of the injection water. In this article, Fe accumulation deposits in the aquifer near subsurface treatment wells were identified and characterized to assess the sustainability of subsurface iron removal regarding clogging of the aquifer and the potential co-accumulation of other groundwater constituents, such as As. Chemical extraction of soil samples, with Acid-Oxalate and HNO 3 , showed that Fe had accumulated at specific depths near subsurface iron removal wells after 12 years of operation. Whether it was due to preferred flow paths or geochemical mineralogy conditions; subsurface iron removal clearly favoured certain soil layers. The total Fe content increased between 11.5 and 390.8 mmol/kg ds in the affected soil layers, and the accumulated Fe was found to be 56-100% crystalline. These results suggest that precipitated amorphous Fe hydroxides have transformed to Fe hydroxides of higher crystallinity. These crystalline, compact Fe hydroxides have not noticeably clogged the investigated well and/or aquifer between 1996 and 2008. The subsurface iron removal wells even need less frequent rehabilitation, as drawdown increases more slowly than in

  14. Development and Characterization of In Situ Oral Gel of Spiramycin

    Directory of Open Access Journals (Sweden)

    Avinash Sharma

    2014-01-01

    Full Text Available The present investigation deals with the optimization, formulation, and characterization of oral in situ gel of spiramycin. Sodium alginate and hydroxypropyl methylcellulose were used as cross-linking and viscosifying agents, respectively. Sodium bicarbonate was used as a floating agent. In preformulation studies, the melting point, pH, and partition coefficient were found to be 133°C, 9.5, and 0.193, respectively. The drug had retention time at around 2.65 minutes in high performance liquid chromatography (HPLC. During compatibility studies of drug with all polymers, we observed that there were no changes in the FTIR spectra of a mixture of drug and polymers. All the formulations showed good pourability. Floating time and total floating time were ~30 sec and >12 hours, respectively. During in vitro drug release studies, the drug was released from the formulation around 80–100% for 12–16 hrs. In TEM analysis, we found that the drug molecules were well entrapped in the polymer and the drug was released slowly for up to 12 hrs. In these studies, we found that the concentration of sodium alginate and HPMC had significant influence on floating lag time, gelling capacity, and cumulative percentage drug release. During antimicrobial studies, we found that the formulation containing spiramycin showed good zone of inhibition against different microbial strains (Staphylococcus aureus and Escherichia coli.

  15. Characterization of VPO ammoxidation catalysts by in situ methods

    Energy Technology Data Exchange (ETDEWEB)

    Martin, A.; Luecke, B.; Brueckner, A.; Steinike, U. [Institut fuer Angewandte Chemie Berlin-Adlershof e.V., Berlin (Germany); Brzezinka, K.W. [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany); Meisel, M. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Chemie

    1998-12-31

    In-situ methods are well known as powerful tools in studying catalyst formation processes, their solid state properties under working conditions and the interaction with the feed, intermediates and products to reveal reaction mechanisms. This paper gives a short overview on results of intense studies using in-situ techniques to reveal VPO catalyst generation processes, interaction of educts, intermediates and products with VPO catalyst surfaces and mechanistic insights. Catalytic data of the ammoxidation of toluene on different VPOs complete these findings. The precursor-catalyst transformation processes were preferently investigated by in-situ XRD, in-situ Raman and in-situ ESR spectroscopy. The interaction of aromatic molecules and intermediates, resp., and VPO solid surfaces was followed by in-situ ESR and in-situ FTIR spectroscopy. Mechanistic information was mainly obtained using in-situ FTIR spectroscopy and the temporal-analysis-of-products (TAP) technique. Catalytic studies were carried out in a fixed-bed microreactor on pure (NH{sub 4}){sub 2}(VO){sub 3}(P{sub 2}O{sub 7}){sub 2}, generated [(NH{sub 4}){sub 2}(VO{sub 3})(P{sub 2}O{sub 7}){sub 2}+V{sub x}O{sub y}] catalysts, having different V{sub x}O{sub y} proportions by use of VOHPO{sub 4} x 1/2H{sub 2}O (V/P=1) and recently studied (VO){sub 3}(PO{sub 4}){sub 2} x 7 H{sub 2}O (V/P=1.5) precursors; the well-known (VO){sub 2}P{sub 2}O{sub 7} was used for comparison. (orig.)

  16. Application of an in-situ soil sampler for assessing subsurface biogeochemical dynamics in a diesel-contaminated coastal site during soil flushing operations.

    Science.gov (United States)

    Kwon, Man Jae; O'Loughlin, Edward J; Ham, Baknoon; Hwang, Yunho; Shim, Moojoon; Lee, Soonjae

    2018-01-15

    Subsurface biogeochemistry and contaminant dynamics during the remediation of diesel-contamination by in-situ soil flushing were investigated at a site located in a coastal region. An in-situ sampler containing diesel-contaminated soils separated into two size fractions (fraction were much higher than those in the fraction. Increases in soil TPH in DH1 were consistent with the expected outcomes following well pumping and surfactant injection used to enhance TPH extraction. However, the number of diesel-degrading microorganisms decreased after surfactant injection. 16S-rRNA gene-based analysis also showed that the community composition and diversity depended on both particle size and diesel contamination. The multidisciplinary approach to the contaminated site assessments showed that soil flushing with surfactant enhanced diesel extraction, but negatively impacted in-situ diesel biodegradation as well as groundwater quality. The results also suggest that the in-situ sampler can be an effective monitoring tool for subsurface biogeochemistry as well as contaminant dynamics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. In situ characterization of nanoscale catalysts during anodic redox processes

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Renu [National Institute of Standards and Technology; Crozier, Peter [Arizona State University; Adams, James [Arizona State University

    2013-09-19

    Controlling the structure and composition of the anode is critical to achieving high efficiency and good long-term performance. In addition to being a mixed electronic and ionic conductor, the ideal anode material should act as an efficient catalyst for oxidizing hydrogen, carbon monoxide and dry hydrocarbons without de-activating through either sintering or coking. It is also important to develop novel anode materials that can operate at lower temperatures to reduce costs and minimized materials failure associated with high temperature cycling. We proposed to synthesize and characterize novel anode cermets materials based on ceria doped with Pr and/or Gd together with either a Ni or Cu metallic components. Ceria is a good oxidation catalyst and is an ionic conductor at room temperature. Doping it with trivalent rare earths such as Pr or Gd retards sintering and makes it a mixed ion conductor (ionic and electronic). We have developed a fundamental scientific understanding of the behavior of the cermet material under reaction conditions by following the catalytic oxidation process at the atomic scale using a powerful Environmental Scanning Transmission Electron Microscope (ESTEM). The ESTEM allowed in situ monitoring of structural, chemical and morphological changes occurring at the cermet under conditions approximating that of typical fuel-cell operation. Density functional calculations were employed to determine the underlying mechanisms and reaction pathways during anode oxidation reactions. The dynamic behavior of nanoscale catalytic oxidation of hydrogen and methane were used to determine: ? Fundamental processes during anodic reactions in hydrogen and carbonaceous atmospheres ? Interfacial effects between metal particles and doped ceria ? Kinetics of redox reaction in the anode material

  18. Joining and interface characterization of in situ reinforced silicon nitride

    Energy Technology Data Exchange (ETDEWEB)

    Asthana, R., E-mail: asthanar@uwstout.edu [Department of Engineering and Technology, 326 FH, University of Wisconsin-Stout, Menomonie, WI 54751 (United States); Singh, M., E-mail: Mrityunjay.Singh@nasa.gov [Ohio Aerospace Institute, NASA Glenn Research Center, Cleveland, OH 44135 (United States); Martinez-Fernandez, J., E-mail: Martinez@us.es [Dpto. Física de la Materia Condensada-ICMSE, Universidad de Sevilla-CSIC, Avda. Reina Mercedes, s/n, 41012 Sevilla (Spain)

    2013-03-05

    Highlights: ► AS800 Si{sub 3}N{sub 4} brazed using oxidation-resistant, high use-temperature braze Cu-ABA. ► Interface enriched in Ti and Si but not in Y, La, and Sr (from Y{sub 2}O{sub 3}, La{sub 2}O{sub 3} and SrO). ► Rapid early-stage kinetic evident in constant layer thickness, composition with time. ► Highly textured large grains of Cu and features associated with plastic deformation. -- Abstract: Copper-base active metal interlayers were used to bond in situ reinforced silicon nitride (Honeywell AS800) at 1317 K for 5 and 30 min in vacuum. The joints were characterized using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), electron back scattered diffraction (EBSD), and transmission electron microscopy (TEM). A Ti-rich interaction zone (∼3.0–3.5 μm thick) formed at the Si{sub 3}N{sub 4}/braze interface. This reaction layer grew toward the inner part of the joint with a featureless microstructure, creating a strong bond. Regions of a Ti-rich phase were frequently found next to the reaction layer but surrounded by the Cu alloy. Extensive Ti and Si enrichments were noted at the interface but there was no evidence of interfacial segregation of Y, La, and Sr (from Y{sub 2}O{sub 3}, La{sub 2}O{sub 3} and SrO, added as sintering aids). The reaction layer thickness and composition did not change when brazing time increased from 5 min to 30 min suggesting rapid growth kinetics in the early stages of reaction. The joints were crack-free and showed features associated with plastic deformation, which indicated that the metal interlayer accommodated strain associated with CTE mismatch. The inner part of the joint consisted of highly textured large grains of the braze alloy.

  19. Supernumerary ring chromosome 20 characterized by fluorescence in situ hybridization

    NARCIS (Netherlands)

    Van Langen, Irene M.; Otter, Mariëlle A.; Aronson, Daniël C.; Overweg-Plandsoen, W.C.G.; Hennekam, Raoul C.M.; Leschot, Nico J.; Hoovers, Jan M.N.

    1996-01-01

    We report on a boy with mild dysmorphic features and developmental delay, in whom karyotyping showed an additional minute ring chromosome in 60% of metaphases. Fluorescence in situ hybridization (FISH) with a centromere specific probe demonstrated that the ring chromosome contained the centromeric

  20. A microfluidic membrane chip for in situ fouling characterization

    NARCIS (Netherlands)

    Ngene, I.S.; Lammertink, Rob G.H.; Wessling, Matthias; van der Meer, Walterus Gijsbertus Joseph

    2010-01-01

    A new method for non-invasive in situ monitoring of a microfiltration process is described. In microfiltration systems, local information on the deposition characteristics can be used to determine the cake behavior during a filtration run. Typically, non-invasive methods of fouling study are

  1. Vendors search for viscosity sensors for in situ tank waste characterization

    International Nuclear Information System (INIS)

    Nguyen, Q.H.

    1994-01-01

    This report documents the search results in identifying manufacturers who can develop viscosity sensors for in situ to waste characterization. Six companies were found that have in-process viscometers

  2. New quantitative, in-situ characterization of weathering in geomaterials.

    Science.gov (United States)

    Scrivano, Simona; Gaggero, Laura; Gisbert Aguilar, Josep; Yus Gonzalez, Adrian

    2016-04-01

    intensity results are defined and categorized. Drdàcky M. & Slìzkovà Z., 2014. In situ peeling tests for assessing the cohesion and consolidation characteristics of historic plasters and render surfaces. Studies in conservation, vol 0. Fitzner B. & Heinrichs K., 2002. Damage diagnosis on stone monuments weathering forms, damage categories and damage indices. - In: Prikryl R. and Viles H.A. (eds.): Understanding and managing stone decay. - Proceedings Internat. Conf. "Stone weathering and atmospheric pollution network (SWAPNET)": 11-56, Charles Univ. Prague (Karolinum Press). ICOMOS.ISCS, 2008 Illustrated glossary on stone deterioration patterns, 78 pp. Scrivano S., Gaggero L. & Taddei A., 2013. Alteration patterns of marble under different environmental exposures: a systematic approach from the Staglieno Monumental cemetery and museum collections in Genoa (Italy). In: Proceedings of the 12th International Congress on Deterioration and Conservation of Stone, New York, 22-26 October 2012. In press.

  3. In-situ TEM characterization of nanomaterials and devices

    KAUST Repository

    Kim, Moon; Park, Seongyong; Cha, Dong Kyu; Kim, Jiyoung; Floresca, Herman Carlo; Lu, Ning; Wang, Jinguo

    2011-01-01

    Electrical properties of nano size devices were directly measured by TEM. Real time observation of phase transition behavior in PRAM revealed that the volume of the crystalline phase is the main factor in determining cell resistance. In the transistor device, we have identified the doping type and area by measuring the I-V curve at the individual nano contact on the specimen. The evolution of the graphene edge structure was controlled and monitored at and up to 1200°C in-situ. © 2011 IEEE.

  4. In-situ TEM characterization of nanomaterials and devices

    KAUST Repository

    Kim, Moon

    2011-10-01

    Electrical properties of nano size devices were directly measured by TEM. Real time observation of phase transition behavior in PRAM revealed that the volume of the crystalline phase is the main factor in determining cell resistance. In the transistor device, we have identified the doping type and area by measuring the I-V curve at the individual nano contact on the specimen. The evolution of the graphene edge structure was controlled and monitored at and up to 1200°C in-situ. © 2011 IEEE.

  5. In Situ TEM Creation and Electrical Characterization of Nanowire Devices

    DEFF Research Database (Denmark)

    Kallesøe, Christian; Wen, Cheng-Yen; Booth, Timothy J.

    2012-01-01

    bridge devices in situ and relate these to the structure. We also describe processes to modify the contact and the nanowire surface after device formation. The technique we describe allows the direct analysis of the processes taking place during device formation and use, correlating specific nanoscale......We demonstrate the observation and measurement of simple nanoscale devices over their complete lifecycle from creation to failure within a transmission electron microscope. Devices were formed by growing Si nanowires, using the vapor–liquid–solid method, to form bridges between Si cantilevers. We...... structural and electrical parameters on an individual device basis....

  6. In situ thermal properties characterization using frequential methods

    Energy Technology Data Exchange (ETDEWEB)

    Carpentier, O.; Defer, D.; Antczak, E.; Chauchois, A.; Duthoit, B. [Laboratoire dArtois de Mecanique Thermique Instrumentation (LAMTI), FSA Universite dArtois, Technoparc Futura, 62400 Bethune (France)

    2008-07-01

    In numerous fields, especially that of geothermal energy, we need to know about the thermal behaviour of the soil now that the monitoring of renewable forms of energy is an ecological, economic and scientific issue. Thus heat from the soil is widely used for air-conditioning systems in buildings both in Canada and in the Scandinavian countries, and it is spreading. The effectiveness of this technique is based on the soils calorific potential and its thermophysical properties which will define the quality of the exchanges between the soil and a heat transfer fluid. This article puts forward a method to be used for the in situ thermophysical characterisation of a soil. It is based upon measuring the heat exchanges on the surface of the soil and on measuring a temperature a few centimetres below the surface. The system is light, inexpensive, well-suited to the taking of measurements in situ without the sensors used introducing any disturbance into the heat exchanges. Whereas the majority of methods require excitation, the one presented here is passive and exploits natural signals. Based upon a few hours of recording, the natural signals allow us to identify the soils thermophysical properties continuously. The identification is based upon frequency methods the quality of which can be seen when the thermophysical properties are injected into a model with finite elements by means of a comparison of the temperatures modelled and those actually measured on site. (author)

  7. Subsurface characterization and geohydrologic site evaluation West Chestnut Ridge site

    International Nuclear Information System (INIS)

    1984-01-01

    The West Chestnut Ridge Site at the Oak Ridge National Laboratory is being considered for use as a repository for low-level radioactive waste. The purposes of this study were to provide a geohydrological characterization of the site for use in pathways analysis, and to provide preliminary geotechnical recommendations that would be used for development of a site utilization plan. Subsurface conditions were investigated at twenty locations and observation wells were installed. Field testing at each location included the Standard Penetration Test and permeability tests in soil and rock. A well pumping test was ocmpleted at one site. Laboratory testing included permeability, deformability, strength and compaction tests, as well as index and physical property tests. The field investigations showed that the subsurface conditions include residual soil overlying a weathered zone of dolomite which grades into relatively unweathered dolomite at depth. The thickness of residual soil is typically 80 ft (24 m) on the ridges, but can be as little as 10 ft (3 m) in the valleys. Trench excavations to depths of 30 ft (9 m) should not present serious slope stability problems above the water table. On-site soils can be used for liners or trench backfill but these soils may require moisture conditioning to achieve required densities. 19 figures, 8 tables

  8. Characterization of vitrified soil produced by in situ vitrification

    International Nuclear Information System (INIS)

    Timmerman, C.L.; Lokken, R.O.

    1984-01-01

    Radioactive or other hazardous wastes buried at waste disposal sites may require further stabilization to secure the isolation of these wastes from the environment. One method of waste stabilization being developed is in situ vitrification. This process involves the in-place melting of buried wastes and the surrounding soil to produce a glass and crystalline waste form. Engineering-scale and pilot-scale demonstrations of this concept with soil contaminated with nonradioactive, hazardous species (Cs, Sr, Ru, Pb, Cd, etc.) were performed. These demonstrations provided information on species migration, crystalline-phase formation, and waste form durability. In addition to the nonradioactive tests, a crucible-scale melt of soil spiked with radioactive uranium, plutonium, and cesium was leach tested. The results show that hazardous waste components are retained in the product. The durability of the waste form in both the vitreous and the crystalline phases is similar to that of Pyrex glass

  9. Characterization of vitrified soil produced by in-situ vitrification

    International Nuclear Information System (INIS)

    Timmerman, C.L.; Lokken, R.O.

    1983-01-01

    Radioactive or other hazardous wastes buried at waste-disposal sites may require further stabilization to secure the isolation of these wastes from the environment. One method of waste stabilization being developed is in-situ vitrification. This process involves the in-place melting of buried wastes and the surrounding soil to produce a glass and crystalline waste form. Engineering-scale and pilot-scale demonstrations of this concept with soil contaminated with nonradioactive, hazardous species (Cs, Sr, Ru, Pb, Cd, etc.) were performed. These demonstrations provided information on species migration, crystalline phase formation, and waste form durability. In addition to the nonradioactive tests, a crucible-scale melt of soil spiked with radioactive uranium, plutonium, and cesium was leach tested. The results show that hazardous waste components are retained in the product. The durability of the waste form in both the vitreous and crystalline phases is similar to that of pyrex glass

  10. Real rock-microfluidic flow cell: A test bed for real-time in situ analysis of flow, transport, and reaction in a subsurface reactive transport environment.

    Science.gov (United States)

    Singh, Rajveer; Sivaguru, Mayandi; Fried, Glenn A; Fouke, Bruce W; Sanford, Robert A; Carrera, Martin; Werth, Charles J

    2017-09-01

    Physical, chemical, and biological interactions between groundwater and sedimentary rock directly control the fundamental subsurface properties such as porosity, permeability, and flow. This is true for a variety of subsurface scenarios, ranging from shallow groundwater aquifers to deeply buried hydrocarbon reservoirs. Microfluidic flow cells are now commonly being used to study these processes at the pore scale in simplified pore structures meant to mimic subsurface reservoirs. However, these micromodels are typically fabricated from glass, silicon, or polydimethylsiloxane (PDMS), and are therefore incapable of replicating the geochemical reactivity and complex three-dimensional pore networks present in subsurface lithologies. To address these limitations, we developed a new microfluidic experimental test bed, herein called the Real Rock-Microfluidic Flow Cell (RR-MFC). A porous 500μm-thick real rock sample of the Clair Group sandstone from a subsurface hydrocarbon reservoir of the North Sea was prepared and mounted inside a PDMS microfluidic channel, creating a dynamic flow-through experimental platform for real-time tracking of subsurface reactive transport. Transmitted and reflected microscopy, cathodoluminescence microscopy, Raman spectroscopy, and confocal laser microscopy techniques were used to (1) determine the mineralogy, geochemistry, and pore networks within the sandstone inserted in the RR-MFC, (2) analyze non-reactive tracer breakthrough in two- and (depth-limited) three-dimensions, and (3) characterize multiphase flow. The RR-MFC is the first microfluidic experimental platform that allows direct visualization of flow and transport in the pore space of a real subsurface reservoir rock sample, and holds potential to advance our understandings of reactive transport and other subsurface processes relevant to pollutant transport and cleanup in groundwater, as well as energy recovery. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Magnetic, in situ, mineral characterization of Chelyabinsk meteorite thin section

    Science.gov (United States)

    Nabelek, Ladislav; Mazanec, Martin; Kdyr, Simon; Kletetschka, Gunther

    2015-06-01

    Magnetic images of Chelyabinsk meteorite's (fragment F1 removed from Chebarkul lake) thin section have been unraveled by a magnetic scanning system from Youngwood Science and Engineering (YSE) capable of resolving magnetic anomalies down to 10-3 mT range from about 0.3 mm distance between the probe and meteorite surface (resolution about 0.15 mm). Anomalies were produced repeatedly, each time after application of magnetic field pulse of varying amplitude and constant, normal or reversed, direction. This process resulted in both magnetizing and demagnetizing of the meteorite thin section, while keeping the magnetization vector in the plane of the thin section. Analysis of the magnetic data allows determination of coercivity of remanence (Bcr) for the magnetic sources in situ. Value of Bcr is critical for calculating magnetic forces applicable during missions to asteroids where gravity is compromised. Bcr was estimated by two methods. First method measured varying dipole magnetic field strength produced by each anomaly in the direction of magnetic pulses. Second method measured deflections of the dipole direction from the direction of magnetic pulses. Bcr of magnetic sources in Chelyabinsk meteorite ranges between 4 and 7 mT. These magnetic sources enter their saturation states when applying 40 mT external magnetic field pulse.

  12. In situ spectroscopic characterization of a terahertz resonant cavity

    DEFF Research Database (Denmark)

    Reichel, Kimberly S.; Iwaszczuk, Krzysztof; Jepsen, Peter Uhd

    2014-01-01

    In many cases, the characterization of the frequency- dependent electric field profile inside a narrowband res- onator is challenging, either due to limited optical access or to the perturbative effects of invasive probes. An isolated groove inside a terahertz parallel-plate wave- guide provides ...

  13. In-situ characterization of wildland fire behavior

    Science.gov (United States)

    Bret Butler; D. Jimenez; J. Forthofer; Paul Sopko; K. Shannon; Jim Reardon

    2010-01-01

    A system consisting of two enclosures has been developed to characterize wildand fire behavior: The first enclosure is a sensor/data logger combination that measures and records convective/radiant energy released by the fire. The second is a digital video camera housed in a fire proof enclosure that records visual images of fire behavior. Together this system provides...

  14. In-Situ Raman Characterization of SOFC Anodes

    KAUST Repository

    Maher, Robert C.; Offer, Gregory; Brandon, Nigel P.; Cohen, Lesley F.

    2012-01-01

    Solid oxide fuel cells (SOFCs) have many advantages when compared to other fuel cell technologies, particularly for distributed stationary applications. As a consequence they are becoming ever more economically competitive with incumbent energy solutions. However, as with all technologies, improvements in durability, efficiency and cost is required before they become feasible alternatives. Such improvements are enabled through improved understanding of the critical material interactions occurring during operation. Raman spectroscopy is a noninvasive and non-destructive optical characterization tool which is ideally suited to the study of these critical chemical processes occurring within operational SOFCs. In this paper we will discuss advantages of using Raman characterization for understanding these important chemical processes occurring within SOFCs. We will present the specific examples of the type of measurement possible and discuss the direction of future research. © 2012 Materials Research Society.

  15. Geochemical characterization of subsurface sediments in the Netherlands

    NARCIS (Netherlands)

    Huisman, D.J.

    1998-01-01

    Traditionally, the Netherlands' subsurface is mainly used to obtain good quality drinking and industrial waters from the different aquifers. Due to the lack of space on the surface, increasing environmental problems and demand for energy, the subsurface will be used increasingly for other

  16. In situ characterization of Hanford K Basins fuel

    Energy Technology Data Exchange (ETDEWEB)

    Pitner, A.L.

    1998-01-06

    Irradiated N Reactor uranium metal fuel is stored underwater in the Hanford K East and K West Basins. In K East Basin, fuel is stored in open canisters and defected fuel is free to react with the basin water. In K West Basin, the fuel is stored in sealed canisters filled with water containing a corrosion inhibitor (potassium nitrite). To gain a better understanding of the physical condition of the fuel in these basins, visual surveys using high resolution underwater cameras were conducted. The inspections included detailed lift and look examinations of a number of fuel assemblies from selected canisters in each basin. These examinations formed the bases for selecting specific fuel elements for laboratory testing and analyses as prescribed in the characterization plan for Hanford K Basin Spent Nuclear Fuel.

  17. Using NMR decay-time measurements to monitor and characterize DNAPL and moisture in subsurface porous media

    International Nuclear Information System (INIS)

    Timothy A. White; Russel C. Hertzog; Christian Straley

    2007-01-01

    Knowing how environmental properties affect dense nonaqueous phase liquid (DNAPL) solvent flow in the subsurface is essential for developing models of flow and transport in the vadose zone necessary for designing remediation and long-term stewardship strategies. For example, one must know if solvents are flowing in water-wetted or solvent-wetted environments, the pore-size distribution of the region containing DNAPLs, and the impact of contaminated plumes and their transport mechanisms in porous media. Our research investigates the capability and limitations of low-field proton nuclear magnetic resonance (NMR) relaxation decay-rate measurements for determining environmental properties affecting DNAPL solvent flow in the subsurface. The measurements that can be performed with the laboratory low-field system can also be performed in situ in the field with the current generation of commercial borehole logging tools. The oil and gas industry uses NMR measurements in deep subsurface, consolidated formations to determine porosity and hydrocarbon content and to estimate formation permeability. These determinations rely on the ability of NMR to distinguish between water and hydrocarbons in the pore space and to obtain the distribution of pore sizes from relaxation decay-rate distributions. In this paper we will show how NMR measurement techniques can be used to characterize, monitor, and evaluate the dynamics of mixed-fluids (water-DNAPL) in unconsolidated near-surface porous environments and describe the use of proton NMR T2 (spin-spin relaxation time) measurements in unconsolidated sandy-soil samples to identify and characterize the presence of DNAPLs in these environments. The potential of NMR decay-rate distributions for characterizing DNAPL fluids in the subsurface and understanding their flow mechanisms has not previously been exploited; however, near-surface unsaturated vadose zone environments do provide unique challenges for using NMR measurements. These

  18. Assessment and characterization of in situ rotator cuff biomechanics

    Science.gov (United States)

    Trent, Erika A.; Bailey, Lane; Mefleh, Fuad N.; Raikar, Vipul P.; Shanley, Ellen; Thigpen, Charles A.; Dean, Delphine; Kwartowitz, David M.

    2013-03-01

    Rotator cuff disease is a degenerative disorder that is a common, costly, and often debilitating, ranging in severity from partial thickness tear, which may cause pain, to total rupture, leading to loss in function. Currently, clinical diagnosis and determination of disease extent relies primarily on subjective assessment of pain, range of motion, and possibly X-ray or ultrasound images. The final treatment plan however is at the discretion of the clinician, who often bases their decision on personal experiences, and not quantitative standards. The use of ultrasound for the assessment of tissue biomechanics is established, such as in ultrasound elastography, where soft tissue biomechanics are measured. Few studies have investigated the use of ultrasound elastography in the characterization of musculoskeletal biomechanics. To assess tissue biomechanics we have developed a device, which measures the force applied to the underlying musculotendentious tissue while simultaneously obtaining the related ultrasound images. In this work, the musculotendinous region of the infraspinatus of twenty asymptomatic male organized baseball players was examined to access the variability in tissue properties within a single patient and across a normal population. Elastic moduli at percent strains less than 15 were significantly different than those above 15 percent strain within the normal population. No significant difference in tissue properties was demonstrated within a single patient. This analysis demonstrated elastic moduli are variable across individuals and incidence. Therefore threshold elastic moduli will likely be a function of variation in local-tissue moduli as opposed to a specific global value.

  19. Single-hole in situ thermal probe for hydrothermal characterization at Yucca Mountain

    International Nuclear Information System (INIS)

    Danko, G.

    1993-01-01

    The REKA thermal probe method, which uses a single borehole to measure in situ rock thermophysical properties and provides for efficient and low-cost site characterization, is analyzed for its application to hydrothermal system characterization. It is demonstrated throughout the evaluation of several temperature fields obtained for different thermal zones that the REKA method can be applied to simultaneously determine (1) two independent thermophysical properties, i.e., heat conductivity and thermal diffusivity and (2) a set of heat transport parameters, which can be used to characterize the behavior of a hydrothermal system. Based on the direct physical meaning of these transport parameters, the components of the heat transport mechanism in a given time and location of the hydrothermal system can be described. This evaluation can be applied to characterizing and quantifying in situ rock dry-out and condensate shedding at the proposed repository site

  20. Isolation and Characterization of Electrochemically Active Subsurface Delftia and Azonexus Species

    Science.gov (United States)

    Jangir, Yamini; French, Sarah; Momper, Lily M.; Moser, Duane P.; Amend, Jan P.; El-Naggar, Mohamed Y.

    2016-01-01

    Continental subsurface environments can present significant energetic challenges to the resident microorganisms. While these environments are geologically diverse, potentially allowing energy harvesting by microorganisms that catalyze redox reactions, many of the abundant electron donors and acceptors are insoluble and therefore not directly bioavailable. Extracellular electron transfer (EET) is a metabolic strategy that microorganisms can deploy to meet the challenges of interacting with redox-active surfaces. Though mechanistically characterized in a few metal-reducing bacteria, the role, extent, and diversity of EET in subsurface ecosystems remains unclear. Since this process can be mimicked on electrode surfaces, it opens the door to electrochemical techniques to enrich for and quantify the activities of environmental microorganisms in situ. Here, we report the electrochemical enrichment of microorganisms from a deep fractured-rock aquifer in Death Valley, CA, USA. In experiments performed in mesocosms containing a synthetic medium based on aquifer chemistry, four working electrodes (WEs) were poised at different redox potentials (272, 373, 472, 572 mV vs. SHE) to serve as electron acceptors, resulting in anodic currents coupled to the oxidation of acetate during enrichment. The anodes were dominated by Betaproteobacteria from the families Comamonadaceae and Rhodocyclaceae. A representative of each dominant family was subsequently isolated from electrode-associated biomass. The EET abilities of the isolated Delftia strain (designated WE1-13) and Azonexus strain (designated WE2-4) were confirmed in electrochemical reactors using WEs poised at 522 mV vs. SHE. The rise in anodic current upon inoculation was correlated with a modest increase in total protein content. Both genera have been previously observed in mixed communities of microbial fuel cell enrichments, but this is the first direct measurement of their electrochemical activity. While alternate

  1. Isolation and characterization of electrochemically active subsurface Delftia and Azonexus species

    Directory of Open Access Journals (Sweden)

    Yamini eJangir

    2016-05-01

    Full Text Available Continental subsurface environments can present significant energetic challenges to the resident microorganisms. While these environments are geologically diverse, potentially allowing energy harvesting by microorganisms that catalyze redox reactions, many of the abundant electron donors and acceptors are insoluble and therefore not directly bioavailable. Extracellular electron transfer (EET is a metabolic strategy that microorganisms can deploy to meet the challenges of interacting with redox-active surfaces. Though mechanistically characterized in a few metal-reducing bacteria, the role, extent, and diversity of EET in subsurface ecosystems remains unclear. Since this process can be mimicked on electrode surfaces, it opens the door to electrochemical techniques to enrich for and quantify the activities of environmental microorganisms in situ. Here, we report the electrochemical enrichment of microorganisms from a deep fractured-rock aquifer in Death Valley, California, USA. In experiments performed in mesocosms containing a synthetic medium based on aquifer chemistry, four working electrodes were poised at different redox potentials (272, 373, 472, 572 mV vs. SHE to serve as electron acceptors, resulting in anodic currents coupled to the oxidation of acetate during enrichment. The anodes were dominated by Betaproteobacteria from the families Comamonadaceae and Rhodocyclaceae. A representative of each dominant family was subsequently isolated from electrode-associated biomass. The EET abilities of the isolated Delftia strain (designated WE1-13 and Azonexus strain (designated WE2-4 were confirmed in electrochemical reactors using working electrodes poised at 522 mV vs. SHE. The rise in anodic current upon inoculation was correlated with a modest increase in total protein content. Both genera have been previously observed in mixed communities of microbial fuel cell enrichments, but this is the first direct measurement of their electrochemical

  2. Bioaccumulation of radionuclides and metals by microorganisms: Potential role in the separation of inorganic contaminants and for the in situ treatment of the subsurface

    International Nuclear Information System (INIS)

    Bolton, H. Jr.; Wildung, R.E.

    1993-01-01

    Radionuclide, metal and organic contaminants are present in relatively inaccessible subsurface environments at many U.S Department of Energy (DOE) sites. Subsurface contamination is of concern to DOE because the migration of these contaminants into relatively deep subsurface zones indicates that they exist in a mobile chemical form and thus could potentially enter domestic groundwater supplies. Currently, economic approaches to stabilize or remediate these deep contaminated zones are limited, because these systems are not well characterized and there is a lack of understanding of how geochemical, microbial, and hydrological processes interact to influence contaminant behavior. Microorganisms offer a potential means for radionuclide and metal immobilization or mobilization for subsequent surface treatment. Bioaccumulation is a specific microbial sequestering mechanism wherein mobile radionuclides and metals become associated with the microbial biomass by both intra- and extracellular sequestering ligands. Since most of the microorganism in the subsurface are associated with the stationary strata, bioaccumulation of mobile radionuclides and metals would initially result in a decrease in the transport of inorganic contaminants. How long the inorganic contaminants would remain immobilized, the selectivity of the bioaccumulation process for specific inorganic contaminants, the mechanism involved, and how the geochemistry and growth conditions of the subsurface environment influence bioaccumulation are not currently known. This presentation focuses on the microbial process of immobilizing radionuclides and metals and using this process to reduce inorganic contaminant migration at DOE sites. Background research with near-surface microorganisms will be presented to demonstrate this process and show its potential to reduce inorganic contaminant migration. Future research needs and approaches in this relatively new research area will also be discussed

  3. Invited Article: In situ comparison of passive radon-thoron discriminative monitors at subsurface workplaces in Hungary

    Energy Technology Data Exchange (ETDEWEB)

    Kávási, Norbert, E-mail: norbert@fml.nirs.go.jp [National Institute of Radiological Sciences, Chiba (Japan); Social Organization for Radioecological Cleanliness, Veszprém (Hungary); Vigh, Tamás [Social Organization for Radioecological Cleanliness, Veszprém (Hungary); Manganese Mining Process Ltd., Úrkút (Hungary); Németh, Csaba [Social Organization for Radioecological Cleanliness, Veszprém (Hungary); University of Pannonia, Veszprém (Hungary); Ishikawa, Tetsuo; Omori, Yasutaka; Janik, Miroslaw; Yonehara, Hidenori [National Institute of Radiological Sciences, Chiba (Japan)

    2014-02-15

    During a one-year long measurement period, radon and thoron data obtained by two different passive radon-thoron discriminative monitors were compared at subsurface workplaces in Hungary, such as mines (bauxite and manganese ore) and caves (medical and touristic). These workplaces have special environmental conditions, such as, stable and high relative humidity (100%), relatively stable temperature (12°C–21°C), low or high wind speed (max. 2.4 m s{sup −1}) and low or elevated aerosol concentration (130–60 000 particles m{sup −3}). The measured radon and thoron concentrations fluctuated in a wide range among the different workplaces. The respective annual average radon concentrations and their standard deviations (in brackets) measured by the passive radon-thoron discriminative monitor with cellulose filter (CF) and the passive radon-thoron discriminative monitor with sponge filter (SF) were: 350(321) Bq m{sup −3} and 550(497) Bq m{sup −3} in the bauxite mine; 887(604) Bq m{sup −3} and 1258(788) Bq m{sup −3} in the manganese ore mine; 2510(2341) Bq m{sup −3} and 3403(3075) Bq m{sup −3} in the medical cave (Hospital Cave of Tapolca); and 6239(2057) Bq m{sup −3} and 8512(1955) Bq m{sup −3} in the touristic cave (Lake Cave of Tapolca). The respective average thoron concentrations and their standard deviation (in brackets) measured by CF and SF monitors were: 154(210) Bq m{sup −3} and 161(148) Bq m{sup −3} in the bauxite mine; 187(191) Bq m{sup −3} and 117(147) Bq m{sup −3} in the manganese-ore mine; 360(524) Bq m{sup −3} and 371(789) Bq m{sup −3} in the medical cave (Hospital Cave of Tapolca); and 1420(1184) Bq m{sup −3} and 1462(3655) Bq m{sup −3} in the touristic cave (Lake Cave of Tapolca). Under these circumstances, comparison of the radon data for the SF and CF monitors showed the former were consistently 51% higher in the bauxite mine, 38% higher in the manganese ore mine, and 34% higher in the caves

  4. Invited Article: In situ comparison of passive radon-thoron discriminative monitors at subsurface workplaces in Hungary

    International Nuclear Information System (INIS)

    Kávási, Norbert; Vigh, Tamás; Németh, Csaba; Ishikawa, Tetsuo; Omori, Yasutaka; Janik, Miroslaw; Yonehara, Hidenori

    2014-01-01

    During a one-year long measurement period, radon and thoron data obtained by two different passive radon-thoron discriminative monitors were compared at subsurface workplaces in Hungary, such as mines (bauxite and manganese ore) and caves (medical and touristic). These workplaces have special environmental conditions, such as, stable and high relative humidity (100%), relatively stable temperature (12°C–21°C), low or high wind speed (max. 2.4 m s −1 ) and low or elevated aerosol concentration (130–60 000 particles m −3 ). The measured radon and thoron concentrations fluctuated in a wide range among the different workplaces. The respective annual average radon concentrations and their standard deviations (in brackets) measured by the passive radon-thoron discriminative monitor with cellulose filter (CF) and the passive radon-thoron discriminative monitor with sponge filter (SF) were: 350(321) Bq m −3 and 550(497) Bq m −3 in the bauxite mine; 887(604) Bq m −3 and 1258(788) Bq m −3 in the manganese ore mine; 2510(2341) Bq m −3 and 3403(3075) Bq m −3 in the medical cave (Hospital Cave of Tapolca); and 6239(2057) Bq m −3 and 8512(1955) Bq m −3 in the touristic cave (Lake Cave of Tapolca). The respective average thoron concentrations and their standard deviation (in brackets) measured by CF and SF monitors were: 154(210) Bq m −3 and 161(148) Bq m −3 in the bauxite mine; 187(191) Bq m −3 and 117(147) Bq m −3 in the manganese-ore mine; 360(524) Bq m −3 and 371(789) Bq m −3 in the medical cave (Hospital Cave of Tapolca); and 1420(1184) Bq m −3 and 1462(3655) Bq m −3 in the touristic cave (Lake Cave of Tapolca). Under these circumstances, comparison of the radon data for the SF and CF monitors showed the former were consistently 51% higher in the bauxite mine, 38% higher in the manganese ore mine, and 34% higher in the caves. Consequently, correction is required on previously obtained radon data acquired by CF

  5. Invited Article: In situ comparison of passive radon-thoron discriminative monitors at subsurface workplaces in Hungary

    Science.gov (United States)

    Kávási, Norbert; Vigh, Tamás; Németh, Csaba; Ishikawa, Tetsuo; Omori, Yasutaka; Janik, Miroslaw; Yonehara, Hidenori

    2014-02-01

    During a one-year long measurement period, radon and thoron data obtained by two different passive radon-thoron discriminative monitors were compared at subsurface workplaces in Hungary, such as mines (bauxite and manganese ore) and caves (medical and touristic). These workplaces have special environmental conditions, such as, stable and high relative humidity (100%), relatively stable temperature (12°C-21°C), low or high wind speed (max. 2.4 m s-1) and low or elevated aerosol concentration (130-60 000 particles m-3). The measured radon and thoron concentrations fluctuated in a wide range among the different workplaces. The respective annual average radon concentrations and their standard deviations (in brackets) measured by the passive radon-thoron discriminative monitor with cellulose filter (CF) and the passive radon-thoron discriminative monitor with sponge filter (SF) were: 350(321) Bq m-3 and 550(497) Bq m-3 in the bauxite mine; 887(604) Bq m-3 and 1258(788) Bq m-3 in the manganese ore mine; 2510(2341) Bq m-3 and 3403(3075) Bq m-3 in the medical cave (Hospital Cave of Tapolca); and 6239(2057) Bq m-3 and 8512(1955) Bq m-3 in the touristic cave (Lake Cave of Tapolca). The respective average thoron concentrations and their standard deviation (in brackets) measured by CF and SF monitors were: 154(210) Bq m-3 and 161(148) Bq m-3 in the bauxite mine; 187(191) Bq m-3 and 117(147) Bq m-3 in the manganese-ore mine; 360(524) Bq m-3 and 371(789) Bq m-3 in the medical cave (Hospital Cave of Tapolca); and 1420(1184) Bq m-3 and 1462(3655) Bq m-3 in the touristic cave (Lake Cave of Tapolca). Under these circumstances, comparison of the radon data for the SF and CF monitors showed the former were consistently 51% higher in the bauxite mine, 38% higher in the manganese ore mine, and 34% higher in the caves. Consequently, correction is required on previously obtained radon data acquired by CF monitors at subsurface workplaces to gain comparable data for SF monitors. In the

  6. Large-scale in situ heater tests for hydrothermal characterization at Yucca Mountain

    International Nuclear Information System (INIS)

    Buscheck, T.A.; Wilder, D.G.; Nitao, J.J.

    1993-01-01

    To safely and permanently store high-level nuclear waste, the potential Yucca Mountain repository site must mitigate the release and transport of radionuclides for tens of thousands of years. In the failure scenario of greatest concern, water would contact a waste package, accelerate its failure rate, and eventually transport radionuclides to the water table. Our analyses indicate that the ambient hydrological system will be dominated by repository-heat-driven hydrothermal flow for tens of thousands of years. In situ heater tests are required to provide an understanding of coupled geomechanical-hydrothermal-geochemical behavior in the engineered and natural barriers under repository thermal loading conditions. In situ heater tests have been included in the Site Characterization Plan in response to regulatory requirements for site characterization and to support the validation of process models required to assess the total systems performance at the site. Because of limited time, some of the in situ tests will have to be accelerated relative to actual thermal loading conditions. We examine the trade-offs between the limited test duration and generating hydrothermal conditions applicable to repository performance during the entire thermal loading cycle, including heating (boiling and dry-out) and cooldown (re-wetting). For in situ heater tests to be applicable to actual repository conditions, a minimum heater test duration of 6-7 yr (including 4 yr of full-power heating) is required

  7. Recent Advances on In Situ SEM Mechanical and Electrical Characterization of Low-Dimensional Nanomaterials

    Directory of Open Access Journals (Sweden)

    Chenchen Jiang

    2017-01-01

    Full Text Available In the past decades, in situ scanning electron microscopy (SEM has become a powerful technique for the experimental study of low-dimensional (1D/2D nanomaterials, since it can provide unprecedented details for individual nanostructures upon mechanical and electrical stimulus and thus uncover the fundamental deformation and failure mechanisms for their device applications. In this overview, we summarized recent developments on in situ SEM-based mechanical and electrical characterization techniques including tensile, compression, bending, and electrical property probing on individual nanostructures, as well as the state-of-the-art electromechanical coupling analysis. In addition, the advantages and disadvantages of in situ SEM tests were also discussed with some possible solutions to address the challenges. Furthermore, critical challenges were also discussed for the development and design of robust in situ SEM characterization platform with higher resolution and wider range of samples. These experimental efforts have offered in-depth understanding on the mechanical and electrical properties of low-dimensional nanomaterial components and given guidelines for their further structural and functional applications.

  8. Recent Advances on In Situ SEM Mechanical and Electrical Characterization of Low-Dimensional Nanomaterials.

    Science.gov (United States)

    Jiang, Chenchen; Lu, Haojian; Zhang, Hongti; Shen, Yajing; Lu, Yang

    2017-01-01

    In the past decades, in situ scanning electron microscopy (SEM) has become a powerful technique for the experimental study of low-dimensional (1D/2D) nanomaterials, since it can provide unprecedented details for individual nanostructures upon mechanical and electrical stimulus and thus uncover the fundamental deformation and failure mechanisms for their device applications. In this overview, we summarized recent developments on in situ SEM-based mechanical and electrical characterization techniques including tensile, compression, bending, and electrical property probing on individual nanostructures, as well as the state-of-the-art electromechanical coupling analysis. In addition, the advantages and disadvantages of in situ SEM tests were also discussed with some possible solutions to address the challenges. Furthermore, critical challenges were also discussed for the development and design of robust in situ SEM characterization platform with higher resolution and wider range of samples. These experimental efforts have offered in-depth understanding on the mechanical and electrical properties of low-dimensional nanomaterial components and given guidelines for their further structural and functional applications.

  9. Why in situ, real-time characterization of thin film growth processes?

    International Nuclear Information System (INIS)

    Auciello, O.; Krauss, A.R.

    1995-01-01

    Since thin-film growth occurs at the surface, the analytical methods should be highly surface-specific. although subsurface diffusion and chemical processes also affect film properties. Sampling depth and ambient-gas is compatibility are key factors which must be considered when choosing in situ probes of thin-film growth phenomena. In most cases, the sampling depth depends on the mean range of the exit species (ion, photon, or electron) in the sample. The techniques that are discussed in this issue of the MRS Bulletin (1) have been chosen because they may be used for in situ, real-time analysis of film-growth phenomena in vacuum and in the presence of ambient gases resulting either from the deposition process or as a requirement for the production of the desired chemical phase. A second criterion for inclusion is that the instrumentation be sufficiently compact and inexpensive to permit use as a dedicated tool in a thin-film deposition system

  10. Characterization of accumulated precipitates during subsurface iron removal

    KAUST Repository

    Van Halem, Doris; De Vet, W. W. J. M.; Verberk, Jasper Q J C; Amy, Gary L.; Van Dijk, Hans C.

    2011-01-01

    The principle of subsurface iron removal for drinking water supply is that aerated water is periodically injected into the aquifer through a tube well. On its way into the aquifer, the injected O2-rich water oxidizes adsorbed Fe 2+, creating a

  11. COST EFFECTIVE AND HIGH RESOLUTION SUBSURFACE CHARACTERIZATION USING HYDRAULIC TOMOGRAPHY

    Science.gov (United States)

    2017-08-01

    objective of this project is to provide the DoD and its remediation contractors with the HT technology for delineating the spatial distribution of...STATEMENT Approved for public release; distribution is unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Hydraulic Tomography ( HT ) is a high-resolution...performance of subsurface remedial actions at environmental sites. The good technical performance and cost-effectiveness of HT have been demonstrated in

  12. Lithographically fabricated silicon microreactor for in situ characterization of heterogeneous catalysts—Enabling correlative characterization techniques

    Energy Technology Data Exchange (ETDEWEB)

    Baier, S.; Rochet, A.; Hofmann, G. [Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, D-76131 Karlsruhe (Germany); Kraut, M. [Institute for Micro Process Engineering, Karlsruhe Institute of Technology, D-76344 Eggenstein-Leopoldshafen (Germany); Grunwaldt, J.-D., E-mail: grunwaldt@kit.edu [Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, D-76131 Karlsruhe (Germany); Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, D-76344 Eggenstein-Leopoldshafen (Germany)

    2015-06-15

    We report on a new modular setup on a silicon-based microreactor designed for correlative spectroscopic, scattering, and analytic on-line gas investigations for in situ studies of heterogeneous catalysts. The silicon microreactor allows a combination of synchrotron radiation based techniques (e.g., X-ray diffraction and X-ray absorption spectroscopy) as well as infrared thermography and Raman spectroscopy. Catalytic performance can be determined simultaneously by on-line product analysis using mass spectrometry. We present the design of the reactor, the experimental setup, and as a first example for an in situ study, the catalytic partial oxidation of methane showing the applicability of this reactor for in situ studies.

  13. [In Situ Polymerization and Characterization of Hydroxyapatite/polyurethane Implanted Material].

    Science.gov (United States)

    Gu, Muqing; Xiao, Fengjuan; Liang, Ye; Yue, Lin; Li, Song; Li, Lanlan; Feng, Feifei

    2015-08-01

    In order to improve the interfacial bonding strength of hydroxyapatite/polyurethane implanted material and dispersion of hydroxyapatite in the polyurethane matrix, we in the present study synthesized nano-hydroxyapatite/polyurethane composites by in situ polymerization. We then characterized and analyzed the fracture morphology, thermal stability, glass transition temperature and mechanical properties. We seeded MG63 cells on composites to evaluate the cytocompatibility of the composites. In situ polymerization could improve the interfacial bonding strength, ameliorate dispersion of hydroxyapatite in the properties of the composites. After adding 20 wt% hydroxyapatite into the polyurethane, the thermal stability was improved and the glass transition temperatures were increased. The tensile strength and maximum elongation were 6.83 MPa and 861.17%, respectively. Compared with those of pure polyurethane the tensile strength and maximum elongation increased by 236.45% and 143.30%, respectively. The composites were helpful for cell adhesion and proliferation in cultivation.

  14. Large-scale in situ heater tests for hydrothermal characterization at Yucca Mountain

    International Nuclear Information System (INIS)

    Buscheck, T.A.; Wilder, D.G.; Nitao, J.J.

    1993-01-01

    To safely and permanently store high-level nuclear-waste, the potential Yucca Mountain repository site must mitigate the release and transport of radionuclides for tens of thousands of years. In the failure scenario of greatest concern, water would contact a waste package, accelerate its failure rate, and eventually transport radionuclides to the water table. Our analysis indicate that the ambient hydrological system will be dominated by repository-heat-driven hydrothermal flow for tens of thousands of years. In situ heater tests are required to provide an understanding of coupled geomechanical-hydrothermal-geochemical behavior in the engineered and natural barriers under repository thermal loading conditions. In situ heater tests have been included in the Site Characterization Plan in response to regulatory requirements for site characterization and to support the validation of process models required to assess the total systems performance at the site. The success of the License Application (LA) hinges largely on how effectively we validate the process models that provide the basis for performance assessment. Because of limited time, some of the in situ tests will have to be accelerated relative to actual thermal loading conditions. We examine the trade-offs between the limited test duration and generating hydrothermal conditions applicable to repository performance during the entire thermal loading cycle, including heating (boiling and dry-out) and cooldown (re-wetting). For in situ heater tests duration of 6-7 yr (including 4 yr of full-power heating) is required. The parallel use of highly accelerated, shorter-duration tests may provide timely information for the LA, provided that the applicability of the test results can be validated against ongoing nominal-rate heater tests

  15. In situ redox manipulation of subsurface sediments from Fort Lewis, Washington: Iron reduction and TCE dechlorination mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    JE Szecsody; JS Fruchter; DS Sklarew; JC Evans

    2000-03-21

    Pacific Northwest National Laboratory (PNNL) conducted a bench-scale study to determine how effective chemically treated Ft. Lewis sediments can degrade trichloroethylene (TCE). The objectives of this experimental study were to quantify: (1) sediment reduction and oxidation reactions, (2) TCE degradation reactions, and (3) other significant geochemical changes that occurred. Sediment reduction and oxidation were investigated to determine the mass of reducible iron in the Ft. Lewis sediments and the rate of this reduction and subsequent oxidation at different temperatures. The temperature dependence was needed to be able to predict field-scale reduction in the relatively cold ({approximately}11 C) Ft. Lewis aquifer. Results of these experiments were used in conjunction with other geochemical and hydraulic characterization to design the field-scale injection experiment and predict barrier longevity. For example, the sediment reduction rate controls the amount of time required for the dithionite solution to fully react with sediments. Sediment oxidation experiments were additionally conducted to determine the oxidation rate and provide a separate measure of the mass of reduced iron. Laboratory experiments that were used to meet these objectives included: (1) sediment reduction in batch (static) systems, (2) sediment reduction in 1-D columns, and (3) sediment oxidation in 1-D columns. Multiple reaction modeling was conducted to quantify the reactant masses and reaction rates.

  16. Joint application of ground penetrating radar and electrical resistivity measurements for characterization of subsurface stratigraphy in Southwestern Nigeria

    International Nuclear Information System (INIS)

    Adepelumi, A A; Fayemi, O

    2012-01-01

    The frequent building collapses in Nigeria have been attributed to a lack of pre-construction investigations, which assist engineers in obtaining in situ geotechnical information. Further, the structural subsurface settings are often ignored or investigation is haphazardly carried out. To address this issue and demonstrate the importance of such a survey, a combination of ground penetrating radar (GPR) and vertical electrical sounding (VES) data were acquired in a part of Southwestern Nigeria. A 200 MHz antenna was used for the data acquisition along four traverses. The data were subjected to standard GPR processing techniques, and attribute analysis such as instantaneous frequency, amplitude and phase. Also, for comparative and engineering characterization purposes, longitudinal conductance and coefficient of anisotropy were computed from the VES results and used for determining the competency of the bedrocks. From the GPR results, it was observed that the mapped subsurface is characterized as erosional truncated at a low angle, which is southerly dipping and includes tangential reflections. Further, stratified rocks dipping at an angle of 32° occur between 1.0 and 4.5 m depth in all of the GPR sections; these strata were truncated by topsoil at shallow depths. Also, some of the sections depict ancient channel structures that have a dimension of 70 m × 40 m. The resistivity data suggest that the study area is characterized by four distinct geoelectric sequences. These comprise topsoil which is composed of clay-like sand to lateritic clay whose thickness ranges between 0.25 and 8.12 m, weathered bedrock with a thickness between 3.84 and 12.61 m, stratified bedrock with a thickness between 0.33 and 7.51 m, and fresh bedrock. These results reveal a complex subsurface geology and this characterizes the study area. The area has low to moderate longitudinal conductance and coefficient of anisotropy values, which suggest that incompetent to semi-competent bedrock

  17. Portable vibro-acoustic testing system for in situ microstructure characterization and metrology

    Science.gov (United States)

    Smith, James A.; Nichol, Corrie I.; Zuck, Larry D.; Fatemi, Mostafa

    2018-04-01

    There is a need in research reactors like the one at INL to inspect irradiated materials and structures. The goal of this work is to develop a portable scanning infrastructure for a material characterization technique called vibro-acoustography (VA) that has been developed by the Idaho National laboratory for nuclear applications to characterize fuel, cladding materials, and structures. The proposed VA technology is based on ultrasound and acoustic waves; however, it provides information beyond what is available from the traditional ultrasound techniques and can expand the knowledge on nuclear material characterization and microstructure evolution. This paper will report on the development of a portable scanning system that will be set up to characterize materials and components in open water reactors and canals in situ. We will show some initial laboratory results of images generated by vibro-acoustics of surrogate fuel plates and graphite structures and discuss the design of the portable system.

  18. In Situ Vitrification Engineering-Scale Test ES-INEL-4 Product Characterization Test Plan

    International Nuclear Information System (INIS)

    Weidner, J.R.; Stoots, P.R.

    1990-06-01

    In 1987, the Buried Waste Program (BWP) was established within EG ampersand G Idaho, Inc., the prime contractor at INEL. Following the Environmental Restoration guidelines of the Buried Waste Program, the In Situ Vitrification Program is participating in a Remedial Investigation/Feasibility Study (RI/FS) for permanent disposal of INEL waste, in compliance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). This study was requested and is being funded by the Office of Technology Development of the Idaho Operations Office of DOE (DOE-ID). As part of the RI/FS, an in situ vitrification (ISV) scoping study on the treatability of mixed low-level and mixed transuranic-contaminated waste is being performed to determine the applicability of ISV to remediation of waste at SDA. In examination of the ISV process for applicability to SDA waste, this In Situ Vitrification Engineering-Scale Test ES-INEL-4 Product Characterization Test Plan identifies the following: sampling and analysis strategy; sampling procedures; methods to conduct analyses; equipment; and procedures to ensure data quality. 8 refs., 2 tabs

  19. Characterization of the In Situ Ecophysiology of Novel Phylotypes in Nutrient Removal Activated Sludge Treatment Plants.

    Directory of Open Access Journals (Sweden)

    Simon Jon McIlroy

    Full Text Available An in depth understanding of the ecology of activated sludge nutrient removal wastewater treatment systems requires detailed knowledge of the community composition and metabolic activities of individual members. Recent 16S rRNA gene amplicon surveys of activated sludge wastewater treatment plants with nutrient removal indicate the presence of a core set of bacterial genera. These organisms are likely responsible for the bulk of nutrient transformations underpinning the functions of these plants. While the basic activities of some of these genera in situ are known, there is little to no information for the majority. This study applied microautoradiography coupled with fluorescence in situ hybridization (MAR-FISH for the in situ characterization of selected genus-level-phylotypes for which limited physiological information is available. These included Sulfuritalea and A21b, both within the class Betaproteobacteria, as well as Kaga01, within sub-group 10 of the phylum Acidobacteria. While the Sulfuritalea spp. were observed to be metabolically versatile, the A21b and Kaga01 phylotypes appeared to be highly specialized.

  20. Characterization of sand lenses and their role for subsurface transport in low-permeability clay tills

    DEFF Research Database (Denmark)

    Kessler, Timo Christian; Klint, K. E.; Nilsson, B.

    2011-01-01

    Glacial sediments dominate large parts of the geological topology in Denmark. They predominantly consist of lowpermeability tills, but fractures and sand-lenses constitute zones of enhanced permeability facilitating preferential flow. This study focuses on characterization of sand deposits with r...... the sand lenses in hydro-geological models to successfully characterize subsurface flow and transport, e.g. for remediation activities....

  1. In Situ Analytical Characterization of Contaminated Sites Using Nuclear Spectrometry Techniques. Review of Methodologies and Measurements

    International Nuclear Information System (INIS)

    2017-01-01

    Past and current human activities can result in the contamination of sites by radionuclides and heavy metals. The sources of contamination are various. The most important sources for radionuclide release include global fallout from nuclear testing, nuclear and radiological accidents, waste production from nuclear facilities, and activities involving naturally occurring radioactive material (NORM). Contamination of the environment by heavy metals mainly originates from industrial applications and mineralogical background concentration. Contamination of sites by radionuclides and heavy metals can present a risk to people and the environment. Therefore, the estimation of the contamination level and the identification of the source constitute important information for the national authorities with the responsibility to protect people and the environment from adverse health effects. In situ analytical techniques based on nuclear spectrometry are important tools for the characterization of contaminated sites. Much progress has been made in the design and implementation of portable systems for efficient and effective monitoring of radioactivity and heavy metals in the environment directly on-site. Accordingly, the IAEA organized a Technical Meeting to review the current status and trends of various applications of in situ nuclear spectrometry techniques for analytical characterization of contaminated sites and to support Member States in their national environmental monitoring programmes applying portable instrumentation. This publication represents a comprehensive review of the in situ gamma ray spectrometry and field portable X ray fluorescence analysis techniques for the characterization of contaminated sites. It includes papers on the use of these techniques, which provide useful background information for conducting similar studies, in the following Member States: Argentina, Australia, Brazil, Czech Republic, Egypt, France, Greece, Hungary, Italy, Lithuania

  2. Printing Fabrication of Bulk Heterojunction Solar Cells and In Situ Morphology Characterization.

    Science.gov (United States)

    Liu, Feng; Ferdous, Sunzida; Wan, Xianjian; Zhu, Chenhui; Schaible, Eric; Hexemer, Alexander; Wang, Cheng; Russell, Thomas P

    2017-01-29

    Polymer-based materials hold promise as low-cost, flexible efficient photovoltaic devices. Most laboratory efforts to achieve high performance devices have used devices prepared by spin coating, a process that is not amenable to large-scale fabrication. This mismatch in device fabrication makes it difficult to translate quantitative results obtained in the laboratory to the commercial level, making optimization difficult. Using a mini-slot die coater, this mismatch can be resolved by translating the commercial process to the laboratory and characterizing the structure formation in the active layer of the device in real time and in situ as films are coated onto a substrate. The evolution of the morphology was characterized under different conditions, allowing us to propose a mechanism by which the structures form and grow. This mini-slot die coater offers a simple, convenient, material efficient route by which the morphology in the active layer can be optimized under industrially relevant conditions. The goal of this protocol is to show experimental details of how a solar cell device is fabricated using a mini-slot die coater and technical details of running in situ structure characterization using the mini-slot die coater.

  3. 3D reconstruction and characterization of laser induced craters by in situ optical microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Casal, A.; Cerrato, R.; Mateo, M.P.; Nicolas, G., E-mail: gines@udc.es

    2016-06-30

    Highlights: • Evolution of the laser induced crater and ablation features by in situ homemade optical microscope. • Performance comparison between confocal microscope for material characterization and homemade optical microscope. • Coupled system of laser ablation setup with a low cost optical microscope. - Abstract: A low-cost optical microscope was developed and coupled to an irradiation system in order to study the induced effects on material during a multipulse regime by an in situ visual inspection of the surface, in particular of the spot generated at different pulses. In the case of laser ablation, a reconstruction of the crater in 3D was made from the images of the sample surface taken during the irradiation process, and the subsequent profiles of ablated material were extracted. The implementation of this homemade optical device gives an added value to the irradiation system, providing information about morphology evolution of irradiated area when successive pulses are applied. In particular, the determination of ablation rates in real time can be especially useful for a better understanding and controlling of the ablation process in applications where removal of material is involved, such as laser cleaning and in-depth characterization of multilayered samples and diffusion processes. The validation of the developed microscope was made by a comparison with a commercial confocal microscope configured for the characterization of materials where similar results of crater depth and diameter were obtained for both systems.

  4. 3D reconstruction and characterization of laser induced craters by in situ optical microscopy

    International Nuclear Information System (INIS)

    Casal, A.; Cerrato, R.; Mateo, M.P.; Nicolas, G.

    2016-01-01

    Highlights: • Evolution of the laser induced crater and ablation features by in situ homemade optical microscope. • Performance comparison between confocal microscope for material characterization and homemade optical microscope. • Coupled system of laser ablation setup with a low cost optical microscope. - Abstract: A low-cost optical microscope was developed and coupled to an irradiation system in order to study the induced effects on material during a multipulse regime by an in situ visual inspection of the surface, in particular of the spot generated at different pulses. In the case of laser ablation, a reconstruction of the crater in 3D was made from the images of the sample surface taken during the irradiation process, and the subsequent profiles of ablated material were extracted. The implementation of this homemade optical device gives an added value to the irradiation system, providing information about morphology evolution of irradiated area when successive pulses are applied. In particular, the determination of ablation rates in real time can be especially useful for a better understanding and controlling of the ablation process in applications where removal of material is involved, such as laser cleaning and in-depth characterization of multilayered samples and diffusion processes. The validation of the developed microscope was made by a comparison with a commercial confocal microscope configured for the characterization of materials where similar results of crater depth and diameter were obtained for both systems.

  5. Geologic, geochemical, microbiologic, and hydrologic characterization at the In Situ Redox Manipulation Test Site

    International Nuclear Information System (INIS)

    Vermeul, V.R.; Teel, S.S.; Amonette, J.E.

    1995-07-01

    This report documents results from characterization activities at the In Situ Redox Manipulation (ISRM) Field Test Site which is located within the 100-HR-3 Operable Unit of the US Department of Energy's (DOE's) Hanford Site in Richland, Washington. Information obtained during hydrogeologic characterization of the site included sediment physical properties, geochemical properties, microbiologic population data, and aquifer hydraulic properties. The purpose of obtaining this information was to improve the conceptual understanding of the hydrogeology beneath the ISRM test site and provide detailed, site specific hydrogeologic parameter estimates. The resulting characterization data will be incorporated into a numerical model developed to simulate the physical and chemical processes associated with the field experiment and aid in experiment design and interpretation

  6. Obtention and characterization of chitosan / hydroxyapatite spheres generated in situ; Obtencao e caracterizacao de esferas de quitosana/hidroxiapatita gerada in situ

    Energy Technology Data Exchange (ETDEWEB)

    Dantas, M.J.L.; Fidelis, T.B.; Carrodeguas, R.G.; Fook, M.V.L., E-mail: jucelia.lima@hotmail.com [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Unidade Academica de Engenharia de Materiais

    2016-07-01

    The objective was to produce spheres of chitosan-hydroxyapatite in situ (CS-HA) HA with different contents and evaluate their properties and behavior in vitro. CS levels were obtained containing different amounts of HA low crystallinity (20, 50 and 70% w / w). The HA was generated in situ within the CS spheres. To this precipitate was dissolved in CS CaHPO4 and the resulting suspension was shaped in the form of spheres by dripping in dissolution Na5P3O10 (TPP) at pH 8-9. The precipitated spheres were kept under constant stirring solution of the TPP and then lyophilized. The characterization was carried out by optical microscopy (OM), X-ray diffraction (XRD), thermal gravimetric analysis (TG) and scanning electron microscopy (SEM). From the results it was verified that the methodology was applied it was effective in producing the spheres and be able to generate a phase inorganic HA precursor. (author)

  7. Natural Fractures Characterization and In Situ Stresses Inference in a Carbonate Reservoir—An Integrated Approach

    Directory of Open Access Journals (Sweden)

    Ali Shafiei

    2018-02-01

    Full Text Available In this paper, we characterized the natural fracture systems and inferred the state of in situ stress field through an integrated study in a very complex and heterogeneous fractured carbonate reservoir. Relative magnitudes and orientations of the in-situ principal stresses in a naturally fractured carbonate heavy oil field were estimated with a combination of available data (World Stress Map, geological and geotectonic evidence, outcrop studies and techniques (core analysis, borehole image logs and Side View Seismic Location. The estimates made here using various tools and data including routine core analysis and image logs are confirmatory to estimates made by the World Stress Map and geotectonic facts. NE-SW and NW-SE found to be the dominant orientations for maximum and minimum horizontal stresses in the study area. In addition, three dominant orientations were identified for vertical and sub-vertical fractures atop the crestal region of the anticlinal structure. Image logs found useful in recognition and delineation of natural fractures. The results implemented in a real field development and proved practical in optimal well placement, drilling and production practices. Such integrated studies can be instrumental in any E&P projects and related projects such as geological CO2 sequestration site characterization.

  8. In situ 2D diffraction as a tool to characterize ferroelectric and piezoelectric thin films

    Science.gov (United States)

    Khamidy, N. I.; Kovacova, V.; Bernasconi, A.; Le Rhun, G.; Vaxelaire, N.

    2017-08-01

    In this paper the application of 2D x-ray diffraction (XRD2) as a technique to characterize in situ during electrical cycling the properties of a ferroelectric and piezoelectric thin film is discussed. XRD2 is one type of XRD on which a 2D detector is used instead of a point detector. This technique enables simultaneous recording of many sample information in a much shorter time compared to conventional XRD. The discussion is focused especially on the data processing technique of the huge data acquired. The methodology to calculate an effective piezoelectric coefficient, analyze the phase and texture, and estimate the domain size and shape is described in this paper. This methodology is then applied to a lead zirconate titanate (PZT) thin film at the morphotropic phase boundary (MPB) composition (i.e. Pb[Zr0.52Ti0.48]O3) with a preferred orientation of (1 0 0). The in situ XRD2 characterization was conducted in the European synchrotron radiation facility (ESRF) in Grenoble, France. Since a high-energy beam with vertical resolution as small as 100 nm was used, a cross-sectional scan of the sample was performed over the entire thickness of the film. From these experimental results, a better understanding on the piezoelectricity phenomena in PZT thin film at MPB composition were achieved, providing original feedback between the elaboration processes and functional properties of the film.

  9. Forty years of 9Sr in situ migration: importance of soil characterization in modeling transport phenomena

    International Nuclear Information System (INIS)

    Fernandez, J.M.; Piault, E.; Macouillard, D.; Juncos, C.

    2006-01-01

    In 1960 experiments were carried out on the transfer of 9 Sr between soil, grapes and wine. The experiments were conducted in situ on a piece of land limited by two control strips. The 9 Sr migration over the last 40 years was studied by performing radiological and physico-chemical characterizations of the soil on eight 70 cm deep cores. The vertical migration modeling of 9 Sr required the definition of a triple layer conceptual model integrating the rainwater infiltration at constant flux as the only external factor of influence. Afterwards the importance of a detailed soil characterization for modeling was discussed and satisfactory simulation of the 9 Sr vertical transport was obtained and showed a calculated migration rate of about 1.0 cm year -1 in full agreement with the in situ measured values. The discussion was regarding some of the key parameters such as granulometry, organic matter content (in the Van Genuchten parameter determination), Kd and the efficient rainwater infiltration. Besides the experimental data, simplifying assumptions in modeling such as water-soil redistribution calculation and factual discontinuities in conceptual model were examined

  10. A Remote Characterization System for subsurface mapping of buried waste sites

    International Nuclear Information System (INIS)

    Sandness, G.A.; Bennett, D.W.; Martinson, L.

    1992-06-01

    This paper describes a development project that will provide new technology for characterizing hazardous waste burial sites. The project is a collaborative effort by five of the national laboratories, involving the development and demonstration of a remotely controlled site characterization system. The Remote Characterization System (RCS) includes a unique low-signature survey vehicle, a base station, radio telemetry data links, satellite-based vehicle tracking, stereo vision, and sensors for non-invasive inspection of the surface and subsurface

  11. Preparation, Characterization, and Properties of In Situ Formed Graphene Oxide/Phenol Formaldehyde Nanocomposites

    Directory of Open Access Journals (Sweden)

    Weihua Xu

    2013-01-01

    Full Text Available Graphene oxide (GO has shown great potential to be used as fillers to develop polymer nanocomposites for important applications due to their special 2D geometrical structure as well as their outstanding mechanical, thermal, and electrical properties. In this work, GO was incorporated into phenol formaldehyde (PF resin by in situ polymerization. The morphologies and structures of GO sheets were characterized by FTIR, XRD, and AFM methods. The structure and properties of the GO/PF nanocomposites were characterized using FTIR, XRD, DSC, and TGA methods. Effects of GO content, reactive conditions, and blending methods on the structure and properties of GO/PF nanocomposites were studied. It was found that due to the well dispersion of GO sheets in polymer matrix and the strong interfacial interaction between the GO sheets and PF matrix, the thermal stability and thermal mechanical properties of the GO/PF nanocomposites were greatly enhanced.

  12. Development and Antarctic Testing of a Maneuverable Probe for Clean In-Situ Analysis and Sampling of Subsurface Ice and Subglacial Aquatic Ecosystems

    Science.gov (United States)

    Francke, G.; Dachwald, B.; Kowalski, J.; Digel, I.; Tulaczyk, S. M.; Mikucki, J.; Feldmann, M.; Espe, C.; Schöngarth, S.; Hiecker, S.; Blandfort, D.; Schüller, K.; Plescher, E.

    2016-12-01

    There is significant interest in sampling subglacial environments for geochemical and microbiological studies, but those environments are difficult to access. Such environments exist not only on Earth but are also expected beneath the icy crusts of some outer solar system bodies, like the Jovian moon Europa and the Saturnian moon Enceladus. Existing ice drilling technologies make it cumbersome to maintain microbiologically clean access for sample acquisition and environmental stewardship of potentially fragile subglacial aquatic ecosystems. The "IceMole" is a maneuverable subsurface ice probe for clean in-situ analysis and sampling of glacial ice and subglacial materials. The design is based on combining melting and mechanical propulsion, using an ice screw at the tip of the melting head to maintain firm contact between the melting head and the ice. It can change melting direction by differential heating of the melting head and optional side wall heaters. The first two prototypes were successfully tested between 2010 and 2012 on glaciers in Switzerland and Iceland, where they demonstrated downward, horizontal and upward melting, as well as curve driving and dirt layer penetration. Hence, the IceMole allows maneuvers which may be necessary for obstacle avoidance or target selection. Maneuverability, however, necessitates a sophisticated on-board navigation system capable of autonomous operations. Therefore, between 2012 and 2014, a more advanced probe was developed as part of the "Enceladus Explorer" (EnEx) project. The EnEx-IceMole offers systems for relative positioning based on in-ice attitude determination, acoustic positioning, ultrasonic obstacle and target detection, which is all integrated through a high-level sensor fusion. In December 2014, it was used for clean access into a unique subglacial aquatic environment at Blood Falls, Antarctica, where a subglacial brine sample was successfully obtained after about 17 meters of oblique melting. Particular

  13. In situ LTE exposure of the general public: Characterization and extrapolation.

    Science.gov (United States)

    Joseph, Wout; Verloock, Leen; Goeminne, Francis; Vermeeren, Günter; Martens, Luc

    2012-09-01

    In situ radiofrequency (RF) exposure of the different RF sources is characterized in Reading, United Kingdom, and an extrapolation method to estimate worst-case long-term evolution (LTE) exposure is proposed. All electric field levels satisfy the International Commission on Non-Ionizing Radiation Protection (ICNIRP) reference levels with a maximal total electric field value of 4.5 V/m. The total values are dominated by frequency modulation (FM). Exposure levels for LTE of 0.2 V/m on average and 0.5 V/m maximally are obtained. Contributions of LTE to the total exposure are limited to 0.4% on average. Exposure ratios from 0.8% (LTE) to 12.5% (FM) are obtained. An extrapolation method is proposed and validated to assess the worst-case LTE exposure. For this method, the reference signal (RS) and secondary synchronization signal (S-SYNC) are measured and extrapolated to the worst-case value using an extrapolation factor. The influence of the traffic load and output power of the base station on in situ RS and S-SYNC signals are lower than 1 dB for all power and traffic load settings, showing that these signals can be used for the extrapolation method. The maximal extrapolated field value for LTE exposure equals 1.9 V/m, which is 32 times below the ICNIRP reference levels for electric fields. Copyright © 2012 Wiley Periodicals, Inc.

  14. In situ 3D characterization of historical coatings and wood using multimodal nonlinear optical microscopy.

    Science.gov (United States)

    Latour, Gaël; Echard, Jean-Philippe; Didier, Marie; Schanne-Klein, Marie-Claire

    2012-10-22

    We demonstrate multimodal nonlinear optical imaging of historical artifacts by combining Second Harmonic Generation (SHG) and Two-Photon Excited Fluorescence (2PEF) microscopies. We first identify the nonlinear optical response of materials commonly encountered in coatings of cultural heritage artifacts by analyzing one- and multi-layered model samples. We observe 2PEF signals from cochineal lake and sandarac and show that pigments and varnish films can be discriminated by exploiting their different emission spectral ranges as in luminescence linear spectroscopy. We then demonstrate SHG imaging of a filler, plaster, composed of bassanite particles which exhibit a non centrosymmetric crystal structure. We also show that SHG/2PEF imaging enables the visualization of wood microstructure through typically 60 µm-thick coatings by revealing crystalline cellulose (SHG signal) and lignin (2PEF signal) in the wood cell walls. Finally, in situ multimodal nonlinear imaging is demonstrated in a historical violin. SHG/2PEF imaging thus appears as a promising non-destructive and contactless tool for in situ 3D investigation of historical coatings and more generally for wood characterization and coating analysis at micrometer scale.

  15. In situ chemical characterization of waste sludges using FTIR-based fiber optic sensors

    International Nuclear Information System (INIS)

    Rebagay, T.V.; Dodd, D.A.; Jeppson, D.W.; Lockrem, L.L.; Blewett, G.R.

    1994-02-01

    The characterization of unknown mixed wastes is a mandatory step in today's climate of strict environmental regulations. Cleaning up the nuclear and chemical wastes that have accumulated for 50 years at the Hanford Site is the largest single cleanup task in the United States today. The wastes are stored temporarily in carbon steel single- and double-shell tanks that are buried in tank farms at the Site. In the 1950s, a process to scavenge radioactive cesium and other soluble radionuclides in the wastes was developed to create additional tank space for waste storage. This scavenging process involved treatment of the wastes with alkali cyanoferrates and nickel sulfate to precipitate 137 Cs in the presence of nitrate oxidant. Recent safety issues have focused on the stability of cyanoferrate-bearing wastes with large quantities of nitrates and nitrites. Nitrate has been partially converted to nitrite as a result of radiolysis during more than 35 years of storage. The major safety issue is the possibility of the presence of local hot spots enriched in 137 Cs and 90 Sr that under optimum conditions can self-heat causing dry out and a potential runaway reaction of the cyanoferrates with the nitrates/nitrites). For waste tank safety, accurate data of the concentration and distribution of cyanoferrates in the tanks are needed. Because of the extensive sampling required and the highly restricted activities allowed in the tank farms, simulated tank wastes are used to provide an initial basis for identifying and quantifying realistic concerns prior to waste remediation. Fiber optics provide a tool for the remote and in situ characterization of hazardous and toxic materials. This study is focused on near-infrared (NIR) and mid-infrared (MIR) fiber optic sensors for in situ chemical characterization of Hanford Site waste sludges

  16. Final Technical Report: Role of Methanotrophs in Metal Mobilization, Metal Immobilization and Mineral Weathering: Effects on the In Situ Microbial Community and the Sustainability of Subsurface Water Systems

    Energy Technology Data Exchange (ETDEWEB)

    Semrau, Jeremy D. [Univ. of Michigan, Ann Arbor, MI (United States); DiSpirito, Alan A. [Iowa State Univ., Ames, IA (United States)

    2016-11-06

    Activities from this DOE sponsored project can be divided into four broad areas: (1) investigations into the potential of methanobactin, a biogenic metal-binding agent produced by methanotrophs, in mitigating mercury toxicity; (2) elucidation of the genetic basis for methanobactin synthesis from methanotrophs; (3) examination of differential gene expression of M. trichosporium OB3b when grown in the presence of varying amounts of copper and/or cerium, and (4) collection and characterization of soil cores from Savannah River Test Site to determine the ubiquity of methanobactin producing methanotrophs. From these efforts, we have conclusively shown that methanobactin can strongly bind mercury as Hg[II], and in so doing significantly reduce the toxicity of this metal to microbes. Further, we have deduced the genetic basis of methanobactin production in methanotrophs, enabling us to construct mutants such that we can now ascribe function to different genes as well as propose a pathway for methanobactin biosynthesis. We have also clear evidence that copper and cerium (as an example of a rare earth element) dramatically affect gene expression in methanotrophs, and thus have an important impact on the activity and application of these microbes to a variety of environmental and industrial issues. Finally, we successfully isolated one methanotroph from the deep subsurface of the Savannah River Test Site and characterized the ability of different forms of methanobactin to mobilize copper and mercury from these soils.

  17. Surface and subsurface characterization of uranium contamination at the Fernald environmental management site

    International Nuclear Information System (INIS)

    Schilk, A.J.; Perkins, R.W.; Abel, K.H.; Brodzinski, R.L.

    1993-04-01

    The past operations of uranium production and support facilities at several Department of Energy (DOE) sites have occasionally resulted in the local contamination of some surface and subsurface soils, and the three-dimensional distribution of the uranium at these sites must be thoroughly characterized before any effective remedial protocols can be established. To this end, Pacific Northwest Laboratory (PNL) has been tasked by the DOE's Office of Technology Development with adapting, developing, and demonstrating technologies for the measurement of uranium in surface and subsurface soils at the Fernald Uranium in Soils Integrated Demonstration site. These studies are detailed in this report

  18. Joint inversion of geophysical and hydrological data for improved subsurface characterization

    International Nuclear Information System (INIS)

    Kowalsky, Michael B.; Chen, Jinsong; Hubbard, Susan S.

    2006-01-01

    Understanding fluid distribution and movement in the subsurface is critical for a variety of subsurface applications, such as remediation of environmental contaminants, sequestration of nuclear waste and CO2, intrusion of saline water into fresh water aquifers, and the production of oil and gas. It is well recognized that characterizing the properties that control fluids in the subsurface with the accuracy and spatial coverage needed to parameterize flow and transport models is challenging using conventional borehole data alone. Integration of conventional borehole data with more spatially extensive geophysical data (obtained from the surface, between boreholes, and from surface to boreholes) shows promise for providing quantitative information about subsurface properties and processes. Typically, estimation of subsurface properties involves a two-step procedure in which geophysical data are first inverted and then integrated with direct measurements and petrophysical relationship information to estimate hydrological parameters. However, errors inherent to geophysical data acquisition and inversion approaches and errors associated with petrophysical relationships can decrease the value of geophysical data in the estimation procedure. In this paper, we illustrate using two examples how joint inversion approaches, or simultaneous inversion of geophysical and hydrological data, offer great potential for overcoming some of these limitations

  19. Thiolated xyloglucan: Synthesis, characterization and evaluation as mucoadhesive in situ gelling agent.

    Science.gov (United States)

    Mahajan, Hitendra S; Tyagi, Vinod Kumar; Patil, Ravindra R; Dusunge, Sanket B

    2013-01-16

    The objective of present study was to enhance bioadhesive potential of xyloglucan by thiolation. Thiolation of xyloglucan was achieved with esterification with thioglycolic acid. Thiolated xyloglucan was characterized by NMR, DSC, and XRD analysis. Thiolated xyloglucan was determined to possess 4mmol of thiol groups/g of polymer by Ellman's method. Comparative evaluation of mucoadhesive property of ondansetron containing in situ gel system of xyloglucan and thiolated xyloglucan using sheep nasal mucosa revealed higher ex vivo bioadhesion time of thiolated xyloglucan as compared to xyloglucan. Improved mucoadhesive property of thiolated xyloglucan over the xyloglucan can be attributed to the formation of disulfide bond between mucus and thiolated xyloglucan. Ex vivo permeation study conducted using sheep nasal showed improved drug permeation in formulation based on thiolated xyloglucan. In conclusion, thiolation of xyloglucan improves its bioadhesion and drug permeation without affecting the resultant gel properties. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Synthesis and characterization of in situ photogelable polysaccharide derivative for drug delivery.

    Science.gov (United States)

    Hu, Rong; Chen, Yu-Yun; Zhang, Li-Ming

    2010-06-30

    A novel polysaccharide derivative with photoreactivity was prepared by the conjugation of carboxymethylated chitosan with N-hydroxyl succinimide-activated nitrocinnamate in the presence of N,N-dicyclohexylcarbodiimide, and characterized by IR, (1)H NMR, UV-vis and rheological analyses. It was found that such a modified polysaccharide could exhibit an unique photogelation ability in the absence of potentially toxic photoinitiator or catalyst and be suitable particularly for the in situ preparation of photocrosslinked hydrogel biomaterials. By changing the photoirradiation time and incorporated nitrocinnamate content, its photogelation property could be modulated. For the resultant hydrogels incorporated with various nitrocinnamate contents, their properties such as swelling, viscoelasticity, in vitro biodegradation and drug release were investigated. In addition, the photogelation mechanism of this polysaccharide derivative was also discussed. 2010 Elsevier B.V. All rights reserved.

  1. In situ characterization of natural pyrite bioleaching using electrochemical noise technique

    Science.gov (United States)

    Chen, Guo-bao; Yang, Hong-ying; Li, Hai-jun

    2016-02-01

    An in situ characterization technique called electrochemical noise (ECN) was used to investigate the bioleaching of natural pyrite. ECN experiments were conducted in four active systems (sulfuric acid, ferric-ion, 9k culture medium, and bioleaching solutions). The ECN data were analyzed in both the time and frequency domains. Spectral noise impedance spectra obtained from power spectral density (PSD) plots for different systems were compared. A reaction mechanism was also proposed on the basis of the experimental data analysis. The bioleaching system exhibits the lowest noise resistance of 0.101 MΩ. The bioleaching of natural pyrite is considered to be a bio-battery reaction, which distinguishes it from chemical oxidation reactions in ferric-ion and culture-medium (9k) solutions. The corrosion of pyrite becomes more severe over time after the long-term testing of bioleaching.

  2. Instrument for x-ray absorption spectroscopy with in situ electrical control characterizations

    International Nuclear Information System (INIS)

    Huang, Chun-Chao; Chang, Shu-Jui; Yang, Chao-Yao; Tseng, Yuan-Chieh; Chou, Hsiung

    2013-01-01

    We report a synchrotron-based setup capable of performing x-ray absorption spectroscopy and x-ray magnetic circular dichroism with simultaneous electrical control characterizations. The setup can enable research concerning electrical transport, element- and orbital-selective magnetization with an in situ fashion. It is a unique approach to the real-time change of spin-polarized electronic state of a material/device exhibiting magneto-electric responses. The performance of the setup was tested by probing the spin-polarized states of cobalt and oxygen of Zn 1-x Co x O dilute magnetic semiconductor under applied voltages, both at low (∼20 K) and room temperatures, and signal variations upon the change of applied voltage were clearly detected

  3. Novel Vacuum System for In-Situ Characterization of Fluorescence Properties of Thin Films

    Science.gov (United States)

    Onozuka, Kohei; Iwata, Nobuyuki; Yamamoto, Hiroshi

    We constructed a novel vacuum system in which the cathode luminescence properties of as-prepared films can be measured in-situ. It has been observed that the Zn-Ga-O films deposited on 500°C ITO by sputtering emits light with wavelength of about 500 nm from an ultra thin Zn-rich layer formed near film surface. The luminescence induced by irradiation of electrons has also been observed for the first time in the organic bilayered TPD/Alq3 films prepared in thermal evaporation. Its wavelength blue-shifts by about 120 nm in comparison with the electroluminescence of the same materials. The developed vacuum system is useful to characterize various thin films.

  4. Synthesis and characterization of PMMA/clay nanocomposites prepared by in situ polymerization assisted by sonication

    International Nuclear Information System (INIS)

    Prado, Bruna R.; Bartoli, Julio R.; Ito, Edson N.

    2015-01-01

    In this work is presented the synthesis of nanocomposites of poly(methyl methacrylate), PMMA, with organically montmorillonite (OMMT) modified clays by in situ polymerization assisted by sonication. A statistically designed experiment was used, central composing design (CCD), to study the effect of synthesis variables on the dispersion of nanoparticles in PMMA matrix. The processing and formulation factors studied were: energy of sonication and Flory-Huggins interaction parameter between PMMA and organoclay. The structural (XRD) and morphological (TEM) characterizations of the PMMA/OMMT nanocomposites are compared with the literature. It was observed significant exfoliation of OMMT modified with hydroxyl groups in the nanocomposites of PMMA, mainly at the low ultrasonic energy level (90 and 105 kJ) studied. (author)

  5. Synthesis and characterization of an in situ forming hydrogel using tyramine conjugated high methoxyl gum tragacanth.

    Science.gov (United States)

    Tavakol, Moslem; Vasheghani-Farahani, Ebrahim; Mohammadifar, Mohammad Amin; Soleimani, Masoud; Hashemi-Najafabadi, Sameereh

    2016-02-01

    In this study, an enzyme catalyzed in situ forming hydrogel based on tyramine conjugated high methoxyl content gum tragacanth (TA-HMGT) was prepared and characterized. TA-HMGT was synthesized via heterogeneous ammonolysis of methyl ester groups of HMGT. Then, the hydrogel was prepared via horseradish peroxidase catalyzed coupling reaction in the presence of hydrogen peroxide. Hydrogel properties, such as gelation time, swelling/degradation behavior and rheological properties could be adjusted by tuning the gelation parameters and extent of tyramine conjugation. This system was a soft elastic hydrogel with appropriate biocompatibility. The fast gelation of the hydrogel is desirable for clinical applications. Also, in vitro bovine serum albumin release from the synthesized hydrogel showed good release profile with limited burst release. © The Author(s) 2015.

  6. In-situ load-deformation characterization of the CSM/OCRD jointed test block

    International Nuclear Information System (INIS)

    Richardson, A.M.; Hustrulid, W.; Brown, S.; Ubbes, W.

    1985-01-01

    An extensive ambient-temperature test series has recently been completed on a block of Precambrian Gneiss at the Colorado School of Mines (CSM) Experimental Mine in Idaho Springs, Colorado. Block tests came into existence out of a desire to test a relatively large volume of rock and thereby minimize the scaling problems encountered when laboratory test results are used to obtain modeling parameters for full-size structures. A typical block test involves isolation of a large, approximately two-meter cube of rock by cutting slots on four sides and inserting flatjacks for loading. Much interest has recently centered around block tests as a promising method for in-situ characterization of rock-masses for licensing future commercial nuclear-waste repositories in crystalline rock. To date only a few block tests have been conducted

  7. In-situ x-ray characterization of wurtzite formation in GaAs nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Krogstrup, Peter; Hannibal Madsen, Morten; Nygaard, Jesper; Feidenhans' l, Robert [Nano-Science Center, Niels Bohr Institute, University of Copenhagen, Copenhagen (Denmark); Hu Wen [Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1-1-1 Koto, Sayo, Hyogo 679-5148 (Japan); Kozu, Miwa; Nakata, Yuka [University of Hyogo, 3-2-1 Koto, Kamigori, Hyogo 678-1297 (Japan); Takahasi, Masamitu [Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1-1-1 Koto, Sayo, Hyogo 679-5148 (Japan); University of Hyogo, 3-2-1 Koto, Kamigori, Hyogo 678-1297 (Japan)

    2012-02-27

    In-situ monitoring of the crystal structure formation during Ga-assisted GaAs nanowire growth on Si(111) substrates has been performed in a combined molecular beam epitaxy growth and x-ray characterization experiment. Under Ga rich conditions, we show that an increase in the V/III ratio increases the formation rate of the wurtzite structure. Moreover, the response time for changes in the structural phase formation to changes in the beam fluxes is observed to be much longer than predicted time scales of adatom kinetics and liquid diffusion. This suggests that the morphology of the growth interface plays the key role for the relative growth structure formation rates.

  8. Subsurface contaminants focus area

    International Nuclear Information System (INIS)

    1996-08-01

    The US Department of Enregy (DOE) Subsurface Contaminants Focus Area is developing technologies to address environmental problems associated with hazardous and radioactive contaminants in soil and groundwater that exist throughout the DOE complex, including radionuclides, heavy metals; and dense non-aqueous phase liquids (DNAPLs). More than 5,700 known DOE groundwater plumes have contaminated over 600 billion gallons of water and 200 million cubic meters of soil. Migration of these plumes threatens local and regional water sources, and in some cases has already adversely impacted off-site rsources. In addition, the Subsurface Contaminants Focus Area is responsible for supplying technologies for the remediation of numerous landfills at DOE facilities. These landfills are estimated to contain over 3 million cubic meters of radioactive and hazardous buried Technology developed within this specialty area will provide efective methods to contain contaminant plumes and new or alternative technologies for development of in situ technologies to minimize waste disposal costs and potential worker exposure by treating plumes in place. While addressing contaminant plumes emanating from DOE landfills, the Subsurface Contaminants Focus Area is also working to develop new or alternative technologies for the in situ stabilization, and nonintrusive characterization of these disposal sites

  9. Subsurface contaminants focus area

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    The US Department of Enregy (DOE) Subsurface Contaminants Focus Area is developing technologies to address environmental problems associated with hazardous and radioactive contaminants in soil and groundwater that exist throughout the DOE complex, including radionuclides, heavy metals; and dense non-aqueous phase liquids (DNAPLs). More than 5,700 known DOE groundwater plumes have contaminated over 600 billion gallons of water and 200 million cubic meters of soil. Migration of these plumes threatens local and regional water sources, and in some cases has already adversely impacted off-site rsources. In addition, the Subsurface Contaminants Focus Area is responsible for supplying technologies for the remediation of numerous landfills at DOE facilities. These landfills are estimated to contain over 3 million cubic meters of radioactive and hazardous buried Technology developed within this specialty area will provide efective methods to contain contaminant plumes and new or alternative technologies for development of in situ technologies to minimize waste disposal costs and potential worker exposure by treating plumes in place. While addressing contaminant plumes emanating from DOE landfills, the Subsurface Contaminants Focus Area is also working to develop new or alternative technologies for the in situ stabilization, and nonintrusive characterization of these disposal sites.

  10. Characterization of silver/polystyrene nanocomposites prepared by in situ bulk radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Vukoje, Ivana D., E-mail: ivanav@vinca.rs [Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia); Vodnik, Vesna V., E-mail: vodves@vinca.rs [Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia); Džunuzović, Jasna V., E-mail: jasnav2002@googlemail.com [Institute of Chemistry, Technology and Metallurgy (ICTM)-Center of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade (Serbia); Džunuzović, Enis S., E-mail: edzunuzovic@tmf.bg.ac.rs [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade (Serbia); Marinović-Cincović, Milena T., E-mail: milena@vinca.rs [Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia); Jeremić, Katarina, E-mail: kjeremic@tmf.bg.ac.rs [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade (Serbia); Nedeljković, Jovan M., E-mail: jovned@vinca.rs [Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia)

    2014-01-01

    Graphical abstract: - Highlights: • Synthesis and characterization of polystyrene nanocomposites based on Ag nanoparticles. • The glass transition temperature decreased in nanocomposites with respect to the pure polymer. • Resistance of the polymer to thermal degradation enhanced with Ag nanoparticles content. - Abstract: Nanocomposites (NCs) with different content of silver nanoparticles (Ag NPs) embeded in polystyrene (PS) matrix were prepared by in situ bulk radical polymerization. The nearly monodisperse Ag NPs protected with oleylamine were synthesized via organic solvo-thermal method and further used as a filler. The as-prepared spherical Ag NPs with diameter of 7.0 ± 1.5 nm were well dispersed in the PS matrix. The structural properties of the resulting Ag/PS NCs were characterized by transmission electron microscope (TEM) and Fourier transform infrared (FTIR) spectroscopy, while optical properties were characterized using optical absorption measurements. The gel permeation chromatography (GPC) measurements showed that the presence of Ag NPs stabilized with oleylamine has no influence on the molecular weight and polydispersity of the PS matrix. The influence of silver content on the thermal properties of Ag/PS NCs was investigated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The results indicated that resistance of PS to thermal degradation was improved upon incorporation of Ag NPs. The Ag/PS NCs have lower glass transition temperatures than neat PS because loosely packed oleylamine molecules at the interface caused the increase of free volume and chain segments mobility near the surface of Ag NPs.

  11. A transparent Pyrex μ-reactor for combined in situ optical characterization and photocatalytic reactivity measurements

    International Nuclear Information System (INIS)

    Dionigi, F.; Hansen, O.; Nielsen, M. G.; Chorkendorff, I.; Vesborg, P. C. K.; Pedersen, T.

    2013-01-01

    A new Pyrex-based μ-reactor for photocatalytic and optical characterization experiments is presented. The reactor chamber and gas channels are microfabricated in a thin poly-silicon coated Pyrex chip that is sealed with a Pyrex lid by anodic bonding. The device is transparent to light in the UV-vis-near infrared range of wavelengths (photon energies between ∼0.4 and ∼4.1 eV). The absorbance of a photocatalytic film obtained with a light transmission measurement during a photocatalytic reaction is presented as a proof of concept of a photocatalytic reactivity measurement combined with in situ optical characterization. Diffuse reflectance measurements of highly scattering photocatalytic nanopowders in a sealed Pyrex μ-reactor are also possible using an integrating sphere as shown in this work. These experiments prove that a photocatalyst can be characterized with optical techniques after a photocatalytic reaction without removing the material from the reactor. The catalyst deposited in the cylindrical reactor chamber can be illuminated from both top and bottom sides and an example of application of top and bottom illumination is presented

  12. Partitioning Tracers for In-Situ Measurement of Nonaqueous Phase Liquids in the Subsurface - Final Report - 09/15/1996 - 09/14/2000; FINAL

    International Nuclear Information System (INIS)

    Brusseau, Mark L.

    2000-01-01

    methods is that they provide data at discrete points, such that the probability of sampling a zone of localized DNAPL is quite small. The results of the research will lead to improved techniques for characterizing DNAPL contaminated sites and will enhance our understanding of the distribution of DNAPLs in the subsurface risk assessments and remediation planning

  13. Characterization of ductal carcinoma in situ on diffusion weighted breast MRI

    International Nuclear Information System (INIS)

    Rahbar, Habib; Partridge, Savannah C.; Eby, Peter R.; DeMartini, Wendy B.; Gutierrez, Robert L.; Peacock, Sue; Lehman, Constance D.

    2011-01-01

    To characterize ductal carcinoma in situ (DCIS) and its subtypes on diffusion-weighted imaging (DWI). We retrospectively reviewed 74 pure DCIS lesions in 69 women who underwent DWI at 1.5 T (b = 0 and 600 s/mm 2 ). Each lesion was characterized by qualitative DWI intensity, quantitative DWI lesion-to-normal contrast-to-noise ratio (CNR), and quantitative apparent diffusion coefficient (ADC). The detection rate was calculated with predetermined thresholds for each parameter. The effects of lesion size, grade, morphology, and necrosis were assessed. Ninety-six percent (71/74) of DCIS lesions demonstrated greater qualitative DWI intensity than normal breast tissue. Quantitatively, DCIS lesions demonstrated on average 56% greater signal than normal tissue (mean CNR = 1.83 ± 2.7) and lower ADC values (1.50 ± 0.28 x 10 -3 mm 2 /s) than normal tissue (2.01 ± 0.37 x 10 -3 mm 2 /s, p -3 mm 2 /s). Non-high-grade DCIS exhibited greater qualitative DWI intensity (p = 0.02) and quantitative CNR (p = 0.01) than high-grade DCIS but no difference in ADC (p = 0.40). Lesion size, morphology, and necrosis did not affect qualitative or quantitative DWI parameters of DCIS lesions (p > 0.05). DCIS lesions have higher DWI signal intensity and lower ADC values than normal breast tissue. DWI warrants further investigation as a potential non-contrast MRI tool for early breast cancer detection. (orig.)

  14. Poly (γ-glutamic acid)/beta-TCP nanocomposites via in situ copolymerization: Preparation and characterization.

    Science.gov (United States)

    Shu, Xiu-Lin; Shi, Qing-Shan; Feng, Jin; Yang, Yun-Hua; Zhou, Gang; Li, Wen-Ru

    2016-07-01

    A series biodegradable poly (γ-glutamic acid)/beta-tricalcium phosphate (γ-PGA/TCP) nanocomposites were prepared which were composed of poly-γ-glutamic acid polymerized in situ with β-tricalcium phosphate and physiochemically characterized as bone graft substitutes. The particle size via dynamic light scattering, the direct morphological characterization via transmission electron microscopy and field emission scanning electron microscope, which showed that γ-PGA and β-TCP were combined compactly at 80℃, and the γ-PGA/TCP nanocomposites had homogenous and nano-sized grains with narrow particle size distributions. The water uptake and retention abilities, in vitro degradation properties, cytotoxicity in the simulated medium, and protein release of these novel γ-PGA/TCP composites were investigated. Cell proliferation in composites was nearly twice than β-TCP when checked in vitro using MC3T3 cell line. We also envision the potential use of γ-PGA/TCP systems in bone growth factor or orthopedic drug delivery applications in future bone tissue engineering applications. These observations suggest that the γ-PGA/TCP are novel nanocomposites with great potential for application in the field of bone tissue engineering. © The Author(s) 2016.

  15. Initial characterization of a highly contaminated high explosives outfall in preparation for in situ bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Betty A. Strietelmeier; Patrick J. Coyne; Patricia A. Leonard; W. Lamar Miller; Jerry R. Brian

    1999-12-01

    In situ bioremediation is a viable, cost-effective treatment for environmental contamination of many kinds. The feasibility of using biological techniques to remediate soils contaminated with high explosives (HE) requires laboratory evaluation before proceeding to a larger scale field operation. Laboratory investigations have been conducted at pilot scale which indicate that an anaerobic process could be successful at reducing levels of HE, primarily HMX, RDX and TNT, in contaminated soils. A field demonstration project has been designed to create an anaerobic environment for the degradation of HE materials. The first step in this project, initial characterization of the test area, was conducted and is the subject of this report. The levels of HE compounds found in the samples from the test area were higher than the EPA Method 8330 was able to extract without subsequent re-precipitation; therefore, a new method was developed using a superior extractant system. The test area sampling design was relatively simple as one might expect in an initial characterization. A total of 60 samples were each removed to a depth of 4 inches using a 1 inch diameter corer. The samples were spaced at relatively even intervals across a 20 foot cross-section through the middle of four 7-foot-long adjacent plots which are designed to be a part of an in situ bioremediation experiment. Duplicate cores were taken from each location for HE extraction and analysis in order to demonstrate and measure the heterogeneity of the contamination. Each soil sample was air dried and ball-milled to provide a homogeneous solid for extraction and analysis. Several samples had large consolidated pieces of what appeared to be solid HE. These were not ball-milled due to safety concerns, but were dissolved and the solutions were analyzed. The new extraction method was superior in that results obtained for several of the contaminants were up to 20 times those obtained with the EPA extraction method. The

  16. In-situ capability of ion beam modification and characterization of materials at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Yu, N.; Nastasi, M.; Tesmer, J.R.; Hollander, M.G.; Evans, C.R.; Maggiore, C.J.; Levine, T.E.

    1994-01-01

    The capability of in-situ ion beam modification and characterization of materials developed at Los Alamos National Laboratory is described. A beam-line from a 3 MV tandem accelerator and a beam-line from a 200 kV ion implanter are joined together in an in-situ target chamber. The chamber is equipped with a cold and hot sample stage with a temperature range from -100 to 500 C. The angular (sample spin and basal rotation) motions and translational motions of the sample stage are controlled by a multi-axis goniometer. This chamber provides a unique capability to conduct a temperature dependent experiment of ion irradiation and sequential backscattering and channeling analysis. The efficiency and reliability of in-situ ion beam techniques are demonstrated by two examples, irradiation damage in (100) MgAl 2 O 4 spinel crystals and ion-beam-induced densification of zirconia sol-gel thin films

  17. Cellulose aerogels functionalized with polypyrrole and silver nanoparticles: In-situ synthesis, characterization and antibacterial activity.

    Science.gov (United States)

    Wan, Caichao; Li, Jian

    2016-08-01

    Green porous and lightweight cellulose aerogels have been considered as promising candidates to substitute some petrochemical host materials to support various nanomaterials. In this work, waste wheat straw was collected as feedstock to fabricate cellulose hydrogels, and a green inexpensive NaOH/polyethylene glycol solution was used as cellulose solvent. Prior to freeze-drying treatment, the cellulose hydrogels were integrated with polypyrrole and silver nanoparticles by easily-operated in-situ oxidative polymerization of pyrrole using silver ions as oxidizing agent. The tri-component hybrid aerogels were characterized by scanning electron microscope, transmission electron microscope, energy dispersive X-ray spectroscopy, selected area electron diffraction, X-ray photoelectron spectroscopy, and X-ray diffraction. Moreover, the antibacterial activity of the hybrid aerogels against Escherichia coli (Gram-negative), Staphylococcus aureus (Gram-positive) and Listeria monocytogenes (intracellular bacteria) was qualitatively and quantitatively investigated by parallel streak method and determination of minimal inhibitory concentration, respectively. This work provides an example of combining cellulose aerogels with nanomaterials, and helps to develop novel forms of cellulose-based functional materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Spatial Exploration and Characterization of Endozoicomonas spp. Bacteria in Stylophora pistillata Using Fluorescence In Situ Hybridization

    KAUST Repository

    Alsheikh-­Hussain, Areej

    2011-12-12

    Studies of coral-­associated bacterial communities have repeatedly demonstrated that the microbial assemblages of the coral host are highly specific and complex. In particular, bacterial community surveys of scleractinian and soft corals from geographically diverse reefs continually uncover a high abundance of sequences affiliated with the Gammaproteobacteria genus Endozoicomonas. The role of these bacteria within the complex coral holobiont is currently unknown. In order to localize these cells and gain an understanding of their potential interactions within the coral, we developed a fluorescence in situ hybridization(FISH) approach for reef-­building coral tissues. Using a custom small-­subunit ribosomal RNA gene database, we developed two Endozoicomonas-­specific probes that cover almost all known coral-­associated Endozoicomonas sequences. Probe hybridization conditions were quantitatively evaluated against target and non-­target bacterial cultures using fluorescence microscopy. Using these experimentally tested conditions, probes were then hybridized to the branching coral Stylophora pistillata, obtained from the Red Sea, using whole mount and paraffin embedding techniques. This study allowed preliminary spatial exploration and characterization of Endozoicomonas in coral, which has provided insight into their functional role and interactions within the coral holobiont.

  19. Robotic arm design for a remotely-deployed, in situ waste characterization probe

    International Nuclear Information System (INIS)

    Kress, R.L.; Jansen, J.F.; Haas, J.W.

    1991-01-01

    This paper describes some design considerations for a system which will combine robotics and laser spectroscopy to produce an in situ monitoring system for heterogeneous waste materials. The new system will provide faster, cheaper, safer, and more complete characterization of mixed solids and liquids stored in tanks and drums or buried in pits. A small, fiberoptic multiprobe that performs Raman and fluorescence measurements of wastes composed of a variety of organic and inorganic compounds will be described. Design considerations for a novel sensor platform that positions and stabilizes the multiprobe relative to the sampling point in order to make accurate spectroscopic measurements and deploys the sensor in hazardous environments with minimal risk to workers will be presented. The core of the platform will be a 3-Degrees-Of-Freedom (3-DOF), spherical coordinate end effector equipped with a proximity sensor that compensates for errors introduced by the flexible nature of the support arm. The platform can be adapted to operate the most robotic deployment systems used in hazardous environments. The multisensor probe will be coupled to remote, portable laser spectrometer systems by a fiber-optic bundle. 5 refs

  20. In-situ Characterization and Mapping of Iron Compounds in Alzheimer's Tissue

    International Nuclear Information System (INIS)

    Collingwood, J.F.; Mikhaylova, A.; Davidson, M.; Batich, C.; Streit, W.J.; Terry, J.; Dobson, J.

    2005-01-01

    There is a well-established link between iron overload in the brain and pathology associated with neurodegeneration in a variety of disorders such as Alzheimer's (AD), Parkinson's (PD) and Huntington's (HD) diseases. This association was first discovered in AD by Goodman in 1953, where, in addition to abnormally high concentrations of iron in autopsy brain tissue, iron has also been shown to accumulate at sites of brain pathology such as senile plaques. However, since this discovery, progress in understanding the origin, role and nature of iron compounds associated with neurodegeneration has been slow. Here we report, for the first time, the location and characterization of iron compounds in human AD brain tissue sections. Iron fluorescence was mapped over a frontal-lobe tissue section from an Alzheimer's patient, and anomalous iron concentrations were identified using synchrotron X-ray absorption techniques at 5 (micro)m spatial resolution. Concentrations of ferritin and magnetite, a magnetic iron oxide potentially indicating disrupted brain-iron metabolism, were evident. These results demonstrate a practical means of correlating iron compounds and disease pathology in-situ and have clear implications for disease pathogenesis and potential therapies.

  1. Polyaniline nanocomposites via in situ emulsion polymerization based on montmorillonite: Preparation and characterization

    Directory of Open Access Journals (Sweden)

    M.A. Abd El-Ghaffar

    2015-11-01

    Full Text Available Polyaniline nanocomposites were prepared via in situ emulsion polymerization in the presence of Na+ montmorillonite (Na+MMT. For achieving this purpose the clay was organophilized to (MMT-CTA form using cetyltrimethyl ammonium bromide (CTAB. The X-ray diffraction (XRD demonstrated that the basal space of Na+-montmorillonite increased after the organophilization from 11.21 to 19.35 Å. Polyaniline/montmorillonite (PAn/MMT nanocomposites were prepared by intercalating the emulsion of aniline monomer with treated organically layers of (Na+-MMT using ammonium peroxydisulfate (APS as an initiator. Furthermore aniline hydrochloride (AnHCl was used as a modifier and monomer to prepare PAn/H+MMT nanocomposites by cation exchange of the anilinuim moiety with the sodium ion inside the basal spaces which enlarged after the polymerization process to 35 Å as evidenced from X-ray diffraction (XRD. The d-spacing of the PAn/H+-MMT nanocomposite was found to become wider about 23.79 Å than that of the pure Na+-MMT, and successful intercalation or exfoliation of PAnH+ into Na+-MMT layers. The prepared PAn/MMT nanocomposites were characterized by thermal gravimetric analysis (TGA, scanning electron microscope (SEM, and transmission electron microscope (TEM. The electrical property measurements showed an enhancement in the conductivity values of the prepared nanocomposites especially on using AnHCl monomer to be in the order of 10−1 S/cm.

  2. Miniaturized robotically deployed sensor systems for in-situ characterization of hazardous waste

    International Nuclear Information System (INIS)

    Fischer, G.J.

    1996-01-01

    A series of ''MiniLab'' end effectors are currently being designed for robotic deployment in hazardous areas such as waste storage tanks at Idaho National Engineering Laboratories (INEL) and Oak Ridge National Laboratory (ORNL). These MiniLabs will be the first ever multichannel hazardous waste characterization end effectors deployed in underground high level waste storage tanks. They consist of a suite of chemical, radiological, and physical properties sensors integrated into a compact package mounted on the end of a robotic arm and/or vehicle. Most of the sensors are commercially available thus reducing the overall cost of design and maintenance. Sensor configurations can be customized depending on site/customer needs. This paper will address issues regarding the cost of field sampling verses MiniLab in-situ measurements and a brief background of the Light Duty utility Arm (LDUA) program. Topics receiving in depth attention will include package size parameters/constraints, design specifications, and investigations of currently available sensor technology. Sensors include radiological, gas, chemical, electrolytic, visual, temperature, and ranging. The effects of radiation on the life of the systems/sensors will also be discussed. Signal processing, control, display, and data acquisition methods will be described. The paper will conclude with an examination of possible applications for MiniLabs

  3. Robotic arm design for a remotely-deployed, in situ waste characterization probe

    International Nuclear Information System (INIS)

    Kress, Reid; Haas, John; Jansen, John

    1992-01-01

    This paper describes some design considerations for a system which will combine robotics and laser spectroscopy to produce an in situ monitoring system for heterogeneous waste materials. The new system will provide faster, cheaper) safer, and more complete characterization of mixed solids and liquids stored in tanks and drums or buried in pits. A small, fiberoptic multiprobe that performs Raman and fluorescence measurements of wastes composed of a variety of organic and inorganic compounds will be described. Design considerations for a novel sensor platform that positions and stabilizes the multiprobe relative to the sampling point in order to male accurate spectroscopic measurements and deploys the sensor in hazardous environments with minimal risk to workers will be presented. The core of (he platform will be a 3-Degrees-Of-Freedom (3-DOF), spherical coordinate end effector equipped with a proximity sensor that compensates for errors introduced by the flexible nature of the support arm. The platform can be adapted to operate with most robotic deployment systems used in hazardous environments. The multisensor probe will be coupled to remote, portable laser spectrometer systems by a fiber-optic bundle. (author)

  4. In situ characterization of organic matter in two primitive chondrites through correlated microanalytical techniques

    Science.gov (United States)

    Wende, A. M.; Nittler, L.; Steele, A.; Herd, C. D.

    2009-12-01

    Primitive meteorites contain up to 2 wt % C, much of it in the form of insoluble organic matter (IOM). Bulk analyses have revealed the IOM to be marked by large D and 15N enrichments relative to terrestrial values. Isotopic imaging studies have revealed the presence of `hotspots’, sub-μm to μm-sized regions of IOM exhibiting extreme isotope enrichments. An interesting subpopulation of organic grains, ’nanoglobules’, which have hollow, spherical morphologies, is known to account for a portion of these hot spots. Previous work has suggested that nanoglobules can be identified in situ by native UV fluorescence. The isotopic enrichments are believed to point to low-T chemical fractionations either in the interstellar medium (ISM) or the outer regions of the early Solar System. As part of a larger study investigating the origin and evolution of IOM in the Solar System, a correlated, in situ, microanalytical approach was employed to characterize local isotopic and morphological heterogeneities in IOM in the highly primitive chondrites QUE 99177 (CR3) and Tagish Lake (C-ung). Previous NanoSIMS ion imaging of a QUE 99177 section revealed the spatial and isotopic distribution of C in the matrix with a spatial resolution of 200 nm. Manual definition of >3300 C-rich regions in the NanoSIMS images indicates that grains smaller than 1 μm across, which account for 80% of the IOM area, have a size distribution that is similar to estimates of the size distribution of carbonaceous dust in the diffuse ISM, supporting an interstellar origin for the IOM. Micro-Raman spectroscopy, which is highly sensitive to the degree of disorder in carbonaceous materials, was attempted on the same regions analyzed by NanoSIMS in QUE 99177. Unfortunately, surface damage due to both the prior SIMS analyses and removal of a prior C coat precluded acquisition of useful Raman spectra. Consequently, future correlated work will entail performing Raman analyses on uncoated samples prior to SIMS

  5. In-Situ Grouting Treatability Study for the Idaho National Engineering and Environmental Laboratory Subsurface Disposal Area-Transuranic Pits and Trenches

    International Nuclear Information System (INIS)

    Loomis, G. G.; Jessmore, J. J.; Sehn, A. L.; Miller, C. M.

    2002-01-01

    At the Idaho National Engineering and Environmental Laboratory (INEEL), a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) treatability study is being performed to examine the technology of in situ grouting for final in situ disposal of buried mixed transuranic (TRU) waste. At the INEEL, there is over 56,000 cubic meters of waste commingled with a similar amount of soil in a shallow (3-5 m) land burial referred to as Waste Area Group 7-13/14. Since this buried waste has been declared on the National Priorities List under CERCLA, it is being managed as a superfund site. Under CERCLA, options for this waste include capping and continued monitoring, retrieval and ex situ management of the retrieved waste, in situ stabilization by vitrification or grouting, in situ thermal dissorption, or some combination of these options. In situ grouting involves injecting grout at high pressures (400 bars) directly into the waste to create a solid monolith. The in situ grouting process is expected to both stabilize the waste against subsidence and provide containment against migration of waste to the Snake River Plain Aquifer lying 150-200 m below the waste. The treatability study involves bench testing, implementability testing, and field testing. The bench testing was designed to pick three grouts from six candidate grouts for the implementability field testing in full scale which were designed to down-select from those three grouts to one grout for use in a full-scale field demonstration of the technology in a simulated test pit. During the bench testing, grouts were evaluated for durability using American Nuclear Society 16.1 Leach Protocol as well as evaluating the effect on physical parameters such as hydraulic conductivity and compressive strength due to the presence of interferences such as soil, organic sludge, and nitrate salts. During full-scale implementability testing, three grouts were evaluated for groutability and monolith formation

  6. In situ radiological characterization to support a test excavation at a liquid waste disposal site

    International Nuclear Information System (INIS)

    Keele, B.D.; Bauer, R.G.; Blewett, G.R.; Troyer, G.L.

    1994-05-01

    An in situ radiological detection system was developed to support a small test excavation at a liquid waste disposal site at the Hanford Site in Richland, Washington. Instrumentation, calibration and comparisons to samples are discussed

  7. Microsensors for In-situ Chemical, Physical and Radiological Characterization of Mixed Waste (73808)

    International Nuclear Information System (INIS)

    Thundat, Thomas G.

    2004-01-01

    Portable, real-time, in-situ chemical, physical, and radiological sensors for the characterization and monitoring of transuranic waste, mixed waste, ground water, contaminated soil, and process streams are needed within the DOE complex. A continuation of this basic research program is proposed to study the influence of control of the electrochemical potential of a metallic coating on a microcantilever as a means of developing specific and highly sensitive sensors. Basic research will be needed to understand the influence of variation of electrochemical potential on the bending of cantilevers in an electrolyte solution. Changes in the chemical potential of a metal-electrolyte interface, affected by changing the applied potential, leads to a change in the depletion or accumulation of substances at the interface. This change in the surface excess at the interface is reflected in a change in the interfacial tension, which is sensitively detected as cantilever deflection. Deposition of electroactive heavy metals as well as the adsorption of metal oxide species will be detectable as a cantilever bending. We plan to continue field-testing cantilever sensors at DOE sites as appropriate. Practical sensors for Hg and CrO4 -2 have been developed, and the former has been field tested. A sensor for large poorly hydrated anions (ClO4 -, ReO4 -, TcO4 -) based on a quarternary ammonium SAM coating is under development and will be field tested when appropriate. The advantage of cantilever sensors is that once the basic platform is developed, it can be the basis for a plethora of inexpensive, miniature sensors. This program will take advantage of advances in cantilever technology made by other programs as well

  8. In situ fabrication and characterization of cobalt ferrite nanorods/graphene composites

    International Nuclear Information System (INIS)

    Fu, Min; Jiao, Qingze; Zhao, Yun

    2013-01-01

    Cobalt ferrite nanorods/graphene composites were prepared by a one-step hydrothermal process using NaHSO 3 as the reducing agent and 1-propyl-3-hexadecylimidazolium bromide as the structure growth-directing template. The reduction of graphene oxide and the in situ formation of cobalt ferrite nanorods were accomplished in a one-step reaction. The structure and morphology of as-obtained composites were characterized by field emission scanning electron microscopy, transmission electron microscopy, high resolution transmission electron microscopy, atomic force microscope, X-ray diffractometer, Fourier transform infrared spectra, X-ray photoelectron spectroscopy and Raman spectroscopy. Uniform rod-like cobalt ferrites with diameters of about 100 nm and length of about 800 nm were homogeneously distributed on the graphene sheets. The hybrid materials showed a saturation magnetization of 42.5 emu/g and coercivity of 495.1 Oe at room temperature. The electromagnetic parameters were measured using a vector network analyzer. A minimum reflection loss (RL) of − 25.8 dB was observed at 16.1 GHz for the cobalt ferrite nanorods/graphene composites with a thickness of 2 mm, and the effective absorption frequency (RL < − 10 dB) ranged from 13.5 to 18.0 GHz. The composites exhibited better absorbing properties than the cobalt ferrite nanorods and the mixture of cobalt ferrite nanorods and graphene. - Highlights: • Reduction of GO and formation of ferrites were accomplished in a one-step reaction. • Ionic liquid was used to control 1D growth of ferrite nanorods for the first time. • Cobalt ferrite nanorods/graphene composites showed dielectric and magnetic loss. • Cobalt ferrite nanorods/graphene composites exhibited better absorbing properties

  9. In-situ characterization of meat aging with diode-laser Raman spectroscopy

    Science.gov (United States)

    Schmidt, Heinar; Blum, Jenny; Sowoidnich, Kay; Sumpf, Bernd; Schwägele, Fredi; Kronfeldt, Heinz-Detlef

    2009-05-01

    Due to the narrow linewidth signals and its fingerprinting nature, Raman spectra provide information about the molecular structure and composition of the samples. In this paper, the applicability of Raman spectroscopy is shown for the in-situ characterization of the aging of meat. Miniaturized diode lasers are utilized as light sources with excitation wavelengths of 671 nm and 785 nm with a view to the development of a portable field device for meat. As test sample, musculus longissimus dorsi from pork was taken. The chops were stored refrigerated at 5 °C and Raman spectra were measured daily from slaughter up to three weeks. Throughout the entire period of one month, the Raman spectra preserve the basic spectral features identifying the samples as meat. More specific, the spectra exhibit gradual changes of the Raman signals and they show a time-dependent modification of the background signal which arises from a laser-induced fluorescence (LIF). To analyze the time-correlation of the complex spectra, multivariate statistical methods are employed. By means of principal components analysis (PCA) a distinction of spectra is found on the time scale between day 8 and 10. This corresponds to the transition from ripened meat to meat at and beyond the limit of inedibility. After ca. 10 days of storage at 5 °C the microbial load is overwhelming and LIF increases. The results of the Raman measurements depending on the storage time of meat are discussed in the context of reference analyses which have been performed in parallel.

  10. Off-gas treatment and characterization for a radioactive in situ vitrification test

    International Nuclear Information System (INIS)

    Oma, K.H.; Timmerman, C.L.

    1985-01-01

    Effluents released to the off gas during the in situ vitrification (ISV) of a test site have been characterized. The site consisted of a 19 L waste package of soil containing 600 nCi/g transuranic and 30,000 nCi/g mixed fission products surrounded by uncontaminated soil. Radioactive isotopes present in the package were 241 Am, /sup 238/239/Pu, 137 Cs, 106 Ru, 90 Sr, and 60 Co. The ISV process melted the waste package and surrounding soil and immobilized the radionuclides in place, producing a durable, 8.6 metric ton glass and crystalline monolith. The test successfully demonstrated that the process provides containment of radioactive material. No release to the environment was detected during processing or cooldown. Due to the high temperatures during processing, some gases were released into the off-gas hood that was placed over the test site. The hood was maintained at a light negative pressure to contain any volatile or entrained material during processing. Gases passed from the hood to an off-gas treatment system where they were treated using a venturi-ejector scrubber, a tandem nozzle gas cleaner scrubber followed by a condenser, heater, and two stages of HEPA filters. The off-gas treatment system is located in the semi-trailer to allow transport of the process to other potential test sites. Retention of all radionuclides by the vitrified zone was greater than 99%. Soil-to-off-gas decontamination factors (DFs) for transuranic elements averaged greater than 4000 and for fission products, DFs ranged from 130 for 137 Cs to 3100 for 90 Sr

  11. Off-gas treatment and characterization for a radioactive in situ vitrification test

    International Nuclear Information System (INIS)

    Oma, K.H.; Timmerman, C.L.

    1984-08-01

    Effluents released to the off gas during the in situ vitrification (ISV) of a test site have been characterized by Pacific Northwest Laboratory. The site consisted of a 19 L waste package of soil containing 600 nCi/g transuranic and 30,000 nCi/g mixed fission products surrounded by uncontaminated soil. Radioactive isotopes present in the package were 241 Am, 238 / 239 Pu, 137 Cs, 106 Ru, 90 Sr, and 60 Co. The ISV process melted the waste package and surrounding soil and immobilized the radionuclides in place, producing a durable, 8.6 metric ton glass and crystalline monolith. The test successfully demonstrated that the process provides containment of radioactive material. No release to the environment was detected during processing of cooldown. Due to the high temperature during processing, some gases were released into the off-gas hood that was over the test site. The hood was maintained at a slight negative pressure to contain any volatile or entrained material during processing. Gases passed from the hood to an off-gas treatment system where they were treated using a venturi-ejector scrubber, a tandem nozzle gas cleaner scrubber followed by a condenser, heater, and two stages of HEPA filters. The off-gas treatment system is located in the semi-trailer to allow transport of the process to other potential test sites. Retention of all radionuclides by the vitrified zone was greater than 99%. Soil-to-off-gas decontamination factors (DFs) for transuranic elements averaged greater than 4000 and for fission products, DFs ranged from 130 for 137 Cs to 3100 for 90 Sr. 7 references, 15 figures, 4 tables

  12. In situ ultrahigh-resolution optical coherence tomography characterization of eye bank corneal tissue processed for lamellar keratoplasty.

    Science.gov (United States)

    Brown, Jamin S; Wang, Danling; Li, Xiaoli; Baluyot, Florence; Iliakis, Bernie; Lindquist, Thomas D; Shirakawa, Rika; Shen, Tueng T; Li, Xingde

    2008-08-01

    To use optical coherence tomography (OCT) as a noninvasive tool to perform in situ characterization of eye bank corneal tissue processed for lamellar keratoplasty. A custom-built ultrahigh-resolution OCT (UHR-OCT) was used to characterize donor corneal tissue that had been processed for lamellar keratoplasty. Twenty-seven donor corneas were analyzed. Four donor corneas were used as controls, whereas the rest were processed into donor corneal buttons for lamellar transplantation by using hand dissection, a microkeratome, or a femtosecond laser. UHR-OCT was also used to noninvasively characterize and monitor the viable corneal tissue immersed in storage medium over 3 weeks. The UHR-OCT captured high-resolution images of the donor corneal tissue in situ. This noninvasive technique showed the changes in donor corneal tissue morphology with time while in storage medium. The characteristics of the lamellar corneal tissue with each processing modality were clearly visible by UHR-OCT. The in situ characterization of the femtosecond laser-cut corneal tissue was noted to have more interface debris than shown by routine histology. The effects of the femtosecond laser microcavitation bubbles on the corneal tissue were well visualized at the edges of the lamellar flap while in storage medium. The results of our feasibility study show that UHR-OCT can provide superb, in situ microstructural characterization of eye bank corneal tissue noninvasively. The UHR-OCT interface findings and corneal endothelial disc thickness uniformity analysis are valuable information that may be used to optimize the modalities and parameters for lamellar tissue processing. The UHR-OCT is a powerful approach that will allow us to further evaluate the tissue response to different processing techniques for posterior lamellar keratoplasty. It may also provide information that can be used to correlate with postoperative clinical outcomes. UHR-OCT has the potential to become a routine part of tissue

  13. Final report, Ames Mobile Laboratory Project: The development and operation of instrumentation in a mobile laboratory for in situ, real-time screening and characterization of soils using the laser ablation sampling technique

    International Nuclear Information System (INIS)

    Anderson, M.S.; Braymen, S.D.

    1995-01-01

    The main focus of the Ames Laboratory's Technology Integration Program, TIP, from May 1991 through December 1994 was the development, fabrication, and demonstration of a mobile instrumentation laboratory incorporating rapid in situ sampling systems for safe, rapid, and cost effective soil screening/characterization. The Mobile Demonstration Laboratory for Environmental Screening Technologies, MDLEST, containing the analysis instrumentation, along with surface and subsurface sampling probe prototypes employing the laser ablation sampling technique were chosen to satisfy the particular surface and subsurface soil characterization needs of the various Department of Energy facilities for determining the extent of heavy metal and radionuclide contamination. The MDLEST, a 44 foot long 5th wheel trailer, is easily configured for the analysis instrumentation and sampling system required for the particular site work. This mobile laboratory contains all of the utilities needed to satisfy the operating requirements of the various instrumentation installed. These utilities include, an electric generator, a chilled water system, process gases, a heating/air conditioning system, and computer monitoring and automatic operating systems. Once the MDLEST arrives at the job site, the instrumentation is aligned and calibration is completed, sampling and analysis operations begin. The sample is acquired, analyzed and the results reported in as little as 10 minutes. The surface sampling probe is used in two modes to acquire samples for analysis. It is either set directly on the ground over the site to be sampled, in situ sampling, or in a special fixture used for calibrating the sampling analysis system with standard soil samples, having the samples brought to the MDLEST. The surface sampling probe was used to in situ sample a flat concrete surface (nondestructively) with the ablated sample being analyzed by the instrumentation in the MDLEST

  14. Final technical report for project titled Quantitative Characterization of Cell Aggregation/Adhesion as Predictor for Distribution and Transport of Microorganisms in Subsurface Environment

    Energy Technology Data Exchange (ETDEWEB)

    Gu, April Z. [Northeastern Univ., Boston, MA (United States); Wan, Kai-tak [Northeastern Univ., Boston, MA (United States)

    2014-09-02

    This project aims to explore and develop enabling methodology and techniques for nano-scale characterization of microbe cell surface contact mechanics, interactions and adhesion quantities that allow for identification and quantification of indicative properties related to microorganism migration and transport behavior in porous media and in subsurface environments. Microbe transport has wide impact and therefore is of great interest in various environmental applications such as in situ or enhanced subsurface bioremediation,filtration processes for water and wastewater treatments and protection of drinking water supplies. Although great progress has been made towards understanding the identities and activities of these microorganisms in the subsurface, to date, little is known of the mechanisms that govern the mobility and transport of microorganisms in DOE’s contaminated sites, making the outcomes of in situ natural attenuation or contaminant stability enhancement unpredictable. Conventionally, movement of microorganisms was believed to follows the rules governing solute (particle) transport. However, recent studies revealed that cell surface properties, especially those pertaining to cell attachment/adhesion and aggregation behavior, can cause the microbe behavior to deviate from non-viable particles and hence greatly influence the mobility and distribution of microorganisms in porous media.This complexity highlights the need to obtain detailed information of cell-cell and cell-surface interactions in order to improve and refine the conceptual and quantitative model development for fate and transport of microorganisms and contaminant in subsurface. Traditional cell surface characterization methods are not sufficient to fully predict the deposition rates and transport behaviors of microorganism observed. A breakthrough of methodology that would allow for quantitative and molecular-level description of intrinsic cell surface properties indicative for cell

  15. In-Situ Characterization of Isotropic and Transversely Isotropic Elastic Properties Using Ultrasonic Wave Velocities

    NARCIS (Netherlands)

    Pant, S; Laliberte, J; Martinez, M.J.; Rocha, B.

    2016-01-01

    In this paper, a one-sided, in situ method based on the time of flight measurement of ultrasonic waves was described. The primary application of this technique was to non-destructively measure the stiffness properties of isotropic and transversely isotropic materials. The method consists of

  16. Integration of Magnetic and Geotechnical methods for Shallow Subsurface Soil Characterization at Sungai Batu, Kedah, Malaysia

    Science.gov (United States)

    Samuel, Y. M.; Saad, R.; Muztaza, N. M.; Saidin, M. M.; Muhammad, S. B.

    2018-04-01

    Magnetic and geotechnical methods were used for shallow subsurface soil characterization at Sungai Batu, Kedah, (Malaysia). Ground magnetic data were collected along a survey line of length 160 m long at 2 m constant station spacing, while soil drilling using hand auger was conducted at 21 m on the survey line using 0.2 m sampling interval drilled to a depth of 5 m. Result from the processed magnetic profile data shows distribution of magnetic residuals in the range of -4.55 to 1.61 nT, with magnetic low (-4.55 nT to -0.058 nT) and were identified at distances 4 m, 10 to 16 m, 20 to 26 m, 58 m, 82 m, 104 to 106 m, 118 m, and 124 to 140 m. The magnetic lows are attributes of sediments. The result from the soil drilling shows sticky samples with variable sizes, greyish to brownish / reddish in colour, and some of the samples show the presence of shiny and black spots. The characteristics of the samples suggest the soil as a by-product of completely weathered rock; weak with high water content and classified as Grade V soil. The study concludes; integration of geophysical and geotechnical methods aided in characterizing the subsurface soil at Sungai Batu. The result was correlated with previous studies and confirms the importance of integrated approach in minimising ambiguity in interpretation.

  17. Actinide immobilization in the subsurface environment by in-situ treatment with a hydrolytically unstable organophosphorus complexant: Uranyl uptake by calcium phytate

    International Nuclear Information System (INIS)

    Nash, K.L.; Jensen, M.P.; Schmidt, M.A.

    1997-01-01

    In addition to naturally occurring uranium and thorium, actinide ions exist in the subsurface environment as a result of accidental releases and intentional disposal practices associated with nuclear weapons production. These species present a significant challenge to cost-effective remediation of contaminated environments. An attractive approach to decreasing the probability of actinide migration in the subsurface is to transform the ions into a less mobile form by remote treatment. We have under development a process which relies on a polyfunctional organophosphorus complexant to sequester the mobile metal ions by complexation/cation exchange in the near term, and to subsequently decompose, transforming the actinides into insoluble phosphate mineral forms in the long term. Studies to date include identification of a suitable organophosphorus reagent, profiling of its decomposition kinetics, verification of the formation of phosphate mineral phases upon decomposition of the reagent, and extensive comparison of the actinide uptake ability of the calcium salt of the reagent as compared with hydroxyapatite. In this report, we briefly describe the process with focus on the cation exchange behavior of the calcium salt of the organophosphorus sequestrant

  18. Combining nanocalorimetry and dynamic transmission electron microscopy for in situ characterization of materials processes under rapid heating and cooling

    Energy Technology Data Exchange (ETDEWEB)

    Grapes, Michael D., E-mail: mgrapes1@jhu.edu [Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Materials Measurement Science Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); LaGrange, Thomas; Reed, Bryan W.; Campbell, Geoffrey H. [Condensed Matter and Materials Division, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Friedman, Lawrence H.; LaVan, David A., E-mail: david.lavan@nist.gov [Materials Measurement Science Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Weihs, Timothy P., E-mail: weihs@jhu.edu [Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States)

    2014-08-15

    Nanocalorimetry is a chip-based thermal analysis technique capable of analyzing endothermic and exothermic reactions at very high heating and cooling rates. Here, we couple a nanocalorimeter with an extremely fast in situ microstructural characterization tool to identify the physical origin of rapid enthalpic signals. More specifically, we describe the development of a system to enable in situ nanocalorimetry experiments in the dynamic transmission electron microscope (DTEM), a time-resolved TEM capable of generating images and electron diffraction patterns with exposure times of 30 ns–500 ns. The full experimental system consists of a modified nanocalorimeter sensor, a custom-built in situ nanocalorimetry holder, a data acquisition system, and the DTEM itself, and is capable of thermodynamic and microstructural characterization of reactions over a range of heating rates (10{sup 2} K/s–10{sup 5} K/s) accessible by conventional (DC) nanocalorimetry. To establish its ability to capture synchronized calorimetric and microstructural data during rapid transformations, this work describes measurements on the melting of an aluminum thin film. We were able to identify the phase transformation in both the nanocalorimetry traces and in electron diffraction patterns taken by the DTEM. Potential applications for the newly developed system are described and future system improvements are discussed.

  19. Subsurface characterization by the ground penetrating radar WISDOM/ExoMars 2020

    Science.gov (United States)

    Hervé, Y.; Ciarletti, V.; Le Gall, A. A.; Oudart, N.; Loizeau, D.; Guiffaut, C.; Dorizon, S.

    2017-12-01

    The main objective of the ExoMars 2020 mission is to search for signs of past and/or present life on Mars. Toward this goal, a rover was designed to investigate the shallow subsurface which is the most likely place where signs of life may be preserved, beneath the hostile surface of Mars. The rover of the ExoMars 2020 mission has on board a polarimetric ground penetrating radar called WISDOM (Water Ice Subsurface Deposits Observation on Mars). Thanks to its large frequency bandwidth of 2.5 GHz, WISDOM is able to probe down to a depth of approximately 3 m on sedimentary rock with a vertical resolution of a few centimeters.The main scientific objectives of WISDOM are to characterize the shallow subsurface of Mars, to help understand the local geological context and to identify the most promising location for drilling. The WISDOM team is currently working on the preparation of the scientific return of the ExoMars 2020 mission. In particular, tools are developed to interpret WISDOM experimental data and, more specifically, to extract information from the radar signatures of expected buried reflectors. Insights into the composition of the ground (through the retrieval of its permittivity) and the geological context of the site can be inferred from the radar signature of buried rocks since the shape and the density of rocks in the subsurface is related to the geological processes that have shaped and placed them there (impact, fluvial processes, volcanism). This paper presents results obtained by automatic detection of structures of interest on a radargram, especially radar signature of buried rocks. The algorithm we developed uses a neural network to identify the position of buried rocks/blocs and then a Hough transform to characterize each signature and to estimate the local permittivity of the medium. Firstly, we will test the performances of the algorithm on simulated data constructed with a 3D FDTD code. This code allows us to simulate radar operation in realistic

  20. Micro/nanoscale mechanical characterization and in situ observation of cracking of laminated Si3N4/BN composites

    International Nuclear Information System (INIS)

    Li Xiaodong; Zou Linhua; Ni Hai; Reynolds, Anthony P.; Wang Changan; Huang Yong

    2008-01-01

    Micro/nanoscale mechanical characterization of laminated Si 3 N 4 /BN composites was carried out by nanoindentation techniques. A custom-designed micro mechanical tester was integrated with an optical microscope and an atomic force microscope to perform in situ three-point bending tests on notched Si 3 N 4 /BN composite bend specimens where the crack initiation and propagation were imaged simultaneously with the optical microscope and atomic force microscope during bending loading. The whole fracture process was in situ captured. It was found that crack deflection was initiated/induced by the pre-existing microvoids and microcracks in BN interfacial layers. New fracture mechanisms were proposed to provide guidelines for the design of biomimetic nacre-like composites

  1. In situ synthesis, characterization, and catalytic performance of tungstophosphoric acid encapsulated into the framework of mesoporous silica pillared clay.

    Science.gov (United States)

    Li, Baoshan; Liu, Zhenxing; Han, Chunying; Ma, Wei; Zhao, Songjie

    2012-07-01

    Mesoporous silica pillared clay (SPC) incorporated with tungstophosphoric acid (HPW) has been synthesized via in situ introducing P and W source in the acidic suspension of the clay interlayer template during the formation of the silica pillared clay. The samples were characterized by XRD, XRF, FT-IR, TG-DTA, N(2) adsorption-desorption, and SEM techniques. The results showed that the HPW formed by in situ method has been effectively introduced into the framework of mesoporous silica pillared clay and its Keggin structure remained perfectly after formation of the materials. In addition, samples with similar HPW loadings were also prepared by impregnation method using SPC as the support. HPW in the incorporated samples was better dispersed into the silica pillared clay than in the impregnated samples. The results of catalytic tests indicated that the encapsulated materials demonstrated better catalytic performance than the impregnated samples in oxidative desulfurization (ODS) of dibenzothiophene (DBT). Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Irradiation-induced creep in metallic nanolaminates characterized by In situ TEM pillar nanocompression

    Energy Technology Data Exchange (ETDEWEB)

    Dillon, Shen J., E-mail: sdillon@illinois.edu [Department of Materials Science and Engineering, University of Illinois Urbana-Champagin, Urbana, IL 61801 (United States); Bufford, Daniel C. [Sandia National Laboratories, Albuquerque, NM 87185 (United States); Jawaharram, Gowtham S.; Liu, Xuying; Lear, Calvin [Department of Materials Science and Engineering, University of Illinois Urbana-Champagin, Urbana, IL 61801 (United States); Hattar, Khalid [Sandia National Laboratories, Albuquerque, NM 87185 (United States); Averback, Robert S. [Department of Materials Science and Engineering, University of Illinois Urbana-Champagin, Urbana, IL 61801 (United States)

    2017-07-15

    This work reports on irradiation-induced creep (IIC) measured on nanolaminate (Cu-W and Ni-Ag) and nanocrystalline alloys (Cu-W) at room temperature using a combination of heavy ion irradiation and nanopillar compression performed concurrently in situ in a transmission electron microscope. Appreciable IIC is observed in multilayers with 50 nm layer thicknesses at high stress, ≈½ the yield strength, but not in multilayers with only 5 nm layer thicknesses.

  3. In situ characterization of the nitridation of dysprosium during mechanochemical processing

    Energy Technology Data Exchange (ETDEWEB)

    Jaques, Brian J.; Osterberg, Daniel D.; Alanko, Gordon A.; Tamrakar, Sumit; Smith, Cole R.; Hurley, Michael F.; Butt, Darryl P., E-mail: DarrylButt@BoiseState.edu

    2015-01-15

    Highlights: • A nitridation reaction in a high energy planetary ball mill was monitored in situ. • Dysprosium mononitride was synthesized from Dy at low temperatures in short times. • Ideal gas law and in situ temperature and pressure used to assess reaction extent. • It is proposed that reaction rate is proportional to the creation of new surface. - Abstract: Processing of advanced nitride ceramics traditionally requires long durations at high temperatures and, in some cases, in hazardous atmospheres. In this study, dysprosium mononitride (DyN) was rapidly formed from elemental dysprosium in a closed system at ambient temperatures. An experimental procedure was developed to quantify the progress of the nitridation reaction during mechanochemical processing in a high energy planetary ball mill (HEBM) as a function of milling time and intensity using in situ temperature and pressure measurements, SEM, XRD, and particle size analysis. No intermediate phases were formed. It was found that the creation of fresh dysprosium surfaces dictates the rate of the nitridation reaction, which is a function of milling intensity and the number of milling media. These results show clearly that high purity nitrides can be synthesized with short processing times at low temperatures in a closed system requiring a relatively small processing footprint.

  4. In-situ ellipsometric characterization of the growth of porous anisotropic nanocrystalline ZnO layers

    Energy Technology Data Exchange (ETDEWEB)

    Laha, P., E-mail: plaha@vub.ac.be; Terryn, H.; Ustarroz, J., E-mail: justarro@vub.ac.be [Research Group Electrochemical and Surface Engineering (SURF), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Elsene, Brussels (Belgium); Nazarkin, M. Y., E-mail: mikleo@mail.ru; Gavrilov, S. A. [Department of Materials of Functional Electronics (MFE), National Research University of Electronic Technology, Bld. 5, Pas. 4806, Zelenograd, Moscow 124498 (Russian Federation); Volkova, A. V.; Simunin, M. M. [Department of Quantum Physics and Nanoelectronics (QPN), National Research University of Electronic Technology, Bld. 5, Pas. 4806, Zelenograd, Moscow 124498 (Russian Federation)

    2015-03-09

    ZnO films have increasingly been in the spotlight due to their largely varied electro-physical and optical properties. For several applications, porous anisotropic nanocrystalline layers are especially interesting. To study the growth kinetics of such films during different fabrication processes, a powerful non-destructive in-situ technique is required. In this work, both ex-situ and in-situ spectroscopic ellipsometry are used along with advanced modelling techniques that are able to take both the anisotropy and the porosity of the films into account. Scanning electron microscopy, along with nitrogen absorption methods for measuring porosity, validated the ellipsometric data and proposed model. The film, grown by chemical bath deposition, was monitored from around 700 to 1800 nm in thickness. This same principle can now be used to monitor any other porous and/or anisotropic structure in an effective in-situ manner, e.g., growth of porous anodic aluminium oxides, nano-porous silica films, etc.

  5. Deep subsurface life from North Pond: enrichment, isolation, characterization and genomes of heterotrophic bacteria

    Directory of Open Access Journals (Sweden)

    Joseph A. Russell

    2016-05-01

    Full Text Available Studies of subsurface microorganisms have yielded few environmentally relevant isolates for laboratory studies. In order to address this lack of cultivated microorganisms, we initiated several enrichments on sediment and underlying basalt samples from North Pond, a sediment basin ringed by basalt outcrops underlying an oligotrophic water-column west of the Mid-Atlantic Ridge at 22°N. In contrast to anoxic enrichments, growth was observed in aerobic, heterotrophic enrichments from sediment of IODP site U1382B at 4 and 68 meters below seafloor (mbsf. These sediment depths, respectively, correspond to the fringes of oxygen penetration from overlying seawater in the top of the sediment column and upward migration of oxygen from oxic seawater from the basalt aquifer below the sediment. Here we report the enrichment, isolation, and initial characterizations of three isolated aerobic heterotrophs from North Pond sediments; an Arthrobacter species from 4 mbsf, and Paracoccus and Pseudomonas species from 68 mbsf. These cultivated bacteria are represented in the amplicon 16S rRNA gene libraries created from whole sediments, albeit at low (up to 2% relative abundance. We provide genomic evidence from our isolates demonstrating that the Arthrobacter and Pseudomonas isolates have the potential to respire nitrate and oxygen, though dissimilatory nitrate reduction could not be confirmed in laboratory cultures. The cultures from this study represent members of environmentally significant phyla, and allow for further studies into geochemical factors impacting life in the deep subsurface.

  6. Deep Subsurface Life from North Pond: Enrichment, Isolation, Characterization and Genomes of Heterotrophic Bacteria.

    Science.gov (United States)

    Russell, Joseph A; León-Zayas, Rosa; Wrighton, Kelly; Biddle, Jennifer F

    2016-01-01

    Studies of subsurface microorganisms have yielded few environmentally relevant isolates for laboratory studies. In order to address this lack of cultivated microorganisms, we initiated several enrichments on sediment and underlying basalt samples from North Pond, a sediment basin ringed by basalt outcrops underlying an oligotrophic water-column west of the Mid-Atlantic Ridge at 22°N. In contrast to anoxic enrichments, growth was observed in aerobic, heterotrophic enrichments from sediment of IODP Hole U1382B at 4 and 68 m below seafloor (mbsf). These sediment depths, respectively, correspond to the fringes of oxygen penetration from overlying seawater in the top of the sediment column and upward migration of oxygen from oxic seawater from the basalt aquifer below the sediment. Here we report the enrichment, isolation, initial characterization and genomes of three isolated aerobic heterotrophs from North Pond sediments; an Arthrobacter species from 4 mbsf, and Paracoccus and Pseudomonas species from 68 mbsf. These cultivated bacteria are represented in the amplicon 16S rRNA gene libraries created from whole sediments, albeit at low (up to 2%) relative abundance. We provide genomic evidence from our isolates demonstrating that the Arthrobacter and Pseudomonas isolates have the potential to respire nitrate and oxygen, though dissimilatory nitrate reduction could not be confirmed in laboratory cultures. The cultures from this study represent members of abundant phyla, as determined by amplicon sequencing of environmental DNA extracts, and allow for further studies into geochemical factors impacting life in the deep subsurface.

  7. A remote characterization system for subsurface mapping of buried waste sites

    International Nuclear Information System (INIS)

    Sandness, G.A.; Bennett, D.W.

    1992-10-01

    Mapping of buried objects and regions of chemical and radiological contamination is required at US Department of Energy (DOE) buried waste sites. The DOE Office of Technology Development Robotics Integrated Program has initiated a project to develop and demonstrate a remotely controlled subsurface sensing system, called the Remote Characterization System (RCS). This project, a collaborative effort by five of the National Laboratories, involves the development of a unique low-signature survey vehicle, a base station, radio telemetry data links, satellite-based vehicle tracking, stereo vision, and sensors for non-invasive inspection of the surface and subsurface. To minimize interference with on-board sensors, the survey vehicle has been constructed predominatantly of non-metallic materials. The vehicle is self-propelled and will be guided by an operator located at a remote base station. The RCS sensors will be environmentally sealed and internally cooled to preclude contamination during use. Ground-penetrating radar, magnetometers, and conductivity devices are planned for geophysical surveys. Chemical and radiological sensors will be provided to locate hot spots and to provide isotopic concentration data

  8. Hydraulic characterization of rocky subsurface using field infiltrometer measurements coupled with hydrogeophysical investigations

    Science.gov (United States)

    Caputo, M. C.; de Carlo, L.; de Benedictis, F.; Vurro, M.

    2009-04-01

    The shallow and/or karstic and fractured aquifers are among the most important water resources. At the same time, they are particularly vulnerable to contamination. A detailed scientific knowledge of the behavior of these aquifers is essential for the development of sustainable groundwater management. Different investigation methods have been developed with the aim to characterize the subsurface and to monitor the flow and solute transport in these hydrogeology systems. This study presents the results of an investigation method, that combine large infiltrometer measurements with elettrical resistivity profiles, carried out in two different experimental sites characterized by different hydrogeology systems. One site, close to Altamura a city in the South of Italy, is represented from karstic and fractured limestone that overlays the deep aquifer. This area has been affected by sludge waste deposits derived from municipal and industrial wastewater treatment plants. The second site, close to San Pancrazio Salentino town in Southern Italy also, is represented from a quarry of calcarenite that has been used as a dump of sludge of mycelium producted from pharmaceutical industry. In both these cases the waste disposal have caused soil-subsoil contamination. Knowledge of the flow rate of the unsaturated zone percolation is needed to investigate the vertical migration of pollutants and the vulnerability of the aquifers. In this study, subsurface electrical resistivity measurements were used to visualize the infiltration of water in the subsoil due to unsaturated water flow. Simultaneously, the vertical flow was investigated by measuring water levels during infiltrometer tests carried out using a large adjustable ring infiltrometer, designed to be installed in the field directly on the outcrop of rock. In addition electrical resistivity azimuthal surveys have been conducted to detect principal fractures strike directions that cause preferential flow. The results obtained

  9. Investigation on microstructural characterization of in situ TiB/Al metal matrix composite by laser cladding

    International Nuclear Information System (INIS)

    Xu Jiang; Li Zhengyang; Zhu Wenhui; Liu Zili; Liu Wenjin

    2007-01-01

    The aluminum matrix composite (AMC) coating reinforced with TiB was prepared utilizing in situ synthesized technique by laser cladding. Microstructural characterization and dry sliding wear behavior of in situ TiB/Al metal matrix composite were studied by SEM, XRD, TEM and Pin-on-disc friction and wear tester. The phase structure of the composite coating consists of α-Al, TiB, Al 3 Ti and Al 3 Fe. It has been found that the shape of in situ synthesized TiB is mainly taken on micro-magnitude lump and nano-magnitude whisker. Owing to B27 structure of TiB, the TiB has an anisotropy axis of growth, which results in the TiB strip and whisker preferring grown along [0 1 0] direction. It is worth to notice that the novel microstructure inside of TiB is particle and strip Al 5 Fe 2 phase and definite crystallographic relationship between the Al 5 Fe 2 phase and TiB has been determined by selected area diffraction pattern. The wear tests results show that the composite coatings can only improve wear resistance at the lower applied load (below 26.7 N), but at higher applied load (26.7-35.6 N) the wear resistance behavior of the coating is worsened due to the fracture and pullout of reinforcement phase

  10. Investigation on microstructural characterization of in situ TiB/Al metal matrix composite by laser cladding

    Energy Technology Data Exchange (ETDEWEB)

    Xu Jiang [Department of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016 (China)]. E-mail: xujiang73@nuaa.edu.cn; Li Zhengyang [Key Laboratory for Advanced Materials Manufacturing Processing, Mechanical Engineering Department, Tsinghua University, Beijing 10084 (China); Zhu Wenhui [Department of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016 (China); Liu Zili [Department of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016 (China); Liu Wenjin [Key Laboratory for Advanced Materials Manufacturing Processing, Mechanical Engineering Department, Tsinghua University, Beijing 10084 (China)

    2007-02-25

    The aluminum matrix composite (AMC) coating reinforced with TiB was prepared utilizing in situ synthesized technique by laser cladding. Microstructural characterization and dry sliding wear behavior of in situ TiB/Al metal matrix composite were studied by SEM, XRD, TEM and Pin-on-disc friction and wear tester. The phase structure of the composite coating consists of {alpha}-Al, TiB, Al{sub 3}Ti and Al{sub 3}Fe. It has been found that the shape of in situ synthesized TiB is mainly taken on micro-magnitude lump and nano-magnitude whisker. Owing to B27 structure of TiB, the TiB has an anisotropy axis of growth, which results in the TiB strip and whisker preferring grown along [0 1 0] direction. It is worth to notice that the novel microstructure inside of TiB is particle and strip Al{sub 5}Fe{sub 2} phase and definite crystallographic relationship between the Al{sub 5}Fe{sub 2} phase and TiB has been determined by selected area diffraction pattern. The wear tests results show that the composite coatings can only improve wear resistance at the lower applied load (below 26.7 N), but at higher applied load (26.7-35.6 N) the wear resistance behavior of the coating is worsened due to the fracture and pullout of reinforcement phase.

  11. Microbial diversity in hydrothermal surface to subsurface environments of Suiyo Seamount, Izu-Bonin Arc, using a catheter-type in situ growth chamber.

    Science.gov (United States)

    Higashi, Yowsuke; Sunamura, Michinari; Kitamura, Keiko; Nakamura, Ko-ichi; Kurusu, Yasurou; Ishibashi, Jun-ichiro; Urabe, Tetsuro; Maruyama, Akihiko

    2004-03-01

    After excavation using a portable submarine driller near deep-sea hydrothermal vents in the Suiyo Seamount, Izu-Bonin Arc, microbial diversity was examined in samples collected from inside the boreholes using an in situ growth chamber called a vent catheter. This instrument, which we devised for this study, consists of a heat-tolerant pipe tipped with a titanium mesh entrapment capsule that is packed with sterilized inorganic porous grains, which serve as an adhesion substrate. After this instrument was deployed inside each of the boreholes, as well as a natural vent, for 3-10 days in the vicinity of hot vent fluids (maxima: 156-305 degrees C), DNA was extracted from the adhesion grains, 16S rDNA was amplified, and randomly selected clones were sequenced. In phylogenetic analysis of more than 120 clones, several novel phylotypes were detected within the epsilon-Proteobacteria, photosynthetic bacteria (PSB)-related alpha-Proteobacteria, and Euryarchaeota clusters. Members of epsilon-Proteobacteria were frequently encountered. Half of these were classified between two known groups, Corre's B and D. The other half of the clones were assigned to new groups, SSSV-BE1 and SSSV-BE2 (Suiyo Seamount sub-vent origin, Bacteria domain, epsilon-Proteobacteria, groups 1 and 2). From this hydrothermal vent field, we detected a novel lineage within the PSB cluster, SSNV-BA1 (Suiyo Seamount natural vent origin, Bacteria domain, alpha-Proteobacteria, group 1), which is closely related to Rhodopila globiformis isolated from a hot spring. A number of archaeal clones were also detected from the borehole samples. These clones formed a novel monophyletic clade, SSSV-AE1 (Suiyo Seamount sub-vent origin, Archaea domain, Euryarchaeota, group 1), approximately between methanogenic hyperthermophilic members of Methanococcales and environmental clone members of DHVE Group II. Thus, this hydrothermal vent environment appears to be a noteworthy microbial and genetic resource. It is also

  12. Advanced analysis of complex seismic waveforms to characterize the subsurface Earth structure

    Science.gov (United States)

    Jia, Tianxia

    2011-12-01

    This thesis includes three major parts, (1) Body wave analysis of mantle structure under the Calabria slab, (2) Spatial Average Coherency (SPAC) analysis of microtremor to characterize the subsurface structure in urban areas, and (3) Surface wave dispersion inversion for shear wave velocity structure. Although these three projects apply different techniques and investigate different parts of the Earth, their aims are the same, which is to better understand and characterize the subsurface Earth structure by analyzing complex seismic waveforms that are recorded on the Earth surface. My first project is body wave analysis of mantle structure under the Calabria slab. Its aim is to better understand the subduction structure of the Calabria slab by analyzing seismograms generated by natural earthquakes. The rollback and subduction of the Calabrian Arc beneath the southern Tyrrhenian Sea is a case study of slab morphology and slab-mantle interactions at short spatial scale. I analyzed the seismograms traversing the Calabrian slab and upper mantle wedge under the southern Tyrrhenian Sea through body wave dispersion, scattering and attenuation, which are recorded during the PASSCAL CAT/SCAN experiment. Compressional body waves exhibit dispersion correlating with slab paths, which is high-frequency components arrivals being delayed relative to low-frequency components. Body wave scattering and attenuation are also spatially correlated with slab paths. I used this correlation to estimate the positions of slab boundaries, and further suggested that the observed spatial variation in near-slab attenuation could be ascribed to mantle flow patterns around the slab. My second project is Spatial Average Coherency (SPAC) analysis of microtremors for subsurface structure characterization. Shear-wave velocity (Vs) information in soil and rock has been recognized as a critical parameter for site-specific ground motion prediction study, which is highly necessary for urban areas located

  13. In-situ Raman spectroscopy as a characterization tool for carbon electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Panitz, J -C; Joho, F B; Novak, P [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Lithium intercalation and de-intercalation into/from graphite electrodes in a nonaqueous electrolyte has been studied using in-situ Raman spectroscopy. Our experiments give information on the electrode-electrolyte interface with improved spatial resolution. The spectra taken from the electrode surface change with electrode potential. In this way, information on the nature of the chemical species present during charging and discharging half cycles is gained. For the first time, mapping techniques were applied to investigate if lithium intercalation proceeds homogeneously on the carbon electrode. (author) 3 figs., 1 tab., 4 refs.

  14. Network of Nano-Landers for In-Situ Characterization of Asteroid Impact Studies

    OpenAIRE

    Kalita, Himangshu; Asphaug, Erik; Schwartz, Stephen; Thangavelautham, Jekanthan

    2017-01-01

    Exploration of asteroids and comets can give insight into the origins of the solar system and can be instrumental in planetary defence and in-situ resource utilization (ISRU). Asteroids, due to their low gravity are a challenging target for surface exploration. Current missions envision performing touch-and-go operations over an asteroid surface. In this work, we analyse the feasibility of sending scores of nano-landers, each 1 kg in mass and volume of 1U, or 1000 cm3. These landers would hop...

  15. In Situ Chemical Characterization of Mineral Phases in Lunar Granulite Meteorite Northwest Africa 5744

    Science.gov (United States)

    Kent, J. J.; Brandon, A. D.; Lapen, T. J.; Peslier, A. H.; Irving, A. J.; Coleff, D. M.

    2012-01-01

    Northwest Africa (NWA) 5744 meteorite is a granulitic and troctolitic lunar breccia which may represent nearly pristine lunar crust (Fig. 1). NWA 5744 is unusually magnesian compared to other lunar breccias, with bulk [Mg/(Mg+Fe)] 0.79 [1, 2]. Inspection shows impactor content is likely to be very minor, with low Ni content and a lack of metal grains. Some terrestrial contamination is present, evidenced by calcite within cracks. NWA 5744 has notably low concentrations of incompatible trace elements (ITEs) [2]. The goal of this study is to attempt to classify this lunar granulite through analyses of in situ phases.

  16. In-situ characterization of transformation plasticity during an isothermal austenite-to-bainite phase transformation

    Energy Technology Data Exchange (ETDEWEB)

    Holzweissig, M.J., E-mail: martinh@mail.upb.de [University of Paderborn, Lehrstuhl fuer Werkstoffkunde (Materials Science), 33095 Paderborn (Germany); Canadinc, D., E-mail: dcanadinc@ku.edu.tr [Koc University, Advanced Materials Group, Department of Mechanical Engineering, 34450 Istanbul (Turkey); Maier, H.J., E-mail: hmaier@mail.upb.de [University of Paderborn, Lehrstuhl fuer Werkstoffkunde (Materials Science), 33095 Paderborn (Germany)

    2012-03-15

    This paper elucidates the stress-induced variant selection process during the isothermal austenite-to-bainite phase transformation in a tool steel. Specifically, a thorough set of experiments combining electron backscatter diffraction and in-situ digital image correlation (DIC) was carried out to establish the role of superimposed stress level on the evolution of transformation plasticity (TP) strains. The important finding is that TP increases concomitant with the superimposed stress level, and strain localization accompanies phase transformation at all stress levels considered. Furthermore, TP strain distribution within the whole material becomes more homogeneous with increasing stress, such that fewer bainitic variants are selected to grow under higher stresses, yielding a more homogeneous strain distribution. In particular, the bainitic variants oriented along [101] and [201] directions are favored to grow parallel to the loading axis and are associated with large TP strains. Overall, this very first in-situ DIC investigation of the austenite-to-bainite phase transformation in steels evidences the clear relationship between the superimposed stress level, variant selection, and evolution of TP strains. - Highlights: Black-Right-Pointing-Pointer Local variations of strain were observed by DIC throughout the phase transformation. Black-Right-Pointing-Pointer The study clearly established the role of the stress-induced variant selection. Black-Right-Pointing-Pointer Variant selection is a key parameter that governs distortion.

  17. In-Situ Growth and Characterization of Indium Tin Oxide Nanocrystal Rods

    Directory of Open Access Journals (Sweden)

    Yan Shen

    2017-11-01

    Full Text Available Indium tin oxide (ITO nanocrystal rods were synthesized in-situ by a vapor-liquid-solid (VLS method and electron beam evaporation technique. When the electron-beam gun bombarded indium oxide (In2O3 and tin oxide (SnO2 mixed sources, indium and tin droplets appeared and acted as catalysts. The nanocrystal rods were in-situ grown on the basis of the metal catalyst point. The nanorods have a single crystal structure. Its structure was confirmed by X-ray diffraction (XRD and transmission electron microscopy (TEM. The surface morphology was analyzed by scanning electron microscopy (SEM. During the evaporation, a chemical process was happened and an In2O3 and SnO2 solid solution was formed. The percentage of doped tin oxide was calculated by Vegard’s law to be 3.18%, which was in agreement with the mixture ratio of the experimental data. The single crystal rod had good semiconductor switch property and its threshold voltage of single rod was approximately 2.5 V which can be used as a micro switch device. The transmission rate of crystalline nanorods ITO film was over 90% in visible band and it was up to 95% in the blue green band as a result of the oxygen vacancy recombination luminescence.

  18. Characterization of subcritical water oxidation with in situ monitoring and self-modeling curve resolution

    International Nuclear Information System (INIS)

    Gemperline, Paul J.; Yang Yu; Bian Zhihui

    2003-01-01

    In this paper, a subcritical water oxidation (SBWO) process was monitored using self-modeling curve resolution (SMCR) of in situ UV-Vis measurements to estimate time-dependant composition profiles of reactants, intermediates and products. A small laboratory scale reactor with UV-Vis fiber-optic probes and a flow cell was used to demonstrate the usefulness of SMCR for monitoring the destruction of model compounds phenol, benzoic acid, and aniline in a dilute aqueous solutions. Hydrogen peroxide was used as the oxidizing reagent at moderate temperature (150-250 deg. C) and pressure (60-90 atm) in a single phase. By use of in situ monitoring, reaction times were easily determined and conditions for efficient oxidations were easily diagnosed without the need for time consuming off-line reference measurements. For selected runs, the destruction of the model compound was confirmed by gas chromatography and chemical oxygen demand (COD) measurements. Suspected intermediate oxidation products were easily detected by the use of UV-Vis spectrometry and self-modeling curve resolution, but could not be detected by gas chromatography

  19. In Situ Characterization of Boehmite Particles in Water Using Liquid SEM.

    Science.gov (United States)

    Yao, Juan; Arey, Bruce W; Yang, Li; Zhang, Fei; Komorek, Rachel; Chun, Jaehun; Yu, Xiao-Ying

    2017-09-27

    In situ imaging and elemental analysis of boehmite (AlOOH) particles in water is realized using the System for Analysis at the Liquid Vacuum Interface (SALVI) and Scanning Electron Microscopy (SEM). This paper describes the method and key steps in integrating the vacuum compatible SAVLI to SEM and obtaining secondary electron (SE) images of particles in liquid in high vacuum. Energy dispersive x-ray spectroscopy (EDX) is used to obtain elemental analysis of particles in liquid and control samples including deionized (DI) water only and an empty channel as well. Synthesized boehmite (AlOOH) particles suspended in liquid are used as a model in the liquid SEM illustration. The results demonstrate that the particles can be imaged in the SE mode with good resolution (i.e., 400 nm). The AlOOH EDX spectrum shows significant signal from the aluminum (Al) when compared with the DI water and the empty channel control. In situ liquid SEM is a powerful technique to study particles in liquid with many exciting applications. This procedure aims to provide technical know-how in order to conduct liquid SEM imaging and EDX analysis using SALVI and to reduce potential pitfalls when using this approach.

  20. In-situ characterization of transformation plasticity during an isothermal austenite-to-bainite phase transformation

    International Nuclear Information System (INIS)

    Holzweissig, M.J.; Canadinc, D.; Maier, H.J.

    2012-01-01

    This paper elucidates the stress-induced variant selection process during the isothermal austenite-to-bainite phase transformation in a tool steel. Specifically, a thorough set of experiments combining electron backscatter diffraction and in-situ digital image correlation (DIC) was carried out to establish the role of superimposed stress level on the evolution of transformation plasticity (TP) strains. The important finding is that TP increases concomitant with the superimposed stress level, and strain localization accompanies phase transformation at all stress levels considered. Furthermore, TP strain distribution within the whole material becomes more homogeneous with increasing stress, such that fewer bainitic variants are selected to grow under higher stresses, yielding a more homogeneous strain distribution. In particular, the bainitic variants oriented along [101] and [201] directions are favored to grow parallel to the loading axis and are associated with large TP strains. Overall, this very first in-situ DIC investigation of the austenite-to-bainite phase transformation in steels evidences the clear relationship between the superimposed stress level, variant selection, and evolution of TP strains. - Highlights: ► Local variations of strain were observed by DIC throughout the phase transformation. ► The study clearly established the role of the stress-induced variant selection. ► Variant selection is a key parameter that governs distortion.

  1. Thin-film calorimetry. In-situ characterization of materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Omelcenko, Alexander; Wulfmeier, Hendrik; Albrecht, Daniel; Fritze, Holger [Clausthal Univ. of Technology, Goslar (Germany). Inst. of Energy Research and Physical Technologies; El Mofid, Wassima; Ivanov, Svetlozar; Bund, Andreas [Ilmenau Univ. of Technology (Germany). Dept. of Electrochemistry

    2017-11-15

    Thin-film calorimetry allows for qualitative and quantitative in-situ analysis of thermodynamic properties of thin films and thin-film systems from room temperature up to 1000 C. It is based on highly sensitive piezoelectric langasite resonators which serve simultaneously as planar temperature sensors and substrates for the films of interest. Generation or consumption of heat during phase transformations of the films cause deviations from the regular course of the resonance frequency. Thermodynamic data such as phase transformation temperatures and enthalpies are extracted from these deviations. Thin-film calorimetry on Sn and Al thin films is performed to prove the concept. The results demonstrate high reproducibility of the measurement approach and are in agreement with literature data obtained by established calorimetric techniques. The calibration of the system is done in different atmospheres by application of defined heat pulses via heating structures. The latter replace the films of interest and simulate phase transformations to provide detailed analysis of the heat transfer mechanisms occurring in the measurement system. Based on this analysis, a data evaluation concept is developed. Application-relevant studies are performed on thin films of the lithium-ion battery materials NMC(A), NCA, LMO, and MoS{sub 2}. Their phase transformation temperatures and enthalpies are evaluated in oxidizing and reducing atmospheres. Furthermore, their thermodynamic stability ranges are presented. Finally, measurements on all-solid-state thin-film batteries during electrochemical cycling are performed. They demonstrate the suitability of the system for in-situ investigations.

  2. Characterization of Platinum Electrodes and In-situ Cell Confluency Measurement Based on Current Changes of Cell-Electrodes

    Directory of Open Access Journals (Sweden)

    Chin Fhong SOON

    2015-04-01

    Full Text Available This study aimed at the development of a biosensor to examine the growth confluency of human derived keratinocytes (HaCaT cell lines in-situ. The biosensor consists of a sputter- coated glass substrate with platinum patterns. Cells were grown on the conductive substrates and the confluency of the cells were monitored in-situ based on the conductivity changes of the substrates. Characterization of the cell proliferation and confluency were interrogated using electrical cell-substrate impedance sensing (ECIS techniques and current change of cells using a pico-ammeter. The investigation was followed by the electrical characterization of the platinum electrode (PE using a two probe I-V measurement system. The surface morphology of platinum electrodes were studied using an atomic force microscopy (AFM and the HaCaT cell morphology was studied using Field-Emission Scanning Electron Microscopy (FE-SEM. The microscopy results showed that the cells coupled and proliferated on the platinum electrodes. For monitoring the conductivity and impedance changes of the cell-electrode in-situ, the cover of a Petri dish was inserted with pogo pins to be in contact with the platinum electrodes. The impedance was sampled using the ECIS technique at a twenty-four hour interval. In our findings, the cell proliferation rate can be measured by observing the changes in capacitance or impedance measured at low ac frequencies ranged from 10 - 1 kHz. In good agreement, the current measured at micro-ampere range by the biosensor decreased as the cell coverage area increased over the time. Thus, the percent of cell confluence was shown inversely proportional to the current changes.

  3. Continuous in-situ monitoring of dissolved gases for the characterization of the Critical Zone with a MIMS

    Science.gov (United States)

    Chatton, Eliot; Labasque, Thierry; Aquilina, Luc; de la Bernardie, Jérôme; Guihéneuf, Nicolas

    2016-04-01

    In the perspective of a temporal and spatial exploration of the Critical Zone, we developed an in situ monitoring instrument for continuous dissolved gas analysis (N2, O2, CO2, CH4, He, Ne, Ar, Kr, Xe). With a large resolution (5 orders of magnitude) and a capability of high frequency multi-tracer analysis (1 gas every 1.5 seconds), the MIMS (Membrane Inlet Mass Spectrometer) is an innovative tool allowing the investigation of a large panel of physical and biogeochemical processes. First of all, this study presents the results of groundwater tracer tests using dissolved gases in order to evaluate transport properties of a fractured media in Brittany, France (Ploemeur, ORE H+). The tracer test experiment showed that the MIMS is perfectly suitable for field work. The instrument provides precise measurements accurate enough to produce breakthrough curves during groundwater tracer tests. The results derived from 4He data gives transport parameters in good agreement with the results obtained with a fluorescent tracer. Combined with a pump and a multi-parameter probe, the MIMS is also capable to perform accurate dissolved gases well-logs allowing a real-time estimation of recharge conditions (temperature, excess air), aquifer stratification, redox conditions and groundwater residence time by 4He dating. Therefore, the MIMS is a valuable tool for in situ characterization of biogeochemical reactivity in aquatic systems, the determination of aquifer transport properties, the monitoring of groundwater recharge conditions and the characterization of aquifer-river exchanges.

  4. Seismoelectric Effects based on Spectral-Element Method for Subsurface Fluid Characterization

    Science.gov (United States)

    Morency, C.

    2017-12-01

    Present approaches for subsurface imaging rely predominantly on seismic techniques, which alone do not capture fluid properties and related mechanisms. On the other hand, electromagnetic (EM) measurements add constraints on the fluid phase through electrical conductivity and permeability, but EM signals alone do not offer information of the solid structural properties. In the recent years, there have been many efforts to combine both seismic and EM data for exploration geophysics. The most popular approach is based on joint inversion of seismic and EM data, as decoupled phenomena, missing out the coupled nature of seismic and EM phenomena such as seismoeletric effects. Seismoelectric effects are related to pore fluid movements with respect to the solid grains. By analyzing coupled poroelastic seismic and EM signals, one can capture a pore scale behavior and access both structural and fluid properties.Here, we model the seismoelectric response by solving the governing equations derived by Pride and Garambois (1994), which correspond to Biot's poroelastic wave equations and Maxwell's electromagnetic wave equations coupled electrokinetically. We will show that these coupled wave equations can be numerically implemented by taking advantage of viscoelastic-electromagnetic mathematical equivalences. These equations will be solved using a spectral-element method (SEM). The SEM, in contrast to finite-element methods (FEM) uses high degree Lagrange polynomials. Not only does this allow the technique to handle complex geometries similarly to FEM, but it also retains exponential convergence and accuracy due to the use of high degree polynomials. Finally, we will discuss how this is a first step toward full coupled seismic-EM inversion to improve subsurface fluid characterization. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  5. Synthesis and characterization of polypropylene/graphite nano composite preparation for in situ polymerization

    International Nuclear Information System (INIS)

    Montagna, L.S.; Fim, F. de C.; Galland, G.B.

    2010-01-01

    This paper presents the synthesis of polypropylene/graphite nanocomposites through in situ polymerization, using the metallocene catalyst C 20 H 16 Cl 2 Zr (dichloro(rac-ethylenebis(indenyl))zircon(IV)). The graphite nanosheets in nano dimensions were added to the polymer matrix in percentages of 0.6;1.0;4.2;4.8 and 6.0% (w/w). The TEM images indicated that the thickness of graphite nanosheets ranged from 4 to 60 nm and by means of XRD analysis it was observed that the physical and chemical treatment did not destroyed the graphite layers. The presence of nanosheets did not decrease the catalytic activity of the nanocomposites. TEM images and XRD analysis of nanocomposites showed a good dispersion of the graphite nanosheets in the polypropylene matrix. (author)

  6. High definition in-situ electro-optical characterization for Roll to Roll printed electronics

    DEFF Research Database (Denmark)

    Pastorelli, Francesco

    2017-01-01

    Resume: Printed electronics is emerging as a new, large scale and cost effective technology that will be disruptive in fields such as energy harvesting, consumer electronics and medical sensors. The performance of printed organic electronic devices relies principally on the carrier mobility...... and molecular packing of the polymer semiconductor material. Unfortunately, the analysis of such materials is generally performed with destructive techniques, which are hard to make compatible with in situ measurements, and pose a great obstacle for the mass production of printed electronics devices. A rapid......-photon induced photoluminescence (TPPL) and second harmonic response. We anticipate that this non-linear optical method will substantially contribute to the understanding of printed electronic devices and demonstrate it as a promising novel tool for non-destructive and facile testing of materials during printing...

  7. Biomimetic composite microspheres of collagen/chitosan/nano-hydroxyapatite: In-situ synthesis and characterization.

    Science.gov (United States)

    Teng, Shu-Hua; Liang, Mian-Hui; Wang, Peng; Luo, Yong

    2016-01-01

    The collagen/chitosan/hydroxyapatite (COL/CS/HA) composite microspheres with a good spherical form and a high dispersity were successfully obtained using an in-situ synthesis method. The FT-IR and XRD results revealed that the inorganic phase in the microspheres was crystalline HA containing carbonate ions. The morphology of the composite microspheres was dependent on the HA content, and a more desirable morphology was achieved when 20 wt.% HA was contained. The composite microspheres exhibited a narrow particle distribution, most of which ranged from 5 to 10 μm. In addition, the needle-like HA nano-particles were uniformly distributed in the composite microspheres, and their crystallinity and crystal size decreased with the HA content. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. In Situ Characterization of Inconel 718 Post-Dynamic Recrystallization within a Scanning Electron Microscope

    Directory of Open Access Journals (Sweden)

    Meriem Zouari

    2017-11-01

    Full Text Available Microstructure evolution within the post-dynamic regime following hot deformation was investigated in Inconel 718 samples with different dynamically recrystallized volume fractions and under conditions such that no δ-phase particles were present. In situ annealing treatments carried out to mimic post-dynamic conditions inside the Scanning Electron Microscope (SEM chamber suggest the occurrence of both metadynamic and static recrystallization mechanisms. Static recrystallization was observed in addition to metadynamic recrystallization, only when the initial dynamically recrystallized volume fraction was very small. The initial volume fraction of dynamically recrystallized grains appears to be decisive for subsequent microstructural evolution mechanisms and kinetics. In addition, the formation of annealing twins is observed along with the growth of recrystallized grains, but then the twin density decreases as the material enters the capillarity-driven grain growth regime.

  9. In-situ neutron diffraction characterization of temperature dependence deformation in α-uranium

    Science.gov (United States)

    Calhoun, C. A.; Garlea, E.; Sisneros, T. A.; Agnew, S. R.

    2018-04-01

    In-situ strain neutron diffraction measurements were conducted at temperature on specimens coming from a clock-rolled α-uranium plate, and Elasto-Plastic Self-Consistent (EPSC) modeling was employed to interpret the findings. The modeling revealed that the active slip systems exhibit a thermally activated response, while deformation twinning remains athermal over the temperature ranges explored (25-150 °C). The modeling also allowed assessment of the effects of thermal residual stresses on the mechanical response during compression. These results are consistent with those from a prior study of room-temperature deformation, indicating that the thermal residual stresses strongly influence the internal strain evolution of grain families, as monitored with neutron diffraction, even though accounting for these residual stresses has little effect on the macroscopic flow curve, except in the elasto-plastic transition.

  10. In situ metrology to characterize water vapor delivery during atomic layer deposition

    International Nuclear Information System (INIS)

    Ahmido, Tariq; Kimes, William A.; Sperling, Brent A.; Hodges, Joseph T.; Maslar, James E.

    2016-01-01

    Water is often employed as the oxygen source in metal oxide atomic layer deposition (ALD) processes. It has been reported that variations in the amount of water delivered during metal oxide ALD can impact the oxide film properties. Hence, one contribution to optimizing metal oxide ALD processes would be to identify methods to better control water dose. The development of rapid, quantitative techniques for in situ water vapor measurements during ALD processes would be beneficial to achieve this goal. In this report, the performance of an in situ tunable diode laser absorption spectroscopy (TDLAS) scheme for performing rapid, quantitative water partial pressure measurements in a representative quarter-inch ALD delivery line is described. This implementation of TDLAS, which utilizes a near-infrared distributed-feedback diode laser and wavelength modulation spectroscopy, provides measurements of water partial pressure on a timescale comparable to or shorter than the timescale of the gas dynamics in typical ALD systems. Depending on the degree of signal averaging, this TDLAS system was capable of measuring the water partial pressure with a detection limit in the range of ∼0.80 to ∼0.08 Pa. The utility of this TDLAS scheme was demonstrated by using it to identify characteristics of a representative water delivery system that otherwise would have been difficult to predict. Those characteristics include (1) the magnitude and time dependence of the pressure transient that can occur during water injection, and (2) the dependence of the steady-state water partial pressure on the carrier gas flow rate and the setting of the water ampoule flow restriction.

  11. Subsurface Access, Characterization, Acquisition, Transport, Storage and Delivery in Microgravity, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop geotechnical measurements, sample extraction and transport equipment for subsurface regolith on NEOs, asteroids, moons and planets,...

  12. Electrochemical studies, in-situ and ex-situ characterizations of different manganese compounds electrodeposited in aerated solutions

    International Nuclear Information System (INIS)

    Peulon, S.; Lacroix, A.; Chausse, A.; Larabi-Gruet, N.

    2007-01-01

    This work deals with the electrodeposition of manganese compounds. A systematic study of the synthesis experimental conditions has been carried out, and the obtained depositions have been characterized by different ex-situ analyses methods (XRD, FTIR, SEM). The in-situ measurements of mass increase with a quartz microbalance during the syntheses have allowed to estimate the growth mechanisms which are in agreement with the ex-situ characterizations. The cation has an important role in the nature of the electrodeposited compounds. In presence of sodium, a mixed lamellar compound Mn(III)/Mn(IV), the birnessite, is deposited, whereas in presence of potassium, bixbyite is formed (Mn 2 O 3 ), these two compounds having a main role in the environment. The substrate can also influence the nature of the formed intermediary compounds. Little studied compounds such as feitkneichtite (β-MnOOH) and groutite (α-MnOOH) have been revealed. (O.M.)

  13. Novel ion-exchange nanocomposite membrane containing in-situ formed FeOOH nanoparticles: Synthesis, characterization and transport properties

    Energy Technology Data Exchange (ETDEWEB)

    Heidary, Farhad; Kharat, Ali Nemati [University of Tehran, Tehran (Iran, Islamic Republic of); Khodabakhshi, Ali Reza [Faculty of Science, Arak University, Arak (Iran, Islamic Republic of)

    2016-04-15

    A new type of cation-exchange nanocomposite membrane was prepared via in-situ formation of FeOOH nanoparticles in a blend containing sulfonated poly (2,6-dimethyl-1,4-phenylene oxide) and sulfonated polyvinylchloride by a simple one-step chemical method. Prepared nanocomposite membranes were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy and X-ray diffraction. The SEM images showed uniform dispersion of FeOOH nanoparticles throughout the polymeric matrices. The effect of additive loading on physicochemical and electrochemical properties of prepared cation-exchange nanocomposite membranes was studied. Various characterizations showed that the incorporation of different amounts of FeOOH nanoparticles into the basic membrane structure had a significant influence on the membrane performance and could improve the electrochemical properties.

  14. Characterizing the Asian Tropopause Aerosol Layer using in situ balloon measurements: the BATAL campaigns of 2014-2017

    Science.gov (United States)

    Fairlie, T. D.; Vernier, J. P.; Deshler, T.; Pandit, A. K.; Ratnam, M. V.; Gadhavi, H. S.; Liu, H.; Natarajan, M.; Jayaraman, A.; Kumar, S.; Singh, A. K.; Stenchikov, G. L.; Wienhold, F.; Vignelles, D.; Bedka, K. M.; Avery, M. A.

    2017-12-01

    We present in situ balloon observations of the Asian Tropopause Aerosol Layer (ATAL), a summertime accumulation of aerosols in the upper troposphere and lower stratosphere (UTLS), associated with Asian Summer Monsoon (ASM). The ATAL was first revealed by CALIPSO satellite data, and has been linked with deep convection of boundary layer pollution into the UTLS. The ATAL has potential implications for regional cloud properties, radiative transfer, and chemical processes in the UTLS. The "Balloon measurements of the Asian Tropopause Aerosol Layer (BATAL)" field campaigns to India and Saudi Arabia in were designed to characterize the physical and optical properties of the ATAL, to explore its composition, and its relationship with clouds in the UTLS. We launched 55 balloon flights from 4 locations, in summers 2014-2016. We return to India to make more balloon flights in summer 2017. Balloon payloads range from 500g to 50 kg, making measurements of meteorological parameters, ozone, water vapor, aerosol optical properties, concentration, volatility, and composition in the UTLS region. This project represents the most important effort to date to study UTLS aerosols during the ASM, given few in situ observations. We complement the in situ data presented with 3-d chemical transport simulations, designed to further explore the ATAL's chemical composition, the sensitivity of such to scavenging in parameterized deep convection, and the relative contribution of regional vs. rest-of-the-world pollution sources. The BATAL project has been a successful partnership between institutes in the US, India, Saudi Arabia, and Europe, and continues for the next 3-4 years, sponsored by the NASA Upper Atmosphere Research program. This partnership may provide a foundation for potential high-altitude airborne measurement studies during the ASM in the future.

  15. In-situ characterization of symmetric dual-pass architecture of microfluidic co-laminar flow cells

    International Nuclear Information System (INIS)

    Ibrahim, Omar A.; Goulet, Marc-Antoni; Kjeang, Erik

    2016-01-01

    Highlights: • An analytical cell design is proposed for characterization of dual-pass flow cells • High power density up to 0.75 W cm −2 is demonstrated • The performance contributions of the inlet and outlet passes are of the same order • Downstream crossover is analyzed as a function of cell current and flow rate - Abstract: Microfluidic co-laminar flow cells with dual-pass architecture enable fuel recirculation and in-situ regeneration, and offer improvements in performance characteristics. In this work, a unique analytical cell design is proposed, with two split portions having flow-through porous electrodes. Each cell portion is first tested individually with vanadium redox species and the results are used to quantify the previously unknown crossover losses at the downstream portion of the cell, shown here to be a strong function of the flow rate. Moreover, the upstream cell portion demonstrates impressive room-temperature power density up to 0.75 W cm −2 at 1.0 A cm −2 , which is the highest performance reported to date for a microfluidic vanadium redox battery. Next, the two cell portions are connected in parallel to resemble a complete cell with dual-pass architecture, thereby enabling novel in-situ diagnostics of the inlet and outlet passes of the cell. For instance, the reactant utilization efficiency of the downstream cell portion is shown to be on the same order as that of the upstream portion at both low and high flow rates. Furthermore, in-situ regeneration is also demonstrated. Overall, the present results provide a deeper understanding of dual-pass reactant conversion and crossover which will be useful for future device optimization.

  16. Characterization of Multifunctional Carbon Nanotube Yarns: In-situ Strain Sensing and Composite Reinforcement

    Science.gov (United States)

    Page, Christian David

    A large body of scientific research and development worldwide has focused on the unprecedented structural/functional properties of carbon nanotubes (CNT), yet translation of these unique properties of CNTs to macroscopic materials has been slow to develop. CNT yarns are an appealing application for CNTs; their lightweight and small diameter can allow for them to be embedded into composite materials. Since the individual nanotubes have shown to have incredibly high strength, stiffness, and strain sensitivity, CNT yarns have the potential to be highly effective for in-situ structural health monitoring of advanced materials and structures. This work identifies the sources for losses in strength and electromechanical sensitivity. This is done by first understanding the physics involved with a CNT yarn under axial strain. Since this material is not a Newtonian solid, the stress-strain relationships are dissimilar to conventional materials, exhibiting a three zone behavior. This is present in both the stress-strain and resistance-strain relationships. A tensile test performed in-situ within a scanning electron microscope showed that the diameter of the yarn reduced greatly during tension, which indicates that the volume is not constant; therefore, the intratube/intrabundle load transfer efficiency and electrical conductivity change significantly under strain. Observation of this phenomenon helps elucidate the source for loss in the translation from nanoscopic CNTs to the macroscopic CNT yarns. Following the observation that the CNT yarn is not a solid body mechanics system, investigation into the long-standing field of textile engineering helped to identify that the CNT yarn structural hierarchy should be re-evaluated. Literary review reveals that the predominant base morphology of CNT yarns is bundles of CNTs as opposed to individual CNTs. Furthermore, in conventional textiles, it is well known that the base morphology (in textiles this is the "fiber") will bundle

  17. Characterization and genome analysis of the first facultatively alkaliphilic Thermodesulfovibrio isolated from the deep terrestrial subsurface

    Directory of Open Access Journals (Sweden)

    Yulia Frank

    2016-12-01

    Full Text Available Members of the genus Thermodesulfovibrio belong to the Nitrospirae phylum and all isolates characterized to date are neutrophiles. They have been isolated from terrestrial hot springs and thermophilic methanogenic anaerobic sludges. Their molecular signatures have, however, also been detected in deep subsurface. The purpose of this study was to characterize and analyze the genome of a newly isolated, moderately alkaliphilic Thermodesulfovibrio from a 2 km deep aquifer system in Western Siberia, Russia. The new isolate, designated N1, grows optimally at pH 8.5-9.0 and at 65 ºC. It is able to reduce sulfate, thiosulfate or sulfite with a limited range of electron donors such as formate, pyruvate and lactate. Analysis of the 1.93 Mb draft genome of strain N1 revealed that it contains a set of genes for dissimilatory sulfate reduction, including sulfate adenyltransferase, adenosine-5'-phosphosulfate reductase AprAB, membrane-bound electron transfer complex QmoABC, dissimilatory sulfite reductase DsrABC and sulfite reductase-associated electron transfer complex DsrMKJOP. Hydrogen turnover is enabled by soluble cytoplasmic, membrane-linked, and soluble periplasmic hydrogenases and a periplasmic formate dehydrogenase. The use of thiosulfate as an electron acceptor is enabled by a membrane-linked molybdopterin oxidoreductase. The N1 requirement for organic carbon sources corresponds to the lack of the autotrophic C1-fixation pathways. Comparative analysis of the genomes of Thermodesulfovibrio (T. yellowstonii, T. islandicus, T. аggregans, T. thiophilus, and strain N1 revealed a low overall genetic diversity and several adaptive traits. Consistent with an alkaliphilic lifestyle, a multisubunit Na+/H+ antiporter of the Mnh family is encoded in the Thermodesulfovibrio strain N1 genome. Nitrogenase genes were found in T. yellowstonii, T. aggregans, and T. islandicus, nitrate reductase in T. islandicus, and cellulose synthetase in T. aggregans and strain N

  18. In situ TEM and synchrotron characterization of U–10Mo thin specimen annealed at the fast reactor temperature regime

    International Nuclear Information System (INIS)

    Yun, Di; Mo, Kun; Mohamed, Walid; Ye, Bei; Kirk, Marquis A.; Baldo, Peter; Xu, Ruqing; Yacout, Abdellatif M.

    2015-01-01

    U–Mo metallic alloys have been extensively used for the Reduced Enrichment for Research and Test Reactors (RERTR) program, which is now known as the Office of Material Management and Minimization under the Conversion Program. This fuel form has also recently been proposed as fast reactor metallic fuels in the recent DOE Ultra-high Burnup Fast Reactor project. In order to better understand the behavior of U–10Mo fuels within the fast reactor temperature regime, a series of annealing and characterization experiments have been performed. Annealing experiments were performed in situ at the Intermediate Voltage Electron Microscope (IVEM-Tandem) facility at Argonne National Laboratory (ANL). An electro-polished U–10Mo alloy fuel specimen was annealed in situ up to 700 °C. At an elevated temperature of about 540 °C, the U–10Mo specimen underwent a relatively slow microstructure transition. Nano-sized grains were observed to emerge near the surface. At the end temperature of 700 °C, the near-surface microstructure had evolved to a nano-crystalline state. In order to clarify the nature of the observed microstructure, Laue diffraction and powder diffraction experiments were carried out at beam line 34-ID of the Advanced Photon Source (APS) at ANL. Phases present in the as-annealed specimen were identified with both Laue diffraction and powder diffraction techniques. The U–10Mo was found to recrystallize due to thermally-induced recrystallization driven by a high density of pre-existing dislocations. A separate in situ annealing experiment was carried out with a Focused Ion Beam processed (FIB) specimen. A similar microstructure transition occurred at a lower temperature of about 460 °C with a much faster transition rate compared to the electro-polished specimen. - Highlights: • TEM annealing experiments were performed in situ at the IVEM facility up to fast reactor temperature. • At 540 °C, the U-10Mo specimen underwent a slow microstructure transition

  19. In situ TEM and synchrotron characterization of U–10Mo thin specimen annealed at the fast reactor temperature regime

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Di, E-mail: diyun1979@xjtu.edu.cn [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Xi' an Jiao Tong University, 28 Xian Ning West Road, Xi' an 710049 (China); Mo, Kun; Mohamed, Walid; Ye, Bei; Kirk, Marquis A.; Baldo, Peter; Xu, Ruqing; Yacout, Abdellatif M. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2015-12-15

    U–Mo metallic alloys have been extensively used for the Reduced Enrichment for Research and Test Reactors (RERTR) program, which is now known as the Office of Material Management and Minimization under the Conversion Program. This fuel form has also recently been proposed as fast reactor metallic fuels in the recent DOE Ultra-high Burnup Fast Reactor project. In order to better understand the behavior of U–10Mo fuels within the fast reactor temperature regime, a series of annealing and characterization experiments have been performed. Annealing experiments were performed in situ at the Intermediate Voltage Electron Microscope (IVEM-Tandem) facility at Argonne National Laboratory (ANL). An electro-polished U–10Mo alloy fuel specimen was annealed in situ up to 700 °C. At an elevated temperature of about 540 °C, the U–10Mo specimen underwent a relatively slow microstructure transition. Nano-sized grains were observed to emerge near the surface. At the end temperature of 700 °C, the near-surface microstructure had evolved to a nano-crystalline state. In order to clarify the nature of the observed microstructure, Laue diffraction and powder diffraction experiments were carried out at beam line 34-ID of the Advanced Photon Source (APS) at ANL. Phases present in the as-annealed specimen were identified with both Laue diffraction and powder diffraction techniques. The U–10Mo was found to recrystallize due to thermally-induced recrystallization driven by a high density of pre-existing dislocations. A separate in situ annealing experiment was carried out with a Focused Ion Beam processed (FIB) specimen. A similar microstructure transition occurred at a lower temperature of about 460 °C with a much faster transition rate compared to the electro-polished specimen. - Highlights: • TEM annealing experiments were performed in situ at the IVEM facility up to fast reactor temperature. • At 540 °C, the U-10Mo specimen underwent a slow microstructure transition

  20. Synthesis and Characterization of Encapsulated Nanosilica Particles with an Acrylic Copolymer by in Situ Emulsion Polymerization Using Thermoresponsive Nonionic Surfactant

    Directory of Open Access Journals (Sweden)

    Daryoosh Vashaee

    2013-08-01

    Full Text Available Nanocomposites of encapsulated silica nanoparticles were prepared by in situ emulsion polymerization of acrylate monomers. The synthesized material showed good uniformity and dispersion of the inorganic components in the base polymer, which enhances the properties of the nanocomposite material. A nonionic surfactant with lower critical solution temperature (LCST was used to encapsulate the silica nanoparticles in the acrylic copolymer matrix. This in situ method combined the surface modification and the encapsulation in a single pot, which greatly simplified the process compared with other conventional methods requiring separate processing steps. The morphology of the encapsulated nanosilica particles was investigated by dynamic light scattering (DLS and transmission electron microscopy (TEM, which confirmed the uniform distribution of the nanoparticles without any agglomerations. A neat copolymer was also prepared as a control sample. Both the neat copolymer and the prepared nanocomposite were characterized by Fourier transform infrared spectroscopy (FTIR, thermal gravimetric analyses (TGA, dynamic mechanical thermal analysis (DMTA and the flame resistance test. Due to the uniform dispersion of the non-agglomerated nanoparticles in the matrix of the polymer, TGA and flame resistance test results showed remarkably improved thermal stability. Furthermore, DMTA results demonstrated an enhanced storage modulus of the nanocomposite samples compared with that of the neat copolymer, indicating its superior mechanical properties.

  1. In situ characterization of Ti-peroxy gel during formation on titanium surfaces in hydrogen peroxide containing solutions

    International Nuclear Information System (INIS)

    Muyco, Julie J.; Gray, Jeremy J.; Ratto, Timothy V.; Orme, Christine A.; McKittrick, Joanna; Frangos, John

    2006-01-01

    Three possible functions of Ti-peroxy gel are: reduction of the inflammatory response through the reduction of hydrogen peroxide and other reactive oxygen species; creation of a favorable surface for calcium phosphate nucleation; and as a transitional layer between the compliant surrounding tissue and the stiff titanium. Traditional surface characterization techniques operate in high vacuum environments that alter the actual sample-solution interface. Our studies used techniques that allowed samples to remain in solution and be observed over time. Atomic force microscopy (AFM) force-distance curves, electrochemical impedance spectroscopy (EIS), and Raman spectroscopy were each used in situ to define kinetic and mechanical properties of Ti-peroxy gel as it formed over time on titanium during exposure to hydrogen peroxide. Our studies enabled us to monitor real-time changes in the native oxide layer on titanium in hydrogen peroxide containing solution, including the formation of a Ti-peroxy gel layer above the native oxide. Peaks attributed to Ti-peroxy gel were seen to emerge over the course of several hours using in situ Raman spectroscopy. Force-distance curves suggest a layer that thickens with time on the titanium sample surface. EIS data showed that changes in the surface layers could be monitored in solution over time

  2. Lobular carcinoma in situ and invasive lobular breast cancer are characterized by enhanced expression of transcription factor AP-2β.

    Science.gov (United States)

    Raap, Mieke; Gronewold, Malte; Christgen, Henriette; Glage, Silke; Bentires-Alj, Mohammad; Koren, Shany; Derksen, Patrick W; Boelens, Mirjam; Jonkers, Jos; Lehmann, Ulrich; Feuerhake, Friedrich; Kuehnle, Elna; Gluz, Oleg; Kates, Ronald; Nitz, Ulrike; Harbeck, Nadia; Kreipe, Hans H; Christgen, Matthias

    2018-01-01

    Transcription factor AP-2β (TFAP2B) regulates embryonic organ development and is overexpressed in alveolar rhabdomyosarcoma, a rare childhood malignancy. Gene expression profiling has implicated AP-2β in breast cancer (BC). This study characterizes AP-2β expression in the mammary gland and in BC. AP-2β protein expression was assessed in the normal mammary gland epithelium, in various reactive, metaplastic and pre-invasive neoplastic lesions and in two clinical BC cohorts comprising >2000 patients. BCs from various genetically engineered mouse (GEM) models were also evaluated. Human BC cell lines served as functional models to study siRNA-mediated inhibition of AP-2β. The normal mammary gland epithelium showed scattered AP-2β-positive cells in the luminal cell layer. Various reactive and pre-invasive neoplastic lesions, including apocrine metaplasia, usual ductal hyperplasia and lobular carcinoma in situ (LCIS) showed enhanced AP-2β expression. Cases of ductal carcinoma in situ (DCIS) were more often AP-2β-negative (Pinvasive BC cohorts, AP-2β-positivity was associated with the lobular BC subtype (Plobular BC cell lines in vitro. In summary, AP-2β is a new mammary epithelial differentiation marker. Its expression is preferentially retained and enhanced in LCIS and invasive lobular BC and has prognostic implications. Our findings indicate that AP-2β controls tumor cell proliferation in this slow-growing BC subtype.

  3. CHARACTERIZATION OF IN-SITU STRESS AND PERMEABILITY IN FRACTURED RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Daniel R. Burns; M. Nafi Toksoz

    2005-02-04

    Numerical modeling and field data tests are presented on the Transfer Function/Scattering Index Method for estimating fracture orientation and density in subsurface reservoirs from the ''coda'' or scattered energy in the seismic trace. Azimuthal stacks indicate that scattered energy is enhanced along the fracture strike direction. A transfer function method is used to more effectively indicate fracture orientation. The transfer function method, which involves a comparison of the seismic signature above and below a reservoir interval, effectively eliminates overburden effects and acquisition imprints in the analysis. The transfer function signature is simplified into a scattering index attribute value that gives fracture orientation and spatial variations of the fracture density within a field. The method is applied to two field data sets, a 3-D Ocean Bottom Cable (OBC) seismic data set from an offshore fractured carbonate reservoir in the Adriatic Sea and a 3-D seismic data set from an onshore fractured carbonate field in the Middle East. Scattering index values are computed in both fields at the reservoir level, and the results are compared to borehole breakout data and Formation MicroImager (FMI) logs in nearby wells. In both cases the scattering index results are in very good agreement with the well data. Field data tests and well validation will continue. In the area of technology transfer, we have made presentations of our results to industry groups at MIT technical review meetings, international technical conferences, industry workshops, and numerous exploration and production company visits.

  4. In situ TEM/SEM electronic/mechanical characterization of nano material with MEMS chip

    International Nuclear Information System (INIS)

    Wang Yuelin; Li Tie; Zhang Xiao; Zeng Hongjiang; Jin Qinhua

    2014-01-01

    Our investigation of in situ observations on electronic and mechanical properties of nano materials using a scanning electron microscope (SEM) and a transmission electron microscope (TEM) with the help of traditional micro-electro-mechanical system (MEMS) technology has been reviewed. Thanks to the stability, continuity and controllability of the loading force from the electrostatic actuator and the sensitivity of the sensor beam, a MEMS tensile testing chip for accurate tensile testing in the nano scale is obtained. Based on the MEMS chips, the scale effect of Young's modulus in silicon has been studied and confirmed directly in a tensile experiment using a transmission electron microscope. Employing the nanomanipulation technology and FIB technology, Cu and SiC nanowires have been integrated into the tensile testing device and their mechanical, electronic properties under different stress have been achieved, simultaneously. All these will aid in better understanding the nano effects and contribute to the designation and application in nano devices. (invited papers)

  5. In Situ Structural Characterization of Ferric Iron Dimers in Aqueous Solutions

    DEFF Research Database (Denmark)

    Zhu, Mengqiang; Puls, Brendan W.; Frandsen, Cathrine

    2013-01-01

    The structure of ferric iron (Fe3+) dimers in aqueous solutions has long been debated. In this work, we have determined the dimer structure in situ in aqueous solutions using extended X-ray absorption fine structure (EXAFS) spectroscopy. An Fe K-edge EXAFS analysis of 0.2 M ferric nitrate solutions...... at pH 1.28–1.81 identified a Fe–Fe distance at ∼3.6 Å, strongly indicating that the dimers take the μ-oxo form. The EXAFS analysis also indicates two short Fe–O bonds at ∼1.80 Å and ten long Fe–O bonds at ∼2.08 Å, consistent with the μ-oxo dimer structure. The scattering from the Fe–Fe paths interferes...... confirmed by Mössbauer analyses of analogous quick frozen solutions. This work also explores the electronic structure and the relative stability of the μ-oxo dimer in a comparison to the dihydroxo dimer using density function theory (DFT) calculations. The identification of such dimers in aqueous solutions...

  6. Characterization and optimization of spiral eddy current coils for in-situ crack detection

    Science.gov (United States)

    Mandache, Catalin

    2018-03-01

    In-situ condition-based maintenance is making strides in the aerospace industry and it is seen as an alternative to scheduled, time-based maintenance. With fatigue cracks originating from fastener holes as the main reason for structural failures, embedded eddy current coils are a viable non-invasive solution for their timely detection. The development and potential broad use of these coils are motivated by a few consistent arguments: (i) inspection of structures of complicated geometries and hard to access areas, that often require disassembly, (ii) alternative to regular inspection actions that could introduce inadvertent damage, (iii) for structures that have short inspection intervals, and (iv) for repaired structures where fastener holes contain bushings and prevent further bolt-hole inspections. Since the spiral coils are aiming at detecting radial cracks emanating from the fastener holes, their design parameters should allow for high inductance, low ohmic losses and power requirements, as well as optimal size and high sensitivity to discontinuities. In this study, flexible, surface conformable, spiral eddy current coils are empirically investigated on mock-up specimens, while numerical analysis is performed for their optimization and design improvement.

  7. Single-Crystal Tungsten Carbide in High-Temperature In-Situ Additive Manufacturing Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Kolopus, James A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boatner, Lynn A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-05-18

    Nanoindenters are commonly used for measuring the mechanical properties of a wide variety of materials with both industrial and scientific applications. Typically, these instruments employ an indenter made of a material of suitable hardness bonded to an appropriate shaft or holder to create an indentation on the material being tested. While a variety of materials may be employed for the indenter, diamond and boron carbide are by far the most common materials used due to their hardness and other desirable properties. However, as the increasing complexity of new materials demands a broader range of testing capabilities, conventional indenter materials exhibit significant performance limitations. Among these are the inability of diamond indenters to perform in-situ measurements at temperatures above 600oC in air due to oxidation of the diamond material and subsequent degradation of the indenters mechanical properties. Similarly, boron carbide also fails at high temperature due to fracture. [1] Transition metal carbides possess a combination of hardness and mechanical properties at high temperatures that offer an attractive alternative to conventional indenter materials. Here we describe the technical aspects for the growth of single-crystal tungsten carbide (WC) for use as a high-temperature indenter material, and we examine a possible approach to brazing these crystals to a suitable mount for grinding and attachment to the indenter instrument. The use of a by-product of the recovery process is also suggested as possibly having commercial value.

  8. In-situ ATR-FTIR for characterization of thin biorelated polymer films

    International Nuclear Information System (INIS)

    Müller, M.; Torger, B.; Bittrich, E.; Kaul, E.; Ionov, L.; Uhlmann, P.; Stamm, M.

    2014-01-01

    We present and review in-situ-attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopic data from thin biorelated polymer films useful for the modification and functionalization of polymer and inorganic materials and discuss their applications related to life sciences. A special ATR mirror attachment operated by the single-beam-sample-reference (SBSR) concept and housing a homebuilt thermostatable flow cell was used, which allows for appropriate background compensation and signal to noise ratio. ATR-FTIR data on the reactive deposition of dopamine on inorganic model surfaces are shown. Information on the structure and deposition pathway for such bioinspired melanin-like films is provided. ATR-FTIR data on thermosensitive polymer brushes of poly(N-isopropylacrylamide) (PNIPAAM) is then presented. The thermotropic hydration and hydrogen bonding behavior of PNIPAAM brush films is described. Finally, ATR-FTIR data on biorelated polyelectrolyte multilayers (PEM) are given together with details on PEM growth and detection. Applications of these latter films for biopassivation/activation and local drug delivery are addressed

  9. Real time in situ spectroscopic characterization of radiation induced cationic polymerization of glycidyl ethers

    International Nuclear Information System (INIS)

    Mascioni, Matteo; Sands, James M.; Palmese, Giuseppe R.

    2003-01-01

    Radiation curable polymeric materials suffer from relatively poor mechanical properties. Moreover, the curing behavior of such systems (i.e. the exact relationship between chemical kinetics and key processing variables) is not fully understood. In order to design improved epoxy based electron beam (EB) curable systems, and in order to develop appropriate process models, a detailed knowledge of the kinetics of epoxy cationic polymerization induced by ultraviolet (UV) or EB irradiation is required. In this work, we present our development of a technique based on real time near infrared (RTIR) spectroscopy for performing in situ kinetic analysis of radiation induced cationic polymerization of epoxy systems. To our knowledge this is the first time such data have been collected and presented for high-energy EB (10 MeV) induced polymerization. A demonstration of the technique for deterministic evaluation of degree of cure is shown using model glycidyl ether (phenyl glycidyl ether and diglycidyl ether of bisphenol A) resins and isothermal curing conditions. The impact of initiation rate on polymerizations with UV and EB for the cationic initiator is directly evident by comparative analysis. The sensitivity of the RTIR method and ability to produce quantitative data evidence of reaction mechanisms is demonstrated. The type of data presented in this work forms the basis for cure models being developed

  10. Design and Characterization of Bioadhesive In-Situ Gelling Ocular Inserts of Gatifloxacin Sesquihydrate

    Directory of Open Access Journals (Sweden)

    Mishra D.N.

    2008-03-01

    Full Text Available Background and purpose of the study: Several polymeric systems have been used to fabricate ocular inserts for better ocular bioavailability and retention to drug of which gelling systems have shown advantages of convenient administration and increased contact time. The purpose of the present study was to develop a bioadhesive in-situe gelling ocular insert of Gatifloxacin using polymeric system of sodium alginate as gelling and chitosan as bioadhesive agent.Materials and methods: Polymeric ocular inserts of Gatifloxacin sesquehydrate (GS were composed using sodium alginate and chitosan with glycerin as plasticizer by solvent casting method. The ocular inserts were investigated for physicochemical properties (thickness, weight variation, folding endurance and surface pH, mechanical strength (tensile strength, elongation at break, swelling index, and bioadhesion parameters. In vitro release studies were carried using a fabricated donor-receptor compartment model. Results: Cumulative drug released from the formulation ranged from 95-99% within 8-12h. The formulation D (2% sodium alginate and 1% chitosan sustained the drug release for the longest period of time (12h. Zero-order release of the drug was from optimized formulation D. A high correlation coefficient (r=0.9845 was recorded between in vitro and in vivo drug release.Conclusion: Gatifloxacin sesquehydrate inserts have appreciable film forming properties and were found to posses good antimicrobial efficacy.

  11. Characterization of Silver Nanoparticle In Situ Synthesis on Porous Sericin Gel for Antibacterial Application

    Directory of Open Access Journals (Sweden)

    Gang Tao

    2016-01-01

    Full Text Available Sericin from Bombyx mori cocoon has good hydrophilicity, reaction activity, biocompatibility, and biodegradability, which has shown great potentials for biomedical materials. Here, an ultraviolet light-assisted in situ synthesis approach is developed to immobilize silver nanoparticles on the surface of sericin gel. The amount of silver nanoparticles immobilized on the surface of sericin gel could be regulated by the irradiation time. The porous structure and property of sericin gel were not affected by the modification of AgNPs, as evidenced by the observation of scanning electron microscopy, X-ray diffractometry, and Fourier transform infrared spectroscopy. Differential scanning calorimetry analysis showed that the modification of AgNPs increased the thermal stability of sericin gel. The growth curve of bacteria and inhibition zone assays suggested that the sericin gel modified with AgNPs had good antimicrobial activities against both Gram-negative and Gram-positive bacteria. This novel sericin has shown a great potential for biomedical purpose.

  12. In situ characterization of uranium and americium oxide solid solution formation for CRMP process: first combination of in situ XRD and XANES measurements.

    Science.gov (United States)

    Caisso, Marie; Picart, Sébastien; Belin, Renaud C; Lebreton, Florent; Martin, Philippe M; Dardenne, Kathy; Rothe, Jörg; Neuville, Daniel R; Delahaye, Thibaud; Ayral, André

    2015-04-14

    Transmutation of americium in heterogeneous mode through the use of U1-xAmxO2±δ ceramic pellets, also known as Americium Bearing Blankets (AmBB), has become a major research axis. Nevertheless, in order to consider future large-scale deployment, the processes involved in AmBB fabrication have to minimize fine particle dissemination, due to the presence of americium, which considerably increases the risk of contamination. New synthesis routes avoiding the use of pulverulent precursors are thus currently under development, such as the Calcined Resin Microsphere Pelletization (CRMP) process. It is based on the use of weak-acid resin (WAR) microspheres as precursors, loaded with actinide cations. After two specific calcinations under controlled atmospheres, resin microspheres are converted into oxide microspheres composed of a monophasic U1-xAmxO2±δ phase. Understanding the different mechanisms during thermal conversion, that lead to the release of organic matter and the formation of a solid solution, appear essential. By combining in situ techniques such as XRD and XAS, it has become possible to identify the key temperatures for oxide formation, and the corresponding oxidation states taken by uranium and americium during mineralization. This paper thus presents the first results on the mineralization of (U,Am) loaded resin microspheres into a solid solution, through in situ XAS analysis correlated with HT-XRD.

  13. CHARACTERIZATION OF IN-SITU STRESS AND PERMEABILITY IN FRACTURED RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Daniel R. Burns; M. Nafi Toksoz

    2004-07-19

    Expanded details and additional results are presented on two methods for estimating fracture orientation and density in subsurface reservoirs from scattered seismic wavefield signals. In the first, fracture density is estimated from the wavenumber spectra of the integrated amplitudes of the scattered waves as a function of offset in pre-stack data. Spectral peaks correctly identified the 50m, 35m, and 25m fracture spacings from numerical model data using a 40Hz source wavelet. The second method, referred to as the Transfer Function-Scattering Index Method, is based upon observations from 3D finite difference modeling that regularly spaced, discrete vertical fractures impart a ringing coda-type signature to any seismic energy that is transmitted through or reflected off of them. This coda energy is greatest when the acquisition direction is parallel to the fractures, the seismic wavelengths are tuned to the fracture spacing, and when the fractures have low stiffness. The method uses surface seismic reflection traces to derive a transfer function, which quantifies the change in an apparent source wavelet propagating through a fractured interval. The transfer function for an interval with low scattering will be more spike-like and temporally compact. The transfer function for an interval with high scattering will ring and be less temporally compact. A Scattering Index is developed based on a time lag weighting of the transfer function. When a 3D survey is acquired with a full range of azimuths, the Scattering Index allows the identification of subsurface areas with high fracturing and the orientation (or strike) of those fractures. The method was calibrated with model data and then applied to field data from a fractured reservoir giving results that agree with known field measurements. As an aid to understanding the scattered wavefield seen in finite difference models, a series of simple point scatterers was used to create synthetic seismic shot records collected over

  14. Comparative cytogenetic characterization of primary canine melanocytic lesions using array CGH and fluorescence in situ hybridization.

    Science.gov (United States)

    Poorman, Kelsey; Borst, Luke; Moroff, Scott; Roy, Siddharth; Labelle, Philippe; Motsinger-Reif, Alison; Breen, Matthew

    2015-06-01

    Melanocytic lesions originating from the oral mucosa or cutaneous epithelium are common in the general dog population, with up to 100,000 diagnoses each year in the USA. Oral melanoma is the most frequent canine neoplasm of the oral cavity, exhibiting a highly aggressive course. Cutaneous melanocytomas occur frequently, but rarely develop into a malignant form. Despite the differential prognosis, it has been assumed that subtypes of melanocytic lesions represent the same disease. To address the relative paucity of information about their genomic status, molecular cytogenetic analysis was performed on the three recognized subtypes of canine melanocytic lesions. Using array comparative genomic hybridization (aCGH) analysis, highly aberrant distinct copy number status across the tumor genome for both of the malignant melanoma subtypes was revealed. The most frequent aberrations included gain of dog chromosome (CFA) 13 and 17 and loss of CFA 22. Melanocytomas possessed fewer genome wide aberrations, yet showed a recurrent gain of CFA 20q15.3-17. A distinctive copy number profile, evident only in oral melanomas, displayed a sigmoidal pattern of copy number loss followed immediately by a gain, around CFA 30q14. Moreover, when assessed by fluorescence in situ hybridization (FISH), copy number aberrations of targeted genes, such as gain of c-MYC (80 % of cases) and loss of CDKN2A (68 % of cases), were observed. This study suggests that in concordance with what is known for human melanomas, canine melanomas of the oral mucosa and cutaneous epithelium are discrete and initiated by different molecular pathways.

  15. Rapid characterization of agglomerate aerosols by in situ mass-mobility measurements.

    Science.gov (United States)

    Scheckman, Jacob H; McMurry, Peter H; Pratsinis, Sotiris E

    2009-07-21

    Transport and physical/chemical properties of nanoparticle agglomerates depend on primary particle size and agglomerate structure (size, fractal dimension, and dynamic shape factor). This research reports on in situ techniques for measuring such properties. Nanoparticle agglomerates of silica were generated by oxidizing hexamethyldisiloxane in a methane/oxygen diffusion flame. Upon leaving the flame, agglomerates of known electrical mobility size were selected with a differential mobility analyzer (DMA), and their mass was measured with an aerosol particle mass analyzer (APM), resulting in their mass fractal dimension, D(f), and dynamic shape factor, chi. Scanning and transmission electron microscopy (SEM/TEM) images were used to determine primary particle diameter and to qualitatively investigate agglomerate morphology. The DMA-APM measurements were reproducible within 5%, as determined by multiple measurements on different days under the same flame conditions. The effects of flame process variables (oxygen flow rate and mass production rate) on particle characteristics (D(f), and chi) were determined. All generated particles were fractal-like agglomerates with average primary particle diameters of 12-93 nm and D(f) = 1.7-2.4. Increasing the oxygen flow rate decreased primary particle size and D(f), while it increased chi. Increasing the production rate increased the agglomerate and primary particle sizes, and decreased chi without affecting D(f). The effects of oxygen flow rate and particle production rate on primary particle size reported here are in agreement with ex situ measurements in the literature, while the effect of process variables on agglomerate shape (chi) is demonstrated for the first time to our knowledge.

  16. CHARACTERIZATION OF IN-SITU STRESS AND PERMEABILITY IN FRACTURED RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Daniel R. Burns; M. Nafi Toksoz

    2002-12-31

    We have extended a three-dimensional finite difference elastic wave propagation model previously developed at the Massachusetts Institute of Technology (MIT) Earth Resources Laboratory (ERL) for modeling and analyzing the effect of fractures on seismic waves. The code has been translated into C language and parallelized [using message passing interface (MPI)] to allow for larger models to be run on Linux PC computer clusters. We have also obtained another 3-D code from Lawrence Berkeley Laboratory, which we will use for verification of our ERL code results and also to run discrete fracture models. Testing of both codes is underway. We are working on a new finite difference model of borehole wave propagation for stressed formations. This code includes coordinate stretching to provide stable, variable grid sizes that will allow us to model the thin fluid annulus layers in borehole problems, especially for acoustic logging while drilling (LWD) applications. We are also extending our analysis routines for the inversion of flexural wave dispersion measurements for in situ stress estimates. Initial results on synthetic and limited field data are promising for a method to invert cross dipole data for the rotation angle and stress state simultaneously. A meeting is being scheduled between MIT and Shell Oil Company scientists to look at data from a fractured carbonate reservoir that may be made available to the project. The Focus/Disco seismic processing system from Paradigm Geophysical has been installed at ERL for field data analysis and as a platform for new analysis modules. We have begun to evaluate the flow properties of discrete fracture distributions through a simple 2D numerical model. Initial results illustrate how fluid flow pathways are very sensitive to variations in the geometry and apertures of fracture network.

  17. Combining in situ characterization methods in one set-up: looking with more eyes into the intricate chemistry of the synthesis and working of heterogeneous catalysts.

    Science.gov (United States)

    Bentrup, Ursula

    2010-12-01

    Several in situ techniques are known which allow investigations of catalysts and catalytic reactions under real reaction conditions using different spectroscopic and X-ray methods. In recent years, specific set-ups have been established which combine two or more in situ methods in order to get a more detailed understanding of catalytic systems. This tutorial review will give a summary of currently available set-ups equipped with multiple techniques for in situ catalyst characterization, catalyst preparation, and reaction monitoring. Besides experimental and technical aspects of method coupling including X-ray techniques, spectroscopic methods (Raman, UV-vis, FTIR), and magnetic resonance spectroscopies (NMR, EPR), essential results will be presented to demonstrate the added value of multitechnique in situ approaches. A special section is focussed on selected examples of use which show new developments and application fields.

  18. Synthesis and Characterization of the in Situ Bulk Polymerization of PMMA Containing Graphene Sheets Using Microwave Irradiation

    Directory of Open Access Journals (Sweden)

    Mohammad A. Aldosari

    2013-03-01

    Full Text Available Polymethylmethacrylate–graphene (PMMA/RGO nanocomposites were prepared via in situ bulk polymerization using two different preparation techniques. In the first approach, a mixture of graphite oxide (GO and methylmethacrylate monomers (MMA were polymerized using a bulk polymerization method with a free radical initiator. After the addition of the reducing agent hydrazine hydrate (HH, the product was reduced via microwave irradiation (MWI to obtain R-(GO-PMMA composites. In the second approach, a mixture of graphite sheets (RGO and MMA monomers were polymerized using a bulk polymerization method with a free radical initiator to obtain RGO-(PMMA composites. The composites were characterized by FTIR, 1H-NMR and Raman spectroscopy and XRD, SEM, TEM, TGA and DSC. The results indicate that the composite obtained using the first approach, which involved MWI, had a better morphology and dispersion with enhanced thermal stability compared with the composites prepared without MWI.

  19. In situ, real-time catabolic gene expression: Extraction and characterization of naphthalene dioxygenase mRNA transcripts from groundwater

    International Nuclear Information System (INIS)

    Wilson, M.S.; Bakermans, C.; Madsen, E.L.

    1999-01-01

    The authors developed procedures for isolating and characterizing in situ-transcribed mRNA from groundwater microorganisms catabolizing naphthalene at a coal tar waste-contaminated site. Groundwater was pumped through 0.22-microm-pore-size filters, which were then frozen to dry ice-ethanol. RNA was extracted from the frozen filters by boiling sodium dodecyl sulfate lysis and acidic phenol-chloroform extraction. Transcript characterization was performed with a series of PCR primers designed to amplify nahAc homologs. Several primer pairs were found to amplify nahAc homologs representing the entire diversity of the naphthalene-degrading genes. The environmental RNA extract was reverse transcribed, and the resultant mixture of cDNAs was amplified by PCR. A digoxigenin-labeled probe mixture was produced by PCR amplification of groundwater cDNA. This probe mixture hybridized under stringent conditions with the corresponding PCR products from naphthalene-degrading bacteria carrying a variety of nahAc homologs, indicating that diverse dioxygenase transcripts had been retrieved from groundwater. Diluted and undiluted cDNA preparations were independently amplified, and 28 of the resulting PCR products were cloned and sequenced. Sequence comparisons revealed two major groups related to the dioxygenase genes ndoB and dntAc, previously cloned from Pseudomonas putida NCIB 9816-4 and Burkholderia sp. strain DNT, respectively. A distinctive subgroup of sequences was found only in experiments performed with the undiluted cDNA preparation. To the authors' knowledge, these results are the first to directly document in situ transcription of genes encoding naphthalene catabolism at a contaminated site by indigenous microorganisms. The retrieved sequences represent greater diversity than has been detected at the study site by culture-based approaches

  20. Physicochemical characterization of in situ drug-polymer nanocomplex formed between zwitterionic drug and ionomeric material in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Salamanca, Constain H., E-mail: chsalamanca@icesi.edu.co [Pharmaceutical physical chemistry laboratory, Department of Pharmacy, Faculty of Natural Sciences, ICESI University, Cali (Colombia); Castillo, Duvan F.; Villada, Juan D. [Pharmaceutical physical chemistry laboratory, Department of Pharmacy, Faculty of Natural Sciences, ICESI University, Cali (Colombia); Rivera, Gustavo R. [SIT Biotech GmbH, BMZ 2 Otto-Hahn-Str. 15, 44227 Dortmund (Germany)

    2017-03-01

    Biocompatible polymeric materials with the potential to form functional structures, in association with different therapeutic molecules, in physiological media, represent a great potential for biological and pharmaceutical applications. Therefore, here the formation of a nano-complex between a synthetic cationic polymer and model drug (ampicillin trihydrate) was studied. The formed complex was characterized by size and zeta potential measurements, using dynamic light scattering and capillary electrophoresis. Moreover, the chemical and thermodynamically stability of these complexes were studied. The ionomeric material, here referred as EuCl, was obtained by equimolar reaction between Eudragit E and HCl. The structural characterization was carried out by potentiometric titration, FTIR spectroscopy, and DSC. The effect of pH, time, polymer concentration and ampicillin/polymer molar ratio over the hydrodynamic diameter and zeta potential were established. The results show that EuCl ionomer in aqueous media presents two different populations of nanoparticles; one of this tends to form flocculated aggregates in high pH and concentrations, by acquiring different conformations in solution by changing from a compact to an extended conformation. Moreover, the formation of an in situ interfacial polymer-drug complex was demonstrated, this could slightly reduce the hydrolytic degradation of the drug while affecting its solubility, mainly under acidic conditions. - Highlights: • The EuCl ionomer in aqueous media presents two different populations of nanoparticle, corresponding to proximally 15 nm and 150 nm. • The EuCl ionomer in aqueous media may form different structure depending on the pH and polymer concentration, which tends to form flocculated aggregates in high pH and concentrations. • The formation of an in situ interfacial polymer-drug complex was demonstrated, which could slightly reduce the hydrolytic degradation of the drug and affecting its solubility in

  1. Use of Large-Scale Multi-Configuration EMI Measurements to Characterize Subsurface Structures of the Vadose Zone.

    Science.gov (United States)

    Huisman, J. A.; Brogi, C.; Pätzold, S.; Weihermueller, L.; von Hebel, C.; Van Der Kruk, J.; Vereecken, H.

    2017-12-01

    Subsurface structures of the vadose zone can play a key role in crop yield potential, especially during water stress periods. Geophysical techniques like electromagnetic induction EMI can provide information about dominant shallow subsurface features. However, previous studies with EMI have typically not reached beyond the field scale. We used high-resolution large-scale multi-configuration EMI measurements to characterize patterns of soil structural organization (layering and texture) and their impact on crop productivity at the km2 scale. We collected EMI data on an agricultural area of 1 km2 (102 ha) near Selhausen (NRW, Germany). The area consists of 51 agricultural fields cropped in rotation. Therefore, measurements were collected between April and December 2016, preferably within few days after the harvest. EMI data were automatically filtered, temperature corrected, and interpolated onto a common grid of 1 m resolution. Inspecting the ECa maps, we identified three main sub-areas with different subsurface heterogeneity. We also identified small-scale geomorphological structures as well as anthropogenic activities such as soil management and buried drainage networks. To identify areas with similar subsurface structures, we applied image classification techniques. We fused ECa maps obtained with different coil distances in a multiband image and applied supervised and unsupervised classification methodologies. Both showed good results in reconstructing observed patterns in plant productivity and the subsurface structures associated with them. However, the supervised methodology proved more efficient in classifying the whole study area. In a second step, we selected hundred locations within the study area and obtained a soil profile description with type, depth, and thickness of the soil horizons. Using this ground truth data it was possible to assign a typical soil profile to each of the main classes obtained from the classification. The proposed methodology was

  2. Synthesis and characterization of polypropylene/graphite nano composite preparation for in situ polymerization; Sintese e caracterizacao de nanocompositos polipropileno/grafite obtidos pela polimerizacao in situ

    Energy Technology Data Exchange (ETDEWEB)

    Montagna, L.S.; Fim, F. de C.; Galland, G.B. [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Inst. de Quimica; Basso, N.R.S., E-mail: nrbass@pucrs.b [Pontificia Universidade Catolica do Rio Grande do Sul (PUC-RS), Porto Alegre, RS (Brazil)

    2010-07-01

    This paper presents the synthesis of polypropylene/graphite nanocomposites through in situ polymerization, using the metallocene catalyst C{sub 20}H{sub 16}Cl{sub 2}Zr (dichloro(rac-ethylenebis(indenyl))zircon(IV)). The graphite nanosheets in nano dimensions were added to the polymer matrix in percentages of 0.6;1.0;4.2;4.8 and 6.0% (w/w). The TEM images indicated that the thickness of graphite nanosheets ranged from 4 to 60 nm and by means of XRD analysis it was observed that the physical and chemical treatment did not destroyed the graphite layers. The presence of nanosheets did not decrease the catalytic activity of the nanocomposites. TEM images and XRD analysis of nanocomposites showed a good dispersion of the graphite nanosheets in the polypropylene matrix. (author)

  3. Characterization of a Subsurface Biosphere in a Massive Sulfide Deposits at Rio Tinto, Spain: Implications for Extant Life on Mars

    Science.gov (United States)

    Stoker, C. R.; Stevens, T.; Amils, R.; Gomez-Elvira, J.; Rodriquez, N.; Gomez, F.; Gonzalez-Toril, E.; Aguilera, A.; Fernandez-Remolar, D.; Dunagan, S.

    2005-01-01

    The recent discovery of abundant sulfate minerals, particularly Jarosite by the Opportunity Rover at Sinus Merdiani on Mars has been interpreted as evidence for an acidic lake or sea on ancient Mars [1,2], since the mineral Jarosite is soluble in liquid water at pH above 4. The most likely mechanism to produce sufficient protons to acidify a large body of liquid water is near surface oxidation of pyrite rich deposits [3]. The acidic waters of the Rio Tinto, and the associated deposits of Hematite, Goethite, and Jarosite have been recognized as an important chemical analog to the Sinus Merdiani site on Mars [4]. The Rio Tinto is a river in southern Spain that flows 100 km from its source in the Iberian pyrite belt, one of the Earth s largest Volcanically Hosted Massive Sulfide (VHMS) provinces, into the Atlantic ocean. The river originates in artesian springs emanating from ground water that is acidified by the interaction with subsurface pyrite ore deposits. The Mars Analog Rio Tinto Experiment (MARTE) has been investigating the hypothesis that a subsurface biosphere exists at Rio Tinto living within the VHMS deposit living on chemical energy derived from sulfur and iron minerals. Reduced iron and sulfur might provide electron donors for microbial metabolism while in situ oxidized iron or oxidants entrained in recharge water might provide electron acceptors.

  4. Characterization of a Subsurface Biosphere in a Massive Sulfide Deposit At Rio Tinto, Spain: Implications For Extant Life On Mars

    Science.gov (United States)

    Stoker, C. R.; Stevens, T.; Amils, R.; Gomez-Elvira, J.; Rodriguez, N.; Gomez, F.; Gonzalez-Toril, E.; Aguilera, A.; Fernandez-Remolar, D.; Dunagan, S.

    2005-01-01

    The recent discovery of abundant sulfate minerals, particularly Jarosite by the Opportunity Rover at Sinus Merdiani on Mars has been interpreted as evidence for an acidic lake or sea on ancient Mars [1,2], since the mineral Jarosite is soluble in liquid water at pH above 4. The most likely mechanism to produce sufficient protons to acidify a large body of liquid water is near surface oxidation of pyrite rich deposits [3]. The acidic waters of the Rio Tinto, and the associated deposits of Hematite, Goethite, and Jarosite have been recognized as an important chemical analog to the Sinus Merdiani site on Mars [4]. The Rio Tinto is a river in southern Spain that flows 100 km from its source in the Iberian pyrite belt, one of the Earth's largest Volcanically Hosted Massive Sulfide (VHMS) provinces, into the Atlantic ocean. The river originates in artesian springs emanating from ground water that is acidified by the interaction with subsurface pyrite ore deposits. The Mars Analog Rio Tinto Experiment (MARTE) has been investigating the hypothesis that a subsurface biosphere exists at Rio Tinto living within the VHMS deposit living on chemical energy derived from sulfur and iron minerals. Reduced iron and sulfur might provide electron donors for microbial metabolism while in situ oxidized iron or oxidants entrained in recharge water might provide electron acceptors.

  5. Comprehensive Airborne in Situ Characterization of Atmospheric Aerosols: From Angular Light Scattering to Particle Microphysics

    Science.gov (United States)

    Espinosa, W. Reed

    A comprehensive understanding of atmospheric aerosols is necessary both to understand Earth's climate as well as produce skillful air quality forecasts. In order to advance our understanding of aerosols, the Laboratory for Aerosols, Clouds and Optics (LACO) has recently developed the Imaging Polar Nephelometer instrument concept for the in situ measurement of aerosol scattering properties. Imaging Nephelometers provide measurements of absolute phase function and polarized phase function over a wide angular range, typically 3 degrees to 177 degrees, with an angular resolution smaller than one degree. The first of these instruments, the Polarized Imaging Nephelometer (PI-Neph), has taken part in five airborne field experiments and is the only modern aerosol polar nephelometer to have flown aboard an aircraft. A method for the retrieval of aerosol optical and microphysical properties from I-Neph measurements is presented and the results are compared with existing measurement techniques. The resulting retrieved particle size distributions agree to within experimental error with measurements made by commercial optical particle counters. Additionally, the retrieved real part of the refractive index is generally found to be within the predicted error of 0.02 from the expected values for three species of humidified salt particles, whose refractive index is well established. A synopsis is then presented of aerosol scattering measurements made by the PI-Neph during the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) and the Deep Convection Clouds and Chemistry (DC3) field campaigns. To better summarize these extensive datasets a novel aerosol classification scheme is developed, making use of ancillary data that includes gas tracers, chemical composition, aerodynamic particle size and geographic location, all independent of PI-Neph measurements. Principal component analysis (PCA) is then used to reduce the

  6. Applications of in situ cosmogenic nuclides in the geologic site characterization of Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Gosse, J.C.; Harrington, C.D.

    1995-01-01

    The gradual buildup of rare isotopes from interactions between cosmic rays and atoms in an exposed rock provides a new method of directly determining the exposure age of rock surfaces. The cosmogenic nuclide method can also provide constraints on erosion rates and the length of time surface exposure was interrupted by burial. Numerous successful applications of the technique have been imperative to the complete surface geologic characterization of Yucca Mountain, Nevada, a potential high level nuclear waste repository. In this short paper, we summarize the cosmogenic nuclide method and describe with examples some the utility of the technique in geologic site characterization. We report preliminary results from our ongoing work at Yucca Mountain

  7. Phase transformation in δ-Pu alloys at low temperature: An in situ microstructural characterization using X-ray diffraction

    International Nuclear Information System (INIS)

    Ravat, B.; Platteau, C.; Texier, G.; Oudot, B.; Delaunay, F.

    2009-01-01

    In order to investigate the martensitic transformation, an isothermal hold at -130 deg. C for 48 h was performed on a highly homogenized PuGa alloy. The modifications of the microstructure were characterized in situ thanks to a specific tool. This device was developed at the CEA-Valduc to analyze the crystalline structure of plutonium alloys as a function of temperature and more especially at low temperature using X-ray diffraction. The analysis of the recorded diffraction patterns highlighted that the martensitic transformation for this alloy is the result of a direct δ → α' + δ phase transformation. Moreover, a significant Bragg's peaks broadening corresponding to the δ-phase was observed. A microstructural analysis was made to characterize anisotropic microstrain resulting from the stress induced by the unit cell volume difference between the δ and α' phases. The amount of α'-phase evolved was analyzed within the framework of the Avrami theory in order to characterize the nucleation process. The results suggested that the growth mechanism corresponded to a general mechanism where the nucleation sites were in the δ-grain edges and the α'-phase had a plate-like morphology.

  8. Phase transformation in δ-Pu alloys at low temperature: An in situ microstructural characterization using X-ray diffraction

    Science.gov (United States)

    Ravat, B.; Platteau, C.; Texier, G.; Oudot, B.; Delaunay, F.

    2009-09-01

    In order to investigate the martensitic transformation, an isothermal hold at -130 °C for 48 h was performed on a highly homogenized PuGa alloy. The modifications of the microstructure were characterized in situ thanks to a specific tool. This device was developed at the CEA-Valduc to analyze the crystalline structure of plutonium alloys as a function of temperature and more especially at low temperature using X-ray diffraction. The analysis of the recorded diffraction patterns highlighted that the martensitic transformation for this alloy is the result of a direct δ → α' + δ phase transformation. Moreover, a significant Bragg's peaks broadening corresponding to the δ-phase was observed. A microstructural analysis was made to characterize anisotropic microstrain resulting from the stress induced by the unit cell volume difference between the δ and α' phases. The amount of α'-phase evolved was analyzed within the framework of the Avrami theory in order to characterize the nucleation process. The results suggested that the growth mechanism corresponded to a general mechanism where the nucleation sites were in the δ-grain edges and the α'-phase had a plate-like morphology.

  9. Phase transformation in delta-Pu alloys at low temperature: An in situ microstructural characterization using X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Ravat, B., E-mail: brice.ravat@cea.f [CEA, Valduc, F-21120 Is-sur-Tille (France); Platteau, C.; Texier, G.; Oudot, B.; Delaunay, F. [CEA, Valduc, F-21120 Is-sur-Tille (France)

    2009-09-15

    In order to investigate the martensitic transformation, an isothermal hold at -130 deg. C for 48 h was performed on a highly homogenized PuGa alloy. The modifications of the microstructure were characterized in situ thanks to a specific tool. This device was developed at the CEA-Valduc to analyze the crystalline structure of plutonium alloys as a function of temperature and more especially at low temperature using X-ray diffraction. The analysis of the recorded diffraction patterns highlighted that the martensitic transformation for this alloy is the result of a direct delta -> alpha' + delta phase transformation. Moreover, a significant Bragg's peaks broadening corresponding to the delta-phase was observed. A microstructural analysis was made to characterize anisotropic microstrain resulting from the stress induced by the unit cell volume difference between the delta and alpha' phases. The amount of alpha'-phase evolved was analyzed within the framework of the Avrami theory in order to characterize the nucleation process. The results suggested that the growth mechanism corresponded to a general mechanism where the nucleation sites were in the delta-grain edges and the alpha'-phase had a plate-like morphology.

  10. Estimating the Reactivation Potential of Pre-Existing Fractures in Subsurface Granitoids from Outcrop Analogues and in-Situ Stress Modeling: Implications for EGS Reservoir Stimulation with an Example from Thuringia (Central Germany)

    Science.gov (United States)

    Kasch, N.; Ustaszewski, K. M.; Siegburg, M.; Navabpour, P.; Hesse, G.

    2014-12-01

    The Mid-German Crystalline Rise (MGCR) in Thuringia (central Germany) is part of the European Variscan orogen and hosts large extents of Visean granites (c. 350 Ma), locally overlain by up to 3 km of Early Permian to Mid-Triassic volcanic and sedimentary rocks. A geothermal gradient of 36°C km-1 suggests that such subsurface granites form an economically viable hot dry rock reservoir at > 4 km depth. In order to assess the likelihood of reactivating any pre-existing fractures during hydraulic reservoir stimulation, slip and dilation tendency analyses (Morris et al. 1996) were carried out. For this purpose, we determined orientations of pre-existing fractures in 14 granite exposures along the southern border fault of an MGCR basement high. Additionally, the strike of 192 Permian magmatic dikes affecting the granite was considered. This analysis revealed a prevalence of NW-SE-striking fractures (mainly joints, extension veins, dikes and subordinately brittle faults) with a maximum at 030/70 (dip azimuth/dip). Borehole data and earthquake focal mechanisms reveal a maximum horizontal stress SHmax trending N150°E and a strike-slip regime. Effective in-situ stress magnitudes at 4.5 km depth, assuming hydrostatic conditions and frictional equilibrium along pre-existing fractures with a friction coefficient of 0.85 yielded 230 and 110 MPa for SHmax and Shmin, respectively. In this stress field, fractures with the prevailing orientations show a high tendency of becoming reactivated as dextral strike-slip faults if stimulated hydraulically. To ensure that a stimulation well creates fluid connectivity on a reservoir volume as large as possible rather than dissipating fluids along existing fractures, it should follow a trajectory at the highest possible angle to the orientation of prevailing fractures, i.e. subhorizontal and NE-SW-oriented. References: Morris, A., D. A. Ferrill, and D. B. Henderson (1996), Slip-tendency analysis and fault reactivation, Geology, 24, 275-278.

  11. Characterization of the bone-metal implant interface by Digital Volume Correlation of in-situ loading using neutron tomography.

    Science.gov (United States)

    Le Cann, Sophie; Tudisco, Erika; Perdikouri, Christina; Belfrage, Ola; Kaestner, Anders; Hall, Stephen; Tägil, Magnus; Isaksson, Hanna

    2017-11-01

    Metallic implants are commonly used as surgical treatments for many orthopedic conditions. The long-term stability of implants relies on an adequate integration with the surrounding bone. Unsuccessful integration could lead to implant loosening. By combining mechanical loading with high-resolution 3D imaging methods, followed by image analysis such as Digital Volume Correlation (DVC), we aim at evaluating ex vivo the mechanical resistance of newly formed bone at the interface. X-rays tomography is commonly used to image bone but induces artefacts close to metallic components. Utilizing a different interaction with matter, neutron tomography is a promising alternative but has not yet been used in studies of bone mechanics. This work demonstrates that neutron tomography during in situ loading is a feasible tool to characterize the mechanical response of bone-implant interfaces, especially when combined with DVC. Experiments were performed where metal screws were implanted in rat tibiae during 4 weeks. The screws were pulled-out while the samples were sequentially imaged in situ with neutron tomography. The images were analyzed to quantify bone ingrowth around the implants. DVC was used to track the internal displacements and calculate the strain fields in the bone during loading. The neutron images were free of metal-related artefacts, which enabled accurate quantification of bone ingrowth on the screw (ranging from 60% to 71%). DVC allowed successful identification of the deformation and cracks that occurred during mechanical loading and led to final failure of the bone-implant interface. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Nucleic-acid characterization of the identity and activity of subsurface microorganisms

    Science.gov (United States)

    Madsen, E. L.

    Nucleic-acid approaches to characterizing naturally occurring microorganisms in their habitats have risen to prominence during the last decade. Extraction of deoxyribonucleic-acid (DNA) and ribonucleic-acid (RNA) biomarkers directly from environmental samples provides a new means of gathering information in microbial ecology. This review article defines: (1) the subsurface habitat; (2) what nucleic-acid procedures are; and (3) the types of information nucleic-acid procedures can and cannot reveal. Recent literature examining microbial nucleic acids in the terrestrial subsurface is tabulated and reviewed. The majority of effort to date has focused upon insights into the identity and phylogeny of subsurface microorganisms afforded by analysis of their 16S rRNA genes. Given the power of nucleic-acid-based procedures and their limited application to subsurface habitats to date, many future opportunities await exploration. Au cours des derniers dix ans, les approches basées sur les acides nucléiques sont apparues et devenues essentielles pour caractériser dans leurs habitats les microorganismes existant à l'état naturel. L'extraction directe de l'ADN et de l'ARN, qui sont des biomarqueurs, d'échantillons environnementaux a fourni un nouveau moyen d'obtenir des informations sur l'écologie microbienne. Cet article synthétique définit 1) l'habitat souterrain, 2) ce que sont les procédures basées sur les acides nucléiques, 3) quel type d'informations ces procéedures peuvent et ne peuvent pas révéler. Les travaux récemment publiés concernatn les acides nucléiques microbiens dans le milieu souterrain terrestre sont catalogués et passés en revue. La majorité des efforts pour obtenir es données s'est concentrée sur l'identité et la phylogénie des microorganismes souterrains fournies par l'analyse de leurs gènes 16S rRNA. Étant donné la puissance des procédures basées sur les acides nucléiques et leur application limitée aux habitats souterrains

  13. Elucidating the Burden of HIV in Tissues Using Multiplexed Immunofluorescence and In Situ Hybridization: Methods for the Single-Cell Phenotypic Characterization of Cells Harboring HIV In Situ.

    Science.gov (United States)

    Vasquez, Joshua J; Hussien, Rajaa; Aguilar-Rodriguez, Brandon; Junger, Henrik; Dobi, Dejan; Henrich, Timothy J; Thanh, Cassandra; Gibson, Erica; Hogan, Louise E; McCune, Joseph; Hunt, Peter W; Stoddart, Cheryl A; Laszik, Zoltan G

    2018-02-01

    Persistent tissue reservoirs of HIV present a major barrier to cure. Defining subsets of infected cells in tissues is a major focus of HIV cure research. Herein, we describe a novel multiplexed in situ hybridization (ISH) (RNAscope) protocol to detect HIV-DNA (vDNA) and HIV-RNA (vRNA) in formalin-fixed paraffin-embedded (FFPE) human tissues in combination with immunofluorescence (IF) phenotyping of the infected cells. We show that multiplexed IF and ISH (mIFISH) is suitable for quantitative assessment of HIV vRNA and vDNA and that multiparameter IF phenotyping allows precise identification of the cellular source of the ISH signal. We also provide semi-quantitative data on the impact of various tissue fixatives on the detectability of vDNA and vRNA with RNAscope technology. Finally, we describe methods to quantitate the ISH signal on whole-slide digital images and validation of the quantitative ISH data with quantitative real-time PCR for vRNA. It is our hope that this approach will provide insight into the biology of HIV tissue reservoirs and to inform strategies aimed at curing HIV.

  14. Titanate nanotubes sensitized with silver nanoparticles: Synthesis, characterization and in-situ pollutants photodegradation

    Energy Technology Data Exchange (ETDEWEB)

    Barrocas, B.; Nunes, C.D. [Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa (Portugal); Carvalho, M.L. [LIBPhys-UNL, Laboratório de Instrumentação, Engenharia Biomédica e Física da Radiação and Departamento de Física da Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Monteiro, O.C., E-mail: ocmonteiro@ciencias.ulisboa.pt [Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa (Portugal)

    2016-11-01

    Highlights: • Combination of titanate nanotubes with crystalline silver nanoparticles is described. • AgHTNT demonstrated high photocatalytic activity for hydroxyl radical production. • AgHTNT exhibits the best photocatalytic activity for phenol removal. • Recycling does not affect AgHTNT photocatalytic performance. • Silver nanoparticles growth continues during several irradiation cycles. - Abstract: In this work, titanate nanotubes were modified with silver nanoparticles to produce new nanocomposite materials with enhanced photocatalytic activity for phenol removal. The TNTs were produced using a hydrothermal approach and, after being submitted to an Ag{sup +} exchange process, metallic Ag nanoparticles were obtained over the nanotubes surface. The prepared materials were structural, morphological and optical characterized by X-ray powder diffraction, micro X-ray fluorescence, transmission electron microscopy, diffused reflectance spectroscopy and X-ray photoelectron spectroscopy. The characterization results indicate that Ag{sup +} was immobilized not only in the nanotubes external surface but mainly in the TiO{sub 6} interlayers space. The application of this new nanocomposite material on photocatalytic degradation of pollutants was investigated. First, the evaluation of hydroxyl radical formation, using the terephthalic acid as a probe was studied. The photocatalytic activity of the sensitized materials for phenol degradation was afterwards evaluated. The results show that the nanocomposite sample is the best catalyst, achieving 98.0% photodegradation efficiency of a 0.2 mM phenol solution within 20 min under UV–vis radiation. The reusability of the prepared samples as photocatalysts was evaluated in four successive degradation assays, using fresh phenol solutions. The sensitized sample demonstrated excellent catalytic reusability ability, without loss of photochemical stability. The structural and morphological characterization during these

  15. In situ characterization of thermal conductivities of irradiated solids by using ion beam heating and infrared imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mondrik, Nicholas; Gigax, Jonathan; Wang, Xuemei; Price, Lloyd [Department of Nuclear Engineering, Texas A and M University, College Station, TX 77843 (United States); Wei, Chaochen [Materials Science and Engineering Department, Texas A and M University, College Station, TX 77843 (United States); Shao, Lin, E-mail: lshao@tamu.edu [Department of Nuclear Engineering, Texas A and M University, College Station, TX 77843 (United States); Materials Science and Engineering Department, Texas A and M University, College Station, TX 77843 (United States)

    2014-08-01

    We propose a method to characterize thermal properties of ion irradiated materials. This method uses an ion beam as a heating source to create a hot spot on sample surface. Infrared imaging is used as a surface temperature mapping tool to record hot zone spreading. Since ion energy, ion flux, and ion penetration depth can be precisely controlled, the beam heating data is highly reliable and repeatable. Using a high speed infrared camera to capture lateral spreading of the hot zone, thermal diffusivity can be readily extracted. The proposed method has advantages in studying radiation induced thermal property changes, for which radiation damage can be introduced by using an irradiating beam over a relatively large beam spot and beam heating can be introduced by using a focused testing beam over a relatively small beam spot. These two beams can be switched without breaking vacuum. Thus thermal conductivity changes can be characterized in situ with ion irradiation. The feasibility of the technique is demonstrated on a single crystal quartz substrate.

  16. In situ characterization of thermal conductivities of irradiated solids by using ion beam heating and infrared imaging

    International Nuclear Information System (INIS)

    Mondrik, Nicholas; Gigax, Jonathan; Wang, Xuemei; Price, Lloyd; Wei, Chaochen; Shao, Lin

    2014-01-01

    We propose a method to characterize thermal properties of ion irradiated materials. This method uses an ion beam as a heating source to create a hot spot on sample surface. Infrared imaging is used as a surface temperature mapping tool to record hot zone spreading. Since ion energy, ion flux, and ion penetration depth can be precisely controlled, the beam heating data is highly reliable and repeatable. Using a high speed infrared camera to capture lateral spreading of the hot zone, thermal diffusivity can be readily extracted. The proposed method has advantages in studying radiation induced thermal property changes, for which radiation damage can be introduced by using an irradiating beam over a relatively large beam spot and beam heating can be introduced by using a focused testing beam over a relatively small beam spot. These two beams can be switched without breaking vacuum. Thus thermal conductivity changes can be characterized in situ with ion irradiation. The feasibility of the technique is demonstrated on a single crystal quartz substrate

  17. The chemical modification and characterization of polypropylene membrane with environment response by in-situ chlorinating graft copolymerization

    Science.gov (United States)

    Zhang, Yue; Liu, Jiankai; Hu, Wenjie; Feng, Ying; Zhao, Jiruo

    2017-08-01

    In this study, a novel chemical surface modification method of polyolefin membranes is applied following the in-situ chlorinating graft copolymerization (ISCGC). Polypropylene (PP)/methyl methacrylate (MMA) system was used as an example. A unique structure was formed by the modification process on the original membrane surface and the product exhibited an environmental response. Chlorine free radicals were generated using ultraviolet and heat and were used to capture the hydrogen in the polymer chains on the substrate surface. The formed macromolecular radicals could react with MMA over 2 h to achieve a high coverage ratio polymer on the PP membrane surface. The graft copolymers were characterized using FTIR, 1H-NMR, DSC, and XPS, which all proved the feasibility of chemically modifying the PP membrane surface by ISCGC. The surface morphology of the grafted PP membrane was characterized using SEM and AFM. The results showed that the grafted product presents a uniform, neat, and dense mastoid structure with an average thickness of 4.44 μm, which was expected to be similar to the brush-like surface structure. The contact angle and AFM tests indicated that the product surface is responsive to solvent and pH. The experimental results showed that the PP membrane surface structure can be reconstructed using ISCGC, a method that can be used for environment-responsive polymer materials. Moreover, the product has the characteristics of polymer interfacial brush.

  18. 3D characterization of coal strains induced by compression, carbon dioxide sorption, and desorption at in-situ stress conditions

    International Nuclear Information System (INIS)

    Pone, J. Denis N.; Halleck, Phillip M.; Mathews, Jonathan P.

    2010-01-01

    Sequestration of carbon dioxide in unmineable coal seams is an option to combat climate change and an opportunity to enhance coalbed methane production. Prediction of sequestration potential in coal requires characterization of porosity, permeability, sorption capacity and the magnitude of swelling due to carbon dioxide uptake or shrinkage due to methane and water loss. Unfortunately, the majority of data characterizing coal-gas systems have been obtained from powdered, unconfined coal samples. Little is known about confined coal behavior during carbon dioxide uptake and methane desorption. The present work focuses on the characterization of lithotype specific deformation, and strain behavior during CO 2 uptake at simulated in-situ stress conditions. It includes the evaluation of three-dimensional strain induced by the confining stress, the sorption, and the desorption of carbon dioxide. X-ray computed tomography allowed three-dimensional characterization of the bituminous coal deformation samples under hydrostatic stress. The application of 6.9 MPa of confining stress contributes an average of - 0.34% volumetric strain. Normal strains due to confining stress were - 0.08%, - 0.15% and - 0.11% along the x, y and z axes respectively. Gas injection pressure was 3.1 MPa and the excess sorption was 0.85 mmol/g. Confined coal exposed to CO 2 for 26 days displays an average volumetric expansion of 0.4%. Normal strains due to CO 2 sorption were 0.11%, 0.22% and 0.11% along x, y and z axes. Drainage of the CO 2 induced an average of - 0.33% volumetric shrinkage. Normal strains due to CO 2 desorption were - 0.23%, - 0.08% and - 0.02% along x, y and z axes. Alternating positive and negative strain values observed along the sample length during compression, sorption and desorption respectively emphasized that both localized compression/compaction and expansion of coal will occur during CO 2 sequestration. (author)

  19. In situ and ex situ characterization of the ion-irradiation effects in third generation SiC fibers

    International Nuclear Information System (INIS)

    Huguet-Garcia, Juan

    2015-01-01

    The use of third generation SiC fibers, Tyranno SA3 (TSA3) and Hi Nicalon S (HNS), as reinforcement for ceramic composites for nuclear applications requires the characterization of its structural stability and mechanical behavior under irradiation. Regarding the radiation stability, ion-amorphization kinetics of these fibers have been studied and compared to the model material, i.e. 6H-SiC single crystals, with no significant differences. For all samples, full amorphization threshold dose yields ∼0.4 dpa at room temperature and complete amorphization was not achieved for irradiation temperatures over 200 C. Successively, ion-amorphized samples have been thermally annealed. It is reported that thermal annealing at high temperatures not only induces the recrystallization of the ion-amorphized samples but also causes unrecoverable mechanical failure, i.e. cracking and delamination. Cracking is reported to be a thermally driven phenomenon characterized by activation energy of 1.05 eV. Regarding the mechanical irradiation behavior, irradiation creep of TSA3 fibers has been investigated using a tensile device dedicated to in situ tests coupled to two different ion-irradiation lines. It is reported that ion irradiation (12 MeV C 4+ and 92 MeV Xe 23+ ) induces a time-dependent strain under loads where thermal creep is negligible. In addition, irradiation strain is reported to be higher at low irradiation temperatures due to a coupling between irradiation swelling and irradiation creep. At high temperatures, near 1000 C, irradiation swelling is minimized hence allowing the characterization of the irradiation creep. Irradiation creep rate is characterized by a linear correlation between the ion flux and the strain rate and a square root dependence with the applied load. Finally, it has been reported that the higher the electronic energy loss contribution to the stopping regime the higher the irradiation creep of the fiber. (author) [fr

  20. Review of sensors for the in situ chemical characterization of the Hanford underground storage tanks

    Energy Technology Data Exchange (ETDEWEB)

    Kyle, K.R.; Mayes, E.L.

    1994-07-29

    Lawrence Livermore National Laboratory (LLNL), in the Technical Task Plan (TTP) SF-2112-03 subtask 2, is responsible for the conceptual design of a Raman probe for inclusion in the in-tank cone penetrometer. As part of this task, LLNL is assigned the further responsibility of generating a report describing a review of sensor technologies other than Raman that can be incorporated in the in-tank cone penetrometer for the chemical analysis of the tank environment. These sensors would complement the capabilities of the Raman probe, and would give information on gaseous, liquid, and solid state species that are insensitive to Raman interrogation. This work is part of a joint effort involving several DOE laboratories for the design and development of in-tank cone penetrometer deployable systems for direct UST waste characterization at Westinghouse Hanford Company (WHC) under the auspices of the U.S. Department of Energy (DOE) Underground Storage Tank Integrated Demonstration (UST-ID).

  1. Preparation And Characterization Of Silicon Carbide Foam By Using In-Situ Generated Polyurethane Foam

    Directory of Open Access Journals (Sweden)

    Shalini Saxena

    2015-08-01

    Full Text Available Abstract The open cell silicon carbide SiC foam was prepared using highly crosslinked hybrid organic- inorganic polymer resin matrix. As inorganic polymer polycarbosilane was taken and organic resin was taken as a mixture of epoxy resin and diisocyanates. The resultant highly crosslinked hybrid resin matrix on heating and subsequently on pyrolysis yielded open cell silicon carbide foam. The hybrid resin matrix was characterized by Fourier transform Infrared Spectroscopy FT-IR and thermal properties i.e. Thermogravimetric analysis TGA amp Differential Scanning Calorimetry DSC were also studied. The morphological studies of silicon carbide ceramic foam were carried out using X-ray Spectroscopy XRD amp Scanning Electron Microscopy SEM.

  2. Review of sensors for the in situ chemical characterization of the Hanford underground storage tanks

    International Nuclear Information System (INIS)

    Kyle, K.R.; Mayes, E.L.

    1994-01-01

    Lawrence Livermore National Laboratory (LLNL), in the Technical Task Plan (TTP) SF-2112-03 subtask 2, is responsible for the conceptual design of a Raman probe for inclusion in the in-tank cone penetrometer. As part of this task, LLNL is assigned the further responsibility of generating a report describing a review of sensor technologies other than Raman that can be incorporated in the in-tank cone penetrometer for the chemical analysis of the tank environment. These sensors would complement the capabilities of the Raman probe, and would give information on gaseous, liquid, and solid state species that are insensitive to Raman interrogation. This work is part of a joint effort involving several DOE laboratories for the design and development of in-tank cone penetrometer deployable systems for direct UST waste characterization at Westinghouse Hanford Company (WHC) under the auspices of the U.S. Department of Energy (DOE) Underground Storage Tank Integrated Demonstration (UST-ID)

  3. Portable Analyzer Based on Microfluidic/Nanoengineered electrochemical Sensors for in Situ Characterization of Mixed Wastes

    International Nuclear Information System (INIS)

    Wang, Joseph

    2007-01-01

    This project aimed on the development of compact microchip sensing devices for on-site monitoring of pollutants in contaminated DOE sites. As described in this report, we have made a substantial progress, and introduced effective routes for improving the on-site detection of toxic metals and for interfacing microfluidic (Lab-on-Chip) sensing devices with the real world. This activity has been very productive and has already been described in 12 research papers (published in major international journals). The resulting microchip sensor technology should allow testing for toxic metals and other major pollutants to be performed more rapidly, inexpensively, and reliably in a field setting. These new analytical capabilities resulted from the generous DOE support will facilitate the characterization and remediation of mixed waste contaminated sites.

  4. Assessment of the excitelet algorithm for in-situ mechanical characterization of orthotropic structures

    Science.gov (United States)

    Ostiguy, Pierre-Claude; Quaegebeur, Nicolas; Masson, Patrice

    2012-04-01

    Damage detection and localization on composites can be impaired by inaccurate knowledge of the mechanical properties of the structure. This paper demonstrates the feasibility of using a chirplet-based correlation technique, called Excitelet, to evaluate the mechanical properties of orthotropic carbon fibre-based composite laminates. The method relies on the identification of an optimal correlation coefficient between measured and simulated dispersed signals measured on a structure using piezoceramic (PZT) transducers. Finite Element Model (FEM) is first conducted to demonstrate the capability of the approach to evaluate the mechanical properties of a composite structure. Experimental validation is then conducted on a unidirectionnal 2.30 mm thick laminate composed of unidirectional plies and a 2.35 mm thick laminate composed of unidirectional plies oriented at [0, 90]4s. Surface bonded PZT transducers were used both for actuation and sensing of guided waves bursts measured at 0° and 90° with respect to upper ply fibre orientation. The characterization is performed at various frequencies below 100 kHz using A0 or S0 modes and comparison with the material properties measured following ASTM standard testing is presented. The results indicate that large correlation coefficients are obtained between the measurements and simulated signals for both A0 and S0 modes when accurate properties are used as inputs for the model. Strategies based on multiple modes correlation are also assessed in order to improve the accuracy of the characterization approach. The results obtained using the proposed approach for the unidirectional plate and most of the results obtained using the proposed approach for the [0, 90]4s laminate are in agreement with the uncertainty associated with ASTM tests results while the proposed method is non destructive and can be performed prior to each imaging processing.

  5. Characterization of Ice and Snow In-Situ Properties During the Main Weather Regimes Observed in The Olympic Mountain Experiment

    Science.gov (United States)

    Borque, P.; Finlon, J.; Nesbitt, S. W.; McFarquhar, G. M.

    2017-12-01

    Observations from the Olympic Mountain Experiment (OLYMPEX) present a unique opportunity to analyze a vast catalogue of in-situ microphysical information over a variety of mid-latitude precipitation types. Data collected by the Citation Research Aircraft was processed using the University of Illinois/Oklahoma Optical Array Probe Processing Software to give not only bulk cloud properties (e.g., total number concentration, ice water content (IWC), and parameters describing gamma fits to observed size distributions) but also particle-by-particle properties (e.g., aspect ratio, perimeter, and projected area). In this work, we analyzed these properties in association with the different processes (e.g., aggregation, riming and accretion) occurring under the three main weather sectors (warm, prefrontal, and postfrontal) present over the OLYMPEX region. Bulk and particle properties present statistically different characteristics over the different sectors of the weather system analyzed. For example, the IWC over the warm sector presents a bimodal distribution with the primary maximum present at 0.055 g m-3 and a secondary maximum at 0.235 g m-3; whereas over the postfrontal sector the IWC has a unique maximum at 0.005 g m-3. The higher frequency of occurrence of mass-weighted mean crystal diameter (Dm) occurs at 1.57mm for the warm sector and 0.125mm for the postfrontal sector. In summary, the warm sector is characterized by large IWC, large Dm, shape parameter of the gamma distribution (μ) close to zero, and lighter particles (following a simple mass-diameter relation), all consistent with aggregation being the dominant process. In contrast, observations from the postfrontal sector show smaller IWCs, smaller Dm, negative μ, and heavier particles, all consistent with rimed particles dominating the region. Evidence for this was also seen with particle images from the in-situ probes showing large aggregates present in the warm sector and rimed particles in the postfrontal

  6. Characterization of Subsurface Defects in Ceramic Rods by Laser Scattering and Fractography

    International Nuclear Information System (INIS)

    Zhang, J. M.; Sun, J. G.; Andrews, M. J.; Ramesh, A.; Tretheway, J. S.; Longanbach, D. M.

    2006-01-01

    Silicon nitride ceramics are leading materials being evaluated for valve train components in diesel engine applications. The surface and subsurface defects and damage induced by surface machining can significantly affect component strength and lifetime. In this study, a nondestructive evaluation (NDE) technique based upon laser scattering has been utilized to analyze eight transversely ground silicon nitride cylindrical rods before fracture tests. The fracture origins (machining cracks or material-inherent flaws) identified by fractography after fracture testing were correlated with laser scattering images. The results indicate that laser scattering is able to identify possible fracture origin in the silicon nitride subsurface without the need for destructive fracture tests

  7. Characterization of boron carbide particulate reinforced in situ copper surface composites synthesized using friction stir processing

    Energy Technology Data Exchange (ETDEWEB)

    Sathiskumar, R., E-mail: sathiscit2011@gmail.com [Department of Mechanical Engineering, Coimbatore Institute of Technology, Coimbatore, 641 014 Tamil Nadu (India); Murugan, N., E-mail: murugan@cit.edu.in [Department of Mechanical Engineering, Coimbatore Institute of Technology, Coimbatore, 641 014 Tamil Nadu (India); Dinaharan, I., E-mail: dinaweld2009@gmail.com [Department of Mechanical Engineering, V V College of Engineering, Tisaiyanvilai, 627 657 Tamil Nadu (India); Vijay, S.J., E-mail: vijayjoseph@karunya.edu [Centre for Research in Metallurgy (CRM), School of Mechanical Sciences, Karunya University, Coimbatore, 641 114 Tamil Nadu (India)

    2013-10-15

    Friction stir processing has evolved as a novel solid state technique to fabricate surface composites. The objective of this work is to apply the friction stir processing technique to fabricate boron carbide particulate reinforced copper surface composites and investigate the effect of B{sub 4}C particles and its volume fraction on microstructure and sliding wear behavior of the same. A groove was prepared on 6 mm thick copper plates and packed with B{sub 4}C particles. The dimensions of the groove was varied to result in five different volume fractions of B{sub 4}C particles (0, 6, 12, 18 and 24 vol.%). A single pass friction stir processing was done using a tool rotational speed of 1000 rpm, travel speed of 40 mm/min and an axial force of 10 kN. Metallurgical characterization of the Cu/B{sub 4}C surface composites was carried out using optical microscope and scanning electron microscope. The sliding wear behavior was evaluated using a pin-on-disk apparatus. Results indicated that the B{sub 4}C particles significantly influenced the area, dispersion, grain size, microhardness and sliding wear behavior of the Cu/B{sub 4}C surface composites. When the volume fraction of B{sub 4}C was increased, the wear mode changed from microcutting to abrasive wear and wear debris was found to be finer. Highlights: • Fabrication of Cu/B{sub 4}C surface composite by friction stir processing • Analyzing the effect of B{sub 4}C particles on the properties of Cu/B4C surface composite • Increased volume fraction of B{sub 4}C particles reduced the area of surface composite. • Increased volume fraction of B{sub 4}C particles enhanced the microhardness and wear rate. • B{sub 4}C particles altered the wear mode from microcutting to abrasive.

  8. Metal-filled carbon nanotube based optical nanoantennas: bubbling, reshaping, and in situ characterization.

    Science.gov (United States)

    Fan, Zheng; Tao, Xinyong; Cui, Xudong; Fan, Xudong; Zhang, Xiaobin; Dong, Lixin

    2012-09-21

    Controlled fabrication of metal nanospheres on nanotube tips for optical antennas is investigated experimentally. Resembling soap bubble blowing using a straw, the fabrication process is based on nanofluidic mass delivery at the attogram scale using metal-filled carbon nanotubes (m@CNTs). Two methods have been investigated including electron-beam-induced bubbling (EBIB) and electromigration-based bubbling (EMBB). EBIB involves the bombardment of an m@CNT with a high energy electron beam of a transmission electron microscope (TEM), with which the encapsulated metal is melted and flowed out from the nanotube, generating a metallic particle on a nanotube tip. In the case where the encapsulated materials inside the CNT have a higher melting point than what the beam energy can reach, EMBB is an optional process to apply. Experiments show that, under a low bias (2.0-2.5 V), nanoparticles can be formed on the nanotube tips. The final shape and crystallinity of the nanoparticles are determined by the cooling rate. Instant cooling occurs with a relatively large heat sink and causes the instant shaping of the solid deposit, which is typically similar to the shape of the molten state. With a smaller heat sink as a probe, it is possible to keep the deposit in a molten state. Instant cooling by separating the deposit from the probe can result in a perfect sphere. Surface and volume plasmons characterized with electron energy loss spectroscopy (EELS) prove that resonance occurs between a pair of as-fabricated spheres on the tip structures. Such spheres on pillars can serve as nano-optical antennas and will enable devices such as scanning near-field optical microscope (SNOM) probes, scanning anodes for field emitters, and single molecule detectors, which can find applications in bio-sensing, molecular detection, and high-resolution optical microscopy.

  9. Mechanical characterization of diesel soot nanoparticles: in situ compression in a transmission electron microscope and simulations

    Science.gov (United States)

    Jenei, Istvan Zoltan; Dassenoy, Fabrice; Epicier, Thierry; Khajeh, Arash; Martini, Ashlie; Uy, Dairene; Ghaednia, Hamed; Gangopadhyay, Arup

    2018-02-01

    Incomplete fuel burning inside an internal combustion engine results in the creation of soot in the form of nanoparticles. Some of these soot nanoparticles (SNP) become adsorbed into the lubricating oil film present on the cylinder walls, which adversely affects the tribological performance of the lubricant. In order to better understand the mechanisms underlying the wear caused by SNPs, it is important to understand the behavior of SNPs and to characterize potential changes in their mechanical properties (e.g. hardness) caused by (or during) mechanical stress. In this study, the behavior of individual SNPs originating from diesel engines was studied under compression. The experiments were performed in a transmission electron microscope using a nanoindentation device. The nanoparticles exhibited elasto-plastic behavior in response to consecutive compression cycles. From the experimental data, the Young’s modulus and hardness of the SNPs were calculated. The Young’s modulus and hardness of the nanoparticles increased with the number of compression cycles. Using an electron energy loss spectroscopy technique, it was shown that the sp2/sp3 ratio within the compressed nanoparticle decreases, which is suggested to be the cause of the increase in elasticity and hardness. In order to corroborate the experimental findings, molecular dynamics simulations of a model SNP were performed. The SNP model was constructed using carbon and hydrogen atoms with morphology and composition comparable to those observed in the experiment. The model SNP was subjected to repeated compressions between two virtual rigid walls. During the simulation, the nanoparticle exhibited elasto-plastic behavior like that in the experiments. The results of the simulations confirm that the increase in the elastic modulus and hardness is associated with a decrease in the sp2/sp3 ratio.

  10. Colloid characterization and in situ release in shallow groundwater under different hydrogeology conditions.

    Science.gov (United States)

    Zhou, Jingjing; Liu, Dan; Zhang, Wenjing; Chen, Xuequn; Huan, Ying; Yu, Xipeng

    2017-06-01

    Changes to groundwater hydrodynamics and chemistry can lead to colloid release that can have a major impact on the groundwater environment. To analyze the effects of colloid release caused by artificial groundwater recharge, field and laboratory tests on colloid characterization and colloid release were conducted. The field tests were carried out at an artificial recharge test site in Shandong Province. In the field investigation, one recharge water sample and five groundwater samples were collected and filtered through three levels of ultrafiltration membranes, with pore sizes of 0.45 μm, 100 kDa, and 50 kDa. The field results indicated that the colloid mass concentrations in groundwater retained between membranes with pore sizes of 100 kDa-0.45 μm and 50 kDa-100 kDa were 19 and 62 mg/L, respectively. In recharge water, the colloid mass concentrations retained by 100-kDa-0.45-μm and 50-kDa-100-kDa membranes were 3 and 99 mg/L, respectively. Colloids detected on the ultrafiltration membranes were mainly inorganic between 100 kDa and 0.45 μm, and mainly organic between 50 and 100 kDa. Based on the field colloid investigation results, the organic colloid was chosen in the laboratory experiments to reveal its release behavior under different conditions. Porous media diameter, flux, ionic strength (IS), and ion valence were changed to determine their influences on organic colloid concentration outflow from undisturbed porous media. The experiment's results indicate that decreasing the diameter, and increasing the flux, ionic strength, and the number of divalent cations, can promote organic colloid release. The organic colloid release rate in the early stage was high and is thus likely to affect the quality of groundwater. The results provide a useful scientific basis for minimizing changes to hydrodynamic and hydrochemical conditions during artificial recharge, thus safeguarding groundwater quality.

  11. Characterizing subsurface water flow to artificial drain lines using fiber-optic distributed temperature sensing

    Science.gov (United States)

    Shults, D.; Brooks, E. S.; Heinse, R.; Keller, C. K.

    2017-12-01

    Over the last several years growers have experienced increasingly wet spring conditions in the Palouse Region located in North Idaho, Eastern Washington and Eastern Oregon. As a result more artificial drain lines are being installed so growers can access their fields earlier in the growing season. Additionally there has been increasing adoption of no-tillage practices among growers in order minimize erosion and runoff in the region. There is a growing body of evidence that suggests long-term no-tillage may lead to the establishment of large macropore networks through increased earthworm activity and the preservation of root channels. These macropore networks, in conjunctions with the presence of artificial drains lines, may create connected preferential flow paths from agricultural fields to receiving streams. This connectivity of flow paths from agricultural fields to receiving water bodies may increase the loading of nutrients and agricultural chemicals as some flow paths may largely bypass soil matrix interaction where materials can be sequestered. Our primary objective for this study was to characterize subsurface flow to two artificial drain lines, one under conventional tillage and the other under no-tillage, using distributed temperature sensing (DTS) technology. During the study (November 2016-April 2017) the near surface soil-water temperature was consistently colder than that of deeper depths. Temperature was thus used as a tracer as snow melt and soil-water moved from the near surface to the drain lines during snowmelt and precipitation events. The spatial and temporal variability of the temperature along the artificial drain line under no-tillage practices was found to be greater than that of the conventional tilled field. It is hypothesized that preferential flow paths are responsible for the increased variability of temperature seen in the drain line under long term no-till management. The temperature along the conventional till drain line showed a

  12. Joint inversion of multi-configuration electromagnetic induction data to characterize subsurface electrical conductivity

    KAUST Repository

    Jadoon, Khan; Moghadas, Davood; Jadoon, Anwar; Missimer, Thomas M.

    2012-01-01

    instrument, by considering different coil offsets (10, 20 and 40 m), different coil orientations (vertical and horizontal), and different frequencies (6.4, 1.6 and 0.4 kHz). The subsurface is considered as four-layer model having different conductivities

  13. In situ photoelectrochemistry and Raman spectroscopic characterization on the surface oxide film of nickel electrode in 30 wt.% KOH solution

    International Nuclear Information System (INIS)

    Nan Junmin; Yang Yong; Lin Zugeng

    2006-01-01

    The oxide films of nickel electrode formed in 30 wt.% KOH solution under potentiodynamic conditions were characterized by means of electrochemical, in situ PhotoElectrochemistry Measurement (PEM) and Confocal Microprobe Raman spectroscopic techniques. The results showed that a composite oxide film was produced on nickel electrode, in which aroused cathodic or anodic photocurrent depending upon polarization potentials. The cathodic photocurrent at -0.8 V was raised from the amorphous film containing nickel hydroxide and nickel monoxide, and mainly attributed to the formation of NiO through the separation of the cavity and electron when laser light irradiates nickel electrode. With the potential increasing to more positive values, Ni 3 O 4 and high-valence nickel oxides with the structure of NiO 2 were formed successively. The composite film formed in positive potential aroused anodic photocurrent from 0.33 V. The anodic photocurrent was attributed the formation of oxygen through the cavity reaction with hydroxyl on solution interface. In addition, it is demonstrated that the reduction resultants of high-valence nickel oxides were amorphous, and the oxide film could not be reduced completely. A stable oxide film could be gradually formed on the surface of nickel electrode with the cycling and aging in 30 wt.% KOH solution

  14. Synthesis and Characterization of Fatty Acid Methyl Ester by In-Situ Transesterification in Capparis Deciduas Seed

    Directory of Open Access Journals (Sweden)

    Prasad E FUNDE

    2008-12-01

    Full Text Available (FAME Fatty acid methyl ester is made virgin or used vegetable oils (both edible and non-edible and animal fats. Fatty acid methyl ester operates in compression ignition engines like petro-diesel. Fatty acid methyl ester can be blended in any ratio with petroleum diesel fuels. It can be stored just like the petroleum diesel fuel. Petrodiesel can be replaced by biodiesel due to its superiority. It has various advantages. The seeds of Capparis deciduas are found to contain non-edible oil in the range of about 63.75 %. The percentage of biodiesel yield increases with concentration of KOH as a catalyst. The aim of this article is to demonstrate the cost effective new source of energy by single step reaction i.e. production of oil by combining extraction and reaction of extract with the mixture of alcohols. In this article the effect of catalyst concentration, time, water content and temperature on in-situ transesterification is studied to obtain optimum yield and Fatty acid methyl ester (Biodiesel Fuel characterization tests show the striking similarity of various physical & chemical properties and campers to ASTM standards.

  15. Use of Satellite and In Situ Reflectance Data for Lake Water Color Characterization in the Everest Himalayan Region

    Directory of Open Access Journals (Sweden)

    Erica Matta

    2017-02-01

    Full Text Available This study applied remote sensing techniques to the study of water color in Himalayan glacial lakes as a proxy of suspended solid load. In situ measurements gathered in 5 lakes in October 2014 during satellite data acquisition enabled the characterization of water reflectance and clarity and supported image processing. Field data analysis led to a distinction between 3 water colors and a consequent lake water color classification on a regional scale from Landsat-8 data previously corrected for atmospheric and adjacency effects. Several morphometric parameters (lake size and shape, distance between lake and glacier were also computed for the lakes thus classified. The results showed spatial and temporal variations in lake water color, suggestive of relationships between glacier shrinkage and the presence of brighter and more turbid water. A finer-scale analysis of the spatial variability of water reflectance on Chola Lake (based on GeoEye-1 data captured on 18 October 2014 showed the contribution of water component absorption from the inflow. Overall, the findings support further research to monitor Himalayan lakes using both Landsat-8 and Sentinel-2 (with its improved resolutions.

  16. Atmospheric characterization through fused mobile airborne and surface in situ surveys: methane emissions quantification from a producing oil field

    Science.gov (United States)

    Leifer, Ira; Melton, Christopher; Fischer, Marc L.; Fladeland, Matthew; Frash, Jason; Gore, Warren; Iraci, Laura T.; Marrero, Josette E.; Ryoo, Ju-Mee; Tanaka, Tomoaki; Yates, Emma L.

    2018-03-01

    Methane (CH4) inventory uncertainties are large, requiring robust emission derivation approaches. We report on a fused airborne-surface data collection approach to derive emissions from an active oil field near Bakersfield, central California. The approach characterizes the atmosphere from the surface to above the planetary boundary layer (PBL) and combines downwind trace gas concentration anomaly (plume) above background with normal winds to derive flux. This approach does not require a well-mixed PBL; allows explicit, data-based, uncertainty evaluation; and was applied to complex topography and wind flows. In situ airborne (collected by AJAX - the Alpha Jet Atmospheric eXperiment) and mobile surface (collected by AMOG - the AutoMObile trace Gas - Surveyor) data were collected on 19 August 2015 to assess source strength. Data included an AMOG and AJAX intercomparison transect profiling from the San Joaquin Valley (SJV) floor into the Sierra Nevada (0.1-2.2 km altitude), validating a novel surface approach for atmospheric profiling by leveraging topography. The profile intercomparison found good agreement in multiple parameters for the overlapping altitude range from 500 to 1500 m for the upper 5 % of surface winds, which accounts for wind-impeding structures, i.e., terrain, trees, buildings, etc. Annualized emissions from the active oil fields were 31.3 ± 16 Gg methane and 2.4 ± 1.2 Tg carbon dioxide. Data showed the PBL was not well mixed at distances of 10-20 km downwind, highlighting the importance of the experimental design.

  17. In situ synchrotron x-ray characterization of microstructure formation in solidification processing of Al-based metallic alloys

    International Nuclear Information System (INIS)

    Billia, Bernard; Nguyen-Thi, Henri; Mangelinck-Noel, Nathalie

    2010-01-01

    The microstructure formed during the solidification step has a major influence on the properties of materials processed by major techniques (casting, welding ...). In situ and real-time characterization by synchrotron X-ray imaging is the method of choice to unveil the dynamical formation of the solidification microstructure in metallic alloys, and thus provide precise data for the critical validation of the theoretical predictions that is needed for sound advancement of modeling and numerical simulation. After a description of the experimental procedure used at the European Synchrotron Radiation Facility (ESRF), dynamical phenomena in the formation of the grain structure and dendritic or equiaxed solidification microstructure in Al-based alloys are presented. Beyond fluid flow interaction, earth gravity induces stresses, deformation and fragmentation in the dendritic mush. Settling of dendrite arms and equiaxed grains thus occurs, in particular in the columnar to equiaxed transition. Other types of stresses and strains are caused by the mere formation of the solidification microstructure itself. In white-beam X-ray topography, stresses and strains are manifested by specific contrasts and breaking of the Laue images into several pieces. Finally, quantitative analysis of the grey level in radiographs enables the analysis of solute segregation, which noticeably results in solutal poisoning of growth when equiaxed grains are interacting. (author)

  18. Characterization of Nb Superconducting Radio Frequency Cavities Based On In-Situ STEM And EELS

    Science.gov (United States)

    Tao, Runzhe

    Niobium, a 4d transition metal, has the highest superconducting transition temperature (Tc=9.2K) of any elemental superconductor as type II superconductor with coherent length, sigma approximately that of the penetration length, lambda. Pure niobium is grey in color and very soft, which makes this metal easily fabricable into different shapes for superconducting radio- frequency (SRF) cavities. Such cavities are used in some modern accelerators (SNS, CEBAF, XFEL), and are intended for usage in the next generation of particle accelerators, such as ILC. Since the crucial part of the cavities is top 100 nm of Nb near the inner cavity surface, considering the penetration depth is around 40 nm, it has attracted more and more attention in improving the surface process for optimizing the performance of the cavities. Nowadays, the main treatment of the Nb surface includes electro polishing (EP), buffered chemical polishing (BCP), high temperature baking (800 °C, 1000 °C and 1200 °C) and mild baking (120 °C). Firstly, the two half cells are welded together and the weld line is quite rough; there exists a lot of visible pits and defects on the inner shell of cavities. In this Ph.D. thesis, novel techniques in a scanning transmission electron microscope (STEM) that can be used to analyze the atomic scale structure-property relationship, both at room tem- perature and high/LN 2 temperature, are explored. Specifically, by using correlated Z-contrast imaging and electron energy loss spectrum (EELS), the structure, composition and bonding can be characterized directly on the atomic scale, also, light atoms, like H, O and C, are visible in ABF images. For the examining the defect behavior on the cavity surface, heating and cold stages are involved to simulate the baking treatment and low-temperature environments. These studies will serve as an important reference for qualifying different surface treatments to further improve SRF cavities' performance. The experimental results

  19. Ultrasonic-assisted in situ synthesis and characterization of superparamagnetic Fe{sub 3}O{sub 4} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Feng Jie [College of Materials Science and Engineering, Sichuan University, Chengdu 610064 (China); Mao Jian, E-mail: maojianemail@163.com [College of Materials Science and Engineering, Sichuan University, Chengdu 610064 (China); Wen Xiaogang; Tu Mingjing [College of Materials Science and Engineering, Sichuan University, Chengdu 610064 (China)

    2011-09-15

    Highlights: > Fe{sup 3+} as the only Fe source for preparing Fe{sub 3}O{sub 4} nanoparticles through in situ cover and sonication method. > Surface modification enables the reduction of the grain size of Fe{sub 3}O{sub 4}. > Increasing temperature reduces grain size of Fe{sub 3}O{sub 4} until it exceeds 80 deg. C. > Increasing pH values reduces grain size of Fe{sub 3}O{sub 4} until it exceeds 11. > Saturation magnetizations depend on the grain size of Fe{sub 3}O{sub 4} nanoparticles. - Abstract: Superparamagnetic Fe{sub 3}O{sub 4} nanoparticles were synthesized via a modified coprecipitation method, and were characterized with X-ray diffraction (XRD), vibrating sample magnetometer (VSM), Zeta potential and FT-IR, respectively. The influences of different kinds of surfactants (sodium dodecyl benzene sulfonate, polyethyleneglycol, oleic acid and dextran), temperatures and pH values on the grain size and properties were also investigated. In this method, Fe{sup 3+} was used as the only Fe source and partially reduced to Fe{sup 2+} by the reducing agent with precise content. The following reaction between Fe{sup 3+}, Fe{sup 2+} and hydroxide radical brought pure Fe{sub 3}O{sub 4} nanoparticles. The tiny fresh nanoparticles were coated in situ with surfactant under the action of sonication. Comparing with uncoated sample, the mean grain size and saturation magnetization of coated Fe{sub 3}O{sub 4} nanoparticles decrease from 18.4 nm to 5.9-9.0 nm, and from 63.89 emu g{sup -1} to 52-58 emu g{sup -1} respectively. When oleic was used as the surfactant, the mean grain size of Fe{sub 3}O{sub 4} nanoparticles firstly decreases with the increase of reaction temperature, but when the temperature is exceed to 80 deg. C, the continuous increase of temperature resulted in larger nanoparticles. the grain size decreases gradually with the increasing of pH values, and it remains unchanged when the PH value is up to 11. The saturation magnetization of as-prepared Fe{sub 3}O{sub 4

  20. Characterization of subsurface geologic structure for potential water resources near the Villages of Moenkopi, Arizona, 2009--2010

    Science.gov (United States)

    Macy, Jamie P.

    2012-01-01

    The Hopi Tribe depends on groundwater as their primary drinking-water source in the area of the Villages of Moenkopi, in northeastern Arizona. Growing concerns of the potential for uranium contamination at the Moenkopi water supply wells from the Tuba City Landfill prompted the need for an improved understanding of subsurface geology and groundwater near Moenkopi. Information in this report provides the Hopi Tribe with new hydrogeologic information that provides a better understanding of groundwater resources near the Villages of Moenkopi. The U.S. Geological Survey in cooperation with the U.S. Bureau of Reclamation and the Hopi Tribe used the controlled source audio-frequency magnetotelluric (CSAMT) geophysical technique to characterize the subsurface near Moenkopi from December 2009 to September 2010. A total of six CSAMT profiles were surveyed to identify possible fracturing and faulting in the subsurface that provides information about the occurrence and movement of groundwater. Inversion results from the six CSAMT lines indicated that north to south trending fractures are more prevalent than east to west. CSAMT Lines A and C showed multiple areas in the Navajo Sandstone where fractures are present. Lines B, D, E, and F did not show the same fracturing as Lines A and C.

  1. 3D characterization of coal strains induced by compression, carbon dioxide sorption, and desorption at in-situ stress conditions

    Energy Technology Data Exchange (ETDEWEB)

    Pone, J. Denis N.; Halleck, Phillip M.; Mathews, Jonathan P. [Department of Energy and Mineral Engineering and The EMS Energy Institute, The Pennsylvania State University, University Park, PA 16802 (United States)

    2010-06-01

    Sequestration of carbon dioxide in unmineable coal seams is an option to combat climate change and an opportunity to enhance coalbed methane production. Prediction of sequestration potential in coal requires characterization of porosity, permeability, sorption capacity and the magnitude of swelling due to carbon dioxide uptake or shrinkage due to methane and water loss. Unfortunately, the majority of data characterizing coal-gas systems have been obtained from powdered, unconfined coal samples. Little is known about confined coal behavior during carbon dioxide uptake and methane desorption. The present work focuses on the characterization of lithotype specific deformation, and strain behavior during CO{sub 2} uptake at simulated in-situ stress conditions. It includes the evaluation of three-dimensional strain induced by the confining stress, the sorption, and the desorption of carbon dioxide. X-ray computed tomography allowed three-dimensional characterization of the bituminous coal deformation samples under hydrostatic stress. The application of 6.9 MPa of confining stress contributes an average of - 0.34% volumetric strain. Normal strains due to confining stress were - 0.08%, - 0.15% and - 0.11% along the x, y and z axes respectively. Gas injection pressure was 3.1 MPa and the excess sorption was 0.85 mmol/g. Confined coal exposed to CO{sub 2} for 26 days displays an average volumetric expansion of 0.4%. Normal strains due to CO{sub 2} sorption were 0.11%, 0.22% and 0.11% along x, y and z axes. Drainage of the CO{sub 2} induced an average of - 0.33% volumetric shrinkage. Normal strains due to CO{sub 2} desorption were - 0.23%, - 0.08% and - 0.02% along x, y and z axes. Alternating positive and negative strain values observed along the sample length during compression, sorption and desorption respectively emphasized that both localized compression/compaction and expansion of coal will occur during CO{sub 2} sequestration. (author)

  2. Electrochemical studies, in-situ and ex-situ characterizations of different manganese compounds electrodeposited in aerated solutions; Etudes electrochimiques, suivis in-situ et caracterisations ex-situ de divers composes de manganese electrodeposes dans des solutions aerees

    Energy Technology Data Exchange (ETDEWEB)

    Peulon, S.; Lacroix, A.; Chausse, A. [Univ. d' Evry-val-d' Essonne, Laboratoire Analyse et Modelisation pour la Biologie et l' Environnement (LAMBE CNRS UMR 8587), 91 - Evry (France); Larabi-Gruet, N. [CEA Saclay, Dept. de Physico-Chimie (DEN/DPC/SECR/L3MR), 91 - Gif sur Yvette (France)

    2007-07-01

    This work deals with the electrodeposition of manganese compounds. A systematic study of the synthesis experimental conditions has been carried out, and the obtained depositions have been characterized by different ex-situ analyses methods (XRD, FTIR, SEM). The in-situ measurements of mass increase with a quartz microbalance during the syntheses have allowed to estimate the growth mechanisms which are in agreement with the ex-situ characterizations. The cation has an important role in the nature of the electrodeposited compounds. In presence of sodium, a mixed lamellar compound Mn(III)/Mn(IV), the birnessite, is deposited, whereas in presence of potassium, bixbyite is formed (Mn{sub 2}O{sub 3}), these two compounds having a main role in the environment. The substrate can also influence the nature of the formed intermediary compounds. Little studied compounds such as feitkneichtite ({beta}-MnOOH) and groutite ({alpha}-MnOOH) have been revealed. (O.M.)

  3. Characterization of Microbial Communities in Subsurface Nuclear Blast Cavities of the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Moser, Duane P.; Bruckner, Jim; Fisher, Jen; Czerwinski, Ken; Russell, Charles E.; Zavarin, Mavrik

    2010-09-01

    This U.S. Department of Energy (DOE) Environmental Remediation Sciences Project (ERSP) was designed to test fundamental hypotheses concerning the existence and nature of indigenous microbial populations of Nevada Test Site subsurface nuclear test/detonation cavities. Now called Subsurface Biogeochemical Research (SBR), this program’s Exploratory Research (ER) element, which funded this research, is designed to support high risk, high potential reward projects. Here, five cavities (GASCON, CHANCELLOR, NASH, ALEMAN, and ALMENDRO) and one tunnel (U12N) were sampled using bailers or pumps. Molecular and cultivation-based techniques revealed bacterial signatures at five sites (CHANCELLOR may be lifeless). SSU rRNA gene libraries contained diverse and divergent microbial sequences affiliated with known metal- and sulfur-cycling microorganisms, organic compound degraders, microorganisms from deep mines, and bacteria involved in selenate reduction and arsenite oxidation. Close relatives of Desulforudis audaxviator, a microorganism thought to subsist in the terrestrial deep subsurface on H2 and SO42- produced by radiochemical reactions, was detected in the tunnel waters. NTS-specific media formulations were used to culture and quantify nitrate-, sulfate-, iron-reducing, fermentative, and methanogenic microorganisms. Given that redox manipulations mediated by microorganisms can impact the mobility of DOE contaminants, our results should have implications for management strategies at this and other DOE sites.

  4. Characterization of microbial communities in subsurface nuclear blast cavities of the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Moser, Duane P; Czerwinski, Ken; Russell, Charles E; Zavarin, Mavrik

    2010-07-13

    This US Department of Energy (DOE) Environmental Remediation Sciences Project (ERSP) was designed to test fundamental hypotheses concerning the existence and nature of indigenous microbial populations of Nevada Test Site subsurface nuclear test/detonation cavities. Now called Subsurface Biogeochemical Research (SBR), this program's Exploratory Research (ER) element, which funded this research, is designed to support high risk, high potential reward projects. Here, five cavities (GASCON, CHANCELLOR, NASH, ALEMAN, and ALMENDRO) and one tunnel (U12N) were sampled using bailers or pumps. Molecular and cultivation-based techniques revealed bacterial signatures at five sites (CHANCELLOR may be lifeless). SSU rRNA gene libraries contained diverse and divergent microbial sequences affiliated with known metal- and sulfur-cycling microorganisms, organic compound degraders, microorganisms from deep mines, and bacteria involved in selenate reduction and arsenite oxidation. Close relatives of Desulforudis audaxviator, a microorganism thought to subsist in the terrestrial deep subsurface on H2 and SO42- produced by radiochemical reactions, was detected in the tunnel waters. NTS-specific media formulations were used to culture and quantify nitrate-, sulfate-, iron-reducing, fermentative, and methanogenic microorganisms. Given that redox manipulations mediated by microorganisms can impact the mobility of DOE contaminants, our results should have implications for management strategies at this and other DOE sites.

  5. Characterization of Microbial Communities in Subsurface Nuclear Blast Cavities of the Nevada Test Site

    International Nuclear Information System (INIS)

    Moser, Duane P.; Bruckner, Jim; Fisher, Jen; Czerwinski, Ken; Russell, Charles E.; Zavarin, Mavrik

    2010-01-01

    This U.S. Department of Energy (DOE) Environmental Remediation Sciences Project (ERSP) was designed to test fundamental hypotheses concerning the existence and nature of indigenous microbial populations of Nevada Test Site subsurface nuclear test/detonation cavities. Now called Subsurface Biogeochemical Research (SBR), this program's Exploratory Research (ER) element, which funded this research, is designed to support high risk, high potential reward projects. Here, five cavities (GASCON, CHANCELLOR, NASH, ALEMAN, and ALMENDRO) and one tunnel (U12N) were sampled using bailers or pumps. Molecular and cultivation-based techniques revealed bacterial signatures at five sites (CHANCELLOR may be lifeless). SSU rRNA gene libraries contained diverse and divergent microbial sequences affiliated with known metal- and sulfur-cycling microorganisms, organic compound degraders, microorganisms from deep mines, and bacteria involved in selenate reduction and arsenite oxidation. Close relatives of Desulforudis audaxviator, a microorganism thought to subsist in the terrestrial deep subsurface on H 2 and SO 4 2- produced by radiochemical reactions, was detected in the tunnel waters. NTS-specific media formulations were used to culture and quantify nitrate-, sulfate-, iron-reducing, fermentative, and methanogenic microorganisms. Given that redox manipulations mediated by microorganisms can impact the mobility of DOE contaminants, our results should have implications for management strategies at this and other DOE sites.

  6. A Remote Characterization System and a fault-tolerant tracking system for subsurface mapping of buried waste sites

    International Nuclear Information System (INIS)

    Sandness, G.A.; Bennett, D.W.; Martinson, L.; Bingham, D.N.; Anderson, A.A.

    1992-08-01

    This paper describes two closely related projects that will provide new technology for characterizing hazardous waste burial sites. The first project, a collaborative effort by five of the national laboratories, involves the development and demonstration of a remotely controlled site characterization system. The Remote Characterization System (RCS) includes a unique low-signature survey vehicle, a base station, radio telemetry data links, satellite-based vehicle tracking, stereo vision, and sensors for noninvasive inspection of the surface and subsurface. The second project, conducted by the Idaho National Engineering Laboratory (INEL), involves the development of a position sensing system that can track a survey vehicle or instrument in the field. This system can coordinate updates at a rate of 200/s with an accuracy better than 0.1% of the distance separating the target and the sensor. It can employ acoustic or electromagnetic signals in a wide range of frequencies and can be operated as a passive or active device

  7. The Near Earth Object Scout Spacecraft: A Low Cost Approach to in-situ Characterization of the NEO Population

    Science.gov (United States)

    Koontz, Steven L.; Condon, Gerald; Graham, Lee; Bevilacqua, Ricardo

    2014-01-01

    In this paper we describe a micro/nano satellite spacecraft and a supporting mission profile and architecture designed to enable preliminary in-situ characterization of a significant number of Near Earth Objects (NEOs) at reasonable cost. The spacecraft will be referred to as the NEO Scout. NEO Scout spacecraft are to be placed in GTO, GEO, or cis-lunar space as secondary payloads on launch vehicles headed for GTO or beyond and will begin their mission after deployment from the launcher. A distinguishing key feature of the NEO scout system is to design the mission timeline and spacecraft to rendezvous with and land on the target NEOs during close approach to the Earth-Moon system using low-thrust/high- impulse propulsion systems. Mission feasibility and preliminary design analysis are presented along with detailed trajectory calculations. The use of micro/nano satellites in low-cost interplanetary exploration is attracting increasing attention and is the subject of several annual workshops and published design studies (1-4). The NEO population consists of those asteroids and short period comets orbiting the Sun with a perihelion of 1.3 astronomical units or less (5-8). As of July 30, 2013 10065 Near-Earth objects have been discovered. The spin rate, mass, density, surface physical (especially mechanical) properties, composition, and mineralogy of the vast majority of these objects are highly uncertain and the limited available telescopic remote sensing data imply a very diverse population (5-8). In-situ measurements by robotic spacecraft are urgently needed to provide the characterization data needed to support hardware and mission design for more ambitious human and robotic NEO operations. Large numbers of NEOs move into close proximity with the Earth-Moon system every year (9). The JPL Near-Earth Object Human Space Flight Accessible Targets Study (NHATS) (10) has produced detailed mission profile and delta V requirements for various NEO missions ranging from 30

  8. In situ groundwater bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry C.

    2009-02-01

    In situ groundwater bioremediation of hydrocarbons has been used for more than 40 years. Most strategies involve biostimulation; however, recently bioaugmentation have been used for dehalorespiration. Aquifer and contaminant profiles are critical to determining the feasibility and strategy for in situ groundwater bioremediation. Hydraulic conductivity and redox conditions, including concentrations of terminal electron acceptors are critical to determine the feasibility and strategy for potential bioremediation applications. Conceptual models followed by characterization and subsequent numerical models are critical for efficient and cost effective bioremediation. Critical research needs in this area include better modeling and integration of remediation strategies with natural attenuation.

  9. Characterization of DNA-repair potential in deep subsurface bacteria challenged by UV light, hydrogen peroxide, and gamma radiation

    OpenAIRE

    Arrage, Andrew Anthony

    1991-01-01

    Subsurface bacterial isolates obtained through the DOE Subsurface Science Program were tested for resistance to UV light, gamma radiation and H202. Some deep subsurface bacteria were resistant to UV light, demonstrating â ¥1.0% survival at fluences which resulted in a 0.0001% survival level of E. coli B. The percentage of UV resistant aerobic subsurface bacteria and surface soil bacteria were similar; 30.8% and 25.8% respectively. All of the microaerophilic subsurface isolates ...

  10. Synthesis and electrochemical and in situ spectroelectrochemical characterization of manganese, vanadyl, and cobalt phthalocyanines with 2-naphthoxy substituents

    International Nuclear Information System (INIS)

    Ozcesmeci, Ibrahim; Koca, Atif; Guel, Ahmet

    2011-01-01

    Highlights: → Metallo (Mn, Co, VO) phthalocyanines bearing peripheral 2-naphthoxy-groups were synthesized by cyclotetramerisation of the corresponding phthalonitrile derivative. → Incorporation of the redox active metal ions into the phthalocyanine core extends the redox capabilities of the Pc ring. → The presence of O 2 in the electrolyte system influences both oxygen reduction reaction and the electrochemical and spectral behaviors of the complexes. → Homogeneous catalytic ORR process occurs via an 'inner sphere' chemical catalysis process. - Abstract: Metallo (Mn, Co, VO) phthalocyanines bearing peripheral 2-naphthoxy groups were synthesized by cyclotetramerisation of the corresponding phthalonitrile derivative. The phthalocyanine compounds were characterized by elemental analyses, mass, FT-IR and UV-vis spectral data. Three intense bands in the electronic spectra clearly indicate the absorptions resulting from naphthyl groups along with the Q and B bands of the phthalocyanines. Electrochemical and spectroelectrochemical measurements exhibit that incorporation of redox active metal ions, Co II and Mn III , into the phthalocyanine core extends the redox capabilities of the Pc ring including the metal-based reduction and oxidation couples of the metal. Presence of molecular oxygen in the electrolyte system affects the voltammetric and spectroelectrochemical responses of the cobalt and manganese phthalocyanines due to the interaction between the complexes and molecular oxygen. Interaction reaction of oxygen with CoPc occurs via an 'inner sphere' chemical catalysis process. While CoPc gives the intermediates [O 2 - -Co II Pc -2 ] - and [O 2 2 -Co II Pc -2 ] 2- , MnPc forms μ-oxo MnPc species. An in situ electrocolorimetric method has been applied to investigate the color of the electro-generated anionic and cationic forms of the complexes for possible electrochromatic applications.

  11. Atmospheric characterization through fused mobile airborne and surface in situ surveys: methane emissions quantification from a producing oil field

    Directory of Open Access Journals (Sweden)

    I. Leifer

    2018-03-01

    Full Text Available Methane (CH4 inventory uncertainties are large, requiring robust emission derivation approaches. We report on a fused airborne–surface data collection approach to derive emissions from an active oil field near Bakersfield, central California. The approach characterizes the atmosphere from the surface to above the planetary boundary layer (PBL and combines downwind trace gas concentration anomaly (plume above background with normal winds to derive flux. This approach does not require a well-mixed PBL; allows explicit, data-based, uncertainty evaluation; and was applied to complex topography and wind flows. In situ airborne (collected by AJAX – the Alpha Jet Atmospheric eXperiment and mobile surface (collected by AMOG – the AutoMObile trace Gas – Surveyor data were collected on 19 August 2015 to assess source strength. Data included an AMOG and AJAX intercomparison transect profiling from the San Joaquin Valley (SJV floor into the Sierra Nevada (0.1–2.2 km altitude, validating a novel surface approach for atmospheric profiling by leveraging topography. The profile intercomparison found good agreement in multiple parameters for the overlapping altitude range from 500 to 1500 m for the upper 5 % of surface winds, which accounts for wind-impeding structures, i.e., terrain, trees, buildings, etc. Annualized emissions from the active oil fields were 31.3 ± 16 Gg methane and 2.4 ± 1.2 Tg carbon dioxide. Data showed the PBL was not well mixed at distances of 10–20 km downwind, highlighting the importance of the experimental design.

  12. In-situ Geotechnical Characterization of Wetland Channel Cross Sections in Coastal Louisiana Using a Portable Free-fall Penetrometer

    Science.gov (United States)

    Bilici, C.; Stark, N.; Ghose Hajra, M.

    2016-02-01

    Broader comprehension of sediment dynamics in wetland channels is essential to protect and restore wetland areas in a sustainable manner. This study focused on a wetland channel located west of Lake Borgne in coastal Louisiana. In-situ tests were performed using a portable free fall penetrometer (PFFP), targeting the characterization of wetland channel sediment characteristics and dynamics. Data were collected at 102 locations along 3 cross-channel transects. Results indicated distinct variations in sediment properties across the channel. Sediments located centrally in the channel were soft and exhibited a similar sediment strength along the channel (0.75 - 3.5 kPa at 20 cm below channel bed surface; 4 - 10 kPa at 100 cm). The sediment strength near the channel banks increased up to 20 kPa at 20 cm below channel bed, while sediment samples did not indicate a significant variation in sediment type. Thus, surficial sediments located at the center of channel appeared less consolidated than at the channel banks. This likely resulted from erosion removing looser sediments due to differences in channel flow patterns or wake waves from boat activity. Furthermore, the thickness of a loose sediment top layer varied for the opposing banks of transects. This may be related to local changes in channel shape. Particularly in meandering parts of the channels, loose sediment layers were limited up to a thickness of 5 cm at the outer bank of individual meanders, while it reached a thickness of 15 cm at the inner bank. This matched the expectations of erosion at the outer banks and deposition on the inner banks. At some locations, asymmetric sediment layers on opposing banks of channel transects were likely related to local channel tributaries. These tributaries may act as a sediment sink or source affecting sedimentation in the investigated channel.

  13. Characterization of oxidation resistance of stainless steels at high temperature by metallographic examinations and in-situ electrical resistance measurements; Charakterisierung der Oxidationsbestaendigkeit in nichtrostenden Staehlen bei hoher Temperatur durch Metallographische Untersuchungen und In-Situ-Messungen des elektrischen Widerstands

    Energy Technology Data Exchange (ETDEWEB)

    Bruncko, Mihael; Rudolf, Rebeka; Anzel, Ivan [Maribor Univ. (Slovenia). Faculty of Mechanical Engineering; Mehrabi, Kambiz [Pankl Drivetrain Systems GmbH und Co. KG, Kapfenberg (Austria); Kneissl, Albert C. [Leoben Univ. (Austria). Dept. of Physical Metallurgy and Materials Testing

    2013-07-01

    Practically all metals and alloys survive high-temperature exposure by growing oxide scales and/or by precipitation of the oxide particles in the matrix. Formed products can grow in shape of external oxide layers on surfaces, or as discrete oxide particles precipitated in a metal matrix. The first case represents external oxidation, and the other case is called internal oxidation. These processes are very important, because they determine the properties and applicability of metallic materials. Generally, they are undesired, because they cause deterioration of the mechanical properties and decomposition of metallic material. On the other side, the controlled process of external oxidation could be used for formation of protective coatings and the internal oxidation for dispersion strengthening of materials. In this paper we present monitoring of high-temperature oxidation of X12Cr13 stainless steel by in-situ electrical resistance measurements at different annealing temperatures in the air atmosphere. We determined the kinetics of oxide scale formation and its morphology with additional metallographic examination made by optical and scanning electron microscopy. The results of this research work show that in-situ monitoring and characterization of high-temperature oxidation present a strong tool that will contribute to a better fundamental understanding of the phenomena that occur during high-temperature oxidation of metallic materials. (orig.)

  14. In-Situ Characterization of Tissue Blood Flow, Blood Content, and Water State Using New Techniques in Magnetic Resonance Imaging.

    Science.gov (United States)

    Conturo, Thomas Edward

    Tissue blood flow, blood content, and water state have been characterized in-situ with new nuclear magnetic resonance imaging techniques. The sensitivities of standard techniques to the physiologic tissue parameters spin density (N_{rm r}) and relaxation times (T_1 and T_2 ) are mathematically defined. A new driven inversion method is developed so that tissue T_1 and T_2 changes produce cooperative intensity changes, yielding high contrast, high signal to noise, and sensitivity to a wider range of tissue parameters. The actual tissue parameters were imaged by automated collection of multiple-echo data having multiple T _1 dependence. Data are simultaneously fit by three-parameters to a closed-form expression, producing lower inter-parameter correlation and parameter noise than in separate T_1 or T_2 methods or pre-averaged methods. Accurate parameters are obtained at different field strengths. Parametric images of pathology demonstrate high sensitivity to tissue heterogeneity, and water content is determined in many tissues. Erythrocytes were paramagnetically labeled to study blood content and relaxation mechanisms. Liver and spleen relaxation were enhanced following 10% exchange of animal blood volumes. Rapid water exchange between intracellular and extracellular compartments was validated. Erythrocytes occupied 12.5% of renal cortex volume, and blood content was uniform in the liver, spleen and kidney. The magnitude and direction of flow velocity was then imaged. To eliminate directional artifacts, a bipolar gradient technique sensitized to flow in different directions was developed. Phase angle was reconstructed instead of intensity since the former has a 2pi -fold higher dynamic range. Images of flow through curves demonstrated secondary flow with a centrifugally-biased laminar profile and stationary velocity peaks along the curvature. Portal vein flow velocities were diminished or reversed in cirrhosis. Image artifacts have been characterized and removed. The

  15. Field demonstration and transition of SCAPS direct push VOC in-situ sensing technologies

    International Nuclear Information System (INIS)

    Davis, William M.

    1999-01-01

    This project demonstrated two in-situ volatile organic compound (VOC) samplers in combination with the direct sampling ion trap mass spectrometer (DSITMS). The technologies chosen were the Vadose Sparge and the Membrane Interface Probe (MIP) sensing systems. Tests at two demonstration sites showed the newer VOC technologies capable of providing in situ contaminant measurements at two to four times the rate of the previously demonstrated Hydrosparge sensor. The results of this project provide initial results supporting the utility of these new technologies to provide rapid site characterization of VOC contaminants in the subsurface

  16. Synthesis and characterization of PMMA/clay nanocomposites prepared by in situ polymerization assisted by sonication; Sintese e caracterizacao de nanocompositos de PMMA/MMTO via polimerizacao in situ assistida por ultrassom

    Energy Technology Data Exchange (ETDEWEB)

    Prado, Bruna R.; Bartoli, Julio R., E-mail: bartoli@unicamp.br [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil); Ito, Edson N. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2015-07-01

    In this work is presented the synthesis of nanocomposites of poly(methyl methacrylate), PMMA, with organically montmorillonite (OMMT) modified clays by in situ polymerization assisted by sonication. A statistically designed experiment was used, central composing design (CCD), to study the effect of synthesis variables on the dispersion of nanoparticles in PMMA matrix. The processing and formulation factors studied were: energy of sonication and Flory-Huggins interaction parameter between PMMA and organoclay. The structural (XRD) and morphological (TEM) characterizations of the PMMA/OMMT nanocomposites are compared with the literature. It was observed significant exfoliation of OMMT modified with hydroxyl groups in the nanocomposites of PMMA, mainly at the low ultrasonic energy level (90 and 105 kJ) studied. (author)

  17. In situ characterization of the film coverage and the charge transport in the alkylated-organic thin film transistor

    Science.gov (United States)

    Watanabe, Takeshi; Koganezawa, Tomoyuki; Kikuchi, Mamoru; Muraoka, Hiroki; Ogawa, Satoshi; Yoshimoto, Noriyuki; Hirosawa, Ichiro

    2018-03-01

    We propose an in situ experimental method of investigating the correlations of the film coverage of the organic semiconductor layers and charge transport properties of organic thin film transistors during vacuum deposition. The coverage of each monolayer was estimated using the intensity of off-specular diffuse scattering and diffraction. Experimental data were obtained from the in situ measurements of two-dimensional grazing incidence X-ray scattering and charge transport. The source-drain current increased over the film coverage of the first monolayer (= 0.48). This is in agreement with the critical percolation coverage, indicating that the conductivities of the first and second monolayers are different.

  18. Joint inversion of multi-configuration electromagnetic induction data to characterize subsurface electrical conductivity

    KAUST Repository

    Jadoon, Khan

    2012-01-01

    Electromagnetic induction (EMI) devices are capable of measuring the cumulative electrical conductivity over a certain depth range. In this study, a numerical experiment has been performed to test a novel join inversion approach for the Geonics EM34 instrument, by considering different coil offsets (10, 20 and 40 m), different coil orientations (vertical and horizontal), and different frequencies (6.4, 1.6 and 0.4 kHz). The subsurface is considered as four-layer model having different conductivities. The global multilevel coordinate search optimization algorithm is sequentially combination with the local optimization algorithm to minimize the misfit between the measured and modeled data. The layer conductivities are well predicted by the join inversion of electromagnetic data. The response surface of the objective function was investigated to assess the sensitivity of the subsurface layer conductivities. The sensitivity of the conductivity for the top two layers is less as compared to the deeper layers. The proposed approach is promising for the fast mapping of true conductivity distributions over large areas.

  19. DOE In Situ Remediation Integrated Program

    International Nuclear Information System (INIS)

    Yow, J.L. Jr.

    1993-01-01

    The In Situ Remediation Integrated Program (ISRP) supports and manages a balanced portfolio of applied research and development activities in support of DOE environmental restoration and waste management needs. ISRP technologies are being developed in four areas: containment, chemical and physical treatment, in situ bioremediation, and in situ manipulation (including electrokinetics). the focus of containment is to provide mechanisms to stop contaminant migration through the subsurface. In situ bioremediation and chemical and physical treatment both aim to destroy or eliminate contaminants in groundwater and soils. In situ manipulation (ISM) provides mechanisms to access contaminants or introduce treatment agents into the soil, and includes other technologies necessary to support the implementation of ISR methods. Descriptions of each major program area are provided to set the technical context of the ISM subprogram. Typical ISM needs for major areas of in situ remediation research and development are identified

  20. Improving the biodegradative capacity of subsurface bacteria

    International Nuclear Information System (INIS)

    Romine, M.F.; Brockman, F.J.

    1993-04-01

    The continual release of large volumes of synthetic materials into the environment by agricultural and industrial sources over the last few decades has resulted in pollution of the subsurface environment. Cleanup has been difficult because of the relative inaccessibility of the contaminants caused by their wide dispersal in the deep subsurface, often at low concentrations and in large volumes. As a possible solution for these problems, interest in the introduction of biodegradative bacteria for in situ remediation of these sites has increased greatly in recent years (Timmis et al. 1988). Selection of biodegradative microbes to apply in such cleanup is limited to those strains that can survive among the native bacterial and predator community members at the particular pH, temperature, and moisture status of the site (Alexander, 1984). The use of microorganisms isolated from subsurface environments would be advantageous because the organisms are already adapted to the subsurface conditions. The options are further narrowed to strains that are able to degrade the contaminant rapidly, even in the presence of highly recalcitrant anthropogenic waste mixtures, and in conditions that do not require addition of further toxic compounds for the expression of the biodegradative capacity (Sayler et al. 1990). These obstacles can be overcome by placing the genes of well-characterized biodegradative enzymes under the control of promoters that can be regulated by inexpensive and nontoxic external factors and then moving the new genetic constructs into diverse groups of subsurface microbes. ne objective of this research is to test this hypothesis by comparing expression of two different toluene biodegradative enzymatic pathways from two different regulatable promoters in a variety of subsurface isolates

  1. XRMON-GF: A novel facility for solidification of metallic alloys with in situ and time-resolved X-ray radiographic characterization in microgravity conditions

    Science.gov (United States)

    Nguyen-Thi, H.; Reinhart, G.; Salloum Abou Jaoude, G.; Mathiesen, R. H.; Zimmermann, G.; Houltz, Y.; Voss, D.; Verga, A.; Browne, D. J.; Murphy, A. G.

    2013-07-01

    As most of the phenomena involved during the growth of metallic alloys from the melt are dynamic, in situ and time-resolved X-ray imaging should be retained as the method of choice for investigating the solidification front evolution. On Earth, the gravity force is the major source of various disturbing effects (natural convection, buoyancy/sedimentation, and hydrostatic pressure) which can significantly modify or mask certain physical mechanisms. Therefore solidification under microgravity is an efficient way to eliminate such perturbations to provide unique benchmark data for the validation of models and numerical simulations. Up to now, in situ observation during microgravity solidification experiments were limited to the investigations on transparent organic alloys, using optical methods. On the other hand, in situ observation on metallic alloys generally required synchrotron facilities. This paper reports on a novel facility we have designed and developed to investigate directional solidification on metallic alloys in microgravity conditions with in situ X-ray radiography observation. The facility consists of a Bridgman furnace and an X-ray radiography device specifically devoted to the study of Al-based alloys. An unprecedented experiment was recently performed on board a sounding rocket, with a 6 min period of microgravity. Radiographs were successfully recorded during the entire experiment including the melting and solidification phases of the sample, with a Field-of-View of about 5 mm×5 mm, a spatial resolution of about 4 µm and a frequency of 2 frames per second. Some preliminary results are presented on the solidification of the Al-20 wt% Cu sample, which validate the apparatus and confirm the potential of in situ X-ray characterization for the investigation of dynamical phenomena in materials processing, and particularly for the studying of metallic alloys solidification.

  2. Characterizing of a Mid-Latitude Ice-Rich Landing Site on Mars to Enable in Situ Habitability Studies

    Science.gov (United States)

    Heldmann, J.; Schurmeier, L. R.; Wilhelm, M.; Stoker, C.; McKay, C.; Davila, A.; Marinova, M.; Karcz, J.; Smith, H.

    2012-01-01

    We suggest an ice-rich landing site at 188.5E 46.16N within Amazonis Planitia as a candidate location to support a Mars lander mission equipped to study past habitability and regions capable of preserving the physical and chemical signs of life and organic matter. Studies of the ice-rich subsurface on Mars are critical for several reasons. The subsurface environment provides protection from radiation to shield organic and biologic compounds from destruction. The ice-rich substrate is also ideal for preserving organic and biologic molecules and provides a source of H2O for biologic activity. Examination of martian ground ice can test several hypotheses such as: 1) whether ground ice supports habitable conditions, 2) that ground ice can preserve and accumulate organic compounds, and 3) that ice contains biomolecules evident of past or present biological activity on Mars. This Amazonis site, located near the successful Viking Lander 2, shows indirect evidence of subsurface ice (ubiquitous defined polygonal ground, gamma ray spectrometer hydrogen signature, and numerical modeling of ice stability) and direct evidence of exposed subsurface ice. This site also provides surface conditions favorable to a safe landing including no boulders, low rock density, minimal rough topography, and few craters.

  3. Characterization of a de novo duplication of 11p14----p13, using fluorescent in situ hybridization and southern hybridization

    NARCIS (Netherlands)

    Speleman, F.; Mannens, M.; Redeker, B.; Vercruyssen, M.; van Oostveldt, P.; Leroy, J.; Slater, R.

    1991-01-01

    A de novo 11p+ chromosome was found in a child with mild mental retardation but no other remarkable dysmorphic characteristics. Banding studies suggested a duplication of regions 11p13 and 11p14 or regions 11p14 and 11p15. Using fluorescent in situ hybridization and digital imaging microscopy, we

  4. Deep subsurface microbial processes

    Science.gov (United States)

    Lovley, D.R.; Chapelle, F.H.

    1995-01-01

    Information on the microbiology of the deep subsurface is necessary in order to understand the factors controlling the rate and extent of the microbially catalyzed redox reactions that influence the geophysical properties of these environments. Furthermore, there is an increasing threat that deep aquifers, an important drinking water resource, may be contaminated by man's activities, and there is a need to predict the extent to which microbial activity may remediate such contamination. Metabolically active microorganisms can be recovered from a diversity of deep subsurface environments. The available evidence suggests that these microorganisms are responsible for catalyzing the oxidation of organic matter coupled to a variety of electron acceptors just as microorganisms do in surface sediments, but at much slower rates. The technical difficulties in aseptically sampling deep subsurface sediments and the fact that microbial processes in laboratory incubations of deep subsurface material often do not mimic in situ processes frequently necessitate that microbial activity in the deep subsurface be inferred through nonmicrobiological analyses of ground water. These approaches include measurements of dissolved H2, which can predict the predominant microbially catalyzed redox reactions in aquifers, as well as geochemical and groundwater flow modeling, which can be used to estimate the rates of microbial processes. Microorganisms recovered from the deep subsurface have the potential to affect the fate of toxic organics and inorganic contaminants in groundwater. Microbial activity also greatly influences 1 the chemistry of many pristine groundwaters and contributes to such phenomena as porosity development in carbonate aquifers, accumulation of undesirably high concentrations of dissolved iron, and production of methane and hydrogen sulfide. Although the last decade has seen a dramatic increase in interest in deep subsurface microbiology, in comparison with the study of

  5. Keep your Sox on: Community genomics-directed isolation and microscopic characterization of the dominant subsurface sulfur-oxidizing bacterium in a sediment aquifer

    Science.gov (United States)

    Mullin, S. W.; Wrighton, K. C.; Luef, B.; Wilkins, M. J.; Handley, K. M.; Williams, K. H.; Banfield, J. F.

    2012-12-01

    Community genomics and proteomics (proteogenomics) can be used to predict the metabolic potential of complex microbial communities and provide insight into microbial activity and nutrient cycling in situ. Inferences regarding the physiology of specific organisms then can guide isolation efforts, which, if successful, can yield strains that can be metabolically and structurally characterized to further test metagenomic predictions. Here we used proteogenomic data from an acetate-stimulated, sulfidic sediment column deployed in a groundwater well in Rifle, CO to direct laboratory amendment experiments to isolate a bacterial strain potentially involved in sulfur oxidation for physiological and microscopic characterization (Handley et al, submitted 2012). Field strains of Sulfurovum (genome r9c2) were predicted to be capable of CO2 fixation via the reverse TCA cycle and sulfur oxidation (Sox and SQR) coupled to either nitrate reduction (Nap, Nir, Nos) in anaerobic environments or oxygen reduction in microaerobic (cbb3 and bd oxidases) environments; however, key genes for sulfur oxidation (soxXAB) were not identified. Sulfidic groundwater and sediment from the Rifle site were used to inoculate cultures that contained various sulfur species, with and without nitrate and oxygen. We isolated a bacterium, Sulfurovum sp. OBA, whose 16S rRNA gene shares 99.8 % identity to the gene of the dominant genomically characterized strain (genome r9c2) in the Rifle sediment column. The 16S rRNA gene of the isolate most closely matches (95 % sequence identity) the gene of Sulfurovum sp. NBC37-1, a genome-sequenced deep-sea sulfur oxidizer. Strain OBA grew via polysulfide, colloidal sulfur, and tetrathionate oxidation coupled to nitrate reduction under autotrophic and mixotrophic conditions. Strain OBA also grew heterotrophically, oxidizing glucose, fructose, mannose, and maltose with nitrate as an electron acceptor. Over the range of oxygen concentrations tested, strain OBA was not

  6. Characterization of in-situ annealed sub-micron thick Cu(In,Ga)Se{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Byoung-Soo; Sung, Shi-Joon; Hwang, Dae-Kue, E-mail: dkhwang@dgist.ac.kr

    2015-09-01

    Sub-micron thick Cu(In,Ga)Se{sub 2} (CIGS) thin films were deposited on Mo-coated soda-lime glass substrates under various conditions by single-stage co-evaporation. Generally, the short circuit current (J{sub sc}) decreased with the decreasing thickness of the absorber layer. However, in this study, J{sub sc} was nearly unchanged with decreasing thickness, while the open circuit voltage (V{sub oc}) and fill factor (FF) decreased by 31.9 and 31.1%, respectively. We believe that the remarkable change of V{sub oc} and FF can be attributed to the difference in the total amount of injected thermal energy. Using scanning electron microscopy, we confirmed that the surface morphology becomes smooth and the grain size increased after the annealing process. In the X-ray diffraction patterns, the CIGS thin film also showed an improved crystal quality. We observed that the electric properties were improved by the in-situ annealing of CIGS thin films. The reverse saturation current density of the annealed CIGS solar cell was 100 times smaller than that of reference solar cell. Thus, sub-micron CIGS thin films annealed under a constant Se rate showed a 64.7% improvement in efficiency. - Highlights: • The effects of in-situ annealing the sub-micron CIGS film have been investigated. • The surface morphology and the grain size were improved by in-situ annealing. • The V{sub oc} and FF of the films were increased by about 30% after in-situ annealing. • In-situ annealing of sub-micron thick CIGS films can be improved an efficiency.

  7. Subsurface Characterization using Geophysical Seismic Refraction Survey for Slope Stabilization Design with Soil Nailing

    Science.gov (United States)

    Ashraf Mohamad Ismail, Mohd; Ng, Soon Min; Hazreek Zainal Abidin, Mohd; Madun, Aziman

    2018-04-01

    The application of geophysical seismic refraction for slope stabilization design using soil nailing method was demonstrated in this study. The potential weak layer of the study area is first identify prior to determining the appropriate length and location of the soil nail. A total of 7 seismic refraction survey lines were conducted at the study area with standard procedures. The refraction data were then analyzed by using the Pickwin and Plotrefa computer software package to obtain the seismic velocity profiles distribution. These results were correlated with the complementary borehole data to interpret the subsurface profile of the study area. It has been identified that layer 1 to 3 is the potential weak zone susceptible to slope failure. Hence, soil nails should be installed to transfer the tensile load from the less stable layer 3 to the more stable layer 4. The soil-nail interaction will provide a reinforcing action to the soil mass thereby increasing the stability of the slope.

  8. Surface and Subsurface Geodesy Combined with Active Borehole Experimentation for the Advanced Characterization of EGS Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Elsworth, Derek [Pennsylvania State Univ., University Park, PA (United States); Im, Kyungjae [Pennsylvania State Univ., University Park, PA (United States); Guglielmi, Yves [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mattioli, Glen [Univ. of Texas, Arlington, TX (United States). UNAVCO

    2016-11-14

    We explore the utility of combining active downhole experimentation with borehole and surface geodesy to determine both the characteristics and evolving state of EGS reservoirs during stimulation through production. The study is divided into two parts. We demonstrate the feasibility of determining in situ reservoir characteristics of reservoir size, strain and fracture permeability and their dependence on feedbacks of stress and temperature using surface and borehole geodetic measurements (Part I). We then define the opportunity to apply the unique hydraulic pulse protocol (HPP) borehole tool to evaluate reservoir state. This can be accomplished by monitoring and co-inverting measured reservoir characteristics (from the HPP tool) with surface geodetic measurements of deformation, tilt and strain with continuous measurements of borehole-wall strain (via optical fiber and fiber Bragg gratings) and measured flow rates (Part II).

  9. In-situ transmission electron microscopy of the solid-phase epitaxial growth of GaAs: sample preparation and artifact characterization

    International Nuclear Information System (INIS)

    Llewellyn, D.J.; Llewellyn, D.J.; Belay, K.B.; Ridgway, M.C.

    1998-01-01

    In-situ transmission electron microscopy (TEM) has been used to characterize the solid phase epitaxial growth of amorphized GaAs at a temperature of 260 deg C. To maximize heat transfer from the heated holder to the sample and minimize electron-irradiation induced artifacts, non-conventional methodologies were utilized for the preparation of cross-sectional samples. GaAs 3x1 mm rectangular wafers were cleaved then glued face-to-face to form a wafer stack size of 3x3 mm while maintaining the TEM region at the center. This stack was subsequently polished on the cross-section to a thickness of ∼ 200 μm. A 3 mm disc was then cut perpendicular to the cross-section using a Gatan ultrasonic cutter. The disc was polished then dimpled on both sides to a thickness of ∼ 15 μm. This was ion-beam milled at liquid nitrogen temperature to an electron-transparent layer. From a comparison of in-situ and ex-situ measurements of the recrystallization rate, the actual sample temperature during in-situ characterization was estimated to deviate by ≤ 20 deg C from that of the heated holder. The influence of electron-irradiation was found to be negligible by comparing the recrystallization rate and microstructure of irradiated and unirradiated regions of comparable thickness. Similarly, the influence of the 'thin-foil effect' was found to be negligible by comparing the recrystallization rate and microstructure of thick and thin regions, the former determined after the removal of the sample from the microscope and further ion-beam milling of tens of microns of material. In conclusion, the potential influence of artifacts during in-situ TEM can be minimized by the appropriate choice of sample preparation procedures. (authors)

  10. In-Situ Characterization of Deformation and Fracture Behavior of Hot-Rolled Medium Manganese Lightweight Steel

    Science.gov (United States)

    Zhao, Zheng-zhi; Cao, Rong-hua; Liang, Ju-hua; Li, Feng; Li, Cheng; Yang, Shu-feng

    2018-02-01

    The deformation and fracture behavior of hot-rolled medium manganese lightweight (0.32C-3.85Mn-4.18Al-1.53Si) steel was revealed by an in situ tensile test. Deformed δ-ferrite with plenty of cross-parallel deformation bands during in situ tensile tests provides δ-ferrite of good plasticity and ductility, although it is finally featured by the cleavage fracture. The soft and ductile δ-ferrite and high-volume fraction of austenite contribute to the superior mechanical properties of medium manganese lightweight steel heated at 800°C, with a tensile strength of 924 MPa, total elongation of 35.2% and product of the strength and elongation of 32.5 GPa %.

  11. Nanoparticles of the superconductor MgB2: structural characterization and in situ study of synthesis kinetics

    International Nuclear Information System (INIS)

    Cui Chunxiang; Liu Debao; Shen Yutian; Sun Jinbin; Meng Fanbin; Wang Ru; Liu Shuangjin; Greer, A.L.; Chen, S.K.; Glowacki, B.A.

    2004-01-01

    Single-crystal MgB 2 nanoparticles, with diameters in the range 20-100 nm, have been synthesized in situ in the sample chamber of an X-ray diffractometer. The reaction kinetics are analyzed and related to the atomic-level structure of the particles as observed by high-resolution electron microscopy. Synthesis conditions may have a significant influence on microstructure and superconducting properties

  12. In situ characterization of advanced glycation end products (AGEs) in collagen and model extracellular matrix by solid state NMR.

    Science.gov (United States)

    Li, R; Rajan, R; Wong, W C V; Reid, D G; Duer, M J; Somovilla, V J; Martinez-Saez, N; Bernardes, G J L; Hayward, R; Shanahan, C M

    2017-12-14

    Non-enzymatic glycation of extracellular matrix with (U- 13 C 5 )-d-ribose-5-phosphate (R5P), enables in situ 2D ssNMR identification of many deleterious protein modifications and crosslinks, including previously unreported oxalamido and hemiaminal (CH 3 -CH(OH)NHR) substructures. Changes in charged residue proportions and distribution may be as important as crosslinking in provoking and understanding harmful tissue changes.

  13. Hillslope characterization: Identifying key controls on local-scale plant communities' distribution using remote sensing and subsurface data fusion.

    Science.gov (United States)

    Falco, N.; Wainwright, H. M.; Dafflon, B.; Leger, E.; Peterson, J.; Steltzer, H.; Wilmer, C.; Williams, K. H.; Hubbard, S. S.

    2017-12-01

    Mountainous watershed systems are characterized by extreme heterogeneity in hydrological and pedological properties that influence biotic activities, plant communities and their dynamics. To gain predictive understanding of how ecosystem and watershed system evolve under climate change, it is critical to capture such heterogeneity and to quantify the effect of key environmental variables such as topography, and soil properties. In this study, we exploit advanced geophysical and remote sensing techniques - coupled with machine learning - to better characterize and quantify the interactions between plant communities' distribution and subsurface properties. First, we have developed a remote sensing data fusion framework based on the random forest (RF) classification algorithm to estimate the spatial distribution of plant communities. The framework allows the integration of both plant spectral and structural information, which are derived from multispectral satellite images and airborne LiDAR data. We then use the RF method to evaluate the estimated plant community map, exploiting the subsurface properties (such as bedrock depth, soil moisture and other properties) and geomorphological parameters (such as slope, curvature) as predictors. Datasets include high-resolution geophysical data (electrical resistivity tomography) and LiDAR digital elevation maps. We demonstrate our approach on a mountain hillslope and meadow within the East River watershed in Colorado, which is considered to be a representative headwater catchment in the Upper Colorado Basin. The obtained results show the existence of co-evolution between above and below-ground processes; in particular, dominant shrub communities in wet and flat areas. We show that successful integration of remote sensing data with geophysical measurements allows identifying and quantifying the key environmental controls on plant communities' distribution, and provides insights into their potential changes in the future

  14. Growth of potassium sulfate crystals in the presence of organic dyes: in situ characterization by atomic force microscopy

    Science.gov (United States)

    Mauri, Andrea; Moret, Massimo

    2000-01-01

    In situ atomic force microscopy (AFM) has been used to observe potassium sulfate crystals growing in the presence of acid fuchsin and pyranine. These polysulfonated dyes are well known for their ability to adsorb onto the {1 1 0} and {0 1 0} (pyranine only) crystal faces. Using AFM, we analyzed the changes in surface micromorphology induced by the additives on advancing steps for the {1 1 0} and {0 1 0} surfaces. In situ AFM showed that layers grow by step flow at pre-existing steps by the addition of growth units at the step edges. It has been found that dye concentrations as low as ˜2×10 -6 M for pyranine and ˜4×10 -4 M for acid fuchsin produce significant changes in the step morphology and growth rates. The additive molecules attach to the terraces and pin the growing front. As a consequence, the edges of the growing steps become jagged as the dye molecules are adsorbed onto the crystal surface. At critical dye concentrations crystal growth is heavily hampered or even stopped along certain crystallographic directions producing, on a macroscopic scale, strong habit modifications. The formation of dye inclusions by means of macrosteps overgrowing the poisoned surface was also imaged. Interestingly, comparison of the in situ AFM experiments with previous habit modification studies showed acid fuchsin is also able to enter the {0 1 0} surfaces, a previously unnoticed phenomenon.

  15. Radionuclide characterization of subsurface soil on the site of building 3505 at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Alexander, W.A.; Oakes, T.W.; Eldridge, J.S.; Huang, S.; Hubbard, H.M.

    1982-12-01

    Ninety-two samples at varying depths were collected from 25 cores. Sample tubes were driven into the ground and segments of soil cores were retrieved at depths from the ground surface to subsurface consolidated material. forty samples of the 92 collected had detectable gamma activities [i.e., > 2 x 10 - 2 Bq/g (0.5 pCi/g)] of 137 Cs. However, only four samples, all from the same borehole, were found to have significant amounts of 137 Cs with a maximum of 1.7 x 10 3 Bq/g (4.6 x 10 4 pCi/g). These four samples also contained the highest activities of other radionuclides ( 60 Co, 90 Sr, 235 U, 238 U, 239 Pu, and 241 Am). These subsamples came from core number 4DD, which was the deepest core collected. Core 4DD was taken at the southwest corner of the site, which is at the lower elevation of the site. Since most of the activity in this core was found below the bedrock (or shale) in the groundwater region, the contamination is probably not from Building 3505. Additional investigation in the area around core location 4DD will be required to determine the extent of contamination

  16. Towards Molecular Characterization of Mineral-Organic Matter Interface Using In Situ Liquid Secondary Ion Mass Spectrometry

    Science.gov (United States)

    Zhu, Z.; Yu, X. Y.

    2017-12-01

    Organo-Mineral-Microbe interactions in terrestrial ecosystems are of great interest. Quite a few models have been developed through extensive efforts in this field. However, predictions from current models are far from being accurate, and many debates still exist. One of the major reasons is that most experimental data generated from bulk analysis, and the information of molecular dynamics occurring at mineral-organic matter interface is rare. Such information has been difficult to obtain, due to lack of suitable in situ analysis tools. Recently, we have developed in situ liquid secondary ion mass spectrometry (SIMS) at Pacific Northwest National Laboratory1, and it has shown promise to provide both elemental and molecular information at vacuum-liquid and solid-liquid interfaces.2 In this presentation, we demonstrate that in situ liquid SIMS can provide critical molecular information at solid substrate-live biofilm interface.3 Shewanella oneidensis is used as a model micro-organism and silicon nitride as a model mineral surface. Of particular interest, biologically relevant water clusters have been first observed in the living biofilms. Characteristic fragments of biofilm matrix components such as proteins, polysaccharides, and lipids can be molecularly examined. Furthermore, characteristic fatty acids (e.g., palmitic acid), quinolone signal, and riboflavin fragments were found to respond after the biofilm is treated with Cr(VI), leading to biofilm dispersal. Significant changes in water clusters and quorum sensing signals indicative of intercellular communication in the aqueous environment were observed, suggesting that they might result in fatty acid synthesis and inhibition of riboflavin production. The Cr(VI) reduction seems to follow the Mtr pathway leading to Cr(III) formation. Our approach potentially opens a new avenue for in-situ understanding of mineral-organo or mineral-microbe interfaces using in situ liquid SIMS and super resolution fluorescence

  17. Characterizing Microbial Diversity and Function in Natural Subsurface CO2 Reservoir Systems for Applied Use in Geologic Carbon Sequestration Environments

    Science.gov (United States)

    Freedman, A.; Thompson, J. R.

    2013-12-01

    The injection of CO2 into geological formations at quantities necessary to significantly reduce CO2 emissions will represent an environmental perturbation on a continental scale. The extent to which biological processes may play a role in the fate and transport of CO2 injected into geological formations has remained an open question due to the fact that at temperatures and pressures associated with reservoirs targeted for sequestration CO2 exists as a supercritical fluid (scCO2), which has generally been regarded as a sterilizing agent. Natural subsurface accumulations of CO2 serve as an excellent analogue for studying the long-term effects, implications and benefits of CO2 capture and storage (CCS). While several geologic formations bearing significant volumes of nearly pure scCO2 phases have been identified in the western United States, no study has attempted to characterize the microbial community present in these systems. Because the CO2 in the region is thought to have first accumulated millions of years ago, it is reasonable to assume that native microbial populations have undergone extensive and unique physiological and behavioral adaptations to adjust to the exceedingly high scCO2 content. Our study focuses on the microbial communities associated with the dolomite limestone McElmo Dome scCO2 Field in the Colorado Plateau region, approximately 1,000 m below the surface. Fluid samples were collected from 10 wells at an industrial CO2 production facility outside Cortez, CO. Subsamples preserved on site in 3.7% formaldehyde were treated in the lab with Syto 9 green-fluorescent nucleic acid stain, revealing 3.2E6 to 1.4E8 microbial cells per liter of produced fluid and 8.0E9 cells per liter of local pond water used in well drilling fluids. Extracted DNAs from sterivex 0.22 um filters containing 20 L of sample biomass were used as templates for PCR targeting the 16S rRNA gene. 16S rRNA amplicons from these samples were cloned, sequenced and subjected to microbial

  18. In Situ Focused Beam Reflectance Measurement (FBRM, Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR and Raman Characterization of the Polymorphic Transformation of Carbamazepine

    Directory of Open Access Journals (Sweden)

    Sohrab Rohani

    2012-02-01

    Full Text Available The objective of this work was to study the polymorphic transformation of carbamazepine from Form II to Form III in 1-propanol during seeded isothermal batch crystallization. First, the pure Form II and Form III were obtained and characterized. Then their solubilities and metastable zone limits were measured by in-situ attenuated total reflectance Fourier transform infrared (ATR-FTIR spectroscopy and focused beam reflectance measurement (FBRM. A transition temperature at about 34.2 °C was deduced suggesting the enantiotropic nature of this compound over the studied temperature range. To quantify the polymorph ratio during the transformation process, a new in-situ quantitative method was developed to measure the fraction of Form II by Raman spectroscopy. Successful tracking of the nucleation of the stable form and the transformation from Form II to Form III during isothermal crystallization was achieved by Raman spectroscopy and FBRM. The results from these three in-situ techniques, FBRM, FTIR and Raman were consistent with each other. The results showed a strong dependency on the amount of seeds added during isothermal crystallization.

  19. SUBSURFACE CHARACTERIZATION OF 67P/CHURYUMOV–GERASIMENKO’S ABYDOS SITE

    Energy Technology Data Exchange (ETDEWEB)

    Brugger, B.; Mousis, O.; Jorda, L.; Lamy, P.; Vernazza, P. [Aix Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, F-13388, Marseille (France); Morse, A.; Andrews, D.; Barber, S.; Morgan, G.; Sheridan, S.; Wright, I. P. [Planetary and Space Sciences, Department of Physics, The Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Marboeuf, U. [Physikalishes Institut, Center for Space and Habitability, University of Bern (Switzerland); Guilbert-Lepoutre, A. [Institut UTINAM, UMR 6213 CNRS-Université de Franche-Comté, Besançon (France); Luspay-Kuti, A.; Mandt, K., E-mail: bastien.brugger@lam.fr [Department of Space Science, Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78228 (United States)

    2016-05-10

    On 2014 November 12, the ESA/ Rosetta descent module Philae landed on the Abydos site of comet 67P/Churyumov–Gerasimenko. Aboard this module, the Ptolemy mass spectrometer measured a CO/CO{sub 2} ratio of 0.07 ± 0.04, which differs substantially from the value obtained in the coma by the Rosetta /ROSINA instrument, suggesting a heterogeneity in the comet nucleus. To understand this difference, we investigated the physicochemical properties of the Abydos subsurface, leading to CO/CO{sub 2} ratios close to that observed by Ptolemy at the surface of this region. We used a comet nucleus model that takes into account different water ice phase changes (amorphous ice, crystalline ice, and clathrates) as well as diffusion of molecules throughout the pores of the matrix. The input parameters of the model were optimized for the Abydos site, and the ROSINA CO/CO{sub 2} measured ratio is assumed to correspond to the bulk value in the nucleus. We find that all considered structures of water ice are able to reproduce the Ptolemy observation with a time difference not exceeding ∼50 days, i.e., lower than ∼2% on 67P/Churyumov–Gerasimenko’s orbital period. The suspected heterogeneity of 67P/Churyumov–Gerasimenko’s nucleus is also found possible only if it is constituted of crystalline ices. If the icy phase is made of amorphous ice or clathrates, the difference between Ptolemy and ROSINA’s measurements would rather originate from the spatial variations in illumination on the nucleus surface. An eventual new measurement of the CO/CO{sub 2} ratio at Abydos by Ptolemy could be decisive to distinguish between the three water ice structures.

  20. The Beishan underground research laboratory for geological disposal of high-level radioactive waste in China: Planning, site selection, site characterization and in situ tests

    Directory of Open Access Journals (Sweden)

    Ju Wang

    2018-06-01

    Full Text Available With the rapid development of nuclear power in China, the disposal of high-level radioactive waste (HLW has become an important issue for nuclear safety and environmental protection. Deep geological disposal is internationally accepted as a feasible and safe way to dispose of HLW, and underground research laboratories (URLs play an important and multi-faceted role in the development of HLW repositories. This paper introduces the overall planning and the latest progress for China's URL. On the basis of the proposed strategy to build an area-specific URL in combination with a comprehensive evaluation of the site selection results obtained during the last 33 years, the Xinchang site in the Beishan area, located in Gansu Province of northwestern China, has been selected as the final site for China's first URL built in granite. In the process of characterizing the Xinchang URL site, a series of investigations, including borehole drilling, geological mapping, geophysical surveying, hydraulic testing and in situ stress measurements, has been conducted. The investigation results indicate that the geological, hydrogeological, engineering geological and geochemical conditions of the Xinchang site are very suitable for URL construction. Meanwhile, to validate and develop construction technologies for the Beishan URL, the Beishan exploration tunnel (BET, which is a 50-m-deep facility in the Jiujing sub-area, has been constructed and several in situ tests, such as drill-and-blast tests, characterization of the excavation damaged zone (EDZ, and long-term deformation monitoring of surrounding rocks, have been performed in the BET. The methodologies and technologies established in the BET will serve for URL construction. According to the achievements of the characterization of the URL site, a preliminary design of the URL with a maximum depth of 560 m is proposed and necessary in situ tests in the URL are planned. Keywords: Beishan, Xinchang site, Granite

  1. Geochemical and Microbiological Characteristics during in Situ Chemical Oxidation and in Situ Bioremediation at a Diesel Contaminated Site

    NARCIS (Netherlands)

    Sutton, N.B.; Kalisz, M.; Krupanek, J.; Marek, J.; Grotenhuis, J.T.C.; Smidt, H.; Weert, de J.; Rijnaarts, H.H.M.; Gaans, van P.; Keijzer, T.

    2014-01-01

    While in situ chemical oxidation with persulfate has seen wide commercial application, investigations into the impacts on groundwater characteristics, microbial communities and soil structure are limited. To better understand the interactions of persulfate with the subsurface and to determine the

  2. [Characterization of kale (Brassica oberacea var acephala) under thallium stress by in situ attenuated total reflection FTIR].

    Science.gov (United States)

    Yao, Yan; Zhang, Ping; Wang, Zhen-Chun; Chen, Yong-Heng

    2009-01-01

    The experiment was designed based on consumption of carbon dioxide through the photosynthesis of Brassica oberacea var acephala leaf, and the photosynthesis of kale leaf under thallium stress was investigated by in situ attenuated total reflection FTIR (in situ ATR-FTIR). The ATR-FTIR showed that the absorption peaks of leaves had no obvious difference between plants growing in thallium stress soil and plants growing in non-thallium pollution soil, and the strong peaks at 3,380 cm(-1) could be assigned to the absorption of water, carbohydrate, protein or amide; the strong peaks at 2,916 and 2,850 cm(-1) assigned to the absorption of carbohydrate or aliphatic compound; the peaks at 1,640 cm(-1) assigned to the absorption of water. However, as detected by the in situ ATR-FTIR, the double peaks (negative peaks) at 2,360 and 2,340 cm(-1) that are assigned to the absorption of CO2 appeared and became high gradually. It was showed that kale was carrying photosynthesis. At the same time, the carbon dioxide consumption speed of leaf under thallium stress was obviously larger than that of the blank It was expressed that photosynthesis under thallium stress was stronger than the blank All these represented that kale had certain tolerance to the heavy metal thallium. Meanwhile, the carbon dioxide consumption of grown-up leaf was more than that of young leaf whether or not under thallium stress. It was also indicated that the intensity of photosynthesis in grown-up leaf is higher than that in young leaf.

  3. Analysis of the extent of interphase precipitation in V-HSLA steels through in-situ characterization of the γ/α transformation

    International Nuclear Information System (INIS)

    Clark, Samuel; Janik, Vit; Rijkenberg, Arjan; Sridhar, Seetharaman

    2016-01-01

    In-situ characterization techniques have been applied to elucidate the influence of γ/α transformation upon the extent of interphase precipitation in a low-carbon, vanadium-HSLA steel. Electron Back-scattered diffraction analyses of the γ/α orientation relationship with continuous cooling at 2 and 10 K/s suggest that the proportion of ferrite likely to hold interphase precipitation varies little with cooling rate. However, TEM analyses show that the interphase precipitation refines with increasing cooling rate in this cooling range. With cooling rates in excess of 20 K/s, interphase precipitation is increasingly suppressed due to the increasingly diffusional-displacive nature of the Widmanstätten γ/α transformation that is activated. The present study illustrates that the extent and dimensions of interphase precipitation can be controlled through controlled cooling. - Highlights: • In-situ characterization of γ/α transformation • EBSD characterization of γ/α transformation orientation relationship • Extent of interphase precipitation can be controlled through controlled cooling

  4. Structural and optical characterization of In_2O_3/PANI nanocomposite prepared by in-situ polymerization

    International Nuclear Information System (INIS)

    Janeoo, Shashi; Sharma, Mamta; Goswamy, J.; Singh, Gurinder

    2016-01-01

    Polyaniline-indium oxide (In_2O_3/PANI) nanocomposite have been prepared by in-situ polymerization of aniline and as-synthesized In_2O_3 nanoparticles. X-ray diffraction (XRD), Transmission electron microscopy (TEM), Fourier transformation infrared (FTIR) and UV/Vis spectroscopy techniques are used to investigate the structural and optical properties of In_2O_3/PANI nanocomposite. TEM analysis shows In_2O_3 nanoparticles are embedded in PANI nanofibers. FTIR spectra show the good interactions between PANI nanofibers and In_2O_3 nanoparticles. The band gap and electronic transitions in In_2O_3/PANI nanocomposite is determined by using UV/Vis spectra.

  5. Colloid formation in groundwater by subsurface aeration: characterisation of the geo-colloids and their counterparts

    NARCIS (Netherlands)

    Wolthoorn, A.; Temminghoff, E.J.M.; Riemsdijk, van W.H.

    2004-01-01

    Subsurface aeration is used to oxidise Fe in situ in groundwater to make the water potable. In a groundwater system with pH > 7, subsurface aeration results in a non-mobile Fe precipitate and mobile Fe colloids. Since originally the goal of subsurface aeration is to remove Fe in situ, the

  6. Electrode Cultivation and Interfacial Electron Transport in Subsurface Microorganisms

    Science.gov (United States)

    Karbelkar, A. A.; Jangir, Y.; Reese, B. K.; Wanger, G.; Anderson, C.; El-Naggar, M.; Amend, J.

    2016-12-01

    Continental subsurface environments can present significant energetic challenges to the resident microorganisms. While these environments are geologically diverse, potentially allowing energy harvesting by microorganisms that catalyze redox reactions, many of the abundant electron donors and acceptors are insoluble and therefore not directly bioavailable. Microbes can use extracellular electron transfer (EET) as a metabolic strategy to interact with redox active surfaces. This process can be mimicked on electrode surfaces and hence can lead to enrichment and quantification of subsurface microorganisms A primary bioelectrochemical enrichment with different oxidizing and reducing potentials set up in a single bioreactor was applied in situ to subsurface microorganisms residing in iron oxide rich deposits in the Sanford Underground Research Facility. Secondary enrichment revealed a plethora of classified and unclassified subsurface microbiota on both oxidizing and reducing potentials. From this enrichment, we have isolated a Gram-positive Bacillus along with Gram-negative Cupriavidus and Anaerospora strains (as electrode reducers) and Comamonas (as an electrode oxidizer). The Bacillus and Comamonas isolates were subjected to a detailed electrochemical characterization in half-reactors at anodic and cathodic potentials, respectively. An increase in cathodic current upon inoculation and cyclic voltammetry measurements confirm the hypothesis that Comamonas is capable of electron uptake from electrodes. In addition, measurements of Bacillus on anodes hint towards novel mechanisms that allow EET from Gram-positive bacteria. This study suggests that electrochemical approaches are well positioned to dissect such extracellular interactions that may be prevalent in the subsurface, while using physical electrodes to emulate the microhabitats, redox and geochemical gradients, and the spatially dependent interspecies interactions encountered in the subsurface. Electrochemical

  7. Optimization and comprehensive characterization of metal hydride based hydrogen storage systems using in-situ Neutron Radiography

    Science.gov (United States)

    Börries, S.; Metz, O.; Pranzas, P. K.; Bellosta von Colbe, J. M.; Bücherl, T.; Dornheim, M.; Klassen, T.; Schreyer, A.

    2016-10-01

    For the storage of hydrogen, complex metal hydrides are considered as highly promising with respect to capacity, reversibility and safety. The optimization of corresponding storage tanks demands a precise and time-resolved investigation of the hydrogen distribution in scaled-up metal hydride beds. In this study it is shown that in situ fission Neutron Radiography provides unique insights into the spatial distribution of hydrogen even for scaled-up compacts and therewith enables a direct study of hydrogen storage tanks. A technique is introduced for the precise quantification of both time-resolved data and a priori material distribution, allowing inter alia for an optimization of compacts manufacturing process. For the first time, several macroscopic fields are combined which elucidates the great potential of Neutron Imaging for investigations of metal hydrides by going further than solely 'imaging' the system: A combination of in-situ Neutron Radiography, IR-Thermography and thermodynamic quantities can reveal the interdependency of different driving forces for a scaled-up sodium alanate pellet by means of a multi-correlation analysis. A decisive and time-resolved, complex influence of material packing density is derived. The results of this study enable a variety of new investigation possibilities that provide essential information on the optimization of future hydrogen storage tanks.

  8. Physico-chemical and mechanical characterization of in-situ forming xyloglucan gels incorporating a growth factor to promote cartilage reconstruction

    International Nuclear Information System (INIS)

    Dispenza, Clelia; Todaro, Simona; Bulone, Donatella; Sabatino, Maria Antonietta; Ghersi, Giulio; San Biagio, Pier Luigi; Lo Presti, Caterina

    2017-01-01

    The development of growth factors is very promising in the field of tissue regeneration but specifically designed formulations have to be developed in order to enable such new biological entities (NBEs). In particular, the range of therapeutic concentrations is usually very low compared to other active proteins and the confinement in the target site can be of crucial importance. In-situ forming scaffolds are very promising solutions for minimally invasive intervention in cartilage reconstruction and targeting of NBEs. In this work injectable, in-situ forming gels of a temperature responsive partially degalactosylated xyloglucan (Deg-XG) incorporating the growth factor FGF-18 are formulated and characterized. In particular, injectability and shear viscosity at room temperature, time-to-gel at body temperature, morphology and mechanical properties of gels are investigated. The highly hydrophobic growth factor is favorably incorporated and retained by the gel. Gels undergo a slow erosion process when immersed in PBS at 37 °C that opens up their porous structure. The prolonged hydrothermal treatment leads to structural rearrangements towards tougher networks with increased dynamic shear modulus. Preliminary biological evaluations confirm absence of cytotoxicity and the ability of these scaffolds to host cells and promote their proliferation. - Highlights: • In-situ forming gels incorporating a growth factor are formulated and characterized. • The gel retains the growth factor and is colonized by chondrocytes. • Mechanical properties and porosity of gels are controlled by polymer concentration. • Incubation at 37 °C increases the gel strength and opens up the porous structure.

  9. Deployment of Smart 3D Subsurface Contaminant Characterization at the Brookhaven Graphite Research Reactor

    International Nuclear Information System (INIS)

    Sullivan, T.; Heiser, J.; Kalb, P.; Milian, L.; Newson, C.; Lilimpakas, M.; Daniels, T.

    2002-01-01

    The Brookhaven Graphite Research Reactor (BGRR) Historical Site Assessment (BNL 1999) identified contamination inside the Below Grade Ducts (BGD) resulting from the deposition of fission and activation products from the pile on the inner carbon steel liner during reactor operations. Due to partial flooding of the BGD since shutdown, some of this contamination may have leaked out of the ducts into the surrounding soils. The baseline remediation plan for cleanup of contaminated soils beneath the BGD involves complete removal of the ducts, followed by surveying the underlying and surrounding soils, then removing soil that has been contaminated above cleanup goals. Alternatively, if soil contamination around and beneath the BGD is either non-existent/minimal (below cleanup goals) or is very localized and can be ''surgically removed'' at a reasonable cost, the BGD can be decontaminated and left in place. The focus of this Department of Energy Accelerated Site Technology Deployment (DOE ASTD) project was to determine the extent (location, type, and level) of soil contamination surrounding the BGD and to present this data to the stakeholders as part of the Engineering Evaluation/Cost Analysis (EE/CA) process. A suite of innovative characterization tools was used to complete the characterization of the soil surrounding the BGD in a cost-effective and timely fashion and in a manner acceptable to the stakeholders. The tools consisted of a tracer gas leak detection system that was used to define the gaseous leak paths out of the BGD and guide soil characterization studies, a small-footprint Geoprobe to reach areas surrounding the BGD that were difficult to access, two novel, field-deployed, radiological analysis systems (ISOCS and BetaScint) and a three-dimensional (3D) visualization system to facilitate data analysis/interpretation. All of the technologies performed as well or better than expected and the characterization could not have been completed in the same time or at

  10. Pentacene field-effect transistors by in situ and real time electrical characterization: Comparison between purified and non-purified thin films

    International Nuclear Information System (INIS)

    Liu, Shun-Wei; Wen, Je-Min; Lee, Chih-Chien; Su, Wei-Cheng; Wang, Wei-Lun; Chen, Ho-Chien; Lin, Chun-Feng

    2013-01-01

    We present an electrical characterization of the organic field-effect transistor with purified and non-purified pentacene by using in situ and real time measurements. The field-effect phenomenon was observed at the thickness of 1.5 nm (approximately one monolayer of pentacene) for purified pentacene, as compared to 3.0 nm for the non-purified counterpart. Moreover, the hole mobility is improved from 0.13 to 0.23 cm 2 /V s after the sublimation process to purify the pentacene. With atomic force microscopic measurements, the purified pentacene thin film exhibits a larger grain size and film coverage, resulting in better crystallinity of the thin film structure due to the absence of the impurities. This is further confirmed by X-ray diffraction patterns, which show higher intensities for the purified pentacene. - Highlights: • We present in-situ characterization for pentacene field-effect transistors. • The hole mobility is improved after the sublimation process to purify the pentacene. • Purified pentacene thin film exhibits a larger grain size and film coverage. • Hole mobility of pentacene is improved from 0.13 to 0.23 cm 2 /V s. • The discontinuity of grain boundary may cause the shift of threshold voltage

  11. Hand-held Raman sensor head for in-situ characterization of meat quality applying a microsystem 671 nm diode laser

    Science.gov (United States)

    Schmidt, Heinar; Sowoidnich, Kay; Maiwald, Martin; Sumpf, Bernd; Kronfeldt, Heinz-Detlef

    2009-05-01

    A hand-held Raman sensor head was developed for the in-situ characterization of meat quality. As light source, a microsystem based external cavity diode laser module (ECDL) emitting at 671 nm was integrated in the sensor head and attached to a miniaturized optical bench which contains lens optics for excitation and signal collection as well as a Raman filter stage for Rayleigh rejection. The signal is transported with an optical fiber to the detection unit which was in the initial phase a laboratory spectrometer with CCD detector. All elements of the ECDL are aligned on a micro optical bench with 13 x 4 mm2 footprint. The wavelength stability is provided by a reflection Bragg grating and the laser has an optical power of up to 200 mW. However, for the Raman measurements of meat only 35 mW are needed to obtain Raman spectra within 1 - 5 seconds. Short measuring times are essential for the hand-held device. The laser and the sensor head are characterized in terms of stability and performance for in-situ Raman investigations. The function is demonstrated in a series of measurements with raw and packaged pork meat as samples. The suitability of the Raman sensor head for the quality control of meat and other products will be discussed.

  12. Geotechnical characterization through in situ and laboratory tests of several geological formations present in the route of the Future Fix Connection between Spain and Morocco through Gibraltar Strait

    International Nuclear Information System (INIS)

    Perucho Martinez, A.; Diez Torres, J. A.; Muniz Menendez, M.; Cano Linares, H.; Ruiz Fonticiella, J. M.

    2015-01-01

    CEDEX and SECEGSA (Sociedad Española para la Comunicación Fija a través del Estrecho de Gibraltar), Have been collaborating since a few decades ago to study different technical aspects related to the Fix Connection through the Gibraltar Strait, mainly in relation to the geological and geotechnical properties of the different formations present in the route. In order to do so, many studies of geotechnical characterization of materials, in situ and laboratory testing campaigns have been carried out. Furthermore, they have participated in some Expertise Committees carrying out some advice work related to studies performed by other organizations. This paper presents a brief description of the most relevant aspects of the main geological and geotechnical studies performed related to this Project of the Future Fix Connection and obtained through the study of SECEGSAs extensive data base. Moreover, it includes a synopsis of the geotechnical characterization carried out through in situ and laboratory tests on different Miocene and Eocene formations from the Algeciras Unit, present in the route of the future Fix Connection between Spain and gibraltar through the Gibraltar Strait. (Author)

  13. Pentacene field-effect transistors by in situ and real time electrical characterization: Comparison between purified and non-purified thin films

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shun-Wei, E-mail: swliu@mail.mcut.edu.tw [Department of Electronic Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan, ROC (China); Wen, Je-Min; Lee, Chih-Chien; Su, Wei-Cheng; Wang, Wei-Lun; Chen, Ho-Chien [Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei, 10607 Taiwan, ROC (China); Lin, Chun-Feng [Department of Electronic Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan, ROC (China)

    2013-05-01

    We present an electrical characterization of the organic field-effect transistor with purified and non-purified pentacene by using in situ and real time measurements. The field-effect phenomenon was observed at the thickness of 1.5 nm (approximately one monolayer of pentacene) for purified pentacene, as compared to 3.0 nm for the non-purified counterpart. Moreover, the hole mobility is improved from 0.13 to 0.23 cm{sup 2}/V s after the sublimation process to purify the pentacene. With atomic force microscopic measurements, the purified pentacene thin film exhibits a larger grain size and film coverage, resulting in better crystallinity of the thin film structure due to the absence of the impurities. This is further confirmed by X-ray diffraction patterns, which show higher intensities for the purified pentacene. - Highlights: • We present in-situ characterization for pentacene field-effect transistors. • The hole mobility is improved after the sublimation process to purify the pentacene. • Purified pentacene thin film exhibits a larger grain size and film coverage. • Hole mobility of pentacene is improved from 0.13 to 0.23 cm{sup 2}/V s. • The discontinuity of grain boundary may cause the shift of threshold voltage.

  14. SMART 3D SUBSURFACE CONTAMINANT CHARACTERIZATION AT THE BGRR DEC OMMISSIONING PROJECT

    International Nuclear Information System (INIS)

    HEISER, J.; KALB, P.; SULLIVAN, T.; MILIAN, L.

    2002-01-01

    The Brookhaven Graphite Research Reactor is currently on an accelerated decommissioning schedule with a completion date projected for 2005. The accelerated schedule combines characterization with removal actions for the various systems and structures. A major project issue involves characterization of the soils beneath contaminated Below Grade Ducts (BGD), the main air ducts connecting the exhaust plenums with the Fan House. The air plenums experienced water intrusion during BGRR operations and after shutdown. The water intrusions were attributed to rainwater leaks into degraded parts of the system, and to internal cooling water system leaks. If the characterization could provide enough information to show that soil contamination surrounding the BGD is either below cleanup guidelines or is very localized and can be ''surgically removed'' at a reasonable cost, the ducts may be decontaminated and left in place. This will provide significant savings compared to breaking up the 170-ft. long concrete duct, shipping the projected 9,000 m 3 of waste off-site and disposing of it in an approved site

  15. Integrated in situ characterization of molten salt catalyst surface: Evidence of sodium peroxide and OH radical formation

    KAUST Repository

    Takanabe, Kazuhiro; Khan, Abdulaziz M.; Tang, Yu; Nguyen, Luan; Ziani, Ahmed; Jacobs, Benjamin W; Elbaz, Ayman M.; Sarathy, S Mani; Tao, Franklin Feng

    2017-01-01

    Na-based catalysts (i.e., Na2WO4) were proposed to selectively catalyze OH radical formation from H2O and O2 at high temperatures. This reaction may proceed on molten salt state surfaces due to the lower melting point of the used Na salts compared to the reaction temperature. This study provides direct evidence of the molten salt state of Na2WO4, which can form OH radicals, using in situ techniques including X-ray diffraction (XRD), scanning transmission electron microscopy (STEM), laser induced fluorescence (LIF) spectrometer, and ambient-pressure X-ray photoelectron spectroscopy (AP-XPS). As a result, Na2O2 species, which were hypothesized to be responsible for the formation of OH radicals, has been identified on the outer surfaces at temperatures ≥800°C, and these species are useful for various gas-phase hydrocarbon reactions including the selective transformation of methane to ethane.

  16. In-situ 3D characterization of He bubble and displacement damage in dense and nanoporous thin films.

    Energy Technology Data Exchange (ETDEWEB)

    Hattar, Khalid Mikhiel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Robinson, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-01

    This initial work attempted to determine the feasibility of using advanced in-situ, electron tomography, and precession electron diffraction techniques to determine the structural evolution that occurs during advanced aging of Pd films with nanometer resolution. To date, significant progress has been made in studying the cavity structures in sputtered, evaporated, and pulsed-laser deposited Pd films that result from both the deposition parameters, as well as from He ion implantation. In addition, preliminary work has been done to determine the feasibility of performing precession electron diffraction (PED) and electron tomography in these type of systems. Significant future work is needed to determine the proper conditions such that relevant advanced aging protocols can be developed.

  17. In Situ Synchrotron X-Ray Diffraction Characterization of the Synthesis of Graphene Oxide and Reduced Graphene Oxide

    DEFF Research Database (Denmark)

    Storm, Mie Møller; Johnsen, Rune E.; Norby, Poul

    2015-01-01

    Graphene oxide (GO) and reduced graphene oxide (rGO) synthesised from GO, has a promising future in fields ranging from electronics to energy technologies[1]. GO may be synthesized by the modified Hummer’s method[2], where a mixture of potassium permanganate and concentrated sulfuric acid forms...... by placing a mixture of permanganate and sulphuric acid in a capillary next to graphite. The synthesis was then initiated by gently pushing the fluid mixture into the powder with N2 gas. The in situ XRD of the GO synthesis showed how the oxidation reaction proceeds in three separate stages, as seen in Figure...... 1. The first stage was the dissolution of potassium permanganate, followed by an intercalation stage and subsequent formation of crystalline material. The GO 001 diffraction peak was observed early during the synthesis, in the second stage, and the intensity of the 001 diffraction increased during...

  18. Integrated in situ characterization of molten salt catalyst surface: Evidence of sodium peroxide and OH radical formation

    KAUST Repository

    Takanabe, Kazuhiro

    2017-06-26

    Na-based catalysts (i.e., Na2WO4) were proposed to selectively catalyze OH radical formation from H2O and O2 at high temperatures. This reaction may proceed on molten salt state surfaces due to the lower melting point of the used Na salts compared to the reaction temperature. This study provides direct evidence of the molten salt state of Na2WO4, which can form OH radicals, using in situ techniques including X-ray diffraction (XRD), scanning transmission electron microscopy (STEM), laser induced fluorescence (LIF) spectrometer, and ambient-pressure X-ray photoelectron spectroscopy (AP-XPS). As a result, Na2O2 species, which were hypothesized to be responsible for the formation of OH radicals, has been identified on the outer surfaces at temperatures ≥800°C, and these species are useful for various gas-phase hydrocarbon reactions including the selective transformation of methane to ethane.

  19. Synthesis and characterization of kaolin with polystyrene via in-situ polymerization and their application on polypropylene

    International Nuclear Information System (INIS)

    Zhao, Songfang; Qiu, Shangchang; Zheng, Yuying; Cheng, Lei; Guo, Yong

    2011-01-01

    To improve both the mechanical and thermal properties of kaolin/polypropylene (PP) composites, kaolin was modified by using 3-(trimethoxysilyl) propylmethacrylate (YDH-570) as a coupling agent to form polymerizable particle. Styrene was radically polymerized through the immobilized vinyl using benzoyl peroxide (BPO) as an initiator. Fourier transform-infrared (FTIR) spectroscopy, particle size distribution, X-ray diffraction (XRD) and thermo-gravimetric analysis (TGA) well demonstrated that the kaolin-polystyrene particles were successfully synthesized via in-situ polymerization. While the modified kaolin and raw kaolin were introduced into the PP matrix, it could be concluded that modified kaolin/PP composites have better mechanical and thermal properties than raw kaolin/PP composites, and these improvements were attributed to the desirable dispersion of kaolin in PP matrix.

  20. In-situ biofilm characterization in membrane systems using Optical Coherence Tomography: Formation, structure, detachment and impact of flux change

    KAUST Repository

    Dreszer, C.; Wexler, Adam D.; Drusová , S.; Overdijk, T.; Zwijnenburg, Arie; Flemming, Hans Curt; Kruithof, Joop C.; Vrouwenvelder, Johannes S.

    2014-01-01

    Biofouling causes performance loss in spiral wound nanofiltration (NF) and reverse osmosis (RO) membrane operation for process and drinking water production. The development of biofilm formation, structure and detachment was studied in-situ, non-destructively with Optical Coherence Tomography (OCT) in direct relation with the hydraulic biofilm resistance and membrane performance parameters: transmembrane pressure drop (TMP) and feed-channel pressure drop (FCP). The objective was to evaluate the suitability of OCT for biofouling studies, applying a membrane biofouling test cell operated at constant crossflow velocity (0.1 m s-1) and permeate flux (20 L m-2h-1).In time, the biofilm thickness on the membrane increased continuously causing a decline in membrane performance. Local biofilm detachment was observed at the biofilm-membrane interface. A mature biofilm was subjected to permeate flux variation (20 to 60 to 20 L m-2h-1). An increase in permeate flux caused a decrease in biofilm thickness and an increase in biofilm resistance, indicating biofilm compaction. Restoring the original permeate flux did not completely restore the original biofilm parameters: After elevated flux operation the biofilm thickness was reduced to 75% and the hydraulic resistance increased to 116% of the original values. Therefore, after a temporarily permeate flux increase the impact of the biofilm on membrane performance was stronger. OCT imaging of the biofilm with increased permeate flux revealed that the biofilm became compacted, lost internal voids, and became more dense. Therefore, membrane performance losses were not only related to biofilm thickness but also to the internal biofilm structure, e.g. caused by changes in pressure.Optical Coherence Tomography proved to be a suitable tool for quantitative in-situ biofilm thickness and morphology studies which can be carried out non-destructively and in real-time in transparent membrane biofouling monitors.

  1. Mechanism for microwave heating of 1-(4'-cyanophenyl)-4-propylcyclohexane characterized by in situ microwave irradiation NMR spectroscopy.

    Science.gov (United States)

    Tasei, Yugo; Yamakami, Takuya; Kawamura, Izuru; Fujito, Teruaki; Ushida, Kiminori; Sato, Motoyasu; Naito, Akira

    2015-05-01

    Microwave heating is widely used to accelerate organic reactions and enhance the activity of enzymes. However, the detailed molecular mechanism for the effect of microwave on chemical reactions is not yet fully understood. To investigate the effects of microwave heating on organic compounds, we have developed an in situ microwave irradiation NMR spectroscopy. (1)H NMR spectra of 1-(4'-cyanophenyl)-4-propylcyclohexane (PCH3) in the liquid crystalline and isotropic phases were observed under microwave irradiation. When the temperature was regulated at slightly higher than the phase transition temperature (Tc=45 °C) under a gas flow temperature control system, liquid crystalline phase mostly changed to the isotropic phase. Under microwave irradiation and with the gas flow temperature maintained at 20 °C, which is 25 °C below the Tc, the isotropic phase appeared stationary as an approximately 2% fraction in the liquid crystalline phase. The temperature of the liquid crystalline state was estimated to be 38 °C according to the line width, which is at least 7 °C lower than the Tc. The temperature of this isotropic phase should be higher than 45 °C, which is considered to be a non-equilibrium local heating state induced by microwave irradiation. Microwaves at a power of 195 W were irradiated to the isotropic phase of PCH3 at 50 °C and after 2 min, the temperature reached 220 °C. The temperature of PCH3 under microwave irradiation was estimated by measurement of the chemical shift changes of individual protons in the molecule. These results demonstrate that microwave heating generates very high temperature within a short time using an in situ microwave irradiation NMR spectrometer. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Development of a fermented ice-cream as influenced by in situ exopolysaccharide production: Rheological, molecular, microstructural and sensory characterization.

    Science.gov (United States)

    Dertli, Enes; Toker, Omer S; Durak, M Zeki; Yilmaz, Mustafa T; Tatlısu, Nevruz Berna; Sagdic, Osman; Cankurt, Hasan

    2016-01-20

    This study aimed to investigate the role of in situ exopolysaccharide (EPS) production by EPS(+)Streptococcus thermophilus strains on physicochemical, rheological, molecular, microstructural and sensory properties of ice cream in order to develop a fermented and consequently functional ice-cream in which no stabilizers would be required in ice-cream production. For this purpose, the effect of EPS producing strains (control, strain 1, strain 2 and mixture) and fermentation conditions (fermentation temperature; 32, 37 and 42 °C and time; 2, 3 and 4h) on pH, S. thermophilus count, EPS amount, consistency coefficient (K), and apparent viscosity (η50) were investigated and optimized using single and multiple response optimization tools of response surface methodology. Optimization analyses indicated that functional ice-cream should be fermented with strain 1 or strain mixture at 40-42 °C for 4h in order to produce the most viscous ice-cream with maximum EPS content. Optimization analysis results also revealed that strain specific conditions appeared to be more effective factor on in situ EPS production amount, K and η50 parameters than did fermentation temperature and time. The rheological analysis of the ice-cream produced by EPS(+) strains revealed its high viscous and pseudoplastic non-Newtonian fluid behavior, which demonstrates potential of S. thermophilus EPS as thickening and gelling agent in dairy industry. FTIR analysis proved that the EPS in ice-cream corresponded to a typical EPS, as revealed by the presence of carboxyl, hydroxyl and amide groups with additional α-glycosidic linkages. SEM studies demonstrated that it had a web-like compact microstructure with pores in ice-cream, revealing its application possibility in dairy products to improve their rheological properties. Copyright © 2015. Published by Elsevier Ltd.

  3. Characterization of distinct mesenchymal-like cell populations from human skeletal muscle in situ and in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Lecourt, Severine, E-mail: severine.lecourt@sls.aphp.fr [UPMC/AIM UMR S 974, Groupe Hospitalier Pitie-Salpetriere, Paris (France); INSERM U974, Groupe Hospitalier Pitie-Salpetriere, Paris (France); CNRS UMR 7215, Groupe Hospitalier Pitie-Salpetriere, Paris (France); Laboratoire de Therapie Cellulaire, Hopital Saint Louis, Paris (France); Marolleau, Jean-Pierre, E-mail: Marolleau.Jean-Pierre@chu-amiens.fr [Laboratoire de Therapie Cellulaire, Hopital Saint Louis, Paris (France); CHU Amiens Hopital Sud, Service d' Hematologie Clinique, UPJV, Amiens (France); Fromigue, Olivia, E-mail: olivia.fromigue@larib.inserm.fr [INSERM U606, Universite Paris 07, Hopital Lariboisiere, Paris (France); Vauchez, Karine, E-mail: k.vauchez@institut-myologie.org [UPMC/AIM UMR S 974, Groupe Hospitalier Pitie-Salpetriere, Paris (France); INSERM U974, Groupe Hospitalier Pitie-Salpetriere, Paris (France); CNRS UMR 7215, Groupe Hospitalier Pitie-Salpetriere, Paris (France); Genzyme S.A.S., Saint-Germain en Laye (France); Andriamanalijaona, Rina, E-mail: rinandria@yahoo.fr [Laboratoire de Biochimie des Tissus Conjonctifs, Faculte de Medecine, Caen (France); Ternaux, Brigitte, E-mail: brigitte.ternaux@orange.fr [Laboratoire de Therapie Cellulaire, Hopital Saint Louis, Paris (France); Lacassagne, Marie-Noelle, E-mail: mnlacassagne@free.fr [Laboratoire de Therapie Cellulaire, Hopital Saint Louis, Paris (France); Robert, Isabelle, E-mail: isa-robert@hotmail.fr [Laboratoire de Therapie Cellulaire, Hopital Saint Louis, Paris (France); Boumediene, Karim, E-mail: karim.boumediene@unicaen.fr [Laboratoire de Biochimie des Tissus Conjonctifs, Faculte de Medecine, Caen (France); Chereau, Frederic, E-mail: fchereau@pervasistx.com [Myosix S.A., Saint-Germain en Laye (France); Marie, Pierre, E-mail: pierre.marie@larib.inserm.fr [INSERM U606, Universite Paris 07, Hopital Lariboisiere, Paris (France); and others

    2010-09-10

    Human skeletal muscle is an essential source of various cellular progenitors with potential therapeutic perspectives. We first used extracellular markers to identify in situ the main cell types located in a satellite position or in the endomysium of the skeletal muscle. Immunohistology revealed labeling of cells by markers of mesenchymal (CD13, CD29, CD44, CD47, CD49, CD62, CD73, CD90, CD105, CD146, and CD15 in this study), myogenic (CD56), angiogenic (CD31, CD34, CD106, CD146), hematopoietic (CD10, CD15, CD34) lineages. We then analysed cell phenotypes and fates in short- and long-term cultures of dissociated muscle biopsies in a proliferation medium favouring the expansion of myogenic cells. While CD56{sup +} cells grew rapidly, a population of CD15{sup +} cells emerged, partly from CD56{sup +} cells, and became individualized. Both populations expressed mesenchymal markers similar to that harboured by human bone marrow-derived mesenchymal stem cells. In differentiation media, both CD56{sup +} and CD15{sup +} cells shared osteogenic and chondrogenic abilities, while CD56{sup +} cells presented a myogenic capacity and CD15{sup +} cells presented an adipogenic capacity. An important proportion of cells expressed the CD34 antigen in situ and immediately after muscle dissociation. However, CD34 antigen did not persist in culture and this initial population gave rise to adipogenic cells. These results underline the diversity of human muscle cells, and the shared or restricted commitment abilities of the main lineages under defined conditions.

  4. In-situ biofilm characterization in membrane systems using Optical Coherence Tomography: Formation, structure, detachment and impact of flux change

    KAUST Repository

    Dreszer, C.

    2014-12-01

    Biofouling causes performance loss in spiral wound nanofiltration (NF) and reverse osmosis (RO) membrane operation for process and drinking water production. The development of biofilm formation, structure and detachment was studied in-situ, non-destructively with Optical Coherence Tomography (OCT) in direct relation with the hydraulic biofilm resistance and membrane performance parameters: transmembrane pressure drop (TMP) and feed-channel pressure drop (FCP). The objective was to evaluate the suitability of OCT for biofouling studies, applying a membrane biofouling test cell operated at constant crossflow velocity (0.1 m s-1) and permeate flux (20 L m-2h-1).In time, the biofilm thickness on the membrane increased continuously causing a decline in membrane performance. Local biofilm detachment was observed at the biofilm-membrane interface. A mature biofilm was subjected to permeate flux variation (20 to 60 to 20 L m-2h-1). An increase in permeate flux caused a decrease in biofilm thickness and an increase in biofilm resistance, indicating biofilm compaction. Restoring the original permeate flux did not completely restore the original biofilm parameters: After elevated flux operation the biofilm thickness was reduced to 75% and the hydraulic resistance increased to 116% of the original values. Therefore, after a temporarily permeate flux increase the impact of the biofilm on membrane performance was stronger. OCT imaging of the biofilm with increased permeate flux revealed that the biofilm became compacted, lost internal voids, and became more dense. Therefore, membrane performance losses were not only related to biofilm thickness but also to the internal biofilm structure, e.g. caused by changes in pressure.Optical Coherence Tomography proved to be a suitable tool for quantitative in-situ biofilm thickness and morphology studies which can be carried out non-destructively and in real-time in transparent membrane biofouling monitors.

  5. 2-D Resistivity Assessment of Subsurface Characterization and its Engineering and Environmental Implications at SiLC

    Science.gov (United States)

    Nordiana, M. M.; Azwin, I. N.; Saad, Rosli; Jia, Teoh Ying; Anderson, A. B.; Tonnizam, Edy; Taqiuddin Zakaria, Muhamad

    2017-04-01

    The role of geophysics in Environmental Earth Sciences and Engineering is considered. In the developing era, geophysics has mainly contributed in investigation of new constructions such as tunnels, road, dams and high-rise buildings. This study was carried out to assess the foundation depths around a construction site in the Southern Industrial & Logistics Clusters (SiLC), Nusajaya, Johor using 2-D resistivity method. The 2-D resistivity method was carried out with a view to characterize different subsurface geological and to provide the engineering and environmental geophysical characterization of the study area. Measurements of eight 2-D resistivity profile using Pole-dipole array with 2 m minimum electrode spacing was taken with the use of ABEM Terrameter SAS4000 and ES10-64C selector. The results are presented as inversion model resistivity with the outline of the survey line. The inversion model resistivity from L1-L8 obtained is characterized by resistivity range of 1-8000 ohm-m. This range indicates the occurrence of silt, clay, sandy clay and sand whose ranges are; 10-100 ohm-m, 1-100 ohm-m, 100-800 ohm-m and 100-3000 ohm-m respectively. However, there was a boulder with range of >5000 ohm-m and saturated zone (1-20 ohm-m) which may indicate the weak zones of the study area. The 2-D resistivity method is not intended to replace borings, except in specific cases where information gathered would be sufficient to address the intended engineering and environmental purpose.

  6. Gas injection to inhibit migration during an in situ heat treatment process

    Science.gov (United States)

    Kuhlman, Myron Ira; Vinegar; Harold J.; Baker, Ralph Sterman; Heron, Goren

    2010-11-30

    Methods of treating a subsurface formation are described herein. Methods for treating a subsurface treatment area in a formation may include introducing a fluid into the formation from a plurality of wells offset from a treatment area of an in situ heat treatment process to inhibit outward migration of formation fluid from the in situ heat treatment process.

  7. Subsurface synthesis and characterization of Ag nanoparticles embedded in MgO

    Science.gov (United States)

    Vilayurganapathy, S.; Devaraj, A.; Colby, R.; Pandey, A.; Varga, T.; Shutthanandan, V.; Manandhar, S.; El-Khoury, P. Z.; Kayani, Asghar; Hess, W. P.; Thevuthasan, S.

    2013-03-01

    Metal nanoparticles exhibit a localized surface plasmon resonance (LSPR) which is very sensitive to the size and shape of the nanoparticle and the surrounding dielectric medium. The coupling between the electromagnetic radiation and the localized surface plasmon in metallic nanoparticles results in a sizable enhancement of the incident fields, making them possible candidates for plasmonic applications. In particular, partially exposed metallic nanoparticles distributed in a dielectric matrix can provide prime locations for LSPR spectroscopy and sensing. We report the synthesis and characterization of a plasmonic substrate consisting of Ag nanoparticles partially buried in MgO. Ag nanoparticles of different shapes and size distributions were synthesized below the surface of MgO by implanting 200 keV Ag+ ions followed by annealing at 1000 °C for 10 and 30 h. A detailed optical and structural characterization was carried out to understand the evolution of the Ag nanoparticle and size distribution inside the MgO matrix. Micro x-ray diffraction (Micro-XRD) was employed to investigate the structural properties and estimate the crystallite size. The nanoparticles evolved from a spherical to a faceted morphology with annealing time, assuming an octahedral shape truncated at the (001) planes, as visualized from aberration-corrected transmission electron microscopy (TEM) images. The nanoparticles embedded in MgO were shown to be pure metallic Ag using atom probe tomography (APT). The nanoparticles were partially exposed to the surface by employing plasma etch techniques to remove the overlaying MgO. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were employed to study the surface morphology and obtain a height distribution for the partially exposed nanoparticles.

  8. Subsurface synthesis and characterization of Ag nanoparticles embedded in MgO

    International Nuclear Information System (INIS)

    Vilayurganapathy, S; Devaraj, A; Colby, R; Pandey, A; Varga, T; Shutthanandan, V; Manandhar, S; Thevuthasan, S; El-Khoury, P Z; Hess, W P; Kayani, Asghar

    2013-01-01

    Metal nanoparticles exhibit a localized surface plasmon resonance (LSPR) which is very sensitive to the size and shape of the nanoparticle and the surrounding dielectric medium. The coupling between the electromagnetic radiation and the localized surface plasmon in metallic nanoparticles results in a sizable enhancement of the incident fields, making them possible candidates for plasmonic applications. In particular, partially exposed metallic nanoparticles distributed in a dielectric matrix can provide prime locations for LSPR spectroscopy and sensing. We report the synthesis and characterization of a plasmonic substrate consisting of Ag nanoparticles partially buried in MgO. Ag nanoparticles of different shapes and size distributions were synthesized below the surface of MgO by implanting 200 keV Ag + ions followed by annealing at 1000 °C for 10 and 30 h. A detailed optical and structural characterization was carried out to understand the evolution of the Ag nanoparticle and size distribution inside the MgO matrix. Micro x-ray diffraction (Micro-XRD) was employed to investigate the structural properties and estimate the crystallite size. The nanoparticles evolved from a spherical to a faceted morphology with annealing time, assuming an octahedral shape truncated at the (001) planes, as visualized from aberration-corrected transmission electron microscopy (TEM) images. The nanoparticles embedded in MgO were shown to be pure metallic Ag using atom probe tomography (APT). The nanoparticles were partially exposed to the surface by employing plasma etch techniques to remove the overlaying MgO. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were employed to study the surface morphology and obtain a height distribution for the partially exposed nanoparticles. (paper)

  9. Modeling in situ vitrification

    International Nuclear Information System (INIS)

    Mecham, D.C.; MacKinnon, R.J.; Murray, P.E.; Johnson, R.W.

    1990-01-01

    In Situ Vitrification (ISV) process is being assessed by the Idaho National Engineering Laboratory (INEL) to determine its applicability to transuranic and mixed wastes buried at INEL'S Subsurface Disposal Area (SDA). This process uses electrical resistance heating to melt waste and contaminated soil in place to produce a durable glasslike material that encapsulates and immobilizes buried wastes. This paper outlines the requirements for the model being developed at the INEL which will provide analytical support for the ISV technology assessment program. The model includes representations of the electric potential field, thermal transport with melting, gas and particulate release, vapor migration, off-gas combustion and process chemistry. The modeling objectives are to help determine the safety of the process by assessing the air and surrounding soil radionuclides and chemical pollution hazards, the nuclear criticality hazard, and the explosion and fire hazards, help determine the suitability of the ISV process for stabilizing the buried wastes involved, and help design laboratory and field tests and interpret results. 3 refs., 2 figs., 1 tab

  10. In situ characterization of the black pigment from parietal art of the Rouffignac Cave with a portable XRF system

    International Nuclear Information System (INIS)

    Sanoit, J. de; Chambellan, D.; Plassard, F.

    2005-01-01

    The Rouffignac cave in Dordogne (France) is a palaeolithic site which contains, among others, an important patrimony of cave art realized with black pigment (mammoths, bisons, woolly rhinoceros, horses, ibexes). Although no direct dating has ever been realized to date, the graphic works of this cave are generally connected to the Magdalenian age by cross-dating (stylistic comparison). For the first time, in situ non destructive analyses of this pigment were able to be made due to the use of a portable XRF system (X-Ray Fluorescence). The experimental set-up is mainly constituted with a small X-ray generator (Bullet TM 40 kV, Moxtek), a SDD detector (silicon drift detector, Rontec 1102) cooled by a Peltier cryostat and an optical system, the whole being connected to a portable system for acquisition of spectrometric data. The experimental spectra obtained on the three rhinoceros frieze, the horse over the flint nodule, the ten mammoths frieze and some animals of the Grand Plafond showed a systematic presence of manganese in all figures. This hypothesis had been already suggested by Graziosi in 1956 in the review 'La Nature' after a destructive analysis of a sample taken on one of the horses of the Grand Plafond. A Monte-Carlo simulation allowed a first quantitative approach in the analysis of the black pigment of the drawings. We can assess that the used manganese ore does not only result from a unique source because variable ratios of manganese, barium and iron were probed in the black pigment. None of the studied drawing was executed exclusively with black charcoal that would have made the selection of a sample suitable for radiocarbon dating less complicated. Additional non destructive in situ analysis using a portable PIXE set-up (Particles Induced X-ray Emission) equipped with a 210 Po as radiation source can be foreseen to allow the detection of elements with atomic numbers (Z) between 11 and 16 in the first layers of the black pigment, there where the XRF

  11. Towards the Wetness Characterization of Soil Subsurface Using Fibre Optic Distributed Acoustic Sensing

    Science.gov (United States)

    Ciocca, F.; Bodet, L.; Simon, N.; Karaulanov, R.; Clarke, A.; Abesser, C.; Krause, S.; Chalari, A.; Mondanos, M.

    2017-12-01

    Active seismic methods combined with detectors deployed at the soil surface, such as vertical collinear geophones, have revealed great potential for hydrogeophysical characterization of the soil vadose zone. In particular, recent findings have highlighted a clear dependence of both P-waves arrival times and surface-wave dispersion on the local degree of soil saturation, visible at laboratory as well as at field scale. In this study, we investigate the sensitivity of a fibre optic Distributed Acoustic Sensor (DAS) to different soil saturation. In vertical seismic applications, DAS have proven to offer equal and often better performance compared to the geophones, with the advantage that a fibre optic cable, whose length can reach 40 km, replaces the array of geophones as sensing element. We present the response to active seismic tests of 20 m of fibre optic cable buried in a poorly permeable bare soil. Tests were conducted in different moments of the year, with saturation monitored by means of independent dielectric probes. Body-wave travel times as well as surface-wave dispersion are compared. Finally, we discuss the possibility to determine a site-specific relation between the Poisson ratio and the soil saturation. This research has been performed in the framework of the British National Environmental Research Council (NERC) funded Distributed intelligent Heat Pulse System (DiHPS) project and of the Marie Curie H2020 Research and Innovation Staff Exchange (RISE) consortium Hi-Freq.

  12. A flow cell for transient voltammetry and in situ grazing incidence X-ray diffraction characterization of electrocrystallized cadmium(II) tetracyanoquinodimethane

    Energy Technology Data Exchange (ETDEWEB)

    Veder, Jean-Pierre [Nanochemistry Research Institute, Department of Chemistry, Curtin University, GPO Box U1987, Perth, Western Australia 6845 (Australia); Nafady, Ayman [School of Chemistry, Monash University, Clayton, Victoria 3800 (Australia); Clarke, Graeme [Nanochemistry Research Institute, Department of Chemistry, Curtin University, GPO Box U1987, Perth, Western Australia 6845 (Australia); Williams, Ross P. [Centre for Materials Research, Department of Imaging and Applied Physics, Curtin University, GPO Box U1987, Perth, Western Australia 6845 (Australia); De Marco, Roland, E-mail: r.demarco@curtin.edu.a [Nanochemistry Research Institute, Department of Chemistry, Curtin University, GPO Box U1987, Perth, Western Australia 6845 (Australia); Bond, Alan M. [School of Chemistry, Monash University, Clayton, Victoria 3800 (Australia)

    2011-01-01

    An easy to fabricate and versatile cell that can be used with a variety of electrochemical techniques, also meeting the stringent requirement for undertaking cyclic voltammetry under transient conditions in in situ electrocrystallization studies and total external reflection X-ray analysis, has been developed. Application is demonstrated through an in situ synchrotron radiation-grazing incidence X-ray diffraction (SR-GIXRD) characterization of electrocrystallized cadmium (II)-tetracyanoquinodimethane material, Cd(TCNQ){sub 2}, from acetonitrile (0.1 mol dm{sup -3} [NBu{sub 4}][PF{sub 6}]). Importantly, this versatile cell design makes SR-GIXRD suitable for almost any combination of total external reflection X-ray analysis (e.g., GIXRF and GIXRD) and electrochemical perturbation, also allowing its application in acidic, basic, aqueous, non-aqueous, low and high flow pressure conditions. Nevertheless, the cell design separates the functions of transient voltammetry and SR-GIXRD measurements, viz., voltammetry is performed at high flow rates with a substantially distended window to minimize the IR (Ohmic) drop of the electrolyte, while SR-GIXRD is undertaken using stop-flow conditions with a very thin layer of electrolyte to minimize X-ray absorption and scattering by the solution.

  13. Ultraviolet-Visible (UV-Vis) Microspectroscopic System Designed for the In Situ Characterization of the Dehydrogenation Reaction Over Platinum Supported Catalytic Microchannel Reactor.

    Science.gov (United States)

    Suarnaba, Emee Grace Tabares; Lee, Yi Fuan; Yamada, Hiroshi; Tagawa, Tomohiko

    2016-11-01

    An ultraviolet visible (UV-Vis) microspectroscopic system was designed for the in situ characterization of the activity of the silica supported platinum (Pt) catalyst toward the dehydrogenation of 1-methyl-1,4-cyclohexadiene carried out in a custom-designed catalytic microreactor cell. The in situ catalytic microreactor cell (ICMC) with inlet/outlet ports was prepared using quartz cover as the optical window to facilitate UV-Vis observation. A fabricated thermometric stage was adapted to the UV-Vis microspectrophotometer to control the reaction temperature inside the ICMC. The spectra were collected by focusing the UV-Vis beam on a 30 × 30 µm area at the center of ICMC. At 393 K, the sequential measurement of the spectra recorded during the reaction exhibited a broad absorption peak with maximum absorbance at 260 nm that is characteristic for gaseous toluene. This result indicates that the silica supported Pt catalyst is active towards the dehydrogenation of 1-methyl-1,4-cyclohexadiene at the given experimental conditions. The onset of coke formation was also detected based on the appearance of absorption bands at 300 nm. The UV-Vis microspectroscopic system developed can be used further in studying the mechanism of the dehydrogenation reaction. © The Author(s) 2016.

  14. X-231B technology demonstration for in situ treatment of contaminated soil: Contaminant characterization and three dimensional spatial modeling

    International Nuclear Information System (INIS)

    West, O.R.; Siegrist, R.L.; Mitchell, T.J.; Pickering, D.A.; Muhr, C.A.; Greene, D.W.; Jenkins, R.A.

    1993-11-01

    Fine-textured soils and sediments contaminated by trichloroethylene (TCE) and other chlorinated organics present a serious environmental restoration challenge at US Department of Energy (DOE) sites. DOE and Martin Marietta Energy Systems, Inc. initiated a research and demonstration project at Oak Ridge National Laboratory. The goal of the project was to demonstrate a process for closure and environmental restoration of the X-231B Solid Waste Management Unit at the DOE Portsmouth Gaseous Diffusion Plant. The X-231B Unit was used from 1976 to 1983 as a land disposal site for waste oils and solvents. Silt and clay deposits beneath the unit were contaminated with volatile organic compounds and low levels of radioactive substances. The shallow groundwater was also contaminated, and some contaminants were at levels well above drinking water standards. This document begins with a summary of the subsurface physical and contaminant characteristics obtained from investigative studies conducted at the X-231B Unit prior to January 1992 (Sect. 2). This is then followed by a description of the sample collection and analysis methods used during the baseline sampling conducted in January 1992 (Sect. 3). The results of this sampling event were used to develop spatial models for VOC contaminant distribution within the X-231B Unit

  15. Vapor space characterization of waste tank 241-BY-109 (in situ): Results from samples collected on 9/22/94

    International Nuclear Information System (INIS)

    Pool, K.H.; Clauss, T.W.; Ligotke, M.W.

    1995-06-01

    This report describes inorganic and organic analyses results from in situ samples obtained from the headspace of the Hanford waste storage Tank 241-BY-109 (referred to as Tank BY-109). The results described here were obtained to support safety and toxicological evaluations. A summary of the results for inorganic and organic analytes is listed in Summary Table 1. Detailed descriptions of the results appear in the text. Quantitative results were obtained for the inorganic compounds ammonia (NH 3 ), nitrogen dioxide (NO 2 ), nitric oxide (NO), and water (H 2 O). Sampling for hydrogen cyanide (HCN) and sulfur oxides (SO x ) was not requested. Organic compounds were also quantitatively determined. Twenty-three organic tentatively identified compounds (TICs) were observed above the detection limit of (ca.) 10 ppbv, but standards for most of these were not available at the time of analysis, and the reported concentrations are semiquantitative estimates. In addition, we looked for the 40 standard TO-14 analytes. We observed 38. Of these, only a few were observed above the 2-ppbv calibrated instrument detection limit. The ten organic analytes with the highest estimated concentrations are listed in Summary Table 1. The ten analytes account for approximately 84% of the total organic components in Tank BY-109

  16. Characterization of electro-conductive fabrics prepared by in situ chemical and electrochemical polymerization of pyrrole onto polyester fabric

    Energy Technology Data Exchange (ETDEWEB)

    Maiti, Syamal; Das, Dipayan; Sen, Kushal, E-mail: kushal@textile.iitd.ernet.in

    2014-09-15

    Highlights: • Surface resistivity of the fabrics decreased rapidly with an increase in add-on. • Add-on and resistivity were not correlated below a resistivity value of about 200 Ω. • Higher add-on but lower surface roughness resulted in lower surface resistivity. • The voltage–current and voltage–temperature behaviours were found to be non-linear. • Electro-conductive fabric exhibited 98% electromagnetic shielding efficiency. - Abstract: This paper reports a study on electro-conductive fabrics prepared by a combined in situ chemical and electrochemical polymerization of pyrrole. Specific observations are made to establish the roles of add-on and surface roughness on the surface resistivity of the electro-conductive fabrics. The performance characteristics of the fabrics are reported in terms of electrical conductivity, voltage–current and voltage–temperature characteristics and electromagnetic interference (EMI) shielding capability. The surface resistivity of the fabric was found to be as low as 11.79 Ω. The voltage–current profile of the fabric is observed to be non-ohmic as well as the voltage–temperature curve is found to be exponential. The EMI shielding efficiency of the fabric was found to be about 98%.

  17. Vapor space characterization of waste Tank 241-TX-118 (in situ): Results from samples collected on 9/7/94

    International Nuclear Information System (INIS)

    Thomas, B.L.; Clauss, T.W.; Ligotke, M.W.; Pool, K.H.; McVeety, B.D.; Olsen, K.B.; Fruchter, J.S.; Goheen, S.C.

    1995-10-01

    This report describes inorganic and organic analyses results from in situ samples obtained from the headspace of the Hanford waste storage Tank 241-TX-118 (referred to as Tank TX-118). The results described here were obtained to support safety and toxicological evaluations. A summary of the results for inorganic and organic analytes is listed in Table 1. Detailed descriptions of the results appear in the text. Quantitative results were obtained for the inorganic compounds ammonia (NH 3 ), nitrogen dioxide (NO 2 ), nitric oxide (NO), hydrogen cyanide (CHN), and water (H 2 O). Sampling for sulfur oxides (SO x ) was not requested. In addition, quantitative results were obtained for the 39 TO-14 compounds plus an additional 13 analytes. Hexane, normally included in the additional analytes, was removed because a calibration standard was not available during analysis of Tank TX-118 SUMMA trademark canisters. Of these, 12 were observed above the 5-ppbv reporting cutoff. Fourteen tentatively identified compounds (TICs) were observed above the reporting cutoff of (ca.) 10 ppbv and are reported with concentrations that are semiquantitative estimates based on internal-standard response factors. The 10 organic analytes with the highest estimated concentrations are listed in Table 1 and account for approximately 86% of the total organic components in Tank TX-118. Permanent gas analysis was not conducted on the tank-headspace samples. Tank TX-118 is on both the Ferrocyanide and Organic Watch List

  18. Vapor space characterization of Waste Tank 241-TY-104 (in situ): Results from samples collected on 8/5/94

    International Nuclear Information System (INIS)

    Ligotke, M.W.; Pool, K.H.; Lucke, R.B.

    1995-10-01

    This report describes inorganic and organic analyses results from in situ samples obtained from the headspace of the Hanford waste storage Tank 241-TY-104 (referred to as Tank TY-104). The results described here were obtained to support safety and toxicological evaluations. A summary of the results for inorganic and organic analytes is listed in Table 1. Detailed descriptions of the results appear in the text. Quantitative results were obtained for the inorganic compounds ammonia (NH 3 ), nitrogen dioxide (NO 2 ), nitric oxide (NO), and water (H 2 O). Sampling for hydrogen cyanide (HCN) and sulfur oxides (SO x ) was not performed. In addition, the authors looked for the 39 TO-14 compounds plus an additional 14 analytes. Of these, eight were observed above the 5-ppbv reporting cutoff. Twenty-four organic tentatively identified compounds (TICs) were observed above the reporting cutoff of (ca.) 10 ppbv and are reported with concentrations that are semiquantitative estimates based on internal standard response factors. The 10 organic analytes with the highest estimated concentrations are listed in Table 1 and account for approximately 86% of the total organic components in Tank TY-104. Tank TY-104 is on the Ferrocyanide Watch List

  19. Vapor space characterization of Waste Tank 241-U-106 (in situ): Results from samples collected on 8/25/94

    International Nuclear Information System (INIS)

    Ligotke, M.W.; Lucke, R.B.; Pool, K.H.

    1995-10-01

    This report describes inorganic and organic analyses results from in situ samples obtained from the headspace of the Hanford waste storage Tank 241-U-106 (referred to as Tank U-106). The results described here were obtained to support safety and toxicological evaluations. A summary of the results for inorganic and organic analytes is listed in Table 1. Detailed descriptions of the results appear in the text. Quantitative results were obtained for the inorganic compounds ammonia (NH 3 ), nitrogen dioxide (NO 2 ), nitric oxide (NO), and water (H 2 O). Sampling for hydrogen cyanide (HCN) and sulfur oxides (SO x ) was not performed. In addition, the authors looked for the 39 TO-14 compounds plus an additional 14 target analytes. Of these, six were observed above the 5-ppbv reporting cutoff. Ten organic tentatively identified compounds (TICs) were observed above the reporting cutoff of (ca.) 10 ppbv in two or more of the three samples collected and are reported with concentrations that are semiquantitative estimates based on internal standard response factors. The 10 organic analytes with the highest estimated concentrations are listed in Table 1 and account for approximately 89% of the total organic components in Tank U-106. Methyl isocyanate, a compound of possible concern in Tank U-106, was not detected. Tank U-106 is on the Organic Watch List

  20. Characterization of electro-conductive fabrics prepared by in situ chemical and electrochemical polymerization of pyrrole onto polyester fabric

    International Nuclear Information System (INIS)

    Maiti, Syamal; Das, Dipayan; Sen, Kushal

    2014-01-01

    Highlights: • Surface resistivity of the fabrics decreased rapidly with an increase in add-on. • Add-on and resistivity were not correlated below a resistivity value of about 200 Ω. • Higher add-on but lower surface roughness resulted in lower surface resistivity. • The voltage–current and voltage–temperature behaviours were found to be non-linear. • Electro-conductive fabric exhibited 98% electromagnetic shielding efficiency. - Abstract: This paper reports a study on electro-conductive fabrics prepared by a combined in situ chemical and electrochemical polymerization of pyrrole. Specific observations are made to establish the roles of add-on and surface roughness on the surface resistivity of the electro-conductive fabrics. The performance characteristics of the fabrics are reported in terms of electrical conductivity, voltage–current and voltage–temperature characteristics and electromagnetic interference (EMI) shielding capability. The surface resistivity of the fabric was found to be as low as 11.79 Ω. The voltage–current profile of the fabric is observed to be non-ohmic as well as the voltage–temperature curve is found to be exponential. The EMI shielding efficiency of the fabric was found to be about 98%

  1. Vapor space characterization of waste tank 241-BY-105 (in situ): Results from samples collected on May 9, 1994

    International Nuclear Information System (INIS)

    McVeety, B.D.; Pool, K.H.; Ligotke, M.W.; Clauss, T.W.; Lucke, R.B.; Sharma, A.K.; McCulloch, M.; Fruchter, J.S.; Goheen, S.C.

    1995-05-01

    This report describes inorganic and organic analyses results from in situ samples obtained from the tank headspace of the Hanford waste storage Tank 241-BY-105 (referred to as Tank BY-105). The results described here were obtained to support safety and toxicological evaluations. A summary of the results for inorganic and organic analytes is listed. Detailed descriptions of the results appear in the text. Quantitative results were obtained for the inorganic compounds NH 3 , NO 2 , NO, HCN, and H 2 O. Sampling for sulfur oxides was not requested. Results of the inorganic samples were affected by sampling errors that led to an undefined uncertainty in sample volume. Consequently, tank-headspace concentrations are estimated only. Thirty-nine tentatively identified organic analytes were observed above the detection limit of (ca.) 10 ppbv, but standards for most of these were not available at the time of analysis, and their quantitation is beyond the scope of this study. In addition, we looked for the 41 standard TO-14 analytes. Of these, only a few were observed above the 2-ppbv detection limit. The 16 organic analytes with the highest estimated concentrations are listed. These 16 analytes account for approximately 68% of the total or organic components in Tank BY-105

  2. Evaluation of rapid methods for in-situ characterization of organic contaminant load and biodegradation rates in winery wastewater.

    Science.gov (United States)

    Carvallo, M J; Vargas, I; Vega, A; Pizarro, G; Pizarr, G; Pastén, P

    2007-01-01

    Rapid methods for the in-situ evaluation of the organic load have recently been developed and successfully implemented in municipal wastewater treatment systems. Their direct application to winery wastewater treatment is questionable due to substantial differences between municipal and winery wastewater. We critically evaluate the use of UV-VIS spectrometry, buffer capacity testing (BCT), and respirometry as rapid methods to determine organic load and biodegradation rates of winery wastewater. We tested three types of samples: actual and treated winery wastewater, synthetic winery wastewater, and samples from a biological batch reactor. Not surprisingly, respirometry gave a good estimation of biodegradation rates for substrate of different complexities, whereas UV-VIS and BCT did not provide a quantitative measure of the easily degradable sugars and ethanol, typically the main components of the COD in the influent. However, our results strongly suggest that UV-VIS and BCT can be used to identify and estimate the concentration of complex substrates in the influent and soluble microbial products (SMP) in biological reactors and their effluent. Furthermore, the integration of UV-VIS spectrometry, BCT, and mathematical modeling was able to differentiate between the two components of SMPs: substrate utilization associated products (UAP) and biomass associated products (BAP). Since the effluent COD in biologically treated wastewaters is composed primarily by SMPs, the quantitative information given by these techniques may be used for plant control and optimization.

  3. Vapor space characterization of waste Tank 241-C-109 (in situ): Results from samples collected on 6/23/94

    International Nuclear Information System (INIS)

    Clauss, T.W.; Ligotke, M.W.; Pool, K.H.; Lucke, R.B.; McVeety, B.D.; Sharma, A.K.; McCulloch, M.; Fruchter, J.S.; Goheen, S.C.

    1995-10-01

    This report describes organic analyses results from in situ samples obtained from the headspace of the Hanford waste storage Tank 241-C-109 (referred to as Tank C-109). The results described here were obtained to support safety and toxicological evaluations. Organic compounds were quantitatively determined. Thirteen organic tentatively identified compounds (TICs) were observed above the detection limit of (ca.) 10 ppbv, but standards for most of these were not available at the time of analysis, and the reported concentrations are semiquantitative estimates. In addition, the authors looked for the 40 standard TO-14 analytes. Of these, only one was observed above the 2-ppbv calibrated instrumental detection limit. However, it is believed, even though the values for dichlorodifluoromethane and trichlorofluoromethane are below the instrumental detection limit, they are accurate at these low concentrations. The six analytes account for approximately 100% of the total organic components in Tank C-109. These six organic analytes with the highest estimated concentrations are listed in Summary Table 1. Detailed descriptions of the results appear in the text

  4. Fibrous hydroxyapatite–carbon nanotube composites by chemical vapor deposition: In situ fabrication, structural and morphological characterization

    International Nuclear Information System (INIS)

    Kosma, Vassiliki; Tsoufis, Theodoros; Koliou, Theodora; Kazantzis, Antonios; Beltsios, Konstantinos; De Hosson, Jeff Th. M.; Gournis, Dimitrios

    2013-01-01

    Highlights: ► CNTs synthesized on fibrous HA surfaces supporting Fe–Co bi- metallic catalysts by CVD. ► CNTs are rooted on HA distinct needle-like monocrystals and needle spherulitic aggregates. ► Reaction temperature and metal loading are critical parameters for CNT production. -- Abstract: Fibrous hydroxyapatite (HA)–carbon nanotube composites were synthesized by the catalytic decomposition of acetylene over Fe–Co bimetallic catalysts supported on the fibrous HA. Two forms of fibrous HA (distinct needle-like monocrystals and spherulitic aggregates of needles) were synthesized using a simple precipitation method and loaded with bimetallic catalysts (from 2 up to 20 wt%) by a wet chemical impregnation method. The HA supported catalysts were evaluated for the in situ growth of carbon nanotubes using the catalytic chemical vapor deposition method. The effect of reaction temperature and metal loading on the yield, structural perfection and morphology of the carbon products were investigated using a combination of X-ray diffraction, thermal analysis, Raman spectroscopy and scanning and transmission electron microscopies. The results revealed that both the selection of the growing conditions and the metal loading determine the yield and overall quality of the synthesized carbon nanotubes, which exhibit high graphitization degree when synthesized in high yields

  5. Fibrous hydroxyapatite–carbon nanotube composites by chemical vapor deposition: In situ fabrication, structural and morphological characterization

    Energy Technology Data Exchange (ETDEWEB)

    Kosma, Vassiliki; Tsoufis, Theodoros; Koliou, Theodora [Department of Materials Science and Engineering, University of Ioannina, GR-45110 Ioannina (Greece); Kazantzis, Antonios [Department of Applied Physics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, NL-9747AG Groningen (Netherlands); Beltsios, Konstantinos [Department of Materials Science and Engineering, University of Ioannina, GR-45110 Ioannina (Greece); De Hosson, Jeff Th. M. [Department of Applied Physics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, NL-9747AG Groningen (Netherlands); Gournis, Dimitrios, E-mail: dgourni@cc.uoi.gr [Department of Materials Science and Engineering, University of Ioannina, GR-45110 Ioannina (Greece)

    2013-04-20

    Highlights: ► CNTs synthesized on fibrous HA surfaces supporting Fe–Co bi- metallic catalysts by CVD. ► CNTs are rooted on HA distinct needle-like monocrystals and needle spherulitic aggregates. ► Reaction temperature and metal loading are critical parameters for CNT production. -- Abstract: Fibrous hydroxyapatite (HA)–carbon nanotube composites were synthesized by the catalytic decomposition of acetylene over Fe–Co bimetallic catalysts supported on the fibrous HA. Two forms of fibrous HA (distinct needle-like monocrystals and spherulitic aggregates of needles) were synthesized using a simple precipitation method and loaded with bimetallic catalysts (from 2 up to 20 wt%) by a wet chemical impregnation method. The HA supported catalysts were evaluated for the in situ growth of carbon nanotubes using the catalytic chemical vapor deposition method. The effect of reaction temperature and metal loading on the yield, structural perfection and morphology of the carbon products were investigated using a combination of X-ray diffraction, thermal analysis, Raman spectroscopy and scanning and transmission electron microscopies. The results revealed that both the selection of the growing conditions and the metal loading determine the yield and overall quality of the synthesized carbon nanotubes, which exhibit high graphitization degree when synthesized in high yields.

  6. Subsurface Synthesis and Characterization of Ag Nanoparticles Embedded in MgO

    Energy Technology Data Exchange (ETDEWEB)

    Vilayur Ganapathy, Subramanian; Devaraj, Arun; Colby, Robert J.; Pandey, Archana; Varga, Tamas; Shutthanandan, V.; Manandhar, Sandeep; El-Khoury, Patrick Z.; Kayani, Asghar N.; Hess, Wayne P.; Thevuthasan, Suntharampillai

    2013-03-08

    Metal nanoparticles exhibit localized surface plasmon resonance (LSPR) which is very sensitive to the size and shape of the nanoparticle and the dielectric medium surrounding it. LSPR causes field enhancement near the surface of the nanoparticle making them interesting candidates for plasmonic applications. In particular, partially exposed metallic nanoparticles distributed in a dielectric matrix form hotspots which are prime locations for LSPR spectroscopy and sensing. This study involves synthesizing partially buried Ag nanoparticles in MgO and investigating the characteristics of this material system. Ag nanoparticles of different shapes and size distributions were synthesized below the surface of MgO by implanting 200 keV Ag+ ions followed by annealing at 10000C for 10 and 30 hours. A detailed optical and structural characterization was carried out to understand the evolution of Ag nanoparticle microstructure and size distribution inside the MgO matrix. Micro x-ray diffraction (MicroXRD) was employed to investigate the structural properties and estimate the crystallite size. The nanoparticles evolved from a spherical to faceted morphology with annealing time, assuming an octahedral shape truncated at the (001) planes as seen from aberration corrected transmission electron microscopy (TEM) images. The nanoparticles embedded in MgO were shown to be pure metallic Ag using atom probe tomography (APT). The nanoparticles were partially exposed to the surface employing plasma etch techniques to remove the overlaying MgO. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were employed to study the surface morphology and obtain a height distribution for the partially exposed nanoparticles.

  7. Crystal Cargo Characterization: Unravelling Granite Petrogenesis through Combined MicroXRF Imaging and In-situ Analyses.

    Science.gov (United States)

    McLeod, C. L.; Brown, K.; Brydon, R.; Haley, M.; Hill, T.; Shaulis, B.; Tronnes, R. G.

    2017-12-01

    Advances in the capabilities of microanalysis over the past several decades have promoted a redefinition of traditional petrological terminology. This has allowed a more accurate evaluation of a samples petrogenetic history. For example, the term "phenocryst", specifically describes crystals that grew from the liquid that solidified into the groundmass. Evolving from this idea is the term xenocryst, referring to crystals that did not originate in the magma but were gathered by it, and antecrysts, which crystallized from a progenitor of the magma that solidified into the groundmass. Through identification of a magmas different, and distinct, crystal populations, the petrogenetic history of a magmatic rock can therefore be unraveled. This approach has been widely applied to terrestrial volcanic systems throughout the past several decades. This study presents results from a combined microimaging and in-situ microanalytical investigation of granitic magmas crystal cargoes in order to unravel how granitic batholiths are constructed. 27 lithological units from two granite batholiths in the Oslo Rift, Norway form the basis of this investigation. Micro X-Ray Fluorescence (µXRF) mapping of major elements and selected trace elements is used in order to chemically map each granitic unit, identify any characteristic growth zoning, and compare the crystal cargoes of the different units. Major and trace elemental abundances of the major phases (feldspars, biotite, amphibole) and minor phases (apatite and titanite) are to be quantified through electron microprobe analysis (EPMA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) respectively. Through chemically fingerprinting the crystal cargoes of these Oslo Rift granitic magmas, the open vs. closed nature of granitic, intrusive, magmatic systems will be investigated. Within the context of the Oslo Rift, this study also offers an opportunity to evaluate the processes inherent to granitoid magmatism

  8. In situ characterization and analysis of Salmonella biofilm formation under meat processing environments using a combined microscopic and spectroscopic approach.

    Science.gov (United States)

    Wang, Huhu; Ding, Shijie; Wang, Guangyu; Xu, Xinglian; Zhou, Guanghong

    2013-11-01

    Salmonella biofilm on food-contact surfaces present on food processing facilities may serve as a source of cross-contamination. In our work, biofilm formation by multi-strains of meat-borne Salmonella incubated at 20 °C, as well as the composition and distribution of extracellular polymeric substances (EPS), were investigated in situ by combining confocal laser scanning microscopy (CLSM), scanning electron microscope (SEM), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and Raman spectroscopy. A standard laboratory culture medium (tryptic soy broth, TSB) was used and compared with an actual meat substrate (meat thawing-loss broth, MTLB). The results indicated that Salmonella grown in both media were able to form biofilms on stainless steel surfaces via building a three-dimensional structure with multilayers of cells. Although the number of biofilm cells grown in MTLB was less than that in TSB, the cell numbers in MTLB was adequate to form a steady and mature biofilm. Salmonella grown in MTLB showed "cloud-shaped" morphology in the mature biofilm, whereas when grown in TSB appeared "reticular-shaped". The ATR-FTIR and Raman analysis revealed a completely different chemical composition between biofilms and the corresponding planktonic cells, and some important differences in biofilms grown in MTLB and in TSB. Importantly, our findings suggested that the progress towards a mature Salmonella biofilm on stainless steel surfaces may be associated with the production of the EPS matrix, mainly consisting of polysaccharides and proteins, which may serve as useful markers of biofilm formation. Our work indicated that a combination of these non-destructive techniques provided new insights into the formation of Salmonella biofilm matrix. © 2013.

  9. In-situ polymerization and characterization of poly ({epsilon} -caprolactone) urethane/ SiO{sub 2} nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xiaodong; Zhou Nanqiao [National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology, Guangzhou, Guangdong, 510640 (China); Zhang Hai [Guangzhou SCUT Bestry Technology Joint-stock Co. Ltd, Guangzhou, Guangdong, 510640 (China)], E-mail: cxdzlgzhnlg2003@163.com

    2009-09-01

    Nanocomposites of poly({epsilon} -caprolactone) (PCL) castable polyurethane elastomer (CPUE) with nano-SiO{sub 2} particles of different surface properties were prepared via in-situ polymerization. An electronmechanical universal testing machine, a durometer, a rubber resilience experimental machine, a dynamic-mechanical analyzer, a thermogravimetric analysis and a scanning electron microscope were used to investigate the macro -static/dynamic mechanical properties, micro-dispersed state and thermostability. The results showed that the modulus at 100% and 300%, elongation at break, tensile strength and tear strength of poly({epsilon} -caprolactone) urethane nanocomposites were increased by introducing a certain amount of nano-SiO{sub 2}. Especially the tensile strength and tear strength at 100 deg. C of the PCL CPUE with 5% nano-SiO{sub 2} pretreated by {gamma}-glycidochloropropyl methyl trimethoxy silane (trade name A-187) were 1.50 and 1.94 times than those of the pure PCL CPUE, respectively. The addition of the nano-SiO{sub 2} had little effect on the hardness, but the impact resilience decreased slightly. The loss factor peaks of two nano-SiO{sub 2} polyurethane composites were higher obviously than the pure PCL CPUE and the glass transition temperature (T{sub g}) of the two nano-SiO{sub 2} polyurethane composites increased to higher temperature region. The surface treatment by the optimum silane coupling agent influenced the dispersibility of nano-SiO{sub 2} in the PCL CPUE distinctly. The agglomerating phenomenon, and even some nano-agglomerates with more than 1 {mu}m diameter can be observed in the PCL CPUE with 5% untreated nano-SiO{sub 2}, but the nano-SiO{sub 2} pretreated by A-187 was dispersed in the PCL CPUE at nano-scale.

  10. In situ and ex situ electron microscopy and X-ray diffraction characterization of the evolution of a catalytic system - from synthesis to deactivation

    DEFF Research Database (Denmark)

    Gardini, Diego

    Heterogeneous catalysis represents a research field of undeniable importance for a multitude of technological and industrial processes. Supported catalysts are nowadays at the base of the large-scale production of most chemicals and are used for the removal of air pollutants from automotive engines...... the understanding of the structural properties and mechanisms at the origin of catalytic activity. This thesis presents the potential and uniqueness of ex situ and in situ transmission electron microscopy (TEM) and X-ray diffraction (XRD) techniques in the characterization of several supported material systems...... TEM (HRTEM) and electron energy loss spectroscopy (EELS) revealed the degradation of the supported carbide particles probably due to the formation of volatile molybdenum hydroxide species. The activity of silver nanoparticles as catalyst for soot oxidation was studied in operative conditions...

  11. The Near Earth Object (NEO) Scout Spacecraft: A Low-cost Approach to In-situ Characterization of the NEO Population

    Science.gov (United States)

    Woeppel, Eric A.; Balsamo, James M.; Fischer, Karl J.; East, Matthew J.; Styborski, Jeremy A.; Roche, Christopher A.; Ott, Mackenzie D.; Scorza, Matthew J.; Doherty, Christopher D.; Trovato, Andrew J.; hide

    2014-01-01

    This paper describes a microsatellite spacecraft with supporting mission profile and architecture, designed to enable preliminary in-situ characterization of a significant number of Near Earth Objects (NEOs) at reasonably low cost. The spacecraft will be referred to as the NEO-Scout. NEO-Scout spacecraft are to be placed in Geosynchronous Equatorial Orbit (GEO), cis-lunar space, or on earth escape trajectories as secondary payloads on launch vehicles headed for GEO or beyond, and will begin their mission after deployment from the launcher. A distinguishing key feature of the NEO-Scout system is to design the spacecraft and mission timeline so as to enable rendezvous with and landing on the target NEO during NEO close approach (the Earth-Moon system using low-thrust/high-impulse propulsion systems. Mission durations are on the order 100 to 400 days. Mission feasibility and preliminary design analysis are presented, along with detailed trajectory calculations.

  12. Nanomechanical and in situ TEM characterization of boron carbide thin films on helium implanted substrates: Delamination, real-time cracking and substrate buckling

    Energy Technology Data Exchange (ETDEWEB)

    Framil Carpeño, David, E-mail: david.framil-carpeno@auckland.ac.nz [Department of Chemical and Materials Engineering, The University of Auckland, 20 Symonds Street, Auckland 1010 (New Zealand); Ohmura, Takahito; Zhang, Ling [Strength Design Group, Structural Materials Unit, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Leveneur, Jérôme [National Isotope Centre, GNS Science, 30 Gracefield Road, Gracefield, Lower Hutt 5010 (New Zealand); Dickinson, Michelle [Department of Chemical and Materials Engineering, The University of Auckland, 20 Symonds Street, Auckland 1010 (New Zealand); Seal, Christopher [International Centre for Advanced Materials, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Kennedy, John [National Isotope Centre, GNS Science, 30 Gracefield Road, Gracefield, Lower Hutt 5010 (New Zealand); Hyland, Margaret [Department of Chemical and Materials Engineering, The University of Auckland, 20 Symonds Street, Auckland 1010 (New Zealand)

    2015-07-15

    Boron carbide coatings deposited on helium-implanted and unimplanted Inconel 600 were characterized using a combination of nanoindentation and transmission electron microscopy. Real-time coating, cracking and formation of slip bands were recorded using in situ TEM-nanoindentation, allowing site specific events to be correlated with specific features in their load–displacement curves. Cross-sections through the residual indent impression showed a correlation between pop-outs in the load–displacement curves and coating delamination, which was confirmed with cyclic indentation experiments. Inconel exhibits (-11-1) and (1-1-1) twin variants in its deformed region beneath the indenter, organized in bands with a ladder-like arrangement. The nanomechanical properties of the metal–ceramic coating combinations exhibit a marked substrate effect as a consequence of helium implantation.

  13. Effect of ethnicity and treatments on in situ tensile response and morphological changes of human hair characterized by atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Seshadri, Indira P. [Nanotribology Laboratory for Information Storage and MEMS/NEMS (NLIM), 201 W. 19th Avenue, Ohio State University, Columbus, OH 43210 (United States); Bhushan, Bharat [Nanotribology Laboratory for Information Storage and MEMS/NEMS (NLIM), 201 W. 19th Avenue, Ohio State University, Columbus, OH 43210 (United States)], E-mail: bhushan.2@osu.edu

    2008-08-15

    Human hair fibers experience tensile forces during grooming and styling processes. The tensile response of hair is hence of considerable interest to the cosmetics industry. In this study, in situ tensile characterization studies have been carried out in an atomic force microscope (AFM) on different hair under different conditions. A custom-built AFM sample stage allows hair fibers to be loaded in tension. A technique to locate and image the same control area at different strains has been developed to study the changes in morphology that occur with deformation. Virgin Caucasian, Asian and African hair were studied to understand the differences between different ethnic hair types. Also, the tensile response and morphological changes of virgin, chemically damaged and conditioner-treated Caucasian hair after soaking were compared against the corresponding dry tensile response. Finally, virgin, damaged and treated Caucasian hair fibers were subjected to fatigue cycling to simulate combing/detangling, and their tensile response studied.

  14. Nanomechanical and in situ TEM characterization of boron carbide thin films on helium implanted substrates: Delamination, real-time cracking and substrate buckling

    International Nuclear Information System (INIS)

    Framil Carpeño, David; Ohmura, Takahito; Zhang, Ling; Leveneur, Jérôme; Dickinson, Michelle; Seal, Christopher; Kennedy, John; Hyland, Margaret

    2015-01-01

    Boron carbide coatings deposited on helium-implanted and unimplanted Inconel 600 were characterized using a combination of nanoindentation and transmission electron microscopy. Real-time coating, cracking and formation of slip bands were recorded using in situ TEM-nanoindentation, allowing site specific events to be correlated with specific features in their load–displacement curves. Cross-sections through the residual indent impression showed a correlation between pop-outs in the load–displacement curves and coating delamination, which was confirmed with cyclic indentation experiments. Inconel exhibits (-11-1) and (1-1-1) twin variants in its deformed region beneath the indenter, organized in bands with a ladder-like arrangement. The nanomechanical properties of the metal–ceramic coating combinations exhibit a marked substrate effect as a consequence of helium implantation

  15. Effect of ethnicity and treatments on in situ tensile response and morphological changes of human hair characterized by atomic force microscopy

    International Nuclear Information System (INIS)

    Seshadri, Indira P.; Bhushan, Bharat

    2008-01-01

    Human hair fibers experience tensile forces during grooming and styling processes. The tensile response of hair is hence of considerable interest to the cosmetics industry. In this study, in situ tensile characterization studies have been carried out in an atomic force microscope (AFM) on different hair under different conditions. A custom-built AFM sample stage allows hair fibers to be loaded in tension. A technique to locate and image the same control area at different strains has been developed to study the changes in morphology that occur with deformation. Virgin Caucasian, Asian and African hair were studied to understand the differences between different ethnic hair types. Also, the tensile response and morphological changes of virgin, chemically damaged and conditioner-treated Caucasian hair after soaking were compared against the corresponding dry tensile response. Finally, virgin, damaged and treated Caucasian hair fibers were subjected to fatigue cycling to simulate combing/detangling, and their tensile response studied

  16. Characterization of Convective Plumes Associated With Oceanic Deep Convection in the Northwestern Mediterranean From High-Resolution In Situ Data Collected by Gliders

    Science.gov (United States)

    Margirier, Félix; Bosse, Anthony; Testor, Pierre; L'Hévéder, Blandine; Mortier, Laurent; Smeed, David

    2017-12-01

    Numerous gliders have been deployed in the Gulf of Lions (northwestern Mediterranean Sea) and in particular during episodes of open-ocean deep convection in the winter 2012-2013. The data collected represents an unprecedented density of in situ observations providing a first in situ statistical and 3-D characterization of the important mixing agents of the deep convection phenomenon, the so-called plumes. A methodology based on a glider-static flight model was applied to infer the oceanic vertical velocity signal from the glider navigation data. We demonstrate that during the active phase of mixing, the gliders underwent significant oceanic vertical velocities up to 18 cm s-1. Focusing on the data collected by two gliders during the 2012-2013 winter, 120 small-scale convective downward plumes were detected with a mean radius of 350 m and separated by about 2 km. We estimate that the plumes cover 27% of the convection area. Gliders detected downward velocities with a magnitude larger than that of the upward ones (-6 versus +2 cm s-1 on average). Along-track recordings of temperature and salinity as well as biogeochemical properties (dissolved oxygen, fluorescence, and turbidity) allow a statistical characterization of the water masses' properties in the plumes' core with respect to the "background": the average downward signal is of colder (-1.8 × 10-3 °C), slightly saltier (+4.9 × 10-4 psu) and thus denser waters (+7.5 × 10-4 kg m-3). The plunging waters are also on average more fluorescent (+2.3 × 10-2 μg L-1). The plumes are associated with a vertical diffusion coefficient of 7.0 m2 s-1 and their vertical velocity variance scales with the ratio of the buoyancy loss over the Coriolis parameter to the power 0.86.

  17. Isolation and Characterization of Surface and Subsurface Bacteria in Seawater of Mantanani Island, Kota Belud, Sabah by Direct and Enrichment Techniques

    International Nuclear Information System (INIS)

    Benard, L D; Tuah, P M; Suadin, E G; Jamian, N

    2015-01-01

    The distribution of hydrocarbon-utilizing bacterial may vary between surface and subsurface of the seawater. One of the identified contributors is the Total Petroleum Hydrocarbon. The isolation and characterization of bacteria using Direct and Enrichment techniques helps in identifying dominant bacterial populations in seawater of Mantanani Island, Kota Belud, Sabah, potential of further investigation as hydrocarbon degrader. Crude oil (5% v/v) was added as the carbon source for bacteria in Enrichment technique. For surface seawater, the highest population of bacteria identified for both Direct and Enrichment technique were 2.60 × 10 7 CFU/mL and 3.84 × 10 6 CFU/mL respectively. Meanwhile, for subsurface seawater, the highest population of bacteria identified for both Direct and Enrichment technique were 5.21 × 10 6 CFU/mL and 8.99 × 10 7 CFU/mL respectively. Dominant species in surface seawater were characterized as Marinobacter hydrocarbonoclasticus-RMSF-C1 and RMSF-C2 and Alcanivorax borkumensis-RMSF-C3, RMSF-C4 and RMSF-C5. As for subsurface seawater, dominant species were characterized as Pseudomonas luteola-SSBR-W1, Burkholderia cepacia-SSBR-C1, Rhizobium radiobacter- SSBR-C3 and Leuconostoc-cremois -SSBR-C4. (paper)

  18. In-situ and operando characterization of batteries with energy-dispersive synchrotron x-ray diffraction

    Science.gov (United States)

    Paxton, William Arthur

    Batteries play a pivotal role in the low-carbon society that is required to thwart the effects of climate change. Alternative low-carbon energy sources, such as wind and solar, are often intermittent and unreliable. Batteries are able capture their energy and deliver it later when it is needed. The implementation of battery systems in grid-level and transportation sectors is essential for efficient use of alternative energy sources. Scientists and engineers need better tools to analyze and measure the performance characteristics of batteries. One of the main hindrances in the progress of battery research is that the constituent electrode materials are inaccessible once an electrochemical cell is constructed. This leaves the researcher with a limited number of available feedback mechanisms to assess the cell's performance, e.g., current, voltage, and impedance. These data are limited in their ability to reveal the more-localized smaller-scale structural mechanisms on which the batteries' performance is so dependent. Energy-dispersive x-ray diffraction (EDXRD) is one of the few techniques that can internally probe a sealed battery. By analyzing the structural behavior of battery electrodes, one is able to gain insight to the physical properties on which the battery's performance is dependent. In this dissertation, EDXRD with ultrahigh energy synchrotron radiation is used to probe the electrodes of manufactured primary and secondary lithium batteries under in-situ and operando conditions. The technique is then applied to solve specific challenges facing lithium ion batteries. Diffraction spectra are collected from within a battery at 40 micrometer resolution. Peak-fitting is used to quantitatively estimate the abundance of lithiated and non-lithiated phases. Through mapping the distribution of phases within, structural changes are linked to the battery's galvanic response. A three-dimensional spatial analysis of lithium iron phosphate batteries suggests that evolution

  19. New in situ generated acylhydrazidate-coordinated complexes and acylhydrazide molecules: Synthesis, structural characterization and photoluminescence property

    Science.gov (United States)

    Wang, Yan-Ning; Huo, Qi-Sheng; Zhang, Ping; Yu, Jie-Hui; Xu, Ji-Qing

    2016-10-01

    By utilizing the hydrothermal in situ acylation of organic acids with N2H4, three acylhydrazidate-coordinated compounds [Mn(L1)2(H2O)2] (L1 = 2,3-quinolinedicarboxylhydrazidate; HL1 = 2,3-dihydropyridazino[4,5-b] quinoline-1,4-dione) 1, [Mn2(ox)(L2)2(H2O)6]·2H2O (L2 = benzimidazolate-5,6-dicarboxylhydrazide; HL2 = 6,7-dihydro-1H-imidazo[4,5-g]phthalazine-5,8-dione; ox = oxalate) 2, and [Cd(HL3)(bpy)] (L3 = 4,5-di(3‧-carboxylphenyl)phthalhydrazidate; H3L3 = 6,7-dihydro-1H-imidazo[4,5-g]phthalazine-5,8-dione; bpy = 2,2‧-bipyridine) 3, as well as two acylhydrazide molecules L4 (L4 = oxepino[2,3,4-de:7,6,5-d‧e‧]diphthalazine-4,10(5H,9H)-dione) 4 and L5 (L5 = 4,5-dibromophthalhydrazide; L5 = 6,7-dibromo-2,3-dihydrophthalazine-1,4-dione) 5 were obtained. X-ray single-crystal diffraction analysis reveals that (i) 1 only possesses a mononuclear structure, but it self-assembles into a 2-D supramolecular network via the Nhydrazinesbnd H ⋯ Nhydrazine and Owsbnd H ⋯ Ohydroxylimino interactions; (ii) 2 exhibits a dinuclear structure. Ox acts as the linker, while L2 just serves as a terminal ligand; (iii) In 3, L3 acts as a 3-connected node to propagate the 7-coordinated Cd2 + centers into a 1-D double-chain structure; (iv) 4 is a special acylhydrazide molecule. Two sbnd OH groups for the intermediates 3,3‧-biphthalhydrazide further lose one water molecule to form 4; (v) 5 is a common monoacylhydrazide molecule. Via the Nhydrazinesbnd H ⋯ Ohydrazine, Ohydroxyliminosbnd H ⋯ Oacylamino and the π ⋯ π interactions, it self-assembles into a 2-D supramolecular network. The photoluminescence analysis reveals that 4 emits light with the maxima at 510 nm.

  20. In-situ bioremediation via horizontal wells

    International Nuclear Information System (INIS)

    Hazen, T.C.; Looney, B.B.; Enzien, M.; Franck, M.M.; Fliermans, C.B.; Eddy, C.A.

    1993-01-01

    This project is designed to demonstrate in situ bioremediation of groundwater and sediment contaminated with chlorinated solvents. Indigenous microorganisms were stimulated to degrade TCE, PCE and their daughter products in situ by addition of nutrients to the contaminated zone. In situ biodegradation is a highly attractive technology for remediation because contaminants are destroyed, not simply moved to another location or immobilized, thus decreasing costs, risks, and time, while increasing efficiency and public and regulatory acceptability. Bioremediation has been found to be among the least costly technologies in applications where it will work (Radian 1989). Subsurface soils and water adjacent to an abandoned process sewer line at the SRS have been found to have elevated levels of TCE (Marine and Bledsoe 1984). This area of subsurface and groundwater contamination is the focus of a current integrated demonstration of new remediation technologies utilizing horizontal wells. Bioremediation has the potential to enhance the performance of in situ air stripping as well as offering stand-alone remediation of this and other contaminated sites (Looney et al. 1991). Horizontal wells could also be used to enhance the recovery of groundwater contaminants for bioreactor conversions from deep or inaccessible areas (e.g., under buildings) and to enhance the distribution of nutrient or microbe additions in an in situ bioremediation

  1. Application of in situ measurement for site remediation and final status survey of decommissioning KRR site

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sang Bum; Nam, Jong Soo; Choi, Yong Suk; Seo, Bum Kyoung; Moon, Jei Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-06-15

    In situ gamma spectrometry has been used to measure environmental radiation, assumptions are usually made about the depth distribution of the radionuclides of interest in the soil. The main limitation of in situ gamma spectrometry lies in determining the depth distribution of radionuclides. The objective of this study is to develop a method for subsurface characterization by in situ measurement. The peak to valley method based on the ratio of counting rate between the photoelectric peak and Compton region was applied to identify the depth distribution. The peak to valley method could be applied to establish the relation between the spectrally derived coefficients (Q) with relaxation mass per unit area (β) for various depth distribution in soil. The in situ measurement results were verified by MCNP simulation and calculated correlation equation. In order to compare the depth distributions and contamination levels in decommissioning KRR site, in situ measurement and sampling results were compared. The in situ measurement results and MCNP simulation results show a good correlation for laboratory measurement. The simulation relationship between Q and source burial for the source layers have exponential relationship for a variety depth distributions. We applied the peak to valley method to contaminated decommissioning KRR site to determine a depth distribution and initial activity without sampling. The observed results has a good correlation, relative error between in situ measurement with sampling result is around 7% for depth distribution and 4% for initial activity. In this study, the vertical activity distribution and initial activity of {sup 137}Cs could be identifying directly through in situ measurement. Therefore, the peak to valley method demonstrated good potential for assessment of the residual radioactivity for site remediation in decommissioning and contaminated site.

  2. Portable Analyzer Based on Microfluidics/Nanoengineered Electrochemical Sensors for In-situ Characterization of Mixed Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Yuehe Lin; Glen E. Fryxell; Wassana Yantasee; Guodong Liu; Zheming Wang

    2006-06-01

    Required characterizations of the DOE's transuranic (TRU) and mixed wastes (MW) before disposing and treatment of the wastes are currently costly and have lengthy turnaround. Research toward developing faster and more sensitive characterization and analysis tools to reduce costs and accelerate throughputs is therefore desirable. This project is aimed at the development of electrochemical sensors, specific to toxic transition metals, uranium, and technetium, that can be integrated into the portable sensor systems. This system development will include fabrication and performance evaluation of electrodes as well as understanding of electrochemically active sites on the electrodes specifically designed for toxic metals, uranium and technetium detection. Subsequently, these advanced measurement units will be incorporated into a microfluidic prototype specifically designed and fabricated for field-deployable characterizations of such species.

  3. Four Models of In Situ Simulation

    DEFF Research Database (Denmark)

    Musaeus, Peter; Krogh, Kristian; Paltved, Charlotte

    2014-01-01

    Introduction In situ simulation is characterized by being situated in the clinical environment as opposed to the simulation laboratory. But in situ simulation bears a family resemblance to other types of on the job training. We explore a typology of in situ simulation and suggest that there are f......Introduction In situ simulation is characterized by being situated in the clinical environment as opposed to the simulation laboratory. But in situ simulation bears a family resemblance to other types of on the job training. We explore a typology of in situ simulation and suggest...... that there are four fruitful approaches to in situ simulation: (1) In situ simulation informed by reported critical incidents and adverse events from emergency departments (ED) in which team training is about to be conducted to write scenarios. (2) In situ simulation through ethnographic studies at the ED. (3) Using...... the following processes: Transition processes, Action processes and Interpersonal processes. Design and purpose This abstract suggests four approaches to in situ simulation. A pilot study will evaluate the different approaches in two emergency departments in the Central Region of Denmark. Methods The typology...

  4. Development of in-situ monitoring system

    International Nuclear Information System (INIS)

    Lee, Bong Soo; Cho, Dong Hyun; Yoo, Wook Jae; Heo, Ji Yeon

    2010-03-01

    Development of in-situ monitoring system using an optical fiber to measure the real time temperature variation of subsurface water for the evaluation of flow characteristics. We describe the feasibility of developing a fiber-optic temperature sensor using a thermochromic material. A sensor-tip is fabricated by mixing of a thermochromic material powder. The relationships between the temperatures and the output voltages of detectors are determined to measure the temperature of water. It is expected that the fiber-optic temperature monitoring sensor using thermochromic material can be used to measure the real time temperature variation of subsurface water

  5. In Situ Real-Time Mechanical and Morphological Characterization of Electrodes for Electrochemical Energy Storage and Conversion by Electrochemical Quartz Crystal Microbalance with Dissipation Monitoring.

    Science.gov (United States)

    Shpigel, Netanel; Levi, Mikhael D; Sigalov, Sergey; Daikhin, Leonid; Aurbach, Doron

    2018-01-16

    variety of useful electrode-material properties are assessed noninvasively, in situ, and in real time frames of ion intercalation into the electrodes of interest. A detailed algorithm for the mechanical characterization of battery electrodes kept in the gas phase and immersed into the electrolyte solutions has been developed for fast recognition of stiff and viscoelastic materials in terms of EQCM-D signatures treated by the hydrodynamic and viscoelastic models. Working examples of the use of in situ hydrodynamic spectroscopy to characterize stiff rough/porous solids of complex geometry and viscoelastic characterization of soft electrodes are presented. The most demonstrative example relates to the formation of solid electrolyte interphase on Li 4 Ti 5 O 12 electrodes in the presence of different electrolyte solutions and additives: only a few cycles (an experiment during ∼30 min) were required for screening the electrolyte systems for their ability to form high-quality surface films in experimental EQCM-D cells as compared to 100 cycles (200 h cycling) in conventional coin cells. Thin/small-mass electrodes required for the EQCM-D analysis enable accelerated cycling tests for ultrafast mechanical characterization of these electrodes in different electrolyte solutions. Hence, this methodology can be easily implemented as a highly effective in situ analytical tool in the field of energy storage and conversion.

  6. Characterization and electrochemical performances of MoO2 modified LiFePO4/C cathode materials synthesized by in situ synthesis method

    International Nuclear Information System (INIS)

    He, Jichuan; Wang, Haibin; Gu, Chunlei; Liu, Shuxin

    2014-01-01

    Graphical abstract: The MoO 2 modified LiFePO 4 /C cathode materials were synthesized by in situ synthesis method. MoO 2 can sufficiently coat on the LiFePO 4 /C particles surface and does not alter LiFePO 4 crystal structure, and the adding of MoO 2 decreases the particles size and increases the tap density of cathode materials. The existence of MoO 2 improves electrochemical performance of LiFePO 4 cathode materials in specific capability and lithium ion diffusion and charge transfer resistance of cathode materials. - Highlights: • The MoO 2 modified LiFePO 4 /C cathode materials were synthesized by in situ synthesis method. • The existence of MoO 2 decreases the particles size and increases the tap density of cathode materials. • MoO 2 can sufficiently coat on the surface of LiFePO 4 /C cathode materials. • The existence of MoO 2 enhanced electrochemical performance of LiFePO 4 /C cathode materials. - Abstract: The MoO 2 modified LiFePO 4 /C cathode materials were synthesized by in situ synthesis method. Phase compositions and microstructures of the products were characterized by X-ray powder diffraction (XRD), SEM, TEM and EDS. Results indicate that MoO 2 can sufficiently coat on the LiFePO 4 surface and does not alter LiFePO 4 crystal structure, the existence of MoO 2 decreases the particles size and increases the tap density of cathode materials. The electrochemical behavior of cathode materials was analyzed using galvanostatic measurement, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The results show that the existence of MoO 2 improves electrochemical performance of LiFePO 4 cathode materials in specific capability and lithium ion diffusion and charge transfer resistance. The initial charge–discharge specific capacity and apparent lithium ion diffusion coefficient increase, the charge transfer resistance decreases with MoO 2 content and maximizes around the MoO 2 content is 5 wt%. It has been had further proved that

  7. Manipulation and in situ transmission electron microscope characterization of sub-100 nm nanostructures using a microfabricated nanogripper

    DEFF Research Database (Denmark)

    Cagliani, Alberto; Wierzbicki, Rafal; Occhipini, Luigi

    2010-01-01

    ion beam milling and subsequently coating these with Au, the nanogripper could lift up laterally aligned single-walled carbon nanotubes from a 1 µm wide trench, while immediately making good electrical contact. One such carbon nanotube was structurally and electrically characterized real-time in TEM......We present here a polysilicon electrothermal microfabricated nanogripper capable of manipulating nanowires and nanotubes in the sub-100 nm range. The nanogripper was fabricated with a mix and match microfabrication process, combining high throughput of photolithography with 10 nm resolution...... of electron beam lithography. Vertically grown III–V nanowires with a diameter of 70 nm were picked up using the nanogripper, allowing direct transfer of the nanogripper-nanowire ensemble into a transmission electron microscope (TEM) for structural characterization. By refining the end-effectors with focused...

  8. Structure and function of subsurface microbial communities affecting radionuclide transport and bioimmobilization

    Energy Technology Data Exchange (ETDEWEB)

    Kostka, Joel E. [Florida State Univ., Tallahassee, FL (United States); Prakash, Om [Florida State Univ., Tallahassee, FL (United States); Green, Stefan J. [Florida State Univ., Tallahassee, FL (United States); Akob, Denise [Florida State Univ., Tallahassee, FL (United States); Jasrotia, Puja [Florida State Univ., Tallahassee, FL (United States); Kerkhof, Lee [Rutgers Univ., New Brunswick, NJ (United States); Chin, Kuk-Jeong [Georgia State Univ., Atlanta, GA (United States); Sheth, Mili [Georgia State Univ., Atlanta, GA (United States); Keller, Martin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Venkateswaran, Amudhan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Elkins, James G. [Univ. of Illinois, Urbana-Champaign, IL (United States); Stucki, Joseph W. [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2012-05-01

    Our objectives were to: 1) isolate and characterize novel anaerobic prokaryotes from subsurface environments exposed to high levels of mixed contaminants (U(VI), nitrate, sulfate), 2) elucidate the diversity and distribution of metabolically active metal- and nitrate-reducing prokaryotes in subsurface sediments, and 3) determine the biotic and abiotic mechanisms linking electron transport processes (nitrate, Fe(III), and sulfate reduction) to radionuclide reduction and immobilization. Mechanisms of electron transport and U(VI) transformation were examined under near in situ conditions in sediment microcosms and in field investigations. Field sampling was conducted at the Oak Ridge Field Research Center (ORFRC), in Oak Ridge, Tennessee. The ORFRC subsurface is exposed to mixed contamination predominated by uranium and nitrate. In short, we effectively addressed all 3 stated objectives of the project. In particular, we isolated and characterized a large number of novel anaerobes with a high bioremediation potential that can be used as model organisms, and we are now able to quantify the function of subsurface sedimentary microbial communities in situ using state-of-the-art gene expression methods (molecular proxies).

  9. An integrated in-line fluid characterization system for industrial applications(In-situ fluid mechanics experiments)

    OpenAIRE

    Johan, Wiklund; Reinhardt, Kotze; Beat, Birkhofer; Stefano, Ricci; Valentino, Meacci; Mats, Stading; Rainer, Haldenwang; SP-Technical Research Institute of Sweden; FPRC, Cape Peninsula University of Technology; Sika Services AG; Information Engineering Department - University of Florence; Information Engineering Department - University of Florence; SP-Technical Research Institute of Sweden; FPRC, Cape Peninsula University of Technology

    2015-01-01

    In this work we have presented the world's first commercially available embedded in-line fluids characterization system, "Flow-Viz". It has been specifically designed for the non-invasive, in-line, continuous, real-time velocity profile and rheological assessment of opaque, non-Newtonian industrial fluids. The Flow-Viz system has been successfully installed in pilot plants of international companies and used also for academic research. The technology has been applied to a wide range of fluids...

  10. Concentration and characterization of dissolved organic matter in the surface microlayer and subsurface water of the Bohai Sea, China

    Science.gov (United States)

    Chen, Yan; Yang, Gui-Peng; Wu, Guan-Wei; Gao, Xian-Chi; Xia, Qing-Yan

    2013-01-01

    A total of 19 sea-surface microlayer and corresponding subsurface samples collected from the Bohai Sea, China in April 2010 were analyzed for chlorophyll a, dissolved organic carbon (DOC) and its major compound classes including total dissolved carbohydrates (TDCHO, including monosaccharides, MCHO, and polysaccharides, PCHO) and total hydrolysable amino acids (THAA, including dissolved free, DFAA, and combined fraction, DCAA). The concentrations of DOC in the subsurface water ranged from 130.2 to 407.7 μM C, with an average of 225.9±75.4 μM C, while those in the surface microlayer varied between 140.1 and 330.9 μM C, with an average of 217.8±56.8 μM C. The concentrations of chlorophyll a, DOC, TDCHO and THAA in the microlayer were, respectively correlated with their subsurface water concentrations, implying that there was a strong exchange effect between the microlayer and subsurface water. The concentrations of DOC and TDCHO were negatively correlated with salinity, respectively, indicating that water mixing might play an important role in controlling the distribution of DOC and TDCHO in the water column. Major constituents of DCAA and DFAA present in the study area were glycine, alanine, glutamic acid, serine and histidine. Principal component analysis (PCA) was applied to examine the complex compositional differences that existed among the sampling sites. Our results showed that DFAA had higher mole percentages of glycine, valine and serine in the microlayer than in the subsurface water, while DCAA tended to have higher mole percentages of glutamic acid, aspartic acid, threonine, arginine, alanine, tyrosine, phenylalanine and leucine in the microlayer. The yields of TDCHO and THAA exhibited similar trends between the microlayer and subsurface water. Carbohydrate species displayed significant enrichment in the microlayer, whereas the DFAA and DCAA exhibited non-uniform enrichment in the microlayer.

  11. Characterization of polymethyl methacrylate/polyethylene glycol/aluminum nitride composite as form-stable phase change material prepared by in situ polymerization method

    International Nuclear Information System (INIS)

    Zhang, Lei; Zhu, Jiaoqun; Zhou, Weibin; Wang, Jun; Wang, Yan

    2011-01-01

    Highlights: → Form-stable PMMA/PEG/AlN PCMs were prepared by in situ polymerization method. → AlN additive effectively enhanced the heat transfer property of composite PCMs. → The composites exhibited desirable thermal performance and electric insulativity. → The composites were available for the thermal management of electronic device. - Abstract: This work was focused on the preparation and characterization of a new type of form-stable phase change material (PCM) employed in thermal management. Using the method of in situ polymerization, polyethylene glycol (PEG) acting as the PCM and aluminum nitride (AlN) serving as the thermal conductivity promoter were uniformly encapsulated and embedded inside the three-dimensional network structure of PMMA matrix. When the mass fraction of PEG was below 70%, the prepared composite PCMs remained solid without leakage above the melting point of the PEG. XRD and FT-IR results indicated that the PEG was physically combined with PMMA matrix and AlN additive and did not participate in the polymerization. Thermal analysis results showed that the prepared composite PCMs possess available latent heat capacity and thermal stability, and the AlN additive was able to effectively enhance the heat transfer property of organic PCM. Moreover, the volume resistivity of composite achieved (5.92 ± 0.16) x 10 10 Ω cm when the mass ratio of AlN was 30%. To sum up, the prepared form-stable PCMs were competent for the thermal management of electronic device due to their acceptable thermal performance and electric insulativity.

  12. PLGA nano/microparticles loaded with cresyl violet as a tracer for drug delivery: Characterization and in-situ hyperspectral fluorescence and 2-photon localization

    Energy Technology Data Exchange (ETDEWEB)

    Lunardi, Claure N., E-mail: clunardi@unb.br [Laboratory of Photochemistry and Nanobiotechnology, University of Brasília, Brasília (Brazil); Department of Biomedical Engineering and Radiology, Laboratory for Functional Optical Imaging, Columbia University, New York, NY (United States); Gomes, Anderson J. [Laboratory of Photochemistry and Nanobiotechnology, University of Brasília, Brasília (Brazil); Department of Biomedical Engineering and Radiology, Laboratory for Functional Optical Imaging, Columbia University, New York, NY (United States); Palepu, Sandeep; Galwaduge, P. Thilanka; Hillman, Elizabeth M.C. [Department of Biomedical Engineering and Radiology, Laboratory for Functional Optical Imaging, Columbia University, New York, NY (United States)

    2017-01-01

    Here we present the production, characterization and in-vivo assessment of cresyl violet-loaded biodegradable PLGA nano/microparticles (CV-NP and CV-MP). We demonstrate that the beneficial spectral characteristics of cresyl violet make it suitable as a tracer for particle-based drug delivery using both hyperspectral wide field and two-photon excited fluorescence microscopy. Particles were prepared using a cosolvent method, after which the physicochemical properties such as morphology, particle size, drug entrapment efficiency, drug loading and in vitro drug release behavior were measured in addition to spectroscopic properties, such as absorption, fluorescence and infrared spectra. The particles were then tested in an in vivo mouse model to assess their biodistribution characteristics. The location and integrity of particles after injection was determined using both hyperspectral fluorescence and two-photon microscopy within intact organs in situ. Our results show that cresyl violet is efficiently entrapped into PLGA particles, and that the particles are spherical in shape, ranging from 300 to 5070 nm in diameter. Particle biodistribution in the mouse was found to depend on particle size, as expected. Cresyl violet is shown to be an ideal tracer to assess the properties PLGA particle-based drug delivery in combination with our novel multi-scale optical imaging techniques for in-situ particle localization. - Highlights: • Cresyl violet entrapment into polymeric particles • Cresyl violet suitable as a tracer for particle-based drug delivery • Hyperspectral analysis of polymer nano/microparticles • Two-photon microscopy of polymeric nano/microparticles.

  13. Properties of Subsurface Soil Cores from Four Geologic Provinces Surrounding Mars Desert Research Station, Utah: Characterizing Analog Martian Soil in a Human Exploration Scenario

    Science.gov (United States)

    Stoker, C. R.; Clarke, J. D. A.; Direito, S.; Foing, B.

    2011-01-01

    The DOMEX program is a NASA-MMAMA funded project featuring simulations of human crews on Mars focused on science activities that involve collecting samples from the subsurface using both manual and robotic equipment methods and analyzing them in the field and post mission. A crew simulating a human mission to Mars performed activities focused on subsurface science for 2 weeks in November 2009 at Mars Desert Research Station near Hanksville, Utah --an important chemical and morphological Mars analog site. Activities performed included 1) survey of the area to identify geologic provinces, 2) obtaining soil and rock samples from each province and characterizing their mineralogy, chemistry, and biology; 3) site selection and reconnaissance for a future drilling mission; 4) deployment and testing of Mars Underground Mole, a percussive robotic soil sampling device; and 5) recording and analyzing how crew time was used to accomplish these tasks. This paper summarizes results from analysis of soil cores

  14. Subsurface probing

    International Nuclear Information System (INIS)

    Lytle, R.J.

    1978-01-01

    Imaging techniques that can be used to translate seismic and electromagnetic wave signals into visual representation are briefly discussed. The application of these techniques is illustrated on the example of determining the subsurface structure of a proposed power plant. Imaging makes the wave signals intelligible to the non-geologists. R and D work needed in this area are tabulated

  15. In-situ stress analysis with X-Ray diffraction for yield locus characterization of sheet metals

    Energy Technology Data Exchange (ETDEWEB)

    Güner, A.; Tekkaya, A. E. [Institute of Forming Technology and Lightweight Construction, TU Dortmund University, Baroper Str. 301, 44227 Dortmund (Germany); Zillmann, B.; Lampke, T. [Institute of Materials Science and Engineering, Chemnitz University of Technology, Erfenschlager Strasse 73 D-09125 Chemnitz (Germany)

    2013-12-16

    A main problem in the field of sheet metal characterization is the inhomogeneous plastic deformation in the gauge regions of specimens which causes the analytically calculated stresses to differ from the sought state of stress acting in the middle of the gauge region. To overcome this problem, application of X-Ray diffraction is analyzed. For that purpose a mobile X-ray diffractometer and an optical strain measurement system are mounted on a universal tensile testing machine. This enables the recording of the whole strain and stress history of a material point. The method is applied to uniaxial tension tests, plane strain tension tests and shear tests to characterize the interstitial free steel alloy DC06. The applicability of the concepts of stress factors is verified by uniaxial tension tests. The experimentally obtained values are compared with the theoretical values calculated with crystal elasticity models utilizing the orientation distribution functions (ODF). The relaxation problem is addressed which shows itself as drops in the stress values with the strain kept at a constant level. This drop is analyzed with elasto-viscoplastic material models to correct the measured stresses. Results show that the XRD is applicable to measure the stresses in sheet metals with preferred orientation. The obtained yield locus is expressed with the Yld2000–2D material model and an industry oriented workpiece is analyzed numerically. The comparison of the strain distribution on the workpiece verifies the identified material parameters.

  16. Manipulation and in situ transmission electron microscope characterization of sub-100 nm nanostructures using a microfabricated nanogripper

    International Nuclear Information System (INIS)

    Cagliani, Alberto; Wierzbicki, Rafal; Petersen, Dirch Hjorth; Dyvelkov, Karin Nordstrøm; Sardan Sukas, Özlem; Booth, Tim; Bøggild, Peter; Occhipinti, Luigi; Herstrøm, Berit G

    2010-01-01

    We present here a polysilicon electrothermal microfabricated nanogripper capable of manipulating nanowires and nanotubes in the sub-100 nm range. The nanogripper was fabricated with a mix and match microfabrication process, combining high throughput of photolithography with 10 nm resolution of electron beam lithography. Vertically grown III–V nanowires with a diameter of 70 nm were picked up using the nanogripper, allowing direct transfer of the nanogripper-nanowire ensemble into a transmission electron microscope (TEM) for structural characterization. By refining the end-effectors with focused ion beam milling and subsequently coating these with Au, the nanogripper could lift up laterally aligned single-walled carbon nanotubes from a 1 µm wide trench, while immediately making good electrical contact. One such carbon nanotube was structurally and electrically characterized real-time in TEM, showing a breakdown current density of approximately 0.5 × 10 12 Am −2 . The nanogripper is the smallest microfabricated gripper to date and is the first tool showing repeatable, 3D nanomanipulation of sub-100 nm structures.

  17. Synthesis, Characterization and Transport Properties of Novel Ion-exchange Nanocomposite Membrane Containing In-situ Formed ZnO Nanoparticles

    Directory of Open Access Journals (Sweden)

    F. Heidary

    2015-10-01

    Full Text Available A  new  type  of  cation-exchange  nanocomposite  membranes  was prepared  by  in-situ  formation  of  ZnO  nanoparticles  in  a  blend containing  sulfonated  poly  (2,6-dimethyl-1,4-phenylene  oxide  and sulfonated polyvinylchloride  via  a  simple  one-step  chemical method.  As-synthesized  nanocomposite  membranes were characterized  using  Fourier  transform  infrared  spectroscopy, scanning  electron  microscopy  and X-ray  diffraction.  The  SEM images  showed  that  ZnO  nanoparticles  were  uniformly  dispersed throughout the polymeric matrices. The effect of additive loading on physicochemical and electrochemical properties of prepared cation-exchange  nanocomposite  membranes  was  studied.  Various characterizations revealed that  the  incorporation  of  different amounts  of  ZnO  nanoparticles  into  the  basic  membrane  structure had a significant influence on the membrane performance and could improve the electrochemical properties.

  18. In situ vitrification demonstration at Pit 1, Oak Ridge National Laboratory. Volume 2: Site characterization report of the Pit 1 area

    Energy Technology Data Exchange (ETDEWEB)

    Spalding, B.P.; Bogle, M.A.; Cline, S.R.; Naney, M.T.; Gu, B.

    1997-12-01

    A treatability study was initiated in October 1993, initially encompassing the application of in situ vitrification (ISV) to at least two segments of Oak Ridge National Laboratory (ORNL) seepage Pit 1 by the end of fiscal year (FY) 1995. This treatability study was to have supported a possible Interim Record of Decision (IROD) or removal action for closure of one or more of the seepage pits and trenches as early as FY 1997. The Remedial Investigation/Feasibility Study for Waste Area Grouping (WAG) 7, which contains these seven seepage pits and trenches, will probably not begin until after the year 2000. This treatability study will establish the field-scale technical performance of ISV for (1) attaining the required depth, nominally 15 ft, to incorporate source contamination within and beneath the pits; (2) demonstrating field capability to overlap melt settings that are necessary to achieve fused, melted segments of the source contamination; (3) demonstrating off-gas handling technology for accommodating and minimizing the volatilization of {sup 137}Cs; (4) demonstrating adequate site characterization techniques to predict ISV melting kinetics, processing temperatures, and product durability; and (5) promoting public acceptance of ISV technology by demonstrating its safety, implementability, site impacts, and air emissions and by coordinating the treatability study within the regulatory closure process. This report summarizes the site characterization information gathered through the end of September 1996 which supports the planning and assessment of ISV for Pit 1 (objective 4 above).

  19. In situ vitrification demonstration at Pit 1, Oak Ridge National Laboratory. Volume 2: Site characterization report of the Pit 1 area

    International Nuclear Information System (INIS)

    Spalding, B.P.; Bogle, M.A.; Cline, S.R.; Naney, M.T.; Gu, B.

    1997-12-01

    A treatability study was initiated in October 1993, initially encompassing the application of in situ vitrification (ISV) to at least two segments of Oak Ridge National Laboratory (ORNL) seepage Pit 1 by the end of fiscal year (FY) 1995. This treatability study was to have supported a possible Interim Record of Decision (IROD) or removal action for closure of one or more of the seepage pits and trenches as early as FY 1997. The Remedial Investigation/Feasibility Study for Waste Area Grouping (WAG) 7, which contains these seven seepage pits and trenches, will probably not begin until after the year 2000. This treatability study will establish the field-scale technical performance of ISV for (1) attaining the required depth, nominally 15 ft, to incorporate source contamination within and beneath the pits; (2) demonstrating field capability to overlap melt settings that are necessary to achieve fused, melted segments of the source contamination; (3) demonstrating off-gas handling technology for accommodating and minimizing the volatilization of 137 Cs; (4) demonstrating adequate site characterization techniques to predict ISV melting kinetics, processing temperatures, and product durability; and (5) promoting public acceptance of ISV technology by demonstrating its safety, implementability, site impacts, and air emissions and by coordinating the treatability study within the regulatory closure process. This report summarizes the site characterization information gathered through the end of September 1996 which supports the planning and assessment of ISV for Pit 1 (objective 4 above)

  20. A measuring system for mechanical characterization of thin films based on a compact in situ micro-tensile tester and SEM moiré method

    International Nuclear Information System (INIS)

    Li, Yanjie; Tang, Minjin; Xie, Huimin; Zhu, Ronghua; Luo, Qiang; Gu, Changzhi

    2013-01-01

    A measuring system for mechanical characterization of thin films based on a compact in situ micro-tensile tester and scanning electron microscope (SEM) moiré method is proposed. The load is exerted by the tensile tester and the full field strain is measured by SEM moiré method. The configuration of the tensile tester and the principle of SEM moiré method are introduced. In the tensile tester, a lever structure is designed to amplify the displacement imposed by lead–zirconate–titanate (PZT) actuator. The SEM moiré method is applied to measure the strain of the thin film, including both the average strain in the gage section and the local strain distribution at a specific region. As an application, the measuring system is applied to characterize the mechanical property of the free-standing aluminum thin film. The experimental results demonstrate the feasibility of the system and its good application potential for mechanical behavior analysis of film-like materials. (paper)

  1. Polyolefin nanocomposites in situ polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Galland, Griselda Barrera; Fim, Fabiana de C.; Milani, Marceo A.; Silva, Silene P. da; Forest, Tadeu; Radaelli, Gislaine, E-mail: griselda.barrera@ufrgs.br [Universidade Federal do Rio Grande de Sul - UFRGS, Porto Alegre, RS (Brazil); Basso, Nara R.S. [Pontificia Universidade Catolica do Rio Grande do Sul, Porto Alegre, RS (Brazil); Quijada, Raul [Universidad de Chile, Santiago (Chile)

    2011-07-01

    Polyethylene and polypropylene nanocomposites using grapheme nanosheets and treated chrysotile have been synthesized by in situ polymerization using metallocene catalysts. The fillers have been submitted to acid, thermal and/ou ultrasound treatments before to introduce them into the polymerization reactor. A complete characterization of the fillers has been done. The nanocomposites have been characterized by SEM, TEM, DRX and AFM. The thermal, mechanic -dynamic, mechanical and electrical properties of the nanocomposites are discussed. (author)

  2. Polyolefin nanocomposites in situ polymerization

    International Nuclear Information System (INIS)

    Galland, Griselda Barrera; Fim, Fabiana de C.; Milani, Marceo A.; Silva, Silene P. da; Forest, Tadeu; Radaelli, Gislaine; Basso, Nara R.S.; Quijada, Raul

    2011-01-01

    Polyethylene and polypropylene nanocomposites using grapheme nanosheets and treated chrysotile have been synthesized by in situ polymerization using metallocene catalysts. The fillers have been submitted to acid, thermal and/ou ultrasound treatments before to introduce them into the polymerization reactor. A complete characterization of the fillers has been done. The nanocomposites have been characterized by SEM, TEM, DRX and AFM. The thermal, mechanic -dynamic, mechanical and electrical properties of the nanocomposites are discussed. (author)

  3. In Situ TEM Electrical Measurements

    DEFF Research Database (Denmark)

    Canepa, Silvia; Alam, Sardar Bilal; Ngo, Duc-The

    2016-01-01

    understanding of complex physical and chemical interactions in the pursuit to optimize nanostructure function and device performance. Recent developments of sample holder technology for TEM have enabled a new field of research in the study of functional nanomaterials and devices via electrical stimulation...... influence the sample by external stimuli, e.g. through electrical connections, the TEM becomes a powerful laboratory for performing quantitative real time in situ experiments. Such TEM setups enable the characterization of nanostructures and nanodevices under working conditions, thereby providing a deeper...... and measurement of the specimen. Recognizing the benefits of electrical measurements for in situ TEM, many research groups have focused their effort in this field and some of these methods have transferred to ETEM. This chapter will describe recent advances in the in situ TEM investigation of nanostructured...

  4. In-Situ Sampling and Characterization of Naturally Occurring Marine Methane Hydrate Using the D/V JOIDES Resolution

    Energy Technology Data Exchange (ETDEWEB)

    Frank R. Rack

    2006-09-20

    Cooperative Agreement DE-FC26-01NT41329 between Joint Oceanographic Institutions and DOE-NETL was divided into two phases based on successive proposals and negotiated statements of work pertaining to activities to sample and characterize methane hydrates on ODP Leg 204 (Phase 1) and on IODP Expedition 311 (Phase 2). The Phase 1 Final Report was submitted to DOE-NETL in April 2004. This report is the Phase 2 Final Report to DOE-NETL. The primary objectives of Phase 2 were to sample and characterize methane hydrates using the systems and capabilities of the D/V JOIDES Resolution during IODP Expedition 311, to enable scientists the opportunity to establish the mass and distribution of naturally occurring gas and gas hydrate at all relevant spatial and temporal scales, and to contribute to the DOE methane hydrate research and development effort. The goal of the work was to provide expanded measurement capabilities on the JOIDES Resolution for a dedicated hydrate cruise to the Cascadia continental margin off Vancouver Island, British Columbia, Canada (IODP Expedition 311) so that hydrate deposits in this region would be well characterized and technology development continued for hydrate research. IODP Expedition 311 shipboard activities on the JOIDES Resolution began on August 28 and were concluded on October 28, 2005. The statement of work for this project included three primary tasks: (1) research management oversight, provided by JOI; (2) mobilization, deployment and demobilization of pressure coring and core logging systems, through a subcontract with Geotek Ltd.; and, (3) mobilization, deployment and demobilization of a refrigerated container van that will be used for degassing of the Pressure Core Sampler and density logging of these pressure cores, through a subcontract with the Texas A&M Research Foundation (TAMRF). Additional small tasks that arose during the course of the research were included under these three primary tasks in consultation with the DOE

  5. In situ biomimetic synthesis, characterization and in vitro investigation of bone-like nanohydroxyapatite in starch matrix

    Energy Technology Data Exchange (ETDEWEB)

    Sadjadi, M.S., E-mail: msadjad@gmail.com [Department of Chemistry, Science and Research Branch, Islamic Azad University, Poonak, Tehran (Iran, Islamic Republic of); Meskinfam, M. [Department of Chemistry, Science and Research Branch, Islamic Azad University, Poonak, Tehran (Iran, Islamic Republic of); Sadeghi, B. [Department of Chemistry, Tonekabon Branch, Islamic Azad university, Tonekabon (Iran, Islamic Republic of); Jazdarreh, H. [Department of Mechanical Engineering, Iran University of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of); Zare, K. [Department of Chemistry, Faculty of Science, Shahid Beheshti University, Tehran (Iran, Islamic Republic of)

    2010-11-01

    In this work, we report the synthesis of bone-like hydroxyapatite (HAp) nanorods in wheat starch matrix via a biomimetic process. Characterization of the samples was performed by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). Scanning and transmission electron microscopy (SEM and TEM) were used to determine the size, shape and morphology of nano-HAp. The results indicate that, the shape and morphology of nHAp is influenced by the presence of starch as a template agent and rod-like nHAp similar to the inorganic component in the human body is obtained at room temperature. In vitro bioactivity of the synthesized HAp nanocomposites was finally verified by comparison of the HAp's structures and morphology before and after immersion in simulated body fluid (SBF) solution for 3, 7, and 14 days.

  6. Synthesis and characterization of tin and antimony based composites derived by mechanochemical in situ reduction of oxides

    International Nuclear Information System (INIS)

    Patel, P.; Roy, S.; Kim, I.L.-Seok; Kumta, P.N.

    2004-01-01

    Composites consisting of tin and silicon dioxide or antimony and silicon dioxide were synthesized using high energy mechanical milling. The composites were made by the reactive milling of SnO or Sb 2 O 3 with pure Si, resulting in the oxidation of silicon and the reduction of the metal oxides. The minimum time required to complete the reaction for the tin system was 170 min, while the minimum time for the antimony system was 230 min. X-ray diffraction and infrared spectroscopy were used to determine the phases present in the composites. In addition, scanning electron microscopy, along with energy dispersive X-ray analysis (EDX), was used to characterize the microstructure and composition of the resultant material

  7. Enrichment and characterization of hydrocarbon-degrading bacteria from petroleum refinery waste as potent bioaugmentation agent for in situ bioremediation.

    Science.gov (United States)

    Sarkar, Poulomi; Roy, Ajoy; Pal, Siddhartha; Mohapatra, Balaram; Kazy, Sufia K; Maiti, Mrinal K; Sar, Pinaki

    2017-10-01

    Intrinsic biodegradation potential of bacteria from petroleum refinery waste was investigated through isolation of cultivable strains and their characterization. Pseudomonas and Bacillus spp. populated the normal cultivable taxa while prolonged enrichment with hydrocarbons and crude oil yielded hydrocarbonoclastic bacteria of genera Burkholderia, Enterobacter, Kocuria, Pandoraea, etc. Strains isolated through enrichment showed assemblages of superior metabolic properties: utilization of aliphatic (C6-C22) and polyaromatic compounds, anaerobic growth with multiple terminal electron acceptors and higher biosurfactant production. Biodegradation of dodecane was studied thoroughly by GC-MS along with detection of gene encoding alkane hydroxylase (alkB). Microcosms bioaugmented with Enterobacter, Pandoraea and Burkholderia strains showed efficient biodegradation (98% TPH removal) well fitted in first order kinetic model with low rate constants and decreased half-life. This study proves that catabolically efficient bacteria resides naturally in complex petroleum refinery wastes and those can be useful for bioaugmentation based bioremediation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. In silico and in situ characterization of the zebrafish (Danio rerio gnrh3 (sGnRH gene

    Directory of Open Access Journals (Sweden)

    Husebye Harald

    2002-08-01

    Full Text Available Abstract Background Gonadotropin releasing hormone (GnRH is responsible for stimulation of gonadotropic hormone (GtH in the hypothalamus-pituitary-gonadal axis (HPG. The regulatory mechanisms responsible for brain specificity make the promoter attractive for in silico analysis and reporter gene studies in zebrafish (Danio rerio. Results We have characterized a zebrafish [Trp7, Leu8] or salmon (s GnRH variant, gnrh3. The gene includes a 1.6 Kb upstream regulatory region and displays the conserved structure of 4 exons and 3 introns, as seen in other species. An in silico defined enhancer at -976 in the zebrafish promoter, containing adjacent binding sites for Oct-1, CREB and Sp1, was predicted in 2 mammalian and 5 teleost GnRH promoters. Reporter gene studies confirmed the importance of this enhancer for cell specific expression in zebrafish. Interestingly the promoter of human GnRH-I, known as mammalian GnRH (mGnRH, was shown capable of driving cell specific reporter gene expression in transgenic zebrafish. Conclusions The characterized zebrafish Gnrh3 decapeptide exhibits complete homology to the Atlantic salmon (Salmo salar GnRH-III variant. In silico analysis of mammalian and teleost GnRH promoters revealed a conserved enhancer possessing binding sites for Oct-1, CREB and Sp1. Transgenic and transient reporter gene expression in zebrafish larvae, confirmed the importance of the in silico defined zebrafish enhancer at -976. The capability of the human GnRH-I promoter of directing cell specific reporter gene expression in zebrafish supports orthology between GnRH-I and GnRH-III.

  9. In Situ IR Characterization of CO Interacting with Rh Nanoparticles Obtained by Calcination and Reduction of Hydrotalcite-Type Precursors

    Directory of Open Access Journals (Sweden)

    F. Basile

    2011-01-01

    Full Text Available Supported Rh nanoparticles obtained by reduction in hydrogen of severely calcined Rh/Mg/Al hydrotalcite-type (HT phases have been characterized by FT-IR spectroscopy of adsorbed CO [both at room temperature (r.t. and nominal liquid nitrogen temperature] and Transmission Electron Microscopy (TEM. The effect of reducing temperature has been investigated, showing that Rh crystal size increases from 1.4 nm to 1.8 nm when the reduction temperature increases from 750°C to 950°C. The crystal growth favours the formation of bridged CO species and linear monocarbonyl species with respect to gem-dicarbonyl species; when CO adsorbs at r.t., CO disproportionation occurs on Rh and it accompanies the formation of RhI(CO2. The role of interlayer anions in the HT precursors to affect the properties of the final materials has been also investigated considering samples prepared from silicate-instead of carbonate-containing precursors. In this case, formation of RhI(CO2 and CO disproportionation do not occur, and this evidence is discussed in terms of support effect.

  10. In situ characterization of organo-modified and unmodified montmorillonite aqueous suspensions by UV-visible spectroscopy.

    Science.gov (United States)

    Alin, Jonas; Rubino, Maria; Auras, Rafael

    2015-10-15

    UV-visible (UV-Vis) spectroscopy (Tyndall spectra) was applied and tested for its ability to measure organo-modified and unmodified montmorillonite (MMT) clays in aqueous suspensions. A full factorial design of experiments was used to study the influence of pH, NaCl and clay concentrations on the average particle size of the clay agglomerates. The methodology was evaluated by observing results that were consistent with previous research about the unmodified clay's behavior in aqueous suspensions. The results from this evaluation corresponded to accepted theories about the unmodified clay's behavior, indicating that the methodology is precise enough to distinguish the effects of the studied factors on these clay suspensions. The effect of clay concentration was related to the amount of ions per clay particle for the unmodified clay, but was not significant for the organo-modified MMT. The average particle size of the organo-modified MMT in suspension was significantly larger than that of the unmodified clay. Size of the organo-modified MMT agglomerates in suspension decreased in the presence of NaCl and at both high and low pH; this behavior was opposite to that of the unmodified clay. These results demonstrate that the UV-Vis methodology is well-suited for characterizing clay particle size in aqueous suspensions. The technique also is simple, rapid, and low-cost. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Geochemical characterization of supraglacial debris via in situ and optical remote sensing methods: a case study in Khumbu Himalaya, Nepal

    Directory of Open Access Journals (Sweden)

    K. A. Casey

    2012-01-01

    Full Text Available Surface glacier debris samples and field spectra were collected from the ablation zones of Nepal Himalaya Ngozumpa and Khumbu glaciers in November and December 2009. Geochemical and mineral compositions of supraglacial debris were determined by X-ray diffraction and X-ray fluorescence spectroscopy. This composition data was used as ground truth in evaluating field spectra and satellite supraglacial debris composition and mapping methods. Satellite remote sensing methods for characterizing glacial surface debris include visible to thermal infrared hyper- and multispectral reflectance and emission signature identification, semi-quantitative mineral abundance indicies and spectral image composites. Satellite derived supraglacial debris mineral maps displayed the predominance of layered silicates, hydroxyl-bearing and calcite minerals on Khumbu Himalayan glaciers. Supraglacial mineral maps compared with satellite thermal data revealed correlations between glacier surface composition and glacier surface temperature. Glacier velocity displacement fields and shortwave, thermal infrared false color composites indicated the magnitude of mass flux at glacier confluences. The supraglacial debris mapping methods presented in this study can be used on a broader scale to improve, supplement and potentially reduce errors associated with glacier debris radiative property, composition, areal extent and mass flux quantifications.

  12. Novel electrospun gas diffusion layers for polymer electrolyte membrane fuel cells: Part I. Fabrication, morphological characterization, and in situ performance

    Science.gov (United States)

    Chevalier, S.; Lavielle, N.; Hatton, B. D.; Bazylak, A.

    2017-06-01

    In this first of a series of two papers, we report an in-depth analysis of the impact of the gas diffusion layer (GDL) structure on the polymer electrolyte membrane (PEM) fuel cell performance through the use of custom GDLs fabricated in-house. Hydrophobic electrospun nanofibrous gas diffusion layers (eGDLs) are fabricated with controlled fibre diameter and alignment. The eGDLs are rendered hydrophobic through direct surface functionalization, and this molecular grafting is achieved in the absence of structural alteration. The fibre diameter, chemical composition, and electrical conductivity of the eGDL are characterized, and the impact of eGDL structure on fuel cell performance is analysed. We observe that the eGDL facilitates higher fuel cell power densities compared to a commercial GDL (Toray TGP-H-60) at highly humidified operating conditions. The ohmic resistance of the fuel cell is found to significantly increase with increasing inter-fiber distance. It is also observed that the addition of a hydrophobic treatment enhances membrane hydration, and fibres perpendicularly aligned to the channel direction may enhance the contact area between the catalyst layer and the GDL.

  13. In Situ Synthesis and Characterization of Polyethyleneimine-Modified Carbon Nanotubes Supported PtRu Electrocatalyst for Methanol Oxidation

    Directory of Open Access Journals (Sweden)

    Xi Geng

    2015-01-01

    Full Text Available PtRu bimetallic nanoparticles were successfully synthesized on polyethyleneimine- (PEI- functionalized multiwalled carbon nanotubes (MWCNTs via an effective and facile polyol reduction approach. Noncovalent surface modification of MWCNTs with PEI was confirmed by FTIR and zeta potential measurements. The morphology, crystalline structure, and composition of the hybrid material were characterized by transmission electron microscopy (TEM, scanning electron microscopy (SEM, X-ray powder diffraction (XRD, and energy dispersive X-ray spectroscopy (EDX, respectively. According to SEM and TEM observations, PtRu nanoparticles with narrow size distribution were homogeneously deposited on PEI-MWCNTs. Cyclic voltammetry tests demonstrated that the as-prepared PtRu/PEI-MWCNTs nanocomposite had a large electrochemical surface area and exhibited enhanced electrocatalytic activity towards methanol oxidation in comparison with oxidized MWCNTs as catalyst support. PEI-functionalized CNTs, as useful building blocks for the assembly of Pt-based electrocatalyst, may have great potential for applications such as direct methanol fuel cell (DMFC.

  14. In situ micro-focused X-ray beam characterization with a lensless camera using a hybrid pixel detector

    International Nuclear Information System (INIS)

    Kachatkou, Anton; Marchal, Julien; Silfhout, Roelof van

    2014-01-01

    Position and size measurements of a micro-focused X-ray beam, using an X-ray beam imaging device based on a lensless camera that collects radiation scattered from a thin foil placed in the path of the beam at an oblique angle, are reported. Results of studies on micro-focused X-ray beam diagnostics using an X-ray beam imaging (XBI) instrument based on the idea of recording radiation scattered from a thin foil of a low-Z material with a lensless camera are reported. The XBI instrument captures magnified images of the scattering region within the foil as illuminated by the incident beam. These images contain information about beam size, beam position and beam intensity that is extracted during dedicated signal processing steps. In this work the use of the device with beams for which the beam size is significantly smaller than that of a single detector pixel is explored. The performance of the XBI device equipped with a state-of-the-art hybrid pixel X-ray imaging sensor is analysed. Compared with traditional methods such as slit edge or wire scanners, the XBI micro-focused beam characterization is significantly faster and does not interfere with on-going experiments. The challenges associated with measuring micrometre-sized beams are described and ways of optimizing the resolution of beam position and size measurements of the XBI instrument are discussed

  15. Novel in situ multiharmonic EQCM-D approach to characterize complex carbon pore architectures for capacitive deionization of brackish water

    International Nuclear Information System (INIS)

    Shpigel, Netanel; Levi, Mikhael D; Sigalov, Sergey; Aurbach, Doron; Daikhin, Leonid; Presser, Volker

    2016-01-01

    Multiharmonic analysis by electrochemical quartz-crystal microbalance with dissipation monitoring (EQCM-D) is introduced as an excellent tool for quantitative studying electrosorption of ions from aqueous solution in mesoporous (BP-880) or mixed micro-mesoporous (BP-2000) carbon electrodes. Finding the optimal conditions for gravimetric analysis of the ionic content in the charged carbon electrodes, we propose a novel approach to modeling the charge-dependent gravimetric characteristics by incorporation of Gouy-Chapman-Stern electric double layer model for ions electrosorption into meso- and micro-mesoporous carbon electrodes. All three parameters of the gravimetric equation evaluated by fitting it to the experimental mass changes curves were validated using supplementary nitrogen gas sorption analysis and complementing atomic force microscopy. Important overlap between gravimetric EQCM-D analysis of the ionic content of porous carbon electrodes and the classical capacitive deionization models has been established. The necessity and usefulness of non-gravimetric EQCM-D characterizations of complex carbon architectures, providing insight into their unique viscoelastic behavior and porous structure changes, have been discussed in detail. (paper)

  16. Technology information profile: RL321103 -- In situ gamma spectrometer

    International Nuclear Information System (INIS)

    Schilk, A.J.

    1993-11-01

    Past operations of uranium production and support facilities at several Department of Energy (DOE) sites have occasionally resulted in the local contamination of some surface and subsurface soils. Such contamination commonly occurs within waste burial sites, cribs, pond bottom sediments, and areas surrounding waste tanks or uranium scrap, ore, tailing, and slag heaps. The thorough cleanup of these sites is a major public concern and a high priority for the DOE, but before any effective remedial protocols can be established, the three-dimensional distributions of the uranium contaminants must be adequately characterized. Unfortunately, traditional means of obtaining soil activities (e.g., grab sampling followed by laboratory analyses) are notoriously cumbersome, expensive, time-consuming, and often non-representative when very large areas are being surveyed. Hence, new technologies must be developed, or existing ones improved, to allow for the cheaper, better, faster (i.e., real-time) and safer characterization of uranium concentrations at these critical sites. The primary objective for this program is to develop, construct, and field/pilot test the in situ gamma spectrometer for the rapid measurement of uranium in surface and shallow subsurface soils at the Fernald site in Ohio

  17. Pilot-Scale Demonstration of In-Situ Chemical Oxidation ...

    Science.gov (United States)

    A pilot-scale in situ chemical oxidation (ISCO) demonstration, involving subsurface injections of sodium permanganate (NaMnO4), was performed at the US Marine Corp Recruit Depot (MCRD), site 45 (Parris Island (PI), SC). The ground water was originally contaminated with perchloroethylene (PCE) (also known as tetrachloroethylene), a chlorinated solvent used in dry cleaner operations. High resolution site characterization involved multiple iterations of soil core sampling and analysis. Nested micro-wells and conventional wells were also used to sample and analyze ground water for PCE and decomposition products (i.e., trichloroethyelene (TCE), dichloroethylene (c-DCE, t-DCE), and vinyl chloride (VC)), collectively referred to as chlorinated volatile organic compounds (CVOC). This characterization methodology was used to develop and refine the conceptual site model and the ISCO design, not only by identifying CVOC contamination but also by eliminating uncontaminated portions of the aquifer from further ISCO consideration. Direct-push injection was selected as the main method of NaMnO4 delivery due to its flexibility and low initial capital cost. Site impediments to ISCO activities in the source area involved subsurface utilities, including a high pressure water main, a high voltage power line, a communication line, and sanitary and stormwater sewer lines. Utility markings were used in conjunction with careful planning and judicious selection of injection locations. A

  18. Optical and Microcantilever-Based Sensors for Real-Time In Situ Characterization of High-Level Waste

    International Nuclear Information System (INIS)

    Braun, Gilbert M.; Bryan, Samuel

    2002-01-01

    Fundamental research is being conducted to develop sensors for strontium that can be used in real-time to characterize high-level waste (HLW) process streams. Two fundamentally different approaches are being pursued, which have in common the dependence on highly selective molecular recognition agents. In one approach, an array of chemically selective sensors with sensitive fluorescent probes to signal the presence of the constituent of interest are coupled to fiber optics for remote analytical applications. The second approach employs sensitive microcantilever sensors that have been demonstrated to have unprecedented sensitivity in solution for Cs+ and CrO4 -. Selectivity in microcantilever-based sensors is achieved by modifying the surface of a gold-coated cantilever with a monolayer coating of an alkanethiol derivative of the molecular recognition agent. The approaches are complementary since fiber optic sensors can be deployed in the highly alkaline environment of HLW, bu t a method of immobilizing a fluorescent molecular recognition agents in a polymer film or bead on the surface of the optical fiber has yet to be demonstrated. The microcantilever-based sensors function by converting molecular complexation into surface stress, and they have been demonstrated to have the requisite sensitivity. However, we will investigate method of protecting Si or SiN microcantilever sensors in the highly alkaline environment of HLW while maintaining high selectivity. One objective of this project is to develop Sr(II) molecular recognition agents with rapidly established equilibria needed for real-time analysis, and initial research will focus on calixarene-crown ethers as a platform. Sensors for alkali metal ions, hydroxide, and temperature will be part of the array of sensor elements that will be demonstrated in this program for both the cantilever and fiber optic sensor approaches

  19. In situ detection and characterization of potable water biofilms on materials by microscopic, spectroscopic and electrochemistry methods

    Energy Technology Data Exchange (ETDEWEB)

    Gamby, Jean [Universite Pierre et Marie Curie - Paris 6, CNRS-UPR 15, Laboratoire Interfaces et Systemes Electrochimiques, 4 Place Jussieu, Case Courrier 133, 75252 Paris Cedex 05 (France)], E-mail: jean.gamby@upmc.fr; Pailleret, Alain [Universite Pierre et Marie Curie - Paris 6, CNRS-UPR 15, Laboratoire Interfaces et Systemes Electrochimiques, 4 Place Jussieu, Case Courrier 133, 75252 Paris Cedex 05 (France); Clodic, Carol Boucher; Pradier, Claire-Marie [Universite Pierre et Marie Curie - Paris 6, CNRS-UMR 7609, Laboratoire de Reactivite de Surface, 4 Place Jussieu, Case Courrier 178, 75252 Paris Cedex 05 (France); Tribollet, Bernard [Universite Pierre et Marie Curie - Paris 6, CNRS-UPR 15, Laboratoire Interfaces et Systemes Electrochimiques, 4 Place Jussieu, Case Courrier 133, 75252 Paris Cedex 05 (France)

    2008-12-01

    We studied biofilm formation on stainless steel occurring in a drinking water distribution system which operated in parallel at 20 and 37 deg. C, in order to focus on the effect of temperature rather than on other operational and water quality parameters. A surface conditioning step was followed as a function of time on this material until adhesion of bacterial colonies by using microscopic methods: scanning electron microscopy (SEM) and atomic force microscopy (AFM); a spectroscopic method: polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS), and an electrochemical method: rotating disk electrode (RDE). Correlations between surface analysis, the duration of immersion of the sample and the influence of temperature have been identified clearly before bacterial adhesion. In cold water, these results showed an initial conditioning step of surface occurring during the first 8 days, with detection of superficial acidic functions grafted on surface, until adsorption of proteins. After 12 days, formation of independent bacteria microcolonies, reaching 2-3 {mu}m in length was observed. In tepid water, the first step was reduced to 2 days during which carbonates, acidic functions, and proteins were detected. After 90 days, the biofilm entered in a stable population state, which appeared as a bacteria rich film, including possibly Legionella. The spatial variation of the biofilm was limited as deduced from the thickness determination (about 4 {mu}m for 3-month period), using a RDE. The combination of these different techniques confirms successive steps for biofilm formation on stainless steel in a tap water. Then, we scrutinized the external near environment of bacteria including extracellular polymeric substances (EPS) and then further characterize the morphology of dominant bacteria (shape, size, flagellum) on gold substrate by AFM in air.

  20. In situ detection and characterization of potable water biofilms on materials by microscopic, spectroscopic and electrochemistry methods

    International Nuclear Information System (INIS)

    Gamby, Jean; Pailleret, Alain; Clodic, Carol Boucher; Pradier, Claire-Marie; Tribollet, Bernard

    2008-01-01

    We studied biofilm formation on stainless steel occurring in a drinking water distribution system which operated in parallel at 20 and 37 deg. C, in order to focus on the effect of temperature rather than on other operational and water quality parameters. A surface conditioning step was followed as a function of time on this material until adhesion of bacterial colonies by using microscopic methods: scanning electron microscopy (SEM) and atomic force microscopy (AFM); a spectroscopic method: polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS), and an electrochemical method: rotating disk electrode (RDE). Correlations between surface analysis, the duration of immersion of the sample and the influence of temperature have been identified clearly before bacterial adhesion. In cold water, these results showed an initial conditioning step of surface occurring during the first 8 days, with detection of superficial acidic functions grafted on surface, until adsorption of proteins. After 12 days, formation of independent bacteria microcolonies, reaching 2-3 μm in length was observed. In tepid water, the first step was reduced to 2 days during which carbonates, acidic functions, and proteins were detected. After 90 days, the biofilm entered in a stable population state, which appeared as a bacteria rich film, including possibly Legionella. The spatial variation of the biofilm was limited as deduced from the thickness determination (about 4 μm for 3-month period), using a RDE. The combination of these different techniques confirms successive steps for biofilm formation on stainless steel in a tap water. Then, we scrutinized the external near environment of bacteria including extracellular polymeric substances (EPS) and then further characterize the morphology of dominant bacteria (shape, size, flagellum) on gold substrate by AFM in air

  1. A Comparison of the SNICAR Radiative Transfer Model to In Situ Snow Characterization Measurements at Sites in New England, USA

    Science.gov (United States)

    Adolph, A. C.; Albert, M. R.; Dibb, J. E.; Lazarcik, J.; Amante, J.

    2016-12-01

    As a highly reflective material, snow serves as an important control on surface energy balance. Given the current changes in climate and the sensitivity of snow cover to rising temperatures, it is critical that we understand the role of snow and its associated feedbacks in the climate system. Much of snow albedo research has focused on polar or high altitude snow packs, but rapid changes are also occurring in temperate regions; in the northeastern United States of America, changing climate has resulted in shallower snow packs and fewer days of snow cover. As these changes occur and we seek to understand the associated implications for snow albedo within climate dynamics, it is imperative that we are able to accurately represent snow in models. The SNow, ICe, and Aerosol Radiation model (SNICAR), developed by Flanner and Zender (2005) and used in the IPCC assessments, provides upward and downward radiative fluxes of one or many snow layers based on the following inputs: snow depth, density, grain size, and impurity content; solar zenith angle; lighting conditions; and albedo of the surface beneath the snowpack. To our knowledge, the SNICAR model has not been validated with data from a mid-latitude temperate region. Through a measurement campaign that occurred from winter 2013-2016, we have collected over 400 independent observations of a suite of snow characterization measurements and spectral snow albedo from three different sites in New Hampshire, USA. Comparison of our spectral albedo measurements to the SNICAR albedo derived from measured snow properties and illumination conditions will allow for validation of the model or recommendations for improvement based on the sensitivities found in the data.

  2. Characterizing the subsurface geology in and around the U.S. Army Camp Stanley Storage Activity, south-central Texas

    Science.gov (United States)

    Blome, Charles D.; Clark, Allan K.

    2018-02-15

    Several U.S. Geological Survey projects, supported by the National Cooperative Geologic Mapping Program, have used multi-disciplinary approaches over a 14-year period to reveal the surface and subsurface geologic frameworks of the Edwards and Trinity aquifers of central Texas and the Arbuckle-Simpson aquifer of south-central Oklahoma. Some of the project achievements include advancements in hydrostratigraphic mapping, three-dimensional subsurface framework modeling, and airborne geophysical surveys as well as new methodologies that link geologic and groundwater flow models. One area where some of these milestones were achieved was in and around the U.S. Army Camp Stanley Storage Activity, located in north­western Bexar County, Texas, about 19 miles north­west of downtown San Antonio.

  3. Synthesis and Characterization of WO3/Graphene Nanocomposites for Enhanced Photocatalytic Activities by One-Step In-Situ Hydrothermal Reaction

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Hu

    2018-01-01

    Full Text Available Tungsten trioxide (WO3 nanorods are synthesized on the surface of graphene (GR sheets by using a one-step in-situ hydrothermal method employing sodium tungstate (Na2WO4·2H2O and graphene oxide (GO as precursors. The resulting WO3/GR nanocomposites are characterized by X-ray diffraction, Raman spectroscopy, transmission electron microscopy, scanning electron microscopy and X-ray photoelectron spectroscopy. The results confirm that the interface between WO3 nanorod and graphene contains chemical bonds. The enhanced optical absorption properties are measured by UV-vis diffuse reflectance spectra. The photocatalytic activity of the WO3/GR nanocomposites under visible light is evaluated by the photodegradation of methylene blue, where the degradation rate of WO3/GR nanocomposites is shown to be double that of pure WO3. This is attributed to the synergistic effect of graphene and the WO3 nanorod, which greatly enhances the photocatalytic performance of the prepared sample, reduces the recombination of the photogenerated electron-hole pairs and increases the visible light absorption efficiency. Finally, the photocatalytic mechanism of the WO3/GR nanocomposites is presented. The synthesis of the prepared sample is convenient, direct and environmentally friendly. The study reports a highly efficient composite photocatalyst for the degradation of contaminants that can be applied to cleaning up the environment.

  4. Quantifying fluxes and characterizing compositional changes of dissolved organic matter in aquatic systems in situ using combined acoustic and optical measurements

    Science.gov (United States)

    Downing, B.D.; Boss, E.; Bergamaschi, B.A.; Fleck, J.A.; Lionberger, M.A.; Ganju, N.K.; Schoellhamer, D.H.; Fujii, R.

    2009-01-01

    Studying the dynamics and geochemical behavior of dissolved and particulate organic material is difficult because concentration and composition may rapidly change in response to aperiodic as well as periodic physical and biological forcing. Here we describe a method useful for quantifying fluxes and analyzing dissolved organic matter (DOM) dynamics. The method uses coupled optical and acoustic measurements that provide robust quantitative estimates of concentrations and constituent characteristics needed to investigate processes and calculate fluxes of DOM in tidal and other lotic environments. Data were collected several times per hour for 2 weeks or more, with the frequency and duration limited only by power consumption and data storage capacity. We assessed the capabilities and limitations of the method using data from a winter deployment in a natural tidal wetland of the San Francisco Bay estuary. We used statistical correlation of in situ optical data with traditional laboratory analyses of discrete water samples to calibrate optical properties suited as proxies for DOM concentrations and characterizations. Coupled with measurements of flow velocity, we calculated long-term residual horizontal fluxes of DOC into and out from a tidal wetland. Subsampling the dataset provides an estimate for the maximum sampling interval beyond which the error in flux estimate is significantly increased.?? 2009, by the American Society of Limnology and Oceanography, Inc.

  5. In-situ X-ray photoelectron spectroscopy characterization of Si interlayer based surface passivation process for AlGaAs/GaAs quantum wire transistors

    Energy Technology Data Exchange (ETDEWEB)

    Akazawa, Masamichi; Hasegawa, Hideki; Jia, Rui [Research Center for Integrated Quantum Electronics and Graduate School of Information Science and Technology, Hokkaido University, N-13, W-8, Sapporo 060-8628 (Japan)

    2007-04-15

    Detailed properties of the Si interface control layer (Si ICL)-based surface passivation structure are characterized by in-situ X-ray photoelectron spectroscopy (XPS) in an ultra-high vacuum multi-chamber system. Si ICLs were grown by molecular beam epitaxy (MBE) on GaAs and AlGaAs(001) and (111)B surfaces, and were partially converted to SiN{sub x} by nitrogen radical beam. Freshly MBE-grown clean GaAs and AlGaAs surfaces showed strong Fermi level pinning. Large shifts of the surface Fermi level position corresponding to reduction of pinning took place after Si ICL growth, particularly on (111)B surface (around 500 meV). However, subsequent surface nitridation increased pinning again. Then, a significant reduction of pinning was obtained by changing SiN{sub x} to silicon oxynitride by intentional air-exposure and subsequent annealing. This has led to realization of a stable passivation structure with an ultrathin oxynitride/Si ICL structure which prevented subcutaneous oxidation during further device processing under air-exposure. The Si-ICL-based passivation process was applied to surface passivation of quantum wire (QWR) transistors where anomalously large side-gating phenomenon was completely eliminated. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Synthesis and characterization of poly(lactic acid)/ montmorillonite nanocomposites by in situ polycondensation catalyzed by non-metal-based compound.

    Science.gov (United States)

    Kaewprapan, Kulwadee; Phattanarudee, Siriwan

    2012-01-01

    Poly(lactic acid)/montmorillonite nanocomposites were prepared by using non-toxic catalysts, i.e., phthalic acid and succinimide, via in situ polycondensation in presence of silicate. Concentrations of catalysts and clay were varied in a range of 0-3% wt and 0-0.5% wt, respectively. The reaction condition was controlled at 180 degrees C for 24 hr under a reduced pressure. Viscosity average molecular weight of the synthesized polymers and nanocomposites were characterized and compared using an Ubbelohde viscometer. Pattern of silicate distribution in the composites was investigated by X-ray diffraction to correlate with thermal properties evaluated by differential scanning calorimetry and thermogravimetric analysis. The results showed that the addition of catalysts at 2% wt gave the highest product yield (55-60%). The presence of silicate affected on molecular weight reduction, and the diffracted patterns suggested an intercalated structure. With a small amount of added filler, a significant improvement in thermal property and crystallinity of the resultant composites was obtained compared to those of the catalyzed polymers, in which the composites with succinimide exhibited overall better thermal stability and higher crystallinity than the ones prepared with phthalic acid.

  7. Considerations in the use of fluorescence in situ hybridization (FISH) and confocal laser scanning microscopy to characterize rumen methanogens and define their spatial distributions.

    Science.gov (United States)

    Valle, Edith R; Henderson, Gemma; Janssen, Peter H; Cox, Faith; Alexander, Trevor W; McAllister, Tim A

    2015-06-01

    In this study, methanogen-specific coenzyme F420 autofluorescence and confocal laser scanning microscopy were used to identify rumen methanogens and define their spatial distribution in free-living, biofilm-, and protozoa-associated microenvironments. Fluorescence in situ hybridization (FISH) with temperature-controlled hybridization was used in an attempt to describe methanogen diversity. A heat pretreatment (65 °C, 1 h) was found to be a noninvasive method to increase probe access to methanogen RNA targets. Despite efforts to optimize FISH, 16S rRNA methanogen-specific probes, including Arch915, bound to some cells that lacked F420, possibly identifying uncharacterized Methanomassiliicoccales or reflecting nonspecific binding to other members of the rumen bacterial community. A probe targeting RNA from the methanogenesis-specific methyl coenzyme M reductase (mcr) gene was shown to detect cultured Methanosarcina cells with signal intensities comparable to those of 16S rRNA probes. However, the probe failed to hybridize with the majority of F420-emitting rumen methanogens, possibly because of differences in cell wall permeability among methanogen species. Methanogens were shown to integrate into microbial biofilms and to exist as ecto- and endosymbionts with rumen protozoa. Characterizing rumen methanogens and defining their spatial distribution may provide insight into mitigation strategies for ruminal methanogenesis.

  8. Application of fiber-optic attenuated total reflection-FT-IR methods for in situ characterization of protein delivery systems in real time.

    Science.gov (United States)

    McFearin, Cathryn L; Sankaranarayanan, Jagadis; Almutairi, Adah

    2011-05-15

    A fiber-optic coupled attenuated total reflection (ATR)-FT-IR spectroscopy technique was applied to the study of two different therapeutic delivery systems, acid degradable hydrogels and nanoparticles. Real time exponential release of a model protein, human serum albumin (HSA), was observed from two different polymeric hydrogels formulated with a pH sensitive cross-linker. Spectroscopic examination of nanoparticles formulated with an acid degradable polymer shell and encapsulated HSA exhibited vibrational signatures characteristic of both particle and payload when exposed to lowered pH conditions, demonstrating the ability of this methodology to simultaneously measure phenomena arising from a system with a mixture of components. In addition, thorough characterization of these pH sensitive delivery vehicles without encapsulated protein was also accomplished in order to separate the effects of the payload during degradation. When in situ, real time detection in combination with the ability to specifically identify different components in a mixture without involved sample preparation and minimal sample disturbance is provided, the versatility and suitability of this type of experiment for research in the pharmaceutical field is demonstrated.

  9. Program overview: Subsurface science program

    International Nuclear Information System (INIS)

    1994-03-01

    The OHER Subsurface Science Program is DOE's core basic research program concerned with subsoils and groundwater. These practices have resulted in contamination by mixtures of organic chemicals, inorganic chemicals, and radionuclides. A primary long-term goal is to provide a foundation of knowledge that will lead to the reduction of environmental risks and to cost-effective cleanup strategies. Since the Program was initiated in 1985, a substantial amount of research in hydrogeology, subsurface microbiology, and the geochemistry of organically complexed radionuclides has been completed, leading to a better understanding of contaminant transport in groundwater and to new insights into microbial distribution and function in the subsurface environments. The Subsurface Science Program focuses on achieving long-term scientific advances that will assist DOE in the following key areas: providing the scientific basis for innovative in situ remediation technologies that are based on a concept of decontamination through benign manipulation of natural systems; understanding the complex mechanisms and process interactions that occur in the subsurface; determining the influence of chemical and geochemical-microbial processes on co-contaminant mobility to reduce environmental risks; improving predictions of contaminant transport that draw on fundamental knowledge of contaminant behavior in the presence of physical and chemical heterogeneities to improve cleanup effectiveness and to predict environmental risks

  10. DEMONSTRATION BULLETIN: SUBSURFACE VOLATILIZATION AND VENTILATION SYSTEM - BROWN & ROOT ENVIRONMENTAL

    Science.gov (United States)

    The Subsurface Volatilization and Ventilation System (SVVS*) is an in-situ vacuum extraction/air sparging and bioremediation technology for the treatment of subsurface organic contamination in soil and groundwater. The technology, developed by Billings and Associates, Inc., and o...

  11. Synthesis and characterization of a novel nitric oxide fluorescent probe CdS-PMMA nanocomposite via in-situ bulk polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Liyun, E-mail: dlyw@whut.edu.cn; Li, Tao; Zhong, Yunming; Fan, Chao; Huang, Jun

    2014-02-01

    A novel nitric oxide (NO) fluorescent probe CdS-poly(methyl methacrylate) (PMMA) nanocomposites with different molar ratios of CdS quantum dots (QDs) to PMMA are developed successfully via in-situ bulk polymerization method. The optical properties of CdS/PMMA nanocomposites are studied by UV–Vis absorption spectra and fluorescence (FL) spectra in detail. It is demonstrated that the optical properties from such nanocomposite solution are tuned and stabilized by simply varying the concentration of CdS in the final product. X-ray diffraction (XRD) patterns of CdS-PMMA nanocomposite with higher loading of CdS show broad pattern for cubic CdS, which has narrow particle size distribution with less than 5 nm in PMMA observed by transmission electron microscopy (TEM). The surface morphological characterization of the CdS-PMMA nanocomposite has been done through atomic force microscopy (AFM). The thermo-gravimetric analyses (TGA) and differential scanning calorimetry (DSC) confirm the enhanced thermal stability of CdS-PMMA nanocomposites than PMMA. NO can coordinate with Cd{sup 2+} as a ligand for transition metal complexes, which will cause a quenching effect on the fluorescence of CdS QDs. Therefore, a significant quenching effect on the fluorescence of the CdS-PMMA nanocomposite is observed in the presence of NO. The fluorescence responses are concentration-dependent and can be well described by the typical Stern–Volmer equation, and a linear calibration I{sub 0}/I = 1.0021 + 0.1944[NO] (R{sup 2} = 0.96052) is obtained in the range from 1.4 × 10{sup −5} to 9.3 × 10{sup −3} mol/L NO with a detection limit of 1.0 × 10{sup −6} mol/L (S/N = 3). - Highlights: • CdS-PMMA nanocomposite was developed by in-situ bulk polymerization for NO detection. • The fluorescence quenching mechanism relies on the interaction between NO and Cd{sup 2+}. • The fluorescence response shows a good linear reproducibility with NO concentrations. • A linear calibration is

  12. Synthesis and characterization of a novel nitric oxide fluorescent probe CdS-PMMA nanocomposite via in-situ bulk polymerization

    International Nuclear Information System (INIS)

    Ding, Liyun; Li, Tao; Zhong, Yunming; Fan, Chao; Huang, Jun

    2014-01-01

    A novel nitric oxide (NO) fluorescent probe CdS-poly(methyl methacrylate) (PMMA) nanocomposites with different molar ratios of CdS quantum dots (QDs) to PMMA are developed successfully via in-situ bulk polymerization method. The optical properties of CdS/PMMA nanocomposites are studied by UV–Vis absorption spectra and fluorescence (FL) spectra in detail. It is demonstrated that the optical properties from such nanocomposite solution are tuned and stabilized by simply varying the concentration of CdS in the final product. X-ray diffraction (XRD) patterns of CdS-PMMA nanocomposite with higher loading of CdS show broad pattern for cubic CdS, which has narrow particle size distribution with less than 5 nm in PMMA observed by transmission electron microscopy (TEM). The surface morphological characterization of the CdS-PMMA nanocomposite has been done through atomic force microscopy (AFM). The thermo-gravimetric analyses (TGA) and differential scanning calorimetry (DSC) confirm the enhanced thermal stability of CdS-PMMA nanocomposites than PMMA. NO can coordinate with Cd 2+ as a ligand for transition metal complexes, which will cause a quenching effect on the fluorescence of CdS QDs. Therefore, a significant quenching effect on the fluorescence of the CdS-PMMA nanocomposite is observed in the presence of NO. The fluorescence responses are concentration-dependent and can be well described by the typical Stern–Volmer equation, and a linear calibration I 0 /I = 1.0021 + 0.1944[NO] (R 2 = 0.96052) is obtained in the range from 1.4 × 10 −5 to 9.3 × 10 −3 mol/L NO with a detection limit of 1.0 × 10 −6 mol/L (S/N = 3). - Highlights: • CdS-PMMA nanocomposite was developed by in-situ bulk polymerization for NO detection. • The fluorescence quenching mechanism relies on the interaction between NO and Cd 2+ . • The fluorescence response shows a good linear reproducibility with NO concentrations. • A linear calibration is obtained in the range from 1.4 × 10

  13. Interactive modeling-synthesis-characterization approach towards controllable in situ self-assembly of artificial pinning centers in RE-123 films

    Science.gov (United States)

    Wu, Judy; Shi, Jack

    2017-10-01

    Raising critical current density J c in high temperature superconductors (HTSs) is an important strategy towards performance-cost balanced HTS technology for commercialization. The development of strong nanoscale artificial pinning centers (APCs) in HTS, such as YBa2Cu3O7 or RE-123 in general, represents one of the most exciting progressions in HTS material research in the last decade. Significantly raised J c has been demonstrated in APC/RE-123 nanocomposites by enhanced pinning on magnetic vortices in magnetic fields towards that demanded in practical applications. Among other processes, strain-mediated self-organization has been explored extensively for in situ formation of the APCs based on fundamental physics design rules. The desire in controlling the morphology, dimension, orientation, and concentration of APCs has led to a fundamental question on how strains interact in determining APCs at a macroscopic scale. Answering this question demands an interactive modeling-synthesis-characterization approach towards a thorough understanding of fundamental physics governing the strain-mediated self-organization of the APCs in the APC/RE-123 nanocomposites. Such an understanding is the key for a leap forward from the traditionally empirical method to materials-by-design to enable an optimal APC landscape to be achieved in epitaxial films of APC/YBCO nanocomposites under a precise guidance of fundamental physics. The paper intends to provide a review of recent progress made in the controllable generation of APCs using the interactive modeling-synthesis-characterization approach. The emphasis will be given to the understanding so far achieved using such an approach on the collective effect of the strain field on the morphology, dimension, and orientation of APCs in epitaxial APC/RE-123 nanocomposite films.

  14. Establishment of a new human pleomorphic malignant fibrous histiocytoma cell line, FU-MFH-2: molecular cytogenetic characterization by multicolor fluorescence in situ hybridization and comparative genomic hybridization

    Directory of Open Access Journals (Sweden)

    Isayama Teruto

    2010-11-01

    Full Text Available Abstract Background Pleomorphic malignant fibrous histiocytoma (MFH is one of the most frequent malignant soft tissue tumors in adults. Despite the considerable amount of research on MFH cell lines, their characterization at a molecular cytogenetic level has not been extensively analyzed. Methods and results We established a new permanent human cell line, FU-MFH-2, from a metastatic pleomorphic MFH of a 72-year-old Japanese man, and applied multicolor fluorescence in situ hybridization (M-FISH, Urovysion™ FISH, and comparative genomic hybridization (CGH for the characterization of chromosomal aberrations. FU-MFH-2 cells were spindle or polygonal in shape with oval nuclei, and were successfully maintained in vitro for over 80 passages. The histological features of heterotransplanted tumors in severe combined immunodeficiency mice were essentially the same as those of the original tumor. Cytogenetic and M-FISH analyses displayed a hypotriploid karyotype with numerous structural aberrations. Urovysion™ FISH revealed a homozygous deletion of the p16INK4A locus on chromosome band 9p21. CGH analysis showed a high-level amplification of 9q31-q34, gains of 1p12-p34.3, 2p21, 2q11.2-q21, 3p, 4p, 6q22-qter, 8p11.2, 8q11.2-q21.1, 9q21-qter, 11q13, 12q24, 15q21-qter, 16p13, 17, 20, and X, and losses of 1q43-qter, 4q32-qter, 5q14-q23, 7q32-qter, 8p21-pter, 8q23, 9p21-pter, 10p11.2-p13, and 10q11.2-q22. Conclusion The FU-MFH-2 cell line will be a particularly useful model for studying molecular pathogenesis of human pleomorphic MFH.

  15. Characterization of as-grown and adsorbate-covered N-polar InN surfaces using in situ photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Eisenhardt, Anja; Himmerlich, Marcel; Krischok, Stefan

    2012-01-01

    The surface electronic properties and adsorption behaviour of as-grown and oxidized N-polar InN films are characterized by photoelectron spectroscopy (XPS, UPS). The epitaxial growth of the InN layers was performed by plasma-assisted molecular beam epitaxy on GaN/6H-SiC(000-1). After growth and in situ characterization the InN surfaces were exposed to molecular oxygen to evaluate the adsorption behaviour of O 2 on N-polar InN and to study its impact on the surface electronic properties of the III-nitride material. The results are compared with studies on In-polar InN on GaN/sapphire templates. The as-grown N-polar InN surface exhibits a pronounced surface state at a binding energy of ∝1.6 eV. The valence band minimum lies about 0.8-1.0 eV below the surface Fermi level. Additionally, the XPS core level binding energies for InN(000-1) are reduced compared to InN(0001) films, indicating different surface band bending for clean N-polar and In-polar InN, respectively. The interaction of molecular oxygen with the InN(000-1) surface leads to a downward band bending by 0.1 eV compared to the initial state. Additional adsorption of species from the residual gas of the UHV chamber increases the surface downward band bending. Furthermore two pronounced oxygen related states with an energy distance of ∝5 eV could be detected in the valence band region. The adsorbed oxygen results in an additional component in the N1s core level spectra, which is interpreted as formation of NO x bonds. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Structural characterization of framework-gas interactions in the metal-organic framework Co2(dobdc) by in situ single-crystal X-ray diffraction.

    Science.gov (United States)

    Gonzalez, Miguel I; Mason, Jarad A; Bloch, Eric D; Teat, Simon J; Gagnon, Kevin J; Morrison, Gregory Y; Queen, Wendy L; Long, Jeffrey R

    2017-06-01

    The crystallographic characterization of framework-guest interactions in metal-organic frameworks allows the location of guest binding sites and provides meaningful information on the nature of these interactions, enabling the correlation of structure with adsorption behavior. Here, techniques developed for in situ single-crystal X-ray diffraction experiments on porous crystals have enabled the direct observation of CO, CH 4 , N 2 , O 2 , Ar, and P 4 adsorption in Co 2 (dobdc) (dobdc 4- = 2,5-dioxido-1,4-benzenedicarboxylate), a metal-organic framework bearing coordinatively unsaturated cobalt(ii) sites. All these molecules exhibit such weak interactions with the high-spin cobalt(ii) sites in the framework that no analogous molecular structures exist, demonstrating the utility of metal-organic frameworks as crystalline matrices for the isolation and structural determination of unstable species. Notably, the Co-CH 4 and Co-Ar interactions observed in Co 2 (dobdc) represent, to the best of our knowledge, the first single-crystal structure determination of a metal-CH 4 interaction and the first crystallographically characterized metal-Ar interaction. Analysis of low-pressure gas adsorption isotherms confirms that these gases exhibit mainly physisorptive interactions with the cobalt(ii) sites in Co 2 (dobdc), with differential enthalpies of adsorption as weak as -17(1) kJ mol -1 (for Ar). Moreover, the structures of Co 2 (dobdc)·3.8N 2 , Co 2 (dobdc)·5.9O 2 , and Co 2 (dobdc)·2.0Ar reveal the location of secondary (N 2 , O 2 , and Ar) and tertiary (O 2 ) binding sites in Co 2 (dobdc), while high-pressure CO 2 , CO, CH 4 , N 2 , and Ar adsorption isotherms show that these binding sites become more relevant at elevated pressures.

  17. Dosimetric characterization and identification of TL defect centres in sand for its application in sludge irradiators as an in situ dosimeter

    International Nuclear Information System (INIS)

    Benny, P.G.; Shah, M.R.; Sabharwal, S.; Bhatt, B.C.; Gundu Rao, T.K.

    2003-08-01

    The report presents investigations that have been carried out to establish a method for the routine/ periodic dosimetry for Sludge Hygienisation Research Irradiator (SHRI) facility set up at Baroda (India) for disinfection of liquid sewage sludge in bulk quantity. For this purpose, the possibility of using the sand, one of the components of inorganic matter found in sewage sludge, directly as a TL dosimeter has been explored. The report is presented in two parts. Part 1 presents dosimetric characterization of sand for its application as an in situ dosimeter. A review on various sewage sludge irradiators operating in the world and the different dosimetric techniques used for these facilities are briefly described. In the present studies, in order to investigate the thermoluminescence properties of sand, it was separated from the sewage sludge by an extensive cleaning procedure. Part 1 also describes the procedure for separation of sand from sewage sludge, study on its TL properties, dosimetric characterization of sand and application of cleaned sand collected at the outlet of the SHRI facility for estimating radiation absorbed dose imparted to the sludge during its disinfection as well as for determining distribution of dose for an irradiated sludge batch. A new method by using phototransferred thermoluminescence (PTTL) in quartz separated from sand has been explored for high-level gamma dosimetry. Part 2 of the report presents sensitization properties of TL peaks and study of TL defect centres in quartz. It describes the results on pre-dose sensitization of 220 degC and 110 degC TL peaks in the quartz samples separated from sand. From the TL and ESR studies, a mechanism for TL sensitization has been suggested, which involves the role of competing traps and E I - centres in the sensitization process. The paramagnetic radicals formed in quartz samples after gamma irradiation by using ESR technique have been briefly described. (author)

  18. Diagnosis of In Situ Metabolic State and Rates of Microbial Metabolism During In Situ Uranium Bioremediation with Molecular Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Lovley, Derek R. [University of Massachusetts, Amherst

    2012-11-28

    The goal of these projects was to develop molecule tools to tract the metabolic activity and physiological status of microorganisms during in situ uranium bioremediation. Such information is important in able to design improved bioremediation strategies. As summarized below, the research was highly successful with new strategies developed for estimating in situ rates of metabolism and diagnosing the physiological status of the predominant subsurface microorganisms. This is a first not only for groundwater bioremediation studies, but also for subsurface microbiology in general. The tools and approaches developed in these studies should be applicable to the study of microbial communities in a diversity of soils and sediments.

  19. Complete Subsurface Elemental Composition Measurements With PING

    Science.gov (United States)

    Parsons, A. M.

    2012-01-01

    The Probing In situ with Neutrons and Gamma rays (PING) instrument will measure the complete bulk elemental composition of the subsurface of Mars as well as any other solid planetary body. PING can thus be a highly effective tool for both detailed local geochemistry science investigations and precision measurements of Mars subsurface reSOurces in preparation for future human exploration. As such, PING is thus fully capable of meeting a majority of both ncar and far term elements in Challenge #1 presented for this conference. Measuring the ncar subsurface composition of Mars will enable many of the MEPAG science goals and will be key to filling an important Strategic Knowledge Gap with regard to In situ Resources Utilization (ISRU) needs for human exploration. [1, 2] PING will thus fill an important niche in the Mars Exploration Program.

  20. Polarimetric borehole radar measurement near Nojima fault and its application to subsurface crack characterization; Polarimetric borehole radar ni yoru Nojima danso shuhen no chika kiretsu keisoku jikken

    Energy Technology Data Exchange (ETDEWEB)

    Sato, M.; Taniguchi, Y.; Miwa, T.; Niitsuma, H. [Tohoku University, Sendai (Japan); Ikeda, R. [National Research Institute for Disaster Prevention, Tsukuba (Japan); Makino, K. [Geophysical Surveying and Consulting Co. Ltd., Tokyo (Japan)

    1997-05-27

    Practical application of subsurface crack characterization by the borehole radar measurement to which the radar polarimetric method was introduced was attempted to measuring objects for which the borehole radar has not been much used, for example, the inside of low loss rock mass or fracture zone where cracks tightly exist. A system was trially manufactured which makes the radar polarimetric measurement possible in the borehole at a 1000m depth and with a about 10cm diameter, and a field experiment was conducted for realizing the subsurface crack characterization near the Nojima fault. For the measuring experiment by the polarimetric borehole radar, used were Iwaya borehole and Hirabayashi borehole drilled in the north of Awaji-shima, Hyogo-ken. In a comparison of both polarization systems of Hirabayashi borehole, reflected waves at depths of 1038m and 1047m are relatively stronger in both polarization systems than those with the same polarization form and at different depths, whereas reflected waves around a 1017m depth are strong only as to the parallel polarization system. Characteristics of the polarization in this experiment indirectly reflect crack structures. 6 refs., 6 figs., 1 tab.

  1. Synthesis and characterization of a novel nitric oxide fluorescent probe CdS-PMMA nanocomposite via in-situ bulk polymerization.

    Science.gov (United States)

    Ding, Liyun; Li, Tao; Zhong, Yunming; Fan, Chao; Huang, Jun

    2014-02-01

    A novel nitric oxide (NO) fluorescent probe CdS-poly(methyl methacrylate) (PMMA) nanocomposites with different molar ratios of CdS quantum dots (QDs) to PMMA are developed successfully via in-situ bulk polymerization method. The optical properties of CdS/PMMA nanocomposites are studied by UV-Vis absorption spectra and fluorescence (FL) spectra in detail. It is demonstrated that the optical properties from such nanocomposite solution are tuned and stabilized by simply varying the concentration of CdS in the final product. X-ray diffraction (XRD) patterns of CdS-PMMA nanocomposite with higher loading of CdS show broad pattern for cubic CdS, which has narrow particle size distribution with less than 5 nm in PMMA observed by transmission electron microscopy (TEM). The surface morphological characterization of the CdS-PMMA nanocomposite has been done through atomic force microscopy (AFM). The thermo-gravimetric analyses (TGA) and differential scanning calorimetry (DSC) confirm the enhanced thermal stability of CdS-PMMA nanocomposites than PMMA. NO can coordinate with Cd(2+) as a ligand for transition metal complexes, which will cause a quenching effect on the fluorescence of CdS QDs. Therefore, a significant quenching effect on the fluorescence of the CdS-PMMA nanocomposite is observed in the presence of NO. The fluorescence responses are concentration-dependent and can be well described by the typical Stern-Volmer equation, and a linear calibration I0/I=1.0021+0.1944[NO] (R(2)=0.96052) is obtained in the range from 1.4×10(-5) to 9.3×10(-3) mol/L NO with a detection limit of 1.0×10(-6) mol/L (S/N=3). © 2013.

  2. Characterization of TiAlN thin film annealed under O2 by in situ time of flight direct recoil spectroscopy/mass spectroscopy of recoiled ions and ex situ x-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Tempez, A.; Bensaoula, A.; Schultz, A.

    2002-01-01

    The oxidation of an amorphous TiAlN coating has been studied by in situ direct recoil spectroscopy (DRS) and mass spectroscopy of recoiled ions (MSRI) and ex situ x-ray photoelectron spectroscopy (XPS). DRS and MSRI monitored the changes in surface composition as the sample was heated to 460 deg. C under an 18 O 2 pressure of 10 -6 Torr. Angular resolved XPS data were acquired for thickness-dependence information. The initial surface was partially oxidized from air exposure. Both DRS and XPS showed the Al-rich near surface and the presence of N in the subsurface. As shown by DRS and MSRI, oxidation at elevated temperatures yielded surface nitrogen loss and Ti enrichment. XPS confirmed the preferential formation of TiO 2 on the surface. This study also provides a comparison between the direct recoil (neutrals and ions) and the ionic recoil signals. In our conditions, the negative ionic fraction of all elements except H tracks their true surface content variations given by DRS. The results were compared with early work performed on identical samples. In this case the TiAlN film was oxidized with an O 2 pressure in the mTorr range and the surface changes are followed in situ by positive MSRI and XPS. This experiment also indicates that Al and N are buried under TiO 2 but from 600 deg. C

  3. Reaction and Transport Processes Controlling In Situ Chemical Oxidation of DNAPLs

    National Research Council Canada - National Science Library

    Siegrist, Robert L; Crimi, Michelle; Munakata-Marr, Junko; Illangasekare, Tissa; Dugan, Pamela; Heiderscheidt, Jeff; Jackson, Shannon; Petri, Ben; Sahl, Jason; Seitz, Sarah

    2006-01-01

    In situ chemical oxidation involves the introduction of chemical oxidants into the subsurface to destroy organic contaminants in soil and ground water, with the goal being to reduce the mass, mobility...

  4. Detection of Bay of Bengal eddies from TOPEX and in situ observations

    Digital Repository Service at National Institute of Oceanography (India)

    Gopalan, A.K.S.; Gopalakrishna, V.V.; Ali, M.M.; Sharma, R.

    good qualitative agreement with the subsurface isotherm features (troughs and ridges) of the in situ temperature profiles. However, this agreement does not extend to the surface and hence SST patterns are not good indicators of eddy positions in the Bay...

  5. Characterization of PZT Capacitor Structures with Various Electrode Materials Processed In-Situ Using AN Automated, Rotating Elemental Target, Ion Beam Deposition System

    Science.gov (United States)

    Gifford, Kenneth Douglas

    Ferroelectric thin film capacitor structures containing lead zirconate titanate (PZT) as the dielectric, with the chemical formula Pb(rm Zr_{x }Ti_{1-x})O_3, were synthesized in-situ with an automated ion beam sputter deposition system. Platinum (Pt), conductive ruthenium oxide (RuO_2), and two types of Pt-RuO_2 hybrid electrodes were used as the electrode materials. The capacitor structures are characterized in terms of microstructure and electrical characteristics. Reduction or elimination of non-ferroelectric phases, that nucleate during PZT processing on Pt/TiO _2/MgO and RuO_2/MgO substrates, is achieved by reducing the thickness of the individually deposited layers and by interposing a buffer layer (~100-200A) of PbTiO _3 (PT) between the bottom electrode and the PZT film. Capacitor structures containing a Pt electrode exhibit poor fatigue resistance, irregardless of the PZT microstructure or the use of a PT buffer layer. From these results, and results from similar capacitors synthesized with sol-gel and laser ablation, PZT-based capacitor structures containing Pt electrodes are considered to be unsuitable for use in memory devices. Using a PT buffer layer, in capacitor structures containing RuO_2 top and bottom electrodes and polycrystalline, highly (101) oriented PZT, reduces or eliminates the nucleation of zirconium-titanium oxide, non-ferroelectric species at the bottom electrode interface during processing. This results in good fatigue resistance up to ~2times10^ {10} switching cycles. DC leakage current density vs. time measurements follow the Curie-von Schweidler law, J(t) ~ t^ {rm -n}. Identification of the high electric field current conduction mechanism is inconclusive. The good fatigue resistance, low dc leakage current, and excellent retention, qualifies the use of these capacitor structures in non-volatile random access (NVRAM) and dynamic random access (DRAM) memory devices. Excellent fatigue resistance (10% loss in remanent polarization up to

  6. In situ air stripping using horizontal wells. Innovative technology summary report

    International Nuclear Information System (INIS)

    1995-04-01

    In-situ air stripping employs horizontal wells to inject or sparge air into the ground water and vacuum extract VOC'S from vadose zone soils. The horizontal wells provide better access to the subsurface contamination, and the air sparging eliminates the need for surface ground water treatment systems and treats the subsurface in-situ. A full-scale demonstration was conducted at the Savannah River Plant in an area polluted with trichloroethylene and tetrachloroethylene. Results are described

  7. Promising ion-sensitive in situ ocular nanoemulsion gels of terbinafine hydrochloride: design, in vitro characterization and in vivo estimation of the ocular irritation and drug pharmacokinetics in the aqueous humor of rabbits.

    Science.gov (United States)

    Tayel, Saadia Ahmed; El-Nabarawi, Mohamed Ahmed; Tadros, Mina Ibrahim; Abd-Elsalam, Wessam Hamdy

    2013-02-25

    Terbinafine hydrochloride (T-HCl) is recommended for the management of fungal keratitis. To maintain effective aqueous humor concentrations, frequent instillation of T-HCl drops is necessary. This work aimed to develop alternative controlled-release in situ ocular drug-loaded nanoemulsion (NE) gels. Twelve pseudoternary-phase diagrams were constructed using oils (isopropyl myristate/Miglyol 812), surfactants (Tween 80/Cremophor EL), a co-surfactant (polyethylene glycol 400) and water. Eight drug-loaded (0.5%, w/v) NEs were evaluated for thermodynamic stability, morphology, droplet size and drug release in simulated tear fluid (pH 7.4). Following dispersion in gellan gum solution (0.2%, w/w), the in situ NE gels were characterized for transparency, rheological behavior, mucoadhesive force, drug release and histopathological assessment of ocular irritation. Drug pharmacokinetics of sterilized F31 [Miglyol 812, Cremophor EL: polyethylene glycol 400 (1:2) and water (5, 55 and 40%, w/w, respectively)] in situ NE gel and oily drug solution were evaluated in rabbit aqueous humor. The NEs were thermodynamically stable and have spherical droplets (<30 nm). The gels were transparent, pseudoplastic, mucoadhesive and showed more retarded zero-order drug release rates. F31 in situ NE gel showed the least ocular irritation potential and significantly (P<0.01) higher C(max), delayed T(max), prolonged mean residence time and increased bioavailability. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Geophysical Characterization of Subsurface Properties Relevant to the Hydrology of the Standard Mine in Elk Basin, Colorado

    Science.gov (United States)

    Minsley, Burke J.; Ball, Lyndsay B.; Burton, Bethany L.; Caine, Jonathan S.; Curry-Elrod, Erika; Manning, Andrew H.

    2010-01-01

    Geophysical data were collected at the Standard Mine in Elk Basin near Crested Butte, Colorado, to help improve the U.S. Environmental Protection Agency's understanding of the hydrogeologic controls in the basin and how they affect surface and groundwater interactions with nearby mine workings. These data are discussed in the context of geologic observations at the site, the details of which are provided in a separate report. This integrated approach uses the geologic observations to help constrain subsurface information obtained from the analysis of surface geophysical measurements, which is a critical step toward using the geophysical data in a meaningful hydrogeologic framework. This approach combines the benefit of many direct but sparse field observations with spatially continuous but indirect measurements of physical properties through the use of geophysics. Surface geophysical data include: (1) electrical resistivity profiles aimed at imaging variability in subsurface structures and fluid content; (2) self-potentials, which are sensitive to mineralized zones at this site and, to a lesser extent, shallow-flow patterns; and (3) magnetic measurements, which provide information on lateral variability in near-surface geologic features, although there are few magnetic minerals in the rocks at this site. Results from the resistivity data indicate a general two-layer model in which an upper highly resistive unit, 3 to 10 meters thick, overlies a less resistive unit that is imaged to depths of 20 to 25 meters. The high resistivity of the upper unit likely is attributed to unsaturated conditions, meaning that the contact between the upper and lower units may correspond to the water table. Significant lateral heterogeneity is observed because of the presence of major features such as the Standard and Elk fault veins, as well as highly heterogeneous joint distributions. Very high resistivities (greater than 10 kiloohmmeters) are observed in locations that may correspond

  9. Subsurface clade of Geobacteraceae that predominates in a diversity of Fe(III)-reducing subsurface environments

    Science.gov (United States)

    Holmes, Dawn E.; O'Neil, Regina A.; Vrionis, Helen A.; N'Guessan, Lucie A.; Ortiz-Bernad, Irene; Larrahondo, Maria J.; Adams, Lorrie A.; Ward, Joy A.; Nicoll , Julie S.; Nevin, Kelly P.; Chavan, Milind A.; Johnson, Jessica P.; Long, Philip E.; Lovely, Derek R.

    2007-01-01

    There are distinct differences in the physiology of Geobacter species available in pure culture. Therefore, to understand the ecology of Geobacter species in subsurface environments, it is important to know which species predominate. Clone libraries were assembled with 16S rRNA genes and transcripts amplified from three subsurface environments in which Geobacter species are known to be important members of the microbial community: (1) a uranium-contaminated aquifer located in Rifle, CO, USA undergoing in situ bioremediation; (2) an acetate-impacted aquifer that serves as an analog for the long-term acetate amendments proposed for in situ uranium bioremediation and (3) a petroleum-contaminated aquifer in which Geobacter species play a role in the oxidation of aromatic hydrocarbons coupled with the reduction of Fe(III). The majority of Geobacteraceae 16S rRNA sequences found in these environments clustered in a phylogenetically coherent subsurface clade, which also contains a number of Geobacter species isolated from subsurface environments. Concatamers constructed with 43 Geobacter genes amplified from these sites also clustered within this subsurface clade. 16S rRNA transcript and gene sequences in the sediments and groundwater at the Rifle site were highly similar, suggesting that sampling groundwater via monitoring wells can recover the most active Geobacter species. These results suggest that further study of Geobacter species in the subsurface clade is necessary to accurately model the behavior of Geobacter species during subsurface bioremediation of metal and organic contaminants.

  10. Use of large-scale multi-configuration EMI measurements to characterize heterogeneous subsurface structures and their impact on crop productivity

    Science.gov (United States)

    Brogi, Cosimo; Huisman, Johan Alexander; Kaufmann, Manuela Sarah; von Hebel, Christian; van der Kruk, Jan; Vereecken, Harry

    2017-04-01

    Soil subsurface structures can play a key role in crop performance, especially during water stress periods. Geophysical techniques like electromagnetic induction EMI have been shown to be able of providing information about dominant shallow subsurface features. However, previous work with EMI has typically not reached beyond the field scale. The objective of this study is to use large-scale multi-configuration EMI to characterize patterns of soil structural organization (layering and texture) and the associated impact on crop vegetation at the km2 scale. For this, we carried out an intensive measurement campaign and collected high spatial resolution multi-configuration EMI data on an agricultural area of approx. 1 km2 (102 ha) near Selhausen (North Rhine-Westphalia, Germany) with a maximum depth of investigation of around 2.5 m. We measured using two EMI instruments simultaneously with a total of nine coil configurations. The instruments were placed inside polyethylene sleds that were pulled by an all-terrain-vehicle along parallel lines with a spacing of 2 to 2.5 m. The driving speed was between 5 and 7 km h-1 and we used a 0.2 Hz sampling frequency to obtain an in-line resolution of approximately 0.3 m. The survey area consists of almost 50 different fields managed in different way. The EMI measurements were collected between April and December 2016 within a few days after the harvest of each field. After data acquisition, EMI data were automatically filtered, temperature corrected, and interpolated onto a common grid. The resulting EMI maps allowed us to identify three main areas with different subsurface heterogeneities. The differences between these areas are likely related to the late quaternary geological history (Pleistocene and Holocene) of the area that resulted in spatially variable soil texture and layering, which has a strong impact on spatio-temporal soil water content variability. The high resolution surveys also allowed us to identify small scale

  11. Characterizing the Potential for Injection-Induced Fault Reactivation Through Subsurface Structural Mapping and Stress Field Analysis, Wellington Field, Sumner County, Kansas

    Science.gov (United States)

    Schwab, Drew R.; Bidgoli, Tandis S.; Taylor, Michael H.

    2017-12-01

    Kansas, like other parts of the central U.S., has experienced a recent increase in seismicity. Correlation of these events with brine disposal operations suggests pore fluid pressure increases are reactivating preexisting faults, but rigorous evaluation at injection sites is lacking. Here we determine the suitability of CO2 injection into the Cambrian-Ordovician Arbuckle Group for long-term storage and into a Mississippian reservoir for enhanced oil recovery in Wellington Field, Sumner County, Kansas. To determine the potential for injection-induced earthquakes, we map subsurface faults and estimate in situ stresses, perform slip and dilation tendency analyses to identify well-oriented faults relative to the estimated stress field, and determine the pressure changes required to induce slip at reservoir and basement depths. Three-dimensional seismic reflection data reveal 12 near-vertical faults, mostly striking NNE, consistent with nodal planes from moment tensor solutions from recent earthquakes in the region. Most of the faults cut both reservoirs and several clearly penetrate the Precambrian basement. Drilling-induced fractures (N = 40) identified from image logs and inversion of earthquake moment tensor solutions (N = 65) indicate that the maximum horizontal stress is approximately EW. Slip tendency analysis indicates that faults striking <020° are stable under current reservoir conditions, whereas faults striking 020°-049° may be prone to reactivation with increasing pore fluid pressure. Although the proposed injection volume (40,000 t) is unlikely to reactive faults at reservoir depths, high-rate injection operations could reach pressures beyond the critical threshold for slip within the basement, as demonstrated by the large number of injection-induced earthquakes west of the study area.

  12. Characterizing the potential for fault reactivation related to CO2 injection through subsurface structural mapping and stress field analysis, Wellington Field, Sumner County, KS

    Science.gov (United States)

    Schwab, D.; Bidgoli, T.; Taylor, M. H.

    2015-12-01

    South-central Kansas has experienced an unprecedented increase in seismic activity since 2013. The spatial and temporal relationship of the seismicity with brine disposal operations has renewed interest in the role of fluids in fault reactivation. This study focuses on determining the suitability of CO2 injection into a Cambro-Ordovician reservoir for long-term storage and a Mississippian reservoir for enhanced oil recovery in Wellington Field, Sumner County, Kansas. Our approach for determining the potential for induced seismicity has been to (1) map subsurface faults and estimate in-situ stresses, (2) perform slip and dilation tendency analysis to identify optimally-oriented faults relative to the estimated stress field, and (3) monitor surface deformation through cGPS data and InSAR imaging. Through the use of 3D seismic reflection data, 60 near vertical, NNE-striking faults have been identified. The faults range in length from 140-410 m and have vertical separations of 3-32m. A number of faults appear to be restricted to shallow intervals, while others clearly cut the top basement reflector. Drilling-induced tensile fractures (N=78) identified from image logs and inversion of earthquake focal mechanism solutions (N=54) are consistent with the maximum horizontal stress (SHmax) oriented ~E-W. Both strike-slip and normal-slip fault plane solutions for earthquakes near the study area suggest that SHmax and Sv may be similar in magnitude. Estimates of stress magnitudes using step rate tests (Shmin = 2666 psi), density logs (Sv = 5308 psi), and calculations from wells with drilling induced tensile fractures (SHmax = 4547-6655 psi) are determined at the gauge depth of 4869ft. Preliminary slip and dilation tendency analysis indicates that faults striking 0°-20° are stable, whereas faults striking 26°-44° may have a moderate risk for reactivation with increasing pore-fluid pressure.

  13. Magnesium bicarbonate as an in situ uranium lixiviant

    International Nuclear Information System (INIS)

    Sibert, J.W.

    1984-01-01

    In the subsurface solution mining of mineral values, especially uranium, in situ, magnesium bicarbonate leaching solution is used instead of sodium, potassium and ammonium carbonate and bicarbonates. The magnesium bicarbonate solution is formed by combining carbon dioxide with magnesium oxide and water. The magnesium bicarbonate lixivant has four major advantages over prior art sodium, potassium and ammonium bicarbonates

  14. In?situ permeability from integrated poroelastic reflection coefficients

    NARCIS (Netherlands)

    Van Dalen, K.N.; Ghose, R.; Drijkoningen, C.G.; Smeulders, D.M.J.

    2010-01-01

    A reliable estimate of the in?situ permeability of a porous layer in the subsurface is extremely difficult to obtain. We have observed that at the field seismic frequency band the poroelastic behavior for different seismic wavetypes can differ in such a way that their combination gives unique

  15. IN-SITU FENTON OXIDATION: A CRITICAL ANALYSIS

    Science.gov (United States)

    In-situ Fenton oxidation (ISFO) is a rapidly emerging technology which involves the injection of hydrogen peroxide (H2O2) and other chemical reagents into the subsurface for the purpose of oxidizing and transforming contaminants. ISFO is being applied at an increasing number of ...

  16. Nanocomposites Derived From a Low-Color Aromatic Polyimide (CP2) and Amine-Functionalized Vapor-Grown Carbon Nanofibers: In Situ Polymerization and Characterization (Preprint)

    National Research Council Canada - National Science Library

    Wang, David H; Arlen, Michael J; Back, Jong-Beom; Vaia, Richard A; Tan, Loon-Seng

    2007-01-01

    ...%) was also used in the in situ polymerization of 6FDA and ABP. These two series of CP2/VGCNF nanocomposite films were cast from the respective polyamic acid/VGCNF DMAC solutions, followed by thermal imidization at curing temperatures up to 250 ?C...

  17. Full-waveform modeling of Zero-Offset Electromagnetic Induction for Accurate Characterization of Subsurface Electrical Properties

    Science.gov (United States)

    Moghadas, D.; André, F.; Vereecken, H.; Lambot, S.

    2009-04-01

    Water is a vital resource for human needs, agriculture, sanitation and industrial supply. The knowledge of soil water dynamics and solute transport is essential in agricultural and environmental engineering as it controls plant growth, hydrological processes, and the contamination of surface and subsurface water. Increased irrigation efficiency has also an important role for water conservation, reducing drainage and mitigating some of the water pollution and soil salinity. Geophysical methods are effective techniques for monitoring the vadose zone. In particular, electromagnetic induction (EMI) can provide in a non-invasive way important information about the soil electrical properties at the field scale, which are mainly correlated to important variables such as soil water content, salinity, and texture. EMI is based on the radiation of a VLF EM wave into the soil. Depending on its electrical conductivity, Foucault currents are generated and produce a secondary EM field which is then recorded by the EMI system. Advanced techniques for EMI data interpretation resort to inverse modeling. Yet, a major gap in current knowledge is the limited accuracy of the forward model used for describing the EMI-subsurface system, usually relying on strongly simplifying assumptions. We present a new low frequency EMI method based on Vector Network Analyzer (VNA) technology and advanced forward modeling using a linear system of complex transfer functions for describing the EMI loop antenna and a three-dimensional solution of Maxwell's equations for wave propagation in multilayered media. VNA permits simple, international standard calibration of the EMI system. We derived a Green's function for the zero-offset, off-ground horizontal loop antenna and also proposed an optimal integration path for faster evaluation of the spatial-domain Green's function from its spectral counterpart. This new integration path shows fewer oscillations compared with the real path and permits to avoid the

  18. In situ remediation of uranium contaminated groundwater

    International Nuclear Information System (INIS)

    Dwyer, B.P.; Marozas, D.C.

    1997-01-01

    In an effort to develop cost-efficient techniques for remediating uranium contaminated groundwater at DOE Uranium Mill Tailing Remedial Action (UMTRA) sites nationwide, Sandia National Laboratories (SNL) deployed a pilot scale research project at an UMTRA site in Durango, CO. Implementation included design, construction, and subsequent monitoring of an in situ passive reactive barrier to remove Uranium from the tailings pile effluent. A reactive subsurface barrier is produced by emplacing a reactant material (in this experiment various forms of metallic iron) in the flow path of the contaminated groundwater. Conceptually the iron media reduces and/or adsorbs uranium in situ to acceptable regulatory levels. In addition, other metals such as Se, Mo, and As have been removed by the reductive/adsorptive process. The primary objective of the experiment was to eliminate the need for surface treatment of tailing pile effluent. Experimental design, and laboratory and field results are discussed with regard to other potential contaminated groundwater treatment applications

  19. Initial field testing definition of subsurface sealing and backfilling tests in unsaturated tuff; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, J.A. [Sandia National Labs., Albuquerque, NM (United States); Case, J.B.; Tyburski, J.R. [I. T. Corp., Albuquerque, NM (United States)

    1993-05-01

    This report contains an initial definition of the field tests proposed for the Yucca Mountain Project repository sealing program. The tests are intended to resolve various performance and emplacement concerns. Examples of concerns to be addressed include achieving selected hydrologic and structural requirements for seals, removing portions of the shaft liner, excavating keyways, emplacing cementitious and earthen seals, reducing the impact of fines on the hydraulic conductivity of fractures, efficient grouting of fracture zones, sealing of exploratory boreholes, and controlling the flow of water by using engineered designs. Ten discrete tests are proposed to address these and other concerns. These tests are divided into two groups: Seal component tests and performance confirmation tests. The seal component tests are thorough small-scale in situ tests, the intermediate-scale borehole seal tests, the fracture grouting tests, the surface backfill tests, and the grouted rock mass tests. The seal system tests are the seepage control tests, the backfill tests, the bulkhead test in the Calico Hills unit, the large-scale shaft seal and shaft fill tests, and the remote borehole sealing tests. The tests are proposed to be performed in six discrete areas, including welded and non-welded environments, primarily located outside the potential repository area. The final selection of sealing tests will depend on the nature of the geologic and hydrologic conditions encountered during the development of the Exploratory Studies Facility and detailed numerical analyses. Tests are likely to be performed both before and after License Application.

  20. Cone Penetrometer for Subsurface Heavy Metals Detection. Semiannual report, November 1, 1996--March 31, 1997

    International Nuclear Information System (INIS)

    Grisanti, Ames A.; Timpe, Ronald C.; Foster, H.J.; Eylands, Kurt E.; Crocker, Charlene R.

    1997-01-01

    Surface and subsurface contamination of soils by heavy metals, including Pb, Cr, Cu, Zn, and Cd, has become an area of concern for many industrial and government organizations (1). Conventional sampling and analysis techniques for soil provide a high degree of sensitivity and selectivity for individual analytes. However, obtaining a representative sampling and analysis from a particular site using conventional techniques is time consuming and costly (2). Additionally, conventional methods are difficult to implement in the field for in situ and/or real-time applications. Therefore, there is a need for characterization and monitoring techniques for heavy metals in soils which allow cost-effective, rapid, in situ measurements. Laser-induced breakdown spectroscopy (LIBS) has been used to successfully measure metals content in a variety of matrices (3-15) including soil (16,17). Under the Department of Energy (DOE) Federal Energy Technology Center (FETC) Industry Program, Science ampersand Engineering Associates (SEA) is developing a subsurface cone penetrometer (CPT) probe for heavy metals detection that employs LIBS (18). The LIES-CPT unit is to be applied to in situ, real-time sampling and analysis of heavy metals in soil. As part of its contract with DOE FETC, SEA is scheduled to field test its LIBS-CPT system in September 1997

  1. Cone Penetrometer for Subsurface Heavy Metals Detection. Semiannual report, November 1, 1996--March 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Grisanti, Ames A.; Timpe, Ronald C.; Foster, H.J.; Eylands, Kurt E.; Crocker, Charlene R.

    1997-12-31

    Surface and subsurface contamination of soils by heavy metals, including Pb, Cr, Cu, Zn, and Cd, has become an area of concern for many industrial and government organizations (1). Conventional sampling and analysis techniques for soil provide a high degree of sensitivity and selectivity for individual analytes. However, obtaining a representative sampling and analysis from a particular site using conventional techniques is time consuming and costly (2). Additionally, conventional methods are difficult to implement in the field for in situ and/or real-time applications. Therefore, there is a need for characterization and monitoring techniques for heavy metals in soils which allow cost-effective, rapid, in situ measurements. Laser-induced breakdown spectroscopy (LIBS) has been used to successfully measure metals content in a variety of matrices (3-15) including soil (16,17). Under the Department of Energy (DOE) Federal Energy Technology Center (FETC) Industry Program, Science {ampersand} Engineering Associates (SEA) is developing a subsurface cone penetrometer (CPT) probe for heavy metals detection that employs LIBS (18). The LIES-CPT unit is to be applied to in situ, real-time sampling and analysis of heavy metals in soil. As part of its contract with DOE FETC, SEA is scheduled to field test its LIBS-CPT system in September 1997.

  2. Geotechnical characterization through in situ and laboratory tests of several geological formations present in the route of the Future Fix Connection between Spain and Morocco through Gibraltar Strait; Caracterizacion geotecnica mediante ensayos in situ y de laboratorio de algunas formaciones geologicas presentes en la traza de la Futura Conexion Fija entre Espana y Marruecos a traves del estrecho de Gibraltar

    Energy Technology Data Exchange (ETDEWEB)

    Perucho Martinez, A.; Diez Torres, J. A.; Muniz Menendez, M.; Cano Linares, H.; Ruiz Fonticiella, J. M.

    2015-07-01

    CEDEX and SECEGSA (Sociedad Española para la Comunicación Fija a través del Estrecho de Gibraltar), Have been collaborating since a few decades ago to study different technical aspects related to the Fix Connection through the Gibraltar Strait, mainly in relation to the geological and geotechnical properties of the different formations present in the route. In order to do so, many studies of geotechnical characterization of materials, in situ and laboratory testing campaigns have been carried out. Furthermore, they have participated in some Expertise Committees carrying out some advice work related to studies performed by other organizations. This paper presents a brief description of the most relevant aspects of the main geological and geotechnical studies performed related to this Project of the Future Fix Connection and obtained through the study of SECEGSAs extensive data base. Moreover, it includes a synopsis of the geotechnical characterization carried out through in situ and laboratory tests on different Miocene and Eocene formations from the Algeciras Unit, present in the route of the future Fix Connection between Spain and gibraltar through the Gibraltar Strait. (Author)

  3. Characterization of active members in C and N cycles in the subsurface environment of the Witwatersrand Basin

    Science.gov (United States)

    Lindsay, M. R.; Lau, C. M.; Tetteh, G.; Snyder, L.; Kieft, T. L.; Lollar, B. S.; Li, L.; Maphanga, S.; van Heerden, E.; Onstott, T. C.

    2012-12-01

    Fracture fluid from various depths and locations in Beatrix gold mine (Gold Fields Ltd.), located in the Welkom region on the 2.9 Ga Witwatersrand Basin of South Africa has been previously studied. Research has shown differential geochemistry data and distinctive community structure which varies from the dominance of different Proteobacterial classes in waters with paleometeoric 18O and 2H signatures including methanotrophs to one dominated by Firmicutes including Candidatus Desulforudis audaxviator-like taxa, which are associated with more saline waters with high concentrations of dissolved H2, hydrocarbons from water-rock reaction and 18O and 2H signatures above the Global Meteoric Water Line. Archaea seem to be a minority and all are euryarchaeota including methanogenic genera. The question is:Which of them are actively driving the subsurface C and N cycles? At shaft 3 on level 26, 1.3 kmbls, fracture water from 42 m behind the tunnel wall located in the Main quartzite formation was collected and analyzed. The temperature, pH, Eh, dissolved O2 and salinity of this hydrocarbon-containing fracture water ranged from 35 to 38°C, 8.2 to 8.8, -30 to -100 mV, 0.3 to 30 μM and 4.2 to 4.3 ppt, respectively. Gas comprised 60% CH4 and 20% N2. The same fracture formerly yielded Halicephalobus mephisto, the first reported subsurface nematode. Microorganisms were captured on filters in two field seasons. Defined by 16S rDNA, 2011 January sample contains β-Proteobacteria (50%), Firmicutes (39%) and α- and γ-Proteobacteria (7%). Of the Firmicutes, 90% were represented by Ca. D. audaxviator. All archaea detected are closestly related to sequences also reported from South African gold mines, with Crenarchaeota accounting for 77% of the clones. Prospective methane-oxidation and production were assessed by amplifying genes encoding for particulate methane monooxygenase alpha subunit (pmoA) and methyl-coenzyme M reductase alpha subunit (mcrA). PmoA genes of Type II

  4. Characterization of the Long-term Subsurface Warming Observed at the Apollo 15 and 17 Sites Utilizing the Newly Restored Heat Flow Experiment Data from 1975 to 1977

    Science.gov (United States)

    Nagihara, S.; Kiefer, W. S.; Taylor, P. T.; Williams, D. R.; Nakamura, Y.; Krell, J. W.

    2017-12-01

    The Apollo Heat Flow Experiment (HFE) was conducted at landing sites 15 and 17 as part of the Apollo Lunar Surface Experiment Package (ALSEP) program. At each site, the astronauts drilled 2 holes, 10-m apart, and installed a probe in each. The probes monitored surface and subsurface temperatures. The Apollo 15 probes operated from July 1971 to January 1977. The Apollo 17 probes operated from December 1972 to September 1977. For both sites, only data from the beginning to December 1974 were archived previously. We have restored major portions of the 1975-1977 HFE data for both sites from two sets of sources recently recovered. One was the original ALSEP archival data tapes, from which raw HFE data were extracted and processed according to the procedure and the calibration data specified by the original investigators. The other was the ALSEP Performance Summary Reports, which included weekly logs of temperature readings from the deepest sensor of each of the probes. The original HFE investigators noted that temperature of the regolith well below the thermal skin depth ( 1 m) rose gradually through December 1974 at both sites. Possible causes of the warming have been debated since. The restored 1975-1977 HFE data allow more detailed characterization of this phenomenon, especially for the Apollo 17 site, for which the duration of data availability has more than doubled. For both sites, the subsurface warming continued till the end of observations. Simultaneously, thermal gradient decreased. Such behavior is consistent with one of the hypotheses proposed by the original investigators; temperature of the lunar surface around the probe increased by 2 to 4 K at the time of deployment. Consequently, the subsurface thermal regime gradually adjusted to the new boundary condition. The Lunar Reconnaissance Orbiter Camera images taken over the Apollo landing sites suggest that astronaut-induced surface disturbance resulted in lower albedo, and that should have raised average

  5. In situ 3D characterization of high temperature fatigue damage mechanisms in a cast aluminum alloy using synchrotron X-ray tomography

    International Nuclear Information System (INIS)

    Dezecot, Sebastien; Buffiere, Jean-Yves; Koster, Alain; Maurel, Vincent; Szmytka, Fabien; Charkaluk, Eric; Dahdah, Nora; El Bartali, Ahmed; Limodin, Nathalie; Witz, Jean-Francois

    2016-01-01

    Fatigue tests were performed at 250 °C on a cast AlSi7Cu3Mg aluminum alloy and monitored with Synchrotron in situ X-ray tomography in order to understand the micro-mechanisms of crack initiation and propagation. The analysis of the 3D images reveals that internal shrinkage pores are responsible for the main crack initiation. Crack propagation is mainly due to the complex and highly interconnected network of hard particles of the eutectic regions.

  6. In-Situ Simulation

    DEFF Research Database (Denmark)

    Bjerregaard, Anders Thais; Slot, Susanne; Paltved, Charlotte

    2015-01-01

    , and organisational characteristic. Therefore, it might fail to fully mimic real clinical team processes. Though research on in situ simulation in healthcare is in its infancy, literature is abundant on patient safety and team training1. Patient safety reporting systems that identify risks to patients can improve......Introduction: In situ simulation offers on-site training to healthcare professionals. It refers to a training strategy where simulation technology is integrated into the clinical encounter. Training in the simulation laboratory does not easily tap into situational resources, e.g. individual, team...... patient safety if coupled with training and organisational support. This study explored the use of critical incidents and adverse events reports for in situ simulation and short-term observations were used to create learning objectives and training scenarios. Method: This study used an interventional case...

  7. Temporal Characterization of Hydrates System Dynamics beneath Seafloor Mounds. Integrating Time-Lapse Electrical Resistivity Methods and In Situ Observations of Multiple Oceanographic Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Lutken, Carol [Univ. of Mississippi, Oxford, MS (United States); Macelloni, Leonardo [Univ. of Mississippi, Oxford, MS (United States); D' Emidio, Marco [Univ. of Mississippi, Oxford, MS (United States); Dunbar, John [Univ. of Mississippi, Oxford, MS (United States); Higley, Paul [Univ. of Mississippi, Oxford, MS (United States)

    2015-01-31

    This study was designed to investigate temporal variations in hydrate system dynamics by measuring changes in volumes of hydrate beneath hydrate-bearing mounds on the continental slope of the northern Gulf of Mexico, the landward extreme of hydrate occurrence in this region. Direct Current Resistivity (DCR) measurements were made contemporaneously with measurements of oceanographic parameters