WorldWideScience

Sample records for in-situ propellant production

  1. Development of a Microchannel In Situ Propellant Production System

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, Kriston P.; Rassat, Scot D.; TeGrotenhuis, Ward E.

    2005-09-01

    An in situ propellant production (ISPP) plant on future Mars robotic missions can produce oxygen (O2) and methane (CH4) that can be used for propellant for the return voyage. By producing propellants from Mars atmospheric carbon dioxide (CO2) and hydrogen (H2) brought from Earth, the initial mass launched in low Earth orbit can be reduced by 20% to 45%, as compared to carrying all of the propellant for a round-trip mission to the Mars surface from Earth. Pacific Northwest National Laboratory used microchannel architecture to develop a Mars-based In Situ Propellant Production (ISPP) system. This three year research and development effort focused on process intensification and system miniaturization of three primary subsystems: a thermochemical compressor, catalytic reactors, and components for separating gas phases from liquid phases. These systems were designed based on a robotic direct return mission scenario, but can be scaled up to human flight missions by simply numbering up the microchannel devices. The thermochemical compression was developed both using absorption and adsorption. A multichannel adsorption system was designed to meet the full-scale CO2 collection requirements using temperature swing adsorption. Each stage is designed to achieve a 10x compression of CO2. A compression ratio to collect Martian atmospheric CO2 at ~0.8 kPa and compress it to at least 100 kPa can be achieved with two adsorption stages in series. A compressor stage incorporates eight thermally coupled adsorption cells at various stages in the adsorption/desorption cycle to maximize the recuperation of thermal energy and provide a nearly continuous flow of CO2 to the downstream reactors. The thermochemically compressed CO2 is then mixed with hydrogen gas and fed to two reactors: a Sabatier Reaction unit and a Reverse Water/Gas Shift unit. The microchannel architecture allows better heat control than is possible in an adiabatic system, resulting in significantly higher conversion. The

  2. A new look at oxygen production on Mars - In situ propellant production (ISPP)

    Science.gov (United States)

    Frisbee, Robert H.; French, James R., Jr.; Lawton, Emil A.

    1987-01-01

    Consideration is given to the technique of producing oxygen on Mars from CO2 in the Martian atmosphere via in situ propellent production (ISPP). Mission implications of ISPP for both manned and unmanned Mars missions are described as well as ways to improve system reliability. Technology options that improve reliability and reduce power requirements include the use of adsorption pumps and advanced zirconia membranes. It is concluded that both manned and unmanned missions will benefit greatly from ISPP, especially in the context of a permanent manned base on Mars.

  3. Low-Cost High-Performance Cryocoolers for In-Situ Propellant Production

    Science.gov (United States)

    Martin, J. L.; Corey, J. A.; Peters, T. A.

    1999-01-01

    A key feature of many In-Situ Resource Utilization (ISRU) schemes is the production of rocket fuel and oxidizer from the Martian atmosphere. Many of the fuels under consideration will require cryogenic cooling for efficient long-term storage. Although significant research has been focused on the techniques for producing the fuels from Martian resources, little effort has been expended on the development of cryocoolers to efficiently liquefy these fuels. This paper describes the design of a pulse tube liquefier optimized for liquefying oxygen produced by an In-Situ Propellant Production (ISPP) plant on Mars.

  4. Microreactor System Design for a NASA In Situ Propellant Production Plant on Mars

    Science.gov (United States)

    TeGrotenhuis, W. E.; Wegeng, R. S.; Vanderwiel, D. P.; Whyatt, G. A.; Viswanathan, V. V.; Schielke, K. P.; Sanders, G. B.; Peters, T. A.; Nicholson, Leonard S. (Technical Monitor)

    2000-01-01

    The NASA In Situ Resource Utilization (ISRU) program is planning near-term missions to Mars that will include chemical processes for converting the carbon dioxide (CO2) and possibly water from the Martian environment to propellants, oxygen, and other useful chemicals. The use of indigenous resources reduces the size and weight of the payloads from Earth significantly, representing enormous cost savings that make human exploration of Mars affordable. Extraterrestrial chemical processing plants will need to be compact, lightweight, highly efficient under reduced gravity, and extraordinarily reliable for long periods. Microchemical and thermal systems represent capability for dramatic reduction in size and weight, while offering high reliability through massive parallelization. In situ propellant production (ISPP), one aspect of the ISRU program, involves collecting and pressurizing atmospheric CO2, conversion reactions, chemical separations, heat exchangers, and cryogenic storage. A preliminary system design of an ISPP plant based on microtechnology has demonstrated significant size, weight, and energy efficiency gains over the current NASA baseline. Energy management is a strong driver for Mars-based processes, not only because energy is a scarce resource, but because heat rejection is problematic; the low pressure environment makes convective heat transfer ineffective. Energy efficiency gains are largely achieved in the microchemical plant through extensive heat recuperation and energy cascading, which has a small size and weight penalty because the added micro heat exchangers are small. This leads to additional size and weight gains by reducing the required area of waste heat radiators. The microtechnology-based ISPP plant is described in detail, including aspects of pinch analysis for optimizing the heat exchanger network. Three options for thermochemical compression Of CO2 from the Martian atmosphere, adsorption, absorption, and cryogenic freezing, are presented

  5. In-Situ tensile testing of propellants in SEM: influence of temperature

    NARCIS (Netherlands)

    Di Benedetto, G.L.; Ramshorst, M.C.J.; Duvalois, W.; Hooijmeijer, P.; Heijden, A. van der

    2017-01-01

    A tensile module system placed within a Scanning Electron Microscope (SEM) was utilized to conduct insitu tensile testing of propellant samples. The tensile module system allows for real-time in-situ SEM analysis of the samples to determine the failure mechanism of the propellant material under

  6. Low cost manned Mars mission based on indigenous propellant production

    Science.gov (United States)

    Bruckner, A. P.; Cinnamon, M.; Hamling, S.; Mahn, K.; Phillips, J.; Westmark, V.

    1993-01-01

    The paper describes a low-cost approach to the manned exploration of Mars (which involves an unmanned mission followed two years later by a manned mission) based on near-term technologies and in situ propellant production. Particular attention is given to the basic mission architecture and its major components, including the orbital analysis, the unmanned segment, the Earth Return Vehicle, the aerobrake design, life sciences, guidance, communications, power, propellant production, the surface rovers, and Mars science. Also discussed are the cost per mission over an assumed 8-yr initiative.

  7. Investigation of the Failure Mechanism of HTPB/AP/Al Propellant by In-situ Uniaxial Tensile Experimentation in SEM

    NARCIS (Netherlands)

    Ramshorst, M.C.J. van; Benedetto, G.L. di; Duvalois, W.; Hooijmeijer, P.A.; Heijden, A.E.D.M. van der

    2016-01-01

    The failure mechanism of a propellant consisting of hydroxyl terminated poly-butadiene filled with ammonium perchlorate and aluminum (HTPB/AP/Al) was determined by performing in-situ uniaxial tensile tests in a scanning electron microscope (SEM). The experimental test plan contained uniaxial tensile

  8. In situ vitrification: Process and products

    International Nuclear Information System (INIS)

    Kindle, C.; Koegler, S.

    1991-06-01

    In situ vitrification (ISV) is an electrically powered thermal treatment process that converts soil into a chemically inert and stable glass and crystalline product. It is similar in concept to bringing a simplified glass manufacturing process to a site and operating it in the ground, using the soil as a glass feed stock. Gaseous emissions are contained, scrubbed, and filtered. When the process is completed, the molten volume cools producing a block of glass and crystalline material that resembles natural obsidian commingled with crystalline phases. The product passes US Environmental Protection Agency (EPA) leach resistance tests, and it can be classified as nonhazardous from a chemical hazard perspective. ISV was developed by the Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE) for application to contaminated soils. It is also being adapted for applications to buried waste, underground tanks, and liquid seepage sites. ISV's then-year development period has included tests on many different site conditions. As of January 1991 there have been 74 tests using PNL's ISV equipment; these tests have ranged from technology development tests using nonhazardous conditions to hazardous and radioactive tests. 2 refs., 6 figs., 7 tabs

  9. Project Minerva: A low cost manned Mars mission based on indigenous propellant production

    Science.gov (United States)

    Beder, David; Bryan, Richard; Bui, Tuyen; Caviezel, Kelly; Cinnamon, Mark; Daggert, Todd; Folkers, Mike; Fornia, Mark; Hanks, Natasha; Hamilton, Steve

    1992-01-01

    Project Minerva is a low-cost manned Mars mission designed to deliver a crew of four to the Martian surface using only two sets of two launches from the Kennedy Space Center. Key concepts which make this mission realizable are the use of near-term technologies and in-situ propellant production, following the scenario originally proposed by R. Zubrin. The first set of launches delivers two unmanned payloads into low Earth orbit (LEO): the first payload consists of an Earth Return Vehicle (ERV), a propellant production plant, and a set of robotic vehicles; the second payload consists of the trans-Mars injection (TMI) upper stage. In LEO, the two payloads are docked and the configuration is injected into a Mars transfer orbit. The landing on Mars is performed with the aid of multiple aerobraking maneuvers. On the Martian surface, the propellant production plant uses a Sabatier/electrolysis type process to combine nine tons of hydrogen with carbon dioxide from the Martian atmosphere to produce over a hundred tons of liquid oxygen and liquid methane, which are later used as the propellants for the rover expeditions and the manned return journey of the ERV. The systems necessary for the flights to and from Mars, as well as those needed for the stay on Mars, are discussed. These systems include the transfer vehicle design, life support, guidance and communications, rovers and telepresence, power generation, and propellant manufacturing. Also included are the orbital mechanics, the scientific goals, and the estimated mission costs.

  10. In-Space Propellant Production Using Water

    Science.gov (United States)

    Notardonato, William; Johnson, Wesley; Swanger, Adam; McQuade, William

    2012-01-01

    A new era of space exploration is being planned. Manned exploration architectures under consideration require the long term storage of cryogenic propellants in space, and larger science mission directorate payloads can be delivered using cryogenic propulsion stages. Several architecture studies have shown that in-space cryogenic propulsion depots offer benefits including lower launch costs, smaller launch vehicles, and enhanced mission flexibility. NASA is currently planning a Cryogenic Propellant Storage and Transfer (CPST) technology demonstration mission that will use existing technology to demonstrate long duration storage, acquisition, mass gauging, and transfer of liquid hydrogen in low Earth orbit. This mission will demonstrate key technologies, but the CPST architecture is not designed for optimal mission operations for a true propellant depot. This paper will consider cryogenic propellant depots that are designed for operability. The operability principles considered are reusability, commonality, designing for the unique environment of space, and use of active control systems, both thermal and fluid. After considering these operability principles, a proposed depot architecture will be presented that uses water launch and on orbit electrolysis and liquefaction. This could serve as the first true space factory. Critical technologies needed for this depot architecture, including on orbit electrolysis, zero-g liquefaction and storage, rendezvous and docking, and propellant transfer, will be discussed and a developmental path forward will be presented. Finally, use of the depot to support the NASA Science Mission Directorate exploration goals will be presented.

  11. In Situ Magnetic Separation for Extracellular Protein Production

    DEFF Research Database (Denmark)

    Kappler, T.; Cerff, Martin; Ottow, Kim Ekelund

    2009-01-01

    A new approach for in situ product removal from bioreactors is presented in which high-gradient magnetic separation is used. This separation process was used for the adsorptive removal of proteases secreted by Bacillus licheniformis. Small, non-porous bacitracin linked magnetic adsorbents were...... was not influenced by the in situ product removal step. Protease production also remained the same after the separation step. Furthermore, degradation of the protease, which followed first order kinetics, was reduced by using the method. Using a theoretical modeling approach, we Could show that protease yield...... in total was enhanced by using in situ magnetic separation. The process described here is a promising technique to improve overall yield in No production processes which are often limited due to weak downstream operations, Potential limitations encountered during a bioprocess can be overcome...

  12. Product evaluation of in situ vitrification engineering, Test 4

    International Nuclear Information System (INIS)

    Loehr, C.A.; Weidner, J.R.; Bates, S.O.

    1991-09-01

    This report is one of several that evaluates the In Situ Vitrification (ISV) Engineering-Scale Test 4 (ES-4). This document describes the chemical and physical composition, microstructure, and leaching characteristics of ES-4 product samples; these data provide insight into the expected performance of a vitrified product in an ISV buried waste application similar to that studied in ES-4

  13. Mixing and In situ product removal in micro-bioreactors

    NARCIS (Netherlands)

    Li, X.

    2009-01-01

    Summary Of the thesis :’ Mixing and In-situ product removal in micro bioreactors’ by Xiaonan Li The work presented in this thesis is a part of a large cluster project, which was formed between DSM, Organon, Applikon and two university groups (TU Delft and University of Twente), under the ACTS and

  14. Models for estimating photosynthesis parameters from in situ production profiles

    Science.gov (United States)

    Kovač, Žarko; Platt, Trevor; Sathyendranath, Shubha; Antunović, Suzana

    2017-12-01

    The rate of carbon assimilation in phytoplankton primary production models is mathematically prescribed with photosynthesis irradiance functions, which convert a light flux (energy) into a material flux (carbon). Information on this rate is contained in photosynthesis parameters: the initial slope and the assimilation number. The exactness of parameter values is crucial for precise calculation of primary production. Here we use a model of the daily production profile based on a suite of photosynthesis irradiance functions and extract photosynthesis parameters from in situ measured daily production profiles at the Hawaii Ocean Time-series station Aloha. For each function we recover parameter values, establish parameter distributions and quantify model skill. We observe that the choice of the photosynthesis irradiance function to estimate the photosynthesis parameters affects the magnitudes of parameter values as recovered from in situ profiles. We also tackle the problem of parameter exchange amongst the models and the effect it has on model performance. All models displayed little or no bias prior to parameter exchange, but significant bias following parameter exchange. The best model performance resulted from using optimal parameter values. Model formulation was extended further by accounting for spectral effects and deriving a spectral analytical solution for the daily production profile. The daily production profile was also formulated with time dependent growing biomass governed by a growth equation. The work on parameter recovery was further extended by exploring how to extract photosynthesis parameters from information on watercolumn production. It was demonstrated how to estimate parameter values based on a linearization of the full analytical solution for normalized watercolumn production and from the solution itself, without linearization. The paper complements previous works on photosynthesis irradiance models by analysing the skill and consistency of

  15. Project Minerva: A low-cost manned Mars mission based on indigenous propellant production

    Science.gov (United States)

    Bruckner, Adam P.; Anderson, Hobie; Caviezel, Kelly; Daggert, Todd; Folkers, Mike; Fornia, Mark; Hamling, Steven; Johnson, Bryan; Kalberer, Martin; Machula, Mike

    1992-01-01

    Project Minerva is a low-cost manned Mars mission designed to deliver a crew of four to the Martian surface, using only two sets of two launches. Key concepts which make this mission realizable are the use of near-term technologies and in-situ propellant production, following the senario originally proposed by R. Zubrin of Martin Marietta. The first set of launches delivers two unmanned payloads into low earth orbit (LEO): one consists of an Earth Return Vehicle (ERV), a propellant production plant, and a set of robotic vehicles, and the second consists of the upper stage/trans-Mars injection (TMI) booster. In LEO, the two payloads are joined and inserted into a Mars transfer orbit. The landing on Mars is performed with the aid of multiple aerobraking maneuvers. On the Martian surface, the propellant production plant uses a Sabatier/electrolysis-type process to combine six tons of hydrogen brought from earth with carbon dioxide from the Martian atmosphere to produce 100 tons of liquid oxygen and methane, which are later used as the propellants for the rover expeditions and the manned return journey of the ERV. Once the in-situ propellant production is completed, approximately two years after the first set of launches, the manned portion of the mission leaves earth. This set of two launches is similar to that of the unmanned vehicles; the two payloads are the Manned Transfer Vehicle (MTV) and the upper stage/TMI booster. The MTV contains the manned rover and the habitat which houses the astronauts enroute to Mars and on the Martian surface. During the 180-day trip to Mars, artificial gravity is created by tethering the MTV to the TMI booster and inducing rotation. Upon arrival the MTV performs aerobraking maneuvers to land near the fully-fueled ERV, which will be used by the crew a year and a half later to return to earth. The mission entails moderate travel times with relatively low-energy conjunction-class trajectories and allows ample time for scientific

  16. Future directions for in-situ product removal (ISPR)

    DEFF Research Database (Denmark)

    Woodley, John; Bisschops, Marc; Straathof, Adrie J J

    2008-01-01

    by inhibitory or toxic products, as wen as unstable products or reactions that are thermodynamically unfavorable. However, several issues for industrial implementation were revealed in the discussion. Most notably implementation will be dependent on (1) research into the appropriate process structure, (2......This paper summarizes the main findings of a round-table discussion held to examine the key bottlenecks in the further application and industrial implementation of in-situ product removal (ISPR) techniques. It is well established that ISPR can yield great benefits for processes limited...

  17. Utilizing Solar Power Technologies for On-Orbit Propellant Production

    Science.gov (United States)

    Fikes, John C.; Howell, Joe T.; Henley, Mark W.

    2006-01-01

    The cost of access to space beyond low Earth orbit may be reduced if vehicles can refuel in orbit. The cost of access to low Earth orbit may also be reduced by launching oxygen and hydrogen propellants in the form of water. To achieve this reduction in costs of access to low Earth orbit and beyond, a propellant depot is considered that electrolyzes water in orbit, then condenses and stores cryogenic oxygen and hydrogen. Power requirements for such a depot require Solar Power Satellite technologies. A propellant depot utilizing solar power technologies is discussed in this paper. The depot will be deployed in a 400 km circular equatorial orbit. It receives tanks of water launched into a lower orbit from Earth, converts the water to liquid hydrogen and oxygen, and stores up to 500 metric tons of cryogenic propellants. This requires a power system that is comparable to a large Solar Power Satellite capable of several 100 kW of energy. Power is supplied by a pair of solar arrays mounted perpendicular to the orbital plane, which rotates once per orbit to track the Sun. The majority of the power is used to run the electrolysis system. Thermal control is maintained by body-mounted radiators; these also provide some shielding against orbital debris. The propellant stored in the depot can support transportation from low Earth orbit to geostationary Earth orbit, the Moon, LaGrange points, Mars, etc. Emphasis is placed on the Water-Ice to Cryogen propellant production facility. A very high power system is required for cracking (electrolyzing) the water and condensing and refrigerating the resulting oxygen and hydrogen. For a propellant production rate of 500 metric tons (1,100,000 pounds) per year, an average electrical power supply of 100 s of kW is required. To make the most efficient use of space solar power, electrolysis is performed only during the portion of the orbit that the Depot is in sunlight, so roughly twice this power level is needed for operations in sunlight

  18. In-Situ Mosaic Production at JPL/MIPL

    Science.gov (United States)

    Deen, Bob

    2012-01-01

    Multimission Image Processing Lab (MIPL) at JPL is responsible for (among other things) the ground-based operational image processing of all the recent in-situ Mars missions: (1) Mars Pathfinder (2) Mars Polar Lander (3) Mars Exploration Rovers (MER) (4) Phoenix (5) Mars Science Lab (MSL) Mosaics are probably the most visible products from MIPL (1) Generated for virtually every rover position at which a panorama is taken (2) Provide better environmental context than single images (3) Valuable to operations and science personnel (4) Arguably the signature products for public engagement

  19. Enhanced Enzymatic Production of Cephalexin at High Substrate Concentration with in situ Product Removal by Complexation

    Directory of Open Access Journals (Sweden)

    Dengchao Li

    2008-01-01

    Full Text Available Cephalexin (CEX was synthesized with 7-amino-3-deacetoxycephalosporanic acid (7-ADCA and D(–-phenylglycine methyl ester (PGME using immobilized penicillin G acylase from Escherichia coli. It was found that substrate concentration and in situ product could remarkably influence the ratio of synthesis to hydrolysis (S/H and the efficiency of CEX synthesis. The optimal ratio of enzyme to substrate was 65 IU/mM 7-ADCA. High substrate concentration improved the 7-ADCA conversion from 61 to 81 % in the process without in situ product removal (ISPR, while in the synthetic process with ISPR, high substrate concentration increased the 7-ADCA conversion from 88 to 98 %. CEX was easily separated from CEX/β-naphthol complex and its purity and overall yield were 99 and 70 %, respectively.

  20. Production and consumption of B group vitamins in situ.

    OpenAIRE

    Kurata, A

    1984-01-01

    Les variations des concentrations en thiamine, biotine et vitamine B12 dans l'eau des bouteilles immergées in situ pendant 6 heures dans le bassin nord du lac Biwa ont été suivies sur 30 heures. Les concentrations en vitamines varient de façon comparable durant les 6 heures d'immersion. Généralement les concentrations en thiamine, biotine et vitamine B12 présentent des taux élevés le matin et bas le soir, ceci dans les bouteilles immergées comme dans l'eau de mer environnante. Les concentrati...

  1. Demonstration of Critical Systems for Propellant Production on Mars for Science and Exploration Missions

    Science.gov (United States)

    Linne, Diane L.; Gaier, James R.; Zoeckler, Joseph G.; Kolacz, John S.; Wegeng, Robert S.; Rassat, Scot D.; Clark, D. Larry

    2013-01-01

    A Mars hopper has been proposed as a Mars mobility concept that will also demonstrate and advance in-situ resource utilization. The components needed in a Mars propellant production plant have been developed to various levels of technology maturity, but there is little experience with the systems in a Mars environment. Two systems for the acquisition and compression of the thin carbon dioxide atmosphere were designed, assembled, and tested in a Mars environment chamber. A microchannel sorption pump system was able to raise the pressure from 7 Torr to 450 Torr or from 12 Torr to over 700 Torr in two stages. This data now provides information needed to make additional improvements in the sorption pump technology to increase performance, although a system-level analysis might prove that some amount of pre- or post-compression may be a preferred solution. A mini cryofreezer system was also evaluated as an alternative method for carbon dioxide acquisition and compression. Finally, an electrolysis system was tested and successfully demonstrated start-up operation and thermal stability of all components during long-term operation in the chamber.

  2. Lactic acid Production with in situ Extraction in Membrane Bioreactor

    Directory of Open Access Journals (Sweden)

    Hamidreza Ghafouri Taleghani

    2017-01-01

    Full Text Available Background and Objective: Lactic acid is widely used in the food, chemical and pharmaceutical industries. The major problems associated with lactic acid production are substrate and end-product inhibition, and by-product formation. Membrane technologyrepresents one of the most effective processes for lactic acid production. The aim of this work is to increase cell density and lactic acid productivity due to reduced inhibition effect of substrate and product in membrane bioreactor.Material and Methods: In this work, lactic acid was produced from lactose in membrane bioreactor. A laboratory scale membrane bioreactor was designed and fabricated. Five types of commercial membranes were tested at the same operating conditions (transmembrane pressure: 500 KPa and temperature: 25°C. The effects of initial lactose concentration and dilution rate on biomass growth, lactic acid production and substrate utilization were evaluated.Results and Conclusion: The high lactose retention of 79% v v-1 and low lactic acid retention of 22% v v-1 were obtained with NF1 membrane; therefore, this membrane was selected for membrane bioreactor. The maximal productivity of 17.1 g l-1 h-1 was obtainedwith the lactic acid concentration of 71.5 g l-1 at the dilution rate of 0.24 h−1. The maximum concentration of lactic acid was obtained at the dilution rate of 0.04 h−1. The inhibiting effect of lactic acid was not observed at high initial lactose concentration. The critical lactose concentration at which the cell growth severely hampered was 150 g l-1. This study proved that membrane bioreactor had great advantages such as elimination of substrate and product inhibition, high concentration of process substrate, high cell density,and high lactic acid productivity.Conflict of interest: There is no conflict of interest.

  3. In situ ruminal crude protein degradability of by-products from cereals, oilseeds and animal origin

    NARCIS (Netherlands)

    Habib, G.; Khan, N.A.; Ali, M.; Bezabih, M.

    2013-01-01

    The aim of this study was to establish a database on in situ ruminal crude protein (CP) degradability characteristics of by-products from cereal grains, oilseeds and animal origin commonly fed to ruminants in Pakistan and South Asian Countries. The oilseed by-products were soybean meal, sunflower

  4. Relationship between in situ degradation kinetics and in vitro gas production fermentation using different mathematical models

    NARCIS (Netherlands)

    Rodrigues, M.A.M.; Cone, J.W.; Ferreira, L.M.M.; Blok, M.C.; Guedes, C.

    2009-01-01

    In vitro and in situ studies were conducted to evaluate the influence of different mathematical models, used to fit gas production profiles of 15 feedstuffs, on estimates of nylon bag organic matter (OM) degradation kinetics. The gas production data were fitted to Exponential, Logistic, Gompertz and

  5. Estimating grass and grass silage degradation characteristics by in situ and in vitro gas production methods

    Directory of Open Access Journals (Sweden)

    Danijel Karolyi

    2010-01-01

    Full Text Available Fermentation characteristics of grass and grass silage at different maturities were studied using in situ and in vitro gas production methods. In situ data determined difference between grass and silage. Degradable fraction decreased as grass matured while the undegradable fraction increased. Rate of degradation (kd was slower for silage than fresh grass. Gas production method (GP data showed that fermentation of degradable fraction was different between stage of maturity in both grass and silage. Other data did not show any difference with the exception for the rate of GP of soluble and undegradable fraction. The in situ degradation characteristics were estimated from GP characteristics. The degradable and undegradable fractions could be estimated by multiple relationships. Using the three-phases model for gas production kd and fermentable organic matter could be estimated from the same parameters. The only in situ parameter that could not be estimated with GP parameters was the soluble fraction. The GP method and the three phases model provided to be an alternative to the in situ method for animal feed evaluations.

  6. Probing the phase composition of silicon films in situ by etch product detection

    International Nuclear Information System (INIS)

    Dingemans, G.; Donker, M. N. van den; Gordijn, A.; Kessels, W. M. M.; Sanden, M. C. M. van de

    2007-01-01

    Exploiting the higher etch probability for amorphous silicon relative to crystalline silicon, the transiently evolving phase composition of silicon films in the microcrystalline growth regime was probed in situ by monitoring the etch product (SiH 4 ) gas density during a short H 2 plasma treatment step. Etch product detection took place by the easy-to-implement techniques of optical emission spectroscopy and infrared absorption spectroscopy. The phase composition of the films was probed as a function of the SiH 4 concentration during deposition and as a function of the film thickness. The in situ results were corroborated by Raman spectroscopy and solar cell analysis

  7. 21 CFR 700.14 - Use of vinyl chloride as an ingredient, including propellant of cosmetic aerosol products.

    Science.gov (United States)

    2010-04-01

    ... propellant of cosmetic aerosol products. 700.14 Section 700.14 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) COSMETICS GENERAL Requirements for Specific Cosmetic Products § 700.14 Use of vinyl chloride as an ingredient, including propellant of cosmetic aerosol products...

  8. Neutron Production from In-situ Heavy Ice Coated Targets at Vulcan

    Science.gov (United States)

    Morrison, John; Krygier, A. G.; Kar, S.; Ahmed, H.; Alejo, A.; Clarke, R.; Fuchs, J.; Green, A.; Jung, D.; Kleinschmidt, A.; Najmudin, Z.; Nakamura, H.; Norreys, P.; Notley, M.; Oliver, M.; Roth, M.; Vassura, L.; Zepf, M.; Borghesi, M.; Freeman, R. R.

    2015-05-01

    Laser based neutron production experiments have been performed utilizing ultra-high intensity laser accelerated ions impinging upon a secondary target. The neutron yield from such experiments may be improved if the accelerated ions were primarily deuterons taking advantage of the d-d cross section. Recent experiments have demonstrated that selective deuteron acceleration from in-situ heavy ice coating of targets can produce ion spectra where deuterons comprise > 99 % of the measured ions. Results will be presented from integrated neutron production experiments from heavy ice targets coated in-situ recently performed on the Vulcan laser at Rutherford Appleton Laboratory. We are grateful for the Staff at RAL and acknowledge funding from the US DoE. AFOSR, European Social Fund, and the Czech Republic.

  9. Biosurfactants during in situ bioremediation: factors that influence the production and challenges in evalution.

    Science.gov (United States)

    Decesaro, Andressa; Machado, Thaís Strieder; Cappellaro, Ângela Carolina; Reinehr, Christian Oliveira; Thomé, Antônio; Colla, Luciane Maria

    2017-09-01

    Research on the influence of biosurfactants on the efficiency of in situ bioremediation of contaminated soil is continuously growing. Despite the constant progress in understanding the mechanisms involved in the effects of biosurfactants, there are still many factors that are not sufficiently elucidated. There is a lack of research on autochthonous or exogenous microbial metabolism when biostimulation or bioaugmentation is carried out to produce biosurfactants at contaminated sites. In addition, studies on the application of techniques that measure the biosurfactants produced in situ are needed. This is important because, although the positive influence of biosurfactants is often reported, there are also studies where no effect or negative effects have been observed. This review aimed to examine some studies on factors that can improve the production of biosurfactants in soils during in situ bioremediation. Moreover, this work reviews the methodologies that can be used for measuring the production of these biocomposts. We reviewed studies on the potential of biosurfactants to improve the bioremediation of hydrocarbons, as well as the limitations of methods for the production of these biomolecules by microorganisms in soil.

  10. Efficient solvothermal wet in situ transesterification of Nannochloropsis gaditana for biodiesel production.

    Science.gov (United States)

    Kim, Bora; Chang, Yong Keun; Lee, Jae W

    2017-05-01

    In situ transesterification of wet microalgae is a promising, simplified alternative biodiesel production process that replaces multiple operations of cell drying, extraction, and transesterification reaction. This study addresses enhanced biodiesel production from Nannochloropsis gaditana at elevated temperatures. Compared with the previously reported in situ transesterification process of conducting the reaction at a temperature ranging from 95 to 125 °C, the present work employs higher temperatures of at least 150 °C. This relatively harsh condition allows much less acid catalyst with or without co-solvent to be used during this single extraction-conversion process. Without any co-solvent, 0.58% (v/v) of H 2 SO 4 in the reaction medium can achieve 90 wt% of the total lipid conversion to biodiesel at 170 °C when the moisture content of wet algal paste is 80 wt%. Here, the effects of temperature, acid catalyst, and co-solvent on the FAEE yield and specification were scrutinized, and the reaction kinetic was investigated to understand the solvothermal in situ transesterification reaction at the high temperature. Having a biphasic system (water/chloroform) during the reaction also helped to meet biodiesel quality standard EN 14214, as Na + , K + , Ca 2+ , Mg 2+ cations and phosphorus were detected only below 5 ppm. With highlights on the economic feasibility, wet in situ transesterification at the high temperature can contribute to sustainable production of biodiesel from microalgae by reducing the chemical input and relieve the burden of extensive post purification process, therefore a step towards green process.

  11. Hyperspectral and in situ data fusion for the steering of plant production systems

    Science.gov (United States)

    Verstraeten, W. W.; Coppin, P.

    2009-04-01

    Plant production systems are governed by biotic and a-biotic factors and by management practices. Some of the relevant parameters have already been identified and incorporated as inputs into existing models for production assessment, early-warning, and process management. These parameters originate nowadays primarily from in-situ measurements and observations. Non-invasive remotely sensed data, the diagnostic tools of excellence where it concerns the interaction of solar energy with biomass, have seldom been included and if so, mostly to support yield assessment and harvest monitoring only. The availability of new-generation hyperspectral/hypertemporal signatures will greatly facilitate their integration into full-fledged plant production model either via direct use, forcing, assimilation or re-initialization strategies. The main objective of IS-HS (Integration of In Situ data and HyperSpectral remote sensing for plant production modeling) is to set up a multidisciplinary research platform to deepen our system understanding and to develop production-oriented schemes to steer capital-intensive vegetation scenarios. Real-time steering in a 10-15 year timeframe is envisaged, where current system state is monitored, and steered towards an ideal state in terms of production quantity and quality. IS-HS focuses on hyperspectral sensor design, time series analysis tools for remote sensing data of vegetation systems, on the establishment of two stream communication between satellite and ground sensors, on the development of citrus plant production systems, and on the design of in-situ data sensor networks. The general framework of this system approach will be presented. In time, this integration should allow to cross the bridge from post-harvest assessment to near real-time potential and actual yield monitoring in terms of crop.

  12. A review of the literature on soot production during in-situ burning of oil

    International Nuclear Information System (INIS)

    Fraser, J.; Buist, I.

    1997-01-01

    Available literature on soot production during in-situ burning of oil was reviewed to determine the range of smoke yields generated by in-situ burning of petroleum oils in water, and to determine the effects of the size of fire and the type of oil burned. For crude oil, data sets statistical analysis showed that, with a fairly high degree of confidence, smoke yield increases with fire diameter. Based on a limited number of available data sets for identifiable oil types, it appears that most oils (Arabian crude the only exception) show roughly the same correlation of smoke yield with fire diameter. Pool fires from aromatic hydrocarbons such as toluene appear to produce more soot than similar fires with crude oil. Fires of lower molecular weight non-aromatics produce an order of magnitude less soot than crude oil fires. Predictive equations with correlation coefficients are provided for specific crude oils. 50 refs., 5 tabs., 13 figs

  13. Conceptual study of on orbit production of cryogenic propellants by water electrolysis

    Science.gov (United States)

    Moran, Matthew E.

    1991-01-01

    The feasibility is assessed of producing cryogenic propellants on orbit by water electrolysis in support of NASA's proposed Space Exploration Initiative (SEI) missions. Using this method, water launched into low earth orbit (LEO) would be split into gaseous hydrogen and oxygen by electrolysis in an orbiting propellant processor spacecraft. The resulting gases would then be liquified and stored in cryogenic tanks. Supplying liquid hydrogen and oxygen fuel to space vehicles by this technique has some possible advantages over conventional methods. The potential benefits are derived from the characteristics of water as a payload, and include reduced ground handling and launch risk, denser packaging, and reduced tankage and piping requirements. A conceptual design of a water processor was generated based on related previous studies, and contemporary or near term technologies required. Extensive development efforts would be required to adapt the various subsystems needed for the propellant processor for use in space. Based on the cumulative results, propellant production by on orbit water electrolysis for support of SEI missions is not recommended.

  14. In situ biomolecule production by bacteria; a synthetic biology approach to medicine.

    Science.gov (United States)

    Flores Bueso, Yensi; Lehouritis, Panos; Tangney, Mark

    2018-04-10

    The ability to modify existing microbiota at different sites presents enormous potential for local or indirect management of various diseases. Because bacteria can be maintained for lengthy periods in various regions of the body, they represent a platform with enormous potential for targeted production of biomolecules, which offer tremendous promise for therapeutic and diagnostic approaches for various diseases. While biological medicines are currently limited in the clinic to patient administration of exogenously produced biomolecules from engineered cells, in situ production of biomolecules presents enormous scope in medicine and beyond. The slow pace and high expense of traditional research approaches has particularly hampered the development of biological medicines. It may be argued that bacterial-based medicine has been "waiting" for the advent of enabling technology. We propose that this technology is Synthetic Biology, and that the wait is over. Synthetic Biology facilitates a systematic approach to programming living entities and/or their products, using an approach to Research and Development (R&D) that facilitates rapid, cheap, accessible, yet sophisticated product development. Full engagement with the Synthetic Biology approach to R&D can unlock the potential for bacteria as medicines for cancer and other indications. In this review, we describe how by employing Synthetic Biology, designer bugs can be used as drugs, drug-production factories or diagnostic devices, using oncology as an exemplar for the concept of in situ biomolecule production in medicine. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Robust Exploration and Commercial Missions to the Moon Using LANTR Propulsion and In-Situ Propellants Derived From Lunar Polar Ice (LPI) Deposits

    Science.gov (United States)

    Borowski, Stanley K.; Ryan, Stephen W.; Burke, Laura M.; McCurdy, David R.; Fittje, James E.; Joyner, Claude R.

    2017-01-01

    Since the 1960s, scientists have conjectured that water icecould survive in the cold, permanently shadowed craters located at the Moons poles Clementine (1994), Lunar Prospector (1998),Chandrayaan-1 (2008), and Lunar Reconnaissance Orbiter (LRO) and Lunar CRater Observation and Sensing Satellite(LCROSS) (2009) lunar probes have provided data indicating the existence of large quantities of water ice at the lunar poles The Mini-SAR onboard Chandrayaan-1discovered more than 40 permanently shadowed craters near the lunar north pole that are thought to contain 600 million metric tons of water ice. Using neutron spectrometer data, the Lunar Prospector science team estimated a water ice content (1.5 +-0.8 wt in the regolith) found in the Moons polar cold trap sand estimated the total amount of water at both poles at 2 billion metric tons Using Mini-RF and spectrometry data, the LRO LCROSS science team estimated the water ice content in the regolith in the south polar region to be 5.6 +-2.9 wt. On the basis of the above scientific data, it appears that the water ice content can vary from 1-10 wt and the total quantity of LPI at both poles can range from 600 million to 2 billion metric tons NTP offers significant benefits for lunar missions and can take advantage of the leverage provided from using LDPs when they become available by transitioning to LANTR propulsion. LANTR provides a variablethrust and Isp capability, shortens burn times and extends engine life, and allows bipropellant operation The combination of LANTR and LDP has performance capability equivalent to that of a hypothetical gaseousfuel core NTR (effective Isp 1575 s) and can lead to a robust LTS with unique mission capabilities that include short transit time crewed cargo transports and routine commuter flights to the Moon The biggest challenge to making this vision a reality will be the production of increasing amounts of LDP andthe development of propellant depots in LEO, LLO and LPO. An industry

  16. Conventional and in situ transesterification of sunflower seed oil for the production of biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Georgogianni, K.G.; Kontominas, M.G.; Pomonis, P.J. [Section of Industrial and Food Chemistry, Department of Chemistry, University of Ioannina 45110-Ioannina (Greece); Avlonitis, D. [Department of Petroleum Technology, TEI of Chalkida, 34600-Kavala (Greece); Gergis, V. [Department of Food Technology, TEI of Athens, 12210-Egaleo (Greece)

    2008-05-15

    In the present work the alkaline transesterification of sunflower seed oil with methanol and ethanol, for the production of biodiesel fuel was studied. Both conventional and in situ transesterification were investigated using low frequency ultrasonication (24 kHz) and mechanical stirring (600 rpm). Use of ultrasonication in conventional transesterification with methanol gave high yields of methyl esters (95%) after a short reaction time (20 min) similar to those using mechanical stirring. Use of ultrasonication in conventional transesterification with ethanol gave similar yields to those using mechanical stirring but significantly lower than respective yields using methanol. In the in situ transesterification the use of ultrasonication and mechanical stirring led to similar high yields (95%) of methyl esters after approximately 20 min of reaction time. In the presence of ethanol use of ultrasonication led to high ester yields (98%) in only 40 min of reaction time while use of mechanical stirring gave lower yields (88%) even after 4 h of reaction time. In situ transesterification gave similar ester yields to those obtained by conventional transesterification being an alternative, efficient and economical process. In all cases a concentration of 2.0% NaOH gave higher ester yields. Reaction rate constants were calculated, using first order reaction kinetics, to be equal to 3.1 x 10{sup -} {sup 3} s{sup -} {sup 1} for conventional transesterification using methanol and 2.0% NaOH, and 9.5 x 10{sup -} {sup 4} s{sup -} {sup 1} using ethanol. (author)

  17. In Situ Vitrification Engineering-Scale Test ES-INEL-4 Product Characterization Test Plan

    International Nuclear Information System (INIS)

    Weidner, J.R.; Stoots, P.R.

    1990-06-01

    In 1987, the Buried Waste Program (BWP) was established within EG ampersand G Idaho, Inc., the prime contractor at INEL. Following the Environmental Restoration guidelines of the Buried Waste Program, the In Situ Vitrification Program is participating in a Remedial Investigation/Feasibility Study (RI/FS) for permanent disposal of INEL waste, in compliance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). This study was requested and is being funded by the Office of Technology Development of the Idaho Operations Office of DOE (DOE-ID). As part of the RI/FS, an in situ vitrification (ISV) scoping study on the treatability of mixed low-level and mixed transuranic-contaminated waste is being performed to determine the applicability of ISV to remediation of waste at SDA. In examination of the ISV process for applicability to SDA waste, this In Situ Vitrification Engineering-Scale Test ES-INEL-4 Product Characterization Test Plan identifies the following: sampling and analysis strategy; sampling procedures; methods to conduct analyses; equipment; and procedures to ensure data quality. 8 refs., 2 tabs

  18. Ultrasound-enhanced rapid in situ transesterification of marine macroalgae Enteromorpha compressa for biodiesel production.

    Science.gov (United States)

    Suganya, Tamilarasan; Kasirajan, Ramachandran; Renganathan, Sahadevan

    2014-03-01

    In situ transesterification of Enteromorpha compressa algal biomass was carried out for the production of biodiesel. The maximum methyl esters (ME) yield of 98.89% was obtained using ultrasonic irradiation. Tetra hydro furan (THF) and acid catalyst (H2SO4) was found to be an appropriate co-solvent and catalyst for high free fatty acids (FFA) content E. compressa biomass to increase the efficiency of the reactive in situ process. The optimization study was conducted to obtain the maximum yield and it was determined as 30vol% of THF as a co-solvent, 10wt% of H2SO4, 5.5:1 ratio of methanol to algal biomass and 600rpm of mixing intensity at 65°C for 90min of ultrasonic irradiation time. The produced biodiesel was characterized by (1)H nuclear magnetic resonance spectroscopy ((1)H NMR) analysis. Kinetic studies revealed that the reaction followed the first-order reaction mechanism. Rapid in situ transesterification was found to be suitable technique to produce biodiesel from marine macroalgae feedstock. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Advances in in-situ product recovery (ISPR) in whole cell biotechnology during the last decade.

    Science.gov (United States)

    Van Hecke, Wouter; Kaur, Guneet; De Wever, Heleen

    2014-11-15

    The review presents the state-of-the-art in the applications of in-situ product recovery (ISPR) in whole-cell biotechnology over the last 10years. It summarizes various ISPR-integrated fermentation processes for the production of a wide spectrum of bio-based products. A critical assessment of the performance of various ISPR concepts with respect to the degree of product enrichment, improved productivity, reduced process flows and increased yields is provided. Requirements to allow a successful industrial implementation of ISPR are also discussed. Finally, supporting technologies such as online monitoring, mathematical modeling and use of recombinant microorganisms with ISPR are presented. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. In situ thermal polymerisation of natural oils as novel sustainable approach in nanographite particle production

    Science.gov (United States)

    Datsyuk, Vitaliy; Trotsenko, Svitlana; Reich, Stephanie

    2018-01-01

    A sustainable approach to graphite exfoliation via in situ thermal polymerization of fish oil results in the production of nanographite particles. The material was characterized by elemental analysis, transmission electron microscopy, and Raman spectroscopy. The thermal polymerization of fish oil was controlled by monitoring the viscosity and measuring the iodine number. The number of structural defects on the graphitic surface remained constant during the synthesis. The protocol leads to a hydrophobization of the nanographite surface. Immobilized polyoil islands create sterical hindrance and stabilize the nanographite particles in engineering polymers.

  1. Synthesis of integrated primary production in the Arctic Ocean: II. In situ and remotely sensed estimates

    Science.gov (United States)

    Hill, Victoria J.; Matrai, Patricia A.; Olson, Elise; Suttles, S.; Steele, Mike; Codispoti, L. A.; Zimmerman, Richard C.

    2013-03-01

    Recent warming of surface waters, accompanied by reduced ice thickness and extent may have significant consequences for climate-driven changes of primary production (PP) in the Arctic Ocean (AO). However, it has been difficult to obtain a robust benchmark estimate of pan-Arctic PP necessary for evaluating change. This paper provides an estimate of pan-Arctic PP prior to significant warming from a synthetic analysis of the ARCSS-PP database of in situ measurements collected from 1954 to 2007 and estimates derived from satellite-based observations from 1998 to 2007. Vertical profiles of in situ chlorophyll a (Chl a) and PP revealed persistent subsurface peaks in biomass and PP throughout the AO during most of the summer period. This was contradictory with the commonly assumed exponential decrease in PP with depth on which prior satellite-derived estimates were based. As remotely sensed Chl a was not a good predictor of integrated water column Chl a, accurate satellite-based modeling of vertically integrated primary production (IPPsat), requires knowledge of the subsurface distribution of phytoplankton, coincident with the remotely sensed ocean color measurements. We developed an alternative approach to modeling PP from satellite observations by incorporating climatological information on the depths of the euphotic zone and the mixed layer that control the distribution of phytoplankton that significantly improved the fidelity of satellite derived PP to in situ observations. The annual IPP of the Arctic Ocean combining both in situ and satellite based estimates was calculated here to be a minimum of 466 ± 94 Tg C yr-1 and a maximum of 993 ± 94 Tg C yr-1, when corrected for subsurface production. Inflow shelf seas account for 75% of annual IPP, while the central basin and Beaufort northern sea were the regions with the lowest annual integrated productivity, due to persistently stratified, oligotrophic and ice-covered conditions. Although the expansion of summertime

  2. Dissolution Coupled Biodegradation of Pce by Inducing In-Situ Biosurfactant Production Under Anaerobic Conditions

    Science.gov (United States)

    Dominic, J.; Nambi, I. M.

    2013-12-01

    Biosurfactants have proven to enhance the bioavailability and thereby elevate the rate of degradation of Light Non Aqueous Phase Liquids (LNAPLs) such as crude oil and petroleum derivatives. In spite of their superior characteristics, use of these biomolecules for remediation of Dense Non Aqueous Phase Liquids (DNAPLs) such as chlorinated solvents is still not clearly understood. In this present study, we have investigated the fate of tetrachloroethylene (PCE) by inducing in-situ biosurfactants production, a sustainable option which hypothesizes increase in bioavailability of LNAPLs. In order to understand the effect of biosurfactants on dissolution and biodegradation under the inducement of in-situ biosurfactant production, batch experiments were conducted in pure liquid media. The individual influence of each process such as biosurfactant production, dissolution of PCE and biodegradation of PCE were studied separately for getting insights on the synergistic effect of each process on the fate of PCE. Finally the dissolution coupled biodegradation of non aqueous phase PCE was studied in conditions where biosurfactant production was induced by nitrate limitation. The effect of biosurfactants was differentiated by repeating the same experiments were the biosurfactant production was retarded. The overall effect of in-situ biosurfactant production process was evaluated by use of a mathematical model. The process of microbial growth, biosurfactant production, dissolution and biodegradation of PCE were translated as ordinary differential equations. The modelling exercise was mainly performed to get insight on the combined effects of various processes that determine the concentration of PCE in its aqueous and non-aqueous phases. Model simulated profiles of PCE with the kinetic coefficients evaluated earlier from individual experiments were compared with parameters fitted for observations in experiments with dissolution coupled biodegradation process using optimization

  3. Preliminary Evaluation of the SMAP Radiometer Soil Moisture Product over China Using In Situ Data

    Directory of Open Access Journals (Sweden)

    Yayong Sun

    2017-03-01

    Full Text Available The Soil Moisture Active Passive (SMAP satellite makes coincident global measurements of soil moisture using an L-band radar instrument and an L-band radiometer. It is crucial to evaluate the errors in the newest L-band SMAP satellite-derived soil moisture products, before they are routinely used in scientific research and applications. This study represents the first evaluation of the SMAP radiometer soil moisture product over China. In this paper, a preliminary evaluation was performed using sparse in situ measurements from 655 China Meteorological Administration (CMA monitoring stations between 1 April 2015 and 31 August 2016. The SMAP radiometer-derived soil moisture product was evaluated against two schemes of original soil moisture and the soil moisture anomaly in different geographical zones and land cover types. Four performance metrics, i.e., bias, root mean square error (RMSE, unbiased root mean square error (ubRMSE, and the correlation coefficient (R, were used in the accuracy evaluation. The results indicated that the SMAP radiometer-derived soil moisture product agreed relatively well with the in situ measurements, with ubRMSE values of 0.058 cm3·cm−3 and 0.039 cm3·cm−3 based on original data and anomaly data, respectively. The values of the SMAP radiometer-based soil moisture product were overestimated in wet areas, especially in the Southwest China, South China, Southeast China, East China, and Central China zones. The accuracies over croplands and in Northeast China were the worst. Soil moisture, surface roughness, and vegetation are crucial factors contributing to the error in the soil moisture product. Moreover, radio frequency interference contributes to the overestimation over the northern portion of the East China zone. This study provides guidelines for the application of the SMAP-derived soil moisture product in China and acts as a reference for improving the retrieval algorithm.

  4. In-Situ Ion Source Cleaning: Review of Chemical Mechanisms and Evaluation Data at Production Fabs

    International Nuclear Information System (INIS)

    Kaim, R.; Bishop, S.; Byl, O.; Eldridge, D.; Marganski, P.; Mayer, J.; Sweeney, J.; Yedave, S.; Fuchs, D.; Spreitzer, S.; Vogel, J.; Dunn, J.; Lundquist, P.; Rolland, J.; Romig, T.; Newman, D.; Mitchell, M.; Ditzler, K.

    2008-01-01

    Since the concept of chemical in-situ ion implanter cleaning was introduced at IIT2006 [1], evaluations of the XeF 2 cleaning technology have taken place or are ongoing at more than 40 production fabs worldwide. Testing has been focused on assessing effects of cleaning in the source arc chamber and extraction regions. In this paper we describe use of the cleaning technology in a production environment and summarize evaluation data showing advantages of the technology for improving ion source life, reducing glitching, improving beam auto-tuning and avoiding species cross-contamination. More details of the evaluations are given in several separate papers submitted to this Conference. We have supplemented the fab production data with laboratory experiments designed to investigate the reactivity of XeF 2 and fundamental aspects of the source deposition and cleaning processes. These experiments are summarized here, and more details can be found in separate papers submitted to this Conference

  5. Comprehensive validation scheme for in situ fiber optics dissolution method for pharmaceutical drug product testing.

    Science.gov (United States)

    Mirza, Tahseen; Liu, Qian Julie; Vivilecchia, Richard; Joshi, Yatindra

    2009-03-01

    There has been a growing interest during the past decade in the use of fiber optics dissolution testing. Use of this novel technology is mainly confined to research and development laboratories. It has not yet emerged as a tool for end product release testing despite its ability to generate in situ results and efficiency improvement. One potential reason may be the lack of clear validation guidelines that can be applied for the assessment of suitability of fiber optics. This article describes a comprehensive validation scheme and development of a reliable, robust, reproducible and cost-effective dissolution test using fiber optics technology. The test was successfully applied for characterizing the dissolution behavior of a 40-mg immediate-release tablet dosage form that is under development at Novartis Pharmaceuticals, East Hanover, New Jersey. The method was validated for the following parameters: linearity, precision, accuracy, specificity, and robustness. In particular, robustness was evaluated in terms of probe sampling depth and probe orientation. The in situ fiber optic method was found to be comparable to the existing manual sampling dissolution method. Finally, the fiber optic dissolution test was successfully performed by different operators on different days, to further enhance the validity of the method. The results demonstrate that the fiber optics technology can be successfully validated for end product dissolution/release testing. (c) 2008 Wiley-Liss, Inc. and the American Pharmacists Association

  6. In-situ observation of the energy dependence of defect production in Cu and Ni

    International Nuclear Information System (INIS)

    King, W.E.; Merkel, K.L.; Baily, A.C.; Haga, K.; Meshii, M.

    1983-01-01

    The damage function, the average number of Frenkel pairs created as a function of lattice atom recoil energy, was investigated in Cu and Ni using in-situ electrical-resistivity damage-rate measurements in the high-voltage electron micrscope (HVEM) at T < 10K. Electron and proton irradiations were performed in-situ on the same polycrystalline specimens using the Argonne National Laboratory HVEM-Ion Beam Interface. Both Ni and Cu exhibit a sharp rise in the damage function above the minimum threshold energy (approx. 18 eV for Cu and approx. 20 eV for Ni) as displacements in the low-threshold energy regions of the threshold energy surface become possible. A plateau is observed for both materials (0.54 Frenkel pairs for Cu and 0.46 Frenkel pairs for Ni) indicating that no further directions become productive until much higher recoil energies. These damage functions show strong deviations from simple theoretical models, such as the Modified Kinchin-Pease damage function. The results are discussed in terms of the mechanisms of defect production that govern the single-displacement regime of the damage function and are compared with results from recent molecular-dynamics simulations

  7. Scaling in situ cosmogenic nuclide production rates using analytical approximations to atmospheric cosmic-ray fluxes

    Science.gov (United States)

    Lifton, Nathaniel; Sato, Tatsuhiko; Dunai, Tibor J.

    2014-01-01

    Several models have been proposed for scaling in situ cosmogenic nuclide production rates from the relatively few sites where they have been measured to other sites of interest. Two main types of models are recognized: (1) those based on data from nuclear disintegrations in photographic emulsions combined with various neutron detectors, and (2) those based largely on neutron monitor data. However, stubborn discrepancies between these model types have led to frequent confusion when calculating surface exposure ages from production rates derived from the models. To help resolve these discrepancies and identify the sources of potential biases in each model, we have developed a new scaling model based on analytical approximations to modeled fluxes of the main atmospheric cosmic-ray particles responsible for in situ cosmogenic nuclide production. Both the analytical formulations and the Monte Carlo model fluxes on which they are based agree well with measured atmospheric fluxes of neutrons, protons, and muons, indicating they can serve as a robust estimate of the atmospheric cosmic-ray flux based on first principles. We are also using updated records for quantifying temporal and spatial variability in geomagnetic and solar modulation effects on the fluxes. A key advantage of this new model (herein termed LSD) over previous Monte Carlo models of cosmogenic nuclide production is that it allows for faster estimation of scaling factors based on time-varying geomagnetic and solar inputs. Comparing scaling predictions derived from the LSD model with those of previously published models suggest potential sources of bias in the latter can be largely attributed to two factors: different energy responses of the secondary neutron detectors used in developing the models, and different geomagnetic parameterizations. Given that the LSD model generates flux spectra for each cosmic-ray particle of interest, it is also relatively straightforward to generate nuclide-specific scaling

  8. In situ Raman identification of corrosion products on galvanized steel sheets

    International Nuclear Information System (INIS)

    Bernard, M.C.; Hugot le Goff, A.; Massinon, D.; Phillips, N.; Thierry, D.

    1992-01-01

    In situ Raman spectroscopy was used to identify corrosion products on zinc immersed in chloride solutions. In aerated 0,03 M NaCl solution, zinc carbonate was identified as the main corrosion product. Even with higher chloride concentrations, for which zinc hydroxychloride was also detected, the carbon dioxide concentration is likely to be the rate controlling factor of the corrosion process. In a confinement experiment, Raman analysis revealed that the upper face of the sample was covered with zinc carbonate, whereas hydroxychlorides were identified on the confined face. This result confirmed the hypothesis of a differential aeration mechanism responsible for the formation of zinc hydroxychloride. This is in good agreement with Raman spectroscopy results obtained in the case of painted galvanized steel

  9. In-situ transesterification of wet spent coffee grounds for sustainable biodiesel production.

    Science.gov (United States)

    Park, Jeongseok; Kim, Bora; Lee, Jae W

    2016-12-01

    This work addresses in-situ transesterification of wet spent coffee grounds (SCGs) for the production of biodiesel. For in-situ transesterification process, the methanol, organic solvent and acid catalyst were mixed with wet SCG in one pot and the mixture was heated for simultaneous lipid extraction and transesterification. Maximum yield of fatty acid methyl esters (FAME) was 16.75wt.% based on the weight of dry SCG at 95°C. Comprehensive experiments were conducted with varying temperatures and various amounts of moisture, methanol, co-solvent and acid catalyst. Moderate polar and alcohol-miscible organic solvent is suitable for the high FAME yield. Unsaturated FAMEs are subject to oxidative cleavage by nitric acid and shorter chain (C6 and C10) FAMEs were mainly produced while sulfuric acid yielded long chain unsaturated FAMEs (C16 and C18). Utilization of wet SCGs as a biodiesel feedstock gives economic and environmental benefits by recycling the municipal waste. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Detergent assisted ultrasonication aided in situ transesterification for biodiesel production from oleaginous yeast wet biomass.

    Science.gov (United States)

    Yellapu, Sravan Kumar; Kaur, Rajwinder; Tyagi, Rajeshwar D

    2017-01-01

    In situ transesterification of oleaginous yeast wet biomass for fatty acid methyl esters (FAMEs) production using acid catalyst, methanol with or without N-Lauroyl sarcosine (N-LS) treatment was performed. The maximum FAMEs yield obtained with or without N-LS treatment in 24h reaction time was 96.1±1.9 and 71±1.4% w/w, respectively. The N-LS treatment of biomass followed by with or without ultrasonication revealed maximum FAMEs yield of 94.3±1.9% and 82.9±1.8% w/w using methanol to lipid molar ratio 360:1 and catalyst concentration 360mM (64μL H 2 SO 4 /g lipid) within 5 and 25min reaction time, respectively. The FAMEs composition obtained in in situ transesterification was similar to that obtained with conventional two step lipid extraction and transesterification process. Biodiesel fuel properties (density, kinematic viscosity, cetane number and total glycerol) were in accordance with international standard (ASTM D6751), which suggests the suitability of biodiesel as a fuel. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Field study of nitrous oxide production with in situ aeration in a closed landfill site.

    Science.gov (United States)

    Nag, Mitali; Shimaoka, Takayuki; Nakayama, Hirofumi; Komiya, Teppei; Xiaoli, Chai

    2016-03-01

    Nitrous oxide (N(2)O) has gained considerable attention as a contributor to global warming and depilation of stratospheric ozone layer. Landfill is one of the high emitters of greenhouse gas such as methane and N(2)O during the biodegradation of solid waste. Landfill aeration has been attracted increasing attention worldwide for fast, controlled and sustainable conversion of landfills into a biological stabilized condition, however landfill aeration impel N(2)O emission with ammonia removal. N(2)O originates from the biodegradation, or the combustion of nitrogen-containing solid waste during the microbial process of nitrification and denitrification. During these two processes, formation of N(2)O as a by-product from nitrification, or as an intermediate product of denitrification. In this study, air was injected into a closed landfill site and investigated the major N(2)O production factors and correlations established between them. The in-situ aeration experiment was carried out by three sets of gas collection pipes along with temperature probes were installed at three different distances of one, two and three meter away from the aeration point; named points A-C, respectively. Each set of pipes consisted of three different pipes at three different depths of 0.0, 0.75 and 1.5 m from the bottom of the cover soil. Landfill gases composition was monitored weekly and gas samples were collected for analysis of nitrous oxide concentrations. It was evaluated that temperatures within the range of 30-40°C with high oxygen content led to higher generation of nitrous oxide with high aeration rate. Lower O(2) content can infuse N(2)O production during nitrification and high O(2) inhibit denitrification which would affect N(2)O production. The findings provide insights concerning the production potentials of N(2)O in an aerated landfill that may help to minimize with appropriate control of the operational parameters and biological reactions of N turnover. Investigation of

  12. Study of optimum propellant production facilities for launch of space shuttle vehicles

    Science.gov (United States)

    Laclair, L. M.

    1970-01-01

    An integrated propellant manufacturing plant and distribution system located at Kennedy Space Center is studied. The initial planned propellant and pressurant production amounted to 160 tons/day (TPD) LH2, 10 TPD GH2, 800 TPD LO2, 400 TPD LN2, and 120 TPD GN2. This was based on a shuttle launch frequency of 104 per year. During the study, developments occurred which may lower cryogen requirements. A variety of plant and processing equipment sizes and costs are considered for redundancy and supply level considerations. Steam reforming is compared to partial oxidation as a means of generating hydrogen. Electric motors, steam turbines, and gas turbines are evaluated for driving compression equipment. Various sites on and off Government property are considered to determine tradeoffs between costs and problems directly associated with the site, product delivery and storage costs, raw material costs, and energy costs. Coproduction of other products such as deuterium, methanol, and ammonia are considered. Legal questions are discussed concerning a private company's liabilities and its rights to market commercial products under Government tax and cost shelters.

  13. Production of Lunar Oxygen Through Vacuum Pyrolysis

    National Research Council Canada - National Science Library

    Matchett, John

    2006-01-01

    .... The vacuum pyrolysis method of oxygen production from lunar regolith presents a viable option for in situ propellant production because of its simple operation involving limited resources from earth...

  14. Riboflavin Production in Lactococcus lactis: Potential for In Situ Production of Vitamin-Enriched Foods

    Science.gov (United States)

    Burgess, Catherine; O'Connell-Motherway, Mary; Sybesma, Wilbert; Hugenholtz, Jeroen; van Sinderen, Douwe

    2004-01-01

    This study describes the genetic analysis of the riboflavin (vitamin B2) biosynthetic (rib) operon in the lactic acid bacterium Lactococcus lactis subsp. cremoris strain NZ9000. Functional analysis of the genes of the L. lactis rib operon was performed by using complementation studies, as well as by deletion analysis. In addition, gene-specific genetic engineering was used to examine which genes of the rib operon need to be overexpressed in order to effect riboflavin overproduction. Transcriptional regulation of the L. lactis riboflavin biosynthetic process was investigated by using Northern hybridization and primer extension, as well as the analysis of roseoflavin-induced riboflavin-overproducing L. lactis isolates. The latter analysis revealed the presence of both nucleotide replacements and deletions in the regulatory region of the rib operon. The results presented here are an important step toward the development of fermented foods containing increased levels of riboflavin, produced in situ, thus negating the need for vitamin fortification. PMID:15466513

  15. In situ product removal in fermentation systems: improved process performance and rational extractant selection.

    Science.gov (United States)

    Dafoe, Julian T; Daugulis, Andrew J

    2014-03-01

    The separation of inhibitory compounds as they are produced in biotransformation and fermentation systems is termed in situ product removal (ISPR). This review examines recent ISPR strategies employing several classes of extractants including liquids, solids, gases, and combined extraction systems. Improvement through the simple application of an auxiliary phase are tabulated and summarized to indicate the breadth of recent ISPR activities. Studies within the past 5 years that have highlighted and have discussed "second phase" properties, and that have an effect on fermentation performance, are particular focus of this review. ISPR, as a demonstrably effective processing strategy, continues to be widely adopted as more applications are explored; however, focus on the properties of extractants and their rational selection based on first principle considerations will likely be key to successfully applying ISPR to more challenging target molecules.

  16. In-situ Transesterification of Jatropha curcas L. Seeds for Biodiesel Production using Supercritical Methanol

    Directory of Open Access Journals (Sweden)

    Ishak M.A.M.

    2017-01-01

    Full Text Available In-situ supercritical methanol transesterification for production of biodiesel from Jatropha curcas L. (JCL seeds was successfully being carried out via batch-wise reactor system, under varying temperatures of 180 - 300 °C, pressures of 6 - 18 MPa, reaction time of 5 - 35 min and seeds-to-methanol ratio of 1:15 - 1:45 (w/v. In this study, the extracted oil obtained showed the presence of FAME referring as biodiesel, indicating that transesterification reaction had occurred during the extraction process. The results showed that the biodiesel yield was obtained at optimum conditions of 280 °C, 12 MPa, 30 min and 1:40 (w/v were 97.9%.

  17. In situ production of 36CI in uranium ore: a hydrogeological assessment tool

    International Nuclear Information System (INIS)

    Cornett, R.J.; Cramer, J.; Andrews, H.R.; Chant, L.A.; Davies, W.; Greiner, B.F.; Imahori, Y.; Koslowsky, V.; McKay, J.; Milton, G.M.; Milton, J.C.D.

    1996-01-01

    In situ neutron activation of 35 Cl within the rock and groundwater of geologic deposits that have elevated concentrations of uranium provides a hydrogeological tracer. We determine the production rate and mobility of 36 Cl in the 1.3-billion-year-old Cigar Lake uranium ore deposit. Accelerator mass spectrometry was used to map the Concentrations of 36 Cl in the ore and in the groundwater that were up to 100 times greater than those encountered in unmineralized portions of the host sandstone aquifer. The residence time of this mobile anion in groundwater within the mineralized zone ranged from 14 to 280 kyr. These residence times are consistent with the hydraulic and geochemical data, suggesting significant control of Cl - and groundwater movement by the clay-rich matrix of the mineralized zone. (author)

  18. Engineering assessment of in situ sulfate production onboard aircraft at high altitude

    Science.gov (United States)

    Smith, J.; Dykema, J. A.; Keith, D.

    2016-12-01

    Stratospheric injection of scattering aerosols has been proposed as a way to reduce global temperature increases by decreasing net atmospheric radiative forcing. Several methods have been suggested as a means of implementing solar geoengineering, and high altitude aircraft have been identified as an accessible means delivering sulfate aerosols to the lower and mid-stratosphere. This research initiative analyzes the design features of an onboard open cycle chemical plant capable of in situ sulfur to sulfate conversion, and compares the required mass to that of transporting pre-fabricated gaseous or liquid sulfate aerosol precursors. Scaling from aero-derivative gas turbine engines, commercial catalytic converters, and existing aerospace materials indicate that aircraft equipped with such a system could provide a substantial mass benefit compared to direct transport of compound sulfate products.

  19. In Situ Biodiesel Production from Residual Oil Recovered from Spent Bleaching Earth

    Directory of Open Access Journals (Sweden)

    Ramli Mat

    2011-05-01

    Full Text Available Currently, semi-refined and refined vegetable oils are used as a feedstock in biodiesel production. However, due to competition with conventional fossil fuel, economic reasons, shortage supply of food and its social impact on the global scale has somewhat slowed the development of biodiesel industry. Studies have been conducted to recover oil from mill palm oil operation especially from the spent bleaching earth. Hence, the study was to investigate the potential recovery of oil from spent bleaching earth to be used as a feedstock for biodiesel production. The effect of different types of catalysts (sodium hydroxide alkali and sulfuric acid catalysts on biodiesel yield was studied. In addition, the effect of volume addition of methanol to the weight of spent bleaching earth on the product yield was also studied. Furthermore, the effect of ratio of hexane to methanol was also carried out to determine its product yield. The studies were carried out in an in-situ biodiesel reactor system and the biodiesel product was analyzed using gas chromatography mass spectrometry. Result shows that the use of alkali catalyst produced the highest yield of biodiesel and the most optimum biodiesel yield was obtained when the methanol to spent bleaching earth ratio was 3.2:1 (gram of methanol: gram of SBE and hexane to methanol ratio of 0.6:1 (volume of hexane: volume of methanol. © 2011 BCREC UNDIP. All rights reserved(Received: 19th December 2010, Revised: 10th May 2011; Accepted: 18th May 2011[How to Cite: R. Mat, O.S. Ling, A. Johari, M. Mohamed. (2011. In Situ Biodiesel Production from Residual Oil Recovered from Spent Bleaching Earth. Bulletin of Chemical Reaction Engineering & Catalysis, 6(1: 53-57. doi:10.9767/bcrec.6.1.678.53-57][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.6.1.678.53-57 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/678 ] | View in 

  20. Calibration methodology application of kerma area product meters in situ: Preliminary results

    Science.gov (United States)

    Costa, N. A.; Potiens, M. P. A.

    2014-11-01

    The kerma-area product (KAP) is a useful quantity to establish the reference levels of conventional X-ray examinations. It can be obtained by measurements carried out with a KAP meter on a plane parallel transmission ionization chamber mounted on the X-ray system. A KAP meter can be calibrated in laboratory or in situ, where it is used. It is important to use one reference KAP meter in order to obtain reliable quantity of doses on the patient. The Patient Dose Calibrator (PDC) is a new equipment from Radcal that measures KAP. It was manufactured following the IEC 60580 recommendations, an international standard for KAP meters. This study had the aim to calibrate KAP meters using the PDC in situ. Previous studies and the quality control program of the PDC have shown that it has good function in characterization tests of dosimeters with ionization chamber and it also has low energy dependence. Three types of KAP meters were calibrated in four different diagnostic X-ray equipments. The voltages used in the two first calibrations were 50 kV, 70 kV, 100 kV and 120 kV. The other two used 50 kV, 70 kV and 90 kV. This was related to the equipments limitations. The field sizes used for the calibration were 10 cm, 20 cm and 30 cm. The calibrations were done in three different cities with the purpose to analyze the reproducibility of the PDC. The results gave the calibration coefficient for each KAP meter and showed that the PDC can be used as a reference instrument to calibrate clinical KAP meters.

  1. Wet in situ transesterification of spent coffee grounds with supercritical methanol for the production of biodiesel.

    Science.gov (United States)

    Son, Jeesung; Kim, Bora; Park, Jeongseok; Yang, Jeongwoo; Lee, Jae W

    2018-07-01

    This work introduces biodiesel production from wet spent coffee grounds (SCGs) with supercritical methanol without any pre-drying process. Supercritical methanol and subcritical water effectively produced biodiesel via in situ transesterification by inducing more porous SCG and enhancing the efficiency of lipid extraction and conversion. It was also found that space loading was one of the critical factors for biodiesel production. An optimal biodiesel yield of 10.17 wt% of dry SCG mass (86.33 w/w% of esterifiable lipids in SCG) was obtained at reaction conditions of 270 °C, 90 bars, methanol to wet SCG ratio 5:1, space loading 58.4 ml/g and reaction time 20 min. Direct use of wet SCG waste as feedstock for supercritical biodiesel production eliminates the conventional dying process and the need of catalyst and also reduces environmental problems caused by landfill accumulation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Towards a merged satellite and in situ fluorescence ocean chlorophyll product

    Directory of Open Access Journals (Sweden)

    H. Lavigne

    2012-06-01

    accuracy. The method was applied to two different data sets to demonstrate its utility. Using fluorescence profiles at BATS, we show that the integration of "satellite-corrected" fluorescence profiles in chlorophyll a climatologies could improve both the statistical relevance of chlorophyll a averages and the vertical structure of the chlorophyll a field. We also show that our method could be efficiently used to process, within near-real time, profiles obtained by a fluorometer deployed on autonomous platforms, in our case a bio-optical profiling float. The application of the proposed method should provide a first step towards the generation of a merged satellite/fluorescence chlorophyll a product, as the "satellite-corrected" profiles should then be consistent with satellite observations. Improved climatologies with more consistent satellite and in situ data are likely to enhance the performance of present biogeochemical models.

  3. Development of in situ product removal strategies in biocatalysis applying scaled-down unit operations.

    Science.gov (United States)

    Heintz, Søren; Börner, Tim; Ringborg, Rolf H; Rehn, Gustav; Grey, Carl; Nordblad, Mathias; Krühne, Ulrich; Gernaey, Krist V; Adlercreutz, Patrick; Woodley, John M

    2017-03-01

    An experimental platform based on scaled-down unit operations combined in a plug-and-play manner enables easy and highly flexible testing of advanced biocatalytic process options such as in situ product removal (ISPR) process strategies. In such a platform, it is possible to compartmentalize different process steps while operating it as a combined system, giving the possibility to test and characterize the performance of novel process concepts and biocatalysts with minimal influence of inhibitory products. Here the capabilities of performing process development by applying scaled-down unit operations are highlighted through a case study investigating the asymmetric synthesis of 1-methyl-3-phenylpropylamine (MPPA) using ω-transaminase, an enzyme in the sub-family of amino transferases (ATAs). An on-line HPLC system was applied to avoid manual sample handling and to semi-automatically characterize ω-transaminases in a scaled-down packed-bed reactor (PBR) module, showing MPPA as a strong inhibitor. To overcome the inhibition, a two-step liquid-liquid extraction (LLE) ISPR concept was tested using scaled-down unit operations combined in a plug-and-play manner. Through the tested ISPR concept, it was possible to continuously feed the main substrate benzylacetone (BA) and extract the main product MPPA throughout the reaction, thereby overcoming the challenges of low substrate solubility and product inhibition. The tested ISPR concept achieved a product concentration of 26.5 g MPPA  · L -1 , a purity up to 70% g MPPA  · g tot -1 and a recovery in the range of 80% mol · mol -1 of MPPA in 20 h, with the possibility to increase the concentration, purity, and recovery further. Biotechnol. Bioeng. 2017;114: 600-609. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. New approaches investigating production rates of in-situ produced terrestrial cosmogenic nuclides

    Energy Technology Data Exchange (ETDEWEB)

    Merchel, Silke [CEREGE, CNRS-IRD-Universite Aix-Marseille, Aix-en-Provence (France); FZD, Dresden (Germany); Braucher, Regis; Benedetti, Lucilla; Bourles, Didier [CEREGE, CNRS-IRD-Universite Aix-Marseille, Aix-en-Provence (France)

    2010-07-01

    In-situ produced cosmogenic nuclides have proved to be valuable tools for environmental and Earth sciences. However, accurate application of this method is only possible, if terrestrial production rates in a certain environment over a certain time period and their depth-dependence within the exposed material are exactly known. Unfortunately, the existing data and models differ up to several tens of percent. Thus, one of the European project CRONUS-EU goals is the high quality calibration of the {sup 36}Cl production rate by spallation at independently dated surfaces. As part of fulfilling this task we have investigated calcite-rich samples from four medieval landslide areas in the Alps: Mont Granier, Le Claps, Dobratsch, and Veliki Vrh (330-1620 m, 1248-1442 AD). For investigating the depth-dependence of the different nuclear reactions, especially, the muon- and thermal neutron-induced contributions, we have analysed mixtures of carbonates and siliceous conglomerate samples - for {sup 10}Be, {sup 26}Al, and {sup 36}Cl - exposed at different shielding depths and taken from a core drilled in 2005 at La Ciotat, France (from surface to 11 m shielding). AMS of {sup 36}Cl was performed at LLNL and ETH, {sup 10}Be and {sup 26}Al at ASTER.

  5. Time and temperature dependence of cascade induced defect production in in situ experiments and computer simulation

    International Nuclear Information System (INIS)

    Ishino, Shiori

    1993-01-01

    Understanding of the defect production and annihilation processes in a cascade is important in modelling of radiation damage for establishing irradiation correlation. In situ observation of heavy ion radiation damage has a great prospect in this respect. Time and temperature dependence of formation and annihilation of vacancy clusters in a cascade with a time resolution of 30 ms has been studied with a facility which comprises a heavy ion accelerator and an electron microscope. Formation and annihilation rates of defect clusters have been separately measured by this technique. The observed processes have been analysed by simple kinetic equations, taking into account the sink effect of surface and the defect clusters themselves together with the annihilation process due to thermal emission of vacancies from the defect clusters. Another tool to study time and temperature dependence of defect production in a cascade is computer simulation. Recent results of molecular dynamics calculations on the temperature dependence of cascade evolution are presented, including directional and temperature dependence of the lengths of replacement collision sequences, temperature dependence of the process to reach thermal equilibrium and so on. These results are discussed under general time frame of radiation damage evolution covering from 10 -15 to 10 9 s, and several important issues for the general understanding have been identified. (orig.)

  6. In situ fast pyrolysis of biomass with zeolite catalysts for bioaromatics/gasoline production: A review

    International Nuclear Information System (INIS)

    Galadima, Ahmad; Muraza, Oki

    2015-01-01

    Highlights: • Biomass upgrading by fast pyrolysis is an attractive bioaromatics production. • Zeolite catalysts are key important systems considered for the process. • Catalytic activity depend on zeolite structure, acidity and textural features. • Recent literature on the role of the zeolite catalysts critically tailored. • Hierarchical zeolites are prospective catalysts for industrial applications. - Abstract: The fast pyrolysis of biomass-based feedstocks is currently gaining considerable attention as an industrial and sustainable option for the production of gasoline-range bioaromatics. The complex composition of biomass molecules and a series of reactions involved during the upgrading process require the incorporation of sufficiently acidic and topological catalysts. This paper carefully documents and analyzes recent publications that have investigated the properties of zeolites to enhance the yield of bioaromatics during in situ fast pyrolysis. Issues related to the effects of zeolite’s textural, topological and acidic properties are critically examined. Factors responsible for catalyst deactivation and the mechanistic roles of the catalysts used are discussed. This paper also explores the prospects of hierarchical zeolites and municipal solid waste (MSW) as catalysts and feedstocks for the fast pyrolysis process.

  7. Benzalkonium runoff from roofs treated with biocide products - In situ pilot-scale study.

    Science.gov (United States)

    Gromaire, M C; Van de Voorde, A; Lorgeoux, C; Chebbo, G

    2015-09-15

    Roof maintenance practices often involve the application of biocide products to fight against moss, lichens and algae. The main component of these products is benzalkonium chloride, a mixture of alkyl benzyl dimethyl ammonium chlorides with mainly C12 and C14 alkyl chain lengths, which is toxic for the aquatic environment. This paper describes, on the basis of an in-situ pilot scale study, the evolution of roof runoff contamination over a one year period following the biocide treatment of roof frames. Results show a major contamination of roof runoff immediately after treatment (from 5 to 30 mg/L), followed by an exponential decrease. 175-375 mm of cumulated rainfall is needed before the runoff concentrations become less than EC50 values for fish (280 μg/l). The residual concentration in the runoff water remains above 4 μg/L even after 640 mm of rainfall. The level of benzalkonium ions leaching depends on the roofing material, with lower concentrations and total mass leached from ceramic tiles than from concrete tiles, and on the state of the tile (new or worn out). Mass balance calculations indicate that a large part of the mass of benzalkonium compounds applied to the tiles is lost, probably due to biodegradation processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. In-situ water vaporization improves bitumen production during electrothermal processes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J. [Calgary Univ., AB (Canada); McGee, B. [E-T Energy, Calgary, AB (Canada); Kantzas, A. [Calgary Univ., AB (Canada). Tomographic Imaging and Porous Media Laboratory

    2008-10-15

    Electro-thermal processes are now being considered as an alternative or complementary process to steam injection processes. This study used an in situ vaporized water process to optimize electrothermal processes for steam injection enhanced oil recovery (EOR). A simulation tool was used to model electro-thermal processes in an Athabasca oil sands reservoir. Incremental oil recovery was estimated based on a 3-block conceptual model. A field scale model was then used to investigate the effects of electrode spacing, water injection rates, and electrical heating rates on bitumen recovery. Results of the simulation studies were then analyzed using a statistical tool in order to determine optimal conditions for maximizing bitumen production. Results of the study showed that incremental recovery using the water vaporization technique resulted in oil recovery rates of 25 per cent original oil in place (OOIP). Sensitivity analyses showed that medium electrical heating rates, low water injection rates, and small spacings between electrodes maximized bitumen production rates. It was concluded that the technique can be used alone or combined with other methods to economically produce bitumens. 2 refs., 7 tabs., 9 figs.

  9. Concurrent production of biodiesel and chemicals through wet in situ transesterification of microalgae.

    Science.gov (United States)

    Im, Hanjin; Kim, Bora; Lee, Jae W

    2015-10-01

    This work addresses an unprecedented way of co-producing biodiesel (FAEE) and valuable chemicals of ethyl levulinate (EL), ethyl formate (EF) and diethyl ether (DEE) from wet in situ transesterification of microalgae. EL, EF, and DEE were significantly produced up to 23.1%, 10.3%, and 52.1% of the maximum FAEE mass with the FAEE yield higher than 90% at 125 °C. Experiments to elucidate a detailed route of EL and EF synthesis were fulfilled and it was found that its main route to the production of EL and EF was the acid hydrolysis of algal cells and esterification with ethanol. To investigate the effect of reaction variables on the products yields, comprehensive experiments were carried out with varying temperatures, solvent and alcohol volumes, moisture contents and catalyst amounts. Coproduction of DEE, EL, EF and FAEE can contribute to elevating the economic feasibility of microalgae-based biodiesel supply chain. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. In-Situ Anaerobic Biosurfactant Production Process For Remediation Of DNAPL Contamination In Subsurface Aquifers

    Science.gov (United States)

    Albino, J. D.; Nambi, I. M.

    2009-12-01

    microbial cultures. The microorganisms responsible for biosurfactant production was isolated and identified as Pseudomonas Sp (designated as Pseudomonas Sp ANBIOSURF-1, Gene bank no: FJ930079), Pseudomonas stutzeri (MTCC 10033), Pseudomonas Sp (MTCC 10032) from groundwater, soil and municipal sewage sludge enrichments respectively. This study confirms that biosurfactants can be produced under anaerobic conditions and also in sufficient quantities. The cultures were also able to cometabolically degrade PCE to Ethylene. The isolated microorganisms can be used for remediation of DNAPL contaminated sites by in-situ biosurfactant production.

  11. Spring snow albedo feedback over northern Eurasia: Comparing in situ measurements with reanalysis products

    Directory of Open Access Journals (Sweden)

    M. Wegmann

    2018-06-01

    Full Text Available This study uses daily observations and modern reanalyses in order to evaluate reanalysis products over northern Eurasia regarding the spring snow albedo feedback (SAF during the period from 2000 to 2013. We used the state-of-the-art reanalyses from ERA-Interim/Land and the Modern-Era Retrospective Analysis for Research and Applications version 2 (MERRA-2 as well as an experimental set-up of ERA-Interim/Land with prescribed short grass as land cover to enhance the comparability with the station data while underlining the caveats of comparing in situ observations with gridded data. Snow depth statistics derived from daily station data are well reproduced in all three reanalyses. However day-to-day albedo variability is notably higher at the stations than for any reanalysis product. The ERA-Interim grass set-up shows improved performance when representing albedo variability and generates comparable estimates for the snow albedo in spring. We find that modern reanalyses show a physically consistent representation of SAF, with realistic spatial patterns and area-averaged sensitivity estimates. However, station-based SAF values are significantly higher than in the reanalyses, which is mostly driven by the stronger contrast between snow and snow-free albedo. Switching to grass-only vegetation in ERA-Interim/Land increases the SAF values up to the level of station-based estimates. We found no significant trend in the examined 14-year time series of SAF, but interannual changes of about 0.5 % K−1 in both station-based and reanalysis estimates were derived. This interannual variability is primarily dominated by the variability in the snowmelt sensitivity, which is correctly captured in reanalysis products. Although modern reanalyses perform well for snow variables, efforts should be made to improve the representation of dynamic albedo changes.

  12. In-situ complex with by-product HCl and release chloride ions to dissolve aramid.

    Science.gov (United States)

    Dai, Yu; Cheng, Zheng; Yuan, Yihao; Meng, Chenbo; Qin, Jiaqiang; Liu, Xiangyang

    2018-06-20

    Because of the strong hydrogen-bond interaction among macromolecular chains, addition of chloride salts is generally needed to offer Cl- ions for dissolution of aromatic polyamides. In this paper, poly-(benzimidazole-terephthalamide) which complexed with by-product HCl during polymerization (PABI-HCl) was prepared and imidazole compound as cosolvent was added into dimethylacetamide (DMAc) to dissolve PABI-HCl. Due to stronger affinity to protons, imidazole compound could in-situ complex with HCl of PABI-HCl and form imidazolium hydrochloride. Then imidazolium hydrochloride would ionize and produce much free Cl- ions which acted as stronger hydrogen-bond acceptor to disrupt interaction among macromolecular chains. As a result, solubility of PABI-HCl in DMAc was improved significantly in existence of small amount of imidazole compound. Moreover, DMAc-imidazole mixture was utlized for synthesis of different kinds of aramids and no precipitation was observed with progress of the reaction. So the mixture was suitable to be utlized as solvent for polymerization of aramid. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. The measurement of enamel and dentine abrasion by tooth whitening products using an in situ model.

    Science.gov (United States)

    Joiner, A; Collins, L Z; Cox, T F; Pickles, M J; Weader, E; Liscombe, C; Holt, J S

    2005-01-01

    To determine the enamel and dentine wear of two whitening toothpastes using an in situ model with ex vivo brushing. Human enamel/dentine (approximately 50:50) blocks (approximately 4 x 4mm) were placed in the upper buccal aspects of full or partial dentures of a group of 25 subjects. Subjects brushed the specimens ex vivo with either a calcium carbonate/perlite or silica containing whitening toothpaste under exaggerated conditions as compared to normal for 30 s, twice per day. Specimens were removed after 4, 8 and 12 weeks and the wear to the enamel and dentine was determined. Enamel wear was determined by change in Knoop indent length and dentine wear was determined from the enamel-dentine step height, measured using optical profilometry. The mean wear after 12 weeks was for enamel 0.27 and 0.19 microns, and for dentine 34.3 and 61.1 microns, for the calcium carbonate/perlite and silica toothpastes respectively. There were no significant differences between products after 12 weeks. The rate of wear was found to decrease throughout the duration of the study. There were no significant differences between the two whitening toothpastes in terms of enamel and dentine wear after 12 weeks brushing.

  14. Solvo-thermal in situ transesterification of wet spent coffee grounds for the production of biodiesel.

    Science.gov (United States)

    Park, Jeongseok; Kim, Bora; Son, Jeesung; Lee, Jae W

    2018-02-01

    This work addresses non-catalytic biodiesel production from spent coffee ground (SCG) by integrating solvo-thermal effect of 1,2-dichloroethane (DCE) with in situ transesterification over 160 °C. The SCG water content has a positive effect on the DCE hydrolysis up to 60 wt% due to the bimolecular substitution mechanism. The hydrolysis gives an acidic environment favorable for cellulose decomposition, SCG particle size reduction and lipid conversion. The optimal fatty acid ethyl ester yield was 11.8 wt% based on the mass of dried SCG with 3.36 ml ethanol and 3.16 ml DCE at 196.8 °C through the response surface methodology. Using the solvo-thermal effect, direct utilization of wet SCG as a biodiesel feedstock provides not only economic feasibility without using drying process and additional acid catalyst but also environmental advantage of recycling the municipal waste. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Towards a merged satellite and in situ fluorescence ocean chlorophyll product

    OpenAIRE

    Lavigne, H.; D'Ortenzio, F.; Claustre, H.; Poteau, A.

    2012-01-01

    Understanding the ocean carbon cycle requires a precise assessment of phytoplankton biomass in the oceans. In terms of numbers of observations, satellite data represents the largest available data set. However, as they are limited to surface waters, they have to be merged with in situ observations. Amongst the in situ data, fluorescence profiles constitute the greatest data set available, because fluorometers operate routinely on oceanographic cruise since the seventies. Nevertheless,...

  16. Assessing sulfate and carbon controls on net methylmercury production in peatlands: An in situ mesocosm approach

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Carl P.J. [Department of Geography, University of Toronto at Mississauga, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6 (Canada)], E-mail: mitchellc@si.edu; Branfireun, Brian A. [Department of Geography, University of Toronto at Mississauga, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6 (Canada); Kolka, Randall K. [Northern Research Station, US Department of Agriculture Forest Service, 1831 Highway 169 East, Grand Rapids, MN 55744 (United States)

    2008-03-15

    The transformation of atmospherically deposited inorganic Hg to the toxic, organic form methylmercury (MeHg) is of serious ecological concern because MeHg accumulates in aquatic biota, including fish. Research has shown that the Hg methylation reaction is dependent on the availability of SO{sub 4} (as an electron acceptor) because SO{sub 4}-reducing bacteria (SRB) mediate the biotic methylation of Hg. Much less research has investigated the possible organic C limitations to Hg methylation (i.e. from the perspective of the electron donor). Although peatlands are long-term stores of organic C, the C derived from peatland vegetation is of questionable microbial lability. This research investigated how both SO{sub 4} and organic C control net MeHg production using a controlled factorial addition design in 44 in situ peatland mesocosms. Two levels of SO{sub 4} addition and energetic-equivalent additions (i.e. same number of electrons) of a number of organic C sources were used including glucose, acetate, lactate, coniferous litter leachate, and deciduous litter leachate. This study supports previous research demonstrating the stimulation of MeHg production from SO{sub 4} input alone ({approx}200 pg/L/day). None of the additions of organic C alone resulted in significant MeHg production. The combined addition of SO{sub 4} and some organic C sources resulted in considerably more MeHg production ({approx}500 pg/L/day) than did the addition of SO{sub 4} alone, demonstrating that the highest levels of MeHg production can be expected only where fluxes of both SO{sub 4} and organic C are delivered concurrently. When compared to a number of pore water samples taken from two nearby peatlands, MeHg concentrations resulting from the combined addition of SO{sub 4} and organic C in this study were similar to MeHg 'hot spots' found near the upland-peatland interface. The formation of MeHg 'hot spots' at the upland-peatland interface may be dependent on concurrent

  17. Assessing sulfate and carbon controls on net methylmercury production in peatlands: An in situ mesocosm approach

    International Nuclear Information System (INIS)

    Mitchell, Carl P.J.; Branfireun, Brian A.; Kolka, Randall K.

    2008-01-01

    The transformation of atmospherically deposited inorganic Hg to the toxic, organic form methylmercury (MeHg) is of serious ecological concern because MeHg accumulates in aquatic biota, including fish. Research has shown that the Hg methylation reaction is dependent on the availability of SO 4 (as an electron acceptor) because SO 4 -reducing bacteria (SRB) mediate the biotic methylation of Hg. Much less research has investigated the possible organic C limitations to Hg methylation (i.e. from the perspective of the electron donor). Although peatlands are long-term stores of organic C, the C derived from peatland vegetation is of questionable microbial lability. This research investigated how both SO 4 and organic C control net MeHg production using a controlled factorial addition design in 44 in situ peatland mesocosms. Two levels of SO 4 addition and energetic-equivalent additions (i.e. same number of electrons) of a number of organic C sources were used including glucose, acetate, lactate, coniferous litter leachate, and deciduous litter leachate. This study supports previous research demonstrating the stimulation of MeHg production from SO 4 input alone (∼200 pg/L/day). None of the additions of organic C alone resulted in significant MeHg production. The combined addition of SO 4 and some organic C sources resulted in considerably more MeHg production (∼500 pg/L/day) than did the addition of SO 4 alone, demonstrating that the highest levels of MeHg production can be expected only where fluxes of both SO 4 and organic C are delivered concurrently. When compared to a number of pore water samples taken from two nearby peatlands, MeHg concentrations resulting from the combined addition of SO 4 and organic C in this study were similar to MeHg 'hot spots' found near the upland-peatland interface. The formation of MeHg 'hot spots' at the upland-peatland interface may be dependent on concurrent inputs of SO 4 and organic C in runoff from the adjacent upland hillslopes

  18. Techno-economic and uncertainty analysis of in situ and ex situ fast pyrolysis for biofuel production

    Energy Technology Data Exchange (ETDEWEB)

    Li, Boyan; Ou, Longwen; Dang, Qi; Meyer, Pimphan A.; Jones, Susanne B.; Brown, Robert C.; Wright, Mark

    2015-11-01

    This study evaluates the techno-economic uncertainty in cost estimates for two emerging biorefinery technologies for biofuel production: in situ and ex situ catalytic pyrolysis. Stochastic simulations based on process and economic parameter distributions are applied to calculate biorefinery performance and production costs. The probability distributions for the minimum fuel-selling price (MFSP) indicate that in situ catalytic pyrolysis has an expected MFSP of $4.20 per gallon with a standard deviation of 1.15, while the ex situ catalytic pyrolysis has a similar MFSP with a smaller deviation ($4.27 per gallon and 0.79 respectively). These results suggest that a biorefinery based on ex situ catalytic pyrolysis could have a lower techno-economic risk than in situ pyrolysis despite a slightly higher MFSP cost estimate. Analysis of how each parameter affects the NPV indicates that internal rate of return, feedstock price, total project investment, electricity price, biochar yield and bio-oil yield are significant parameters which have substantial impact on the MFSP for both in situ and ex situ catalytic pyrolysis.

  19. Seasonality of Branched GDGT in Freshwater Settings: a Challenge to the In Situ Production Paradigm?

    Science.gov (United States)

    Rosell-Melé, A.; Cao, M.; Rueda, G.; Henriksen, M.

    2017-12-01

    The branched GDGTs (brGDGTs) in sediments are used to estimate past mean annual air temperatures (MAT). In lakes, the brGDGT proxy is often applied in high resolution sedimentary sequences to reconstruct MAT at subdecadal time scales. A number of studies argue that their production in the water column override inputs from soil sources into a lake sediments. In addition, brGDGTs proxy estimates are also purported to be seasonally biased. Moreover, the initial definitions of the brGDGTs proxies are questioned as a proxy for MAT on analytical and environmental grounds. To test the some of the current paradigms, we examined the sesonal cycle of brGDGT production and transport in three different sites in Europe. The locations considered had a marked seasonal temperature cycle, which was expected to maximize the possibility of detecting a seasonal bias in the proxies. We analyzed monthly brGDGTs in the soils catchments, and in parallel in the suspended particles in the catchment run off and rivers, and settling particulate matter in a lake. In two of the sites we also analyzed the intact and the core lipds. Two of the areas studied are located in the same latitude but at different altitudes in the Pyrenees, and another area is in Norway. Despite the diversity of environments, the results are very coherent. As expected, the brGDGT distributions in soils show no seasonality. However, the same lack of seasonality is also clear in the suspended particulate matter in the catchment run off and in the rivers studied, and in the settling particulate matter in the lake traps. Our study places into question the current general validity of the paradigm of in situ production of brGDGts in freshwater environments. In fact, the sedimentary brGDGT signature is representative of average environmental conditions in the catchment at least over decades. On shorter timescales (i.e. annual), the sediment variability likely reflects changes in sediment sources rather than climate.

  20. On iron radionuclide interactions and in situ measurement of iron corrosion products

    International Nuclear Information System (INIS)

    Puranen, A.; Jonsson, M.; Cui, D.; Scheidegger, A.M.; Wersin, P.; Spahiu, K.

    2005-01-01

    Full text of publication follows: In performance assessments of hard rock repositories, it is conservatively assumed that waste canisters are breached and that the spent fuel will get into contact with groundwater after 1000 years. When the canister eventually fails to protect HLW from groundwater, dissolved radionuclides from HLW will react with iron canister materials. The reactivity will depend on the conditions in solution and at the iron-water interface. To improve our understanding on the redox chemistry at near field conditions, batch experiments are conducted by contacting polished iron foils with a synthetic groundwater solution containing 10 mM NaCl, 2 mM NaHCO 3 and 5 ppm Se(IV), Se(VI), Tc(VII) and U(VI) in a glove box filled with Ar + 0.03% CO 2 gas mixture. The reaction rates are measured by analysing Se, Tc and U concentrations by ICP-MS. Iron corrosion products formed during the reaction(s) is monitored in-situ by a Layer Raman spectrometer through an optical window. The corrosion potential of the iron foil as well as the Eh and pH values of the bulk solution are recorded continuously during the experiment. The reacted iron foil is embedded with EPOXY resin, and the cross section will be analysed by SEM-EDS and XAS. The preliminary experimental results shows that with the formation of iron green rust FeII 4 FeIII 2 (OH) 12 CO 3 on iron foil, the rates of redox reactions between iron and the negatively charged radionuclides species are increased. The observation is explained by the fact that radionuclide anionic species can be first adsorbed then reduced on the positively charged outer surface of iron green rust. The positive charge is a result of the electrical balance of the negative charges of carbonate contained between the layered iron hydroxides in the green rust. Reduced forms of radionuclides are identified in the iron corrosion products. The results suggest that the formation of iron green rust as a corrosion product on the surface of iron

  1. Impacts and mitigations of in situ bitumen production from Alberta oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Edmunds, Neil

    2010-09-15

    85% or more of Alberta's oil sands is too deep to mine and will be recovered by in situ methods, i.e. from drill holes. This has been made commercially possible through the development in Alberta of Steam Assisted Gravity Drainage (SAGD). Does this impending development threaten the local ecosystem? A quantitative account is given of the principal impacts of in situ oil sands development in Alberta. Impacts on land (habitats), water, and air are considered in terms of local capacity, global benchmarks, and comparisons to alternative renewable technologies. Improvements due to new solvent-additive technology are highlighted.

  2. Production of biodiesel via the in situ transesterification of grain sorghum bran and DDGS

    Science.gov (United States)

    The acylglycerides in sorghum bran and distiller’s dried grains and solubles (DDGS) from sorghum post-fermentation stillage have been converted to fatty acid methyl esters (FAMEs) using an in-situ transesterification (IST) method. The reactions were conducted at 25 deg C or 40 deg C in the presence...

  3. Field-scale modeling of acidity production and remediation efficiency during in situ reductive dechlorination

    Science.gov (United States)

    Brovelli, A.; Robinson, C. E.; Barry, D. A.; Gerhard, J.

    2009-12-01

    Enhanced reductive dechlorination is a viable technology for in situ remediation of chlorinated solvent DNAPL source areas. Although in recent years increased understanding of this technology has led to more rapid dechlorination rates, complete dechlorination can be hindered by unfavorable conditions. Hydrochloric acid produced from dechlorination and organic acids generated from electron donor fermentation can lead to significant groundwater acidification. Adverse pH conditions can inhibit the activity of dehalogenating microorganisms and thus slow or stall the remediation process. The extent of acidification likely to occur at a contaminated site depends on a number of factors including (1) the extent of dechlorination, (2) the pH-sensitivity of dechlorinating bacteria, and (3) the geochemical composition of the soil and water, in particular the soil’s natural buffering capacity. The substantial mass of solvents available for dechlorination when treating DNAPL source zones means that these applications are particularly susceptible to acidification. In this study a reactive transport biogeochemical model was developed to investigate the chemical and physical parameters that control the build-up of acidity and subsequent remediation efficiency. The model accounts for the site water chemistry, mineral precipitation and dissolution kinetics, electron donor fermentation, gas phase formation, competing electron-accepting processes (e.g., sulfate and iron reduction) and the sensitivity of microbial processes to pH. Confidence in the model was achieved by simulating a well-documented field study, for which the 2-D field scale model was able to reproduce long-term variations of pH, and the concurrent build up of reaction products. Sensitivity analyses indicated the groundwater flow velocity is able to reduce acidity build-up when the rate of advection is comparable or larger than the rate of dechlorination. The extent of pH change is highly dependent on the presence of

  4. From Oxygen Generation to Metals Production: In Situ Resource Utilization by Molten Oxide Electrolysis

    Science.gov (United States)

    Khetpal, Deepak; Ducret, Andrew C.; Sadoway, Donald R.

    2003-01-01

    For the exploration of other bodies in the solar system, electrochemical processing is arguably the most versatile technology for conversion of local resources into usable commodities: by electrolysis one can, in principle, produce (1) breathable oxygen, (2) silicon for the fabrication of solar cells, (3) various reactive metals for use as electrodes in advanced storage batteries, and (4) structural metals such as steel and aluminum. Even so, to date there has been no sustained effort to develop such processes, in part due to the inadequacy of the database. The objective here is to identify chemistries capable of sustaining molten oxide electrolysis in the cited applications and to examine the behavior of laboratory-scale cells designed to generate oxygen and to produce metal. The basic research includes the study of the underlying high-temperature physical chemistry of oxide melts representative of lunar regolith and of Martian soil. To move beyond empirical approaches to process development, the thermodynamic and transport properties of oxide melts are being studied to help set the limits of composition and temperature for the processing trials conducted in laboratory-scale electrolysis cells. The goal of this investigation is to deliver a working prototype cell that can use lunar regolith and Martian soil to produce breathable oxygen along with metal by-product. Additionally, the process can be generalized to permit adaptation to accommodate different feedstock chemistries, such as those that will be encountered on other bodies in the solar system. The expected results of this research include: (1) the identification of appropriate electrolyte chemistries; (2) the selection of candidate anode and cathode materials compatible with electrolytes named above; and (3) performance data from a laboratory-scale cell producing oxygen and metal. On the strength of these results it should be possible to assess the technical viability of molten oxide electrolysis for in

  5. Integrated funnel-and-gate/GZB product recovery technologies for in situ management of creosote NAPL-impacted aquifers

    International Nuclear Information System (INIS)

    Mueller, J.G.; Borchert, S.M.; Klingel, E.J.

    1997-01-01

    An in situ source management system was modeled and designed for the containment and recovery of creosote non-aqueous phase liquid (NAPL) at a former wood treating facility in Nashua, New Hampshire. The conceptual system was based on the integration of patented technologies for physical source containment and management (ie., funnel-and-gate technology) with patented in situ product recovery (i.e, GZB technology - described below). A funnel-and-gate physical barrier was proposed to mitigate the continued flow of NAPL into the Merrimack River. The purpose of the funnel was to divert groundwater (and potential NAPL) flow through two gate areas. Where required, an in situ system for product recovery was integrated. Mathematical modeling of the combined technologies led to the selection of a metal sheet pile barrier wall along 650 feet of the river's shoreline with the wall anchored into an underlying zone of lesser permeability. Multiple GZB wells were placed strategically within the system. This combination of technologies promised to offer a more effective, cost-efficient approach for long-term management of environmental concerns at Nashua, and related sites

  6. Bioaugmentation of oil reservoir indigenous Pseudomonas aeruginosa to enhance oil recovery through in-situ biosurfactant production without air injection.

    Science.gov (United States)

    Zhao, Feng; Li, Ping; Guo, Chao; Shi, Rong-Jiu; Zhang, Ying

    2018-03-01

    Considering the anoxic conditions within oil reservoirs, a new microbial enhanced oil recovery (MEOR) technology through in-situ biosurfactant production without air injection was proposed. High-throughput sequencing data revealed that Pseudomonas was one of dominant genera in Daqing oil reservoirs. Pseudomonas aeruginosa DQ3 which can anaerobically produce biosurfactant at 42 °C was isolated. Strain DQ3 was bioaugmented in an anaerobic bioreactor to approximately simulate MEOR process. During bioaugmentation process, although a new bacterial community was gradually formed, Pseudomonas was still one of dominant genera. Culture-based data showed that hydrocarbon-degrading bacteria and biosurfactant-producing bacteria were activated, while sulfate reducing bacteria were controlled. Biosurfactant was produced at simulated reservoir conditions, decreasing surface tension to 33.8 mN/m and emulsifying crude oil with EI 24  = 58%. Core flooding tests revealed that extra 5.22% of oil was displaced by in-situ biosurfactant production. Bioaugmenting indigenous biosurfactant producer P. aeruginosa without air injection is promising for in-situ MEOR applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Production of mullite-zirconia ceramics composites by 'In situ' reaction

    International Nuclear Information System (INIS)

    Melo, F.C.L. de; Cairo, C.A.A.; Piorino Neto, F.; Devezas, T.C.

    1987-01-01

    Mullita-zirconia ceramic composites were produced by 'In situ' reaction of alumina and brazilian zircon. The ideal curve of thermal treatment (reaction + sinterization) was determined for the obtention of composites of maximum mechanical resistence. The retained fraction of tetragonal fase was evaluated by X-ray difraction and correlated with the values of mechanical resistence obtained by different treatment curves. The performance of the developed composites under corrosion and thermal shock was evaluated by glass casting. (Author) [pt

  8. Biodiesel Production from Dry Microalga Biomass by Microwave-Assisted In-Situ Transesterification

    Directory of Open Access Journals (Sweden)

    Qadariyah Lailatul

    2018-01-01

    Full Text Available Microalga is one of the potential feedstocks in the manufacture of biodiesel because it contains high oil content. In this study, Chlorella sp. was selected because its high oil content about 28-32% of oil (based on its dry weight and its presence is abundant among other green algae. In situ transesterification was carried out in round neck flask under microwave irradiation. Microwave irradiation can facilitate the in situ transesterification by extracted the lipid of microalga and simultaneous convert to FAME. The purposes of this study are to investigate the effect of acid catalyst concentration, microwave power, reaction time and the addition of co-solvent (n-hexane on the yield of biodiesel, to get optimum operating conditions and to know the fatty acid compounds of biodiesel from Chlorella sp. The results of oil extraction and biodiesel were analyzed by GC-MS analysis. Based on the experiment, the yield of microalga oil was 11.37%. The optimum yield of biodiesel by in-situ transesterification was 75.68%. It was obtained at the microwave power of 450 watts, the reaction time of 60 minutes, an acid catalyst concentration of 0,2M of H2SO4, and the co-solvent addition of 10 ml.

  9. Recent developments in uranium resources and production with emphasis on in situ leach mining. Proceedings of a technical meeting

    International Nuclear Information System (INIS)

    2004-06-01

    An important role of the International Atomic Energy Agency is establishing contacts between Member States in order to foster the exchange of scientific and technical information on uranium production technologies. In situ leach (ISL) mining is defined as, the extraction of uranium from the host sandstone by chemical solutions and the recovery of uranium at the surface. ISL extraction is conducted by injecting a suitable leach solution into the ore zone below the water table; oxidizing, complexing, and mobilizing the uranium; recovering the pregnant solutions through production wells; and, finally, pumping the uranium bearing solution to the surface for further processing. As compared with conventional mining, in situ leach is recognized as having economic and environmental advantages when properly employed by knowledgeable specialists to extract uranium from suitable sandstone type deposits. Despite its limited applicability to specific types of uranium deposits, in recent years ISL uranium mining has been producing 15 to 21 per cent of world output. In 2002, ISL production was achieved in Australia, China, Kazakhstan, the United States of America and Uzbekistan. Its importance is expected to increase with new projects in Australia, China, Kazakhstan and the Russian Federation. The Technical Meeting on Recent Development in Uranium Resources and Production with Special Emphasis on In Situ Leach Mining, was held in Beijing from 18 to 20 September 2002, followed by the visit of the Yili ISL mine, Xinjiang Autonomous Region, China, from 21 to 23 September 2002. The meeting, held in cooperation with the Bureau of Geology, China National Nuclear Cooperation, was successful in bringing together 59 specialists representing 18 member states and one international organization (OECD/Nuclear Energy Agency). The papers describe a wide variety of activities related to the theme of the meeting. Subjects such as geology, resources evaluation, licensing, and mine restoration were

  10. In situ biosurfactant production and hydrocarbon removal by Pseudomonas putida CB-100 in bioaugmented and biostimulated oil-contaminated soil.

    Science.gov (United States)

    Ángeles, Martínez-Toledo; Refugio, Rodríguez-Vázquez

    2013-01-01

    In situ biosurfactant (rhamnolipid) production by Pseudomonas putida CB-100 was achieved during a bioaugmented and biostimulated treatment to remove hydrocarbons from aged contaminated soil from oil well drilling operations. Rhamnolipid production and contaminant removal were determined for several treatments of irradiated and non-irradiated soils: nutrient addition (nitrogen and phosphorus), P. putida addition, and addition of both (P. putida and nutrients). The results were compared against a control treatment that consisted of adding only sterilized water to the soils. In treatment with native microorganisms (non-irradiated soils) supplemented with P. putida, the removal of total petroleum hydrocarbons (TPH) was 40.6%, the rhamnolipid production was 1.54 mg/kg, and a surface tension of 64 mN/m was observed as well as a negative correlation (R = -0.54; p soil treated with P. putida, TPH removal was 24.5% with rhamnolipid generation of 1.79 mg/kg and 65.6 mN/m of surface tension, and a correlation between bacterial growth and biosurfactant production (R = -0.64; p soils, in situ rhamnolipid production by P. putida enhanced TPH decontamination of the soil.

  11. In-Situ Measurement of Vitamin C Content in Commercial Tablet Products by Terahertz Time-Domain

    Science.gov (United States)

    Kang, JuHee; Song, Jeonghun; Jung, Tae Sub; Kwak, Kyungwon; Chun, Hyang Sook

    2018-04-01

    Terahertz time-domain spectroscopy (THz-TDS) was applied to investigate the feasibility of in-situ measuring vitamin C content in commercial tablet products without any pretreatments. Characteristic absorption peaks of vitamin C were analyzed with quantum mechanical calculation to reveal the molecular origin of them. The peak appearing at 1.08 THz was then selected and tested for its suitability as a fingerprint signal for analyzing the vitamin C content in dietary supplement tablets. There are a couple of factors influencing THz absorbance other than concentration. Among those, the effects of tablet thickness and types of excipients in the tablet products were found to be significant, and were corrected with the calibration curve to determine vitamin C concentration in tablet forms. Furthermore, commercial tablet products in the market were analyzed using THz-TDS and the measured vitamin C contents were in good agreement with those determined using a reference method (high-performance liquid chromatography). Thus, our results suggest that THz-TDS can be used for the in-situ analysis of vitamin C in commercial tablet products.

  12. Biodiesel Production from Residual Palm Oil Contained in Spent Bleaching Earth by In Situ Trans-Esterification

    Directory of Open Access Journals (Sweden)

    A S Fahmil QRM

    2014-06-01

    Full Text Available Spent Bleaching Earth (SBE is an industrial solid waste of vegetable oil industry that has a high residual oil to be potentialy converted to biodiesel. This study aims at developing a biodiesel production process technology by utilizing residual palm oil contained in SBE and to test the use of hexane in the trans-esterification process. Optimization process was done by using the Response Surface Method (RSM. The variables studied included catalyst concentration and reaction time. On the other hand, the deoiled SBE resulted from biodiesel production was tested as an adsorbent on biodiesel purification after being reactivated. The method used in the biodiesel production included an in situ acid catalysed esterification followed by in situ base catalysed trans-esterification. The results of RSM showed that the optimum process was obtained at NaOH concentration of 1.8% and reaction time of 104.73 minutes, with a predicted response rate of 97.18% and 95.63% for validation results. The use of hexane could also increase the yield of biodiesel which was obtained on the ratio of hexane to methanol of 0.4:1 (volume of hexane: volume of methanol. On the other hand, the reactivated bleaching earth was effective as an adsorbent in biodiesel production, which was still conform with the Indonesian National Standard.

  13. Removing hydrochloric acid exhaust products from high performance solid rocket propellant using aluminum-lithium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Terry, Brandon C., E-mail: terry13@purdue.edu [School of Aeronautics and Astronautics, Purdue University, Zucrow Laboratories, 500 Allison Rd, West Lafayette, IN 47907 (United States); Sippel, Travis R. [Department of Mechanical Engineering, Iowa State University, 2025 Black Engineering, Ames, IA 50011 (United States); Pfeil, Mark A. [School of Aeronautics and Astronautics, Purdue University, Zucrow Laboratories, 500 Allison Rd, West Lafayette, IN 47907 (United States); Gunduz, I.Emre; Son, Steven F. [School of Mechanical Engineering, Purdue University, Zucrow Laboratories, 500 Allison Rd, West Lafayette, IN 47907 (United States)

    2016-11-05

    Highlights: • Al-Li alloy propellant has increased ideal specific impulse over neat aluminum. • Al-Li alloy propellant has a near complete reduction in HCl acid formation. • Reduction in HCl was verified with wet bomb experiments and DSC/TGA-MS/FTIR. - Abstract: Hydrochloric acid (HCl) pollution from perchlorate based propellants is well known for both launch site contamination, as well as the possible ozone layer depletion effects. Past efforts in developing environmentally cleaner solid propellants by scavenging the chlorine ion have focused on replacing a portion of the chorine-containing oxidant (i.e., ammonium perchlorate) with an alkali metal nitrate. The alkali metal (e.g., Li or Na) in the nitrate reacts with the chlorine ion to form an alkali metal chloride (i.e., a salt instead of HCl). While this technique can potentially reduce HCl formation, it also results in reduced ideal specific impulse (I{sub SP}). Here, we show using thermochemical calculations that using aluminum-lithium (Al-Li) alloy can reduce HCl formation by more than 95% (with lithium contents ≥15 mass%) and increase the ideal I{sub SP} by ∼7 s compared to neat aluminum (using 80/20 mass% Al-Li alloy). Two solid propellants were formulated using 80/20 Al-Li alloy or neat aluminum as fuel additives. The halide scavenging effect of Al-Li propellants was verified using wet bomb combustion experiments (75.5 ± 4.8% reduction in pH, ∝ [HCl], when compared to neat aluminum). Additionally, no measurable HCl evolution was detected using differential scanning calorimetry coupled with thermogravimetric analysis, mass spectrometry, and Fourier transform infrared absorption.

  14. Removing hydrochloric acid exhaust products from high performance solid rocket propellant using aluminum-lithium alloy

    International Nuclear Information System (INIS)

    Terry, Brandon C.; Sippel, Travis R.; Pfeil, Mark A.; Gunduz, I.Emre; Son, Steven F.

    2016-01-01

    Highlights: • Al-Li alloy propellant has increased ideal specific impulse over neat aluminum. • Al-Li alloy propellant has a near complete reduction in HCl acid formation. • Reduction in HCl was verified with wet bomb experiments and DSC/TGA-MS/FTIR. - Abstract: Hydrochloric acid (HCl) pollution from perchlorate based propellants is well known for both launch site contamination, as well as the possible ozone layer depletion effects. Past efforts in developing environmentally cleaner solid propellants by scavenging the chlorine ion have focused on replacing a portion of the chorine-containing oxidant (i.e., ammonium perchlorate) with an alkali metal nitrate. The alkali metal (e.g., Li or Na) in the nitrate reacts with the chlorine ion to form an alkali metal chloride (i.e., a salt instead of HCl). While this technique can potentially reduce HCl formation, it also results in reduced ideal specific impulse (I_S_P). Here, we show using thermochemical calculations that using aluminum-lithium (Al-Li) alloy can reduce HCl formation by more than 95% (with lithium contents ≥15 mass%) and increase the ideal I_S_P by ∼7 s compared to neat aluminum (using 80/20 mass% Al-Li alloy). Two solid propellants were formulated using 80/20 Al-Li alloy or neat aluminum as fuel additives. The halide scavenging effect of Al-Li propellants was verified using wet bomb combustion experiments (75.5 ± 4.8% reduction in pH, ∝ [HCl], when compared to neat aluminum). Additionally, no measurable HCl evolution was detected using differential scanning calorimetry coupled with thermogravimetric analysis, mass spectrometry, and Fourier transform infrared absorption.

  15. Trichloroethylene decomposition and in-situ dry sorption of Cl-products by calcium oxides prepared from hydrated limes.

    Science.gov (United States)

    Gotoh, Yoshimi; Iwata, Goichi; Choh, Kyaw; Kubota, Mitsuhiro; Matsuda, Hitoki

    2011-10-01

    A comparison of CaOs produced by calcining two types of hydrated lime and calcium carbonate was made for decomposition of trichloroethylene and in-situ dry sorption of the decomposed Cl-products using a lab-scale gas flow type tubular packed bed reactor. About 20 mg of CaO sample was mixed with about 2 g of Al2O3 particles and packed in the reactor and allowed to react with a flowing standard gas containing 500 ppm of C2HCl3 (N2 balance) at 673 and 873 K, under the condition that the reaction of CaO with C2HCl3 might be completed within a few hours. It was found that no thermal decomposition of C2HCl3 at or below 673 K was observed in a reactor packed only with Al2O3 particles. However, a considerable amount of decomposition of C2HCl3 was obtained in a reactor packed with CaO and Al2O3, even at 673 K. For 1 mol of CaO prepared by calcining highly reactive Ca(OH)2 at 673 K, decomposition of 0.42 mol of C2HCl3 and in-situ absorption product of 0.53 mol of CaCl2 were obtained. At 873 K, about 46% of C2HCl3 was thermally decomposed. The total amount of C2HCl3 decomposed in CaO-Al2O3 particle bed at 873 K became nearly twice larger than that at 673 K. For 1 mol of CaO prepared by calcining highly reactive Ca(OH)2 at 873 K, decomposition of 0.59 mol of C2HCl3 and in-situ absorption product of 0.67 mol of CaCl2 were obtained. Small amounts of C2Cl2, C2Cl4, CCl4, etc. were detected during decomposition of C2HCl3 at 673 and 873 K. It was recognized that the data on decomposition of C2HCl3 as well as in-situ dry sorption of Cl-products in CaO particle bed were correlated with specific surface area of the CaO employed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. In-situ Alkaline Transesterification of Jatropha Curcas Seed Oil for Production of Biodiesel and Nontoxic Jatropha Seed Cake

    OpenAIRE

    Nazir, Novizar; Mangunwidjaja, Djumali; Setyaningsih, Dwi; Yuliani, Sri; Yarmo, Mohd. Ambar; Salimon, Jumat; Ramli, Nazaruddin

    2014-01-01

    The production of fatty acid methyl ester (FAME) by direct in situ alkaline-catalyzed transesterification of the triglycerides (TG) in Jatropha curcas seeds was examined. The experimental results showed that the amount of Jatropha curcas seed oil dissolved in methanol was approximately 83% of the total oil and the conversion of this oil could achieve 98% under the following conditions: less than 2% moisture content in Jatropha curcas seed flours, 0.3–0.335 mm particle size, 0.08 mol/L NaOH co...

  17. Enhanced biocatalytic production of L-cysteine by Pseudomonas sp. B-3 with in situ product removal using ion-exchange resin.

    Science.gov (United States)

    Wang, Pu; He, Jun-Yao; Yin, Jiang-Feng

    2015-03-01

    Bioconversion of DL-2-amino-Δ(2)-thiazoline-4-carboxylic acid (DL-ATC) catalyzed by whole cells of Pseudomonas sp. was successfully applied for the production of L-cysteine. It was found, however, like most whole-cell biocatalytic processes, the accumulated L-cysteine produced obvious inhibition to the activity of biocatalyst and reduced the yield. To improve L-cysteine productivity, an anion exchange-based in situ product removal (ISPR) approach was developed. Several anion-exchange resins were tested to select a suitable adsorbent used in the bioconversion of DL-ATC for the in situ removal of L-cysteine. The strong basic anion-exchange resin 201 × 7 exhibited the highest adsorption capacity for L-cysteine and low adsorption for DL-ATC, which is a favorable option. With in situ addition of 60 g L(-1) resin 201 × 7, the product inhibition can be reduced significantly and 200 mmol L(-1) of DL-ATC was converted to L-cysteine with 90.4 % of yield and 28.6 mmol L(-1 )h(-1) of volumetric productivity. Compared to the bioconversion without the addition of resin, the volumetric productivity of L-cysteine was improved by 2.27-fold using ISPR method.

  18. In Situ Biodiesel Production from Fast-Growing and High Oil Content Chlorella pyrenoidosa in Rice Straw Hydrolysate

    Science.gov (United States)

    Li, Penglin; Miao, Xiaoling; Li, Rongxiu; Zhong, Jianjiang

    2011-01-01

    Rice straw hydrolysate was used as lignocellulose-based carbon source for Chlorella pyrenoidosa cultivation and the feasibility of in situ biodiesel production was investigated. 13.7 g/L sugar was obtained by enzymatic hydrolyzation of rice straw. Chlorella pyrenoidosa showed a rapid growth in the rice straw hydrolysate medium, the maximum biomass concentration of 2.83 g/L was obtained in only 48 hours. The lipid content of the cells reached as high as 56.3%. In situ transesterification was performed for biodiesel production. The optimized condition was 1 g algal powder, 6 mL n-hexane, and 4 mL methanol with 0.5 M sulfuric acid at the temperature of 90°C in 2-hour reaction time, under which over 99% methyl ester content and about 95% biodiesel yield were obtained. The results suggested that the method has great potential in the production of biofuels with lignocellulose as an alternative carbon source for microalgae cultivation. PMID:21318171

  19. Removing hydrochloric acid exhaust products from high performance solid rocket propellant using aluminum-lithium alloy.

    Science.gov (United States)

    Terry, Brandon C; Sippel, Travis R; Pfeil, Mark A; Gunduz, I Emre; Son, Steven F

    2016-11-05

    Hydrochloric acid (HCl) pollution from perchlorate based propellants is well known for both launch site contamination, as well as the possible ozone layer depletion effects. Past efforts in developing environmentally cleaner solid propellants by scavenging the chlorine ion have focused on replacing a portion of the chorine-containing oxidant (i.e., ammonium perchlorate) with an alkali metal nitrate. The alkali metal (e.g., Li or Na) in the nitrate reacts with the chlorine ion to form an alkali metal chloride (i.e., a salt instead of HCl). While this technique can potentially reduce HCl formation, it also results in reduced ideal specific impulse (ISP). Here, we show using thermochemical calculations that using aluminum-lithium (Al-Li) alloy can reduce HCl formation by more than 95% (with lithium contents ≥15 mass%) and increase the ideal ISP by ∼7s compared to neat aluminum (using 80/20 mass% Al-Li alloy). Two solid propellants were formulated using 80/20 Al-Li alloy or neat aluminum as fuel additives. The halide scavenging effect of Al-Li propellants was verified using wet bomb combustion experiments (75.5±4.8% reduction in pH, ∝ [HCl], when compared to neat aluminum). Additionally, no measurable HCl evolution was detected using differential scanning calorimetry coupled with thermogravimetric analysis, mass spectrometry, and Fourier transform infrared absorption. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. In situ production of microporous foams in sub-millimeter cylindrical gold targets

    International Nuclear Information System (INIS)

    Fan Yongheng; Luo Xuan; Fang Yu; Ren Hongbo; Yuan Guanghui; Wang Honglian; Zhou Lan; Zhang Lin; Du Kai

    2009-01-01

    The preparation of microcellular foam in sub-millimeter cylindrical gold targets is described. Small, open-ended, gold cylinders of 400 μm diameter, 700 μm length, and 20 μm wall thickness were fabricated by electroplating gold onto a silicon bronze mandrel and leaching the mandrel with concentrated nitric acid. After several rinsing and cleaning steps, the cylinders were filled with a solution containing acrylate monomers. The solution was polymerized in situ with ultraviolet light to produce a gel. Precipitation of these gels in a non-solvent such as methanol and subsequent drying by means of a critical point drying apparatus produced cylinders filled with microporous foams. The foams have densities of 50 mg · cm -3 and cell sizes on more than 1 μm. They fill the cylinders completely without shrinkage during the drying process, and need no subsequent machining. (authors)

  1. Stress–rupture measurements of cast magnesium strengthened by in-situ production of ceramic particles

    Directory of Open Access Journals (Sweden)

    Nagaraj M. Chelliah

    2017-06-01

    Full Text Available We have introduced a polymer precursor into molten magnesium and then in-situ pyrolyzed to produce castings of metal matrix composites (P-MMCs containing silicon-carbonitride (SiCNO ceramic particles. Stress-rupture measurements of as-cast P-MMCs was performed at 350 °C (0.69TM to 450 °C (0.78TM under dead load condition corresponding to tensile stress of 2.5 MPa to 20 MPa. The time-to-fracture data were analyzed using the classical Monkman–Grant equation. The time-to-fracture is thermally activated and follows a power-law stress exponent exhibiting dislocation creep. Fractography analysis revealed that while pure magnesium appears to fracture by dislocation slip, the P-MMCs fail from the nucleation and growth of voids at the grain boundaries.

  2. 36Cl production in situ, and groundwater transport in a uranium ore deposit

    International Nuclear Information System (INIS)

    Cornett, R.J.; Andrews, H.R.; Brown, R.M.; Chant, L.A.; Cramer, J.; Davies, W.G.; Greiner, B.F.; Imahori, Y.; Koslowsky, V.T.; McKay, J.W.; Milton, G.M.; Milton, J.D.C.

    1992-01-01

    The authors have used AMS to measure 36 Cl concentrations produced in situ in ore and in groundwater within the 1.3 billion year old Cigar Lake uranium ore deposit. 36 Cl concentrations are up to 300 times higher in the ore zone than in the surrounding aquifer. Based on 36 Cl ingrowth, the authors calculate the residence time of water within the ore zone to be 100,000 to 300,000 years. Since the geologic setting of this deposit is a very close natural analogue to a proposed nuclear fuel waste repository, this analysis demonstrates that natural geological barriers can effectively isolate mobile radionuclides from an open, regional groundwater flow system over millennia

  3. In situ biosurfactant production and hydrocarbon removal by Pseudomonas putida CB-100 in bioaugmented and biostimulated oil-contaminated soil

    Directory of Open Access Journals (Sweden)

    Martínez-Toledo Ángeles

    2013-01-01

    Full Text Available In situ biosurfactant (rhamnolipid production by Pseudomonas putida CB-100 was achieved during a bioaugmented and biostimulated treatment to remove hydrocarbons from aged contaminated soil from oil well drilling operations. Rhamnolipid production and contaminant removal were determined for several treatments of irradiated and non-irradiated soils: nutrient addition (nitrogen and phosphorus, P. putida addition, and addition of both (P. putida and nutrients. The results were compared against a control treatment that consisted of adding only sterilized water to the soils. In treatment with native microorganisms (non-irradiated soils supplemented with P. putida, the removal of total petroleum hydrocarbons (TPH was 40.6%, the rhamnolipid production was 1.54 mg/kg, and a surface tension of 64 mN/m was observed as well as a negative correlation (R = -0.54; p < 0.019 between TPH concentration (mg/kg and surface tension (mN/m, When both bacteria and nutrients were involved, TPH levels were lowered to 33.7%, and biosurfactant production and surface tension were 2.03 mg/kg and 67.3 mN/m, respectively. In irradiated soil treated with P. putida, TPH removal was 24.5% with rhamnolipid generation of 1.79 mg/kg and 65.6 mN/m of surface tension, and a correlation between bacterial growth and biosurfactant production (R = -0.64; p < 0.009 was observed. When the nutrients and P. putida were added, TPH removal was 61.1%, 1.85 mg/kg of biosurfactants were produced, and the surface tension was 55.6 mN/m. In summary, in irradiated and non-irradiated soils, in situ rhamnolipid production by P. putida enhanced TPH decontamination of the soil.

  4. Enhancement of Biodiesel Production from Marine Alga, Scenedesmus sp. through In Situ Transesterification Process Associated with Acidic Catalyst

    Directory of Open Access Journals (Sweden)

    Ga Vin Kim

    2014-01-01

    Full Text Available The aim of this study was to increase the yield of biodiesel produced by Scenedesmus sp. through in situ transesterification by optimizing various process parameters. Based on the orthogonal matrix analysis for the acidic catalyst, the effects of the factors decreased in the order of reaction temperature (47.5% > solvent quantity (26.7% > reaction time (17.5% > catalyst amount (8.3%. Based on a Taguchi analysis, the effects of the factors decreased in the order of solvent ratio (34.36% > catalyst (28.62% > time (19.72% > temperature (17.32%. The overall biodiesel production appeared to be better using NaOH as an alkaline catalyst rather than using H2SO4 in an acidic process, at 55.07 ± 2.18% (based on lipid weight versus 48.41 ± 0.21%. However, in considering the purified biodiesel, it was found that the acidic catalyst was approximately 2.5 times more efficient than the alkaline catalyst under the following optimal conditions: temperature of 70°C (level 2, reaction time of 10 hrs (level 2, catalyst amount of 5% (level 3, and biomass to solvent ratio of 1 : 15 (level 2, respectively. These results clearly demonstrated that the acidic solvent, which combined oil extraction with in situ transesterification, was an effective catalyst for the production of high-quantity, high-quality biodiesel from a Scenedesmus sp.

  5. Enhancement of Biodiesel Production from Marine Alga, Scenedesmus sp. through In Situ Transesterification Process Associated with Acidic Catalyst

    Science.gov (United States)

    Kim, Ga Vin; Choi, WoonYong; Kang, DoHyung; Lee, ShinYoung; Lee, HyeonYong

    2014-01-01

    The aim of this study was to increase the yield of biodiesel produced by Scenedesmus sp. through in situ transesterification by optimizing various process parameters. Based on the orthogonal matrix analysis for the acidic catalyst, the effects of the factors decreased in the order of reaction temperature (47.5%) > solvent quantity (26.7%) > reaction time (17.5%) > catalyst amount (8.3%). Based on a Taguchi analysis, the effects of the factors decreased in the order of solvent ratio (34.36%) > catalyst (28.62%) > time (19.72%) > temperature (17.32%). The overall biodiesel production appeared to be better using NaOH as an alkaline catalyst rather than using H2SO4 in an acidic process, at 55.07 ± 2.18% (based on lipid weight) versus 48.41 ± 0.21%. However, in considering the purified biodiesel, it was found that the acidic catalyst was approximately 2.5 times more efficient than the alkaline catalyst under the following optimal conditions: temperature of 70°C (level 2), reaction time of 10 hrs (level 2), catalyst amount of 5% (level 3), and biomass to solvent ratio of 1 : 15 (level 2), respectively. These results clearly demonstrated that the acidic solvent, which combined oil extraction with in situ transesterification, was an effective catalyst for the production of high-quantity, high-quality biodiesel from a Scenedesmus sp. PMID:24689039

  6. Enhancement of biodiesel production from marine alga, Scenedesmus sp. through in situ transesterification process associated with acidic catalyst.

    Science.gov (United States)

    Kim, Ga Vin; Choi, Woonyong; Kang, Dohyung; Lee, Shinyoung; Lee, Hyeonyong

    2014-01-01

    The aim of this study was to increase the yield of biodiesel produced by Scenedesmus sp. through in situ transesterification by optimizing various process parameters. Based on the orthogonal matrix analysis for the acidic catalyst, the effects of the factors decreased in the order of reaction temperature (47.5%) > solvent quantity (26.7%) > reaction time (17.5%) > catalyst amount (8.3%). Based on a Taguchi analysis, the effects of the factors decreased in the order of solvent ratio (34.36%) > catalyst (28.62%) > time (19.72%) > temperature (17.32%). The overall biodiesel production appeared to be better using NaOH as an alkaline catalyst rather than using H2SO4 in an acidic process, at 55.07 ± 2.18% (based on lipid weight) versus 48.41 ± 0.21%. However, in considering the purified biodiesel, it was found that the acidic catalyst was approximately 2.5 times more efficient than the alkaline catalyst under the following optimal conditions: temperature of 70 °C (level 2), reaction time of 10 hrs (level 2), catalyst amount of 5% (level 3), and biomass to solvent ratio of 1 : 15 (level 2), respectively. These results clearly demonstrated that the acidic solvent, which combined oil extraction with in situ transesterification, was an effective catalyst for the production of high-quantity, high-quality biodiesel from a Scenedesmus sp.

  7. Two-phase systems: Potential for in situ extraction of microalgal products

    NARCIS (Netherlands)

    Kleinegris, D.M.M.; Janssen, M.G.J.; Brandenburg, W.A.; Wijffels, R.H.

    2011-01-01

    Algae are currently used for production of niche products and are becoming increasingly interesting for the production of bulk commodities, such as biodiesel. For the production of these goods to become economically feasible, production costs will have to be lowered by one order of magnitude. The

  8. Measurements of 14C in ancient ice from Taylor Glacier, Antarctica constrain in situ cosmogenic 14CH4 and 14CO production rates

    Science.gov (United States)

    Petrenko, Vasilii V.; Severinghaus, Jeffrey P.; Schaefer, Hinrich; Smith, Andrew M.; Kuhl, Tanner; Baggenstos, Daniel; Hua, Quan; Brook, Edward J.; Rose, Paul; Kulin, Robb; Bauska, Thomas; Harth, Christina; Buizert, Christo; Orsi, Anais; Emanuele, Guy; Lee, James E.; Brailsford, Gordon; Keeling, Ralph; Weiss, Ray F.

    2016-03-01

    Carbon-14 (14C) is incorporated into glacial ice by trapping of atmospheric gases as well as direct near-surface in situ cosmogenic production. 14C of trapped methane (14CH4) is a powerful tracer for past CH4 emissions from ;old; carbon sources such as permafrost and marine CH4 clathrates. 14C in trapped carbon dioxide (14CO2) can be used for absolute dating of ice cores. In situ produced cosmogenic 14C in carbon monoxide (14CO) can potentially be used to reconstruct the past cosmic ray flux and past solar activity. Unfortunately, the trapped atmospheric and in situ cosmogenic components of 14C in glacial ice are difficult to disentangle and a thorough understanding of the in situ cosmogenic component is needed in order to extract useful information from ice core 14C. We analyzed very large (≈1000 kg) ice samples in the 2.26-19.53 m depth range from the ablation zone of Taylor Glacier, Antarctica, to study in situ cosmogenic production of 14CH4 and 14CO. All sampled ice is >50 ka in age, allowing for the assumption that most of the measured 14C originates from recent in situ cosmogenic production as ancient ice is brought to the surface via ablation. Our results place the first constraints on cosmogenic 14CH4 production rates and improve on prior estimates of 14CO production rates in ice. We find a constant 14CH4/14CO production ratio (0.0076 ± 0.0003) for samples deeper than 3 m, which allows the use of 14CO for correcting the 14CH4 signals for the in situ cosmogenic component. Our results also provide the first unambiguous confirmation of 14C production by fast muons in a natural setting (ice or rock) and suggest that the 14C production rates in ice commonly used in the literature may be too high.

  9. The influence of lunar propellant production on the cost-effectiveness of cislunar transportation systems

    Science.gov (United States)

    Koelle, H. H.

    1992-01-01

    It is well known that propellants produced at the points of destination such as the Moon or Mars will help the economy of space transportation, particularly if round trips with a crew are involved. The construction and operation of a lunar base shortly after the turn of the century is one of the space programs under serious consideration at the present time. Space transportation is one of the major cost drivers. With present technology, if expendable launchers were employed, the specific transportation costs of one-way cargo flights would be approximately 10,000 dollars/kg (1985) at life-cycle cumulative 100,000 ton payload to the lunar surface. A fully reusable space transportation system using lunar oxygen and Earth-produced liquid hydrogen (LH2) would reduce the specific transportation costs by one order of magnitude to less than 1000 dollars/kg at the same payload volume. Another case of primary interest is the delivery of construction material and consumables from the lunar surface to the assembly site of space solar power plants in geostationary orbit (GEO). If such a system were technically and economically feasible, a cumulative payload of about 1 million tons or more would be required. At this level a space freighter system could deliver this material from Earth for about 300 dollars/kg (1985) to GEO. A lunar space transportation system using lunar oxygen and a fuel mixture of 50 percent Al and 50 percent LH2 (that has to come from Earth) could reduce the specific transportation costs to less than half, approximately 150 dollars/kg. If only lunar oxygen were available, these costs would come down to 200 dollars/kg. This analysis indicates a sizable reduction of the transportation burden on this type of mission. It should not be overlooked, however, that there are several uncertainties in such calculations. It is quite difficult at this point to calculate the cost of lunar-produced O and/or Al. This will be a function of production rate and life

  10. Towards optimization of experimental parameters for studying Li-O2 battery discharge products in TEM using in situ EELS.

    Science.gov (United States)

    Basak, Shibabrata; Jansen, Jacob; Kabiri, Yoones; Zandbergen, Henny W

    2018-05-01

    The key to understanding the performance of Li-O 2 batteries is to study the chemical and structural properties of their discharge product(s) at the nanometer scale. Using TEM for this purpose poses challenges due to the sensitivity of samples to air and electron beams. This paper describes our use of in situ EELS to evaluate experimental procedures to reduce electron-beam degradation and presents methods to deal with air sensitivity. Our results show that Li 2 O 2 decomposition is dependent on the total dose and is approximately 4-5 times more pronounced at 80 than at 200 kV. We also demonstrate the benefits of using low-dose-rate STEM. We show further that a "graphene cell", which encapsulates the sample within graphene sheets, can protect the sample against air and e-beam damage. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Chemical composition and the nutritive value of pistachio epicarp (in situ degradation and in vitro gas production techniques

    Directory of Open Access Journals (Sweden)

    Somayeh Bakhshizadeh

    2014-04-01

    Full Text Available The nutritive value of pistachio epicarp (PE was evaluated by in situ and in vitro techniques. Chemical analysis indicated that PE was high in crude protein (11.30% and low in neutral detergent fiber (26.20%. Total phenols, total tannins, condensed tannins and hydrolysable tannins contents in PE were 8.29%, 4.48%, 0.49% and 3.79%, respectively. Ruminal dry matter and crude protein degradation after 48 hr incubation were 75.21% and 82.52%, respectively. The gas production volume at 48 hr for PE was 122.47 mL g-1DM. As a whole, adding polyethylene glycol (PEG to PE increased (p < 0.05 gas production volumes, organic matter digestibility and the metabolizable energy that illustrated inhibitory effect of phenolics on rumen microbial fermentation and the positive influence of PEG on digestion PE. The results showed that PE possessed potentials to being used as feed supplements.

  12. A comparison of the energy use of in situ product recovery techniques for the Acetone Butanol Ethanol fermentation.

    Science.gov (United States)

    Outram, Victoria; Lalander, Carl-Axel; Lee, Jonathan G M; Davis, E Timothy; Harvey, Adam P

    2016-11-01

    The productivity of the Acetone Butanol Ethanol (ABE) fermentation can be significantly increased by application of various in situ product recovery (ISPR) techniques. There are numerous technically viable processes, but it is not clear which is the most economically viable in practice. There is little available information about the energy requirements and economics of ISPR for the ABE fermentation. This work compares various ISPR techniques based on UniSim process simulations of the ABE fermentation. The simulations provide information on the process energy and separation efficiency, which is fed into an economic assessment. Perstraction was the only technique to reduce the energy demand below that of a batch process, by approximately 5%. Perstraction also had the highest profit increase over a batch process, by 175%. However, perstraction is an immature technology, so would need significant development before being integrated to an industrial process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. In situ olive mill residual co-composting for soil organic fertility restoration and by-product sustainable reuse

    Directory of Open Access Journals (Sweden)

    Teresa Casacchia

    2012-06-01

    Full Text Available The addition of organic matter in the form of compost improves overall physical, chemical and biological properties of soils but, to be really sustainable, the composting process should be carried out using the by-products available in situ. Two different soils of a Mediterranean olive orchard, one managed traditionally (NAS and the other amended with compost (AS, were investigated in a two-year experiment. Increases in total organic matter, total nitrogen and pH, were detected in AS if compared to NAS. Significant increases in total and specific microbial counts were observed in AS, with a clear amelioration of microbiological soil quality. The results demonstrated that soil amendment using compost deriving from olive mill by-products can be an important agricultural practice for supporting and stimulating soil microorganisms and, at the same time, for re-using these byproducts, so avoiding their negative environmental impact.

  14. Chemical composition and the nutritive value of pistachio epicarp (in situ degradation and in vitro gas production techniques).

    Science.gov (United States)

    Bakhshizadeh, Somayeh; Taghizadeh, Akbar; Janmohammadi, Hossein; Alijani, Sadegh

    2014-01-01

    The nutritive value of pistachio epicarp (PE) was evaluated by in situ and in vitro techniques. Chemical analysis indicated that PE was high in crude protein (11.30%) and low in neutral detergent fiber (26.20%). Total phenols, total tannins, condensed tannins and hydrolysable tannins contents in PE were 8.29%, 4.48%, 0.49% and 3.79%, respectively. Ruminal dry matter and crude protein degradation after 48 hr incubation were 75.21% and 82.52%, respectively. The gas production volume at 48 hr for PE was 122.47 mL g(-1)DM. As a whole, adding polyethylene glycol (PEG) to PE increased (p gas production volumes, organic matter digestibility and the metabolizable energy that illustrated inhibitory effect of phenolics on rumen microbial fermentation and the positive influence of PEG on digestion PE. The results showed that PE possessed potentials to being used as feed supplements.

  15. Polymerization in situ by means of radiation gamma for the production of conducting polymeric composites

    International Nuclear Information System (INIS)

    Poblete Pulgar, Victor; Pilleux Cepeda, Mauricio; Fuenzalida Escobar, Victor; Alvarez Vargas, Mariela

    2002-01-01

    The nanocomposites synthesis of copper-methyl metacritate is made using copper spheres from 80 to 120 diameter nm, suspended in a methyl metacrilato (MMA) matrix, for different concentrations (5% to 30% of copper-v/v). The polymerization is carried out by means of gamma radiation, with 16 kGy dose applied 'in situ'. A high homogenous samples were obtained. The morphology and formation of the composite was studied by means of scanning electronic microscopy (SEM). The observed electric resistance is analyzed in function of the distance among electric contacts, meeting a strong dependence of the resistance with the homogeneous distribution of the metal in the composite. The obtained specific resistivities, in function of the concentration of the conductive metal, they are in the order of 42 Ωm for 10% v/v, being this critical concentration, the percolation threshold of the system. The obtained results show a material that is able to conserve principally the mechanical properties of the polymer and the electric properties of the conductive metal (author)

  16. Development of a fermented ice-cream as influenced by in situ exopolysaccharide production: Rheological, molecular, microstructural and sensory characterization.

    Science.gov (United States)

    Dertli, Enes; Toker, Omer S; Durak, M Zeki; Yilmaz, Mustafa T; Tatlısu, Nevruz Berna; Sagdic, Osman; Cankurt, Hasan

    2016-01-20

    This study aimed to investigate the role of in situ exopolysaccharide (EPS) production by EPS(+)Streptococcus thermophilus strains on physicochemical, rheological, molecular, microstructural and sensory properties of ice cream in order to develop a fermented and consequently functional ice-cream in which no stabilizers would be required in ice-cream production. For this purpose, the effect of EPS producing strains (control, strain 1, strain 2 and mixture) and fermentation conditions (fermentation temperature; 32, 37 and 42 °C and time; 2, 3 and 4h) on pH, S. thermophilus count, EPS amount, consistency coefficient (K), and apparent viscosity (η50) were investigated and optimized using single and multiple response optimization tools of response surface methodology. Optimization analyses indicated that functional ice-cream should be fermented with strain 1 or strain mixture at 40-42 °C for 4h in order to produce the most viscous ice-cream with maximum EPS content. Optimization analysis results also revealed that strain specific conditions appeared to be more effective factor on in situ EPS production amount, K and η50 parameters than did fermentation temperature and time. The rheological analysis of the ice-cream produced by EPS(+) strains revealed its high viscous and pseudoplastic non-Newtonian fluid behavior, which demonstrates potential of S. thermophilus EPS as thickening and gelling agent in dairy industry. FTIR analysis proved that the EPS in ice-cream corresponded to a typical EPS, as revealed by the presence of carboxyl, hydroxyl and amide groups with additional α-glycosidic linkages. SEM studies demonstrated that it had a web-like compact microstructure with pores in ice-cream, revealing its application possibility in dairy products to improve their rheological properties. Copyright © 2015. Published by Elsevier Ltd.

  17. Determining of Degradation and Digestion Coefficients of Canola meal Using of In situ and Gas production Techniques

    Directory of Open Access Journals (Sweden)

    Younes Tahmazi

    2015-04-01

    Full Text Available This study was carried out to the determination of nutritive value of canola meal using naylon bag and cumulative gas production techniques in Gizel sheep. Tow fistulated Gizel sheep with average BW 45±2 kg used in a complete randomized design. The cumulative gas production was measured at 2, 4, 6, 8, 12, 16, 24, 36 and 48 h and ruminal DM and CP disappearance were measured up to 96 h. Coefficients of soluble CP degradation of canola meal (A, canola meal treated with 0.5% urea (B and canola meal treated with micro wave (C were 4.74, 15.81 and 15%, and for fermentable portion were 31.05, 39.62 and 65.55%, respectively. The cumulative gas production of soluble and insoluble portions (a+b were 252.13, 213.57 and 240.88 ml/g DM. Metabolizable protein of treatments A, B and C were 283.11, 329.33 and 284.39 g/kg DM, that were not significantly different. The relationship between dry matter and cumulative gas production values for treatments obtained about 0.958, 0.976 and 0.932 and this parameter for crude protein and cumulative gas production achieved 0.987, 0.994 and 0.989, respectively. High correlation between in situ and cumulative gas production techniques indicated that digestibility values can be predicted from cumulative gas production data.

  18. DGT Passive Sampling for Quantitative in Situ Measurements of Compounds from Household and Personal Care Products in Waters.

    Science.gov (United States)

    Chen, Wei; Li, Yanying; Chen, Chang-Er; Sweetman, Andrew J; Zhang, Hao; Jones, Kevin C

    2017-11-21

    Widespread use of organic chemicals in household and personal care products (HPCPs) and their discharge into aquatic systems means reliable, robust techniques to monitor environmental concentrations are needed. The passive sampling approach of diffusive gradients in thin-films (DGT) is developed here and demonstrated to provide in situ quantitative and time-weighted average (TWA) measurement of these chemicals in waters. The novel technique is developed for HPCPs, including preservatives, antioxidants and disinfectants, by evaluating the performance of different binding agents. Ultrasonic extraction of binding gels in acetonitrile gave good and consistent recoveries for all test chemicals. Uptake by DGT with HLB (hydrophilic-lipophilic-balanced) as the binding agent was relatively independent of pH (3.5-9.5), ionic strength (0.001-0.1 M) and dissolved organic matter (0-20 mg L -1 ), making it suitable for applications across a wide range of environments. Deployment time and diffusion layer thickness dependence experiments confirmed DGT accumulated chemicals masses are consistent with theoretical predictions. The technique was further tested and applied in the influent and effluent of a wastewater treatment plant. Results were compared with conventional grab-sampling and 24-h-composited samples from autosamplers. DGT provided TWA concentrations over up to 18 days deployment, with minimal effects from biofouling or the diffusive boundary layer. The field application demonstrated advantages of the DGT technique: it gives in situ analyte preconcentration in a simple matrix, with more quantitative measurement of the HPCP analytes.

  19. Agglomerates, smoke oxide particles, and carbon inclusions in condensed combustion products of an aluminized GAP-based propellant

    Science.gov (United States)

    Ao, Wen; Liu, Peijin; Yang, Wenjing

    2016-12-01

    In solid propellants, aluminum is widely used to improve the performance, however the condensed combustion products especially the large agglomerates generated from aluminum combustion significantly affect the combustion and internal flow inside the solid rocket motor. To clarify the properties of the condensed combustion products of aluminized propellants, a constant-pressure quench vessel was adopted to collect the combustion products. The morphology and chemical compositions of the collected products, were then studied by using scanning electron microscopy coupled with energy dispersive (SEM-EDS) method. Various structures have been observed in the condensed combustion products. Apart from the typical agglomerates or smoke oxide particles observed before, new structures including the smoke oxide clusters, irregular agglomerates and carbon-inclusions are discovered and investigated. Smoke oxide particles have the highest amount in the products. The highly dispersed oxide particle is spherical with very smooth surface and is on the order of 1-2 μm, but due to the high temperature and long residence time, these small particles will aggregate into smoke oxide clusters which are much larger than the initial particles. Three types of spherical agglomerates have been found. As the ambient gas temperature is much higher than the boiling point of Al2O3, the condensation layer inside which the aluminum drop is burning would evaporate quickly, which result in the fact that few "hollow agglomerates" has been found compared to "cap agglomerates" and "solid agglomerates". Irregular agglomerates usually larger than spherical agglomerates. The formation of irregular agglomerates likely happens by three stages: deformation of spherical aluminum drops; combination of particles with various shape; finally production of irregular agglomerates. EDS results show the ratio of O to Al on the surface of agglomerates is lower in comparison to smoke oxide particles. C and O account for

  20. In-situ product removal from fermentations by membrane extraction: conceptual process design and economics

    NARCIS (Netherlands)

    Heerema, L.; Roelands, C.P.M.; Goetheer, E.L.V.; Verdoes, D.; Keurentjes, J.

    2011-01-01

    This paper describes a conceptual process design for the production of the model component phenol by a recombinant strain of the micro-organism Pseudomonas putida S12. The (bio)production of the inhibiting component phenol in a bioreactor is combined with direct product removal by membrane

  1. Production of diamond wire by Cu15 v-% Nb 'in situ' process

    International Nuclear Information System (INIS)

    Filgueira, M.; Pinatti, D.G.

    2001-01-01

    Diamond wires are cutting tools used in the slabbing of dimension stones, such as marbles and granites, as well as in cutting of concrete structures. This tool consists of a steel cable on which diamond annular segments (pearls) are mounted with spacing between them. This work has developed a new technological route to obtain the diamond wires, whose fabrication involves metal forming processes such as rotary forging and wire drawing, copper tubes restacking, and thermal treatments of sintering and recrystallization. It was idealized the use of Cu 15v% Nb composite wires as the high tensile strength cable, covered with an external cutting rope made of bronze 4wt% diamond composite, along the overall wire surface. Investigations were carried out on the mechanical behavior and on the microstructural evolution of the Cu 15 vol % Nb wires, which showed ultimate tensile strength (UTS) of 960 MPa and deformation of approximately 3,0 %. The cutting external rope of 1.84 mm in diameter showed UTS = 230 MPa. On the microstructural side aspect it was observed that the diamond crystals were uniformly distributed throughout the tool bulk in the several processing steps. Cutting tests were carried out starting with an external diamond rope of 1.93 mm in diameter, which cut a marble sectional area of 1188 cm 2 , and the tool degraded to a final diameter of 1.23 mm. For marble the 'in situ' wire showed a probable performance 4 times higher than the diamond saws, however their probable performance was about 5 to 8 times less than the conventional diamond wires due to the low abrasion resistance of the bronze matrix and the low adhesion between the pair bronze-diamond. (author)

  2. Dissolved organic carbon concentration controls benthic primary production: results from in situ chambers in north-temperate lakes

    Science.gov (United States)

    Godwin, Sean C.; Jones, Stuart E.; Weidel, Brian C.; Solomon, Christopher T.

    2014-01-01

    We evaluated several potential drivers of primary production by benthic algae (periphyton) in north-temperate lakes. We used continuous dissolved oxygen measurements from in situ benthic chambers to quantify primary production by periphyton at multiple depths across 11 lakes encompassing a broad range of dissolved organic carbon (DOC) and total phosphorous (TP) concentrations. Light-use efficiency (primary production per unit incident light) was inversely related to average light availability (% of surface light) in 7 of the 11 study lakes, indicating that benthic algal assemblages exhibit photoadaptation, likely through physiological or compositional changes. DOC alone explained 86% of the variability in log-transformed whole-lake benthic production rates. TP was not an important driver of benthic production via its effects on nutrient and light availability. This result is contrary to studies in other systems, but may be common in relatively pristine north-temperate lakes. Our simple empirical model may allow for the prediction of whole-lake benthic primary production from easily obtained measurements of DOC concentration.

  3. Producing propellants from water in lunar soil using solar lasers

    Science.gov (United States)

    de Morais Mendonca Teles, Antonio

    The exploration of the Solar System is directly related to the efficiency of engines designed to explore it, and consequently, to the propulsion techniques, materials and propellants for those engines. With the present day propulsion techniques it is necessary great quantities of propellants to impulse a manned spacecraft to Mars and beyond in the Solar System, which makes these operations financially very expensive because of the costs involved in launching it from planet Earth, due to its high gravity field strength. To solve this problem, it is needed a planetary place with smaller gravity field strength, near to the Earth and with great quantities of substances at the surface necessary for the in-situ production of propellants for spacecrafts. The only place available is Earth's natural satellite the Moon. So, here in this paper, I propose the creation of a Lunar Propellant Manufacturer. It is a robot-spacecraft which can be launched from Earth using an Energia Rocket, and to land on the Moon in an area (principally near to the north pole where it was discovered water molecules ice recently) with great quantities of oxygen and hydrogen (propellants) in the silicate soil, previously observed and mapped by spacecrafts in lunar orbit, for the extraction of those molecules from the soil and the in-situ production of the necessary propellants. The Lunar Propellant Manufacturer (LPM) spacecraft consists of: 1) a landing system with four legs (extendable) and rovers -when the spacecraft touches down, the legs retract in order that two apparatuses, analogue to tractor's wheeled belts parallel sided and below the spacecraft, can touch firmly the ground -it will be necessary for the displacement of the spacecraft to new areas with richer propellants content, when the early place has already exhausted in propellants; 2) a digging machine -a long, resistant extendable arm with an excavator hand, in the outer part of the spacecraft -it will extend itself to the ground

  4. In Situ Production of Chlorine-36 in the Eastern Snake River Plain Aquifer, Idaho: Implications for Describing Ground-Water Contamination Near a Nuclear Facility

    International Nuclear Information System (INIS)

    Cecil, L. D.; Knobel, L. L.; Green, J. R.; Frape, S. K.

    2000-01-01

    The purpose of this report is to describe the calculated contribution to ground water of natural, in situ produced 36Cl in the eastern Snake River Plain aquifer and to compare these concentrations in ground water with measured concentrations near a nuclear facility in southeastern Idaho. The scope focused on isotopic and chemical analyses and associated 36Cl in situ production calculations on 25 whole-rock samples from 6 major water-bearing rock types present in the eastern Snake River Plain. The rock types investigated were basalt, rhyolite, limestone, dolomite, shale, and quartzite. Determining the contribution of in situ production to 36Cl inventories in ground water facilitated the identification of the source for this radionuclide in environmental samples. On the basis of calculations reported here, in situ production of 36Cl was determined to be insignificant compared to concentrations measured in ground water near buried and injected nuclear waste at the INEEL. Maximum estimated 36Cl concentrations in ground water from in situ production are on the same order of magnitude as natural concentrations in meteoric water

  5. A microfluidic toolbox for the development of in-situ product removal strategies in biocatalysis

    DEFF Research Database (Denmark)

    Heintz, Søren; Mitic, Aleksandar; Ringborg, Rolf Hoffmeyer

    2016-01-01

    A microfluidic toolbox for accelerated development of biocatalytic processes has great potential. This is especially the case for the development of advanced biocatalytic process concepts, where reactors and product separation methods are closely linked together to intensify the process performan...

  6. Biotechnological and in situ food production of polyols by lactic acid bacteria.

    Science.gov (United States)

    Ortiz, Maria Eugenia; Bleckwedel, Juliana; Raya, Raúl R; Mozzi, Fernanda

    2013-06-01

    Polyols such as mannitol, erythritol, sorbitol, and xylitol are naturally found in fruits and vegetables and are produced by certain bacteria, fungi, yeasts, and algae. These sugar alcohols are widely used in food and pharmaceutical industries and in medicine because of their interesting physicochemical properties. In the food industry, polyols are employed as natural sweeteners applicable in light and diabetic food products. In the last decade, biotechnological production of polyols by lactic acid bacteria (LAB) has been investigated as an alternative to their current industrial production. While heterofermentative LAB may naturally produce mannitol and erythritol under certain culture conditions, sorbitol and xylitol have been only synthesized through metabolic engineering processes. This review deals with the spontaneous formation of mannitol and erythritol in fermented foods and their biotechnological production by heterofermentative LAB and briefly presented the metabolic engineering processes applied for polyol formation.

  7. Utilizing Free and Open Source Software to access, view and compare in situ observations, EO products and model output data

    Science.gov (United States)

    Vines, Aleksander; Hamre, Torill; Lygre, Kjetil

    2014-05-01

    The GreenSeas project (Development of global plankton data base and model system for eco-climate early warning) aims to advance the knowledge and predictive capacities of how marine ecosystems will respond to global change. A main task has been to set up a data delivery and monitoring core service following the open and free data access policy implemented in the Global Monitoring for the Environment and Security (GMES) programme. The aim is to ensure open and free access to historical plankton data, new data (EO products and in situ measurements), model data (including estimates of simulation error) and biological, environmental and climatic indicators to a range of stakeholders, such as scientists, policy makers and environmental managers. To this end, we have developed a geo-spatial database of both historical and new in situ physical, biological and chemical parameters for the Southern Ocean, Atlantic, Nordic Seas and the Arctic, and organized related satellite-derived quantities and model forecasts in a joint geo-spatial repository. For easy access to these data, we have implemented a web-based GIS (Geographical Information Systems) where observed, derived and forcasted parameters can be searched, displayed, compared and exported. Model forecasts can also be uploaded dynamically to the system, to allow modelers to quickly compare their results with available in situ and satellite observations. We have implemented the web-based GIS(Geographical Information Systems) system based on free and open source technologies: Thredds Data Server, ncWMS, GeoServer, OpenLayers, PostGIS, Liferay, Apache Tomcat, PRTree, NetCDF-Java, json-simple, Geotoolkit, Highcharts, GeoExt, MapFish, FileSaver, jQuery, jstree and qUnit. We also wanted to used open standards to communicate between the different services and we use WMS, WFS, netCDF, GML, OPeNDAP, JSON, and SLD. The main advantage we got from using FOSS was that we did not have to invent the wheel all over again, but could use

  8. In situ hydrogen, acetone, butanol, ethanol and microdiesel production by Clostridium acetobutylicum ATCC 824 from oleaginous fungal biomass.

    Science.gov (United States)

    Hassan, Elhagag Ahmed; Abd-Alla, Mohamed Hemida; Bagy, Magdy Mohamed Khalil; Morsy, Fatthy Mohamed

    2015-08-01

    An in situ batch fermentation technique was employed for biohydrogen, acetone, butanol, ethanol and microdiesel production from oleaginous fungal biomass using the anaerobic fermentative bacterium Clostridium acetobutylicum ATCC 824. Oleaginous fungal Cunninghamella echinulata biomass which has ability to accumulate up to 71% cellular lipid was used as the substrate carbon source. The maximum cumulative hydrogen by C. acetobutylicum ATCC 824 from crude C. echinulata biomass was 260 ml H2 l(-1), hydrogen production efficiency was 0.32 mol H2 mole(-1) glucose and the hydrogen production rate was 5.2 ml H2 h(-1). Subsequently, the produced acids (acetic and butyric acids) during acidogenesis phase are re-utilized by ABE-producing clostridia and converted into acetone, butanol, and ethanol. The total ABE produced by C. acetobutylicum ATCC 824 during batch fermentation was 3.6 g l(-1) from crude fungal biomass including acetone (1.05 g l(-1)), butanol (2.19 g l(-1)) and ethanol (0.36 g l(-1)). C. acetobutylicum ATCC 824 has ability to produce lipolytic enzymes with a specific activity 5.59 U/mg protein to hydrolyze ester containing substrates. The lipolytic potential of C. acetobutylicum ATCC 824 was used as a biocatalyst for a lipase transesterification process using the produced ethanol from ABE fermentation for microdiesel production. The fatty acid ethyl esters (microdiesel) generated from the lipase transesterification of crude C. echinulata dry mass was analyzed by GC/MS as 15.4% of total FAEEs. The gross energy content of biohydrogen, acetone, butanol, ethanol and biodiesel generated through C. acetobutylicum fermentation from crude C. echinulata dry mass was 3113.14 kJ mol(-1). These results suggest a possibility of integrating biohydrogen, acetone, butanol and ethanol production technology by C. acetobutylicum with microdiesel production from crude C. echinulata dry mass and therefore improve the feasibility and commercialization of bioenergy production

  9. Direct Biodiesel Production from Wet Microalgae Biomass of Chlorella pyrenoidosa through In Situ Transesterification

    Science.gov (United States)

    Cao, Hechun; Zhang, Zhiling; Wu, Xuwen; Miao, Xiaoling

    2013-01-01

    A one-step process was applied to directly converting wet oil-bearing microalgae biomass of Chlorella pyrenoidosa containing about 90% of water into biodiesel. In order to investigate the effects of water content on biodiesel production, distilled water was added to dried microalgae biomass to form wet biomass used to produce biodiesel. The results showed that at lower temperature of 90°C, water had a negative effect on biodiesel production. The biodiesel yield decreased from 91.4% to 10.3% as water content increased from 0% to 90%. Higher temperature could compensate the negative effect. When temperature reached 150°C, there was no negative effect, and biodiesel yield was over 100%. Based on the above research, wet microalgae biomass was directly applied to biodiesel production, and the optimal conditions were investigated. Under the optimal conditions of 100 mg dry weight equivalent wet microalgae biomass, 4 mL methanol, 8 mL n-hexane, 0.5 M H2SO4, 120°C, and 180 min reaction time, the biodiesel yield reached as high as 92.5% and the FAME content was 93.2%. The results suggested that biodiesel could be effectively produced directly from wet microalgae biomass and this effort may offer the benefits of energy requirements for biodiesel production. PMID:24195081

  10. Direct Biodiesel Production from Wet Microalgae Biomass of Chlorella pyrenoidosa through In Situ Transesterification

    Directory of Open Access Journals (Sweden)

    Hechun Cao

    2013-01-01

    Full Text Available A one-step process was applied to directly converting wet oil-bearing microalgae biomass of Chlorella pyrenoidosa containing about 90% of water into biodiesel. In order to investigate the effects of water content on biodiesel production, distilled water was added to dried microalgae biomass to form wet biomass used to produce biodiesel. The results showed that at lower temperature of 90°C, water had a negative effect on biodiesel production. The biodiesel yield decreased from 91.4% to 10.3% as water content increased from 0% to 90%. Higher temperature could compensate the negative effect. When temperature reached 150°C, there was no negative effect, and biodiesel yield was over 100%. Based on the above research, wet microalgae biomass was directly applied to biodiesel production, and the optimal conditions were investigated. Under the optimal conditions of 100 mg dry weight equivalent wet microalgae biomass, 4 mL methanol, 8 mL n-hexane, 0.5 M H2SO4, 120°C, and 180 min reaction time, the biodiesel yield reached as high as 92.5% and the FAME content was 93.2%. The results suggested that biodiesel could be effectively produced directly from wet microalgae biomass and this effort may offer the benefits of energy requirements for biodiesel production.

  11. Direct biodiesel production from wet microalgae biomass of Chlorella pyrenoidosa through in situ transesterification.

    Science.gov (United States)

    Cao, Hechun; Zhang, Zhiling; Wu, Xuwen; Miao, Xiaoling

    2013-01-01

    A one-step process was applied to directly converting wet oil-bearing microalgae biomass of Chlorella pyrenoidosa containing about 90% of water into biodiesel. In order to investigate the effects of water content on biodiesel production, distilled water was added to dried microalgae biomass to form wet biomass used to produce biodiesel. The results showed that at lower temperature of 90°C, water had a negative effect on biodiesel production. The biodiesel yield decreased from 91.4% to 10.3% as water content increased from 0% to 90%. Higher temperature could compensate the negative effect. When temperature reached 150°C, there was no negative effect, and biodiesel yield was over 100%. Based on the above research, wet microalgae biomass was directly applied to biodiesel production, and the optimal conditions were investigated. Under the optimal conditions of 100 mg dry weight equivalent wet microalgae biomass, 4 mL methanol, 8 mL n-hexane, 0.5 M H2SO4, 120°C, and 180 min reaction time, the biodiesel yield reached as high as 92.5% and the FAME content was 93.2%. The results suggested that biodiesel could be effectively produced directly from wet microalgae biomass and this effort may offer the benefits of energy requirements for biodiesel production.

  12. In situ prebiotics for weaning piglets: In vitro production and fermentation of potato galactorhamnogalacturonan

    DEFF Research Database (Denmark)

    Strube, Mikael Lenz; Ravn, Helle Christine; Ingerslev, Hans-Christian

    2015-01-01

    Post weaning diarrhea (PWD) in pigs is a leading cause of economic loss in pork production worldwide. The current practice of using antibiotics and zinc to treat PWD is unsustainable due to the potential of antibiotic resistance and ecological disturbance, and novel methods are required...... product, with a minimal enzyme dose in a simulated upper GI-model extracting 26.9 % of initial dry matter. The fiber was rich in galactose and galacturonic acid and was fermented at 2.5, 5 or 10 g/L in a glucose-free media inoculated with the gut contents of piglet terminal ileum. Fermentations of 5 g....... For animal studies, a dosage corresponding to the 5 g/L treatment is suggested....

  13. The WATERMED field experiment: validation of the AATSR LST product with in situ measurements

    Science.gov (United States)

    Noyes, E.; Soria, G.; Sobrino, J.; Remedios, J.; Llewellyn-Jones, D.; Corlett, G.

    The Advanced Along-Track Scanning Radiometer (AATSR) onboard ESA's Envisat Satellite, is the third in a series of a precision radiometers designed to measure Sea Surface Temperature (SST) with accuracies of better than ± 0.3 K (within 1-sigma limit). Since its launch in March 2001, a prototype AATSR Land Surface Temperature (LST) product has been produced for validation purposes only, with the product becoming operational from mid-2004. The (A)ATSR instrument design is unique in that it has both a nadir- and a forward-view, allowing the Earth's surface to be viewed along two different atmospheric path lengths, thus enabling an improved atmospheric correction to be made when retrieving surface temperature. It also uses an innovative and exceptionally stable on-board calibration system for its infrared channels, which, together with actively cooled detectors, gives extremely high radiometric sensitivity and precision. In this presentation, results from a comparison of the prototype LST product with ground-based measurements obtained at the WATERMED (WATer use Efficiency in natural vegetation and agricultural areas by Remote sensing in the MEDiterranean basin) field site near Marrakech, Morocco, are presented. The comparison shows that the AATSR has a positive bias of + 1.5 K, with a standard deviation of 0.7 K, indicating that the product is operating within the target specification (± 2.5 K) over the WATERMED field site. However, several anomalous validation points were observed during the analysis and we will discuss possible reasons for the occurrence of these data, including their coincidence with the presence of an Envisat blanking pulse (indicating the presence of a radar pulse at the time of AATSR pixel integration). Further investigation into this matter is required as previous investigations have always indicated that the presence of a payload radar pulse does not have any effect on (A)ATSR data quality.

  14. In-situ production of humic-like fluorescent dissolved organic matter during Cochlodinium polykrikoides blooms

    Science.gov (United States)

    Kwon, Hyeong Kyu; Kim, Guebuem; Lim, Weol Ae; Park, Jong Woo

    2018-04-01

    We investigated phytoplankton pigments, dissolved organic carbon (DOC), and fluorescent dissolved organic matter (FDOM) during the summers of 2013 and 2016 in the coastal area of Tongyeong, Korea, where Cochlodinium polykrikoides blooms often occur. The density of red tides was evaluated using a dinoflagellate pigment, peridinin. The concentrations of peridinin and DOC in the patch areas were 15- and 4-fold higher than those in the non-patch areas. The parallel factor analysis (PARAFAC) model identified one protein-like FDOM (FDOMT) and two humic-like FDOM, classically classified as marine FDOM (FDOMM) and terrestrial FDOM (FDOMC). The concentrations of FDOMT in the patch areas were 5-fold higher than those in the non-patch areas, likely associated with biological production. In general, FDOMM and FDOMC are known to be dependent exclusively on salinity in any surface waters of the coastal ocean. However, in this study, we observed strikingly enhanced FDOMC concentration over that expected from the salinity mixing, whereas FDOMM increases were not clear. These FDOMC concentrations showed a significant positive correlation against peridinin, indicating that the production of FDOMC is associated with the red tide blooms. Our results suggest that FDOMC can be naturally enriched by some phytoplankton species, without FDOMM enrichment. Such naturally produced FDOM may play a critical role in biological production as well as biogeochemical cycle in red tide regions.

  15. Soybean epoxide production with in situ peracetic acid using homogeneous catalysis

    Directory of Open Access Journals (Sweden)

    Luis Alejandro Boyacá Mendivelso

    2010-01-01

    Full Text Available Using vegetable oils has become an excellent option for petrochemical product substitution. The epoxides obtained from such oils have wide applications as plastifiers and PVC stabilisers and as raw material in polyol synthesis for the polyurethane industry. This paper presents soybean oil epoxidation using a homogeneous catalyst in a well-mixed, stirred reactor being operated in iso- thermal conditions. The best result achieved was a 6.4% oxyrane oxygen content using hydrogen peroxide (25% molar excess, a- cetic acid (5% p/p and sulphuric acid (2% p/p concentrations at 80°C.

  16. Development of an In Situ Biosurfactant Production Technology for Enhanced Oil Recovery

    Energy Technology Data Exchange (ETDEWEB)

    M.J. McInerney; R.M. Knapp; Kathleen Duncan; D.R. Simpson; N. Youssef; N. Ravi; M.J. Folmsbee; T.Fincher; S. Maudgalya; Jim Davis; Sandra Weiland

    2007-09-30

    The long-term economic potential for enhanced oil recovery (EOR) is large with more than 300 billion barrels of oil remaining in domestic reservoirs after conventional technologies reach their economic limit. Actual EOR production in the United States has never been very large, less than 10% of the total U. S. production even though a number of economic incentives have been used to stimulate the development and application of EOR processes. The U.S. DOE Reservoir Data Base contains more than 600 reservoirs with over 12 billion barrels of unrecoverable oil that are potential targets for microbially enhanced oil recovery (MEOR). If MEOR could be successfully applied to reduce the residual oil saturation by 10% in a quarter of these reservoirs, more than 300 million barrels of oil could be added to the U.S. oil reserve. This would stimulate oil production from domestic reservoirs and reduce our nation's dependence on foreign imports. Laboratory studies have shown that detergent-like molecules called biosurfactants, which are produced by microorganisms, are very effective in mobilizing entrapped oil from model test systems. The biosurfactants are effective at very low concentrations. Given the promising laboratory results, it is important to determine the efficacy of using biosurfactants in actual field applications. The goal of this project is to move biosurfactant-mediated oil recovery from laboratory investigations to actual field applications. In order to meet this goal, several important questions must be answered. First, it is critical to know whether biosurfactant-producing microbes are present in oil formations. If they are present, then it will be important to know whether a nutrient regime can be devised to stimulate their growth and activity in the reservoir. If biosurfactant producers are not present, then a suitable strain must be obtained that can be injected into oil reservoirs. We were successful in answering all three questions. The specific

  17. Development of in-situ product removal strategies in biocatalysis applying scaled-down unit operations

    DEFF Research Database (Denmark)

    Heintz, Søren; Börner, Tim; Ringborg, Rolf Hoffmeyer

    2017-01-01

    different process steps while operating it as a combined system, giving the possibility to test and characterize the performance of novel process concepts and biocatalysts with minimal influence of inhibitory products. Here the capabilities of performing process development by applying scaled-down unit...... operations are highlighted through a case study investigating the asymmetric synthesis of 1-methyl-3-phenylpropylamine (MPPA) using ω-transaminase, an enzyme in the sub-family of amino transferases (ATAs). An on-line HPLC system was applied to avoid manual sample handling and to semi...

  18. In situ provision of drinking water to grazing dairy cows improves milk production.

    Science.gov (United States)

    Miglierina, M M; Bonadeo, N; Ornstein, A M; Becú-Villalobos, D; Lacau-Mengido, I M

    2018-01-01

    To determine the effect of providing water within the area grazed by dairy cows on milk yield and quality, compared to requiring cows to walk to a distant water trough, on a dairy farm in the Pampa region of Argentina during summer. Holstein dairy cows were allocated to two herds with similar parity, days in milk and milk production. They were grazed in one paddock that was divided in two, with a fixed water trough at one end. Cows were moved twice daily to grazing plots within the paddock. Control cows (n=66) could only access water from the fixed trough, whereas supplemented cows (n=67) also received water from a mobile trough within the grazing plot. Milk production of each cow, and water consumption of the two herds were measured daily over 62 days. Milk composition for each herd was determined weekly from Days 18 to 60 of the study, and grazing behaviour was observed between 08:00 and 16:00 hours on Days 11-15, 19-22 and 39-43. Over the 62 days of the study, supplemented cows produced 1.39 (SE 0.11) L/cow/day more milk than Control cows (p=0.027). Estimated mean daily water intake was 50.4 (SE 2.1) L/cow/day for supplemented cows and 58.2 (SE 2.7) L/cow/day for Control cows (p=0.004). Percentage total solids in milk was higher for supplemented (12.5 (SE 0.06)%) than Control (12.4 (SE 0.04)%) cows (p=0.047). During the periods of behavioural observation, a higher percentage of cows in the water supplemented than the Control herd were observed in the grazing area (p=0.012). This preliminary study demonstrated that provision of water to dairy cows within the grazing plot was beneficial for milk production and composition, and may be associated with longer periods spent within the grazing area, during hot weather in the Pampa region of Argentina.

  19. Estimation of production rates for in-situ cosmogenic isotopes and application to surface exposure dating: certitudes and uncertainties

    International Nuclear Information System (INIS)

    Graham, I.J.

    1996-01-01

    Cosmogenic nuclides, produced in-situ in rocks by the action of cosmic rays on target nuclei, are increasingly being employed by earth scientists in a wide variety of applications. For example, surface exposure dating is used to determine erosion rates, the age of debris flows, alluvial fans, volcanic eruptions, meteoritic impact craters, and glacial deposits, and the timing of recent movement along faults and tectonic uplift. The technique can thus play a vital role in the study of potential hazards from geological processes, by establishing recurrence intervals between them, and establish chronologies and periodicities for major paleoclimatic events. Before surface exposure dating methods using cosmogenic isotopes can be applied even more widely, production rates of the main nuclides of interest must be better known, and their temporal and spatial variabilities determined. This paper summarises the present state of knowledge on production rates of the currently most useful nuclides ( 10 Be, 26 Al, 36 Cl, 14 C, 3 He and 21 Ne), discusses the main areas of concern, and makes suggestions for future improvement. (author). 83 refs., 7 tabs., 11 figs

  20. IVO, a device for In situ Volatilization and On-line detection of products from heavy ion reactions

    CERN Document Server

    Duellmann, C E; Eichler, R; Gäggeler, H W; Jost, D T; Piguet, D; Türler, A

    2002-01-01

    A new gaschromatographic separation system to rapidly isolate heavy ion reaction products in the form of highly volatile species is described. Reaction products recoiling from the target are stopped in a gas volume and converted in situ to volatile species, which are swept by the carrier gas to a chromatography column. Species that are volatile under the given conditions pass through the column. In a cluster chamber, which is directly attached to the exit of the column, the isolated volatile species are chemically adsorbed to the surface of aerosol particles and transported to an on-line detection system. The whole set-up was tested using short-lived osmium (Os) and mercury (Hg) nuclides produced in heavy ion reactions to model future chemical studies with hassium (Hs, Z=108) and element 112. By varying the temperature of the isothermal section of the chromatography column between room temperature and -80 deg. C, yield measurements of given species can be conducted, yielding information about the volatility o...

  1. Surfactant-assisted direct biodiesel production from wet Nannochloropsis occulata by in situ transesterification/reactive extraction

    Directory of Open Access Journals (Sweden)

    Kamoru A. Salam

    2016-03-01

    Full Text Available This article reports an in situ transesterification/reactive extraction of Nannochloropsis occulata for fatty acid methyl ester (FAME production using H2SO4, sodium dodecyl sulphate (SDS plus H2SO4 and zirconium dodecyl sulphate (ZDS. A maximum 67 % FAME yield was produced by ZDS. Effect of inclusion of sodium dodecyl sulphate (SDS in H2SO4 for FAME enhancement and water tolerance was also studied by hydrating the algae with 10 % - 30 % distilled water (w/w dry algae. Treatment with SDS in H2SO4 increases the FAME production rate and water tolerance of the process. Inclusion of SDS in H2SO4 produced a maximum 98.3 % FAME yield at 20 % moisture in the algae. The FAME concentration began to diminish only at 30 % moisture in the algae. Furthermore, the presence of a small amount of water in the biomass or methanol increased the lipid extraction efficiency, improving the FAME yield, rather than inhibiting the reaction.

  2. In situ photodeposition of cobalt on CdS nanorod for promoting photocatalytic hydrogen production under visible light irradiation

    Science.gov (United States)

    Chen, Wei; Wang, Yanhong; Liu, Mei; Gao, Li; Mao, Liqun; Fan, Zeyun; Shangguan, Wenfeng

    2018-06-01

    Non-noble metal Co were loaded on CdS for enhancing photocatalytic activity of water splitting by a simple and efficient in situ photodeposition method. The Co particles with diameter ca. 5 nm were photoreduced and then loaded on the surface of CdS. The loading of Co can not only effectively promote the separation of electrons and holes photoexcited by CdS, but reduce the overpotential of hydrogen evolution as well, thus enhancing photocatalytic activity of water splitting. The highest photocatalytic H2 evolution rate of Co/CdS reaches up to 1299 μmol h-1 under visible light irradiation(λ > 420 nm) when the amount of loading is 1.0 wt%, which is 17 times of that of pure CdS and achieves 80% of that of 0.5 wt%Pt/CdS. This work not only exhibits a pathway to obtain photocatalysts with high photocatalytic activity for hydrogen production, but provides a possibility for the utilization of low cost Co as a substitute for noble metals in photocatalytic hydrogen production.

  3. Usage of waste products from thermal recycling of plastics waste in enhanced oil recovery or in-situ coal conversion

    Energy Technology Data Exchange (ETDEWEB)

    Fink, M; Fink, J K [Montanuniversitaet Leoben (Austria)

    1998-09-01

    In this contribution a thermal method for crude oil mobilization and in-situ liquefaction of coal is discussed, which will finally yield more organic material, as which has been put in from plastics waste originally into the process. The conversion product from thermal treatment is pumped down into exhausted crude oil reservoirs, where the hydrogen can degrade the residual high viscous oil to cause it to become more prone to flow so that it can be recovered. Such a process will envision two goals: 1. more organic raw material (as crude oil) will be recovered than is initially put in as waste product. 2. atmospheric pollutants from the conversion plant will be trapped in the reservoir, which simplifies the construction of the plant. An analogous process may be performed with coal seams. Coal seams with their high porosity and large specific surface are believed to be in particular useful to filter atmospheric pollutants. Depending on the type of coal the mobilization of organic material by this process may be in the background. (orig./SR)

  4. Chemical Looping Gasification for Hydrogen Enhanced Syngas Production with In-Situ CO2 Capture

    Energy Technology Data Exchange (ETDEWEB)

    Kathe, Mandar [Ohio State University, Columbus, OH (United States); Xu, Dikai [Ohio State University, Columbus, OH (United States); Hsieh, Tien-Lin [Ohio State University, Columbus, OH (United States); Simpson, James [Ohio State University, Columbus, OH (United States); Statnick, Robert [Ohio State University, Columbus, OH (United States); Tong, Andrew [Ohio State University, Columbus, OH (United States); Fan, Liang-Shih [Ohio State University, Columbus, OH (United States)

    2014-12-31

    This document is the final report for the project titled “Chemical Looping Gasification for Hydrogen Enhanced Syngas Production with In-Situ CO2 Capture” under award number FE0012136 for the performance period 10/01/2013 to 12/31/2014.This project investigates the novel Ohio State chemical looping gasification technology for high efficiency, cost efficiency coal gasification for IGCC and methanol production application. The project developed an optimized oxygen carrier composition, demonstrated the feasibility of the concept and completed cold-flow model studies. WorleyParsons completed a techno-economic analysis which showed that for a coal only feed with carbon capture, the OSU CLG technology reduced the methanol required selling price by 21%, lowered the capital costs by 28%, increased coal consumption efficiency by 14%. Further, using the Ohio State Chemical Looping Gasification technology resulted in a methanol required selling price which was lower than the reference non-capture case.

  5. In Situ Measurement of Local Hydrogen Production Rate by Bubble-Evolved Recording

    Directory of Open Access Journals (Sweden)

    Xiaowei Hu

    2013-01-01

    Full Text Available Hydrogen visibly bubbles during photocatalytic water splitting under illumination with above-bandgap radiation, which provides a direct measurement of local gas-evolving reaction rate. In this paper, optical microscopy of superfield depth was used for recording the hydrogen bubble growth on Cd0.5Zn0.5S photocatalyst in reaction liquid and illuminated with purple light. By analyzing change of hydrogen bubble size as a function of time, we understood that hydrogen bubble growth experienced two periods, which were inertia effect dominated period and diffusion effect dominated period, respectively. The tendency of hydrogen bubble growth was similar to that of the gas bubble in boiling, while the difference in bubble diameter and growth time magnitude was great. Meanwhile, we obtained the local hydrogen production rate on photocatalyst active site by measuring hydrogen bubble growth variation characteristics. This method makes it possible to confirm local actual hydrogen evolution rate quantitatively during photocatalytic water splitting.

  6. Integrating sustainable biofuel and silver nanomaterial production for in situ upgrading of cellulosic biomass pyrolysis

    International Nuclear Information System (INIS)

    Xue, Junjie; Dou, Guolan; Ziade, Elbara; Goldfarb, Jillian L.

    2017-01-01

    Graphical abstract: Integrated production of biotemplated nanomaterials and upgraded biofuels (solid lines indicate current processes, dashed lines indicated proposed pathway). - Highlights: • Novel integrated process to co-produce nanomaterials and biofuels via pyrolysis. • Impregnation of biomass with silver nitrate upgrades bio-oil during pyrolysis. • Co-synthesis enhances syngas produced with more hydrogen. • Biomass template impacts bio-fuels and morphology of resulting nanomaterials. - Abstract: Replacing fossil fuels with biomass-based alternatives is a potential carbon neutral, renewable and sustainable option for meeting the world’s growing energy demand. However, pyrolytic conversions of biomass-to-biofuels suffer marginal total energy gain, and technical limitations such as bio-oils’ high viscosity and oxygen contents that result in unstable, corrosive and low-value fuels. This work demonstrates a new integrated biorefinery process for the co-production of biofuels and silver nanomaterials. By impregnating pure cellulose and corn stalk with silver nitrate, followed by pyrolysis, the gas yield (especially hydrogen) increases substantially. The condensable bio-oil components of the impregnated samples are considerably higher in furfurals (including 5-hydroxymethylfurfural). Though the overall activation energy barrier, as determined via the Distributed Activation Energy Model, does not change significantly with the silver nitrate pre-treatment, the increase in gases devolatilized, and improved 5-hydroxymethylfurfural yield, suggest a catalytic effect, potentially increasing decarboxylation reactions. After using this metal impregnation to improve pyrolysis fuel yield, following pyrolysis, the silver-char composite materials are calcined to remove the biomass template to yield silver nanomaterials. While others have demonstrated the ability to biotemplate such nanosilver on cellulosic biomass, they consider only impregnation and oxidation of the

  7. Digestibilidad in situ de dietas con harina de nopal deshidratado conteniendo un preparado de enzimas fibrolíticas exógenas In situ digestibility in dehydrated ground prickly pear diets containing a fybrolitic enzymes product

    Directory of Open Access Journals (Sweden)

    Marco Medina Romo

    2006-07-01

    Full Text Available Se evaluó el efecto de un preparado de enzimas fibrolíticas exógenas (celulasas y xilanasas en la degradabilidad in situ de la materia seca (DisMS, fibra detergente neutro (DFDNr y fibra detergente ácido residual (DFDAr, en dietas altas o bajas en harina de nopal deshidratado. Se aplicaron concentraciones de 0, 1, 2 y 3 g de enzima por kilogramo de materia seca al inicio y 24 horas antes de la degradación in situ. Se determinó la concentración de ácidos grasos volátiles totales y de nitrógeno amoniacal a las 0, 3, 6, 9, 12 y 24 horas después de aplicarse la enzima. No se observaron efectos en DisMS, DFDNr y DFDAr; la aplicación al inicio de la degradación in situ mostró valores más altos que a 24 horas para DisMS y DFDNr, pero fue menor para DFDAr. No se observaron diferencias en las interacciones entre niveles de enzima, tipo de dieta y tiempo de pretratamiento. La aplicación de 1 y 3 g de enzima, en la dieta con bajo contenido de harina de nopal, tuvo efectos en el incremento de los ácidos grasos volátiles totales; para el nitrógeno amoniacal, los mejores resultados ocurrieron con 0 y 1 g de enzima.It was evaluated the effect of a fybrolitic enzyme product (cellulases and xylanases on in situ digestibility of dry matter (DisMS, residual neutral detergent fiber (DFDNr and acid detergent fiber (DFDAr, in dehydrated ground prickly pear diets with a low or high level. Enzyme concentrations of 0, 1, 2, and 3 g kg-1 of dry matter applied at the beginning (0 hour and 24 hours before starting in situ digestibility were used. Total volatile fatty acids and ammonia nitrogen were determined at: 0, 3, 6, 9, 12, and 24 hours after the enzyme application. There were no effects on DisMS, DFDNr, and DFDAr. Initial application of enzyme concentrations (0 hour was higher than 24 hours for DisMS and DFDNr but lower for DFDAr. No differences were observed in interactions among enzyme level, diet and application time. Application of 1 and 3 g of

  8. Use of bioreactor landfill for nitrogen removal to enhance methane production through ex situ simultaneous nitrification-denitrification and in situ denitrification.

    Science.gov (United States)

    Sun, Xiaojie; Zhang, Hongxia; Cheng, Zhaowen

    2017-08-01

    High concentrations of nitrate-nitrogen (NO 3 - -N) derived from ex situ nitrification phase can inhibit methane production during ex situ nitrification and in situ denitrification bioreactor landfill. A combined process comprised of ex situ simultaneous nitrification-denitrification (SND) in an aged refuse bioreactor (ARB) and in situ denitrification in a fresh refuse bioreactor (FRB) was conducted to reduce the negative effect of high concentrationsof NO 3 - -N. Ex situ SND can be achieved because NO 3 - -N concentration can be reduced and the removal rate of ammonium-nitrogen (NH 4 + -N) remains largely unchanged when the ventilation rate of ARB-A2 is controlled. The average NO 3 - -N concentrations of effluent were 470mg/L in ex situ nitrification ARB-A1 and 186mg/L in ex situ SND ARB-A2. The average NH 4 + -N removal rates of ARB-A1 and ARB-A2 were 98% and 94%, respectively. Based on the experimental data from week 4 to week 30, it is predicted that NH 4 + -N concentration in FRB-F1 of the ex situ nitrification and in situ denitrification process would reach 25mg/L after 63weeks, and about 40weeks for the FRB-F2 of ex situ SND and in situ denitrification process . Ex situ SND and in situ denitrification process can improve themethane production of FRB-F2. The lag phase time of methane production for the FRB-F2 was 11weeks. This phase was significantly shorter than the 15-week phases of FRB-F1 in ex situ nitrification and in situ denitrification process. A seven-week stabilizationphase was required to increase methane content from 5% to 50% for FRB-F2. Methane content in FRB-F1 did not reach 50% but reached the 45% peak after 20weeks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Doppler Broadening Analysis of Steel Specimens Using Accelerator Based In Situ Pair Production

    International Nuclear Information System (INIS)

    Makarashvili, V.; Wells, D. P.; Roy, A. K.

    2009-01-01

    Positron Annihilation Spectroscopy (PAS) techniques can be utilized as a sensitive probe of defects in materials. Studying these microscopic defects is very important for a number of industries in order to predict material failure or structural integrity. We have been developing gamma-induced pair-production techniques to produce positrons in thick samples (∼4-40 g/cm 2 , or ∼0.5-5 cm in steel). These techniques are called 'Accelerator-based Gamma-induced Positron Annihilation Spectroscopy'(AG-PAS). We have begun testing the capabilities of this technique for imaging of defect densities in thick structural materials. As a first step, a linear accelerator (LINAC) was employed to produce photon beams by stopping 15 MeV electrons in a 1 mm thick tungsten converter. The accelerator is capable of operating with 30-60 ns pulse width, up to 200 mA peak current at 1 kHz repetition rate. The highly collimated bremsstrahlung beam impinged upon our steel tensile specimens, after traveling through a 1.2 m thick concrete wall. Annihilation radiation was detected by a well-shielded and collimated high-purity germanium detector (HPGe). Conventional Doppler broadening spectrometry (DBS) was performed to determine S, W and T parameters for our samples.

  10. Development of a dynamic web mapping service for vegetation productivity using earth observation and in situ sensors in a sensor web based approach

    NARCIS (Netherlands)

    Kooistra, L.; Bergsma, A.R.; Chuma, B.; Bruin, de S.

    2009-01-01

    This paper describes the development of a sensor web based approach which combines earth observation and in situ sensor data to derive typical information offered by a dynamic web mapping service (WMS). A prototype has been developed which provides daily maps of vegetation productivity for the

  11. In-Situ Treatment of Groundwater Contaminated with Underground Coal Gasification Products / Oczyszczanie In-Situ WÓD Podziemnych Zanieczyszczonych Przez Produkty Podziemnego Zgazowania WĘGLA

    Science.gov (United States)

    Suponik, Tomasz; Lutyński, Marcin

    2013-12-01

    In the paper the contaminants that may be generated in Underground Coal Gasification (UCG) process were listed and include mainly mono- and polycyclic aromatic hydrocarbons, phenols, heavy metals, cyanides, ammonium, chloride and sulphate. As a method of UCG contaminated groundwater treatment a Permeable Reactive Barrier technology was proposed. To assess the effectiveness of this technology two tests were carried out. Granulated activated carbon (GAC) and zeolite, and granulated activated carbon and scrap iron were applied in the first and second test respectively. For these materials the hydro geological parameters called reactive material parameters were determined and discussed. The results of the experiments showed that GAC seems to be the most effective material for phenols, BTX, PAH, cyanides and slightly lowers ammonia removal, while zeolites and scrap iron removed free cyanide, ammonia and heavy metals respectively. Podziemne Zgazowanie Węgla (PZW) jest alternatywną metodą pozyskiwania energii z węgla. Jest to zespół przemian termicznych i chemicznych przebiegających bezpośrednio w złożu węgla, zachodzących pomiędzy substancją organiczną a czynnikiem zgazowującym, jakim może być powietrze, tlen, para wodna, dwutlenek węgla. Poza wieloma zaletami metoda ta niesie za sobą także wiele zagrożeń, które były rozważane w ramach projektu HUGE 2 (nr RFCR-CT-2011-00002). Jednym z nich jest zagrożenie środowiska wód podziemnych produktami PZW, do których należą wielopierścieniowe węglowodory aromatyczne, BTX, fenole, metale ciężkie, cyjanki, jony amonowe, chlorki i siarczany. W celu zminimalizowania tego zagrożenia w pracy rozważono zastosowanie w obszarze reaktora PZW technologii Przepuszczalnej Bariery Reaktywnej (PRB). W technologii tej zanieczyszczenia usuwane są in-situ poprzez przepływ wód przez odpowiednio dobrany materiał reaktywny. W tablicy 1 przedstawiono podstawowe parametry bariery, które należy określić, aby

  12. Validation of the AATSR L2 GSST product with in situ measurements from the M-AERI

    Science.gov (United States)

    Noyes, E.; Minnett, P.; Remedios, J.; Mannerings, B.; Corlett, G.; Edwards, M.; Llewellyn-Jones, D.

    Precise, in situ, measurements of skin Sea Surface Temperature (SSST) have been obtained over the Eastern Caribbean Sea, using the Marine Atmospheric Emitted Radiance Interferometer (M-AERI) deployed onboard the Explorer of the Seas cruise ship. These measurements provide a near-continuous SSST dataset and have been used to validate the Advanced Along-Track Scanning Radiometer (AATSR) Level 2 operational dual-view Gridded Sea Surface Temperature (GSST) product over the area. The (A)ATSR instrument has a unique design in that it has both a nadir- and forward-view, allowing the Earth's surface to be viewed along two different atmospheric path lengths and enabling an improved atmospheric correction to be made when retrieving measurements of SST. The infrared radiometer also uses an innovative and exceptionally stable on-board calibration system, which, together with actively cooled detectors, gives exceptionally high radiometric sensitivity and precision, enabling SSTs to be retrieved to within ± 0.3 K (1-sigma limit). The unprecedented number of measurements provided by the M-AERI project enables us to validate the AATSR SST products on a scale that has not been possible with its two predecessors, ATSR-1 and ATSR-2. Validation results obtained between September 2002 and September 2003 are presented and indicate that, although the AATSR appears to measure slightly warm (circa + 0.14 K), the GSST product is accurate to within 0.28-0.41 K (Root Mean Square difference) in this geographical region, depending on the validation criteria used. We also present the results of further investigations into a number of validation points that do not fall within the target ± 0.3 K accuracy zone.

  13. In-situ injection of potassium hydroxide into briquetted wheat straw and meadow grass - Effect on biomethane production.

    Science.gov (United States)

    Feng, Lu; Moset, Veronica; Li, Wanwu; Chen, Chang; Møller, Henrik Bjarne

    2017-09-01

    Alkaline pretreatment of lignocellulosic biomass has been intensively investigated but heavy water usage and environmental pollution from wastewater limits its industrial application. This study presents a pretreatment technique by in-situ injection of potassium hydroxide concentrations ranging from 0.8% to 10% (w/w) into the briquetting process of wheat straw and meadow grass. Results show that the biomethane yield and hydrolysis rate was improved significantly with a higher impact on wheat straw compared to meadow grass. The highest biomethane yield from wheat straw briquettes of 353mL.g -1 VS was obtained with 6.27% (w/w) potassium hydroxide injection, which was 14% higher than from untreated wheat straw. The hydrolysis rates of wheat straw and meadow grass increased from 4.27×10 -2 to 5.32×10 -2 d -1 and 4.19×10 -2 to 6.00×10 -2 d -1 , respectively. The low water usage and no wastewater production make this a promising technology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Comparison of biodiesel production from sewage sludge obtained from the A²/O and MBR processes by in situ transesterification.

    Science.gov (United States)

    Qi, Juanjuan; Zhu, Fenfen; Wei, Xiang; Zhao, Luyao; Xiong, Yiqun; Wu, Xuemin; Yan, Fawei

    2016-03-01

    The potential of two types of sludge obtained from the anaerobic-anoxic-oxic (A(2)/O) and membrane bioreactor (MBR) processes as lipid feedstock for biodiesel production via in situ transesterification was investigated. Experiments were conducted to determine the optimum conditions for biodiesel yield using three-factor and four-level orthogonal and single-factor tests. Several factors, namely, methanol-to-sludge mass ratio, acid concentration, and temperature, were examined. The optimum yield of biodiesel (16.6% with a fatty acid methyl ester purity of 96.7%) from A(2)/O sludge was obtained at a methanol-to-sludge mass ratio of 10:1, a temperature of 60°C, and a H2SO4 concentration of 5% (v/v). Meanwhile, the optimum yield of biodiesel (4.2% with a fatty acid methyl ester purity of 92.7%) from MBR sludge was obtained at a methanol-to-sludge mass ratio of 8:1, a temperature of 50°C, and a H2SO4 concentration of 5% (v/v). In this research, A(2)/O technology with a primary sedimentation tank is more favorable for obtaining energy from wastewater than MBR technology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. A web portal for accessing, viewing and comparing in situ observations, EO products and model output data

    Science.gov (United States)

    Vines, Aleksander; Hamre, Torill; Lygre, Kjetil

    2014-05-01

    The GreenSeas project (Development of global plankton data base and model system for eco-climate early warning) aims to advance the knowledge and predictive capacities of how marine ecosystems will respond to global change. A main task has been to set up a data delivery and monitoring core service following the open and free data access policy implemented in the Global Monitoring for the Environment and Security (GMES) programme. A key feature of the system is its ability to compare data from different datasets, including an option to upload one's own netCDF files. The user can for example search in an in situ database for different variables (like temperature, salinity, different elements, light, specific plankton types or rate measurements) with different criteria (bounding box, date/time, depth, Longhurst region, cruise/transect) and compare the data with model data. The user can choose model data or Earth observation data from a list, or upload his/her own netCDF files to use in the comparison. The data can be visualized on a map, as graphs and plots (e.g. time series and property-property plots), or downloaded in various formats. The aim is to ensure open and free access to historical plankton data, new data (EO products and in situ measurements), model data (including estimates of simulation error) and biological, environmental and climatic indicators to a range of stakeholders, such as scientists, policy makers and environmental managers. We have implemented a web-based GIS(Geographical Information Systems) system and want to demonstrate the use of this. The tool is designed for a wide range of users: Novice users, who want a simple way to be able to get basic information about the current state of the marine planktonic ecosystem by utilizing predefined queries and comparisons with models. Intermediate level users who want to explore the database on their own and customize the prefedined setups. Advanced users who want to perform complex queries and

  16. LINKING IN SITU TIME SERIES FOREST CANOPY LAI AND PHENOLOGY METRICS WITH MODIS AND LANDSAT NDVI AND LAI PRODUCTS

    Science.gov (United States)

    The subject of this presentation is forest vegetation dynamics as observed by the TERRA spacecraft's Moderate-Resolution Imaging Spectroradiometer (MODIS) and Landsat Thematic Mapper, and complimentary in situ time series measurements of forest canopy metrics related to Leaf Area...

  17. Development of a Dynamic Web Mapping Service for Vegetation Productivity Using Earth Observation and in situ Sensors in a Sensor Web Based Approach

    Directory of Open Access Journals (Sweden)

    Sytze de Bruin

    2009-03-01

    Full Text Available This paper describes the development of a sensor web based approach which combines earth observation and in situ sensor data to derive typical information offered by a dynamic web mapping service (WMS. A prototype has been developed which provides daily maps of vegetation productivity for the Netherlands with a spatial resolution of 250 m. Daily available MODIS surface reflectance products and meteorological parameters obtained through a Sensor Observation Service (SOS were used as input for a vegetation productivity model. This paper presents the vegetation productivity model, the sensor data sources and the implementation of the automated processing facility. Finally, an evaluation is made of the opportunities and limitations of sensor web based approaches for the development of web services which combine both satellite and in situ sensor sources.

  18. Technology of foamed propellants

    Energy Technology Data Exchange (ETDEWEB)

    Boehnlein-Mauss, Jutta; Kroeber, Hartmut [Fraunhofer Institut fuer Chemische Technologie ICT, Pfinztal (Germany)

    2009-06-15

    Foamed propellants are based on crystalline explosives bonded in energetic reaction polymers. Due to their porous structures they are distinguished by high burning rates. Energy content and material characteristics can be varied by using different energetic fillers, energetic polymers and porous structures. Foamed charges can be produced easily by the reaction injection moulding process. For the manufacturing of foamed propellants a semi-continuous remote controlled production plant in pilot scale was set up and a modified reaction injection moulding process was applied. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  19. Quality Improvement of the Satellite Soil Moisture Products by Fusing In Situ and GNSS-R Observation

    Science.gov (United States)

    Yuan, Q.; Xu, H.; Li, T.; Shen, H.; Zhang, L.

    2017-12-01

    Soil moisture plays a fundamental role in the hydrological cycle as well as in the energy partitioning. On this basis, it is of great concern to derive a long-term soil moisture time series on a global scale and monitor its temporal and spatial variations for practical applications. Although passive and active microwave satellites have been shown to provide useful retrievals of near-surface soil moisture at regional and global scales, the limitations in retrieval accuracy prevent them from high-quality applications in specific areas. On the other hand, measuring soil moisture straightly through in situdevices, such as soil moisture probes, is high accuracy, but is not able to derive global soil moisture maps. Recently, the ground-based GNSS-R method is emerging in monitoring near-surface soil moisture variations but still over limited spatial scales. In this paper, a multi-source data fusion method was applied to synthesize regional high-quality soil moisture products from 2015 to 2017 in western parts of the continental United States. Firstly, we put all the three soil moisture datasets into the generalized regression neural network (GRNN) model. The input signals of the model are SMOS and SMAP satellite-derived passive level 3 soil moisture daily products combined with date and latitude and longitude information, while the in situ measured and GNSS-R retrieved soil moisture are used as target. Finally, we apply the model to all the soil moisture time series in the experiment area and obtain two high-quality regional soil moisture products for SMOS and SMAP, respectively. The results before fusion show that the correlation coefficients between site-specific soil moisture and satellite-derived soil moisture are 0.39 for SMOS and 0.27 for SMAP and that unbiased root-mean-square errors (ubRMSE) are 0.113 for SMOS and 0.128 for SMAP, respectively. After applying the GRNN-R, the model fitted correlation coefficients have reached 0.72 for SMOS and 0.75 for SMAP and the

  20. Ensiling Characteristics and the In situ Nutrient Degradability of a By-product Feed-based Silage.

    Science.gov (United States)

    Kim, Y I; Oh, Y K; Park, K K; Kwak, W S

    2014-02-01

    This study was conducted to evaluate the ensiling characteristics and the in situ degradability of a by-product feed (BF)-based silage. Before ensilation, the BF-based mixture was composed of 50% spent mushroom substrate, 21% recycled poultry bedding, 15% ryegrass straw, 10.8% rice bran, 2% molasses, 0.6% bentonite, and 0.6% microbial inoculant on a wet basis and ensiled for up to 4 weeks. The BF-based silage contained on average 39.3% moisture, 13.4% crude protein (CP), and 52.2% neutral detergent fiber (NDF), 49% total digestible nutrient, and 37.8% physically effective NDF1.18 on a dry matter (DM) basis. Ensiling the BF-based silage for up to 4 weeks affected (p<0.01) the chemical composition to a small extent, increased (p<0.05) the lactic acid and NH3-N content, and decreased (p<0.05) both the total bacterial and lactic acid bacterial counts from 10(9) to 10(8) cfu/g when compared to that before ensiling. These parameters indicated that the silage was fermented and stored well during the 4-week ensiling period. Compared with rice or ryegrass straws, the BF-based silage had a higher (p<0.05) water-soluble and filterable fraction, a lower insoluble degradable DM and CP fraction (p<0.05), a lower digestible NDF (p<0.05) fraction, a higher (p<0.05) DM and CP disappearance and degradability rate, and a lower (p<0.05) NDF disappearance and degradability rate. These results indicated that cheap, good-quality BF-based roughage could be produced by ensiling SMS, RPB, rice bran, and a minimal amount of straw.

  1. Automated Quality Control of in Situ Soil Moisture from the North American Soil Moisture Database Using NLDAS-2 Products

    Science.gov (United States)

    Ek, M. B.; Xia, Y.; Ford, T.; Wu, Y.; Quiring, S. M.

    2015-12-01

    The North American Soil Moisture Database (NASMD) was initiated in 2011 to provide support for developing climate forecasting tools, calibrating land surface models and validating satellite-derived soil moisture algorithms. The NASMD has collected data from over 30 soil moisture observation networks providing millions of in situ soil moisture observations in all 50 states as well as Canada and Mexico. It is recognized that the quality of measured soil moisture in NASMD is highly variable due to the diversity of climatological conditions, land cover, soil texture, and topographies of the stations and differences in measurement devices (e.g., sensors) and installation. It is also recognized that error, inaccuracy and imprecision in the data set can have significant impacts on practical operations and scientific studies. Therefore, developing an appropriate quality control procedure is essential to ensure the data is of the best quality. In this study, an automated quality control approach is developed using the North American Land Data Assimilation System phase 2 (NLDAS-2) Noah soil porosity, soil temperature, and fraction of liquid and total soil moisture to flag erroneous and/or spurious measurements. Overall results show that this approach is able to flag unreasonable values when the soil is partially frozen. A validation example using NLDAS-2 multiple model soil moisture products at the 20 cm soil layer showed that the quality control procedure had a significant positive impact in Alabama, North Carolina, and West Texas. It had a greater impact in colder regions, particularly during spring and autumn. Over 433 NASMD stations have been quality controlled using the methodology proposed in this study, and the algorithm will be implemented to control data quality from the other ~1,200 NASMD stations in the near future.

  2. In situ production of tantalum carbide nanodispersoids in a copper matrix by reactive milling and hot extrusion

    Energy Technology Data Exchange (ETDEWEB)

    Manotas-Albor, Milton, E-mail: manotasm@uninorte.edu.co [Grupo de Investigación en Física Aplicada, Departamento de Física, Universidad del Norte, Km. 5 vía a Puerto Colombia, Barranquilla (Colombia); Departamento de Ingeniería Mecánica, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Beauchef 850, Santiago (Chile); Vargas-Uscategui, Alejandro [Laboratorio de Materiales a Nanoescala, Departamento de Ciencia de los Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Tupper Av. 2069, Santiago (Chile); Palma, Rodrigo [Departamento de Ingeniería Mecánica, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Beauchef 850, Santiago (Chile); Mosquera, Edgar [Laboratorio de Materiales a Nanoescala, Departamento de Ciencia de los Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Tupper Av. 2069, Santiago (Chile)

    2014-06-15

    Highlights: • Tantalum carbide nanodispersoids were obtained in a copper matrix. • Nanodispersoids were obtained by means of reactive milling followed by hot extrusion. • Hexane was used as the liquid medium for the reactive mechanical alloying process. • Hexane provides the carbon (C) needed for the process. • The reaction of tantalum carbide formation takes place in the hot extrusion. - Abstract: This paper presents a study of the in situ production of tantalum carbide nanodispersoids in a copper matrix. The copper matrix composites were produced by means of reactive milling in hexane (C{sub 6}H{sub 14}) followed by hot extrusion. The composite materials were characterized by means of optical emission spectroscopy (OES), X-ray fluorescence (XRF), scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and Vickers micro-hardness. The effect of milling time was analyzed in 10, 20 and 30 h in a composite with a nominal composition Cu–5 vol.% TaC. A systematic increase of the dislocations density and the carbon concentration were observed when the milling time was increased, whereas the crystallite size of the composite matrix decreased. The material milled for 30 h and hot-extruded showed a density of 9037 kg m{sup −3} (98.2% densification) and a softening resistance of 204 HV; however the latter value showed an abrupt drop after an annealing treatment at 923 K for 1 h. Finally, the TEM analysis showed the presence of tantalum carbide (Ta{sub 4}C{sub 3}) nanodispersoids.

  3. Biodiesel production through in situ transesterification of sunflower seeds by homogeneous and heterogeneous catalysis; Producao de biodiesel atraves de transesterificacao in situ de sementes de girassol via catalise homogenea e heterogenea

    Energy Technology Data Exchange (ETDEWEB)

    Fama, Paola Ervatti; San Gil, Rosane Aguiar da Silva; Lachter, Elizabeth Roditi, E-mail: lachter@iq.ufrj.b [Universidade Federal do Rio de Janeiro (IQ/UFRJ), RJ (Brazil). Inst. de Quimica

    2010-07-01

    The objective of this work is to show the results of the in situ transesterification of sunflower seed oil with methanol on basic homogeneous and heterogeneous catalysis for the production of biodiesel. In homogeneous catalysis, the activity of K{sub O}H and K{sub 2}CO{sub 3} were evaluated using the same oil:methanol ratio of 1:90. KOH showed to be more active than K2CO{sub 3}, leading to total conversion in biodiesel after 1h reaction time. In the heterogeneous catalysis the activity of K{sub 2}CO{sub 3}/Al{sub 2}O{sub 3} was comparable to the activity of K{sub 2}CO{sub 3} bulk: 53.0 and 66.6% resp. The properties of samples of biodiesel produced by homogeneous and heterogeneous catalysis were evaluated and are in accordance with the recommended fuel properties. (author)

  4. Les méthodes thermiques de production des hydrocarbures. Chapitre 5 : Combustion "in situ". Pricipes et études de laboratoire Thermal Methods of Hydrocarbon Production. Chapter 5 : "In Situ" Combustion. Principles and Laboratory Research

    Directory of Open Access Journals (Sweden)

    Burger J.

    2006-11-01

    Full Text Available II existe plusieurs variantes de la combustion in situ, suivant le sens de déplacement du front de combustion, à co-courant ou à contre-courant, et suivant la nature des fluides injectés, air seul ou injection combinée d'air et d'eau. Les réactions de pyrolyse, d'oxydation et de combustion mises en jeu par ces techniques sont discutées, en particulier la cinétique des principaux mécanismes réactionnels, l'importance du dépôt de coke et l'exothermicité des réactions d'oxydation et de combustion. Les résultats d'essais de déplacement unidirectionnel du front de combustion dans des cellules de laboratoire sont présentés et discutés. Enfin on indique les conditions pratiques d'application des méthodes de combustion in situ sur champ. Possible variations of in situ combustion technique ore as follows : forward or reverse combustion depending on the relative directions of the air flow and the combustion front, dry combustion if air is the only fluid injected into the oil-bearing formation, or fixe/woter flooding if water is injected along with air. The chemical reactions of pyrolysis, oxidation and combustion involved in these processes are described. The kinetics of these reactions is discussed as well as fuel availability in forward combustion and the exothermicity of the oxidation and combustion reactions. The results obtained in the laboratory when a combustion front propagates in unidirectional adiabatic tells are described and discussed. This type of experimentation provides extensive information on the characteristics of the processes. Screening criteria for the practical application of in situ combustion techniques are presented.

  5. A fast H2O total column density product from GOME – Validation with in-situ aircraft measurements

    Directory of Open Access Journals (Sweden)

    T. Wagner

    2003-01-01

    high accuracy of our GOME H2O data is also confirmed by the excellent agreement with in-situ aircraft measurements during the MINOS campaign in Greece in summer 2001 (slope of 0.97 (r2 = 0.86, and an average bias of only 0.2%. Our H2O algorithm can be directly adapted to the nadir observations of SCIAMACHY (SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY which was launched on ENVISAT in March 2002. Near real time H2O column data from GOME and SCIAMACHY might be of great value for meteorological weather forecast.

  6. Effect of in situ exopolysaccharide production on physicochemical, rheological, sensory, and microstructural properties of the yogurt drink ayran: an optimization study based on fermentation kinetics.

    Science.gov (United States)

    Yilmaz, M T; Dertli, E; Toker, O S; Tatlisu, N B; Sagdic, O; Arici, M

    2015-03-01

    Exopolysaccharide (EPS)-producing starter cultures are preferred for the manufacture of fermented milk products to improve rheological and technological properties. However, no clear correlation exists between EPS production and the rheological and technological properties of fermented milk products such as the yogurt drink ayran. In this study, 4 different strain conditions (EPS- and EPS+ Streptococcus thermophilus strains) were tested as a function of incubation temperature (32, 37, or 42°C) and time (2, 3, or 4 h) to determine the effect of culture type and in situ EPS production on physicochemical, rheological, sensory, and microstructural properties of ayran. Furthermore, we assessed the effect of fermentation conditions on amounts of EPS production by different EPS-producing strains during ayran production. A multifactorial design of response surface methodology was used to model linear, interaction, and quadratic effects of these variables on steady shear rheological properties of ayran samples and in situ EPS production levels. The physicochemical and microbiological characteristics of ayran samples altered depending on incubation conditions and strain selection. Steady shear tests showed that ayran samples inoculated with EPS+ strains exhibited pseudoplastic flow behavior. Production of ayran with EPS- strain (control sample) resulted in the lowest apparent viscosity values (η50), whereas those produced with the combination of 2 EPS+ strains yielded ayran with notably increased η50 values. We concluded that incubation time was the variable with the greatest effect on η50, consistency coefficient (K), and flow behavior index (n) values. In situ EPS production was also affected by these conditions during ayran fermentation in which strain-specific metabolism conditions were found to be the most important factor for EPS production. In addition, these findings correlated the amount of in situ EPS produced with the rheological properties of ayran. Scanning

  7. Effects of in-situ and reanalysis climate data on estimation of cropland gross primary production using the Vegetation Photosynthesis Model

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Cui; Xiao, Xiangming; Wagle, Pradeep; Griffis, Timothy; Dong, Jinwei; Wu, Chaoyang; Qin, Yuanwei; Cook, David R.

    2015-11-01

    Satellite-based Production Efficiency Models (PEMs) often require meteorological reanalysis data such as the North America Regional Reanalysis (NARR) by the National Centers for Environmental Prediction (NCEP) as model inputs to simulate Gross Primary Production (GPP) at regional and global scales. This study first evaluated the accuracies of air temperature (TNARR) and downward shortwave radiation (RNARR) of the NARR by comparing with in-situ meteorological measurements at 37 AmeriFlux non-crop eddy flux sites, then used one PEM – the Vegetation Photosynthesis Model (VPM) to simulate 8-day mean GPP (GPPVPM) at seven AmeriFlux crop sites, and investigated the uncertainties in GPPVPM from climate inputs as compared with eddy covariance-based GPP (GPPEC). Results showed that TNARR agreed well with in-situ measurements; RNARR, however, was positively biased. An empirical linear correction was applied to RNARR, and significantly reduced the relative error of RNARR by ~25% for crop site-years. Overall, GPPVPM calculated from the in-situ (GPPVPM(EC)), original (GPPVPM(NARR)) and adjusted NARR (GPPVPM(adjNARR)) climate data tracked the seasonality of GPPEC well, albeit with different degrees of biases. GPPVPM(EC) showed a good match with GPPEC for maize (Zea mays L.), but was slightly underestimated for soybean (Glycine max L.). Replacing the in-situ climate data with the NARR resulted in a significant overestimation of GPPVPM(NARR) (18.4/29.6% for irrigated/rainfed maize and 12.7/12.5% for irrigated/rainfed soybean). GPPVPM(adjNARR) showed a good agreement with GPPVPM(EC) for both crops due to the reduction in the bias of RNARR. The results imply that the bias of RNARR introduced significant uncertainties into the PEM-based GPP estimates, suggesting that more accurate surface radiation datasets are needed to estimate primary production of terrestrial ecosystems at regional and global scales.

  8. Efficient in situ separation and production of L-lactic acid by Bacillus coagulans using weak basic anion-exchange resin.

    Science.gov (United States)

    Zhang, Yitong; Qian, Zijun; Liu, Peng; Liu, Lei; Zheng, Zhaojuan; Ouyang, Jia

    2018-02-01

    To get rid of the dependence on lactic acid neutralizer, a simple and economical approach for efficient in situ separation and production of L-lactic acid was established by Bacillus coagulans using weak basic anion-exchange resin. During ten tested resins, the 335 weak basic anion-exchange resins demonstrated the highest adsorption capacity and selectivity for lactic acid recovery. The adsorption study of the 335 resins for lactic acid confirmed that it is an efficient adsorbent under fermentation condition. Langmuir models gave a good fit to the equilibrium data at 50 °C and the maximum adsorption capacity for lactic acid by 335 resins was about 402 mg/g. Adsorption kinetic experiments showed that pseudo-second-order kinetics model gave a good fit to the adsorption rate. When it was used for in situ fermentation, the yield of L-lactic acid by B. coagulans CC17 was close to traditional fermentation and still maintained at about 82% even after reuse by ten times. These results indicated that in situ separation and production of L-lactic acid using the 335 resins were efficient and feasible. This process could greatly reduce the dosage of neutralizing agent and potentially be used in industry.

  9. A quick in-situ estimating method for grading stone products as radiation protection standard of building materials

    International Nuclear Information System (INIS)

    Nanping, Wang; Shengli, Hou; Yexun, Chen

    2002-01-01

    Natural stone is word-widely used as building and decorating material, which is made of marble, granite or other kinds of rocks. Normally they are cut into rectangle with 20 mm thickness. In order to grade small size stone plank as radioactive protection standard (China Standard GB6566-2001), a quick in-situ technique and a special kind of portable -ray detector is developed. The detector is made of NaI (Tl) ( 30x50mm) with a shield (Model ZDD3901, China Patent No. 992080045). The difference modeling was established for small-size stone planks grading. About 96.3% stone plank samples which size are more than 300x300x20 mm could be determined radiation levels by in-situ techniques, by which the grading results (A, B or C) are coincided with quantity analysis in lab

  10. A quick in-situ estimating method for grading stone products as radiation protection standard of building materials

    Energy Technology Data Exchange (ETDEWEB)

    Nanping, Wang; Shengli, Hou; Yexun, Chen [China Univ. of Geosciences, Bijing (China)

    2002-07-01

    Natural stone is word-widely used as building and decorating material, which is made of marble, granite or other kinds of rocks. Normally they are cut into rectangle with 20 mm thickness. In order to grade small size stone plank as radioactive protection standard (China Standard GB6566-2001), a quick in-situ technique and a special kind of portable -ray detector is developed. The detector is made of NaI (Tl) ( 30x50mm) with a shield (Model ZDD3901, China Patent No. 992080045). The difference modeling was established for small-size stone planks grading. About 96.3% stone plank samples which size are more than 300x300x20 mm could be determined radiation levels by in-situ techniques, by which the grading results (A, B or C) are coincided with quantity analysis in lab.

  11. In situ characterization of advanced glycation end products (AGEs) in collagen and model extracellular matrix by solid state NMR.

    Science.gov (United States)

    Li, R; Rajan, R; Wong, W C V; Reid, D G; Duer, M J; Somovilla, V J; Martinez-Saez, N; Bernardes, G J L; Hayward, R; Shanahan, C M

    2017-12-14

    Non-enzymatic glycation of extracellular matrix with (U- 13 C 5 )-d-ribose-5-phosphate (R5P), enables in situ 2D ssNMR identification of many deleterious protein modifications and crosslinks, including previously unreported oxalamido and hemiaminal (CH 3 -CH(OH)NHR) substructures. Changes in charged residue proportions and distribution may be as important as crosslinking in provoking and understanding harmful tissue changes.

  12. Facility design consideration for continuous mix production of class 1.3 propellant

    Science.gov (United States)

    Williamson, K. L.; Schirk, P. G.

    1994-01-01

    In November of 1989, NASA awarded the Advanced Solid Rocket Motor (ASRM) contract to Lockheed Missiles and Space Company (LMSC) for production of advanced solid rocket motors using the continuous mix process. Aerojet ASRM division (AAD) was selected as the facility operator and RUST International Corporation provided the engineering, procurement, and construction management services. The continuous mix process mandates that the mix and cast facilities be 'close-coupled' along with the premix facilities, creating unique and challenging requirements for the facility designer. The classical approach to handling energetic materials-division into manageable quantities, segregation, and isolation-was not available due to these process requirements and quantities involved. This paper provides a description of the physical facilities, the continuous mix process, and discusses the monitoring and detection techniques used to mitigate hazards and prevent an incident.

  13. Medium factors on anaerobic production of rhamnolipids by Pseudomonas aeruginosa SG and a simplifying medium for in situ microbial enhanced oil recovery applications.

    Science.gov (United States)

    Zhao, Feng; Zhou, Jidong; Han, Siqin; Ma, Fang; Zhang, Ying; Zhang, Jie

    2016-04-01

    Aerobic production of rhamnolipid by Pseudomonas aeruginosa was extensively studied. But effect of medium composition on anaerobic production of rhamnolipid by P. aeruginosa was unknown. A simplifying medium facilitating anaerobic production of rhamnolipid is urgently needed for in situ microbial enhanced oil recovery (MEOR). Medium factors affecting anaerobic production of rhamnolipid were investigated using P. aeruginosa SG (Genbank accession number KJ995745). Medium composition for anaerobic production of rhamnolipid by P. aeruginosa is different from that for aerobic production of rhamnolipid. Both hydrophobic substrate and organic nitrogen inhibited rhamnolipid production under anaerobic conditions. Glycerol and nitrate were the best carbon and nitrogen source. The commonly used N limitation under aerobic conditions was not conducive to rhamnolipid production under anaerobic conditions because the initial cell growth demanded enough nitrate for anaerobic respiration. But rhamnolipid was also fast accumulated under nitrogen starvation conditions. Sufficient phosphate was needed for anaerobic production of rhamnolipid. SO4(2-) and Mg(2+) are required for anaerobic production of rhamnolipid. Results will contribute to isolation bacteria strains which can anaerobically produce rhamnolipid and medium optimization for anaerobic production of rhamnolipid. Based on medium optimization by response surface methodology and ions composition of reservoir formation water, a simplifying medium containing 70.3 g/l glycerol, 5.25 g/l NaNO3, 5.49 g/l KH2PO4, 6.9 g/l K2HPO4·3H2O and 0.40 g/l MgSO4 was designed. Using the simplifying medium, 630 mg/l of rhamnolipid was produced by SG, and the anaerobic culture emulsified crude oil to EI24 = 82.5 %. The simplifying medium was promising for in situ MEOR applications.

  14. In situ ESEM study of the thermal decomposition of chrysotile asbestos in view of safe recycling of the transformation product

    International Nuclear Information System (INIS)

    Gualtieri, Alessandro F.; Gualtieri, Magdalena Lassinantti; Tonelli, Massimo

    2008-01-01

    The thermal transformation of asbestos into non-hazardous crystalline phases and their recycling is a promising solution for the 'asbestos problem'. The most common asbestos-containing industrial material produced worldwide is cement-asbestos. Knowledge of the kinetics of thermal transformation of asbestos fibers in cement-asbestos is of paramount importance for the optimization of the firing process at industrial scale. Here, environmental scanning electron microscopy (ESEM) was used for the first time to follow in situ the thermal transformation of chrysotile fibers present in cement-asbestos. It was found that the reaction kinetics of thermal transformation of chrysotile was highly slowed down in the presence of water vapor in the experimental chamber with respect to He. This was explained by chemisorbed water on the surface of the fibers which affected the dehydroxylation reaction and consequently the recrystallization into Mg-silicates. In the attempt to investigate alternative and faster firing routes for the decomposition of asbestos, a low melting glass was mixed with cement-asbestos and studied in situ to assess to which extent the decomposition of asbestos is favored. It was found that the addition of a low melting glass to cement-asbestos greatly improved the decomposition reaction and decreased the transformation temperatures

  15. In situ solution mining technique

    International Nuclear Information System (INIS)

    Learmont, R.P.

    1978-01-01

    A method of in situ solution mining is disclosed in which a primary leaching process employing an array of 5-spot leaching patterns of production and injection wells is converted to a different pattern by converting to injection wells all the production wells in alternate rows

  16. Performance of Regolith Feed Systems for Analog Field Tests of In-Situ Resource Utilization Oxygen Production Plants in Mauna Kea, Hawaii

    Science.gov (United States)

    Townsend, Ivan I.; Mueller, Robert P.; Mantovani, James G.; Zacny, Kris A.; Craft, Jack

    2010-01-01

    This paper focuses on practical aspects of mechanical auger and pneumatic regolith conveying system feeding In-Situ Resource Utilization Oxygen production plants. The subsystems of these feedstock delivery systems include an enclosed auger device, pneumatic venturi educator, jet-lift regolith transfer, innovative electro-cyclone gas-particle separation/filtration systems, and compressors capable of dealing with hot hydrogen and/or methane gas re-circulating in the system. Lessons learned from terrestrial laboratory, reduced gravity and field testing on Mauna Kea Volcano in Hawaii during NASA lunar analog field tests will be discussed and practical design tips will be presented.

  17. In situ production of bio-surfactants: An alternative method for dispersing and bioremediating marine oil spills

    International Nuclear Information System (INIS)

    Josefsen, K.D.; Sveum, P.; Ramstad, P.; Markussen, S.; Folkvord, K.; Krigsvoll, K.; Aune, R.; Storroe, I.

    1995-01-01

    Some oil degrading bacteria are able to produce surfactants. These biosurfactants enhance dispersion of oil droplets into the water column. A large number of surfactant producing bacterial strains have been isolated from seawater samples collected at different sites around the world. Strains isolated from seawater samples collected in cold regions generally had better properties than strains isolated from warm seawater. Many of the isolated strains were able to disperse crude oils with a large variation of composition, as well as the water-in-emulsion (chocolate mousse) formed during weathering of crude oil in the sea. The results show that in situ application of surfactant producing bacteria can be a viable tool in future oil spill contingency, and that dispersion of oil may increase the biodegradation rate. Work is in progress to examine the use of such bacteria in the bioremediation of oil contaminated shorelines. 10 refs., 3 figs., 2 tabs

  18. In Situ Production of Copper Oxide Nanoparticles in a Binary Molten Salt for Concentrated Solar Power Plant Applications.

    Science.gov (United States)

    Lasfargues, Mathieu; Stead, Graham; Amjad, Muhammad; Ding, Yulong; Wen, Dongsheng

    2017-05-19

    Seeding nanoparticles in molten salts has been shown recently as a promising way to improve their thermo-physical properties. The prospect of such technology is of interest to both academic and industrial sectors in order to enhance the specific heat capacity of molten salt. The latter is used in concentrated solar power plants as both heat transfer fluid and sensible storage. This work explores the feasibility of producing and dispersing nanoparticles with a novel one pot synthesis method. Using such a method, CuO nanoparticles were produced in situ via the decomposition of copper sulphate pentahydrate in a KNO₃-NaNO₃ binary salt. Analyses of the results suggested preferential disposition of atoms around produced nanoparticles in the molten salt. Thermal characterization of the produced nano-salt suspension indicated the dependence of the specific heat enhancement on particle morphology and distribution within the salts.

  19. In Situ Production of Copper Oxide Nanoparticles in a Binary Molten Salt for Concentrated Solar Power Plant Applications

    Directory of Open Access Journals (Sweden)

    Mathieu Lasfargues

    2017-05-01

    Full Text Available Seeding nanoparticles in molten salts has been shown recently as a promising way to improve their thermo-physical properties. The prospect of such technology is of interest to both academic and industrial sectors in order to enhance the specific heat capacity of molten salt. The latter is used in concentrated solar power plants as both heat transfer fluid and sensible storage. This work explores the feasibility of producing and dispersing nanoparticles with a novel one pot synthesis method. Using such a method, CuO nanoparticles were produced in situ via the decomposition of copper sulphate pentahydrate in a KNO3-NaNO3 binary salt. Analyses of the results suggested preferential disposition of atoms around produced nanoparticles in the molten salt. Thermal characterization of the produced nano-salt suspension indicated the dependence of the specific heat enhancement on particle morphology and distribution within the salts.

  20. Quasi-reference electrodes in confined electrochemical cells can result in in situ production of metallic nanoparticles.

    Science.gov (United States)

    Perera, Rukshan T; Rosenstein, Jacob K

    2018-01-31

    Nanoscale working electrodes and miniaturized electroanalytical devices are valuable platforms to probe molecular phenomena and perform chemical analyses. However, the inherent close distance of metallic electrodes integrated into a small volume of electrolyte can complicate classical electroanalytical techniques. In this study, we use a scanning nanopipette contact probe as a model miniaturized electrochemical cell to demonstrate measurable side effects of the reaction occurring at a quasi-reference electrode. We provide evidence for in situ generation of nanoparticles in the absence of any electroactive species and we critically analyze the origin, nucleation, dissolution and dynamic behavior of these nanoparticles as they appear at the working electrode. It is crucial to recognize the implications of using quasi-reference electrodes in confined electrochemical cells, in order to accurately interpret the results of nanoscale electrochemical experiments.

  1. Study of KOH/Al2O3 as heterogeneous catalyst for biodiesel production via in situ transesterification from microalgae.

    Science.gov (United States)

    Ma, Guixia; Hu, Wenrong; Pei, Haiyan; Jiang, Liqun; Ji, Yan; Mu, Ruimin

    2015-01-01

    Heterogeneous KOH/Al2O3 catalysts, synthesized by the wet impregnation method with different KOH loadings (20-40 wt%) and calcination temperatures from 400°C to 800°C, were used to produce biodiesel from Chlorella vulgaris biomass by in situ transesterification. The highest yield of biodiesel of 89.53±1.58% was achieved at calcination temperature of 700°C for 2 h and 35 wt% loading of KOH, and at the optimal reaction condition of 10 wt% of catalyst content, 8 mL/g of methanol to biomass ratio and at 60°C for 5 h. The characteristics of the catalysts were analysed by X-ray diffraction, scanning electron microscopy and Brunauer-Emmett-Teller.

  2. In situ production of silver nanoparticles for high sensitive detection of ascorbic acid via inner filter effect

    Energy Technology Data Exchange (ETDEWEB)

    Rezaei, B., E-mail: rezaeimeister@gmail.com; Shahshahanipour, M.; Ensafi, Ali A.

    2017-02-01

    In the present research, a sensitive biosensing method was proposed for the detection of trace amounts of ascorbic acid (AA). Herein, colloidal silver nanoparticles (SNPs) were successfully in-situ produced by chemical reduction of silver ion in the presence of AA, as a reducing agent. The one-pot in-situ produced silver nanoparticles were characterized by UV–vis, dynamic light scattering (DLS), zeta potential and transmission electron microscopic (TEM). SNPs act as a strong fluorescence quencher for the CdTe quantum dots via an inner filter effect (IFE). Since the absorption band of SNPs entirely covered both emission and excitation bands of QDs. Therefore, the decreasing in the fluorescence signal depends on the AA concentration in the linear range of 0.2–88.0 ng mL{sup −1} and with a detection limit of 0.02 ng mL{sup −1}. Relative standard deviations of 2.3% and 2.8% (n = 5) were achieved for the determination of 1.8 and 8.8 ng mL{sup −1} AA, respectively. This novel QDs nanosensor based on IFE could provide noticeable advantages of simplicity, convenience, cost-effectiveness, and sensitivity. This method was successfully applied for the detection of ascorbic acid in human real samples serums. - Highlights: • A sensitive and simple method has been developed for detection of ascorbic acid. • Silver nanoparticles as a strong quencher were prepared via the one-step reduction. • Its absorption band covered both emission and excitation bands of CdTe QDs. • So, the fluorescence of CdTe QDs quenching due to Inner filter effect.

  3. In situ trace gas and particle measurements in the summer lower stratosphere during STREAM II. Implications for O{sub 3} production

    Energy Technology Data Exchange (ETDEWEB)

    Bregman, A; Lelieveld, J; Scheeren, H A [Institute for Marine and Atmospheric Sciences, Utrecht (Netherlands); Arnold, F; Buerger, V; Schneider, J [Max-Planck-Inst. for Nuclear Physics, Heidelberg (Germany); Fischer, H; Waibel, A [Max-Planck-Inst. fuer Chemie, Mainz (Germany); Siegmund, P C; Wauben, W M.F. [Koninklijk Nederlands Meteorologisch Inst., De Bilt (Netherlands); Stroem, J [Stockholm Univ. (Sweden). Dept. of Meteorology

    1998-12-31

    In situ aircraft measurements of O{sub 3}, CO, HNO{sub 3}, and aerosol particles are presented, performed over the North Sea region in the summer lower stratosphere during the STREAM-II campaign (Stratosphere Troposphere Experiments by Aircraft Measurements). Elevated CO mixing ratios are attributed to mixing of polluted tropospheric air into the lowermost extra-tropical stratosphere. Model calculations illustrate that the O{sub 3} production efficiency of NO{sub x} is smaller than previously assumed, under conditions with relatively high HNO{sub 3} mixing ratios, as observed during STREAM-II. The model simulations further suggest a relatively high O{sub 3} production efficiency from CO oxidation, as a result of the relatively high ambient HNO{sub 3} and NO{sub x} concentrations, implying that upward transport of CO rich air enhances O{sub 3} production in the lowermost stratosphere. (author) 13 refs.

  4. In situ trace gas and particle measurements in the summer lower stratosphere during STREAM II. Implications for O{sub 3} production

    Energy Technology Data Exchange (ETDEWEB)

    Bregman, A.; Lelieveld, J.; Scheeren, H.A. [Institute for Marine and Atmospheric Sciences, Utrecht (Netherlands); Arnold, F.; Buerger, V.; Schneider, J. [Max-Planck-Inst. for Nuclear Physics, Heidelberg (Germany); Fischer, H.; Waibel, A. [Max-Planck-Inst. fuer Chemie, Mainz (Germany); Siegmund, P.C.; Wauben, W.M.F. [Koninklijk Nederlands Meteorologisch Inst., De Bilt (Netherlands); Stroem, J. [Stockholm Univ. (Sweden). Dept. of Meteorology

    1997-12-31

    In situ aircraft measurements of O{sub 3}, CO, HNO{sub 3}, and aerosol particles are presented, performed over the North Sea region in the summer lower stratosphere during the STREAM-II campaign (Stratosphere Troposphere Experiments by Aircraft Measurements). Elevated CO mixing ratios are attributed to mixing of polluted tropospheric air into the lowermost extra-tropical stratosphere. Model calculations illustrate that the O{sub 3} production efficiency of NO{sub x} is smaller than previously assumed, under conditions with relatively high HNO{sub 3} mixing ratios, as observed during STREAM-II. The model simulations further suggest a relatively high O{sub 3} production efficiency from CO oxidation, as a result of the relatively high ambient HNO{sub 3} and NO{sub x} concentrations, implying that upward transport of CO rich air enhances O{sub 3} production in the lowermost stratosphere. (author) 13 refs.

  5. Perancangan Propeler Self-Propelled Barge

    Directory of Open Access Journals (Sweden)

    Billy Teguh kurniawan

    2013-03-01

    Full Text Available Makalah ini menyampaikan suatu penelitian tentang perancangan propeler yang optimal beserta pemilihan daya mesin yang efisien pada self-propelled barge dengan memperhitungkan besarnya nilai tahanan dari barge tersebut. Dengan penambahan sistem propulsi, diharapkan barge dapat beroperasi dengan lebih efisien dibandingkan saat barge beroperasi menggunakan sistem towing atau ditarik tug boat. Perhitungan tahanan barge dilakukan menggunakan metode Holtrop dan Guldhammer-Harvald sehingga dapat diperhi-tungkan geometri dan jenis propeler yang optimal beserta daya mesin yang efisien untuk barge. Propeler yang dianalisis adalah propeler tipe B-Troost Series, sedangkan variasi yang dilakukan untuk perencanaan propeler pada kajian ini adalah variasi putaran propeler pada rentang antara 310-800 rpm, serta variasi jumlah daun pada rentang tiga, empat, lima, dan enam. Besarnya nilai tahanan self-propelled barge untuk metode Holtrop adalah 105.91 kilonewton, sedangkan hasil per-hitungan dari metode Guldhammer-Harvald didapatkan nilai sebesar 109.14 kilonewton. Tipe propeler yang dipilih setelah dilakukan uji kavitasi adalah tipe Troost Series B4-40, dengan diameter sebesar 2.1 m, efisiensi sebesar 0.421, pitch ratio se-besar 0.591, dengan putaran propeler 400 rpm. Daya mesin yg dibutuhkan barge pada kondisi maksimum (BHPMCR sebesar 1669.5 HP. Dengan mempertimbangkan daya tersebut, maka dipilih mesin jenis Caterpillar tipe Marine 3516B yang mem-punyai daya maksimum sebesar 1285 kilowatt atau 1722.5 horsepower dengan putaran mesin sebesar 1200 rpm

  6. In situ seasonal study of the volatile production of almonds (Prunus dulcis) var. 'Nonpareil' and relationship to navel orangeworm.

    Science.gov (United States)

    Beck, John J; Merrill, Glory B; Higbee, Bradley S; Light, Douglas M; Gee, Wai S

    2009-05-13

    Nonpareil almonds, Prunus dulcis , account for the largest percentage of almond varieties grown in the Central Valley of California. Several studies have investigated the various nonvolatile and volatile components of various plant parts; however, the volatile organic compound (VOC) emission of almonds from a single cultivar has not been studied over the course of a growing season. This aspect is particularly relevant to research concerning the navel orangeworm (NOW), a major insect pest of almonds and other tree nuts. Despite the continued presence of NOW, the identification of particular VOCs and their relationship to NOW have not been addressed. The VOC emission of Nonpareil almonds was collected in situ over the course of a growing season by solid-phase microextraction (SPME). The VOCs (Z)-hex-3-enyl acetate, (Z)-hex-3-enyl butyrate, undecan-2-ol, beta-bourbonene, and tetradecane were present for the majority of the days investigated. Several VOCs exhibited positive electroantennographic signals from male and/or female NOW moths.

  7. Testosterone Production is Better Preserved After 16 than 20 Gray Irradiation Treatment Against Testicular Carcinoma In Situ Cells

    International Nuclear Information System (INIS)

    Bang, Anne K.; Petersen, Jorgen H.; Petersen, Peter M.; Andersson, Anna-Maria; Daugaard, Gedske; Jorgensen, Niels

    2009-01-01

    Purpose: To study the effect of 16 Gy radiotherapy (RT) vs. 20 Gy RT on Leydig cell function in men treated with radiotherapy against carcinoma in situ (CIS) of the testis. Methods and Materials: Fifty-one men who were treated between 1985 and 2005 were included. Fourteen men had been treated with 20 Gy and 37 with 16 Gy RT. Measurements of sex hormone-binding globulin and basic and stimulated testosterone, as well as luteinizing hormone levels were performed. Results: The follow-up periods for the patients treated without additional chemotherapy were for the 20 Gy and 16 Gy group mean/median/min-max: 9.0/10.0/1.0-20.3 years and 4.0/3.1/0.4-14.1 years, respectively. During the follow-up period, men treated with 16 Gy RT had stable testosterone levels (-1.1%/year, p = 0.4), whereas men treated with 20 Gy had an annual decrease of 2.4% (p = 0.008). For the latter group, the testosterone decrease was most pronounced in the first 5 years, leveling off during the following 5 years. Additionally, more men treated with 20 Gy needed androgen substitution treatment. Our study showed an increased luteinizing hormone level for the men treated with 16 Gy, although this was not significant (p = 0.5). We anticipated a similar increase in the patients treated with 20 Gy but instead observed a decrease (-3.1%, p = 0.01). Conclusion: RT at 16 and 20 Gy seem to affect Leydig cell function differently, with 16 Gy RT better preserving testosterone levels and thus being preferred from an endocrinological point of view.

  8. Tip-modified Propellers

    DEFF Research Database (Denmark)

    Andersen, Poul

    1999-01-01

    The paper deals with tip-modified propellers and the methods which, over a period of two decades, have been applied to develop such propellers. The development is driven by the urge to increase the efficiency of propellers and can be seen as analogous to fitting end plates and winglets to aircraft...... propeller, have efficiency increases of a reasonable magnitude in both open-water and behind-ship conditions....

  9. Bioprocess design guided by in situ substrate supply and product removal: process intensification for synthesis of (S)-1-(2-chlorophenyl)ethanol.

    Science.gov (United States)

    Schmölzer, Katharina; Mädje, Katharina; Nidetzky, Bernd; Kratzer, Regina

    2012-03-01

    We report herein on bioprocess development guided by the hydrophobicities of substrate and product. Bioreductions of o-chloroacetophenone are severely limited by instability of the catalyst in the presence of aromatic substrate and (S)-1-(2-chlorophenyl)ethanol. In situ substrate supply and product removal was used to protect the utilized Escherichia coli whole cell catalyst based on Candida tenuis xylose reductase during the reaction. Further engineering at the levels of the catalyst and the reaction media was matched to low substrate concentrations in the aqueous phase. Productivities obtained in aqueous batch reductions were 21-fold improved by addition of 20% (v/v) hexane, NAD(+), expression engineering, cell permeabilization and pH optimization. Reduction of 300 mM substrate was accomplished in 97% yield and use of the co-solvent hexane in subsequent extraction steps led to 88% recovery. Product loss due to high catalyst loading was minimized by using the same extractant in bioreduction and product isolation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Geochemical and petrographic studies and the relationships to durability and leach resistance of vitrified products from the in situ vitrification process

    International Nuclear Information System (INIS)

    Timmons, D.M.; Thompson, L.E.

    1996-01-01

    Soil and sludge contaminated with hazardous and radioactive materials from sites in the United States and Australia were vitrified using in situ vitrification. Some of the resulting products were subjected to detailed geochemical, leach and durability testing using a variety of analytical techniques. The leach resistance and durability performance was compared to that of vitrified high level waste with borosilicate composition. Particular attention was given to crystallization behavior, the effects of crystallization on residual melt chemistry and how crystallization influences the behavior of contaminant ions. The results of this work show that the vitrified material studied has superior chemical durability and leach resistance relative to typical borosilicate waste glasses. Crystallization behavior was variable depending upon melt chemistry and cooling history. Crystallization was not observed to adversely affect chemical durability or leach resistance

  11. Assessment of the SMAP Level-4 Surface and Root-Zone Soil Moisture Product Using In Situ Measurements

    NARCIS (Netherlands)

    Reichle, Rolf H.; De Lannoy, Gabrielle J. M.; Liu, Qing; Ardizzone, Joseph V.; Colliander, Andreas; Conaty, Austin; Crow, Wade; Jackson, Thomas J.; Jones, Lucas A.; Kimball, John S.; Koster, Randal D.; Mahanama, Sarith P.; Smith, Edmond B.; Berg, Aaron; Bircher, Simone; Bosch, David; Caldwell, Todd G.; Cosh, Michael; Holifield Collins, Chandra D.; Jensen, Karsten H.; Livingston, Stan; Lopez-baeza, Ernesto; Martínez-fernández, José; Mcnairn, Heather; Moghaddam, Mahta; Pacheco, Anna; Pellarin, Thierry; Prueger, John; Rowlandson, Tracy; Seyfried, Mark; Starks, Patrick; Su, Bob; Thibeault, Marc; Van Der Velde, Rogier; Walker, Jeffrey; Wu, Xiaoling; Zeng, Yijian

    2017-01-01

    The Soil Moisture Active Passive (SMAP) mission Level-4 Surface and Root-Zone Soil Moisture (L4_SM) data product is generated by assimilating SMAP L-band brightness temperature observations into the NASA Catchment land surface model. The L4_SM product is available from 31 March 2015 to present

  12. Process for calcium xylonate production as a concrete admixture derived from in-situ fermentation of wheat straw pre-hydrolysate.

    Science.gov (United States)

    Zhou, Xin; Zhou, Xuelian; Tang, Xiusheng; Xu, Yong

    2018-08-01

    One of the major obstacles in process of lignocellulosic biorefinery is the utilization of pre-hydrolysate from pre-treatment. Although lignocellulosic pre-hydrolysate can serve as an economic starting material for xylonic acid production, the advancement of xylonic acid or xylonate is still limited by further commercial value or applications. In the present study, xylose in the high concentration wheat straw pre-hydrolysate was first in-situ biooxidized to xylonate by Gluconobacter oxydans. To meet the needs of commercialization, crude powdered calcium xylonate was prepared by drying process and calcium xylonate content in the prepared crude product was more than 70%. Then, the calcium xylonate product was evaluated as concrete admixture without any complex purification steps and the results demonstrated that xylonate could improve the performance of concrete. Overall, the crude xylonate product directly produced from low-cost wheat straw pre-hydrolysate can potentially be developed as retarding reducer, which could subsequently benefit lignocellulosic biorefinery. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Prostacyclin production in rabbit arteries in situ: inhibition by arachidonic acid-induced endothelial cell damage or by low-dose aspirin.

    Science.gov (United States)

    Ingerman-Wojenski, C; Silver, M J; Smith, J B; Nissenbaum, M; Sedar, A W

    1981-04-01

    The central artery of the rabbit ear was perfused in situ and effluent fractions from the artery were assayed for 6-keto-prostaglandin F1 alpha (6-K-PGF1 alpha) and thromboxane B2 (TxB2), the stable metabolites of prostacyclin (PGI2) and TxA2, using specific radioimmunoassays. These metabolites of arachidonic acid (AA) were not detected in the effluent during infusion of Tyrode's solution but both metabolites were detected when small amounts of AA were infused into the artery. Examination of the arteries by scanning electron microscopy revealed that high concentrations of AA which caused a short burst of 6-K-PGF1 alpha and TxB2 production damaged the endothelial cells while lower concentrations which stimulated continuous production did not cause damage. When a non-damaging concentration of AA was infused into an artery that had previously received a damaging concentration, PG production was greatly reduced. Pretreatment of the rabbits with 4 mg/kg acetyl-salicylic acid (ASA) inhibited 6-K-PGF1 alpha production by the rabbit ear artery in response to AA and 70% inhibition was still evident 18 hours after ASA.

  14. Variation in ruminal in situ degradation of crude protein and starch from maize grains compared to in vitro gas production kinetics and physical and chemical characteristics.

    Science.gov (United States)

    Seifried, Natascha; Steingaß, Herbert; Schipprack, Wolfgang; Rodehutscord, Markus

    2016-10-01

    The objectives of this study were (1) to evaluate in situ ruminal dry matter (DM), crude protein (CP) and starch degradation characteristics and in vitro gas production (GP) kinetics using a set of 20 different maize grain genotypes and (2) to predict the effective degradation (ED) of CP and starch from chemical and physical characteristics alone or in combination with in vitro GP measurements. Maize grains were characterised by different chemical and physical characteristics. Ruminal in situ degradation was measured in three lactating Jersey cows. Ground grains (sieve size: 2 mm) were incubated in bags for 1, 2, 4, 8, 16, 24, 48 and 72 h. Bag residues were analysed for CP and starch content. Degradation kinetics was determined and the ED of DM, CP and starch calculated using a ruminal passage rate of 5%/h and 8%/h. The GP of the grains (sieve size: 1 mm) was recorded after 2, 4, 6, 8, 12, 24, 48 and 72 h incubation in buffered rumen fluid and fitted to an exponential equation to determine GP kinetics. Correlations and stepwise multiple linear regressions were evaluated for the prediction of ED calculated for a passage rate of 5%/h (ED5) for CP (EDCP5) and starch (EDST5). The in situ parameters and ED5 varied widely between genotypes with average values (±SD) of 64% ± 4.2, 62% ± 4.1 and 65% ± 5.2 for ED5 of DM, EDCP5 and EDST5 and were on average 10 percentage points lower for a passage rate of 8%/h. Degradation rates varied between 4.8%/h and 7.4%/h, 4.1%/h and 6.5%/h and 5.3%/h and 8.9%/h for DM, CP and starch, respectively. These rates were in the same range as GP rates (6.0-8.3%/h). The EDCP5 and EDST5 were related to CP concentration and could be evaluated in detail using CP fractions and specific amino acids. In vitro GP measurements and GP rates correlated well with EDCP5 and EDST5 and predicted EDCP5 and EDST5 in combination with the chemical characteristics of the samples. Equations can be used to obtain quick and cost effective information

  15. Rye bran as fermentation matrix boosts in situ dextran production by Weissella confusa compared to wheat bran.

    Science.gov (United States)

    Kajala, Ilkka; Mäkelä, Jari; Coda, Rossana; Shukla, Shraddha; Shi, Qiao; Maina, Ndegwa Henry; Juvonen, Riikka; Ekholm, Päivi; Goyal, Arun; Tenkanen, Maija; Katina, Kati

    2016-04-01

    The consumption of fiber-rich foods such as cereal bran is highly recommended due to its beneficial health effects. Pre-fermentation of bran with lactic acid bacteria can be used to improve the otherwise impaired flavor and textural qualities of bran-rich products. These positive effects are attributed to enzymatic modification of bran components and the production of functional metabolites like organic acids and exopolysaccharides such as dextrans. The aim of this study was to investigate dextran production in wheat and rye bran by fermentation with two Weissella confusa strains. Bran raw materials were analyzed for their chemical compositions and mineral content. Microbial growth and acidification kinetics were determined from the fermentations. Both strains produced more dextran in rye bran in which the fermentation-induced acidification was slower and the acidification lag phase longer than in wheat bran. Higher dextran production in rye bran is expected to be due to the longer period of optimal pH for dextran synthesis during fermentation. The starch content of wheat bran was higher, which may promote isomaltooligosaccharide formation at the expense of dextran production. W. confusa Cab3 produced slightly higher amounts of dextran than W. confusa VTT E-90392 in all raw materials. Fermentation with W. confusa Cab3 also resulted in lower residual fructose content which has technological relevance. The results indicate that wheat and particularly rye bran are promising matrices for producing technologically significant amounts of dextran, which facilitates the use of nutritionally valuable raw bran in food applications.

  16. Determining of Degradation and Digestion Coefficients of Canola meal Using of In situ and Gas production Techniques

    OpenAIRE

    Younes Tahmazi; Akbar Taghizadeh; Yousef Mehmannavaz; Mehdi Moghaddam

    2015-01-01

    This study was carried out to the determination of nutritive value of canola meal using naylon bag and cumulative gas production techniques in Gizel sheep. Tow fistulated Gizel sheep with average BW 45±2 kg used in a complete randomized design. The cumulative gas production was measured at 2, 4, 6, 8, 12, 16, 24, 36 and 48 h and ruminal DM and CP disappearance were measured up to 96 h. Coefficients of soluble CP degradation of canola meal (A), canola meal treated with 0.5% urea (B) and canola...

  17. Carbon Dioxide Production Responsibility on the Basis of comparing in Situ and mean CO2 Atmosphere Concentration Data

    OpenAIRE

    Mavrodiev, S. Cht.; Pekevski, L.; Vachev, B.

    2008-01-01

    The method is proposed for estimation of regional CO2 and other greenhouses and pollutants production responcibility. The comparison of CO2 local emissions reduction data with world CO2 atmosphere data will permit easy to judge for overall effect in curbing not only global warming but also chemical polution.

  18. Continuous fermentation and in-situ reed separation of butyric acid for higher sugar consumption rate and productivity

    DEFF Research Database (Denmark)

    Baroi, George Nabin; Skiadas, Ioannis; Westermann, Peter

    that disconnection of the REED system resulted to much lower (48 and 83% for glucose and xylose, respectively) sugars consumption rates and consequently lower butyric acid production rates. It was also noticeable that continuous operation, even without the REED system, resulted to higher glucose consumption rates...

  19. Valorization of Waste Lipids through Hydrothermal Catalytic Conversion to Liquid Hydrocarbon Fuels with in Situ Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongwook; Vardon, Derek R.; Murali, Dheeptha; Sharma, Brajendra K.; Strathmann, Timothy J.

    2016-03-07

    We demonstrate hydrothermal (300 degrees C, 10 MPa) catalytic conversion of real waste lipids (e.g., waste vegetable oil, sewer trap grease) to liquid hydrocarbon fuels without net need for external chemical inputs (e.g., H2 gas, methanol). A supported bimetallic catalyst (Pt-Re/C; 5 wt % of each metal) previously shown to catalyze both aqueous phase reforming of glycerol (a triacylglyceride lipid hydrolysis coproduct) to H2 gas and conversion of oleic and stearic acid, model unsaturated and saturated fatty acids, to linear alkanes was applied to process real waste lipid feedstocks in water. For reactions conducted with an initially inert headspace gas (N2), waste vegetable oil (WVO) was fully converted into linear hydrocarbons (C15-C17) and other hydrolyzed byproducts within 4.5 h, and H2 gas production was observed. Addition of H2 to the initial reactor headspace accelerated conversion, but net H2 production was still observed, in agreement with results obtained for aqueous mixtures containing model fatty acids and glycerol. Conversion to liquid hydrocarbons with net H2 production was also observed for a range of other waste lipid feedstocks (animal fat residuals, sewer trap grease, dry distiller's grain oil, coffee oil residual). These findings demonstrate potential for valorization of waste lipids through conversion to hydrocarbons that are more compatible with current petroleum-based liquid fuels than the biodiesel and biogas products of conventional waste lipid processing technologies.

  20. High burn rate solid composite propellants

    Science.gov (United States)

    Manship, Timothy D.

    High burn rate propellants help maintain high levels of thrust without requiring complex, high surface area grain geometries. Utilizing high burn rate propellants allows for simplified grain geometries that not only make production of the grains easier, but the simplified grains tend to have better mechanical strength, which is important in missiles undergoing high-g accelerations. Additionally, high burn rate propellants allow for a higher volumetric loading which reduces the overall missile's size and weight. The purpose of this study is to present methods of achieving a high burn rate propellant and to develop a composite propellant formulation that burns at 1.5 inches per second at 1000 psia. In this study, several means of achieving a high burn rate propellant were presented. In addition, several candidate approaches were evaluated using the Kepner-Tregoe method with hydroxyl terminated polybutadiene (HTPB)-based propellants using burn rate modifiers and dicyclopentadiene (DCPD)-based propellants being selected for further evaluation. Propellants with varying levels of nano-aluminum, nano-iron oxide, FeBTA, and overall solids loading were produced using the HTPB binder and evaluated in order to determine the effect the various ingredients have on the burn rate and to find a formulation that provides the burn rate desired. Experiments were conducted to compare the burn rates of propellants using the binders HTPB and DCPD. The DCPD formulation matched that of the baseline HTPB mix. Finally, GAP-plasticized DCPD gumstock dogbones were attempted to be made for mechanical evaluation. Results from the study show that nano-additives have a substantial effect on propellant burn rate with nano-iron oxide having the largest influence. Of the formulations tested, the highest burn rate was a 84% solids loading mix using nano-aluminum nano-iron oxide, and ammonium perchlorate in a 3:1(20 micron: 200 micron) ratio which achieved a burn rate of 1.2 inches per second at 1000

  1. Gold nanoparticles produced in situ mediate bioelectricity and hydrogen production in a microbial fuel cell by quantized capacitance charging.

    Science.gov (United States)

    Kalathil, Shafeer; Lee, Jintae; Cho, Moo Hwan

    2013-02-01

    Oppan quantized style: By adding a gold precursor at its cathode, a microbial fuel cell (MFC) is demonstrated to form gold nanoparticles that can be used to simultaneously produce bioelectricity and hydrogen. By exploiting the quantized capacitance charging effect, the gold nanoparticles mediate the production of hydrogen without requiring an external power supply, while the MFC produces a stable power density. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. High Purity Hydrogen Production with In-Situ Carbon Dioxide and Sulfur Capture in a Single Stage Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nihar Phalak; Shwetha Ramkumar; Daniel Connell; Zhenchao Sun; Fu-Chen Yu; Niranjani Deshpande; Robert Statnick; Liang-Shih Fan

    2011-07-31

    Enhancement in the production of high purity hydrogen (H{sub 2}) from fuel gas, obtained from coal gasification, is limited by thermodynamics of the water gas shift (WGS) reaction. However, this constraint can be overcome by conducting the WGS in the presence of a CO{sub 2}-acceptor. The continuous removal of CO{sub 2} from the reaction mixture helps to drive the equilibrium-limited WGS reaction forward. Since calcium oxide (CaO) exhibits high CO{sub 2} capture capacity as compared to other sorbents, it is an ideal candidate for such a technique. The Calcium Looping Process (CLP) developed at The Ohio State University (OSU) utilizes the above concept to enable high purity H{sub 2} production from synthesis gas (syngas) derived from coal gasification. The CLP integrates the WGS reaction with insitu CO{sub 2}, sulfur and halide removal at high temperatures while eliminating the need for a WGS catalyst, thus reducing the overall footprint of the hydrogen production process. The CLP comprises three reactors - the carbonator, where the thermodynamic constraint of the WGS reaction is overcome by the constant removal of CO{sub 2} product and high purity H{sub 2} is produced with contaminant removal; the calciner, where the calcium sorbent is regenerated and a sequestration-ready CO{sub 2} stream is produced; and the hydrator, where the calcined sorbent is reactivated to improve its recyclability. As a part of this project, the CLP was extensively investigated by performing experiments at lab-, bench- and subpilot-scale setups. A comprehensive techno-economic analysis was also conducted to determine the feasibility of the CLP at commercial scale. This report provides a detailed account of all the results obtained during the project period.

  3. Green and sustainable succinic acid production from crude glycerol by engineered Yarrowia lipolytica via agricultural residue based in situ fibrous bed bioreactor.

    Science.gov (United States)

    Li, Chong; Gao, Shi; Yang, Xiaofeng; Lin, Carol Sze Ki

    2018-02-01

    In situ fibrous bed bioreactor (isFBB) for efficient succinic acid (SA) production by Yarrowia lipolytica was firstly developed in our former study. In this study, agricultural residues including wheat straw, corn stalk and sugarcane bagasse were investigated for the improvement of isFBB, and sugarcane bagasse was demonstrated to be the best immobilization material. With crude glycerol as the sole carbon source, optimization for isFBB batch fermentation was carried out. Under the optimal conditions of 20g sugarcane bagasse as immobilization material, 120gL -1 crude glycerol as carbon source and 4Lmin -1 of aeration rate, the resultant SA concentration was 53.6gL -1 with an average productivity of 1.45gL -1 h -1 and a SA yield of 0.45gg -1 . By feeding crude glycerol, SA titer up to 209.7gL -1 was obtained from fed batch fermentation, which was the highest value that ever reported. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The influence of reactive side products on the electrooxidation of methanol--a combined in situ infrared spectroscopy and online mass spectrometry study.

    Science.gov (United States)

    Reichert, R; Schnaidt, J; Jusys, Z; Behm, R J

    2014-07-21

    Aiming at a better understanding of the impact of reaction intermediates and reactive side products on electrocatalytic reactions under conditions characteristic for technical applications, i.e., at high reactant conversions, we have investigated the electrooxidation of methanol on a Pt film electrode in mixtures containing defined concentrations of the reaction intermediates formaldehyde or formic acid. Employing simultaneous in situ infrared spectroscopy and online mass spectrometry in parallel to voltammetric measurements, we examined the effects of the latter molecules on the adlayer build-up and composition and on the formation of volatile reaction products CO2 and methylformate, as well as on the overall reaction rate. To assess the individual contributions of each component, we used isotope labeling techniques, where one of the two C1 components in the mixtures of methanol with either formaldehyde or formic acid was (13)C-labeled. The data reveal pronounced effects of the additional components formaldehyde and formic acid on the reaction, although their concentration was much lower (10%) than that of the main reactant methanol. Most important, the overall Faradaic current responses and the amounts of CO2 formed upon oxidation of the mixtures are always lower than the sums of the contributions from the individual components, indicative of a non-additive behavior of both Faradaic current and CO2 formation in the mixtures. Mechanistic reasons and consequences for reactions in a technical reactor, with high reactant conversion, are discussed.

  5. In situ growth of CdS nanoparticles on UiO-66 metal-organic framework octahedrons for enhanced photocatalytic hydrogen production under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jian-Jian; Wang, Rong; Liu, Xin-Ling; Peng, Fu-Min [School of Chemistry and Chemical Engineering and Innovation Lab for Clean Energy & Green Catalysis, Anhui University, Hefei 230601 (China); Li, Chuan-Hao, E-mail: chuanhao.li@yale.edu [School of Chemistry and Chemical Engineering and Innovation Lab for Clean Energy & Green Catalysis, Anhui University, Hefei 230601 (China); Department of Chemical & Environmental Engineering, Yale University, New Haven 06511 (United States); Teng, Fei [Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Sciences and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044 (China); Yuan, Yu-Peng, E-mail: yupengyuan@ahu.edu.cn [School of Chemistry and Chemical Engineering and Innovation Lab for Clean Energy & Green Catalysis, Anhui University, Hefei 230601 (China); Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Sciences and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044 (China)

    2015-08-15

    Graphical abstract: Enhanced photocatalytic hydrogen generation was achieved though constructing the CdS/UiO-66 MOF hybrids. In addition, the resultant hybrids show excellent photostability for hydrogen generation. - Highlights: • CdS nanoparticles were hydrothermally grown on UiO-66 octahedrons. • The resultant CdS/UiO-66 hybrids show enhanced photocatalytic H{sub 2} generation under visible light irradiation. • CdS/UiO-66 hybrids possess excellent photostability for long-term hydrogen generation. - Abstract: CdS nanoparticles acting as photosensitizer was grown in situ upon UiO-66 metal-organic framework octahedrons through a hydrothermal process. The resultant CdS/UiO-66 hybrid photocatalysts show remarkably active hydrogen evolution under visible light irradiation as compared to CdS and UiO-66 alone. The optimum hybrid with 16 wt% CdS loading shows a hydrogen production rate of 235 μmol h{sup −1}, corresponding to 1.2% quantum efficiency at 420 nm. The improved photocatalytic hydrogen production over hybrid CdS/UiO-66 is ascribed to the efficient interfacial charge transfer from CdS to UiO-66, which effectively suppresses the recombination of photogenerated electron-hole pairs and thereby enhancing the photocatalytic efficiency.

  6. Production of Biodiesel from Thespesiapopulnea seed oil through rapid in situ transesterification - an optimization study and assay of fuel properties

    Science.gov (United States)

    Bhargavi, G.; Nageswara Rao, P.; Renganathan, S.

    2018-03-01

    Biodiesel production was carried out from Thespesia populnea seed oil through rapid insitu transesterification. Influence of reaction parameters such as catalyst type and concentration, methanol to biomass ratio, co-solvent volume, temperature and agitation speed on conversion of oil into methyl esters was investigated. The effect of different co-solvents on conversion was evaluated. Optimum methyl ester conversion of 97.80% was achieved at 1.5wt% of KOH catalyst, 5.5:1 (v/w) methanol to biomass ratio, 25vol%tetrahydrofuranco-solvent, 60°C and 500 rpm within 120min of reaction time. Fuel properties of produced methyl esters were well fitted within the limits of ASTMD 6751 standards. Considering the properties of produced biodiesel, Thespesia populnea seed derived biodiesel can be used as potential alternate to fossil diesel fuel.

  7. Evidence for the Active Phase of Heterogeneous Catalysts through In Situ Reaction Product Imaging and Multiscale Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Matera, S.; Blomberg, S.; Hoffmann, M. J.; Zetterberg, J.; Gustafson, J.; Lundgren, E.; Reuter, K.

    2015-06-17

    We use multiscale modeling to analyze laser-induced fluorescence (LIF) measurements of the CO oxidation reaction over Pd(100) at near-ambient reaction conditions. Integrating density functional theory-based kinetic Monte Carlo simulations of the active catalyst into fluid-dynamical simulations of the mass transport inside the reactor chamber, we calculate the reaction product concentration directly above the catalyst surface. Comparing corresponding data calculated for different surface models against the measured LIF signals, we can discriminate the one that predominantly actuates the experimentally measured catalytic activity. For the probed CO oxidation reaction conditions, the experimental activity is due to pristine Pd(100) possibly coexisting with other (oxidic) domains on the surface.

  8. Evaluation of Potential Probiotic Properties of Enterococcus mundtii, Its Survival in Boza and in situ Bacteriocin Production

    Directory of Open Access Journals (Sweden)

    Svetoslav D. Todorov

    2009-01-01

    Full Text Available Boza is a low-pH and low-alcohol cereal-based beverage produced in the Balkan Peninsula. Barley was cooked and prepared according to a traditional recipe and inoculated with Enterococcus mundtii ST4V (a potential probiotic and bacteriocin-producing strain, commercially produced boza, Saccharomyces cerevisiae, and a combination of strain E. mundtii ST4V and Saccharomyces cerevisiae. Fermentation was carried out at 37 °C for 3 h. The organoleptic properties of fermented products were evaluated by a qualified taste panel. No significant differences in rheological properties were observed, suggesting that E. mundtii ST4V had no effect on the quality of the final product. Microbial cell numbers remained relatively unchanged during one week of storage. The preservative properties of bacteriocin ST4V were evaluated by contaminating boza with Lactobacillus sakei DSM 20017. Changes in microbial populations were monitored by using classical microbiological methods, PCR with species-specific primers and denaturing gradient gel electrophoresis (DGGE. Adsorption of bacteriocin ST4V to target cells is pH-dependent, with the highest adsorption (88 % recorded at pH=8.0 and pH=10.0. Maximum adsorption of bacteriocin ST4V (75 % to Enterococcus faecalis and Listeria innocua was recorded at 25 to 37 °C. Growth of E. mundtii ST4V was inhibited only by a few antibiotics and anti-inflammatory medicaments, suggesting that the strain may be used as a probiotic by individuals receiving medical treatment.

  9. Volatile Gas Production by Methyl Halide Transferase: An In Situ Reporter Of Microbial Gene Expression In Soil.

    Science.gov (United States)

    Cheng, Hsiao-Ying; Masiello, Caroline A; Bennett, George N; Silberg, Jonathan J

    2016-08-16

    Traditional visual reporters of gene expression have only very limited use in soils because their outputs are challenging to detect through the soil matrix. This severely restricts our ability to study time-dependent microbial gene expression in one of the Earth's largest, most complex habitats. Here we describe an approach to report on dynamic gene expression within a microbial population in a soil under natural water levels (at and below water holding capacity) via production of methyl halides using a methyl halide transferase. As a proof-of-concept application, we couple the expression of this gas reporter to the conjugative transfer of a bacterial plasmid in a soil matrix and show that gas released from the matrix displays a strong correlation with the number of transconjugant bacteria that formed. Gas reporting of gene expression will make possible dynamic studies of natural and engineered microbes within many hard-to-image environmental matrices (soils, sediments, sludge, and biomass) at sample scales exceeding those used for traditional visual reporting.

  10. A novel in situ hydrophobic ion paring (HIP) formulation strategy for clinical product selection of a nanoparticle drug delivery system.

    Science.gov (United States)

    Song, Young Ho; Shin, Eyoung; Wang, Hong; Nolan, Jim; Low, Susan; Parsons, Donald; Zale, Stephen; Ashton, Susan; Ashford, Marianne; Ali, Mir; Thrasher, Daniel; Boylan, Nicholas; Troiano, Greg

    2016-05-10

    preclinical efficacy and tolerability data were generated for the pamoic acid lead formulation, which has been selected for evaluation in a Phase 1 clinical trial (ClinicalTrials.gov Identifier NCT 02579226). This work clearly demonstrates the importance of assessing a wide range of drug release rates during formulation screening as a critical step for new drug product development, and how utilizing hydrophobic ion pairing enabled this promising nanoparticle formulation to proceed into clinical development. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Mars Ascent Vehicle-Propellant Aging

    Science.gov (United States)

    Dankanich, John; Rousseau, Jeremy; Williams, Jacob

    2015-01-01

    This project is to develop and test a new propellant formulation specifically for the Mars Ascent Vehicle (MAV) for the robotic Mars Sample Return mission. The project was initiated under the Planetary Sciences Division In-Space Propulsion Technology (ISPT) program and is continuing under the Mars Exploration Program. The two-stage, solid motor-based MAV has been the leading MAV solution for more than a decade. Additional studies show promise for alternative technologies including hybrid and bipropellant options, but the solid motor design has significant propellant density advantages well suited for physical constraints imposed while using the SkyCrane descent stage. The solid motor concept has lower specific impulse (Isp) than alternatives, but if the first stage and payload remain sufficiently small, the two-stage solid MAV represents a potential low risk approach to meet the mission needs. As the need date for the MAV slips, opportunities exist to advance technology with high on-ramp potential. The baseline propellant for the MAV is currently the carboxyl terminated polybutadiene (CTPB) based formulation TP-H-3062 due to its advantageous low temperature mechanical properties and flight heritage. However, the flight heritage is limited and outside the environments, the MAV must endure. The ISPT program competed a propellant formulation project with industry and selected ATK to develop a new propellant formulation specifically for the MAV application. Working with ATK, a large number of propellant formulations were assessed to either increase performance of a CTPB propellant or improve the low temperature mechanical properties of a hydroxyl terminated polybutadiene (HTPB) propellant. Both propellants demonstrated potential to increase performance over heritage options, but an HTPB propellant formulation, TP-H-3544, was selected for production and testing. The test plan includes propellant aging first at high vacuum conditions, representative of the Mars transit

  12. Application of Two-Phase CFD to the Design and Analysis of a Subscale Motor Experiment to Evaluate Propellant Slag Production

    Science.gov (United States)

    Whitesides, R. Harold; Dill, Richard A.

    1996-01-01

    The redesigned solid rocket motor (RSRM) Pressure Perturbation Investigation Team concluded that the cause of recent pressure spikes during both static and flight motor burns was the expulsion of molten aluminum oxide slag from a pool which collects in the aft end of the motor around the submerged nozzle nose during the last half of motor operation. It is suspected that some motors produce more slag than others due to differences in aluminum oxide agglomerate particle sizes which may relate to subtle differences in propellant ingredient characteristics such as particle size distribution, contaminants, or processing variations. In order to determine the effect of suspect propellant ingredient characteristics on the propensity for slag production in a real motor environment, a subscale motor experiment was designed. An existing 5 inch ballistic test motor was selected as the basic test vehicle due to low cost and quick turn around times. The standard converging/diverging nozzle was replaced with a submerged nozzle nose design to provide a positive trap for the slag which would increase both the quantity and repeatability of measured slag weights. Computational fluid dynamics (CFD) was used to assess a variety of submerged nose configurations to identify the design which possessed the best capability to reliably collect slag. CFD also was used to assure that the final selected nozzle design would result in flow field characteristics such as dividing streamline location, nose attach point, and separated flow structure which would have similtude with the RSRM submerged nozzle nose flow field. It also was decided to spin the 5 inch motor about its longitudinal axis to further enhance slag collection quantities. Again, CFD was used to select an appropriate spin rate along with other considerations, including the avoidance of burn rate enhancement from radial acceleration effects.

  13. The influence of PAH concentration and distribution on real-time in situ measurements of petroleum products in soils using laser induced fluorescence

    International Nuclear Information System (INIS)

    Douglas, G.S.; Lieberman, S.H.; McGinnis, W.C.; Knowles, D.; Peven, C.

    1995-01-01

    Real-time laser induced fluorescence (LIF) in situ measurements of soil samples provide a reliable and cost-effective screening tool for hydrocarbon site assessments. The site characterization and analysis penetrometer system (SCAPS), is a truck-mounted cone penetrometer probe modified with a sapphire window and connected to a laser by fiber optics. The pulsed nitrogen laser 337-nm excitation source induces fluorescence in polynuclear aromatic hydrocarbons (PAHs), which are present in petroleum products. The fluorescence response of these compounds is measured with a fluorometer. The SCAPS can provide continuous hydrocarbon screening measurements to soil depths greater than 100 feet. Discrete soil samples collected from the SCAPS boreholes were extracted and analyzed for total petroleum hydrocarbons (TPH), by gas chromatography with flame ionization detection (GC/FID), and 16 parent and over 100 alkyl substituted PAH compounds by gas chromatography with mass spectrometry detection (GC/MS). This method provides a basis for evaluating the relationship between TPH and PAH concentrations in the soil samples and laser induced fluorescence measurements from the soil borings

  14. Comparison of bio-physical marine products from SeaWiFS, MODIS and a bio-optical model with in situ measurements from Northern European waters

    Science.gov (United States)

    Blondeau-Patissier, D.; Tilstone, G. H.; Martinez-Vicente, V.; Moore, G. F.

    2004-09-01

    In this paper, we compare bio-physical marine products from SeaWiFS, MODIS and a novel bio-optical absorption model with in situ measurements of chlorophyll-a (Chla) concentrations, total suspended material (TSM) concentrations, normalized water-leaving radiances (nLw) and absorption coefficients of coloured dissolved organic matter (aCDOM), total particulate (atotal) and phytoplankton (aphy) for 26 satellite match-ups in three Northern European seas. Cruises were undertaken in 2002 and 2003 in phytoplankton dominated open ocean waters of the Celtic Sea and optically complex waters of the Western English Channel (WEC) and North Sea. For all environments, Chla concentrations varied from 0.4 to 7.8 mg m-3, TSM from 0.2 to 6.0 mg l-1 and aCDOM at 440 nm from 0.02 to 0.30 m-1. SeaWiFS OC4v4, with the Remote Sensing Data Analysis Service (RSDAS) atmospheric correction for turbid waters, showed the most accurate retrieval of in situ Chla (RMS = 0.24; n = 26), followed by MODIS chlor_a_3 (RMS = 0.40; n = 26). This suggested that improving the atmospheric correction over optically complex waters results in more accurate Chla concentrations compared to those obtained using more complicated Chla algorithms. We found that the SeaWiFS OC4v4 and the MODIS chlor_a_2 switching band ratio algorithms, which mainly use longer wavebands than 443 nm, were less affected by CDOM. They were both more accurate than chlor_MODIS in the higher CDOM waters of the North Sea. Compared to MODIS the absorption model was better at retrieving atotal (RMS = 0.39; n = 78) and aCDOM (RMS = 0.79; n = 12) in all study areas and TSM in the WEC (RMS = 0.04; n = 10) but it underestimated Chla concentrations (RMS = 0.45; n = 26). The results are discussed in terms of atmospheric correction, sensor characteristics and the functioning and performance of Chla algorithms. This paper was presented at the Institute of Physics Meeting on Underwater Optics held during Photonex 03 at Warwick, UK, in October 2003

  15. Guanidinium ionic liquid-based surfactants as low cytotoxic extractants: Analytical performance in an in-situ dispersive liquid-liquid microextraction method for determining personal care products.

    Science.gov (United States)

    Pacheco-Fernández, Idaira; Pino, Verónica; Ayala, Juan H; Afonso, Ana M

    2017-05-01

    The IL-based surfactant octylguanidinium chloride (C 8 Gu-Cl) was designed and synthetized with the purpose of obtaining a less harmful surfactant: containing guanidinium as core cation and a relatively short alkyl chain. Its interfacial and aggregation behavior was evaluated through conductivity and fluorescence measurements, presenting a critical micelle concentration value of 42.5 and 44.6mmolL -1 , respectively. Cytotoxicity studies were carried out with C 8 Gu-Cl and other IL-based and conventional surfactants, specifically the analogue 1-octyl-3-methylimidazolium chloride (C 8 MIm-Cl), and other imidazolium- (C 16 MIm-Br) and pyridinium- (C 16 Py-Cl) based surfactants, together with the conventional cationic CTAB and the conventional anionic SDS. From these studies, C 8 Gu-Cl was the only one to achieve the classification of low cytotoxicity. An in situ dispersive liquid-liquid microextraction (DLLME) method based on transforming the water-soluble C 8 Gu-Cl IL-based surfactant into a water-insoluble IL microdroplet via a simple metathesis reaction was then selected as the extraction/preconcentration method for a group of 6 personal care products (PCPs) present in cosmetic samples. The method was carried out in combination with high-performance liquid chromatography (HPLC) and diode array detection (DAD). The method was properly optimized, requiring the use of only 30μL of C 8 Gu-Cl for 10mL of aqueous sample with a NaCl content of 8% (w/v) to adjust the ionic strength and pH value of 5. The metathesis reaction required the addition of the anion exchange reagent (bis[(trifluoromethyl)sulfonyl]imide - 1:1 molar ratio), followed by vortex and centrifugation, and dilution of the final microdroplet up to 60μL with acetonitrile before the injection in the HPLC-DAD system. The optimum in situ DLLME-HPLC-DAD method takes ∼10min for the extraction step and ∼22min for the chromatographic separation, with analytical features of low detection limits: down to 0.4

  16. Development of Storage Methods for Saccharomyces Strains to be Utilized for In situ Nutrient Production in Long-Duration Space Missions

    Science.gov (United States)

    Ball, Natalie; Kagawa, Hiromi; Hindupur, Aditya; Hogan, John

    2017-01-01

    Long-duration space missions will benefit from closed-loop life support technologies that minimize mass, volume, and power as well as decrease reliance on Earth-based resupply. A system for In situ production of essential vitamins and nutrients can address the documented problem of degradation of stored food and supplements. Research has shown that the edible yeast Saccharomyces cerevisiae can be used as an on-demand system for the production of various compounds that are beneficial to human health. A critical objective in the development of this approach for long-duration space missions is the effective storage of the selected microorganisms. This research investigates the effects of different storage methods on survival rates of the non-sporulating probiotic S. boulardii, and S. cerevisiae spores and vegetative cells. Dehydration has been shown to increase long-term yeast viability, which also allows increased shelf-life and reduction in mass and volume. The process of dehydration causes detrimental effects on vegetative cells, including oxidative damage and membrane disruption. To maximize cell viability, various dehydration methods are tested here, including lyophilization (freeze-drying), air drying, and dehydration by vacuum. As a potential solution to damage caused by lyophilization, the efficacy of various cryoprotectants was tested. Furthermore, in an attempt to maintain higher survival rates, the effect of temperature during long-term storage was investigated. Data show spores of the wild-type strain to be more resilient to dehydration-related stressors than vegetative cells of either strain, and maintain high viability rates even after one year at room temperature. In the event that engineering the organism to produce targeted nutrient compounds interferes with effective sporulation of S. cerevisiae, a more robust method for improving vegetative cell storage is being sought. Therefore, anhydrobiotic engineering of S. cerevisiae and S. boulardii is being

  17. In-situ characterization of heterogeneous catalysts

    CERN Document Server

    Rodriguez, Jose A; Chupas, Peter J

    2013-01-01

    Helps researchers develop new catalysts for sustainable fuel and chemical production Reviewing the latest developments in the field, this book explores the in-situ characterization of heterogeneous catalysts, enabling readers to take full advantage of the sophisticated techniques used to study heterogeneous catalysts and reaction mechanisms. In using these techniques, readers can learn to improve the selectivity and the performance of catalysts and how to prepare catalysts as efficiently as possible, with minimum waste. In-situ Characterization of Heterogeneous Catalysts feat

  18. In-situ subaqueous capping of mercury-contaminated sediments in a fresh-water aquatic system, Part I—Bench-scale microcosm study to assess methylmercury production

    International Nuclear Information System (INIS)

    Randall, Paul M.; Fimmen, Ryan; Lal, Vivek; Darlington, Ramona

    2013-01-01

    Bench-scale microcosm experiments were designed to provide a better understanding of the potential for Hg methylation in sediments from an aquatic environment. Experiments were conducted to examine the function of sulfate concentration, lactate concentration, the presence/absence of an aqueous inorganic Hg spike, and the presence/absence of inoculums of Desulfovibrio desulfuricans, a strain of sulfate-reducing bacteria (SRB) commonly found in the natural sediments of aquatic environments. Incubations were analyzed for both the rate and extent of (methylmercury) MeHg production. Methylation rates were estimated by analyzing MeHg and Hg after 2, 7, 14, 28, and 42 days. The production of metabolic byproducts, including dissolved gases as a proxy for metabolic utilization of carbon substrate, was also monitored. In all treatments amended with lactate, sulfate, Hg, and SRB, MeHg was produced (37 ng/g-sediment dry weight) after only 48 h of incubation and reached a maximum sediment concentration of 127 ng/g-sediment dry weight after the 42 day incubation period. Aqueous phase production of MeHg was observed to be 10 ng/L after 2 day, reaching a maximum observed concentration of 32.8 ng/L after 14 days, and declining to 10.8 ng/L at the end of the incubation period (42 day). The results of this study further demonstrates that, in the presence of an organic carbon substrate, sulfate, and the appropriate consortia of microorganisms, sedimentary Hg will be transformed into MeHg through bacterial metabolism. Further, this study provided the basis for evaluation of an in-situ subaqueous capping strategy that may limit (or potentially enhance) MeHg production. -- Highlights: • Hg methylation by SRB is limited by the depletion of sulfate and carbon. • Hg methylation is sensitive to competition by methanogens for carbon substrate. • In high lactate environment, all lactate was utilized in the microcosms within seven days. • In the absence of adequate metabolic fuel, Me

  19. In-situ subaqueous capping of mercury-contaminated sediments in a fresh-water aquatic system, Part I—Bench-scale microcosm study to assess methylmercury production

    Energy Technology Data Exchange (ETDEWEB)

    Randall, Paul M., E-mail: randall.paul@epa.gov [U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, 26 W. Martin Luther King Drive, Cincinnati, OH 45268 (United States); Fimmen, Ryan [Geosyntec Consultants, 150 E. Wilson Bridge Road, Suite 232, Worthington, OH 43085 (United States); Lal, Vivek; Darlington, Ramona [Battelle, 505 King Ave., Columbus, OH 43201 (United States)

    2013-08-15

    Bench-scale microcosm experiments were designed to provide a better understanding of the potential for Hg methylation in sediments from an aquatic environment. Experiments were conducted to examine the function of sulfate concentration, lactate concentration, the presence/absence of an aqueous inorganic Hg spike, and the presence/absence of inoculums of Desulfovibrio desulfuricans, a strain of sulfate-reducing bacteria (SRB) commonly found in the natural sediments of aquatic environments. Incubations were analyzed for both the rate and extent of (methylmercury) MeHg production. Methylation rates were estimated by analyzing MeHg and Hg after 2, 7, 14, 28, and 42 days. The production of metabolic byproducts, including dissolved gases as a proxy for metabolic utilization of carbon substrate, was also monitored. In all treatments amended with lactate, sulfate, Hg, and SRB, MeHg was produced (37 ng/g-sediment dry weight) after only 48 h of incubation and reached a maximum sediment concentration of 127 ng/g-sediment dry weight after the 42 day incubation period. Aqueous phase production of MeHg was observed to be 10 ng/L after 2 day, reaching a maximum observed concentration of 32.8 ng/L after 14 days, and declining to 10.8 ng/L at the end of the incubation period (42 day). The results of this study further demonstrates that, in the presence of an organic carbon substrate, sulfate, and the appropriate consortia of microorganisms, sedimentary Hg will be transformed into MeHg through bacterial metabolism. Further, this study provided the basis for evaluation of an in-situ subaqueous capping strategy that may limit (or potentially enhance) MeHg production. -- Highlights: • Hg methylation by SRB is limited by the depletion of sulfate and carbon. • Hg methylation is sensitive to competition by methanogens for carbon substrate. • In high lactate environment, all lactate was utilized in the microcosms within seven days. • In the absence of adequate metabolic fuel, Me

  20. In-Situ Simulation

    DEFF Research Database (Denmark)

    Bjerregaard, Anders Thais; Slot, Susanne; Paltved, Charlotte

    2015-01-01

    , and organisational characteristic. Therefore, it might fail to fully mimic real clinical team processes. Though research on in situ simulation in healthcare is in its infancy, literature is abundant on patient safety and team training1. Patient safety reporting systems that identify risks to patients can improve......Introduction: In situ simulation offers on-site training to healthcare professionals. It refers to a training strategy where simulation technology is integrated into the clinical encounter. Training in the simulation laboratory does not easily tap into situational resources, e.g. individual, team...... patient safety if coupled with training and organisational support. This study explored the use of critical incidents and adverse events reports for in situ simulation and short-term observations were used to create learning objectives and training scenarios. Method: This study used an interventional case...

  1. In situ groundwater bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry C.

    2009-02-01

    In situ groundwater bioremediation of hydrocarbons has been used for more than 40 years. Most strategies involve biostimulation; however, recently bioaugmentation have been used for dehalorespiration. Aquifer and contaminant profiles are critical to determining the feasibility and strategy for in situ groundwater bioremediation. Hydraulic conductivity and redox conditions, including concentrations of terminal electron acceptors are critical to determine the feasibility and strategy for potential bioremediation applications. Conceptual models followed by characterization and subsequent numerical models are critical for efficient and cost effective bioremediation. Critical research needs in this area include better modeling and integration of remediation strategies with natural attenuation.

  2. Improving the organic and biological fouling resistance and removal of pharmaceutical and personal care products through nanofiltration by using in situ radical graft polymerization.

    Science.gov (United States)

    Lin, Yi-Li; Tsai, Chia-Cheng; Zheng, Nai-Yun

    2018-09-01

    In this study, an insitu radical graft polarization technique using monomers of 3-sulfopropyl methacrylate potassium salt (SPM) and 2-hydroxyethyl methacrylate (HEMA) was applied to a commercial nanofiltration membrane (NF90) to improve its removal of six commonly detected pharmaceutical and personal care products (PPCPs) and mitigate organic and biological fouling by humic acid (HA) and sodium alginate (SA). Compared with the virgin membrane, the modified NF90 membrane exhibited considerably improved fouling resistance and an increased reversible fouling percentage, especially for SA+HA composite fouling Moreover, the PPCP removal of the modified NF90 membrane was higher than that of the virgin membrane after SA and SA+HA fouling, respectively. Triclosan and carbamazepine, which are poorly rejected, could be effectively removed by modified membrane after SA or SA+HA fouling. Both monomers modified the membrane surface by increasing the hydrophilicity and decreasing the contact angle. The degree of grafting was quantified using attenuated total reflection Fourier-transform infrared spectroscopy. The mitigation in the fouling was evident from the low quantity of deposit formed on the modified membrane, as observed using scanning electron microscopy. A considerable amount of highly hydrophobic triclosan was adsorbed on the SA-fouled virgin membrane and penetrated through it. By contrast, the adsorption of triclosan was substantially lower in the SPM-modified membrane. After membrane modification, the fouling mechanism changed from solely intermediate blocking to both intermediate blocking and complete blocking after membrane modification. Thus, the in situ radical graft polymerization method effectively reduces organic and biological fouling and provides high PPCP removal, which is beneficial for fouling control and produces permeate of satisfactory quality for application in the field of membrane technology. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. A review of research in low earth orbit propellant collection

    Science.gov (United States)

    Singh, Lake A.; Walker, Mitchell L. R.

    2015-05-01

    This comprehensive review examines the efforts of previous researchers to develop concepts for propellant-collecting spacecraft, estimate the performance of these systems, and understand the physics involved. Rocket propulsion requires the spacecraft to expend two fundamental quantities: energy and propellant mass. A growing number of spacecraft collect the energy they need to execute propulsive maneuvers in-situ with solar panels. In contrast, every spacecraft using rocket propulsion has carried all of the propellant mass needed for the mission from the ground, which limits the range and mission capabilities. Numerous researchers have explored the concept of collecting propellant mass while in space. These concepts have varied in scale and complexity from chemical ramjets to fusion-driven interstellar vessels. Research into propellant-collecting concepts occurred in distinct eras. During the Cold War, concepts tended to be large, complex, and nuclear powered. After the Cold War, concepts transitioned to solar power sources and more effort has been devoted to detailed analysis of specific components of the propellant-collecting architecture. By detailing the major contributions and limitations of previous work, this review concisely presents the state-of-the-art and outlines five areas for continued research. These areas include air-compatible cathode technology, techniques to improve propellant utilization on atmospheric species, in-space compressor and liquefaction technology, improved hypersonic and hyperthermal free molecular flow inlet designs, and improved understanding of how design parameters affect system performance.

  4. In-situ databases and comparison of ESA Ocean Colour Climate Change Initiative (OC-CCI) products with precursor data, towards an integrated approach for ocean colour validation and climate studies

    Science.gov (United States)

    Brotas, Vanda; Valente, André; Couto, André B.; Grant, Mike; Chuprin, Andrei; Jackson, Thomas; Groom, Steve; Sathyendranath, Shubha

    2014-05-01

    Ocean colour (OC) is an Oceanic Essential Climate Variable, which is used by climate modellers and researchers. The European Space Agency (ESA) Climate Change Initiative project, is the ESA response for the need of climate-quality satellite data, with the goal of providing stable, long-term, satellite-based ECV data products. The ESA Ocean Colour CCI focuses on the production of Ocean Colour ECV uses remote sensing reflectances to derive inherent optical properties and chlorophyll a concentration from ESA's MERIS (2002-2012) and NASA's SeaWiFS (1997 - 2010) and MODIS (2002-2012) sensor archives. This work presents an integrated approach by setting up a global database of in situ measurements and by inter-comparing OC-CCI products with pre-cursor datasets. The availability of in situ databases is fundamental for the validation of satellite derived ocean colour products. A global distribution in situ database was assembled, from several pre-existing datasets, with data spanning between 1997 and 2012. It includes in-situ measurements of remote sensing reflectances, concentration of chlorophyll-a, inherent optical properties and diffuse attenuation coefficient. The database is composed from observations of the following datasets: NOMAD, SeaBASS, MERMAID, AERONET-OC, BOUSSOLE and HOTS. The result was a merged dataset tuned for the validation of satellite-derived ocean colour products. This was an attempt to gather, homogenize and merge, a large high-quality bio-optical marine in situ data, as using all datasets in a single validation exercise increases the number of matchups and enhances the representativeness of different marine regimes. An inter-comparison analysis between OC-CCI chlorophyll-a product and satellite pre-cursor datasets was done with single missions and merged single mission products. Single mission datasets considered were SeaWiFS, MODIS-Aqua and MERIS; merged mission datasets were obtained from the GlobColour (GC) as well as the Making Earth Science

  5. New trends in the kitchen: propellants assessment of edible food aerosol sprays used on food.

    Science.gov (United States)

    Varlet, V; Smith, F; Augsburger, M

    2014-01-01

    New products available for food creations include a wide variety of "supposed" food grade aerosol sprays. However, the gas propellants used cannot be considered as safe. The different legislations available did not rule any maximum residue limits, even though these compounds have some limits when used for other food purposes. This study shows a preliminary monitoring of propane, butane and dimethyl ether residues, in cakes and chocolate after spraying, when these gases are used as propellants in food aerosol sprays. Release kinetics of propane, butane and dimethyl ether were measured over one day with sprayed food, left at room temperature or in the fridge after spraying. The alkanes and dimethyl ether analyses were performed by headspace-gas chromatography-mass spectrometry/thermal conductivity detection, using monodeuterated propane and butane generated in situ as internal standards. According to the obtained results and regardingthe extrapolations of the maximum residue limits existing for these substances, different delays should be respected according to the storage conditions and the gas propellant to consume safely the sprayed food. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Sex in situ

    DEFF Research Database (Denmark)

    Krøgholt, Ida

    2017-01-01

    Sex er en del af vores sociale praksis og centralt for det, vi hver især er. Men bortset fra pornoindustrien, har vi ikke mange muligheder for at få adgang til billeder af sex. Teater Nordkrafts forestilling Sex in situ vil gøre seksuelle billeder til noget, der kan deles, udveksles og tales om, og...

  7. Hydrodynamics of Ship Propellers

    DEFF Research Database (Denmark)

    Breslin, John P.; Andersen, Poul

    This book deals with flows over propellers operating behind ships, and the hydrodynamic forces and moments which the propeller generates on the shaft and on the ship hull.The first part of the text is devoted to fundamentals of the flow about hydrofoil sections (with and without cavitation...... of an intermittently cavitating propeller in a wake and the pressures and forces it exerts on the shaft and on the ship hull is examined. A final chapter discusses the optimization of efficiency of compound propulsors. The authors have taken care to clearly describe physical concepts and mathematical steps. Appendices...

  8. Autonomous Propellant Loading Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The AES Autonomous Propellant Loading (APL) project consists of three activities. The first is to develop software that will automatically control loading of...

  9. Solid propellant impact tests

    International Nuclear Information System (INIS)

    Snow, E.C.

    1976-03-01

    Future space missions, as in the past, call for the continued use of radioisotopes as heat sources for thermoelectric power generators. In an effort to minimize the risk of radioactive contamination of the environment, a complete safety analysis of each such system is necessary. As a part of these analyses, the effects on such a system of a solid propellant fire environment resulting from a catastrophic launch pad abort must be considered. Several impact tests were conducted in which either a simulant MHW-FSA or a steel ball was dropped on the cold, unignited or the hot, burning surface of a block of UTP-3001 solid propellant. The rebound velocities were measured for both surface conditions of the propellant. The resulting coefficient of restitution, determined as the ratio of the components of the impact and rebound velocities perpendicular to the impact surface of the propellant, were not very dependent on whether the surface was cold or hot at the time of impact

  10. Modeling Propellant Tank Dynamics

    Data.gov (United States)

    National Aeronautics and Space Administration — The main objective of my work will be to develop accurate models of self-pressurizing propellant tanks for use in designing hybrid rockets. The first key goal is to...

  11. Selected ion flow tube mass spectrometry analyses of laser decomposition products of a range of explosives and ballistic propellants

    Czech Academy of Sciences Publication Activity Database

    Civiš, Svatopluk; Civiš, Martin; Sovová, Kristýna; Dryahina, Kseniya; Kubišta, Jiří; Skřehot, P.; Španěl, Patrik; Kyncl, M.

    2016-01-01

    Roč. 8, č. 5 (2016), s. 1145-1150 ISSN 1759-9660 Institutional support: RVO:61388955 Keywords : FT-MS * laser-induced breakdown * laser decomposition products Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.900, year: 2016

  12. Disposal of Liquid Propellants

    Science.gov (United States)

    1990-03-13

    propellant includes an oxi- dizer (hydroxylammoniuin nitrate), a fuel (triethanolammonium nitrate), and water . In an- ticipation of widespread (both...are also included. 20. DISTRIBUTION/ AVAILABILIT ’." OF ABMTRACT 21 ABSTRACT SECURITY CLASSIF.CATICIN IUNCLASSIFIEDIUNLIMITED 0 SAME AS RPT. 0 OTIC...trieth- anolammoiur nitrate), anG water . In anticipation of widespread (both conti- nental U.S. and abroac) use of the propellant, USATHAMA began a

  13. In situ reactor

    Science.gov (United States)

    Radtke, Corey William; Blackwelder, David Bradley

    2004-01-27

    An in situ reactor for use in a geological strata, is described and which includes a liner defining a centrally disposed passageway and which is placed in a borehole formed in the geological strata; and a sampling conduit is received within the passageway defined by the liner and which receives a geological specimen which is derived from the geological strata, and wherein the sampling conduit is in fluid communication with the passageway defined by the liner.

  14. Mercury in the mix: An in situ mesocosm approach to assess relative contributions of mercury sources to methylmercury production and bioaccumulation in the Sacramento-San Joaquin Delta

    Science.gov (United States)

    Fleck, J.; Krabbenhoft, D. P.; Kraus, T. E. C.; Ackerman, J.; Stumpner, E. B.; DeWild, J.; Marvin-DiPasquale, M. C.; Tate, M.; Ogorek, J.

    2014-12-01

    Mercury (Hg) contamination is considered one of the greatest threats to the Sacramento-San Joaquin Delta and the San Francisco Estuary ecosystems. This threat is driven by the transformation of Hg, deposited in the Delta from erosion of upstream historic mining debris and atmospheric deposition, by native bacteria into the more toxic and biologically available form, methylmercury (MeHg), in the wetlands and sediment of the Delta. To effectively manage this threat, a quantitative understanding of the relative contribution of the different Hg sources to MeHg formation is needed. Mass balance estimates indicate as much as 99% of the Hg entering the Delta arrives via tributary inputs. Of the tributary Hg load, approximately 90% is adsorbed to suspended particles from tributary discharge and 10% is in the dissolved fraction, potentially of atmospheric origin. In comparison, the remaining 1-2% of the Hg entering the Delta arrives through direct atmospheric deposition (wet and dry). The relative importance of these sources to MeHg production within the Delta is not linearly related to the mass inputs because atmospherically-derived Hg is believed to be more reactive than sediment-bound Hg with respect to MeHg formation. We conducted an in situ mesocosm dosing experiment where different Hg sources to the Delta (direct atmospheric, dissolved riverine and suspended sediment) were "labeled" with different stable Hg isotopes and added to mesocosms within four different wetlands. Mercury isotopes added with the streambed sediments were equilibrated in sealed containers for six months; while the Hg isotopes associated with the precipitation and river water were equilibrated for 24 hours prior to use. After adding the isotopes, we sampled the water column, overlying air, bottom sediments and fish (Gambusia) at time intervals up to 30 days. Preliminary results from this experiment suggest that aqueous Hg sources (Hg introduced with precipitation and filtered river water) are 10

  15. Solid propellant processing factor in rocket motor design

    Science.gov (United States)

    1971-01-01

    The ways are described by which propellant processing is affected by choices made in designing rocket engines. Tradeoff studies, design proof or scaleup studies, and special design features are presented that are required to obtain high product quality, and optimum processing costs. Processing is considered to include the operational steps involved with the lining and preparation of the motor case for the grain; the procurement of propellant raw materials; and propellant mixing, casting or extrusion, curing, machining, and finishing. The design criteria, recommended practices, and propellant formulations are included.

  16. A Pd-Catalyzed in situ domino process for mild and quantitative production of 2,5-dimethylfuran directly from carbohydrates

    DEFF Research Database (Denmark)

    Li, Hu; Zhao, Wenfeng; Riisager, Anders

    2017-01-01

    An in situ domino process has been developed to be highly efficient for direct and mild conversion of various hexose sugars to the biofuel 2,5-dimethylfuran in almost quantitative yields, without separation of unstable intermediates at 120 °C in n-butanol, by using polymethylhydrosiloxane...... and hydrophobic Pd/C as a H-donor and a bifunctional catalyst, respectively. Among the cascade reactions, the hydrosilylation process was confirmed by deuterium-labeling and kinetic studies to be favorable for sugar dehydration and exclusively acts on deoxygenation of in situ formed intermediates including...... furanic alcohols and aldehydes to DMF via a hydride transfer process that was facilitated by an alcoholic solvent. The catalytic system is more selective than the H2-participated counterpart, and could be scaled up with only 0.04 mol% catalyst loading, giving DMF in a comparable yield of 85%. Moreover, Pd...

  17. Is There Any Difference between the In Situ and Systemic IL-10 and IFN-γ Production when Clinical Forms of Cutaneous Sporotrichosis Are Compared?

    Directory of Open Access Journals (Sweden)

    Fernanda N Morgado

    Full Text Available Fungus of the Sporothrix schenckii complex can produce skin lesions in humans, commonly lymphocutaneous (LC and fixed (F forms of sporotrichosis. Some authors have suggested that clinical forms are influenced by differences in virulence and genetic profile of isolates. But little is known about the role of immune response in determining the clinical outcome of sporotrichosis. To verify the profile of systemic and in situ IFN-γ and IL-10 expression in sporotrichosis patients, and consequently to detect any difference between the two compartments and/or clinical presentation, we quantified the number of IFN-γ and IL-10 producer peripheral blood mononuclear cells stimulated with S. schenckii antigen (Ss-Ag by Elispot, and quantified cytokines expression by in situ immunohistochemistry in the same patient. Three groups were formed: 1- LC (n = 9; 2- F (n = 10; 3- healthy individuals (n = 14. All sporotrichosis patients produced high amounts of systemic IFN- γ when compared to uninfected individuals. No differences were observed between LC and F groups. Regarding in situ IL-10 expression, a difference between LC and F groups was observed: LC lesions presented higher amounts of IL-10 than F lesions differently from systemic IL-10 which showed similarities. Our data suggests that LC lesions present higher IL-10 expression which could be related to regulatory mechanisms for compensating the tissue injury, however favoring fungal persistence in the lesions. Surprisingly, there were no differences in systemic and in situ IFN- γ expression between CL and F patients, although it was significantly higher expressed in these patients than in healthy individuals.

  18. Is There Any Difference between the In Situ and Systemic IL-10 and IFN-γ Production when Clinical Forms of Cutaneous Sporotrichosis Are Compared?

    Science.gov (United States)

    Morgado, Fernanda N; Schubach, Armando O; Pimentel, Maria Inês; Lyra, Marcelo R; Vasconcellos, Érica C F; Valete-Rosalino, Claudia M; Conceição-Silva, Fátima

    2016-01-01

    Fungus of the Sporothrix schenckii complex can produce skin lesions in humans, commonly lymphocutaneous (LC) and fixed (F) forms of sporotrichosis. Some authors have suggested that clinical forms are influenced by differences in virulence and genetic profile of isolates. But little is known about the role of immune response in determining the clinical outcome of sporotrichosis. To verify the profile of systemic and in situ IFN-γ and IL-10 expression in sporotrichosis patients, and consequently to detect any difference between the two compartments and/or clinical presentation, we quantified the number of IFN-γ and IL-10 producer peripheral blood mononuclear cells stimulated with S. schenckii antigen (Ss-Ag) by Elispot, and quantified cytokines expression by in situ immunohistochemistry in the same patient. Three groups were formed: 1- LC (n = 9); 2- F (n = 10); 3- healthy individuals (n = 14). All sporotrichosis patients produced high amounts of systemic IFN- γ when compared to uninfected individuals. No differences were observed between LC and F groups. Regarding in situ IL-10 expression, a difference between LC and F groups was observed: LC lesions presented higher amounts of IL-10 than F lesions differently from systemic IL-10 which showed similarities. Our data suggests that LC lesions present higher IL-10 expression which could be related to regulatory mechanisms for compensating the tissue injury, however favoring fungal persistence in the lesions. Surprisingly, there were no differences in systemic and in situ IFN- γ expression between CL and F patients, although it was significantly higher expressed in these patients than in healthy individuals.

  19. Is There Any Difference between the In Situ and Systemic IL-10 and IFN-γ Production when Clinical Forms of Cutaneous Sporotrichosis Are Compared?

    Science.gov (United States)

    Morgado, Fernanda N.; Schubach, Armando O.; Pimentel, Maria Inês; Lyra, Marcelo R.; Vasconcellos, Érica C. F.; Valete-Rosalino, Claudia M.; Conceição-Silva, Fátima

    2016-01-01

    Fungus of the Sporothrix schenckii complex can produce skin lesions in humans, commonly lymphocutaneous (LC) and fixed (F) forms of sporotrichosis. Some authors have suggested that clinical forms are influenced by differences in virulence and genetic profile of isolates. But little is known about the role of immune response in determining the clinical outcome of sporotrichosis. To verify the profile of systemic and in situ IFN-γ and IL-10 expression in sporotrichosis patients, and consequently to detect any difference between the two compartments and/or clinical presentation, we quantified the number of IFN-γ and IL-10 producer peripheral blood mononuclear cells stimulated with S. schenckii antigen (Ss-Ag) by Elispot, and quantified cytokines expression by in situ immunohistochemistry in the same patient. Three groups were formed: 1- LC (n = 9); 2- F (n = 10); 3- healthy individuals (n = 14). All sporotrichosis patients produced high amounts of systemic IFN- γ when compared to uninfected individuals. No differences were observed between LC and F groups. Regarding in situ IL-10 expression, a difference between LC and F groups was observed: LC lesions presented higher amounts of IL-10 than F lesions differently from systemic IL-10 which showed similarities. Our data suggests that LC lesions present higher IL-10 expression which could be related to regulatory mechanisms for compensating the tissue injury, however favoring fungal persistence in the lesions. Surprisingly, there were no differences in systemic and in situ IFN- γ expression between CL and F patients, although it was significantly higher expressed in these patients than in healthy individuals. PMID:27622513

  20. Propellers in Saturn's rings

    Science.gov (United States)

    Sremcevic, M.; Stewart, G. R.; Albers, N.; Esposito, L. W.

    2013-12-01

    Theoretical studies and simulations have demonstrated the effects caused by objects embedded in planetary rings. Even if the objects are too small to be directly observed, each creates a much larger gravitational imprint on the surrounding ring material. These strongly depend on the mass of the object and range from "S" like propeller-shaped structures for about 100m-sized icy bodies to the opening of circumferential gaps as in the case of the embedded moons Pan and Daphnis and their corresponding Encke and Keeler Gaps. Since the beginning of the Cassini mission many of these smaller objects (~data from Cassini Ultraviolet Imaging Spectrograph (UVIS) and Imaging Science Subsystem (ISS) experiments. We show evidence that B ring seems to harbor two distinct populations of propellers: "big" propellers covering tens of degrees in azimuth situated in the densest part of B ring, and "small" propellers in less dense inner B ring that are similar in size and shape to known A ring propellers. The population of "big" propellers is exemplified with a single object which is observed for 5 years of Cassini data. The object is seen as a very elongated bright stripe (40 degrees wide) in unlit Cassini images, and dark stripe in lit geometries. In total we report observing the feature in images at 18 different epochs between 2005 and 2010. In UVIS occultations we observe this feature as an optical depth depletion in 14 out of 93 occultation cuts at corrotating longitudes compatible with imaging data. Combining the available Cassini data we infer that the object is a partial gap located at r=112,921km embedded in the high optical depth region of the B ring. The gap moves at Kepler speed appropriate for its radial location. Radial offsets of the gap locations in UVIS occultations are consistent with an asymmetric propeller shape. The asymmetry of the observed shape is most likely a consequence of the strong surface mass density gradient, as the feature is located at an edge between

  1. Malignant mesothelioma in situ.

    Science.gov (United States)

    Churg, Andrew; Hwang, Harry; Tan, Larry; Qing, Gefei; Taher, Altaf; Tong, Amy; Bilawich, Ana M; Dacic, Sanja

    2018-05-01

    The existence of malignant mesothelioma in situ (MIS) is often postulated, but there are no accepted morphological criteria for making such a diagnosis. Here we report two cases that appear to be true MIS on the basis of in-situ genomic analysis. In one case the patient had repeated unexplained pleural unilateral effusions. Two thoracoscopies 9 months apart revealed only visually normal pleura. Biopsies from both thoracoscopies showed only a single layer of mildly reactive mesothelial cells. However, these cells had lost BRCA1-associated protein 1 (BAP1) and showed loss of cyclin-dependent kinase inhibitor 2 (CDKN2A) (p16) by fluorescence in-situ hybridisation (FISH). NF2 was not deleted by FISH but 28% of the mesothelial cells showed hyperploidy. Six months after the second biopsy the patient has persisting effusions but no evidence of pleural malignancy on imaging. The second patient presented with ascites and minimal omental thickening on imaging, but no visual evidence of tumour at laparoscopy. Omental biopsy showed a single layer of minimally atypical mesothelial cells with rare tiny foci of superficial invasion of fat. BAP1 immunostain showed loss of nuclear BAP1 in all the surface mesothelial cells and the invasive cells. There was CDKN2A deletion, but no deletion of NF2 by FISH. These cases show that morphologically bland single-layered surface mesothelial proliferations with molecular alterations seen previously only in invasive malignant mesotheliomas exist, and presumably represent malignant MIS. More cases are need to understand the frequency of such changes and the time-course over which invasive tumour develops. © 2018 John Wiley & Sons Ltd.

  2. In situ breast cancer

    International Nuclear Information System (INIS)

    Pacheco, Luis

    2004-01-01

    In situ breast cancer, particularly the ductal type, is increasing in frequency in the developed countries as well as in Ecuador, most probably. These lesions carry a higher risk of developing a subsequent invasive cancer. Treatment has changed recently due to results of randomized studies, from classical mastectomy to conservative surgery associated to radiotherapy. The Van Nuys Prognostic Index is currently the most usual instrument to guide diagnosis and treatment. Tamoxifen seems to decrease significantly the risk of tumor recurrence after initial treatment. (The author)

  3. In situ Transesterification of Microalgal Oil to Produce Algal Biodiesel

    Science.gov (United States)

    2012-06-01

    This research was to process whole microalgae cells for biodiesel production without first extracting lipids. The ultimate : goal is develop a novel process for algal biodiesel production directly from microalgae cells in a single step, i.e., in situ...

  4. In-situ bioremediation via horizontal wells

    International Nuclear Information System (INIS)

    Hazen, T.C.; Looney, B.B.; Enzien, M.; Franck, M.M.; Fliermans, C.B.; Eddy, C.A.

    1993-01-01

    This project is designed to demonstrate in situ bioremediation of groundwater and sediment contaminated with chlorinated solvents. Indigenous microorganisms were stimulated to degrade TCE, PCE and their daughter products in situ by addition of nutrients to the contaminated zone. In situ biodegradation is a highly attractive technology for remediation because contaminants are destroyed, not simply moved to another location or immobilized, thus decreasing costs, risks, and time, while increasing efficiency and public and regulatory acceptability. Bioremediation has been found to be among the least costly technologies in applications where it will work (Radian 1989). Subsurface soils and water adjacent to an abandoned process sewer line at the SRS have been found to have elevated levels of TCE (Marine and Bledsoe 1984). This area of subsurface and groundwater contamination is the focus of a current integrated demonstration of new remediation technologies utilizing horizontal wells. Bioremediation has the potential to enhance the performance of in situ air stripping as well as offering stand-alone remediation of this and other contaminated sites (Looney et al. 1991). Horizontal wells could also be used to enhance the recovery of groundwater contaminants for bioreactor conversions from deep or inaccessible areas (e.g., under buildings) and to enhance the distribution of nutrient or microbe additions in an in situ bioremediation

  5. In situ macromolecular crystallography using microbeams.

    Science.gov (United States)

    Axford, Danny; Owen, Robin L; Aishima, Jun; Foadi, James; Morgan, Ann W; Robinson, James I; Nettleship, Joanne E; Owens, Raymond J; Moraes, Isabel; Fry, Elizabeth E; Grimes, Jonathan M; Harlos, Karl; Kotecha, Abhay; Ren, Jingshan; Sutton, Geoff; Walter, Thomas S; Stuart, David I; Evans, Gwyndaf

    2012-05-01

    Despite significant progress in high-throughput methods in macromolecular crystallography, the production of diffraction-quality crystals remains a major bottleneck. By recording diffraction in situ from crystals in their crystallization plates at room temperature, a number of problems associated with crystal handling and cryoprotection can be side-stepped. Using a dedicated goniometer installed on the microfocus macromolecular crystallography beamline I24 at Diamond Light Source, crystals have been studied in situ with an intense and flexible microfocus beam, allowing weakly diffracting samples to be assessed without a manual crystal-handling step but with good signal to noise, despite the background scatter from the plate. A number of case studies are reported: the structure solution of bovine enterovirus 2, crystallization screening of membrane proteins and complexes, and structure solution from crystallization hits produced via a high-throughput pipeline. These demonstrate the potential for in situ data collection and structure solution with microbeams. © 2012 International Union of Crystallography

  6. Propeller TAP flap

    DEFF Research Database (Denmark)

    Thomsen, Jørn Bo; Bille, Camilla; Wamberg, Peter

    2013-01-01

    major complications needing additional surgery. One flap was lost due to a vascular problem. Breast reconstruction can be performed by a propeller TAP flap without cutting the descending branch of the thoracodorsal vessels. However, the authors would recommend that a small cuff of muscle is left around...

  7. New Propellants and Cryofuels

    Science.gov (United States)

    Palasezski, Bryan; Sullivan, Neil S.; Hamida, Jaha; Kokshenev, V.

    2006-01-01

    The proposed research will investigate the stability and cryogenic properties of solid propellants that are critical to NASA s goal of realizing practical propellant designs for future spacecraft. We will determine the stability and thermal properties of a solid hydrogen-liquid helium stabilizer in a laboratory environment in order to design a practical propellant. In particular, we will explore methods of embedding atomic species and metallic nano-particulates in hydrogen matrices suspended in liquid helium. We will also measure the characteristic lifetimes and diffusion of atomic species in these candidate cryofuels. The most promising large-scale advance in rocket propulsion is the use of atomic propellants; most notably atomic hydrogen stabilized in cryogenic environments, and metallized-gelled liquid hydrogen (MGH) or densified gelled hydrogen (DGH). The new propellants offer very significant improvements over classic liquid oxygen/hydrogen fuels because of two factors: (1) the high energy-release, and (ii) the density increase per unit energy release. These two changes can lead to significant reduced mission costs and increased payload to orbit weight ratios. An achievable 5 to 10 percent improvement in specific impulse for the atomic propellants or MGH fuels can result in a doubling or tripling of system payloads. The high-energy atomic propellants must be stored in a stabilizing medium such as solid hydrogen to inhibit or delay their recombination into molecules. The goal of the proposed research is to determine the stability and thermal properties of the solid hydrogen-liquid helium stabilizer. Magnetic resonance techniques will be used to measure the thermal lifetimes and the diffusive motions of atomic species stored in solid hydrogen grains. The properties of metallic nano-particulates embedded in hydrogen matrices will also be studied and analyzed. Dynamic polarization techniques will be developed to enhance signal/noise ratios in order to be able to

  8. In situ zymography.

    Science.gov (United States)

    George, Sarah J; Johnson, Jason L

    2010-01-01

    In situ zymography is a unique laboratory technique that enables the localisation of matrix-degrading metalloproteinase (MMP) activity in histological sections. Frozen sections are placed on glass slides coated with fluorescently labelled matrix proteins. After incubation MMP activity can be observed as black holes in the fluorescent background due to proteolysis of the matrix protein. Alternatively frozen sections can be incubated with matrix proteins conjugated to quenched fluorescein. Proteolysis of the substrate by MMPs leads to the release of fluorescence. This technique can be combined with immunohistochemistry to enable co-location of proteins such as cell type markers or other proteins of interest. Additionally, this technique can be adapted for use with cell cultures, permitting precise location of MMP activity within cells, time-lapse analysis of MMP activity and analysis of MMP activity in migrating cells.

  9. In situ investigations on the impact of heat production and gamma radiation with regard to high-level radioactive waste disposal in rock salt formations

    International Nuclear Information System (INIS)

    Rothfuchs, T.

    1986-01-01

    Deep geological formations especially rock salt formations, are considered worldwide as suitable media for the final disposal of radioactive high-level waste (HLW). In the Federal Republic of Germany, the Institut fur Tieflagerung of the Gesellschaft fur Strahlen- und Umweltforschung mbH Munchen operates the Asse Salt Mine as a pilot facility for testing the behavior of an underground nuclear waste repository. The tests are performed using heat and radiation sources to simulate disposed HLW canisters. The measured data obtained since 1965 show that the thermomechanical response of the salt formation and the physical/chemical changes in the vicinity of disposal boreholes are not a serious concern and that their long-term consequences can be estimated based on theoretical considerations and in-situ investigations

  10. The screw propeller

    Science.gov (United States)

    Larrabee, E. E.

    1980-07-01

    Marine and air screw propellers are considered in terms of theoretical hydrodynamics as developed by Joukowsky, Prandtl, and Betz. Attention is given to the flow around wings of finite span where spanwise flow exists and where lift and the bound vorticity must all go smoothly to zero at the wing tips. The concept of a trailing vortex sheet made up of infinitesimal line vortexes roughly aligned with the direction of flight is discussed in this regard. Also considered is induced velocity, which tends to convect the sheet downward at every stage in the roll-up process, the vortex theory of propellers and the Betz-Prandtl circulation distribution. The performance of the Gossamer Albatross and of a pedal-driven biplane called the Chrysalis are also discussed.

  11. Modeling in situ vitrification

    International Nuclear Information System (INIS)

    Mecham, D.C.; MacKinnon, R.J.; Murray, P.E.; Johnson, R.W.

    1990-01-01

    In Situ Vitrification (ISV) process is being assessed by the Idaho National Engineering Laboratory (INEL) to determine its applicability to transuranic and mixed wastes buried at INEL'S Subsurface Disposal Area (SDA). This process uses electrical resistance heating to melt waste and contaminated soil in place to produce a durable glasslike material that encapsulates and immobilizes buried wastes. This paper outlines the requirements for the model being developed at the INEL which will provide analytical support for the ISV technology assessment program. The model includes representations of the electric potential field, thermal transport with melting, gas and particulate release, vapor migration, off-gas combustion and process chemistry. The modeling objectives are to help determine the safety of the process by assessing the air and surrounding soil radionuclides and chemical pollution hazards, the nuclear criticality hazard, and the explosion and fire hazards, help determine the suitability of the ISV process for stabilizing the buried wastes involved, and help design laboratory and field tests and interpret results. 3 refs., 2 figs., 1 tab

  12. Distillation of shale in situ

    Energy Technology Data Exchange (ETDEWEB)

    de Ganahl, C F

    1922-07-04

    To distill buried shale or other carbon containing compounds in situ, a portion of the shale bed is rendered permeable to gases, and the temperature is raised to the point of distillation. An area in a shale bed is shattered by explosives, so that it is in a relatively finely divided form, and the tunnel is then blocked by a wall, and fuel and air are admitted through pipes until the temperature of the shale is raised to such a point that a portion of the released hydrocarbons will burn. When distillation of the shattered area takes place and the lighter products pass upwardly through uptakes to condensers and scrubbers, liquid oil passes to a tank and gas to a gasometer while heavy unvaporized products in the distillation zone collect in a drain, flow into a sump, and are drawn off through a pipe to a storage tank. In two modifications, methods of working are set out in cases where the shale lies beneath a substantially level surface.

  13. Growth, nisA Gene Expression, and In Situ Activity of Novel Lactococcus lactis subsp. cremoris Costarter Culture in Commercial Hard Cheese Production.

    Science.gov (United States)

    Noutsopoulos, Dimitrios; Kakouri, Athanasia; Kartezini, Eleftheria; Pappas, Dimitrios; Hatziloukas, Efstathios; Samelis, John

    2017-12-01

    This study evaluated in situ expression of the nisA gene by an indigenous, nisin A-producing (NisA+) Lactococcus lactis subsp. cremoris raw milk genotype, represented by strain M78, in traditional Greek Graviera cheeses under real factory-scale manufacturing and ripening conditions. Cheeses were produced with added a mixed thermophilic and mesophilic commercial starter culture (CSC) or with the CSC plus strain M78 (CSC+M78). Cheeses were sampled after curd cooking (day 0), fermentation of the unsalted molds for 24 h (day 1), brining (day 7), and ripening of the brined molds (14 to 15 kg each) for 30 days in a fully controlled industrial room (16.5°C; 91% relative humidity; day 37). Total RNA was directly extracted from the cheese samples, and the expression of nisA gene was evaluated by real-time reverse transcription PCR (qRT-PCR). Agar overlay and well diffusion bioassays were correspondingly used for in situ detection of the M78 NisA+ colonies in the cheese agar plates and antilisterial activity in whole-cheese slurry samples, respectively. Agar overlay assays showed good growth (>8 log CFU/g of cheese) of the NisA+ strain M78 in coculture with the CSC and vice versa. The nisA expression was detected in CSC+M78 cheese samples only, with its expression levels being the highest (16-fold increase compared with those of the control gene) on day 1, followed by significant reduction on day 7 and almost negligible expression on day 37. Based on the results, certain intrinsic and mainly implicit hurdle factors appeared to reduce growth prevalence rates and decrease nisA gene expression, as well as the nisin A-mediated antilisterial activities of the NisA+ strain M78 postfermentation. To our knowledge, this is the first report on quantitative expression of the nisA gene in a Greek cooked hard cheese during commercial manufacturing and ripening conditions by using a novel, rarely isolated, indigenous NisA+ L. lactis subsp. cremoris genotype as costarter culture.

  14. In-situ transesterification of seeds of invasive Chinese tallow trees (Triadica sebifera L.) in a microwave batch system (GREEN(3)) using hexane as co-solvent: Biodiesel production and process optimization.

    Science.gov (United States)

    Barekati-Goudarzi, Mohamad; Boldor, Dorin; Nde, Divine B

    2016-02-01

    In-situ transesterification (simultaneous extraction and transesterification) of Chinese tallow tree seeds into methyl esters using a batch microwave system was investigated in this study. A high degree of oil extraction and efficient conversion of oil to biodiesel were found in the proposed range. The process was further optimized in terms of product yields and conversion rates using Doehlert optimization methodology. Based on the experimental results and statistical analysis, the optimal production yield conditions for this process were determined as: catalyst concentration of 1.74wt.%, solvent ratio about 3 (v/w), reaction time of 20min and temperature of 58.1°C. H(+)NMR was used to calculate reaction conversion. All methyl esters produced using this method met ASTM biodiesel quality specifications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Evaluation of Resuspension from Propeller Wash in DoD Harbors

    Science.gov (United States)

    2016-05-01

    in ERDC’s Prop-Wash Tank Resuspension by propeller wash from tugboat: in-situ field data: near-bed velocity field, shear stress, critical shear...samples of sediment and water were collected prior to any resuspension event. A C14 Tractor and a slightly smaller Tiger tug boats were used in San

  16. New Delivery Systems and Propellants

    Directory of Open Access Journals (Sweden)

    Myrna Dolovich

    1999-01-01

    Full Text Available The removal of chlorofluorocarbon (CFC propellants from industrial and household products has been agreed to by over 165 countires of which more than 135 are developing countries. The timetable for this process is outlined in the Montreal Protocol on Substances that Deplete the Ozone Layer document and in several subsequent amendments. Pressured metered dose inhalers (pMDIs for medical use have been granted temporary exemptions until replacement formulations, providing the same medication via the same route, and with the same efficacy and safety profiles, are approved for human use. Hydrofluoroalkanes (HFAs are the alternative propellants for CFCs-12 and -114. Their potential for damage to the ozone layer is nonexistent, and while they are greenhouse gases, their global warming potential is a fraction (one-tenth of that of CFCs. Replacement formulations for almost all inhalant respiratory medications have been or are being produced and tested; in Canada, it is anticipated that the transition to these HFA or CFC-free pMDIs will be complete by the year 2005. Initially, an HFA pMDI was to be equivalent to the CFC pMDI being replaced, in terms of aerosol properties and effective clinical dose. However, this will not necessarily be the situation, particularly for some corticosteroid products. Currently, only one CFC-free formulation is available in Canada – Airomir, a HFA salbutamol pMDI. This paper discusses the in vitro aerosol characteristics, in vivo deposition and clinical data for several HFA pMDIs for which there are data available in the literature. Alternative delivery systems to the pMDI, namely, dry powder inhalers and nebulizers, are briefly reviewed.

  17. In-situ uranium leaching

    International Nuclear Information System (INIS)

    Dotson, B.J.

    1986-01-01

    This invention provides a method for improving the recovery of mineral values from ore bodies subjected to in-situ leaching by controlling the flow behaviour of the leaching solution. In particular, the invention relates to an in-situ leaching operation employing a foam for mobility control of the leaching solution. A foam bank is either introduced into the ore bed or developed in-situ in the ore bed. The foam then becomes a diverting agent forcing the leaching fluid through the previously non-contacted regions of the deposit

  18. In-situ X-Ray Analysis of Rapid Thermal Processing for Thin-Film Solar Cells: Closing the Gap between Production and Laboratory Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Toney, Michael F. [SLAC National Accelerator Lab., Menlo Park, CA (United States); van Hest, Maikel F. A. M. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-02-21

    For materials synthesis, it is well known that the material final state may not reach equilibrium and depends on the synthetic process. In particular, processes that quickly remove the available energy from the material may leave it in a metastable state and the metastability may actually impart desirable functional properties. By its very nature, Rapid thermal processing (RTP) is ideally suited to produce such metastable materials. However, metastability and the dynamics of reaching a metastable state are poorly understood, since this is best accomplished through in situ monitoring. In this regard, RTP is particularly challenging as the processing time are very short (seconds to minutes). As a result, there is only poor understanding, and hence use, of RTP in industry. This is potentially a cost-increasing limitation, because RTP can decrease cost by decreasing processing time, and as such, increase throughput and decrease the total thermal budget of processing - a significant cost. RTP is already being used for key processing steps in PV technologies. With silicon wafer PV, it is used for establishing electrical contact between the Ag metal grid and the silicon (known as firing). In this process, a silicon wafer with deposited metal/frit in a grid pattern is heated rapidly to temperatures between 750 and 800 ºC. The processing time when the temperature is held above 600ºC is short (<5 seconds). This process has historically been optimized empirically and it is unclear how the thermal processing affects formation of the final contact between the metal and the silicon. In the case of thin-film PV, RTP has been demonstrated in the process of making absorber layers, i.e. CIGS and CZTS. Use of RTP can reduce the processing time from 10s of minutes to seconds, reducing the thermal budget and increasing the throughput significantly. The conversion from precursor material to final PV material is not well understood, and most of the process optimization is done

  19. A novel flexible clinical multiphoton tomograph for early melanoma detection, skin analysis, testing of anti-age products, and in situ nanoparticle tracking

    Science.gov (United States)

    Weinigel, Martin; Breunig, Hans Georg; Gregory, Axel; Fischer, Peter; Kellner-Höfer, Marcel; Bückle, Rainer; König, Karsten

    2010-02-01

    High-resolution 3D microscopy based on multiphoton induced autofluorescence and second harmonic generation have been introduced in 1990. 13 years later, CE-marked clinical multiphoton systems for 3D imaging of human skin with subcellular resolution have first been launched by JenLab company with the tomography DermaInspect®. This year, the second generation of clinical multiphoton tomographs was introduced. The novel multiphoton tomograph MPTflex, equipped with a flexible articulated optical arm, provides an increased flexibility and accessibility especially for clinical and cosmetical examinations. Improved image quality and signal to noise ratio (SNR) are achieved by a very short source-drain spacing, by larger active areas of the detectors and by single photon counting (SPC) technology. Shorter image acquisition time due to improved image quality reduces artifacts and simplifies the operation of the system. The compact folded optical design and the light-weight structure of the optical head eases the handling. Dual channel detectors enable to distinguish between intratissue elastic fibers and collagenous structures simultaneously. Through the use of piezo-driven optics a stack of optical cross-sections (optical sectioning) can be acquired and 3D imaging can be performed. The multiphoton excitation of biomolecules like NAD(P)H, flavins, porphyrins, elastin, and melanin is done by picojoule femtosecond laser pulses from an tunable turn-key femtosescond near infrared laser system. The ability for rapid high-quality image acquisition, the user-friendly operation of the system and the compact and flexible design qualifies this system to be used for melanoma detection, diagnostics of dermatological disorders, cosmetic research and skin aging measurements as well as in situ drug monitoring and animal research.

  20. Strength of Screw Propellers

    Science.gov (United States)

    1975-07-07

    ship because of increese of propeller efficiency and saving on the high cost of difficult to obtain materials (bronze, brass, stainless steel). The...indAjate that. x :axmuin stresses in the blade cross section are the cor-,prc-.,; ivFe norm-al strcs3es at point G. The maximom tensile stres-ses cis a...and stern part of the ship. Because of purely technical difficulties and also because of the relatively high cost of preparations for such tests, only

  1. The In Situ Vitrification Project

    International Nuclear Information System (INIS)

    Buelt, J.L.

    1988-10-01

    The Columbia Section of the American Society of Civil Engineers (ASCE) is pleased to submit the In Situ Vitrification (ISV) Project to the Pacific Northwest Council for consideration as the Outstanding Civil Engineering Achievement. The ISV process, developed by Battelle-Northwest researchers beginning in 1980, converts contaminated soils and sludges to a glass and crystalline product. In this way it stabilizes hazardous chemical and radioactive wastes and makes them chemically inert. This report describes the process. A square array of four molybdenum electrodes is inserted into the ground to the desired treatment depth. Because soil is not electrically conductive when the moisture has been driven off, a conductive mixture of flaked graphite and glass frit is placed among the electrodes as a starter path. An electrical potential is applied to the electrodes to establish an electric current in the starter path. The resultant power heats the starter path and surrounding soil to 2000/degree/C, well above the initial soil-melting temperature of 1100/degree/C to 1400/degree/C. The graphite starter path is eventually consumed by oxidation, and the current is transferred to the molten soil, which is electrically conductive. As the molten or vitrified zone grows, it incorporates radionuclides and nonvolatile hazardous elements, such as heavy metals, and destroys organic components by pyrolysis. 2 figs

  2. In situ vitrification: A review

    International Nuclear Information System (INIS)

    Cole, L.L.; Fields, D.E.

    1989-11-01

    The in situ vitrification process (ISV) converts contaminated soils and sludges to a glass and crystalline product. The process appears to be ideally suited for on site treatment of both wet and dry wastes. Basically, the system requires four molybdenum electrodes, an electrical power system for vitrifying the soil, a hood to trap gaseous effluents, an off-gas treatment system, an off-gas cooling system, and a process control station. Mounted in three transportable trailers, the ISV process can be moved from site to site. The process has the potential for treating contaminated soils at most 13 m deep. The ISV project has won a number of outstanding achievement awards. The process has also been patented with exclusive worldwide rights being granted to Battelle Memorial Institute for nonradioactive applications. While federal applications still belong to the Department of Energy, Battelle transferred the rights of ISV for non-federal government, chemical hazardous wastes to a separate corporation in 1989 called Geosafe. This report gives a review of the process including current operational behavior and applications

  3. In situ leaching of uranium

    International Nuclear Information System (INIS)

    Martin, B.

    1980-01-01

    A process is described for the in-situ leaching of uranium-containing ores employing an acidic leach liquor containing peroxymonosulphuric acid. Preferably, additionally, sulphuric acid is present in the leach liquor. (author)

  4. In situ vitrification program treatability investigation progress report

    International Nuclear Information System (INIS)

    Arrenholz, D.A.

    1991-02-01

    This document presents a summary of the efforts conducted under the in situ vitrification treatability study during the period from its initiation in FY-88 until FY-90. In situ vitrification is a thermal treatment process that uses electrical power to convert contaminated soils into a chemically inert and stable glass and crystalline product. Contaminants present in the soil are either incorporated into the product or are pyrolyzed during treatment. The treatability study being conducted at the Idaho National Engineering Laboratory by EG ampersand G Idaho is directed at examining the specific applicability of the in situ vitrification process to buried wastes contaminated with transuranic radionuclides and other contaminants found at the Subsurface Disposal Area of the Radioactive Waste Management Complex. This treatability study consists of a variety of tasks, including engineering tests, field tests, vitrified product evaluation, and analytical models of the in situ vitrification process. 6 refs., 4 figs., 3 tabs

  5. State of the Science Review: Potential for Beneficial Use of Waste By-Products for In-situ Remediation of Metal-Contaminated Soil and Sediment

    Science.gov (United States)

    Metal and metalloid contamination of soil and sediment is a widespread problem both in urban and rural areas throughout the United States (U.S. EPA, 2014). Beneficial use of waste by-products as amendments to remediate metal-contaminated soils and sediments can provide major eco...

  6. Evaluating productivity-biodiversity relationship and spectral diversity in prairie grasslands under different fire management treatments using in-situ and remote sensing hyperspectral data

    Science.gov (United States)

    Gholizadeh, H.; Gamon, J. A.; Zygielbaum, A. I.; Schweiger, A. K.; Cavender-Bares, J.; Yang, Y.; Knops, J. M. H.

    2017-12-01

    Grasslands cover as much as 25% of the Earth's surface and account for approximately 20% of overall terrestrial productivity and contribute to global biodiversity. To optimize the status of grasslands and to counteract their degradation, different management practices have been adopted. Fire has been shown to be an important management practice in the maintenance of grasslands. Our main goals were 1) to evaluate the productivity-biodiversity relationship in grasslands under fire treatment, and 2) to evaluate the capability of hyperspectral remote sensing in estimating biodiversity using spectral data (i.e. spectral diversity). We used above-ground biomass (as a surrogate for productivity), species richness (SR; as a surrogate for biodiversity), and airborne hyperspectral data from a natural grassland with fire treatment (20 plots), and a natural grassland without fire treatment (21 plots), all located at the Cedar Creek Ecosystem Science Reserve in Central Minnesota, USA. The productivity-biodiversity relationship for the fire treatment plots showed a hump-shaped model with adjusted R2=0.37, whereas the relationship for the non-burned plots were non-significant. The relationship between SR and spectral diversity (SD) were positive linear for both treatments; however, the relationship for plots with fire treatment was higher (adjusted R2 = 0.34 vs. 0.19). It is assumed that post-fire foliar nutrients increase soil nitrogen and phosphorus which facilitate post-fire growth and induce higher above-ground biomass and chlorophyll content in plants. Overall, the results of this study showed that management practices affect the productivity-biodiversity relationship and illustrated the effect of fire treatment on remote sensing of biodiversity.

  7. In Situ TEM Electrical Measurements

    DEFF Research Database (Denmark)

    Canepa, Silvia; Alam, Sardar Bilal; Ngo, Duc-The

    2016-01-01

    understanding of complex physical and chemical interactions in the pursuit to optimize nanostructure function and device performance. Recent developments of sample holder technology for TEM have enabled a new field of research in the study of functional nanomaterials and devices via electrical stimulation...... influence the sample by external stimuli, e.g. through electrical connections, the TEM becomes a powerful laboratory for performing quantitative real time in situ experiments. Such TEM setups enable the characterization of nanostructures and nanodevices under working conditions, thereby providing a deeper...... and measurement of the specimen. Recognizing the benefits of electrical measurements for in situ TEM, many research groups have focused their effort in this field and some of these methods have transferred to ETEM. This chapter will describe recent advances in the in situ TEM investigation of nanostructured...

  8. Feasibility Study and Demonstration of an Aluminum and Ice Solid Propellant

    Directory of Open Access Journals (Sweden)

    Timothee L. Pourpoint

    2012-01-01

    Full Text Available Aluminum-water reactions have been proposed and studied for several decades for underwater propulsion systems and applications requiring hydrogen generation. Aluminum and water have also been proposed as a frozen propellant, and there have been proposals for other refrigerated propellants that could be mixed, frozen in situ, and used as solid propellants. However, little work has been done to determine the feasibility of these concepts. With the recent availability of nanoscale aluminum, a simple binary formulation with water is now feasible. Nanosized aluminum has a lower ignition temperature than micron-sized aluminum particles, partly due to its high surface area, and burning times are much faster than micron aluminum. Frozen nanoscale aluminum and water mixtures are stable, as well as insensitive to electrostatic discharge, impact, and shock. Here we report a study of the feasibility of an nAl-ice propellant in small-scale rocket experiments. The focus here is not to develop an optimized propellant; however improved formulations are possible. Several static motor experiments have been conducted, including using a flight-weight casing. The flight weight casing was used in the first sounding rocket test of an aluminum-ice propellant, establishing a proof of concept for simple propellant mixtures making use of nanoscale particles.

  9. In situ macromolecular crystallography using microbeams

    Energy Technology Data Exchange (ETDEWEB)

    Axford, Danny; Owen, Robin L.; Aishima, Jun [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Foadi, James [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Imperial College, London SW7 2AZ (United Kingdom); Morgan, Ann W.; Robinson, James I. [University of Leeds, Leeds LS9 7FT (United Kingdom); Nettleship, Joanne E.; Owens, Raymond J. [Research Complex at Harwell, Rutherford Appleton Laboratory R92, Didcot, Oxfordshire OX11 0DE (United Kingdom); Moraes, Isabel [Imperial College, London SW7 2AZ (United Kingdom); Fry, Elizabeth E.; Grimes, Jonathan M.; Harlos, Karl; Kotecha, Abhay; Ren, Jingshan; Sutton, Geoff; Walter, Thomas S. [University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Stuart, David I. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Evans, Gwyndaf, E-mail: gwyndaf.evans@diamond.ac.uk [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom)

    2012-04-17

    A sample environment for mounting crystallization trays has been developed on the microfocus beamline I24 at Diamond Light Source. The technical developments and several case studies are described. Despite significant progress in high-throughput methods in macromolecular crystallography, the production of diffraction-quality crystals remains a major bottleneck. By recording diffraction in situ from crystals in their crystallization plates at room temperature, a number of problems associated with crystal handling and cryoprotection can be side-stepped. Using a dedicated goniometer installed on the microfocus macromolecular crystallography beamline I24 at Diamond Light Source, crystals have been studied in situ with an intense and flexible microfocus beam, allowing weakly diffracting samples to be assessed without a manual crystal-handling step but with good signal to noise, despite the background scatter from the plate. A number of case studies are reported: the structure solution of bovine enterovirus 2, crystallization screening of membrane proteins and complexes, and structure solution from crystallization hits produced via a high-throughput pipeline. These demonstrate the potential for in situ data collection and structure solution with microbeams.

  10. A Novel in situ Trigger Combination Method

    International Nuclear Information System (INIS)

    Buzatu, Adrian; Warburton, Andreas; Krumnack, Nils; Yao, Wei-Ming

    2012-01-01

    Searches for rare physics processes using particle detectors in high-luminosity colliding hadronic beam environments require the use of multi-level trigger systems to reject colossal background rates in real time. In analyses like the search for the Higgs boson, there is a need to maximize the signal acceptance by combining multiple different trigger chains when forming the offline data sample. In such statistically limited searches, datasets are often amassed over periods of several years, during which the trigger characteristics evolve and their performance can vary significantly. Reliable production cross-section measurements and upper limits must take into account a detailed understanding of the effective trigger inefficiency for every selected candidate event. We present as an example the complex situation of three trigger chains, based on missing energy and jet energy, to be combined in the context of the search for the Higgs (H) boson produced in association with a W boson at the Collider Detector at Fermilab (CDF). We briefly review the existing techniques for combining triggers, namely the inclusion, division, and exclusion methods. We introduce and describe a novel fourth in situ method whereby, for each candidate event, only the trigger chain with the highest a priori probability of selecting the event is considered. The in situ combination method has advantages of scalability to large numbers of differing trigger chains and of insensitivity to correlations between triggers. We compare the inclusion and in situ methods for signal event yields in the CDF WH search.

  11. In situ macromolecular crystallography using microbeams

    International Nuclear Information System (INIS)

    Axford, Danny; Owen, Robin L.; Aishima, Jun; Foadi, James; Morgan, Ann W.; Robinson, James I.; Nettleship, Joanne E.; Owens, Raymond J.; Moraes, Isabel; Fry, Elizabeth E.; Grimes, Jonathan M.; Harlos, Karl; Kotecha, Abhay; Ren, Jingshan; Sutton, Geoff; Walter, Thomas S.; Stuart, David I.; Evans, Gwyndaf

    2012-01-01

    A sample environment for mounting crystallization trays has been developed on the microfocus beamline I24 at Diamond Light Source. The technical developments and several case studies are described. Despite significant progress in high-throughput methods in macromolecular crystallography, the production of diffraction-quality crystals remains a major bottleneck. By recording diffraction in situ from crystals in their crystallization plates at room temperature, a number of problems associated with crystal handling and cryoprotection can be side-stepped. Using a dedicated goniometer installed on the microfocus macromolecular crystallography beamline I24 at Diamond Light Source, crystals have been studied in situ with an intense and flexible microfocus beam, allowing weakly diffracting samples to be assessed without a manual crystal-handling step but with good signal to noise, despite the background scatter from the plate. A number of case studies are reported: the structure solution of bovine enterovirus 2, crystallization screening of membrane proteins and complexes, and structure solution from crystallization hits produced via a high-throughput pipeline. These demonstrate the potential for in situ data collection and structure solution with microbeams

  12. In situ leaching of uranium: Technical, environmental and economic aspects

    International Nuclear Information System (INIS)

    1989-01-01

    Within the framework of its activities in nuclear raw materials the International Atomic Energy Agency has convened a series of meetings to discuss various aspects of uranium ore processing technology, recovery of uranium from non-conventional resources and development of projects for the production of uranium concentrates including economic aspects. As part of this continuing effort to discuss and document important aspects of uranium production the IAEA convened a Technical Committee Meeting on Technical, Economic and Environmental Aspects of In-Situ Leaching. Although the use of this technique is limited by geological and economic constraints, it has a significant potential to produce uranium at competitive prices. This is especially important in the current uranium market which is mainly characterised by large inventories, excess production capability and low prices. This situation is not expected to last indefinitely but it is unlikely to change drastically in the next ten years or so. This Technical Committee Meeting was held in Vienna from 3 to 6 November 1987 with the attendance of 24 participants from 12 countries. Eight papers were presented. Technical sessions covered in-situ mining research, environmental and licensing aspects and restoration of leached orebodies; the technological status of in-situ leaching, the current status and future prospects of in-situ leaching of uranium in Member States, general aspects of planning and implementation of in-situ projects and the economics of in-situ leaching. Refs, figs and tabs

  13. Cyanobacteria to Link Closed Ecological Systems and In-Situ Resources Utilization Processes

    Science.gov (United States)

    Brown, Igor

    Introduction: A major goal for the Vision of Space Exploration is to extend human presence across the solar sys-tem. With current technology, however, all required consumables for these missions (propellant, air, food, water) as well as habitable volume and shielding to support human explorers will need to be brought from Earth. In-situ pro-duction of consumables (In-Situ Resource Utilization-ISRU) will significantly facilitate current plans for human ex-ploration and colonization of the solar system, especially by reducing the logistical overhead such as recurring launch mass. The production of oxygen from lunar materials is generally recognized as the highest priority process for lunar ISRU, for both human metabolic and fuel oxidation needs. The most challenging technology developments for future lunar settlements may lie in the extraction of elements (O, Fe, Mn, Ti, Si, etc) from local rocks and soils for life support, industrial feedstock and the production of propellants. With few exceptions (e.g., Johannson, 1992), nearly all technology development to date has employed an ap-proach based on inorganic chemistry (e.g. Allen et al., 1996). None of these technologies include concepts for inte-grating the ISRU system with a bioregenerative life support system and a food production systems. Bioregenerative life support efforts have recently been added to the Constellation ISRU development program (Sanders et al, 2007). Methods and Concerns: The European Micro-Ecological Life Support System Alternative (MELiSSA) is an ad-vanced concept for organizing a bioregenerative system for long term space flights and extraterrestrial settlements (Hendrickx, De Wever et al., 2005). However the MELiSSA system is a net consumer of ISRU products without a net return to in-situ technologies, e.g.. to extract elements as a result of complete closure of MELiSSA. On the other hand, the physical-chemical processes for ISRU are typically massive (relative to the rate of oxygen

  14. Triplex in-situ hybridization

    Science.gov (United States)

    Fresco, Jacques R.; Johnson, Marion D.

    2002-01-01

    Disclosed are methods for detecting in situ the presence of a target sequence in a substantially double-stranded nucleic acid segment, which comprises: a) contacting in situ under conditions suitable for hybridization a substantially double-stranded nucleic acid segment with a detectable third strand, said third strand being capable of hybridizing to at least a portion of the target sequence to form a triple-stranded structure, if said target sequence is present; and b) detecting whether hybridization between the third strand and the target sequence has occured.

  15. Hull-Propeller Interaction and Its Effect on Propeller Cavitation

    DEFF Research Database (Denmark)

    Regener, Pelle Bo

    In order to predict the required propulsion power for a ship reliably and accurately, it is not sufficient to only evaluate the resistance of the hull and the propeller performance in open water alone. Interaction effects between hull and propeller can even be a decisive factor in ship powering...... prediction and design optimization. The hull-propeller interaction coefficients of effective wake fraction, thrust deduction factor, and relative rotative efficiency are traditionally determined by model tests. Self-propulsion model tests consistently show an increase in effective wake fractions when using...... velocities. This offers an opportunity for additional insight into hull-propeller interaction and the propeller’s actual operating condition behind the ship, as the actual (effective) inflow is computed. Self-propulsion simulations at model and full scale were carried out for a bulk carrier, once...

  16. In-situ burning: NIST studies

    International Nuclear Information System (INIS)

    Evans, D.D.

    1992-01-01

    In-situ burning of spilled oil has distinct advantages over other countermeasures. It offers the potential to convert rapidly large quantities of oil into its primary combustion products, carbon dioxide and water, with a small percentage of other unburned and residue byproducts. Because the oil is converted to gaseous products of combustion by burning, the need for physical collection, storage, and transport of recovered fluids is reduced to the few percent of the original spill volume that remains as residue after burning. Burning oil spills produces a visible smoke plume containing smoke particulate and other products of combustion which may persist for many kilometers from the burn. This fact gives rise to public health concerns, related to the chemical content of the smoke plume and the downwind deposition of particulate, which need to be answered. In 1985, a joint Minerals Management Service (MMS) and Environment Canada (EC) in-situ burning research program was begun at the National Institute of Standards and Technology (NIST). This research program was designed to study the burning of large crude oil spills on water and how this burning would affect air quality by quantifying the products of combustion and developing methods to predict the downwind smoke particulate deposition. To understand the important features of in-situ burning, it is necessary to perform both laboratory and mesoscale experiments. Finally, actual burns of spilled oil at sea will be necessary to evaluate the method at the anticipated scale of actual response operations. In this research program there is a continuing interaction between findings from measurements on small fire experiments performed in the controlled laboratory environments of NIST and the Fire Research Institute (FRI) in Japan, and large fire experiments at facilities like the USCG Fire Safety and Test Detachment in Mobile, Alabama where outdoor liquid fuel burns in large pans are possible

  17. In situ production of titanium dioxide nanoparticles in molten salt phase for thermal energy storage and heat-transfer fluid applications

    Energy Technology Data Exchange (ETDEWEB)

    Lasfargues, Mathieu, E-mail: m.lasfargues@outlook.com; Bell, Andrew, E-mail: A.bell@leeds.ac.uk [University of Leeds, School of Chemical and Process Engineering (United Kingdom); Ding, Yulong, E-mail: y.ding@bham.ac.uk [University of Birmingham, School of Chemical Engineering (United Kingdom)

    2016-06-15

    In this study, TiO{sub 2} nanoparticles (average particle size 16 nm) were successfully produced in molten salt phase and were showed to significantly enhance the specific heat capacity of a binary eutectic mixture of sodium and potassium nitrate (60/40) by 5.4 % at 390 °C and 7.5 % at 445 °C for 3.0 wt% of precursors used. The objective of this research was to develop a cost-effective alternate method of production which is potentially scalable, as current techniques utilized are not economically viable for large quantities. Enhancing the specific heat capacity of molten salt would promote more competitive pricing for electricity production by concentrating solar power plant. Here, a simple precursor (TiOSO{sub 4}) was added to a binary eutectic mixture of potassium and sodium nitrate, heated to 450 °C, and cooled to witness the production of nanoparticles.

  18. In situ production of titanium dioxide nanoparticles in molten salt phase for thermal energy storage and heat-transfer fluid applications

    International Nuclear Information System (INIS)

    Lasfargues, Mathieu; Bell, Andrew; Ding, Yulong

    2016-01-01

    In this study, TiO_2 nanoparticles (average particle size 16 nm) were successfully produced in molten salt phase and were showed to significantly enhance the specific heat capacity of a binary eutectic mixture of sodium and potassium nitrate (60/40) by 5.4 % at 390 °C and 7.5 % at 445 °C for 3.0 wt% of precursors used. The objective of this research was to develop a cost-effective alternate method of production which is potentially scalable, as current techniques utilized are not economically viable for large quantities. Enhancing the specific heat capacity of molten salt would promote more competitive pricing for electricity production by concentrating solar power plant. Here, a simple precursor (TiOSO_4) was added to a binary eutectic mixture of potassium and sodium nitrate, heated to 450 °C, and cooled to witness the production of nanoparticles.

  19. Characterization of VPO ammoxidation catalysts by in situ methods

    Energy Technology Data Exchange (ETDEWEB)

    Martin, A.; Luecke, B.; Brueckner, A.; Steinike, U. [Institut fuer Angewandte Chemie Berlin-Adlershof e.V., Berlin (Germany); Brzezinka, K.W. [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany); Meisel, M. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Chemie

    1998-12-31

    In-situ methods are well known as powerful tools in studying catalyst formation processes, their solid state properties under working conditions and the interaction with the feed, intermediates and products to reveal reaction mechanisms. This paper gives a short overview on results of intense studies using in-situ techniques to reveal VPO catalyst generation processes, interaction of educts, intermediates and products with VPO catalyst surfaces and mechanistic insights. Catalytic data of the ammoxidation of toluene on different VPOs complete these findings. The precursor-catalyst transformation processes were preferently investigated by in-situ XRD, in-situ Raman and in-situ ESR spectroscopy. The interaction of aromatic molecules and intermediates, resp., and VPO solid surfaces was followed by in-situ ESR and in-situ FTIR spectroscopy. Mechanistic information was mainly obtained using in-situ FTIR spectroscopy and the temporal-analysis-of-products (TAP) technique. Catalytic studies were carried out in a fixed-bed microreactor on pure (NH{sub 4}){sub 2}(VO){sub 3}(P{sub 2}O{sub 7}){sub 2}, generated [(NH{sub 4}){sub 2}(VO{sub 3})(P{sub 2}O{sub 7}){sub 2}+V{sub x}O{sub y}] catalysts, having different V{sub x}O{sub y} proportions by use of VOHPO{sub 4} x 1/2H{sub 2}O (V/P=1) and recently studied (VO){sub 3}(PO{sub 4}){sub 2} x 7 H{sub 2}O (V/P=1.5) precursors; the well-known (VO){sub 2}P{sub 2}O{sub 7} was used for comparison. (orig.)

  20. JANNAF 28th Propellant Development and Characterization Subcommittee and 17th Safety and Environmental Protection Subcommittee Joint Meeting. Volume 1

    Science.gov (United States)

    Cocchiaro, James E. (Editor); Mulder, Edwin J. (Editor); Gomez-Knight, Sylvia J. (Editor)

    1999-01-01

    This volume contains 37 unclassified/unlimited-distribution technical papers that were presented at the JANNAF 28th Propellant Development & Characterization Subcommittee (PDCS) and 17th Safety & Environmental Protection Subcommittee (S&EPS) Joint Meeting, held 26-30 April 1999 at the Town & Country Hotel and the Naval Submarine Base, San Diego, California. Volume II contains 29 unclassified/limited-distribution papers that were presented at the 28th PDCS and 17th S&EPS Joint Meeting. Volume III contains a classified paper that was presented at the 28th PDCS Meeting on 27 April 1999. Topics covered in PDCS sessions include: solid propellant rheology; solid propellant surveillance and aging; propellant process engineering; new solid propellant ingredients and formulation development; reduced toxicity liquid propellants; characterization of hypergolic propellants; and solid propellant chemical analysis methods. Topics covered in S&EPS sessions include: space launch range safety; liquid propellant hazards; vapor detection methods for toxic propellant vapors and other hazardous gases; toxicity of propellants, ingredients, and propellant combustion products; personal protective equipment for toxic liquid propellants; and demilitarization/treatment of energetic material wastes.

  1. A novel in situ gas stripping-pervaporation process integrated with acetone-butanol-ethanol fermentation for hyper n-butanol production.

    Science.gov (United States)

    Xue, Chuang; Liu, Fangfang; Xu, Mengmeng; Zhao, Jingbo; Chen, Lijie; Ren, Jiangang; Bai, Fengwu; Yang, Shang-Tian

    2016-01-01

    Butanol is considered as an advanced biofuel, the development of which is restricted by the intensive energy consumption of product recovery. A novel two-stage gas stripping-pervaporation process integrated with acetone-butanol-ethanol (ABE) fermentation was developed for butanol recovery, with gas stripping as the first-stage and pervaporation as the second-stage using the carbon nanotubes (CNTs) filled polydimethylsiloxane (PDMS) mixed matrix membrane (MMM). Compared to batch fermentation without butanol recovery, more ABE (27.5 g/L acetone, 75.5 g/L butanol, 7.0 g/L ethanol vs. 7.9 g/L acetone, 16.2 g/L butanol, 1.4 g/L ethanol) were produced in the fed-batch fermentation, with a higher butanol productivity (0.34 g/L · h vs. 0.30 g/L · h) due to reduced butanol inhibition by butanol recovery. The first-stage gas stripping produced a condensate containing 155.6 g/L butanol (199.9 g/L ABE), which after phase separation formed an organic phase containing 610.8 g/L butanol (656.1 g/L ABE) and an aqueous phase containing 85.6 g/L butanol (129.7 g/L ABE). Fed with the aqueous phase of the condensate from first-stage gas stripping, the second-stage pervaporation using the CNTs-PDMS MMM produced a condensate containing 441.7 g/L butanol (593.2 g/L ABE), which after mixing with the organic phase from gas stripping gave a highly concentrated product containing 521.3 g/L butanol (622.9 g/L ABE). The outstanding performance of CNTs-PDMS MMM can be attributed to the hydrophobic CNTs giving an alternative route for mass transport through the inner tubes or along the smooth surface of CNTs. This gas stripping-pervaporation process with less contaminated risk is thus effective in increasing butanol production and reducing energy consumption. © 2015 Wiley Periodicals, Inc.

  2. In situ Raman spectra of the discharge products of calcium and lithium-anoded thionyl chloride cells — sulphur dioxide generation in oxyhalide systems

    Science.gov (United States)

    Hagan, W. P.; Sargeant, D. G.

    A cell has been constructed that allows a calcium or lithium-anoded oxyhalide cell of conventional composition to be analysed for catholyte-soluble discharge products using laser Raman spectroscopy. Both cells showed the presence of sulphur dioxide solvated by thionyl chloride. Species of the type M(SOCl 2)(SO 2) n+ (AlCl 4) n- could only be detected in cells having calcium or lithium anodes with LiAlCl 4 as the supporting electrolyte in thionyl chloride. Vapour pressure measurements of discharging cells confirmed that Ca(AlCl 4) 2 was less likely to form a complex with sulphur dioxide than the analogous lithium salt.

  3. In Situ Evaluation of Crop Productivity and Bioaccumulation of Heavy Metals in Paddy Soils after Remediation of Metal-Contaminated Soils.

    Science.gov (United States)

    Kim, Shin Woong; Chae, Yooeun; Moon, Jongmin; Kim, Dokyung; Cui, Rongxue; An, Gyeonghyeon; Jeong, Seung-Woo; An, Youn-Joo

    2017-02-15

    Soils contaminated with heavy metals have been reused for agricultural, building, and industrial uses following remediation. This study assesses plant growth and bioaccumulation of heavy metals following remediation of industrially contaminated soil. The soil was collected from a field site near a nonferrous smelter and was subjected to laboratory- and field-scale studies. Soil from the contaminated site was remediated by washing with acid or mixed with soil taken from a distant uncontaminated site. The activities of various soil exoenzymes, the rate of plant growth, and the bioaccumulations of six heavy metals were measured to assess the efficacy of these bioremediation techniques. Growth of rice (Oryza sativa) was unaffected in acid-washed soil or the amended soil compared to untreated soil from the contaminated site. The levels of heavy metals in the rice kernels remained within safe limits in treated and untreated soils. Rice, sorghum (Sorghum bicolor), and wheat (Triticum aestivum) cultivated in the same soils in the laboratory showed similar growth rates. Soil exoenzyme activities and crop productivity were not affected by soil treatment in field experiments. In conclusion, treatment of industrially contaminated soil by acid washing or amendment did not adversely affect plant productivity or lead to increased bioaccumulation of heavy metals in rice.

  4. 'In situ' expanded graphite extinguishant

    International Nuclear Information System (INIS)

    Cao Qixin; Shou Yuemei; He Bangrong

    1987-01-01

    This report is concerning the development of the extinguishant for sodium fire and the investigation of its extinguishing property. The experiment result shows that 'in situ' expanded graphite developed by the authors is a kind of extinguishant which extinguishes sodium fire quickly and effectively and has no environment pollution during use and the amount of usage is little

  5. In Situ Cardiovascular Tissue Engineering

    NARCIS (Netherlands)

    Talacua, H

    2016-01-01

    In this thesis, the feasibility of in situ TE for vascular and valvular purposes were tested with the use of different materials, and animal models. First, the feasibility of a decellularized biological scaffold (pSIS-ECM) as pulmonary heart valve prosthesis is examined in sheep (Chapter 2). Next,

  6. Understanding in situ ozone production in the summertime through radical observations and modelling studies during the Clean air for London project (ClearfLo)

    Science.gov (United States)

    Whalley, Lisa K.; Stone, Daniel; Dunmore, Rachel; Hamilton, Jacqueline; Hopkins, James R.; Lee, James D.; Lewis, Alastair C.; Williams, Paul; Kleffmann, Jörg; Laufs, Sebastian; Woodward-Massey, Robert; Heard, Dwayne E.

    2018-02-01

    Measurements of OH, HO2, RO2i (alkene and aromatic-related RO2) and total RO2 radicals taken during the ClearfLo campaign in central London in the summer of 2012 are presented. A photostationary steady-state calculation of OH which considered measured OH reactivity as the OH sink term and the measured OH sources (of which HO2+ NO reaction and HONO photolysis dominated) compared well with the observed levels of OH. Comparison with calculations from a detailed box model utilising the Master Chemical Mechanism v3.2, however, highlighted a substantial discrepancy between radical observations under lower NOx conditions ([NO] model was missing a significant peroxy radical sink; the model overpredicted HO2 by up to a factor of 10 at these times. Known radical termination steps, such as HO2 uptake on aerosols, were not sufficient to reconcile the model-measurement discrepancies alone, suggesting other missing termination processes. This missing sink was most evident when the air reaching the site had previously passed over central London to the east and when elevated temperatures were experienced and, hence, contained higher concentrations of VOCs. Uncertainties in the degradation mechanism at low NOx of complex biogenic and diesel related VOC species, which were particularly elevated and dominated OH reactivity under these easterly flows, may account for some of the model-measurement disagreement. Under higher [NO] (> 3 ppbv) the box model increasingly underpredicted total [RO2]. The modelled and observed HO2 were in agreement, however, under elevated NO concentrations ranging from 7 to 15 ppbv. The model uncertainty under low NO conditions leads to more ozone production predicted using modelled peroxy radical concentrations ( ˜ 3 ppbv h-1) versus ozone production from peroxy radicals measured ( ˜ 1 ppbv h-1). Conversely, ozone production derived from the predicted peroxy radicals is up to an order of magnitude lower than from the observed peroxy radicals as [NO

  7. Diagnostics of Gun Barrel Propellants

    National Research Council Canada - National Science Library

    Lederman, S

    1983-01-01

    A preliminary investigation of the applicability of the spontaneous Raman diagnostic technique to the determination of the temperature of the propellant gases in the vicinity of the muzzle of a 2Omm...

  8. Cryogenic Propellant Storage and Transfer

    Data.gov (United States)

    National Aeronautics and Space Administration — Space Flight Demonstration development has been canceled in favor of a ground test bed development for of passive/active cryogenic propellant storage, transfer, and...

  9. Cavitation simulation on marine propellers

    DEFF Research Database (Denmark)

    Shin, Keun Woo

    Cavitation on marine propellers causes thrust breakdown, noise, vibration and erosion. The increasing demand for high-efficiency propellers makes it difficult to avoid the occurrence of cavitation. Currently, practical analysis of propeller cavitation depends on cavitation tunnel test, empirical...... criteria and inviscid flow method, but a series of model test is costly and the other two methods have low accuracy. Nowadays, computational fluid dynamics by using a viscous flow solver is common for practical industrial applications in many disciplines. Cavitation models in viscous flow solvers have been...... hydrofoils and conventional/highly-skewed propellers are performed with one of three cavitation models proven in 2D analysis. 3D cases also show accuracy and robustness of numerical method in simulating steady and unsteady sheet cavitation on complicated geometries. Hydrodynamic characteristics of cavitation...

  10. The surface chemistry of nanocrystalline MgO catalysts for FAME production: An in situ XPS study of H2O, CH3OH and CH3OAc adsorption

    Science.gov (United States)

    Montero, J. M.; Isaacs, M. A.; Lee, A. F.; Lynam, J. M.; Wilson, K.

    2016-04-01

    An in situ XPS study of water, methanol and methyl acetate adsorption over as-synthesised and calcined MgO nanocatalysts is reported with a view to gaining insight into the surface adsorption of key components relevant to fatty acid methyl esters (biodiesel) production during the transesterification of triglycerides with methanol. High temperature calcined NanoMgO-700 adsorbed all three species more readily than the parent material due to the higher density of electron-rich (111) and (110) facets exposed over the larger crystallites. Water and methanol chemisorb over the NanoMgO-700 through the conversion of surface O2 - sites to OH- and coincident creation of Mg-OH or Mg-OCH3 moieties respectively. A model is proposed in which the dissociative chemisorption of methanol occurs preferentially over defect and edge sites of NanoMgO-700, with higher methanol coverages resulting in physisorption over weakly basic (100) facets. Methyl acetate undergoes more complex surface chemistry over NanoMgO-700, with C-H dissociation and ester cleavage forming surface hydroxyl and acetate species even at extremely low coverages, indicative of preferential adsorption at defects. Comparison of C 1s spectra with spent catalysts from tributyrin transesterification suggest that ester hydrolysis plays a key factor in the deactivation of MgO catalysts for biodiesel production.

  11. Proof-of-concept automation of propellant processing

    Science.gov (United States)

    Ramohalli, Kumar; Schallhorn, P. A.

    1989-01-01

    For space-based propellant production, automation of the process is needed. Currently, all phases of terrestrial production have some form of human interaction. A mixer was acquired to help perform the tasks of automation. A heating system to be used with the mixer was designed, built, and installed. Tests performed on the heating system verify design criteria. An IBM PS/2 personal computer was acquired for the future automation work. It is hoped that some the mixing process itself will be automated. This is a concept demonstration task; proving that propellant production can be automated reliably.

  12. Aircraft Propeller Hub Repair

    Energy Technology Data Exchange (ETDEWEB)

    Muth, Thomas R [ORNL; Peter, William H [ORNL

    2015-02-13

    The team performed a literature review, conducted residual stress measurements, performed failure analysis, and demonstrated a solid state additive manufacturing repair technique on samples removed from a scrapped propeller hub. The team evaluated multiple options for hub repair that included existing metal buildup technologies that the Federal Aviation Administration (FAA) has already embraced, such as cold spray, high velocity oxy-fuel deposition (HVOF), and plasma spray. In addition the team helped Piedmont Propulsion Systems, LLC (PPS) evaluate three potential solutions that could be deployed at different stages in the life cycle of aluminum alloy hubs, in addition to the conventional spray coating method for repair. For new hubs, a machining practice to prevent fretting with the steel drive shaft was recommended. For hubs that were refurbished with some material remaining above the minimal material condition (MMC), a silver interface applied by an electromagnetic pulse additive manufacturing method was recommended. For hubs that were at or below the MMC, a solid state additive manufacturing technique using ultrasonic welding (UW) of thin layers of 7075 aluminum to the hub interface was recommended. A cladding demonstration using the UW technique achieved mechanical bonding of the layers showing promise as a viable repair method.

  13. In Situ Resource Utilization (ISRU) on the Moon: Moessbauer Spectroscopy as a Process Monitor for Oxygen Production. Results from a Field Test on Mauna Kea Volcano, Hawaii

    Science.gov (United States)

    Morris, R.V.; Schroder, C.; Graff, T.G.; Sanders, G.B.; Lee, K.A.; Simon, T.M.; Larson, W.E.; Quinn, J.W.; Clark, L.D.; Caruso, J.J.

    2009-01-01

    Essential consumables like oxygen must to be produced from materials on the lunar surface to enable a sustained, long-term presence of humans on the Moon. The Outpost Precursor for ISRU and Modular Architecture (OPTIMA) field test on Mauna Kea, Hawaii, facilitated by the Pacific International Space Center for Exploration Systems (PISCES) of the University of Hawaii at Hilo, was designed to test the implementation of three hardware concepts to extract oxygen from the lunar regolith: Precursor ISRU Lunar Oxygen Testbed (PILOT) developed by Lockheed Martin in Littleton, CO; Regolith & Environmental Science and Oxygen & Lunar Volatiles Extraction (RESOLVE) developed at the NASA Kennedy Space Center in Cape Canaveral, FL; and ROxygen developed at the NASA Johnson Space Center in Houston, TX. The three concepts differ in design, but all rely on the same general principle: hydrogen reduction of metal cations (primarily Fe2+) bonded to oxygen to metal (e.g., Fe0) with the production of water. The hydrogen source is residual hydrogen in the fuel tanks of lunar landers. Electrolysis of the water produces oxygen and hydrogen (which is recycled). We used the miniaturized M ssbauer spectrometer MIMOS II to quantify the yield of this process on the basis of the quantity of Fe0 produced. Iron M ssbauer spectroscopy identifies iron-bearing phases, determines iron oxidation states, and quantifies the distribution of iron between mineral phases and oxidation states. The oxygen yield can be calculated by quantitative measurements of the distribution of Fe among oxidation states in the regolith before and after hydrogen reduction. A M ssbauer spectrometer can also be used as a prospecting tool to select the optimum feedstock for the oxygen production plants (e.g., high total Fe content and easily reduced phases). As a demonstration, a MIMOS II backscatter spectrometer (SPESI, Germany) was mounted on the Cratos rover (NASA Glenn Research Center in Cleveland, OH), which is one of

  14. Process for the production of a pressure-sensitive carbonless copy sheet using microcapsules formed in situ in a radiation curable binder

    International Nuclear Information System (INIS)

    Lee, Y.S.; Shackle, D.R.

    1978-01-01

    A process is provided for the production of a coating composition containing microcapsules having a hydrophilic core for use in the manufacture of pressure-sensitive carbonless transfer papers comprising the following steps. A hydrophilic emulsion component is prepared by dispersing at least one chromogenic material being soluble in the hydrophilic liquid. A hydrophobic emulsion component is prepared by dispersing an emulsifier in a radiation curable hydrophobic liquid. A first wall-forming material and a second wall-forming material are added to the hydrophobic emulsion component, with mixing. The first and second wall-forming materials are soluble in the hydrophobic emulsion component, and the first wall-forming material is reactive with the second wall-forming material to form a polymeric capsule wall. The resultant polymeric capsule wall is substantially insoluble in the hydrophilic and the hydrophobic emulsion components. The hydrophobic emulsion component is mixed together with the hydrophilic emulsion component to form an emulsion containing droplets of the hydrophilic emulsion component dispersed in the hydrophobic emulsion component. Mixing is maintained for a period of time sufficient to allow the first and second wall-forming materials to react to form a dispersion of microcapsules in the hydrophobic emulsion component. The formed microcapsules have capsule walls substantially impermeable to the hydrophobic and the hydrophilic emulsion components. Pressure-sensitive carbonless transfer paper may be produced by applying the despersion of the microcapsules prepared as above to a substrate,and curing the dispersion by subjecting the dispersion on the substrate to radiation for a period of time sufficient to cure the radiation curable hydrophobic liquid, thereby producing a tack-free, resinous film on the substrate

  15. Mars Atmosphere Resource Verification INsitu (MARVIN) - In Situ Resource Demonstration for the Mars 2020 Mission

    Science.gov (United States)

    Sanders, Gerald B.; Araghi, Koorosh; Ess, Kim M.; Valencia, Lisa M.; Muscatello, Anthony C.; Calle, Carlos I.; Clark, Larry; Iacomini, Christie

    2014-01-01

    The making of oxygen from resources in the Martian atmosphere, known as In Situ Resource Utilization (ISRU), has the potential to provide substantial benefits for future robotic and human exploration. In particular, the ability to produce oxygen on Mars for use in propulsion, life support, and power systems can provide significant mission benefits such as a reducing launch mass, lander size, and mission and crew risk. To advance ISRU for possible incorporation into future human missions to Mars, NASA proposed including an ISRU instrument on the Mars 2020 rover mission, through an announcement of opportunity (AO). The purpose of the the Mars Atmosphere Resource Verification INsitu or (MARVIN) instrument is to provide the first demonstration on Mars of oxygen production from acquired and stored Martian atmospheric carbon dioxide, as well as take measurements of atmospheric pressure and temperature, and of suspended dust particle sizes and amounts entrained in collected atmosphere gases at different times of the Mars day and year. The hardware performance and environmental data obtained will be critical for future ISRU systems that will reduce the mass of propellants and other consumables launched from Earth for robotic and human exploration, for better understanding of Mars dust and mitigation techniques to improve crew safety, and to help further define Mars global circulation models and better understand the regional atmospheric dynamics on Mars. The technologies selected for MARVIN are also scalable for future robotic sample return and human missions to Mars using ISRU.

  16. In situ uranium stabilization by microbial metabolites

    International Nuclear Information System (INIS)

    Turick, Charles E.; Knox, Anna S.; Leverette, Chad L.; Kritzas, Yianne G.

    2008-01-01

    Microbial melanin production by autochthonous bacteria was explored in this study as a means to increase U immobilization in U contaminated soil. This article demonstrates the application of bacterial physiology and soil ecology for enhanced U immobilization in order to develop an in situ, U bio-immobilization technology. We have demonstrated microbial production of a metal chelating biopolymer, pyomelanin, in U contaminated soil from the Tims Branch area of the Department of Energy (DOE), Savannah River Site (SRS), South Carolina, as a result of tyrosine amendments. Bacterial densities of pyomelanin producers were >10 6 cells per g wet soil. Pyomelanin demonstrated U complexing and mineral binding capacities at pH 4 and 7. In laboratory studies, in the presence of goethite or illite, pyomelanin enhanced U sequestration by these minerals. Tyrosine amended soils in a field test demonstrated increased U sequestration capacity following pyomelanin production up to 13 months after tyrosine treatments

  17. Polyolefin nanocomposites in situ polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Galland, Griselda Barrera; Fim, Fabiana de C.; Milani, Marceo A.; Silva, Silene P. da; Forest, Tadeu; Radaelli, Gislaine, E-mail: griselda.barrera@ufrgs.br [Universidade Federal do Rio Grande de Sul - UFRGS, Porto Alegre, RS (Brazil); Basso, Nara R.S. [Pontificia Universidade Catolica do Rio Grande do Sul, Porto Alegre, RS (Brazil); Quijada, Raul [Universidad de Chile, Santiago (Chile)

    2011-07-01

    Polyethylene and polypropylene nanocomposites using grapheme nanosheets and treated chrysotile have been synthesized by in situ polymerization using metallocene catalysts. The fillers have been submitted to acid, thermal and/ou ultrasound treatments before to introduce them into the polymerization reactor. A complete characterization of the fillers has been done. The nanocomposites have been characterized by SEM, TEM, DRX and AFM. The thermal, mechanic -dynamic, mechanical and electrical properties of the nanocomposites are discussed. (author)

  18. Polyolefin nanocomposites in situ polymerization

    International Nuclear Information System (INIS)

    Galland, Griselda Barrera; Fim, Fabiana de C.; Milani, Marceo A.; Silva, Silene P. da; Forest, Tadeu; Radaelli, Gislaine; Basso, Nara R.S.; Quijada, Raul

    2011-01-01

    Polyethylene and polypropylene nanocomposites using grapheme nanosheets and treated chrysotile have been synthesized by in situ polymerization using metallocene catalysts. The fillers have been submitted to acid, thermal and/ou ultrasound treatments before to introduce them into the polymerization reactor. A complete characterization of the fillers has been done. The nanocomposites have been characterized by SEM, TEM, DRX and AFM. The thermal, mechanic -dynamic, mechanical and electrical properties of the nanocomposites are discussed. (author)

  19. Self-Propelled Micromotors for Cleaning Polluted Water

    Science.gov (United States)

    2013-01-01

    We describe the use of catalytically self-propelled microjets (dubbed micromotors) for degrading organic pollutants in water via the Fenton oxidation process. The tubular micromotors are composed of rolled-up functional nanomembranes consisting of Fe/Pt bilayers. The micromotors contain double functionality within their architecture, i.e., the inner Pt for the self-propulsion and the outer Fe for the in situ generation of ferrous ions boosting the remediation of contaminated water.The degradation of organic pollutants takes place in the presence of hydrogen peroxide, which acts as a reagent for the Fenton reaction and as main fuel to propel the micromotors. Factors influencing the efficiency of the Fenton oxidation process, including thickness of the Fe layer, pH, and concentration of hydrogen peroxide, are investigated. The ability of these catalytically self-propelled micromotors to improve intermixing in liquids results in the removal of organic pollutants ca. 12 times faster than when the Fenton oxidation process is carried out without catalytically active micromotors. The enhanced reaction–diffusion provided by micromotors has been theoretically modeled. The synergy between the internal and external functionalities of the micromotors, without the need of further functionalization, results into an enhanced degradation of nonbiodegradable and dangerous organic pollutants at small-scale environments and holds considerable promise for the remediation of contaminated water. PMID:24180623

  20. Triphenylamine - a 'new' stabilizer for nitrocellulose based propellants. Pt. 1: chemical stability studies

    Energy Technology Data Exchange (ETDEWEB)

    Wilker, Stephan; Heeb, Gerhard [WIWEB ASt Heimerzheim, Grosses Cent, 53913 Swisttal (Germany); Vogelsanger, Beat [Nitrochemie Wimmis AG, Niesenstr. 44, 3752 Wimmis (Switzerland); Petrzilek, Jan; Skladal, Jan [Explosia a.s. - Research Institute of Industrial Chemistry (VUPCH), 532 17 Pardubice (Czech Republic)

    2007-04-15

    Triphenylamine (TPA) was used for the first time in France in 1937 as a stabilizer for propellants. The stability of those samples was described as 'good'. Around 1950 an American group produced TPA stabilized propellants and investigated the decomposition mechanism. Apart from one single experiment in the 1970s no further attempts were made to take TPA as a stabilizer for propellants. With the background of an increasingly critical discussion about nitrosamines in propellants and their declaration of being carcinogenic, TPA revealed a renaissance since the year 2000. To achieve the goal of nitrosamine free propellants several TPA stabilized propellants were produced. Their processability, stability and ballistic properties were investigated. This publication summarizes the most important results of stability tests on more than 30 different TPA stabilized propellants including the decomposition mechanism, the synthesis of the consecutive products and their stabilizing properties. In addition, the internal compatibility of TPA with the most important propellant ingredients is discussed and its relative decomposition rate is compared with that of other stabilizers. In summary TPA is a suitable stabilizer for propellants. It has nevertheless two disadvantages. It is relatively rapidly consumed in double base formulations (which makes it difficult to pass the criteria of AOP-48, Ed. 2) and the stabilizing activity of the two major consecutive products 4-NO{sub 2}-TPA and especially 4,4{sup '}-di-NO{sub 2}-TPA is low. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  1. In-Situ Resource Utilization: Oxygen Production

    Data.gov (United States)

    National Aeronautics and Space Administration — The leading option for extracting oxygen from the Mars atmospheric carbon dioxide is to use a solid oxide electrolyzer, which removes one oxygen atom from the CO2...

  2. A Au/Cu2O-TiO2 system for photo-catalytic hydrogen production. A pn-junction effect or a simple case of in situ reduction?

    KAUST Repository

    Sinatra, Lutfan

    2015-02-01

    Photo-catalytic H2 production from water has been studied over Au-Cu2O nanoparticle deposited on TiO2 (anatase) in order to probe into both the plasmon resonance effect (Au nanoparticles) and the pn-junction at the Cu2O-TiO2 interface. The Au-Cu2O composite is in the form of ∼10 nm Au nanoparticles grown on ∼475 nm Cu2O octahedral nanocrystals with (111) facets by partial galvanic replacement. X-ray Photoelectron Spectroscopy (XPS) Cu2p and Auger L3M4,5M4,5 lines indicate that the surface of Cu2O is mainly composed of Cu+. The rate for H2 production (from 95 water/5 ethylene glycol; vol.%) over 2 wt.% (Au/Cu2O)-TiO2 is found to be ∼10 times faster than that on 2 wt.% Au-TiO2 alone. Raman spectroscopy before and after reaction showed the disappearance of Cu+ lines (2Eu) at 220 cm-1. These observations coupled with the induction time observed for the reaction rate suggest that in situ reduction from Cu+ to Cu0 occurs upon photo-excitation. The reduction requires the presence of TiO2 (electron transfer). The prolonged activity of the reaction (with no signs of deactivation) despite the reduction to Cu0 indicates that the latter takes part in the reaction by providing additional sites for the reaction, most likely as recombination centers for hydrogen atoms to form molecular hydrogen. This phenomenon provides an additional route for enhancing the efficiency and lifetime of Cu2O-TiO2 photocatalytic systems, beyond the usually ascribed pn-junction effect.

  3. Noise canceling in-situ detection

    Science.gov (United States)

    Walsh, David O.

    2014-08-26

    Technologies applicable to noise canceling in-situ NMR detection and imaging are disclosed. An example noise canceling in-situ NMR detection apparatus may comprise one or more of a static magnetic field generator, an alternating magnetic field generator, an in-situ NMR detection device, an auxiliary noise detection device, and a computer.

  4. Recent Advances and Applications in Cryogenic Propellant Densification Technology

    Science.gov (United States)

    Tomsik, Thomas M.

    2000-01-01

    This purpose of this paper is to review several historical cryogenic test programs that were conducted at the NASA Glenn Research Center (GRC), Cleveland, Ohio over the past fifty years. More recently these technology programs were intended to study new and improved denser forms of liquid hydrogen (LH2) and liquid oxygen (LO2) cryogenic rocket fuels. Of particular interest are subcooled cryogenic propellants. This is due to the fact that they have a significantly higher density (eg. triple-point hydrogen, slush etc.), a lower vapor pressure and improved cooling capacity over the normal boiling point cryogen. This paper, which is intended to be a historical technology overview, will trace the past and recent development and testing of small and large-scale propellant densification production systems. Densifier units in the current GRC fuels program, were designed and are capable of processing subcooled LH2 and L02 propellant at the X33 Reusable Launch Vehicle (RLV) scale. One final objective of this technical briefing is to discuss some of the potential benefits and application which propellant densification technology may offer the industrial cryogenics production and end-user community. Density enhancements to cryogenic propellants (LH2, LO2, CH4) in rocket propulsion and aerospace application have provided the opportunity to either increase performance of existing launch vehicles or to reduce the overall size, mass and cost of a new vehicle system.

  5. IN SITU URANIUM STABILIZATION BY MICROBIAL METABOLITES

    Energy Technology Data Exchange (ETDEWEB)

    Turick, C; Anna Knox, A; Chad L Leverette,C; Yianne Kritzas, Y

    2006-11-29

    Soil contaminated with U was the focus of this study in order to develop in-situ, U bio-immobilization technology. We have demonstrated microbial production of a metal chelating biopolymer, pyomelanin, in U contaminated soil from the Tims Branch area of the Department of Energy (DOE) Savannah River Site (SRS) as a result of tyrosine amendments. Bacterial densities of pyomelanin producers were >106 cells/g wet soil. Pyomelanin demonstrated U chelating and mineral binding capacities at pH 4 and 7. In laboratory studies, in the presence of goethite or illite, pyomelanin enhanced U sequestration by these minerals. Tyrosine amended soils in field tests demonstrated increased U sequestration capacity following pyomelanin production up to 13 months after tyrosine treatments.

  6. Propeller Flaps: A Literature Review.

    Science.gov (United States)

    Sisti, Andrea; D'Aniello, Carlo; Fortezza, Leonardo; Tassinari, Juri; Cuomo, Roberto; Grimaldi, Luca; Nisi, Giuseppe

    2016-01-01

    Since their introduction in 1991, propeller flaps are increasingly used as a surgical approach to loss of substance. The aim of this study was to evaluate the indications and to verify the outcomes and the complication rates using this reconstructing technique through a literature review. A search on PubMed was performed using "propeller flap", "fasciocutaneous flap", "local flap" or "pedicled flap" as key words. We selected clinical studies using propeller flaps as a reconstructing technique. We found 119 studies from 1991 to 2015. Overall, 1,315 propeller flaps were reported in 1,242 patients. Most frequent indications included loss of substance following tumor excision, repair of trauma-induced injuries, burn scar contractures, pressure sores and chronic infections. Complications were observed in 281/1242 patients (22.6%) occurring more frequently in the lower limbs (31.8%). Partial flap necrosis and venous congestion were the most frequent complications. The complications' rate was significantly higher in infants (70 years old) but there was not a significant difference between the sexes. Trend of complication rate has not improved during the last years. Propeller flaps showed a great success rate with low morbidity, quick recovery, good aesthetic outcomes and reduced cost. The quality and volume of the transferred soft tissue, the scar orientation and the possibility of direct donor site closure should be considered in order to avoid complications. Indications for propeller flaps are small- or medium-sized defects located in a well-vascularized area with healthy surrounding tissues. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  7. Laser-propelled ram accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Sasoh, A. [Tohoku Univ., Sendai (Japan). Inst. of Fluid Science

    2000-11-01

    The concept of 'laser-propelled ram accelerator (L-RAMAC)' is proposed. Theoretically it is capable of achieving a higher launch speed than that by a chemical ram accelerator because a higher specific energy can be input to the propellant gas. The laser beam is supplied through the muzzle, focused as an annulus behind the base of the projectile. The performance of L-RAMAC is analized based on generalized Rankine-Hugoniot relations, suggesting that a superorbital muzzle speed is achievable out of this device. (orig.)

  8. Enzyme Engineering for In Situ Immobilization.

    Science.gov (United States)

    Rehm, Fabian B H; Chen, Shuxiong; Rehm, Bernd H A

    2016-10-14

    Enzymes are used as biocatalysts in a vast range of industrial applications. Immobilization of enzymes to solid supports or their self-assembly into insoluble particles enhances their applicability by strongly improving properties such as stability in changing environments, re-usability and applicability in continuous biocatalytic processes. The possibility of co-immobilizing various functionally related enzymes involved in multistep synthesis, conversion or degradation reactions enables the design of multifunctional biocatalyst with enhanced performance compared to their soluble counterparts. This review provides a brief overview of up-to-date in vitro immobilization strategies while focusing on recent advances in enzyme engineering towards in situ self-assembly into insoluble particles. In situ self-assembly approaches include the bioengineering of bacteria to abundantly form enzymatically active inclusion bodies such as enzyme inclusions or enzyme-coated polyhydroxyalkanoate granules. These one-step production strategies for immobilized enzymes avoid prefabrication of the carrier as well as chemical cross-linking or attachment to a support material while the controlled oriented display strongly enhances the fraction of accessible catalytic sites and hence functional enzymes.

  9. Large Propellant Tank Cryo-Cooler (LPTC)

    Data.gov (United States)

    National Aeronautics and Space Administration — In rocket test and launch facilities, cryogenic propellants stored in tanks boils off due to heat leakage, with the following impacts:Ø   Waste, propellants boil off...

  10. Quadcopter thrust optimization with ducted-propeller

    Directory of Open Access Journals (Sweden)

    Kuantama Endrowednes

    2017-01-01

    Full Text Available In relation to quadcopter body frame model, propeller can be categorized into propeller with ducted and without ducted. This study present differences between those two using CFD (Computational Fluid Dynamics method. Both categories utilize two blade-propeller with diameter of 406 (mm. Propeller rotation generates acceleration per time unit on the volume of air. Based on the behavior of generated air velocity, ducted propeller can be modeled into three versions. The generated thrust and performance on each model were calculated to determine the best model. The use of ducted propeller increases the total weight of quadcopter and also total thrust. The influence of this modeling were analyzed in detail with variation of angular velocity propeller from 1000 (rpm to 9000 (rpm. Besides the distance between propeller tip and ducted barrier, the size of ducted is also an important part in thrust optimization and total weight minimization of quadcopter.

  11. Seawater Immersion of GEM II Propellant

    National Research Council Canada - National Science Library

    Merrill, Calude

    1999-01-01

    ... (% AP lost/week aged in seawater) and intercepts that depend on sample size. Friction and impact data on dried aged propellant samples showed no increased burning hazard compared with propellant not exposed to water...

  12. Non-destructive testing of rocket propellant quality using -X-ray radiography

    International Nuclear Information System (INIS)

    Arayaprecha, W.

    1979-01-01

    Currently, X-rays radiography has been used extensively in various industries. In this thesis, X-rays has been used in the study of compaction of rocket propellant. For a rocket, to gain an accurate guidance result, the propellant used must be mixed and compacted thoroughly. The quality control of the production of propellant sticks must be carefully done. In this study of non-destructive quality testing of rocket propellant, at first the ultrasonic rays was used to test its homogeneity. However, because the density of the propellant was too low, the test equipment could not detect any reflected signals from the propellant being tested. Then the new procedure using X-rays radiography was tried. The variables in the test procedure were voltage, amperage and the focal-film distance. Also different types of films were used. The results of this experiment were then used to construct an exposure chart for testing the homogeneity of the rocket propellant. The advantage of this chart is that a tester can use this table with propellant sticks of different sizes if they have similar density to the density specified in the chart. Also, it is not necessary that the mixture of the testing propellant be the same as the ones used to construct this chart

  13. An advanced GAP/AN/TAGN propellant : part 2 : stability and storage life

    Energy Technology Data Exchange (ETDEWEB)

    Judge, M.D. [Bristol Aerospace, Winnipeg, MB (Canada); Badeen, C.M.; Jones, D.E.G. [Natural Resources Canada, Ottawa, ON (Canada). Canadian Explosives Research Laboratory

    2007-07-15

    An advanced solid propellant was characterized. The propellant was based on a glycidyl azide polymer (GAP) energetic binder with an ammonium nitrate (AN) oxidizer, and contained a significant percentage of triaminoguanidine nitrate (TAGN). Raw ingredient accelerating rate calorimetry (ARC) was performed to determine self-heating rates. Thermal stability and heat flow calorimetry tests were also conducted. Ballistic analyses were conducted to determine the propellant's burn rate. The propellant was designed to produce non-toxic and non-acidic exhaust products. Results of the tests indicated that the propellant is safe for prolonged storage. The study demonstrated that propellant samples can be heated to temperatures up to 175 degrees C for several hours without combustion response. A mass loss of 62 per cent was observed at temperatures between 160 and 230 degrees C. The samples ignited almost immediately after being placed in a pre-heated block at temperatures higher than 175 degrees C. The propellant's burn rate was approximately twice that of standard AN propellants. The propellant will be further evaluated as a candidate for the propulsion of tactical rockets and missiles. 17 refs., 4 tabs., 6 figs.

  14. In situ measurement of diffusivity

    International Nuclear Information System (INIS)

    Berne, F.; Pocachard, J.

    2004-01-01

    The mechanism of molecular diffusion controls the migration of contaminants in very low-permeability porous media, like underground facilities for the storage of hazardous waste. Determining of relevant diffusion coefficients is therefore of prime importance. A few techniques exist for in situ measurement of the quantity, but they suffer from many handicaps (duration, complexity and cost of the experiments). We propose here two innovative methods that have some potential to improve the situation. So far, we have found them feasible on the basis of design calculations and laboratory experiments. This work is presently protected by a patent. (author)

  15. In situ measurement of diffusivity

    International Nuclear Information System (INIS)

    Berne, Ph.; Pocachard, J.

    2005-01-01

    The mechanism of molecular diffusion controls the migration of contaminants in very low-permeability porous media, like underground facilities for the storage of hazardous waste. Determining the relevant diffusion coefficients is, therefore, of prime importance. A few techniques exist for the in situ measurement of that quantity, but they suffer from many handicaps (duration, complexity and cost of the experiments). We propose here two innovative methods that have some potential to improve this situation. So far, we have found them feasible on the basis of design calculations and laboratory experiments. This work is presently protected by a patent. (author)

  16. In situ dehydration of yugawaralite

    DEFF Research Database (Denmark)

    Artioli, G.; Ståhl, Kenny; Cruciani, G.

    2001-01-01

    The structural response of the natural zeolite yugawaralite (CaAl2Si6O16. 4H(2)O) upon thermally induced dehydration has been studied by Rietveld analysis of temperature-resolved powder diffraction data collected in situ in the temperature range 315-791 K using synchrotron radiation. The room...... progressively disappearing as the dehydration proceeds. The yugawaralite structure reacts to the release of water molecules with small changes in the Ca-O bond distances and minor distortions of the tetrahedral framework up to about 695 K. Above this temperature the Ca coordination falls below 7 (four framework...

  17. Radiological aspects of in situ uranium recovery

    International Nuclear Information System (INIS)

    BROWN, STEVEN H.

    2007-01-01

    In the last few years, there has been a significant increase in the demand for Uranium as historical inventories have been consumed and new reactor orders are being placed. Numerous mineralized properties around the world are being evaluated for Uranium recovery and new mining / milling projects are being evaluated and developed. Ore bodies which are considered uneconomical to mine by conventional methods such as tunneling or open pits, can be candidates for non-conventional recovery techniques, involving considerably less capital expenditure. Technologies such as Uranium in situ leaching in situ recovery (ISL / ISR), have enabled commercial scale mining and milling of relatively small ore pockets of lower grade, and may make a significant contribution to overall world wide uranium supplies over the next ten years. Commercial size solution mining production facilities have operated in the US since 1975. Solution mining involves the pumping of groundwater, fortified with oxidizing and complexing agents into an ore body, solubilizing the uranium in situ, and then pumping the solutions to the surface where they are fed to a processing plant. Processing involves ion exchange and may also include precipitation, drying or calcining and packaging operations depending on facility specifics. This paper presents an overview of the ISR process and the health physics monitoring programs developed at a number of commercial scale ISL / ISR Uranium recovery and production facilities as a result of the radiological character of these processes. Although many radiological aspects of the process are similar to that of conventional mills, conventional-type tailings as such are not generated. However, liquid and solid byproduct materials may be generated and impounded. The quantity and radiological character of these by products are related to facility specifics. Some special monitoring considerations are presented which are required due to the manner in which Radon gas is evolved in

  18. In situ vitrification: application analysis for stabilization of transuranic waste

    International Nuclear Information System (INIS)

    Oma, K.H.; Farnsworth, R.K.; Rusin, J.M.

    1982-09-01

    The in situ vitrification process builds upon the electric melter technology previously developed for high-level waste immobilization. In situ vitrification converts buried wastes and contaminated soil to an extremely durable glass and crystalline waste form by melting the materials, in place, using joule heating. Once the waste materials have been solidified, the high integrity waste form should not cause future ground subsidence. Environmental transport of the waste due to water or wind erosion, and plant or animal intrusion, is minimized. Environmental studies are currently being conducted to determine whether additional stabilization is required for certain in-ground transuranic waste sites. An applications analysis has been performed to identify several in situ vitrification process limitations which may exist at transuranic waste sites. Based on the process limit analysis, in situ vitrification is well suited for solidification of most in-ground transuranic wastes. The process is best suited for liquid disposal sites. A site-specific performance analysis, based on safety, health, environmental, and economic assessments, will be required to determine for which sites in situ vitrification is an acceptable disposal technique. Process economics of in situ vitrification compare favorably with other in-situ solidification processes and are an order of magnitude less than the costs for exhumation and disposal in a repository. Leachability of the vitrified product compares closely with that of Pyrex glass and is significantly better than granite, marble, or bottle glass. Total release to the environment from a vitrified waste site is estimated to be less than 10 -5 parts per year. 32 figures, 30 tables

  19. Hierarchical 3D ZnIn2S4/graphene nano-heterostructures: their in situ fabrication with dual functionality in solar hydrogen production and as anodes for lithium ion batteries.

    Science.gov (United States)

    Kale, Sayali B; Kalubarme, Ramchandra S; Mahadadalkar, Manjiri A; Jadhav, Harsharaj S; Bhirud, Ashwini P; Ambekar, Jalinder D; Park, Chan-Jin; Kale, Bharat B

    2015-12-21

    Hierarchical 3D ZnIn2S4/graphene (ZnIn2S4/Gr) nano-heterostructures were successfully synthesized using an in-situ hydrothermal method. The dual functionality of these nano-heterostructures i.e. for solar hydrogen production and lithium ion batteries has been demonstrated for the first time. The ZnIn2S4/Gr nano-heterostructures were optimized by varying the concentrations of graphene for utmost hydrogen production. An inspection of the structure shows the existence of layered hexagonal ZnIn2S4 wrapped in graphene. The reduction of graphene oxide (GO) to graphene was confirmed by Raman and XPS analyses. The morphological analysis demonstrated that ultrathin ZnIn2S4 nanopetals are dispersed on graphene sheets. The optical study reveals the extended absorption edge to the visible region due to the presence of graphene and hence is used as a photocatalyst to transform H2S into eco-friendly hydrogen using solar light. The ZnIn2S4/Gr nano-heterostructure that is comprised of graphene and ZnIn2S4 in a weight ratio of 1 : 99 exhibits enhanced photocatalytically stable hydrogen production i.e. ∼6365 μmole h(-1) under visible light irradiation using just 0.2 g of nano-heterostructure, which is much higher as compared to bare hierarchical 3D ZnIn2S4. The heightened photocatalytic activity is attributed to the enhanced charge carrier separation due to graphene which acts as an excellent electron collector and transporter. Furthermore, the usage of nano-heterostructures and pristine ZnIn2S4 as anodes in lithium ion batteries confers the charge capacities of 590 and 320 mA h g(-1) after 220 cycles as compared to their initial reversible capacities of 645 and 523 mA h g(-1), respectively. These nano-heterostructures show high reversible capacity, excellent cycling stability, and high-rate capability indicating their potential as promising anode materials for LIBs. The excellent performance is due to the nanostructuring of ZnIn2S4 and the presence of a graphene layer, which

  20. Innovative boron nitride-doped propellants

    Directory of Open Access Journals (Sweden)

    Thelma Manning

    2016-04-01

    Full Text Available The U.S. military has a need for more powerful propellants with balanced/stoichiometric amounts of fuel and oxidants. However, balanced and more powerful propellants lead to accelerated gun barrel erosion and markedly shortened useful barrel life. Boron nitride (BN is an interesting potential additive for propellants that could reduce gun wear effects in advanced propellants (US patent pending 2015-026P. Hexagonal boron nitride is a good lubricant that can provide wear resistance and lower flame temperatures for gun barrels. Further, boron can dope steel, which drastically improves its strength and wear resistance, and can block the formation of softer carbides. A scalable synthesis method for producing boron nitride nano-particles that can be readily dispersed into propellants has been developed. Even dispersion of the nano-particles in a double-base propellant has been demonstrated using a solvent-based processing approach. Stability of a composite propellant with the BN additive was verified. In this paper, results from propellant testing of boron nitride nano-composite propellants are presented, including closed bomb and wear and erosion testing. Detailed characterization of the erosion tester substrates before and after firing was obtained by electron microscopy, inductively coupled plasma and x-ray photoelectron spectroscopy. This promising boron nitride additive shows the ability to improve gun wear and erosion resistance without any destabilizing effects to the propellant. Potential applications could include less erosive propellants in propellant ammunition for large, medium and small diameter fire arms.

  1. Propelling arboriculture into the future

    Science.gov (United States)

    E. Gregory McPherson

    2011-01-01

    Research is the engine that propels arboriculture and urban forestry into the future. New knowledge, technologies, and tools provide arborists with improved tree care practices that result in healthier urban forests. The ISA Science and Research Committee (SRC) is composed of 13 professionals and researchers who are dedicated to elevating the importance of research...

  2. Plasma ignition of LOVA propellants

    NARCIS (Netherlands)

    Driel, C.A. van; Boluijt, A.G.; Schilt, A.

    2010-01-01

    Ignition experiments were performed using a gun simulator which is equipped with a burst disk. This equipment facilitates the application of propellant loading densities which are comparable to those applied in regular ammunitions. For this study the gun simulator was equipped with a plasma jet

  3. THE PROPELLER AND THE FROG

    International Nuclear Information System (INIS)

    Pan, Margaret; Chiang, Eugene

    2010-01-01

    'Propellers' in planetary rings are disturbances in ring material excited by moonlets that open only partial gaps. We describe a new type of co-orbital resonance that can explain the observed non-Keplerian motions of propellers. The resonance is between the moonlet underlying the propeller and co-orbiting ring particles downstream of the moonlet where the gap closes. The moonlet librates within the gap about an equilibrium point established by co-orbiting material and stabilized by the Coriolis force. In the limit of small libration amplitude, the libration period scales linearly with the gap azimuthal width and inversely as the square root of the co-orbital mass. The new resonance recalls but is distinct from conventional horseshoe and tadpole orbits; we call it the 'frog' resonance, after the relevant term in equine hoof anatomy. For a ring surface density and gap geometry appropriate for the propeller Bleriot in Saturn's A ring, our theory predicts a libration period of ∼4 years, similar to the ∼3.7 year period over which Bleriot's orbital longitude is observed to vary. These librations should be subtracted from the longitude data before any inferences about moonlet migration are made.

  4. An investigation on thermal decomposition of DNTF-CMDB propellants

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Wei; Wang, Jiangning; Ren, Xiaoning; Zhang, Laying; Zhou, Yanshui [Xi' an Modern Chemistry Research Institute, Xi' an 710065 (China)

    2007-12-15

    The thermal decomposition of DNTF-CMDB propellants was investigated by pressure differential scanning calorimetry (PDSC) and thermogravimetry (TG). The results show that there is only one decomposition peak on DSC curves, because the decomposition peak of DNTF cannot be separated from that of the NC/NG binder. The decomposition of DNTF can be obviously accelerated by the decomposition products of the NC/NG binder. The kinetic parameters of thermal decompositions for four DNTF-CMDB propellants at 6 MPa were obtained by the Kissinger method. It is found that the reaction rate decreases with increasing content of DNTF. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  5. In situ study on the formation of FeTe

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Wulff, Anders Christian; Yue, Zhao

    2011-01-01

    The formation of the FeTe compound from a mixture of Fe and Te powders was studied in situ by means of high-energy synchrotron X-ray diffraction. FeTe does not form directly from the starting elements; instead, FeTe2 forms as an intermediate product. During a 2 °C/min heating ramp, Te first reacts...

  6. In situ observation techniques of protective oxide layer

    International Nuclear Information System (INIS)

    Doi, Takashi; Adachi, Takeharu; Usuki, Noriaki

    2015-01-01

    In situ analyzing techniques for investigating a surface and interface change during corrosion and oxidation of metals by using Raman scattering spectroscopy (Raman), X-ray diffraction (XRD) and X-ray photoemission spectroscopy (XPS) are present. The Raman spectra revealed that a crystal structure and distribution of corrosion products varied during corrosion progress at elevated temperature and high pressure electrolyte. Time dependent XRD measurements made clear the behavior of the electrochemical reduction of a rust and the iso thermal transformation of a scale on a steel. It was demonstrated that XPS was capable of the in-situ measurements for initial stage of high temperature oxidation. (author)

  7. Four Models of In Situ Simulation

    DEFF Research Database (Denmark)

    Musaeus, Peter; Krogh, Kristian; Paltved, Charlotte

    2014-01-01

    Introduction In situ simulation is characterized by being situated in the clinical environment as opposed to the simulation laboratory. But in situ simulation bears a family resemblance to other types of on the job training. We explore a typology of in situ simulation and suggest that there are f......Introduction In situ simulation is characterized by being situated in the clinical environment as opposed to the simulation laboratory. But in situ simulation bears a family resemblance to other types of on the job training. We explore a typology of in situ simulation and suggest...... that there are four fruitful approaches to in situ simulation: (1) In situ simulation informed by reported critical incidents and adverse events from emergency departments (ED) in which team training is about to be conducted to write scenarios. (2) In situ simulation through ethnographic studies at the ED. (3) Using...... the following processes: Transition processes, Action processes and Interpersonal processes. Design and purpose This abstract suggests four approaches to in situ simulation. A pilot study will evaluate the different approaches in two emergency departments in the Central Region of Denmark. Methods The typology...

  8. In situ protocol for butterfly pupal wings using riboprobes.

    Science.gov (United States)

    Ramos, Diane; Monteiro, Antonia

    2007-01-01

    Here we present, in video format, a protocol for in situ hybridizations in pupal wings of the butterfly Bicyclus anynana using riboprobes. In situ hybridizations, a mainstay of developmental biology, are useful to study the spatial and temporal patterns of gene expression in developing tissues at the level of transcription. If antibodies that target the protein products of gene transcription have not yet been developed, and/or there are multiple gene copies of a particular protein in the genome that cannot be differentiated using available antibodies, in situs can be used instead. While an in situ technique for larval wing discs has been available to the butterfly community for several years, the current protocol has been optimized for the larger and more fragile pupal wings.

  9. Design Games for In-Situ Design

    DEFF Research Database (Denmark)

    Kristiansen, Erik

    2013-01-01

    The mobile culture has spawned a host of context-based products, like location-based and tag-based applications. This presents a new challenge for the designer. There is a need of design methods that acknowledge the context and allows it to influence the design ideas. This article focuses...... on a design problem where an in-situ design practice may further the early design process: the case of designing a pervasive game. Pervasive games are computer games, played using the city as a game board and often using mobile phones with GPS. Some contextual design methods exist, but we propose an approach...... sitestorming, is based on a game using Situationistic individual exploration of the site and different types of game cards, followed by a joint evaluation of the generated ideas. A series of evaluations showed that the designers found the method enjoyable to use, that the method motivated idea generation...

  10. In situ vitrification applications to hazardous wastes

    International Nuclear Information System (INIS)

    Liikala, S.

    1989-01-01

    In Situ Vitrification is a new hazardous waste remediation alternative that should be considered for contaminated soil matrices. According to the authors the advantages of using ISV include: technology demonstrated at field scale; applicable to a wide variety of soils and contaminants; pyrolyzer organics and encapsulates inorganics; product durable over geologic time period; no threat of harm to the public from exposure; and applications available for barrier walls and structural support. The use of ISV on a large scale basis has thus far been limited to the nuclear industry but has tremendous potential for widespread applications to the hazardous waste field. With the ever changing regulations for the disposal of hazardous waste in landfills, and the increasing positive analytical data of ISV, the process will become a powerful source for on-site treatment and hazardous waste management needs in the very near future

  11. Permaflood, formation in situ of surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Kapo, G

    1972-01-01

    The present paper described a new process to produce surfactants in situ in which advantage is taken of the chemical reaction of oxidation in the liquid phase. This process consists of injecting a front of oxidizing agents and reaction compounds, in order to avoid the precipitation of the reaction products and to avoid the interaction between the surfactants produced and the calcium and magnesium in the connate water. Many different types of oxidizing agents as sodium dichromate, hydrogen peroxide, potassium permanganate, sodium hypochlorite, etc., are used. Also, there is considered the use of catalyzers with these oxidizing agents and the variation of the pH of the oxidizing front (permanaganate was the first oxidant used to check the technical and economic possibilities of this process in the laboratory). The process is called Permaflood, so named because potassium permanganate was the first oxidant used to check the technical and economic possibilities of this process in the laboratory.

  12. In situ vitrification of buried waste sites

    International Nuclear Information System (INIS)

    Shade, J.W.; Thompson, L.E.; Kindle, C.H.

    1991-04-01

    In situ vitrification (ISV) is a remedial technology initially developed to treat soils contaminated with a variety of organics, heavy metals, and/or radioactive materials. Recent tests have indicated the feasibility of applying the process to buried wastes including containers, combustibles, and buried metals. In addition, ISV is being considered for application to the emplacement of barriers and to the vitrification of underground tanks. This report provides a review of some of the recent experiences of applying ISV in engineering-scale and pilot-scale tests to wastes containing organics, the Environmental Protection Agency (EPA) Toxic metals buried in sealed containers, and buried ferrous metals, with emphasis on the characteristics of the vitrified product and adjacent soil. 9 refs., 2 figs., 3 tabs

  13. Mars in-situ resource utilization to produce methane propellant using a ceramic microchannel reactor

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA Technology Area 7 identifies one of the challenges of exploration and human activities in space is the scarcity of readily usable resources. This scarcity is...

  14. Drag and Torque on Locked Screw Propeller

    Directory of Open Access Journals (Sweden)

    Tomasz Tabaczek

    2014-09-01

    Full Text Available Few data on drag and torque on locked propeller towed in water are available in literature. Those data refer to propellers of specific geometry (number of blades, blade area, pitch and skew of blades. The estimation of drag and torque of an arbitrary propeller considered in analysis of ship resistance or propulsion is laborious. The authors collected and reviewed test data available in the literature. Based on collected data there were developed the empirical formulae for estimation of hydrodynamic drag and torque acting on locked screw propeller. Supplementary CFD computations were carried out in order to prove the applicability of the formulae to modern moderately skewed screw propellers.

  15. In-situ burning of spilled oil

    International Nuclear Information System (INIS)

    Tennyson, E.J.

    1992-01-01

    This presentation provided an overview of results from the Minerals Management Service's (MMS) funded research on in situ burning of spilled oil. The program began in 1983 to determine the limitations of this innovative response strategies. Specific physical variables evaluated were slick thickness, degree of weathering (sparging), sea state, wind velocities, air and water temperatures, degrees of emulsification and degree of ice-coverage. All of the oils tested burned with 50 to 95 percent removal ratios as long as emulsification had not occurred. Slick thickness of 3mm or thicker were required to sustain ignition and extinguishment occurred when the slick reached approximately 1mm thick. The next phase of the research involved quantitative analysis of the pollutants created by in situ burning including chemical composition of the parent oil, burn residue, and airborne constituents. These studies were conducted at the National Institute of Standards and Technology (NIST) with emphasis on particulate, and gaseous components created by the burning process. Research efforts over several years, and a variety of crude oils, yielded data which indicated that aldehydes ketones, dioxans, furans, and polyaromatic compounds (PAHS) were not formed in the burning process. The airborne pollutants reflected similar concentrations of these compounds that were present in the parent oil. Lighter molecular weight PAHs tended to be converted to higher molecular weight compounds. Heavier molecular weight compounds are considered less acutely toxic than lighter molecular weight PAHS. Predominant burn products released into the air were by weight: 75% carbon dioxide, 12% water vapor, 10% soot, 3% carbon monoxide and 0.2% other products including those listed above

  16. In situ bypass og diabetes

    DEFF Research Database (Denmark)

    Jensen, Leif Panduro; Schroeder, T V; Lorentzen, J E

    1993-01-01

    decreased survival rate was found in diabetics (p useful in the treatment of critical ischaemia of the lower limb in diabetic patients. The overall results in diabetic patients, whether insulin-dependent or not, were equal to those in non-diabetic......From 1986 through to 1990 a total of 483 in situ bypass procedures were performed in 444 patients. Preoperative risk-factors were equally distributed among diabetic (DM) and non-diabetic (NDM) patients, except for smoking habits (DM:48%, NDM:64%, p = 0.002) and cardiac disease (DM:45%, NDM:29%, p...... = 0.005). Critical limb-ischaemia was more often present in diabetic than non-diabetic patients (DM:57%, NDM:36%, p = 0.0002). Diabetic patients had a significantly lower distal anastomosis than non-diabetic patients (p = 0.00001). There were no differences among diabetic and non-diabetic patients...

  17. In situ treatability test plan

    International Nuclear Information System (INIS)

    1996-08-01

    This document describes the plans for the in situ treatment zone (ISTZ) treatability test for groundwater contaminated with strontium-90. The treatability test is to be conducted at the Hanford Site in Richland, Washington, in a portion of the 100-N Area adjacent to the Columbia River referred to as N-Springs. The purpose of the treatability test is to evaluate the effectiveness of an innovative technology to prevent the discharge of strontium-90 contaminated groundwater into the Columbia River. The ISTZ is a passive technology that consists of placing a treatment agent in the path of the groundwater. The treatment agent must restrict target radioactive contaminants and provide time for the contaminant to decay to acceptable levels. The permeability of the treatment zone must be greater than or equal to that of the surrounding sediments to ensure that the contaminated groundwater flows through the treatment zone agent and not around the agent

  18. DOE In Situ Remediation Integrated Program

    International Nuclear Information System (INIS)

    Yow, J.L. Jr.

    1993-01-01

    The In Situ Remediation Integrated Program (ISRP) supports and manages a balanced portfolio of applied research and development activities in support of DOE environmental restoration and waste management needs. ISRP technologies are being developed in four areas: containment, chemical and physical treatment, in situ bioremediation, and in situ manipulation (including electrokinetics). the focus of containment is to provide mechanisms to stop contaminant migration through the subsurface. In situ bioremediation and chemical and physical treatment both aim to destroy or eliminate contaminants in groundwater and soils. In situ manipulation (ISM) provides mechanisms to access contaminants or introduce treatment agents into the soil, and includes other technologies necessary to support the implementation of ISR methods. Descriptions of each major program area are provided to set the technical context of the ISM subprogram. Typical ISM needs for major areas of in situ remediation research and development are identified

  19. Detection of denitrification genes by in situ rolling circle amplification - fluorescence in situ hybridization (in situ RCA-FISH) to link metabolic potential with identity inside bacterial cells

    DEFF Research Database (Denmark)

    Hoshino, Tatsuhiko; Schramm, Andreas

    2010-01-01

    target site. Finally, the RCA product inside the cells was detected by standard fluorescence in situ hybridization (FISH). The optimized protocol showed high specificity and signal-to-noise ratio but low detection frequency (up to 15% for single-copy genes and up to 43% for the multi-copy 16S rRNA gene...... as Candidatus Accumulibacter phosphatis by combining in situ RCA-FISH with 16S rRNA-targeted FISH. While not suitable for quantification because of its low detection frequency, in situ RCA-FISH will allow to link metabolic potential with 16S rRNA (gene)-based identification of single microbial cells.......). Nevertheless, multiple genes (nirS and nosZ; nirS and the 16S rRNA gene) could be detected simultaneously in P. stutzeri. Environmental application of in situ RCA-FISH was demonstrated on activated sludge by the differential detection of two types of nirS-defined denitrifiers; one of them was identified...

  20. Comparison between in situ dry matter degradation and in vitro gas ...

    African Journals Online (AJOL)

    Dry matter (DM) degradation of Glycrrhiza glabra L, Arbutus andrachne, Juniperus communis, and Pistica lentiscus was determined using two different techniques: (i) the in vitro gas production and (ii) the in situ nylon bag degradability technique. Samples were incubated in situ and in vitro for 3, 6, 12, 24, 48, 72 and 96 h.

  1. In Situ Hybridization Pada Kanker Payudara

    OpenAIRE

    Diah Witari, Ni Putu

    2014-01-01

    Kesulitan yang dijumpai pada penanganan kanker payudara adalah terjadinya kekambuhan atau relaps. Deteksi status HER2 pada pasien merupakan salah satu upaya untuk mendeteksi terjadinya relaps dan juga untuk menentukan jenis terapi yang ada diberikan. Ekspresi protein HER2 dapat dideteksi dengan immunohistochemistry (IHC), sedangkan mutasi gen HER2 dapat dideteksi dengan teknik in situ hybridization baik berupa fluorescence in situ hybridization (FISH) ataupun chromogenic in situ hy...

  2. Training for teamwork through in situ simulations

    Science.gov (United States)

    Sorensen, Asta; Poehlman, Jon; Bollenbacher, John; Riggan, Scott; Davis, Stan; Miller, Kristi; Ivester, Thomas; Kahwati, Leila

    2015-01-01

    In situ simulations allow healthcare teams to practice teamwork and communication as well as clinical management skills in a team's usual work setting with typically available resources and equipment. The purpose of this video is to demonstrate how to plan and conduct in situ simulation training sessions, with particular emphasis on how such training can be used to improve communication and teamwork. The video features an in situ simulation conducted at a labour and delivery unit in response to postpartum hemorrhage. PMID:26294962

  3. In-situ combustion with solvent injection

    Energy Technology Data Exchange (ETDEWEB)

    D' Silva, J.; Kakade, G. [Society of Petroleum Engineers, Kuala Lumpur (Malaysia)]|[Maharashtra Inst. of Technology, Pune (India)

    2008-10-15

    The effects of combining in situ combustion and heavy hydrocarbon naphtha vapor injection techniques in a heavy oil reservoir were investigated. Oil production rates and steam injection efficiencies were considered. The technique was also combined with toe-to-heel air injection (THAI) processes. The study showed that the modified THAI process achieved high rates of recovery for both primary production and as a follow-up technique in partially depleted reservoirs after cyclic steam and cold production. Oil produced using the modified THAI technique was also partially upgraded by the process. Results of the vapour chamber pressure calculations showed that the volume of oil produced by naphtha assisted gravity drainage was between 1 to 3 times higher than amounts of oil produced by SAGD processes during the same amount of time. The naphtha injection process produced more oil than the steam only process. However, high amounts of naphtha were needed to produce oil. Injection and production rates during the naphtha injection process were higher. Naphtha vapor was injected near the heel of a horizontal producer well. The vapor acted as a thermal and diluent mechanism in order to reduce the viscosity of the heavy oil . 9 refs., 4 tabs., 6 figs.

  4. Mars Propellant Liquefaction Modeling in Thermal Desktop

    Science.gov (United States)

    Desai, Pooja; Hauser, Dan; Sutherlin, Steven

    2017-01-01

    NASAs current Mars architectures are assuming the production and storage of 23 tons of liquid oxygen on the surface of Mars over a duration of 500+ days. In order to do this in a mass efficient manner, an energy efficient refrigeration system will be required. Based on previous analysis NASA has decided to do all liquefaction in the propulsion vehicle storage tanks. In order to allow for transient Martian environmental effects, a propellant liquefaction and storage system for a Mars Ascent Vehicle (MAV) was modeled using Thermal Desktop. The model consisted of a propellant tank containing a broad area cooling loop heat exchanger integrated with a reverse turbo Brayton cryocooler. Cryocooler sizing and performance modeling was conducted using MAV diurnal heat loads and radiator rejection temperatures predicted from a previous thermal model of the MAV. A system was also sized and modeled using an alternative heat rejection system that relies on a forced convection heat exchanger. Cryocooler mass, input power, and heat rejection for both systems were estimated and compared against sizing based on non-transient sizing estimates.

  5. The SENSEI Generic In Situ Interface

    Energy Technology Data Exchange (ETDEWEB)

    Ayachit, Utkarsh [Kitware, Inc., Clifton Park, NY (United States); Whitlock, Brad [Intelligent Light, Rutherford, NJ (United States); Wolf, Matthew [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Loring, Burlen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Geveci, Berk [Kitware, Inc., Clifton Park, NY (United States); Lonie, David [Kitware, Inc., Clifton Park, NY (United States); Bethel, E. Wes [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-04-11

    The SENSEI generic in situ interface is an API that promotes code portability and reusability. From the simulation view, a developer can instrument their code with the SENSEI API and then make make use of any number of in situ infrastructures. From the method view, a developer can write an in situ method using the SENSEI API, then expect it to run in any number of in situ infrastructures, or be invoked directly from a simulation code, with little or no modification. This paper presents the design principles underlying the SENSEI generic interface, along with some simplified coding examples.

  6. OH, HO2 and RO2 Radical and OH Reactivity Observations during the Summertime in Beijing: High In-Situ Ozone Production and Evidence of a Missing OH Source.

    Science.gov (United States)

    Whalley, L.; Ye, C.; Slater, E.; Woodward-Massey, R.; Lee, J. D.; Squires, F. A.; Hopkins, J. R.; Dunmore, R.; Shaw, M.; Hamilton, J.; Lewis, A. C.; Crilley, L.; Kramer, L. J.; Bloss, W.; Heard, D. E.

    2017-12-01

    Despite substantial reductions in primary emissions of pollutants in China over the past decade, concentrations of the secondary pollutant, ozone, still frequently exceed air quality threshold limits in urban areas during the summertime. We will present measurements of OH, HO2 and RO2 radicals and OH reactivity made in central Beijing at the Institute of Atmospheric Physics of the Chinese Academy of Sciences, close to the North 4th ring road in May and June 2017 which formed the summer phase of `An Integrated Study of AIR Pollution PROcesses'. Elevated levels of O3 (>100 ppbv) were regularly observed. NO concentrations were elevated during the morning but often decreased to below the instrument limit of detection during the afternoon hours when the ozone concentrations peaked. Biogenic emissions influenced the chemistry at the site, with several ppbv of isoprene measured during the afternoons. The OH measurements were made using the FAGE technique, equipped with an inlet pre injector (IPI) which provides an alternative method to determine the instrument background signal by injecting a scavenger to remove ambient OH and ensures an artefact-free OH measurement. Elevated levels of OH were observed, with a mean peak OH concentration of 1.2×107 molecule cm-3 at noon; but with OH concentrations reaching up to 2.5×107 molecule cm-3 on some days. Mean peak HO2 concentrations of 3×108 molecule cm-3 and total RO2 of 1.2×109 molecule cm-3 were recorded, with maximum concentrations of 1.0×109 molecule cm-3 and 4×109 molecule cm-3 observed for HO2 and RO2 respectively, suggesting significant in situ ozone production. A comparison of the artefact-free OH observations with steady state calculations, constrained to the total OH reactivity measurement and known OH precursors that were measured alongside OH, highlights a significant missing daytime OH source under low [NO], with the steady state OH concentrations approximately a factor of two lower than the OH concentrations

  7. Experimental research on air propellers

    Science.gov (United States)

    Durand, William F

    1918-01-01

    The purposes of the experimental investigation on the performance of air propellers described in this report are as follows: (1) the development of a series of design factors and coefficients drawn from model forms distributed with some regularity over the field of air-propeller design and intended to furnish a basis of check with similar work done in other aerodynamic laboratories, and as a point of departure for the further study of special or individual types and forms; (2) the establishment of a series of experimental values derived from models and intended for later use as a basis for comparison with similar results drawn from certain selected full-sized forms and tested in free flight.

  8. Extreme Spectroscopy: In situ nuclear materials behavior from optical data

    Energy Technology Data Exchange (ETDEWEB)

    Guimbretiere, G.; Canizares, A.; Raimboux, N.; Omnee, R.; Duval, F.; Ammar, M.R.; Simon, P. [CNRS - UPR3079 CEMHTI, Universite d' Orleans, 45071Orleans cedex 2 (France); Desgranges, L.; Mohun, R. [CEA, DEN, DEC, F-13108 Saint-Paul-Lez-Durance (France); Jegou, C.; Magnin, M. [CEA/DTCD/SECM/LMPA, Marcoule 30207 Bagnols Sur Ceze (France); Clavier, N.; Dacheux, N. [ICSM-UMR5257 CEA/CNRS/UM2/ENSCM, Marcoule, BP17171, 30207 Bagnols sur Ceze (France)

    2015-07-01

    In the nuclear industry, materials are regularly exposed to high temperature or/and irradiation and a better knowledge and understanding of their behavior under such extreme conditions is a key-point for improvements and further developments. Nowadays, Raman spectroscopy begins to be well known as a promising technique in the post mortem and remote characterization of nuclear materials exposed to extreme conditions. On this topic, at ANIMMA 2013 conference, we have presented some results about its implementation in the study of model or real nuclear fuel. However, the strength of Raman spectroscopy as in situ characterization tool is mainly its ability to be implemented remotely through optical fibers. Aware of this, implementation of other optical techniques can be considered in order to gain information not only on the structural dynamics of materials but also on the electronic charge carrier populations. In this paper, we propose to present our last advances in Raman characterization of nuclear materials and enlarge to the in situ use of complementary optical spectroscopies. Emphasis will be made on the information that can be gained to the behavior of the model fuel depleted UO{sub 2} under extreme conditions of high temperature and ionic irradiation: - In Situ Raman identification of the radiolysis alteration products of UO{sub 2} in contact with water under ionic irradiation. - In Situ Raman recording of the damaged dynamic of UO{sub 2} under inert atmosphere. - In Situ Raman and photo-luminescence study of virgin and damaged UO2 at high temperature. - In Situ study of electronic charge carriers' behavior in U{sub x}Th{sub 1-x}O{sub 2} solid solutions by mean of Iono- and Thermo- luminescence under and post- ionic irradiation. (authors)

  9. Nuclear waste management by in-situ melting

    International Nuclear Information System (INIS)

    Angelo, J.A. Jr.

    1976-01-01

    A systematic assessment of the in-situ melting concept as an ultimate waste disposal option shows that the placement of solidifed, high-level radioactive wastes in an in-situ melting cavity with a crushed rock backfill not only eliminates the major deficiencies inherent in other in-situ melting schemes, but also satisfies reasonable criteria for ultimate disposal. In-situ melting reduces the waste isolation time requirements to several hundred years. Calculated spent fuel and processing waste afterheat values assess the role of actinide and cladding material nuclides in creating the total afterheat and provide quantitative variation with time for these values for contamporary and advanced-design fission reactors. The dominant roles of 134 Cs in thermal spectrum reactor afterheats during the first decade of cooling of the actinide nuclides in all typical waste after-heats following a century or two of cooling are identified. The spatial and temporal behavior of a spherically symmetric waste repository experiencing in-situ melting in an equal density, homogeneous medium for silicate rock and salt is controlled primarily by the overall volumetric thermal source strength, the time-dependent characteristics of the high-level wastes, and the thermophysical properties of the surrounding rock environment. Calculations were verified by experimental data. The hazard index for typical high-level wastes is dominated by the fission product nuclides for the first three centuries of decay. It is then controlled by the actinides, especially americium, which dominates for 10,000 years. With in-situ melting, the hazard index for the re-solidifed rock/waste matrix deepunderground falls below the hazard index of naturally occurring uranium ore bodies within a few hundred years, whether or not the more hazardous actinide nuclides are selectively removed from the wastes prior to storage

  10. Combustion characteristics of SMX and SMX based propellants

    Science.gov (United States)

    Reese, David A.

    density and performance, smokeless combustion products, and stable combustion, SMX appears to be a viable replacement for existing energetic ingredients in a wide variety of propellant, explosive, and pyrotechnic applications.

  11. PRINS and in situ PCR protocols

    National Research Council Canada - National Science Library

    Gosden, John R

    1997-01-01

    ... mapping of DNA sequences on chromosomes and location of gene expression followed the invention and refinement of in situ hybridization. Among the most recent technical developments has been the use of oligonucleotide primers to detect and amplify or extend complementary sequences in situ, and it is to this novel field that PRINS and In S...

  12. Technology assessment of in situ uranium mining

    International Nuclear Information System (INIS)

    Cowan, C.E.

    1981-01-01

    The objective of the PNL portion of the Technology Assessment project is to provide a description of the current in situ uranium mining technology; to evaluate, based on available data, the environmental impacts and, in a limited fashion, the health effects; and to explore the impediments to development and deployment of the in situ uranium mining technology

  13. Enhancing in situ bioremediation with pneumatic fracturing

    International Nuclear Information System (INIS)

    Anderson, D.B.; Peyton, B.M.; Liskowitz, J.L.; Fitzgerald, C.; Schuring, J.R.

    1994-04-01

    A major technical obstacle affecting the application of in situ bioremediation is the effective distribution of nutrients to the subsurface media. Pneumatic fracturing can increase the permeability of subsurface formations through the injection of high pressure air to create horizontal fracture planes, thus enhancing macro-scale mass-transfer processes. Pneumatic fracturing technology was demonstrated at two field sites at Tinker Air Force Base, Oklahoma City, Oklahoma. Tests were performed to increase the permeability for more effective bioventing, and evaluated the potential to increase permeability and recovery of free product in low permeability soils consisting of fine grain silts, clays, and sedimentary rock. Pneumatic fracturing significantly improved formation permeability by enhancing secondary permeability and by promoting removal of excess soil moisture from the unsaturated zone. Postfracture airflows were 500% to 1,700% higher than prefracture airflows for specific fractured intervals in the formation. This corresponds to an average prefracturing permeability of 0.017 Darcy, increasing to an average of 0.32 Darcy after fracturing. Pneumatic fracturing also increased free-product recovery rates of number 2 fuel from an average of 587 L (155 gal) per month before fracturing to 1,647 L (435 gal) per month after fracturing

  14. A theoretical and experimental investigation of propeller performance methodologies

    Science.gov (United States)

    Korkan, K. D.; Gregorek, G. M.; Mikkelson, D. C.

    1980-01-01

    This paper briefly covers aspects related to propeller performance by means of a review of propeller methodologies; presentation of wind tunnel propeller performance data taken in the NASA Lewis Research Center 10 x 10 wind tunnel; discussion of the predominent limitations of existing propeller performance methodologies; and a brief review of airfoil developments appropriate for propeller applications.

  15. A Cis-Lunar Propellant Infrastructure for Flexible Path Exploration and Space Commerce

    Science.gov (United States)

    Oeftering, Richard C.

    2012-01-01

    This paper describes a space infrastructure concept that exploits lunar water for propellant production and delivers it to users in cis-lunar space. The goal is to provide responsive economical space transportation to destinations beyond low Earth orbit (LEO) and enable in-space commerce. This is a game changing concept that could fundamentally affect future space operations, provide greater access to space beyond LEO, and broaden participation in space exploration. The challenge is to minimize infrastructure development cost while achieving a low operational cost. This study discusses the evolutionary development of the infrastructure from a very modest robotic operation to one that is capable of supporting human operations. The cis-lunar infrastructure involves a mix of technologies including cryogenic propellant production, reusable lunar landers, propellant tankers, orbital transfer vehicles, aerobraking technologies, and electric propulsion. This cislunar propellant infrastructure replaces Earth-launched propellants for missions beyond LEO. It enables users to reach destinations with smaller launchers or effectively multiplies the user s existing payload capacity. Users can exploit the expanded capacity to launch logistics material that can then be traded with the infrastructure for propellants. This mutually beneficial trade between the cis-lunar infrastructure and propellant users forms the basis of in-space commerce.

  16. The influence of the choice of propeller design tool on propeller performance

    OpenAIRE

    Skåland, Edvard Knutsen

    2016-01-01

    In this master thesis different propeller design and analysis methods are presented and compared in terms of the accuracy and computational efficiency of their theory. These methods include lifting line, vortex lattice lifting surface and panel methods. A propeller design program based on lifting line theory was developed by the author. This program has been used together with the propeller design programs OpenProp and AKPD to make six propeller designs. The designs are based o...

  17. Propeller Test Facilities Â

    Data.gov (United States)

    Federal Laboratory Consortium — Description: Three electrically driven whirl test stands are used to determine propeller (or other rotating device) performance at various rotational speeds. These...

  18. Nonsteady Combustion Mechanisms of Advanced Solid Propellants

    National Research Council Canada - National Science Library

    Branch, Melvyn

    1997-01-01

    .... The individual tasks which we are studying will pursue solid propellant decomposition under unsteady conditions, nonsteady aspects of gas phase flame structure measurements, numerical modeling...

  19. Injection dynamics of gelled propellants

    Science.gov (United States)

    Yoon, Changjin

    Gel propellants have been recognized as attractive candidates for future propulsion systems due to the reduced tendency to spill and the energy advantages over solid propellants. One of strong benefits emphasized in gel propellant applications is a throttling capability, but the accurate flow control is more complicated and difficult than with conventional Newtonian propellants because of the unique rheological behaviors of gels. This study is a computational effort directed to enhance understanding of the injector internal flow characteristics for gel propellants under rocket injection conditions. In simulations, the emphasized rheology is a shear-thinning which represents a viscosity decrease with increasing a shear rate. It is described by a generalized Newtonian fluid constitutive equation and Carreau-Yasuda model. Using this rheological model, two injection schemes are considered in the present study: axially-fed and cross-fed injection for single-element and multi-element impinging injectors, respectively. An axisymmetric model is developed to describe the axially-fed injector flows and fully three-dimensional model is utilized to simulate cross-fed injector flows. Under axially-fed injection conditions investigated, three distinct modes, an unsteady, steady, and hydraulic flip mode, are observed and mapped in terms of Reynolds number and orifice design. In an unsteady mode, quasi-periodic oscillations occur near the inlet lip leading mass pulsations and viscosity fluctuations at the orifice exit. This dynamic behavior is characterized using a time-averaged discharge coefficient, oscillation magnitude and frequency by a parametric study with respect to an orifice design, Reynolds number and rheology. As a result, orifice exit flows for gel propellants appear to be significantly influenced by a viscous damping and flow resistance due to a shear thinning behavior and these are observed in each factors considered. Under conditions driven by a manifold crossflow

  20. Miniature Gas Chromatograph Mass Spectrometer for In-Situ Resource Utilization, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In situ resource utilization (ISRU) is essential for several of NASA's future flagship missions. Currently envisioned ISRU plants include production of oxygen from...

  1. An Efficient Heat Exchanger for In Situ Resource Utilization, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In situ resource utilization (ISRU) is essential for several of NASA's future flagship missions. Currently envisioned ISRU plants include production of oxygen from...

  2. 78 FR 4038 - Critical Parts for Airplane Propellers

    Science.gov (United States)

    2013-01-18

    ... manufacturers are not required to provide information concerning propeller critical part design, manufacture, or... engineering, manufacturing, and service management processes should provide clear information for propeller... manufacture critical parts for airplane propellers update their manuals to record engineering, manufacture...

  3. Groundwater restoration with in situ uranium leach mining

    International Nuclear Information System (INIS)

    Charbeneau, R.J.

    1984-01-01

    In situ leach mining of uranium has developed into a major mining technology. Since 1975, when the first commercial mine was licensed in the United States, the percentage or uranium produced by in situ mining has steadily grown from 0.6 to 10 percent in 1980. Part of the reason for this growth is that in situ mining offers less initial capital investment, shorter start-up times, greater safety, and less labor than conventional mining methods. There is little disturbance of the surface terrain or surface waters, no mill tailings piles, and no large open pits, but in situ leaching mining does have environmental disadvantages. During the mining, large amounts of ground water are cirulated and there is some withdrawal from an area where aquifers constitute a major portion of the water supply for other purposes. When an ammonia-based leach system is used, the ammonium ion is introduced into an area where cation exchange on clays (and some production of nitrate) may occur. Also, injection of an oxidant with the leach solution causes valence and phase changes of indigenous elements such as As, Cu, Fe, Mo, Se, S, and V as well as U. Furthermore, the surrounding ground water can become contaminated by escape of the leach solution from the mining zone. This chapter presents an overview of the in situ mining technology, including uranium deposition, mining techniques, and ground water restoration alternatives. The latter part of the chapter covers the situation in South Texas. Economics and development of the industry, groundwater resources, regulation, and restoration activities are also reviewed

  4. KAPPEL Propeller. Development of a Marine Propeller with Non-planar Lifting Surfaces

    DEFF Research Database (Denmark)

    Kappel, J.; Andersen, Poul

    2002-01-01

    The principle of non-planar lifting surfaces is applied to the design of modern aircraft wings to obtain better lift to drag ratios. Whereas a pronounced fin or "winglet" at the wingtip has been developed for aircraft, the application of the non-planar principle to marine propellers, dealt...... with in this paper, has led to the KAPPEL propeller with blades curved towards the suction side integrating the fin or winglet into the propeller blade. The combined theoretical, experimental and practical approach to develop and design marine propellers with non-planar lifting surfaces has resulted in propellers...

  5. In situ vitrification program treatability investigation progress report

    International Nuclear Information System (INIS)

    Arrenholz, D.A.

    1990-12-01

    This document presents a summary of the efforts conducted under the in situ vitrification treatability study during the period from its initiation in FY-88 until FY-90. In situ vitrification is a thermal treatment process that uses electrical power to convert contaminated soils into a chemically inert and stable glass and crystalline product. Contaminants present in the soil are either incorporated into the product or are pyrolyzed during treatment. The treatability study being conducted at the Idaho National Engineering Laboratory by EG ampersand G Idaho is directed at examining the specific applicability of the in situ vitrification process to buried wastes contaminated with transuranic radionuclides and other contaminants found at the Subsurface Disposal Area of the Radioactive Waste Management Complex. This treatability study consists of a variety of tasks, including engineering tests, field tests, vitrified product evaluation, and analytical models of the ISV process. The data collected in the course of these efforts will address the nine criteria set forth in the Comprehensive Environmental Response, Compensation, and Liability Act, which will be used to identify and select specific technologies to be used in the remediation of the buried wastes at the Subsurface Disposal Area. 6 refs., 4 figs., 3 tabs

  6. Supercritical Fluid Processing of Propellant Polymers

    Science.gov (United States)

    1991-01-01

    of insoluble material present in the polymeric neopentyl glycol azelate (NPGA) binder. Laub (2) summarizes (from Refs 3 & 4) the various polymeric...binders used in composite propellant formulations for DOD missile systems. e.g., these include: polyneopentyl glycol azelate (NPGA) in HAWK. hydroxy...systems. Composite smokeless propellants containing polyethylene glycol (PEG), polyethylene glycol adepate (PEGA) and polycaprolactone are currently under

  7. Development of hydrazinium nitroformate based solid propellants

    NARCIS (Netherlands)

    Schöyer, H.F.R.; Schnorhk, A.J.; Korting, P.A.O.G.; Lit, P.J. van; Mul, J.M.; Gadiot, G.; Meulenbrugge, J.J.

    1995-01-01

    The development of new high-performance propellant combinations requires the establishment of safety and handling characteristics and thermodynamic decomposition and explosive properties. This paper addresses the early development phases of a new composite solid propellant based on HNF as oxidizer

  8. Green plasticizers for multibase gun propellants (Lecture)

    NARCIS (Netherlands)

    Schoolderman, C.; Driel, C.A. van; Zebregs, M.

    2007-01-01

    TNO Defence, Security and Safety has a long history of research on gun propellants. Areas investigated are formulating (new ingredients, optimization), manufacturing, charge design and lifetime assessment [1,2,3,4,5]. In conventional propellants inert plasticizers are used to alter performance,

  9. Development of an in situ fatigue sensor.

    Science.gov (United States)

    2011-01-01

    A prototype in situ fatigue sensor has been designed, constructed and evaluated experimentally for its ability to monitor the accumulation of fatigue damage in a cyclically loaded steel structure, e.g., highway bridge. The sensor consists of multiple...

  10. In Situ Aerosol Detector, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is developing new platform systems that have the potential to benefit Earth science research activities, which include in situ instruments for atmospheric...

  11. Past In-Situ Burning Possibilities

    National Research Council Canada - National Science Library

    Yoshioka, Gary

    1999-01-01

    This study evaluated the feasibility of conducting in-situ burning (ISB) using current technology on post 1967 major oil spills over 10,00 barrels in North America and over 50,00 barrels in South America and Europe...

  12. Observatory Magnetometer In-Situ Calibration

    Directory of Open Access Journals (Sweden)

    A Marusenkov

    2011-07-01

    Full Text Available An experimental validation of the in-situ calibration procedure, which allows estimating parameters of observatory magnetometers (scale factors, sensor misalignment without its operation interruption, is presented. In order to control the validity of the procedure, the records provided by two magnetometers calibrated independently in a coil system have been processed. The in-situ estimations of the parameters are in very good agreement with the values provided by the coil system calibration.

  13. Tests on thirteen navy type model propellers

    Science.gov (United States)

    Durand, W F

    1927-01-01

    The tests on these model propellers were undertaken for the purpose of determining the performance coefficients and characteristics for certain selected series of propellers of form and type as commonly used in recent navy designs. The first series includes seven propellers of pitch ratio varying by 0.10 to 1.10, the area, form of blade, thickness, etc., representing an arbitrary standard propeller which had shown good results. The second series covers changes in thickness of blade section, other things equal, and the third series, changes in blade area, other things equal. These models are all of 36-inch diameter. Propellers A to G form the series on pitch ratio, C, N. I. J the series on thickness of section, and K, M, C, L the series on area. (author)

  14. Small-Scale Shock Testing of Propellants and Ingredients

    National Research Council Canada - National Science Library

    Dawley, S

    2004-01-01

    .... The use of small-scale gap testing to evaluate the shock sensitivity of individual propellant ingredients and propellant formulations is a valuable method for experimentally establishing shock...

  15. Structure of Partially Premixed Flames and Advanced Solid Propellants

    National Research Council Canada - National Science Library

    Branch, Melvyn

    1998-01-01

    The combustion of solid rocket propellants of advanced energetic materials involves a complex process of decomposition and condensed phase reactions in the solid propellant, gaseous flame reactions...

  16. A Study of Flame Physics and Solid Propellant Rocket Physics

    National Research Council Canada - National Science Library

    Buckmaster, John

    2007-01-01

    ..., the combustion of heterogeneous propellants containing aluminum, the use of a genetic algorithm to optimally define false-kinetics parameters in propellant combustion modeling, the calculation of fluctuations...

  17. Unintended and in situ amorphisation of pharmaceuticals.

    Science.gov (United States)

    Priemel, P A; Grohganz, H; Rades, T

    2016-05-01

    Amorphisation of poorly water-soluble drugs is one approach that can be applied to improve their solubility and thus their bioavailability. Amorphisation is a process that usually requires deliberate external energy input. However, amorphisation can happen both unintentionally, as in process-induced amorphisation during manufacturing, or in situ during dissolution, vaporisation, or lipolysis. The systems in which unintended and in situ amorphisation has been observed normally contain a drug and a carrier. Common carriers include polymers and mesoporous silica particles. However, the precise mechanisms by which in situ amorphisation occurs are often not fully understood. In situ amorphisation can be exploited and performed before administration of the drug or possibly even within the gastrointestinal tract, as can be inferred from in situ amorphisation observed during in vitro lipolysis. The use of in situ amorphisation can thus confer the advantages of the amorphous form, such as higher apparent solubility and faster dissolution rate, without the disadvantage of its physical instability. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Groundwater restoration of in-situ uranium mines

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    In-situ leaching is a relatively new uranium production technology that is expected to account for a growing share of future output. Depending upon the leaching solution used, the process may have considerable impact on the ground water. Since restoration of ground water quality is required in most countries and since this restoration is by far the most costly aspect of reclamation of an in-situ mine, it is necessary to utilize a process that lends itself both to the efficiency of the leaching process and the restoration process. This article examines a number of techniques that may be used in the restoration efforts. These include: (1) groundwater sweep, (2) reverse osmosis, (3) chemical restoration, and (4) electrodialysis. The article also discusses disposal of the excess fluids used in the restoration process

  19. Treatment of hazardous metals by in situ vitrification

    International Nuclear Information System (INIS)

    Koegler, S.S.; Buelt, J.L.

    1989-02-01

    Soils contaminated with hazardous metals are a significant problem to many Defense Program sites. Contaminated soils have ranked high in assessments of research and development needs conducted by the Hazardous Waste Remedial Action Program (HAZWRAP) in FY 1988 and FY 1989. In situ vitrification (ISV) is an innovative technology suitable for stabilizing soils contaminated with radionuclides and hazardous materials. Since ISV treats the material in place, it avoids costly and hazardous preprocessing exhumation of waste. In situ vitrification was originally developed for immobilizing radioactive (primarily transuranic) soil constituents. Tests indicate that it is highly useful also for treating other soil contaminants, including hazardous metals. The ISV process produces an environmentally acceptable, highly durable glasslike product. In addition, ISV includes an efficient off-gas treatment system that eliminates noxious gaseous emissions and generates minimal hazardous byproducts. This document reviews the Technical Basis of this technology. 5 refs., 7 figs., 2 tabs

  20. In Situ Formation of Carbon Nanomaterials on Bulk Metallic Materials

    Directory of Open Access Journals (Sweden)

    J. Y. Xu

    2014-01-01

    Full Text Available Carbon nanomaterials were synthesized in situ on bulk 316L stainless steel, pure cobalt, and pure nickel by hybrid surface mechanical attrition treatment (SMAT. The microstructures of the treated samples and the resulted carbon nanomaterials were investigated by SEM and TEM characterizations. Different substrates resulted in different morphologies of products. The diameter of carbon nanomaterials is related to the size of the nanograins on the surface layer of substrates. The possible growth mechanism was discussed. Effects of the main parameters of the synthesis, including the carbon source and gas reactant composition, hydrogen, and the reaction temperature, were studied. Using hybrid SMAT is proved to be an effective way to synthesize carbon nanomaterials in situ on surfaces of metallic materials.

  1. In situ and operando transmission electron microscopy of catalytic materials

    DEFF Research Database (Denmark)

    Crozier, Peter A.; Hansen, Thomas Willum

    2015-01-01

    measurements of gas-phase catalytic products. To overcome this deficiency, operando TEM techniques are being developed that combine atomic characterization with the simultaneous measurement of catalytic products. This article provides a short review of the current status and major developments......) is a powerful technique for revealing the atomic structures of materials at elevated temperatures in the presence of reactive gases. This approach can allow the structure-reactivity relations underlying catalyst functionality to be investigated. Thus far, ETEM has been limited by the absence of in situ...... in the application of ETEM to gas-phase catalysis over the past 10 years....

  2. Study of lixiviant damage of a sandstone deposit during in-situ leaching of uranium

    International Nuclear Information System (INIS)

    Liao Wensheng; Wang Limin; Jiang Yan; Jiang Guoping; Tan Yahui

    2014-01-01

    The permeability of sandstone deposit is a key factor for economical uranium recovery during in-situ leaching uranium. Low permeability sandstone uranium deposits behave low push-pull capacity, and show formation damage in leaching operations. It is important to study formation damage of permeability, therefore, and to stabilize even improve the push-pull power of drillholes during in-situ leaching. In this paper, formation damage caused by lixiviants was investigated based on a low permeability sandstone uranium deposit. The resulted showed that, under the conditions of in-situ leaching, the salinity of leaching fluid has no harm to formation permeability, on the contrary, the increment of salinity of lixiviant during in-situ leaching improve the permeability of the deposit. The alkalinity, hydrogen peroxide and productivity of the lixiviant cause no significant formation damage. But the fine particles in the lixiviant shows formation damage significantly, and the quantity of the particles should be controlled during production. (authors)

  3. Energy coefficients for a propeller series

    DEFF Research Database (Denmark)

    Olsen, Anders Smærup

    2004-01-01

    The efficiency for a propeller is calculated by energy coefficients. These coefficients are related to four types of losses, i.e. the axial, the rotational, the frictional, and the finite blade number loss, and one gain, i.e. the axial gain. The energy coefficients are derived by use...... of the potential theory with the propeller modelled as an actuator disk. The efficiency based on the energy coefficients is calculated for a propeller series. The results show a good agreement between the efficiency based on the energy coefficients and the efficiency obtained by a vortex-lattice method....

  4. Noise from Two-Blade Propellers

    Science.gov (United States)

    Stowell, E Z; Deming, A F

    1936-01-01

    The two-blade propeller, one of the most powerful sources of sound known, has been studied with the view of obtaining fundamental information concerning the noise emission. In order to eliminate engine noise, the propeller was mounted on an electric motor. A microphone was used to pick up the sound whose characteristics were studied electrically. The distribution of noise throughout the frequency range, as well as the spatial distribution about the propeller, was studied. The results are given in the form of polar diagrams. An appendix of common acoustical terms is included.

  5. Experimental Research on Air Propellers III

    Science.gov (United States)

    Durand, W F; Lesley, E P

    1920-01-01

    Report presents the results of wind tunnel tests of propellers that examined the influence of the following characteristics: (1) nominal pitch ratio 1.3 combined with a certain number of the more common or standard forms and proportions; (2) driving face slightly rounded or convex; (3) change in the location of the maximum thickness ordinate of the blade section; (4) pushing forward the leading edge of the blade, thus giving a rounded convex surface on the leading side of the driving face. (5) a series of values for the constant "angle of attack" in forming propellers with radially increasing pitch. In accordance with these purposes tests were carried out on 28 propellers.

  6. Shuttle APS propellant thermal conditioner study

    Science.gov (United States)

    Pearson, W. E.

    1971-01-01

    A study program was performed to allow selection of thermal conditioner assemblies for superheating O2 and H2 at supercritical pressures. The application was the auxiliary propulsion system (APS) for the space shuttle vehicle. The O2/H2 APS propellant feed system included propellant conditioners, of which the thermal conditioner assemblies were a part. Cryogens, pumped to pressures above critical, were directed to the thermal conditioner assembly included: (1) a gas generator assembly with ignition system and bipropellant valves, which burned superheated O2 and H2 at rich conditions; (2) a heat exchanger assembly for thermal conditioning of the cryogenic propellant; and (3) a dump nozzle for heat exchanger exhaust.

  7. Efficacy monitoring of in situ fuel bioremediation

    International Nuclear Information System (INIS)

    Mueller, J.; Borchert, S.; Heard, C.

    1996-01-01

    The wide-scale, multiple-purpose use of fossil fuels throughout the industrialized world has resulted in the inadvertent contamination of myriad environments. Given the scope and magnitude of these environmental contamination problems, bioremediation often represents the only practical and economically feasible solution. This is especially true when depth of contamination, magnitude of the problem, and nature of contaminated material preclude other remedial actions, short of the no-response alternative. From the perspective, the effective, safe and scientifically valid use of in situ bioremediation technologies requires cost-efficient and effective implementation strategies in combination with unequivocal approaches for monitoring efficacy of performance. Accordingly, with support from the SERDP program, the authors are field-testing advanced in situ bioremediation strategies and new approaches in efficacy monitoring that employ techniques instable carbon and nitrogen isotope biogeochemistry. One field demonstration has been initiated at the NEX site in Port Hueneme, CA (US Navy's National Test Site). The objectives are: (1) to use stable isotopes as a biogeochemical monitoring tool for in situ bioremediation of refined petroleum (i.e., BTEX), and (2) to use vertical groundwater circulation technology to effect in situ chemical containment and enhanced in situ bioremediation

  8. In situ feeding rates of plantonic copepods: A comparison of four methods

    DEFF Research Database (Denmark)

    Kiørboe, Thomas; Møhlenberg, Flemming; Riisgård, Hans Ulrik

    1985-01-01

    into estimates of in situ algal grazing rates by means of independently estimated gut turnover times, and were compared with chlorophyll and particle-volume grazing rates of animals sampled simultaneously and incubated in water from the collection depth. In addition, egg-production rates of adult females were...... problems of the different methods are discussed, and it is concluded that they all approach representative (although minimum) estimates of in situ feeding rates....

  9. Rocket propellants with reduced smoke and high burning rates

    Energy Technology Data Exchange (ETDEWEB)

    Menke, K.; Eisele, S. [Fraunhofer-Institut fuer Chemische Technologie (ICT), Pfinztal-Berghausen (Germany)

    1997-07-01

    Rocket propellants with reduced smoke and high burning rates recommend themselves for use in a rocket motor for high accelerating tactical missiles. They serve for an improved camouflage on the battle field and may enable guidance control due to the higher transmission of their rocket plume compared to traditional aluminized composite propellants. In this contribution the material based ranges of performance and properties of three non aluminized rocket propellants will be introduced and compared to each other. The selected formulations based on AP/HTPB; AP/PU/TMETN and AP/HMX/GAP/TMETN have roughly the same specific impulse of I{sub SP}=2430 Ns/kg at 70:1 expansion ratio. The burning rates in the pressure range from 10-18 MPa vary from to 26-33 mm/s for the AP/HTPB propellant, 52-68 mm/s for the formulation based on AP/PU/TMETN and 28-39 mm/s for the propellant based on AP/HMX/GAP. With 58% and 20% AP-contents the propellants with nitrate ester plasticizers create a much smaller secondary signature than the AP/HTPB representative containing 85% AP. Their disadvantage, however, is the connection of high performance to a high level of energetic plasticizer. For this reason, the very fast burning propellant based on AP/PU/TMETN is endowed with a low elastic modulus and is limited to a grain configuration which isn`t exposed too much to the fast and turbulent airstream. The mechanical properties of the AP/HMX/GAP-propellant are as good or better as those of the AP/HTPB propellant. The first one exhibits the same performance and burn rates as the composite representative but produces only one fifth of HCl exhaust. For this reason it is recommended for missile applications, which must have high accelerating power together with a significantly reduced plume signature and smoke production. (orig.) [Deutsch] Rauchreduzierte Festtreibstoffe mit hohen Abbrandgeschwindigkeiten bieten sich fuer den Antrieb hochbeschleunigender taktischer Flugkoerper an, da sie gegenueber

  10. In Situ Wetland Restoration Demonstration

    Science.gov (United States)

    2016-06-01

    bituminous coal based activated carbon, 10% bentonite clay , and 85% aggregate by weight.  SediMiteTM – SediMiteTM is a proprietary composite...its associated marsh. Portions of the marsh associated with Canal Creek were used for landfilling of sanitary wastes and production waste disposal...u c ti o n i n P C B C o n c e n tr a ti o n ( % ) Treatment Replicate 1 Replicate 2 Powdered Activated Organo Clay Zero Valent Iron 1 stdev -270

  11. ADVANTAGES/DISADVANTAGES FOR ISCO METHODS IN-SITU FENTON OXIDATION IN-SITU PERMANGANATE OXIDATION

    Science.gov (United States)

    The advantages and disadvantages of in-situ Fenton oxidation and in-situ permanganate oxidation will be presented. This presentation will provide a brief overview of each technology and a detailed analysis of the advantages and disadvantages of each technology. Included in the ...

  12. 14 CFR 35.23 - Propeller control system.

    Science.gov (United States)

    2010-01-01

    ... propeller effect under the intended operating conditions. (4) The failure or corruption of data or signals... corruption of airplane-supplied data does not result in hazardous propeller effects. (e) The propeller... effect. (2) Failures or malfunctions directly affecting the propeller control system in a typical...

  13. Unintended and in situ amorphisation of pharmaceuticals

    DEFF Research Database (Denmark)

    Priemel, P A; Grohganz, H; Rades, T

    2016-01-01

    Amorphisation of poorly water-soluble drugs is one approach that can be applied to improve their solubility and thus their bioavailability. Amorphisation is a process that usually requires deliberate external energy input. However, amorphisation can happen both unintentionally, as in process......-induced amorphisation during manufacturing, or in situ during dissolution, vaporisation, or lipolysis. The systems in which unintended and in situ amorphisation has been observed normally contain a drug and a carrier. Common carriers include polymers and mesoporous silica particles. However, the precise mechanisms...... of in situ amorphisation can thus confer the advantages of the amorphous form, such as higher apparent solubility and faster dissolution rate, without the disadvantage of its physical instability....

  14. In situ vitrification: Application to buried waste

    International Nuclear Information System (INIS)

    Callow, R.A.; Thompson, L.E.

    1991-01-01

    Two in situ vitrification field tests were conducted in June and July 1990 at Idaho National Engineering Laboratory. In situ vitrification is a technology for in-place conversion of contaminated soils into a durable glass and crystalline waste form and is being investigated as a potential remediation technology for buried waste. The overall objective of the two tests was to assess the general suitability of the process to remediate buried waste structures found at Idaho National Engineering Laboratory. In particular, these tests were designed as part of a treatability study to provide essential information on field performance of the process under conditions of significant combustible and metal wastes, and to test a newly developed electrode feed technology. The tests were successfully completed, and the electrode feed technology provided valuable operational control for successfully processing the high metal content waste. The results indicate that in situ vitrification is a feasible technology for application to buried waste. 2 refs., 5 figs., 2 tabs

  15. Oil companies push in-situ recovery

    International Nuclear Information System (INIS)

    McIntyre, H.

    1977-01-01

    Possibly, a third Athabaska tar-sand plant using surface mining will be built in the 1980's, but future development beyond that point will probably depend on in-situ recovery. The discussion of in-situ recovery focusses on the effect it will have on the Canadian chemical industry, for example, the market for sodium hydroxide. To obtain the highest yields of oil from bitumen, an external source of hydrogen is necessary; for example Syncrude imports natural gas to make hydrogen for desulphurization. Gasification of coal is a possible source of hydrogen. Research on hydrocracking is progressing. Use of a prototype CANDU OCR reactor to raise the hot steam necessary for in-situ recovery has been suggested. Venezuela is interested in Canadian upgrading technology. (N.D.H.)

  16. In situ detection of anaerobic alkane metabolites in subsurface environments

    Directory of Open Access Journals (Sweden)

    Lisa eGieg

    2013-06-01

    Full Text Available Alkanes comprise a substantial fraction of crude oil and refined fuels. As such, they are prevalent within deep subsurface fossil fuel deposits and in shallow subsurface environments such as aquifers that are contaminated with hydrocarbons. These environments are typically anaerobic, and host diverse microbial communities that can potentially use alkanes as substrates. Anaerobic alkane biodegradation has been reported to occur under nitrate-reducing, sulfate-reducing, and methanogenic conditions. Elucidating the pathways of anaerobic alkane metabolism has been of interest in order to understand how microbes can be used to remediate contaminated sites. Alkane activation primarily occurs by addition to fumarate, yielding alkylsuccinates, unique anaerobic metabolites that can be used to indicate in situ anaerobic alkane metabolism. These metabolites have been detected in hydrocarbon-contaminated shallow aquifers, offering strong evidence for intrinsic anaerobic bioremediation. Recently, studies have also revealed that alkylsuccinates are present in oil and coal seam production waters, indicating that anaerobic microbial communities can utilize alkanes in these deeper subsurface environments. In many crude oil reservoirs, the in situ anaerobic metabolism of hydrocarbons such as alkanes may be contibuting to modern-day detrimental effects such as oilfield souring, or may lead to more benefical technologies such as enhanced energy recovery from mature oilfields. In this review, we briefly describe the key metabolic pathways for anaerobic alkane (including n-alkanes, isoalkanes, and cyclic alkanes metabolism and highlight several field reports wherein alkylsuccinates have provided evidence for anaerobic in situ alkane metabolism in shallow and deep subsurface environments.

  17. In situ respiration testing: A field treatability test for bioventing

    International Nuclear Information System (INIS)

    Kittel, J.A.; Hinchee, R.E.; Miller, R.; Vogel, C.; Hoeppel, R.

    1993-01-01

    Bioventing is the process of aerating subsurface soils to stimulate in situ biological activity and promote bioremediation. Bioventing differs from soil venting in remedial approach. Soil venting is designed and operated to maximize the volatilization of low-molecular-weight compounds, with some biodegradation occurring. In contrast, bioventing is designed to maximize biodegradation of aerobically biodegradable compounds, regardless of their molecular weight, with some volatilization occurring. Bioventing is gaining wide acceptance as a remediation alternative at petroleum-contaminated sites. However, site variability usually requires that a short term treatability test be conducted in situ at potential sites to determine the applicability of bioventing. Battelle has worked with the US Air Force and the US Navy to develop a simple and inexpensive field test to evaluate bioventing potential-contaminated sites. This test has been used to evaluate the applicability of bioventing at over 50 sites. The in situ respiration test consists of injecting air and an inert tracer gas (helium) over a 24-hour period to aerate soils at an oxygen-deficient, petroleum-contaminated site. Soil vapor samples are collected to determine oxygen utilization rates and carbon dioxide production rates. The stoichiometric relationship for the oxidation of hexane is used to calculate the biodegradation rate. The tracer gas is monitored to estimate the effect of diffusion on changes in soil-gas concentrations

  18. Blending Satellite Observed, Model Simulated, and in Situ Measured Soil Moisture over Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Yijian Zeng

    2016-03-01

    Full Text Available The inter-comparison of different soil moisture (SM products over the Tibetan Plateau (TP reveals the inconsistency among different SM products, when compared to in situ measurement. It highlights the need to constrain the model simulated SM with the in situ measured data climatology. In this study, the in situ soil moisture networks, combined with the classification of climate zones over the TP, were used to produce the in situ measured SM climatology at the plateau scale. The generated TP scale in situ SM climatology was then used to scale the model-simulated SM data, which was subsequently used to scale the SM satellite observations. The climatology-scaled satellite and model-simulated SM were then blended objectively, by applying the triple collocation and least squares method. The final blended SM can replicate the SM dynamics across different climatic zones, from sub-humid regions to semi-arid and arid regions over the TP. This demonstrates the need to constrain the model-simulated SM estimates with the in situ measurements before their further applications in scaling climatology of SM satellite products.

  19. Demonstration testing and evaluation of in situ soil heating

    International Nuclear Information System (INIS)

    Sresty, G.C.

    1994-01-01

    A Treatability Study planned for the demonstration of the in situ electromagnetic (EM) heating process to remove organic solvents is described in this Work Plan. The treatability study will be conducted by heating subsurface vadose-zone soils in an organic plume adjacent to the Classified Burial Ground K-1070-D located at K-25 Site, Oak Ridge. The test is scheduled to start during the fourth quarter of FY94 and will be completed during the first quarter of FY95. The EM heating process for soil decontamination is based on volumetric heating technologies developed during the '70s for the recovery of fuels from shale and tar sands by IIT Research Institute (IITRI) under a co-operative program with the US Department of Energy (DOE). Additional modifications of the technology developed during the mid '80s are currently used for the production of heavy oil and waste treatment. Over the last nine years, a number of Government agencies (EPA, Army, AF, and DOE) and industries sponsored further development and testing of the in situ heating and soil decontamination process for the remediation of soils containing hazardous organic contaminants. In this process the soil is heated in situ using electrical energy. The contaminants are removed from the soil due to enhanced vaporization, steam distillation and stripping. IITRI will demonstrate the EM Process for in situ soil decontamination at K-25 Site under the proposed treatability study. Most of the contaminants of concern are volatile organics which can be removed by heating the soil to a temperature range of 85 to 95 C. The efficiency of the treatment will be determined by comparing the concentration of contaminants in soil samples. Samples will be obtained before and after the demonstration for a measurement of the concentration of contaminants of concern

  20. Development and implementation of a propeller test capability for GL-10 "Greased Lightning" propeller design

    Science.gov (United States)

    Duvall, Brian Edward

    Interest in small unmanned aerial vehicles has increased dramatically in recent years. Hybrid vehicles which allow forward flight as a fixed wing aircraft and a true vertical landing capability have always had applications. Management of the available energy and noise associated with electric propeller propulsion systems presents many challenges. NASA Langley has developed the Greased Lightning 10 (GL-10) vertical takeoff, unmanned aerial vehicle with ten individual motors and propellers. All are used for propulsion during takeoff and contribute to acoustic noise pollution which is an identified nuisance to the surrounding users. A propeller test capability was developed to gain an understanding of how the noise can be reduced while meeting minimum thrust requirements. The designed propeller test stand allowed for various commercially available propellers to be tested for potential direct replacement of the current GL-10 propellers and also supported testing of a newly designed propeller provided by the Georgia Institute of Technology. Results from the test program provided insight as to which factors affect the noise as well as performance characteristics. The outcome of the research effort showed that the current GL-10 propeller still represents the best choice of all the candidate propellers tested.

  1. Effect of Propellant Composition to the Temperature Sensitivity of Composite Propellant

    International Nuclear Information System (INIS)

    Aziz, Amir; Mamat, Rizalman; Amin, Makeen; Wan Ali, Wan Khairuddin

    2012-01-01

    The propellant composition is one of several parameter that influencing the temperature sensitivity of composite propellant. In this paper, experimental investigation of temperature sensitivity in burning rate of composite propellant was conducted. Four sets of different propellant compositions had been prepared with the combination of ammonium perchlorate (AP) as an oxidizer, aluminum (Al) as fuel and hydroxy-terminated polybutadiene (HTPB) as fuel and binder. For each mixture, HTPB binder was fixed at 15% and cured with isophorone diisocyanate (IPDI). By varying AP and Al, the effect of oxidizer- fuel mixture ratio (O/F) on the whole propellant can be determined. The propellant strands were manufactured using compression molded method and burnt in a strand burner using wire technique over a range of pressure from 1 atm to 31 atm. The results obtained shows that the temperature sensitivity, a, increases with increasing O/F. Propellant p80 which has O/F ratio of 80/20 gives the highest value of temperature sensitivity which is 1.687. The results shows that the propellant composition has significant effect on the temperature sensitivity of composite propellant

  2. Alternate Propellant Thermal Rocket, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The Alternate Propellant Thermal Rocket (APTR) is a novel concept for propulsion of space exploration or orbit transfer vehicles. APTR propulsion is provided by...

  3. The PROPEL Electrodynamic Tether Demonstration Mission

    Science.gov (United States)

    Bilen, Sven G.; Johnson, C. Les; Wiegmann, Bruce M.; Alexander, Leslie; Gilchrist, Brian E.; Hoyt, Robert P.; Elder, Craig H.; Fuhrhop, Keith P.; Scadera, Michael

    2012-01-01

    The PROPEL ("Propulsion using Electrodynamics") mission will demonstrate the operation of an electrodynamic tether propulsion system in low Earth orbit and advance its technology readiness level for multiple applications. The PROPEL mission has two primary objectives: first, to demonstrate the capability of electrodynamic tether technology to provide robust and safe, near-propellantless propulsion for orbit-raising, de-orbit, plane change, and station keeping, as well as to perform orbital power harvesting and formation flight; and, second, to fully characterize and validate the performance of an integrated electrodynamic tether propulsion system, qualifying it for infusion into future multiple satellite platforms and missions with minimal modification. This paper provides an overview of the PROPEL system and design reference missions; mission goals and required measurements; and ongoing PROPEL mission design efforts.

  4. In-Space Manufacture of Storable Propellants

    Data.gov (United States)

    National Aeronautics and Space Administration — Many deep-space, missions, especially those that return material or crews to near-Earth space, are severely limited by the need to carry propellants and heat shields...

  5. Nuclear thermal rockets using indigenous Martian propellants

    International Nuclear Information System (INIS)

    Zubrin, R.M.

    1989-01-01

    This paper considers a novel concept for a Martian descent and ascent vehicle, called NIMF (for nuclear rocket using indigenous Martian fuel), the propulsion for which will be provided by a nuclear thermal reactor which will heat an indigenous Martian propellant gas to form a high-thrust rocket exhaust. The performance of each of the candidate Martian propellants, which include CO2, H2O, CH4, N2, CO, and Ar, is assessed, and the methods of propellant acquisition are examined. Attention is also given to the issues of chemical compatibility between candidate propellants and reactor fuel and cladding materials, and the potential of winged Mars supersonic aircraft driven by this type of engine. It is shown that, by utilizing the nuclear landing craft in combination with a hydrogen-fueled nuclear thermal interplanetary vehicle and a heavy lift booster, it is possible to achieve a manned Mars mission in one launch. 6 refs

  6. In situ viscometry by optical trapping interferometry

    DEFF Research Database (Denmark)

    Guzmán, C.; Flyvbjerg, Henrik; Köszali, R.

    2008-01-01

    We demonstrate quantitative in situ viscosity measurements by tracking the thermal fluctuations of an optically trapped microsphere subjected to a small oscillatory flow. The measured power spectral density of the sphere's positions displays a characteristic peak at the driving frequency of the f......We demonstrate quantitative in situ viscosity measurements by tracking the thermal fluctuations of an optically trapped microsphere subjected to a small oscillatory flow. The measured power spectral density of the sphere's positions displays a characteristic peak at the driving frequency...

  7. In situ soil remediation using electrokinetics

    International Nuclear Information System (INIS)

    Buehler, M.F.; Surma, J.E.; Virden, J.W.

    1994-11-01

    Electrokinetics is emerging as a promising technology for in situ soil remediation. This technique is especially attractive for Superfund sites and government operations which contain large volumes of contaminated soil. The approach uses an applied electric field to induce transport of both radioactive and hazardous waste ions in soil. The transport mechanisms include electroosmosis, electromigration, and electrophoresis. The feasibility of using electrokinetics to move radioactive 137 Cs and 60 Co at the Hanford Site in Richland, Washington, is discussed. A closed cell is used to provide in situ measurements of 137 Cs and 60 Co movement in Hanford soil. Preliminary results of ionic movement, along with the corresponding current response, are presented

  8. Propeller performance analysis using lifting line theory

    OpenAIRE

    Flood, Kevin M.

    2009-01-01

    CIVINS (Civilian Institutions) Thesis document Approved for public release ; distribution is unlimited Propellers are typically optimized to provide the maximum thrust for the minimum torque at a specific number of revolutions per minute (RPM) at a particular ship speed. This process allows ships to efficiently travel at their design speed. However, it is useful to know how the propeller performs during off-design conditions. This is especially true for naval warships whose missions req...

  9. Propellant selection for ramjets with solid fuel

    Energy Technology Data Exchange (ETDEWEB)

    Schmucker, R H; Lips, H

    1976-03-11

    Ramjet propulsion using solid propellant for post-boost acceleration of missiles exhibits several favorable properties, brought about by heterogeneous combustion. A simplified theory for calculating the performance of possible propellants is presented, and they are classified with respect to maximum fuel-specific impulse. The optimal choice of fuel, from a system standpoint, must consider volume constraints, and defines the requirements for motor geometry.

  10. Development and Characterization of a Novel Additive Manufacturing Technology Capable of Printing Propellants with High Solids Loadings

    Data.gov (United States)

    National Aeronautics and Space Administration — Ever since rockets have been around, there has been a demand to improve propulsion systems by increasing propellant performance in order to reduce production time...

  11. HMX based enhanced energy LOVA gun propellant

    Energy Technology Data Exchange (ETDEWEB)

    Sanghavi, R.R. [High Energy Materials Research Laboratory, Pune 411021 (India)]. E-mail: sanghavirr@yahoo.co.uk; Kamale, P.J. [High Energy Materials Research Laboratory, Pune 411021 (India); Shaikh, M.A.R. [High Energy Materials Research Laboratory, Pune 411021 (India); Shelar, S.D. [High Energy Materials Research Laboratory, Pune 411021 (India); Kumar, K. Sunil [High Energy Materials Research Laboratory, Pune 411021 (India); Singh, Amarjit [High Energy Materials Research Laboratory, Pune 411021 (India)

    2007-05-08

    Efforts to develop gun propellants with low vulnerability have recently been focused on enhancing the energy with a further improvement in its sensitivity characteristics. These propellants not only prevent catastrophic disasters due to unplanned initiation of currently used gun propellants (based on nitrate esters) but also realize enhanced energy levels to increase the muzzle velocity of the projectiles. Now, in order to replace nitroglycerine, which is highly sensitive to friction and impact, nitramines meet the requirements as they offer superior energy due to positive heat of formation, typical stoichiometry with higher decomposition temperatures and also owing to negative oxygen balance are less sensitive than stoichiometrically balanced NG. RDX has been widely reported for use in LOVA propellant. In this paper we have made an effort to present the work on scantily reported nitramine HMX based LOVA gun propellant while incorporating energetic plasticizer glycidyl azide polymer to enhance the energy level. HMX is known to be thermally stable at higher temperature than RDX and also proved to be less vulnerable to small scale shaped charge jet attack as its decomposition temperature is 270 deg. C. HMX also offers improved impulse due to its superior heat of formation (+17 kcal/mol) as compared to RDX (+14 kcal/mol). It has also been reported that a break point will not appear until 35,000 psi for propellant comprising of 5 {mu}m HMX. Since no work has been reported in open literature regarding replacement of RDX by HMX, the present studies were carried out.

  12. Propeller installation effects on turboprop aircraft acoustics

    Science.gov (United States)

    Chirico, Giulia; Barakos, George N.; Bown, Nicholas

    2018-06-01

    Propeller installation options for a twin-engined turboprop aircraft are evaluated at cruise conditions, aiming to identify the quieter configuration. Computational fluid dynamics is used to investigate the near-field acoustics and transfer functions are employed to estimate the interior cabin noise. Co-rotating and counter-rotating installation options are compared. The effect of propeller synchrophasing is also considered. The employed method captures the complexity of the acoustic field generated by the interactions of the propeller sound fields among each other and with the airframe, showing also the importance of simulating the whole problem to predict the actual noise on a flying aircraft. Marked differences among the various layouts are observed. The counter-rotating top-in option appears the best in terms of acoustics, the top-out propeller rotation leading to louder noise because of inflow conditions and the occurrence of constructive acoustic interferences. Synchrophasing is shown to be beneficial for co-rotating propellers, specially regarding the interior noise, because of favorable effects in the interaction between the propeller direct sound field and the noise due to the airframe. An angle closer to the maximum relative blade shift was found to be the best choice, yielding, however, higher sound levels than those provided by the counter-rotating top-in layout.

  13. Launch Vehicle Performance for Bipropellant Propulsion Using Atomic Propellants With Oxygen

    Science.gov (United States)

    Palaszewski, Bryan

    2000-01-01

    Atomic propellants for bipropellant launch vehicles using atomic boron, carbon, and hydrogen were analyzed. The gross liftoff weights (GLOW) and dry masses of the vehicles were estimated, and the 'best' design points for atomic propellants were identified. Engine performance was estimated for a wide range of oxidizer to fuel (O/F) ratios, atom loadings in the solid hydrogen particles, and amounts of helium carrier fluid. Rocket vehicle GLOW was minimized by operating at an O/F ratio of 1.0 to 3.0 for the atomic boron and carbon cases. For the atomic hydrogen cases, a minimum GLOW occurred when using the fuel as a monopropellant (O/F = 0.0). The atomic vehicle dry masses are also presented, and these data exhibit minimum values at the same or similar O/F ratios as those for the vehicle GLOW. A technology assessment of atomic propellants has shown that atomic boron and carbon rocket analyses are considered to be much more near term options than the atomic hydrogen rockets. The technology for storing atomic boron and carbon has shown significant progress, while atomic hydrogen is not able to be stored at the high densities needed for effective propulsion. The GLOW and dry mass data can be used to estimate the cost of future vehicles and their atomic propellant production facilities. The lower the propellant's mass, the lower the overall investment for the specially manufactured atomic propellants.

  14. Kinematic analysis of in situ measurement during chemical mechanical planarization process

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hongkai; Wang, Tongqing; Zhao, Qian; Meng, Yonggang; Lu, Xinchun, E-mail: xclu@tsinghua.edu.cn [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China)

    2015-10-15

    Chemical mechanical planarization (CMP) is the most widely used planarization technique in semiconductor manufacturing presently. With the aid of in situ measurement technology, CMP tools can achieve good performance and stable productivity. However, the in situ measurement has remained unexplored from a kinematic standpoint. The available related resources for the kinematic analysis are very limited due to the complexity and technical secret. In this paper, a comprehensive kinematic analysis of in situ measurement is provided, including the analysis model, the measurement trajectory, and the measurement time of each zone of wafer surface during the practical CMP process. In addition, a lot of numerical calculations are performed to study the influences of main parameters on the measurement trajectory and the measurement velocity variation of the probe during the measurement process. All the efforts are expected to improve the in situ measurement system and promote the advancement in CMP control system.

  15. An update on in situ cosmogenic {sup 14}C analysis at ETH Zuerich

    Energy Technology Data Exchange (ETDEWEB)

    Hippe, K., E-mail: hippe@erdw.ethz.ch [Institute of Geochemistry and Petrology, ETH Zuerich, Zuerich CH-8092 (Switzerland); Kober, F. [Institute of Geology, ETH Zuerich, Zuerich CH-8092 (Switzerland); Wacker, L. [Institute for Particle Physics, ETH Zuerich, Zuerich CH-8093 (Switzerland); Fahrni, S.M. [Institute for Particle Physics, ETH Zuerich, Zuerich CH-8093 (Switzerland); Department of Chemistry and Biochemistry, University of Bern, Bern CH-3012 (Switzerland); Ivy-Ochs, S. [Institute for Particle Physics, ETH Zuerich, Zuerich CH-8093 (Switzerland); Akcar, N.; Schluechter, C. [Institute of Geological Sciences, University of Bern, Bern CH-3012 (Switzerland); Wieler, R. [Institute of Geochemistry and Petrology, ETH Zuerich, Zuerich CH-8092 (Switzerland)

    2013-01-15

    We present the improved performance of the modified in situ cosmogenic {sup 14}C extraction system at ETH Zuerich. Samples are now processed faster (2 days in total) and are measured with a high analytical precision of usually <2% using the gas ion source of the MICADAS AMS facility. Measurements of the PP-4 standard sample show a good reproducibility and consistency with published values. Procedural blanks are very low at currently {approx}4.0 Multiplication-Sign 10{sup 414}C atoms. Analyses of samples from a {approx}300 year old rock avalanche prove that we can successfully apply in situ{sup 14}C exposure dating to very young surfaces. Additionally, we present a modified calculation scheme for in situ{sup 14}C concentrations which differs from that used for conventional radiocarbon dating. This new approach explicitly accounts for the characteristics of in situ{sup 14}C production.

  16. Paleozoic in situ spores and pollen. Lycopsida

    Czech Academy of Sciences Publication Activity Database

    Bek, Jiří

    2017-01-01

    Roč. 296, 1/6 (2017), s. 1-111 ISSN 0375-0299 R&D Projects: GA ČR GAP210/12/2053 Institutional support: RVO:67985831 Keywords : in situ spores * reproductive organs * Lycopsida * Paleozoic Sub ject RIV: DB - Geology ; Mineralogy OBOR OECD: Paleontology Impact factor: 1.333, year: 2016

  17. Smoothsort, an alternative for sorting in situ

    NARCIS (Netherlands)

    Dijkstra, E.W.

    1982-01-01

    Like heapsort - which inspired it - smoothsort is an algorithm for sorting in situ. It is of order N · log N in the worst case, but of order N in the best case, with a smooth transition between the two. (Hence its name.)

  18. Recovering uranium from coal in situ

    International Nuclear Information System (INIS)

    Terry, R.C.

    1978-01-01

    An underground carbonaceous deposit containing other mineral values is burned in situ. The underground hot zone is cooled down to temperature below the boiling point of a leachig solution. The leaching solution is percolated through the residial ash, with the pregnant solution recovered for separation of the mineral values in surface facilities

  19. In Situ TEM Creation of Nanowire Devices

    DEFF Research Database (Denmark)

    Alam, Sardar Bilal

    Integration of silicon nanowires (SiNWs) as active components in devices requires that desired mechanical, thermal and electrical interfaces can be established between the nanoscale geometry of the SiNW and the microscale architecture of the device. In situ transmission electron microscopy (TEM),...

  20. In Situ Flash Pyrolysis of Straw

    DEFF Research Database (Denmark)

    Bech, Niels

    In-Situ Flash Pyrolysis of Straw Ph.D. dissertation by Niels Bech Submitted: April 2007. Supervisors: Professor Kim Dam-Johansen, Associate Professor Peter Arendt Jensen Erfaringerne med forbrænding af halm opnået gennem et årti har vist, at en proces der kan koncentrere energien på marken, fjerne...

  1. IN SITU LEAD IMMOBILIZATION BY APATITE

    Science.gov (United States)

    Lead contamination is of environmental concern due to its effect on human health. The purpose of this study was to develop a technology to immobilize Pb in situ in contaminated soils and wastes using apatite. Hydroxyapatite [Ca10(PO4)6(O...

  2. In Situ Cleanable Alternative HEPA Filter Media

    International Nuclear Information System (INIS)

    Adamson, D. J.; Terry, M. T.

    2002-01-01

    The Westinghouse Savannah River Company, located at the Savannah River Site in Aiken, South Carolina, is currently testing two types of filter media for possible deployment as in situ regenerable/cleanable High Efficiency Particulate Air (HEPA) filters. The filters are being investigated to replace conventional, disposable, glass-fiber, HEPA filters that require frequent removal, replacement, and disposal. This is not only costly and subjects site personnel to radiation exposure, but adds to the ever-growing waste disposal problem. The types of filter media being tested, as part of a National Energy Technology Laboratory procurement, are sintered nickel metal and ceramic monolith membrane. These media were subjected to a hostile environment to simulate conditions that challenge the high-level waste tank ventilation systems. The environment promoted rapid filter plugging to maximize the number of filter loading/cleaning cycles that would occur in a specified period of time. The filters were challenged using nonradioactive simulated high-level waste materials and atmospheric dust; materials that cause filter pluggage in the field. The filters are cleaned in situ using an aqueous solution. The study found that both filter media were insensitive to high humidity or moisture conditions and were easily cleaned in situ. The filters regenerated to approximately clean filter status even after numerous plugging and in situ cleaning cycles. Air Techniques International is conducting particle retention testing on the filter media at the Oak Ridge Filter Test Facility. The filters are challenged using 0.3-mm di-octyl phthalate particles. Both the ceramic and sintered media have a particle retention efficiency > 99.97%. The sintered metal and ceramic filters not only can be cleaned in situ, but also hold great potential as a long life alternative to conventional HEPA filters. The Defense Nuclear Facility Safety Board Technical Report, ''HEPA Filters Used in the Department of

  3. Cavitation noise studies on marine propellers

    Science.gov (United States)

    Sharma, S. D.; Mani, K.; Arakeri, V. H.

    1990-04-01

    Experimental observations are described of cavitation inception and noise from five model propellers, three basic and two modified, tested in the open jet section of the Indian Institute of Science high-speed water tunnel facility. Extensive experiments on the three basic propellers of different design, which included visualization of cavitation and measurements of noise, showed that the dominant type of cavitation was in the form of tip vortex cavitation, accompanied by leading edge suction side sheet cavitation in its close vicinity, and the resultant noise depended on parameters such as the advance coefficient, the cavitation number, and the propeller geometry. Of these, advance coefficient was found to have the maximum influence not only on cavitation noise but also on the inception of cavitation. Noise levels and frequencies of spectra obtained from all the three basic propellers at conditions near inception and different advance coefficient values, when plotted in the normalized form as suggested by Blake, resulted in a universal spectrum which would be useful for predicting cavitation noise at prototype scales when a limited extent of cavitation is expected in the same form as observed on the present models. In an attempt to delay the onset of tip vortex cavitation, the blades of two of the three basic propellers were modified by drilling small holes in the tip and leading edge areas. Studies on the modified propellers showed that the effectiveness of the blade modification was apparently stronger at low advance coefficient values and depended on the blade sectional profile. Measurements of cavitation noise indicated that the modification also improved the acoustic performance of the propellers as it resulted in a complete attenuation of the low-frequency spectral peaks, which were prominent with the basic propellers. In addition to the above studies, which were conducted under uniform flow conditions, one of the basic propellers was tested in the simulated

  4. Contemporary management of ductal carcinoma in situ and lobular carcinoma in situ.

    Science.gov (United States)

    Obeng-Gyasi, Samilia; Ong, Cecilia; Hwang, E Shelley

    2016-06-01

    The management of in situ lesions ductal carcinoma in situ (DCIS) and lobular carcinoma in situ (LCIS) continues to evolve. These diagnoses now comprise a large burden of mammographically diagnosed cancers, and with a global trend towards more population-based screening, the incidence of these lesions will continue to rise. Because outcomes following treatment for DCIS and LCIS are excellent, there is emerging controversy about what extent of treatment is optimal for both diseases. Here we review the current approaches to the diagnosis and treatment of both DCIS and LCIS. In addition, we will consider potential directions for future management of these lesions.

  5. Deflagration of thermite - ammonium nitrate based propellant mixture

    Science.gov (United States)

    Duraes, Luisa; Morgado, Joel; Portugal, Antonio; Campos, Jose

    2001-06-01

    Reaction between iron oxide (Fe2O3) and aluminum (Al) is the reference of the classic thermite compositions. The efficency of the reaction, for a given initial composition of Fe2O3 and Al, is evaluated by the final temperature and by the mass ratio of Al2O3 /AlO in products of combustion (in condensed phase). In order to increase pressure in products of thermite reaction, the original composition is mixed, with an original twin screw extruder, with a propellant binder composed of ammonium and sodium nitrates, initialy solved in formamide (CH3NO) and mixed with a polyurethane solution. The products of combustion and pyrolysis of this binder, reacting with thermite products, generates high pressure and high temperature conditions. These experimental conditions are also predicted using THOR code. The study presents DSC and TGA results of components and mixtures, and correlates them to the ignition phenomena and reaction properties. The regression rate of combustion and final attained temperature and pressure, in a closed confinement, as a function of composition of thermite components/propellant binder, are presented and discussed. They show the influence of gaseous combustion and pyrolysis products of binder in final reaction.

  6. In Situ Remediation Integrated Program: Technology summary

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    The In Situ Remediation Integrated Program (ISR IP) was instituted out of recognition that in situ remediation could fulfill three important criteria: significant cost reduction of cleanup by eliminating or minimizing excavation, transportation, and disposal of wastes; reduced health impacts on workers and the public by minimizing exposure to wastes during excavation and processing; and remediation of inaccessible sites, including: deep subsurfaces, in, under, and around buildings. Buried waste, contaminated soils and groundwater, and containerized wastes are all candidates for in situ remediation. Contaminants include radioactive wastes, volatile and non-volatile organics, heavy metals, nitrates, and explosive materials. The ISR IP intends to facilitate development of in situ remediation technologies for hazardous, radioactive, and mixed wastes in soils, groundwater, and storage tanks. Near-term focus is on containment of the wastes, with treatment receiving greater effort in future years. ISR IP is an applied research and development program broadly addressing known DOE environmental restoration needs. Analysis of a sample of 334 representative sites by the Office of Environmental Restoration has shown how many sites are amenable to in situ remediation: containment--243 sites; manipulation--244 sites; bioremediation--154 sites; and physical/chemical methods--236 sites. This needs assessment is focused on near-term restoration problems (FY93--FY99). Many other remediations will be required in the next century. The major focus of the ISR EP is on the long term development of permanent solutions to these problems. Current needs for interim actions to protect human health and the environment are also being addressed.

  7. In Situ Remediation Integrated Program: Technology summary

    International Nuclear Information System (INIS)

    1994-02-01

    The In Situ Remediation Integrated Program (ISR IP) was instituted out of recognition that in situ remediation could fulfill three important criteria: significant cost reduction of cleanup by eliminating or minimizing excavation, transportation, and disposal of wastes; reduced health impacts on workers and the public by minimizing exposure to wastes during excavation and processing; and remediation of inaccessible sites, including: deep subsurfaces, in, under, and around buildings. Buried waste, contaminated soils and groundwater, and containerized wastes are all candidates for in situ remediation. Contaminants include radioactive wastes, volatile and non-volatile organics, heavy metals, nitrates, and explosive materials. The ISR IP intends to facilitate development of in situ remediation technologies for hazardous, radioactive, and mixed wastes in soils, groundwater, and storage tanks. Near-term focus is on containment of the wastes, with treatment receiving greater effort in future years. ISR IP is an applied research and development program broadly addressing known DOE environmental restoration needs. Analysis of a sample of 334 representative sites by the Office of Environmental Restoration has shown how many sites are amenable to in situ remediation: containment--243 sites; manipulation--244 sites; bioremediation--154 sites; and physical/chemical methods--236 sites. This needs assessment is focused on near-term restoration problems (FY93--FY99). Many other remediations will be required in the next century. The major focus of the ISR EP is on the long term development of permanent solutions to these problems. Current needs for interim actions to protect human health and the environment are also being addressed

  8. Application of microorganism to in-situ leaching mining

    International Nuclear Information System (INIS)

    Yu, Runlan; Sato, Kazuhiko; Nagara, Shuichi; Yamana, Satoshi

    1998-01-01

    In-situ leaching (ISL) technique has come into the spotlight recently because of its low production costs and low environmental impact. In China, development and application of economical ISL techniques are also being studied. To design a pilot scale ISL 'bioreactor' in China, applicability of microorganisms to ISL mining was evaluated at Ningyo Toge Works as a part of Scientist Exchange Program of the Science and Technology Agency. An overview of the indirect bio-ISL method with iron oxidizing bacteria, Thiobacillus ferroxidans (TF), and results from experiment to determine factors for the ISL 'bioreactor' are discussed. (author)

  9. Pumice stones as potential in-situ burning enhancer

    DEFF Research Database (Denmark)

    Rojas Alva, U.; Andersen, Bjørn Skjønning; Jomaas, Grunde

    2018-01-01

    Small-scale and mid-scale experiments were conducted in order to evaluate pumice stones as a potential enhancement for in-situ burning (ISB). Four oil types, several emulsification degrees of one crude oil were studied. In general, it was observed that the pumice stones did not improve the burning...... and after the burn, thus bringing the oil into the water column. Finally, the species production of CO and CO2 was not reduced. Based on the presented results, pumice stones have a negative impact on the efficiency of ISB, and they are ruled out as an ISB enhancer and should not be used in relation to ISB....

  10. In situ gene expression and ecophysiology of thermophilic Cyanobacteria

    DEFF Research Database (Denmark)

    Jensen, Sheila Ingemann

    -378), the expression patterns of various functional genes (with an emphasis on nif genes involved in N2-fixation), the protein levels of nitrogenase (NifH), the N2-fixation activity, as well as microsensor based measurements on O2 availability, production and consumption were investigated in situ over the entire diel...... cycle. Interestingly, it was found that while the nif genes are expressed, and nitrogenase is synthesized once the mat gets anoxic in the early evening, the largest N2-fixation activity occurs as a burst during dim light in the early morning, albeit protein levels remained high over the entire course...

  11. In-situ solidification cleans up old gas plant site

    International Nuclear Information System (INIS)

    Hatfield, A.D.; Dennis, N.D.

    1995-01-01

    A manufactured gas plant site in Columbus, Georgia, was the location of an environmental cleanup in 1992. Manufactured gas was produced at this site from 1854 to 1931 with the availability of natural gas from a transmission pipeline causing its demise. However, waste products, primarily coal tar from the earlier years of plant operation, remained with the site. In-situ solidification was chosen as the cleanup method. Post monitoring activities show that the project was successful and the site is now a park and a leading part of river front development

  12. Propeller and inflow vortex interaction : vortex response and impact on the propeller performance

    NARCIS (Netherlands)

    Yang, Y.; Zhou, T; Sciacchitano, A.; Veldhuis, L.L.M.; Eitelberg, G.

    2016-01-01

    The aerodynamic operating conditions of a propeller can include complex situations where vorticity from sources upstream can enter the propeller plane. In general, when the vorticity enters in a concentrated form of a vortex, the interaction between the vortex and blade is referred to as

  13. IFMIF - Design Study for in Situ Creep Fatigue Tests

    International Nuclear Information System (INIS)

    Gordeev, S.; Heinzel, V.; Simakov, St.; Stratmanns, E.; Vladimirov, P.; Moeslang, A.

    2006-01-01

    While the high flux volume (20-50 dpa/fpy) of the International Fusion Materials Irradiation Facility (IFMIF) is dedicated to the irradiation of ∼ 1100 qualified specimens that will be post irradiation examined after disassembling in dedicated Hot Cells, various in situ experiments are foreseen in the medium flux volume (1-20 dpa/fpy). Of specific importance for structural lifetime assessments of fusion power reactors are instrumented in situ creep-fatigue experiments, as they can simulate realistically a superposition of thermal fatigue or creep fatigue and irradiation with fusion relevant neutrons. Based on former experience with in situ fatigue tests under high energy light ion irradiation, a design study has been performed to evaluate the feasibility of in situ creep fatigue tests in the IFMIF medium flux position. The vertically arranged test module for such experiments consists basically of a frame similar to a universal testing machine, but equipped with three pulling rods, driven by independent step motors, instrumentation systems and specimen cooling systems. Therefore, three creep fatigue specimens may be tested at one time in this apparatus. Each specimen is a hollow tube with coolant flow in the specimen interior to maintain individual specimen temperatures. The recently established IFMIF global 3D geometry model was used together the latest McDeLicious code for the neutral and charged particle transport calculations. These comprehensive neutronics calculations have been performed with a fine special resolution of 0.25 cm 3 , showing among others that the specimens will be irradiated with a homogeneous damage rate of up to 13(∼ 9%) dpa/fpy and a fusion relevant damage to helium ratio of 10-12 appm He/dpa. In addition, damage and gas production rates as well as the heat deposition in structural parts of the test module have been calculated. Despite of the vertical gradients in the nuclear heating, CFD code calculations with STAR-CD revealed very

  14. Thermal Vacuum Test Correlation of a Zero Propellant Load Case Thermal Capacitance Propellant Gauging Analytical Model

    Science.gov (United States)

    Mckim, Stephen A.

    2016-01-01

    This thesis describes the development and correlation of a thermal model that forms the foundation of a thermal capacitance spacecraft propellant load estimator. Specific details of creating the thermal model for the diaphragm propellant tank used on NASA's Magnetospheric Multiscale spacecraft using ANSYS and the correlation process implemented are presented. The thermal model was correlated to within plus or minus 3 degrees Celsius of the thermal vacuum test data, and was determined sufficient to make future propellant predictions on MMS. The model was also found to be relatively sensitive to uncertainties in applied heat flux and mass knowledge of the tank. More work is needed to improve temperature predictions in the upper hemisphere of the propellant tank where predictions were found to be 2 to 2.5 C lower than the test data. A road map for applying the model to predict propellant loads on the actual MMS spacecraft toward its end of life in 2017-2018 is also presented.

  15. Advances in LO2 Propellant Conditioning

    Science.gov (United States)

    Mehta, Gopal; Orth, Michael; Stone, William; Perry, Gretchen; Holt, Kimberly; Suter, John

    1994-01-01

    This paper describes the cryogenic testing and analysis that has recently been completed as part of a multi-year effort to develop a new, more robust and operable LO2 propellant conditioning system. Phase 1 of the program consisted of feasibility demonstrations ot four novel propellant conditioning concepts. A no-bleed, passive propellant conditioning option was shown for the first time to successfully provide desired propellant inlet conditions. The benefits of passive conditioning are reduced operations costs, decreased hardware costs, enhanced operability and increased reliability on future expendable launch vehicles In Phase 2 of the test program, effects of major design parameters were studied and design correlation for future vehicle design were developed. Simultaneously, analytical models were developed and validated. Over 100 tests were conducted with a full-scale feedline using LN2 as the test fluid. A circulation pump provided a range of pressure and flow conditions. The test results showed that the passive propellant conditioning system is insensitive to variations in many of the parameters. The test program provides the validation necessary to incorporate the passive conditioning system into the baseline of future vehicles. Modeling of these systems using computational fluid dynamics seems highly promising.

  16. Heat transfer in heterogeneous propellant combustion systems

    International Nuclear Information System (INIS)

    Brewster, M.Q.

    1992-01-01

    This paper reports that heat transfer plays an important role in several critical areas of heterogeneous, solid-propellant combustion systems. These areas include heat feedback to the propellant surface, heat transfer between burning aluminum droplets and their surroundings, heat transfer to internal insulation systems, and heat transfer to aft-end equipment. Gas conduction dominates heat feedback to the propellant surface in conventional ammonium perchlorate (AP) composite propellants, although particle radiative feedback also plays a significant role in combustion of metalized propellants. Particle radiation plays a dominant role in heat transfer to internal insulation, compared with that of convection. However, conduction by impingement of burning aluminum particles, which has not been extensively studied, may also be significant. Radiative heat loss plays an important role in determining the burning rate of molten aluminum particles due to a highly luminous, oxide particle-laden, detached flame envelope. Radiation by aluminum oxide smoke particles also plays a dominant role in heat transfer from the exhaust plume to aft-end equipment. Uncertainties in aluminum oxide particle-size distribution and optical properties still make it difficult to predict radiative plume heat transfer accurately from first principles

  17. 2016 CSSE L3 Milestone: Deliver In Situ to XTD End Users

    Energy Technology Data Exchange (ETDEWEB)

    Patchett, John M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nouanesengsy, Boonthanome [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fasel, Patricia Kroll [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ahrens, James Paul [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-13

    This report summarizes the activities in FY16 toward satisfying the CSSE 2016 L3 milestone to deliver in situ to XTD end users of EAP codes. The Milestone was accomplished with ongoing work to ensure the capability is maintained and developed. Two XTD end users used the in situ capability in Rage. A production ParaView capability was created in the HPC and Desktop environment. Two new capabilities were added to ParaView in support of an EAP in situ workflow. We also worked with various support groups at the lab to deploy a production ParaView in the LANL environment for both desktop and HPC systems. . In addition, for this milestone, we moved two VTK based filters from research objects into the production ParaView code to support a variety of standard visualization pipelines for our EAP codes.

  18. NASA In-Situ Resource Utilization (ISRU) Technology and Development Project Overview

    Science.gov (United States)

    Sanders, Gerald B.; Lason, William E.; Sacksteder, Kurt R.; Mclemore, Carole; Johnson, Kenneth

    2008-01-01

    Since the Vision for Space Exploration (VSE) was released in 2004, NASA, in conjunction with international space agencies, industry, and academia, has continued to define and refine plans for sustained and affordable robotic and human exploration of the Moon and beyond. With the goal of establishing a lunar Outpost on the Moon to extend human presence, pursue scientific activities, use the Moon to prepare for future human missions to Mars, and expand Earth s economic sphere, a change in how space exploration is performed is required. One area that opens up the possibility for the first time of breaking our reliance on Earth supplied consumables and learn to live off the land is In-Situ Resource Utilization (ISRU). ISRU, which involves the extraction and processing of space resources into useful products, can have a substantial impact on mission and architecture concepts. In particular, the ability to make propellants, life support consumables, and fuel cell reagents can significantly reduce the cost, mass, and risk of sustained human activities beyond Earth. However, ISRU is an unproven capability for human lunar exploration and can not be put in the critical path of lunar Outpost success until it has been proven. Therefore, ISRU development and deployment needs to take incremental steps toward the desired end state. To ensure ISRU capabilities are available for pre-Outpost and Outpost deployment by 2020, and mission and architecture planners are confident that ISRU can meet initial and long term mission requirements, the ISRU Project is developing technologies and systems in three critical areas: (1) Regolith Excavation, Handling and Material Transportation; (2) Oxygen Extraction from Regolith; and (3) Volatile Extraction and Resource Prospecting, and in four development stages: (I) Demonstrate feasibility; (II) Evolve system w/ improved technologies; (III) Develop one or more systems to TRL 6 before start of flight development; and (IV) Flight development for

  19. In Situ/Remote Sensing Integration to Assess Forest Health—A Review

    Directory of Open Access Journals (Sweden)

    Marion Pause

    2016-06-01

    Full Text Available For mapping, quantifying and monitoring regional and global forest health, satellite remote sensing provides fundamental data for the observation of spatial and temporal forest patterns and processes. While new remote-sensing technologies are able to detect forest data in high quality and large quantity, operational applications are still limited by deficits of in situ verification. In situ sampling data as input is required in order to add value to physical imaging remote sensing observations and possibilities to interlink the forest health assessment with biotic and abiotic factors. Numerous methods on how to link remote sensing and in situ data have been presented in the scientific literature using e.g. empirical and physical-based models. In situ data differs in type, quality and quantity between case studies. The irregular subsets of in situ data availability limit the exploitation of available satellite remote sensing data. To achieve a broad implementation of satellite remote sensing data in forest monitoring and management, a standardization of in situ data, workflows and products is essential and necessary for user acceptance. The key focus of the review is a discussion of concept and is designed to bridge gaps of understanding between forestry and remote sensing science community. Methodological approaches for in situ/remote-sensing implementation are organized and evaluated with respect to qualifying for forest monitoring. Research gaps and recommendations for standardization of remote-sensing based products are discussed. Concluding the importance of outstanding organizational work to provide a legally accepted framework for new information products in forestry are highlighted.

  20. Inherently safe in situ uranium recovery

    Science.gov (United States)

    Krumhansl, James L; Brady, Patrick V

    2014-04-29

    An in situ recovery of uranium operation involves circulating reactive fluids through an underground uranium deposit. These fluids contain chemicals that dissolve the uranium ore. Uranium is recovered from the fluids after they are pumped back to the surface. Chemicals used to accomplish this include complexing agents that are organic, readily degradable, and/or have a predictable lifetime in an aquifer. Efficiency is increased through development of organic agents targeted to complexing tetravalent uranium rather than hexavalent uranium. The operation provides for in situ immobilization of some oxy-anion pollutants under oxidizing conditions as well as reducing conditions. The operation also artificially reestablishes reducing conditions on the aquifer after uranium recovery is completed. With the ability to have the impacted aquifer reliably remediated, the uranium recovery operation can be considered inherently safe.

  1. In situ hydrogen loading on zirconium powder

    Energy Technology Data Exchange (ETDEWEB)

    Maimaitiyili, Tuerdi, E-mail: tuerdi.maimaitiyili@mah.se; Blomqvist, Jakob [Malmö University, Östra Varvsgatan 11 A, Malmö, Skane 20506 (Sweden); Steuwer, Axel [Lund University, Ole Römers väg, Lund, Skane 22100 (Sweden); Nelson Mandela Metropolitan University, Gardham Avenue, Port Elizabeth 6031 (South Africa); Bjerkén, Christina [Malmö University, Östra Varvsgatan 11 A, Malmö, Skane 20506 (Sweden); Zanellato, Olivier [Ensam - Cnam - CNRS, 151 Boulevard de l’Hôpital, Paris 75013 (France); Blackmur, Matthew S. [Materials Performance Centre, School of Materials, The University of Manchester, Manchester M1 7HS (United Kingdom); Andrieux, Jérôme [European Synchrotron Radiation Facility, 6 rue J Horowitz, Grenoble 38043 (France); Université de Lyon, 43 Bd du 11 novembre 1918, Lyon 69100 (France); Ribeiro, Fabienne [Institut de Radioprotection et Sûreté Nucléaire, IRSN, BP 3, 13115 Saint-Paul Lez Durance (France)

    2015-06-26

    Commercial-grade Zr powder loaded with hydrogen in situ and phase transformations between various Zr and ZrH{sub x} phases have been monitored in real time. For the first time, various hydride phases in a zirconium–hydrogen system have been prepared in a high-energy synchrotron X-ray radiation beamline and their transformation behaviour has been studied in situ. First, the formation and dissolution of hydrides in commercially pure zirconium powder were monitored in real time during hydrogenation and dehydrogenation, then whole pattern crystal structure analysis such as Rietveld and Pawley refinements were performed. All commonly reported low-pressure phases presented in the Zr–H phase diagram are obtained from a single experimental arrangement.

  2. In situ synthesis of protein arrays.

    Science.gov (United States)

    He, Mingyue; Stoevesandt, Oda; Taussig, Michael J

    2008-02-01

    In situ or on-chip protein array methods use cell free expression systems to produce proteins directly onto an immobilising surface from co-distributed or pre-arrayed DNA or RNA, enabling protein arrays to be created on demand. These methods address three issues in protein array technology: (i) efficient protein expression and availability, (ii) functional protein immobilisation and purification in a single step and (iii) protein on-chip stability over time. By simultaneously expressing and immobilising many proteins in parallel on the chip surface, the laborious and often costly processes of DNA cloning, expression and separate protein purification are avoided. Recently employed methods reviewed are PISA (protein in situ array) and NAPPA (nucleic acid programmable protein array) from DNA and puromycin-mediated immobilisation from mRNA.

  3. In situ remediation of uranium contaminated groundwater

    International Nuclear Information System (INIS)

    Dwyer, B.P.; Marozas, D.C.

    1997-01-01

    In an effort to develop cost-efficient techniques for remediating uranium contaminated groundwater at DOE Uranium Mill Tailing Remedial Action (UMTRA) sites nationwide, Sandia National Laboratories (SNL) deployed a pilot scale research project at an UMTRA site in Durango, CO. Implementation included design, construction, and subsequent monitoring of an in situ passive reactive barrier to remove Uranium from the tailings pile effluent. A reactive subsurface barrier is produced by emplacing a reactant material (in this experiment various forms of metallic iron) in the flow path of the contaminated groundwater. Conceptually the iron media reduces and/or adsorbs uranium in situ to acceptable regulatory levels. In addition, other metals such as Se, Mo, and As have been removed by the reductive/adsorptive process. The primary objective of the experiment was to eliminate the need for surface treatment of tailing pile effluent. Experimental design, and laboratory and field results are discussed with regard to other potential contaminated groundwater treatment applications

  4. In situ bioremediation of Hanford groundwater

    International Nuclear Information System (INIS)

    Skeen, R.S.; Roberson, K.R.; Workman, D.J.; Petersen, J.N.; Shouche, M.

    1992-04-01

    Liquid wastes containing radioactive, hazardous, and regulated chemicals have been generated throughout the 40+ years of operations at the US Department of Energy's (DOE) Hanford Site. Some of these wastes were discharged to the soil column and many of the waste components, including nitrate, carbon tetrachloride (CCl 4 ), and several radionuclides, have been detected in the Hanford groundwater. Current DOE policy prohibits the disposal of contaminated liquids directly to the environment, and remediation of existing contaminated groundwaters may be required. In situ bioremediation is one technology currently being developed at Hanford to meet the need for cost effective technologies to clean groundwater contaminated with CCl 4 , nitrate, and other organic and inorganic contaminants. This paper focuses on the latest results of an on going effort to develop effective in situ remediation strategies through the use of predictive simulations

  5. WIPP/SRL in-situ tests

    International Nuclear Information System (INIS)

    Mamsey, W.G.

    1990-01-01

    The Materials Interface Interactions Test (MIIT) is the only in-situ program involving the burial of simulated high-level waste forms operating in the United States. Fifteen glass and waste form compositions and their proposed package materials, supplied by 7 countries, are interred in salt at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. A joint effort between Sandia National Laboratories and Savannah River Laboratory, MIIT is the largest international cooperative in-situ venture yet undertaken. The objective of the current study is to document the waste form compositions used in the MIIT program and then to examine compositional correlations based on structural considerations, bonding energies, and surface layer formation. These correlations show important similarities between the many different waste glass compositions studied world wide and suggest that these glasses would be expected to perform well and in a similar manner

  6. In situ hydrogen loading on zirconium powder

    International Nuclear Information System (INIS)

    Maimaitiyili, Tuerdi; Blomqvist, Jakob; Steuwer, Axel; Bjerkén, Christina; Zanellato, Olivier; Blackmur, Matthew S.; Andrieux, Jérôme; Ribeiro, Fabienne

    2015-01-01

    Commercial-grade Zr powder loaded with hydrogen in situ and phase transformations between various Zr and ZrH x phases have been monitored in real time. For the first time, various hydride phases in a zirconium–hydrogen system have been prepared in a high-energy synchrotron X-ray radiation beamline and their transformation behaviour has been studied in situ. First, the formation and dissolution of hydrides in commercially pure zirconium powder were monitored in real time during hydrogenation and dehydrogenation, then whole pattern crystal structure analysis such as Rietveld and Pawley refinements were performed. All commonly reported low-pressure phases presented in the Zr–H phase diagram are obtained from a single experimental arrangement

  7. Solar System Exploration Augmented by In-Situ Resource Utilization: Human Mercury and Saturn Exploration

    Science.gov (United States)

    Palaszewski, Bryan

    2015-01-01

    Human and robotic missions to Mercury and Saturn are presented and analyzed. Unique elements of the local planetary environments are discussed and included in the analyses and assessments. Using historical studies of space exploration, in-situ resource utilization (ISRU), and industrialization all point to the vastness of natural resources in the solar system. Advanced propulsion benefitted from these resources in many way. While advanced propulsion systems were proposed in these historical studies, further investigation of nuclear options using high power nuclear thermal and nuclear pulse propulsion as well as advanced chemical propulsion can significantly enhance these scenarios. Updated analyses based on these historical visions will be presented. Nuclear thermal propulsion and ISRU enhanced chemical propulsion landers are assessed for Mercury missions. At Saturn, nuclear pulse propulsion with alternate propellant feed systems and Titan exploration with chemical propulsion options are discussed.

  8. In situ health monitoring of piezoelectric sensors

    Science.gov (United States)

    Jensen, Scott L. (Inventor); Drouant, George J. (Inventor)

    2013-01-01

    An in situ health monitoring apparatus may include an exciter circuit that applies a pulse to a piezoelectric transducer and a data processing system that determines the piezoelectric transducer's dynamic response to the first pulse. The dynamic response can be used to evaluate the operating range, health, and as-mounted resonance frequency of the transducer, as well as the strength of a coupling between the transducer and a structure and the health of the structure.

  9. Squamous cell carcinoma in situ after irradiation

    International Nuclear Information System (INIS)

    Kambara, Takeshi; Nishiyama, Takafumi; Yamada, Rie; Nagatani, Tetsuo; Nakajima, Hiroshi; Sugiyama, Asami

    1997-01-01

    We report two cases with Squamous Cell Carcinoma (SCC) in situ caused by irradiation to hand eczemas, resistant to any topical therapies. Both of our cases clinically show palmer sclerosis and flexor restriction of the fingers, compatible to chronic radiation dermatitis. Although SCC arising in chronic radiation dermatitis is usually developed ten to twenty years after irradiation, in our cases SCC were found more than forty years after irradiation. (author)

  10. Ductal Carcinoma In Situ: The Whole Truth.

    Science.gov (United States)

    Parikh, Ujas; Chhor, Chloe M; Mercado, Cecilia L

    2018-02-01

    Ductal carcinoma in situ (DCIS) is a noninvasive malignant breast disease traditionally described as a precursor lesion to invasive breast cancer. With screening mammography, DCIS now accounts for approximately 20% of newly diagnosed cancer cases. DCIS is not well understood because of its heterogeneous nature. Studies have aimed to assess prognostic factors to characterize its risk of invasive potential; however, there still remains a lack of uniformity in workup and treatment. We summarize current knowledge of DCIS and the ongoing controversies.

  11. In-Situ Burn Gaps Analysis

    Science.gov (United States)

    2015-02-01

    This Report) UNCLAS//Public 20. Security Class (This Page) UNCLAS//Public 21. No of Pages 76 22. Price UNCLAS//Public | CG-926 RDC | Merrick...surveillance and spotting techniques/equipment to keep responders in the heaviest oil concentrations where their operation to skim , burn, or disperse...Offshore Oil Skim And Burn System For Use With Vessels Of Opportunity. UNCLAS//Public | CG-926 RDC | Merrick, et al. Public | June 2015 In-Situ Burn Gaps

  12. In-situ vitrification: pilot-scale development

    International Nuclear Information System (INIS)

    Timmerman, C.L.; Brouns, R.A.; Buelt, J.L.; Oma, K.H.

    1983-01-01

    Pacific Northwest Laboratory (PNL) is developing in-situ vitrification (ISV) as an in-place stabilization technique for buried radioactive and hazardous chemical wastes. The process melts the wastes and surrounding soil to produce a durable glass and crystalline waste form. These in situ vitrification process development testing and product evaluation studies are being conducted for the U.S. Department of Energy. This report discusses the results of four ISV pilot-scale field tests simulating radioactive and hazardous waste site conditions. The primary objectives of the field tests were to: demonstrate process scale-up from engineering-scale laboratory tests; verify equipment performance of the power system, electrodes and off-gas system; characterize the behavior of simulated wastes in the vitrified soil; identify waste losses to the off-gas system; and evaluate waste form durability. Test results have been encouraging. Process scaleup has been successfully demonstrated, with equipment and electrode performance equally as successful. The off-gas system effectively contained any volatile or entrained hazardous species. Vitrified soil analysis also indicated effective containment and a homogeneous distribution of nonradioactive radionuclide and hazardous waste simulants due to convective mixing during vitrification. Waste form leaching studies revealed that the ISV product has a durability similar to Pyrex glass

  13. In situ diesel fuel bioremediation: A case history

    International Nuclear Information System (INIS)

    Rhodes, D.K.; Burke, G.K.; Smith, N.; Clark, D.

    1995-01-01

    As a result of a ruptured fuel line, the study site had diesel fuel soil contamination and free product more than 2 ft (0.75 m) thick on the groundwater surface. Diesel fuel, which is composed of a high percentage of nonvolatile compounds, has proven difficult to remediate using conventional extraction remediation techniques. A number of remedial alternatives were reviewed, and the patented in situ biodegradation BioSparge SM technology was selected for the site and performed under license by a specialty contractor. BioSparge SM is a field-proven closed-loop (no vapor emissions) system that supplies a continuous, steady supply of oxygen, moisture, and additional heat to enhance microorganism activity. The system injects an enriched airstream beneath the groundwater surface elevation and/or within the contaminant plume and removes residual vapors from vadose zone soil within and above the contaminant plume. The technology has no air discharge, which is critical in areas where strict air discharge regulations apply. The focus of this paper is the viability of in situ biodegradation as an effective remediation alternative for reducing nonvolatile petroleum products

  14. Heterogeneous propellant internal ballistics: criticism and regeneration

    Science.gov (United States)

    Glick, R. L.

    2011-10-01

    Although heterogeneous propellant and its innately nondeterministic, chemically discrete morphology dominates applications, ballisticcharacterization deterministic time-mean burning rate and acoustic admittance measures' absence of explicit, nondeterministic information requires homogeneous propellant with a smooth, uniformly regressing burning surface: inadequate boundary conditions for heterogeneous propellant grained applications. The past age overcame this dichotomy with one-dimensional (1D) models and empirical knowledge from numerous, adequately supported motor developments and supplementary experiments. However, current cost and risk constraints inhibit this approach. Moreover, its fundamental science approach is more sensitive to incomplete boundary condition information (garbage-in still equals garbage-out) and more is expected. This work critiques this situation and sketches a path forward based on enhanced ballistic and motor characterizations in the workplace and approximate model and apparatus developments mentored by CSAR DNS capabilities (or equivalent).

  15. In situ rheology of yeast biofilms.

    Science.gov (United States)

    Brugnoni, Lorena I; Tarifa, María C; Lozano, Jorge E; Genovese, Diego

    2014-01-01

    The aim of the present work was to investigate the in situ rheological behavior of yeast biofilms growing on stainless steel under static and turbulent flow. The species used (Rhodototula mucilaginosa, Candida krusei, Candida kefyr and Candida tropicalis) were isolated from a clarified apple juice industry. The flow conditions impacted biofilm composition over time, with a predominance of C. krusei under static and turbulent flow. Likewise, structural variations occurred, with a tighter appearance under dynamic flow. Under turbulent flow there was an increase of 112 μm in biofilm thickness at 11 weeks (p < 0.001) and cell morphology was governed by hyphal structures and rounded cells. Using the in situ growth method introduced here, yeast biofilms were determined to be viscoelastic materials with a predominantly solid-like behavior, and neither this nor the G'0 values were significantly affected by the flow conditions or the growth time, and at large deformations their weak structure collapsed beyond a critical strain of about 1.5-5%. The present work could represent a starting point for developing in situ measurements of yeast rheology and contribute to a thin body of knowledge about fungal biofilm formation.

  16. In situ Raman mapping of art objects

    Science.gov (United States)

    Brondeel, Ph.; Moens, L.; Vandenabeele, P.

    2016-01-01

    Raman spectroscopy has grown to be one of the techniques of interest for the investigation of art objects. The approach has several advantageous properties, and the non-destructive character of the technique allowed it to be used for in situ investigations. However, compared with laboratory approaches, it would be useful to take advantage of the small spectral footprint of the technique, and use Raman spectroscopy to study the spatial distribution of different compounds. In this work, an in situ Raman mapping system is developed to be able to relate chemical information with its spatial distribution. Challenges for the development are discussed, including the need for stable positioning and proper data treatment. To avoid focusing problems, nineteenth century porcelain cards are used to test the system. This work focuses mainly on the post-processing of the large dataset which consists of four steps: (i) importing the data into the software; (ii) visualization of the dataset; (iii) extraction of the variables; and (iv) creation of a Raman image. It is shown that despite the challenging task of the development of the full in situ Raman mapping system, the first steps are very promising. This article is part of the themed issue ‘Raman spectroscopy in art and archaeology’. PMID:27799424

  17. Human activity and rest in situ.

    Science.gov (United States)

    Roenneberg, Till; Keller, Lena K; Fischer, Dorothee; Matera, Joana L; Vetter, Céline; Winnebeck, Eva C

    2015-01-01

    Our lives are structured by the daily alternation of activity and rest, of wake and sleep. Despite significant advances in circadian and sleep research, we still lack answers to many of the most fundamental questions about this conspicuous behavioral pattern. We strongly believe that investigating this pattern in entrained conditions, real-life and daily contexts-in situ-will help the field to elucidate some of these central questions. Here, we present two common approaches for in situ investigation of human activity and rest: the Munich ChronoType Questionnaire (MCTQ) and actimetry. In the first half of this chapter, we provide detailed instructions on how to use and interpret the MCTQ. In addition, we give an overview of the main insights gained with this instrument over the past 10 years, including some new findings on the interaction of light and age on sleep timing. In the second half of this chapter, we introduce the reader to the method of actimetry and share our experience in basic analysis techniques, including visualization, smoothing, and cosine model fitting of in situ recorded data. Additionally, we describe our new approach to automatically detect sleep from activity recordings. Our vision is that the broad use of such easy techniques in real-life settings combined with automated analyses will lead to the creation of large databases. The resulting power of big numbers will promote our understanding of such fundamental biological phenomena as sleep. © 2015 Elsevier Inc. All rights reserved.

  18. Monitoring of electrokinetic in-situ-decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Goldmann, T. [INTUS Inst. fuer Technologie und Umweltschutz e.V., Berlin (Germany)

    2001-07-01

    The need for a monitoring system for in-situ soil decontamination is two-fold: Firstly, to ensure that remediation is attained and secondly to minimize costs and treatment time. A further reason is the potential risk of unexpected mobilization or chemical generation of hazardous compounds which could result in an extension of the contamination into other regions of soil, the ground water or the atmosphere. Electrokinetic in-situ decontamination is based on transport processes in the ground that proceed with relatively low velocity. This results in treatment times of several months. Since the transport processes can be described by a mathematical model, monitoring should always be combined with qualified mathematical processing. This makes it possible to estimate treatment time and costs to be expected. The challenge of in-situ monitoring is to identify relevant parameters describing the state of the ground. These parameters must be independent from influences like weather but they must be sensitive to changes of soil characteristics. In the case of electrokinetic soil remediation, probes and sensors must be resistant to influences of electric fields. The function of sensors or measuring systems can be disturbed or even damaged or destroyed by electric fields (for example by electro-corrosion). (orig.)

  19. Design and simulation on the morphing composite propeller (Conference Presentation)

    Science.gov (United States)

    Chen, Fanlong; Li, Qinyu; Liu, Liwu; Lan, Xin; Liu, Yanju; Leng, Jinsong

    2017-04-01

    As one of the most crucial part of the unmanned underwater vehicle (UUV), the composite propeller plays an important role on the UUV's performance. As the composite propeller behaves excellent properties in hydroelastic facet and acoustic suppression, it attracts increasing attentions all over the globe. This paper goes a step further based on this idea, and comes up with a novel concept of "morphing composite propeller" (MCP) to improve the performance of the conventional composite propeller (CCP) to anticipate the improved propeller can perform better to propel the UUV. Based on the new concept, a novel MCP is designed. Each blade of the propeller is assembled with an active rotatable flap (ARF) to change the blade's local camber with flap rotation. Then the transmission mechanism (TM) has been designed and housed in the propeller blade to push the ARF. With the ARF rotating, the UUV can be propelled by different thrusts under certain rotation velocities of the propeller. Based on the design, the Fluent is exploited to analyze the fluid dynamics around the propeller. Finally, based on the design and hydrodynamic analysis, the structural response for the novel morphing composite propeller is calculated. The propeller blade is simplified and layered with composite materials. And the structure response of an MCP is obtained with various rotation angle under the hydrodynamic pressure. This simulation can instruct the design and fabrication techniques of the MCP.

  20. Mars Oxygen In-Situ Resource Utilization Experiment

    Data.gov (United States)

    National Aeronautics and Space Administration — The Mars Oxygen In-Situ Resource Utilization Experiment (MOXIE) will be the first in-situ resource utilization (ISRU) technology demonstration on Mars. Competitively...

  1. DEMONSTRATION BULLETIN: IN SITU ELECTROKINETIC EXTRACTION SYSTEM - SANDIA NATIONAL LABORATORIES

    Science.gov (United States)

    Sandia National Laboratories (SNL) has developed an in situ soil remediation system that uses electrokinetic principles to remediate hexavalent chromium-contaminated unsaturated or partially saturated soils. The technology involves the in situ application of direct current to the...

  2. Taoshan uranium ore fields in situ blasting heap leaching rate influence factors to investigate

    International Nuclear Information System (INIS)

    Xie Wangnan; Dong Chunming

    2014-01-01

    Taoshan ore field ore in situ blasting heap leaching out build industrial test and production process, stope leaching rate and leaching cycle is large than that, after analysis, blasting method and cloth liquid way is to affect leaching rate and leaching cycle of the main factors. This paper holds that as far as possible using stratified deep hole blasting of squeezing up ways to reduce the building pile of in-situ leaching ore block rate; Adopting effective cloth tube way, increase the leaching agent and ore contact comprehensive; Introduction of bacterial leaching, and other means to improve leaching rate, shorten production cycle, etc to solve it. (authors)

  3. CFD simulation on Kappel propeller with a hull wake field

    DEFF Research Database (Denmark)

    Shin, Keun Woo; Andersen, Poul; Møller Bering, Rasmus

    2013-01-01

    Marine propellers are designed not for the open-water operation, but for the operation behind a hull due to the inhomogeneous hull wake and thrust deduction. The adaptation for the hull wake is important for the propulsive efficiency and cavitation risk especially on single-screw ships. CFD...... simulations for a propeller with a hull model have showed acceptable agreement with a model test result in the thrust and torque (Larsson et al. 2010). In the current work, a measured hull wake is applied to the simulation instead of modelling a hull, because the hull geometry is mostly not available...... for propeller designers and the computational effort can be reduced by excluding the hull. The CFD simulation of a propeller flow with a hull wake is verified in order to use CFD as a propeller design tool. A Kappel propeller, which is an innovative tip-modified propeller, is handled. Kappel propellers...

  4. Process for the leaching of AP from propellant

    Science.gov (United States)

    Shaw, G. C.; Mcintosh, M. J. (Inventor)

    1980-01-01

    A method for the recovery of ammonium perchlorate from waste solid rocket propellant is described wherein shredded particles of the propellant are leached with an aqueous leach solution containing a low concentration of surface active agent while stirring the suspension.

  5. Neural Network Predictions of the 4-Quadrant Wageningen Propeller Series

    National Research Council Canada - National Science Library

    Roddy, Robert F; Hess, David E; Faller, Will

    2006-01-01

    .... This report describes the development of feedforward neural network (FFNN) predictions of four-quadrant thrust and torque behavior for the Wageningen B-Screw Series of propellers and for two Wageningen ducted propeller series...

  6. Innovative Swirl Injector for LOX and Hydrocarbon Propellants, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Gases trapped in the propellant feed lines of space-based rocket engines due to cryogenic propellant boil-off or pressurant ingestion can result in poor combustion...

  7. Propellant Gelation for Green In-Space Propulsion, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Concerns in recent years about the toxicity and safe handling of the storable class of propellants have led to efforts in greener monopropellants and bi-propellants....

  8. Novel in-situ lamella fabrication technique for in-situ TEM.

    Science.gov (United States)

    Canavan, Megan; Daly, Dermot; Rummel, Andreas; McCarthy, Eoin K; McAuley, Cathal; Nicolosi, Valeria

    2018-03-29

    In-situ transmission electron microscopy is rapidly emerging as the premier technique for characterising materials in a dynamic state on the atomic scale. The most important aspect of in-situ studies is specimen preparation. Specimens must be electron transparent and representative of the material in its operational state, amongst others. Here, a novel fabrication technique for the facile preparation of lamellae for in-situ transmission electron microscopy experimentation using focused ion beam milling is developed. This method involves the use of rotating microgrippers during the lift-out procedure, as opposed to the traditional micromanipulator needle and platinum weld. Using rotating grippers, and a unique adhesive substance, lamellae are mounted onto a MEMS device for in-situ TEM annealing experiments. We demonstrate how this technique can be used to avoid platinum deposition as well as minimising damage to the MEMS device during the thinning process. Our technique is both a cost effective and readily implementable alternative to the current generation of preparation methods for in-situ liquid, electrical, mechanical and thermal experimentation within the TEM as well as traditional cross-sectional lamella preparation. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. A Au/Cu2O-TiO2 system for photo-catalytic hydrogen production. A pn-junction effect or a simple case of in situ reduction?

    KAUST Repository

    Sinatra, Lutfan; LaGrow, Alec P.; Peng, Wei; Kirmani, Ahmad R.; Amassian, Aram; Idriss, Hicham; Bakr, Osman

    2015-01-01

    Photo-catalytic H2 production from water has been studied over Au-Cu2O nanoparticle deposited on TiO2 (anatase) in order to probe into both the plasmon resonance effect (Au nanoparticles) and the pn-junction at the Cu2O-TiO2 interface. The Au-Cu2O

  10. Ionic liquid propellants: future fuels for space propulsion.

    Science.gov (United States)

    Zhang, Qinghua; Shreeve, Jean'ne M

    2013-11-11

    Use of green propellants is a trend for future space propulsion. Hypergolic ionic liquid propellants, which are environmentally-benign while exhibiting energetic performances comparable to hydrazine, have shown great potential to meet the requirements of developing nontoxic high-performance propellant formulations for space propulsion applications. This Concept article presents a review of recent advances in the field of ionic liquid propellants. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. In situ vitrification program at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Loehr, C.A.; Merrill, S.K.

    1991-01-01

    A program to demonstrate the viability of in situ vitrification (ISV) technology in remediating a buried mixed transuranic (TRU) waste site is under way at the Idaho National Engineering Laboratory (INEL). The application of the technology to buried waste is being evaluated as part of a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) feasibility study. The ISV thermal treatment process converts contaminated soil into a chemically inert and stable glass and crystalline product. The process uses joule heating, accomplished by applying electric potential to electrodes that are placed in the soil to initiate and maintain soil melting. Organic contaminants in the soil are destroyed or removed while inorganic contaminants, including radionuclides, are incorporated into the stable, glass-like product or volatilized. Off-gases are collected in a confinement hood over the melt area and processed through an off-gas treatment system. The paper illustrates and describes the ISV process

  12. Changing of ballistic parameters from aged gun propellants

    NARCIS (Netherlands)

    Klerk, W.P.C. de; Driel, C.A. van

    2003-01-01

    The various properties of an SB and a DB gun propellant were investigated before and after artificial ageing. It was found that the decrease of nitrocellulose (NC) molecular weight, due to ageing of gun propellants, leads to a decrease of the mechanical integrity of the propellant grains. The effect

  13. Burning properties and mechanical integrity of aged gun propellants

    NARCIS (Netherlands)

    Driel, C.A. van; Klerk, W.P.C. de

    2017-01-01

    Conventional gun propellants exhibit the phenomenon of nitrocellulose (NC) decomposition. Besides an effect on thermal stability of propellants, decomposition of NC has an effect on the mechanical integrity of the propellant grains. Enhanced grain fracture may lead to unacceptable changes of the

  14. 14 CFR 25.907 - Propeller vibration and fatigue.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Propeller vibration and fatigue. 25.907... vibration and fatigue. This section does not apply to fixed-pitch wood propellers of conventional design. (a... propeller to show that failure due to fatigue will be avoided throughout the operational life of the...

  15. 14 CFR 23.907 - Propeller vibration and fatigue.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Propeller vibration and fatigue. 23.907... General § 23.907 Propeller vibration and fatigue. This section does not apply to fixed-pitch wood... evaluation of the propeller to show that failure due to fatigue will be avoided throughout the operational...

  16. Design Procedure of 4-Bladed Propeller

    African Journals Online (AJOL)

    PROF. O. E. OSUAGWU

    2013-09-01

    Sep 1, 2013 ... West African Journal of Industrial and Academic Research Vol.8 No.1 September 2013 ..... Number of blades. 5. Taylor's wake friction (w). The speed of ship (Vs), the number of propeller revolution (n), the blade number (Z) and the blade area ratio.... .... moment of inertia of a blade, the approximate.

  17. Spray and Combustion of Gelled Hypergolic Propellants

    Science.gov (United States)

    2014-10-20

    moisture absorption on the fumed silica surface correlates directly to the ambient humidity , and can reach 12% by weight at an atmospheric humidity of...propellant interface, the liquid at the interface can be heated to the homogeneous vapor nucleation temperature rather than the boiling point. At this

  18. Atmospheric surveillance self-propelling device

    International Nuclear Information System (INIS)

    Cartoux, Gerard.

    1980-11-01

    The atmospheric surveillance self-propelling device of the Saclay Nuclear Research Center can, by its conception (autonomy, rapid put into service, multiplicity of sampling and measurements), be used for all kind of measuring campains: pollution radioactive or not, routine or accidental situation, technical and logistic support and as a coordination or investigation vehicle [fr

  19. Voltammetric, in-situ spectroelectrochemical and in-situ electrocolorimetric characterization of phthalocyanines

    Energy Technology Data Exchange (ETDEWEB)

    Koca, Atif [Department of Chemical Engineering, Faculty of Engineering, Marmara University, Goeztepe, 34722 Istanbul (Turkey)], E-mail: akoca@eng.marmara.edu.tr; Bayar, Serife; Dincer, Hatice A. [Department of Chemistry, Technical University of Istanbul, Maslak, 34469 Istanbul (Turkey); Gonca, Erguen [Department of Chemistry, Fatih University, TR34500 B.Cekmece, Istanbul (Turkey)

    2009-04-01

    In this work, electrochemical, and in-situ spectroelectrochemical characterization of the metallophthalocyanines bearing tetra-(1,1-(dicarbethoxy)-2-(2-methylbenzyl))-ethyl 3,10,17,24-tetra chloro groups were performed. Voltammetric and in-situ spectroelectrochemical measurements show that while cobalt phthalocyanine complex gives both metal-based and ring-based redox processes, zinc and copper phthalocyanines show only ring-based reduction and oxidation processes. The redox processes are generally diffusion-controlled, reversible and one-electron transfer processes. Differently lead phthalocyanine demetallized during second oxidation reaction while it was stable during reduction processes. An in-situ electrocolorimetric method, based on the 1931 CIE (Commission Internationale de l'Eclairage) system of colorimetry, has been applied to investigate the color of the electro-generated anionic and cationic forms of the complexes for the first time in this study.

  20. TSSM: The in situ exploration of Titan

    Science.gov (United States)

    Coustenis, A.; Lunine, J. I.; Lebreton, J. P.; Matson, D.; Reh, K.; Beauchamp, P.; Erd, C.

    2008-09-01

    The Titan Saturn System Mission (TSSM) mission was born when NASA and ESA decided to collaborate on two missions independently selected by each agency: the Titan and Enceladus mission (TandEM), and Titan Explorer, a 2007 Flagship study. TandEM, the Titan and Enceladus mission, was proposed as an L-class (large) mission in response to ESA's Cosmic Vision 2015-2025 Call. The mission concept is to perform remote and in situ investigations of Titan primarily, but also of Enceladus and Saturn's magentosphere. The two satellites are tied together by location and properties, whose remarkable natures have been partly revealed by the ongoing Cassini-Huygens mission. These bodies still hold mysteries requiring a complete exploration using a variety of vehicles and instruments. TSSM will study Titan as a system, including its upper atmosphere, the interactions with the magnetosphere, the neutral atmosphere, surface, interior, origin and evolution, as well as the astrobiological potential of Titan. It is an ambitious mission because its targets are two of the most exciting and challenging bodies in the Solar System. It is designed to build on but exceed the scientific and technological accomplishments of the Cassini- Huygens mission, exploring Titan and Enceladus in ways that are not currently possible (full close-up and in situ coverage over long periods of time for Titan, several close flybys of Enceladus). One overarching goal of the TSSM mission is to explore in situ the atmosphere and surface of Titan. In the current mission architecture, TSSM consists of an orbiter (under NASA's responsibility) with a large host of instruments which would perform several Enceladus and Titan flybys before stabilizing in an orbit around Titan alone, therein delivering in situ elements (a Montgolfière, or hot air balloon, and a probe/lander). The latter are being studied by ESA. The balloon will circumnavigate Titan above the equator at an altitude of about 10 km for several months. The

  1. 75 FR 12148 - Airworthiness Directives; Ontic Engineering and Manufacturing, Inc. Propeller Governors, Part...

    Science.gov (United States)

    2010-03-15

    ... propeller pitch by regulating oil pressure to the propeller pitch change mechanism. Changes in governor oil..., the propeller governor cannot control oil pressure to the propeller pitch control mechanism. This... proposing this AD to prevent loss of propeller pitch control, damage to the propeller governor, and internal...

  2. ENHANCED DATA DISCOVERABILITY FOR IN SITU HYPERSPECTRAL DATASETS

    Directory of Open Access Journals (Sweden)

    B. Rasaiah

    2016-06-01

    Full Text Available Field spectroscopic metadata is a central component in the quality assurance, reliability, and discoverability of hyperspectral data and the products derived from it. Cataloguing, mining, and interoperability of these datasets rely upon the robustness of metadata protocols for field spectroscopy, and on the software architecture to support the exchange of these datasets. Currently no standard for in situ spectroscopy data or metadata protocols exist. This inhibits the effective sharing of growing volumes of in situ spectroscopy datasets, to exploit the benefits of integrating with the evolving range of data sharing platforms. A core metadataset for field spectroscopy was introduced by Rasaiah et al., (2011-2015 with extended support for specific applications. This paper presents a prototype model for an OGC and ISO compliant platform-independent metadata discovery service aligned to the specific requirements of field spectroscopy. In this study, a proof-of-concept metadata catalogue has been described and deployed in a cloud-based architecture as a demonstration of an operationalized field spectroscopy metadata standard and web-based discovery service.

  3. In-situ thermal testing program strategy

    International Nuclear Information System (INIS)

    1995-06-01

    In the past year the Yucca Mountain Site Characterization Project has implemented a new Program Approach to the licensing process. The Program Approach suggests a step-wise approach to licensing in which the early phases will require less site information than previously planned and necessitate a lesser degree of confidence in the longer-term performance of the repository. Under the Program Approach, the thermal test program is divided into two principal phases: (1) short-term in situ tests (in the 1996 to 2000 time period) and laboratory thermal tests to obtain preclosure information, parameters, and data along with bounding information for postclosure performance; and (2) longer-term in situ tests to obtain additional data regarding postclosure performance. This effort necessitates a rethinking of the testing program because the amount of information needed for the initial licensing phase is less than previously planned. This document proposes a revised and consolidated in situ thermal test program (including supporting laboratory tests) that is structured to meet the needs of the Program Approach. A customer-supplier model is used to define the Project data needs. These data needs, along with other requirements, were then used to define a set of conceptual experiments that will provide the required data within the constraints of the Program Approach schedule. The conceptual thermal tests presented in this document represent a consolidation and update of previously defined tests that should result in a more efficient use of Project resources. This document focuses on defining the requirements and tests needed to satisfy the goal of a successful license application in 2001, should the site be found suitable

  4. The treatment of in situ breast cancer

    International Nuclear Information System (INIS)

    Fentiman, I.S.

    1989-01-01

    Carcinoma in situ is the earliest histologically recognisable form of malignancy and as such provides an opportunity to treat the disease in a curative way. The two major variants, ductal carcinoma in situ (DCIS) and lobular carcinoma in situ (LCIS) will be considered separately as the two conditions have divergent natural histories. DCIS is increasing in incidence since microcalcification may be detected radiologically in the screening of asymptomatic women. The extent of microcalcification may not indicate the extent of disease. It has yet to be determined whether there is a difference in behaviour of the tumour forming and the asymptomatic types of DCIS. After a biopsy has shown DCIS there will be residual DCIS at the biopsy site in one-third of patients, and multifocal DCIS in another third. A coexistent infiltrating carcinoma may be present in up to 16%. Due to sampling problems areas of invasion may be missed. Axillary nodal metastases are found in only 1% of patients with histological DCIS. Radical surgery by total or modified mastectomy is almost curative, but 3% of patients will die of metastases. Taking results of uncontrolled trials, local relapse rates are as follows: excision alone 50%, wide excision 30%, wide excision plus radiotherapy 20%. Two prospective trials are underway run by the EORTC and NSABP in which patients with DCIS are treated by wide excision with or without external radiotherapy. LCIS is usually an incidental finding with a bilateral predisposition to subsequent infiltrating carcinomas. Curative procedures such as bilateral mastectomy with reconstruction may represent overtreatment. A systemic rather than local approach would seem appropriate and a trial is now underway run by the EORTC in which patients with histologically confirmed LCIS are randomised to observation alone or to receive tamoxifen 20 mg daily for 5 years. (orig./MG)

  5. Solar System Exploration Augmented by In-Situ Resource Utilization: Mercury and Saturn Propulsion Investigations

    Science.gov (United States)

    Palaszewski, Bryan

    2016-01-01

    Human and robotic missions to Mercury and Saturn are presented and analyzed with a range of propulsion options. Historical studies of space exploration, in-situ resource utilization (ISRU), and industrialization all point to the vastness of natural resources in the solar system. Advanced propulsion benefitted from these resources in many ways. While advanced propulsion systems were proposed in these historical studies, further investigation of nuclear options using high power nuclear thermal and nuclear pulse propulsion as well as advanced chemical propulsion can significantly enhance these scenarios. Updated analyses based on these historical visions will be presented. Nuclear thermal propulsion and ISRU enhanced chemical propulsion landers are assessed for Mercury missions. At Saturn, nuclear pulse propulsion with alternate propellant feed systems and Titan exploration with chemical propulsion options are discussed. In-situ resource utilization was found to be critical in making Mercury missions more amenable for human visits. At Saturn, refueling using local atmospheric mining was found to be difficult to impractical, while refueling the Saturn missions from Uranus was more practical and less complex.

  6. Development of in-situ monitoring system

    International Nuclear Information System (INIS)

    Lee, Bong Soo; Cho, Dong Hyun; Yoo, Wook Jae; Heo, Ji Yeon

    2010-03-01

    Development of in-situ monitoring system using an optical fiber to measure the real time temperature variation of subsurface water for the evaluation of flow characteristics. We describe the feasibility of developing a fiber-optic temperature sensor using a thermochromic material. A sensor-tip is fabricated by mixing of a thermochromic material powder. The relationships between the temperatures and the output voltages of detectors are determined to measure the temperature of water. It is expected that the fiber-optic temperature monitoring sensor using thermochromic material can be used to measure the real time temperature variation of subsurface water

  7. Reasonable assurance and in-situ testing

    International Nuclear Information System (INIS)

    Rhoderick, J.E.; Nelson, J.W.

    1986-01-01

    The Department of Energy is currently preparing site characterization plans for sites being considered for the first geologic repository. The site investigations described in these plans will be aimed at providing ''reasonable assurance'' to the Nuclear Regulatory Commission that the performance objectives and criteria specified in 10 CFR Part 60 will be met. The in-situ testing being planned by the DOE for site characterization, and the subsequent testing conducted as part of performance confirmation, reflects how the basis for ''reasonable assurance'' will change through the licensing process

  8. In-Situ Wire Damage Detection System

    Science.gov (United States)

    Williams, Martha K. (Inventor); Roberson, Luke B. (Inventor); Tate, Lanetra C. (Inventor); Smith, Trent M. (Inventor); Gibson, Tracy L. (Inventor); Jolley, Scott T. (Inventor); Medelius, Pedro J. (Inventor)

    2014-01-01

    An in-situ system for detecting damage in an electrically conductive wire. The system includes a substrate at least partially covered by a layer of electrically conductive material forming a continuous or non-continuous electrically conductive layer connected to an electrical signal generator adapted to delivering electrical signals to the electrically conductive layer. Data is received and processed to identify damage to the substrate or electrically conductive layer. The electrically conductive material may include metalized carbon fibers, a thin metal coating, a conductive polymer, carbon nanotubes, metal nanoparticles or a combination thereof.

  9. Computer Aided in situ Cognitive Behavioral Therapy

    DEFF Research Database (Denmark)

    Chongtay, Rocio A.; Hansen, John Paulin; Decker, Lone

    . One of the most common and successfully used treatments for phobic conditions has been Cognitive Behavioral Therapy (CBT), which helps people learn to detect thinking patterns that trigger the irrational fear and to replace them with more realistic ideas. The health and financial impacts in society...... presented here is being designed in a modular and scalable fashion. The web-based module can be accessed anywhere any time from a PC connected to the internet and can be used alone or as supplement for a location-based module for in situ gradual exposure therapy....

  10. In Situ Preservation of Historic Spacecraft

    Science.gov (United States)

    Barclay, R.; Brooks, R.

    The loss of the Mir space station is shown to symbolize a new consciousness of the value of space artefacts. The reasons why such artefacts as Mir become historic objects worthy of preservation are examined. Preservation of space vehicles in situ is discussed, with particular reference to safety, monitoring and long term costs. An argument is made for a wider definition for World Heritage designations to include material beyond the surface of the Earth, and for international bodies to assess, monitor and oversee these projects. Such heritage sites are seen as an economic driver for the development of space tourism in the 21st century.

  11. PAEDIATRIC URETERIC CALCULI: IN-SITU EXTRACORPOREAL ...

    African Journals Online (AJOL)

    Il navait ni obstruction urétérale ni infection urinaire. De légères hématuries et coliques transitoires ont été observées après la lithotripsie. Conclusion Chez lenfant, la lithotripsie extra-corporelle in situ est une procédure efficace dans le traitement des calculs urétéraux quelque soit le siège. Il ny a aucune morbidité liée à la ...

  12. Space Transportation Infrastructure Supported By Propellant Depots

    Science.gov (United States)

    Smitherman, David; Woodcock, Gordon

    2012-01-01

    A space transportation infrastructure is described that utilizes propellant depot servicing platforms to support all foreseeable missions in the Earth-Moon vicinity and deep space out to Mars. The infrastructure utilizes current expendable launch vehicle (ELV) systems such as the Delta IV Heavy, Atlas V, and Falcon 9, for all crew, cargo, and propellant launches to orbit. Propellant launches are made to Low-Earth-Orbit (LEO) Depot and an Earth-Moon Lagrange Point 1 (L1) Depot to support a new reusable in-space transportation vehicles. The LEO Depot supports missions to Geosynchronous Earth Orbit (GEO) for satellite servicing and to L1 for L1 Depot missions. The L1 Depot supports Lunar, Earth-Sun L2 (ESL2), Asteroid and Mars Missions. New vehicle design concepts are presented that can be launched on current 5 meter diameter ELV systems. These new reusable vehicle concepts include a Crew Transfer Vehicle (CTV) for crew transportation between the LEO Depot, L1 Depot and missions beyond L1; a new reusable lunar lander for crew transportation between the L1 Depot and the lunar surface; and Mars orbital Depot are based on International Space Station (ISS) heritage hardware. Data provided includes the number of launches required for each mission utilizing current ELV systems (Delta IV Heavy or equivalent) and the approximate vehicle masses and propellant requirements. Also included is a discussion on affordability with ideas on technologies that could reduce the number of launches required and thoughts on how this infrastructure include competitive bidding for ELV flights and propellant services, developments of new reusable in-space vehicles and development of a multiuse infrastructure that can support many government and commercial missions simultaneously.

  13. Propellant Slosh Force and Mass Measurement

    Directory of Open Access Journals (Sweden)

    Andrew Hunt

    2018-01-01

    Full Text Available We have used electrical capacitance tomography (ECT to instrument a demonstration tank containing kerosene and have successfully demonstrated that ECT can, in real time, (i measure propellant mass to better than 1% of total in a range of gravity fields, (ii image propellant distribution, and (iii accurately track propellant centre of mass (CoM. We have shown that the ability to track CoM enables the determination of slosh forces, and we argue that this will result in disruptive changes in a propellant tank design and use in a spacecraft. Ground testing together with real-time slosh force data will allow an improved tank design to minimize and mitigate slosh forces, while at the same time keeping the tank mass to a minimum. Fully instrumented Smart Tanks will be able to provide force vector inputs to a spacecraft inertial navigation system; this in turn will (i eliminate or reduce navigational errors, (ii reduce wait time for uncertain slosh settling, since actual slosh forces will be known, and (iii simplify slosh control hardware, hence reducing overall mass. ECT may be well suited to space borne liquid measurement applications. Measurements are independent of and unaffected by orientation or levels of g. The electronics and sensor arrays can be low in mass, and critically, the technique does not dissipate heat into the propellant, which makes it intrinsically safe and suitable for cryogenic liquids. Because of the limitations of operating in earth-bound gravity, it has not been possible to check the exact numerical accuracy of the slosh force acting on the vessel. We are therefore in the process of undertaking a further project to (i build a prototype integrated “Smart Tank for Space”, (ii undertake slosh tests in zero or microgravity, (iii develop the system for commercial ground testing, and (iv qualify ECT for use in space.

  14. Lunar Polar In Situ Resource Utilization (ISRU) as a Stepping Stone for Human Exploration

    Science.gov (United States)

    Sanders, Gerald B.

    2013-01-01

    A major emphasis of NASA is to extend and expand human exploration across the solar system. While specific destinations are still being discussed as to what comes first, it is imperative that NASA create new technologies and approaches that make space exploration affordable and sustainable. Critical to achieving affordable and sustainable exploration beyond low Earth orbit (LEO) are the development of technologies and approaches for advanced robotics, power, propulsion, habitats, life support, and especially, space resource utilization systems. Space resources and how to use them, often called In-Situ Resource Utilization (ISRU), can have a tremendous beneficial impact on robotic and human exploration of the Moon, Mars, Phobos, and Near Earth Objects (NEOs), while at the same time helping to solve terrestrial challenges and enabling commercial space activities. The search for lunar resources, demonstration of extraterrestrial mining, and the utilization of resource-derived products, especially from polar volatiles, can be a stepping stone for subsequent human exploration missions to other destinations of interest due to the proximity of the Moon, complimentary environments and resources, and the demonstration of critical technologies, processes, and operations. ISRU and the Moon: There are four main areas of development interest with respect to finding, obtaining, extracting, and using space resources: Prospecting for resources, Production of mission critical consumables like propellants and life support gases, Civil engineering and construction, and Energy production, storage, and transfer. The search for potential resources and the production of mission critical consumables are the primary focus of current NASA technology and system development activities since they provide the greatest initial reduction in mission mass, cost, and risk. Because of the proximity of the Moon, understanding lunar resources and developing, demonstrating, and implementing lunar ISRU

  15. BTX production by in-situ contact reforming of low-temperature tar from coal with zeolite-derived catalysts; Zeolite kei shokubai wo mochiita sekitan teion tar no sesshoku kaishitsu ni yoru BTX no seisei

    Energy Technology Data Exchange (ETDEWEB)

    Matsunaga, T.; Fuda, K.; Murakami, K.; Kyo, M.; Hosoya, S.; Kobayashi, S. [Akita University, Akita (Japan). Mining College

    1996-10-28

    On BTX production process from low-temperature tar obtained by pyrolysis of coal, the effect of exchanged metallic species and reaction temperature were studied using metallic ion-exchanged Y-zeolite as catalyst. In experiment, three kinds of coals with different produced tar structures such as Taiheiyo and PSOC-830 sub-bituminous coals and Loy Yang brown coal were used. Y-zeolite ion-exchanged with metal chloride aqueous solution was used as catalyst. Zn{sup 2+}, Ni{sup 2+} and In{sup 3+} were used as metal ions to be exchanged. The experiment was conducted by heating a pyrolysis section up to 600{degree}C for one hour after preheating a contact reforming section up to a certain proper temperature. As a result, the Ni system catalyst was effective for BTX production from aromatic-abundant tar, while the Zn system one from lower aromatic tar. In general, relatively high yields of toluene and xylene were obtained at lower temperature, while those of benzene at higher temperature. 4 figs., 1 tab.

  16. Comparing in situ removal strategies for improving styrene bioproduction.

    Science.gov (United States)

    McKenna, Rebekah; Moya, Luis; McDaniel, Matthew; Nielsen, David R

    2015-01-01

    As an important conventional monomer compound, the biological production of styrene carries significant promise with respect to creating novel sustainable materials. Since end-product toxicity presently limits styrene production by previously engineered Escherichia coli, in situ product removal by both solvent extraction and gas stripping were explored as process-based strategies for circumventing its inhibitory effects. In solvent extraction, the addition of bis(2-ethylhexyl)phthalate offered the greatest productivity enhancement, allowing net volumetric production of 836 ± 64 mg/L to be reached, representing a 320 % improvement over single-phase cultures. Gas stripping rates, meanwhile, were controlled by rates of bioreactor agitation and, to a greater extent, aeration. A periodic gas stripping protocol ultimately enabled up to 561 ± 15 mg/L styrene to be attained. Lastly, by relieving the effects of styrene toxicity, new insight was gained regarding subsequent factors limiting its biosynthesis in E. coli and strategies for future strain improvement are discussed.

  17. Constraining processes of landscape change with combined in situ cosmogenic 14C-10Be analysis

    Science.gov (United States)

    Hippe, Kristina

    2017-10-01

    Reconstructing Quaternary landscape evolution today frequently builds upon cosmogenic-nuclide surface exposure dating. However, the study of complex surface exposure chronologies on the 102-104 years' timescale remains challenging with the commonly used long-lived radionuclides (10Be, 26Al, 36Cl). In glacial settings, key points are the inheritance of nuclides accumulated in a rock surface during a previous exposure episode and (partial) shielding of a rock surface after the main deglaciation event, e.g. during phases of glacier readvance. Combining the short-lived in situ cosmogenic 14C isotope with 10Be dating provides a valuable approach to resolve and quantify complex exposure histories and burial episodes within Lateglacial and Holocene timescales. The first studies applying the in situ14C-10Be pair have demonstrated the great benefit from in situ14C analysis for unravelling complex glacier chronologies in various glacial environments worldwide. Moreover, emerging research on in situ14C in sedimentary systems highlights the capacity of combined in situ14C-10Be analysis to quantify sediment transfer times in fluvial catchments or to constrain changes in surface erosion rates. Nevertheless, further methodological advances are needed to obtain truly routine and widely available in situ14C analysis. Future development in analytical techniques has to focus on improving the analytical reproducibility, reducing the background level and determining more accurate muonic production rates. These improvements should allow extending the field of applications for combined in situ14C-10Be analysis in Earth surface sciences and open up a number of promising applications for dating young sedimentary deposits and the quantification of recent changes in surface erosion dynamics.

  18. Development of a Marine Propeller With Nonplanar Lifting Surfaces

    DEFF Research Database (Denmark)

    Andersen, Poul; Friesch, Jürgen; Kappel, Jens J.

    2005-01-01

    The principle of non-planar lifting surfaces is applied to the design of modern aircraft wings to obtain better lift to drag ratios. Whereas a pronounced fin or winglet at the wingtip has been developed for aircraft, the application of the nonplanar principle to marine propellers, dealt...... with in this paper, has led to the KAPPEL propeller with blades curved toward the suction side integrating the fin or winglet into the propeller blade. The combined theoretical, experimental, and practical approach to develop and design marine propellers with nonplanar lifting surfaces has resulted in propellers...

  19. Disappearance of the in situ component

    International Nuclear Information System (INIS)

    Chauvet, B.; Le Pechoux, C.; Calais, G.; Reynaud-Bougnoux, A.; Bougnoux, P.; Le Floch, O.; Fetisoff, F.; Lemseffer, A.; Body, G.; Lansac, J.

    1992-01-01

    Local recurrence after conservative treatment of breast cancer is associated with a significant risk for metastasis. In order to identify criteria predictive of metastasis in this subset of women, a series of 35 patients with local relapse was analyzed among 512 consecutive patients treated with tumorectomy and radiotherapy. When relapse occurred within 2 years of initial treatment, overall 2-year survival from the time of local relapse was 39.5%. When local relapse occurred more than 2 years from initial therapy, 2-year survival was 80.5% (p<0.001). Pathological slides of both initial and recurrent tumors were reviewed and compared. In 17 patients, local relapse and initial tumor had the same morphological features, with an in-situ component either absent or present in the same proportion. Metastasis occurred in two of these patients. In contrast, 9 of 12 patients in whom the proportion of non-invasive carcinoma had decreased at the time of local recurrence developed metastasis. Overall 2-year survival from the time of relapse was significantly better in the former group of patients (93.3% versus 52.5%, p<0.05). It is concluded that early relapses have a poor prognostic significance and that disappearance of the in-situ component or increase of the invasive component at the time of relapse is a feature predictive of tumor-related death and that more intensive therapy might benefit to this subset of women. (author). 26 refs., 1 fig., 4 tabs

  20. In situ bioremediation under high saline conditions

    International Nuclear Information System (INIS)

    Bosshard, B.; Raumin, J.; Saurohan, B.

    1995-01-01

    An in situ bioremediation treatability study is in progress at the Salton Sea Test Base (SSTB) under the NAVY CLEAN 2 contract. The site is located in the vicinity of the Salon Sea with expected groundwater saline levels of up to 50,000 ppm. The site is contaminated with diesel, gasoline and fuel oils. The treatability study is assessing the use of indigenous heterotrophic bacteria to remediate petroleum hydrocarbons. Low levels of significant macro nutrients indicate that nutrient addition of metabolic nitrogen and Orthophosphate are necessary to promote the process, requiring unique nutrient addition schemes. Groundwater major ion chemistry indicates that precipitation of calcium phosphorus compounds may be stimulated by air-sparging operations and nutrient addition, which has mandated the remedial system to include pneumatic fracturing as an option. This presentation is tailored at an introductory level to in situ bioremediation technologies, with some emphasize on innovations in sparge air delivery, dissolved oxygen uptake rates, nutrient delivery, and pneumatic fracturing that should keep the expert's interest