WorldWideScience

Sample records for in-situ nitrogen removal

  1. Nitrogen removal from landfill leachate via ex situ nitrification and sequential in situ denitrification

    International Nuclear Information System (INIS)

    Zhong Qi; Li Daping; Tao Yong; Wang Xiaomei; He Xiaohong; Zhang Jie; Zhang Jinlian; Guo Weiqiang; Wang Lan

    2009-01-01

    Ex situ nitrification and sequential in situ denitrification represents a novel approach to nitrogen management at landfills. Simultaneous ammonia and organics removal was achieved in a continuous stirred tank reactor (CSTR). The results showed that the maximum nitrogen loading rate (NLR) and the maximum organic loading rate (OLR) was 0.65 g N l -1 d -1 and 3.84 g COD l -1 d -1 , respectively. The ammonia and chemical oxygen demand (COD) removal was over 99% and 57%, respectively. In the run of the CSTR, free ammonia (FA) inhibition and low dissolved oxygen (DO) were found to be key factors affecting nitrite accumulation. In situ denitrification was studied in a municipal solid waste (MSW) column by recalculating nitrified leachate from CSTR. The decomposition of MSW was accelerated by the recirculation of nitrified leachate. Complete reduction of total oxidized nitrogen (TON) was obtained with maximum TON loading of 28.6 g N t -1 TS d -1 and denitrification was the main reaction responsible. Additionally, methanogenesis inhibition was observed while TON loading was over 11.4 g N t -1 TS d -1 and the inhibition was enhanced with the increase of TON loading

  2. Use of bioreactor landfill for nitrogen removal to enhance methane production through ex situ simultaneous nitrification-denitrification and in situ denitrification.

    Science.gov (United States)

    Sun, Xiaojie; Zhang, Hongxia; Cheng, Zhaowen

    2017-08-01

    High concentrations of nitrate-nitrogen (NO 3 - -N) derived from ex situ nitrification phase can inhibit methane production during ex situ nitrification and in situ denitrification bioreactor landfill. A combined process comprised of ex situ simultaneous nitrification-denitrification (SND) in an aged refuse bioreactor (ARB) and in situ denitrification in a fresh refuse bioreactor (FRB) was conducted to reduce the negative effect of high concentrationsof NO 3 - -N. Ex situ SND can be achieved because NO 3 - -N concentration can be reduced and the removal rate of ammonium-nitrogen (NH 4 + -N) remains largely unchanged when the ventilation rate of ARB-A2 is controlled. The average NO 3 - -N concentrations of effluent were 470mg/L in ex situ nitrification ARB-A1 and 186mg/L in ex situ SND ARB-A2. The average NH 4 + -N removal rates of ARB-A1 and ARB-A2 were 98% and 94%, respectively. Based on the experimental data from week 4 to week 30, it is predicted that NH 4 + -N concentration in FRB-F1 of the ex situ nitrification and in situ denitrification process would reach 25mg/L after 63weeks, and about 40weeks for the FRB-F2 of ex situ SND and in situ denitrification process . Ex situ SND and in situ denitrification process can improve themethane production of FRB-F2. The lag phase time of methane production for the FRB-F2 was 11weeks. This phase was significantly shorter than the 15-week phases of FRB-F1 in ex situ nitrification and in situ denitrification process. A seven-week stabilizationphase was required to increase methane content from 5% to 50% for FRB-F2. Methane content in FRB-F1 did not reach 50% but reached the 45% peak after 20weeks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Long-term population dynamics and in situ physiology in activated sludge systems with enhanced biological phosphorus removal operated with and without nitrogen removal

    DEFF Research Database (Denmark)

    Lee, N.; Nielsen, P.H.; Aspegren, H.

    2003-01-01

    . However, we observed a lower correlation (0.9). The Actinobacteria were the only additional group of bacteria which showed a similar degree of correlation to the P content in activated sludge as the Rhodocyclus-related bacteria - but only for the system without nitrogen removal. Significant amounts (less...... of the Betaproteobacteria (part of them identified as Rhodocyclus-related bacteria) as well as the Actinobacteria were able to take up P-33(i), [H-3]-acetate and [H-3]-glucose under anaerobic-aerobic conditions. The contribution of anoxic P-33(i) uptake under alternating anaerobic-anoxic conditions was significantly lower...

  4. Mixing and In situ product removal in micro-bioreactors

    NARCIS (Netherlands)

    Li, X.

    2009-01-01

    Summary Of the thesis :’ Mixing and In-situ product removal in micro bioreactors’ by Xiaonan Li The work presented in this thesis is a part of a large cluster project, which was formed between DSM, Organon, Applikon and two university groups (TU Delft and University of Twente), under the ACTS and

  5. In Situ Denitrification and Biological Nitrogen Fixation Under Enhanced Atmospheric Reactive Nitrogen Deposition in UK Peatlands

    Science.gov (United States)

    Ullah, Sami; Saiz Val, Ernesto; Sgouridis, Fotis; Peichl, Matthias; Nilsson, Mats

    2017-04-01

    Dinitrogen (N2) and nitrous oxide (N2O) losses due to denitrification and biological N2 fixation (BNF) are the most uncertain components of the nitrogen (N) cycle in peatlands under enhanced atmospheric reactive nitrogen (Nr) deposition. This uncertainty hampers our ability to assess the contribution of denitrification to the removal of biologically fixed and/or atmospherically deposited Nr in peatlands. This uncertainty emanates from the difficulty in measuring in situ soil N2 and N2O production and consumption in peatlands. In situ denitrification and its contribution to total N2O flux was measured monthly between April 2013 and October 2014 in peatlands in two UK catchments. An adapted 15N-Gas Flux method1 with low level addition of 15N tracer (0.03 ± 0.005 kg 15N ha-1) was used to measure denitrification and its contribution to net N2O production (DN2O/TN2O). BNF was measured in situ through incubation of selected sphagnum species under 15N2 gas tracer. Denitrification2 varied temporally and averaged 8 kg N-N2 ha-1 y-1. The contribution of denitrification was about 48% to total N2O flux3 of 0.05 kg N ha-1 y-1. Soil moisture, temperature, ecosystem respiration, pH and mineral N content mainly regulated the flux of N2 and N2O. Preliminary results showed suppression of BNF, which was 1.8 to 7 times lower in peatland mosses exposed to ˜15 to 20 kg N ha-1 y-1 Nr deposition in the UK than in peatland mosses in northern Sweden with background Nr deposition. Overall, the contribution of denitrification to Nr removal in the selected peatlands was ˜50% of the annual Nr deposition rates, making these ecosystems vulnerable to chronic N saturation. These results point to a need for a more comprehensive annual BNF measurement to more accurately account for total Nr input into peatlands and its atmospheric loss due to denitrification. References Sgouridis F, Stott A & Ullah S, 2016. Application of the 15N-Gas Flux method for measuring in situ N2 and N2O fluxes due to

  6. Future directions for in-situ product removal (ISPR)

    DEFF Research Database (Denmark)

    Woodley, John; Bisschops, Marc; Straathof, Adrie J J

    2008-01-01

    by inhibitory or toxic products, as wen as unstable products or reactions that are thermodynamically unfavorable. However, several issues for industrial implementation were revealed in the discussion. Most notably implementation will be dependent on (1) research into the appropriate process structure, (2......This paper summarizes the main findings of a round-table discussion held to examine the key bottlenecks in the further application and industrial implementation of in-situ product removal (ISPR) techniques. It is well established that ISPR can yield great benefits for processes limited...

  7. Comparing in situ removal strategies for improving styrene bioproduction.

    Science.gov (United States)

    McKenna, Rebekah; Moya, Luis; McDaniel, Matthew; Nielsen, David R

    2015-01-01

    As an important conventional monomer compound, the biological production of styrene carries significant promise with respect to creating novel sustainable materials. Since end-product toxicity presently limits styrene production by previously engineered Escherichia coli, in situ product removal by both solvent extraction and gas stripping were explored as process-based strategies for circumventing its inhibitory effects. In solvent extraction, the addition of bis(2-ethylhexyl)phthalate offered the greatest productivity enhancement, allowing net volumetric production of 836 ± 64 mg/L to be reached, representing a 320 % improvement over single-phase cultures. Gas stripping rates, meanwhile, were controlled by rates of bioreactor agitation and, to a greater extent, aeration. A periodic gas stripping protocol ultimately enabled up to 561 ± 15 mg/L styrene to be attained. Lastly, by relieving the effects of styrene toxicity, new insight was gained regarding subsequent factors limiting its biosynthesis in E. coli and strategies for future strain improvement are discussed.

  8. Antipollution system to remove nitrogen dioxide gas

    Science.gov (United States)

    Metzler, A. J.; Slough, J. W.

    1971-01-01

    Gas phase reaction system using anhydrous ammonia removes nitrogen dioxide. System consists of ammonia injection and mixing section, reaction section /reactor/, and scrubber section. All sections are contained in system ducting.

  9. Nitrate removal from alkaline high nitrate effluent by in situ generation of hydrogen using zinc dust

    International Nuclear Information System (INIS)

    Rajagopal, S.; Chitra, S.; Paul, Biplob

    2016-01-01

    Alkaline radioactive low level waste generated in Nuclear Fuel Cycle contains substantial amount of nitrate and needs to be treated to meet Central Pollution Control Board discharge limits of 90 mg/L in marine coastal area. Several denitrification methods like chemical treatment, electrochemical reduction, biological denitrification, ion exchange, reverse osmosis, photochemical reduction etc are followed for removal of nitrate. In effluent treatment plants where chemical treatment is carried out, chemical denitrification can be easily adapted without any additional set up. Reducing agents like zinc and aluminum are suitable for reducing nitrate in alkaline solution. Study on denitrification with zinc dust was taken up in this work. Not much work has been done with zinc dust on reduction of nitrate to nitrogen in alkaline waste with high nitrate content. In the present work, nitrate is reduced by nascent hydrogen generated in situ, caused by reaction between zinc dust and sodium hydroxide

  10. Enhanced nitrogen removal in trickling filter plants.

    Science.gov (United States)

    Dai, Y; Constantinou, A; Griffiths, P

    2013-01-01

    The Beaudesert Sewage Treatment Plant (STP), originally built in 1966 and augmented in 1977, is a typical biological trickling filter (TF) STP comprising primary sedimentation tanks (PSTs), TFs and humus tanks. The plant, despite not originally being designed for nitrogen removal, has been consistently achieving over 60% total nitrogen reduction and low effluent ammonium concentration of less than 5 mg NH3-N/L. Through the return of a NO3(-)-rich stream from the humus tanks to the PSTs and maintaining an adequate sludge age within the PSTs, the current plant is achieving a substantial degree of denitrification. Further enhanced denitrification has been achieved by raising the recycle flows and maintaining an adequate solids retention time (SRT) within the PSTs. This paper describes the approach to operating a TF plant to achieve a high degree of nitrification and denitrification. The effectiveness of this approach is demonstrated through the pilot plant trial. The results from the pilot trial demonstrate a significant improvement in nitrogen removal performance whilst maximising the asset life of the existing infrastructure. This shows great potential as a retrofit option for small and rural communities with pre-existing TFs that require improvements in terms of nitrogen removal.

  11. Electricity generation and in situ phosphate recovery from enhanced biological phosphorus removal sludge by electrodialysis membrane bioreactor.

    Science.gov (United States)

    Geng, Yi-Kun; Wang, Yunkun; Pan, Xin-Rong; Sheng, Guo-Ping

    2018-01-01

    In this study, a novel electrodialysis membrane bioreactor was used for EBPR sludge treatment for energy and phosphorus resource recovery simultaneously. After 30days stable voltage outputting, the maximum power density reached 0.32W/m 3 . Over 90% of phosphorus in EBPR sludge was released while about 50% of phosphorus was concentrated to 4mmol/L as relatively pure phosphate solution. Nitrogen could be removed from EBPR sludge by desalination and denitrification processes. This study provides an optimized way treating sludge for energy production and in situ phosphorus recovery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. In situ biosurfactant production and hydrocarbon removal by Pseudomonas putida CB-100 in bioaugmented and biostimulated oil-contaminated soil.

    Science.gov (United States)

    Ángeles, Martínez-Toledo; Refugio, Rodríguez-Vázquez

    2013-01-01

    In situ biosurfactant (rhamnolipid) production by Pseudomonas putida CB-100 was achieved during a bioaugmented and biostimulated treatment to remove hydrocarbons from aged contaminated soil from oil well drilling operations. Rhamnolipid production and contaminant removal were determined for several treatments of irradiated and non-irradiated soils: nutrient addition (nitrogen and phosphorus), P. putida addition, and addition of both (P. putida and nutrients). The results were compared against a control treatment that consisted of adding only sterilized water to the soils. In treatment with native microorganisms (non-irradiated soils) supplemented with P. putida, the removal of total petroleum hydrocarbons (TPH) was 40.6%, the rhamnolipid production was 1.54 mg/kg, and a surface tension of 64 mN/m was observed as well as a negative correlation (R = -0.54; p soil treated with P. putida, TPH removal was 24.5% with rhamnolipid generation of 1.79 mg/kg and 65.6 mN/m of surface tension, and a correlation between bacterial growth and biosurfactant production (R = -0.64; p soils, in situ rhamnolipid production by P. putida enhanced TPH decontamination of the soil.

  13. Nitrogen Removal from Landfill Leachate by Microalgae

    Science.gov (United States)

    Pereira, Sérgio F. L.; Gonçalves, Ana L.; Moreira, Francisca C.; Silva, Tânia F. C. V.; Vilar, Vítor J. P.; Pires, José C. M.

    2016-01-01

    Landfill leachates result from the degradation of solid residues in sanitary landfills, thus presenting a high variability in terms of composition. Normally, these effluents are characterized by high ammoniacal-nitrogen (N–NH4+) concentrations, high chemical oxygen demands and low phosphorus concentrations. The development of effective treatment strategies becomes difficult, posing a serious problem to the environment. Phycoremediation appears to be a suitable alternative for the treatment of landfill leachates. In this study, the potential of Chlorella vulgaris for biomass production and nutrients (mainly nitrogen and phosphorus) removal from different compositions of a landfill leachate was evaluated. Since microalgae also require phosphorus for their growth, different loads of this nutrient were evaluated, giving the following N:P ratios: 12:1, 23:1 and 35:1. The results have shown that C. vulgaris was able to grow in the different leachate compositions assessed. However, microalgal growth was higher in the cultures presenting the lowest N–NH4+ concentration. In terms of nutrients uptake, an effective removal of N–NH4+ and phosphorus was observed in all the experiments, especially in those supplied with phosphorus. Nevertheless, N–NO3− removal was considered almost negligible. These promising results constitute important findings in the development of a bioremediation technology for the treatment of landfill leachates. PMID:27869676

  14. In situ EELS and TEM observation of Al implanted with nitrogen ions

    International Nuclear Information System (INIS)

    Hojou, K.; Furuno, S.; Kushita, K.N.; Otsu, H.; Izui, K.

    1995-01-01

    Formation processes of Aluminum nitride (AIN) in Aluminum (AI) implanted with nitrogen were examined by in situ EELS and TEM observations during nitrogen ion implantation in an electron microscope at room temperature and 400 deg C. AIN phase was identified both by EDP and EELS after nitrogen ion implantation to 6 x 10 20 (N + )/m 2 . The observed peak (20.8 eV) in EELS spectra was identified as plasmon loss peak of AIN formed in AI. The binding energy of N ls in AI was found to shift by about 4 eV to the lower side with increasing nitrogen-ion fluence. Unreacted AI was also found to remain in the AIN films after high fluence implantation both at room temperature and 400 deg C. (authors). 11 refs., 5 figs., 2 tabs

  15. Liquid Nitrogen Removal of Critical Aerospace Materials

    Science.gov (United States)

    Noah, Donald E.; Merrick, Jason; Hayes, Paul W.

    2005-01-01

    Identification of innovative solutions to unique materials problems is an every-day quest for members of the aerospace community. Finding a technique that will minimize costs, maximize throughput, and generate quality results is always the target. United Space Alliance Materials Engineers recently conducted such a search in their drive to return the Space Shuttle fleet to operational status. The removal of high performance thermal coatings from solid rocket motors represents a formidable task during post flight disassembly on reusable expended hardware. The removal of these coatings from unfired motors increases the complexity and safety requirements while reducing the available facilities and approved processes. A temporary solution to this problem was identified, tested and approved during the Solid Rocket Booster (SRB) return to flight activities. Utilization of ultra high-pressure liquid nitrogen (LN2) to strip the protective coating from assembled space shuttle hardware marked the first such use of the technology in the aerospace industry. This process provides a configurable stream of liquid nitrogen (LN2) at pressures of up to 55,000 psig. The performance of a one-time certification for the removal of thermal ablatives from SRB hardware involved extensive testing to ensure adequate material removal without causing undesirable damage to the residual materials or aluminum substrates. Testing to establish appropriate process parameters such as flow, temperature and pressures of the liquid nitrogen stream provided an initial benchmark for process testing. Equipped with these initial parameters engineers were then able to establish more detailed test criteria that set the process limits. Quantifying the potential for aluminum hardware damage represented the greatest hurdle for satisfying engineers as to the safety of this process. Extensive testing for aluminum erosion, surface profiling, and substrate weight loss was performed. This successful project clearly

  16. META-ANALYSIS OF NITROGEN REMOVAL IN RIPARIAN BUFFERS

    Science.gov (United States)

    Riparian buffer zones, the vegetated region adjacent to streams and wetlands, are thought to be effective at intercepting and controlling nitrogen loads entering water bodies. Riparian buffer width may be positively related to nitrogen removal effectiveness by influencing nitrog...

  17. In situ biosurfactant production and hydrocarbon removal by Pseudomonas putida CB-100 in bioaugmented and biostimulated oil-contaminated soil

    Directory of Open Access Journals (Sweden)

    Martínez-Toledo Ángeles

    2013-01-01

    Full Text Available In situ biosurfactant (rhamnolipid production by Pseudomonas putida CB-100 was achieved during a bioaugmented and biostimulated treatment to remove hydrocarbons from aged contaminated soil from oil well drilling operations. Rhamnolipid production and contaminant removal were determined for several treatments of irradiated and non-irradiated soils: nutrient addition (nitrogen and phosphorus, P. putida addition, and addition of both (P. putida and nutrients. The results were compared against a control treatment that consisted of adding only sterilized water to the soils. In treatment with native microorganisms (non-irradiated soils supplemented with P. putida, the removal of total petroleum hydrocarbons (TPH was 40.6%, the rhamnolipid production was 1.54 mg/kg, and a surface tension of 64 mN/m was observed as well as a negative correlation (R = -0.54; p < 0.019 between TPH concentration (mg/kg and surface tension (mN/m, When both bacteria and nutrients were involved, TPH levels were lowered to 33.7%, and biosurfactant production and surface tension were 2.03 mg/kg and 67.3 mN/m, respectively. In irradiated soil treated with P. putida, TPH removal was 24.5% with rhamnolipid generation of 1.79 mg/kg and 65.6 mN/m of surface tension, and a correlation between bacterial growth and biosurfactant production (R = -0.64; p < 0.009 was observed. When the nutrients and P. putida were added, TPH removal was 61.1%, 1.85 mg/kg of biosurfactants were produced, and the surface tension was 55.6 mN/m. In summary, in irradiated and non-irradiated soils, in situ rhamnolipid production by P. putida enhanced TPH decontamination of the soil.

  18. Removing Spilled Oil With Liquid Nitrogen

    Science.gov (United States)

    Snow, Daniel B.

    1991-01-01

    Technique proposed to reduce more quickly, contain, clean up, and remove petroleum products and such other pollutants as raw sewage and chemicals without damage to humans, animals, plants, or the environment. Unique and primary aspect of new technique is use of cryogenic fluid to solidify spill so it can be carried away in solid chunks. Liquid nitrogen (LN2), with boiling point at -320 degrees F (-196 degrees C), offers probably best tradeoff among extreme cold, cost, availability, and lack of impact on environment among various cryogenic fluids available. Other applications include extinguishing fires at such locations as oil derricks or platforms and at tank farms containing such petroleum products as gasoline, diesel fuel, and kerosene.

  19. High performance of nitrogen and phosphorus removal in an electrolysis-integrated biofilter.

    Science.gov (United States)

    Gao, Y; Xie, Y W; Zhang, Q; Yu, Y X; Yang, L Y

    A novel electrolysis-integrated biofilter system was developed in this study to evaluate the intensified removal of nitrogen and phosphorus from contaminated water. Two laboratory-scale biofilter systems were established, one with electrolysis (E-BF) and one without electrolysis (BF) as control. The dynamics of intensified nitrogen and phosphorus removal and the changes of inflow and outflow water qualities were also evaluated. The total nitrogen (TN) removal rate was 94.4% in our newly developed E-BF, but only 74.7% in the control BF. Ammonium removal rate was up to 95% in biofilters with or without electrolysis integration with an influent ammonium concentration of 40 mg/L, and the accumulation of nitrate and nitrite was much lower in the effluent of E-BF than that of BF. Thus electrolysis plays an important role in TN removal especially the nitrate and nitrite removal. Phosphorus removal was significantly enhanced, exceeding 90% in E-BF by chemical precipitation, physical adsorption, and flocculation of phosphorus because of the in situ formation of ferric ions by the anodizing of sacrificial iron anodes. Results from this study indicate that the electrolysis integrated biofilter is a promising solution for intensified nitrogen and phosphorus removal.

  20. In-situ preparation of functionalized molecular sieve material and a methodology to remove template

    Science.gov (United States)

    Yadav, Rekha; Ahmed, Maqsood; Singh, Arvind Kumar; Sakthivel, Ayyamperumal

    2016-03-01

    A series of diaminosilane-functionalized silicoaluminophosphate molecular sieve (SAPO-37) was prepared by in-situ synthesis, and a novel method was developed for the selective removal of structure directing agent (SDA)/template from the functionalized SAPO-37.The complete removal of the SDA was evident according to FT-IR, TGA, 13C MAS-NMR and elemental analysis. The developed method was found to be efficient for removal of template from microporous molecular sieve viz., SAPO-37 and can be applied for other microporous molecular sieves such as SAPO-5, SAPO-40, etc. The powder XRD pattern of the template-removed samples showed a highly crystalline SAPO-37 phase. Argentometric titration revealed that more than 90% of diamine functionality exposed on the surface was accessible for catalytic applications. The resultant materials showed promising activity for ring opening of epoxide with aniline to yield β-amino-alcohol.

  1. In-situ preparation of functionalized molecular sieve material and a methodology to remove template.

    Science.gov (United States)

    Yadav, Rekha; Ahmed, Maqsood; Singh, Arvind Kumar; Sakthivel, Ayyamperumal

    2016-03-10

    A series of diaminosilane-functionalized silicoaluminophosphate molecular sieve (SAPO-37) was prepared by in-situ synthesis, and a novel method was developed for the selective removal of structure directing agent (SDA)/template from the functionalized SAPO-37.The complete removal of the SDA was evident according to FT-IR, TGA, (13)C MAS-NMR and elemental analysis. The developed method was found to be efficient for removal of template from microporous molecular sieve viz., SAPO-37 and can be applied for other microporous molecular sieves such as SAPO-5, SAPO-40, etc. The powder XRD pattern of the template-removed samples showed a highly crystalline SAPO-37 phase. Argentometric titration revealed that more than 90% of diamine functionality exposed on the surface was accessible for catalytic applications. The resultant materials showed promising activity for ring opening of epoxide with aniline to yield β-amino-alcohol.

  2. Characterization of the In Situ Ecophysiology of Novel Phylotypes in Nutrient Removal Activated Sludge Treatment Plants.

    Directory of Open Access Journals (Sweden)

    Simon Jon McIlroy

    Full Text Available An in depth understanding of the ecology of activated sludge nutrient removal wastewater treatment systems requires detailed knowledge of the community composition and metabolic activities of individual members. Recent 16S rRNA gene amplicon surveys of activated sludge wastewater treatment plants with nutrient removal indicate the presence of a core set of bacterial genera. These organisms are likely responsible for the bulk of nutrient transformations underpinning the functions of these plants. While the basic activities of some of these genera in situ are known, there is little to no information for the majority. This study applied microautoradiography coupled with fluorescence in situ hybridization (MAR-FISH for the in situ characterization of selected genus-level-phylotypes for which limited physiological information is available. These included Sulfuritalea and A21b, both within the class Betaproteobacteria, as well as Kaga01, within sub-group 10 of the phylum Acidobacteria. While the Sulfuritalea spp. were observed to be metabolically versatile, the A21b and Kaga01 phylotypes appeared to be highly specialized.

  3. Enhanced Enzymatic Production of Cephalexin at High Substrate Concentration with in situ Product Removal by Complexation

    Directory of Open Access Journals (Sweden)

    Dengchao Li

    2008-01-01

    Full Text Available Cephalexin (CEX was synthesized with 7-amino-3-deacetoxycephalosporanic acid (7-ADCA and D(–-phenylglycine methyl ester (PGME using immobilized penicillin G acylase from Escherichia coli. It was found that substrate concentration and in situ product could remarkably influence the ratio of synthesis to hydrolysis (S/H and the efficiency of CEX synthesis. The optimal ratio of enzyme to substrate was 65 IU/mM 7-ADCA. High substrate concentration improved the 7-ADCA conversion from 61 to 81 % in the process without in situ product removal (ISPR, while in the synthetic process with ISPR, high substrate concentration increased the 7-ADCA conversion from 88 to 98 %. CEX was easily separated from CEX/β-naphthol complex and its purity and overall yield were 99 and 70 %, respectively.

  4. A combined process coupling phytoremediation and in situ flushing for removal of arsenic in contaminated soil.

    Science.gov (United States)

    Yan, Xiulan; Liu, Qiuxin; Wang, Jianyi; Liao, Xiaoyong

    2017-07-01

    Phytoremediation and soil washing are both potentially useful for remediating arsenic (As)-contaminated soils. We evaluated the effectiveness of a combined process coupling phytoremediation and in situ soil flushing for removal of As in contaminated soil through a pilot study. The results showed that growing Pteris vittata L. (P.v.) accompanied by soil flushing of phosphate (P.v./Flushing treatment) could significantly decrease the total As concentration of soil over a 37day flushing period compared with the single flushing (Flushing treatment). The P.v./Flushing treatment removed 54.04% of soil As from contaminated soil compared to 47.16% in Flushing treatment, suggesting that the growth of P. vittata was beneficial for promoting the removal efficiency. We analyzed the As fractionation in soil and As concentration in soil solution to reveal the mechanism behind this combined process. Results showed that comparing with the control treatment, the percent of labile arsenate fraction significantly increased by 17% under P.v./Flushing treatment. As concentration in soil solution remained a high lever during the middle and later periods (51.26-56.22mg/L), which was significantly higher than the Flushing treatment. Although soil flushing of phosphate for more than a month, P. vittata still had good accumulation and transfer capacity of As of the soil. The results of the research revealed that combination of phytoremediation and in situ soil flushing is available to remediate As-contaminated soils. Copyright © 2016. Published by Elsevier B.V.

  5. Metatranscriptomics reveal differences in in situ energy and nitrogen metabolism among hydrothermal vent snail symbionts.

    Science.gov (United States)

    Sanders, J G; Beinart, R A; Stewart, F J; Delong, E F; Girguis, P R

    2013-08-01

    Despite the ubiquity of chemoautotrophic symbioses at hydrothermal vents, our understanding of the influence of environmental chemistry on symbiont metabolism is limited. Transcriptomic analyses are useful for linking physiological poise to environmental conditions, but recovering samples from the deep sea is challenging, as the long recovery times can change expression profiles before preservation. Here, we present a novel, in situ RNA sampling and preservation device, which we used to compare the symbiont metatranscriptomes associated with Alviniconcha, a genus of vent snail, in which specific host-symbiont combinations are predictably distributed across a regional geochemical gradient. Metatranscriptomes of these symbionts reveal key differences in energy and nitrogen metabolism relating to both environmental chemistry (that is, the relative expression of genes) and symbiont phylogeny (that is, the specific pathways employed). Unexpectedly, dramatic differences in expression of transposases and flagellar genes suggest that different symbiont types may also have distinct life histories. These data further our understanding of these symbionts' metabolic capabilities and their expression in situ, and suggest an important role for symbionts in mediating their hosts' interaction with regional-scale differences in geochemistry.

  6. Identification of groundwater microorganisms capable of assimilating RDX-derived nitrogen during in-situ bioremediation

    International Nuclear Information System (INIS)

    Cho, Kun-Ching; Fuller, Mark E.; Hatzinger, Paul B.; Chu, Kung-Hui

    2016-01-01

    Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), a nitroamine explosive, is commonly detected in groundwater at military testing and training sites. The objective of this study was to characterize the microbial community capable of using nitrogen derived from the RDX or RDX intermediates during in situ bioremediation. Active groundwater microorganisms capable of utilizing nitro-, ring- or fully-labeled "1"5N-RDX as a nitrogen source were identified using stable isotope probing (SIP) in groundwater microcosms prepared from two wells in an aquifer previously amended with cheese whey to promote RDX biodegradation. A total of fifteen 16S rRNA gene sequences, clustered in Clostridia, β-Proteobacteria, and Spirochaetes, were derived from the "1"5N-labeled DNA fractions, suggesting the presence of metabolically active bacteria capable of using RDX and/or RDX intermediates as a nitrogen source. None of the derived sequences matched RDX-degrading cultures commonly studied in the laboratory, but some of these genera have previously been linked to RDX degradation in site groundwater via "1"3C-SIP. When additional cheese whey was added to the groundwater samples, 28 sequences grouped into Bacteroidia, Bacilli, and α-, β-, and γ-Proteobacteria were identified. The data suggest that numerous bacteria are capable of incorporating N from ring- and nitro-groups in RDX during anaerobic bioremediation, and that some genera may be involved in both C and N incorporation from RDX. - Highlights: • Cheese whey addition resulted in 28 different clones associated with RDX degradation. • The 28 clones belong to Bacteroidia, Bacilli, and α-, β-, and γ-Proteobacteria. • SIP identified 15 clones using RDX and/or its metabolites as a nitrogen source. • The clones clustered in Clostridia, β-Proteobacteria, and Spirochaetes

  7. Identification of groundwater microorganisms capable of assimilating RDX-derived nitrogen during in-situ bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Kun-Ching [Zachry Department of Civil Engineering, Texas A& M University, College Station, TX 77843-3136 (United States); Fuller, Mark E.; Hatzinger, Paul B. [CB& I Federal Services, Lawrenceville, NJ 08648 (United States); Chu, Kung-Hui, E-mail: kchu@civil.tamu.edu [Zachry Department of Civil Engineering, Texas A& M University, College Station, TX 77843-3136 (United States)

    2016-11-01

    Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), a nitroamine explosive, is commonly detected in groundwater at military testing and training sites. The objective of this study was to characterize the microbial community capable of using nitrogen derived from the RDX or RDX intermediates during in situ bioremediation. Active groundwater microorganisms capable of utilizing nitro-, ring- or fully-labeled {sup 15}N-RDX as a nitrogen source were identified using stable isotope probing (SIP) in groundwater microcosms prepared from two wells in an aquifer previously amended with cheese whey to promote RDX biodegradation. A total of fifteen 16S rRNA gene sequences, clustered in Clostridia, β-Proteobacteria, and Spirochaetes, were derived from the {sup 15}N-labeled DNA fractions, suggesting the presence of metabolically active bacteria capable of using RDX and/or RDX intermediates as a nitrogen source. None of the derived sequences matched RDX-degrading cultures commonly studied in the laboratory, but some of these genera have previously been linked to RDX degradation in site groundwater via {sup 13}C-SIP. When additional cheese whey was added to the groundwater samples, 28 sequences grouped into Bacteroidia, Bacilli, and α-, β-, and γ-Proteobacteria were identified. The data suggest that numerous bacteria are capable of incorporating N from ring- and nitro-groups in RDX during anaerobic bioremediation, and that some genera may be involved in both C and N incorporation from RDX. - Highlights: • Cheese whey addition resulted in 28 different clones associated with RDX degradation. • The 28 clones belong to Bacteroidia, Bacilli, and α-, β-, and γ-Proteobacteria. • SIP identified 15 clones using RDX and/or its metabolites as a nitrogen source. • The clones clustered in Clostridia, β-Proteobacteria, and Spirochaetes.

  8. Using an Altimeter-Derived Internal Tide Model to Remove Tides from in Situ Data

    Science.gov (United States)

    Zaron, Edward D.; Ray, Richard D.

    2017-01-01

    Internal waves at tidal frequencies, i.e., the internal tides, are a prominent source of variability in the ocean associated with significant vertical isopycnal displacements and currents. Because the isopycnal displacements are caused by ageostrophic dynamics, they contribute uncertainty to geostrophic transport inferred from vertical profiles in the ocean. Here it is demonstrated that a newly developed model of the main semidiurnal (M2) internal tide derived from satellite altimetry may be used to partially remove the tide from vertical profile data, as measured by the reduction of steric height variance inferred from the profiles. It is further demonstrated that the internal tide model can account for a component of the near-surface velocity as measured by drogued drifters. These comparisons represent a validation of the internal tide model using independent data and highlight its potential use in removing internal tide signals from in situ observations.

  9. Nitrate-nitrogen removal with small-scale reverse osmosis ...

    African Journals Online (AJOL)

    The nitrate-nitrogen concentration in water supplied to clinics in Limpopo Province is too high to be fit for human consumption (35 to 75 mg/ℓ NO3-N). Therefore, small-scale technologies (reverse osmosis, ion-exchange and electrodialysis) were evaluated for nitrate-nitrogen removal to make the water potable (< 10 mg/ℓ ...

  10. Removal of atrial natriuretic factor by perfused rabbit lungs in situ

    International Nuclear Information System (INIS)

    Turrin, M.; Maack, T.; Gillis, C.N.

    1986-01-01

    Because atrial natriuretic factor (ANF) can be released from the right atrium into pulmonary blood, the authors studied the possibility of uptake of the peptide by rabbit lung, perfused in situ, at 20 ml/min with Krebs-albumin medium. Single pass removal (multiple indicator dilution with 14 C-dextran as reference) of trace amounts (40 pmoles) of 125 I-ANF was 66 +/- 4% (n=12). This was reduced to 8 +/- 4% by co-injection of 10 μM ANF but was unchanged by co-injection of CPAP (340 nM), an inhibitor of angiotensin-converting enzyme (ACE). When 125 I-ANF was re-circulated through lung, uptake reached maximum at 14 min (64 +/- 5%; n=7). Efflux of 125 I-ANF from preloaded lungs was monoexponential with t/sub 1/2/ = 17.7 min. Recovery of 125 I-ANF uptake after block by unlabelled ANF was studied. For this purpose, lungs were loaded with 0.1 μM unlabelled ANF by recirculating for 20 minutes, after which medium was changed to Krebs-albumin and removal of bolus injections of 125 I-ANF was measured every 5 min. Removal of 125 I-ANF, initially 0%, returned to control levels after 20 min. Thus, 125 I-ANF is removed from the pulmonary circulation by a saturable and reversible process which probably does not involve binding to the ACE present on endothelial cells

  11. In situ Removal of Hydrogen Sulfide During Biogas Fermentation at Microaerobic Condition.

    Science.gov (United States)

    Wu, Mengmeng; Zhang, Yima; Ye, Yuanyuan; Lin, Chunmian

    2016-11-01

    In this paper, rice straw was used as a raw material to produce biogas by anaerobic batch fermentation at 35 °C (mesophilic) or 55 °C (thermophilic). The hydrogen sulfide in biogas can be converted to S 0 or sulfate and removed in-situ under micro-oxygen environment. Trace oxygen was conducted to the anaerobic fermentation tank in amount of 0.5, 1.0, 2.0, 3.0, 4.0, 5.0, or 10.0 times stoichiometric equivalence, respectively, and the control experiment without oxygen addition was carried out. The results showed that the initial H 2 S concentrations of biogas are about 3235 ± 185 mg/m 3 (mesophilic) or 3394 ± 126 mg/m 3 (thermophilic), respectively. The desulfurization efficiency is 72.3 % (mesophilic) or 65.6 % (thermophilic), respectively, with oxygen addition by stoichiometric relation. When the oxygen feeded in amount of 2∼4 times, theoretical quantity demanded the removal efficiency of hydrogen sulfide could be over 92 %, and the oxygen residue in biogas could be maintained less than 0.5 %, which fit the requirement of biogas used as vehicle fuel or combined to the grid. Though further more oxygen addition could promote the removal efficiency of hydrogen sulfide (about 93.6 %), the oxygen residue in biogas would be higher than the application limit concentration (0.5 %). Whether mesophilic or thermophilic fermentation with the extra addition of oxygen, there were no obvious changes in the gas production and methane concentration. In conclusion, in-situ desulfurization can be achieved in the anaerobic methane fermentation system under micro-oxygen environment. In addition, air could be used as a substitute oxygen resource on the situation without strict demand for the methane content of biogas.

  12. Thermal expansion and phase transformations of nitrogen-expanded austenite studied with in situ synchrotron X-ray diffraction

    DEFF Research Database (Denmark)

    Brink, Bastian; Ståhl, Kenny; Christiansen, Thomas Lundin

    2014-01-01

    Nitrogen-expanded austenite, _N, with high and low nitrogen contents was produced from AISI 316 grade stainless steel powder by gaseous nitriding in ammonia/hydrogen gas mixtures. In situ synchrotron X-ray diffraction was applied to investigate the thermal expansion and thermal stability...... as a fitting parameter. The stacking fault density is constant for temperatures up to 680 K, whereafter it decreases to nil. Surprisingly, a transition phase with composition M4N (M = Fe, Cr, Ni, Mo) appears for temperatures above 770 K. The linear coefficient of thermal expansion depends on the nitrogen...

  13. In situ product removal in fermentation systems: improved process performance and rational extractant selection.

    Science.gov (United States)

    Dafoe, Julian T; Daugulis, Andrew J

    2014-03-01

    The separation of inhibitory compounds as they are produced in biotransformation and fermentation systems is termed in situ product removal (ISPR). This review examines recent ISPR strategies employing several classes of extractants including liquids, solids, gases, and combined extraction systems. Improvement through the simple application of an auxiliary phase are tabulated and summarized to indicate the breadth of recent ISPR activities. Studies within the past 5 years that have highlighted and have discussed "second phase" properties, and that have an effect on fermentation performance, are particular focus of this review. ISPR, as a demonstrably effective processing strategy, continues to be widely adopted as more applications are explored; however, focus on the properties of extractants and their rational selection based on first principle considerations will likely be key to successfully applying ISPR to more challenging target molecules.

  14. Investigation and in situ removal of spatter generated during laser ablation of aluminium composites

    International Nuclear Information System (INIS)

    Popescu, A.C.; Delval, C.; Shadman, S.; Leparoux, M.

    2016-01-01

    Highlights: • Study of spatter generated during laser irradiation of an aluminium nanocomposite. • Number of droplets was 1.5–3 times higher for laser in depth vs surface focused beams. • High speed imaging revealed particles exploding in flight similar to a fireworks effect. • Three methods were selected for droplets removal in situ and the results are analyzed. - Abstract: Spatter generated during laser irradiation of an aluminium alloy nanocomposite (AlMg5 reinforced with Al_2O_3 nanoparticles) was monitored by high speed imaging. Droplets trajectory and speed were assessed by computerized image analysis. The effects of laser peak power and laser focusing on the plume expansion and expulsed droplet speeds were studied in air or under argon flow. It was found that the velocity of visible droplets expulsed laterally or at the end of the plume emission from the metal surface was not dependent on the plasma plume speed. The neighbouring area of irradiation sites was studied by optical and scanning electron microscopy. Droplets deposited on the surface were classified according to their size and counted using a digital image processing software. It was observed that the number of droplets on surface was 1.5–3 times higher when the laser beam was focused in depth as compared to focused beams, even though the populations average diameter were comparable. Three methods were selected for removing droplets in situ, during plume expansion: an argon gas jet crossing the plasma plume, a fused silica plate collector transparent to the laser wavelength placed parallel to the irradiated surface and a mask placed onto the aluminium composite surface. The argon gas jet was efficient only for low power irradiation conditions, the fused silica plate failed in all tested conditions and the mask was successful for all irradiation regimes.

  15. In-situ identification of iron electrocoagulation speciation and application for natural organic matter (NOM) removal.

    Science.gov (United States)

    Dubrawski, Kristian L; Mohseni, Madjid

    2013-09-15

    In this work, iron speciation in electrocoagulation (EC) was studied to determine the impact of operating parameters on natural organic matter (NOM) removal from natural water. Two electrochemical EC parameters, current density (i) and charge loading rate (CLR), were investigated. Variation of these parameters led to a near unity current efficiency (φ = 0.957 ± 0.03), at any combination of i in a range of 1-25 mA/cm(2) and CLR in a range of 12-300 C/L/min. Higher i and CLR led to a higher bulk pH and limited the amount of dissolved oxygen (DO) reduced at the cathode surface due to mass transfer limitations. A low i (1 mA/cm(2)) and intermediate CLR (60 C/L/min) resulted in low bulk DO (<2.5 mg/L), where green rust (GR) was identified by in-situ Raman spectroscopy as the primary crystalline electrochemical product. Longer electrolysis times at higher i led to magnetite (Fe3O4) formation. Both higher (300 C/L/min) and lower (12 C/L/min) CLR values led to increased DO and/or increased pH, with lepidocrocite (γ-FeOOH) as the only crystalline species observed. The NOM removal of the three identified species was compared, with conditions leading to GR formation showing the greatest dissolved organic carbon removal, and highest removal of the low apparent molecular weight (<550 Da) chromophoric NOM fraction, determined by high performance size exclusion chromatography. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Removal of atrial natriuretic factor by perfused rabbit lungs in situ

    Energy Technology Data Exchange (ETDEWEB)

    Turrin, M.; Maack, T.; Gillis, C.N.

    1986-03-05

    Because atrial natriuretic factor (ANF) can be released from the right atrium into pulmonary blood, the authors studied the possibility of uptake of the peptide by rabbit lung, perfused in situ, at 20 ml/min with Krebs-albumin medium. Single pass removal (multiple indicator dilution with /sup 14/C-dextran as reference) of trace amounts (40 pmoles) of /sup 125/I-ANF was 66 +/- 4% (n=12). This was reduced to 8 +/- 4% by co-injection of 10 ..mu..M ANF but was unchanged by co-injection of CPAP (340 nM), an inhibitor of angiotensin-converting enzyme (ACE). When /sup 125/I-ANF was re-circulated through lung, uptake reached maximum at 14 min (64 +/- 5%; n=7). Efflux of /sup 125/I-ANF from preloaded lungs was monoexponential with t/sub 1/2/ = 17.7 min. Recovery of /sup 125/I-ANF uptake after block by unlabelled ANF was studied. For this purpose, lungs were loaded with 0.1 ..mu..M unlabelled ANF by recirculating for 20 minutes, after which medium was changed to Krebs-albumin and removal of bolus injections of /sup 125/I-ANF was measured every 5 min. Removal of /sup 125/I-ANF, initially 0%, returned to control levels after 20 min. Thus, /sup 125/I-ANF is removed from the pulmonary circulation by a saturable and reversible process which probably does not involve binding to the ACE present on endothelial cells.

  17. Operational strategies for nitrogen removal in granular sequencing batch reactor

    International Nuclear Information System (INIS)

    Chen, Fang-yuan; Liu, Yong-Qiang; Tay, Joo-Hwa; Ning, Ping

    2011-01-01

    This study investigated the effects of different operational strategies for nitrogen removal by aerobic granules with mean granule sizes of 1.5 mm and 0.7 mm in a sequencing batch reactor (SBR). With an alternating anoxic/oxic (AO) operation mode without control of dissolve oxygen (DO), the granular sludge with different size achieved the total inorganic nitrogen (TIN) removal efficiencies of 67.8-71.5%. While under the AO condition with DO controlled at 2 mg/l at the oxic phase, the TIN removal efficiency was improved up to 75.0-80.4%. A novel operational strategy of alternating anoxic/oxic combined with the step-feeding mode was developed for nitrogen removal by aerobic granules. It was found that nitrogen removal efficiencies could be further improved to 93.0-95.9% with the novel strategy. Obviously, the alternating anoxic/oxic strategy combined with step-feeding is the optimal way for TIN removal by granular sludge, which is independent of granule size.

  18. In situ electro-osmotic cleanup of tar contaminated soil—Removal of polycyclic aromatic hydrocarbons

    KAUST Repository

    Lima, Ana T.

    2012-12-01

    An in situ electro-osmosis experiment was set up in a tar contaminated clay soil in Olst, the Netherlands, at the site of a former asphalt factory. The main goal of this experiment was to remove polycyclic aromatic hydrocarbons (PAHs) from the contaminated clay layer by applying an electric gradient of 12 V m-1 across the soil over an electrode distance of 1 m. With the movement of water by electro-osmosis and the addition of a non-ionic surfactant (Tween 80), the non-polar PAHs were dragged along by convection and removed from the fine soil fraction. Soil samples were taken at the start and after 159 days at the end of the experiment. Water at the electrode wells was sampled regularly during the course of the experiment. The results reflect the heterogeneity of the soil characteristics and show the PAH concentrations within the experimental set up. After first having been released into the anolyte solution due to extraction by Tween 80 and subsequent diffusion, PAH concentrations increased significantly in the electrode reservoirs at the cathode side after 90 days of experiment. Although more detailed statistical analysis is necessary to quantify the efficiency of the remediation, it can be concluded that the use of electro-osmosis together with a non-ionic surfactant is a feasible technique to mobilize non-polar organic contaminants in clayey soils. Crown Copyright © 2011 Published by Elsevier Ltd. All rights reserved.

  19. Poly(acrylic acid) modifying bentonite with in-situ polymerization for removing lead ions.

    Science.gov (United States)

    He, Y F; Zhang, L; Yan, D Z; Liu, S L; Wang, H; Li, H R; Wang, R M

    2012-01-01

    In this paper, a new kind of poly(acrylic acid) modified clay adsorbent, the poly(acrylic acid)/bentonite composite (PAA/HB) was prepared by in-situ polymerization, and utilized to remove lead(II) ions from solutions. The maximum adsorption of adsorbent is at pH 5 for metal ions, whereas the adsorption starts at pH 2. The effects of contact time (5-60 min), initial concentration of metal ions (200-1,000 mg/L) and adsorbent dosage (0.04-0.12 g/100 mL) have been reported in this article. The experimental data were investigated by means of kinetic and equilibrium adsorption isotherms. The kinetic data were analyzed by the pseudo-first-order and pseudo-second-order equation. The experimental data fitted the pseudo-second-order kinetic model very well. Langmuir and Freundlich isotherms were tried for the system to better understand the adsorption isotherm process. The maximal adsorption capacity of the lead(II) ions on the PAA/HB, as calculated from the Langmuir model, was 769.2 mg/g. The results in this study indicated that PAA/HB was an attractive candidate for removing lead(II) (99%).

  20. In-situ Lead Removal by Iron Nano Particles Coated with Nickel

    Directory of Open Access Journals (Sweden)

    Mohammadreza Fadaei-tehrani

    2016-01-01

    Full Text Available This study investigates the potential of nano-zero-valent iron particles coated with nickel in the removal of lead (Pb2+ from porous media. For this purpose, the nano-particles were initially synthesized and later stablilized using the strach biopolymer prior to conducting batch and continuous experiments. The results of the batch experiments revealed that the reaction kinetics fitted well with the pseudo-first-order adsorption model and that the reaction rate ranged from 0.001 to 0.035 g/mg/min depending on solution pH and the molar ratio of Fe/Pb. Continuous experiments showed that lead remediation was mostly influenced not only by seepage velocity but also by the quantity and freshness of nZVI as well as the grain type of the porous media. Maximum Pb2+ removal rates obtained in the batch and lab models were 95% and 80%, respectively. Based on the present study, S-nZVI may be suggested as an efficient agent for in-situ remediation of groundwater contaminated with lead.

  1. A new approach to estimate the in situ fractional degradation rate of organic matter and nitrogen in wheat yeast concentrates

    NARCIS (Netherlands)

    De Jonge, L. H.; Van Laar, H.; Hendriks, W. H.; Dijkstra, J.

    2015-01-01

    In the classic in situ method, small particles are removed during rinsing and hence their fractional degradation rate cannot be determined. A new approach was developed to estimate the fractional degradation rate of nutrients in small particles. This approach was based on an alternative rinsing

  2. Ammonia nitrogen removal from aqueous solution by local agricultural wastes

    Science.gov (United States)

    Azreen, I.; Lija, Y.; Zahrim, A. Y.

    2017-06-01

    Excess ammonia nitrogen in the waterways causes serious distortion to environment such as eutrophication and toxicity to aquatic organisms. Ammonia nitrogen removal from synthetic solution was investigated by using 40 local agricultural wastes as potential low cost adsorbent. Some of the adsorbent were able to remove ammonia nitrogen with adsorption capacity ranging from 0.58 mg/g to 3.58 mg/g. The highest adsorption capacity was recorded by Langsat peels with 3.58 mg/g followed by Jackfruit seeds and Moringa peels with 3.37 mg/g and 2.64 mg/g respectively. This experimental results show that the agricultural wastes can be utilized as biosorbent for ammonia nitrogen removal. The effect of initial ammonia nitrogen concentration, pH and stirring rate on the adsorption process were studied in batch experiment. The adsorption capacity reached maximum value at pH 7 with initial concentration of 500 mg/L and the removal rate decreased as stirring rate was applied.

  3. Removal of sulfur and nitrogen containing pollutants from discharge gases

    Energy Technology Data Exchange (ETDEWEB)

    Joubert, James I. (Pittsburgh, PA)

    1986-01-01

    Oxides of sulfur and of nitrogen are removed from waste gases by reaction with an unsupported copper oxide powder to form copper sulfate. The resulting copper sulfate is dissolved in water to effect separation from insoluble mineral ash and dried to form solid copper sulfate pentahydrate. This solid sulfate is thermally decomposed to finely divided copper oxide powder with high specific surface area. The copper oxide powder is recycled into contact with the waste gases requiring cleanup. A reducing gas can be introduced to convert the oxide of nitrogen pollutants to nitrogen.

  4. Removal of sulfur and nitrogen containing pollutants from discharge gases

    Energy Technology Data Exchange (ETDEWEB)

    Joubert, J.I.

    1985-02-08

    Oxides of sulfur and of nitrogen are removed from waste gases by reaction with an unsupported copper oxide powder to form copper sulfate. The resulting copper sulfate is dissolved in water to effect separation from insoluble mineral ash and dried to form solid copper sulfate pentahydrate. This solid sulfate is thermally decomposed to finely divided copper oxide powder with high specific surface area. The copper oxide powder is recycled into contact with the waste gases requiring cleanup. A reducing gas can be introduced to convert the oxide of nitrogen pollutants to nitrogen.

  5. Nitrogen Removal Efficiency at Centralized Domestic Wastewater Treatment Plants in Bangkok, Thailand

    Directory of Open Access Journals (Sweden)

    Pongsak Noophan

    2009-07-01

    Full Text Available In this study, influents and effluents from centralized domestic wastewater treatment systems in Bangkok (Rattanakosin, Dindaeng, Chongnonsi, Nongkhaem, and Jatujak were randomly collected in order to measure organic nitrogen plus ammonium-nitrogen (total Kjeldahl nitrogen, total organic carbon, total suspended solids, and total volatile suspended solids by using Standard Methods for the Examination of Water and Wastewater 1998. Characteristics of influent and effluent (primary data of the centralized domestic wastewater treatment system from the Drainage and Sewerage Department of Bangkok Metropolitan Administration were used to analyze efficiency of systems. Fluorescent in situ hybridization (FISH was used to identify specific nitrifying bacteria (ammonium oxidizing bacteria specific for Nitrosomonas spp. and nitrite oxidizing bacteria specific for Nitrobacter spp. and Nitrospira spp.. Although Nitrosomonas spp. and Nitrobacter spp. were found, Nitrospira spp. was most prevalent in the aeration tank of centralized wastewater treatment systems. Almost all of the centralized domestic wastewater treatment plants in Bangkok are designed for activated sludge type biological nutrient removal (BNR. However, low efficiency nitrogen removal was found at centralized wastewater treatment plants in Bangkok. Influent ratio of TOC:N at centralized treatment plant is less than 2.5. Centralized wastewater treatment systems have not always been used suitability and used successfully in some areas of Bangkok Thailand.

  6. In-situ modification, regeneration, and application of keratin biopolymer for arsenic removal

    Energy Technology Data Exchange (ETDEWEB)

    Khosa, Muhammad A.; Ullah, Aman, E-mail: amanullah@ualberta.ca

    2014-08-15

    Graphical abstract: - Highlights: • In-situ chemical modification of keratin based material was carried out. • Characterization techniques such as SEM, FTIR, XRD, and DSC were employed. • TGA data was elaborated for its complete thermal and kinetic study. • Sorption of As(III) using modified material was experimentally studied. • Thermodynamics and Isotherm study was made for elucidation of adsorption data. - Abstract: Chemical modification of chicken feathers (CF) and their subsequent role in arsenic removal from water is presented in this paper. The ground CF were chemically treated with four selective dopants such as poly (ethylene glycol) (PEG) diglycidyl ether, poly (N-isopropylacrylamide) (PNIPAM), allyl alcohol (AA) and TrisilanolCyclohexyl POSS. After modification, the solubilized keratin was regenerated by precipitation at acidic pH. The structural changes and properties of modified biopolymer were compared with untreated CF and confirmed by different characterization techniques such as SEM, FTIR, XRD, and DSC. The TGA data was used to discuss thermal decomposition and kinetic behavior of modified biopolymer exhaustively. The modified biopolymers were further investigated as biosorbents for their application in As(III) removal from water. The AA and POSS supported biosorbents executed high removal capacity for As(III) up to 11.5 × 10{sup −2}and 11.0 × 10{sup −2} mg/g from 100 ml arsenic polluted water solution respectively. Thermodynamic parameters such as ΔG{sup 0}, ΔH{sup 0}, ΔS{sup 0} were also evaluated with the finding that overall sorption process was endothermic and spontaneous in nature. Based on linear and non-linear regression analysis, Freundlich Isotherm model showed good fit for obtained sorption data apart from high linear regression values supporting Langmuir isotherm model in sorption of As(III)

  7. Mechanism of nitrogen removal in wastewater lagoon: a case study.

    Science.gov (United States)

    Vendramelli, Richard A; Vijay, Saloni; Yuan, Qiuyan

    2017-06-01

    Ammonia being a nutrient facilitates the growth of algae in wastewater and causes eutrophication. Nitrate poses health risk if it is present in drinking water. Hence, nitrogen removal from wastewater is required. Lagoon wastewater treatment systems have become common in Canada these days. The study was conducted to understand the nitrogen removal mechanisms from the existing wastewater treatment lagoon system in the town of Lorette, Manitoba. The lagoon system consists of two primary aerated cells and two secondary unaerated cells. Surface samples were collected periodically from lagoon cells and analysed from 5 May 2015 to 9 November 2015. The windward and leeward sides of the ponds were sampled and the results were averaged. It was found that the free ammonia volatilization to the atmosphere is responsible for most of the ammonia removal. Ammonia and nitrate assimilation into biomass and biological growth in the cells appears to be the other mechanisms of nitrogen removal over the monitoring period. Factors affecting the nitrogen removal efficiency were found to be pH, temperature and hydraulic residence time. Also, the ammonia concentration in the effluent from the wastewater treatment lagoon was compared with the regulatory standard.

  8. Nitrogen Transformation and Removal in Horizontal Surface Flow ...

    African Journals Online (AJOL)

    The potential use of Constructed Mangrove Wetlands (CMWs) as a cheaper, effective and appropriate method for Nitrogen removal from domestic sewage of coastal zone in peri-urban cities was investigated from August 2007 to. September, 2008. Field investigations were made on horizontal surface flow constructed ...

  9. Biological nitrogen and phosphorus removal by filamentous bacteria ...

    African Journals Online (AJOL)

    The availability of excess nutrients (phosphorus (P) and nitrogen (N)) in wastewater systems causes many water quality problems. These problems include eutrophication whereby algae grow excessively and lead to depletion of oxygen, death of the aquatic life and bad odours. Biological phosphorus removal has gained ...

  10. Removal of nitrogen from anaerobically digested swine wastewater ...

    African Journals Online (AJOL)

    This result indicates that the sulfur-packed biofilter would be used as an efficient option for denitrification by autotrophic denitrifiers during swine wastewater treatment. Key words: Biological nitrogen removal, nitrification, denitrification, chemical oxygen demand (COD), intermittent aeration, sulfur-packed bed reactor, swine ...

  11. Removal of hard COD, nitrogenous compounds and phenols from a ...

    African Journals Online (AJOL)

    The objective of this study was to identify the factors affecting the suspended and fixed biomass in the removal of hard COD, nitrogenous compounds and phenols from a coal gasification wastewater (CGWW) stream using a hybrid fixed-film bioreactor (H-FFBR) process under real-time plant operational conditions and ...

  12. Nitrogen removal from urban wastewater by activated sludge ...

    African Journals Online (AJOL)

    This study deals with nitrogen removal from urban wastewater employing the activated sludge process at low temperature. It aims at determining the performances and rates of nitrification, and characterising the autotrophic biomass (concentration and kinetic parameters) at 11°C and for F/M ratios higher than the ...

  13. A study on nitrogen removal efficiency of Pseudomonas stutzeri ...

    African Journals Online (AJOL)

    USER

    2010-02-08

    Feb 8, 2010 ... ambient temperature in the reaction system, the efficiency of nitrogen removal was studied. The results ... no reported experiment which has been conducted to ... controlled shaker at 32°C with a 150 r/min rotating speed (Ahn,.

  14. Hot water extraction with in situ wet oxidation: Kinetics of PAHs removal from soil

    International Nuclear Information System (INIS)

    Dadkhah, Ali A.; Akgerman, Aydin

    2006-01-01

    Finding environmentally friendly and cost-effective methods to remediate soils contaminated with polycyclic aromatic hydrocarbons (PAHs) is currently a major concern of researchers. In this study, a series of small-scale semi-continuous extractions - with and without in situ wet oxidation - were performed on soils polluted with PAHs, using subcritical water (i.e. liquid water at high temperatures and pressures, but below the critical point) as the removal agent. Experiments were performed in a 300 mL reactor using an aged soil sample. To find the desorption isotherms and oxidation reaction rates, semi-continuous experiments with residence times of 1 and 2 h were performed using aged soil at 250 deg. C and hydrogen peroxide as oxidizing agent. In all combined extraction and oxidation flow experiments, PAHs in the remaining soil after the experiments were almost undetectable. In combined extraction and oxidation no PAHs could be detected in the liquid phase after the first 30 min of the experiments. Based on these results, extraction with hot water, if combined with oxidation, should reduce the cost of remediation and can be used as a feasible alternative technique for remediating contaminated soils and sediments

  15. Nitrogen removal from concentrated latex wastewater by land treatment

    Directory of Open Access Journals (Sweden)

    Vikanda Thongnuekhang

    2004-05-01

    Full Text Available Most of the concentrated latex factories in the South of Thailand discharge treated wastewater that contains high level of nitrogen to a nearby river or canals leading to a water pollution problem. A study of land treatment system was conducted to treat and utilize nitrogen in treated wastewater from the concentrated latex factory. The experimental pilot-scale land treatment system was constructed at the Faculty of Engineering, Prince of Songkla University, Hat Yai Campus. It consisted of water convolvulus (Ipomea aquatica, I. Reptans, tropical carpet grass (Axonopus compresus (Swartz Beav. and control unit (no plantation. The treated wastewater from the stabilization pond system of the selected concentrated latex factoryin Songkhla was used to irrigate each experimental unit. Influent and effluent from the experimental units were analyzed for TKN, NH3-N, Org-N, NO3 --N, NO2 --N, BOD5, sulfate, pH and EC. The land treatment system resulted a high removal efficiency for nitrogen. Tropical carpet grass provided higher removal efficiency than other units for all parameters. The removal efficiency of water convolvulus and control unit were not significantly different. The average removal efficiency of TKN, NH3-N, Org-N, BOD5 and sulfate for tropical carpet grass unit were 92, 97, 61, 88 and 52%, for water convolvulus unit were 75, 80, 43, 41 and 30%, and for control unit were 74, 80, 41, 31 and 28%, respectively. Mass balance of nitrogen transformation was conducted. It revealed that plant uptake was the major mechanism for nitrogen removal in land treatment.

  16. Nitrogen removal from wastewater by a catalytic oxidation method.

    Science.gov (United States)

    Huang, T L; Macinnes, J M; Cliffe, K R

    2001-06-01

    The ammonia-containing waste produced in industries is usually characterized by high concentration and high temperature, and is not treatable by biological methods directly. In this study, a hydrophobic Pt/SDB catalyst was first used in a trickle-bed reactor to remove ammonia from wastewater. In the reactor, both stripping and catalytic oxidation occur simultaneously. It was found that higher temperature and higher oxygen partial pressure enhanced the ammonia removal. A reaction pathway, which involves oxidizing ammonia to nitric oxide, which then further reacts with ammonia to produce nitrogen and water, was confirmed. Small amounts of by-products, nitrites and nitrates were also detected in the resultant reaction solution. These compounds came from the absorption of nitrogen oxides. Both the minimum NO2- selectivity and maximum ammonia removal were achieved when the resultant pH of treated water was near 7.5 for a feed of unbuffered ammonia solution.

  17. Effect and Modeling of Glucose Inhibition and In Situ Glucose Removal During Enzymatic Hydrolysis of Pretreated Wheat Straw

    DEFF Research Database (Denmark)

    Andric, Pavle; Meyer, Anne S.; Jensen, Peter Arendt

    2010-01-01

    The enzymatic hydrolysis of lignocellulosic biomass is known to be product-inhibited by glucose. In this study, the effects on cellulolytic glucose yields of glucose inhibition and in situ glucose removal were examined and modeled during extended treatment of heat-pretreated wheat straw......, during 96 h of reaction. When glucose was removed by dialysis during the enzymatic hydrolysis, the cellulose conversion rates and glucose yields increased. In fact, with dialytic in situ glucose removal, the rate of enzyme-catalyzed glucose release during 48-72 h of reaction recovered from 20......-40% to become approximate to 70% of the rate recorded during 6-24 h of reaction. Although Michaelis-Menten kinetics do not suffice to model the kinetics of the complex multi-enzymatic degradation of cellulose, the data for the glucose inhibition were surprisingly well described by simple Michaelis...

  18. In Situ Activation of Nitrogen-Doped Graphene Anchored on Graphite Foam for a High-Capacity Anode.

    Science.gov (United States)

    Ji, Junyi; Liu, Jilei; Lai, Linfei; Zhao, Xin; Zhen, Yongda; Lin, Jianyi; Zhu, Yanwu; Ji, Hengxing; Zhang, Li Li; Ruoff, Rodney S

    2015-08-25

    We report the fabrication of a three-dimensional free-standing nitrogen-doped porous graphene/graphite foam by in situ activation of nitrogen-doped graphene on highly conductive graphite foam (GF). After in situ activation, intimate "sheet contact" was observed between the graphene sheets and the GF. The sheet contact produced by in situ activation is found to be superior to the "point contact" obtained by the traditional drop-casting method and facilitates electron transfer. Due to the intimate contact as well as the use of an ultralight GF current collector, the composite electrode delivers a gravimetric capacity of 642 mAh g(-1) and a volumetric capacity of 602 mAh cm(-3) with respect to the whole electrode mass and volume (including the active materials and the GF current collector). When normalized based on the mass of the active material, the composite electrode delivers a high specific capacity of up to 1687 mAh g(-1), which is superior to that of most graphene-based electrodes. Also, after ∼90 s charging, the anode delivers a capacity of about 100 mAh g(-1) (with respect to the total mass of the electrode), indicating its potential use in high-rate lithium-ion batteries.

  19. Nitrogen removal process optimization in New York City WPCPS: a case study of Wards Island WPCP.

    Science.gov (United States)

    Ramalingam, K; Fillos, J; Musabyimana, M; Deur, A; Beckmann, K

    2009-01-01

    The New York City Department of Environmental Protection has been engaged in a continuous process to develop a nitrogen removal program to reduce the nitrogen mass discharge from its water pollution control plants, (WPCPs), from 49,158 kg/d to 20,105 kg/d by the year 2017 as recommended by the Long Island Sound Study. As part of the process, a comprehensive research effort was undertaken involving bench, pilot and full scale studies to identify the most effective way to upgrade and optimize the existing WPCPs. Aeration tank 13 (AT-13) at the Wards Island WPCP was particularly attractive as a full-scale research facility because its aeration tank with its dedicated final settling tanks and RAS pumps could be isolated from the remaining treatment facilities. The nitrogen removal performance of AT-13, which, at the time, was operated as a "basic step feed BNR Facility", was evaluated and concurrently nitrification kinetic parameters were measured using in-situ bench scale experiments. Additional bench scale experiments provided denitrification rates using different sources of carbon and measurement of the maximum specific growth rate of nitrifying bacteria. The combined findings were then used to upgrade AT-13 to a "full" BNR facility with carbon and alkalinity addition. This paper will focus on the combined bench and full scale results that were the basis for the consequent upgrade.

  20. Modelling nitrogen transformation and removal in mara river basin wetlands upstream of lake Victoria

    Science.gov (United States)

    Mayo, Aloyce W.; Muraza, Marwa; Norbert, Joel

    2018-06-01

    Lake Victoria, the largest lake in Africa, is a resource of social-economic potential in East Africa. This lake receives water from numerous tributaries including Mara River, which contributes about 4.8% of the total Lake water inflow. Unfortunately, Mara River basin faces environmental problems because of intensive settlement, agriculture, overgrazing in the basin and mining activities, which has lead to water pollution in the river, soil erosion and degradation, decreased soil fertility, loss of vegetation cover, decreased water infiltration capacity and increased sedimentation. One of the pollutants carried by the river includes nitrogen, which has contributed to ecological degradation of the Lake Victoria. Therefore this research work was intended to determine the effectiveness of Mara River wetland for removal of nitrogen and to establish nitrogen removal mechanisms in the wetland. To predict nitrogen removal in the wetland, the dynamics of nitrogen transformation was studied using a conceptual numerical model that takes into account of various processes in the system using STELLA II version 9.0®2006 software. Samples of model input from water, plants and sediments were taken for 45 days and were analyzed for pH, temperature, and DO in situ and chemical parameters such as NH3-N, Org-N, NO2-N, and NO3-N were analyzed in the laboratory in accordance with Standard methods. For plants, the density, dominance, biomass productivity and TN were determined and for sediments TN was analyzed. Inflow into the wetland was determined using stage-discharge relationship and was found to be 734,400 m3/day and the average wetland volume was 1,113,500 m3. Data collected by this study were used for model calibration of nitrogen transformation in this wetland while data from another wetland were used for model validation. It was found that about 37.8% of total nitrogen was removed by the wetland system largely through sedimentation (26.6%), plant uptake (6.6%) and

  1. Development of in situ product removal strategies in biocatalysis applying scaled-down unit operations.

    Science.gov (United States)

    Heintz, Søren; Börner, Tim; Ringborg, Rolf H; Rehn, Gustav; Grey, Carl; Nordblad, Mathias; Krühne, Ulrich; Gernaey, Krist V; Adlercreutz, Patrick; Woodley, John M

    2017-03-01

    An experimental platform based on scaled-down unit operations combined in a plug-and-play manner enables easy and highly flexible testing of advanced biocatalytic process options such as in situ product removal (ISPR) process strategies. In such a platform, it is possible to compartmentalize different process steps while operating it as a combined system, giving the possibility to test and characterize the performance of novel process concepts and biocatalysts with minimal influence of inhibitory products. Here the capabilities of performing process development by applying scaled-down unit operations are highlighted through a case study investigating the asymmetric synthesis of 1-methyl-3-phenylpropylamine (MPPA) using ω-transaminase, an enzyme in the sub-family of amino transferases (ATAs). An on-line HPLC system was applied to avoid manual sample handling and to semi-automatically characterize ω-transaminases in a scaled-down packed-bed reactor (PBR) module, showing MPPA as a strong inhibitor. To overcome the inhibition, a two-step liquid-liquid extraction (LLE) ISPR concept was tested using scaled-down unit operations combined in a plug-and-play manner. Through the tested ISPR concept, it was possible to continuously feed the main substrate benzylacetone (BA) and extract the main product MPPA throughout the reaction, thereby overcoming the challenges of low substrate solubility and product inhibition. The tested ISPR concept achieved a product concentration of 26.5 g MPPA  · L -1 , a purity up to 70% g MPPA  · g tot -1 and a recovery in the range of 80% mol · mol -1 of MPPA in 20 h, with the possibility to increase the concentration, purity, and recovery further. Biotechnol. Bioeng. 2017;114: 600-609. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Intensified nitrogen and phosphorus removal in a novel electrolysis-integrated tidal flow constructed wetland system.

    Science.gov (United States)

    Ju, Xinxin; Wu, Shubiao; Zhang, Yansheng; Dong, Renjie

    2014-08-01

    A novel electrolysis-integrated tidal flow constructed wetland (CW) system was developed in this study. The dynamics of intensified nitrogen and phosphorus removal and that of hydrogen sulphide control were evaluated. Ammonium removal of up to 80% was achieved with an inflow concentration of 60 mg/L in wetland systems with and without electrolysis integration. Effluent nitrate concentration decreased from 2 mg/L to less than 0.5 mg/L with the decrease in current intensity from 1.5 mA/cm(2) to 0.57 mA/cm(2) in the electrolysis-integrated wetland system, thus indicating that the current intensity of electrolysis plays an important role in nitrogen transformations. Phosphorus removal was significantly enhanced, exceeding 95% in the electrolysis-integrated CW system because of the in-situ formation of a ferric iron coagulant through the electro-dissolution of a sacrificial iron anode. Moreover, the electrolyzed wetland system effectively inhibits sulphide accumulation as a result of a sulphide precipitation coupled with ferrous-iron electro-dissolution and/or an inhibition of bacterial sulphate reduction under increased aerobic conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Remarkable efficiency of phosphate removal: Ferrate(VI)-induced in situ sorption on core-shell nanoparticles.

    Science.gov (United States)

    Kralchevska, Radina P; Prucek, Robert; Kolařík, Jan; Tuček, Jiří; Machala, Libor; Filip, Jan; Sharma, Virender K; Zbořil, Radek

    2016-10-15

    Despite the importance of phosphorus as a nutrient for humans and its role in ecological sustainability, its high abundance, resulting in large part from human activities, causes eutrophication that negatively affects the environment and public health. Here, we present the use of ferrate(VI) as an alternative agent for removing phosphorus from aqueous media. We address the mechanism of phosphate removal as a function of the Fe/P mass ratio and the pH value of the solution. The isoelectric point of γ-Fe2O3 nanoparticles, formed as dominant Fe(VI) decomposition products, was identified to play a crucial role in predicting their efficiency in removing of phosphates. Importantly, it was found that the removal efficiency dramatically changes if Fe(VI) is added before (ex-situ conditions) or after (in-situ conditions) the introduction of phosphates into water. Removal under in-situ conditions showed remarkable sorption capacity of 143.4 mg P per gram of ferric precipitates due to better accessibility of active surface sites on in-situ formed ferric oxides/oxyhydroxides. At pH = 6.0-7.0, complete removal of phosphates was observed at a relatively low Fe/P mass ratio (5:1). The results show that phosphates are removed from water solely by sorption on the surface of γ-Fe2O3/γ-FeOOH core/shell nanoparticles. The advantages of Fe(VI) utilization include its environmentally friendly nature, the possibility of easy separation of the final product from water by a magnetic field or by natural settling, and the capacity for successful phosphate elimination at pH values near the neutral range and at low Fe/P mass ratios. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Influence of road salt on the biological removal of nitrogen

    OpenAIRE

    Eliška Horniaková; Milan Búgel

    2007-01-01

    Processes occuring in the aeration tank remove nitrogen from the organic substances in wastewater by using the bacterii. Nitrification utilize the metabolism of aerobic bacterii Nitrosomonas, Nitrococus, Nitrospira, Nitrobacter Nitrocystis a Nitrosobolus. Pseudosomonas, Chromobacterium, Denitrobacillus a Micrococus are denitrification anaerobic bacterii. The bacterii are lithotrophic and they are sensitive to pH of wastewater. Chlorine and heavy metals are toxic for these bacterii. For a corr...

  5. Suppression of temperature instability in InGaZnO thin-film transistors by in situ nitrogen doping

    International Nuclear Information System (INIS)

    Raja, Jayapal; Jang, Kyungsoo; Yi, Junsin; Balaji, Nagarajan

    2013-01-01

    We have investigated the effect of nitrogen doping on the behavior of hysteresis curve and its suppression of temperature instability in amorphous InGaZnO thin-film transistors (a-IGZO TFTs). The in situ nitrogen doping reduced the temperature induced abnormal sub threshold leakage current and traps generation. Large falling-rate (F R ) ∼ 0.26 eV V −1 , low activation energy (E a ) ∼ 0.617 eV and a small hysteresis compared to the pure a-IGZO TFTs, shows the best immunity to thermal instability. This is mainly attributed to the reduction of interface trap density and oxygen vacancies due to the passivation of defects and/dangling bonds. (paper)

  6. In-situ arsenic removal during groundwater recharge through unsaturated alluvium

    Science.gov (United States)

    O'Leary, David; Izbicki, John; T.J. Kim,; Clark Ajawani,; Suarez, Donald; Barnes, Thomas; Thomas Kulp,; Burgess, Matthew K.; Tseng, Iwen

    2015-01-01

    OBJECTIVES The purpose of this study was to determine the feasibility and sustainability of in-situ removal of arsenic from water infiltrated through unsaturated alluvium. BACKGROUND Arsenic is naturally present in aquifers throughout the southwestern United States and elsewhere. In January 2006, the U.S. Environmental Protection Agency (EPA) lowered the Maximum Contaminant Level (MCL) for arsenic from 50 to 10 micrograms per liter (g/L). This raised concerns about naturally-occurring arsenic in groundwater. Although commercially available systems using sorbent iron or aluminum oxide resins are available to treat high-arsenic water, these systems are expensive to build and operate, and may generate hazardous waste. Iron and aluminum oxides occur naturally on the surfaces of mineral grains that compose alluvial aquifers. In areas where alluvial deposits are unsaturated, these oxides may sorb arsenic in the same manner as commercial resins, potentially providing an effective low-cost alternative to commercially engineered treatment systems. APPROACH The Antelope Valley within the Mojave Desert of southern California contains a shallow water-table aquifer with arsenic concentrations of 5 g/L, and a deeper aquifer with arsenic concentrations of 30 g/L. Water was pumped from the deep aquifer into a pond and infiltrated through an 80 m-thick unsaturated zone as part of field-scale and laboratory experiments to treat high-arsenic groundwater and recharge the shallow water table aquifer at the site. The field-scale recharge experiment included the following steps: 1) construction of a recharge pond 2) test drilling for sample collection and instrument installation adjacent to the pond 3) monitoring downward migration of water infiltrated from the pond 4) monitoring changes in selected trace-element concentrations as water infiltrated through the unsaturated zone Data from instruments within the borehole adjacent to the pond were supplemented with borehole and

  7. Nitrogen removal from coal gasification wastewater by activated carbon technologies combined with short-cut nitrogen removal process.

    Science.gov (United States)

    Zhao, Qian; Han, Hongjun; Hou, Baolin; Zhuang, Haifeng; Jia, Shengyong; Fang, Fang

    2014-11-01

    A system combining granular activated carbon and powdered activated carbon technologies along with shortcut biological nitrogen removal (GAC-PACT-SBNR) was developed to enhance total nitrogen (TN) removal for anaerobically treated coal gasification wastewater with less need for external carbon resources. The TN removal efficiency in SBNR was significantly improved by introducing the effluent from the GAC process into SBNR during the anoxic stage, with removal percentage increasing from 43.8%-49.6% to 68.8%-75.8%. However, the TN removal rate decreased with the progressive deterioration of GAC adsorption. After adding activated sludge to the GAC compartment, the granular carbon had a longer service-life and the demand for external carbon resources became lower. Eventually, the TN removal rate in SBNR was almost constant at approx. 43.3%, as compared to approx. 20.0% before seeding with sludge. In addition, the production of some alkalinity during the denitrification resulted in a net savings in alkalinity requirements for the nitrification reaction and refractory chemical oxygen demand (COD) degradation by autotrophic bacteria in SBNR under oxic conditions. PACT showed excellent resilience to increasing organic loadings. The microbial community analysis revealed that the PACT had a greater variety of bacterial taxons and the dominant species associated with the three compartments were in good agreement with the removal of typical pollutants. The study demonstrated that pre-adsorption by the GAC-sludge process could be a technically and economically feasible method to enhance TN removal in coal gasification wastewater (CGW). Copyright © 2014. Published by Elsevier B.V.

  8. Removal of 14C from nitrogen annulus gas

    International Nuclear Information System (INIS)

    Cheh, C.H.

    1985-01-01

    A dry, ambient temperature process using Ca(OH) 2 as the sorbent to remove 14 CO 2 from moderator cover gas was further developed to remove 14 C from the extremely dry nitrogen annulus gas. Thermal gravimetric analysis was carried out to study the thermal stability of Ca(OH) 2 and the CO 2 -Ca(OH) 2 reaction at elevated temperatures under extremely low humidity conditions. Results shows that to achieve high utilization and avoid decomposition of Ca(OH) 2 , humidification of the annulus gas was necessary at high or low temperatures. Results of the bench scale (1-10 L/min) oxidizer study showed that, with 0.5% Pd or alumina as the catalyst, it was possible to achieve complete oxidation of CO and over 80% oxidation of CH 4 with 1% hydrogen in the nitrogen. The gas superficial velocity should be less than or equal to30 cm/s and the residence time greater than or equal to0.5 s. A pilot scale (up to 160 L/min) system including a catalytic oxidizer, a humidifier/demister, a Ca(OH) 2 reactor, a condenser/demister and regenerable molecular sieve dryers, was assembled and tested with simulated nitrogen annulus gas. Results showed that complete oxidation of the CO and 60-100% oxidation of the CH 4 with 0.5% H 2 in the simulated gas were achieved in the pilot plant. The CO 2 concentration was reduced from 30-60 μL/L at the inlet of the Ca(OH) 2 reactor to 1 μL/L or less at the outlet. After modifications of the dryer to overcome the problems encountered, the simulated annulus gas was dried to 0 C dew point before recirculation. Equipment specifications and operating conditions of a 14 C removal system for nitrogen annulus gas are summarized

  9. Kinetic Interpretation of Nitrogen Removal in Pilot Scale Experiments

    DEFF Research Database (Denmark)

    Harremoës, Poul; Sinkjær, Ole

    1995-01-01

    with biological and chemical phosphorus removal. Nitrification and denitrification rates have been measured in batch tests on activated sludge extracted from the pilot plants and by measuring transient concentrations during the alternating mode of operation in the aerobic and anoxic tanks. The data were......Pilot plant experiments have been performed over a period of four years in order to establish an experimental basis for the upgrading of the treatment plants of The City of Copenhagen to nutrient removal. The choice of design is the alternating mode of operating biological nitrogen removal...... normalized to standard conditions by correcting them according to the kinetic theory. The average normalized nitrification rate was measured to be between 54 and 60 mg NH~-N/(g VSSn~t' h) by different test methods at 7°C. The denitrification rate was measured to vary between 0.85 and 0.95mg NO~--N/(g VSS. h...

  10. In situ self-sacrificed template synthesis of vanadium nitride/nitrogen-doped graphene nanocomposites for electrochemical capacitors.

    Science.gov (United States)

    Liu, Hong-Hui; Zhang, Hong-Ling; Xu, Hong-Bin; Lou, Tai-Ping; Sui, Zhi-Tong; Zhang, Yi

    2018-03-15

    Vanadium nitride and graphene have been widely used as pseudo-capacitive and electric double-layer capacitor electrode materials for electrochemical capacitors, respectively. However, the poor cycling stability of vanadium nitride and the low capacitance of graphene impeded their practical applications. Herein, we demonstrated an in situ self-sacrificed template method for the synthesis of vanadium nitride/nitrogen-doped graphene (VN/NGr) nanocomposites by the pyrolysis of a mixture of dicyandiamide, glucose, and NH 4 VO 3 . Vanadium nitride nanoparticles of the size in the range of 2 to 7 nm were uniformly embedded into the nitrogen-doped graphene skeleton. Furthermore, the VN/NGr nanocomposites with a high specific surface area and pore volume showed a high specific capacitance of 255 F g -1 at 10 mV s -1 , and an excellent cycling stability (94% capacitance retention after 2000 cycles). The excellent capacitive properties were ascribed to the excellent conductivity of nitrogen-doped graphene, high surface area, high pore volume, and the synergistic effect between vanadium nitride and nitrogen-doped graphene.

  11. Cholecystectomy or gallbladder in situ after endoscopic sphincterotomy and bile duct stone removal in Chinese patients.

    Science.gov (United States)

    Lau, James Y W; Leow, Chon-Kar; Fung, Terence M K; Suen, Bing-Yee; Yu, Ly-Mee; Lai, Paul B S; Lam, Yuk-Hoi; Ng, Enders K W; Lau, Wan Yee; Chung, Sydney S C; Sung, Joseph J Y

    2006-01-01

    In patients with stones in their bile ducts and gallbladders, cholecystectomy is generally recommended after endoscopic sphincterotomy and clearance of bile duct stones. However, only approximately 10% of patients with gallbladders left in situ will return with further biliary complications. Expectant management is alternately advocated. In this study, we compared the treatment strategies of laparoscopic cholecystectomy and gallbladders left in situ. We randomized patients (>60 years of age) after endoscopic sphincterotomy and clearance of their bile duct stones to receive early laparoscopic cholecystectomy or expectant management. The primary outcome was further biliary complications. Other outcome measures included adverse events after cholecystectomy and late deaths from all causes. One hundred seventy-eight patients entered into the trial (89 in each group); 82 of 89 patients who were randomized to receive laparoscopic cholecystectomy underwent the procedure. Conversion to open surgery was needed in 16 of 82 patients (20%). Postoperative complications occurred in 8 patients (9%). Analysis was by intention to treat. With a median follow-up of approximately 5 years, 6 patients (7%) in the cholecystectomy group returned with further biliary events (cholangitis, n = 5; biliary pain, n = 1). Among those with gallbladders in situ, 21 (24%) returned with further biliary events (cholangitis, n = 13; acute cholecystitis, n = 5; biliary pain, n = 2; and jaundice, n = 1; log rank, P = .001). Late deaths were similar between groups (cholecystectomy, n = 19; gallbladder in situ, n = 11; P = .12). In the Chinese, cholecystectomy after endoscopic treatment of bile duct stones reduces recurrent biliary events and should be recommended.

  12. Cyclodextrin-Enhanced In Situ Removal of Organic Contaminants from Groundwater at Department of Defense Sites

    Science.gov (United States)

    2004-05-01

    Advantage Nontoxic to humans and resident microbial populations Cyclodextrins are widely used in pharmaceuticals, food processing, and cosmetics ...dechlorination of tetrachloroethene by the Fenton reaction. Environ. Sci. Technol., 17 (9): 1689-1694. 25. Yin, Y., Allen, H.E., 1999: In situ chemical

  13. Integrating environmental and in situ hyperspectral remote sensing variables for grass nitrogen estimation in savannah ecosystems

    CSIR Research Space (South Africa)

    Ramoelo, Abel

    2011-04-01

    Full Text Available Information about the distribution of grass nitrogen (N) concentration is crucial in understanding rangeland vitality and facilitates effective management of wildlife and livestock. A challenge in estimating grass N concentration using remote...

  14. Dissolved organic nitrogen recalcitrance and bioavailable nitrogen quantification for effluents from advanced nitrogen removal wastewater treatment facilities.

    Science.gov (United States)

    Fan, Lu; Brett, Michael T; Jiang, Wenju; Li, Bo

    2017-10-01

    The objective of this study was to determine the composition of nitrogen (N) in the effluents of advanced N removal (ANR) wastewater treatment plants (WWTPs). This study also tested two different experimental protocols for determining dissolved N recalcitrance. An analysis of 15 effluent samples from five WWTPs, showed effluent concentrations and especially effluent composition varied greatly from one system to the other, with total nitrogen (TN) ranging between 1.05 and 8.10 mg L -1 . Nitrate (NO 3 - ) accounted for between 38 ± 32% of TN, and ammonium accounted for a further 29 ± 28%. All of these samples were dominated by dissolved inorganic nitrogen (DIN; NO 3 -  + NH 4 + ), and uptake experiments indicated the DIN fraction was as expected highly bioavailable. Dissolved organic N (DON) accounted for 20 ± 11% for the total dissolved N in these effluents, and uptake experiments indicated the bioavailability of this fraction varied between 27 ± 26% depending on the WWTP assessed. These results indicate near complete DIN removal should be the primary goal of ANR treatment systems. The comparison of bioavailable nitrogen (BAN) quantification protocols showed that the dissolved nitrogen uptake bioassay approach was clearly a more reliable way to determine BAN concentrations compared to the conventional cell yield protocol. Moreover, because the nitrogen uptake experiment was much more sensitive, this protocol made it easier to detect extrinsic factors (such as biological contamination or toxicity) that could affect the accuracy of these bioassays. Based on these results, we recommend the nitrogen uptake bioassay using filtered and autoclaved samples to quantify BAN concentrations. However, for effluent samples indicating toxicity, algal bioassays will not accurately quantify BAN. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Facile In Situ Fabrication of Nanostructured Graphene–CuO Hybrid with Hydrogen Sulfide Removal Capacity

    Institute of Scientific and Technical Information of China (English)

    Sunil P.Lonkar; Vishnu V.Pillai; Samuel Stephen; Ahmed Abdala; Vikas Mittal

    2016-01-01

    A simple and scalable synthetic approach for one-step synthesis of graphene–Cu O(TRGC) nanocomposite by an in situ thermo-annealing method has been developed.Using graphene oxide(GO) and copper hydroxide as a precursors reagent,the reduction of GO and the uniform deposition of in situ formed Cu O nanoparticles on graphene was simultaneously achieved.The method employed no solvents,toxic-reducing agents,or organic modifiers.The resulting nanostructured hybrid exhibited improved H2 S sorption capacity of 1.5 mmol H2S/g-sorbent(3 g S/100 g-sorbent).Due to its highly dispersed sub-20 nm Cu O nanoparticles and large specific surface area,TRGC nanocomposite exhibits tremendous potential for energy and environment applications.

  16. Dissolved organic nitrogen recalcitrance and bioavailable nitrogen quantification for effluents from advanced nitrogen removal wastewater treatment facilities

    International Nuclear Information System (INIS)

    Fan, Lu; Brett, Michael T.; Jiang, Wenju; Li, Bo

    2017-01-01

    The objective of this study was to determine the composition of nitrogen (N) in the effluents of advanced N removal (ANR) wastewater treatment plants (WWTPs). This study also tested two different experimental protocols for determining dissolved N recalcitrance. An analysis of 15 effluent samples from five WWTPs, showed effluent concentrations and especially effluent composition varied greatly from one system to the other, with total nitrogen (TN) ranging between 1.05 and 8.10 mg L −1 . Nitrate (NO 3 − ) accounted for between 38 ± 32% of TN, and ammonium accounted for a further 29 ± 28%. All of these samples were dominated by dissolved inorganic nitrogen (DIN; NO 3 −  + NH 4 + ), and uptake experiments indicated the DIN fraction was as expected highly bioavailable. Dissolved organic N (DON) accounted for 20 ± 11% for the total dissolved N in these effluents, and uptake experiments indicated the bioavailability of this fraction varied between 27 ± 26% depending on the WWTP assessed. These results indicate near complete DIN removal should be the primary goal of ANR treatment systems. The comparison of bioavailable nitrogen (BAN) quantification protocols showed that the dissolved nitrogen uptake bioassay approach was clearly a more reliable way to determine BAN concentrations compared to the conventional cell yield protocol. Moreover, because the nitrogen uptake experiment was much more sensitive, this protocol made it easier to detect extrinsic factors (such as biological contamination or toxicity) that could affect the accuracy of these bioassays. Based on these results, we recommend the nitrogen uptake bioassay using filtered and autoclaved samples to quantify BAN concentrations. However, for effluent samples indicating toxicity, algal bioassays will not accurately quantify BAN. - Highlights: • DIN was the dominated N pool for most of the tested effluent samples. • DON bioavailability considerably varied depending on the WWTP assessed.

  17. Removal of phosphate from eutrophic lakes through adsorption by in situ formation of magnesium hydroxide from diatomite.

    Science.gov (United States)

    Xie, Fazhi; Wu, Fengchang; Liu, Guijian; Mu, Yunsong; Feng, Chenglian; Wang, Huanhua; Giesy, John P

    2014-01-01

    Since in situ formation of Mg(OH)2 can efficiently sorb phosphate (PO4) from low concentrations in the environment, a novel dispersed magnesium oxide nanoflake-modified diatomite adsorbent (MOD) was developed for use in restoration of eutrophic lakes by removal of excess PO4. Various adsorption conditions, such as pH, temperature and contact time were investigated. Overall, sorption capacities increased with increasing temperature and contact time, and decreased with increasing pH. Adsorption of PO4 was well described by both the Langmuir isotherm and pseudo second-order models. Theoretical maximum sorption capacity of MOD for PO4 was 44.44-52.08 mg/g at experimental conditions. Characterization of PO4 adsorbed to MOD by use of X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and solid state (31)P nuclear magnetic resonance revealed that electrostatic attraction, surface complexation and chemical conversion in situ were the major forces in adsorption of PO4. Mg(OH)2 formed in situ had a net positive charge on the surface of the MOD that could adsorb PO4(3-) and HPO4(2-) anion to form surface complex and gradually convert to Mg3(PO4)2 and MgHPO4. Efficiency of removal of PO4 was 90% when 300 mg MOD/L was added to eutrophic lake water. Results presented here demonstrated the potential use of the MOD for restoration of eutrophic lakes by removal of excess PO4.

  18. Nitrogen removal in Northern peatlands treating mine wastewaters

    Science.gov (United States)

    Palmer, Katharina; Karlsson, Teemu; Turunen, Kaisa; Liisa Räisänen, Marja; Backnäs, Soile

    2015-04-01

    Natural peatlands can be used as passive purification systems for mine wastewaters. These treatment peatlands are well-suited for passive water treatment as they delay the flow of water, and provide a large filtration network with many adsorptive surfaces on plant roots or soil particles. They have been shown to remove efficiently harmful metals and metalloids from mine waters due to variety of chemical, physical and biological processes such as adsorption, precipitation, sedimentation, oxidation and reduction reactions, as well as plant uptake. Many factors affect the removal efficiency such as inflow water quality, wetland hydrology, system pH, redox potential and temperature, the nature of the predominating purification processes, and the presence of other components such as salts. However, less attention has been paid to nitrogen (N) removal in peatlands. Thus, this study aimed to assess the efficiency of N removal and seasonal variation in the removal rate in two treatment peatlands treating mine dewatering waters and process effluent waters. Water sampling from treatment peatland inflow and outflow waters as well as pore waters in peatland were conducted multiple times during 2012-2014. Water samples were analysed for total N, nitrate-N and ammonium-N. Additionally, an YSI EXO2 device was used for continuous nitrate monitoring of waters discharged from treatment peatlands to the recipient river during summer 2014. The results showed that the oxic conditions in upper peat layer and microbial activity in treatment peatlands allowed the efficient oxidation of ammonium-N to nitrite-N and further to nitrate-N during summer time. However, the slow denitrification rate restricts the N removal as not all of the nitrate produced during nitrification is denitrified. In summer time, the removal rate of total N varied between 30-99 % being highest in late summer. N removal was clearly higher for treatment peatland treating process effluent waters than for peatland

  19. The fate of fixed nitrogen in marine sediments with low organic loading: an in situ study

    DEFF Research Database (Denmark)

    Bonaglia, Stefano; Hylén, Astrid; Rattray, Jane E.

    2017-01-01

    Given the increasing impacts of human activities on global nitrogen (N) cycle, investigations on N transformation processes in the marine environment have drastically increased in the last years. Benthic N cycling has mainly been studied in anthropogenically impacted estuaries and coasts, while its...... sediments worldwide (range 34–344 µmol N m−2 d−1). Anammox accounted for 18–26 % of the total N2 production. Absence of free hydrogen sulfide and low concentrations of dissolved iron in sediment pore waters suggested that denitrification and DNRA were driven by organic matter oxidation rather than...... chemolithotrophy. DNRA was as important as denitrification at a shallow, coastal station situated in the northern Bothnian Bay. At this pristine and fully oxygenated site, ammonium regeneration through DNRA contributed more than one third to the total dissolved nitrogen (TDN) diffusing from the sediment...

  20. Effect of salinity on N₂O production during shortcut biological nitrogen removal from landfill leachate.

    Science.gov (United States)

    Liu, Mu; Liu, Tiantian; Peng, Yongzhen; Wang, Shuying; Xiao, Han

    2014-05-01

    Three identical SBR adapted to different salinity were applied to investigate the characteristics of the treatment performance and N2O production [Formula: see text] during shortcut biological nitrogen removal from landfill leachate under various operating parameters. Increase of salinity might deteriorate the activity of the microorganisms leading to the increase of [Formula: see text] , however, the system could be gradually adapted to the inhibition and alleviate the detrimental effect to some extent. The system acclimated to high salinity provided better performance under high salinity shock and a lower possibility of [Formula: see text] , while a sudden decrease in salinity can cause a temporary increase in [Formula: see text] . High salinity strengthened the influence of high ammonia nitrogen concentration and low DO concentration on [Formula: see text] while the strengthening effect was unconspicuous at high DO concentration. The anoxic phase did not produce a significant amount of N2O even at the lowest C/N ratio of 0.5 and was less susceptible to salinity. Characterization of the biomass composition using fluorescence in situ hybridization analysis confirmed that the relative proportion of Nitrosomonas europaea was increased with the increase of the salinity, which may be an important factor for the strengthening effect of salinity on [Formula: see text] . Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  1. Functional outcomes following syndesmotic fixation: A comparison of screws retained in situ versus routine removal - Is it really necessary?

    Science.gov (United States)

    Tucker, Adam; Street, Julia; Kealey, David; McDonald, Sinead; Stevenson, Mike

    2013-12-01

    Syndesmotic disruption can occur in up to 20% of ankle fractures and is more common in Weber Type C injuries. Syndesmotic repair aims to restore ankle stability. Routine removal of syndesmosis screws is advocated to avoid implant breakage and adverse functional outcome such as pain and stiffness, but conflicting evidence exists to support this. The aim of the current study is to determine whether functional outcome differs in patients who had syndesmosis screws routinely removed, compared to those who did not, and whether a cost benefit exists if removal of screws is not routinely necessary. A retrospective review of consecutive syndesmosis repairs was performed from 1 January 2008 to 31 December 2010 in a single regional trauma centre. We identified 91 patients who had undergone open reduction internal fixation of an ankle fracture with placement of a syndesmosis screw at index procedure. As many as 69 patients were eligible for the study as defined by the inclusion criteria and they completed a validated functional outcome questionnaire. The functional outcomes of patients with 'retained screws' and 'removed screws' were analysed and compared using the Olerud Molander Ankle Score (OMAS). A total of 63 patients responded with a mean follow-up period of 31 months (range 10-43 months). Of those patients, 43 underwent routine screw removal whilst 20 had screws left in situ. The groups were comparable considering age, gender and follow-up time. The 'retained' group scored higher mean OMAS scores, 81.5±19.3 compared to 75±12.9 in the 'removed' group (p=0.107). The retained group achieved higher functional scores in each of the OMAS domains as well as experiencing less pain. When adjusted for gender, the findings were found to be statistically significant (p=0.046). Our study has shown that retained-screw fixation does not significantly impair functional capacity, with additional cost-effectiveness. We therefore advocate that syndesmosis screws be left in situ and

  2. Biological nitrogen removal from sewage via anammox: Recent advances.

    Science.gov (United States)

    Ma, Bin; Wang, Shanyun; Cao, Shenbin; Miao, Yuanyuan; Jia, Fangxu; Du, Rui; Peng, Yongzhen

    2016-01-01

    Biological nitrogen removal from sewage via anammox is a promising and feasible technology to make sewage treatment energy-neutral or energy-positive. Good retention of anammox bacteria is the premise of achieving sewage treatment via anammox. Therefore the anammox metabolism and its factors were critically reviewed so as to form biofilm/granules for retaining anammox bacteria. A stable supply of nitrite for anammox bacteria is a real bottleneck for applying anammox in sewage treatment. Nitritation and partial-denitrification are two promising methods of offering nitrite. As such, the strategies for achieving nitritation in sewage treatment were summarized by reviewing the factors affecting nitrite oxidation bacteria growth. Meanwhile, the methods of achieving partial-denitrification have been developed through understanding the microorganisms related with nitrite accumulation and their factors. Furthermore, two cases of applying anammox in the mainstream sewage treatment plants were documented. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Nitrogen fate model for gas-phase ammonia-enhanced in situ bioventing

    International Nuclear Information System (INIS)

    Marshall, T.R.

    1995-01-01

    Subsurface bioremediation of contaminants is sometimes limited by the availability of nitrogen. Introduction of gaseous ammonia to the subsurface is a feasible and economical approach to enhance biodegradation in some environments. A gaseous nutrient source may be a practical option for sites where surface application of liquid nutrients is not possible, such as sites with shallow groundwater or sites with surface operations. A conceptual nitrogen fate model was developed to provide remediation scientists and engineers with some practical guidelines in the use of ammonia-enhanced bioventing. Ammonia supplied to the subsurface dissolves readily in soil moisture and sorbs strongly to soil particles. The ammonium ion is the preferred nutrient form of many microorganisms. Some of the ammonia will be converted to nitrate by ammonia-oxidizing organisms. Field monitoring data from an operating ammonia-enhanced bioventing remediation site for diesel fuel contamination are presented. Conservative additions of ammonia promoted appreciable increases in evolved carbon dioxide and rate of oxygen utilization. An overabundance of added ammonia promoted formation of methane from likely anaerobic hydrocarbon degradation in the presence of nitrate as the electron acceptor

  4. Nitrogen incorporation and retention by bacteria, algae, and fauna in a subtropical, intertidal sediment: An in situ 15N-labeling study

    NARCIS (Netherlands)

    Veuger, B.; Eyre, B.D.; Maher, D.; Middelburg, J.J.

    2007-01-01

    We performed a 15N-labeling study to investigate nitrogen incorporation and retention by the benthic microbial community (bacteria and benthic microalgae) and fauna in the intertidal sediment of the subtropical Australian Brunswick Estuary. The main experiment involved an in situ 15N pulse–chase

  5. Highly efficient removal of trace thallium from contaminated source waters with ferrate: Role of in situ formed ferric nanoparticle.

    Science.gov (United States)

    Liu, Yulei; Wang, Lu; Wang, Xianshi; Huang, Zhuangsong; Xu, Chengbiao; Yang, Tao; Zhao, Xiaodan; Qi, Jingyao; Ma, Jun

    2017-11-01

    Thallium (Tl) is highly toxic to mammals and relevant pollution cases are increasing world-widely. Convenient and efficient method for the removal of trace Tl from contaminated source water is imperative. Here, the removal of trace Tl by K 2 FeO 4 [Fe(VI)] was investigated for the first time, with the exploration of reaction mechanisms. Six different types of water treatment agents (powdered activated carbon, Al 2 (SO 4 ) 3 , FeCl 3 , δ-MnO 2 , MnO 2 nano-particles, and K 2 FeO 4 ) were used for the removal of Tl in spiked river water, and K 2 FeO 4 showed excellent removal performance. Over 92% of Tl (1 μg/L) was removed within 5 min by applying 2.5 mg/L of K 2 FeO 4 (pH 7.0, 20 °C). XPS analysis revealed that in the reaction of Tl(I) with K 2 FeO 4 , Tl(I) was oxidized to Tl(III), and removed by the K 2 FeO 4 reduced ferric particles. The removal of Tl by in situ formed and ex situ formed ferric particle was examined respectively, and the results revealed that the removal of trace Tl could be attributed to the combination of adsorption and coprecipitation processes. The hydrodynamic size of the reduced particle from K 2 FeO 4 ranged from 10 nm to 100 nm, and its surface was negatively charged under neutral pH condition. These factors were conducive for the efficient removal of Tl by K 2 FeO 4 . The effects of solution pH, coexisting ions (Na + , Ca 2+ , and HCO 3 - ), humic acid, solution temperature, and reductive environment on the removal and desorption of Tl were investigated, and the elimination of Tl in polluted river water and reservoir water was performed. These results suggest that K 2 FeO 4 could be an efficient and convenient agent on trace Tl removal. Copyright © 2017. Published by Elsevier Ltd.

  6. Rapid startup and high rate nitrogen removal from anaerobic sludge digester liquor using a SNAP process.

    Science.gov (United States)

    Qiao, Sen; Nishiyama, Takashi; Fujii, Tatsuo; Bhatti, Zafar; Furukawa, Kenji

    2012-02-01

    In this study, a single-stage autotrophic nitrogen removal reactor, packed with a novel acrylic fiber biomass carrier material (Biofix), was applied for nitrogen removal from sludge digester liquor. For rapid start-up, conventional activated sludge was added to the reactor soon after the attachment of anammox biomass on the Biofix carriers, which allowed conventional activated sludge to form a protective layer of biofilm around the anammox biomass. The Nitrogen removal efficiency reached 75% within 1 week at a nitrogen loading rate of 0.46 kg-N/m(3)/day for synthetic wastewater treatment. By the end of the synthetic wastewater treatment period, the maximum nitrogen removal rate had increased to 0.92 kg-N/m(3)/day at a nitrogen loading rate of 1.0 kg-N/m(3)/day. High nitrogen removal rate was also achieved during the actual raw digester liquor treatment with the highest nitrogen removal rate being 0.83 kg-N/m(3)/day at a nitrogen loading rate of 0.93 kg-N/m(3)/day. The thick biofilm on Biofix carriers allowed anammox bacteria to survive under high DO concentration of 5-6 mg/l resulting in stable and high nitrogen removal performance. FISH and CLSM analysis demonstrated that anammox bacteria coexisted and surrounded by ammonium oxidizing bacteria.

  7. Myriophyllum aquaticum Constructed Wetland Effectively Removes Nitrogen in Swine Wastewater

    Directory of Open Access Journals (Sweden)

    Haishu Sun

    2017-10-01

    Full Text Available Removal of nitrogen (N is a critical aspect in the functioning of constructed wetlands (CWs, and the N treatment in CWs depends largely on the presence and activity of macrophytes and microorganisms. However, the effects of plants on microorganisms responsible for N removal are poorly understood. In this study, a three-stage surface flow CW was constructed in a pilot-scale within monospecies stands of Myriophyllum aquaticum to treat swine wastewater. Steady-state conditions were achieved throughout the 600-day operating period, and a high (98.3% average ammonia removal efficiency under a N loading rate of 9 kg ha-1 d-1 was observed. To determine whether this high efficiency was associated with the performance of active microbes, the abundance, structure, and interactions of microbial community were compared in the unvegetated and vegetated samples. Real-time quantitative polymerase chain reactions showed the abundances of nitrifying genes (archaeal and bacterial amoA and denitrifying genes (nirS, nirK, and nosZ were increased significantly by M. aquaticum in the sediments, and the strongest effects were observed for the archaeal amoA (218-fold and nirS genes (4620-fold. High-throughput sequencing of microbial 16S rRNA gene amplicons showed that M. aquaticum greatly changed the microbial community, and ammonium oxidizers (Nitrosospira and Nitrososphaera, nitrite-oxidizing bacteria (Nitrospira, and abundant denitrifiers including Rhodoplanes, Bradyrhizobium, and Hyphomicrobium, were enriched significantly in the sediments. The results of a canonical correspondence analysis and Mantle tests indicated that M. aquaticum may shift the sediment microbial community by changing the sediment chemical properties. The enriched nitrifiers and denitrifiers were distributed widely in the vegetated sediments, showing positive ecological associations among themselves and other bacteria based on phylogenetic molecular ecological networks.

  8. In-situ product removal from fermentations by membrane extraction: conceptual process design and economics

    NARCIS (Netherlands)

    Heerema, L.; Roelands, C.P.M.; Goetheer, E.L.V.; Verdoes, D.; Keurentjes, J.

    2011-01-01

    This paper describes a conceptual process design for the production of the model component phenol by a recombinant strain of the micro-organism Pseudomonas putida S12. The (bio)production of the inhibiting component phenol in a bioreactor is combined with direct product removal by membrane

  9. In situ carbon and nitrogen dynamics in ryegrass-clover mixtures

    DEFF Research Database (Denmark)

    Rasmussen, J.; Eriksen, J.; Jensen, Erik Steen

    2007-01-01

    =9). 15N-enriched compounds were not detected in percolating pore water, which may be caused by either dilution from irrigation or low availability of leachable N compounds. 14C was found solely as 14CO2 in the pore water indicating that dissolved organic carbon (DOC) did not originate from fresh......Carbon (C) and nitrogen (N) dynamics in a third production year ryegrass–clover mixture were investigated in the field. Cylinders (diameter 29.7 cm) were installed to depths of 20, 40 and 60 cm and equipped with suction cups to collect percolating pore water. Ryegrass and clover leaves were cross......-labelled with 14C- and 15N-enriched urea and the fate of the two tracers was studied for 3 months during summer. Transfer of 14C occurred mainly from ryegrass to clover, whereas the largest transfer of 15N was in the opposite direction. The average transfer of N from clover was 40% (SE±3.1, n=9) of N in ryegrass...

  10. In situ modification of activated carbons developed from a native invasive wood on removal of trace toxic metals from wastewater.

    Science.gov (United States)

    de Celis, J; Amadeo, N E; Cukierman, A L

    2009-01-15

    Activated carbons were developed by phosphoric acid activation of sawdust from Prosopis ruscifolia wood, an indigenous invasive species of degraded lands, at moderate conditions (acid/precursor ratio=2, 450 degrees C, 0.5h). For in situ modification of their characteristics, either a self-generated atmosphere or flowing air was used. The activated carbons developed in the self-generated atmosphere showed higher BET surface area (2281m2/g) and total pore volume (1.7cm3/g) than those obtained under flowing air (1638m2/g and 1.3cm3/g). Conversely, the latter possessed a higher total amount of surface acidic/polar oxygen groups (2.2meq/g) than the former (1.5meq/g). To evaluate their metal sorption capability, adsorption isotherms of Cu(II) ion from model solutions were determined and properly described by the Langmuir model. Maximum sorption capacity (Xm) for the air-derived carbons (Xm=0.44mmol/g) almost duplicated the value for those obtained in the self-generated atmosphere (Xm=0.24mmol/g), pointing to a predominant effect of the surface functionalities on metal sequestering behaviour. The air-derived carbons also demonstrated a superior effectiveness in removing Cd(II) ions as determined from additional assays in equilibrium conditions. Accordingly, effective phosphoric acid-activated carbons from Prosopis wood for toxic metals removal from wastewater may be developed by in situ modification of their characteristics operating under flowing air.

  11. Biological nitrogen and phosphorus removal by filamentous bacteria ...

    African Journals Online (AJOL)

    the intracellular denitrification intermediates inhibit the aero- bic cytochrome o of ... using an auto-analyzer (Technicon Auto Analyzer AAII, Der- motech South ..... PAO's and deni- trifiers in situ collectively, and using novel molecular techniques.

  12. Method for combined removal of mercury and nitrogen oxides from off-gas streams

    Science.gov (United States)

    Mendelsohn, Marshall H [Downers Grove, IL; Livengood, C David [Lockport, IL

    2006-10-10

    A method for removing elemental Hg and nitric oxide simultaneously from a gas stream is provided whereby the gas stream is reacted with gaseous chlorinated compound to convert the elemental mercury to soluble mercury compounds and the nitric oxide to nitrogen dioxide. The method works to remove either mercury or nitrogen oxide in the absence or presence of each other.

  13. Towards an optimal experimental design for N2O model calibration during biological nitrogen removal

    DEFF Research Database (Denmark)

    Domingo Felez, Carlos; Valverde Pérez, Borja; Plósz, Benedek G.

    Process models describing nitrous oxide (N2O) production during biological nitrogen removal allow for the development of mitigation strategies of this potent greenhouse gas. N2O is an intermediate of nitrogen removal, hence its prediction is negatively affected by the uncertainty associated to it...... of strategies to minimize the carbon footprint of wastewater treatment plants....

  14. Bioremediation of polluted wasewaterwater influent: phiosphorus and nitrogen removal. Scientific Research and Essays

    DEFF Research Database (Denmark)

    Muchie, Mammo; Akpor, OB

    2010-01-01

    Akpor OB and Muchie M. (2010). Bioremediation of polluted wasewaterwater influent: phiosphorus and nitrogen removal. Scientific Research and Essays, Vol. 5(21), pp. 3222–3230......Akpor OB and Muchie M. (2010). Bioremediation of polluted wasewaterwater influent: phiosphorus and nitrogen removal. Scientific Research and Essays, Vol. 5(21), pp. 3222–3230...

  15. Simple fabrication of solid phase microextraction fiber employing nitrogen-doped ordered mesoporous polymer by in situ polymerization.

    Science.gov (United States)

    Zheng, Juan; Liang, Yeru; Liu, Shuqin; Jiang, Ruifen; Zhu, Fang; Wu, Dingcai; Ouyang, Gangfeng

    2016-01-04

    A combination of nitrogen-doped ordered mesoporous polymer (NOMP) and stainless steel wires led to highly sensitive, selective, and stable solid phase microextraction (SPME) fibers by in situ polymerization for the first time. The ordered structure of synthesized NOMP coating was illustrated by transmission electron microscopy (TEM) and X-ray diffraction (XRD), and microscopy analysis by scanning electron microscopy (SEM) confirmed a homogenous morphology of the NOMP-coated fiber. The NOMP-coated fiber was further applied for the extraction of organochlorine pesticides (OCPs) with direct-immersion solid-phase microextraction (DI-SPME) method followed by gas chromatography-mass spectrometry (GC-MS) quantification. Under the optimized conditions, low detection limits (0.023-0.77 ng L(-1)), a wide linear range (9-1500 ng L(-1)), good repeatability (3.5-8.1%, n=6) and excellent reproducibility (1.5-8.3%, n=3) were achieved. Moreover, the practical feasibility of the proposed method was evaluated by determining OCPs in environmental water samples with satisfactory recoveries. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Influence of road salt on the biological removal of nitrogen

    Directory of Open Access Journals (Sweden)

    Eliška Horniaková

    2007-10-01

    Full Text Available Processes occuring in the aeration tank remove nitrogen from the organic substances in wastewater by using the bacterii. Nitrification utilize the metabolism of aerobic bacterii Nitrosomonas, Nitrococus, Nitrospira, Nitrobacter Nitrocystis a Nitrosobolus. Pseudosomonas, Chromobacterium, Denitrobacillus a Micrococus are denitrification anaerobic bacterii. The bacterii are lithotrophic and they are sensitive to pH of wastewater. Chlorine and heavy metals are toxic for these bacterii. For a correct grow, reproduction and metabolism, temperature above 10 ºC is needed but the ideal temperature is from 20 to 30 ºC. An intensive cold reduces or even stops the activity of bacterii.Cold road salt flow to a sewage and then to the aeration basin. Many of nitrification microorganisms dead because their cells lyse and their content flow into the tank. NaCl is toxic for bacterii. From aeration basin a high amount of N-NH4 flows out. The sludge may be a slightly flocculate and the effluent water may be turbid

  17. Nitrogen removal in the bioreactor landfill system with intermittent aeration at the top of landfilled waste

    International Nuclear Information System (INIS)

    He Ruo; Shen Dongsheng

    2006-01-01

    High ammonia concentration of recycled landfill leachate makes it very difficult to treat. In this work, a vertical aerobic/anoxic/anaerobic lab-scale bioreactor landfill system, which was constructed by intermittent aeration at the top of landfilled waste, as a bioreactor for in situ nitrogen removal was investigated during waste stabilization. Intermittent aeration at the top of landfilled waste might stimulate the growth of nitrifying bacteria and denitrifying bacteria in the top and middle layers of waste. The nitrifying bacteria population for the landfill bioreactor with intermittent aeration system reached between10 6 and 10 8 cells/dry g waste, although it decreased 2 orders of magnitude on day 30, due to the inhibitory effect of the acid environment and high organic matter in the landfilled waste. The denitrifying bacteria population increased by between 4 and 13 orders of magnitude compared with conventional anaerobic landfilled waste layers. Leachate NO 3 - -N concentration was very low in both two experimental landfill reactors. After 105 days operation, leachate NH 4 + -N and TN concentrations for the landfill reactor with intermittent aeration system dropped to 186 and 289 mg/l, respectively, while they were still kept above 1000 mg/l for the landfill reactor without intermittent aerobic system. In addition, there is an increase in the rate of waste stabilization as well as an increase of 12% in the total waste settlement for the landfill reactor with intermittent aeration system

  18. Nitrogen removal in maturation waste stabilisation ponds via biological uptake and sedimentation of dead biomass.

    Science.gov (United States)

    Camargo Valero, M A; Mara, D D; Newton, R J

    2010-01-01

    In this work a set of experiments was undertaken in a pilot-scale WSP system to determine the importance of organic nitrogen sedimentation on ammonium and total nitrogen removals in maturation ponds and its seasonal variation under British weather conditions, from September 2004 to May 2007. The nitrogen content in collected sediment samples varied from 4.17% to 6.78% (dry weight) and calculated nitrogen sedimentation rates ranged from 273 to 2868 g N/ha d. High ammonium removals were observed together with high concentrations of chlorophyll-a in the pond effluent. Moreover, chlorophyll-a had a very good correlation with the corresponding increment of VSS (algal biomass) and suspended organic nitrogen (biological nitrogen uptake) in the maturation pond effluents. Therefore, when ammonium removal reached its maximum, total nitrogen removal was very poor as most of the ammonia taken up by algae was washed out in the pond effluent in the form of suspended solids. After sedimentation of the dead algal biomass, it was clear that algal-cell nitrogen was recycled from the sludge layer into the pond water column. Recycled nitrogen can either be taken up by algae or washed out in the pond effluent. Biological (mainly algal) uptake of inorganic nitrogen species and further sedimentation of dead biomass (together with its subsequent mineralization) is one of the major mechanisms controlling in-pond nitrogen recycling in maturation WSP, particularly when environmental and operational conditions are favourable for algal growth.

  19. Iron Polymerization and Arsenic Removal During In-Situ Iron Electrocoagulation in Synthetic Bangladeshi Groundwater

    Science.gov (United States)

    van Genuchten, C. M.; Pena, J.; Addy, S.; Gadgil, A.

    2010-12-01

    Millions of people worldwide are exposed to arsenic-contamination in groundwater drinking supplies. The majority of affected people live in rural Bangladesh. Electrocoagulation (EC) using iron electrodes is a promising arsenic removal strategy that is based on the generation of iron precipitates with a high affinity for arsenic through the electrochemical dissolution of a sacrificial iron anode. Many studies of iron hydrolysis in the presence of co-occurring ions in groundwater such as PO43-, SiO44-, and AsO43- suggest that these ions influence the polymerization and formation of iron oxide phases. However, the combined impact of these ions on precipitates generated by EC is not well understood. X-ray absorption spectroscopy (XAS) was used to examine EC precipitates generated in synthetic Bangladeshi groundwater (SBGW). The iron oxide structure and arsenic binding geometry were investigated as a function of EC operating conditions. As and Fe k-edge spectra were similar between samples regardless of the large range of current density (0.02, 1.1, 5.0, 100 mA/cm2) used during sample generation. This result suggests that current density does not play a large role in the formation EC precipitates in SBGW. Shell-by-shell fits of Fe K-edge data revealed the presence of a single Fe-Fe interatomic distance at approximately 3.06 Å. The absence of longer ranged Fe-Fe correlations suggests that EC precipitates consist of nano-scale chains (polymers) of FeO6 octahedra sharing equatorial edges. Shell-by-shell fits of As K-edge spectra show arsenic bound in primarily bidentate, binuclear corner sharing complexes. In this coordination geometry, arsenic prevents the formation of FeO6 corner-sharing linkages, which are necessary for 3-dimensional crystal growth. The individual and combined effects of other anions, such as PO43- and SiO44- present in SBGW are currently being investigated to determine the role of these ions in stunting crystal growth. The results provided by this

  20. Nitrogen removal and microbial communities in a three-stage system simulating a riparian environment.

    Science.gov (United States)

    Wang, Ziyuan; Wang, Zhixin; Pei, Yuansheng

    2014-06-01

    The riparian zone is an active interface for nitrogen removal, in which nitrogen transformations by microorganisms have not been valued. In this study, a three-stage system was constructed to simulate the riparian zone environments, and nitrogen removal as well as the microbial community was investigated in this 'engineered riparian system'. The results demonstrated that stage 1 of this system accounted for 41-51 % of total nitrogen removal. Initial ammonium loading and redox potential significantly impacted the nitrogen removal performances. Stages 1 and 2 were both composed of an anoxic/oxic (A/O) zone and an anaerobic column. The A/O zone removed most of the ammonium load (6.8 g/m(2)/day), while the anaerobic column showed a significant nitrate removal rate (11.1 g/m(2)/day). Molecular biological analysis demonstrated that bacterial diversity was high in the A/O zones, where ammonium-oxidizing bacteria and nitrite-oxidizing bacteria accounted for 8.42 and 3.32 % of the bacterial population, respectively. The denitrifying bacteria Acidovorax sp. and the nitrifying bacteria Nitrosospira/Nitrosomonas were the predominant microorganisms in this engineered riparian system. This three-stage system was established to achieve favorable nitrogen removal and the microbial community in the system was also retained. This investigation should deepen our understanding of biological nitrogen removal in engineered riparian zones.

  1. Ultraviolet electroluminescence from nitrogen-doped ZnO-based heterojuntion light-emitting diodes prepared by remote plasma in situ atomic layer-doping technique.

    Science.gov (United States)

    Chien, Jui-Fen; Liao, Hua-Yang; Yu, Sheng-Fu; Lin, Ray-Ming; Shiojiri, Makoto; Shyue, Jing-Jong; Chen, Miin-Jang

    2013-01-23

    Remote plasma in situ atomic layer doping technique was applied to prepare an n-type nitrogen-doped ZnO (n-ZnO:N) layer upon p-type magnesium-doped GaN (p-GaN:Mg) to fabricate the n-ZnO:N/p-GaN:Mg heterojuntion light-emitting diodes. The room-temperature electroluminescence exhibits a dominant ultraviolet peak at λ ≈ 370 nm from ZnO band-edge emission and suppressed luminescence from GaN, as a result of the decrease in electron concentration in ZnO and reduced electron injection from n-ZnO:N to p-GaN:Mg because of the nitrogen incorporation. The result indicates that the in situ atomic layer doping technique is an effective approach to tailoring the electrical properties of materials in device applications.

  2. Nitrogen and phosphorus removed from a subsurface flow multi-stage filtration system purifying agricultural runoff.

    Science.gov (United States)

    Zhao, Yaqi; Huang, Lei; Chen, Yucheng

    2018-07-01

    Agricultural nonpoint source pollution has been increasingly serious in China since the 1990s. The main causes were excessive inputs of nitrogen fertilizer and pesticides. A multi-stage filtration system was built to test the purification efficiencies and removal characteristics of nitrogen and phosphorus when treating agricultural runoff. Simulated runoff pollution was prepared by using river water as source water based on the monitoring of local agricultural runoff. Experimental study had been performed from September to November 2013, adopting 12 h for flooding and 12 h for drying. The results showed that the system was made adaptive to variation of inflow quality and quantity, and had good removal for dissolved total nitrogen, total nitrogen, dissolved total phosphorus (DTP), and total phosphorus, and the average removal rate was 27%, 36%, 32%, and 48%, respectively. Except nitrate ([Formula: see text]), other forms of nitrogen and phosphorus all decreased with the increase of stages. Nitrogen was removed mainly in particle form the first stage, and mostly removed in dissolved form the second and third stage. Phosphorus was removed mainly in particulate during the first two stages, but the removal of particulate phosphorus and DTP were almost the same in the last stage. An approximate logarithmic relationship between removal loading and influent loading to nitrogen and phosphorus was noted in the experimental system, and the correlation coefficient was 0.78-0.94. [Formula: see text]: ammonium; [Formula: see text]: nitrite; [Formula: see text]: nitrate; DTN: dissolved total nitrogen; TN: total nitrogen; DTP: dissolved total phosphorus; TP: total phosphorus; PN: particulate nitrogen; PP: particulate phosphorus.

  3. Nitrogen budget of the northwestern Black Sea shelf inferred from modeling studies and in situ benthic measurements

    NARCIS (Netherlands)

    Grégoire, M.; Friedrich, J.

    2004-01-01

    A 3D eddy-resolving coupled biogeochemical-hydrodynamical model and in situ observations are used to investigate benthic processes on the Black Sea's NW shelf. Measurements of benthic fluxes (oxygen, nutrients, redox compounds) with in situ flux chambers are analyzed in regard to sediment dynamics

  4. Autotrophic nitrogen removal process in a potable water treatment biofilter that simultaneously removes Mn and NH4(+)-N.

    Science.gov (United States)

    Cai, Yan'an; Li, Dong; Liang, Yuhai; Zeng, Huiping; Zhang, Jie

    2014-11-01

    Ammonia (NH4(+)-N) removal pathways were investigated in a potable water treatment biofilter that simultaneously removes manganese (Mn) and NH4(+)-N. The results indicated a significant loss of nitrogen in the biofilter. Both the completely autotrophic nitrogen removal over nitrite (CANON) process and nitrification were more likely to contribute to NH4(+)-N removal. Moreover, the model calculation results demonstrated that the CANON process contributed significantly to the removal of NH4(+)-N. For influent NH4(+)-N levels of 1.030 and 1.749mg/L, the CANON process contribution was about 48.5% and 46.6%, respectively. The most important finding was that anaerobic ammonia oxidation (ANAMMOX) bacteria were detectable in the biofilter. It is interesting that the CANON process was effective even for such low NH4(+)-N concentrations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. In-situ removal and characterisation of uranium-containing particles from sediments surrounding the Fukushima Daiichi Nuclear Power Plant

    Science.gov (United States)

    Martin, P. G.; Griffiths, I.; Jones, C. P.; Stitt, C. A.; Davies-Milner, M.; Mosselmans, J. F. W.; Yamashiki, Y.; Richards, D. A.; Scott, T. B.

    2016-03-01

    Traditional methods to locate and subsequently study radioactive fallout particles have focused heavily on autoradiography coupled with in-situ analytical techniques. Presented here is the application of a Variable Pressure Scanning Electron Microscope with both backscattered electron and energy dispersive spectroscopy detectors, along with a micromanipulator setup and electron-hardening adhesive to isolate and remove individual particles before synchrotron radiation analysis. This system allows for a greater range of new and existing analytical techniques, at increased detail and speed, to be applied to the material. Using this method, it was possible to erform detailed energy dispersive spectroscopy and synchrotron radiation characterisation of material likely ejected from the Fukushima Daiichi Nuclear Power Plant found within a sediment sample collected from the edge of the 30 km exclusion zone. Particulate material sub-micron in maximum dimension examined during this work via energy dispersive spectroscopy was observed to contain uranium at levels between 19.68 and 28.35 weight percent, with the application of synchrotron radiation spectroscopy confirming its presence as a major constituent. With great effort and cost being devoted to the remediation of significant areas of eastern Japan affected by the incident, it is crucial to gain the greatest possible understanding of the nature of this contamination in order to inform the most appropriate clean-up response.

  6. A coupled system of half-nitritation and ANAMMOX for mature landfill leachate nitrogen removal.

    Science.gov (United States)

    Li, Yun; Li, Jun; Zhao, Baihang; Wang, Xiujie; Zhang, Yanzhuo; Wei, Jia; Bian, Wei

    2017-09-01

    A coupled system of membrane bioreactor-nitritation (MBR-nitritation) and up-flow anaerobic sludge blanket-anaerobic ammonium oxidation (UASB-ANAMMOX) was employed to treat mature landfill leachate containing high ammonia nitrogen and low C/N. MBR-nitritation was successfully realized for undiluted mature landfill leachate with initial concentrations of 900-1500 mg/L [Formula: see text] and 2000-4000 mg/L chemical oxygen demand. The effluent [Formula: see text] concentration and the [Formula: see text] accumulation efficiency were 889 mg/L and 97% at 125 d, respectively. Half-nitritation was quickly realized by adjustment of hydraulic retention time and dissolved oxygen (DO), and a low DO control strategy could allow long-term stable operation. The UASB-ANAMMOX system showed high effective nitrogen removal at a low concentration of mature landfill leachate. The nitrogen removal efficiency was inhibited at excessive influent substrate concentration and the nitrogen removal efficiency of the system decreased as the concentration of mature landfill leachate increased. The MBR-nitritation and UASB-ANAMMOX processes were coupled for mature landfill leachate treatment and together resulted in high effective nitrogen removal. The effluent average total nitrogen concentration and removal efficiency values were 176 mg/L and 83%, respectively. However, the average nitrogen removal load decreased from 2.16 to 0.77 g/(L d) at higher concentrations of mature landfill leachate.

  7. Simultaneous removal of nitrogen oxide/nitrogen dioxide/sulfur dioxide from gas streams by combined plasma scrubbing technology.

    Science.gov (United States)

    Chang, Moo Been; Lee, How Ming; Wu, Feeling; Lai, Chi Ren

    2004-08-01

    Oxides of nitrogen (NOx) [nitrogen oxide (NO) + nitrogen dioxide (NO2)] and sulfur dioxide (SO2) are removed individually in traditional air pollution control technologies. This study proposes a combined plasma scrubbing (CPS) system for simultaneous removal of SO2 and NOx. CPS consists of a dielectric barrier discharge (DBD) and wet scrubbing in series. DBD is used to generate nonthermal plasmas for converting NO to NO2. The water-soluble NO2 then can be removed by wet scrubbing accompanied with SO2 removal. In this work, CPS was tested with simulated exhausts in the laboratory and with diesel-generator exhausts in the field. Experimental results indicate that DBD is very efficient in converting NO to NO2. More than 90% removal of NO, NOx, and SO2 can be simultaneously achieved with CPS. Both sodium sulfide (Na2S) and sodium sulfite (Na2SO3) scrubbing solutions are good for NO2 and SO2 absorption. Energy efficiencies for NOx and SO2 removal are 17 and 18 g/kWh, respectively. The technical feasibility of CPS for simultaneous removal of NO, NO2, and SO2 from gas streams is successfully demonstrated in this study. However, production of carbon monoxide as a side-product (approximately 100 ppm) is found and should be considered.

  8. Incorporation of low energy activated nitrogen onto HOPG surface: Chemical states and thermal stability studies by in-situ XPS and Raman spectroscopy

    Science.gov (United States)

    Chandran, Maneesh; Shasha, Michal; Michaelson, Shaul; Hoffman, Alon

    2016-09-01

    In this paper we report the chemical states analysis of activated nitrogen incorporated highly oriented pyrolytic graphite (HOPG) surface under well-controlled conditions. Nitrogen incorporation is carried out by two different processes: an indirect RF nitrogen plasma and low energy (1 keV) N2+ implantation. Bonding configuration, concentration and thermal stability of the incorporated nitrogen species by aforesaid processes are systematically compared by in-situ X-ray photoelectron spectroscopy (XPS). Relatively large concentration of nitrogen is incorporated onto RF nitride HOPG surface (16.2 at.%), compared to N2+ implanted HOPG surface (7.7 at.%). The evolution of N 1s components (N1, N2, N3) with annealing temperature is comprehensively discussed, which indicates that the formation and reorganization of local chemical bonding states are determined by the process of nitridation and not by the prior chemical conditioning (i.e., amorphization or hydrogenation) of the HOPG surface. A combined XPS and Raman spectroscopy studies revealed that N2+ implantation process resulted in a high level of defects to the HOPG surface, which cannot be annealed-out by heat treatment up to 1000 °C. On the other hand, the RF nitrogen plasma process did not produce a high level of surface defects, while incorporating nearly the same amount of stable nitrogen species.

  9. Short communication Biological removal of nitrogen species from ...

    African Journals Online (AJOL)

    The gravel-packed column reactor was found to be unsuitable for the removal of nitrate in the configuration used (maximum 15% removal efficiency). The critical parameters for denitrification are nitrate concentration, temperature, influent flow rate and mean cell retention time. Nitrate removal did not meet the expectations ...

  10. Removal of trace mercury (II) from aqueous solution by in situ MnO(x) combined with poly-aluminum chloride.

    Science.gov (United States)

    Lu, Xixin; Huangfu, Xiaoliu; Zhang, Xiang; Wang, Yaan; Ma, Jun

    2015-06-01

    Removal of trace mercury from aqueous solution by Mn (hydr)oxides formed in situ during coagulation with poly-aluminum chloride (PAC) (in situ MnO(x) combined with PAC) was investigated. The efficiency of trace mercury removal was evaluated under the experimental conditions of reaction time, Mn dosage, pH, and temperature. In addition, the ionic strength and the initial mercury concentration were examined to evaluate trace mercury removal for different water qualities. The results clearly demonstrated that in situ MnO(x) combined with PAC was effective for trace mercury removal from aqueous solution. A mercury removal ratio of 9.7 μg Hg/mg Mn was obtained at pH 3. Furthermore, at an initial mercury concentration of 30 μg/L and pH levels of both 3 and 5, a Mn dosage of 4 mg/L was able to lower the mercury concentration to meet the standards for drinking water quality at less than 1 μg/L. Analysis by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy suggests that the hydroxyls on the surface of Mn (hydr)oxides are the active sites for adsorption of trace mercury from aqueous solution.

  11. Effect of residual chips on the material removal process of the bulk metallic glass studied by in situ scratch testing inside the scanning electron microscope

    Directory of Open Access Journals (Sweden)

    Hu Huang

    2012-12-01

    Full Text Available Research on material removal mechanism is meaningful for precision and ultra-precision manufacturing. In this paper, a novel scratch device was proposed by integrating the parasitic motion principle linear actuator. The device has a compact structure and it can be installed on the stage of the scanning electron microscope (SEM to carry out in situ scratch testing. Effect of residual chips on the material removal process of the bulk metallic glass (BMG was studied by in situ scratch testing inside the SEM. The whole removal process of the BMG during the scratch was captured in real time. Formation and growth of lamellar chips on the rake face of the Cube-Corner indenter were observed dynamically. Experimental results indicate that when lots of chips are accumulated on the rake face of the indenter and obstruct forward flow of materials, materials will flow laterally and downward to find new location and direction for formation of new chips. Due to similar material removal processes, in situ scratch testing is potential to be a powerful research tool for studying material removal mechanism of single point diamond turning, single grit grinding, mechanical polishing and grating fabrication.

  12. Evaluation of the performance of the Tyson Foods wastewater treatment plant for nitrogen removal.

    Science.gov (United States)

    Ubay-Cokgor, E; Randall, C W; Orhon, D

    2005-01-01

    In this paper, the performance of the Tyson Foods wastewater treatment plant with an average flow rate of 6500 m3/d was evaluated before and after upgrading of the treatment system for nitrogen removal. This study was also covered with an additional recommendation of BIOWIN BNR program simulation after the modification period to achieve an additional nutrient removal. The results clearly show that the upgrading was very successful for improved nitrogen removal, with a 57% decrease on the total nitrogen discharge. There also were slight reductions in the discharged loads of biological oxygen demand, total suspended solids, ammonium and total phosphorus with denitrification, even though the effluent flow was higher during operation of the nitrogen removal configuration.

  13. Redox stratified biofilms to support completely autotrophic nitrogen removal: Principles and results

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Smets, Barth F.

    liquid. If operated properly, MABRs yield compact and homogeneous redox-stratified biofilms capable of hosting side-by-side aerobic and anaerobic microbial communities. We have recently demonstrated that completely autotrophic nitrogen removal is feasible in MABRs at nitrogen removal rates as high as 5......After 10 years of pilot and full-scale studies, completely autotrophic nitrogen via coupled aerobic and anaerobic ammonium oxidation is now firmly established in the wastewater treatment community. The reasons for the popularization of the technology are numerous, but the most attractive....... The continuous and sustained inoculation of metabolically active anaerobic oxidizing bacteria from a biofilm reactor placed in the recirculation line of our MABRs showed to shorten considerably the onset of autotrophic nitrogen removal. However, the main hurdle keeping MABRs from attaining high removal...

  14. Enhancing nitrogen removal in stormwater treatment facilities for transportation.

    Science.gov (United States)

    2015-01-01

    Stormwater from roadways is a point source of pollution. State DOTs must comply with Total Maximum : Daily Load (TMDL) regulations for nutrients such as nitrogen, which causes water quality impairment. Existing stormwater treatment technologies, such...

  15. On the 'hysteresis' effect in the biological nitrogen removal :theory and full scale experimental evaluation

    International Nuclear Information System (INIS)

    Tatano, F.

    1996-01-01

    The wastewater treatments plants localized in the Ruhr River (Germany), generally present a typical wastewater temperature variation curve during the winter period. These temperature changes produce specific effects on the nitrogen removal efficiencies in the activated sludge systems. The so called 'hysteresis' phenomenon is responsible for these effects. The paper deals with some simplified theoretical considerations and with a full scale experimental evaluations of the effects caused by the hysteresis phenomenon in the biological nitrogen removal

  16. Sequentially aerated membrane biofilm reactors for autotrophic nitrogen removal: microbial community composition and dynamics

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Franck, Stephanie; Gülay, Arda

    2014-01-01

    Membrane-aerated biofilm reactors performing autotrophic nitrogen removal can be successfully applied to treat concentrated nitrogen streams. However, their process performance is seriously hampered by the growth of nitrite oxidizing bacteria (NOB). In this work we document how sequential aeration...

  17. The effect of nitrogen on phosphorus and potassium removal by cauliflower

    NARCIS (Netherlands)

    Everaarts, A.P.; Moel, de C.P.

    2009-01-01

    The effect of the amount of nitrogen applied and of the method of application on the amounts of phosphorus and potassium removed from the field with the product in cauliflower cultivation was studied in three field experiments. Band placement or split application of nitrogen did not influence

  18. Further contributions to the understanding of nitrogen removal in waste stabilization ponds.

    Science.gov (United States)

    Bastos, R K X; Rios, E N; Sánchez, I A

    2018-06-01

    A set of experiments were conducted in Brazil in a pilot-scale waste stabilization pond (WSP) system (a four-maturation-pond series) treating an upflow anaerobic sludge blanket (UASB) reactor effluent. Over a year and a half the pond series was monitored under two flow rate conditions, hence also different hydraulic retention times and surface loading rates. On-site and laboratory trials were carried out to assess: (i) ammonia losses by volatilization using acrylic capture chambers placed at the surface of the ponds; (ii) organic nitrogen sedimentation rates using metal buckets placed at the bottom of the ponds for collecting settled particulate matter; (iii) nitrogen removal by algal uptake based on the nitrogen content of the suspended particulate matter in samples from the ponds' water column. In addition, nitrification and denitrification rates were measured in laboratory-based experiments using pond water and sediment samples. The pond system achieved high nitrogen removal (69% total nitrogen and 92% ammonia removal). The average total nitrogen removal rates varied from 10,098 to 3,849 g N/ha·d in the first and the last ponds, respectively, with the following fractions associated with the various removal pathways: (i) 23.5-45.6% sedimentation of organic nitrogen; (ii) 13.1-27.8% algal uptake; (iii) 1.2-3.1% ammonia volatilization; and (iv) 0.15-0.34% nitrification-denitrification.

  19. Influence of heterogeneous ammonium availability on bacterial community structure and the expression of nitrogen fixation and ammonium transporter genes during in situ bioremediation of uranium-contaminated groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Mouser, P.J.; N' Guessan, A.L.; Elifantz, H.; Holmes, D.E.; Williams, K.H.; Wilkins, M.J.; Long, P.E.; Lovley, D.R.

    2009-04-01

    The impact of ammonium availability on microbial community structure and the physiological status and activity of Geobacter species during in situ bioremediation of uranium-contaminated groundwater was evaluated. Ammonium concentrations varied by as much as two orders of magnitude (<4 to 400 {micro}M) across the study site. Analysis of 16S rRNA gene sequences suggested that ammonium influenced the composition of the microbial community prior to acetate addition with Rhodoferax species predominating over Geobacter species at the site with the highest ammonium, and Dechloromonas species dominating at sites with lowest ammonium. However, once acetate was added, and dissimilatory metal reduction was stimulated, Geobacter species became the predominant organisms at all locations. Rates of U(VI) reduction appeared to be more related to the concentration of acetate that was delivered to each location rather than the amount of ammonium available in the groundwater. In situ mRNA transcript abundance of the nitrogen fixation gene, nifD, and the ammonium importer gene, amtB, in Geobacter species indicated that ammonium was the primary source of nitrogen during in situ uranium reduction, and that the abundance of amtB transcripts was inversely correlated to ammonium levels across all sites examined. These results suggest that nifD and amtB expression by subsurface Geobacter species are closely regulated in response to ammonium availability to ensure an adequate supply of nitrogen while conserving cell resources. Thus, quantifying nifD and amtB expression appears to be a useful approach for monitoring the nitrogen-related physiological status of Geobacter species in subsurface environments during bioremediation. This study also emphasizes the need for more detailed analysis of geochemical/physiological interactions at the field scale, in order to adequately model subsurface microbial processes.

  20. Nitrogen Removal by Anammox Biofilm Column Reactor at Moderately Low Temperature

    Directory of Open Access Journals (Sweden)

    Tuty Emilia Agustina

    2017-10-01

    Full Text Available The anaerobic ammonium oxidation (anammox as a new biological approach for nitrogen removal has been considered to be more cost-effective compared with the combination of nitrification and denitrification process. However, the anammox bioreactors are mostly explored at high temperature (>300C in which temperature controlling system is fully required. This research was intended to develop and to apply anammox process for high nitrogen concentration removal at ambient temperature used for treating wastewater in tropical countries. An up-flow biofilm column reactor, which the upper part constructed with a porous polyester non-woven fabric material as a carrier to attach the anammox bacteria was operated without heating system. A maximum nitrogen removal rate (NRR of 1.05 kg-N m3 d-1 was reached in the operation days of 178 with a Total Nitrogen (TN removal efficiency of 74%. This showed the biofilm column anammox reactor was successfully applied to moderate high nitrogen removal from synthetic wastewater at moderately low temperature. Keywords: Anammox, biofilm column reactor, ambient temperature, nitrogen removal

  1. Factorial study of rain garden design for nitrogen removal

    Science.gov (United States)

    Abstract Nitrate (〖NO〗_3^--N ) removal studies in bioretention systems showed great variability in removal rates and in some cases 〖NO〗_3^--N was exported. A 3-way factorial design (2 x 2 x 4) was devised for eight outdoor un-vegetated rain gardens to evaluate the effects of ...

  2. Evaluation on nitrogen oxides and nanoparticle removal and nitrogen monoxide generation using a wet-type nonthermal plasma reactor

    Science.gov (United States)

    Takehana, Kotaro; Kuroki, Tomoyuki; Okubo, Masaaki

    2018-05-01

    Nitrogen oxides (NOx) emitted from power plants and combustion sources cause air pollution problems. Selective catalytic reduction technology is remarkably useful for NOx removal. However, there are several drawbacks such as preparation of reducing agents, usage of harmful heavy metals, and higher cost. On the other hand, trace NO is a vasodilator agent and employed in inhalation therapies for treating pulmonary hypertension in humans. Considering these factors, in the present study, a wet-type nonthermal plasma reactor, which can control NOx and nanoparticle emissions and generate NO, is investigated. The fundamental characteristics of the reactor are investigated. First, the experiment of nanoparticle removal is carried out. Collection efficiencies of over 99% are achieved for nanoparticles at 50 and 100 ml min‑1 of liquid flow rates. Second, experiments of NOx removal under air atmosphere and NOx generation under nitrogen atmosphere are carried out. NOx-removal efficiencies of over 95% under the air plasma are achieved in 50–200 ml min‑1 liquid flow rates. Moreover, under nitrogen plasma, NOx is generated, of which the major portion is NO. For example, NO concentration is 25 ppm, while NOx concentration is 31 ppm at 50 ml min‑1 liquid flow rate. Finally, experiments of NO generation under the nitrogen atmosphere with or without flowing water are carried out. When water flows on the inner surface of the reactor, approximately 14 ppm of NO is generated. Therefore, NO generation requires flowing water. It is considered that the reaction of N and OH, which is similar to the extended Zeldovich mechanism, could occur to induce NO formation. From these results, it is verified that the wet-type plasma reactor is useful for NOx removal and NO generation under nitrogen atmosphere with flowing water.

  3. Nitrogen removal in shallow groundwater below three arable land systems in a high nitrogen loading region

    Science.gov (United States)

    Yan, X.; Zhou, W.

    2017-12-01

    The Taihu Lake region (TLR) is one of the most intensive agricultural regions with high nitrogen (N) loading in eastern China. Large inputs of synthetic N fertilizer have led to a series of environmental problems including eutrophication of surface waters, nitrate (NO3-) pollution of groundwater. To fully evaluate the risk of NO3- on groundwater environments, it is necessary to know the natural NO3- removal ability. In this study, denitrification capacity was assessed for two years through measuring the concentration of different N species (NO3-, NH4+, TN, excess N2 and dissolved N2O) in groundwater below three typical agricultural land-use types in the TLR. The results suggested that the conversion of paddy field (PF) to vineyard (VY) and vegetable (VF) significantly increased the groundwater NO3-N concentration, but denitrification consumed 76%, 83% and 65% of the groundwater NO3-N in VY, VF and PF, respectively. Because of the low O2 and high DOC concentrations in groundwater, denitrification activity was high in the study sites, resulting in high excess N2 accumulation in groundwater, and the concentration even exceeded the total active N in the deep layer. The large amounts of excess N2 observed in the VY and VF over all the sample times indicated that considerable N was stored as gaseous N2 in groundwater and should not be ignored in balancing N budgets in aquifers where denitrification is high. Our results also demonstrated that the indirect N2O emission factor (EF5-g) in VY (0.0052)and VF (0.0057)was significantly higher than PF (0.0011)as well as higher than the IPCC default values (0.0025. In view of the increasing trend of paddy fields being converted to uplands combined with the low GWT in the TLR, we thus concluded that the risk of NO3- contamination in groundwater and indirect N2O emission will intensify below arable land.

  4. Anaerobic ammonium oxidation and its contribution to nitrogen removal in China’s coastal wetlands

    Science.gov (United States)

    Hou, Lijun; Zheng, Yanling; Liu, Min; Li, Xiaofei; Lin, Xianbiao; Yin, Guoyu; Gao, Juan; Deng, Fengyu; Chen, Fei; Jiang, Xiaofen

    2015-01-01

    Over the past several decades, human activities have caused substantial enrichment of reactive nitrogen in China’s coastal wetlands. Although anaerobic ammonium oxidation (anammox), the process of oxidizing ammonium into dinitrogen gas through the reduction of nitrite, is identified as an important process for removing reactive nitrogen, little is known about the dynamics of anammox and its contribution to nitrogen removal in nitrogen-enriched environments. Here, we examine potential rates of anammox and associate them with bacterial diversity and abundance across the coastal wetlands of China using molecular and isotope tracing techniques. High anammox bacterial diversity was detected in China’s coastal wetlands and included Candidatus Scalindua, Kuenenia, Brocadia, and Jettenia. Potential anammox rates were more closely associated with the abundance of anammox bacteria than to their diversity. Among all measured environmental variables, temperature was a key environmental factor, causing a latitudinal distribution of the anammox bacterial community composition, biodiversity and activity along the coastal wetlands of China. Based on nitrogen isotope tracing experiments, anammox was estimated to account for approximately 3.8–10.7% of the total reactive nitrogen removal in the study area. Combined with denitrification, anammox can remove 20.7% of the total external terrigenous inorganic nitrogen annually transported into China’s coastal wetland ecosystems. PMID:26494435

  5. Removal of ammonia nitrogen in wastewater by microwave radiation: A pilot-scale study

    International Nuclear Information System (INIS)

    Lin Li; Chen Jing; Xu Zuqun; Yuan Songhu; Cao Menghua; Liu Huangcheng; Lu Xiaohua

    2009-01-01

    A large removal of ammonia nitrogen in wastewater has been achieved by microwave (MW) radiation in our previous bench-scale study. This study developed a continuous pilot-scale MW system to remove ammonia nitrogen in real wastewater. A typical high concentration of ammonia nitrogen contaminated wastewater, the coke-plant wastewater from a Coke company, was treated. The output power of the microwave reactor was 4.8 kW and the handling capacity of the reactor was about 5 m 3 per day. The ammonia removal efficiencies under four operating conditions, including ambient temperature, wastewater flow rate, aeration conditions and initial concentration were evaluated in the pilot-scale experiments. The ammonia removal could reach about 80% for the real coke-plant wastewater with ammonia nitrogen concentrations of 2400-11000 mg/L. The running cost of the MW technique was a little lower than the conventional steam-stripping method. The continuous microwave system showed the potential as an effective method for ammonia nitrogen removal in coke-plant water treatment. It is proposed that this process is suitable for the treatment of toxic wastewater containing high concentrations of ammonia nitrogen.

  6. Simultaneous removal of nitrogen oxides and sulfur oxides from combustion gases

    Science.gov (United States)

    Clay, David T.; Lynn, Scott

    1976-10-19

    A process for the simultaneous removal of sulfur oxides and nitrogen oxides from power plant stack gases comprising contacting the stack gases with a supported iron oxide catalyst/absorbent in the presence of sufficient reducing agent selected from the group consisting of carbon monoxide, hydrogen, and mixtures thereof, to provide a net reducing atmosphere in the SO.sub.x /NO.sub.x removal zone. The sulfur oxides are removed by absorption substantially as iron sulfide, and nitrogen oxides are removed by catalytic reduction to nitrogen and ammonia. The spent iron oxide catalyst/absorbent is regenerated by oxidation and is recycled to the contacting zone. Sulfur dioxide is also produced during regeneration and can be utilized in the production of sulfuric acid and/or sulfur.

  7. In situ one-step synthesis of hierarchical nitrogen-doped porous carbon for high-performance supercapacitors.

    Science.gov (United States)

    Jeon, Ju-Won; Sharma, Ronish; Meduri, Praveen; Arey, Bruce W; Schaef, Herbert T; Lutkenhaus, Jodie L; Lemmon, John P; Thallapally, Praveen K; Nandasiri, Manjula I; McGrail, Benard Peter; Nune, Satish K

    2014-05-28

    A hierarchically structured nitrogen-doped porous carbon is prepared from a nitrogen-containing isoreticular metal-organic framework (IRMOF-3) using a self-sacrificial templating method. IRMOF-3 itself provides the carbon and nitrogen content as well as the porous structure. For high carbonization temperatures (950 °C), the carbonized MOF required no further purification steps, thus eliminating the need for solvents or acid. Nitrogen content and surface area are easily controlled by the carbonization temperature. The nitrogen content decreases from 7 to 3.3 at % as carbonization temperature increases from 600 to 950 °C. There is a distinct trade-off between nitrogen content, porosity, and defects in the carbon structure. Carbonized IRMOFs are evaluated as supercapacitor electrodes. For a carbonization temperature of 950 °C, the nitrogen-doped porous carbon has an exceptionally high capacitance of 239 F g(-1). In comparison, an analogous nitrogen-free carbon bears a low capacitance of 24 F g(-1), demonstrating the importance of nitrogen dopants in the charge storage process. The route is scalable in that multi-gram quantities of nitrogen-doped porous carbons are easily produced.

  8. Acid-promoted Bicyclization of Diaryl Alkynes: Synthesis of 2H-Indazoles with in situ Generated Diazonium Salt as Nitrogen Source.

    Science.gov (United States)

    Zhang, Cheng; Chang, Sailan; Dong, Shanliang; Qiu, Lihua; Xu, Xinfang

    2018-06-08

    An unprecedented transition-metal-free tandem bicyclization of diaryl alkynes has been disclosed, which provides a streamlined access to a range of polycyclic 2H-indazoles in high to excellent yields. The salient features of this reaction include readily available starting materials, good functional group compatibility, mild reaction conditions, no column chromatography, high bond-formation efficiency, and ease in further transformations. Notably, this is the first example for the synthesis of 2H-indazoles with in situ generated diazonium salt as the nitrogen source, and a mechanistic rationale involving an acid-promoted tandem diazonium salt formation/bicyclization process is discussed.

  9. Nitrogen Removal in Greywater Living Walls: Insights into the Governing Mechanisms

    Directory of Open Access Journals (Sweden)

    Harsha S. Fowdar

    2018-04-01

    Full Text Available Nitrogen is a pollutant of great concern when present in excess in surface waters. Living wall biofiltration systems that employ ornamentals and climbing plants are an emerging green technology that has recently demonstrated significant potential to reduce nitrogen concentrations from greywater before outdoor domestic re-use. However, there still exists a paucity of knowledge around the mechanisms governing this removal, particularly in regards to the fate of dissolved organic nitrogen (DON within these systems. Understanding the fate of nitrogen in living wall treatment systems is imperative both to optimise designs and to predict the long-term viability of these systems, more so given the growing interest in adopting green infrastructure within urban cities. A laboratory study was undertaken to investigate the transformation and fate of nitrogen in biofilters planted with different climbing plants and ornamental species. An isotropic tracer (15N-urea was applied to quantify the amount removed through coupled nitrification-denitrification. The results found that nitrification-denitrification formed a minor removal pathway in planted systems, comprising only 0–15% of added 15N. DON and ammonium were effectively reduced by all biofilter designs, indicating effective mineralisation and nitrification rates. However, in designs with poor nitrogen removal, the effluent was enriched with nitrate, suggesting limited denitrification rates. Given the likely dominance of plant assimilation in removal, this indicates that plant selection is a critical design parameter, as is maintaining healthy plant growth for optimal nitrogen removal in greywater living wall biofilters in their early years of operation.

  10. Rumen escape nitrogen from forages in sheep: comparison of in situ and in vitro techniques using in vivo data

    NARCIS (Netherlands)

    Gosselink, J.M.J.; Dulphy, J.P.; Poncet, C.; Aufrère, J.; Tamminga, S.; Cone, J.W.

    2004-01-01

    The objective of this study was to relate in vivo data of rumen escape N (REN) of forages with REN estimated from models and with determinations of rumen undegradable N. For these determinations and models measurements from in situ and in vitro techniques were used. Eleven forages were investigated

  11. Enhancement of oxygen transfer and nitrogen removal in a membrane separation bioreactor for domestic wastewater treatment.

    Science.gov (United States)

    Chiemchaisri, C; Yamamoto, K

    2005-01-01

    Biological nitrogen removal in a membrane separation bioreactor developed for on-site domestic wastewater treatment was investigated. The bioreactor employed hollow fiber membrane modules for solid-liquid separation so that the biomass could be completely retained within the system. Intermittent aeration was supplied with 90 minutes on and off cycle to achieve nitrification and denitrification reaction for nitrogen removal. High COD and nitrogen removal of more than 90% were achieved under a moderate temperature of 25 degrees C. As the temperature was stepwise decreased from 25 to 5 degrees C, COD removal in the system could be constantly maintained while nitrogen removal was deteriorated. Nevertheless, increasing aeration supply could enhance nitrification at low temperature with benefit from complete retention of nitrifying bacteria within the system by membrane separation. At low operating temperature range of 5 degrees C, nitrogen removal could be recovered to more than 85%. A mathematical model considering diffusion resistance of limiting substrate into the bio-particle is applied to describe nitrogen removal in a membrane separation bioreactor. The simulation suggested that limitation of the oxygen supply was the major cause of inhibition of nitrification during temperature decrease. Nevertheless, increasing aeration could promote oxygen diffusion into the bio-particle. Sufficient oxygen was supplied to the nitrifying bacteria and the nitrification could proceed. In the membrane separation bioreactor, biomass concentration under low temperature operation was allowed to increase by 2-3 times of that of moderate temperature to compensate for the loss of bacterial activities so that the temperature effect was masked.

  12. Designing Bioretention Systems to Improve Nitrogen Removal - poster

    Science.gov (United States)

    Rain gardens, also referred to as bioretention systems, are designed primarily to infiltrate stormwater flow and reduce surface runoff and peak flows to receiving streams. Additionally, they are known to remove stressors from urban stormwater runoff, including oil and grease, pho...

  13. In Situ One-Step Synthesis of Hierarchical Nitrogen-Doped Porous Carbon for High Performance Supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Ju Won [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Texas A & M Univ., College Station, TX (United States); Sharma, Ronish [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Meduri, Praveen [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Arey, Bruce W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schaef, Herbert T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lutkenhaus, Jodie [Texas A & M Univ., College Station, TX (United States); Lemmon, John P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Thallapally, Praveen K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nandasiri, Manjula I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McGrail, B. Peter [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nune, Satish K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-04-30

    Electrochemical performance of the existing state-of-the art capacitors is not very high, key scientific barrier is that its charge storage mechanism wholly depends on adsorption of electrolyte on electrode. We present a novel method for the synthesis of nitrogen -doped porous carbons and address the drawback by precisely controlling composition and surface area. Nitrogen-doped porous carbon was synthesized using a self-sacrificial template technique without any additional nitrogen and carbon sources. They exhibited exceptionally high capacitance (239 Fg-1) due to additional pseudocapacitance originating from doped nitrogen. Cycling tests showed no obvious capacitance decay even after 10,000 cycles, which meets the requirement of commercial supercapacitors. Our method is simple and highly efficient for the production of large quantities of nitrogen-doped porous carbons.

  14. Effects of slash removal in an experimental nitrogen gradient. Final report for the project

    International Nuclear Information System (INIS)

    Nohrstedt, H.Oe.; Ring, Eva; Sikstroem, Ulf; Hoegbom, Lars; Nordlund, Sten

    2000-04-01

    During four years after clear-felling, the effects of slash removal, including needles, were studied on a productive spruce site (site index G30) in the province of Vaermland, western Sweden. The study was made in an old fertilization experiment, in which at the most 2400 kg N/ha had been added during a twenty-year period. Despite the fact that the site is rich in nitrogen and that much slash was removed (100 ton d. m./ha), there were only very minor effects of the slash removal on the variables under study. These were the composition of soil water, the content of inorganic nitrogen in soil, the biomass of the field layer and the development of the planted spruce seedlings. The only statistically significant effect was that the content of nitrate was reduced in the humus layer. No data supported the idea that the previous fertilization influenced the effect of the slash removal, even though the fertilization had increased the content of total nitrogen in soil and the nitrogen leaching. Thus, we have not been able to repeat the observation from another Swedish study that slash removal reduces leaching of nitrogen and accompanying base cations, e. g. potassium. The effect of slash removal seems to depend on site conditions. Research is needed to reveal the variation in response and decisive factors. Our results, that the survival of spruce seedlings tends to be favoured by slash removal and that the early height growth is unaffected, are in accordance with results from previous studies. Our result, that the biomass of the total field layer is unaffected by slash removal, is not possible to compare with results from other studies, since these were mainly of a qualitative nature

  15. Flexible nanohybrid microelectrode based on carbon fiber wrapped by gold nanoparticles decorated nitrogen doped carbon nanotube arrays: In situ electrochemical detection in live cancer cells.

    Science.gov (United States)

    Zhang, Yan; Xiao, Jian; Sun, Yimin; Wang, Lu; Dong, Xulin; Ren, Jinghua; He, Wenshan; Xiao, Fei

    2018-02-15

    The rapidly growing demand for in situ real-time monitoring of chemical information in vitro and in vivo has attracted tremendous research efforts into the design and construction of high-performance biosensor devices. Herein, we develop a new type of flexible nanohybrid microelectrode based on carbon fiber wrapped by gold nanoparticles decorated nitrogen-doped carbon nanotube arrays, and explore its practical application in in situ electrochemical detection of cancer biomarker H 2 O 2 secreted from live cancer cells. Our results demonstrate that carbon fiber material with microscale size and fascinating mechanical properties can be used as a robust and flexible microelectrode substrate in the electrochemical biosensor system. And the highly ordered nitrogen-doped carbon nanotube arrays that grown on carbon fiber possess high surface area-to-volume ratio and abundant active sites, which facilitate the loading of high-density and uniformly dispersed gold nanoparticles on it. Benefited from the unique microstructure and excellent electrocatalytic properties of different components in the nanohybrid fiber microelectrode, an effective electrochemical sensing platform based on it has been built up for the sensitive and selective detection of H 2 O 2 , the detection limit is calculated to be 50nM when the signal-to-noise ratio is 3:1, and the linear dynamic range is up to 4.3mM, with a high sensitivity of 142µAcm -2 mM -1 . These good sensing performances, coupled with its intrinsic mechanical flexibility and biocompatibility, allow for its use in in situ real-time tracking H 2 O 2 secreted from breast cancer cell lines MCF-7 and MBA-MD-231, and evaluating the sensitivity of different cancer cells to chemotherapy or radiotherapy treatments, which hold great promise for clinic application in cancer diagnose and management. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Method of removing oxides of sulfur and oxides of nitrogen from exhaust gases

    Science.gov (United States)

    Walker, Richard J.

    1986-01-01

    A continuous method is presented for removing both oxides of sulfur and oxides of nitrogen from combustion or exhaust gases with the regeneration of the absorbent. Exhaust gas is cleaned of particulates and HCl by a water scrub prior to contact with a liquid absorbent that includes an aqueous solution of bisulfite and sulfite ions along with a metal chelate, such as, an iron or zinc aminopolycarboxylic acid. Following contact with the combustion gases the spent absorbent is subjected to electrodialysis to transfer bisulfite ions into a sulfuric acid solution while splitting water with hydroxide and hydrogen ion migration to equalize electrical charge. The electrodialysis stack includes alternate layers of anion selective and bipolar membranes. Oxides of nitrogen are removed from the liquid absorbent by air stripping at an elevated temperature and the regenerated liquid absorbent is returned to contact with exhaust gases for removal of sulfur oxides and nitrogen oxides.

  17. Effect of operational cycle time length on nitrogen removal in an alternating oxidation ditch system.

    Science.gov (United States)

    Mantziaras, I D; Stamou, A; Katsiri, A

    2011-06-01

    This paper refers to nitrogen removal optimization of an alternating oxidation ditch system through the use of a mathematical model and pilot testing. The pilot system where measurements have been made has a total volume of 120 m(3) and consists of two ditches operating in four phases during one cycle and performs carbon oxidation, nitrification, denitrification and settling. The mathematical model consists of one-dimensional mass balance (convection-dispersion) equations based on the IAWPRC ASM 1 model. After the calibration and verification of the model, simulation system performance was made. Optimization is achieved by testing operational cycles and phases with different time lengths. The limits of EU directive 91/271 for nitrogen removal have been used for comparison. The findings show that operational cycles with smaller time lengths can achieve higher nitrogen removals and that an "equilibrium" between phase time percentages in the whole cycle, for a given inflow, must be achieved.

  18. Enhanced biocatalytic production of L-cysteine by Pseudomonas sp. B-3 with in situ product removal using ion-exchange resin.

    Science.gov (United States)

    Wang, Pu; He, Jun-Yao; Yin, Jiang-Feng

    2015-03-01

    Bioconversion of DL-2-amino-Δ(2)-thiazoline-4-carboxylic acid (DL-ATC) catalyzed by whole cells of Pseudomonas sp. was successfully applied for the production of L-cysteine. It was found, however, like most whole-cell biocatalytic processes, the accumulated L-cysteine produced obvious inhibition to the activity of biocatalyst and reduced the yield. To improve L-cysteine productivity, an anion exchange-based in situ product removal (ISPR) approach was developed. Several anion-exchange resins were tested to select a suitable adsorbent used in the bioconversion of DL-ATC for the in situ removal of L-cysteine. The strong basic anion-exchange resin 201 × 7 exhibited the highest adsorption capacity for L-cysteine and low adsorption for DL-ATC, which is a favorable option. With in situ addition of 60 g L(-1) resin 201 × 7, the product inhibition can be reduced significantly and 200 mmol L(-1) of DL-ATC was converted to L-cysteine with 90.4 % of yield and 28.6 mmol L(-1 )h(-1) of volumetric productivity. Compared to the bioconversion without the addition of resin, the volumetric productivity of L-cysteine was improved by 2.27-fold using ISPR method.

  19. Electron beam treatment removes both sulphur and nitrogen oxides

    International Nuclear Information System (INIS)

    Kawamura, K.; Miller, G.A.

    1985-01-01

    The Ebara Corporation in Japan has developed an electron beam flue gas treatment (e-beam fgt) process. The process offers the following features: simultaneous removal of SO 2 and NOsub(x); a dry process which involves no slurry recycling, no sludge disposal, and no gas reheating; turndown and load following capabilities with a minimum of process control; SO 2 and NOsub(x) are converted into saleable fertiliser. The demonstration plant is described. (author)

  20. Removal of nitrite impurity from nitrate labeled with nitrogen-15

    International Nuclear Information System (INIS)

    Malone, J.P.; Stevens, R.J.

    1998-01-01

    Potassium nitrate labeled with 15 N is often used as a tracer in studies of N dynamics in soil and water systems. Typically, 0.8% NO 2 - impurity has been found in the batches of K 15 NO 3 enriched to 99 atom % excess 15 N that were purchased by our laboratory. Nitrite is an intermediate in several N cycling processes so its addition when adding NO 3 - could produce misleading results. We have developed a safe, simple, and inexpensive method to remove NO 2 - impurity from any NO 3 - solution in a water matrix. The principle is the oxidation of NO2- to NO 3 - by UV light in the presence of a heterogenous TiO 2 catalyst. A NO 2 - concentration of 0.2 mM in 100 mL of 0.2 M NO 3 - solution could be oxidized in 12 min using 0.5 g L -1 TiO 2 in a specially constructed photoreactor with a 75-W UV facial tanning lamp. For the routine removal of NO 2 - , use of the same TiO 2 concentration in a standard beaker worked equally well when the irradiation time was extended to 2.5 h. After irradiation, the TiO2 is easily and totally removed from the solution by membrane filtration. (author)

  1. Soil nitrogen availability and in situ nitrogen uptake by Acer rubrum L. and Pinus palustris Mill. in the southeastern U.S. Coastal Plain

    Science.gov (United States)

    Plant uptake of soil organic N in addition to inorganic N could play an important role in ecosystem N cycling as well as plant nutrition. We measured in situ plant uptake of organic and inorganic N by the dominant canopy species in two contrasting temperate forest ecosystems (bottomland floodplain ...

  2. Ammonium nitrogen removal from coking wastewater by chemical precipitation recycle technology.

    Science.gov (United States)

    Zhang, Tao; Ding, Lili; Ren, Hongqiang; Xiong, Xiang

    2009-12-01

    Ammonium nitrogen removal from wastewater has been of considerable concern for several decades. In the present research, we examined chemical precipitation recycle technology (CPRT) for ammonium nitrogen removal from coking wastewater. The pyrolysate resulting from magnesium ammonium phosphate (MAP) pyrogenation in sodium hydroxide (NaOH) solution was recycled for ammonium nitrogen removal from coking wastewater. The objective of this study was to investigate the conditions for MAP pyrogenation and to characterize of MAP pyrolysate for its feasibility in recycling. Furthermore, MAP pyrolysate was characterized by scanning electron microscope (FESEM), transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FTIR) as well as X-ray diffraction (XRD). The MAP pyrolysate could be produced at the optimal condition of a hydroxyl (OH(-)) to ammonium molar ratio of 2:1, a heating temperature of 110 degrees C, and a heating time of 3h. Surface characterization analysis indicated that the main component of the pyrolysate was amorphous magnesium sodium phosphate (MgNaPO(4)). The pyrolysate could be recycled as a magnesium and phosphate source at an optimum pH of 9.5. When the recycle times were increased, the ammonium nitrogen removal ratio gradually decreased if the pyrolysate was used without supplementation. When the recycle times were increased, the ammonium nitrogen removal efficiency was not decreased if the added pyrolysate was supplemented with MgCl(2).6H(2)O plus Na(2)HPO(4).12H(2)O during treatment. A high ammonium nitrogen removal ratio was obtained by using pre-formed MAP as seeding material.

  3. Novel heterotrophic nitrogen removal and assimilation characteristic of the newly isolated bacterium Pseudomonas stutzeri AD-1.

    Science.gov (United States)

    Qing, Hui; Donde, Oscar Omondi; Tian, Cuicui; Wang, Chunbo; Wu, Xingqiang; Feng, Shanshan; Liu, Yao; Xiao, Bangding

    2018-04-18

    AD-1, an aerobic denitrifier, was isolated from activated sludge and identified as Pseudomonas stutzeri. AD-1 completely removed NO 3 - or NO 2 - and removed 99.5% of NH 4 + during individual culturing in a broth medium with an initial nitrogen concentration of approximately 50 mg L -1 . Results showed that larger amounts of nitrogen were removed through assimilation by the bacteria. And when NH 4 + was used as the sole nitrogen source in the culture medium, neither NO 2 - nor NO 3 - was detected, thus indicating that AD-1 may not be a heterotrophic nitrifier. Only trace amount of N 2 O was detected during the denitrification process. Single factor experiments indicated that the optimal culture conditions for AD-1 were: a carbon-nitrogen ratio (C/N) of 15, a temperature of 25°C and sodium succinate or glucose as a carbon source. In conclusion, due to the ability of AD-1 to utilize nitrogen of different forms with high efficiencies for its growth while producing only trace emissions of N 2 O, the bacterium had outstanding potential to use in the bioremediation of high-nitrogen-containing wastewaters. Meanwhile, it may also be a proper candidate for biotreatment of high concentration organic wastewater. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Removal of organic nitrogen compounds in LCO reduces the hydrodesulphurization severity

    Energy Technology Data Exchange (ETDEWEB)

    Yang, H.; Chen, J.; Ring, Z. [National Centre for Upgrading Technology, Devon, AB (Canada)

    2006-07-01

    Canada and the United States committed to reducing diesel sulphur from 500 to 15 part per million by 2006. Refineries could benefit from a better understanding of the effects of feed matrix on sulphur removal by hydrodesulphurization (HDS) in selecting the right feed or feed pre-treatment options for their existing HDS units and achieve the required sulphur level at minimum cost. This paper presented a study that examined the influence of nitrogen compounds on the HDS activities of substituted dibenzothiophenes in light oil cycle over a nitrogen/molybdenum on alumina oxide (Al{sub 2}O{sub 3}) commercial catalyst using five light cycle oil feeds with different concentrations of organic nitrogen compounds. The paper discussed experiments that were conducted under conditions close to industrial HDS processes. The paper addressed feed preparation; the nitrogen effect on HDS reactivity of dibenzothiophene, 4-methyldibenzothiophene, and 4,6-dimethyl dibenzothiophene; sulphur composition analysis; hydrodenitrogenation; and kinetic modeling. It was concluded that organic nitrogen compounds have more of an inhibition effect on sulphur removal by the hydrogenation pathway than by the hydrogenolysis pathway. Nitrogen removal by feed pre-treatment was found to be an attractive alternative to achieve the ultra-low sulphur goal. 26 refs., 3 tabs., 9 figs.

  5. In situ hydrothermal synthesis of a novel hierarchically porous TS-1/modified-diatomite composite for methylene blue (MB) removal by the synergistic effect of adsorption and photocatalysis.

    Science.gov (United States)

    Yuan, Weiwei; Yuan, Peng; Liu, Dong; Yu, Wenbin; Laipan, Minwang; Deng, Liangliang; Chen, Fanrong

    2016-01-15

    Hierarchically porous TS-1/modified-diatomite composites with high removal efficiency for methylene blue (MB) were prepared via a facile in situ hydrothermal route. The surface charge state of the diatomite was modified to enhance the electrostatic interactions, followed by in situ hydrothermal coating with TS-1 nanoparticles. The zeolite loading amount in the composites could be adjusted by changing the hydrothermal time. The highest specific surface area and micropore volume of the obtained composites were 521.3m(2)/g and 0.254cm(3)/g, respectively, with an optimized zeolite loading amount of 96.8%. Based on the synergistic effect of efficient adsorption and photocatalysis resulting from the newly formed hierarchically porous structure and improved dispersion of TS-1 nanoparticles onto diatomite, the composites' removal efficiency for MB reached 99.1% after 2h of photocatalytic reaction, even higher than that observed using pure TS-1 nanoparticles. Moreover, the superior MB removal kinetics of the composites were well represented by a pseudo-first-order model, with a rate constant (5.28×10(-2)min(-1)) more than twice as high as that of pure TS-1 nanoparticles (2.43×10(-2)min(-1)). The significant dye removal performance of this novel TS-1/modified-diatomite composite indicates that it is a promising candidate for use in waste water treatment. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Municipal wastewater treatment for effective removal of organic matter and nitrogen

    International Nuclear Information System (INIS)

    Grebenevich, E.V.; Zaletova, N.A.; Terentieva, N.A.

    1987-01-01

    The organic matter, as well as nitrogen and phosphorus, are nutrient substances. Their excess concentrations in water receiving bodies lead to eutrophication, moreover, the nitrogen content in water bodies is standardized according the sanitary-toxicological criterion of harmfulness: NH 4 + -N ≤0,39-2,0 mgl - , NO 3 -N ≤9,1-10 mgl - . The municipal wastewater contain, usually, organic matter estimated by BOD 150-200 mgl - , and COD 300-400 mgl - , the nitrogen compounds 50-60 mgl - , and NH 4 + -N 20-25 mgl - . NO x -N are practically absent. Their presence indicated on discharge of industrial wastewater. The total phosphorus is present in the concentration of 15 mgl - , PO 4 - - P 5-8 mgl - . Activated sludge process has been most widely used in the USSR for municipal wastewater treatment. The activated sludge is biocenoses of heterotrophic and auto trophic microorganisms. They consume nutrient matters, transferring pollution of wastewater by means of enzyme systems in acceptable forms. C, N and P-containing matters are removed from wastewater by biological intake for cell synthesis. Moreover C- containing matters are removed by oxidation to CO 2 and H 2 O. P-containing compounds under definite conditions associate with solid fraction of activated sludge and thus simultaneously removed from wastewater. The removal of nitrogen in addition to biosynthesis is carried out only in the denitrification process, when oxygen of NO x -N is used for oxidation of organic matter and produced gaseous nitrogen escapes into the atmosphere

  7. Simultaneous nitrogen, phosphorous, and hardness removal from reverse osmosis concentrate by microalgae cultivation.

    Science.gov (United States)

    Wang, Xiao-Xiong; Wu, Yin-Hu; Zhang, Tian-Yuan; Xu, Xue-Qiao; Dao, Guo-Hua; Hu, Hong-Ying

    2016-05-01

    While reverse osmosis (RO) is a promising technology for wastewater reclamation, RO concentrate (ROC) treatment and disposal are important issues to consider. Conventional chemical and physical treatment methods for ROC present certain limitations, such as relatively low nitrogen and phosphorus removal efficiencies as well as the requirement of an extra process for hardness removal. This study proposes a novel biological approach for simultaneous removal of nitrogen, phosphorus, and calcium (Ca(2+)) and magnesium (Mg(2+)) ions from the ROC of municipal wastewater treatment plants by microalgal cultivation and algal biomass production. Two microalgae strains, Chlorella sp. ZTY4 and Scenedesmus sp. LX1, were used for batch cultivation of 14-16 days. Both strains grew well in ROC with average biomass production of 318.7 mg/L and lipid contents up to 30.6%, and nitrogen and phosphorus could be effectively removed with efficiencies of up to 89.8% and 92.7%, respectively. Approximately 55.9%-83.7% Ca(2+) could be removed from the system using the cultured strains. Mg(2+) removal began when Ca(2+) precipitation ceased, and the removal efficiency of the ion could reach up to 56.0%. The most decisive factor influencing Ca(2+) and Mg(2+) removal was chemical precipitation with increases in pH caused by algal growth. The results of this study provide a new biological approach for removing nitrogen, phosphorous, and hardness from ROC. The results suggest that microalgal cultivation presents new opportunities for applying an algal process to ROC treatment. The proposed approach serves dual purposes of nutrient and hardness reduction and production of lipid rich micro-algal biomass. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Effect of powdered activated carbon technology on short-cut nitrogen removal for coal gasification wastewater.

    Science.gov (United States)

    Zhao, Qian; Han, Hongjun; Xu, Chunyan; Zhuang, Haifeng; Fang, Fang; Zhang, Linghan

    2013-08-01

    A combined process consisting of a powdered activated carbon technology (PACT) and short-cut biological nitrogen removal reactor (SBNR) was developed to enhance the removal efficiency of the total nitrogen (TN) from the effluent of an upflow anaerobic sludge bed (UASB) reactor, which was used to treat coal gasification wastewater (CGW). The SBNR performance was improved with the increasing of COD and TP removal efficiency via PACT. The average removal efficiencies of COD and TP in PACT were respectively 85.80% and 90.30%. Meanwhile, the NH3-N to NO2-N conversion rate was achieved 86.89% in SBNR and the total nitrogen (TN) removal efficiency was 75.54%. In contrast, the AOB in SBNR was significantly inhibited without PACT or with poor performance of PACT in advance, which rendered the removal of TN. Furthermore, PAC was demonstrated to remove some refractory compounds, which therefore improved the biodegradability of the coal gasification wastewater. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Nitrogen Removal from Digested Black Water by One-stage Partial Nitritation and Anammox

    DEFF Research Database (Denmark)

    Vlaeminck, S.E.; Terada, Akihiko; Smets, Barth F.

    2009-01-01

    This study assessed the technical feasibility to treat digested black water from vacuum toilets (> 1000 mg NH4+-N L-1) in a lab-scale oxygen-limited autotrophic nitrification/denitrification (OLAND) rotating biological contactor. After an adaptation period of 2.5 months, a stable. nitrogen removal...... conversion was very low, in contrast to the high specific AnAOB activity. DGGE analysis showed that the dominant AerAOB and AnAOB species were resistant to the transition from synthetic medium to digested black water. This study demonstrates high-rate nitrogen removal from digested black water by one...

  10. Optimization of an Sbr process for nitrogen removal from concentrated wastewater via nitrite

    International Nuclear Information System (INIS)

    Longhi, L.; Basilico, D.; Meloni, A.; Canziani, R.

    2009-01-01

    The results of an experimentation carried out on a pilot-scale Sbr for nitrogen removal via nitridation-denitration are reported. The experimentation was carried out in the period July October 2007 and was aimed at achieving design data for the upgrade of a full scale wastewater treatment plant (WWTP), following the new regulations issued by Lombardy Regional Authority for the discharge of effluents into sensitive areas. One aspect that has been considered in the upgrade is nitrogen removal from the supernatant coming from anaerobic sludge digestion. The experimental results provided sound design data based on real biological activity measurements and operational process parameters such as oxygen and organic carbon requirements. [it

  11. Using stable isotopes of carbon and nitrogen as in-situ tracers for monitoring the natural attenuation of explosives

    National Research Council Canada - National Science Library

    Miyares, Paul H

    1999-01-01

    The use of carbon and nitrogen stable isotope measurements from TNT was examined as a possible tool for monitoring the natural attenuation of TNT incubation studies of spiked soil samples were conducted...

  12. Start-Up and Aeration Strategies for a Completely Autotrophic Nitrogen Removal Process in an SBR

    Directory of Open Access Journals (Sweden)

    Xiaoling Zhang

    2017-01-01

    Full Text Available The start-up and performance of the completely autotrophic nitrogen removal via nitrite (CANON process were examined in a sequencing batch reactor (SBR with intermittent aeration. Initially, partial nitrification was established, and then the DO concentration was lowered further, surplus water in the SBR with high nitrite was replaced with tap water, and continuous aeration mode was turned into intermittent aeration mode, while the removal of total nitrogen was still weak. However, the total nitrogen (TN removal efficiency and nitrogen removal loading reached 83.07% and 0.422 kgN/(m3·d, respectively, 14 days after inoculating 0.15 g of CANON biofilm biomass into the SBR. The aggregates formed in SBR were the mixture of activated sludge and granular sludge; the volume ratio of floc and granular sludge was 7 : 3. DNA analysis showed that Planctomycetes-like anammox bacteria and Nitrosomonas-like aerobic ammonium oxidization bacteria were dominant bacteria in the reactor. The influence of aeration strategies on CANON process was investigated using batch tests. The result showed that the strategy of alternating aeration (1 h and nonaeration (1 h was optimum, which can obtain almost the same TN removal efficiency as continuous aeration while reducing the energy consumption, inhibiting the activity of NOB, and enhancing the activity of AAOB.

  13. Removal and recovery of nitrogen and sulfur oxides from gaseous mixtures containing them

    International Nuclear Information System (INIS)

    Cooper, H.B.H.

    1984-01-01

    A cyclic process for removing lower valence nitrogen oxides from gaseous mixtures includes treating the mixtures with an aqueous media including alkali metal carbonate and alkali metal bicarbonate and a preoxygen oxidant to form higher valence nitrogen oxides and to capture these oxides as alkali metal salts, expecially nitrites and nitrates, in a carbonate/bicarbonate-containing product aqueous media. Highly selective recovery of nitrates in high purity and yield may then follow, as by crystallization, with the carbonate and bicarbonate alkali metal salts strongly increasing the selectivity and yield of nitrates. The product nitrites are converted to nitrates by oxidation after lowering the product aqueous media pH to below about 9. A cyclic process for removing sulfur oxides from gas mixtures includes treating these mixtures includes treating these mixtures with aqueous media including alkali metal carbonate and alkali metal bicarbonate where the ratio of alkali metal to sulfur dioxide is not less than 2. The sulfur values may be recovered from the resulting carbonate/bicarbonate/-sulfite containing product aqueous media as alkali metal sulfate or sulfite salts which are removed by crystallization from the carbonate-containing product aqueous media. As with the nitrates, the carbonate/bicarbonate system strongly increases yield of sulfate or sulfite during crystallization. Where the gas mixtures include both sulfur dioxide and lower valence nitrogen oxides, the processes for removing lower valence nitrogen oxides and sulfur dioxide may be combined into a single removal/recovery system, or may be effected in sequence

  14. Effects of Invasive-Plant Management on Nitrogen-Removal Services in Freshwater Tidal Marshes.

    Directory of Open Access Journals (Sweden)

    Mary Alldred

    Full Text Available Establishing relationships between biodiversity and ecosystem function is an ongoing endeavor in contemporary ecosystem and community ecology, with important practical implications for conservation and the maintenance of ecosystem services. Removal of invasive plant species to conserve native diversity is a common management objective in many ecosystems, including wetlands. However, substantial changes in plant community composition have the potential to alter sediment characteristics and ecosystem services, including permanent removal of nitrogen from these systems via microbial denitrification. A balanced assessment of costs associated with keeping and removing invasive plants is needed to manage simultaneously for biodiversity and pollution targets. We monitored small-scale removals of Phragmites australis over four years to determine their effects on potential denitrification rates relative to three untreated Phragmites sites and adjacent sites dominated by native Typha angustifolia. Sediment ammonium increased following the removal of vegetation from treated sites, likely as a result of decreases in both plant uptake and nitrification. Denitrification potentials were lower in removal sites relative to untreated Phragmites sites, a pattern that persisted at least two years following removal as native plant species began to re-colonize treated sites. These results suggest the potential for a trade-off between invasive-plant management and nitrogen-removal services. A balanced assessment of costs associated with keeping versus removing invasive plants is needed to adequately manage simultaneously for biodiversity and pollution targets.

  15. Effects of Invasive-Plant Management on Nitrogen-Removal Services in Freshwater Tidal Marshes.

    Science.gov (United States)

    Alldred, Mary; Baines, Stephen B; Findlay, Stuart

    2016-01-01

    Establishing relationships between biodiversity and ecosystem function is an ongoing endeavor in contemporary ecosystem and community ecology, with important practical implications for conservation and the maintenance of ecosystem services. Removal of invasive plant species to conserve native diversity is a common management objective in many ecosystems, including wetlands. However, substantial changes in plant community composition have the potential to alter sediment characteristics and ecosystem services, including permanent removal of nitrogen from these systems via microbial denitrification. A balanced assessment of costs associated with keeping and removing invasive plants is needed to manage simultaneously for biodiversity and pollution targets. We monitored small-scale removals of Phragmites australis over four years to determine their effects on potential denitrification rates relative to three untreated Phragmites sites and adjacent sites dominated by native Typha angustifolia. Sediment ammonium increased following the removal of vegetation from treated sites, likely as a result of decreases in both plant uptake and nitrification. Denitrification potentials were lower in removal sites relative to untreated Phragmites sites, a pattern that persisted at least two years following removal as native plant species began to re-colonize treated sites. These results suggest the potential for a trade-off between invasive-plant management and nitrogen-removal services. A balanced assessment of costs associated with keeping versus removing invasive plants is needed to adequately manage simultaneously for biodiversity and pollution targets.

  16. A novel control strategy for single-stage autotrophic nitrogen removal in SBR

    DEFF Research Database (Denmark)

    Mauricio Iglesias, Miguel; Vangsgaard, Anna Katrine; Gernaey, Krist

    2015-01-01

    A novel feedforward–feedback control strategy was developed for complete autotrophic nitrogen removal in a sequencing batch reactor. The aim of the control system was to carry out the regulation of the process while keeping the system close to the optimal operation. The controller was designed...... based on a process model and then tested experimentally. The resulting batch-to-batch control strategy had the total nitrogen removal efficiency as controlled variable and the setting of the aeration mass flow controller as manipulated variable. Compared to manual operation mode (constant air supply......), the controller resulted in a significant performance improvement: removal efficiency was kept at a stable high level in the presence of influent ammonium concentration disturbances, and the absolute deviation on removal efficiency was reduced by 40%. The successful validation of the controller in a lab...

  17. Microbial community stratification in Membrane-Aerated Biofilm Reactors for Completely Autotrophic Nitrogen Removal

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Ruscalleda, Maël; Terada, Akihiko

    of bacterial granules or biofilms. In this sense, completely autotrophic nitrogen removal from high ammonium strength wastewater was achieved in a Membrane-Aereated Biofilm Reactor (MABR) in a single step. Here, a biofilm containing nitrifiers (Aerobic Ammonium and Nitrite Oxidizing Bacteria, AOB and NOB......, respectively) and Anaerobic Ammonium Oxidizing Bacteria (AnAOB) is grown on bubbleless aeration membranes to remove ammonium. Since oxygen permeates through the membrane-biofilm interface while ammonium diffuses into the biofilm from the biofilm-liquid interface, oxygen gradients can be established across...... the biofilm, allowing nitrogen removal in a single reactor by simultaneous activity of the mentioned biocatalysts. This work consists on the analysis of the microbial community existing in two laboratory-scale reactors operated for more than 300 days, which removed up to 5.5 g-N/m2/day. The system contained...

  18. Nitrogen removal from digested slurries using a simplified ammonia stripping technique.

    Science.gov (United States)

    Provolo, Giorgio; Perazzolo, Francesca; Mattachini, Gabriele; Finzi, Alberto; Naldi, Ezio; Riva, Elisabetta

    2017-11-01

    This study assessed a novel technique for removing nitrogen from digested organic waste based on a slow release of ammonia that was promoted by continuous mixing of the digestate and delivering a continuous air stream across the surface of the liquid. Three 10-day experiments were conducted using two 50-L reactors. In the first two, nitrogen removal efficiencies were evaluated from identical digestates maintained at different temperatures (30°C and 40°C). At the start of the first experiment, the digestates were adjusted to pH 9 using sodium hydroxide, while in the second experiment pH was not adjusted. The highest ammonia removal efficiency (87%) was obtained at 40°C with pH adjustment. However at 40°C without pH adjustment, removal efficiencies of 69% for ammonia and 47% for total nitrogen were obtained. In the third experiment two different digestates were tested at 50°C without pH adjustment. Although the initial chemical characteristics of the digestates were different in this experiment, the ammonia removal efficiencies were very similar (approximately 85%). Despite ammonia removal, the pH increased in all experiments, most likely due to carbon dioxide stripping that was promoted by temperature and mixing. The technique proved to be suitable for removing nitrogen following anaerobic digestion of livestock manure because effective removal was obtained at natural pH (≈8) and 40°C, common operating conditions at typical biogas plants that process manure. Furthermore, the electrical energy requirement to operate the process is limited (estimated to be 3.8kWhm -3 digestate). Further improvements may increase the efficiency and reduce the processing time of this treatment technique. Even without these advances slow-rate air stripping of ammonia is a viable option for reducing the environmental impact associated with animal manure management. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Suitable flow pattern increases the removal efficiency of nitrogen in gravity sewers: a suitable anoxic and aerobic environment in biofilms.

    Science.gov (United States)

    He, Qiang; Yin, Feixian; Li, Hong; Wang, Yinliang; Xu, Jingwei; Ai, Hainan

    2018-03-25

    The sewers have the function of carbon removal, which has been proven. But if the effect of nitrogen removal can be enhanced at the same time of carbon removal, it can lay a foundation for the realization of "sewer's working as a reactor." This paper investigated the effects of shear stress and C/N ratio on nitrogen removal through biofilms on the sewer inner wall and nitrogen transfer. The main conclusions are as follows: (1) nitrogen could be partially removed in sewers after a series of reactions; (2) the anaerobic, anoxic, aerobic environment and some bacteria related to nitrogen metabolism, which exist in the biofilm, promote the nitrification and denitrification; (3) a total of 722 functional genes involved in nitrogen metabolism were detected in the biofilm (C/N ratio of 10, shear stress of 1.4 Pa), accounting for 0.67% of all genes, and the functional genes related to denitrification were dominant. Graphical abstract ᅟ.

  20. Oxygen Limited Bioreactors System For Nitrogen Removal Using Immobilized Mix Culture

    Science.gov (United States)

    Pathak, B. K.; Sumino, T.; Saiki, Y.; Kazama, F.

    2005-12-01

    Recently nutrients concentrations especially nitrogen in natural water is alarming in the world wide. Most of the effort is being done on the removal of high concentration of nitrogen especially from the wastewater treatment plants. The removal efficiency is targeted in all considering the effluent discharge standard set by the national environment agency. In many cases, it does not meet the required standard and receiving water is being polluted. Eutrophication in natural water bodies has been reported even if the nitrogen concentration is low and self purification of natural systems itself is not sufficient to remove the nitrogen due to complex phenomenon. In order to recover the pristine water environment, it is very essential to explore bioreactor systems for natural water systems using immobilized mix culture. Microorganism were entrapped in Polyethylene glycol (PEG) prepolymer gel and cut into 3mm cubic immobilized pellets. Four laboratory scale micro bio-reactors having 0.1 L volumes were packed with immobilized pellets with 50% compact ratio. RUN1, RUN2, RUN3 and RUN4 were packed with immobilized pellets from reservoirs sediments, activated sludge (AS), mixed of AS, AG and biodegradable plastic and anaerobic granules (AG) respectively. Water from Shiokawa Reservoirs was feed to all reactors with supplemental ammonia and nitrite nitrogen as specified in the results and discussions. The reactors were operated dark incubated room in continuous flow mode with hydraulic retention time of 12 hours under oxygen limiting condition. Ammonium, nitrate nitrite nitrogen and total organic carbon (TOC) concentrations were measured as described in APWA and AWWA (1998). Laboratory scale four bioreactors containing different combination of immobilized cell were monitored for 218 days. Influent NH4+-N and NO2--N concentration were 2.27±0.43 and 2.05±0.41 mg/l respectively. Average dissolved oxygen concentration and pH in the reactors were 0.40-2.5 mg/l and pH 6

  1. A study of nitrogenation of a NdFe12-xMox compound by in situ neutron powder diffraction

    International Nuclear Information System (INIS)

    Loong, C.; Short, S.M.; Lin, J.; Ding, Y.

    1998-01-01

    The effects on the crystal lattice of a NdFe 12-x Mo x (x congruent 1.7) during controlled nitrogenation over the 25 endash 600 degree C temperature range were studied by neutron powder diffraction. Prior to nitrogenation the sample contained a major phase of NdFe 10.3 Mo 1.7 and a minor phase (∼12vol%) of bcc-Fe. The sample inside the furnace was connected to a closed volume of ultrapure nitrogen gas while neutron data were collected over regular time intervals during sequential heating. Substantial nitrogen absorption occurred between 500 and 600 degree C. During the nitrogenation process the NdFe 12-x Mo x N y lattice expanded while the bcc-Fe lattice contracted. An increasing decomposition of the compound into bcc-Fe at 600 degree C was observed. The average size of the NdFe 12-x Mo x N y crystalline grains decreased starting at ∼300 degree C, reaching a minimum at ∼500 degree C and then increased markedly at higher temperatures. The development of lattice strains, on the other hand, showed an opposite trend, i.e., a maximum at 500 degree C. copyright 1998 American Institute of Physics

  2. In-situ analysis of redistribution of carbon and nitrogen during tempering of low interstitial martensitic stainless steel

    DEFF Research Database (Denmark)

    Niessen, F.; Villa, M.; Danoix, F.

    2018-01-01

    The redistribution of C and N during tempering of X4CrNiMo16-5-1 martensitic stainless steel containing 0.034 wt% C and 0.032 wt% N was studied using in-situ synchrotron X-ray diffraction (XRD) and atom probe tomography (APT). The unit cell volume of martensite decreased continuously during...... tempering. APT showed that this volume decrease is accounted entirely for by segregation of the interstitial atoms, implying that in low interstitial martensitic stainless steel stress relaxation only contributes negligibly to changes in the martensite unit cell volume....

  3. The Influence of the Ratio of Nitrate to Ammonium Nitrogen on Nitrogen Removal in the Economical Growth of Vegetation in Hybrid Constructed Wetlands

    Directory of Open Access Journals (Sweden)

    Haq Nawaz Abbasi

    2017-03-01

    Full Text Available Growing vegetables economically in the use of constructed wetland for wastewater treatment can play a role in overcoming water and food scarcity. Allium porrum L., Solanum melongena L., Ipomoea aquatica Forsk., and Capsicum annuum L. plants were selected to grow in hybrid constructed wetland (CW under natural conditions. The impact of the ratio of nitrate to ammonium nitrogen on ammonium and nitrate nitrogen removal and on total nitrogen were studied in wastewater. Constructed wetland planted with Ipomoea aquatica Forsk. and Solanum melongena L. showed higher removal efficiency for ammonium nitrogen under higher ammonium concentration, whereas Allium porrum L.-planted CW showed higher nitrate nitrogen removal when NO3–N concentration was high in wastewater. Capsicum annuum L.-planted CW showed little efficiency for both nitrogen sources compared to other vegetables.

  4. Control of SHARON reactor for autotrophic nitrogen removal in two-reactor configuration

    DEFF Research Database (Denmark)

    Valverde Perez, Borja; Mauricio Iglesias, Miguel; Sin, Gürkan

    2012-01-01

    With the perspective of investigating a suitable control design for autotrophic nitrogen removal, this work explores the control design for a SHARON reactor. With this aim, a full model is developed, including the pH dependency, in order to simulate the reactor and determine the optimal operating...

  5. Startup and oxygen concentration effects in a continuous granular mixed flow autotrophic nitrogen removal reactor.

    Science.gov (United States)

    Varas, Rodrigo; Guzmán-Fierro, Víctor; Giustinianovich, Elisa; Behar, Jack; Fernández, Katherina; Roeckel, Marlene

    2015-08-01

    The startup and performance of the completely autotrophic nitrogen removal over nitrite (CANON) process was tested in a continuously fed granular bubble column reactor (BCR) with two different aeration strategies: controlling the oxygen volumetric flow and oxygen concentration. During the startup with the control of oxygen volumetric flow, the air volume was adjusted to 60mL/h and the CANON reactor had volumetric N loadings ranging from 7.35 to 100.90mgN/Ld with 36-71% total nitrogen removal and high instability. In the second stage, the reactor was operated at oxygen concentrations of 0.6, 0.4 and 0.2mg/L. The best condition was 0.2 mgO2/L with a total nitrogen removal of 75.36% with a CANON reactor activity of 0.1149gN/gVVSd and high stability. The feasibility and effectiveness of CANON processes with oxygen control was demonstrated, showing an alternative design tool for efficiently removing nitrogen species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Start-up strategies of membrane-aerated biofilm reactor (MABR) for completely autotrophic nitrogen removal

    DEFF Research Database (Denmark)

    Sun, Sheng-Peng; Pellicer i Nàcher, Carles; Terada, Akihiko

    2009-01-01

    Completely autotrophic nitrogen removal, coupling aerobic and anaerobic ammonium oxidation, can be achieved via redox stratified biofilms growing on gas-permeable membranes. These sequential reactions are mediated by aerobic and anaerobic ammonium oxidizing bacteria (AOB and AnAOB). The major...

  7. Performance of an autotrophic nitrogen removing reactor: Diagnosis through fuzzy logic

    DEFF Research Database (Denmark)

    Vangsgaard, Anna Katrine; Mauricio Iglesias, Miguel; Mutlu, Ayten Gizem

    Autotrophic nitrogen removal through nitritation-anammox in one stage SBRs is an energy and cost efficient alternative to conventional treatment methods. Intensification of an already complex biological system challenges our ability to observe, understand, diagnose, and control the system. A fuzzy...

  8. Incremental design of control system of SHARON-Anammox process for autotrophic nitrogen removal

    DEFF Research Database (Denmark)

    Mauricio Iglesias, Miguel; Valverde Perez, Borja; Sin, Gürkan

    2012-01-01

    With the perspective of investigating a suitable control design for autotrophic nitrogen removal, this work explores the control design for a SHARON-Anammox reactor sequence. With this aim, a full model is developed, including the pH dependency, in order to simulate the reactor and determine...

  9. A fuzzy-logic based diagnosis and control of a reactor performing complete autotrophic nitrogen removal

    DEFF Research Database (Denmark)

    Mauricio Iglesias, Miguel; Vangsgaard, Anna Katrine; Gernaey, Krist

    2013-01-01

    Diagnosis and control modules based on fuzzy set theory were tested for novel bioreactor monitoring and control. Two independent modules were used jointly to carry out first the diagnosis of the state of the system and then use transfer this information to control the reactor. The separation in d...... autotrophic nitrogen removal process. The whole module is evaluated by dynamic simulation....

  10. Control of a Biological Nitrogen Removal Process in an Intensified Single Reactor Configuration

    DEFF Research Database (Denmark)

    Vangsgaard, Anna Katrine; Mauricio Iglesias, Miguel; Gernaey, Krist

    2013-01-01

    The nitrogen removing granular sludge process is a novel and intensified process. However, its stable operation and control remains a challenging problem. In this contribution, a new process oriented approach is used to develop, evaluate and benchmark control strategies to ensure stable operation...

  11. Model-based optimization biofilm based systems performing autotrophic nitrogen removal using the comprehensive NDHA model

    DEFF Research Database (Denmark)

    Valverde Pérez, Borja; Ma, Yunjie; Morset, Martin

    Completely autotrophic nitrogen removal (CANR) can be obtained in single stage biofilm-based bioreactors. However, their environmental footprint is compromised due to elevated N2O emissions. We developed novel spatially explicit biochemical process model of biofilm based CANR systems that predicts...

  12. The water vapor nitrogen process for removing sodium from LMFBR components

    Energy Technology Data Exchange (ETDEWEB)

    Crippen, M D; Funk, C W; Lutton, J M [Hanford Engineering Development Laboratory, Richland (United States)

    1978-08-01

    Application and operation of the Water Vapor-Nitrogen Process for removing sodium from LMFBR components is reviewed. Emphasis is placed on recent efforts to verify the technological bases of the process, to refine the values of process parameters and to ensure the utility of the process for cleaning and requalifying components. (author)

  13. Nitrogen removal and water microbiota in grass carp culture following supplementation with Bacillus licheniformis BSK-4.

    Science.gov (United States)

    Liang, Quan; Zhang, Xiaoping; Lee, Khui Hung; Wang, Yibing; Yu, Kan; Shen, Wenying; Fu, Luoqin; Shu, Miaoan; Li, Weifen

    2015-11-01

    This experiment was designed to study the effects of Bacillus licheniformis BSK-4 on nitrogen removal and microbial community structure in a grass carp (Ctenopharyngodon idellus) culture. The selected strain Bacillus licheniformis BSK-4 significantly decreased nitrite, nitrate and total nitrogen levels in water over an extended, whereas increased ammonia level. Pyrosequencing showed that Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes were dominant in grass carp culture water. Compared with the control group, the number of Proteobacteria and Firmicutes were increased, while Actinobacteria and Bacteroidetes decreased in treatment group. At the genus level, some genera, such as Bacillus, Prosthecobacter, Enterococcus, etc., appear only in the treatment, while many other genera exist only in the control group; Lactobacillus, Luteolibacter, Phenylobacterium, etc. were increased in treatment group compared to those in control group. As above, the results suggested that supplementation with B. licheniformis BSK-4 could remove some nitrogen and cause alterations of the microbial composition in grass carp water.

  14. Sequentially aerated membrane biofilm reactors for autotrophic nitrogen removal: microbial community composition and dynamics

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Franck, Stephanie; Gülay, Arda

    2014-01-01

    Membrane-aerated biofilm reactors performing autotrophic nitrogen removal can be successfully applied to treat concentrated nitrogen streams. However, their process performance is seriously hampered by the growth of nitrite oxidizing bacteria (NOB). In this work we document how sequential aeration...... (rich in oxygen) and AnAOB in regions neighbouring the liquid phase. Both communities were separated by a transition region potentially populated by denitrifying heterotrophic bacteria. AOB and AnAOB bacterial groups were more abundant and diverse than NOB, and dominated by the r......-strategists Nitrosomonas europaea and Ca. Brocadia anammoxidans, respectively. Taken together, the present work presents tools to better engineer, monitor and control the microbial communities that support robust, sustainable and efficient nitrogen removal....

  15. [Effect of Elodea nuttallii-immobilized Nitrogen Cycling Bacteria on Nitrogen Removal Mechanism in an Inflow River, Gonghu Bay].

    Science.gov (United States)

    Han, Hua-yang; Li, Zheng-kui; Wang, Hao; Zhu, Qian

    2016-04-15

    Undisturbed sediment cores and surface water from Qinshui River in Gonghu Bay were collected to carry out a simulation experiment in our laboratory. The remediation effect of Elodea nuttallii-Immobilized Nitrogen Cycling Bacteria (INCB) was applied in the polluted inflow river. The denitrification rate, ANAMMOX rate and nitrogen microorganism diversity were measured by ¹⁵N isotope pairing technology and high-throughput sequencing technology based on 16S rRNA. The TN, NH₄⁺-N, NO₃⁻-N concentrations were reduced by 72.03%, 46.67% and 76.65% in the treatment with addition of Elodea nuttallii and INCB in our laboratory experiment. Meanwhile, denitrification bacteria and ANAMMOX bacteria had synergistic effect with each other. The denitrification and ANAMMOX rates were increased by 165 µmol (m² · h)⁻¹ and 269.7 µmol · (m² · h)⁻¹, respectively. The diversities of denitrification and ANAMMOX bacteria also increased in our experiment. From the level of major phylum, Proteobacteria, Planctomycetes, Acidobbacteria and Bacteroidetes all increased significantly. The results showed that the Elodea nuttallii-INCB assemblage technology could increase the bio-diversity of nitrogen cycling bacteria and promote the ability of nitrogen removal in Qinshui River.

  16. Does Avicennia germinans expansion alter salt marsh nitrogen removal capacity?

    Science.gov (United States)

    Tatariw, C.; Kleinhuizen, A.; Rajan, S.; Flournoy, N.; Sobecky, P.; Mortazavi, B.

    2017-12-01

    Plant species expansion poses risks to ecosystem services through alterations to plant-microbiome interactions associated with changes to key microbial drivers such as organic carbon (C) substrates, nitrogen (N) availability, and rhizosphere-associated microbial communities. In the northern Gulf of Mexico (GOM), warming winter temperatures associated with climate change have promoted Avicennia germinans (black mangrove) expansion into salt marshes. To date, there is limited knowledge regarding the effects of mangrove expansion on vital ecosystem services such as N cycling in the northern GOM. We designed a field-based study to determine the potential effects of mangrove expansion on salt marsh N biogeochemical cycling in the Spartina alterniflora dominated Chandeleur Islands (LA, USA). We used a combination of process rate measurements and metadata to: 1) Determine the impact of mangrove expansion on salt marsh denitrification and dissimilatory nitrate reduction to ammonium (DNRA), with the goal of quantifying losses or gains in ecosystem services; and 2) identify the mechanisms driving changes in ecosystem services to improve predictions about the impacts of mangrove expansion on salt marsh functional resiliency. The pneumatophore root structure of A. germinans is efficient at delivering oxygen (O2) to sediment, which can promote coupled nitrification-denitrification and decrease sulfide inhibition. We hypothesized that increased sediment O2, when coupled with cooler soil temperatures caused by plant shading, will favor denitrification instead of the DNRA process. An increase in sediment O2, as well as higher N content of A. germinans litter, will also result in a shift in the microbial community. Initial findings indicated that the denitrification pathway dominates over DNRA regardless of vegetation type, with average denitrification rates of 30.1 µmol N kg-1 h-1 versus average DNRA rates of 8.5 µmol N kg-1 h-1. However, neither denitrification nor DNRA rates

  17. Relative importance of plant uptake and plant associated denitrification for removal of nitrogen from mine drainage in sub-arctic wetlands.

    Science.gov (United States)

    Hallin, Sara; Hellman, Maria; Choudhury, Maidul I; Ecke, Frauke

    2015-11-15

    Reactive nitrogen (N) species released from undetonated ammonium-nitrate based explosives used in mining or other blasting operations are an emerging environmental problem. Wetlands are frequently used to treat N-contaminated water in temperate climate, but knowledge on plant-microbial interactions and treatment potential in sub-arctic wetlands is limited. Here, we compare the relative importance of plant uptake and denitrification among five plant species commonly occurring in sub-arctic wetlands for removal of N in nitrate-rich mine drainage in northern Sweden. Nitrogen uptake and plant associated potential denitrification activity and genetic potential for denitrification based on quantitative PCR of the denitrification genes nirS, nirK, nosZI and nosZII were determined in plants growing both in situ and cultivated in a growth chamber. The growth chamber and in situ studies generated similar results, suggesting high relevance and applicability of results from growth chamber experiments. We identified denitrification as the dominating pathway for N-removal and abundances of denitrification genes were strong indicators of plant associated denitrification activity. The magnitude and direction of the effect differed among the plant species, with the aquatic moss Drepanocladus fluitans showing exceptionally high ratios between denitrification and uptake rates, compared to the other species. However, to acquire realistic estimates of N-removal potential of specific wetlands and their associated plant species, the total plant biomass needs to be considered. The species-specific plant N-uptake and abundance of denitrification genes on the root or plant surfaces were affected by the presence of other plant species, which show that both multi- and inter-trophic interactions are occurring. Future studies on N-removal potential of wetland plant species should consider how to best exploit these interactions in sub-arctic wetlands. Copyright © 2015 Elsevier Ltd. All rights

  18. OMI and Ground-Based In-Situ Tropospheric Nitrogen Dioxide Observations over Several Important European Cities during 2005–2014

    Directory of Open Access Journals (Sweden)

    Spiru Paraschiv

    2017-11-01

    Full Text Available In this work we present the evolution of tropospheric nitrogen dioxide (NO2 content over several important European cities during 2005–2014 using space observations and ground-based in-situ measurements. The NO2 content was derived using the daily observations provided by the Ozone Monitoring Instrument (OMI, while the NO2 volume mixing ratio measurements were obtained from the European Environment Agency (EEA air quality monitoring stations database. The European cities selected are: Athens (37.98° N, 23.72° E, Berlin (52.51° N, 13.41° E, Bucharest (44.43° N, 26.10° E, Madrid (40.38° N, 3.71° W, Lisbon (38.71° N, 9.13° W, Paris (48.85° N, 2.35° E, Rome (41.9° N, 12.50° E, and Rotterdam (51.91° N, 4.46° E. We show that OMI NO2 tropospheric column data can be used to assess the evolution of NO2 over important European cities. According to the statistical analysis, using the seasonal variation, we found good correlations (R > 0.50 between OMI and ground-based in-situ observations for all of the cities presented in this work. Highest correlation coefficients (R > 0.80 between ground-based monitoring stations and OMI observations were calculated for the cities of Berlin, Madrid, and Rome. Both types of observations, in-situ and remote sensing, show an NO2 negative trend for all of locations presented in this study.

  19. A robust nitrifying community in a bioreactor at 50°C opens up the path for thermophilic nitrogen removal

    NARCIS (Netherlands)

    Courtens, E.N.P.; Spieck, E.; Vilchez-Vargas, R.; Bodé, S.; Boeckx, P.; Schouten, S.; Jáuregui, R.; Pieper, D.H.; Vlaeminck, S.E.; Boon, N.

    2016-01-01

    The increasing production of nitrogen-containing fertilizers is crucial to meet the global food demand, yet high losses of reactive nitrogen associated with the food production/consumption chain progressively deteriorate the natural environment. Currently, mesophilic nitrogen-removing microbes

  20. [Characteristics of nitrogen and phosphorus removal and control of membrane fouling in MBR and SMBR].

    Science.gov (United States)

    Guo, Xiao-Ma; Zhao, Yan; Wang, Kai-Yan; Zhao Yang-Guo

    2015-03-01

    To improve the efficiency and running stability of wastewater advanced treatment, a sequencing membrane bioreactor (SMBR) and a traditional membrane bioreactor (MBR) were used to investigate the characteristics of nitrogen and phosphorus removal, and the effect of anoxic time on treatment systems and membrane fouling. Simultaneously, molecular biology techniques were applied to analyze the composition of microbial community and the structure of suspended sludge. The results showed that SMBR had higher efficiency in removing TN than MBR, which indicated that intermittent aeration could enhance the ability of nitrogen removal. SMBR and MBR had a similar removal efficiency of NH4(+)-N, TP, COD, and turbidity with the removal rates of 94%, 78%, 80%, and 97%, respectively. Extension of SMBR anoxic time had no effect on COD, NH4(+) -N removal but decreased TN and TP removal rate, dropping from 61% and 74% to 46% and 52%, respectively. Intermittent aeration and powder activated carbon (PAC) could both mitigate membrane fouling. The analysis on microbial community indicated that there was no difference in the composition and structure of microbial community between SMBR and MBR. Nitrospira and Dechloromonas were both highly abundant functional groups, which provided the basis for highly efficient control of bioreactors.

  1. Optimization of free ammonia concentration for nitrite accumulation in shortcut biological nitrogen removal process.

    Science.gov (United States)

    Chung, Jinwook; Shim, Hojae; Park, Seong-Jun; Kim, Seung-Jin; Bae, Wookeun

    2006-03-01

    A shortcut biological nitrogen removal (SBNR) utilizes the concept of a direct conversion of ammonium to nitrite and then to nitrogen gas. A successful SBNR requires accumulation of nitrite in the system and inhibition of the activity of nitrite oxidizers. A high concentration of free ammonia (FA) inhibits nitrite oxidizers, but unfortunately decreases the ammonium removal rate as well. Therefore, the optimal range of FA concentration is necessary not only to stabilize nitrite accumulation but also to achieve maximum ammonium removal. In order to derive such optimal FA concentrations, the specific substrate utilization rates of ammonium and nitrite oxidizers were measured. The optimal FA concentration range appeared to be 5-10 mg/L for the adapted sludge. The simulated results from the modified inhibition model expressed by FA and ammonium/nitrite concentrations were shown very similar to the experimental results.

  2. Physico-chemical technologies for nitrogen removal from wastewaters: a review

    Directory of Open Access Journals (Sweden)

    Andrea G. Capodaglio

    2015-07-01

    Full Text Available The paper examines the main physico-chemical processes for nitrogen removal from wastewaters, considering both those that have been long known and still widely applied at the industrial scale, and those that are still at the research level. Special attention is paid to the latest technological developments, as well as to operational problems and fields of application. The processes considered are briefly summarized as follows: ammonia air and steam stripping; ammonia vacuum distillation; ammonia precipitation as struvite; ammonia and nitrate removal by selected ion exchange; breakpoint chlorination; chloramine removal by selected activated carbon; ammonia adsorption on charcoal; chemical reduction of nitrate; advanced oxidation processes to convert ammonia and organic-N into nitrogen gas or nitrate. Special attention is given to advanced oxidation processes, as great research efforts are currently addressed to their implementation. These specifically include ozonation, peroxon oxidation, catalytic wet air oxidation, photo-catalytic oxidation and electrochemical oxidation.

  3. New approaches to improve the removal of dissolved organic matter and nitrogen in aquaculture

    DEFF Research Database (Denmark)

    von Ahnen, Mathis

    further due to the lack of cost-effective and easy applicable treatment methods for removing dissolved N and OM. The purpose of this PhD thesis was to assess the problem of removing dissolved N and OM in the context of the large differences in system intensity between farms, and to devise new, simple...... at increasing long-term waste loadings. The second part examined the potential of using anoxic denitrifying woodchip bioreactors for removal of nitrate from aquaculture effluent (Paper III-V). Investigations within the first part showed that the effectiveness of biofilters, as determined by their areal removal......-term biofilter loading up to a certain threshold. The latter indicated that the removal capacity of biofilters operated at lower loadings is easily exceeded, and that they may not respond very well to sudden increases in total ammonia nitrogen (TAN) concentrations. In the second part of the thesis, a field study...

  4. Anthropogenic nitrogen input traced by means of δ 15N values in macroalgae: Results from in-situ incubation experiments

    International Nuclear Information System (INIS)

    Deutsch, Barbara; Voss, Maren

    2006-01-01

    The macroalgae species Fucus vesiculosus (Phaeophyta), Polysiphonia sp., and Ceramium rubrum (Rhodophyta) originally grown at an unpolluted brackish site of the southern Baltic Sea were incubated for 10 and 14 days at 12 stations along a salinity gradient in a highly polluted estuary. We have expected an adaptation of the initially low δ 15 N values to the higher ones within the incubation period. In addition to the macroalgae the δ 15 N values of NO 3 - were measured to evaluate fractionation processes of the source nitrate. Inside the estuary, δ 15 N-NO 3 - values were 6.2-9.7 per mille , indicating anthropogenic nitrogen sources. The red macroalgae adequately reflected the nitrate isotope values in the surrounding waters, whereas for F. vesiculosus the results were not that clear. The reasons were assumed to be higher initial δ 15 N values of F. vesiculosus and presumably a too slow nitrogen uptake and growth rate. The method of macroalgae incubations seems suitable as a simple monitoring to study the influence of anthropogenic nitrogen loading in an estuarine environment

  5. 2D BiOCl/Bi12O17Cl2 nanojunction: Enhanced visible light photocatalytic NO removal and in situ DRIFTS investigation

    Science.gov (United States)

    Zhang, Wendong; Dong, Xin'an; Jia, Bin; Zhong, Junbo; Sun, Yanjuan; Dong, Fan

    2018-02-01

    Novel two-dimensional (2D) BiOCl/Bi12O17Cl2 nanojunctions were fabricated by a facile one-pot in situ method at room temperature. The as-prepared samples were analyzed by XRD, SEM, TEM, HRTEM, UV-vis DRS, PL, ESR and BET-BJH measurement in detail. The photocatalytic performance of the samples was evaluated by removal of NO at ppb level under visible-light illumination. The result reveals that the BiOCl/Bi12O17Cl2 nanojunctions manifests conspicuously enhanced photocatalytic efficiency for NO removal. The facilitated performance can be ascribed to the well-matched band structure and relatively high specific surface area. In addition, the in situ diffuse reflectance infrared Fourier transform spectroscopy was applied to investigate the adsorption and photocatalytic NO oxidation processes. The reaction mechanism of photocatalytic NO oxidation was proposed based on the observed intermediates. The present work could pave a way to synthesize novel visible light photocatalysts at room temperature for environmental application.

  6. Nitrogen removal from wastewater through microbial electrolysis cells and cation exchange membrane.

    Science.gov (United States)

    Haddadi, Sakineh; Nabi-Bidhendi, Gholamreza; Mehrdadi, Nasser

    2014-02-17

    Vulnerability of water resources to nutrients led to progressively stricter standards for wastewater effluents. Modification of the conventional procedures to meet the new standards is inevitable. New technologies should give a priority to nitrogen removal. In this paper, ammonium chloride and urine as nitrogen sources were used to investigate the capacity of a microbial electrolysis cell (MEC) configured by cation exchange membrane (CEM) for electrochemical removal of nitrogen over open-and closed-circuit potentials (OCP and CCP) during biodegradation of organic matter. Results obtained from this study indicated that CEM was permeable to both organic and ammonium nitrogen over OCP. Power substantially mediated ammonium migration from anodic wastewater to the cathode, as well. With a urine rich wastewater in the anode, the maximum rate of ammonium intake into the cathode varied from 34.2 to 40.6 mg/L.h over CCP compared to 10.5-14.9 mg/L.h over OCP. Ammonium separation over CCP was directly related to current. For 1.46-2.12 mmol electron produced, 20.5-29.7 mg-N ammonium was removed. Current also increased cathodic pH up to 12, a desirable pH for changing ammonium ion to ammonia gas. Results emphasized the potential for MEC in control of ammonium through ammonium separation and ammonia volatilization provided that membrane characteristic is considered in their development.

  7. The production of cyanobacterial carbon under nitrogen-limited cultivation and its potential for nitrate removal.

    Science.gov (United States)

    Huang, Yingying; Li, Panpan; Chen, Guiqin; Peng, Lin; Chen, Xuechu

    2018-01-01

    Harmful cyanobacterial blooms (CyanoHABs) represent a serious threat to aquatic ecosystems. A beneficial use for these harmful microorganisms would be a promising resolution of this urgent issue. This study applied a simple method, nitrogen limitation, to cultivate cyanobacteria aimed at producing cyanobacterial carbon for denitrification. Under nitrogen-limited conditions, the common cyanobacterium, Microcystis, efficiently used nitrate, and had a higher intracellular C/N ratio. More importantly, organic carbons easily leached from its dry powder; these leachates were biodegradable and contained a larger amount of dissolved organic carbon (DOC) and carbohydrates, but a smaller amount of dissolved total nitrogen (DTN) and proteins. When applied to an anoxic system with a sediment-water interface, a significant increase of the specific NO X - -N removal rate was observed that was 14.2 times greater than that of the control. This study first suggests that nitrogen-limited cultivation is an efficient way to induce organic and carbohydrate accumulation in cyanobacteria, as well as a high C/N ratio, and that these cyanobacteria can act as a promising carbon source for denitrification. The results indicate that application as a carbon source is not only a new way to utilize cyanobacteria, but it also contributes to nitrogen removal in aquatic ecosystems, further limiting the proliferation of CyanoHABs. Copyright © 2017. Published by Elsevier Ltd.

  8. Optimization for zeolite regeneration and nitrogen removal performance of a hypochlorite-chloride regenerant.

    Science.gov (United States)

    Zhang, Wei; Zhou, Zhen; An, Ying; Du, Silu; Ruan, Danian; Zhao, Chengyue; Ren, Ning; Tian, Xiaoce

    2017-07-01

    Simultaneous zeolites regeneration and nitrogen removal were investigated by using a mixed solution of NaClO and NaCl (NaClO-NaCl solution), and effects of the regenerant on ammonium removal performance and textural properties of zeolites were analyzed by long-term adsorption and regeneration operations. Mixed NaClO-NaCl solution removed more NH 4 + exchanged on zeolites and converted more of them to nitrogen than using NaClO or NaCl solution alone. Response surface methodological analysis indicated that molar ratio of hypochlorite and nitrogen (ClO - /N), NaCl concentration and pH value all had significant effects on zeolites regeneration and NH 4 + conversion to nitrogen, and the optimum condition was obtained at ClO - /N of 1.75, NaCl concentration of 20 g/L and pH of 10.0. Zeolites regenerated by mixed NaClO-NaCl solution showed higher ammonium adsorption rate and lower capacity than unused zeolites. Zeolites and the regeneration solution were both effective even after 20 cycles of use. Composition and morphological analysis revealed that the main mineral species and surface morphology of zeolites before and after NaClO-NaCl regeneration were unchanged. Textural analysis indicated that NaClO-NaCl regeneration leads to an increased surface area of zeolites, especially the microporosity. The results indicated that NaClO-NaCl regeneration is an attractive method to achieve sustainable removal of nitrogen from wastewater through zeolite. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Total nitrogen and total phosphorus removal from brackish aquaculture wastewater using effective microorganism

    Science.gov (United States)

    Mohamad, K. A.; Mohd, S. Y.; Sarah, R. S.; Mohd, H. Z.; Rasyidah, A.

    2017-09-01

    Aquaculture is one of dominant food based industry in the world with 8.3% annual growth rate and its development had led to adverse effect on the environment. High nutrient production in form of nitrogenous compound and phosphorus contributed to environmental deterioration such as eutrophication and toxicity to the industry. Usage of Effective Microorganism (EM), one of the biological approaches to remove Total Nitrogen (TN) and Total Phosphorus (TP) in aquaculture pond was proposed. Samples were obtained from the Sea Bass intensive brackish aquaculture wastewater (AW) from fish farm at Juru, Penang and the parameters used to measure the removal of nitrogenous compounds include, pH, EM dosage, shaking, contact time and optimum variable conditions. From the study, for effective contact time, day 6 is the optimum contact time for both TN and TP with 99.74% and 62.78% removal respectively while in terms of optimum pH, the highest TN removal was at pH 7 with 66.89 %. The optimum dosage of EM is 1.5 ml with ratio 1:166 for 81.5 % TN removal was also found appropriate during the experiment. At varied optimum conditions of EM, the removal efficiency of TN and TP were 81.53% and 38.94% respectively while the removal mechanism of TN was highly dependent on the decomposition rate of specific bacteria such as Nitrobacter bacteria, Yeast and Bacillus Subtilis sp. The study has established the efficacy of EM's ability to treat excessive nutrient of TN and TP from AW.

  10. Enhanced nitrogen removal in single-chamber microbial fuel cells with increased gas diffusion areas

    KAUST Repository

    Yan, Hengjing

    2012-11-23

    Single-chamber microbial fuel cells (MFCs) with nitrifiers pre-enriched at the air cathodes have previously been demonstrated as a passive strategy for integrating nitrogen removal into current-generating bioelectrochemical systems. To further define system design parameters for this strategy, we investigated in this study the effects of oxygen diffusion area and COD/N ratio in continuous-flow reactors. Doubling the gas diffusion area by adding an additional air cathode or a diffusion cloth significantly increased the ammonia and COD removal rates (by up to 115% and 39%), ammonia removal efficiency (by up to 134%), the cell voltage and cathode potentials, and the power densities (by a factor of approximately 2). When the COD/N ratio was lowered from 13 to 3, we found up to 244% higher ammonia removal rate but at least 19% lower ammonia removal efficiency. An increase of COD removal rate by up to 27% was also found when the COD/N ratio was lowered from 11 to 3. The Coulombic efficiency was not affected by the additional air cathode, but decreased by an average of 11% with the addition of a diffusion cloth. Ammonia removal by assimilation was also estimated to understand the ammonia removal mechanism in these systems. These results showed that the doubling of gas diffusion area enhanced N and COD removal rates without compromising electrochemical performance. © 2012 Wiley Periodicals, Inc.

  11. Integrated nitrogen removal biofilter system with ceramic membrane for advanced post-treatment of municipal wastewater.

    Science.gov (United States)

    Son, Dong-Jin; Yun, Chan-Young; Kim, Woo-Yeol; Zhang, Xing-Ya; Kim, Dae-Gun; Chang, Duk; Sunwoo, Young; Hong, Ki-Ho

    2016-12-01

    The pre-denitrification biofilm process for nitrogen removal was combined with ceramic membrane with pore sizes of 0.05-0.1 µm as a system for advanced post-treatment of municipal wastewater. The system was operated under an empty bed hydraulic retention time of 7.8 h, recirculation ratio of 3, and transmembrane pressure of 0.47 bar. The system showed average removals of organics, total nitrogen, and solids as high as 93%, 80%, and 100%, respectively. Rapid nitrification could be achieved and denitrification was performed in the anoxic filter without external carbon supplements. The residual particulate organics and nitrogen in effluent from biofilm process could be also removed successfully through membrane filtration and the removal of total coliform was noticeably improved after membrane filtration. Thus, a system composed of the pre-denitrification biofilm process with ceramic membrane would be a compact and flexible option for advanced post-treatment of municipal wastewater.

  12. Nitrogen removal in a SBR operated with and without pre-denitrification: effect of the carbon:nitrogen ratio and the cycle time.

    Science.gov (United States)

    Mees, Juliana Bortoli Rodrigues; Gomes, Simone Damasceno; Hasan, Salah Din Mahmud; Gomes, Benedito Martins; Boas, Márcio Antonio Vilas

    2014-01-01

    The effects of cycle time (CT) (8, 12 and 16h) and C/N ratio (3, 6 and 9) on nitrogen removal efficiencies in a bench top sequencing batch reactor treating slaughterhouse wastewater were investigated under different operating conditions: in condition 1, the reaction comprises an aerobic/anoxic phase and in condition II, the reaction comprises anoxic I/aerobic/anoxic II phases (with pre-denitrification). The greatest percentages of nitrogen removal were obtained in the CT range from 12 to 16 h and C/N ratios from 3 to 6, with mean efficiency values of 80.76% and 85.57% in condition I and 90.99% and 91.09% in condition II. Although condition II gave a higher removal of total inorganic nitrogen (NH4+ - N + NO2- - N + NO3- - N) than condition I, only condition I showed statistically significant and predictive regression for all the steps of nitrogen removal.

  13. Method of removing nitrogen monoxide from a nitrogen monoxide-containing gas using a water-soluble iron ion-dithiocarbamate, xanthate or thioxanthate

    Science.gov (United States)

    Liu, D. Kwok-Keung; Chang, Shih-Ger

    1987-08-25

    The present invention relates to a method of removing of nitrogen monoxide from a nitrogen monoxide-containing gas which method comprises contacting a nitrogen oxide-containing gas with an aqueous solution of water soluble organic compound-iron ion chelate complex. The NO absorption efficiency of ferrous urea-dithiocarbamate and ferrous diethanolamine-xanthate as a function of time, oxygen content and solution ph is presented. 3 figs., 1 tab.

  14. Arsenic removal from a high-arsenic wastewater using in situ formed Fe-Mn binary oxide combined with coagulation by poly-aluminum chloride

    International Nuclear Information System (INIS)

    Wu Kun; Wang Hongjie; Liu Ruiping; Zhao Xu; Liu Huijuan; Qu Jiuhui

    2011-01-01

    In this study, in situ formed Fe-Mn binary oxide (FMBO) was applied to treat a practical high-arsenic wastewater (5.81 mg/L). FMBO exhibited a remarkable removal capacity towards both As(III) and As(V), achieving a removal efficiency over 99.5%. However, the FMBO-As particles could not be sufficiently separated by gravitational sedimentation due to their low sizes and negative charges, as being indicated from laser particle size and zeta-potential analysis. Thus, poly-aluminum chloride (PACl) was introduced as a coagulant to facilitate the solid-liquid separation, and it remarkably improved As removal efficiencies. Results of scanning electron microscope (SEM) revealed that PACl contributed to the formation of precipitates with larger sizes and compact surfaces, which was favorable to sedimentation. Moreover, residual soluble As was removed by PACl hydroxides. The optimum dosages of FMBO and PACl were determined to be 60 mg/L and 80 mg/L, respectively. Additionally, the secondary pollution was minimized in FMBO-PACl process. Based on these bench-scale results, a full-scale treatment process was proposed to successfully treat 40,000 m 3 of high-arsenic wastewater in a municipal wastewater treatment plant (MWWTP). The average As concentration in the effluent was about 0.015 mg/L. FMBO-PACl process showed the advantages of high effectiveness, low cost, safety, and ease for operation.

  15. Effective Biological Nitrogen Removal Treatment Processes for Domestic Wastewaters with Low C/N Ratios: A Review

    DEFF Research Database (Denmark)

    Sun, Sheng-Peng; Pellicer i Nàcher, Carles; Merkey, Brian

    2010-01-01

    with high efficiency and relative low costs. However, the removal of nitrogen from domestic wastewater with a low carbon/nitrogen (C/N) ratio can often be limited in municipal wastewater plants (WWTPs) because organic carbon is a limiting factor for denitrification. The present work reviews innovative....... They can effectively be used for nitrogen removal from low C/N domestic wastewater without external carbon addition. In addition, conventional and alternative carbon sources for enhanced biological nitrogen removal were also reviewed. We conclude that alternative carbon sources such as wine distillery...... at large scale for nitrogen removal from low C/N domestic wastewater, (2) further method logic are explored to introduce the Anammox pathway into domestic wastewater treatment, and (3) alternative carbon sources are explored and optimized for supporting the denitrification. With these efforts, cost...

  16. In-situ Measured Carbon and Nitrogen Uptake Rates of Melt Pond Algae in the Western Arctic Ocean, 2014

    Science.gov (United States)

    Song, Ho Jung; Kim, Kwanwoo; Lee, Jae Hyung; Ahn, So Hyun; Joo, Houng-Min; Jeong, Jin Young; Yang, Eun Jin; Kang, Sung-Ho; Yun, Mi Sun; Lee, Sang Heon

    2018-03-01

    Although the areal coverage of melt pond in the Arctic Ocean has recently increased, very few biological researches have been conducted. The objectives in this study were to ascertain the uptake rates of carbon and nitrogen in various melt ponds and to understand the major controlling factors for the rates. We obtained 22 melt pond samples at ice camp 1 (146.17°W, 77.38°N) and 11 melt pond samples at ice camp 2 (169.79°W, 76.52°N). The major nutrient concentrations varied largely among melt ponds at the ice camps 1 and 2. The chl-a concentrations averaged from the melt ponds at camps 1 and 2 were 0.02-0.56 mg chl-a m-3 (0.12 ± 0.12 mg chl-a m-3) and 0.08-0.30 mg chl-a m-3 (0.16 ± 0.08 mg chl-a m-3), respectively. The hourly carbon uptake rates at camps 1 and 2 were 0.001-0.080 mg C m-3 h-1 (0.025 ± 0.024 mg C m-3 h-1) and 0.022-0.210 mg C m-3 h-1 (0.077 ± 0.006 mg C m-3 h-1), respectively. In comparison, the nitrogen uptake rates at camps 1 and 2 were 0.001-0.030 mg N m-3 h-1 (0.011 ± 0.010 mg N m-3 h-1) and 0.002-0.022 mg N m-3 h-1 (0.010 ± 0.006 mg N m-3 h-1), respectively. The values obtained in this study are significantly lower than those reported previously. A large portion of algal biomass trapped in the new forming surface ice in melt ponds appears to be one of the main potential reasons for the lower chl-a concentration and subsequently lower carbon and nitrogen uptake rates revealed in this study. A long-term monitoring program on melt ponds is needed to understand the response of the Arctic marine ecosystem to ongoing environmental changes.

  17. Nitrogen Removal from Milking Center Wastewater via Simultaneous Nitrification and Denitrification Using a Biofilm Filtration Reactor

    Directory of Open Access Journals (Sweden)

    Seung-Gun Won

    2015-06-01

    Full Text Available Milking center wastewater (MCW has a relatively low ratio of carbon to nitrogen (C/N ratio, which should be separately managed from livestock manure due to the negative impacts of manure nutrients and harmful effects on down-stream in the livestock manure process with respect to the microbial growth. Simultaneous nitrification and denitrification (SND is linked to inhibition of the second nitrification and reduces around 40% of the carbonaceous energy available for denitrification. Thus, this study was conducted to find the optimal operational conditions for the treatment of MCW using an attached-growth biofilm reactor; i.e., nitrogen loading rate (NLR of 0.14, 0.28, 0.43, and 0.58 kg m−3 d−1 and aeration rate of 0.06, 0.12, and 0.24 m3 h−1 were evaluated and the comparison of air-diffuser position between one-third and bottom of the reactor was conducted. Four sand packed-bed reactors with the effective volume of 2.5 L were prepared and initially an air-diffuser was placed at one third from the bottom of the reactor. After the adaptation period of 2 weeks, SND was observed at all four reactors and the optimal NLR of 0.45 kg m−3 d−1 was found as a threshold value to obtain higher nitrogen removal efficiency. Dissolved oxygen (DO as one of key operational conditions was measured during the experiment and the reactor with an aeration rate of 0.12 m3 h−1 showed the best performance of NH4-N removal and the higher total nitrogen removal efficiency through SND with appropriate DO level of ~0.5 mg DO L−1. The air-diffuser position at one third from the bottom of the reactor resulted in better nitrogen removal than at the bottom position. Consequently, nitrogen in MCW with a low C/N ratio of 2.15 was successfully removed without the addition of external carbon sources.

  18. Nitrogen removal kinetics in the treatment of landfill leachate by SBR systems

    International Nuclear Information System (INIS)

    Andreottola, G.; Foladori, P.; Ragazzi, M.

    1998-01-01

    In this study, laboratory-scale experiments were conducted applying the SBR activated sludge process to leachate from an old MSW landfill operating for 7 years. Due to the fact that old leachate is characterized with a high concentration of ammonia (approximately 1500 mgN/1) and low availability of readily biodegradable organic matter (BOD 5 /COD,06), the aim was to examine the nitrogen removal process and to compare the efficiency of one-stage and two stage systems operating at temperature of 20 C and 12 C. The second alternative SBR configuration is based on the coupling of two SBR reactors: the first one specialized in nitrification and the second one in post-denitrification, with external carbon source addition. By the efficient removal of nitrogen, an on-site pretreatment of leachate allows to comply with the limits required for discharging into sewers or into municipal wastewater treatment plant [it

  19. Efficient Total Nitrogen Removal in an Ammonia Gas Biofilter through High-Rate OLAND

    DEFF Research Database (Denmark)

    De Clippeleir, Haydée; Courtens, Emilie; Mosquera, Mariela

    2012-01-01

    Ammonia gas is conventionally treated in nitrifying biofilters; however, addition of organic carbon to perform post-denitrification is required to obtain total nitrogen removal. Oxygen-limited autotrophic nitrification/denitrification (OLAND), applied in full-scale for wastewater treatment, can...... offer a cost-effective alternative for gas treatment. In this study, the OLAND application thus was broadened toward ammonia loaded gaseous streams. A down flow, oxygen-saturated biofilter (height of 1.5 m; diameter of 0.11 m) was fed with an ammonia gas stream (248 ± 10 ppmv) at a loading rate of 0...... at water flow rates of 1.3 ± 0.4 m3 m–2 biofilter section d–1. Profile measurements revealed that 91% of the total nitrogen activity was taking place in the top 36% of the filter. This study demonstrated for the first time highly effective and sustainable autotrophic ammonia removal in a gas biofilter...

  20. Development of in-situ laser cutting technique for removal of single selected coolant channel from pressurized heavy water reactor

    International Nuclear Information System (INIS)

    Vishwakarma, S.C.; Upadhyaya, B.N.

    2016-01-01

    We report on the development of a pulsed Nd:YAG laser based cutting technique for removal of single coolant channel from pressurized heavy water reactor (PHWR). It includes development of special tools/manipulators and optimization of laser cutting process parameters for cutting of liner tube, end fitting, bellow lip weld joint, and pressure tube stubs. For each cutting operation, a special tool with precision motion control is utilized. These manipulators/tools hold and move the laser cutting nozzle in the required manner and are fixed on the same coolant channel, which has to be removed. This laser cutting technique has been successfully deployed for removal of selected coolant channels Q-16, Q-15 and N-6 of KAPS-2 reactor with minimum radiation dose consumption and in short time. (author)

  1. In situ fabrication of nickel based oxide on nitrogen-doped graphene for high electrochemical performance supercapacitors

    Science.gov (United States)

    Pan, Denghui; Zhang, Mingmei; Wang, Ying; Yan, Zaoxue; Jing, Junjie; Xie, Jimin

    2017-10-01

    In this article, we synthesize Ni(OH)2 homogeneous grown on nitrogen-doped graphene (Ni(OH)2/NG), subsequently, small and uniform nickel oxide nanoparticle (NiO/NG) is also successfully obtained through tube furnace calcination method. The high specific capacitance of the NiO/NG electrode can reach to 1314.1 F/g at a charge and discharge current density of 2 A/g, meanwhile the specific capacitance of Ni(OH)2/NG electrode is also 1350 F/g. The capacitance of NiO/NG can remain 93.7% of the maximum value after 1000 cycles, while the Ni(OH)2/NG electrode losses 16.9% of the initial capacitance after 1000 cycles. It can be attributed to nickel hydroxide instability during charge-discharge cycles.

  2. Immobilized periphytic cyanobacteria for removal of nitrogenous compounds and phosphorus from shrimp farm wastewater

    OpenAIRE

    BANERJEE, SANJOY; KHATOON, HELENA; SHARIFF, MOHAMED; YUSOFF, FATIMAH

    2015-01-01

    Cyanobacteria can be used to remove nitrogenous compounds from wastewater, but a major bottleneck in the process is the separation of cyanobacterial biomass from the treated water discharge, which may cause eutrophication. The current study assessed the suitability of three periphytic cyanobacteria (Geitlerinema sp., Gloeotrichia sp., and Lyngbya sp.) isolated from shrimp ponds. These cyanobacteria were immobilized by self-adhesion to polyvinyl chloride sheets, forming mats, and were screened...

  3. Removal of nitrogen compounds from Brazilian petroleum samples by oxidation followed by liquid-liquid extraction

    Energy Technology Data Exchange (ETDEWEB)

    Conceicao, L.; Pergher, S.B.C. [Universidade Regional Integrada do Alto Uruguai e das Misses (URI), Erechim, RS (Brazil). Dept. de Quimica], E-mail: pergher@uricer.edu.br; Oliveira, J.V. [Universidade Regional Integrada do Alto Uruguai e das Misses (URI), Erechim, RS (Brazil). Dept. de Engenharia dos Alimentos; Souza, W.F. [Petroleo Brasileiro S.A. (CENPES/PETROBRAS), Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    2009-10-15

    This work reports liquid-liquid extraction of nitrogen compounds from oxidized and non-oxidized Brazilian petroleum samples. The experiments were accomplished in a laboratory-scale liquid-liquid apparatus in the temperature range of 303 K-323 K, using methanol, n-methyl-2-pyrrolidone (NMP) and N,Ndimethylformamide (DMF), and their mixtures as extraction solvents, employing solvent to sample volume ratios of 1:2, 1:1 and 2:1, exploring up to three separation stages. Results show that an increase in temperature, solvent to oil ratio, and number of equilibrium stages greatly improves the nitrogen removal from the oxidized sample (from 2600 to 200 ppm). The employed oxidation scheme is thus demonstrated to be an essential and efficient step of sample preparation for the selective liquid-liquid removal of nitrogen compounds. It is shown that the use of mixtures of DMF and NMP as well their use as co-solvents with methanol did not prove to be useful for selective nitrogen extraction since great oil losses were observed in the final process. (author)

  4. Nitrogen and COD removal from domestic and synthetic wastewater in subsurface-flow constructed wetlands.

    Science.gov (United States)

    Collison, R S; Grismer, M E

    2013-09-01

    Comparisons of the performance of constructed-wetland systems (CWs) for treating domestic wastewater in the laboratory and field may use pathogen-free synthetic wastewater to avoid regulatory health concerns. However, little to no data are available describing the relative treatment efficiencies of CWs to both actual and synthetic domestic wastewaters so as to enable such comparison. To fill this gap, treatment performances with respect to organics (chemical organic demand; COD) and nitrogen (ammonium and nitrate) removal from domestic (septic tank) and a similar-strength synthetic wastewater under planted and non-planted subsurface-flow CWs are determined. One pair of CWs was planted with cattails in May 2008, whereas the adjacent system was non-planted. Collected septic tank or synthesized wastewater was allowed to gravity feed each CWs, and effluent samples were collected and tested for COD and nitrogen species regularly during four different periods over six months. Overall, statistically significant greater removal of COD (-12%) and nitrogen (-5%) occurred from the synthetic as compared with the domestic wastewater from the planted and non-planted CWs. Effluent BOD5/COD ratios from the synthetic wastewater CWs averaged nearly twice that from the domestic wastewater CWs (0.17 vs 0.10), reflecting greater concentrations of readily degraded compounds. That removal fractions were consistent across the mid-range loading rates to the CWs suggests that the synthetic wastewater can be used in testing laboratory CWs with reasonable success in application of their results to the field.

  5. Robust biological nitrogen removal by creating multiple tides in a single bed tidal flow constructed wetland.

    Science.gov (United States)

    Hu, Yuansheng; Zhao, Yaqian; Rymszewicz, Anna

    2014-02-01

    Achieving effective total nitrogen (TN) removal is one of the major challenges faced by constructed wetlands (CWs). To address this issue, multiple "tides" were proposed in a single stage tidal flow constructed wetland (TFCW). With this adoption, exceptional TN removal (85% on average) was achieved under a high nitrogen loading rate (NLR) of around 28 g Nm(-2)day(-1), which makes the proposed system an adequate option to provide advanced wastewater treatment for peri-urban communities and rural area. It was revealed that the multiple "tides" not only promoted TN removal performance, but also brought more flexibility to TFCWs. Adsorption of NH4(+)-N onto the wetland medium (during contact period) and regeneration of the adsorption capacity via nitrification (during bed resting) were validated as the key processes for NH4(+)-N conversion in TFCWs. Moreover, simultaneous nitrification denitrification (SND) was found to be significant during the bed resting period. These findings will provide a new foundation for the design and modeling of nitrogen conversion and oxygen transfer in TFCWs. © 2013.

  6. Toluene Removal from Sandy Soils via In Situ Technologies with an Emphasis on Factors Influencing Soil Vapor Extraction

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Amin

    2014-01-01

    Full Text Available The integration of bioventing (BV and soil vapor extraction (SVE appears to be an effective combination method for soil decontamination. This paper serves two main purposes: it evaluates the effects of soil water content (SWC and air flow rate on SVE and it investigates the transition regime between BV and SVE for toluene removal from sandy soils. 96 hours after air injection, more than 97% removal efficiency was achieved in all five experiments (carried out for SVE including 5, 10, and 15% for SWC and 250 and 500 mL/min for air flow rate on SVE. The highest removal efficiency (>99.5% of toluene was obtained by the combination of BV and SVE (AIBV: Air Injection Bioventing after 96 h of air injection at a constant flow rate of 250 mL/min. It was found that AIBV has the highest efficiency for toluene removal from sandy soils and can remediate the vadose zone effectively to meet the soil guideline values for protection of groundwater.

  7. Micellar solutions of PEO-PPO-PEO block copolymers for in situ phenol removal from fermentation broth

    NARCIS (Netherlands)

    Heerema, L.D.; Cakali, D.; Roelands, C.P.M.; Goetheer, E.L.V.; Verdoes, D.; Keurentjes, J.

    2010-01-01

    The applicability of aqueous solutions of Pluronics for the removal of the model product phenol was evaluated. Phenol is a chemical that can be produced by a recombinant strain of the solvent tolerant bacterium Pseudomonas putida S12. However, the growth of the micro-organisms and the phenol

  8. Toluene removal from sandy soils via in situ technologies with an emphasis on factors influencing soil vapor extraction.

    Science.gov (United States)

    Amin, Mohammad Mehdi; Hatamipour, Mohammad Sadegh; Momenbeik, Fariborz; Nourmoradi, Heshmatollah; Farhadkhani, Marzieh; Mohammadi-Moghadam, Fazel

    2014-01-01

    The integration of bioventing (BV) and soil vapor extraction (SVE) appears to be an effective combination method for soil decontamination. This paper serves two main purposes: it evaluates the effects of soil water content (SWC) and air flow rate on SVE and it investigates the transition regime between BV and SVE for toluene removal from sandy soils. 96 hours after air injection, more than 97% removal efficiency was achieved in all five experiments (carried out for SVE) including 5, 10, and 15% for SWC and 250 and 500 mL/min for air flow rate on SVE. The highest removal efficiency (>99.5%) of toluene was obtained by the combination of BV and SVE (AIBV: Air Injection Bioventing) after 96 h of air injection at a constant flow rate of 250 mL/min. It was found that AIBV has the highest efficiency for toluene removal from sandy soils and can remediate the vadose zone effectively to meet the soil guideline values for protection of groundwater.

  9. Two-stage pervaporation process for effective in situ removal acetone-butanol-ethanol from fermentation broth.

    Science.gov (United States)

    Cai, Di; Hu, Song; Miao, Qi; Chen, Changjing; Chen, Huidong; Zhang, Changwei; Li, Ping; Qin, Peiyong; Tan, Tianwei

    2017-01-01

    Two-stage pervaporation for ABE recovery from fermentation broth was studied to reduce the energy cost. The permeate after the first stage in situ pervaporation system was further used as the feedstock in the second stage of pervaporation unit using the same PDMS/PVDF membrane. A total 782.5g/L of ABE (304.56g/L of acetone, 451.98g/L of butanol and 25.97g/L of ethanol) was achieved in the second stage permeate, while the overall acetone, butanol and ethanol separation factors were: 70.7-89.73, 70.48-84.74 and 9.05-13.58, respectively. Furthermore, the theoretical evaporation energy requirement for ABE separation in the consolidate fermentation, which containing two-stage pervaporation and the following distillation process, was estimated less than ∼13.2MJ/kg-butanol. The required evaporation energy was only 36.7% of the energy content of butanol. The novel two-stage pervaporation process was effective in increasing ABE production and reducing energy consumption of the solvents separation system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Nitrogen removal on recycling water process of wastewater treatment plant effluent using subsurface horizontal wetland with continuous feed

    Science.gov (United States)

    Tazkiaturrizki, T.; Soewondo, P.; Handajani, M.

    2018-01-01

    Recycling water is a generic term for water reclamation and reuse to solve the scarcity of water. Constructed wetlands have been recognized as providing many benefits for wastewater treatment including water supply and control by recycling water. This research aims to find the best condition to significantly remove nitrogen using constructed wetland for recycling water of Bojongsoang Waste Water Treatment Plan (WWTP) effluent. Using media of soil, sand, gravel, and vegetation (Typha latifolia and Scirpus grossus) with an aeration system, BOD and COD parameters have been remarkably reduced. On the contrary, the removal efficiency for nitrogen is only between 50-60%. Modifications were then conducted by three step of treatment, i.e., Step I is to remove BOD/COD using Typha latifolia with an aeration system, Step II is todecrease nitrogen using Scirpus grossus with/without aeration, and Step III isto complete the nitrogen removal with denitrification process by Glycine max without aeration. Results of the research show that the nitrogen removal has been successfully increased to a high efficiency between 80-99%. The combination of aeration system and vegetation greatly affects the nitrogen removal. The vegetation acts as the organic nitrogen consumer (plant uptake) for amino acids, nitrate, and ammonium as nutrition, as well as theoxygen supplier to the roots so that aerobic microsites are formed for ammonification microorganisms.

  11. Removal of nitrogen and phosphorus from dairy wastewater using constructed wetlands systems operating in batch

    Directory of Open Access Journals (Sweden)

    Ronaldo Rocha Bastos

    2012-08-01

    Full Text Available This work presents the results of a study conducted for a period of seven months on the effectiveness of constructed wetland systems for the treatment of dairy wastewater aiming at removing, nitrogen and phosphorus. Six experimental systems were assembled with a net volume of 115 L using HDPE tanks, with length/width ratio of 2:1. In three of the systems, gravel 0 was used as substrate, while gravel 0 and sand was used in the three others, in the percentage of 80% and 20%, respectively. The systems were operated in batch cycles of 48 hours, applying 7.5 L of influent per cycle. Four of the experimental units were cultivated, and two kept as controls. The selected species chosen were the macrophytes, Typha domingensis and Hedychium coronarium. The removal efficiency concerning nitrogen compounds showed to be quite promising with values ranging from 29.4 to 73.4%, while phosphorus removal from the beds was lower, reaching efficiencies between 18.61 and 34.3%, considered good values, since the removal of these substances is quite difficult through conventional treatment.

  12. Removal of nitrogen by a layered soil infiltration system during intermittent storm events.

    Science.gov (United States)

    Cho, Kang Woo; Song, Kyung Guen; Cho, Jin Woo; Kim, Tae Gyun; Ahn, Kyu Hong

    2009-07-01

    The fates of various nitrogen species were investigated in a layered biological infiltration system under an intermittently wetting regime. The layered system consisted of a mulch layer, coarse soil layer (CSL), and fine soil layer (FSL). The effects of soil texture were assessed focusing on the infiltration rate and the removal of inorganic nitrogen species. The infiltration rate drastically decreased when the uniformity coefficient was larger than four. The ammonium in the synthetic runoff was shown to be removed via adsorption during the stormwater dosing and nitrification during subsequent dry days. Stable ammonium adsorption was observed when the silt and clay content of CSL was greater than 3%. This study revealed that the nitrate leaching was caused by nitrification during dry days. Various patterns of nitrate flushing were observed depending on the soil configuration. The washout of nitrate was more severe as the silt/clay content of the CSL was greater. However, proper layering of soil proved to enhance the nitrate removal. Consequently, a strictly sandy CSL over FSL with a silt and clay content of 10% was the best configuration for the removal of ammonium and nitrate.

  13. Combined carbon and nitrogen removal from acetonitrile using algal-bacterial bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, R.; Jacinto, M.; Guieysse, B.; Mattiasson, B. [Dept. of Biotechnology, Center for Chemistry and Chemical Engineering, Lund Univ., Lund (Sweden)

    2005-06-01

    When compared with Chlorella vulgaris, Scenedesmus obliquus and Selenastrum capricornutum, C. sorokiniana presented the highest tolerance to acetonitrile and the highest O{sub 2} production capacity. It also supported the fastest acetonitrile biodegradation when mixed with a suitable acetonitrile-degrading bacterial consortium. Consequently, this microalga was tested in symbiosis with the bacterial culture for the continuous biodegradation of acetonitrile at 2 g l{sup -1} in a stirred tank photobioreactor and in a column photobioreactor under continuous illumination (250 {mu}E m{sup -2} s{sup -1}). Acetonitrile removal rates of up to 2.3 g l{sup -1} day{sup -1} and 1.9 g l{sup -1} day{sup -1} were achieved in the column photobioreactor and the stirred-tank photobioreactor, respectively, when operated at the shortest retention times tested (0.4 days, 0.6 days, respectively). In addition, when the stirred-tank photobioreactor was operated with a retention time of 3.5 days, the microbial culture was capable of assimilating up to 71% and nitrifying up to 12% of the NH{sub 4}{sup +} theoretically released through the biodegradation of acetonitrile, thus reducing the need for subsequent nitrogen removal. This study suggests that complete removal of N-organics can be combined with a significant removal of nitrogen by using algal-bacterial systems and that further residual biomass digestion could pay-back part of the operation costs of the treatment plant. (orig.)

  14. Effect of Staged Dissolved Oxygen Optimization on In-situ sludge Reduction and Enhanced Nutrient Removal in an A2MMBR-M System

    Science.gov (United States)

    Yang, Shan-Shan; Pang, Ji-Wei; Jin, Xiao-Man; Wu, Zhong-Yang; Yang, Xiao-Yin; Guo, Wan-Qian; Zhao, Zhi-Qing; Ren, Nan-Qi

    2018-03-01

    Redundant excess sludge production and considerable non-standard wastewater discharge from existing activated sludge processes are facing more and more challenges. The investigations on lower sludge production and higher sewage treatment efficiency are urgently needed. In this study, an anaerobic/anoxic/micro-aerobic/oxic-MBR combining a micro-aerobic starvation sludge holding tank (A2MMBR-M) system is developed. Batch tests on the optimization of the staged dissolved oxygen (DO) in the micro-aerobic, the first oxic, and the second oxic tanks were carried out by a 3-factor and 3-level Box-Behnken design (BBD). The optimal actual values of X1 , X2 , and X3 were DO1 of 0.3-0.5 mg/L, DO2 of 3.5-4.5 mg/L, and DO3 of 3-4 mg/L. After the optimization tests, continuous-flow experiments of anaerobic/anoxic/oxic (AAO) and A2MMBR-M systems were further conducted. Compared to AAO system, a 37.45% reduction in discharged excess sludge in A2MMBR-M system was achieved. The COD, TN, and TP removal efficiencies in A2MMBR-M system were respective 4.06%, 2.68%, and 4.04% higher than AAO system. The A2MMBR-M system is proved a promising wastewater treatment technology possessing enhanced in-situ sludge reduction and improved effluent quality. The staged optimized DO concentrations are the key controlling parameters for the realization of simultaneous in-situ sludge reduction and nutrient removal.

  15. Genomic and in Situ Analyses Reveal the Micropruina spp. as Abundant Fermentative Glycogen Accumulating Organisms in Enhanced Biological Phosphorus Removal Systems

    Directory of Open Access Journals (Sweden)

    Simon J. McIlroy

    2018-05-01

    Full Text Available Enhanced biological phosphorus removal (EBPR involves the cycling of biomass through carbon-rich (feast and carbon-deficient (famine conditions, promoting the activity of polyphosphate accumulating organisms (PAOs. However, several alternate metabolic strategies, without polyphosphate storage, are possessed by other organisms, which can compete with the PAO for carbon at the potential expense of EBPR efficiency. The most studied are the glycogen accumulating organisms (GAOs, which utilize aerobically stored glycogen to energize anaerobic substrate uptake and storage. In full-scale systems the Micropruina spp. are among the most abundant of the proposed GAO, yet little is known about their ecophysiology. In the current study, genomic and metabolomic studies were performed on Micropruina glycogenica str. Lg2T and compared to the in situ physiology of members of the genus in EBPR plants using state-of-the-art single cell techniques. The Micropruina spp. were observed to take up carbon, including sugars and amino acids, under anaerobic conditions, which were partly fermented to lactic acid, acetate, propionate, and ethanol, and partly stored as glycogen for potential aerobic use. Fermentation was not directly demonstrated for the abundant members of the genus in situ, but was strongly supported by the confirmation of anaerobic uptake of carbon and glycogen storage in the absence of detectable polyhydroxyalkanoates or polyphosphate reserves. This physiology is markedly different from the classical GAO model. The amount of carbon stored by fermentative organisms has potentially important implications for phosphorus removal – as they compete for substrates with the Tetrasphaera PAO and stored carbon is not made available to the “Candidatus Accumulibacter” PAO under anaerobic conditions. This study shows that the current models of the competition between PAO and GAO are too simplistic and may need to be revised to take into account the impact of

  16. In situ observation of the reaction of tantalum with nitrogen in a laser heated diamond anvil cell

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, Alexandra, E-mail: friedrich@kristall.uni-frankfurt.d [Institut fuer Geowissenschaften, Goethe-Universitaet Frankfurt, Altenhoeferallee 1, D-60438 Frankfurt am Main (Germany); Winkler, Bjoern; Bayarjargal, Lkhamsuren [Institut fuer Geowissenschaften, Goethe-Universitaet Frankfurt, Altenhoeferallee 1, D-60438 Frankfurt am Main (Germany); Juarez Arellano, Erick A. [Universidad del Papaloapan, Circuito Central 200, Parque Industrial, Tuxtepec 68301 (Mexico); Morgenroth, Wolfgang; Biehler, Jasmin; Schroeder, Florian [Institut fuer Geowissenschaften, Goethe-Universitaet Frankfurt, Altenhoeferallee 1, D-60438 Frankfurt am Main (Germany); Yan, Jinyuan; Clark, Simon M. [Advanced Light Source, Lawrence Berkeley National Laboratory, MS6R2100, 1 Cyclotron Road, Berkeley, CA 94720-8226 (United States)

    2010-07-16

    Tantalum nitrides were formed by reaction of the elements at pressures between 9(1) and 12.7(5) GPa and temperatures >1600-2000 K in the laser-heated diamond anvil cell. The incorporation of small amount of nitrogen in the tantalum structure was identified as the first reaction product on weak laser irradiation. Subsequent laser heating led to the formation of hexagonal {beta}-Ta{sub 2}N and orthorhombic {eta}-Ta{sub 2}N{sub 3}, which was the stable phase at pressures up to 27 GPa and high temperatures. No evidence was found for the presence of {epsilon}-TaN, {theta}-TaN, {delta}-TaN, Ta{sub 3}N{sub 5}-I or Ta{sub 3}N{sub 5}-II, which was predicted to be the stable phase at P>17 GPa and T=2800 K, at the P,T-conditions of this experiment. The bulk modulus of {eta}-Ta{sub 2}N{sub 3} was determined to be B{sub 0}=319(6) GPa from a 2nd order Birch-Murnaghan equation of state fit to the experimental data, while quantum mechanical calculations using the density functional theory gave a bulk modulus of B{sub 0}=348.0(9) GPa for a 2nd-order fit or B{sub 0}=339(1) GPa and B{sup '}=4.67(9) for a 3rd-order fit. The values show the large incompressibility of this high-pressure phase. From the DFT data the structural compression mechanism could be determined.

  17. Energy and chemical efficient nitrogen removal at a full-scale MBR water reuse facility

    Directory of Open Access Journals (Sweden)

    Jianfeng Wen

    2015-02-01

    Full Text Available With stringent wastewater discharge limits on nitrogen and phosphorus, membrane bioreactor (MBR technology is gaining popularity for advanced wastewater treatment due to higher effluent quality and smaller footprint. However, higher energy intensity required for MBR plants and increased operational costs for nutrient removal limit wide application of the MBR technology. Conventional nitrogen removal requires intensive energy inputs and chemical addition. There are drivers to search for new technology and process control strategies to treat wastewater with lower energy and chemical demand while still producing high quality effluent. The NPXpress is a patented technology developed by American Water engineers. This technology is an ultra-low dissolved oxygen (DO operation for wastewater treatment and is able to remove nitrogen with less oxygen requirements and reduced supplemental carbon addition in MBR plants. Jefferson Peaks Water Reuse Facility in New Jersey employs MBR technology to treat municipal wastewater and was selected for the implementation of the NPXpress technology. The technology has been proved to consistently produce a high quality reuse effluent while reducing energy consumption and supplemental carbon addition by 59% and 100%, respectively. Lab-scale kinetic studies suggested that NPXpress promoted microorganisms with higher oxygen affinity. Process modelling was used to simulate treatment performance under NPXpress conditions and develop ammonia-based aeration control strategy. The application of the ammonia-based aeration control at the plant further reduced energy consumption by additional 9% and improved treatment performance with 35% reduction in effluent total nitrogen. The overall energy savings for Jefferson Peaks was $210,000 in four years since the implementation of NPXpress. This study provided an insight in design and operation of MBR plants with NPXpress technology and ultra-low DO operations.

  18. Potential of duckweed (Lemna minor) for removal of nitrogen and phosphorus from water under salt stress.

    Science.gov (United States)

    Liu, Chunguang; Dai, Zheng; Sun, Hongwen

    2017-02-01

    Duckweed plays a major role in the removal of nitrogen (N) and phosphorus (P) from water. To determine the effect of salt stress on the removal of N and P by duckweed, we cultured Lemna minor, a common species of duckweed, in N and P-rich water with NaCl concentrations ranging from 0 to 100 mM for 24 h and 72 h, respectively. The results show that the removal capacity of duckweed for N and P was reduced by salt stress. Higher salt stress with longer cultivation period exerts more injury to duckweed and greater inhibition of N and P removal. Severe salt stress (100 mM NaCl) induced duckweed to release N and P and even resulted in negative removal efficiencies. The results indicate that L. minor should be used to remove N and P from water with salinities below 75 mM NaCl, or equivalent salt stress. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Synergic Adsorption–Biodegradation by an Advanced Carrier for Enhanced Removal of High-Strength Nitrogen and Refractory Organics

    KAUST Repository

    Ahmad, Muhammad; Liu, Sitong; Mahmood, Nasir; Mahmood, Asif; Ali, Muhammad; Zheng, Maosheng; Ni, Jinren

    2017-01-01

    Coking wastewater contains not only high-strength nitrogen but also toxic biorefractory organics. This study presents simultaneous removal of high-strength quinoline, carbon, and ammonium in coking wastewater by immobilized bacterial communities

  20. Portable broadband cavity-enhanced spectrometer utilizing Kalman filtering: application to real-time, in situ monitoring of glyoxal and nitrogen dioxide.

    Science.gov (United States)

    Fang, Bo; Zhao, Weixiong; Xu, Xuezhe; Zhou, Jiacheng; Ma, Xiao; Wang, Shuo; Zhang, Weijun; Venables, Dean S; Chen, Weidong

    2017-10-30

    This article describes the development and field application of a portable broadband cavity enhanced spectrometer (BBCES) operating in the spectral range of 440-480 nm for sensitive, real-time, in situ measurement of ambient glyoxal (CHOCHO) and nitrogen dioxide (NO 2 ). The instrument utilized a custom cage system in which the same SMA collimators were used in the transmitter and receiver units for coupling the LED light into the cavity and collecting the light transmitted through the cavity. This configuration realised a compact and stable optical system that could be easily aligned. The dimensions and mass of the optical layer were 676 × 74 × 86 mm 3 and 4.5 kg, respectively. The cavity base length was about 42 cm. The mirror reflectivity at λ = 460 nm was determined to be 0.9998, giving an effective absorption pathlength of 2.26 km. The demonstrated measurement precisions (1σ) over 60 s were 28 and 50 pptv for CHOCHO and NO 2 and the respective accuracies were 5% and 4%. By applying a Kalman adaptive filter to the retrieved concentrations, the measurement precisions of CHOCHO and NO 2 were improved to 8 pptv and 40 pptv in 21 s.

  1. Process for the removal of sulfur oxides and nitrogen oxides from flue gas

    International Nuclear Information System (INIS)

    Elshout, R.V.

    1992-01-01

    This patent describes a continuous process for removing sulfur oxide and nitrogen oxide contaminants from the flue gas generated by industrial power plants and boiler systems burning sulfur containing fossil fuels and for converting these contaminants, respectively, into recovered elemental liquid sulfur and nitrogen ammonia and mixtures thereof. It comprises removing at least a portion of the flue gas generated by a power plant or boiler system upstream of the stack thereof; passing the cooled and scrubbed flue gas through an adsorption system; combining a first portion of the reducing gas stream leaving the adsorbers of the adsorption system during regeneration thereof and containing sulfur oxide and nitrogen oxide contaminants with a hydrogen sulfide rich gas stream at a temperature of about 400 degrees F to about 600 degrees F and passing the combined gas streams through a Claus reactor-condenser system over a catalyst in the reactor section thereof which is suitable for promoting the equilibrium reaction between the hydrogen sulfide and the sulfur dioxide of the combined streams to form elemental sulfur

  2. Effect of nitrogen doping on titanium carbonitride-derived adsorbents used for arsenic removal

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jisun [Department of Materials Science and Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Lee, Soonjae [Center for Water Resource Cycle Research, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Choi, Keunsu [Computational Science Research Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Kim, Jinhong [Samsung Electronics Co.Ltd.,(Maetan dong) 129, Samsung-ro Yeongtong-gu, Suwonsi, Gyeonggi-do 443-742, Repubilc of Korea (Korea, Republic of); Ha, Daegwon [Department of Materials Science and Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Lee, Chang-Gu [Center for Water Resource Cycle Research, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); An, Byungryul [Department of Civil Engineering, Sangmyung University, Cheonan, Chungnam 31066 (Korea, Republic of); Lee, Sang-Hyup [Center for Water Resource Cycle Research, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Mizuseki, Hiroshi, E-mail: mizuseki@kist.re.kr [Computational Science Research Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Choi, Jae-Woo, E-mail: plead36@kist.re.kr [Center for Water Resource Cycle Research, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Department of Energy and Environmental Engineering, University of Science and Technology (UST), Daejeon 305-350 (Korea, Republic of); Kang, Shinhoo, E-mail: shinkang@snu.ac.kr [Department of Materials Science and Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2016-01-25

    Highlights: • The N-doping can improve the As adsorption performance of carbon-based materials. • The material features high micro- and small meso-pores with exceptional surface area. • Pyrrolic N atoms distributed uniformly on the micropores act as adsorption sites. • The synthesis temperature affected pore properties and surface functional groups. - Abstract: Arsenic in water and wastewater is considered to be a critical contaminant as it poses harmful health risks. In this regard, to meet the stringent regulation of arsenic in aqueous solutions, nitrogen doped carbon-based materials (CN) were prepared as adsorbents and tested for the removal of arsenic ion from aqueous solutions. Nitrogen-doped carbon (CNs) synthesized by chlorination exhibited well-developed micro- and small meso-pores with uniform pore structures. The structure and characteristics of the adsorbents thus developed were confirmed by field-emission scanning electron microscopy, transmission electron microscopy, Brunauer–Emmett–Teller analysis, X-ray diffraction, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy. Among the CNs developed, CN700 exhibited high adsorption capacity for arsenic (31.08 mg/g). The adsorption efficiency for arsenic ion was confirmed to be affected by pyrrolic nitrogen and micro-pores. These results suggest that CNs are useful adsorbents for the treatment of arsenic, and in particular, CN700 demonstrates potential for application as an adsorbent for the removal of anionic heavy metals from wastewater and sewage.

  3. [Phylogenetic analysis and nitrogen removal characteristics of a heterotrophic nitrifying-aerobic denitrifying bacteria strain from marine environment].

    Science.gov (United States)

    Sun, Xuemei; Li, Qiufen; Zhang, Yan; Liu, Huaide; Zhao, Jun; Qu, Keming

    2012-06-04

    We determined the phylogenetic position of a heterotrophic nitrifying-aerobic denitrifying bacterium X3, and detected its nitrogen removal characteristics for providing evidence to explain the principle of heterotrophic nitrification-aerobic denitrification and to improve the process in purification of marine-culture wastewater. The evolutionary position of the strain was determined based on its morphological, physiological, biochemical characteristics and 16SrRNA gene sequence. The nitrification-denitrification ability of this strain was detected by detecting its nitrogen removal efficiency and growth on different inorganic nitrogen source. Strain X3 was identified as Halomonas sp. It grew optimally at salinity 3%, pH 8.5, C:N 10:1 at 28 degrees C, and it could still survive at 15% salinity. The removal of NH4+ -N, NO2(-) -N and NO3(-) -N was 98.29%, 99.07%, 96.48% respectively within 24 h. When three inorganic nitrogen existed simultaneously, it always utilized ammonia firstly, and the total inorganic nitrogen removal was higher than with only one nitrogen, suggesting that strain X3 has the ability of simultaneous nitrification and denitrification and completing the whole nitrogen removing process. Strain X3 belonged to the genus of Halomonas. It had strong simultaneous nitrification and denitrification capability and could live in high-salinity environment.

  4. Improving the organic and biological fouling resistance and removal of pharmaceutical and personal care products through nanofiltration by using in situ radical graft polymerization.

    Science.gov (United States)

    Lin, Yi-Li; Tsai, Chia-Cheng; Zheng, Nai-Yun

    2018-09-01

    In this study, an insitu radical graft polarization technique using monomers of 3-sulfopropyl methacrylate potassium salt (SPM) and 2-hydroxyethyl methacrylate (HEMA) was applied to a commercial nanofiltration membrane (NF90) to improve its removal of six commonly detected pharmaceutical and personal care products (PPCPs) and mitigate organic and biological fouling by humic acid (HA) and sodium alginate (SA). Compared with the virgin membrane, the modified NF90 membrane exhibited considerably improved fouling resistance and an increased reversible fouling percentage, especially for SA+HA composite fouling Moreover, the PPCP removal of the modified NF90 membrane was higher than that of the virgin membrane after SA and SA+HA fouling, respectively. Triclosan and carbamazepine, which are poorly rejected, could be effectively removed by modified membrane after SA or SA+HA fouling. Both monomers modified the membrane surface by increasing the hydrophilicity and decreasing the contact angle. The degree of grafting was quantified using attenuated total reflection Fourier-transform infrared spectroscopy. The mitigation in the fouling was evident from the low quantity of deposit formed on the modified membrane, as observed using scanning electron microscopy. A considerable amount of highly hydrophobic triclosan was adsorbed on the SA-fouled virgin membrane and penetrated through it. By contrast, the adsorption of triclosan was substantially lower in the SPM-modified membrane. After membrane modification, the fouling mechanism changed from solely intermediate blocking to both intermediate blocking and complete blocking after membrane modification. Thus, the in situ radical graft polymerization method effectively reduces organic and biological fouling and provides high PPCP removal, which is beneficial for fouling control and produces permeate of satisfactory quality for application in the field of membrane technology. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Bandgap tailoring of in-situ nitrogen-doped TiO₂ sputtered films intended for electrophotocatalytic applications under solar light

    Energy Technology Data Exchange (ETDEWEB)

    Delegan, N.; El Khakani, M. A., E-mail: elkhakani@emt.inrs.ca [Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, 1650, Boulevard Lionel-Boulet, Varennes, Québec J3X-1S2 (Canada); Daghrir, R.; Drogui, P. [Institut National de la Recherche Scientifique, Centre Eau, Terre et Environnement, 490 Rue de la Couronne, Québec G1K-9A9 (Canada)

    2014-10-21

    We report on a reactive RF-sputtering process permitting the in-situ nitrogen doping of TiO₂ films in order to shift their photoactivity from UV to visible range. By carefully controlling the relative nitrogen-to-argon mass flow rate ratio (within the 0%–25% range) in the sputter deposition chamber, TiO₂:N films were grown with nitrogen contents ranging from 0 to 6.2 at. %, as determined by high-resolution X-ray spectroscopy measurements. A systematic investigation of the crystalline structure of the TiO₂:N films, as a function of their N content, revealed that low N contents (0.2–0.3 at. %) induce crystallization in the rutile phase while higher N contents (≥1.4 at. %) were accompanied with the recovery of the anatase structure with an average crystallite size of ~35 nm. By using both UV-Vis absorption and spectroscopic ellipsometry measurements, we were able to quantitatively determine the bandgap (E{sub g}) variation of the TiO₂:N films as a function of their N content. Thus, we have demonstrated that the E{sub g} of the TiO₂:N films effectively narrows from 3.2 eV down to a value as low as ~2.3 eV for the optimal N doping concentration of 3.4 at. % (higher N incorporation does not translate into further red shifting of the TiO₂:N films' E{sub g}). The photoactivity of the TiO₂:N films under visible light was confirmed through electro-photocatalytic decomposition of chlortetracycline (CTC, an emerging water pollutant) under standard 1.5AM solar radiation. Thus, CTC degradation efficiencies of up to 98% were achieved with 2 hours process cycles under simulated solar light. Moreover, the electro-photocatalytic performance of the TiO₂:N films is shown to be directly correlated to their optoelectronic properties (namely their bandgap narrowing).

  6. Mathematical modeling of simultaneous carbon-nitrogen-sulfur removal from industrial wastewater.

    Science.gov (United States)

    Xu, Xi-Jun; Chen, Chuan; Wang, Ai-Jie; Ni, Bing-Jie; Guo, Wan-Qian; Yuan, Ye; Huang, Cong; Zhou, Xu; Wu, Dong-Hai; Lee, Duu-Jong; Ren, Nan-Qi

    2017-01-05

    A mathematical model of carbon, nitrogen and sulfur removal (C-N-S) from industrial wastewater was constructed considering the interactions of sulfate-reducing bacteria (SRB), sulfide-oxidizing bacteria (SOB), nitrate-reducing bacteria (NRB), facultative bacteria (FB), and methane producing archaea (MPA). For the kinetic network, the bioconversion of C-N by heterotrophic denitrifiers (NO 3 - →NO 2 - →N 2 ), and that of C-S by SRB (SO 4 2- →S 2- ) and SOB (S 2- →S 0 ) was proposed and calibrated based on batch experimental data. The model closely predicted the profiles of nitrate, nitrite, sulfate, sulfide, lactate, acetate, methane and oxygen under both anaerobic and micro-aerobic conditions. The best-fit kinetic parameters had small 95% confidence regions with mean values approximately at the center. The model was further validated using independent data sets generated under different operating conditions. This work was the first successful mathematical modeling of simultaneous C-N-S removal from industrial wastewater and more importantly, the proposed model was proven feasible to simulate other relevant processes, such as sulfate-reducing, sulfide-oxidizing process (SR-SO) and denitrifying sulfide removal (DSR) process. The model developed is expected to enhance our ability to predict the treatment of carbon-nitrogen-sulfur contaminated industrial wastewater. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Biological nitrogen and carbon removal in a gravity flow biomass concentrator reactor for municipal sewage treatment.

    Science.gov (United States)

    Scott, Daniel; Hidaka, Taira; Campo, Pablo; Kleiner, Eric; Suidan, Makram T; Venosa, Albert D

    2013-01-01

    A novel membrane system, the Biomass Concentrator Reactor (BCR), was evaluated as an alternative technology for the treatment of municipal wastewater. Because the BCR is equipped with a membrane whose average poresize is 20 μm (18-28 μm), the reactor requires low-pressure differential to operate (gravity). The effectiveness of this system was evaluated for the removal of carbon and nitrogen using two identical BCRs, identified as conventional and hybrid, that were operated in parallel. The conventional reactor was operated under full aerobic conditions (i.e., organic carbon and ammonia oxidation), while the hybrid reactor incorporated an anoxic zone for nitrate reduction as well as an aerobic zone for organic carbon and ammonia oxidation. Both reactors were fed synthetic wastewater at a flow rate of 71 L d(-1), which resulted in a hydraulic retention time of 9 h. In the case of the hybrid reactor, the recycle flow from the aerobic zone to the anoxic zone was twice the feed flow rate. Reactor performance was evaluated under two solids retention times (6 and 15 d). Under these conditions, the BCRs achieved nearly 100% mixed liquor solids separation with a hydraulic head differential of less than 2.5 cm. The COD removal efficiency was over 90%. Essentially complete nitrification was achieved in both systems, and nitrogen removal in the hybrid reactor was close to the expected value (67%). Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Innovative process scheme for removal of organic matter, phosphorus and nitrogen from pig manure

    DEFF Research Database (Denmark)

    Karakashev, Dimitar Borisov; Schmidt, Jens Ejbye; Angelidaki, Irini

    2008-01-01

    blanket (UASB) reactor, partial oxidation), nitrogen (oxygen-limited autotrophic nitrification-denitrification, OLAND) and phosphorus (phosphorus removal by precipitation as struvite, PRS) from pig manure were tested. Results obtained showed that microfiltration was unsuitable for pig manure treatment....... PRS treated effluent was negatively affecting the further processing of the pig manure in UASB, and was therefore not included in the final process flow scheme. In a final scheme (PIGMAN concept) combination of the following successive process steps was used: thermophilic anaerobic digestion...... with sequential separation by decanter centrifuge, post-digestion in UASB reactor, partial oxidation and finally OLAND process. This combination resulted in reduction of the total organic, nitrogen and phosphorus contents by 96%, 88%, and 81%, respectively....

  9. Catalytic pleat filter bags for combined particulate separation and nitrogen oxides removal from flue gas streams

    International Nuclear Information System (INIS)

    Park, Young Ok; Choi, Ho Kyung

    2010-01-01

    The development of a high temperature catalytically active pleated filter bag with hybrid filter equipment for the combined removal of particles and nitrogen oxides from flue gas streams is presented. A special catalyst load in stainless steel mesh cartridge with a high temperature pleated filter bag followed by optimized catalytic activation was developed to reach the required nitrogen oxides levels and to maintain the higher collection efficiencies. The catalytic properties of the developed high temperature filter bags with hybrid filter equipment were studied and demonstrated in a pilot scale test rig and a demonstration plant using commercial scale of high temperature catalytic pleated filter bags. The performance of the catalytic pleated filter bags were tested under different operating conditions, such as filtration velocity and operating temperature. Moreover, the cleaning efficiency and residual pressure drop of the catalyst loaded cartridges in pleated filter bags were tested. As result of theses studies, the optimum operating conditions for the catalytic pleated filter bags are determined. (author)

  10. Nitrogen and COD Removal from Septic Tank Wastewater in Subsurface Flow Constructed Wetlands: Plants Effects.

    Science.gov (United States)

    Collison, R S; Grismer, M E

    2015-11-01

    We evaluated subsurface flow (SSF) constructed wetland treatment performance with respect to organics (COD) and nitrogen (ammonium and nitrate) removal from domestic (septic tank) wastewater as affected by the presence of plants, substrate "rock" cation exchange capacity (CEC), laboratory versus field conditions and use of synthetic as compared to actual domestic wastewater. This article considers the effects of plants on constructed wetland treatment in the field. Each constructed wetland system was comprised of two beds (2.6 m long by 0.28 m wide and deep filled with ~18 mm crushed lava rock) separated by an aeration tank connected in series. The lava rock had a porosity of ~47% and a CEC of 4 meq/100 gm. One pair of constructed wetland systems was planted with cattails in May 2008, while an adjacent pair of systems remained un-planted. Collected septic tank or synthesized wastewater was allowed to gravity feed each constructed wetland system and effluent samples were regularly collected and tested for COD and nitrogen species during four time periods spanning November 2008 through June 2009. These effluent concentrations were tested for statistical differences at the 95% level for individual time periods as well as the overall 6-month period. Organics removal from domestic wastewater was 78.8% and 76.1% in the planted and un-planted constructed wetland systems, respectively, while ammonium removal was 94.5% and 90.2%, respectively. Similarly, organics removal from the synthetic wastewater of equivalent strength was 88.8% and 90.1% for planted and un-planted constructed wetland systems, respectively, while ammonium removal was 96.9% and 97.3%, respectively.

  11. In-situ preparation of NaA zeolite/chitosan porous hybrid beads for removal of ammonium from aqueous solution.

    Science.gov (United States)

    Yang, Kai; Zhang, Xiang; Chao, Cong; Zhang, Bing; Liu, Jindun

    2014-07-17

    Inorganic/organic hybrid materials play important roles in removal of contaminants from wastewater. Herein, we used the natural materials of halloysite and chitosan to prepare a new adsorbent of NaA zeolite/chitosan porous hybrid beads by in-situ hydrothermal synthesis method. SEM indicated that the porous hybrid beads were composed of 6-8 μm sized cubic NaA zeolite particles congregated together with chitosan. The adsorption behavior of NH4(+) from aqueous solution onto hybrid beads was investigated at different conditions. The Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms. A maximum adsorption capacity of 47.62 mg/g at 298 K was achieved according to Langmuir model. The regenerated or reused experiments indicated that the adsorption capacity of the hybrid beads could maintain in 90% above after 10 successive adsorption-desorption cycles. The high adsorption and reusable ability implied potential application of the hybrid beads for removing NH4(+) pollutants from wastewater. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. In-Situ Air Sparaing: Engineering and Design

    Science.gov (United States)

    2008-01-31

    removal (Adams and Reddy 2000). The potential for remediation of less volatile LNAPLs (e.g., diesel or fuel oils) is less promising, relying more on...pure nitrogen, or nitrous oxide) may enhance the speed at which bioremediation proceeds or alter the conditions under which it occurs. The USDOE Sa...region below the water table is directly related to in- situ bioremediation . IAS can be an alternative to other means of introducing oxygen into the

  13. Nitrogen and Organics Removal during Riverbank Filtration along a Reclaimed Water Restored River in Beijing, China

    Directory of Open Access Journals (Sweden)

    Weiyan Pan

    2018-04-01

    Full Text Available Reclaimed water has been widely used to restore rivers and lakes in water scarce areas as well as in Beijing municipality, China. However, refilling the rivers with reclaimed water may result in groundwater pollution. A three-year field monitoring program was conducted to assess the effect of a riverbank filtration (RBF system on the removal of nitrogen and organics from the Qingyang River of Beijing, which is replenished with reclaimed water. Water samples from the river, sediment, and groundwater were collected for NO3-N, NH4-N, and chemical oxygen demand (COD was measured. The results indicate that about 85% of NO3-N was removed from the riverbed sediments. Approximate 92% of NH4-N was removed during the infiltration of water from river to aquifer. On average, 54% of COD was removed by RBF. The attenuation of NO3-N through RBF to the groundwater varied among seasons and was strongly related to water temperature. On the other hand, no obvious temporal variability was identified in the removal of COD. These results suggest that the RBF system is an effective barrier against NO3-N, NH4-N and COD in the Qingyang River, as well as those rivers with similar geological and climatic conditions refilled with reclaimed water.

  14. Nitrogen and carbon export from urban areas through removal and export of litterfall

    International Nuclear Information System (INIS)

    Templer, Pamela H.; Toll, Jonathan W.; Hutyra, Lucy R.; Raciti, Steve M.

    2015-01-01

    We found that up to 52 ± 17% of residential litterfall carbon (C) and nitrogen (N; 390.6 kg C and 6.5 kg N ha −1  yr −1 ) is exported through yard waste removed from the City of Boston, which is equivalent to more than half of annual N outputs as gas loss (i.e. denitrification) or leaching. Our results show that removing yard waste results in a substantial decrease in N inputs to urban areas, which may offset excess N inputs from atmospheric deposition, fertilizer application and pet waste. However, export of C and N via yard waste removal may create nutrient limitation for some vegetation due to diminished recycling of nutrients. Removal of leaf litter from residential areas disrupts nutrient cycling and residential yard management practices are an important modification to urban biogeochemical cycling, which could contribute to spatial heterogeneity of ecosystems that are either N limited or saturated within urban ecosystems. - Highlights: • We monitored yard waste bags for one complete fall yard waste collection season. • 52% of residential litterfall C and N is exported annually from the City of Boston. • Litterfall export may create nutrient limitation hotspots in urban ecosystems. • C and N export through litterfall collection modifies urban biogeochemical cycling. - Litterfall removal leads to C and N export from urban ecosystems and disrupts nutrient cycling, showing that this activity is an important modification to urban biogeochemical cycling

  15. High temperature fluidized bed zero valent iron process for flue gas nitrogen monoxide removal

    International Nuclear Information System (INIS)

    Cheng, C.Y.; Chen, S.S.; Tang, C.H.; Chang, Y.M.; Cheng, H.H.; Liu, H.L.

    2008-01-01

    Nitrogen oxides (NO x ) are generated from a variety of sources, and are critical components of photochemical smog. Zero valent iron (ZVI) has been used to remove NO x in a number of studies. The ZVI process requires no extra chemicals or catalysts. In this study, a fluidized ZVI process for removing NO x from flue gases was proposed. The study examined the effects of temperature, ZVI dosage and influent NO concentrations, and observed the kinetic effects between the fluidized ZVI and NO x . A life cycle analysis of the process was also provided. The parametric analysis was conducted in a series of column studies using a continuous emissions monitoring system. Minimum fluidization velocity equations were provided, and the drag coefficient was determined. Capacities of ZVI for NO removal at different temperatures were calculated. Results of the study suggested that temperature, influent concentrations, and flow rates all influenced kinetic coefficients. Different temperatures resulted in different rates of NO removal. It was concluded that between 673 K and 773 K, almost complete NO removals were achieved. 14 refs., 2 tabs., 9 figs

  16. Simultaneous nitrogen and phosphorus removal in the sulfur cycle-associated Enhanced Biological Phosphorus Removal (EBPR) process.

    Science.gov (United States)

    Wu, Di; Ekama, George A; Wang, Hai-Guang; Wei, Li; Lu, Hui; Chui, Ho-Kwong; Liu, Wen-Tso; Brdjanovic, Damir; van Loosdrecht, Mark C M; Chen, Guang-Hao

    2014-02-01

    Hong Kong has practiced seawater toilet flushing since 1958, saving 750,000 m(3) of freshwater every day. A high sulfate-to-COD ratio (>1.25 mg SO4(2-)/mg COD) in the saline sewage resulting from this practice has enabled us to develop the Sulfate reduction, Autotrophic denitrification and Nitrification Integrated (SANI(®)) process with minimal sludge production and oxygen demand. Recently, the SANI(®) process has been expanded to include Enhanced Biological Phosphorus Removal (EBPR) in an alternating anaerobic/limited-oxygen (LOS-EBPR) aerobic sequencing batch reactor (SBR). This paper presents further development - an anaerobic/anoxic denitrifying sulfur cycle-associated EBPR, named as DS-EBPR, bioprocess in an alternating anaerobic/anoxic SBR for simultaneous removal of organics, nitrogen and phosphorus. The 211 day SBR operation confirmed the sulfur cycle-associated biological phosphorus uptake utilizing nitrate as electron acceptor. This new bioprocess cannot only reduce operation time but also enhance volumetric loading of SBR compared with the LOS-EBPR. The DS-EBPR process performed well at high temperatures of 30 °C and a high salinity of 20% seawater. A synergistic relationship may exist between sulfur cycle and biological phosphorus removal as the optimal ratio of P-release to SO4(2-)-reduction is close to 1.0 mg P/mg S. There were no conventional PAOs in the sludge. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Microbial removal of fixed nitrogen in an oceanic oxygen minimum zone

    DEFF Research Database (Denmark)

    Dalsgaard, Tage; Thamdrup, Bo; Revsbech, Niels Peter

    We quantified the removal of fixed nitrogen as N2 production by anammox and N2 and N2O production by denitrification over a distance of 1900 km along the coast of Chile and Peru, using short-term incubations with 15N-labeled substrates. The eastern tropical South Pacific (ETSP) holds an oxygen...... and that denitrification is needed for the mineralization of organic matter and production of NH4+ for anammox. Our data from frequent sampling along a 1900 km cruise track parallel to the coast of Chile and Peru show that denitrification does indeed occur, but less frequent and at higher rates than anammox...

  18. Control of SHARON reactor for autotrophic nitrogen removal in two-reactor configuration

    DEFF Research Database (Denmark)

    Valverde Perez, Borja; Mauricio Iglesias, Miguel; Sin, Gürkan

    2012-01-01

    With the perspective of investigating a suitable control design for autotrophic nitrogen removal, this work explores the control design for a SHARON reactor. With this aim, a full model is developed, including the pH dependency, in order to simulate the reactor and determine the optimal operating...... conditions. Then, the screening of controlled variables and pairing is carried out by an assessment of the effect of the disturbances based on the closed loop disturbance gain plots. Two controlled structures are obtained and benchmarked by their capacity to reject the disturbances before the Anammox reactor....

  19. New perspectives for the petroleum industry. Bioprocesses for the selective removal of sulphur, nitrogen and metals

    International Nuclear Information System (INIS)

    Zerlia, T.

    2000-01-01

    Fuel biocatalytic conversion is a process that removes, through selective enzyme-catalyzed reactions, sulphur, nitrogen and metals. The mild operating conditions, the specificity of reactions and the quality of coproducts (particularly the organo sulphur compounds, a source for the petrochemical industry) are just a few of the attractive aspects of this new technology which could open a new world of possibilities in the technology and in the environmental impact of fuels. The paper shows the state-of-the-art of the research and applications of bioprocesses to the petroleum field [it

  20. Role of iron catalyst impregnated by solvent swelling method in pyrolytic removal of coal nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, J.; Kusakabe, K.; Morooka, S.; Nielsen, M.; Furimsky, E. [Kyushu University, Fukuoka (Japan). Dept. of Chemical Science and Technology

    1995-11-01

    Organometallic iron precursors, ferrocene and ferric acetate, were impregnated into Illinois No. 6 (IL), Wyoming (WY) and Yallourn (YL) coals by solvent swelling technique in THF, ethanol, and a THF/ethanol binary solvent. Then iron-impregnated coals were pyrolyzed in a flow of helium at atmospheric pressure in a fixed bed and a thermobalance. Conversion of coal nitrogen to N{sub 2} was 20, 38 and 30% respectively, for original IL, WY, and YL coals. Iron formed from both precursors lowered the onset temperature of N{sub 2} evolution by 20-100{degree}C. When ferrocene was impregnated in coals at a concentration of 1.7-1.8 wt% as Fe, nitrogen conversion was increased to 52, 71 and 68% for IL, WY and YL coals, respectively. Ferric acetate impregnated into IL coal from THF/ethanol solution increased the nitrogen conversion much more than that from ethanol solution. The expansion of microporous coal structure by the swelling was essential for better dispersion of the catalyst precursor. The evolution of HCN as well as NH{sub 3} was effectively suppressed above 600{degree}C by the presence of iron but not influenced significantly by combinations of catalyst precursors and solvents. The increase in N{sub 2} yield was compensated by the decrease in nitrogen emitted as HCN and NH{sub 3} and in tar and char. The increase in CO evolution from the iron-impregnated IL coal at 600-800{degree}C was explained by catalytic rearrangement of aromatic structure of char, accompanying the removal of nitrogen as N{sub 2}. In a range of 600-750{degree}C, the evolution of CO as well as N{sub 2} from the other coals increased remarkably with a significant decrease in CO{sub 2} gasification in char microproes. 32 refs., 9 figs., 3 tabs.

  1. Nitrogen removal and nitrate leaching for two perennial, sod-based forage systems receiving dairy effluent.

    Science.gov (United States)

    Woodard, Kenneth R; French, Edwin C; Sweat, Lewin A; Graetz, Donald A; Sollenberger, Lynn E; Macoon, Bisoondat; Portier, Kenneth M; Rymph, Stuart J; Wade, Brett L; Prine, Gordon M; Van Horn, Harold H

    2003-01-01

    In northern Florida, year-round forage systems are used in dairy effluent sprayfields to reduce nitrate leaching. Our purpose was to quantify forage N removal and monitor nitrate N (NO3(-)-N) concentration below the rooting zone for two perennial, sod-based, triple-cropping systems over four 12-mo cycles (1996-2000). The soil is an excessively drained Kershaw sand (thermic, uncoated Typic Quartzip-samment). Effluent N rates were 500, 690, and 910 kg ha(-1) per cycle. Differences in N removal between a corn (Zea mays L.)-bermudagrass (Cynodon spp.)-rye (Secale cereale L.) system (CBR) and corn-perennial peanut (Arachis glabrata Benth.)-rye system (CPR) were primarily related to the performance of the perennial forages. Nitrogen removal of corn (125-170 kg ha(-1)) and rye (62-90 kg ha(-1)) was relatively stable between systems and among cycles. The greatest N removal was measured for CBR in the first cycle (408 kg ha(-1)), with the bermudagrass removing an average of 191 kg N ha(-1). In later cycles, N removal for bermudagrass declined because dry matter (DM) yield declined. Yield and N removal of perennial peanut increased over the four cycles. Nitrate N concentrations below the rooting zone were lower for CBR than CPR in the first two cycles, but differences were inconsistent in the latter two. The CBR system maintained low NO3(-)-N leaching in the first cycle when the bermudagrass was the most productive; however, it was not a sustainable system for long-term prevention of NO3(-)-N leaching due to declining bermudagrass yield in subsequent cycles. For CPR, effluent N rates > or = 500 kg ha(-1) yr(-1) have the potential to negatively affect ground water quality.

  2. [Rapid startup and nitrogen removal characteristic of anaerobic ammonium oxidation reactor in packed bed biofilm reactor with suspended carrier].

    Science.gov (United States)

    Chen, Sheng; Sun, De-zhi; Yu, Guang-lu

    2010-03-01

    Packed bed biofilm reactor with suspended carrier was used to cultivate ANAMMOX bacteria with sludge inoculums from WWTP secondary settler. The startup of ANAMMOX reactor was comparatively studied using high nitrogen loading method and low nitrogen loading method with aerobically biofilmed on the carrier, and the nitrogen removal characteristic was further investigated. The results showed that the reactor could be started up successfully within 90 days using low nitrogen loading method, the removal efficiencies of ammonium and nitrite were nearly 100% and the TN removal efficiencywas over 75% , however, the high nitrogen loading method was proved unsuccessfully for startup of ANAMMOX reactor probably because of the inhibition effect of high concentration of ammonium and nitrite. The pH value of effluent was slightly higher than the influent and the pH value can be used as an indicator for the process of ANAMMOX reaction. The packed bed ANAMMOX reactor with suspended carrier showed good characteristics of high nitrogen loading and high removal efficiency, 100% of removal efficiency could be achieved when the influent ammonium and nitrite concentration was lower than 800 mg/L.

  3. [Isolation, Identification and Nitrogen Removal Characteristics of a Heterotrophic Nitrification-Aerobic Denitrification Strain y3 Isolated from Marine Environment].

    Science.gov (United States)

    Sun, Qing-hua; Yu, De-shuang; Zhang, Pei-yu; Lin, Xue-zheng; Xu, Guang-yao; Li, Jin

    2016-03-15

    A heterotrophic nitrification--aerobic denitrification bacterium named y3 was isolated from the sludge of Jiaozhou Bay using the enrichment medium with seawater as the matrix. It was identified as Pseudomonas sp. based on the morphological observation, physiological experiments and sequence analysis of 16S rRNA. The experiment results showed that the optimal carbon resource was sodium citrate, the optimal pH was 7.0, and the optimal C/N was 13. The strain could use NH₄Cl, NaNO₂ and KNO₃ as sole nitrogen source, and the removal efficiencies were 98.69%, 78.38% and 72.95% within 20 hours, respectively. There was no nitrate and nitrite accumulation during the heterotrophic nitrification process. Within 20 hours, the nitrogen removal efficiencies were 99.56%, 99.75% and 99.41%, respectively, in the mixed system with NO₃⁻-N: NO²⁻-N of 2:1, 1:1 and 1:2. When the NH₄⁺-N: NO₃⁻-N ratios were 2: 1 , 1: 1 , 1: 2, the nitrogen removal efficiencies were all 100% . When the NH₄⁺-N:NO₂⁻-N ratios were 2:1,1:1,1:2, the nitrogen removal efficiencies were 90.43%, 92.79% and 99.96%, respectively. They were higher than those with single nitrogen source. As a result, strain y3 had good nitrogen removal performance in high saline wastewater treatment.

  4. Combined Pre-Precipitation, Biological Sludge Hydrolysis and Nitrogen Reduction - A Pilot Demonstration of Integrated Nutrient Removal

    DEFF Research Database (Denmark)

    Kristensen, G. H.; Jørgensen, P. E.; Strube, R.

    1992-01-01

    solubilization was 10-13% of the suspended COD. The liquid phase of the hydrolyzed sludge, the hydrolysate, was separated from the suspended fraction by centrifugation and added to the biological nitrogen removal stage to support denitrification. The hydrolysate COD consisted mainly of volatile fatty acids......A pilot study was performed to investigate advanced wastewater treatment by pre-precipitation in combination with biological nitrogen removal supported by biological sludge hydrolysis. The influent wastewater was pretreated by addition of a pre-polymerized aluminum salt, followed by flocculation......, resulting in high denitrification rates. Nitrogen reduction was performed based on the Bio-Denitro principle in an activated sludge system. Nitrogen was reduced from 45 mg/l to 9 mg/l and phosphorus was reduced from 11 mg/l to 0.5 mg/l. The sludge yield was low, approx. 0.3-0.4 gCOD/gCOD removed...

  5. Effect of dissolved oxygen on nitrogen removal and process control in aerobic granular sludge reactor

    International Nuclear Information System (INIS)

    Yuan Xiangjuan; Gao Dawen

    2010-01-01

    A sequencing batch reactor (SBR) with aerobic granular sludge was operated to determine the effect of different DO concentrations on biological nitrogen removal process and to investigate the spatial profiles of DO, ORP and pH as online control parameters in such systems. The results showed that DO concentration had a significant effect on nitrification efficiencies and the profiles of DO, ORP and pH. The specific nitrification rate was decreased from 0.0595 mgNH 4 + -N/(gMLSS min) to 0.0251 mgNH 4 + -N/(gMLSS min) after DO concentration was dropped off from 4.5 mg/L to 1.0 mg/L. High DO concentration improved the nitrification and increased the volumetric NH 4 + -N removal. Low DO concentration enhanced TIN removal, while prolonged the nitrification duration. Also there existed a good correlation between online control parameters (ORP, pH) and nutrient (COD, NH 4 + -N, NO 2 - -N, NO 3 - -N) variations in aerobic granular sludge reactor when DO was 2.5 mg/L, 3.5 mg/L and 4.5 mg/L. However it was difficult to identify the end of nitrification and denitrification when DO was 1.0 mg/L, due to no apparent bending points on ORP and pH curves. In conclusion, the optimal DO concentration was suggested at 2.5 mg/L as it not only achieved high nitrogen removal efficiency and decreased the reaction duration, but also saved operation cost by aeration and mixing.

  6. Achieving mainstream nitrogen removal through simultaneous partial nitrification, anammox and denitrification process in an integrated fixed film activated sludge reactor.

    Science.gov (United States)

    Wang, Chao; Liu, Sitong; Xu, Xiaochen; Zhang, Chaolei; Wang, Dong; Yang, Fenglin

    2018-07-01

    The anaerobic ammonium oxidation (anammox) is becoming a critical technology for energy neutral in mainstream wastewater treatment. However, the presence of chemical oxygen demanding in influent would result in a poor nitrogen removal efficiency during the deammonification process. In this study, the simultaneous partial nitrification, anammox and denitrification process (SNAD) for mainstream nitrogen removal was investigated in an integrated fixed film activated sludge (IFAS) reactor. SNAD-IFAS process achieved a total nitrogen (TN) removal efficiency of 72 ± 2% and an average COD removal efficiency was 88%. The optimum COD/N ratio for mainstream wastewater treatment was 1.2 ± 0.2. Illumina sequencing analysis and activity tests showed that anammox and denitrifying bacteria were the dominant nitrogen removal microorganism in the biofilm and the high COD/N ratios (≥2.0) leaded to the proliferation of heterotrophic bacteria (Hydrogenophaga) and nitrite-oxidizing bacteria (Nitrospira) in the suspended sludge. Network analysis confirmed that anammox bacteria (Candidatus Kuenenia) could survive in organic matter environment due to that anammox bacteria displayed significant co-occurrence through positive correlations with some heterotrophic bacteria (Limnobacter) which could protect anammox bacteria from hostile environments. Overall, the results of this study provided more comprehensive information regarding the community composition and assemblies in SNAD-IFAS process for mainstream nitrogen removal. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Effect of Nitrogen Oxides on Elemental Mercury Removal by Nanosized Mineral Sulfide.

    Science.gov (United States)

    Li, Hailong; Zhu, Lei; Wang, Jun; Li, Liqing; Lee, Po-Heng; Feng, Yong; Shih, Kaimin

    2017-08-01

    Because of its large surface area, nanosized zinc sulfide (Nano-ZnS) has been demonstrated in a previous study to be efficient for removal of elemental mercury (Hg 0 ) from coal combustion flue gas. The excellent mercury adsorption performance of Nano-ZnS was found to be insusceptible to water vapor, sulfur dioxide, and hydrogen chloride. However, nitrogen oxides (NO X ) apparently inhibited mercury removal by Nano-ZnS; this finding was unlike those of many studies on the promotional effect of NO X on Hg 0 removal by other sorbents. The negative effect of NO X on Hg 0 adsorption over Nano-ZnS was systematically investigated in this study. Two mechanisms were identified as primarily responsible for the inhibitive effect of NO X on Hg 0 adsorption over Nano-ZnS: (1) active sulfur sites on Nano-ZnS were oxidized to inactive sulfate by NO X ; and (2) the chemisorbed mercury, i.e., HgS, was reduced to Hg 0 by NO X . This new insight into the role of NO X in Hg 0 adsorption over Nano-ZnS can help to optimize operating conditions, maximize Hg 0 adsorption, and facilitate the application of Nano-ZnS as a superior alternative to activated carbon for Hg 0 removal using existing particulate matter control devices in power plants.

  8. Digestate application in landfill bioreactors to remove nitrogen of old landfill leachate.

    Science.gov (United States)

    Peng, Wei; Pivato, Alberto; Lavagnolo, Maria Cristina; Raga, Roberto

    2018-04-01

    Anaerobic digestion of organics is one of the most used solution to gain renewable energy from waste and the final product, the digestate, still rich in putrescible components and nutrients, is mainly considered for reutilization (in land use) as a bio-fertilizer or a compost after its treatment. Alternative approaches are recommended in situations where conventional digestate management practices are not suitable. Aim of this study was to develop an alternative option to use digestate to enhance nitrified leachate treatment through a digestate layer in a landfill bioreactor. Two identical landfill columns (Ra and Rb) filled with the same solid digestate were set and nitrified leachate was used as influent. Ra ceased after 75 day's operation to get solid samples and calculate the C/N mass balance while Rb was operated for 132 days. Every two or three days, effluent from the columns were discarded and the columns were refilled with nitrified leachate (average N-NO 3 - concentration = 1,438 mg-N/L). N-NO 3 - removal efficiency of 94.7% and N-NO 3 - removal capacity of 19.2 mg N-NO 3 - /gTS-digestate were achieved after 75 days operation in Ra. Prolonging the operation to 132 days in Rb, N-NO 3 - removal efficiency and N-NO 3 - removal capacity were 72.5% and 33.1 mg N-NO 3 - /gTS-digestate, respectively. The experimental analysis of the process suggested that 85.4% of nitrate removal could be attributed to denitrification while the contribution percentage of adsorption was 14.6%. These results suggest that those solid digestates not for agricultural or land use, could be used in landfill bioreactors to remove the nitrogen from old landfill leachate. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Nitrogen removal and nitrate leaching for forage systems receiving dairy effluent.

    Science.gov (United States)

    Woodard, Kenneth R; French, Edwin C; Sweat, Lewin A; Graetz, Donald A; Sollenberger, Lynn E; Macoon, Bisoondat; Portier, Kenneth M; Wade, Brett L; Rymph, Stuart J; Prine, Gordon M; Van Horn, Harold H

    2002-01-01

    Florida dairies need year-round forage systems that prevent loss of N to ground water from waste effluent sprayfields. Our purpose was to quantify forage N removal and monitor nitrate N (NO3(-)-N) concentrations in soil water below the rooting zone for two forage systems during four 12-mo cycles (1996-2000). Soil in the sprayfield is an excessively drained Kershaw sand (thermic, uncoated Typic Quartzipsamment). Over four cycles, average loading rates of effluent N were 500, 690, and 910 kg ha(-1) per cycle. Nitrogen removed by the bermudagrass (Cynodon spp.)-rye (Secale cereale L.) system (BR) during the first three cycles was 465 kg ha(-1) per cycle for the low loading rate, 528 kg ha(-1) for the medium rate, and 585 kg ha(-1) for the high. For the corn (Zea mays L.)-forage sorghum [Sorghum bicolor (L.) Moench]-rye system (CSR), N removals were 320 kg ha(-1) per cycle for the low rate, 327 kg ha(-1) for the medium, and 378 kg ha(-1) for the high. The higher N removals for BR were attributed to higher N concentration in bermudagrass (18.1-24.2 g kg(-1)) than in corn and forage sorghum (10.3-14.7 g kg(-1)). Dry matter yield declined in the fourth cycle for bermudagrass but N removal continued to be higher for BR than CSR. The BR system was much more effective at preventing NO3(-)-N leaching. For CSR, NO3(-)-N levels in soil water (1.5 m below surface) increased steeply during the period between the harvest of one forage and canopy dosure of the next. Overall, the BR system was better than CSR at removing N from the soil and maintaining low NO3(-)-N concentrations below the rooting zone.

  10. Effects of porous carrier size on biofilm development, microbial distribution and nitrogen removal in microaerobic bioreactors

    KAUST Repository

    Ahmad, Muhammad; Liu, Sitong; Mahmood, Nasir; Mahmood, Asif; Ali, Muhammad; Zheng, Maosheng; Ni, Jinren

    2017-01-01

    In this study, effects of porous carrier’s size (polyurethane-based) on microbial characteristics were systematically investigated in addition to nitrogen removal performance in six microaerobic bioreactors. Among different sized carriers (50, 30, 20, 15,10, 5 mm), 15 mm carrier showed highest nitrogen removal (98%) due to optimal micro-environments created for aerobic nitrifiers in outer layer (0∼7 mm), nitrifiers and denitrifiers in middle layer (7∼10 mm) and anaerobic denitrifiers in inner layer (10∼15 mm). Candidatus brocadia, a dominant anammox bacteria, was solely concentrated close to centroid (0∼70 μm) and strongly co-aggregated with other bacterial communities in the middle layer of the carrier. Contrarily, carriers with a smaller (<15 mm) or larger size (>15 mm) either destroy the effective zone for anaerobic denitrifiers or damage the microaerobic environments due to poor mass transfer. This study is of particular use for optimal design of carriers in enhancing simultaneous nitrification-denitrification in microaerobic wastewater treatment processes.

  11. Effects of porous carrier size on biofilm development, microbial distribution and nitrogen removal in microaerobic bioreactors

    KAUST Repository

    Ahmad, Muhammad

    2017-03-15

    In this study, effects of porous carrier’s size (polyurethane-based) on microbial characteristics were systematically investigated in addition to nitrogen removal performance in six microaerobic bioreactors. Among different sized carriers (50, 30, 20, 15,10, 5 mm), 15 mm carrier showed highest nitrogen removal (98%) due to optimal micro-environments created for aerobic nitrifiers in outer layer (0∼7 mm), nitrifiers and denitrifiers in middle layer (7∼10 mm) and anaerobic denitrifiers in inner layer (10∼15 mm). Candidatus brocadia, a dominant anammox bacteria, was solely concentrated close to centroid (0∼70 μm) and strongly co-aggregated with other bacterial communities in the middle layer of the carrier. Contrarily, carriers with a smaller (<15 mm) or larger size (>15 mm) either destroy the effective zone for anaerobic denitrifiers or damage the microaerobic environments due to poor mass transfer. This study is of particular use for optimal design of carriers in enhancing simultaneous nitrification-denitrification in microaerobic wastewater treatment processes.

  12. Advances in wastewater nitrogen removal by biological processes: state of the art review

    Directory of Open Access Journals (Sweden)

    Andrea G. Capodaglio

    2016-04-01

    Full Text Available The paper summarizes the state-of-the-art of the most recent advances in biological nitrogen removal, including process design criteria and technological innovations. With reference to the Modified Ludzck Ettinger (MLE process (pre-denitrification and nitrification in the activated sludge process, the most common nitrogen removal process used nowadays, a new design equation for the denitrification reactor based on specific denitrification rate (SDNR has been proposed. In addition, factors influencing SDNR (DO in the anoxic reactor; hydrodynamic behavior are analyzed, and technological solutions are proposed. Concerning technological advances, the paper presents a summary of various “deammonification” processes, better known by their patent names like ANAMMOX®, DEMON®, CANON®, ANITA® and others. These processes have already found applications in the treatment of high-strength wastewater such as digested sludge liquor and landfill leachate. Among other emerging denitrification technologies, consideration is given to the Membrane Biofilm Reactors (MBfRs that can be operated both in oxidation and reduction mode.

  13. Study of the oxide reduction and interstitial contents during sintering of different plain carbon steels by in situ mass spectrometry in nitrogen atmosphere

    International Nuclear Information System (INIS)

    Momeni, Mohammad; Gierl, Christian; Danninger, Herbert

    2011-01-01

    Highlights: → Degassing phenomenon was studied in plain steels with different iron base powders. → The integrated area below the MS m12 graph can be used as an indicator of formed CO. → The integrated area is an indicator for in situ carbon loss in the specimen. → Carbon loss and area below the m12 graph can be correlated. - Abstract: Reduction of oxides covering powder particles is an important process during sintering and a prerequisite to form sintering contacts in PM parts. In the present research, degassing and reduction phenomena during sintering of plain carbon steels prepared from different atomised and sponge iron powders were studied by mass spectrometry (MS) in the dilatometer under protective N 2 atmosphere. Interstitial constituents were measured by carbon and oxygen analysis. According to the results, the major part of CO 2 is formed during carbothermic reduction of surface oxides in the low to moderate temperature range ( 600 deg. C, the main product of carbothermic reduction is CO and not CO 2 , but the former cannot be detected by MS in N 2 atmosphere. Signals m44 (CO 2 ) and m12 (C) were however found to be reliable indicators for CO. Similar intensity of mass 12 signals for both ASC and SC up to 1000 deg. C is consistent with equal carbon loss through carbothermic reaction. The integrated areas below the MS signal graphs, and thus the areas of the different degassing peaks obtained in the MS, were used as at least semi-quantitative estimation of the amount of gases formed, bearing in mind that MS is not really a quantitative analytical tool. Although a clearly defined relationship is not visible between oxygen loss and area below the m16 graph, the area for m12 can be used as an indicator for in situ carbon loss in the specimen. Increasing integrated areas for m12 and 16 between 800 and 1300 deg. C with only marginal enhancement of m44 indicates that the major part of oxides are removed as CO, in agreement with Boudouard equilibrium, at

  14. The regional and global significance of nitrogen removal in lakes and reservoirs

    Science.gov (United States)

    Harrison, J.A.; Maranger, R.J.; Alexander, Richard B.; Giblin, A.E.; Jacinthe, P.-A.; Mayorga, Emilio; Seitzinger, S.P.; Sobota, D.J.; Wollheim, W.M.

    2009-01-01

    Human activities have greatly increased the transport of biologically available nitrogen (N) through watersheds to potentially sensitive coastal ecosystems. Lentic water bodies (lakes and reservoirs) have the potential to act as important sinks for this reactive N as it is transported across the landscape because they offer ideal conditions for N burial in sediments or permanent loss via denitrification. However, the patterns and controls on lentic N removal have not been explored in great detail at large regional to global scales. In this paper we describe, evaluate, and apply a new, spatially explicit, annual-scale, global model of lentic N removal called NiRReLa (Nitrogen Retention in Reservoirs and Lakes). The NiRReLa model incorporates small lakes and reservoirs than have been included in previous global analyses, and also allows for separate treatment and analysis of reservoirs and natural lakes. Model runs for the mid-1990s indicate that lentic systems are indeed important sinks for N and are conservatively estimated to remove 19.7 Tg N year-1 from watersheds globally. Small lakes (<50 km2) were critical in the analysis, retaining almost half (9.3 Tg N year -1) of the global total. In model runs, capacity of lakes and reservoirs to remove watershed N varied substantially at the half-degree scale (0-100%) both as a function of climate and the density of lentic systems. Although reservoirs occupy just 6% of the global lentic surface area, we estimate they retain ~33% of the total N removed by lentic systems, due to a combination of higher drainage ratios (catchment surface area:lake or reservoir surface area), higher apparent settling velocities for N, and greater average N loading rates in reservoirs than in lakes. Finally, a sensitivity analysis of NiRReLa suggests that, on-average, N removal within lentic systems will respond more strongly to changes in land use and N loading than to changes in climate at the global scale. ?? 2008 Springer Science

  15. Bioprocess design guided by in situ substrate supply and product removal: process intensification for synthesis of (S)-1-(2-chlorophenyl)ethanol.

    Science.gov (United States)

    Schmölzer, Katharina; Mädje, Katharina; Nidetzky, Bernd; Kratzer, Regina

    2012-03-01

    We report herein on bioprocess development guided by the hydrophobicities of substrate and product. Bioreductions of o-chloroacetophenone are severely limited by instability of the catalyst in the presence of aromatic substrate and (S)-1-(2-chlorophenyl)ethanol. In situ substrate supply and product removal was used to protect the utilized Escherichia coli whole cell catalyst based on Candida tenuis xylose reductase during the reaction. Further engineering at the levels of the catalyst and the reaction media was matched to low substrate concentrations in the aqueous phase. Productivities obtained in aqueous batch reductions were 21-fold improved by addition of 20% (v/v) hexane, NAD(+), expression engineering, cell permeabilization and pH optimization. Reduction of 300 mM substrate was accomplished in 97% yield and use of the co-solvent hexane in subsequent extraction steps led to 88% recovery. Product loss due to high catalyst loading was minimized by using the same extractant in bioreduction and product isolation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. [Effect of Different Purple Parent Rock on Removal Rates of Nitrogen, Phosphorus and Organics in Landscape Water].

    Science.gov (United States)

    Huang, Xue-jiao; Liu, Xiao-chen; Li, Zhen-lun; Shi, Wen-hao; Yang, Shan

    2015-05-01

    In order to understand the impacts of physicochemical properties of purple parent rock on the removal rates of nitrogen, phosphorus and organics in landscape water systems, four types of purple parent rocks including Peng-lai-zhen Formation (S1) , Sha-xi-miao Formation (S2) , Fei-xian-guan Formation (S3) and Sui-ning Formation (S4) , which distribute widely in Chongqing, were selected and autoclaved, and added to unsterile landscape water collected from Chong-de Lake in Southwest University, and the landscape water only was used as control. And several indicators such as total nitrogen and phosphorus and so on of every disposal were investigated periodically. The results indicated that: (1) The highest removal rates of total nitrogen, total phosphorus and Ammonia nitrogen were observed in Sl, which were 45.1%, 62.3% and 90%, respectively; the highest removal rate of COD was 94.5% in S4; the ammonia nitrogen content in the purple parent rocks was not obviously changed before and after the experiments, which indicated that the adsorption of ammonia nitrogen on purple parent rock surface was not the main reason for the decrease of ammonia nitrogen in water. (2) Arsenate had inhibitory effect on the sulfate-reducing bacteria, while copper and magnesium had promoting effect on gram-negative bacteria. (3) The microbial diversity was positively correlated to total nitrogen in water. (4) Based on the PCA analyses of microbial community structure and environmental factors, the mineral elements released from parent rock affected the structure and composition of microbial community in the test water, and then influenced the removal rates of nitrogen, phosphorus and organics in water systems.

  17. In-situ synthesis of 3D GA on titanium wire as a binder- free electrode for electro-Fenton removing of EDTA-Ni.

    Science.gov (United States)

    Wen, Shulong; Niu, Zhuyu; Zhang, Zhen; Li, Lianghao; Chen, Yuancai

    2018-01-05

    Ethylenediaminetetraacetic acid (EDTA) could form stable complexes with toxic metals such as nickel due to its strong chelation. The three-dimensional (3D) macroporous graphene aerogels (GA), which was in-situ assembled by reduced graphene oxide (rGO) sheets on titanium wire as binder-free electrode, was presented as cathode for the degradation of EDTA-Ni in Electro-Fenton process. The X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscope (TEM) and Brunauer-Emmett-Teller (BET) results indicated 3D GA formed three dimensional architecture with large and homogenous macropore structure and surface area. Cyclic Voltammetry (CV), Linear Sweep Voltammetry (LSV) and Rotating Ring-disk Electrode (RRDE) results showed that the 3D GA cathode at pH 3 displayed the highest current density and electrochemical active surface area (ECSA), and better two-electron selectivity for ORR than other pH value, confirming the 3D-GA cathode at pH 3 has the highest electrocatalytic activity and generates more H 2 O 2 . The factors such as pH, applied current density, concentration of Fe 2+ , Na 2 SO 4, and aeration rates of air were also investigated. Under the optimum conditions, 73.5% of EDTA-Ni was degraded after reaction for 2h. Mechanism analysis indicated that the production of OH on the 3D GA cathode played an important role in the removal of EDTA-Ni in the 3D GA-EF process, where the direct regeneration of Fe 2+ on the cathode would greatly reduce the consumption of H 2 O 2 . Therefore, it is of great promise for 3D-GA catalyst to be developed as highly efficient, cost-effective and durable cathode for the removal of EDTA-Ni. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Nitrogen and chemical oxygen demand removal from septic tank wastewater in subsurface flow constructed wetlands: substrate (cation exchange capacity) effects.

    Science.gov (United States)

    Collison, Robert S; Grismer, Mark E

    2014-04-01

    The current article focuses on chemical oxygen demand (COD) and nitrogen (ammonium and nitrate) removal performance from synthetic human wastewater as affected by different substrate rocks having a range of porosities and cation exchange capacities (CECs). The aggregates included lava rock, lightweight expanded shale, meta-basalt (control), and zeolite. The first three had CECs of 1 to 4 mequiv/100 gm, whereas the zeolite CEC was much greater (-80 mequiv/100 gm). Synthetic wastewater was gravity fed to each constructed wetland system, resulting in a 4-day retention time. Effluent samples were collected, and COD and nitrogen species concentrations measured regularly during four time periods from November 2008 through June 2009. Chemical oxygen demand and nitrogen removal fractions were not significantly different between the field and laboratory constructed wetland systems when corrected for temperature. Similarly, overall COD and nitrogen removal fractions were practically the same for the aggregate substrates. The important difference between aggregate effects was the zeolite's ammonia removal process, which was primarily by adsorption. The resulting single-stage nitrogen removal process may be an alternative to nitrification and denitrification that may realize significant cost savings in practice.

  19. Nitrogen removal and its relationship with the nitrogen-cycle genes and microorganisms in the horizontal subsurface flow constructed wetlands with different design parameters.

    Science.gov (United States)

    Chen, Jun; Ying, Guang-Guo; Liu, You-Sheng; Wei, Xiao-Dong; Liu, Shuang-Shuang; He, Liang-Ying; Yang, Yong-Qiang; Chen, Fan-Rong

    2017-07-03

    This study aims to investigate nitrogen removal and its relationship with the nitrogen-cycle genes and microorganisms in the horizontal subsurface flow constructed wetlands (CWs) with different design parameters. Twelve mesocosm-scale CWs with four substrates and three hydraulic loading rates were set up in the outdoor. The result showed the CWs with zeolite as substrate and HLR of 20 cm/d were selected as the best choice for the TN and NH 3 -N removal. It was found that the single-stage mesocosm-scale CWs were incapable to achieve high removals of TN and NH 3 -N due to inefficient nitrification process in the systems. This was demonstrated by the lower abundance of the nitrification genes (AOA and AOB) than the denitrification genes (nirK and nirS), and the less diverse nitrification microorganisms than the denitrification microorganisms in the CWs. The results also show that microorganism community structure including nitrogen-cycle microorganisms in the constructed wetland systems was affected by the design parameters especially the substrate type. These findings show that nitrification is a limiting factor for the nitrogen removal by CWs.

  20. Sediment diffusion method improves wastewater nitrogen removal in the receiving lake sediments.

    Science.gov (United States)

    Aalto, Sanni L; Saarenheimo, Jatta; Ropponen, Janne; Juntunen, Janne; Rissanen, Antti J; Tiirola, Marja

    2018-07-01

    Sediment microbes have a great potential to transform reactive N to harmless N 2 , thus decreasing wastewater nitrogen load into aquatic ecosystems. Here, we examined if spatial allocation of the wastewater discharge by a specially constructed sediment diffuser pipe system enhanced the microbial nitrate reduction processes. Full-scale experiments were set on two Finnish lake sites, Keuruu and Petäjävesi, and effects on the nitrate removal processes were studied using the stable isotope pairing technique. All nitrate reduction rates followed nitrate concentrations, being highest at the wastewater-influenced sampling points. Complete denitrification with N 2 as an end-product was the main nitrate reduction process, indicating that the high nitrate and organic matter concentrations of wastewater did not promote nitrous oxide (N 2 O) production (truncated denitrification) or ammonification (dissimilatory nitrate reduction to ammonium; DNRA). Using 3D simulation, we demonstrated that the sediment diffusion method enhanced the contact time and amount of wastewater near the sediment surface especially in spring and in autumn, altering organic matter concentration and oxygen levels, and increasing the denitrification capacity of the sediment. We estimated that natural denitrification potentially removed 3-10% of discharged wastewater nitrate in the 33 ha study area of Keuruu, and the sediment diffusion method increased this areal denitrification capacity on average 45%. Overall, our results indicate that sediment diffusion method can supplement wastewater treatment plant (WWTP) nitrate removal without enhancing alternative harmful processes. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Denitrification, anammox and fixed nitrogen removal in the water column of a tropical great lake

    Science.gov (United States)

    Darchambeau, François; Roland, Fleur; Crowe, Sean A.; De Brabandere, Loreto; Llirós, Marc; Garcia-Armisen, Tamara; Inceoglu, Ozgul; Michiels, Céline; Servais, Pierre; Morana, Cédric D. T.; Bouillon, Steven; Meysman, Filip; Veuger, Bart; Masilya, Pascal M.; Descy, Jean-Pierre; Borges, Alberto V.

    2013-04-01

    If rates of microbial denitrification in aquatic systems are poorly constrained, it is much more the case for tropical water bodies. Lake Kivu [2.50° S 1.59° S, 29.37° E 28.83° E] is one of the great lakes of the East African Rift. It is an oligotrophic lake characterized by anoxic deep waters rich in dissolved gases (methane and carbon dioxide) and nutrients, and by well oxygenated and nutrient-depleted surface waters. During the seasonally stratified rainy season (October to May), a nitrogenous zone characterized by the accumulation of nitrite (NO2-) and nitrate (NO3-) is often observed in the lower layer of the mixolimnion. It results from nitrification of ammonium released by decaying organic matter. With the seasonal uplift of the oxygen minimum zone, the nitrogenous zone becomes anoxic and might be the most preferential area for fixed nitrogen (N) removal in Lake Kivu. Our work aimed at identifying and quantifying the processes of N losses by denitrification and/or anammox in the nitrogenous zone of the Lake Kivu water column. During 5 sampling campaigns (March 2010, October 2010, June 2011, February 2012 and September 2012), isotopic labelling experiments were used to quantify denitrification and anammox rates along vertical profiles at two pelagic stations of the main lake. Moreover, N2:Ar ratios were estimated during the September 2012 campaign, and 16S rDNA pyrosequencing was used to describe bacterial community composition during the last 2 campaigns. No bacteria related to organisms performing anammox was observed and labelling experiments failed to detect anammox at any locations and any depths. In Lake Kivu, denitrifying bacteria were mainly related to Denitratisoma and Thiobacillus genus. Significant denitrification rates were observed at several occasions, especially under the oxic-anoxic interface in the bottom of the nitracline. The annual average denitrification rate was estimated at ~150 μmoles N m-2 d-1. Denitrification was not the only

  2. Phosphotungstic acid binding in situ to K4Nb6O17 for the effective adsorption-photocatalytic removal of tetracycline

    Science.gov (United States)

    Gu, Huimin; Lang, Junyu; Ma, Yuli; Gu, Huayu; Song, Yanyong; Chai, Zhanli; Li, Guangshe; Wang, Xiaojing

    2018-05-01

    In this investigation, phosphotungstic acid (H3PW12O40) was successfully self-assembly implanted into the interspace of K4Nb6O17 nanosheet via an impregnation method to form an adsorption-photocatalytic composite, in which n-type semiconductor K4Nb6O17 was selected as photo-electron emitter and H3PW12O40 was particularly used as an electronic transmitter. By characterizing with X-ray diffraction (XRD), transmission (TEM), scan electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and FT-IR spectrum (FT-IR), it confirmed that H3PW12O40 (HPW) was converted to the insoluble tiny particles of K3PW12O40 (KPW) with the remained primary Keggin group via an ion-exchanged H+ of HPW with K+ in K4Nb6O17 in the implanted process and was firmly bound to the surface of K4Nb6O17 to form well sandwich structure. UV-vis diffuse reflectance spectroscopy revealed that the band gap of K4Nb6O17-K3PW12O40 have a slight red shift compared with the single K4Nb6O17. Its adsorption-photocatalytic properties were evaluated with the removal of tetracycline as model reaction. Compared with pure K4Nb6O17, tetracycline removal rate can be significantly improved for the as-prepared sandwich. Importantly, the removal could still maintain 70% after five reuses in recycle tests at an acidic solution, inferring a good stability which was mainly ascribed to the formation of water-insoluble K3PW12O40. The separation and transfer process of photogenerated electrons were investigated by surface photovoltage spectroscopy (SPV). It proposed that the KPW anchored firmly on the interlayers of K4Nb6O17 through a O-K-O bridge plays a significantly role in promoting the separation of the photogenerated carriers and preventing the leakage and agglomeration of HPW. The present results showed that the strategy of the phosphotungstic acid binding in situ to K4Nb6O17 was favorable to promote the hetero-photocatalytic efficiency as well as reusability. [Figure not available: see fulltext.

  3. Balancing carbon/nitrogen ratio to improve nutrients removal and algal biomass production in piggery and brewery wastewaters.

    Science.gov (United States)

    Zheng, Hongli; Liu, Mingzhi; Lu, Qian; Wu, Xiaodan; Ma, Yiwei; Cheng, Yanling; Addy, Min; Liu, Yuhuan; Ruan, Roger

    2018-02-01

    To improve nutrients removal from wastewaters and enhance algal biomass production, piggery wastewater was mixed with brewery wastewaters. The results showed that it was a promising way to cultivate microalga in piggery and brewery wastewaters by balancing the carbon/nitrogen ratio. The optimal treatment condition for the mixed piggery-brewery wastewater using microalga was piggery wastewater mixed with brewery packaging wastewater by 1:5 at pH 7.0, resulting in carbon/nitrogen ratio of 7.9, with the biomass concentration of 2.85 g L -1 , and the removal of 100% ammonia, 96% of total nitrogen, 90% of total phosphorus, and 93% of chemical oxygen demand. The application of the established strategies can enhance nutrient removal efficiency of the wastewaters while reducing microalgal biomass production costs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Development of novel control strategies for single-stage autotrophic nitrogen removal: A process oriented approach

    DEFF Research Database (Denmark)

    Vangsgaard, Anna Katrine; Mauricio Iglesias, Miguel; Gernaey, Krist

    2014-01-01

    operation and rejection of disturbances. Three novel control strategies were developed, evaluated, and benchmarked against each other: a feedforward control (control structure 1 – CS#1), a rule-based feedback control (CS#2), and a feedforward–feedback controller, in which the feedback loop updates the set......The autotrophic nitrogen removing granular sludge process is a novel and intensified process. However, its stable operation and control remain a challenging issue. In this contribution, a process oriented approach was used to develop, evaluate and benchmark novel control strategies to ensure stable...... point of the feedforward loop (CS#3). The CS#1 gave the best performance against disturbances in the ammonium concentration, whereas the CS#2 provided the best performance against disturbances in the organic carbon concentration and dynamic influent conditions. The CS#3 rejected both disturbances...

  5. Hybrid disposal systems and nitrogen removal in individual sewage disposal systems

    Energy Technology Data Exchange (ETDEWEB)

    Franks, A.L.

    1993-06-01

    The use of individual disposal systems in ground-water basins that have adverse salt balance conditions and/or geologically unsuitable locations, has become a major problem in many areas of the world. There has been much research in design of systems for disposal of domestic sewage. This research includes both hybrid systems for disposal of domestic sewage. This research includes both hybrid systems for disposal of the treated waste in areas with adverse geologic conditions and systems for the removal of nitrogen and phosphorus prior to percolation to the ground water. This paper outlines the history of development and rationale for design and construction of individual sewage disposal systems and describes the designs and limitations of the hybrid and denitrification units. The disposal systems described include Mounds, Evapotranspiration and Evapotranspiration/Infiltration systems. The denitrification units include those using methanol, sulfur and limestone, gray water and secondary treated wastewater for energy sources.

  6. Simulation of Nitrogen and Phosphorus Removal in Ecological Ditch Based on EFDC Model

    Science.gov (United States)

    Li, S. M.; Wang, X. L.; Zhou, Q. Y.; Han, N. N.

    2018-03-01

    Agricultural non-point source pollution threatens water quality and ecological system recently. To control it, the first and most important task is to control the migration and transformation of nitrogen and phosphorus in the agricultural ditches. An ecological ditch was designed, and according to the design a pilot device was built, the mechanism of N and P removal in ditches under the collaboration of aquatic organisms-hydraulic power was studied through the dynamic and static experiments, in order to find out the specific influences of different environmental factors such as influent concentration, influent flow and water level. The transport and diffusion of N and P in the ditch was simulated by a three dimensional water quality model EFDC, the simulation results and the experimental data were compared. The average relative errors of EFDC model simulated results were all less than 15%, which verified the reliability of the model.

  7. Improving the biological nitrogen removal process in pharmaceutical wastewater treatment plants: a case study.

    Science.gov (United States)

    Torrijos, M; Carrera, J; Lafuente, J

    2004-04-01

    The Biological Nitrogen Removal (BNR) process of some pharmaceutical wastewater treatment plants has important operational problems. This study shows that, in order to solve these problems, the design of industrial BNR processes should start by analysing three key parameters: the characteristics of the wastewater load, the determination of the maximum TKN removal rate and the detection of toxic or inhibitory compounds in the wastewater. A case study of this analysis in pharmaceutical wastewater is presented here. In this case, the conventional TKN analytical method does not make an accurate characterisation of the wastewater load because it measures a concentration of 100 mg TKN l(-1) whereas the real concentration, determined with a modified TKN analytical method, is 150-500 mg TKN l(-1). Also, the TKN removal of the treatment system is insufficient in some periods because it falls below legal requirements. This problem might be a consequence of the wrong characterisation of wastewater during the design process. The maximum TKN removal at 27 degrees C (24 mg N g VSS(-1) d(-1) or 197 mg N l(-1) d(-1)) was evaluated in a pilot-scale plant. This value is six times greater than the average NLR applied in the full-scale plant. Finally, some of the components of the wastewater, such as p-phenylenediamine, might have inhibitory or toxic effects on the biological process. P-phenylenediamine causes a large decrease in the nitrification rate. This effect was determined by respirometry. This methodology shows that the effect is mainly inhibitory with a contact time of 30 min and if the contact time is longer, 14 hours, a toxic effect is observed.

  8. Adsorptive Removal of Nitrate from Aqueous Solution Using Nitrogen Doped Activated Carbon.

    Science.gov (United States)

    Machida, Motoi; Goto, Tatsuru; Amano, Yoshimasa; Iida, Tatsuya

    2016-01-01

    Activated carbon (AC) has been widely applied for adsorptive removal of organic contaminants from aqueous phase, but not for ionic pollutants. In this study, nitrogen doped AC was prepared to increase the adsorption capacity of nitrate from water. AC was oxidized with (NH 4 ) 2 S 2 O 8 solution to maximize oxygen content for the first step, and then NH 3 gas treatment was carried out at 950°C to aim at forming quaternary nitrogen (N-Q) species on AC surface (Ox-9.5AG). Influence of solution pH was examined so as to elucidate the relationship between surface charge and adsorption amounts of nitrate. The results showed that Ox-9.5AG exhibited about twice higher adsorption capacity than non-treatment AC at any initial nitrate concentration and any equilibrium solution pH (pH e ) investigated. The more decrease in pH e value, the more adsorption amount of negatively charged nitrate ion, because the surface charge of AC and Ox-9.5AG could become more positive in acidic solution. The oxidation and consecutive ammonia treatments lead to increase in nitrogen content from 0.35 to 6.4% and decrease in the pH of the point of zero charge (pH pzc ) from 7.1 to 4.0 implying that positively charged N-Q of a Lewis acid was created on the surface of Ox-9.5AG. Based on a Langmuir data analysis, maximum adsorption capacity attained 0.5-0.6 mmol/g of nitrate and adsorption affinity was 3.5-4.0 L/mmol at pH e 2.5 for Ox-9.5AG.

  9. A wooded riparian strip set up for nitrogen removal can affect the water flux microbial composition

    Directory of Open Access Journals (Sweden)

    Mizanur Md. Rahman

    2014-02-01

    Full Text Available This research is part of a project aimed at verifying the potential of a specifically assessed wooded riparian zone in removing excess of combined nitrogen from the Zero river flow for the reduction of nutrient input into Venice Lagoon. Specific objectives were pursued to determine seasonal fluctuations of the microbial populations from the input water to a drainage ditch, conveying back the flux into the river after passing through the soil of the wooded riparian strip. The bacterial communities were determined by combined approaches involving cultivation, microscopic methods and DNA based techniques to determine both culturable and total microbial community in water. The results indicate that the size of the bacterial population, including the culturable fraction, increases from the river to the drainage ditch especially on the warm season. The multiple approach here adopted enabled also to demonstrate that the special condition created in the buffer strip supports the development and the metabolism of the microbial community. The nature of the bacterial population, in terms of phylotypes distribution, was investigated by 16S rDNA analysis indicating that the most represented genera belong to Gamma-proteobacteria, which is known to include an exceeding number of important pathogens. In spring, the effect of the buffer strip seems to significantly reduce such a sub-population. The changes observed for the total bacterial community composition become much evident in summer, as revealed by both denaturing gradient gel electrophoresis cluster analysis and by the diversity index calculation. The hydraulic management coupled to the suspension of farming practices and the development of the woody and herbaceous vegetation resulted in a condition suitable for the containment of undesired microbiota (mainly during the spring season while continuing to support denitrification activity (especially throughout the summer as verified by the total nitrogen

  10. Ammonium Nitrogen Removal from Urea Fertilizer Plant Wastewater via Struvite Crystal Production

    Science.gov (United States)

    Machdar, I.; Depari, S. D.; Ulfa, R.; Muhammad, S.; Hisbullah, A. B.; Safrul, W.

    2018-05-01

    Elimination of ammonium concentration from urea fertilizer plant wastewater through struvite crystal (NH4MgPO4.6H2O) formation by adding MgCl2, KH2PO4, and KOH were studied. This method of elimination has two benefits, namely, reducing ammonium nitrogen content in the wastewater, as well as production of a valuable material (struvite crystal). Struvite is known as a slow-release fertilizer and less soluble. This report presents the ammonium removal efficiencies during struvite formation. The growth of struvite production under different molar ratios of Mg2+:NH4 +:PO4 3- and solution pH is also discussed. To find the efficiencies and measure the growth rates, lab-scale experiments were conducted in a batch crystallizer-reactor. SEM, XRD, and FTIR observation were also applied to investigate the characteristics of struvite. The reactant molar ratios of Mg2+:NH4 +:PO4 3- of 1.2:1:1, 1:1:1.2, and 1:1:1 were evaluated. Each of the molar ratios was treated at the solution pH of 8, 9, and 10. It was found that, the highest ammonium removal efficiency was 94.7% at the molar ratio of 1.2:1:1 and pH of 9. Primarily, the growth rate of struvite formation complied with a first-order kinetic model. The rate constants (k1) were calculated to be 2.6, 4.3, and 5.0 h-1 for solution pH of 8, 9, and 10, respectively. The findings of the study provide suggestion for an alternative sustainable recovery of ammonium nitrogen content in a urea fertilizer plant effluent.

  11. Energy saving processes for nitrogen removal in organic wastewater from food processing industries in Thailand.

    Science.gov (United States)

    Johansen, N H; Suksawad, N; Balslev, P

    2004-01-01

    Nitrogen removal from organic wastewater is becoming a demand in developed communities. The use of nitrite as intermediate in the treatment of wastewater has been largely ignored, but is actually a relevant energy saving process compared to conventional nitrification/denitrification using nitrate as intermediate. Full-scale results and pilot-scale results using this process are presented. The process needs some additional process considerations and process control to be utilized. Especially under tropical conditions the nitritation process will round easily, and it must be expected that many AS treatment plants in the food industry already produce NO2-N. This uncontrolled nitrogen conversion can be the main cause for sludge bulking problems. It is expected that sludge bulking problems in many cases can be solved just by changing the process control in order to run a more consequent nitritation. Theoretically this process will decrease the oxygen consumption for oxidation by 25% and the use of carbon source for the reduction will be decreased by 40% compared to the conventional process.

  12. The Effect of HLRs on Nitrogen Removal by Using a Pilot-scale Aerated Steel Slag System

    Directory of Open Access Journals (Sweden)

    Hamdan R.

    2017-01-01

    Full Text Available Discharge from domestic wastewater treatment plant amongst the main sources of nitrogen pollution in the environment. However, to remove nitrogen conventionally in domestic wastewater require high cost and complex chemical treatment method. Vertical flow aerated rock filter emerged as one of attractive alternative wastewater treatment method due to simplicity and compactness of the system. However, the application is yet to be developed in warm climate countries in particular Malaysia. Therefore, this study was conducted to investigate the effect of hydraulic loading rate (HLR to the performance of a pilot-scale Vertical Flow Aerated Rock Filter (VFARF in removing nitrogen from domestic wastewater using pilot-scale VFARF systems with steel slag as the filter media. Furthermore, this study has been designed to focus on the effects of two HLRs; 2.72 and 1.04 m3/m3.day. Influent and effluent of the filter systems were monitored biweekly basis for 11 weeks and analyzed for selected parameters. Results from this study shows that the VFARF with HLR 1.04 m3/m3.day has performed better in terms of removal ammonium-nitrogen and TKN as the system able to remove 90.4 ± 6.9%, 86.2 ± 10.7%, whilst the VFARF with 2.72 m3/m3.day remove 87.4 ± 9.9%, 80 ± 11.7%, respectively. From the observation, it can be concluded that nitrogen removal does affect by HLR as the removal in lower HLR system was higher due to high DO level in the VFARF system with 1.04 m3/m3.day which range from 4.5 to 5.1 mg/L whilst the DO level was slightly lower in the VFARF system with 2.72 m3/m3.day in the range of 3.7 to 4.5 mg/L.

  13. Adsorptive removal of dye using biochar derived from residual algae after in-situ transesterification: Alternate use of waste of biodiesel industry.

    Science.gov (United States)

    Nautiyal, Piyushi; Subramanian, K A; Dastidar, M G

    2016-11-01

    The primary aim of this present study was to utilize the residual biomass (DB) of Spirulina platensis algae, left after in-situ transesterification, for biochar preparation. This is a solid waste residue of biodiesel industry. The biochar (BC) prepared was examined for its capacity to adsorb congo red dye from the aqueous solution. The results were compared with other adsorbents used in the study such as commercial activated carbon (AC), original algae biomass (AB) and DB. The results of proximate analysis of BC showed the decrease in the percentage of volatile matter and an increase in fixed carbon content compared to DB. The physico-chemical properties of BC were studied using elemental analysis, SEM, FTIR and XRD techniques. The AC and BC adsorbents showed better performance in removing 85.4% and 82.6% of dye respectively from solution compared to AB (76.6%) and DB (78.1%). The effect of initial dye concentration, adsorbent dosage and pH of solution on the adsorption phenomena was studied by conducting the batch adsorption experiments. The highest specific uptake for biochar was observed at acidic pH of 2 with 0.2 g/100 ml of adsorbent dosage and 90 mg/l of initial concentration. The equilibrium adsorption data were fitted to three isotherms, namely Langmuir, Freundlich and Temkin. Freundlich model proved to show the best suited results with value of correlation coefficient of 99.12%. Thus, the application of DB for production of biochar as potential adsorbent supports sustainability of algae biodiesel. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Towards a plant-wide Benchmark Simulation Model with simultaneous nitrogen and phosphorus removal wastewater treatment processes

    DEFF Research Database (Denmark)

    Flores-Alsina, Xavier; Ikumi, David; Batstone, Damien

    It is more than 10 years since the publication of the Benchmark Simulation Model No 1 (BSM1) manual (Copp, 2002). The main objective of BSM1 was creating a platform for benchmarking carbon and nitrogen removal strategies in activated sludge systems. The initial platform evolved into BSM1_LT and BSM....... This extension aims at facilitating simultaneous carbon, nitrogen and phosphorus (P) removal process development and performance evaluation at a plant-wide level. The main motivation of the work is that numerous wastewater treatment plants (WWTPs) pursue biological phosphorus removal as an alternative...... to chemical P removal based on precipitation using metal salts, such as Fe or Al. This paper identifies and discusses important issues that need to be addressed to upgrade the BSM2 to BSM2-P, for example: 1) new influent wastewater characteristics; 2) new (bio) chemical processes to account for; 3...

  15. Complete nitrogen removal from municipal wastewater via partial nitrification by appropriately alternating anoxic/aerobic conditions in a continuous plug-flow step feed process.

    Science.gov (United States)

    Ge, Shijian; Peng, Yongzhen; Qiu, Shuang; Zhu, Ao; Ren, Nanqi

    2014-05-15

    This study assessed the technical feasibility of removing nitrogen from municipal wastewater by partial nitrification (nitritation) in a continuous plug-flow step feed process. Nitrite in the effluent accumulated to over 81.5  ± 9.2% but disappeared with the transition of process operation from anoxic/oxic mode to the anaerobic/anoxic/oxic mode. Batch tests showed obvious ammonia oxidizing bacteria (AOB) stimulation (advanced ammonia oxidation rate) and nitrite (NOB) oxidizing bacteria inhibition (reduced nitrite oxidation rate) under transient anoxic conditions. Two main factors contributed to nitritation in this continuous plug-flow process: One was the alternating anoxic and oxic operational condition; the step feed strategy guaranteed timely denitrification in anoxic zones, allowing a reduction in energy supply (nitrite) to NOB. Fluorescence in Situ Hybridization and quantitative real-time polymerase chain reaction analysis indicated that NOB population gradually decreased to 1.0  ± 0.1% of the total bacterial population (dominant Nitrospira spp., 1.55 × 10(9) copies/L) while AOB increased approximately two-fold (7.4  ± 0.9%, 1.25 × 10(10) copies/L) during the above anoxic to anaerobic transition. Most importantly, without addition of external carbon sources, the above wastewater treatment process reached 86.0  ± 4.2% of total nitrogen (TN) removal with only 7.23 ± 2.31 mg/L of TN in the effluent, which met the discharge requirements. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. A system for removing both oxygen and nitrogen from a rare gas-hydrocarbon mixture

    International Nuclear Information System (INIS)

    Dijkman, W.H.

    1989-01-01

    A study has been made how to remove nitrogen from a mixture of a rare gas and a hydrocarbon in addition to the removal of oxygen, H 2 O and gaseous oxides. The purpose was to find a simple method for the purification of drift-chamber gases in a recirculation system. Such a method would reduce the operating costs of the large detectors presently constructed for LEP. A promising technique has been developed. First results of a chemical reactor using the novel technique are presented. The N 2 content of Ar/air mixtures containing up to 28% air could be reduced to a level of 20 ppm at a flow rate of 0.11 m 3 /h (200 ppm at 1.0 m 3 /h); and the O 2 content to 30 and 300 ppm respectively. Water and gaseous oxides concentrations were always below 5 ppm. Some of the practical problems still to be solved are discussed and suggestions are given for further development and applications. The method can in principle be of more general use. (orig.)

  17. Nitrogen and phosphorus removal coupled with carbohydrate production by five microalgae cultures cultivated in biogas slurry.

    Science.gov (United States)

    Tan, Fen; Wang, Zhi; Zhouyang, Siyu; Li, Heng; Xie, Youping; Wang, Yuanpeng; Zheng, Yanmei; Li, Qingbiao

    2016-12-01

    In this study, five microalgae strains were cultured for their ability to survive in biogas slurry, remove nitrogen resources and accumulate carbohydrates. It was proved that five microalgae strains adapted in biogas slurry well without ammonia inhibition. Among them, Chlorella vulgaris ESP-6 showed the best performance on carbohydrate accumulation, giving the highest carbohydrate content of 61.5% in biogas slurry and the highest ammonia removal efficiency and rate of 96.3% and 91.7mg/L/d respectively in biogas slurry with phosphorus and magnesium added. Additionally, the absence of phosphorus and magnesium that can be adverse for biomass accumulation resulted in earlier timing of carbohydrate accumulation and magnesium was firstly recognized and proved as the influence factor for carbohydrate accumulation. Microalgae that cultured in biogas slurry accumulated more carbohydrate in cell, making biogas slurry more suitable medium for the improvement of carbohydrate content, thus can be regarded as a new strategy to accumulate carbohydrate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. In situ observation data from the grouper roi (Cephalopholis argus) removal project in West Hawaii from 2010-2011 (NODC Accession 0082197)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In situ observations of the introduced predatory grouper roi (Cephalopholis argus) were taken within the coral reef ecosystem of Puako, northwest side of the Island...

  19. Phosphorus and nitrogen removal in waste water at small factory. Shokibo jigyosho ni okeru haisuichu no rin chisso shori gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Hirai, M. (National Institute for Resources and Environment, Tsukuba (Japan))

    1994-05-25

    For the purpose of preventing closed waters from eutrophicating, COD regulations and nitrogen and phosphorus waste water regulations are executed in Japan, but practically applicable techniques for this purpose are a few. Concerning technology for removing nitrogen and phosphorus in waste water, this paper describes the actual situation of two industries, electroplating and alumite processing, and applicable techniques. Among various nitrogen removal methods, the biological treatment method has been used practically in many cases and is applicable to practical use. While there are many kinds of physical and chemical treatment methods, applicable methods are limited. In removing nitrogen, the coagulating sedimentation method with Ca salt, Al salt and Fe salt is effective generally for orthophosphate. At electroplating factories, various forms of phosphorus and nitrogen compounds are used as plating chemicals. In treating waste water containing phosphorus, the coagulating sedimentation method is used most frequently. The oxidation + coagulating sedimentation method, the autolysis + oxidation coagulation method, and the evaporation method are effected, though the examples of their implementation are small in number. 15 tabs.

  20. Adsorption Equilibrium and Kinetics of the Removal of Ammoniacal Nitrogen by Zeolite X/Activated Carbon Composite Synthesized from Elutrilithe

    Directory of Open Access Journals (Sweden)

    Yong Zhang

    2017-01-01

    Full Text Available Zeolite X/activated carbon composite material (X/AC was prepared from elutrilithe, by a process consisting of carbonization, activation, and subsequent hydrothermal transformation of aluminosilicate in alkaline solution, which was used for the removal of ammoniacal nitrogen from aqueous solutions. Adsorption kinetics, equilibrium, and thermodynamic were studied and fitted by various models. The adsorption kinetics is best depicted by pseudosecond-order model, and the adsorption isotherm fits the Freundlich and Redlich-Peterson model. This explains the ammoniacal nitrogen adsorption onto X/AC which was chemical adsorption in nature. Thermodynamic properties such as ΔG, ΔH, and ΔS were determined for the ammoniacal nitrogen adsorption, and the positive enthalpy confirmed that the adsorption process was endothermic. It can be inferred that ammoniacal nitrogen removal by X/AC composite is attributed to the ion exchange ability of zeolite X. Further, as a novel sorbent, this material has the potential application in removing ammoniacal nitrogen coexisting with other organic compounds from industrial wastewater.

  1. Development of anaerobic ammonium oxidation (anammox) for biological nitrogen removal in domestic wastewater treatment (Case study: Surabaya City, Indonesia)

    Science.gov (United States)

    Wijaya, I. Made Wahyu; Soedjono, Eddy Setiadi; Fitriani, Nurina

    2017-11-01

    Domestic wastewater effluent is the main contributor to diverse water pollution problems. The contaminants contained in the wastewater lead the low quality of water. The presence of ammonium and nitrate along with phosphorus are potentially cause eutrophication and endanger aquatic life. Excess nutrients, mostly N and P is the main cause of eutrophication which is result in oxygen depletion, biodiversity reduction, fish kills, odor and increased toxicity. Most of the domestic wastewater in Surabaya City still contains nitrogen that exceeded the threshold. The range of ammonium and orthophosphate concentration in the domestic wastewater is between 6.29 mg/L - 38.91 mg/L and 0.44 mg/L - 1.86 mg/L, respectively. An advance biological nitrogen removal process called anammox is a sustainable and cost effective alternative to the basic method of nitrogen removal, such as nitrification and denitrification. Many research have been conducted through anammox and resulted promisingly way to remove nitrogen. In this process, ammonium will be oxidized with nitrite as an electron acceptor to produce nitrogen gas and low nitrate in anoxic condition. Anammox requires less oxygen demand, no needs external carbon source, and low operational cost. Based on its advantages, anammox is possible to apply in domestic wastewater treatment in Surabaya with many further studies.

  2. Nitrogen

    Science.gov (United States)

    Apodaca, Lori E.

    2013-01-01

    The article presents an overview of the nitrogen chemical market as of July 2013, including the production of ammonia compounds. Industrial uses for ammonia include fertilizers, explosives, and plastics. Other topics include industrial capacity of U.S. ammonia producers CF Industries Holdings Inc., Koch Nitrogen Co., PCS Nitrogen, Inc., and Agrium Inc., the impact of natural gas prices on the nitrogen industry, and demand for corn crops for ethanol production.

  3. 454-Pyrosequencing analysis of bacterial communities from autotrophic nitrogen removal bioreactors utilizing universal primers : Effect of annealing temperature

    NARCIS (Netherlands)

    Gonzalez-Martinez, A.; Rodriguez-Sanchez, A.; Rodelas, B.; Abbas, B.A.; Martinez-Toledo, M.V.; Van Loosdrecht, M.C.M.; Osorio, F.; Gonzalez-Lopez, J.

    2015-01-01

    Identification of anaerobic ammonium oxidizing (anammox) bacteria by molecular tools aimed at the evaluation of bacterial diversity in autotrophic nitrogen removal systems is limited by the difficulty to design universal primers for the Bacteria domain able to amplify the anammox 16S

  4. Nitrogen removal in a single-chamber microbial fuel cell with nitrifying biofilm enriched at the air cathode

    KAUST Repository

    Yan, Hengjing; Saito, Tomonori; Regan, John M.

    2012-01-01

    biofilm MFCs had lower Coulombic efficiencies (up to 27%) than the control reactor (up to 36%). The maximum total nitrogen removal efficiency reached 93.9% for MFCs with the DEA binder. The DEA binder accelerated nitrifier biofilm enrichment on the cathode

  5. Selection of controlled variables in bioprocesses. Application to a SHARON-Anammox process for autotrophic nitrogen removal

    DEFF Research Database (Denmark)

    Mauricio Iglesias, Miguel; Valverde Perez, Borja; Sin, Gürkan

    Selecting the right controlled variables in a bioprocess is challenging since the objectives of the process (yields, product or substrate concentration) are difficult to relate with a given actuator. We apply here process control tools that can be used to assist in the selection of controlled var...... variables to the case of the SHARON-Anammox process for autotrophic nitrogen removal....

  6. Advanced treatment technique for swine wastewater using two agents: Thermally polymerized amorphous silica and hydrated lime for color and phosphorus removal and sulfur for nitrogen removal.

    Science.gov (United States)

    Hasegawa, Teruaki; Kurose, Yohei; Tanaka, Yasuo

    2017-10-01

    The efficacy of advanced treatment of swine wastewater using thermally polymerized, modified amorphous silica and hydrated lime (M-CSH-lime) for color and phosphorus removal and sulfur for nitrogen removal was examined with a demonstration-scale treatment plant. The color removal rate was approximately 78% at M-CSH-lime addition rates of > 0.055 wt/v%. The PO43--P removal rate exceeded 99.9% with > 0.023 wt/v%. pH of the effluent from the M-CSH-lime reactor increased with the addition rate till a maximum value of 12.7, which was effective in disinfection. The recovered M-CSH-lime would be suitable as a phosphorus fertilizer because the total P 2 O 5 content was approximately 10%. The nitrogen oxide (NOx-N) removal rate by sulfur denitrification increased to approximately 80% when the NOx-N loading rate was around 0.1 kg-N/ton-S/day. It was suggested that the combination of the two processes would be effective in the advanced treatment of swine wastewater. © 2017 Japanese Society of Animal Science.

  7. Effects of Nitrogen and Nutrient Removal on Nitrate Accumulation and Growth Characteristics of Spinach (Spinacia oleraceae L.

    Directory of Open Access Journals (Sweden)

    mohammadsadegh sadeghi

    2017-12-01

    Full Text Available Introduction: Spinach is a leafy vegetable which is rich source of vitamins, antioxidant compounds (e.g. flavonoids, acid ascorbic and essential elements (e.g. Fe, and Se. Spinach is capable of accumulating large amounts of nitrogen in the form of nitrate in shoot tissues which is undesirablein the human diet. The concentration of nitrate in plants is affected by species, fertilizer use, and growing conditions. Green leafy vegetables such as spinach, generally contain higher levels of nitrate than other foods. Nitrate ofplant tissueslevels are clearly related to both form and concentration of N fertilizers applied. Nitrogen fertilizers have been known as the major factors that influence nitrate content in vegetables. Ideally, the N fertility level must be managed to produce optimum crop yield without leading to excessive accumulation of nitrate in the harvested tissues.Usinghigh amounts ofN fertilizer produced higher yield with higher nitrate inleaves but the highest amount of nitrate was accumulated in the petioles.There are several plant species that may accumulate nitrate, including the Brassica plants, green cereal grains (barley, wheat, rye and maize, sorghum and Sudan grasses, corn, beets, rape, docks, sweet clover and nightshades. The presence of nitrate in vegetables, as in water and generally in other foods, is a serious threat to man’s health. Nitrate is relatively non-toxic, but approximately 5% of all ingested nitrate is converted in saliva and the gastrointestinal tract to the more toxic nitrite. This study was aimed to investigate theeffects of nitrogen and nutrient removal on nitrate accumulation and growth characteristics of spinach (Spinacia oleraceae L.. Materials and Methods: A pot hydroponic experiment was carried out to evaluate the effect of different levels of nitrogen and nutrient removal (one week before harvest on nitrate accumulation and growth characters. A factorial experiment based on completely randomized design

  8. Evaluation of process costs for small-scale nitrogen removal from natural gas. Topical report, January 1989-December 1989

    International Nuclear Information System (INIS)

    Echterhoff, L.W.; Pathak, V.K.

    1991-08-01

    The report establishes the cost of producing pipeline quality gas on a small scale from high nitrogen subquality natural gas. Three processing technologies are evaluated: cryogenic, Nitrotec Engineering Inc.'s pressure swing adsorption (PSA), and lean oil absorption. Comparison of the established costs shows that the cryogenic process exhibits the lowest total plant investment for nitrogen feed contents up to about 22%, above which the PSA process exhibits the lowest investment cost. The lean oil process exhibits the highest total plant investment at the 25% nitrogen feed studied. Opposite to the total plant investment for the cryogenic process, the total plant investment for the PSA process decreases with increasing nitrogen content primarily due to increasing product gas compression requirements. The cryogenic process exhibits the lowest gas processing costs for the nitrogen content range under study. However, the difference between the gas processing costs for the PSA and cryogenic processes narrows as the nitrogen content approaches 15-25%. The lean oil gas processing cost is very high compared to both the cryogenic and PSA processes. The report verifies that nitrogen removal from natural gas is expensive, especially for small-scale applications, and several avenues are identified for improving the cryogenic and PSA technologies

  9. In situ electro-polymerization of nitrogen doped carbon dots and their application in an electrochemiluminescence biosensor for the detection of intracellular lead ions.

    Science.gov (United States)

    Xiong, Chengyi; Liang, Wenbin; Wang, Haijun; Zheng, Yingning; Zhuo, Ying; Chai, Yaqin; Yuan, Ruo

    2016-04-25

    Here, a novel sensitive electrochemiluminescence (ECL) biosensor using N doped carbon dots (N-CDs) in situ electro-polymerized onto a glassy carbon electrode (GCE) as luminophores, and Pd-Au hexoctahedrons (Pd@Au HOHs) as enhancers, was developed for the detection of intracellular lead ions (Pb(2+)).

  10. What happens in the bag? : development and evaluation of a modified in situ protocol to estimate degradation of nitrogen and starch in the rumen

    NARCIS (Netherlands)

    Jonge, de L.H.

    2015-01-01

    The most widely used method to estimate the rumen degradation of dietary components in feedstuffs is the in situ or in sacco method. This method is based on rumen incubation of substrate (feed) in nylon or dacron bags followed by rinsing and analysis of the residue. Small pores

  11. Non-linear partial least square regression increases the estimation accuracy of grass nitrogen and phosphorus using in situ hyperspectral and environmental data

    CSIR Research Space (South Africa)

    Ramoelo, Abel

    2013-06-01

    Full Text Available in situ hyperspectral and environmental variables yielded the highest grass N and P estimation accuracy (R2 = 0.81, root mean square error (RMSE) = 0.08, and R2 = 0.80, RMSE = 0.03, respectively) as compared to using remote sensing variables only...

  12. Instability of biological nitrogen removal in a cokes wastewater treatment facility during summer

    International Nuclear Information System (INIS)

    Kim, Young Mo; Park, Donghee; Lee, Dae Sung; Park, Jong Moon

    2007-01-01

    Failure in nitrogen removal of cokes wastewater occurs occasionally during summer season (38 deg. C) due to the instability of nitrification process. The objective of this study was to examine why the nitrification process is unstable especially in summer. Various parameters such as pH, temperature, nutrients and pollutants were examined in batch experiments using activated sludge and wastewater obtained from a full-scale cokes wastewater treatment facility. Batch experiments showed that nitrification rate of the activated sludge was faster in summer (38 deg. C) than in spring or autumn (29 deg. C) and the toxic effects of cyanide, phenol and thiocyanate on nitrification were reduced with increasing temperature. Meanwhile, experiment using continuous reactor showed that the reduction rate in nitrification efficiency was higher at 38 deg. C than at 29 deg. C. In conclusion, the instability of full-scale nitrification process in summer might be mainly due to washing out of nitrifiers by fast growth of competitive microorganisms at higher temperature under increased concentrations of phenol and thiocyanate

  13. Observation of Nitrogen and Phosphorus Removals and Accumulations in Surface Flow Constructed Wetland (SFCW

    Directory of Open Access Journals (Sweden)

    Suntud Sirianuntapiboon

    2012-06-01

    Full Text Available The tropical emergent plant species; Cyperus involucratus, Canna siamensis, Heliconia sp., Hymenocallis littoralis, Typha augustifolia and Thalia dealbata were used to observe nutrients (total phosphorus: TP and total nitrogen: TN removal efficiencies of surface flow constructed wetland (SFCW. The system was operated at different hydraulic retention time (HRT of 1, 3 and 5 days and the average atmospheric temperature of 29.1 ± 4.9oC. The seafood industrial wastewater was employed as the influent. The high biomass production plant species; Cyperus involucratus, Typha augustifolia and Thalia dealbata could generate the high oxidative environment. Amount of N and P accumulations in plant tissue were increased with the increase of plant biomass production. The system did not show any significantly different on N and P accumulations among the tested-emergent plant species. But the amount of accumulated-N and P were increased with the increase of HRT. N accumulations in plant tissue, effluent, sediment and media of the system with the tested-emergent plant species under HRT of 1-5 days were in the range of 2.17-43.80%, 7.91-27.75%, 19.62-36.86% and 14.39-31.88%, respectively. Also, P accumulations were 0.79-17.01%, 20.35-28.37%, 40.96-56.27% and 9.09-20.47%, respectively.

  14. Optimized biological nitrogen removal of high-strength ammonium wastewater by activated sludge modeling

    Directory of Open Access Journals (Sweden)

    Abdelsalam Elawwad

    2018-09-01

    Full Text Available Wastewater containing high ammonium concentrations is produced from various industrial activities. In this study, the author used a complex activated sludge model, improved by utilizing BioWin© (EnviroSim, Hamilton, Canada simulation software, to gain understanding of the problem of instability in biological nitrogen removal (BNR. Specifically, the study focused on BNR in an industrial wastewater treatment plant that receives high-strength ammonium wastewater. Using the data obtained from a nine-day sampling campaign and routinely measured data, the model was successfully calibrated and validated, with modifications to the sensitive stoichiometric and kinetic parameters. Subsequently, the calibrated model was employed to study various operating conditions in order to optimize the BNR. These operating conditions include alkalinity addition, sludge retention time, and the COD/N ratio. The addition of a stripping step and modifications to the configuration of the aerators are suggested by the author to increase the COD/N ratio and therefore enhance denitrification. It was found that the calibrated model could successfully represent and optimize the treatment of the high-strength ammonium wastewater.

  15. Anammox-based technologies for nitrogen removal: Advances in process start-up and remaining issues.

    Science.gov (United States)

    Ali, Muhammad; Okabe, Satoshi

    2015-12-01

    Nitrogen removal from wastewater via anaerobic ammonium oxidation (anammox)-based process has been recognized as efficient, cost-effective and low energy alternative to the conventional nitrification and denitrification processes. To date, more than one hundred full-scale anammox plants have been installed and operated for treatment of NH4(+)-rich wastewater streams around the world, and the number is increasing rapidly. Since the discovery of anammox process, extensive researches have been done to develop various anammox-based technologies. However, there are still some challenges in practical application of anammox-based treatment process at full-scale, e.g., longer start-up period, limited application to mainstream municipal wastewater and poor effluent water quality. This paper aimed to summarize recent status of application of anammox process and researches on technological development for solving these remaining problems. In addition, an integrated system of anammox-based process and microbial fuel cell is proposed for sustainable and energy-positive wastewater treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Nitrous oxide production by lithotrophic ammonia-oxidizing bacteria and implications for engineered nitrogen-removal systems.

    Science.gov (United States)

    Chandran, Kartik; Stein, Lisa Y; Klotz, Martin G; van Loosdrecht, Mark C M

    2011-12-01

    Chemolithoautotrophic AOB (ammonia-oxidizing bacteria) form a crucial component in microbial nitrogen cycling in both natural and engineered systems. Under specific conditions, including transitions from anoxic to oxic conditions and/or excessive ammonia loading, and the presence of high nitrite (NO₂⁻) concentrations, these bacteria are also documented to produce nitric oxide (NO) and nitrous oxide (N₂O) gases. Essentially, ammonia oxidation in the presence of non-limiting substrate concentrations (ammonia and O₂) is associated with N₂O production. An exceptional scenario that leads to such conditions is the periodical switch between anoxic and oxic conditions, which is rather common in engineered nitrogen-removal systems. In particular, the recovery from, rather than imposition of, anoxic conditions has been demonstrated to result in N₂O production. However, applied engineering perspectives, so far, have largely ignored the contribution of nitrification to N₂O emissions in greenhouse gas inventories from wastewater-treatment plants. Recent field-scale measurements have revealed that nitrification-related N₂O emissions are generally far higher than emissions assigned to heterotrophic denitrification. In the present paper, the metabolic pathways, which could potentially contribute to NO and N₂O production by AOB have been conceptually reconstructed under conditions especially relevant to engineered nitrogen-removal systems. Taken together, the reconstructed pathways, field- and laboratory-scale results suggest that engineering designs that achieve low effluent aqueous nitrogen concentrations also minimize gaseous nitrogen emissions.

  17. Artificial intelligence models for predicting the performance of biological wastewater treatment plant in the removal of Kjeldahl Nitrogen from wastewater

    Science.gov (United States)

    Manu, D. S.; Thalla, Arun Kumar

    2017-11-01

    The current work demonstrates the support vector machine (SVM) and adaptive neuro-fuzzy inference system (ANFIS) modeling to assess the removal efficiency of Kjeldahl Nitrogen of a full-scale aerobic biological wastewater treatment plant. The influent variables such as pH, chemical oxygen demand, total solids (TS), free ammonia, ammonia nitrogen and Kjeldahl Nitrogen are used as input variables during modeling. Model development focused on postulating an adaptive, functional, real-time and alternative approach for modeling the removal efficiency of Kjeldahl Nitrogen. The input variables used for modeling were daily time series data recorded at wastewater treatment plant (WWTP) located in Mangalore during the period June 2014-September 2014. The performance of ANFIS model developed using Gbell and trapezoidal membership functions (MFs) and SVM are assessed using different statistical indices like root mean square error, correlation coefficients (CC) and Nash Sutcliff error (NSE). The errors related to the prediction of effluent Kjeldahl Nitrogen concentration by the SVM modeling appeared to be reasonable when compared to that of ANFIS models with Gbell and trapezoidal MF. From the performance evaluation of the developed SVM model, it is observed that the approach is capable to define the inter-relationship between various wastewater quality variables and thus SVM can be potentially applied for evaluating the efficiency of aerobic biological processes in WWTP.

  18. Temporary storage or permanent removal? The division of nitrogen between biotic assimilation and denitrification in stormwater biofiltration systems.

    Directory of Open Access Journals (Sweden)

    Emily G I Payne

    Full Text Available The long-term efficacy of stormwater treatment systems requires continuous pollutant removal without substantial re-release. Hence, the division of incoming pollutants between temporary and permanent removal pathways is fundamental. This is pertinent to nitrogen, a critical water body pollutant, which on a broad level may be assimilated by plants or microbes and temporarily stored, or transformed by bacteria to gaseous forms and permanently lost via denitrification. Biofiltration systems have demonstrated effective removal of nitrogen from urban stormwater runoff, but to date studies have been limited to a 'black-box' approach. The lack of understanding on internal nitrogen processes constrains future design and threatens the reliability of long-term system performance. While nitrogen processes have been thoroughly studied in other environments, including wastewater treatment wetlands, biofiltration systems differ fundamentally in design and the composition and hydrology of stormwater inflows, with intermittent inundation and prolonged dry periods. Two mesocosm experiments were conducted to investigate biofilter nitrogen processes using the stable isotope tracer 15NO3(- (nitrate over the course of one inflow event. The immediate partitioning of 15NO3(- between biotic assimilation and denitrification were investigated for a range of different inflow concentrations and plant species. Assimilation was the primary fate for NO3(- under typical stormwater concentrations (∼1-2 mg N/L, contributing an average 89-99% of 15NO3(- processing in biofilter columns containing the most effective plant species, while only 0-3% was denitrified and 0-8% remained in the pore water. Denitrification played a greater role for columns containing less effective species, processing up to 8% of 15NO3(-, and increased further with nitrate loading. This study uniquely applied isotope tracing to biofiltration systems and revealed the dominance of assimilation in stormwater

  19. Biological phosphorus and nitrogen removal in sequencing batch reactors: effects of cycle length, dissolved oxygen concentration and influent particulate matter.

    Science.gov (United States)

    Ginige, Maneesha P; Kayaalp, Ahmet S; Cheng, Ka Yu; Wylie, Jason; Kaksonen, Anna H

    2013-01-01

    Removal of phosphorus (P) and nitrogen (N) from municipal wastewaters is required to mitigate eutrophication of receiving water bodies. While most treatment plants achieve good N removal using influent carbon (C), the use of influent C to facilitate enhanced biological phosphorus removal (EBPR) is poorly explored. A number of operational parameters can facilitate optimum use of influent C and this study investigated the effects of cycle length, dissolved oxygen (DO) concentration during aerobic period and influent solids on biological P and N removal in sequencing batch reactors (SRBs) using municipal wastewaters. Increasing cycle length from 3 to 6 h increased P removal efficiency, which was attributed to larger portion of N being removed via nitrite pathway and more biodegradable organic C becoming available for EBPR. Further increasing cycle length from 6 to 8 h decreased P removal efficiencies as the demand for biodegradable organic C for denitrification increased as a result of complete nitrification. Decreasing DO concentration in the aerobic period from 2 to 0.8 mg L(-1) increased P removal efficiency but decreased nitrification rates possibly due to oxygen limitation. Further, sedimented wastewater was proved to be a better influent stream than non-sedimented wastewater possibility due to the detrimental effect of particulate matter on biological nutrient removal.

  20. Optimum O2:CH4 Ratio Promotes the Synergy between Aerobic Methanotrophs and Denitrifiers to Enhance Nitrogen Removal

    Directory of Open Access Journals (Sweden)

    Jing Zhu

    2017-06-01

    Full Text Available The O2:CH4 ratio significantly effects nitrogen removal in mixed cultures where aerobic methane oxidation is coupled with denitrification (AME-D. The goal of this study was to investigate nitrogen removal of the AME-D process at four different O2:CH4 ratios [0, 0.05, 0.25, and 1 (v/v]. In batch tests, the highest denitrifying activity was observed when the O2:CH4 ratio was 0.25. At this ratio, the methanotrophs produced sufficient carbon sources for denitrifiers and the oxygen level did not inhibit nitrite removal. The results indicated that the synergy between methanotrophs and denitrifiers was significantly improved, thereby achieving a greater capacity of nitrogen removal. Based on thermodynamic and chemical analyses, methanol, butyrate, and formaldehyde could be the main trophic links of AME-D process in our study. Our research provides valuable information for improving the practical application of the AME-D systems.

  1. Nitrogen removal from sludge digester liquids by nitrification/denitrification or partial nitritation/anammox: environmental and economical considerations.

    Science.gov (United States)

    Fux, C; Siegrist, H

    2004-01-01

    In wastewater treatment plants with anaerobic sludge digestion, 15-20% of the nitrogen load is recirculated to the main stream with the return liquors from dewatering. Separate treatment of this ammonium-rich digester supernatant significantly reduces the nitrogen load of the activated sludge system. Two biological applications are considered for nitrogen elimination: (i) classical autotrophic nitrification/heterotrophic denitrification and (ii) partial nitritation/autotrophic anaerobic ammonium oxidation (anammox). With both applications 85-90% nitrogen removal can be achieved, but there are considerable differences in terms of sustainability and costs. The final gaseous products for heterotrophic denitrification are generally not measured and are assumed to be nitrogen gas (N2). However, significant nitrous oxide (N2O) production can occur at elevated nitrite concentrations in the reactor. Denitrification via nitrite instead of nitrate has been promoted in recent years in order to reduce the oxygen and the organic carbon requirements. Obviously this "achievement" turns out to be rather disadvantageous from an overall environmental point of view. On the other hand no unfavorable intermediates are emitted during anaerobic ammonium oxidation. A cost estimate for both applications demonstrates that partial nitritation/anammox is also more economical than classical nitrification/denitrification. Therefore autotrophic nitrogen elimination should be used in future to treat ammonium-rich sludge liquors.

  2. In-situ regeneration of activated carbon with electric potential swing desorption (EPSD) for the H2S removal from biogas

    DEFF Research Database (Denmark)

    Farooq, M.; Almustapha, M. N.; Imran, Muhammad

    2017-01-01

    , physical adsorption using EPSD over activated carbon is efficient, safe and environmental friendly and could be used for the in-situ regeneration of granular activated carbon without using a PSA and/or TSA system. Additionally, adsorption and desorption cycles can be obtained with a classical two column...... system, which could lead towards a more efficient and economic biogas to biomethane process....

  3. Relating N2O emissions during biological nitrogen removal with operating conditions using multivariate statistical techniques.

    Science.gov (United States)

    Vasilaki, V; Volcke, E I P; Nandi, A K; van Loosdrecht, M C M; Katsou, E

    2018-04-26

    Multivariate statistical analysis was applied to investigate the dependencies and underlying patterns between N 2 O emissions and online operational variables (dissolved oxygen and nitrogen component concentrations, temperature and influent flow-rate) during biological nitrogen removal from wastewater. The system under study was a full-scale reactor, for which hourly sensor data were available. The 15-month long monitoring campaign was divided into 10 sub-periods based on the profile of N 2 O emissions, using Binary Segmentation. The dependencies between operating variables and N 2 O emissions fluctuated according to Spearman's rank correlation. The correlation between N 2 O emissions and nitrite concentrations ranged between 0.51 and 0.78. Correlation >0.7 between N 2 O emissions and nitrate concentrations was observed at sub-periods with average temperature lower than 12 °C. Hierarchical k-means clustering and principal component analysis linked N 2 O emission peaks with precipitation events and ammonium concentrations higher than 2 mg/L, especially in sub-periods characterized by low N 2 O fluxes. Additionally, the highest ranges of measured N 2 O fluxes belonged to clusters corresponding with NO 3 -N concentration less than 1 mg/L in the upstream plug-flow reactor (middle of oxic zone), indicating slow nitrification rates. The results showed that the range of N 2 O emissions partially depends on the prior behavior of the system. The principal component analysis validated the findings from the clustering analysis and showed that ammonium, nitrate, nitrite and temperature explained a considerable percentage of the variance in the system for the majority of the sub-periods. The applied statistical methods, linked the different ranges of emissions with the system variables, provided insights on the effect of operating conditions on N 2 O emissions in each sub-period and can be integrated into N 2 O emissions data processing at wastewater treatment plants

  4. Sludge granulation in an UASB-moving bed biofilm hybrid reactor for efficient organic matter removal and nitrogen removal in biofilm reactor.

    Science.gov (United States)

    Chatterjee, Pritha; Ghangrekar, M M; Rao, Surampalli

    2018-02-01

    A hybrid upflow anaerobic sludge blanket (UASB)-moving bed biofilm (MBB) and rope bed biofilm (RBB) reactor was designed for treatment of sewage. Possibility of enhancing granulation in an UASB reactor using moving media to improve sludge retention was explored while treating low-strength wastewater. The presence of moving media in the top portion of the UASB reactor allowed a high solid retention time even at very short hydraulic retention times and helped in maintaining selection pressure in the sludge bed to promote formation of different sized sludge granules with an average settling velocity of 67 m/h. These granules were also found to contain plenty of extracellular polymeric substance (EPS) such as 58 mg of polysaccharides (PS) per gram of volatile suspended solids (VSS) and protein (PN) content of 37 mg/g VSS. Enriched sludge of nitrogen-removing bacteria forming a porous biofilm on the media in RBB was also observed in a concentration of around 894 g/m 2 . The nitrogen removing sludge also had a high EPS content of around 22 mg PS/g VSS and 28 mg PN/g VSS. This hybrid UASB-MBB-RBB reactor with enhanced anaerobic granular sludge treating both carbonaceous and nitrogenous matter may be a sustainable solution for decentralized sewage treatment.

  5. Sequential Aeration of Membrane-Aerated Biofilm Reactors for High-Rate Autotrophic Nitrogen Removal: Experimental Demonstration

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Sun, Sheng-Peng; Lackner, Susanne

    2010-01-01

    One-stage autotrophic nitrogen (N) removal, requiring the simultaneous activity of aerobic and anaerobic ammonium oxidizing bacteria (AOB and AnAOB), can be obtained in spatially redox-stratified biofilms. However, previous experience with Membrane-Aerated Biofilm Reactors (MABRs) has revealed...... a difficulty in reducing the abundance and activity of nitrite oxidizing bacteria (NOB), which drastically lowers process efficiency. Here we show how sequential aeration is an effective strategy to attain autotrophic N removal in MABRs: Two separate MABRs, which displayed limited or no N removal under...... continuous aeration, could remove more than 5.5 g N/m2/day (at loads up to 8 g N/m2/day) by controlled variation of sequential aeration regimes. Daily averaged ratios of the surficial loads of O2 (oxygen) to NH4+ (ammonium) (LO2/LNH4) were close to 1.73 at this optimum. Real-time quantitative PCR based on 16...

  6. Bioprocesses for removal of carbon dioxide and nitrogen oxide by microalgae for the utilization of gas generated during coal burning

    Energy Technology Data Exchange (ETDEWEB)

    Morais, Michele Greque de; Costa, Jorge Alberto Vieira [Fundacao Universidade Federal do Rio Grande, Rio Grande (Brazil)

    2008-07-01

    The aim of this work was to study the removal of CO{sub 2} and NO by microalgae and to evaluate the kinetic characteristics of the cultures. Spirulina sp. showed {mu}{sub max} and X{sub max} (0.11 d{sup -1}, 1.11 g L{sup -1} d{sup -1}) when treated with CO{sub 2} and NaNO{sub 3}. The maximum CO{sub 2} removal was 22.97% for S. obliquus treated with KNO{sub 3} and atmospheric CO{sub 2}. The S. obliquus showed maximum NO removal (21.30%) when treated with NO and CO{sub 2}. Coupling the cultivation of these microalgae with the removal of CO{sub 2} and NO has the potential not only to reduce the costs of culture media but also to offset carbon and nitrogen emissions. 19 refs., 3 figs., 2 tabs.

  7. Nitrogen Removal Characteristics of Pseudomonas putida Y-9 Capable of Heterotrophic Nitrification and Aerobic Denitrification at Low Temperature

    Directory of Open Access Journals (Sweden)

    Yi Xu

    2017-01-01

    Full Text Available The cold-adapted bacterium Pseudomonas putida Y-9 was investigated and exhibited excellent capability for nitrogen removal at 15°C. The strain capable of heterotrophic nitrification and aerobic denitrification could efficiently remove ammonium, nitrate, and nitrite at an average removal rate of 2.85 mg, 1.60 mg, and 1.83 mg NL−1 h−1, respectively. Strain Y-9 performed nitrification in preference to denitrification when ammonium and nitrate or ammonium and nitrite coexisted in the solution. Meantime, the presence of nitrate had no effect on the ammonium removal rate of strain Y-9, and yet the presence of high concentration of nitrite would inhibit the cell growth and decrease the nitrification rate. The experimental results indicate that P. putida Y-9 has potential application for the treatment of wastewater containing high concentrations of ammonium along with its oxidation products at low temperature.

  8. Aerobic and heterotrophic nitrogen removal by Enterobacter cloacae CF-S27 with efficient utilization of hydroxylamine.

    Science.gov (United States)

    Padhi, Soumesh Kumar; Tripathy, Swetaleena; Mohanty, Sriprakash; Maiti, Nikhil Kumar

    2017-05-01

    Heterotrophic bacterium, Enterobacter cloacae CF-S27 exhibited simultaneous nitrification and aerobic denitrification in presence of high concentration of hydroxylamine. With the initial nitrogen concentration of 100mgL -1 h -1 , ammonium, nitrate and nitrite removal efficiencies were 81%, 99.9% and 92.8%, while the corresponding maximum removal rates reached as high as 11.6, 15.1 and 11.2mgL -1 h -1 respectively. Quantitative amplification by real time PCR and enzyme assay demonstrated that hydroxylamine reductase gene (hao) is actively involved in hetrotrophic nitrification and aerobic denitrification process of Enterobacter cloacae CF-S27. PCR primers were designed targeting amplification of hao gene from diversified environmental soil DNA. The strain Enterobacter cloacae CF-S27 significantly maintained the undetectable amount of dissolved nitrogen throughout 60days of zero water exchange fish culture experiment in domestic wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Outcompeting nitrite-oxidizing bacteria in single-stage nitrogen removal in sewage treatment plants: a model-based study.

    Science.gov (United States)

    Pérez, Julio; Lotti, Tommaso; Kleerebezem, Robbert; Picioreanu, Cristian; van Loosdrecht, Mark C M

    2014-12-01

    This model-based study investigated the mechanisms and operational window for efficient repression of nitrite oxidizing bacteria (NOB) in an autotrophic nitrogen removal process. The operation of a continuous single-stage granular sludge process was simulated for nitrogen removal from pretreated sewage at 10 °C. The effects of the residual ammonium concentration were explicitly analyzed with the model. Competition for oxygen between ammonia-oxidizing bacteria (AOB) and NOB was found to be essential for NOB repression even when the suppression of nitrite oxidation is assisted by nitrite reduction by anammox (AMX). The nitrite half-saturation coefficient of NOB and AMX proved non-sensitive for the model output. The maximum specific growth rate of AMX bacteria proved a sensitive process parameter, because higher rates would provide a competitive advantage for AMX. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Extending the benchmark simulation model no2 with processes for nitrous oxide production and side-stream nitrogen removal

    DEFF Research Database (Denmark)

    Boiocchi, Riccardo; Sin, Gürkan; Gernaey, Krist V.

    2015-01-01

    In this work the Benchmark Simulation Model No.2 is extended with processes for nitrous oxide production and for side-stream partial nitritation/Anammox (PN/A) treatment. For these extensions the Activated Sludge Model for Greenhouse gases No.1 was used to describe the main waterline, whereas...... the Complete Autotrophic Nitrogen Removal (CANR) model was used to describe the side-stream (PN/A) treatment. Comprehensive simulations were performed to assess the extended model. Steady-state simulation results revealed the following: (i) the implementation of a continuous CANR side-stream reactor has...... increased the total nitrogen removal by 10%; (ii) reduced the aeration demand by 16% compared to the base case, and (iii) the activity of ammonia-oxidizing bacteria is most influencing nitrous oxide emissions. The extended model provides a simulation platform to generate, test and compare novel control...

  11. Biological nitrogen removal using soil columns for the reuse of reclaimed water: Performance and microbial community analysis.

    Science.gov (United States)

    Sun, Jiaji; Chen, Lei; Rene, Eldon R; Hu, Qian; Ma, Weifang; Shen, Zhenyao

    2018-07-01

    The main aim of this study was to remove nitrogen compounds from reclaimed water and reuse the water in semi-arid riverine lake systems. In order to assess the nitrogen removal efficiencies in different natural environments, laboratory scale column experiments were performed using sterilized soil (SS), silty clay (SC), soil with submerged plant (SSP) and biochar amendment soil (BCS). The initial concentration of NO 3 - -N and the flow rate was maintained constant at 15 mg L -1 and 0.6 ± 0.1 m d -1 , respectively. Among the tested columns, both SSP and BCS were able to achieve NO 3 - -N levels <0.2 mg L -1 in the treated reclaimed water. The results from bacterial community structure analysis, using 454 pyrosequencing of 16s rRNA genes, showed that the dominant denitrifier was Bacillus at the genera level. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Nitrogen Removal in a Full-Scale Domestic Wastewater Treatment Plant with Activated Sludge and Trickling Filter

    Directory of Open Access Journals (Sweden)

    Davood Nourmohammadi

    2013-01-01

    Full Text Available During the last decade, more stringent effluent requirements concerning the nutrients effluent values have been imposed by legislation and social concern. In this study, efficiency of total nitrogen removal in activated sludge and trickling filter processes (AS/TF was investigated in Tehran North wastewater treatment plant. Biological system in this site was included, anoxic selector tank, aeration tank, final sedimentation, and trickling filter. A part of treated wastewater before chlorination was mixed with supernatant of dewatered sludge and fed to the trickling filter. Supernatant of dewatered sludge with high concentration of NH4-N was diluted by treated wastewater to provide complete nitrification in trickling filter Produced nitrate in trickling filter was arrived to the anoxic tank and converted to nitrogen gas by denitrification. According to the study result, low concentration of organic carbone and high concentration of NH4-N led to nitrification in TF, then nitrate denitrification to nitrogen gas occurred in selector area. NH4-N concentration decreased from 26.8 mg/L to 0.29 mg/L in TF, and NO3-N concentration increased from 8.8 mg/L to 27 mg/L in TF. Consequently, the total nitrogen decreased approximately to 50% in biological process. This efficiency has been observed in returned flow around 24% from final sedimentation into TF. It was concluded that, in comparison with biological nutrient removal processes, this process is very efficient and simple.

  13. Internal nitrogen removal from sediments by the hybrid system of microbial fuel cells and submerged aquatic plants.

    Directory of Open Access Journals (Sweden)

    Peng Xu

    Full Text Available Sediment internal nitrogen release is a significant pollution source in the overlying water of aquatic ecosystems. This study aims to remove internal nitrogen in sediment-water microcosms by coupling sediment microbial fuel cells (SMFCs with submerged aquatic plants. Twelve tanks including four treatments in triplicates were designed: open-circuit (SMFC-o, closed-circuit (SMFC-c, aquatic plants with open-circuit (P-SMFC-o and aquatic plants with closed-circuit (P-SMFC-c. The changes in the bio-electrochemical characteristics of the nitrogen levels in overlying water, pore water, sediments, and aquatic plants were documented to explain the migration and transformation pathways of internal nitrogen. The results showed that both electrogenesis and aquatic plants could facilitate the mineralization of organic nitrogen in sediments. In SMFC, electrogenesis promoted the release of ammonium from the pore water, followed by the accumulation of ammonium and nitrate in the overlying water. The increased redox potential of sediments due to electrogenesis also contributed to higher levels of nitrate in overlying water when nitrification in pore water was facilitated and denitrification at the sediment-water interface was inhibited. When the aquatic plants were introduced into the closed-circuit SMFC, the internal ammonium assimilation by aquatic plants was advanced by electrogenesis; nitrification in pore water and denitrification in sediments were also promoted. These processes might result in the maximum decrease of internal nitrogen with low nitrogen levels in the overlying water despite the lower power production. The P-SMFC-c reduced 8.1%, 16.2%, 24.7%, and 25.3% of internal total nitrogen compared to SMFC-o on the 55th, 82th, 136th, and 190th days, respectively. The smaller number of Nitrospira and the larger number of Bacillus and Pseudomonas on the anodes via high throughput sequencing may account for strong mineralization and denitrification in the

  14. New concepts of microbial treatment processes for the nitrogen removal: effect of protein and amino acids degradation.

    Science.gov (United States)

    González-Martínez, Alejandro; Calderón, Kadiya; González-López, Jesús

    2016-05-01

    High concentrations of proteins and amino acids can be found in wastewater and wastewater stream produced in anaerobic digesters, having shown that amino acids could persist over different managements for nitrogen removal affecting the nitrogen removal processes. Nitrogen removal is completely necessary because of their implications and the significant adverse environmental impact of ammonium such as eutrophication and toxicity to aquatic life on the receiving bodies. In the last decade, the treatment of effluents with high ammonium concentration through anammox-based bioprocesses has been enhanced because these biotechnologies are cheaper and more environmentally friendly than conventional technologies. However, it has been shown that the presence of important amounts of proteins and amino acids in the effluents seriously affects the microbial autotrophic consortia leading to important losses in terms of ammonium oxidation efficiency. Particularly the presence of sulfur amino acids such as methionine and cysteine has been reported to drastically decrease the autotrophic denitrification processes as well as affect the microbial community structure promoting the decline of ammonium oxidizing bacteria in favor of other phylotypes. In this context we discuss that new biotechnological processes that improve the degradation of protein and amino acids must be considered as a priority to increase the performance of the autotrophic denitrification biotechnologies.

  15. Nitrogen removal capacity and bacterial community dynamics of a Canon biofilter system at different organic matter concentrations.

    Science.gov (United States)

    García-Ruiz, María J; Maza-Márquez, Paula; González-López, Jesús; Osorio, Francisco

    2018-02-01

    Three Canon bench-scale bioreactors with a volume of 2 L operating in parallel were configured as submerged biofilters. In the present study we investigated the effects of a high ammonium concentration (320 mgNH 4 + · L -1 ) and different concentrations of organic matter (0, 100 and 400 mgCOD·L -1 ) on the nitrogen removal capacity and the bacterial community structure. After 60 days, the Canon biofilters operated properly under concentrations of 0 and 100 mgCOD·L -1 of organic matter, with nitrogen removal efficiencies up to 85%. However, a higher concentration of organic matter (400 mgCOD·L -1 ) produced a partial inhibition of nitrogen removal (68.1% efficiency). The addition of higher concentrations of organic matter a modified the bacterial community structure in the Canon biofilter, increasing the proliferation of heterotrophic bacteria related to the genera of Thauera, Longilinea, Ornatilinea, Thermomarinilinea, unclassified Chlorobiales and Denitratisoma. However, heterotrophic bacteria co-exist with Nitrosomonas and Candidatus Scalindua. Thus, our study confirms the co-existence of different microbial activities (AOB, Anammox and denitrification) and the adaptation of a fixed-biofilm system to different concentrations of organic matter. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Investigation on thiosulfate-involved organics and nitrogen removal by a sulfur cycle-based biological wastewater treatment process.

    Science.gov (United States)

    Qian, Jin; Lu, Hui; Cui, Yanxiang; Wei, Li; Liu, Rulong; Chen, Guang-Hao

    2015-02-01

    Thiosulfate, as an intermediate of biological sulfate/sulfite reduction, can significantly improve nitrogen removal potential in a biological sulfur cycle-based process, namely the Sulfate reduction-Autotrophic denitrification-Nitrification Integrated (SANI(®)) process. However, the related thiosulfate bio-activities coupled with organics and nitrogen removal in wastewater treatment lacked detailed examinations and reports. In this study, S2O3(2-) transformation during biological SO4(2-)/SO3(2-) co-reduction coupled with organics removal as well as S2O3(2-) oxidation coupled with chemolithotrophic denitrification were extensively evaluated under different experimental conditions. Thiosulfate is produced from the co-reduction of sulfate and sulfite through biological pathway at an optimum pH of 7.5 for organics removal. And the produced S2O3(2-) may disproportionate to sulfide and sulfate during both biological S2O3(2-) reduction and oxidation most possibly carried out by Desulfovibrio-like species. Dosing the same amount of nitrate, pH was found to be the more direct factor influencing the denitritation activity than free nitrous acid (FNA) and the optimal pH for denitratation (7.0) and denitritation (8.0) activities were different. Spiking organics significantly improved both denitratation and denitritation activities while minimizing sulfide inhibition of NO3(-) reduction during thiosulfate-based denitrification. These findings in this study can improve the understanding of mechanisms of thiosulfate on organics and nitrogen removal in biological sulfur cycle-based wastewater treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Simultaneous removal of carbon and nitrogen by mycelial pellets of a heterotrophic nitrifying fungus-Penicillium sp. L1.

    Science.gov (United States)

    Liu, Yuxiang; Hu, Tingting; Zhao, Jing; Lv, Yongkang; Ren, Ruipeng

    2017-02-01

    A novel heterotrophic nitrifying fungus, defined as Penicillium sp. L1, can form mycelial pellets in liquid medium in this study. The effects of inoculation method, C/N ratio, initial pH, and temperature were gradually evaluated to improve the simultaneous removal of total nitrogen (TN) and chemical oxygen demand (COD) in wastewater by Penicillium sp. L1. Results showed that compared with spore inoculation, 48 h pellet inoculum could significantly increase the pellet size (from about 1.5 mm to 3.2 mm) and improve the removal capability, particularly for COD removal (from less than 50-86.20%). The removal efficiencies of TN and COD reached 98.38% (from 136.01 mg/L to 2.20 mg/L) and 92.40% (from 10,720 mg/L to 815 mg/L) under the following conditions: C/N 36, pH 3, 30°C, and inoculation with 48 h pellets. The pellet diameter reached 4.8 mm after 4-day cultivation. In this case, Penicillium sp. L1 removed TN from 415.93 mg/L to 43.39 mg/L, as well as COD from 29,533 mg/L to 8850 mg/L. Overall, the results indicated that the pellet size was closely related to the pollutant-removal ability of Penicillium sp. L1. Furthermore, mycelial pellets (4.8 mm, dead) only adsorbed 38.08% TN (from 125.45 mg/L to 77.78 mg/L), which indicated that adsorption did not play a major role in the nitrogen-removal process. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  18. Nitrogen and Phosphorus Removal in the Recirculating Aquaculture System with Water Treatment Tank containing Baked Clay Beads and Chinese Cabbage

    Directory of Open Access Journals (Sweden)

    Aeknarin Thanakitpairin

    2014-01-01

    Full Text Available This research aims to describe the nitrogen and phosphorus removal in Recirculating Aquaculture System (RAS by crop plants biomass production. The 3 experiment systems consisted of 1 treatment (fish tank + baked clay beads + Chinese cabbage and 2 controls as control-1 (fish tank only and control-2 (fish tank + baked clay beads, were performed. With all experimental RAS, Nile tilapia (Oreochromis niloticus was cultured at 2 kg/m3 density. The baked clay beads (8-16 mm in diameter were filled as a layer of 10 cm in the water treatment tank of control-2. While in the treatment tank, Chinese cabbage (Brassica pekinensis was planted at 334 plants/m2 in baked clay beads layer. During 35 days of experiment, the average fish wet-weight in control-1, control-2 and treatment systems increased from 16.31±1.49, 15.18±1.28 and 11.31±1.49 g to 29.43±7.06, 28.65±3.12 and 27.20±6.56 g, respectively. It was found that the growth rate of 0.45±0.15 g-wet weight/day in a treatment tank was higher than in those 2 controls, which were rather similar at 0.37±0.16 and 0.38±0.05 g-wet weight/day, respectively. The fish survival rate of all experimental units was 100%. The average Chinese cabbage wet-weight in treatment system increased from 0.15±0.02 g to 1.00±0.38 g. For water quality, all parameters were within the acceptable range for aquaculture. The assimilation inorganic nitrogen in a treatment tank showed a slower rate and lower nitrite accumulation relative to those in control tanks. The nitrogen and phosphorus balance analysis illustrated that most of the nitrogen and phosphorus input in all systems was from feed (82-87% and 21-87% while at the final day of experiments, nitrogen and phosphorus in tilapia culture revealed at 15-19% and 4-13%. The accumulation of nitrogen and phosphorus in the water, up to 56% and 70%, was found in control-1 while water in the tank with baked clay beads had substantial lower nitrogen and phosphorus concentration. The

  19. Non-linear partial least square regression increases the estimation accuracy of grass nitrogen and phosphorus using in situ hyperspectral and environmental data

    NARCIS (Netherlands)

    Ramoelo, A.; Skidmore, A.K.; Cho, M.A.; Mathieu, R.; Heitkonig, I.M.A.; Dudeni-Tlhone, N.; Schlerf, M.; Prins, H.H.T.

    2013-01-01

    Grass nitrogen (N) and phosphorus (P) concentrations are direct indicators of rangeland quality and provide imperative information for sound management of wildlife and livestock. It is challenging to estimate grass N and P concentrations using remote sensing in the savanna ecosystems. These areas

  20. Method for removing heavy metal and nitrogen oxides from flue gas, device for removing heavy metal and nitrogen oxides from flue gas

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hann-Sheng; Livengood, Charles David

    1997-12-01

    A method for the simultaneous removal of oxides and heavy metals from a fluid is provided comprising combining the fluid with compounds containing alkali and sulfur to create a mixture; spray drying the mixture to create a vapor phase and a solid phase; and isolating the vapor phase from the solid phase. A device is also provided comprising a means for spray-drying flue gas with alkali-sulfide containing liquor at a temperature sufficient to cause the flue gas to react with the compounds so as to create a gaseous fraction and a solid fraction and a means for directing the gaseous fraction to a fabric filter.

  1. Nitrogen loss from karst area in China in recent 50 years: An in-situ simulated rainfall experiment's assessment.

    Science.gov (United States)

    Song, Xianwei; Gao, Yang; Green, Sophie M; Dungait, Jennifer A J; Peng, Tao; Quine, Timothy A; Xiong, Bailian; Wen, Xuefa; He, Nianpeng

    2017-12-01

    Karst topography covers more than 1/3 of the People's Republic of China in area. The porous, fissured, and soluble nature of the underlying karst bedrock (primarily dolomite and limestone) leads to the formation of underground drainage systems. Karst conduit networks dominate this system, and rainfall takes a crucial role on water cycle at China karst area. Nitrogen loss from the karst system is of particular concern, with regard to nutrient use efficiency as well as water quality, as much of the karst system, including steeply sloping terrain, is used for intensive agriculture. We use simulated rainfall experiments to determine the relationship between rainfall and nitrogen loss at typical karst slope land and then estimate nitrogen loss from the karst soil. The results show that both surface runoff and subsurface runoff have a significant linear correlation with rainfall at all studied sites. Subsurface runoff is larger than surface runoff at two karst sites, while the opposite is true at the non-karst site. Exponential function satisfactorily described the correlation between rainfall and nitrogen concentrations in runoff. Nitrates accounted for 60%-95% of the dissolved nitrogen loss (DN, an index of N-loss in this research). The estimated annual N-loss load varies between 1.05 and 1.67 Tg N/year in the whole karst regions of China from 1961 to 2014. Approximately, 90% of the N-loss load occurred during the wet season, and 90% of that passed through the subsurface. Understanding the processes and estimating N-loss is highly valuable in determining long-term soil security and sustainability in karst regions.

  2. Simultaneous improvement of waste gas purification and nitrogen removal using a novel aerated vertical flow constructed wetland.

    Science.gov (United States)

    Zhang, Xinwen; Hu, Zhen; Ngo, Huu Hao; Zhang, Jian; Guo, Wenshan; Liang, Shuang; Xie, Huijun

    2018-03-01

    Insufficient oxygen supply is identified as one of the major factors limiting organic pollutant and nitrogen (N) removal in constructed wetlands (CWs). This study designed a novel aerated vertical flow constructed wetland (VFCW) using waste gas from biological wastewater treatment systems to improve pollutant removal in CWs, its potential in purifying waste gas was also identified. Compared with unaerated VFCW, the introduction of waste gas significantly improved NH 4 + -N and TN removal efficiencies by 128.48 ± 3.13% and 59.09 ± 2.26%, respectively. Furthermore, the waste gas ingredients, including H 2 S, NH 3 , greenhouse gas (N 2 O) and microbial aerosols, were remarkably reduced after passing through the VFCW. The removal efficiencies of H 2 S, NH 3 and N 2 O were 77.78 ± 3.46%, 52.17 ± 2.53%, and 87.40 ± 3.89%, respectively. In addition, the bacterial and fungal aerosols in waste gas were effectively removed with removal efficiencies of 42.72 ± 3.21% and 47.89 ± 2.82%, respectively. Microbial analysis results revealed that the high microbial community abundance in the VFCW, caused by the introduction of waste gas from the sequencing batch reactor (SBR), led to its optimized nitrogen transformation processes. These results suggested that the VFCW intermittently aerated with waste gas may have potential application for purifying wastewater treatment plant effluent and waste gas, simultaneously. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Comparison of the flows of nitrogen and inorganic phosphorous, dissolved in the Cienaga Grande de Santa Marta, Colombian Caribbean; obtained from incubation cameras in situ and incubation of silt nucleus in laboratory

    International Nuclear Information System (INIS)

    Navas S, Gabriel R; Zea Sven; Campos, Nestor Hernando

    2002-01-01

    This research focused on the comparison of low cost methodologies to determine ionic nitrogen and phosphorous fluxes across the soft sediment-water interface in Cienaga Grande de Santa Marta. In situ transparent incubation chambers and sediment cores for laboratory incubation were employed. It was found that inside the incubation chambers a depletion of dissolved oxygen occurred thus the incubation couldn't be extended for more than six hours, time insufficiently to detect important variations in concentration of the analyzed ions. Furthermore in addition, chambers were difficult to handle. Twenty-four hour sediment core incubation in the laboratory did not have the above-mentioned problems. Oxygen concentration could be kept constant, and ion concentration changes were generally large enough to allow quantitative estimations of the fluxes

  4. Effects of Selected Root Exudate Components on Nitrogen Removal and Development of Denitrifying Bacteria in Constructed Wetlands

    Directory of Open Access Journals (Sweden)

    Hailu Wu

    2017-06-01

    Full Text Available Root exudates, particularly low molecular weight carbon (LMWC substrates, are major drivers of bacterial diversity and activity in the rhizosphere environment. However, it is not well understood how specific LMWC compounds—such as organic acids, soluble sugars, and amino acids—influence the community structures of denitrifying bacteria or if there are specific functions of LMWC substrates that preferentially respond to nitrogen (N removal in constructed wetlands (CWs. To address these knowledge gaps, we added mixtures of artificial exudates to CW microcosms containing N pollutant. N removal efficiency was observed over a 48-h experimental period, and at the end of the experiment, DNA was extracted from microbial samples for assessment of the bacterial community. The removal efficiencies of TN for the exudates treatments were higher than for control groups by 47.1–58.67%. Organic acid and soluble sugar treatments increased N removal, while amino acids were negative to N removal. The microbial community was changed when artificial exudates were added, but there were no significant relationships between LMWC compounds and bacterial community composition. These results indicate that although the responses of community structures of denitrifying bacteria to LMWC additions are still uncertain, there is evidence for N removal in response to exudate additions across LMWC types.

  5. Reactor performance in terms of COD and nitrogen removal and bacterial community structure of a three-stage rotating bioelectrochemical contactor

    KAUST Repository

    Sayess, Rassil R.; Saikaly, Pascal; El-Fadel, Mutasem E.; Li, Dong; Semerjian, Lucy A.

    2013-01-01

    contactor (referred to as RBC-MFC unit) integrating MFC with RBC technology was constructed for simultaneous removal of carbonaceous and nitrogenous compounds and electricity generation from a synthetic medium containing acetate and ammonium. The performance

  6. Inside Story of Gas Processes within Stormwater Biofilters: Does Greenhouse Gas Production Tarnish the Benefits of Nitrogen Removal?

    Science.gov (United States)

    Payne, Emily G I; Pham, Tracey; Cook, Perran L M; Deletic, Ana; Hatt, Belinda E; Fletcher, Tim D

    2017-04-04

    Stormwater biofilters are dynamic environments, supporting diverse processes that act to capture and transform incoming pollutants. However, beneficial water treatment processes can be accompanied by undesirable greenhouse gas production. This study investigated the potential for nitrous oxide (N 2 O) and methane (CH 4 ) generation in dissolved form at the base of laboratory-scale stormwater biofilter columns. The influence of plant presence, species, inflow frequency, and inclusion of a saturated zone and carbon source were studied. Free-draining biofilters remained aerobic with negligible greenhouse gas production during storm events. Designs with a saturated zone were oxygenated at their base by incoming stormwater before anaerobic conditions rapidly re-established, although extended dry periods allowed the reintroduction of oxygen by evapotranspiration. Production of CH 4 and N 2 O in the saturated zone varied significantly in response to plant presence, species, and wetting and drying. Concentrations of N 2 O typically peaked rapidly following stormwater inundation, associated with limited plant root systems and poorer nitrogen removal from biofilter effluent. Production of CH 4 also commenced quickly but continued throughout the anaerobic interevent period and lacked clear relationships with plant characteristics or nitrogen removal performance. Dissolved greenhouse gas concentrations were highly variable, but peak concentrations of N 2 O accounted for nitrogen load. While further work is required to measure surface emissions, the potential for substantial release of N 2 O or CH 4 in biofilter effluent appears relatively low.

  7. In-situ regeneration of activated carbon with electric potential swing desorption (EPSD) for the H2S removal from biogas.

    Science.gov (United States)

    Farooq, M; Almustapha, M N; Imran, M; Saeed, M A; Andresen, John M

    2018-02-01

    In-situ regeneration of a granular activated carbon was conducted for the first time using electric potential swing desorption (EPSD) with potentials up to 30 V. The EPSD system was compared against a standard non-potential system using a fixed-bed reactor with a bed of 10 g of activated carbon treating a gas mixture with 10,000 ppm H 2 S. Breakthrough times, adsorption desorption volume, capacities, effect of regeneration and desorption kinetics were investigated. The analysis showed that desorption of H 2 S using the new EPSD system was 3 times quicker compared with the no potential system. Hence, physical adsorption using EPSD over activated carbon is efficient, safe and environmental friendly and could be used for the in-situ regeneration of granular activated carbon without using a PSA and/or TSA system. Additionally, adsorption and desorption cycles can be obtained with a classical two column system, which could lead towards a more efficient and economic biogas to biomethane process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Anthropogenic nitrogen input traced by means of {delta} {sup 15}N values in macroalgae: Results from in-situ incubation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Deutsch, Barbara [Baltic Sea Research Institute, Seestr. 15, 18119 Rostock (Germany)]. E-mail: barbara.deutsch@io-warnemuende.de; Voss, Maren [Baltic Sea Research Institute, Seestr. 15, 18119 Rostock (Germany)

    2006-08-01

    The macroalgae species Fucus vesiculosus (Phaeophyta), Polysiphonia sp., and Ceramium rubrum (Rhodophyta) originally grown at an unpolluted brackish site of the southern Baltic Sea were incubated for 10 and 14 days at 12 stations along a salinity gradient in a highly polluted estuary. We have expected an adaptation of the initially low {delta} {sup 15}N values to the higher ones within the incubation period. In addition to the macroalgae the {delta} {sup 15}N values of NO{sub 3} {sup -} were measured to evaluate fractionation processes of the source nitrate. Inside the estuary, {delta} {sup 15}N-NO{sub 3} {sup -} values were 6.2-9.7 per mille , indicating anthropogenic nitrogen sources. The red macroalgae adequately reflected the nitrate isotope values in the surrounding waters, whereas for F. vesiculosus the results were not that clear. The reasons were assumed to be higher initial {delta} {sup 15}N values of F. vesiculosus and presumably a too slow nitrogen uptake and growth rate. The method of macroalgae incubations seems suitable as a simple monitoring to study the influence of anthropogenic nitrogen loading in an estuarine environment.

  9. Nitrogen removal through N cycling from sediments in a constructed coastal marsh as assessed by 15N-isotope dilution.

    Science.gov (United States)

    Ro, Hee-Myong; Kim, Pan-Gun; Park, Ji-Suk; Yun, Seok-In; Han, Junho

    2018-04-01

    Constructed coastal marsh regulates land-born nitrogen (N) loadings through salinity-dependent microbial N transformation processes. A hypothesis that salinity predominantly controls N removal in marsh was tested through incubation in a closed system with added- 15 NH 4 + using sediments collected from five sub-marshes in Shihwa marsh, Korea. Time-course patterns of concentrations and 15 N-atom% of soil-N pools were analyzed. Sediments having higher salinity and lower soil organic-C and acid-extractable organic-N exhibited slower rates of N mineralization and immobilization, nitrification, and denitrification. Rates of denitrification were not predicted well by sediment salinity but by its organic-C, indicating heterotrophic denitrification. Denitrification dominated N-loss from this marsh, and nitrogen removal capacity of this marsh was estimated at 337 kg N day -1 (9.9% of the daily N-loadings) considering the current rooting depth of common reeds (1.0 m). We showed that sediment N removal decreases with increasing salinity and can increase with increasing organic-C for heterotrophic denitrification. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Nitrogen removal in a single-chamber microbial fuel cell with nitrifying biofilm enriched at the air cathode

    KAUST Repository

    Yan, Hengjing

    2012-05-01

    Nitrogen removal is needed in microbial fuel cells (MFCs) for the treatment of most waste streams. Current designs couple biological denitrification with side-stream or combined nitrification sustained by upstream or direct aeration, which negates some of the energy-saving benefits of MFC technology. To achieve simultaneous nitrification and denitrification, without extra energy input for aeration, the air cathode of a single-chamber MFC was pre-enriched with a nitrifying biofilm. Diethylamine-functionalized polymer (DEA) was used as the Pt catalyst binder on the cathode to improve the differential nitrifying biofilm establishment. With pre-enriched nitrifying biofilm, MFCs with the DEA binder had an ammonia removal efficiency of up to 96.8% and a maximum power density of 900 ± 25 mW/m 2, compared to 90.7% and 945 ± 42 mW/m 2 with a Nafion binder. A control with Nafion that lacked nitrifier pre-enrichment removed less ammonia and had lower power production (54.5% initially, 750 mW/m 2). The nitrifying biofilm MFCs had lower Coulombic efficiencies (up to 27%) than the control reactor (up to 36%). The maximum total nitrogen removal efficiency reached 93.9% for MFCs with the DEA binder. The DEA binder accelerated nitrifier biofilm enrichment on the cathode, and enhanced system stability. These results demonstrated that with proper cathode pre-enrichment it is possible to simultaneously remove organics and ammonia in a single-chamber MFC without supplemental aeration. © 2012 Elsevier Ltd.

  11. Population dynamics in wastewater treatment plants with enhanced biological phosphorus removal operated with and without nitrogen removal

    DEFF Research Database (Denmark)

    Lee, N.; Jansen, J.l.C.; Aspegren, H.

    2002-01-01

    belonged to the β Proteobacteria, whereas the rest of the clusters belonged either to the Actinobacteria or to the α Proteobacteria. The relative abundance of Rhodocyclus-related bacteria in the activated sludge varied significantly in both systems during the whole period (from 6 to 18% in BNP, and from 4...... Proteobacteria (part of them Rhodocyclus-related, the identity of the rest unknown) and the Actinobacteria. However, not all of the Rhodocyclus-related bacteria showed 33Pi uptake. The P removal in the investigated plants is thus believed to be mediated by a mixed population consisting of a part...... of the Rhodocyclus-related bacteria, the Actinobacteria and other, yet unidentified bacteria....

  12. The physiological and biochemical mechanism of nitrate-nitrogen removal by water hyacinth from agriculture eutrophic wastewater

    Directory of Open Access Journals (Sweden)

    WU Wenwei

    Full Text Available ABSTRACT Large amount of agriculturl wastewater containing high level nitrate-nitrogen (NO3 --N is produced from modern intensive agricultural production management due to the excessive use of chemical fertilizers and livestock scale farming. The hydroponic experiment of water hyacinth was conducted for analyzing the content of NO3 --N, soluble sugar content, N-transported the amino acid content and growth change in water hyacinth to explore its purification ability to remove NO3 --N from agriculture eutrophic wastewater and physiological and biochemical mechanism of this plant to remove NO3 --N. The results showed that the water hyacinth could effectively utilize the NO3 --N from agriculture eutrophic wastewater. Compared with the control, the contents of NO3 -change to NO3 --N in the root, leaf petiole and leaf blade of water hyacinth after treatment in the wastewater for a week was significantly higher than that in the control plants treated with tap water, and also the biomass of water hyacinth increased significantly, indicating that the accumulation of biomass due to the rapid growth of water hyacinth could transfer some amount of NO3 --N.13C-NMR analysis confirmed that water hyacinth would convert the part nitrogen absorbed from agriculture eutrophic wastewater to ammonia nitrogen, which increased the content of aspartic acid and glutamic acid, decreased the content of soluble sugar, sucrose and fructose and the content of N-storaged asparagine and glutamine, lead to enhance the synthesis of plant amino acids and promote the growth of plants. These results indicate that the nitrate in agriculture eutrophic wastewater can be utilized by water hyacinth as nitrogen nutrition, and can promote plant growth by using soluble sugar and amide to synthesis amino acids and protein.

  13. Nitrogen removal and recovery from lagoon-pretreated swine wastewater by constructed wetlands under sustainable plant harvesting management.

    Science.gov (United States)

    Luo, Pei; Liu, Feng; Zhang, Shunan; Li, Hongfang; Yao, Ran; Jiang, Qianwen; Xiao, Runlin; Wu, Jinshui

    2018-06-01

    A series of three-stage pilot-scale surface flow constructed wetlands (CWs) planted with Myriophyllum aquaticum were fed with three strengths of lagoon-pretreated swine wastewater to study nitrogen (N) removal and recovery under sustainable plant harvesting management. The CWs had mean removal efficiency of 87.7-97.9% for NH 4 + -N and 85.4-96.1% for total N (TN). The recovered TN mass via multiple harvests of M. aquaticum was greatest (120-222 g N m -2  yr -1 ) when TN concentrations were 21.8-282 mg L -1 . The harvested TN mass accounted for 0.85-100% of the total removal in the different CW units. Based on mass balance estimation, plant uptake, sediment storage, and microbial removal accounted for 13.0-55.0%, 4.9-8.0%, and 33.0-67.5% of TN loading mass, respectively. The results of this study confirm that M. aquaticum is appropriate for the removal and recovery of nutrients in CW systems designed for treating swine wastewater in conjunction with sustainable plant harvesting strategies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Simultaneous nitrogen and organics removal using membrane aeration and effluent ultrafiltration in an anaerobic fluidized membrane bioreactor

    KAUST Repository

    Ye, Yaoli; Saikaly, Pascal; Logan, B.E.

    2017-01-01

    Dissolved methane and a lack of nutrient removal are two concerns for treatment of wastewater using anaerobic fluidized bed membrane bioreactors (AFMBRs). Membrane aerators were integrated into an AFMBR to form an Aeration membrane fluidized bed membrane bioreactor (AeMFMBR) capable of simultaneous removal of organic matter and ammonia without production of dissolved methane. Good effluent quality was obtained with no detectable suspended solids, 93±5% of chemical oxygen demand (COD) removal to 14±11 mg/L, and 74±8% of total ammonia (TA) removal to 12±3 mg-N/L for domestic wastewater (COD of 193±23 mg/L and TA of 49±5 mg-N/L) treatment. Nitrate and nitrite concentrations were always low (< 1 mg-N/L) during continuous flow treatment. Membrane fouling was well controlled by fluidization of the granular activated carbon (GAC) particles (transmembrane pressures maintained <3 kPa). Analysis of the microbial communities suggested that nitrogen removal was due to nitrification and denitrification based on the presence of microorganisms associated with these processes.

  15. Simultaneous nitrogen and organics removal using membrane aeration and effluent ultrafiltration in an anaerobic fluidized membrane bioreactor

    KAUST Repository

    Ye, Yaoli

    2017-08-03

    Dissolved methane and a lack of nutrient removal are two concerns for treatment of wastewater using anaerobic fluidized bed membrane bioreactors (AFMBRs). Membrane aerators were integrated into an AFMBR to form an Aeration membrane fluidized bed membrane bioreactor (AeMFMBR) capable of simultaneous removal of organic matter and ammonia without production of dissolved methane. Good effluent quality was obtained with no detectable suspended solids, 93±5% of chemical oxygen demand (COD) removal to 14±11 mg/L, and 74±8% of total ammonia (TA) removal to 12±3 mg-N/L for domestic wastewater (COD of 193±23 mg/L and TA of 49±5 mg-N/L) treatment. Nitrate and nitrite concentrations were always low (< 1 mg-N/L) during continuous flow treatment. Membrane fouling was well controlled by fluidization of the granular activated carbon (GAC) particles (transmembrane pressures maintained <3 kPa). Analysis of the microbial communities suggested that nitrogen removal was due to nitrification and denitrification based on the presence of microorganisms associated with these processes.

  16. In situ sulfur isotopes (δ{sup 34}S and δ{sup 33}S) analyses in sulfides and elemental sulfur using high sensitivity cones combined with the addition of nitrogen by laser ablation MC-ICP-MS

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Jiali [State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074 (China); Hu, Zhaochu, E-mail: zchu@vip.sina.com [State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074 (China); The Beijing SHRIMP Center, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 102206 (China); Zhang, Wen [State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074 (China); Yang, Lu [State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074 (China); National Research Council Canada, 1200 Montreal Rd., Ottawa, Ontario K1A 0R6 (Canada); Liu, Yongsheng; Li, Ming; Zong, Keqing; Gao, Shan; Hu, Shenghong [State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074 (China)

    2016-03-10

    The sulfur isotope is an important geochemical tracer in diverse fields of geosciences. In this study, the effects of three different cone combinations with the addition of N{sub 2} on the performance of in situ S isotope analyses were investigated in detail. The signal intensities of S isotopes were improved by a factor of 2.3 and 3.6 using the X skimmer cone combined with the standard sample cone or the Jet sample cone, respectively, compared with the standard arrangement (H skimmer cone combined with the standard sample cone). This signal enhancement is important for the improvement of the precision and accuracy of in situ S isotope analysis at high spatial resolution. Different cone combinations have a significant effect on the mass bias and mass bias stability for S isotopes. Poor precisions of S isotope ratios were obtained using the Jet and X cones combination at their corresponding optimum makeup gas flow when using Ar plasma only. The addition of 4–8 ml min{sup −1} nitrogen to the central gas flow in laser ablation MC-ICP-MS was found to significantly enlarge the mass bias stability zone at their corresponding optimum makeup gas flow in these three different cone combinations. The polyatomic interferences of OO, SH, OOH were also significantly reduced, and the interference free plateaus of sulfur isotopes became broader and flatter in the nitrogen mode (N{sub 2} = 4 ml min{sup −1}). However, the signal intensity of S was not increased by the addition of nitrogen in this study. The laser fluence and ablation mode had significant effects on sulfur isotope fractionation during the analysis of sulfides and elemental sulfur by laser ablation MC-ICP-MS. The matrix effect among different sulfides and elemental sulfur was observed, but could be significantly reduced by line scan ablation in preference to single spot ablation under the optimized fluence. It is recommended that the d{sub 90} values of the particles in pressed powder pellets for accurate

  17. Synergic Adsorption–Biodegradation by an Advanced Carrier for Enhanced Removal of High-Strength Nitrogen and Refractory Organics

    KAUST Repository

    Ahmad, Muhammad

    2017-03-29

    Coking wastewater contains not only high-strength nitrogen but also toxic biorefractory organics. This study presents simultaneous removal of high-strength quinoline, carbon, and ammonium in coking wastewater by immobilized bacterial communities composed of a heterotrophic strain Pseudomonas sp. QG6 (hereafter referred as QG6), ammonia-oxidizing bacteria (AOB), and anaerobic ammonium oxidation bacteria (anammox). The bacterial immobilization was implemented with the help of a self-designed porous cubic carrier that created structured microenvironments including an inner layer adapted for anaerobic bacteria, a middle layer suitable for coaggregation of certain aerobic and anaerobic bacteria, and an outer layer for heterotrophic bacteria. By coating functional polyurethane foam (FPUF) with iron oxide nanoparticles (IONPs), the biocarrier (IONPs-FPUF) could provide a good outer-layer barrier for absorption and selective treatment of aromatic compounds by QG6, offer a conducive environment for anammox in the inner layer, and provide a mutualistic environment for AOB in the middle layer. Consequently, simultaneous nitrification and denitrification were reached with the significant removal of up to 322 mg L (98%) NH, 311 mg L (99%) NO, and 633 mg L (97%) total nitrogen (8 mg L averaged NO concentration was recorded in the effluent), accompanied by an efficient removal of chemical oxygen demand by 3286 mg L (98%) and 350 mg L (100%) quinoline. This study provides an alternative way to promote synergic adsorption and biodegradation with the help of a modified biocarrier that has great potential for treatment of wastewater containing high-strength carbon, toxic organic pollutants, and nitrogen.

  18. Synergic Adsorption-Biodegradation by an Advanced Carrier for Enhanced Removal of High-Strength Nitrogen and Refractory Organics.

    Science.gov (United States)

    Ahmad, Muhammad; Liu, Sitong; Mahmood, Nasir; Mahmood, Asif; Ali, Muhammad; Zheng, Maosheng; Ni, Jinren

    2017-04-19

    Coking wastewater contains not only high-strength nitrogen but also toxic biorefractory organics. This study presents simultaneous removal of high-strength quinoline, carbon, and ammonium in coking wastewater by immobilized bacterial communities composed of a heterotrophic strain Pseudomonas sp. QG6 (hereafter referred as QG6), ammonia-oxidizing bacteria (AOB), and anaerobic ammonium oxidation bacteria (anammox). The bacterial immobilization was implemented with the help of a self-designed porous cubic carrier that created structured microenvironments including an inner layer adapted for anaerobic bacteria, a middle layer suitable for coaggregation of certain aerobic and anaerobic bacteria, and an outer layer for heterotrophic bacteria. By coating functional polyurethane foam (FPUF) with iron oxide nanoparticles (IONPs), the biocarrier (IONPs-FPUF) could provide a good outer-layer barrier for absorption and selective treatment of aromatic compounds by QG6, offer a conducive environment for anammox in the inner layer, and provide a mutualistic environment for AOB in the middle layer. Consequently, simultaneous nitrification and denitrification were reached with the significant removal of up to 322 mg L -1 (98%) NH 4 , 311 mg L -1 (99%) NO 2 , and 633 mg L -1 (97%) total nitrogen (8 mg L -1 averaged NO 3 concentration was recorded in the effluent), accompanied by an efficient removal of chemical oxygen demand by 3286 mg L -1 (98%) and 350 mg L -1 (100%) quinoline. This study provides an alternative way to promote synergic adsorption and biodegradation with the help of a modified biocarrier that has great potential for treatment of wastewater containing high-strength carbon, toxic organic pollutants, and nitrogen.

  19. In Situ High-Level Nitrogen Doping into Carbon Nanospheres and Boosting of Capacitive Charge Storage in Both Anode and Cathode for a High-Energy 4.5 V Full-Carbon Lithium-Ion Capacitor.

    Science.gov (United States)

    Sun, Fei; Liu, Xiaoyan; Wu, Hao Bin; Wang, Lijie; Gao, Jihui; Li, Hexing; Lu, Yunfeng

    2018-05-02

    To circumvent the imbalances of electrochemical kinetics and capacity between Li + storage anodes and capacitive cathodes for lithium-ion capacitors (LICs), we herein demonstrate an efficient solution by boosting the capacitive charge-storage contributions of carbon electrodes to construct a high-performance LIC. Such a strategy is achieved by the in situ and high-level doping of nitrogen atoms into carbon nanospheres (ANCS), which increases the carbon defects and active sites, inducing more rapidly capacitive charge-storage contributions for both Li + storage anodes and PF 6 - storage cathodes. High-level nitrogen-doping-induced capacitive enhancement is successfully evidenced by the construction of a symmetric supercapacitor using commercial organic electrolytes. Coupling a pre-lithiated ANCS anode with a fresh ANCS cathode enables a full-carbon LIC with a high operating voltage of 4.5 V and high energy and power densities thereof. The assembled LIC device delivers high energy densities of 206.7 and 115.4 Wh kg -1 at power densities of 0.225 and 22.5 kW kg -1 , respectively, as well as an unprecedented high-power cycling stability with only 0.0013% capacitance decay per cycle within 10 000 cycles at a high power output of 9 kW kg -1 .

  20. Nitrogen

    Science.gov (United States)

    Apodaca, L.E.

    2010-01-01

    Ammonia was produced by 13 companies at 23 plants in 16 states during 2009. Sixty percent of all U.S. ammonia production capacity was centered in Louisiana. Oklahoma and Texas because of those states' large reserves of natural gas, the dominant domestic feedstock. In 2009, U.S. producers operated at about 83 percent of their rated capacity (excluding plants that were idle for the entire year). Five companies — Koch Nitrogen Co.; Terra Industries Inc.; CF Industries Inc.; PCS Nitrogen Inc. and Agrium Inc., in descending order — accounted for 80 percent of the total U.S. ammonia production capacity. U.S. production was estimated to be 7.7 Mt (8.5 million st) of nitrogen (N) content in 2009 compared with 7.85 Mt (8.65 million st) of N content in 2008. Apparent consumption was estimated to have decreased to 12.1 Mt (13.3 million st) of N, a 10-percent decrease from 2008. The United States was the world's fourth-ranked ammonia producer and consumer following China, India and Russia. Urea, ammonium nitrate, ammonium phosphates, nitric acid and ammonium sulfate were the major derivatives of ammonia in the United States, in descending order of importance.

  1. Modeling Nitrous Oxide Production during Biological Nitrogen Removal via Nitrification and Denitrification: Extensions to the General ASM Models

    DEFF Research Database (Denmark)

    Ni, Bing-Jie; Ruscalleda, Maël; Pellicer i Nàcher, Carles

    2011-01-01

    on N2O production from four different mixed culture nitrification and denitrification reactor study reports. Modeling results confirm that hydroxylamine oxidation by ammonium oxidizers (AOB) occurs 10 times slower when NO2– participates as final electron acceptor compared to the oxic pathway. Among......Nitrous oxide (N2O) can be formed during biological nitrogen (N) removal processes. In this work, a mathematical model is developed that describes N2O production and consumption during activated sludge nitrification and denitrification. The well-known ASM process models are extended to capture N2O...

  2. Enhanced Oxygen Reduction Reaction by In Situ Anchoring Fe2N Nanoparticles on Nitrogen-Doped Pomelo Peel-Derived Carbon

    Directory of Open Access Journals (Sweden)

    Yiqing Wang

    2017-11-01

    Full Text Available The development of effective oxygen electrode catalysts for renewable energy technologies such as metal-air batteries and fuel cells remains challenging. Here, we prepared a novel high-performance oxygen reduction reaction (ORR catalyst comprised of Fe2N nanoparticles (NPs in situ decorated over an N-doped porous carbon derived from pomelo peel (i.e., Fe2N/N-PPC. The decorated Fe2N NPs provided large quantities of Fe-N-C bonding catalytic sites. The as-obtained Fe2N/N-PPC showed superior onset and half-wave potentials (0.966 and 0.891 V, respectively in alkaline media (0.1 M KOH compared to commercial Pt/C through a direct four-electron reaction pathway. Fe2N/N-PPC also showed better stability and methanol tolerance than commercial Pt/C. The outstanding ORR performance of Fe2N/N-PPC was attributed to its high specific surface area and the synergistic effects of Fe2N NPs. The utilization of agricultural wastes as a precursor makes Fe2N/N-PPC an ideal non-precious metal catalyst for ORR applications.

  3. Enhanced nitrogen removal in single-chamber microbial fuel cells with increased gas diffusion areas

    KAUST Repository

    Yan, Hengjing; Regan, John M.

    2012-01-01

    significantly increased the ammonia and COD removal rates (by up to 115% and 39%), ammonia removal efficiency (by up to 134%), the cell voltage and cathode potentials, and the power densities (by a factor of approximately 2). When the COD/N ratio was lowered

  4. In-situ study of migration and transformation of nitrogen in groundwater based on continuous observations at a contaminated desert site

    Science.gov (United States)

    Zuo, Rui; Jin, Shuhe; Chen, Minhua; Guan, Xin; Wang, Jinsheng; Zhai, Yuanzheng; Teng, Yanguo; Guo, Xueru

    2018-04-01

    The objective of this study was to explore the controlling factors on the migration and transformation of nitrogenous wastes in groundwater using long-term observations from a contaminated site on the southwestern edge of the Tengger Desert in northwestern China. Contamination was caused by wastewater discharge rich in ammonia. Two long-term groundwater monitoring wells (Wells 1# and 2#) were constructed, and 24 water samples were collected. Five key indicators were tested: ammonia, nitrate, nitrite, dissolved oxygen, and manganese. A numerical method was used to simulate the migration process and to determine the migration stage of the main pollutant plume in groundwater. The results showed that at Well 1# the nitrogenous waste migration process had essentially been completed, while at Well 2# ammonia levels were still rising and gradually transitioning to a stable stage. The differences for Well 1# and Well 2# were primarily caused by differences in groundwater flow. The change in ammonia concentration was mainly controlled by the migration of the pollution plume under nitrification in groundwater. The nitrification rate was likely affected by changes in dissolved oxygen and potentially manganese.

  5. [Identification and Nitrogen Removal Characteristics of a Heterotrophic Nitrification-Aerobic Denitrification Strain Isolated from Marine Environment].

    Science.gov (United States)

    Sun, Qing-hua; Yu, De-shuang; Zhang, Pei-yu; Lin, Xue-zheng; Li, Jin

    2016-02-15

    A heterotrophic nitrification-aerobic denitrification strain named y5 was isolated from marine environment by traditional microbial isolation method using seawater as medium. It was identified as Klebsiella sp. based on the morphological, physiological and 16S rRNA sequence analysis. The experiment results showed that the optimal carbon resource was sodium citrate; the optimal pH was 7.0; and the optimal C/N was 17. The strain could use NH4Cl, NaNO2 and KNO3 as sole nitrogen source, and the removal efficiencies were77.07%, 64.14% and 100% after 36 hours, respectively. The removal efficiency reached 100% after 36 hours in the coexistence of NH4Cl, NaNO2 and KNO3. The results showed that the strain y5 had independent and efficient heterotrophic nitrification and aerobic denitrification activities in high salt wastewater.

  6. Aeration control by monitoring the microbiological activity using fuzzy logic diagnosis and control. Application to a complete autotrophic nitrogen removal reactor

    DEFF Research Database (Denmark)

    Boiocchi, Riccardo; Mauricio Iglesias, Miguel; Vangsgaard, Anna Katrine

    2015-01-01

    Complete Autotrophic Nitrogen Removal (CANR) is a novel process where ammonia is converted to nitrogen gas by different microbial groups. The performance of the process can be compromised by an unbalanced activity of the biomass caused by disturbances or non-optimal operational conditions...... microbial groups on the other hand, the diagnosis provides information on: nitritation, nitratation, anaerobic ammonium oxidation and overall autotrophic nitrogen removal. These four results give insight into the state of the process and are used as inputs for the controller that manipulates the aeration...... to the reactor.The diagnosis tool was first evaluated using 100 days of real process operation data obtained from a lab-scale single-stage autotrophic nitrogen removing reactor. This evaluation revealed that the fuzzy logic diagnosis is able to provide a realistic description of the microbiological state...

  7. Nitrogen removal by denitrification in the sediments of a shallow lake

    NARCIS (Netherlands)

    Luijn, van F.

    1997-01-01

    Most surface waters in the Netherlands are highly eutrophicated due to high loadings with the nutrients nitrogen (N) and phosphorus (P). To improve the water quality of lakes often the phosphorus loading is reduced. Due to phosphorus release from the sediments the success of the recovery of

  8. Effect of application rates and media types on nitrogen and surfactant removal in trickling filters applied to the post-treatment of effluents from UASB reactors

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, P. G. S. de; Taveres, F. v. F.; Chernicharo, C. A. I.

    2009-07-01

    Tricking filters are a very promising alternative for the post treatment of effluents from UASB reactors treating domestic sewage,especially in developing countries. Although a fair amount of information is already available regarding organic mater removal in this combined system, very little is known in relation to nitrogen and surfactant removal in trickling filters post-UASB reactors. Therefore, the purpose of this study was to evaluate and compare the effect evaluate and compare the effect of different application rates and packing media types on trickling filters applied to the post-treatment of effluents from UASB reactors, regarding the removal of ammonia nitrogen and surfactants. (Author)

  9. Effect of application rates and media types on nitrogen and surfactant removal in trickling filters applied to the post-treatment of effluents from UASB reactors

    International Nuclear Information System (INIS)

    Almeida, P. G. S. de; Taveres, F. v. F.; Chernicharo, C. A. I.

    2009-01-01

    Tricking filters are a very promising alternative for the post treatment of effluents from UASB reactors treating domestic sewage,especially in developing countries. Although a fair amount of information is already available regarding organic mater removal in this combined system, very little is known in relation to nitrogen and surfactant removal in trickling filters post-UASB reactors. Therefore, the purpose of this study was to evaluate and compare the effect evaluate and compare the effect of different application rates and packing media types on trickling filters applied to the post-treatment of effluents from UASB reactors, regarding the removal of ammonia nitrogen and surfactants. (Author)

  10. Waste water treatment plants with removal of nitrogens and phosphorous; Planta de tratamiento de aguas residuales con eliminacion de fosforo y nitrogeno

    Energy Technology Data Exchange (ETDEWEB)

    Kroiss, H.

    1996-10-01

    Wherever waste water is discharged into a receiving water of a sensitive area the treatment efficiency has to be increased beyond the removal of easily biodegradable carbonaceous compounds (BOD{sub 5}). The main requirements are then the removal of nitrogens and phosphorous compounds in order to prevent eutrophication in the receiving water. With these requirements a much better removal of carbonaceous matter is achieved too. One of this prerequisites for nitrogen removal is the nitrification process wich removes ammonia toxicity from the waste water. The removal of ammonia from the waste water can easily be monitored by the treatment plant operators and can be classified as the best indicator for a stable high treatment efficiency for every waste water.

  11. In-situ Monitoring of Plant-microbe Communication to Understand the Influence of Soil Properties on Symbiotic Biological Nitrogen Fixation

    Science.gov (United States)

    Webster, T.; Del Valle, I.; Cheng, H. Y.; Silberg, J. J.; Masiello, C. A.; Lehmann, J.

    2016-12-01

    Plant-microbe signaling is important for many symbiotic and pathogenic interactions. While this signaling often occurs in soils, very little research has evaluated the role that the soil mineral and organic matter matrix plays in plant-microbe communication. One hurdle to these studies is the lack of simple tools for evaluating how soil mineral phases and organic matter influence the availability of plant-produced flavonoids that initiate the symbiosis between nitrogen-fixing bacteria and legumes. Because of their range of hydrophobic and electrostatic properties, flavonoids represent an informative class of signaling molecules. In this presentation, we will describe studies examining the bioavailable concentrations of flavonoids in soils using traditional techniques, such as high-pressure liquid chromatography and fluorescent microbial biosensors. Additionally, we will describe our progress developing a Rhizobium leguminosarum reporter that can be deployed into soils to report on flavonoid levels. This new microbial reporter is designed so that Rhizobium only generates a volatile gas signal when it encounters a defined concentration of flavonoids. By monitoring the output of this biosensor using gas chromatography-mass spectrometry during real time during soil incubations, we are working to establish the impact of soil organic matter, pH, and mineral phases on the reception of these signaling molecules. We expect that the findings from these studies will be useful for recommending soil management strategies that can enhance the communication between legumes and nitrogen fixing bacteria. This research highlights the importance of studying the role of soil as a mediator of plant-microbe communication.

  12. Biofilter design for effective nitrogen removal from stormwater - influence of plant species, inflow hydrology and use of a saturated zone.

    Science.gov (United States)

    Payne, Emily G I; Pham, Tracey; Cook, Perran L M; Fletcher, Tim D; Hatt, Belinda E; Deletic, Ana

    2014-01-01

    The use of biofilters to remove nitrogen and other pollutants from urban stormwater runoff has demonstrated varied success across laboratory and field studies. Design variables including plant species and use of a saturated zone have large impacts upon performance. A laboratory column study of 22 plant species and designs with varied outlet configuration was conducted across a 1.5-year period to further investigate the mechanisms and influences driving biofilter nitrogen processing. This paper presents outflow concentrations of total nitrogen from two sampling events across both 'wet' and 'dry' frequency dosing, and from sampling across two points in the outflow hydrograph. All plant species were effective under conditions of frequent dosing, but extended drying increased variation between species and highlighted the importance of a saturated zone in maintaining biofilter function. The saturated zone also effectively treated the volume of stormwater stored between inflow events, but this extended detention provided no additional benefit alongside the rapid processing of the highest performing species. Hence, the saturated zone reduced performance differences between plant species, and potentially acts as an 'insurance policy' against poor sub-optimal plant selection. The study shows the importance of biodiversity and inclusion of a saturated zone in protecting against climate variability.

  13. Hydraulic effects on nitrogen removal in a tidal spring-fed river

    Science.gov (United States)

    Hensley, Robert T.; Cohen, Matthew J.; Korhnak, Larry V.

    2015-03-01

    Hydraulic properties such as stage and residence time are important controls on riverine N removal. In most rivers, these hydraulic properties vary with stochastic precipitation forcing, but in tidal rivers, hydraulics variation occurs on a predictable cycle. In Manatee Springs, a highly productive, tidally influenced spring-fed river in Florida, we observed significant reach-scale N removal that varied in response to tidally driven variation in hydraulic properties as well as sunlight-driven variation in assimilatory uptake. After accounting for channel residence time and stage variation, we partitioned the total removal signal into assimilatory (i.e., plant uptake) and dissimilatory (principally denitrification) pathways. Assimilatory uptake was strongly correlated with primary production and ecosystem C:N was concordant with tissue stoichiometry of the dominant autotrophs. The magnitude of N removal was broadly consistent in magnitude with predictions from models (SPARROW and RivR-N). However, contrary to model predictions, the highest removal occurred at the lowest values of τ/d (residence time divided by depth), which occurred at low tide. Removal efficiency also exhibited significant counterclockwise hysteresis with incoming versus outgoing tides. This behavior is best explained by the sequential filling and draining of transient storage zones such that water that has spent the longest time in the storage zone, and thus had the most time for N removal, drains back into the channel at the end of an outgoing tide, concurrent with shortest channel residence times. Capturing this inversion of the expected relationship between channel residence time and N removal highlights the need for nonsteady state reactive transport models.

  14. 454-Pyrosequencing Analysis of Bacterial Communities from Autotrophic Nitrogen Removal Bioreactors Utilizing Universal Primers: Effect of Annealing Temperature.

    Science.gov (United States)

    Gonzalez-Martinez, Alejandro; Rodriguez-Sanchez, Alejandro; Rodelas, Belén; Abbas, Ben A; Martinez-Toledo, Maria Victoria; van Loosdrecht, Mark C M; Osorio, F; Gonzalez-Lopez, Jesus

    2015-01-01

    Identification of anaerobic ammonium oxidizing (anammox) bacteria by molecular tools aimed at the evaluation of bacterial diversity in autotrophic nitrogen removal systems is limited by the difficulty to design universal primers for the Bacteria domain able to amplify the anammox 16S rRNA genes. A metagenomic analysis (pyrosequencing) of total bacterial diversity including anammox population in five autotrophic nitrogen removal technologies, two bench-scale models (MBR and Low Temperature CANON) and three full-scale bioreactors (anammox, CANON, and DEMON), was successfully carried out by optimization of primer selection and PCR conditions (annealing temperature). The universal primer 530F was identified as the best candidate for total bacteria and anammox bacteria diversity coverage. Salt-adjusted optimum annealing temperature of primer 530F was calculated (47°C) and hence a range of annealing temperatures of 44-49°C was tested. Pyrosequencing data showed that annealing temperature of 45°C yielded the best results in terms of species richness and diversity for all bioreactors analyzed.

  15. Enhanced nitrogen removal from electroplating tail wastewater through two-staged anoxic-oxic (A/O) process.

    Science.gov (United States)

    Yan, Xinmei; Zhu, Chunyan; Huang, Bin; Yan, Qun; Zhang, Guangsheng

    2018-01-01

    Consisted of anaerobic (ANA), anoxic-1 (AN1), aerobic-1 (AE1), anoxic-2 (AN2), aerobic-2 (AE2) reactors and sediment tank, the two-staged A/O process was applied for depth treatment of electroplating tail wastewater with high electrical conductivity and large amounts of ammonia nitrogen. It was found that the NH 4 + -N and COD removal efficiencies reached 97.11% and 83.00%, respectively. Besides, the short-term salinity shock of the control, AE1 and AE2 indicated that AE1 and AE2 have better resistance to high salinity when the concentration of NaCl ranged from 1 to 10g/L. Meanwhile, it was found through high-throughput sequencing that bacteria genus Nitrosomonas, Nitrospira and Thauera, which are capable of nitrogen removal, were enriched in the two-staged A/O process. Moreover, both salt-tolerant bacteria and halophili bacteria were also found in the combined process. Therefore, microbial community within the two-staged A/O process could be acclimated to high electrical conductivity, and adapted for electroplating tail wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. 454-Pyrosequencing Analysis of Bacterial Communities from Autotrophic Nitrogen Removal Bioreactors Utilizing Universal Primers: Effect of Annealing Temperature

    Directory of Open Access Journals (Sweden)

    Alejandro Gonzalez-Martinez

    2015-01-01

    Full Text Available Identification of anaerobic ammonium oxidizing (anammox bacteria by molecular tools aimed at the evaluation of bacterial diversity in autotrophic nitrogen removal systems is limited by the difficulty to design universal primers for the Bacteria domain able to amplify the anammox 16S rRNA genes. A metagenomic analysis (pyrosequencing of total bacterial diversity including anammox population in five autotrophic nitrogen removal technologies, two bench-scale models (MBR and Low Temperature CANON and three full-scale bioreactors (anammox, CANON, and DEMON, was successfully carried out by optimization of primer selection and PCR conditions (annealing temperature. The universal primer 530F was identified as the best candidate for total bacteria and anammox bacteria diversity coverage. Salt-adjusted optimum annealing temperature of primer 530F was calculated (47°C and hence a range of annealing temperatures of 44–49°C was tested. Pyrosequencing data showed that annealing temperature of 45°C yielded the best results in terms of species richness and diversity for all bioreactors analyzed.

  17. Using one filter stage of unsaturated/saturated vertical flow filters for nitrogen removal and footprint reduction of constructed wetlands.

    Science.gov (United States)

    Morvannou, Ania; Troesch, Stéphane; Esser, Dirk; Forquet, Nicolas; Petitjean, Alain; Molle, Pascal

    2017-07-01

    French vertical flow constructed wetlands (VFCW) treating raw wastewater have been developed successfully over the last 30 years. Nevertheless, the two-stage VFCWs require a total filtration area of 2-2.5 m 2 /P.E. Therefore, implementing a one-stage system in which treatment performances reach standard requirements is of interest. Biho-Filter ® is one of the solutions developed in France by Epur Nature. Biho-Filter ® is a vertical flow system with an unsaturated layer at the top and a saturated layer at the bottom. The aim of this study was to assess this new configuration and to optimize its design and operating conditions. The hydraulic functioning and pollutant removal efficiency of three different Biho-Filter ® plants commissioned between 2011 and 2012 were studied. Outlet concentrations of the most efficient Biho-Filter ® configuration are 70 mg/L, 15 mg/L, 15 mg/L and 25 mg/L for chemical oxygen demand (COD), 5-day biological oxygen demand (BOD 5 ), total suspended solids (TSS) and total Kjeldahl nitrogen (TKN), respectively. Up to 60% of total nitrogen is removed. Nitrification efficiency is mainly influenced by the height of the unsaturated zone and the recirculation rate. The optimum recirculation rate was found to be 100%. Denitrification in the saturated zone works at best with an influent COD/NO 3 -N ratio at the inflet of this zone larger than 2 and a hydraulic retention time longer than 0.75 days.

  18. One Step In-Situ Formed Magnetic Chitosan Nanoparticles as an Efficient Sorbent for Removal of Mercury Ions From Petrochemical Waste Water: Batch and Column Study

    Directory of Open Access Journals (Sweden)

    Rahbar

    2015-10-01

    Full Text Available Background In the recent years, mercury contamination has attracted great deal of attention due to its serious environmental threat. Objectives The main goal of this study was application of one-step synthesized magnetic (magnetite chitosan nanoparticles (MCNs in the removal of mercury ions from petrochemical waste water. Materials and Methods This study was performed in batch and column modes. Effects of various parameters such as pH, adsorbent dose, contact time, temperature and agitation speed for the removal of mercury ions by MCNs investigated in batch mode. Afterwards, optimum conditions were exploited in column mode. Different kinetic models were also studied. Results An effective Hg (II removal (99.8% was obtained at pH 6, with 50 mg of MCNs for an initial concentration of this ion in petrochemical waste water (5.63 mg L-1 and 10 minutes agitation of the solution. The adsorption kinetic data was well fitted to the pseudo-second-order model. Conclusions Experimental results showed that MCNs is an excellent sorbent for removal of mercury ions from petrochemical waste water. In addition, highly complex matrix of this waste does not affect the adsorption capability of MCNs.

  19. Removal of Trace Elements by Cupric Oxide Nanoparticles from Uranium In Situ Recovery Bleed Water and Its Effect on Cell Viability

    Science.gov (United States)

    Schilz, Jodi R.; Reddy, K. J.; Nair, Sreejayan; Johnson, Thomas E.; Tjalkens, Ronald B.; Krueger, Kem P.; Clark, Suzanne

    2015-01-01

    In situ recovery (ISR) is the predominant method of uranium extraction in the United States. During ISR, uranium is leached from an ore body and extracted through ion exchange. The resultant production bleed water (PBW) contains contaminants such as arsenic and other heavy metals. Samples of PBW from an active ISR uranium facility were treated with cupric oxide nanoparticles (CuO-NPs). CuO-NP treatment of PBW reduced priority contaminants, including arsenic, selenium, uranium, and vanadium. Untreated and CuO-NP treated PBW was used as the liquid component of the cell growth media and changes in viability were determined by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay in human embryonic kidney (HEK 293) and human hepatocellular carcinoma (Hep G2) cells. CuO-NP treatment was associated with improved HEK and HEP cell viability. Limitations of this method include dilution of the PBW by growth media components and during osmolality adjustment as well as necessary pH adjustment. This method is limited in its wider context due to dilution effects and changes in the pH of the PBW which is traditionally slightly acidic however; this method could have a broader use assessing CuO-NP treatment in more neutral waters. PMID:26132311

  20. Organics and nitrogen removal from textile auxiliaries wastewater with A2O-MBR in a pilot-scale

    International Nuclear Information System (INIS)

    Sun, Faqian; Sun, Bin; Hu, Jian; He, Yangyang; Wu, Weixiang

    2015-01-01

    Highlights: • A pilot-scale A 2 O-MBR system treating textile auxiliaries wastewater was assessed. • Organic matter and recycle ratio strongly affected the performance of the system. • GC/MS analysis found some refractory organics in the MBR permeate. • Combination of organic foulants and inorganic compounds caused membrane fouling. - Abstract: The removal of organic compounds and nitrogen in an anaerobic–anoxic–aerobic membrane bioreactor process (A 2 O-MBR) for treatment of textile auxiliaries (TA) wastewater was investigated. The results show that the average effluent concentrations of chemical oxygen demand (COD), ammonium nitrogen (NH 4 + –N) and total nitrogen (TN) were about 119, 3 and 48 mg/L under an internal recycle ratio of 1.5. The average removal efficiency of COD, NH 4 + –N and TN were 87%, 96% and 55%, respectively. Gas chromatograph–mass spectrometer analysis indicated that, although as much as 121 different types of organic compounds were present in the TA wastewater, only 20 kinds of refractory organic compounds were found in the MBR effluent, which could be used as indicators of effluents from this kind of industrial wastewater. Scanning electron microscopy analysis revealed that bacterial foulants were significant contributors to membrane fouling. An examination of foulants components by wavelength dispersive X-ray fluorescence showed that the combination of organic foulants and inorganic compounds enhanced the formation of gel layer and thus caused membrane fouling. The results will provide valuable information for optimizing the design and operation of wastewater treatment system in the textile industry

  1. Nitrogen-Doped Carbonaceous Materials for Removal of Phenol from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Magdalena Hofman

    2012-01-01

    Full Text Available Carbonaceous material (brown coal modified by pyrolysis, activation, and enrichment in nitrogen, with two different factor reagents, have been used as adsorbent of phenol from liquid phase. Changes in the phenol content in the test solutions were monitored after subsequent intervals of adsorption with selected adsorbents prepared from organic materials. Significant effect of nitrogen present in the adsorbent material on its adsorption capacity was noted. Sorption capacity of these selected materials was found to depend on the time of use, their surface area, and pore distribution. A conformation to the most well-known adsorption isotherm models, Langmuir, and Freundlich ones, confirms the formation of mono- and heterolayer solute (phenol coverage on the surface of the adsorbent applied herein. The materials proposed as adsorbents of the aqueous solution contaminants were proved effective, which means that the waste materials considered are promising activated carbon precursors for liquid phase adsorbents for the environmental protection.

  2. Escherichia coli morphological changes and lipid A removal induced by reduced pressure nitrogen afterglow exposure.

    Directory of Open Access Journals (Sweden)

    Hayat Zerrouki

    Full Text Available Lipid A is a major hydrophobic component of lipopolysaccharides (endotoxin present in the membrane of most Gram-negative bacteria, and the major responsible for the bioactivity and toxicity of the endotoxin. Previous studies have demonstrated that the late afterglow region of flowing post-discharges at reduced pressure (1-20 Torr can be used for the sterilization of surfaces and of the reusable medical instrumentation. In the present paper, we show that the antibacterial activity of a pure nitrogen afterglow can essentially be attributed to the large concentrations of nitrogen atoms present in the treatment area and not to the UV radiation of the afterglow. In parallel, the time variation of the inactivation efficiency quantified by the log reduction of the initial Escherichia coli (E. coli population is correlated with morphologic changes observed on the bacteria by scanning electron microscopy (SEM for increasing afterglow exposure times. The effect of the afterglow exposure is also studied on pure lipid A and on lipid A extracted from exposed E. coli bacteria. We report that more than 60% of lipid A (pure or bacteria-extracted are lost with the used operating conditions (nitrogen flow QN2 = 1 standard liter per minute (slpm, pressure p = 5 Torr, microwave injected power PMW = 200 W, exposure time: 40 minutes. The afterglow exposure also results in a reduction of the lipid A proinflammatory activity, assessed by the net decrease of the redox-sensitive NFκB transcription factor nuclear translocation in murine aortic endothelial cells stimulated with control vs afterglow-treated (pure and extracted lipid A. Altogether these results point out the ability of reduced pressure nitrogen afterglows to neutralize the cytotoxic components in Gram-negative bacteria.

  3. Biological Hydrogen Production: Simultaneous Saccharification and Fermentation with Nitrogen and Phosphorus Removal from Wastewater Effluent

    Science.gov (United States)

    2012-03-01

    process.7 The reaction is of great economic importance given that the world’s industrial production of nitrogenous fertilizer increased 27-fold between... Enzymatic Saccharification and Fermentation of Paper and Pulp Industry Effluent for Biohydrogen Production . Int. J. Hydrogen Energy 2010, 35, pp...Reactor Setup and Operation 11 4.2 Operational Comparison: SBR and CBR 12 4.3 Effect of pH and Loading on Hydrogen Production 13 4.4 Enzymatic Source

  4. Investigation of electric discharge treatment of water for ammonium nitrogen removal

    International Nuclear Information System (INIS)

    Nazarenko, O.B.; Shubin, B.G.

    2007-01-01

    The possibility of water purification from ammonium nitrogen using pulsed electric discharge in water-air mixtures was investigated. The model solution of chlorous ammonium was used in experiments. The concentration of ions ammonium was about 300 mg/l. Achieved reduction of ammonium concentration was about 35%. In this paper the mechanism of this process is discussed. The ways to increasing efficiency of this method are proposed

  5. Biological nitrogen and phosphorus removal in membrane bioreactors: model development and parameter estimation.

    Science.gov (United States)

    Cosenza, Alida; Mannina, Giorgio; Neumann, Marc B; Viviani, Gaspare; Vanrolleghem, Peter A

    2013-04-01

    Membrane bioreactors (MBR) are being increasingly used for wastewater treatment. Mathematical modeling of MBR systems plays a key role in order to better explain their characteristics. Several MBR models have been presented in the literature focusing on different aspects: biological models, models which include soluble microbial products (SMP), physical models able to describe the membrane fouling and integrated models which couple the SMP models with the physical models. However, only a few integrated models have been developed which take into account the relationships between membrane fouling and biological processes. With respect to biological phosphorus removal in MBR systems, due to the complexity of the process, practical use of the models is still limited. There is a vast knowledge (and consequently vast amount of data) on nutrient removal for conventional-activated sludge systems but only limited information on phosphorus removal for MBRs. Calibration of these complex integrated models still remains the main bottleneck to their employment. The paper presents an integrated mathematical model able to simultaneously describe biological phosphorus removal, SMP formation/degradation and physical processes which also include the removal of organic matter. The model has been calibrated with data collected in a UCT-MBR pilot plant, located at the Palermo wastewater treatment plant, applying a modified version of a recently developed calibration protocol. The calibrated model provides acceptable correspondence with experimental data and can be considered a useful tool for MBR design and operation.

  6. Blue-green fluorescence and visible-infrared reflectance of corn (Zea mays L.) grain for in situ field detection of nitrogen supply

    International Nuclear Information System (INIS)

    McMurtrey, J.E. III; Chappelle, E.W.; Kim, M.S.; Corp, L.A.; Daughtry, C.S.T.

    1996-01-01

    The sensing of spectral attributes of corn (Zea mays L.) grain from site specific areas of the field during the harvest process may be useful in managing agronomic inputs and production practices on those areas of the field in subsequent growing seasons. Eight levels of nitrogen (N) fertilization were applied to field grown corn at Beltsville, Maryland. These N treatments produced a range of chlorophyll levels, biomass and physiological condition in the live plant canopies. After harvest, spectra were obtained in the laboratory on whole grain samples. Fluorescence emissions were acquired from 400 to 600 nm and percent reflectance were measured in the visible (VIS) near infrared (NIR) and mid-infrared (MIR) regions from 400 nm to 2400 nm. A ultraviolet (UV) excitation band centered at 385 nm was the most effective in producing fluorescence emission differences in the blue-green region of the fluorescence spectrum with maxima centered from 430-470nm in the blue and with an intense shoulder centered at around 530-560 nm in the green region. Reflectance showed the most spectral differences in the NIR and MIR (970-2330 nm) regions

  7. Zn2+ in-situ substitution behavior during the formation of BaTiO3 coatings from plasma-sprayed powders collected in liquid nitrogen

    Science.gov (United States)

    Liu, Zhe; Xing, Zhiguo; Wang, Haidou; Xue, Zifan; Chen, Shuying; Cui, Xiufang; Jin, Guo

    2018-04-01

    The dielectric performance of BaTiO3 ceramic coatings is enhanced significantly by the addition of ZnO. In this study, the maximum relative permittivity value (εr ≈ 923) was measured in BaTiO3 coatings with ZnO added at 6 wt%. The Curie temperature (Tc) was in the range of 111 °C-121 °C for all of the ZnO-modified BaTiO3 coatings. Tc shifted to low temperatures as the ZnO content increased. Detailed analyses were performed to determine the phase composition and optical band gaps of powders collected in liquid nitrogen, which showed that the Zn2+ ions were incorporated into the BaTiO3 lattice where they substituted into the Ti4+ sites, and the composite powders (BaTiO3 + 6 wt% ZnO) tolerated high temperatures in the plasma beam. In addition, some residual Zn accumulated in the grain boundary in the form of ZnO. X-ray diffraction and Raman spectroscopy showed that the substitution led to changes in the compositional and structural properties. The red shift in the optical band gap of BaTiO3 indicated that the ZnTi'' defects caused by the dopants acted as carriers in the doped BaTiO3 coatings.

  8. Nitrogen-removal performance and community structure of nitrifying bacteria under different aeration modes in an oxidation ditch.

    Science.gov (United States)

    Guo, Chang-Zi; Fu, Wei; Chen, Xue-Mei; Peng, Dang-Cong; Jin, Peng-Kang

    2013-07-01

    Oxidation-ditch operation modes were simulated using sequencing batch reactors (SBRs) with alternate stirring and aerating. The nitrogen-removal efficiencies and nitrifying characteristics of two aeration modes, point aeration and step aeration, were investigated. Under the same air-supply capacity, oxygen dissolved more efficiently in the system with point aeration, forming a larger aerobic zone. The nitrifying effects were similar in point aeration and step aeration, where the average removal efficiencies of NH4(+) N were 98% and 96%, respectively. When the proportion of anoxic and oxic zones was 1, the average removal efficiencies of total nitrogen (TN) were 45% and 66% under point aeration and step aeration, respectively. Step aeration was more beneficial to both anoxic denitrification and simultaneous nitrification and denitrification (SND). The maximum specific ammonia-uptake rates (AUR) of point aeration and step aeration were 4.7 and 4.9 mg NH4(+)/(gMLVSS h), respectively, while the maximum specific nitrite-uptake rates (NUR) of the two systems were 7.4 and 5.3 mg NO2(-)-N/(gMLVSS h), respectively. The proportions of ammonia-oxidizing bacteria (AOB) to all bacteria were 5.1% under point aeration and 7.0% under step aeration, and the proportions of nitrite-oxidizing bacteria (NOB) reached 6.5% and 9.0% under point and step aeration, respectively. The dominant genera of AOB and NOB were Nitrosococcus and Nitrospira, which accounted for 90% and 91%, respectively, under point aeration, and the diversity of nitrifying bacteria was lower than under step aeration. Point aeration was selective of nitrifying bacteria. The abundance of NOB was greater than that of AOB in both of the operation modes, and complete transformation of NH4(+) N to NO3(-)-N was observed without NO2(-)-N accumulation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Mechanism study on the influence of in situ SO{sub x} removal on N{sub 2}O emission in CFB boiler

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Lingnan, E-mail: wulingnan@126.com [School of Energy, Power and Mechanical Engineering, North China Electric Power University, 102206 Beijing (China); National Engineering Laboratory for Biomass Power Generation Equipment, North China Electric Power University, 102206 Beijing (China); Qin, Wu, E-mail: qinwugx@126.com [National Engineering Laboratory for Biomass Power Generation Equipment, North China Electric Power University, 102206 Beijing (China); Hu, Xiaoying, E-mail: huxy@ncepu.edu.cn [National Engineering Laboratory for Biomass Power Generation Equipment, North China Electric Power University, 102206 Beijing (China); Dong, Changqing, E-mail: cqdong1@163.com [National Engineering Laboratory for Biomass Power Generation Equipment, North China Electric Power University, 102206 Beijing (China); Yang, Yongping, E-mail: yypncepu@163.com [School of Energy, Power and Mechanical Engineering, North China Electric Power University, 102206 Beijing (China)

    2015-04-01

    Highlights: • The presence of SO{sub 2} would hinder N{sub 2}O decomposition on CaO (1 0 0) surface. • N{sub 2}O decomposition pathway on deSO{sub x} intermediate was proposed. • Temperature dependence of the reaction pathway was considered. • Surface recovery process was the rate-determining step for N{sub 2}O catalytic decomposition. - Abstract: The influence of in situ deSO{sub x} process on N{sub 2}O emission in CFB boiler was studied using density functional theory calculations. The competitive adsorption of SO{sub 2} and N{sub 2}O on pure CaO (1 0 0) surface was first studied and the reaction priority was determined. Results showed that SO{sub 2} was more likely to adsorb on CaO (1 0 0) surface O anion site, which hindered the catalytic decomposition of N{sub 2}O on CaO (1 0 0) surface and sulfurized the CaO (1 0 0) surface under reducing atmosphere. Then a partially sulfurized CaO (1 0 0) surface was established to study the catalytic activity of deSO{sub x} reaction intermediate on N{sub 2}O decomposition. The O atom transfer process and the surface recovery process were two key steps for N{sub 2}O decomposition and the rate-determining step was the latter one. The sulfurization of the surface could deactivate its catalytic activity on N{sub 2}O decomposition compared with pure CaO (1 0 0) surface but it was still better than that of pure CaS (1 0 0) surface. The free Gibbs energy was calculated to incorporate the temperature dependence of respective reactions. When temperature was higher than 373 K, the surface recovery was more likely to proceed via the LH route.

  10. Removal of nitrogen compounds from gasification gas by selective catalytic or non-catalytic oxidation; Typpiyhdisteiden poisto kaasutuskaasusta selektiivisellae katalyyttisellae ja ei-katalyyttisellae hapetuksella

    Energy Technology Data Exchange (ETDEWEB)

    Leppaelahti, J.; Koljonen, T. [VTT Energy, Espoo (Finland)

    1996-12-01

    In gasification reactive nitrogenous compounds are formed from fuel nitrogen, which may form nitrogen oxides in gas combustion. In fluidized bed gasification the most important nitrogenous compound is ammonia (NH{sub 3}). If ammonia could be decomposed to N{sub 2} already before combustion, the emissions if nitrogen oxides could be reduced significantly. One way of increasing the decomposition rate of NH{sub 3} could be the addition of suitable reactants to the gas, which would react with NH{sub 3} and produce N{sub 2}. The aim of this research is to create basic information, which can be used to develop a new method for removal of nitrogen compounds from gasification gas. The reactions of nitrogen compounds and added reactants are studied in reductive atmosphere in order to find conditions, in which nitrogen compounds can be oxidized selectively to N{sub 2}. The project consists of following subtasks: (1) Selective non-catalytic oxidation (SNCO): Reactions of nitrogen compounds and oxidizers in the gas phase, (2) Selective catalytic oxidation (SCO): Reactions of nitrogen compounds and oxidizers on catalytically active surfaces, (3) Kinetic modelling of experimental results in co-operation with the Combustion Chemistry Research Group of Aabo Akademi University. The most important finding has been that NH{sub 3} can be made to react selectively with the oxidizers even in the presence of large amounts of CO and H{sub 2}. Aluminium oxides were found to be the most effective materials promoting selectivity. (author)

  11. Nitrogen removal and greenhouse gas emissions from constructed wetlands receiving tile drainage water.

    Science.gov (United States)

    Groh, Tyler A; Gentry, Lowell E; David, Mark B

    2015-05-01

    Loss of nitrate from agricultural lands to surface waters is an important issue, especially in areas that are extensively tile drained. To reduce these losses, a wide range of in-field and edge-of-field practices have been proposed, including constructed wetlands. We re-evaluated constructed wetlands established in 1994 that were previously studied for their effectiveness in removing nitrate from tile drainage water. Along with this re-evaluation, we measured the production and flux of greenhouse gases (GHGs) (CO, NO, and CH). The tile inlets and outlets of two wetlands were monitored for flow and N during the 2012 and 2013 water years. In addition, seepage rates of water and nitrate under the berm and through the riparian buffer strip were measured. Greenhouse gas emissions from the wetlands were measured using floating chambers (inundated fluxes) or static chambers (terrestrial fluxes). During this 2-yr study, the wetlands removed 56% of the total inlet nitrate load, likely through denitrification in the wetland. Some additional removal of nitrate occurred in seepage water by the riparian buffer strip along each berm (6.1% of the total inlet load, for a total nitrate removal of 62%). The dominant GHG emitted from the wetlands was CO, which represented 75 and 96% of the total GHG emissions during the two water years. The flux of NO contributed between 3.7 and 13% of the total cumulative GHG flux. Emissions of NO were 3.2 and 1.3% of the total nitrate removed from wetlands A and B, respectively. These wetlands continue to remove nitrate at rates similar to those measured after construction, with relatively little GHG gas loss. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  12. Nitrogen removal in permeable woodchips filters affected by hydraulic loading rate and woodchips ratio

    DEFF Research Database (Denmark)

    Bruun, Jacob Druedahl; Kjærgaard, Charlotte; Hoffmann, Carl Christian

    2016-01-01

    response of mixed reactive media (woodchips-Seashells and woodchips-Filtralite mixtures) at two woodchips ratios (WR) to changes in the hydraulic loading rate (HLR). The tests implied continuous loading of aerated NO3-N spiked artificial drainage water and tritium (3H2O) breakthrough experiments. Flow...... normalized nitrate reduction rates were 0.35-3.97 g N m-3 L-1, corresponding to N- removal efficiencies of 5 to 74% depending on HLR and filter mixtures. At high HLR oxic conditions prevailed, thus N removal was restricted to the immobile domain, controlled by diffusion. At lower HLR, progressively lower...

  13. Combined organic matter and nitrogen removal from a chemical industry wastewater in a two-stage MBBR system.

    Science.gov (United States)

    Cao, S M S; Fontoura, G A T; Dezotti, M; Bassin, J P

    2016-01-01

    Pesticide-producing factories generate highly polluting wastewaters containing toxic and hazardous compounds which should be reduced to acceptable levels before discharge. In this study, a chemical industry wastewater was treated in a pre-denitrification moving-bed biofilm reactor system subjected to an increasing internal mixed liquor recycle ratio from 2 to 4. Although the influent wastewater characteristics substantially varied over time, the removal of chemical oxygen demand (COD) and dissolved organic carbon was quite stable and mostly higher than 90%. The highest fraction of the incoming organic matter was removed anoxically, favouring a low COD/N environment in the subsequent aerobic nitrifying tank and thus ensuring stable ammonium removal (90-95%). However, during pH and salt shock periods, nitrifiers were severely inhibited but gradually restored their full nitrifying capability as non-stressing conditions were reestablished. Besides promoting an increase in the maximum nitrification potential of the aerobic attached biomass from 0.34 to 0.63 mg [Formula: see text], the increase in the internal recycle ratio was accompanied by an increase in nitrogen removal (60-78%) and maximum specific denitrification rate (2.7-3.3 mg NOx(-)--N). Total polysaccharides (PS) and protein (PT) concentrations of attached biomass were observed to be directly influenced by the influent organic loading rate, while the PS/PT ratio mainly ranged from 0.3 to 0.5. Results of Microtox tests showed that no toxicity was found in the effluent of both the anoxic and aerobic reactors, indicating that the biological process was effective in removing residual substances which might adversely affect the receiving waters' ecosystem.

  14. Nitrogen Removal in a Horizontal Subsurface Flow Constructed Wetland Estimated Using the First-Order Kinetic Model

    Directory of Open Access Journals (Sweden)

    Lijuan Cui

    2016-11-01

    Full Text Available We monitored the water quality and hydrological conditions of a horizontal subsurface constructed wetland (HSSF-CW in Beijing, China, for two years. We simulated the area-based constant and the temperature coefficient with the first-order kinetic model. We examined the relationships between the nitrogen (N removal rate, N load, seasonal variations in the N removal rate, and environmental factors—such as the area-based constant, temperature, and dissolved oxygen (DO. The effluent ammonia (NH4+-N and nitrate (NO3−-N concentrations were significantly lower than the influent concentrations (p < 0.01, n = 38. The NO3−-N load was significantly correlated with the removal rate (R2 = 0.96, p < 0.01, but the NH4+-N load was not correlated with the removal rate (R2 = 0.02, p > 0.01. The area-based constants of NO3−-N and NH4+-N at 20 °C were 27 ± 26 (mean ± SD and 14 ± 10 m∙year−1, respectively. The temperature coefficients for NO3−-N and NH4+-N were estimated at 1.004 and 0.960, respectively. The area-based constants for NO3−-N and NH4+-N were not correlated with temperature (p > 0.01. The NO3−-N area-based constant was correlated with the corresponding load (R2 = 0.96, p < 0.01. The NH4+-N area rate was correlated with DO (R2 = 0.69, p < 0.01, suggesting that the factors that influenced the N removal rate in this wetland met Liebig’s law of the minimum.

  15. Optimization of operation conditions for the startup of aerobic granular sludge reactors biologically removing carbon, nitrogen, and phosphorous.

    Science.gov (United States)

    Lochmatter, Samuel; Holliger, Christof

    2014-08-01

    The transformation of conventional flocculent sludge to aerobic granular sludge (AGS) biologically removing carbon, nitrogen and phosphorus (COD, N, P) is still a main challenge in startup of AGS sequencing batch reactors (AGS-SBRs). On the one hand a rapid granulation is desired, on the other hand good biological nutrient removal capacities have to be maintained. So far, several operation parameters have been studied separately, which makes it difficult to compare their impacts. We investigated seven operation parameters in parallel by applying a Plackett-Burman experimental design approach with the aim to propose an optimized startup strategy. Five out of the seven tested parameters had a significant impact on the startup duration. The conditions identified to allow a rapid startup of AGS-SBRs with good nutrient removal performances were (i) alternation of high and low dissolved oxygen phases during aeration, (ii) a settling strategy avoiding too high biomass washout during the first weeks of reactor operation, (iii) adaptation of the contaminant load in the early stage of the startup in order to ensure that all soluble COD was consumed before the beginning of the aeration phase, (iv) a temperature of 20 °C, and (v) a neutral pH. Under such conditions, it took less than 30 days to produce granular sludge with high removal performances for COD, N, and P. A control run using this optimized startup strategy produced again AGS with good nutrient removal performances within four weeks and the system was stable during the additional operation period of more than 50 days. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. The capability of estuarine sediments to remove nitrogen: implications for drinking water resource in Yangtze Estuary.

    Science.gov (United States)

    Liu, Lin; Wang, Dongqi; Deng, Huanguang; Li, Yangjie; Chang, Siqi; Wu, Zhanlei; Yu, Lin; Hu, Yujie; Yu, Zhongjie; Chen, Zhenlou

    2014-09-01

    Water in the Yangtze Estuary is fresh most of the year because of the large discharge of Yangtze River. The Qingcaosha Reservoir built on the Changxing Island in the Yangtze Estuary is an estuarine reservoir for drinking water. Denitrification rate in the top 10 cm sediment of the intertidal marshes and bare mudflat of Yangtze Estuarine islands was measured by the acetylene inhibition method. Annual denitrification rate in the top 10 cm of sediment was 23.1 μmol m(-2) h(-1) in marshes (ranged from 7.5 to 42.1 μmol m(-2) h(-1)) and 15.1 μmol m(-2) h(-1) at the mudflat (ranged from 6.6 to 26.5 μmol m(-2) h(-1)). Annual average denitrification rate is higher at mashes than at mudflat, but without a significant difference (p = 0.084, paired t test.). Taking into account the vegetation and water area of the reservoir, a total 1.42 × 10(8) g N could be converted into nitrogen gas (N2) annually by the sediment, which is 97.7 % of the dissolved inorganic nitrogen input through precipitation. Denitrification in reservoir sediment can control the bioavailable nitrogen level of the water body. At the Yangtze estuary, denitrification primarily took place in the top 4 cm of sediment, and there was no significant spatial or temporal variation of denitrification during the year at the marshes and mudflat, which led to no single factor determining the denitrification process but the combined effects of the environmental factors, hydrologic condition, and wetland vegetation.

  17. Autotrophic nitrogen removal from low strength waste water at low temperature

    NARCIS (Netherlands)

    Hendrickx, T.L.G.; Wang, Y.; Kampman, C.; Zeeman, G.; Temmink, B.G.; Buisman, C.J.N.

    2012-01-01

    Direct anaerobic treatment of municipal waste waters allows for energy recovery in the form of biogas. A further decrease in the energy requirement for waste water treatment can be achieved by removing the ammonium in the anaerobic effluent with an autotrophic process, such as anammox. Until now,

  18. Modeling nitrous oxide production during biological nitrogen removal via nitrification and denitrification: extensions to the general ASM models.

    Science.gov (United States)

    Ni, Bing-Jie; Ruscalleda, Maël; Pellicer-Nàcher, Carles; Smets, Barth F

    2011-09-15

    Nitrous oxide (N(2)O) can be formed during biological nitrogen (N) removal processes. In this work, a mathematical model is developed that describes N(2)O production and consumption during activated sludge nitrification and denitrification. The well-known ASM process models are extended to capture N(2)O dynamics during both nitrification and denitrification in biological N removal. Six additional processes and three additional reactants, all involved in known biochemical reactions, have been added. The validity and applicability of the model is demonstrated by comparing simulations with experimental data on N(2)O production from four different mixed culture nitrification and denitrification reactor study reports. Modeling results confirm that hydroxylamine oxidation by ammonium oxidizers (AOB) occurs 10 times slower when NO(2)(-) participates as final electron acceptor compared to the oxic pathway. Among the four denitrification steps, the last one (N(2)O reduction to N(2)) seems to be inhibited first when O(2) is present. Overall, N(2)O production can account for 0.1-25% of the consumed N in different nitrification and denitrification systems, which can be well simulated by the proposed model. In conclusion, we provide a modeling structure, which adequately captures N(2)O dynamics in autotrophic nitrification and heterotrophic denitrification driven biological N removal processes and which can form the basis for ongoing refinements.

  19. Microalgal bacterial flocs treating paper mill effluent: A sunlight-based approach for removing carbon, nitrogen, phosphorus, and calcium.

    Science.gov (United States)

    Van Den Hende, Sofie; Rodrigues, André; Hamaekers, Helen; Sonnenholzner, Stanislaus; Vervaeren, Han; Boon, Nico

    2017-10-25

    Treatment of upflow anaerobic sludge blanket (UASB) effluent from a paper mill in aerated activated sludge reactors involves high aeration costs. Moreover, this calcium-rich effluent leads to problematic scale formation. Therefore, a novel strategy for the aerobic treatment of paper mill UASB effluent in microalgal bacterial floc sequencing batch reactors (MaB-floc SBRs) is proposed, in which oxygen is provided via photosynthesis, and calcium is removed via bio-mineralization. Based on the results of batch experiments in the course of this study, a MaB-floc SBR was operated at an initial neutral pH. This SBR removed 58±21% organic carbon, 27±8% inorganic carbon, 77±5% nitrogen, 73±2% phosphorus, and 27±11% calcium. MaB-flocs contained 10±3% calcium, including biologically-influenced calcite crystals. The removal of calcium and inorganic carbon by MaB-flocs significantly decreased when inhibiting extracellular carbonic anhydrase (CA), an enzyme that catalyses the hydration and dehydration of CO 2 . This study demonstrates the potential of MaB-floc SBRs for the alternative treatment of calcium-rich paper mill effluent, and highlights the importance of extracellular CA in this treatment process. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Environmental Modeling, The Buffer Priority layers for Nitrogen Removal identify priority forest/grass buffer sites by subwatershed. Land use, hydrology, soil, and landscape characteristics were analyzed to rank opportunities with high nitrogen removal potential., Published in 2014, Smaller than 1:100000 scale, Maryland Department of Natural Resources (DNR).

    Data.gov (United States)

    NSGIC Education | GIS Inventory — Environmental Modeling dataset current as of 2014. The Buffer Priority layers for Nitrogen Removal identify priority forest/grass buffer sites by subwatershed. Land...

  1. A facile method to prepare dual-functional membrane for efficient oil removal and in situ reversible mercury ions adsorption from wastewater

    Science.gov (United States)

    Zhang, Qingdong; Liu, Na; Cao, Yingze; Zhang, Weifeng; Wei, Yen; Feng, Lin; Jiang, Lei

    2018-03-01

    In this work, a novel thiol covered polyamide (nylon 66) microfiltration membrane was fabricated by combining mussel-inspired chemistry and coupling reaction, which owns excellent dual-function that can simultaneously remove oil from water efficiently and adsorb the mercury ions contained in the wastewater reversibly. Such membrane exhibited high oil/water separation efficiency, outstanding mercury adsorption ability, and good stability. Moreover, it can be regenerated in nitric acid solution, and maintain its good adsorption performance. The as-prepared membrane showed great potentials for water purification to reduce the heavy metal ion pollution and complicated industrial oily wastewater and living wastewater.

  2. Removal of nitrogen and organic matter in a submerged-membrane bioreactor operating in a condition of simultaneous nitrification and denitrification

    Directory of Open Access Journals (Sweden)

    Izabela Major Barbosa

    2016-04-01

    Full Text Available This study evaluated the removal of nitrogen and organic matter in a membrane bioreactor system operating in a condition of simultaneous nitrification and denitrification controlled by intermittent aeration. A submerged-membrane system in a bioreactor was used in a pilot scale to treat domestic wastewater. The dissolved oxygen concentration was maintained between 0.5 and 0.8 mg L-1. The concentration of the mixed liquor suspended solids (MLSS in the system ranged from 1 to 6 g L-1. The system efficiency was evaluated by the removal efficiency of organic matter, quantified by Chemical Oxygen Demand (COD, Biochemical Oxygen Demand (BOD5 and Total Organic Carbon (TOC. Nitrogen removal was assessed by quantifying Total Kjeldahl Nitrogen (TKN and ammonia nitrogen. During the system start-up, the removal efficiencies of COD and NTK were around 90% and 80%, respectively. After the simultaneous nitrification and denitrification (SND conditions were established, the removal efficiencies of COD and NTK were 70% and 99%, respectively. These results showed that sewage treatment with the membrane bioreactor (MBR system, operating with simultaneous nitrification and denitrification conditions, was able to remove organic matter and promote nitrification and denitrification in a single reactor, producing a high-quality permeate.

  3. In-situ carbon and nitrogen turnover dynamics and the role of soil functional biodiversity therein; a climate warming simulation study in Alpine ecosystems

    Science.gov (United States)

    Djukic, Ika

    2010-05-01

    Climate change affects a variety of soil properties and processes. Alpine soils take an extraordinary position in this context because of the vulnerability of mountain regions to climatic changes. We used altitudinal soil translocation to simulate the combined effects of changing climatic conditions and shifting vegetation zones in order to study short- to medium-term soil changes in the Austrian Limestone Alps. We translocated 160 soil cores from an alpine grassland site (1900 m asl) down to a sub-alpine spruce forest (1300 m asl) and a montane beech forest site (900m asl), including reference soil cores at each site to estimate artifacts arising from the method. 15N-labeled maize straw was added (1 kg/m2) to translocated and control soil cores and sampled over a period of 2 years for the analysis of δ13C and δ15N in the bulk soil and extracted phospholipid fatty acids (PLFAs). Additionally, 20 litter bags (at each of the three climatic zones) containing Fagus sylvatica or Pinus nigra litter were inserted into the soil, and decomposition was studied over a two-year period. The basic soil parameters (organic C, total N and pH) were unaffected by translocation within the observation time. Overall, decomposition of Pinus nigra litter was significantly slower compared to Fagus sylvatica, and the decomposition rate of both litter types was inversely related to elevation. The decomposition of the maize straw carbon was significantly faster in the translocated soil cores (sites at 900 and 1300 m asl) than at the original site (1900 m asl). The labelled nitrogen contents in the translocated soil cores showed just marginal differences to the soil cores at the original site. The maize straw application promptly increased the amount of bacterial and fungal PLFAs at all studied sites. Downslope translocated soil cores showed an increase in total microbial biomass and sum of bacteria. The fungal PLFA biomarker 18:2ω6,9 was slightly lower at the new (host) sites compared to

  4. Enhance performance of micro direct methanol fuel cell by in situ CO2 removal using novel anode flow field with superhydrophobic degassing channels

    Science.gov (United States)

    Liang, Junsheng; Luo, Ying; Zheng, Sheng; Wang, Dazhi

    2017-05-01

    Capillary blocking caused by CO2 bubbles in anode flow field (AFF) is one of the bottlenecks for performance improvement of a micro direct methanol fuel cell (μDMFC). In this work, we present a novel AFF structure with nested layout of hydrophilic fuel channels and superhydrophobic degassing channels which can remove most of CO2 from AFF before it is released to the fuel channels. The new AFFs are fabricated on Ti substrates by using micro photochemical etching combined with anodization and fluorination treatments. Performance of the μDMFCs with and without superhydrophobic degassing channels in their AFF is comparatively studied. Results show that the superhydrophobic degassing channels can significantly speed up the exhaust of CO2 from the AFF. CO2 clogging is not observed in the new AFFs even when their comparison AFFs have been seriously blocked by CO2 slugs under the same operating conditions. 55% and 60% of total CO2 produced in μDMFCs with N-serpentine and N-spiral AFF can be respectively removed by the superhydrophobic degassing channels. The power densities of the μDMFCs equipped with new serpentine and spiral AFFs are respectively improved by 30% and 90% compared with those using conventional AFFs. This means that the new AFFs developed in this work can effectively prevent CO2-induced capillary blocking in the fuel channels, and finally significantly improve the performance of the μDMFCs.

  5. Sulfonamide antibiotic removal and nitrogen recovery from synthetic urine by the combination of rotating advanced oxidation contactor and methylene urea synthesis process

    OpenAIRE

    Fukahori, S.; Fujiwara, T.; Ito, R.; Funamizu, N.

    2015-01-01

    The combination of nitrogen recovery and pharmaceutical removal processes for livestock urine treatment were investigated to suppress the discharge of pollutants and recover nitrogen as resources. We combined methylene urea synthesis from urea and adsorption and photocatalytic decomposition of sulfonamide antibiotic using rotating advanced oxidation contactor (RAOC) contained for obtaining both safe fertilizer and reclaimed water. The methylene urea synthesis could recover urea in synthetic u...

  6. Narrowband NIR-Induced In Situ Generation of the High-Energy Trans Conformer of Trichloroacetic Acid Isolated in Solid Nitrogen and its Spontaneous Decay by Tunneling to the Low-Energy Cis Conformer

    Directory of Open Access Journals (Sweden)

    R. F. G. Apóstolo

    2015-12-01

    Full Text Available The monomeric form of trichloroacetic acid (CCl3COOH; TCA was isolated in a cryogenic nitrogen matrix (15 K and the higher energy trans conformer (O=C–O–H dihedral: 180° was generated in situ by narrowband near-infrared selective excitation the 1st OH stretching overtone of the low-energy cis conformer (O=C–O–H dihedral: 0°. The spontaneous decay, by tunneling, of the generated high-energy conformer into the cis form was then evaluated and compared with those observed previously for the trans conformers of acetic and formic acids in identical experimental conditions. The much faster decay of the high-energy conformer of TCA compared to both formic and acetic acids (by ~35 and ca. 25 times, respectively was found to correlate well with the lower energy barrier for the trans→cis isomerization in the studied compound. The experimental studies received support from quantum chemistry calculations undertaken at the DFT(B3LYP/cc-pVDZ level of approximation, which allowed a detailed characterization of the potential energy surface of the molecule and the detailed assignment of the infrared spectra of the two conformers.

  7. Constructed wetlands targeting nitrogen removal in agricultural drainage discharge – a subcatchment scale mitigation strategy

    DEFF Research Database (Denmark)

    Kjærgaard, Charlotte; Hoffmann, Carl Christian; Bruun, Jacob Druedahl

    analysis of variable mitigation strategies and cost-efficiency analysis reveals that even at low to moderate yearly N removal efficiencies (20-25% N removal efficiency) CWs targeting drainage water are highly efficient and cost-efficient measures. Thus, although challenges remain regarding site......-specific documentations, CWs targeting drainage discharge has been included as new mitigation strategy in the Danish environmental regulation....... of recipients, drainage water nutrient loads have a major impact on water quality, and end-of-pipe drainage filter solution may offer the benefits of a targeted measure. This calls for a paradigm shift towards the development of new, cost-efficient technologies to mitigate site-specific nutrient losses...

  8. Silver-promoted catalyst for removal of nitrogen oxides from emission of diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, K.; Tsujimura, K. [New ACE Institute Co., Ltd., Ibaraki (Japan); Shinoda, K.; Kato, T. [Mitsui Mining and Smelting Co., Ltd. Ageo, Saitama (Japan)

    1996-02-29

    Removal of NO{sub x} from diesel exhaust gas using C{sub 3}H{sub 6}, CH{sub 3}OH or (CH{sub 3}){sub 2}O as a reducing agent was investigated on Ag/Al{sub 2}O{sub 3}, Ag/ZSM-5 and Ag/mordenite catalysts over a wide range of temperatures. Among them, (CH{sub 3}){sub 2}O was found to be suitable for the elimination of NO{sub x} over Ag/mordenite catalyst at the relatively low temperature of 200C to 350C. CH{sub 3}OH was suitable over Ag/Al{sub 2}O{sub 3} catalyst from 350C to 450C while the Ag/mordenite catalyst using (CH{sub 3}){sub 2}O was superior to the Ag/Al{sub 2}O{sub 3} catalyst using CH{sub 3}OH with respect to the temperature range. The Ag/ZSM-5 catalyst had a poor elimination ability when compared with Ag/Al{sub 2}O{sub 3} and Ag/mordenite catalysts. The effects of Ag on mordenite and Al{sub 2}O{sub 3} were also investigated. It was found that Ag improved the removal of NO{sub x} in the higher range of temperatures with mordenite, while Ag improved the removal of NO{sub x} in the lower temperature range with Al{sub 2}O{sub 3}. It was concluded that Ag/mordenite catalyst using (CH{sub 3}){sub 2}O as a reducing agent has a good ability for NO{sub x} removal over a wide range of temperatures

  9. Removal of Basic Nitrogen Compounds from Fuel Oil with [Hnmp]H2PO4 Ionic Liquid

    Directory of Open Access Journals (Sweden)

    Z. Zhou

    2017-04-01

    Full Text Available Ionic liquid (IL N-methyl pyrrolidone dihydrogen phosphate ([Hnmp]H2PO4 was synthesized and its structure was characterized with FT-IR spectroscopy and 1H NMR. The denitrogenation performance of the ionic liquid was investigated using Fushun shale diesel oil that included 0.52 w% basic nitrogen as feedstock. Experiment results showed that under the operating conditions with temperature of 30 °C, 1:7 (w/w IL: oil, reaction time of 20 min, and settling time of 2 h, the ionic liquid exhibited good denitrogenation performance achieving 86.27 % basic N-extraction efficiency and the yield of refined diesel oil can reach more than 90 %. In addition, the basic N-removal efficiency can still reach 54 % during four recycles of the ionic liquid.

  10. Sliding mode control of dissolved oxygen in an integrated nitrogen removal process in a sequencing batch reactor (SBR).

    Science.gov (United States)

    Muñoz, C; Young, H; Antileo, C; Bornhardt, C

    2009-01-01

    This paper presents a sliding mode controller (SMC) for dissolved oxygen (DO) in an integrated nitrogen removal process carried out in a suspended biomass sequencing batch reactor (SBR). The SMC performance was compared against an auto-tuning PI controller with parameters adjusted at the beginning of the batch cycle. A method for cancelling the slow DO sensor dynamics was implemented by using a first order model of the sensor. Tests in a lab-scale reactor showed that the SMC offers a better disturbance rejection capability than the auto-tuning PI controller, furthermore providing reasonable performance in a wide range of operation. Thus, SMC becomes an effective robust nonlinear tool to the DO control in this process, being also simple from a computational point of view, allowing its implementation in devices such as industrial programmable logic controllers (PLCs).

  11. Evaluation of clinoptilolite for removal of ammoniacal nitrogen produced in aquaculture by Neutron activation analysis and UV-VIS spectrophotometry

    International Nuclear Information System (INIS)

    Bibiano C, L.; Iturbe G, J.L.; Lopez M, B.E.; Martinez M, V.

    1997-01-01

    In fish culture system, ammonia is excreted in the water as a metabolic by-product. In this work, sorption properties of clinoptilolite were determined and it was applied in culture of the rainbow trout Oncorhynchus mykiss for the removal of the ammoniacal nitrogen. The original clinoptilolite was treated with 1N NaCl solution from 24 to 192 h, for exchange NH 4 ions produced in fish culture. The content of Na in the clinoptilolite was determined by neutron activation analysis. The ammonium ion content in the exchange was analysed by UV-VIS spectrophotometry. Maximum uptake of sodium was reached between 24 and 48 hours at neutral pH with granules of the clinoptilolite from 14 to 24 mesh size. The adsorption capacity was from 3.28 to 6.8 mg of ammonium per gram of clinoptilolite. (Author)

  12. Respirometry applied for biological nitrogen removal process; Aplicacion de la respirometria al tratamiento biologico para la eliminacion del nitrogeno

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, E.

    2004-07-01

    In waste water treatment plants, the Biological Nitrogen Removal (BNR) has acquired a fundamental importance. The BNR processes are Nitrification ( aerobic) and Denitrification (anoxic). Since both processes are carried on living microorganisms, a lack of their bioactivity information might cause serious confusion about their control criteria and following up purposes. For this reason, the Re spirometry applied to those processes has reached an important role by getting an essential information in a timely manner through respiration rate measurements in static and dynamic modes and applications such as AUR (Ammonium Uptake Rate), Nitrification Capacity. RBCOD (Readily Biodegradable COD) as well as AUR related to SRT (Sludge age), RBCOD related to NUR (Specific Nitrate Uptake Rate) and others. By other side in this article we have introduced a not very well known applications related to denitrification, about the methanol acclimatization and generated bioactivity. (Author) 6 refs.

  13. Selecting appropriate forms of nitrogen fertilizer to enhance soil arsenic removal by Pteris vittata: a new approach in phytoremediation.

    Science.gov (United States)

    Liao, Xiao-Yong; Chen, Tong-Bin; Xiao, Xi-Yuan; Xie, Hua; Yan, Xiu-Lan; Zhai, Li-Mei; Wu, Bin

    2007-01-01

    Certain plant species have been shown to vigorously accumulate some metals from soil, and thus represent promising and effective remediation alternatives. In order to select the optimum forms of nitrogen (N) fertilizers for the arsenic (As) hyperaccumulator, Pteris vittata L., to maximize As extraction, five forms of N were added individually to different treatments to study the effect of N forms on As uptake of the plants under soil culture in a greenhouse. Although shoot As concentration tended to decrease and As translocation from root to shoot was inhibited, overall As accumulation was greater due to higher biomass when N fertilizer was added. Arsenic accumulation in plants with N fertilization was 100-300% more than in the plants without N fertilization. There were obvious differences in plant biomass and As accumulation among the N forms, i.e., NH4HCO3, (NH4)2S04, Ca(NO3)2, KNO3, urea. The total As accumulation in the plants grown in As-supplied soil, under different forms of N fertilizer, decreased as NH4HCO3>(NH4)2S04 > urea > Ca(NO3)2 >KNO3>CK. The plants treated with N and As accumulated up to 5.3-7.97 mg As/pot and removed 3.7-5.5% As from the soils, compared to approximately 2.3% of As removal in the control. NH4+ -N was apparently more effective than other N fertilizers in stimulating As removal when soil was supplied with As at initiation. No significant differences in available As were found among different forms of N fertilizer after phytoremediation. It is concluded that NH4+ -N was the preferable fertilizer for P. vittata to maximize As removal.

  14. Enhancement of the complete autotrophic nitrogen removal over nitrite process in a modified single-stage subsurface vertical flow constructed wetland: Effect of saturated zone depth.

    Science.gov (United States)

    Huang, Menglu; Wang, Zhen; Qi, Ran

    2017-06-01

    This study was conducted to explore enhancement of the complete autotrophic nitrogen removal over nitrite (CANON) process in a modified single-stage subsurface vertical flow constructed wetland (VSSF) with saturated zone, and nitrogen transformation pathways in the VSSF treating digested swine wastewater were investigated at four different saturated zone depths (SZDs). SZD significantly affected nitrogen transformation pathways in the VSSF throughout the experiment. As the SZD was 45cm, the CANON process was enhanced most effectively in the system owing to the notable enhancement of anammox. Correspondingly, the VSSF had the best TN removal performance [(76.74±7.30)%] and lower N 2 O emission flux [(3.50±0.22)mg·(m 2 ·h) - 1 ]. It could be concluded that autotrophic nitrogen removal via CANON process could become a primary route for nitrogen removal in the VSSF with optimized microenvironment that developed as a result of the appropriate SZD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. In-situ synthesis of SiO2@MOF composites for high-efficiency removal of aniline from aqueous solution

    Science.gov (United States)

    Han, Tongtong; Li, Caifeng; Guo, Xiangyu; Huang, Hongliang; Liu, Dahuan; Zhong, Chongli

    2016-12-01

    A series of SiO2@aluminum-MOF(MIL-68) composites with different SiO2 loadings have been synthesized by a simple and mild compositing strategy for high-efficiency removal of aniline. As evidenced from SEM and TEM images as well as the particle size distribution, the incorporation of SiO2 can improve the dispersity of MIL-68(Al) in composites, and result in the smaller particle size than that of pristine MIL-68(Al). Besides, the adsorption of aniline over SiO2, MIL-68(Al), the physical mixture of these two materials, and SiO2@MIL-68(Al) composites was investigated comparatively, demonstrating a relatively high adsorption capacity (531.9 mg g-1) of 7% SiO2@MIL-68(Al) towards aniline. Combining the ultrafast adsorption dynamics (reaching equilibrium within 40 s) and great reusability, 7% SiO2@MIL-68(Al) shows excellent adsorption performance. This indicates that the SiO2@MIL-68(Al) composites possess great potential applications as a kind of fascinating adsorbent in water pollution protection.

  16. In situ removal of carbon contamination from a chromium-coated mirror: ideal optics to suppress higher-order harmonics in the carbon K-edge region.

    Science.gov (United States)

    Toyoshima, Akio; Kikuchi, Takashi; Tanaka, Hirokazu; Mase, Kazuhiko; Amemiya, Kenta

    2015-11-01

    Carbon-free chromium-coated optics are ideal in the carbon K-edge region (280-330 eV) because the reflectivity of first-order light is larger than that of gold-coated optics while the second-order harmonics (560-660 eV) are significantly suppressed by chromium L-edge and oxygen K-edge absorption. Here, chromium-, gold- and nickel-coated mirrors have been adopted in the vacuum ultraviolet and soft X-ray branch beamline BL-13B at the Photon Factory in Tsukuba, Japan. Carbon contamination on the chromium-coated mirror was almost completely removed by exposure to oxygen at a pressure of 8 × 10(-2) Pa for 1 h under irradiation of non-monochromated synchrotron radiation. The pressure in the chamber recovered to the order of 10(-7) Pa within a few hours. The reflectivity of the chromium-coated mirror of the second-order harmonics in the carbon K-edge region (560-660 eV) was found to be a factor of 0.1-0.48 smaller than that of the gold-coated mirror.

  17. Understanding the contribution of biofilm in an integrated fixed-film-activated sludge system (IFAS) designed for nitrogen removal.

    Science.gov (United States)

    Moretti, P; Choubert, J M; Canler, J P; Petrimaux, O; Buffiere, P; Lessard, P

    2015-01-01

    The objective of this study is to improve knowledge on the integrated fixed-film-activated sludge (IFAS) system designed for nitrogen removal. Biofilm growth and its contribution to nitrification were monitored under various operating conditions in a semi-industrial pilot-scale plant. Nitrification rates were observed in biofilms developed on free-floating media and in activated sludge operated under a low sludge retention time (4 days) and at an ammonia loading rate of 45-70 gNH4-N/kgMLVSS/d. Operational conditions, i.e. oxygen concentration, redox potential, suspended solids concentration, ammonium and nitrates, were monitored continuously in the reactors. High removal efficiencies were observed for carbon and ammonium at high-loading rate. The contribution of biofilm to nitrification was determined as 40-70% of total NOx-N production under the operating conditions tested. Optimal conditions to optimize process compacity were determined. The tested configuration responds especially well to winter and summer nitrification conditions. These results help provide a deeper understanding of how autotrophic biomass evolves through environmental and operational conditions in IFAS systems.

  18. Hydrologic control of nitrogen removal, storage, and export in a mountain stream

    Science.gov (United States)

    Hall, R.O.; Baker, M.A.; Arp, C.D.; Kocha, B.J.

    2009-01-01

    Nutrient cycling and export in streams and rivers should vary with flow regime, yet most studies of stream nutrient transformation do not include hydrologic variability. We used a stable isotope tracer of nitrogen (15N) to measure nitrate (NO3) uptake, storage, and export in a mountain stream, Spring Creek, Idaho, U.S.A. We conducted two tracer tests of 2-week duration during snowmelt and baseflow. Dissolved and particulate forms of 15N were monitored over three seasons to test the hypothesis that stream N cycling would be dominated by export during floods, and storage during low flow. Floods exported more N than during baseflow conditions; however, snowmelt floods had higher than expected demand for NO{3 because of hyporheic exchange. Residence times of benthic N during both tracer tests were longer than 100 d for ephemeral pools such as benthic algae and wood biofilms. Residence times were much longer in fine detritus, insects, and the particulate N from the hyporheic zone, showing that assimilation and hydrologic storage can be important mechanisms for retaining particulate N. Of the tracer N stored in the stream, the primary form of export was via seston during periods of high flows, produced by summer rainstorms or spring snowmelt the following year. Spring Creek is not necessarily a conduit for nutrients during high flow; hydrologic exchange between the stream and its valley represents an important storage mechanism.

  19. Simultaneous biological removal of sulfur, nitrogen and carbon using EGSB reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chen Chuan; Ren Nanqi; Wang Aijie; Yu Zhenguo [School of Municipal and Environmental Engineering, Harbin Inst. of Tech. (China); Lee Duu-Jong [School of Municipal and Environmental Engineering, Harbin Inst. of Tech. (China); Dept. of Chemical Engineering, National Taiwan Univ., Taipei (China)

    2008-04-15

    High-rate biological conversion of sulfide and nitrate in synthetic wastewater to, respectively, elemental sulfur (S{sup 0}) and nitrogen-containing gas (such as N{sub 2}) was achieved in an expanded granular sludge bed (EGSB) reactor. A novel strategy was adopted to first cultivate mature granules using anaerobic sludge as seed sludge in sulfate-laden medium. The cultivated granules were then incubated in sulfide-laden medium to acclimate autotrophic denitrifiers. The incubated granules converted sulfide, nitrate, and acetate simultaneously in the same EGSB reactor to S{sup 0}, N-containing gases and CO{sub 2} at loading rates of 3,0 kg S m{sup -3} d{sup -1}, 1.45 kg N m{sup -3} d{sup -1}, and 2.77 kg Ac m{sup -1} d{sup -1}, respectively, and was not inhibited by sulfide concentrations up to 800 mg l{sup -1}. Effects of the C/N ratio on granule performance were identified. The granules cultivated in the sulfide-laden medium have Pseudomonas spp. and Azoarcus sp. presenting the heterotrophs and autotrophs that co-work in the high-rate EGSB-SDD (simultaneous desulfurization and denitrification) reactor. (orig.)

  20. Lacustrine wetland in an agricultural catchment: nitrogen removal and related biogeochemical processes

    Directory of Open Access Journals (Sweden)

    R. Balestrini

    2008-03-01

    Full Text Available The role of specific catchment areas, such as the soil-river or lake interfaces, in removing or buffering the flux of N from terrestrial to aquatic ecosystems is globally recognized but the extreme variability of microbiological and hydrological processes make it difficult to predict the extent to which different wetlands function as buffer systems. In this paper we evaluate the degree to which biogeochemical processes in a lacustrine wetland are responsible for the nitrate removal from ground waters feeding Candia Lake (Northern Italy. A transect of 18 piezometers was installed perpendicular to the shoreline, in a sub-unit formed by 80 m of poplar plantation, close to a crop field and 30 m of reed swamp. The chemical analysis revealed a drastic NO3-N ground water depletion from the crop field to the lake, with concentrations decreasing from 15–18 mg N/l to the detection limit within the reeds. Patterns of Cl, SO42–, O2, NO2-N, HCO3 and DOC suggest that the metabolic activity of bacterial communities, based on the differential use of electron donors and acceptors in redox reactions is the key function of this system. The significant inverse relationship found between NO3-N and HCO3 is a valuable indicator of the denitrification activity. The pluviometric regime, the temperature, the organic carbon availability and the hydrogeomorphic properties are the main environmental factors affecting the N transformations in the studied lacustrine ecosystem.

  1. The effects of operating factors on the removal of total ammonia nitrogen and florfenicol antibiotic from synthetic trout fish farm wastewater through nanofiltration

    International Nuclear Information System (INIS)

    Cheshmberah, F.; Solaimany Nazar, A.R.; Farhadian, M.

    2016-01-01

    An aquaculture system can be a potentially significant source of antibacterial compounds and ammonia in an aquatic environment. In this study, the removal of total ammonia nitrogen and florfenicol antibiotic from synthetic aqueous wastewater was assessed by applying a commercial thin film composite polyamide nanofilter. The effects of p H (6.5-8.5), pressure (4-10 bar), concentration of total ammonia nitrogen (1-9 mg/L), and florfenicol (0.2-5 mg/L) on the removal efficiency of the nanofilter were studied at a constant 70% recovery rate. It was found that by increasing the p H within the range of 6.5 to 8.5, it enhanced the removal efficiency by up to 98% and 100% for total ammonia nitrogen and florfenicol, respectively. With an increase in pressure from 4 to 7 bar, the removal percentage increased and then, it decreased from 7 to 10 bar. The interactions factors did not have significant effects on the both pollutants removal efficiencies. To obtain optimal removal efficiencies, an experimental design and statistical analysis via the response surface method were adopted.

  2. The effects of operating factors on the removal of total ammonia nitrogen and florfenicol antibiotic from synthetic trout fish farm wastewater through nanofiltration

    Directory of Open Access Journals (Sweden)

    Ali Reza Solaimany Nazar

    2016-04-01

    Full Text Available An aquaculture system can be a potentially significant source of antibacterial compounds and ammonia in an aquatic environment. In this study, the removal of total ammonia nitrogen and florfenicol antibiotic from synthetic aqueous wastewater was assessed by applying a commercial TFC (thin film composite polyamide nanofilter. The effects of pH (6.5-8.5, pressure (4-10 bar, concentration of total ammonia nitrogen (1-9 mg/L, and florfenicol (0.2-5 mg/L on the removal efficiency of the nanofilter were studied at a constant 70% recovery rate. It was found that by increasing the pH within the range of 6.5 to 8.5, it enhanced the removal efficiency by up to 98% and 100% for total ammonia nitrogen and florfenicol, respectively. With an increase in pressure from 4 to 7 bar, the removal percentage increased and then, it decreased from 7 to 10 bar. The interactions factors did not have significant effects on the both pollutants removal efficiencies. To obtain optimal removal efficiencies, an experimental design and statistical analysis via the response surface method were adopted.

  3. Regulation of nitrogen removal and retention in sphagnum bogs and other peatlands

    International Nuclear Information System (INIS)

    Damman, A.W.H.

    1988-01-01

    Nitrogen concentrations range from 0.3-l.3% in ombrotrophic peat of raised bogs. Within ombrogenous bogs, the N concentration of the peat increases in oceanic regions, with the highest concentrations found in blanket bogs on Southern Hemisphere islands. In minerotrophic peat, N concentrations increase with age (depth) as in upland humus. In this paper, I propose that N immobilization is truncated at low levels in ombrotrophic peat because 1) microbial activity is reduced well below that determined by environmental conditions, and 2) N is not limiting decay, in spite of low N concentrations. Consequently, net mineralization of N occurs at C:N quotients 80 to over 100 in inland raised bogs. Nutrient deficiency, probably P deficiency, appears to limit microbial activity and N immobilization. The increased N immobilization in oceanic bogs is attributed to higher Mg inputs that stimulate the biochemical release of P by enzymatic catalysis, and hence increase microbial activity. In ombrotrophi bogs, peat formed during periods of slow accumulation and long residence in the acrotelm has the highest N concentrations but, paradoxically, has also lost more of its original N content than peat that accumulated rapidly. Irregular changes in the anaerobic peat reflect conditions of decay when the peat was in the acrotelm. In a dated profile, N losses were largest during the last 2000 yr. This indicates a change in environmental conditions in the surface peat. Presumably, during this period the bog reached its maximum elevation with respect to the water mound that can be maintained in the peat under the present climatic conditions, and N losses increased as peat accumulation decreased. (author)

  4. An operational protocol for facilitating start-up of single-stage autotrophic nitrogen-removing reactors based on process stoichiometry

    DEFF Research Database (Denmark)

    Mutlu, Ayten Gizem; Vangsgaard, Anna Katrine; Sin, Gürkan

    2013-01-01

    Start-up and operation of single-stage nitritation–anammox sequencing batch reactors (SBRs) for completely autotrophic nitrogen removal can be challenging and far from trivial. In this study, a step-wise procedure is developed based on stoichiometric analysis of the process performance from...

  5. Effects of organic matter removal and soil compaction on fifth-year mineral soil carbon and nitrogen contents for sites across the United States and Canada

    Science.gov (United States)

    Felipe G. Sanchez; Allan E. Tiarks; J. Marty Kranabetter; Deborah S. Page-Dumroese; Robert F. Powers; Paul T. Sanborn; William K. Chapman

    2006-01-01

    This study describes the main treatment effects of organic matter removal and compaction and a split-plot effect of competition control on mineral soil carbon (C) and nitrogen (N) pools. Treatment effects on soil C and N pools are discussed for 19 sites across five locations (British Columbia, Northern Rocky Mountains, Pacific Southwest, and Atlantic and Gulf coasts)...

  6. Specific ability of sulfur-ligands on removal of 203Hg-labeled organomercury from hemoglobin in comparison with nitrogen-ligands

    International Nuclear Information System (INIS)

    Hojo, Yasuji; Sugiura, Yukio; Tanaka, Hisashi

    1975-01-01

    Removal of 203 Hg-labeled organomercurials, bound to sulfhydryl groups of hemoglobin, by various chelating agents was investigated by the use of equilibrium dialysis. Organomercurials employed were chlormerodrin, methylmercury, ethylmercury and phenylmercury compounds. Higher and more specific effects of the sulfur-ligands, such as penicillamine and glutathione, on removal of organomercurial were found as compared with those of the nitrogen-ligands such as EDTA, glycine and polymethylenediamines. Linear correlation was observed between the degree of organomercury elimination from hemoglobin and the stability constant (log K 1 ) of 1:1 organomercury complex in both the sulfur- and nitrogen-ligand systems and at the same value of log K 1 , the elimination-effect of sulfur-ligands was extremely greater than that of the nitrogen-ligands. The relationship between the average percentage of removal and the Taft's polar substituent constant of organic moiety of the metal was also linear among the organomercury compounds other than chlormerodrin. The average removal percentage by sulfur-ligands increased in the order, ethylmercury>methylmercury>phenylmercury, while that of the nitrogen-ligands was not different among the organomercurials investigated. In addition, direct ligand-exchange reaction between hemoglobin-SH and the ligand coordinating-atom (S or N) against organomercurials rather than Ssub(N2) reaction via the ternary complex, hemoglobin-S-RHg-ligand, is postulated. (auth.)

  7. Sulfonamide antibiotic removal and nitrogen recovery from synthetic urine by the combination of rotating advanced oxidation contactor and methylene urea synthesis process.

    Science.gov (United States)

    Fukahori, S; Fujiwara, T; Ito, R; Funamizu, N

    2015-01-01

    The combination of nitrogen recovery and pharmaceutical removal processes for livestock urine treatment were investigated to suppress the discharge of pollutants and recover nitrogen as resources. We combined methylene urea synthesis from urea and adsorption and photocatalytic decomposition of sulfonamide antibiotic using rotating advanced oxidation contactor (RAOC) contained for obtaining both safe fertilizer and reclaimed water. The methylene urea synthesis could recover urea in synthetic urine, however, almost all sulfonamide antibiotic was also incorporated, which is unfavorable from a safety aspect if the methylene urea is to be used as fertilizer. Conversely, RAOC could remove sulfonamide antibiotic without consuming urea. It was also confirmed that the methylene urea could be synthesized from synthetic urine treated by RAOC. Thus, we concluded that RAOC should be inserted prior to the nitrogen recovery process for effective treatment of urine and safe use of methylene urea as fertilizer.

  8. Heterotrophic nitrogen removal in Bacillus sp. K5: involvement of a novel hydroxylamine oxidase.

    Science.gov (United States)

    Yang, Yunlong; Lin, Ershu; Huang, Shaobin

    2017-12-01

    An aerobic denitrifying bacterium isolated from a bio-trickling filter treating NOx, Bacillus sp. K5, is able to convert ammonium to nitrite, in which hydroxylamine oxidase (HAO) plays a critical role. In the present study, the performance for simultaneous nitrification and denitrification was investigated with batch experiments and an HAO was purified by an anion-exchange and gel-filtration chromatography from strain K5. The purified HAO's molecular mass was determined by SDS-PAGE and its activity by measuring the change in the concentration of ferricyanide, the electron acceptor. Results showed that as much as 87.8 mg L -1 ammonium-N was removed without nitrite accumulation within 24 hours in the sodium citrate medium at C/N of 15. The HAO isolated from the strain K5 was approximately 71 KDa. With hydroxylamine (NH 2 OH) as a substrate and potassium ferricyanide as an electron acceptor, the enzyme was capable of oxidizing NH 2 OH to nitrite in vitro when the pH varied from 7 to 9 and temperature ranged from 25 °C to 40 °C. This is the first time that an HAO has been purified from the Bacillus genus, and the findings revealed that it is distinctive in its molecular mass and enzyme properties.

  9. Nitrogen and Phosphorous Removal in Municipal Wastewater Treatment Plants in China: A Review

    Directory of Open Access Journals (Sweden)

    Yong Qiu

    2010-01-01

    Full Text Available Surface water environment in China was degraded rapidly in the last two decades, resulting in increasingly tighten criteria issued for municipal wastewater treatment plants (WWTPs. This paper reviewed the recent advances of process design and operational optimization for nutrients removal. Three major processes, as anaerobic-anoxic-oxic (AAO process, oxidation ditch (OD, and sequencing batch reactor (SBR occupied 65% of WWTPs amounts and 54% of treatment volumes of China in 2006. However conservative process designs and operational faults often impaired the process performances and energy efficiency. Therefore, typical processes were modified, combined, and innovated to meet the requirements of the diverse influent characteristics and lower energy consumptions. Furthermore, operational optimization techniques by modeling, simulation, and real-time control were also developed and applied in China to improve the process operation. Although great efforts had been contributed to improve the WWTPs performances in China, attentions should be continuously paid to the introduction, instruction, and implementation of advanced techniques. At last, the technical demands and appropriated techniques of WWTPs in China were briefly discussed.

  10. Fruit waste adsorbent for ammonia nitrogen removal from synthetic solution: Isotherms and kinetics

    Science.gov (United States)

    Zahrim, AY; Lija, Y.; Ricky, L. N. S.; Azreen, I.

    2016-06-01

    In this study, four types of watermelon rind (WR) adsorbents; fresh WR, modified WR with sodium hydroxide (NaOH), potassium hydroxide (KOH) and sulphuric acid (H2SO4) were used as a potential low-cost adsorbent to remove NH3-N from solution. The adsorption data were fitted with the adsorption isotherm and kinetic models to predict the mechanisms and kinetic characteristics of the adsorption process. The equilibrium data agreed well with Langmuir isotherm model with highest correlation (R2=1.00). As for kinetic modelling, the adsorption process follows pseudo-second order for all four types of adsorbents which has R2 value of 1.0 and calculated adsorption capacity, Qe of 1.2148mg/g. The calculated Qe for pseudo-second order has the smallest difference with the experimental Qe and thus suggest that this adsorption process is mainly governed by chemical process involving cations sharing or exchange between WR adsorbent and NH3-N in the solution.

  11. Effect of COD/N ratio on N2O production during nitrogen removal by aerobic granular sludge.

    Science.gov (United States)

    Velho, V F; Magnus, B S; Daudt, G C; Xavier, J A; Guimarães, L B; Costa, R H R

    2017-12-01

    N 2 O-production was investigated during nitrogen removal using aerobic granular sludge (AGS) technology. A pilot sequencing batch reactor (SBR) with AGS achieved an effluent in accordance with national discharge limits, although presented a nitrite accumulation rate of 95.79% with no simultaneous nitrification-denitrification. N 2 O production was 2.06 mg L -1 during the anoxic phase, with N 2 O emission during air pulses and the aeration phase of 1.6% of the nitrogen loading rate. Batch tests with AGS from the pilot reactor verified that at the greatest COD/N ratio (1.55), the N 2 O production (1.08 mgN 2 O-N L -1 ) and consumption (up to 0.05 mgN 2 O-N L -1 ), resulted in the lowest remaining dissolved N 2 O (0.03 mgN 2 O-N L -1 ), stripping the minimum N 2 O gas (0.018 mgN 2 O-N L -1 ). Conversely, the carbon supply shortage, under low C/N ratios, increased N 2 O emission (0.040 mgN 2 O-N L -1 ), due to incomplete denitrification. High abundance of ammonia-oxidizing and low abundance of nitrite-oxidizing bacteria were found, corroborating the fact of partial nitrification. A denitrifying heterotrophic community, represented mainly by Pseudoxanthomonas, was predominant in the AGS. Overall, the AGS showed stable partial nitrification ability representing capital and operating cost savings. The SBR operation flexibility could be advantageous for controlling N 2 O emissions, and extending the anoxic phase would benefit complete denitrification in cases of low C/N influents.

  12. Reactor performance in terms of COD and nitrogen removal and bacterial community structure of a three-stage rotating bioelectrochemical contactor

    KAUST Repository

    Sayess, Rassil R.

    2013-02-01

    Integrating microbial fuel cell (MFC) into rotating biological contactor (RBC) creates an opportunity for enhanced removal of COD and nitrogen coupled with energy generation from wastewater. In this study, a three-stage rotating bioelectrochemical contactor (referred to as RBC-MFC unit) integrating MFC with RBC technology was constructed for simultaneous removal of carbonaceous and nitrogenous compounds and electricity generation from a synthetic medium containing acetate and ammonium. The performance of the RBC-MFC unit was compared to a control reactor (referred to as RBC unit) that was operated under the same conditions but without current generation (i.e. open-circuit mode). The effect of hydraulic loading rate (HLR) and COD/N ratio on the performance of the two units was investigated. At low (3.05 gCOD g-1N) and high COD/N ratio (6.64 gCOD g-1N), both units achieved almost similar COD and ammonia-nitrogen removal. However, the RBC-MFC unit achieved significantly higher denitrification and nitrogen removal compared to the RBC unit indicating improved denitrification at the cathode due to current flow. The average voltage under 1000 Ω external resistance ranged between 0.03 and 0.30 V and between 0.02 and 0.21 V for stages 1 and 2 of the RBC-MFC unit. Pyrosequencing analysis of bacterial 16S rRNA gene revealed high bacterial diversity at the anode and cathode of both units. Genera that play a role in nitrification (Nitrospira; Nitrosomonas), denitrification (Comamonas; Thauera) and electricity generation (Geobacter) were identified at the electrodes. Geobacter was only detected on the anode of the RBC-MFC unit. Nitrifiers and denitrifiers were more abundant in the RBC-MFC unit compared to the RBC unit and were largely present on the cathode of both units suggesting that most of the nitrogen removal occurred at the cathode. © 2012 Elsevier Ltd.

  13. Nitrogen removal and nitrous oxide emission in surface flow constructed wetlands for treating sewage treatment plant effluent: Effect of C/N ratios.

    Science.gov (United States)

    Li, Ming; Wu, Haiming; Zhang, Jian; Ngo, Huu Hao; Guo, Wenshan; Kong, Qiang

    2017-09-01

    In order to design treatment wetlands with maximal nitrogen removal and minimal nitrous oxide (N 2 O) emission, the effect of influent C/N ratios on nitrogen removal and N 2 O emission in surface flow constructed wetlands (SF CWs) for sewage treatment plant effluent treatment was investigated in this study. The results showed that nitrogen removal and N 2 O emission in CWs were significantly affected by C/N ratio of influent. Much higher removal efficiency of NH 4 + -N (98%) and TN (90%) was obtained simultaneously in SF CWs at C/N ratios of 12:1, and low N 2 O emission (8.2mg/m 2 /d) and the percentage of N 2 O-N emission in TN removal (1.44%) were also observed. These results obtained in this study would be utilized to determine how N 2 O fluxes respond to variations in C/N ratios and to improve the sustainability of CWs for wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Optimization aspects of the biological nitrogen removal process in a full-scale twin sequencing batch reactor (SBR) system in series treating landfill leachate.

    Science.gov (United States)

    Remmas, Nikolaos; Ntougias, Spyridon; Chatzopoulou, Marianna; Melidis, Paraschos

    2018-03-29

    Despite the fact that biological nitrogen removal (BNR) process has been studied in detail in laboratory- and pilot-scale sequencing batch reactor (SBR) systems treating landfill leachate, a limited number of research works have been performed in full-scale SBR plants regarding nitrification and denitrification. In the current study, a full-scale twin SBR system in series of 700 m 3 (350 m 3 each) treating medium-age landfill leachate was evaluated in terms of its carbon and nitrogen removal efficiency in the absence and presence of external carbon source, i.e., glycerol from biodiesel production. Both biodegradable organic carbon and ammonia were highly oxidized [biochemical oxygen demand (BOD 5 ) and total Kjehldahl nitrogen (TKN) removal efficiencies above 90%], whereas chemical oxygen demand (COD) removal efficiency was slightly above 40%, which is within the range reported in the literature for pilot-scale SBRs. As the consequence of the high recalcitrant organic fraction of the landfill leachate, dissimilatory nitrate reduction was restricted in the absence of crude glycerol, although denitrification was improved by electron donor addition, resulting in TN removal efficiencies above 70%. Experimental data revealed that the second SBR negligibly contributed to BNR process, since carbon and ammonia oxidation completion was achieved in the first SBR. On the other hand, the low VSS/SS ratio, due to the lack of primary sedimentation, highly improved sludge settleability, resulting in sludge volume indices (SVI) below 30 mL g -1 .

  15. Efficacy of reactive mineral-based sorbents for phosphate, bacteria, nitrogen and TOC removal--column experiment in recirculation batch mode.

    Science.gov (United States)

    Nilsson, Charlotte; Lakshmanan, Ramnath; Renman, Gunno; Rajarao, Gunaratna Kuttuva

    2013-09-15

    Two mineral-based materials (Polonite and Sorbulite) intended for filter wells in on-site wastewater treatment were compared in terms of removal of phosphate (PO4-P), total inorganic nitrogen (TIN), total organic carbon (TOC) and faecal indicator bacteria (Escherichia coli and Enterococci). Using an innovative, recirculating system, septic tank effluent was pumped at a hydraulic loading rate of 3000 L m(2) d(-1) into triplicate bench-scale columns of each material over a 90-day period. The results showed that Polonite performed better with respect to removal of PO4-P, retaining on average 80% compared with 75% in Sorbulite. This difference was attributed to higher CaO content in Polonite and its faster dissolution. Polonite also performed better in terms of removal of bacteria because of its higher pH value. The total average reduction in E. coli was 60% in Polonite and 45% in Sorbulite, while for Enterococci the corresponding value was 56% in Polonite and 34% in Sorbulite. Sorbulite removed TIN more effectively, with a removal rate of 23%, while Polonite removed 11% of TIN, as well as TOC. Organic matter (measured as TOC) was accumulated in the filter materials but was also released periodically. The results showed that Sorbulite could meet the demand in removing phosphate and nitrogen with reduced microbial release from the wastewater treatment process. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Influência do nitrogênio degradável no rúmen sobre a degradabilidade in situ, os parâmetros ruminais e a eficiência de síntese microbiana em novilhos alimentados com cana-de-açúcar Ruminal degradable nitrogen for steers fed sugar cane: in situ degradability, ruminal parameters and microbial synthesis efficiency

    Directory of Open Access Journals (Sweden)

    Roselene Nunes da Silveira

    2009-03-01

    Full Text Available Objetivou-se avaliar o efeito da deficiência de nitrogênio degradável no rúmen (NDR, utilizando como volumoso cana-de-açúcar suplementada com uréia, farelo de soja ou farelo de glúten de milho - 60, sobre a eficiência de síntese microbiana e a degradabilidade in situ da matéria seca (MS e da fibra em detergente neutro (FDN em novilhos mestiços. Utilizaram-se oito novilhos canulados no rúmen e duodeno, distribuídos em dois quadrados latinos 4 × 4 e alimentados com cana-de-açúcar e cana-de-açúcar suplementada com uréia, farelo de soja ou farelo de glúten de milho-60. O pH e a concentração de N-NH3 foram mensurados no fluido ruminal antes e 2, 4, 6 e 8 horas após o fornecimento da ração. Utilizou-se a fibra em detergente ácido indigestível como indicador de fluxo duodenal. A eficiência microbiana foi determinada pelas bases purinas.As fontes de proteína degradável no rúmen não influenciaram a degradabilidade da matéria seca, entretanto, o maior valor de degradabilidade efetiva da FDN foi obtido com a cana-de-açúcar com farelo de soja. O pH e a concentração de N-NH3 observados com todas as dietas foram adequados para o crescimento dos microrganismos ruminais. A deficiência de nitrogênio degradável no rúmen não influencia a síntese de proteína microbiana e a dinâmica de fase líquida.The objective of this work was to evaluate the ruminal degradable nitrogen (RDN deficit using as roughage sugar cane supplemented with urea, soybean meal, or corn gluten meal 60 on the microbial synthesis efficiency, in situ dry matter (DM and neutral detergent fiber (NDF degradability. The treatments were: sugar cane, sugar cane with urea, soybean meal or corn gluten meal 60. Eight rumen and duodenum cannulated steers were used and arranged according to two 4 × 4 Latin Squares. The pH and N-NH3 were determined in the ruminal fluid before and 2, 4, 6 and 8 hours after feeding. The duodenal flow was estimated by indigestible

  17. Model evaluation of temperature dependency for carbon and nitrogen removal in a full-scale activated sludge plant treating leather-tanning wastewater.

    Science.gov (United States)

    Görgün, Erdem; Insel, Güçlü; Artan, Nazik; Orhon, Derin

    2007-05-01

    Organic carbon and nitrogen removal performance of a full-scale activated sludge plant treating pre-settled leather tanning wastewater was evaluated under dynamic process temperatures. Emphasis was placed upon observed nitrogen removal depicting a highly variable magnitude with changing process temperatures. As the plant was not specifically designed for this purpose, observed nitrogen removal could be largely attributed to simultaneous nitrification and denitrification presumably occurring at increased process temperatures (T>25 degrees C) and resulting low dissolved oxygen levels (DO<0.5 mgO2/L). Model evaluation using long-term data revealed that the yearly performance of activated sludge reactor could be successfully calibrated by means of temperature dependent parameters associated with nitrification, hydrolysis, ammonification and endogenous decay parameters. In this context, the Arrhenius coefficients of (i) for the maximum autotrophic growth rate, [image omitted]A, (ii) maximum hydrolysis rate, khs and (iii) endogenous heterotrophic decay rate, bH were found to be 1.045, 1.070 and 1.035, respectively. The ammonification rate (ka) defining the degradation of soluble organic nitrogen could not be characterized however via an Arrhenius-type equation.

  18. The use of hybrid constructed wetlands for wastewater treatment with special attention to nitrogen removal: a review of a recent development.

    Science.gov (United States)

    Vymazal, Jan

    2013-09-15

    The hybrid systems were developed in the 1960s but their use increased only during the late 1990 s and in the 2000s mostly because of more stringent discharge limits for nitrogen and also more complex wastewaters treated in constructed wetlands (CWs). The early hybrid CWs consisted of several stages of vertical flow (VF) followed by several stages of horizontal flow (HF) beds. During the 1990 s, HF-VF and VF-HF hybrid systems were introduced. However, to achieve higher removal of total nitrogen or to treat more complex industrial and agricultural wastewaters other types of hybrid constructed wetlands including free water surface (FWS) CWs and multistage CWs have recently been used as well. The survey of 60 hybrid constructed wetlands from 24 countries reported after 2003 revealed that hybrid constructed wetlands are primarily used on Europe and in Asia while in other continents their use is limited. The most commonly used hybrid system is a VF-HF constructed wetland which has been used for treatment of both sewage and industrial wastewaters. On the other hand, the use of a HF-VF system has been reported only for treatment of municipal sewage. Out of 60 surveyed hybrid systems, 38 have been designed to treat municipal sewage while 22 hybrid systems were designed to treat various industrial and agricultural wastewaters. The more detailed analysis revealed that VF-HF hybrid constructed wetlands are slightly more efficient in ammonia removal than hybrid systems with FWS CWs, HF-VF systems or multistage VF and HF hybrid CWs. All types of hybrid CWs are comparable with single VF CWs in terms of NH4-N removal rates. On the other hand, CWs with FWS units remove substantially more total nitrogen as compared to other types of hybrid constructed wetlands. However, all types of hybrid constructed wetlands are more efficient in total nitrogen removal than single HF or VF constructed wetlands. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Removal of organic substances and oxidation of ammonium nitrogen by a down-flow hanging sponge (DHS) reactor under high salinity conditions.

    Science.gov (United States)

    Uemura, Shigeki; Suzuki, Saori; Abe, Kenichi; Kubota, Keiichi; Yamaguchi, Takashi; Ohashi, Akiyoshi; Takemura, Yasuyuki; Harada, Hideki

    2010-07-01

    A down-flow hanging sponge (DHS) reactor, constructed by connecting three identical treatment units in series, was fed with highly saline artificial coke-plant wastewater containing 1400 mg L(-1) of phenol in terms of chemical oxygen demand (COD) and 500 mg-NL(-1) of ammonium nitrogen. The COD was removed by the 1st unit, achieving 92% removal at an average COD loading rate of 3.0 kg-COD m(-3)d(-1) for all units, with oxidation of ammonium nitrogen occurring primarily in the two downstream units. Microbial assays of the different units of the reactor revealed greater numbers of nitrifying bacteria in the 2nd and 3rd units than in the 1st unit, corresponding with the observed ammonium oxidation pattern of the reactor. These findings suggest that a succession of microflora was successfully established along the DHS. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  20. Nitrogen Retention in Coastal Marine Sediments—a Field Study of the Relative Importance of Biological and Physical Removal in a Danish Estuary

    DEFF Research Database (Denmark)

    Laurentius Nielsen, Søren; Risgaard-Petersen, Nils; Banta, Gary

    2017-01-01

    The aim of this study was to elucidate the relative importance of physical versus biological loss processes for the removal of microphytobenthic (MPB) bound nitrogen in a coastal environment at different times of the year via a dual isotope labeling technique. We used 51Cr, binding to inorganic...... were able to discern the relative importance of physical and biological processes. The isotope marking was supplemented with measurements of sediment chlorophyll biomass and oxygen fluxes, allowing us to evaluate MPB biomass as well as primary production vs. respiration in the sediment. In spring...... was physically dominated due to low MPB biomasses and activity combined with a significant storm event. Our data support the hypothesis that the relative balance between physical and biological processes in determining retention and removal of MPB-bound nitrogen changes seasonally....

  1. CO{sub 2} removal potential of carbons prepared by co-pyrolysis of sugar and nitrogen containing compounds

    Energy Technology Data Exchange (ETDEWEB)

    Arenillas, A.; Drage, T.C.; Smith, K.; Snape, C.E. [University of Nottingham, Fuel Science Group, School of Chemical, Environmental and Mining Engineering, University Park, Nottingham NG7 2RD (United Kingdom)

    2005-08-15

    The nitrogen enrichment of active carbons is reported to be effective in enhancing the specific adsorbate-adsorbent interactions for CO{sub 2}. In this work, nitrogen-enriched carbons were prepared by co-pyrolysis of sugar and a series of nitrogen compounds with different nitrogen functionalities. The results show that although the amount of nitrogen incorporated to the final adsorbent is important, the N-functionality seems to be more relevant for increasing CO{sub 2} uptake. Thus, the adsorbent obtained from urea co-pyrolysis presents the highest nitrogen content but the lowest CO{sub 2} adsorption capacity. However, the adsorbent obtained from carbazole co-pyrolysis, despite the lower amount of N incorporated, shows high CO{sub 2} uptake, up to 9wt.%, probably because the presence of more basic functionalities as determined by XPS analysis.

  2. The mechanism of enhanced wastewater nitrogen removal by photo-sequencing batch reactors based on comprehensive analysis of system dynamics within a cycle.

    Science.gov (United States)

    Ye, Jianfeng; Liang, Junyu; Wang, Liang; Markou, Giorgos

    2018-07-01

    To understand the mechanism of enhanced nitrogen removal by photo-sequencing batch reactors (photo-SBRs), which incorporated microalgal photosynthetic oxygenation into the aerobic phases of a conventional cycle, this study performed comprehensive analysis of one-cycle dynamics. Under a low aeration intensity (about 0.02 vvm), a photo-SBR, illuminated with light at 92.27 μ·mol·m -2 ·s -1 , could remove 99.45% COD, 99.93% NH 4 + -N, 90.39% TN, and 95.17% TP, while the control SBR could only remove 98.36% COD, 83.51% NH 4 + -N, 78.96% TN, and 97.75% TP, for a synthetic domestic sewage. The specific oxygen production rate (SOPR) of microalgae in the photo-SBR could reach 6.63 fmol O 2 ·cell -1 ·h -1 . One-cycle dynamics shows that the enhanced nitrogen removal by photo-SBRs is related to photosynthetic oxygenation, resulting in strengthened nitrification, instead of direct nutrient uptake by microalgae. A too high light or aeration intensity could deteriorate anoxic conditions and thus adversely affect the removal of TN and TP in photo-SBRs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. High-rate nitrogen removal from waste brine by marine anammox bacteria in a pilot-scale UASB reactor.

    Science.gov (United States)

    Yokota, Nobuyuki; Watanabe, Yasutsugu; Tokutomi, Takaaki; Kiyokawa, Tomohiro; Hori, Tomoyuki; Ikeda, Daisuke; Song, Kang; Hosomi, Masaaki; Terada, Akihiko

    2018-02-01

    The goal of this study was to develop a startup strategy for a high-rate anaerobic ammonium oxidation (anammox) reactor to treat waste brine with high concentrations of ammonium from a natural gas plant. An upflow anaerobic sludge blanket (UASB) anammox reactor with an effective volume of 294 L was fed continuously with waste brine with a salinity of 3% and a NH 4 + concentration of 180 mg-N/L, as well as a NaNO 2 solution. By inoculating a methanogenic granular biomass as a biomass carrier, the reactor attained the maximum volumetric nitrogen removal rate (NRR) of 10.7 kg-N/m 3 /day on day 209, which was 1.7 times higher than the highest reported NRR for wastewater of comparable salinity. High-throughput sequencing of 16S rRNA gene amplicons revealed that Candidatus Scalindua wagneri was enriched successfully in granules in the UASB, and it replaced Methanosaeta and became dominant in the granule. The inhibitory effect of NO 2 - on the anammox reaction in the granules was assessed by a 15 N tracer method, and the results showed that anammox activity was maintained at 60% after exposure to 300 mg-N/L of NO 2 - for 24 h. Compared with previous studies of the susceptibilities of Candidatus Brocadia and Candidatus Kuenenia to NO 2 - , the enriched marine anammox bacteria were proven to have comparable or even higher tolerances for high NO 2 - concentrations after a long exposure.

  4. Uncertainty assessment of a model for biological nitrogen and phosphorus removal: Application to a large wastewater treatment plant

    Science.gov (United States)

    Mannina, Giorgio; Cosenza, Alida; Viviani, Gaspare

    In the last few years, the use of mathematical models in WasteWater Treatment Plant (WWTP) processes has become a common way to predict WWTP behaviour. However, mathematical models generally demand advanced input for their implementation that must be evaluated by an extensive data-gathering campaign, which cannot always be carried out. This fact, together with the intrinsic complexity of the model structure, leads to model results that may be very uncertain. Quantification of the uncertainty is imperative. However, despite the importance of uncertainty quantification, only few studies have been carried out in the wastewater treatment field, and those studies only included a few of the sources of model uncertainty. Seeking the development of the area, the paper presents the uncertainty assessment of a mathematical model simulating biological nitrogen and phosphorus removal. The uncertainty assessment was conducted according to the Generalised Likelihood Uncertainty Estimation (GLUE) methodology that has been scarcely applied in wastewater field. The model was based on activated-sludge models 1 (ASM) and 2 (ASM2). Different approaches can be used for uncertainty analysis. The GLUE methodology requires a large number of Monte Carlo simulations in which a random sampling of individual parameters drawn from probability distributions is used to determine a set of parameter values. Using this approach, model reliability was evaluated based on its capacity to globally limit the uncertainty. The method was applied to a large full-scale WWTP for which quantity and quality data was gathered. The analysis enabled to gain useful insights for WWTP modelling identifying the crucial aspects where higher uncertainty rely and where therefore, more efforts should be provided in terms of both data gathering and modelling practises.

  5. Artificial neural network modelling for organic and total nitrogen removal of aerobic granulation under steady-state condition.

    Science.gov (United States)

    Gong, H; Pishgar, R; Tay, J H

    2018-04-27

    Aerobic granulation is a recent technology with high level of complexity and sensitivity to environmental and operational conditions. Artificial neural networks (ANNs), computational tools capable of describing complex non-linear systems, are the best fit to simulate aerobic granular bioreactors. In this study, two feedforward backpropagation ANN models were developed to predict chemical oxygen demand (Model I) and total nitrogen removal efficiencies (Model II) of aerobic granulation technology under steady-state condition. Fundamentals of ANN models and the steps to create them were briefly reviewed. The models were respectively fed with 205 and 136 data points collected from laboratory-, pilot-, and full-scale studies on aerobic granulation technology reported in the literature. Initially, 60%, 20%, and 20%, and 80%, 10%, and 10% of the points in the corresponding datasets were randomly chosen and used for training, testing, and validation of Model I, and Model II, respectively. Overall coefficient of determination (R 2 ) value and mean squared error (MSE) of the two models were initially 0.49 and 15.5, and 0.37 and 408, respectively. To improve the model performance, two data division methods were used. While one method is generic and potentially applicable to other fields, the other can only be applied to modelling the performance of aerobic granular reactors. R 2 value and MSE were improved to 0.90 and 2.54, and 0.81 and 121.56, respectively, after applying the new data division methods. The results demonstrated that ANN-based models were capable simulation approach to predict a complicated process like aerobic granulation.

  6. The effects of antecedent dry days on the nitrogen removal in layered soil infiltration systems for storm run-off control.

    Science.gov (United States)

    Cho, Kang-Woo; Yoon, Min-Hyuk; Song, Kyung-Guen; Ahn, Kyu-Hong

    2011-01-01

    The effects of antecedent dry days (ADD) on nitrogen removal efficiency were investigated in soil infiltration systems, with three distinguishable layers: mulch layer (ML), coarse soil layer (CSL) and fine soil layer (FSL). Two sets of lab-scale columns with loamy CSL (C1) and sandy CSL (C2) were dosed with synthetic run-off, carrying chemical oxygen demand of 100 mg L(-1) and total nitrogen of 13 mg L(-1). The intermittent dosing cycle was stepwise adjusted for 5, 10 and 20 days. The influent ammonium and organic nitrogen were adsorbed to the entire depth in C1, while dominantly to the FSL in C2. In both columns, the effluent ammonium concentration increased while the organic nitrogen concentration decreased, as ADD increased from 5 to 20 days. The effluent of C1 always showed nitrate concentration exceeding influent, caused by nitrification, by increasing amounts as ADD increased. However, the wash-out of nitrate in C1 was not distinct in terms of mass since the effluent flow rate was only 25% of the influent. In contrast, efficient reduction (>95%) of nitrate loading was observed in C2 under ADD of 5 and 10 days, because of insignificant nitrification in the CSL and denitrification in the FSL. However, for the ADD of 20 days, a significant nitrate wash-out appeared in C2 as well, possibly because of the re-aeration by the decreasing water content in the FSL. Consequently, the total nitrogen load escaping with the effluent was always smaller in C2, supporting the effectiveness of sandy CSL over loamy FSL for nitrogen removal under various ADDs.

  7. A robust nitrifying community in a bioreactor at 50 °C opens up the path for thermophilic nitrogen removal.

    Science.gov (United States)

    Courtens, Emilie Np; Spieck, Eva; Vilchez-Vargas, Ramiro; Bodé, Samuel; Boeckx, Pascal; Schouten, Stefan; Jauregui, Ruy; Pieper, Dietmar H; Vlaeminck, Siegfried E; Boon, Nico

    2016-09-01

    The increasing production of nitrogen-containing fertilizers is crucial to meet the global food demand, yet high losses of reactive nitrogen associated with the food production/consumption chain progressively deteriorate the natural environment. Currently, mesophilic nitrogen-removing microbes eliminate nitrogen from wastewaters. Although thermophilic nitrifiers have been separately enriched from natural environments, no bioreactors are described that couple these processes for the treatment of nitrogen in hot wastewaters. Samples from composting facilities were used as inoculum for the batch-wise enrichment of thermophilic nitrifiers (350 days). Subsequently, the enrichments were transferred to a bioreactor to obtain a stable, high-rate nitrifying process (560 days). The community contained up to 17% ammonia-oxidizing archaea (AOAs) closely related to 'Candidatus Nitrososphaera gargensis', and 25% nitrite-oxidizing bacteria (NOBs) related to Nitrospira calida. Incorporation of (13)C-derived bicarbonate into the respective characteristic membrane lipids during nitrification supported their activity as autotrophs. Specific activities up to 198±10 and 894±81 mg N g(-1) VSS per day for AOAs and NOBs were measured, where NOBs were 33% more sensitive to free ammonia. The NOBs were extremely sensitive to free nitrous acid, whereas the AOAs could only be inhibited by high nitrite concentrations, independent of the free nitrous acid concentration. The observed difference in product/substrate inhibition could facilitate the development of NOB inhibition strategies to achieve more cost-effective processes such as deammonification. This study describes the enrichment of autotrophic thermophilic nitrifiers from a nutrient-rich environment and the successful operation of a thermophilic nitrifying bioreactor for the first time, facilitating opportunities for thermophilic nitrogen removal biotechnology.

  8. Upgrading of the symbiosis of Nitrosomanas and anammox bacteria in a novel single-stage partial nitritation-anammox system: Nitrogen removal potential and Microbial characterization.

    Science.gov (United States)

    Liu, Yuan; Niu, Qigui; Wang, Shaopo; Ji, Jiayuan; Zhang, Yu; Yang, Min; Hojo, Toshimasa; Li, Yu-You

    2017-11-01

    A novel single-stage partial nitritation-anammox process equipped with porous functional suspended carriers was developed at 25°C in a CSTR by controlling dissolved oxygen <0.3mg/L. The nitrogen removal performance was almost unchanged over a nitrogen loading rate ranging from 0.5 to 2.5kgNH 4 + -N/m 3 /d with a high nitrogen removal efficiency of 81.1%. The specific activity of AOB and anammox bacteria was of 3.00g-N/g-MLVSS/d (the suspended sludge), 3.56g-N/g-MLVSS/d (the biofilm sludge), respectively. The results of pyrosequencing revealed that Nitrosomonas (5.66%) and Candidatus_Kuenenia (4.95%) were symbiotic in carriers while Nitrosomonas (40.70%) was predominant in the suspended flocs. Besides, two specific types of heterotrophic filamentous bacteria in the suspended flocs (Haliscomenobacter) and the functional carrier biofilm (Longilinea) were shown to confer structural integrity to the aggregates. The novel single-stage partial nitritation-anammox process equipped with functional suspended carriers was shown to have good potential for the nitrogen-rich wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Comprehensive evaluation of nitrogen removal rate and biomass, ethanol, and methane production yields by combination of four major duckweeds and three types of wastewater effluent.

    Science.gov (United States)

    Toyama, Tadashi; Hanaoka, Tsubasa; Tanaka, Yasuhiro; Morikawa, Masaaki; Mori, Kazuhiro

    2018-02-01

    To assess the potential of duckweeds as agents for nitrogen removal and biofuel feedstocks, Spirodela polyrhiza, Lemna minor, Lemna gibba, and Landoltia punctata were cultured in effluents of municipal wastewater, swine wastewater, or anaerobic digestion for 4 days. Total dissolved inorganic nitrogen (T-DIN) of 20-50 mg/L in effluents was effectively removed by inoculating with 0.3-1.0 g/L duckweeds. S. polyrhiza showed the highest nitrogen removal (2.0-10.8 mg T-DIN/L/day) and biomass production (52.6-70.3 mg d.w./L/day) rates in all the three effluents. Ethanol and methane were produced from duckweed biomass grown in each effluent. S. polyrhiza and L. punctata biomass showed higher ethanol (0.168-0.191, 0.166-0.172 and 0.174-0.191 g-ethanol/g-biomass, respectively) and methane (340-413 and 343-408 NL CH 4 /kg VS, respectively) production potentials than the others, which is related to their higher carbon and starch contents and calorific values. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  10. Efficacy monitoring of in situ fuel bioremediation

    International Nuclear Information System (INIS)

    Mueller, J.; Borchert, S.; Heard, C.

    1996-01-01

    The wide-scale, multiple-purpose use of fossil fuels throughout the industrialized world has resulted in the inadvertent contamination of myriad environments. Given the scope and magnitude of these environmental contamination problems, bioremediation often represents the only practical and economically feasible solution. This is especially true when depth of contamination, magnitude of the problem, and nature of contaminated material preclude other remedial actions, short of the no-response alternative. From the perspective, the effective, safe and scientifically valid use of in situ bioremediation technologies requires cost-efficient and effective implementation strategies in combination with unequivocal approaches for monitoring efficacy of performance. Accordingly, with support from the SERDP program, the authors are field-testing advanced in situ bioremediation strategies and new approaches in efficacy monitoring that employ techniques instable carbon and nitrogen isotope biogeochemistry. One field demonstration has been initiated at the NEX site in Port Hueneme, CA (US Navy's National Test Site). The objectives are: (1) to use stable isotopes as a biogeochemical monitoring tool for in situ bioremediation of refined petroleum (i.e., BTEX), and (2) to use vertical groundwater circulation technology to effect in situ chemical containment and enhanced in situ bioremediation

  11. Removal of carbon, nitrogen and phosphorus from the separated liquid phase of hog manure by the multi-zone BioCAST technology.

    Science.gov (United States)

    Yerushalmi, Laleh; Alimahmoodi, Mahmood; Afroze, Niema; Godbout, Stephane; Mulligan, Catherine N

    2013-06-15

    The removal of chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) at concentrations of 960 ± 38 to 2400 ± 96 mg/L, 143 ± 9 to 235 ± 15 mg/L and 25 ± 2 to 57 ± 4 mg/L, respectively, from the separated liquid phase of hog manure by the multi-zone BioCAST technology is discussed. Despite the inhibitory effect of hog waste toward microbial activities, removal efficiencies up to 89.2% for COD, 69.2% for TN and 47.6% for TP were obtained during 185 d of continuous operation. The free ammonia inhibition was postulated to be responsible for the steady reduction of COD and TP removal with the increase of TN/TP ratio from 3.6 to 5.8. On the contrary, the increase of COD/TN ratio from 4.8 to 14.1 improved the removal of all contaminants. Nitrogen removal did not show any dependence on the COD/TP ratio, despite the steady increase of COD and TP removal with this ratio in the range of 19.3-50.6. The removal efficiencies of organic and inorganic contaminants increased progressively owing to the adaptation of microbial biomass, resulting from the presence of suspended biomass in the mixed liquor that circulated continuously between the three zones of aerobic, microaerophilic and anoxic, as well as the attached biomass immobilized inside the aerobic zone. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. In-Situ Simulation

    DEFF Research Database (Denmark)

    Bjerregaard, Anders Thais; Slot, Susanne; Paltved, Charlotte

    2015-01-01

    , and organisational characteristic. Therefore, it might fail to fully mimic real clinical team processes. Though research on in situ simulation in healthcare is in its infancy, literature is abundant on patient safety and team training1. Patient safety reporting systems that identify risks to patients can improve......Introduction: In situ simulation offers on-site training to healthcare professionals. It refers to a training strategy where simulation technology is integrated into the clinical encounter. Training in the simulation laboratory does not easily tap into situational resources, e.g. individual, team...... patient safety if coupled with training and organisational support. This study explored the use of critical incidents and adverse events reports for in situ simulation and short-term observations were used to create learning objectives and training scenarios. Method: This study used an interventional case...

  13. In situ groundwater bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry C.

    2009-02-01

    In situ groundwater bioremediation of hydrocarbons has been used for more than 40 years. Most strategies involve biostimulation; however, recently bioaugmentation have been used for dehalorespiration. Aquifer and contaminant profiles are critical to determining the feasibility and strategy for in situ groundwater bioremediation. Hydraulic conductivity and redox conditions, including concentrations of terminal electron acceptors are critical to determine the feasibility and strategy for potential bioremediation applications. Conceptual models followed by characterization and subsequent numerical models are critical for efficient and cost effective bioremediation. Critical research needs in this area include better modeling and integration of remediation strategies with natural attenuation.

  14. Enhanced nitrogen removal from piggery wastewater with high NH4+ and low COD/TN ratio in a novel upflow microaerobic biofilm reactor.

    Science.gov (United States)

    Meng, Jia; Li, Jiuling; Li, Jianzheng; Antwi, Philip; Deng, Kaiwen; Nan, Jun; Xu, Pianpian

    2018-02-01

    To enhance nutrient removal more cost-efficiently in microaerobic process treating piggery wastewater characterized by high ammonium (NH 4 + -N) and low chemical oxygen demand (COD) to total nitrogen (TN) ratio, a novel upflow microaerobic biofilm reactor (UMBR) was constructed and the efficiency in nutrient removal was evaluated with various influent COD/TN ratios and reflux ratios. The results showed that the biofilm on the carriers had increased the biomass in the UMBR and enhanced the enrichment of slow-growth-rate bacteria such as nitrifiers, denitrifiers and anammox bacteria. The packed bed allowed the microaerobic biofilm process perform well at a low reflux ratio of 35 with a NH 4 + -N and TN removal as high as 93.1% and 89.9%, respectively. Compared with the previously developed upflow microaerobic sludge reactor, the UMBR had not changed the dominant anammox approach to nitrogen removal, but was more cost-efficiently in treating organic wastewater with high NH 4 + -N and low COD/TN ratio. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. In situ bioremediation of chlorinated solvent with natural gas

    International Nuclear Information System (INIS)

    Rabold, D.E.

    1996-01-01

    A bioremediation system for the removal of chlorinated solvents from ground water and sediments is described. The system involves the the in-situ injection of natural gas (as a microbial nutrient) through an innovative configuration of horizontal wells

  16. Sex in situ

    DEFF Research Database (Denmark)

    Krøgholt, Ida

    2017-01-01

    Sex er en del af vores sociale praksis og centralt for det, vi hver især er. Men bortset fra pornoindustrien, har vi ikke mange muligheder for at få adgang til billeder af sex. Teater Nordkrafts forestilling Sex in situ vil gøre seksuelle billeder til noget, der kan deles, udveksles og tales om, og...

  17. [Enhanced nitrogen and phosphorus removal of wastewater by using sludge anaerobic fermentation liquid as carbon source in a pilot-scale system].

    Science.gov (United States)

    Luo, Zhe; Zhou, Guang-Jie; Liu, Hong-Bo; Nie, Xin-Yu; Chen, Yu; Zhai, Li-Qin; Liu, He

    2015-03-01

    In order to explore the possibility of enhanced nitrogen and phosphorus removal in wastewater using sludge anaerobic fermentation liquid as external carbon source, the present study proposed an A2/O reactor system with a total effective volume of 4 660 L and real municipal wastewater for treatment. The results showed that under the conditions of the influent COD at 243.7 mg x L(-1), NH4(+) -N at 30. 9 mg x L(-1), TN at 42.9 mg'L- , TP at 2.8 mg x L(-1), the backflow ratio of nitrification liquid at 200% and recycle ratio of sludge at 100%, the addition of acetic acid into anoxic tank could enhance the removal efficiency of nitrogen and phosphorus, and the optimal influent quantity and SCOD incremental of carbon were 7 500 L x d(-1) and 50 mg L(-1), respectively. When the sludge fermentation liquid was used as external carbon source and the average effluent COD, NH4(+) -N, TN, TP removal efficiency were 81.60%, 88.91%, 64.86% and 87.61%, the effluent concentrations were 42.18, 2.77, 11.92 and 0.19 mg x L(-1), respectively, which met China's first Class (A) criteria specified in the Discharge Standard Urban Sewage Treatment Plant Pollutant (GB 18918-2002). The results of the present study demonstrated that the addition of sludge anaerobic fermented liquid as external carbon source was a feasible way to enhance the removal of nitrogen and phosphorous in municipal wastewater, providing a new feasible strategy for the reuse and recycle of sewage sludge in China.

  18. On the `hysteresis` effect in the biological nitrogen removal :theory and full scale experimental evaluation; Sul fenomeno di `isteresi` nella rimozione biologica dell`azoto: concettualizzazione teorica e valutazione sperimentale a scala reale degli effetti

    Energy Technology Data Exchange (ETDEWEB)

    Tatano, F. [Politecnico di Milano, Milan (Italy). Dip. di Ingegneria Idraulica, Ambientale e del Rilevamento

    1996-07-01

    The wastewater treatments plants localized in the Ruhr River (Germany), generally present a typical wastewater temperature variation curve during the winter period. These temperature changes produce specific effects on the nitrogen removal efficiencies in the activated sludge systems. The so called `hysteresis` phenomenon is responsible for these effects. The paper deals with some simplified theoretical considerations and with a full scale experimental evaluations of the effects caused by the hysteresis phenomenon in the biological nitrogen removal.

  19. Long term effects of cerium dioxide nanoparticles on the nitrogen removal, micro-environment and community dynamics of a sequencing batch biofilm reactor.

    Science.gov (United States)

    Xu, Yi; Wang, Chao; Hou, Jun; Wang, Peifang; Miao, Lingzhan; You, Guoxiang; Lv, Bowen; Yang, Yangyang; Zhang, Fei

    2017-12-01

    The influences of cerium dioxide nanoparticles (CeO 2 NPs) on nitrogen removal in biofilm were investigated. Prolonged exposure (75d) to 0.1mg/L CeO 2 NPs caused no inhibitory effects on nitrogen removal, while continuous addition of 10mg/L CeO 2 NPs decreased the treatment efficiency to 53%. With the progressive concentration of CeO 2 NPs addition, the removal efficiency could nearly stabilize at 67% even with the continues spike of 10mg/L. The micro-profiles of dissolved oxygen, pH, and oxidation reduction potential suggested the developed protection mechanisms of microbes to progressive CeO 2 NPs exposure led to the less influence of microenvironment, denitrification bacteria and enzyme activity than those with continuous ones. Furthermore, high throughput sequencing illustrated the drastic shifted communities with gradual CeO 2 NPs spiking was responsible for the adaption and protective mechanisms. The present study demonstrated the acclimated microbial community was able to survive CeO 2 NPs addition more readily than those non-acclimated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Removal Efficiency of Nitrogen, Phosphorus and Heavy Metal by Intermittent Cycle Extended Aeration System from Municipal Wastewater (Yazd-ICEAS

    Directory of Open Access Journals (Sweden)

    Seyed Vahid Ghelmani

    2016-09-01

    Conclusion: The high removal efficiency of BOD5, TKN, and NH4+ showed that this advanced SBR system had an appropriate efficiency for nitrification. Phosphorus removal (TP had a lower efficiency than those of NH4+ and TKN, but it was within the environmental standard limits. On the other hand, in the advanced SBR the removal efficiency of heavy metals for Cd was not within the standard limits.

  1. Enhanced removal of chemical oxygen demand, nitrogen and phosphorus using the ameliorative anoxic/anaerobic/oxic process and micro-electrolysis.

    Science.gov (United States)

    Bao, K Q; Gao, J Q; Wang, Z B; Zhang, R Q; Zhang, Z Y; Sugiura, N

    2012-01-01

    Synthetic wastewater was treated using a novel system integrating the reversed anoxic/anaerobic/oxic (RAAO) process, a micro-electrolysis (ME) bed and complex biological media. The system showed superior chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) removal rates. Performance of the system was optimised by considering the influences of three major controlling factors, namely, hydraulic retention time (HRT), organic loading rate (OLR) and mixed liquor recirculation (MLR). TP removal efficiencies were 69, 87, 87 and 83% under the HRTs of 4, 8, 12 and 16 h. In contrast, HRT had negligible effects on the COD and TN removal efficiencies. COD, TN and TP removal efficiencies from synthetic wastewater were 95, 63 and 87%, respectively, at an OLR of 1.9 g/(L·d). The concentrations of COD, TN and TP in the effluent were less than 50, 15 and 1 mg/L, respectively, at the controlled MLR range of 75-100%. In this system, organics, TN and TP were primarily removed from anoxic tank regardless of the operational conditions.

  2. Identification of microorganisms involved in nitrogen removal from wastewater treatment systems by means of molecular biology techniques

    International Nuclear Information System (INIS)

    Figueroa, M.; Alonso-Gutierrez, J.; Campos, J. L.; Mendez, R.; Mosquera-Corral, A.

    2010-01-01

    The identification of the main bacteria populations present in the granular biomass from a biological reactor treating wastewater has been performed by applying two different molecular biology techniques. By means of the DGGE technique five different genera of heterotrophic bacteria (Thiothrix, Thauera, Cloroflexi, Comamonas y Zoogloea) and one of ammonia oxidizing bacteria (Nitrosomanas) were identified. The FISH technique, based on microscopy, allowed the in situ visualization and quantification of those microorganisms. Special attention was paid to filamentous bacteria distribution (Thiothrix and Cloroflexi) which could exert a structural function in aerobic granular sludge. (Author) 26 refs.

  3. Comparison of nitrogen removal rates and nitrous oxide production from enriched anaerobic ammonium oxidizing bacteria in suspended and attached growth reactors.

    Science.gov (United States)

    Panwivia, Supaporn; Sirvithayapakorn, Sanya; Wantawin, Chalermraj; Noophan, Pongsak Lek; Munakata-Marr, Junko

    2014-01-01

    Attached growth-systems for the anaerobic ammonium oxidation (anammox) process have been postulated for implementation in the field. However, information about the anammox process in attached growth-systems is limited. This study compared nitrogen removal rates and nitrous oxide (N2O) production of enriched anammox cultures in both suspended and attached growth sequencing batch reactors (SBRs). Suspended growth reactors (SBR-S) and attached growth reactors using polystyrene sponge as a medium (SBR-A) were used in these experiments. After inoculation with an enriched anammox culture, significant nitrogen removals of ammonium (NH4 (+)) and nitrite (NO2 (-)) were observed under NH4 (+):NO2 (-) ratios ranging from 1:1 to 1:2 in both types of SBRs. The specific rates of total nitrogen removal in SBR-S and SBR-A were 0.52 mg N/mg VSS-d and 0.44 mg N/mg VSS-d, respectively, at an NH4 (+):NO2 (-) ratio of 1:2. N2O production by the enriched anammox culture in both SBR-S and SBR-A was significantly higher at NH4 (+):NO2 (-) ratio of 1:2 than at NH4 (+):NO2 (-) ratios of 1:1 and 1:1.32. In addition, N2O production was higher at a pH of 6.8 than at pH 7.3, 7.8, and 8.3 in both SBR-S and SBR-A. The results of this investigation demonstrate that the anammox process may avoid N2O emission by maintaining an NH4 (+):NO2 (-) ratio of less than 1:2 and pH higher than 6.8.

  4. In situ reactor

    Science.gov (United States)

    Radtke, Corey William; Blackwelder, David Bradley

    2004-01-27

    An in situ reactor for use in a geological strata, is described and which includes a liner defining a centrally disposed passageway and which is placed in a borehole formed in the geological strata; and a sampling conduit is received within the passageway defined by the liner and which receives a geological specimen which is derived from the geological strata, and wherein the sampling conduit is in fluid communication with the passageway defined by the liner.

  5. In situ remediation of uranium contaminated groundwater

    International Nuclear Information System (INIS)

    Dwyer, B.P.; Marozas, D.C.

    1997-01-01

    In an effort to develop cost-efficient techniques for remediating uranium contaminated groundwater at DOE Uranium Mill Tailing Remedial Action (UMTRA) sites nationwide, Sandia National Laboratories (SNL) deployed a pilot scale research project at an UMTRA site in Durango, CO. Implementation included design, construction, and subsequent monitoring of an in situ passive reactive barrier to remove Uranium from the tailings pile effluent. A reactive subsurface barrier is produced by emplacing a reactant material (in this experiment various forms of metallic iron) in the flow path of the contaminated groundwater. Conceptually the iron media reduces and/or adsorbs uranium in situ to acceptable regulatory levels. In addition, other metals such as Se, Mo, and As have been removed by the reductive/adsorptive process. The primary objective of the experiment was to eliminate the need for surface treatment of tailing pile effluent. Experimental design, and laboratory and field results are discussed with regard to other potential contaminated groundwater treatment applications

  6. An operation protocol for facilitating start-up of single-stage autotrophic nitrogen removing reactors based on process stoichiometry

    DEFF Research Database (Denmark)

    Mutlu, A. Gizem; Vangsgaard, Anna Katrine; Sin, Gürkan

    2012-01-01

    Start-up and operation of single-stage nitritation/anammox reactor employing complete autotrophic nitrogen can be difficult. Keeping the performance criteria and monitoring the microbial community composition may not be easy or fast enough to take action on time. In this study, a control strategy...

  7. Removing nitrogen from wastewater with side stream anammox: What are the trade-offs between environmental impacts?

    NARCIS (Netherlands)

    Hauck, M.; Maalcke-Luesken, F.A.; Jetten, M.S.M.; Huijbregts, M.A.J.

    2016-01-01

    Anaerobic ammonium oxidation (anammox) is a novel way to reduce nitrogen in ammonium rich wastewater. Although aquatic eutrophication will certainly be reduced, it is unknown how other environmental impacts may change by including anammox in the treatment of wastewater. Here, life cycle assessment

  8. Automatic adjustment of cycle length and aeration time for improved nitrogen removal in an alternating activated sludge process

    DEFF Research Database (Denmark)

    Isaacs, Steven Howard

    1997-01-01

    The paper examines the nitrogen dynamics in the alternating BIODENITRO and BIODENIPHO processes with a focus on two control handles influencing now scheduling and aeration: the cycle length and the ammonia concentration at which a nitrifying period is terminated. A steady state analysis examining...

  9. Removal of Cr{sup 6+} from wastewater via adsorption with high-specific-surface-area nitrogen-doped hierarchical porous carbon derived from silkworm cocoon

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Junting; Zhang, Zhengping; Ji, Jing; Dou, Meiling, E-mail: douml@mail.buct.edu.cn; Wang, Feng, E-mail: wangf@mail.buct.edu.cn

    2017-05-31

    Highlights: • The nitrogen-doped hierarchical porous carbon was prepared from silkworm cocoon. • The NHPC possesses a unique porous structure and a high specific surface area. • The NHPC presents superior adsorption performance for Cr (VI). • The NHPC exhibits an excellent recyclability for the removal of Cr (VI). - Abstract: The development of highly efficient adsorbents is an effective way to remove Cr{sup 6+} from wastewater for environment protection. Herein, a high-specific-surface-area nitrogen-doped hierarchical porous carbon (NHPC) derived from silkworm cocoon was synthesized and applied as an efficient adsorbent for the removal of Cr{sup 6+} from wastewater. The resultant NHPC possesses a specific surface area as high as 3134 m{sup 2} g{sup −1} and a unique hierarchical porous structure with a large number of small mesopores (2–4 nm) and micropores (0.8–2 nm) embedded in the sidewall of bowl-like macropores (200–300 nm), in which sufficient exposure of adsorption sites and high-flow transfer of Cr{sup 6+} ions can be achieved. As a result, the NHPC exhibits a remarkable adsorption performance with a larger adsorption capacity (366.3 mg g{sup −1}), a higher adsorption rate (4 × 10{sup −2} g mg{sup −1} min{sup −1}) and a superior recyclability in comparison with the commercial adsorbent (Norit CGP). Thermodynamic and kinetic analyses indicate that the adsorption process is spontaneous and endothermic, which fits well with the pseudo-second-order kinetic model and Langmuir isotherm model. This biomass-based porous carbon with well-defined hierarchical porous structure can be applied as a promising adsorbent for the removal of Cr{sup 6+} from wastewater.

  10. Biological floating bed and bio-contact oxidation processes for landscape water treatment: simultaneous removal of Microcystis aeruginosa, TOC, nitrogen and phosphorus.

    Science.gov (United States)

    Su, Jun Feng; Liang, Dong Hui; Fu, Le; Wei, Li; Ma, Min

    2018-06-13

    The aim of this study was to identify algicidal bacteria J25 against the Microcystis aeruginosa (90.14%), Chlorella (78.75%), Scenedesmus (not inhibited), and Oscillatoria (90.12%). Meanwhile, we evaluate the SOD activity and efficiency of denitrification characteristics with Acinetobacter sp. J25. A novel hybrid bioreactor combined biological floating bed with bio-contact oxidation (BFBO) was designed for treating the landscape water, and the average removal efficiencies of nitrate-N, ammonia-N, nitrite-N, TN, TP, TOC, and algal cells were 91.14, 50, 87.86, 88.83, 33.07, 53.95, and 53.43%, respectively. A 454-pyrosequencing technology was employed to investigate the microbial communities of the BFBO reactor samples. The results showed that Acinetobacter sp. J25 was the dominant contributor for effective removal of N, algal cells, and TOC in the BFBO reactor. And the relative abundance of Acinetobacter showed increase trend with the delay of reaction time. Graphical abstract Biological floating bed and bio-contact oxidation (BFBO) as a novel hybrid bioreactor designed for simultaneous removal Microcystis aeruginosa, TOC, nitrogen, and phosphorus. And high-throughput sequencing data demonstrated that Acinetobacter sp. J25 was the dominate species in the reactor and played key roles in the removal of N, TOC, and M. aeruginosa. Proposed reaction mechanism of the BFBO.

  11. Removal of ammonia nitrogen from leachate of Muribeca municipal solid waste landfill, Pernambuco, Brazil, using natural zeolite as part of a biochemical system.

    Science.gov (United States)

    Lins, Cecilia Maria M S; Alves, Maria Cristina M; Campos, Juacyara C; Silva, Fabrícia Maria S; Jucá, José Fernando T; Lins, Eduardo Antonio M

    2015-01-01

    The inadequate disposal of leachate is one of the key factors in the environmental impact of urban solid waste landfills in Brazil. Among the compounds present in the leachates from Brazilian landfills, ammonia nitrogen is notable for its high concentrations. The purpose of this study was to assess the efficiency of a permeable reactive barrier filled with a natural zeolite, which is part of a biochemical system for the tertiary treatment of the leachate from Muribeca Municipal Solid Waste Landfill in Pernambuco, Brazil, to reduce its ammonia nitrogen concentration. This investigation initially consisted of kinetic studies and batch equilibrium tests on the natural zeolite to construct the sorption isotherms, which showed a high sorption capacity, with an average of 12.4 mg NH4+.L(-1), a value close to the sorption rates found for the aqueous ammonium chloride solution. A permeable reactive barrier consisting of natural zeolite, as simulated by the column test, was efficient in removing the ammonia nitrogen present in the leachate pretreated with calcium hydroxide. Nevertheless, the regenerated zeolite did not satisfactorily maintain the sorption properties of the natural zeolite, and an analysis of their cation-exchange properties showed a reduced capacity of 54 meq per 100 g for the regenerated zeolite compared to 150 meq per 100 g for the natural zeolite.

  12. Removal of organic matter and ammoniacal nitrogen from landfill leachate using the UV/H2O2 photochemical process.

    Science.gov (United States)

    Córdova, Rolando Nunes; Nagel-Hassemer, Maria Eliza; Matias, William Gerson; Muller, Jose Miguel; de Castilhos Junior, Armando Borges

    2017-12-04

    This study investigates the effects of pH, H 2 O 2 concentration and reaction time of the UV/H 2 O 2 photochemical process on the removal of organic matter and ammonia from biologically pre-treated landfill leachates in anaerobic stabilization ponds. The results show that the concentration of H 2 O 2 and the initial pH are significant factors, with no significant interaction between them. A pH of 3 is the optimum value for the UV/H 2 O 2 process for the removal of organic matter, resulting in 51.63% chemical oxygen demand (COD) removal in addition to the removal of aromatic compounds. The N-NH 3 removal showed little variation between pH values of 1, 5, 7, 11 and 13; the removal was on the order of 16.43 ± 2.00%. The consumption of H 2 O 2 was elevated at pH 9, 11 and 13; at these pH values, the average removal was 94.56 ± 0.43%, compared to 43.07% at pH 3. First-order polynomial models and reaction times on the order of 15 min are sufficient for optimization studies and for evaluation of the effects of the studied parameters. The results of this study support the optimization of the UV/H 2 O 2 process for the removal of organic matter and ammonia from landfill leachates.

  13. Malignant mesothelioma in situ.

    Science.gov (United States)

    Churg, Andrew; Hwang, Harry; Tan, Larry; Qing, Gefei; Taher, Altaf; Tong, Amy; Bilawich, Ana M; Dacic, Sanja

    2018-05-01

    The existence of malignant mesothelioma in situ (MIS) is often postulated, but there are no accepted morphological criteria for making such a diagnosis. Here we report two cases that appear to be true MIS on the basis of in-situ genomic analysis. In one case the patient had repeated unexplained pleural unilateral effusions. Two thoracoscopies 9 months apart revealed only visually normal pleura. Biopsies from both thoracoscopies showed only a single layer of mildly reactive mesothelial cells. However, these cells had lost BRCA1-associated protein 1 (BAP1) and showed loss of cyclin-dependent kinase inhibitor 2 (CDKN2A) (p16) by fluorescence in-situ hybridisation (FISH). NF2 was not deleted by FISH but 28% of the mesothelial cells showed hyperploidy. Six months after the second biopsy the patient has persisting effusions but no evidence of pleural malignancy on imaging. The second patient presented with ascites and minimal omental thickening on imaging, but no visual evidence of tumour at laparoscopy. Omental biopsy showed a single layer of minimally atypical mesothelial cells with rare tiny foci of superficial invasion of fat. BAP1 immunostain showed loss of nuclear BAP1 in all the surface mesothelial cells and the invasive cells. There was CDKN2A deletion, but no deletion of NF2 by FISH. These cases show that morphologically bland single-layered surface mesothelial proliferations with molecular alterations seen previously only in invasive malignant mesotheliomas exist, and presumably represent malignant MIS. More cases are need to understand the frequency of such changes and the time-course over which invasive tumour develops. © 2018 John Wiley & Sons Ltd.

  14. Nitrogen removal and intentional nitrous oxide production from reject water in a coupled nitritation/nitrous denitritation system under real feed-stream conditions.

    Science.gov (United States)

    Weißbach, Max; Thiel, Paul; Drewes, Jörg E; Koch, Konrad

    2018-05-01

    A Coupled Aerobic-anoxic Nitrous Decomposition Operation (CANDO) was performed over five months to investigate the performance and dynamics of nitrogen elimination and nitrous oxide production from digester reject water under real feed-stream conditions. A 93% conversion of ammonium to nitrite could be maintained for adapted seed sludge in the first stage (nitritation). The second stage (nitrous denitritation), inoculated with conventional activated sludge, achieved a conversion of 70% of nitrite to nitrous oxide after only 12 cycles of operation. The development of an alternative feeding strategy and the addition of a coagulant (FeCl 3 ) facilitated stable operation and process intensification. Under steady-state conditions, nitrite was reliably eliminated and different nitrous oxide harvesting strategies were assessed. Applying continuous removal increased N 2 O yields by 16% compared to the application of a dedicated stripping phase. These results demonstrate the feasible application of the CANDO process for nitrogen removal and energy recovery from ammonia rich wastewater. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Achieve efficient nitrogen removal from real sewage in a plug-flow integrated fixed-film activated sludge (IFAS) reactor via partial nitritation/anammox pathway.

    Science.gov (United States)

    Yang, Yandong; Zhang, Liang; Cheng, Jun; Zhang, Shujun; Li, Baikun; Peng, Yongzhen

    2017-09-01

    This study tested the feasibility of plug-flow integrated fixed-film activated sludge (IFAS) reactor in applying sewage partial nitritation/anammox (PN/A) process. The IFAS reactor was fed with real pre-treated sewage (C/N ratio=1.3) and operated for 200days. High nitrogen removal efficiency of 82% was achieved with nitrogen removal rates of 0.097±0.019kgN/(m 3 ·d). Therefore, plug-flow IFAS reactor could be an alternative to applying sewage PN/A process. Besides, it was found that the stability of sewage PN/A process was significantly affected by residual ammonium. Nitrate accumulated in effluent and PN/A performance deteriorated when residual ammonium was below 1mg/L. On the contrary, long-term stable PN/A operation was achieved when residual ammonium was over 3mg/L. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. In situ breast cancer

    International Nuclear Information System (INIS)

    Pacheco, Luis

    2004-01-01

    In situ breast cancer, particularly the ductal type, is increasing in frequency in the developed countries as well as in Ecuador, most probably. These lesions carry a higher risk of developing a subsequent invasive cancer. Treatment has changed recently due to results of randomized studies, from classical mastectomy to conservative surgery associated to radiotherapy. The Van Nuys Prognostic Index is currently the most usual instrument to guide diagnosis and treatment. Tamoxifen seems to decrease significantly the risk of tumor recurrence after initial treatment. (The author)

  17. Organics and nitrogen removal from textile auxiliaries wastewater with A{sup 2}O-MBR in a pilot-scale

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Faqian [Institute of Environmental Science and Technology, Zhejiang University, Hangzhou 310058 (China); Sun, Bin [Institute of Environmental Science and Technology, Zhejiang University, Hangzhou 310058 (China); Shanghai Electric Group Co. Ltd. Central Academe, Shanghai 200070 (China); Hu, Jian; He, Yangyang [Institute of Environmental Science and Technology, Zhejiang University, Hangzhou 310058 (China); Wu, Weixiang, E-mail: weixiang@zju.edu.cn [Institute of Environmental Science and Technology, Zhejiang University, Hangzhou 310058 (China)

    2015-04-09

    Highlights: • A pilot-scale A{sup 2}O-MBR system treating textile auxiliaries wastewater was assessed. • Organic matter and recycle ratio strongly affected the performance of the system. • GC/MS analysis found some refractory organics in the MBR permeate. • Combination of organic foulants and inorganic compounds caused membrane fouling. - Abstract: The removal of organic compounds and nitrogen in an anaerobic–anoxic–aerobic membrane bioreactor process (A{sup 2}O-MBR) for treatment of textile auxiliaries (TA) wastewater was investigated. The results show that the average effluent concentrations of chemical oxygen demand (COD), ammonium nitrogen (NH{sub 4}{sup +}–N) and total nitrogen (TN) were about 119, 3 and 48 mg/L under an internal recycle ratio of 1.5. The average removal efficiency of COD, NH{sub 4}{sup +}–N and TN were 87%, 96% and 55%, respectively. Gas chromatograph–mass spectrometer analysis indicated that, although as much as 121 different types of organic compounds were present in the TA wastewater, only 20 kinds of refractory organic compounds were found in the MBR effluent, which could be used as indicators of effluents from this kind of industrial wastewater. Scanning electron microscopy analysis revealed that bacterial foulants were significant contributors to membrane fouling. An examination of foulants components by wavelength dispersive X-ray fluorescence showed that the combination of organic foulants and inorganic compounds enhanced the formation of gel layer and thus caused membrane fouling. The results will provide valuable information for optimizing the design and operation of wastewater treatment system in the textile industry.

  18. Long-term natural attenuation of carbon and nitrogen within a groundwater plume after removal of the treated wastewater source.

    Science.gov (United States)

    Repert, Deborah A; Barber, Larry B; Hess, Kathryn M; Keefe, Steffanie H; Kent, Douglas B; LeBlanc, Denis R; Smith, Richard L

    2006-02-15

    Disposal of treated wastewater for more than 60 years onto infiltration beds on Cape Cod, Massachusetts produced a groundwater contaminant plume greater than 6 km long in a surficial sand and gravel aquifer. In December 1995 the wastewater disposal ceased. A long-term, continuous study was conducted to characterize the post-cessation attenuation of the plume from the source to 0.6 km downgradient. Concentrations and total pools of mobile constituents, such as boron and nitrate, steadily decreased within 1-4 years along the transect. Dissolved organic carbon loads also decreased, but to a lesser extent, particularly downgradient of the infiltration beds. After 4 years, concentrations and pools of carbon and nitrogen in groundwater were relatively constant with time and distance, but substantially elevated above background. The contaminant plume core remained anoxic for the entire 10-year study period; temporal patterns of integrated oxygen deficit decreased slowly at all sites. In 2004, substantial amounts of total dissolved carbon (7 mol C m(-2)) and fixed (dissolved plus sorbed) inorganic nitrogen (0.5 mol N m(-2)) were still present in a 28-m vertical interval at the disposal site. Sorbed constituents have contributed substantially to the dissolved carbon and nitrogen pools and are responsible for the long-term persistence of the contaminant plume. Natural aquifer restoration at the discharge location will take at least several decades, even though groundwater flow rates and the potential for contaminant flushing are relatively high.

  19. A MULTISTAGE GRADUAL NITROGENREDUCTION STRATEGY FOR INCREASED LIPID PRODUCTIVITY AND NITROGEN REMOVAL IN WASTEWATER USING Chlorella vulgaris AND Scenedesmus obliquus

    Directory of Open Access Journals (Sweden)

    J. C. Robles-Heredia

    2015-06-01

    Full Text Available AbstractChlorella vulgaris and Scenedesmus obliquuswere grown in artificial-wastewater using a new nitrogen-limitation strategy aimed at increasing lipid productivity. This strategy consisted in a multi-stage process with sequential reduction of N-NH4 concentration (from 90 to 60, 40, and 20 mg.L-1 to promote a balance between cell growth and lipid accumulation. Lipid productivity was compared against a reference process consisting of nitrogen reduction in two stages, where the nitrogen concentration was suddenly reduced from 90 mg.L-1 to three different concentrations (10, 20, and 30 mg.L-1. In the multi-stage mode, only C. vulgaris exhibited a net lipid-productivity increase. Lipid content of S. obliquus did not present a significant increase, thus decreasing lipid productivity. The highest lipid productivities were observed in the two-stage mode for both S. obliquus and C. vulgaris (194.9 and 133.5 mg.L-1.d-1, respectively, and these values are among the highest reported in the literature to date.

  20. Lipid production from tapioca wastewater by culture of Scenedesmus sp. with simultaneous BOD, COD and nitrogen removal

    Science.gov (United States)

    Romaidi; Hasanudin, Muhammad; Kholifah, Khusnul; Maulidiyah, Alik; Putro, Sapto P.; Kikuchi, Akira; Sakaguchi, Toshifumi

    2018-05-01

    The use of microalgae to produce biodiesel or possibly remove nutrients from industrial wastewater has gained important attention during recent years due to their photosynthetic rate and its versatile nature to grow in various wastewater systems. In this study, a microalgae, Scenedesmus sp., was cultured to enhance the lipid production and nutrients removal from tapioca wastewater sample. To assess lipid production, Scenedesmus sp. was cultured in different concentration of tapioca wastewater sample (from 0 to 100 %), and nutrient removal including BOD, COD, NH4, NO2, NO3 level by Scenedesmus sp. was assessed in 100% of tapioca wastewater culture. After 8 days of culture, it was found out that 50% of tapioca wastewater sample resulted in highest concentration of lipid content than that of the other concentrations. The level of environment indicator as nutrient removal such as BOD, COD, NH4, NO2, NO3 were also decreased up to 74%, 72%, 95%, 91%, and 91%, respectively. The pH condition changed from initial condition acidic (pH: 4) to neutral or basic condition (pH: 7-8) as recommended in wastewater treatment system. This research provided a novel approach and achieved efficient simultaneous lipid production and nutrients removal from tapioca wastewater sample by Scenedesmus’s culture system.

  1. In-Situ Burning of Crude Oil on Water

    DEFF Research Database (Denmark)

    van Gelderen, Laurens

    in the small scale water basin. Boilovers were also observed during the burning of a heavy crude oil with a substantial light fraction without a water layer, however, which suggests that water is not essential for boilover occurrence. Further studies are required to determine the conditions under which......The fire dynamics and fire chemistry of in-situ burning of crude oil on water was studied in order to improve predictions on the suitability of this oil spill response method. For this purpose, several operational parameters were studied to determine the factors that control the burning efficiency...... of in-situ burning, i.e. the amount of oil (in wt%) removed from the water surface by the burning process. The burning efficiency is the main parameter for expressing the oil removal effectiveness of in-situ burning as response method and is thus relevant for suitability predictions of in-situ burning...

  2. Performance of five plant species in removal of nitrogen and phosphorus from an experimental phytoremediation system in the Ningxia irrigation area.

    Science.gov (United States)

    Chen, Chongjuan; Zhao, Tiancheng; Liu, Ruliang; Luo, Liangguo

    2017-09-10

    Agricultural non-point source (ANPS) pollution is an important contributor to elevated nitrogen (N) and phosphorus (P) in surface waters, which can cause serious environmental problems. Considerable effort has therefore gone into the development of methods that control the ANPS input of N and P to surface waters. Phytoremediation has been extensively used because it is cost-effective, environmentally friendly, and efficient. The N and P loads from agricultural drainage are a potential threat to the water quality of the Yellow River in Ningxia, China. Yet, phytoremediation has only rarely been applied within the Ningxia irrigation area. In an experimental set-up, five species (Ipomoea aquatica, IA; Lactuca sativa, LS; Oryza sativa, OS; Typha latifolia, TL; Zizania latifolia, ZL) were evaluated for their ability to reduce N and P loads over 62 days and five observation periods. Total N and P concentrations, plant biomass, and nutrient content were measured. The results showed that OS, LS, and IA performed better than ZL and TL in terms of nutrients removal, biomass accumulation, and nutrients storage. The highest overall removal rates of N and P (57.7 and 57.3%, respectively) were achieved by LS treatment. In addition, plant uptake contributed significantly to nutrient removal, causing a 25.9-72.0% reduction in N removal and a 54.3-86.5% reduction in P removal. Thus, this study suggests that OS, LS, and IA would be more suitable than ZL and TL for controlling nutrient loads in the Ningxia irrigation area using phytoremediation.

  3. Removal of selected nitrogenous heterocyclic compounds in biologically pretreated coal gasification wastewater (BPCGW) using the catalytic ozonation process combined with the two-stage membrane bioreactor (MBR).

    Science.gov (United States)

    Zhu, Hao; Han, Yuxing; Ma, Wencheng; Han, Hongjun; Ma, Weiwei

    2017-12-01

    Three identical anoxic-aerobic membrane bioreactors (MBRs) were operated in parallel for 300 consecutive days for raw (R 1 ), ozonated (R 2 ) and catalytic ozonated (R 3 ) biologically pretreated coal gasification wastewater (BPCGW) treatment. The results demonstrated that catalytic ozonation process (COP) applied asa pretreatment remarkably improved the performance of the unsatisfactory single MBR. The overall removal efficiencies of COD, NH 3 -N and TN in R 3 were 92.7%, 95.6% and 80.6%, respectively. In addition, typical nitrogenous heterocyclic compounds (NHCs) of quinoline, pyridine and indole were completely removed in the integrated process. Moreover, COP could alter sludge properties and reshape microbial community structure, thus delaying the occurrence of membrane fouling. Finally, the total cost for this integrated process was estimated to be lower than that of single MBR. The results of this study suggest that COP is a good option to enhance pollutants removal and alleviate membrane fouling in the MBR for BPCGW treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The short-term effects of prescribed burning on biomass removal and the release of nitrogen and phosphorus in a treatment wetland.

    Science.gov (United States)

    White, J R; Gardner, L M; Sees, M; Corstanje, R

    2008-01-01

    Nutrient removal by constructed wetlands can decline over time due to the accumulation of organic matter. A prescribed burn is one of many management strategies used to remove detritus in macrophyte-dominated systems. We quantified the short-term effects on effluent water quality and the amount of aboveground detritus removed from a prescribed burn event. Surface water outflow concentrations were approximately three times higher for P and 1.5 times higher for total Kjeldhal nitrogen (TKN) following the burn event when compared to the control. The length of time over which the fire effect was significant (P burn, however, much of the live vegetation was converted to standing dead material. These results demonstrate that a prescribed burn can significantly decrease the amount of senescent organic matter in a constructed wetland. However, short-term nutrient releases following the burn could increase effluent nutrient concentrations. Therefore, management strategies should include hydraulically isolating the burned area immediately following the burn event to prevent nutrient export.

  5. In situ zymography.

    Science.gov (United States)

    George, Sarah J; Johnson, Jason L

    2010-01-01

    In situ zymography is a unique laboratory technique that enables the localisation of matrix-degrading metalloproteinase (MMP) activity in histological sections. Frozen sections are placed on glass slides coated with fluorescently labelled matrix proteins. After incubation MMP activity can be observed as black holes in the fluorescent background due to proteolysis of the matrix protein. Alternatively frozen sections can be incubated with matrix proteins conjugated to quenched fluorescein. Proteolysis of the substrate by MMPs leads to the release of fluorescence. This technique can be combined with immunohistochemistry to enable co-location of proteins such as cell type markers or other proteins of interest. Additionally, this technique can be adapted for use with cell cultures, permitting precise location of MMP activity within cells, time-lapse analysis of MMP activity and analysis of MMP activity in migrating cells.

  6. Full scale experimental assessment of reliability of steady state design criteria of activated sludge process with biological nitrogen removal and chemical phosphorus removal; Verifica sperimentale a scala reale di criteri di dimensionamento dei sistemi a fanghi attivi per la rimozione dei nutrienti

    Energy Technology Data Exchange (ETDEWEB)

    Tatano, F. [Politecnico di Milano, Milan (Italy). Dip. di Ingegneria Idraulica, Ambientale e del Rilevamento, Sez. Ambientale

    1996-06-01

    The biological phase of a wastewater treatment plant situated in the Ruhr River Region (Germany), has been monitored for about one year. The collected experimental data have been elaborated in this paper with the objective of an assessment of the reliability of some recent steady-state design criteria of the activated sludge process with biological nitrogen removal and chemical phosphorus removal.

  7. Influence of substrates on nitrogen removal performance and microbiology of anaerobic ammonium oxidation by operating two UASB reactors fed with different substrate levels

    International Nuclear Information System (INIS)

    Tang Chongjian; Zheng Ping; Hu Baolan; Chen Jianwei; Wang Caihua

    2010-01-01

    Both ammonium and nitrite act as substrates as well as potential inhibitors of anoxic ammonium-oxidizing (Anammox) bacteria. To satisfy demand of substrates for Anammox bacteria and to prevent substrate inhibition simultaneously; two strategies, namely high or low substrate concentration, were carefully compared in the operation of two Anammox upflow anaerobic sludge blanket (UASB) reactors fed with different substrate concentrations. The reactor working at relatively low influent substrate concentration (NO 2 - N, 240 mg-N L -1 ) was shown to avoid the inhibition caused by nitrite and free ammonia. Using the strategy of low substrate concentration, a record super high volumetric nitrogen removal rate of 45.24 kg-N m -3 day -1 was noted after the operation of 230 days. To our knowledge, such a high value has not been reported previously. The evidence from transmission electron microscopy (TEM) showed that the morphology and ultrastructure of the Anammox cells in both the reactor enrichments was different.

  8. Nitrogen Addition and Understory Removal but Not Soil Warming Increased Radial Growth of Pinus cembra at Treeline in the Central Austrian Alps

    Directory of Open Access Journals (Sweden)

    Andreas Gruber

    2018-05-01

    Full Text Available Beside low temperatures, limited tree growth at the alpine treeline may also be attributed to a lack of available soil nutrients and competition with understory vegetation. Although intra-annual stem growth of Pinus cembra has been studied intensively at the alpine treeline, the responses of radial growth to soil warming, soil fertilization, and below ground competition awaits clarification. In this study we quantified the effects of nitrogen (N fertilization, soil warming, and understory removal on stem radial growth of P. cembra at treeline. Soil warming was achieved by roofing the forest floor with a transparent polyvinyl skin, while understory competition was prevented by shading the forest floor with a non-transparent foil around six trees each. Six trees received N- fertilization and six other trees served as controls. Stem growth was monitored with band dendrometers during the growing seasons 2012–2014. Our 3 years experiment showed that soil warming had no considerable effect on radial growth. Though understory removal through shading was accompanied by root-zone cooling, understory removal as well as N fertilization led to a significant increase in radial growth. Hardly affected was tree root biomass, while N-fertilization and understory removal significantly increased in 100-needle surface area and 100-needle dry mass, implying a higher amount of N stored in needles. Overall, our results demonstrate that beside low temperatures, tree growth at cold-climate boundaries may also be limited by root competition for nutrients between trees and understory vegetation. We conclude that tree understory interactions may also control treeline dynamics in a future changing environment.

  9. Functionalized layered double hydroxide with nitrogen and sulfur co-decorated carbondots for highly selective and efficient removal of soft Hg2+ and Ag+ ions.

    Science.gov (United States)

    Asiabi, Hamid; Yamini, Yadollah; Shamsayei, Maryam; Molaei, Karam; Shamsipur, Mojtaba

    2018-05-28

    A facile composite was fabricated via direct assembly of nitrogen and sulfur co-decorated carbon dots with abundant oxygen-containing functional groups on the surface of the positively charged layered double hydroxide (N,S-CDs-LDH). The novel N,S-CDs-LDH demonstrates highly selective bindings (M-S) and an extremely efficient removal capacity for soft metal ions such as Ag + and Hg 2+ ions. N,S-CDs-LDH displayed a selectivity order of Ag + > Hg 2+ > Cu 2+ > Pb 2+ > Zn 2+ > Cd 2+ for their adsorption. The enormous capacities for Hg 2+ (625.0 mg g -1 ) and Ag + (714.3 mg g -1 ) and very high distribution coefficients (K d ) of 9.9 × 10 6 mL g -1 (C 0  = 20 mg L -1 ) and 2.0 × 10 7 mL g -1 (C 0  = 20 mg L -1 ) for Hg 2+ and Ag + , respectively, place the N,S-CDs-LDH at the top of LDH based materials known for such removal. The adsorption kinetic curves for Hg 2+ and Ag + fitted well with the pseudo-second order model. For Hg 2+ and Ag + , an exceptionally rapid capture with removal ∼100% within 80 min was observed (C ions  = 30 mg L -1 and V/m ratio of 1000). The adsorption isotherms were well described using Langmuir isotherm. The N,S-CDs-LDH was successfully applied to highly efficient removal of Hg 2+ and Ag + from aqueous solutions. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Nitrogen removal and electricity production at a double-chamber microbial fuel cell with cathode nitrite denitrification.

    Science.gov (United States)

    Yu, Yangyang; Zhao, Jianqiang; Wang, Sha; Zhao, Huimin; Ding, Xiaoqian; Gao, Kun

    2017-12-01

    Double-chamber microbial fuel cell was applied to investigate the performance of the electricity production and nitrite denitrification through feeding nitrite into the cathode. Factors influencing denitrification performance and power production, such as external resistance, influent nitrite concentration and Nitrite Oxygen Bacteria inhibitors, were studied. The results show that when the concentration of nitrite nitrogen and external resistance were 100 mg L -1 and 10 Ω, respectively, the nitrite denitrification reached the best state. The NaN 3 can inhibit nitrite oxidation effectively; meanwhile, the nitrite denitrification with N 2 O as the final products was largely improved. The [Formula: see text] was reduced to [Formula: see text], causing the cathode denitrification coulombic efficiency to exceed 100%. In chemoautotrophic bio-nitrification, microorganisms may utilize H 2 O to oxidize nitrite under anaerobic conditions. Proteobacteria might play a major role in the process of denitrification in MFC.

  11. Oxygen vacancy rich Cu2O based composite material with nitrogen doped carbon as matrix for photocatalytic H2 production and organic pollutant removal.

    Science.gov (United States)

    Lu, Lele; Xu, Xinxin; Yan, Jiaming; Shi, Fa-Nian; Huo, Yuqiu

    2018-02-06

    A nitrogen doped carbon matrix supported Cu 2 O composite material (Cu/Cu2O@NC) was fabricated successfully with a coordination polymer as precursor through calcination. In this composite material, Cu 2 O particles with a size of about 6-10 nm were dispersed evenly in the nitrogen doped carbon matrix. After calcination, some coordinated nitrogen atoms were doped in the lattice of Cu 2 O and replace oxygen atoms, thus generating a large number of oxygen vacancies. In Cu/Cu2O@NC, the existence of oxygen vacancies has been confirmed by electron spin resonance (ESR) and X-ray photoelectron spectroscopy (XPS). Under visible light irradiation, Cu/Cu2O@NC exhibits excellent H 2 production with the rate of 379.6 μmol h -1 g -1 . Its photocatalytic activity affects organic dyes, such as Rhodamine B (RhB) and methyl orange (MO). In addition to photocatalysis, Cu/Cu2O@NC also exhibits striking catalytic activity in reductive conversion of 4-nitrophenol to 4-aminophenol with in presence of sodium borohydride (NaBH 4 ). The conversion efficiency reaches almost 100% in 250 s with the quantity of Cu/Cu2O@NC as low as 5 mg. The outstanding H 2 production and organic pollutants removal are attributed to the oxygen vacancy. We expect that Cu/Cu2O@NC will find its way as a new resource for hydrogen energy as well as a promising material in water purification.

  12. Quenching of the OH and nitrogen molecular emission by methane addition in an Ar capacitively coupled plasma to remove spectral interference in lead determination by atomic fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Frentiu, T., E-mail: ftibi@chem.ubbcluj.r [Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Arany Janos 11, 400028 Cluj-Napoca (Romania); Ponta, M., E-mail: mponta@chem.ubbcluj.r [Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Arany Janos 11, 400028 Cluj-Napoca (Romania); Mihaltan, A.I., E-mail: alinblaj2005@yahoo.co [National Institute for Research and Development of Optoelectronics Bucharest - Research Institute for Analytical Instrumentation, Donath 67, 400293 Cluj-Napoca (Romania); Darvasi, E., E-mail: edarvasi@chem.ubbcluj.r [Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Arany Janos 11, 400028 Cluj-Napoca (Romania); Frentiu, M., E-mail: frentiu.maria@yahoo.co [National Institute for Research and Development of Optoelectronics Bucharest - Research Institute for Analytical Instrumentation, Donath 67, 400293 Cluj-Napoca (Romania); Cordos, E., E-mail: emilcordos@gmail.co [National Institute for Research and Development of Optoelectronics Bucharest - Research Institute for Analytical Instrumentation, Donath 67, 400293 Cluj-Napoca (Romania)

    2010-07-15

    A new method is proposed to remove the spectral interference on elements in atomic fluorescence spectrometry by quenching of the molecular emission of the OH radical (A{sup 2{Sigma}+} {yields} X{sup 2{Pi}}) and N{sub 2} second positive system (C{sup 3{Pi}}{sub u} {yields} B{sup 3{Sigma}}{sub g}) in the background spectrum of medium power Ar plasmas. The experiments were carried out in a radiofrequency capacitively coupled plasma (275 W, 27.12 MHz) by CH{sub 4} addition. The quenching is the result of the high affinity of OH radical for a hydrogen atom from the CH{sub 4} molecule and the collisions of the second kind between nitrogen excited molecules and CH{sub 4}, respectively. The decrease of the emission of N{sub 2} second positive system in the presence of CH{sub 4} is also the result of the deactivation of the metastable argon atoms that could excite the nitrogen molecules. For flow rates of 0.7 l min{sup -1} Ar with addition of 7.5 ml min{sup -1} CH{sub 4}, the molecular emission of OH and N{sub 2} was completely removed from the plasma jet spectrum at viewing heights above 60 mm. The molecular emission associated to CH and CH{sub 2} species was not observed in the emission spectrum of Ar/CH{sub 4} plasma in the ultraviolet range. The method was experimented for the determination of Pb at 283.31 nm by atomic fluorescence spectrometry with electrodeless discharge lamp and a multichannel microspectrometer. The detection limit was 35 ng ml{sup -1}, 2-3 times better than in atomic emission spectrometry using the same plasma source, and similar to that in hollow cathode lamp microwave plasma torch atomic fluorescence spectrometry.

  13. In Situ Cleanable Alternative HEPA Filter Media

    International Nuclear Information System (INIS)

    Adamson, D. J.; Terry, M. T.

    2002-01-01

    The Westinghouse Savannah River Company, located at the Savannah River Site in Aiken, South Carolina, is currently testing two types of filter media for possible deployment as in situ regenerable/cleanable High Efficiency Particulate Air (HEPA) filters. The filters are being investigated to replace conventional, disposable, glass-fiber, HEPA filters that require frequent removal, replacement, and disposal. This is not only costly and subjects site personnel to radiation exposure, but adds to the ever-growing waste disposal problem. The types of filter media being tested, as part of a National Energy Technology Laboratory procurement, are sintered nickel metal and ceramic monolith membrane. These media were subjected to a hostile environment to simulate conditions that challenge the high-level waste tank ventilation systems. The environment promoted rapid filter plugging to maximize the number of filter loading/cleaning cycles that would occur in a specified period of time. The filters were challenged using nonradioactive simulated high-level waste materials and atmospheric dust; materials that cause filter pluggage in the field. The filters are cleaned in situ using an aqueous solution. The study found that both filter media were insensitive to high humidity or moisture conditions and were easily cleaned in situ. The filters regenerated to approximately clean filter status even after numerous plugging and in situ cleaning cycles. Air Techniques International is conducting particle retention testing on the filter media at the Oak Ridge Filter Test Facility. The filters are challenged using 0.3-mm di-octyl phthalate particles. Both the ceramic and sintered media have a particle retention efficiency > 99.97%. The sintered metal and ceramic filters not only can be cleaned in situ, but also hold great potential as a long life alternative to conventional HEPA filters. The Defense Nuclear Facility Safety Board Technical Report, ''HEPA Filters Used in the Department of

  14. In Situ Magnetic Separation for Extracellular Protein Production

    DEFF Research Database (Denmark)

    Kappler, T.; Cerff, Martin; Ottow, Kim Ekelund

    2009-01-01

    A new approach for in situ product removal from bioreactors is presented in which high-gradient magnetic separation is used. This separation process was used for the adsorptive removal of proteases secreted by Bacillus licheniformis. Small, non-porous bacitracin linked magnetic adsorbents were...... was not influenced by the in situ product removal step. Protease production also remained the same after the separation step. Furthermore, degradation of the protease, which followed first order kinetics, was reduced by using the method. Using a theoretical modeling approach, we Could show that protease yield...... in total was enhanced by using in situ magnetic separation. The process described here is a promising technique to improve overall yield in No production processes which are often limited due to weak downstream operations, Potential limitations encountered during a bioprocess can be overcome...

  15. Modeling in situ vitrification

    International Nuclear Information System (INIS)

    Mecham, D.C.; MacKinnon, R.J.; Murray, P.E.; Johnson, R.W.

    1990-01-01

    In Situ Vitrification (ISV) process is being assessed by the Idaho National Engineering Laboratory (INEL) to determine its applicability to transuranic and mixed wastes buried at INEL'S Subsurface Disposal Area (SDA). This process uses electrical resistance heating to melt waste and contaminated soil in place to produce a durable glasslike material that encapsulates and immobilizes buried wastes. This paper outlines the requirements for the model being developed at the INEL which will provide analytical support for the ISV technology assessment program. The model includes representations of the electric potential field, thermal transport with melting, gas and particulate release, vapor migration, off-gas combustion and process chemistry. The modeling objectives are to help determine the safety of the process by assessing the air and surrounding soil radionuclides and chemical pollution hazards, the nuclear criticality hazard, and the explosion and fire hazards, help determine the suitability of the ISV process for stabilizing the buried wastes involved, and help design laboratory and field tests and interpret results. 3 refs., 2 figs., 1 tab

  16. Effects of pH and H2O2 on ammonia, nitrite, and nitrate transformations during UV254nm irradiation: Implications to nitrogen removal and analysis.

    Science.gov (United States)

    Wang, Junli; Song, Mingrui; Chen, Baiyang; Wang, Lei; Zhu, Rongshu

    2017-10-01

    In order to achieve better removal and analyses of three dissolved inorganic nitrogen (DIN) species via ultraviolet-activated hydrogen peroxide (UV/H 2 O 2 ) process, this study systematically investigated the rates of photo-oxidations of ammonia/ammonium (NH 3 /NH 4 + ) and nitrite (NO 2 - ) as well as the photo-reduction of nitrate (NO 3 - ) at varying pH and H 2 O 2 conditions. The results showed that the mass balances of nitrogen were maintained along irradiation despite of interconversions of DIN species, suggesting that no nitrogen gas (N 2 ) or other nitrogen-containing compound was formed. NH 3 was more reactive than NH 4 + with hydroxyl radical (OH), and by a stepwise H 2 O 2 addition method NH 3 /NH 4 + can be completely converted to NO x - ; NO 2 - underwent rapid oxidation to form NO 3 - when H 2 O 2 was present, suggesting that it is an intermediate compound linking NH 3 /NH 4 + and NO 3 - ; but once H 2 O 2 was depleted, NO 3 - can be gradually photo-reduced back to NO 2 - at high pH conditions. Other than H 2 O 2 , the transformation kinetics of DINs were all dependent on pH, but to varying aspects and extents: the NH 3 photo-oxidation favored a pH of 10.3, which fell within the pK a values of NH 4 + (9.24) and H 2 O 2 (11.6); the NO 3 - photo-reduction increased with increasing pH provided that it exceeds the pK a of peroxynitrous acid (6.8); while the NO 2 - photo-oxidation remained stable unless the pH neared the pK a of H 2 O 2 (11.6). The study thereby demonstrates a picture of the evolutions of DIN species together during UV/H 2 O 2 irradiation process, and for the first time presents a method to achieve complete conversion of NH 4 + to NO 3 - with UV/H 2 O 2 process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Experimental additions of aluminum sulfate and ammonium nitrate to in situ mesocosms to reduce cyanobacterial biovolume and microcystin concentration

    Science.gov (United States)

    Harris, Ted D.; Wilhelm, Frank M.; Graham, Jennifer L.; Loftin, Keith A.

    2014-01-01

    Recent studies suggest that nitrogen additions to increase the total nitrogen:total phosphorus (TN:TP) ratio may reduce cyanobacterial biovolume and microcystin concentration in reservoirs. In systems where TP is >100 μg/L, however, nitrogen additions to increase the TN:TP ratio could cause ammonia, nitrate, or nitrite toxicity to terrestrial and aquatic organisms. Reducing phosphorus via aluminum sulfate (alum) may be needed prior to nitrogen additions aimed at increasing the TN:TP ratio. We experimentally tested this sequential management approach in large in situ mesocosms (70.7 m3) to examine effects on cyanobacteria and microcystin concentration. Because alum removes nutrients and most seston from the water column, alum treatment reduced both TN and TP, leaving post-treatment TN:TP ratios similar to pre-treatment ratios. Cyanobacterial biovolume was reduced after alum addition, but the percent composition (i.e., relative) cyanobacterial abundance remained unchanged. A single ammonium nitrate (nitrogen) addition increased the TN:TP ratio 7-fold. After the TN:TP ratio was >50 (by weight), cyanobacterial biovolume and abundance were reduced, and chrysophyte and cryptophyte biovolume and abundance increased compared to the alum treatment. Microcystin was not detectable until the TN:TP ratio was <50. Although both treatments reduced cyanobacteria, only the nitrogen treatment seemed to stimulate energy flow from primary producers to zooplankton, which suggests that combining alum and nitrogen treatments may be a viable in-lake management strategy to reduce cyanobacteria and possibly microcystin concentrations in high-phosphorus systems. Additional studies are needed to define best management practices before combined alum and nitrogen additions are implemented as a reservoir management strategy.

  18. In-situ atrazine biodegradation dynamics in wheat (Triticum) crops under variable hydrologic regime

    Science.gov (United States)

    la Cecilia, Daniele; Maggi, Federico

    2017-08-01

    A comprehensive biodegradation reaction network of atrazine (ATZ) and its 18 byproducts was coupled to the nitrogen cycle and integrated in a computational solver to assess the in-situ biodegradation effectiveness and leaching along a 5 m deep soil cultivated with wheat in West Wyalong, New South Wales, Australia. Biodegradation removed 97.7% of 2 kg/ha ATZ yearly applications in the root zone, but removal substantially decreased at increasing depths; dechlorination removed 79% of ATZ in aerobic conditions and 18% in anaerobic conditions, whereas deethylation and oxidation removed only 0.11% and 0.15% of ATZ, respectively. The residual Cl mass fraction in ATZ and 4 byproducts was 2.4% of the applied mass. ATZ half-life ranged from 150 to 247 days in the soil surface. ATZ reached 5 m soil depth within 200 years and its concentration increased from 1 ×10-6 to 4 ×10-6 mg/kgdry-soil over time. The correlation between ATZ specific biomass degradation affinity Φ0 and half-life t1/2, although relatively uncertain for both hydrolyzing and oxidizing bacteria, suggested that microorganisms with high Φ0 led to low ATZ t1/2. Greater ATZ applications were balanced by small nonlinear increments of ATZ biodegraded fraction within the root zone and therefore less ATZ leached into the shallow aquifer.

  19. The in-situ removal of HCl in the burning waste layer on the grid of a waste incinerator (AVI). A preliminary study; De in-situ verwijdering van HCl in de brandende afvallaag op het rooster van een afvalverbrandingsinstallatie. Een voorstudie

    Energy Technology Data Exchange (ETDEWEB)

    Brem, G. [TNO Milieu, Energie en Procesinnovatie TNO-MEP, Apeldoorn (Netherlands)

    1996-12-01

    The results of this preliminary study on the title subject will be used to assess the possibility of a larger study on the development of a method to remove chlorides from the waste layer on the grid of a waste incinerator. In the pre-phase attention will be paid to the technical and economical effects of additives in the waste layer by means of which the formation of volatile heavy metal chlorides can be reduced. Available data are analyzed and different HCl-removal methods are compared. By means of thermodynamic calculations it is investigated which additives can be used and what their effect will be on the emission of gaseous metal chlorides. Also the effects on the quality of the residues (bottom ash, fly ash and flue gas purification residues), corrosion and pollution of the incinerator, the efficiency of the total waste incinerating process (combustion, steam production, energy production, and flue gas purification), and the economic efficiency of the new HCl-removal method are quantified. 13 figs., 14 tabs., 20 refs.

  20. In-situ uranium leaching

    International Nuclear Information System (INIS)

    Dotson, B.J.

    1986-01-01

    This invention provides a method for improving the recovery of mineral values from ore bodies subjected to in-situ leaching by controlling the flow behaviour of the leaching solution. In particular, the invention relates to an in-situ leaching operation employing a foam for mobility control of the leaching solution. A foam bank is either introduced into the ore bed or developed in-situ in the ore bed. The foam then becomes a diverting agent forcing the leaching fluid through the previously non-contacted regions of the deposit

  1. In situ leaching of uranium

    International Nuclear Information System (INIS)

    Martin, B.

    1980-01-01

    A process is described for the in-situ leaching of uranium-containing ores employing an acidic leach liquor containing peroxymonosulphuric acid. Preferably, additionally, sulphuric acid is present in the leach liquor. (author)

  2. Remoção de nitrogênio de efluente agroindustrial utilizando biorreatores = Nitrogen removal from agro-industrial wastewater using bioreactors

    Directory of Open Access Journals (Sweden)

    Roberta Miranda Teixeira

    2008-07-01

    Full Text Available O trabalho tem como objetivo avaliar a remoção de nitrogênio do efluente de uma indústria frigorífica utilizando biorreatores de nitrificação e desnitrificação. O sistema foi composto por dois reatores de fluxo contínuo operados em série: um reator híbrido(anaeróbio/anóxico conectado a um reator tipo filtro biológico de fluxo ascendente com aeração, o qual possuía um reciclo para o reator híbrido. A alimentação foi realizada com água residuária proveniente da estação de tratamento de uma indústria processadora de avese suínos. O acompanhamento do processo foi realizado por análises periódicas da concentração de amônia, nitrato, nitrito, alcalinidade, demanda química de oxigênio (DQO e pH. A eficiência do sistema na remoção de nitrogênio foi comparada com a eficiência teórica máxima para a razão de reciclo utilizada.This work evaluates the process of nitrogen removal from wastewater at a meat processing plant, using nitrification and denitrification in bioreactors. The system was composed of two reactors with continuous flow operated in series: a hybrid reactor(anaerobic/anoxic connected to an ascending flow biological filter with aeration, which recycled into the hybrid reactor. Feeding was accomplished with wastewater from the treatment station of a poultry and swine processing plant. The process was monitored by periodic analysis of the concentrations of ammonia, nitrate, nitrite, alkalinity, chemical oxygen demand (COD and pH. The nitrogen removal efficiency of the system was compared with the maximum theoretical efficiency for the recycle rate used.

  3. Removal of halogenated emerging contaminants from water by nitrogen-doped graphene decorated with palladium nanoparticles: Experimental investigation and theoretical analysis.

    Science.gov (United States)

    Li, Lei; Gong, Li; Wang, Yi-Xuan; Liu, Qi; Zhang, Jie; Mu, Yang; Yu, Han-Qing

    2016-07-01

    The removal performance and mechanisms of halogenated emerging contaminants from water by palladium decorated nitrogen-doped graphene (Pd/NG) were investigated in this study. For comparison, three catalysts of Pd/NG, palladium decorated graphene (Pd/G) and commercial Pd/C were initially explored to degrade tetrabromobisphenol A (TBBPA). After that, the influence of various environmental parameters on TBBPA removal by the Pd/NG catalyst was evaluated. Moreover, both Langmuir-Hinshelwood model and density functional theory (DFT) were adopted to theoretically elucidate the adsorption and the activation of TBBPA on the catalyst. The results show that the apparent rate constant of TBBPA dehalogenation was increased by 26.7% and 39.0% in the presence of the Pd/NG catalyst compared to the Pd/G and Pd/C ones. Higher temperature, catalyst dosage and alkaline conditions resulted in the enhancement of TBBPA dehalogenation by the Pd/NG catalyst, while humic acid in the solution had a negatively effect on the transformation of TBBPA. The corresponding rate constant value exhibited a 2.1- and 1.8-fold increase with the rise of temperature from 298 to 328 K and initial pH from 6.5 to 9.0, respectively. On the contrary, the rate constant was decreased by 78.9% in the presence of 15 mg L(-1) humic acid. Theoretical analysis revealed that both adsorption and activation processes of TBBPA on the Pd/NG catalyst were enhanced through the N doping into graphene framework. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Development of portable HPGe spectrometer for in situ measurements

    Directory of Open Access Journals (Sweden)

    Kail Artjoms

    2015-01-01

    Full Text Available In situ applications require a very high level of portability of high-resolution spectrometric equipment. Usage of HPGe detectors for radioactivity measurements in the environment or for nuclear safeguard applications, to combat illicit trafficking of nuclear materials or uranium and plutonium monitoring in nuclear wastes, has become a norm in the recent years. Portable HPGe-based radionuclide spectrometer with electrical cooling has lately appeared on the market for in situ applications. At the same time deterioration of energy resolution associated with vibrations produced by cryocooler or high weight of the instrument, short time of autonomous operation and high price of these spectrometers are limiting their usage in many cases. In this paper we present development results of ultra compact hand held all-in-one spectrometer for in situ measurements based on HPGe detector cooled by liquid nitrogen without listing the above disadvantages.

  5. Process for in-situ leaching of uranium

    International Nuclear Information System (INIS)

    Espenscheid, W.F.; Yan, F.Y.

    1983-01-01

    The present invention relates to the recovery of uranium from subterranean ore deposits, and more particularly to an in-situ leaching operation employing an aqueous solution of sulfuric acid and carbon dioxide as the lixiviant. Uranium is solubilized in the lixiviant as it traverses the subterranean uranium deposit. The lixiviant is subsequently recovered and treated to remove the uranium

  6. Assessment of In-Situ Natural Dendroremediation Capability of ...

    African Journals Online (AJOL)

    Assessment of In-Situ Natural Dendroremediation Capability of Rhizophora racemosa in a Heavy Metal Polluted Mangrove Forest, Rivers State, Nigeria. ... Many of these noxious substances have been noted to be removable from polluted environment through proper application of phytoremediation techniques, particularly ...

  7. Restoration of uranium in-situ leaching sites

    International Nuclear Information System (INIS)

    Hill, A.D.; Silberberg, I.H.; Walsh, M.P.; Breland, W.M.; Humenick, M.J.; Schechter, R.S.

    1980-01-01

    Ammonium ions introduced into the formation during in-situ uranium leach mining must be removed by a restoration process. Ion exchange processes to strip sorbed ammonium cation from the clays have been modeled and studied experimentally. It is concluded that ammonium removal can be accomplished best by a high-ionic-strength flush. The migration of uncovered ammonium cation in groundwater also is studied. 19 refs

  8. In situ bioremediation under high saline conditions

    International Nuclear Information System (INIS)

    Bosshard, B.; Raumin, J.; Saurohan, B.

    1995-01-01

    An in situ bioremediation treatability study is in progress at the Salton Sea Test Base (SSTB) under the NAVY CLEAN 2 contract. The site is located in the vicinity of the Salon Sea with expected groundwater saline levels of up to 50,000 ppm. The site is contaminated with diesel, gasoline and fuel oils. The treatability study is assessing the use of indigenous heterotrophic bacteria to remediate petroleum hydrocarbons. Low levels of significant macro nutrients indicate that nutrient addition of metabolic nitrogen and Orthophosphate are necessary to promote the process, requiring unique nutrient addition schemes. Groundwater major ion chemistry indicates that precipitation of calcium phosphorus compounds may be stimulated by air-sparging operations and nutrient addition, which has mandated the remedial system to include pneumatic fracturing as an option. This presentation is tailored at an introductory level to in situ bioremediation technologies, with some emphasize on innovations in sparge air delivery, dissolved oxygen uptake rates, nutrient delivery, and pneumatic fracturing that should keep the expert's interest

  9. In situ upgrading of heavy oil under steam injection with tetralin and catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Mohammad, A.A. [Texas A and M Univ., College Station, TX (United States); Mamora, D.D. [Society of Petroleum Engineers, Richardson, TX (United States)]|[Texas A and M Univ., College Station, TX (United States)

    2008-10-15

    Steam injection has become the most successful thermal recovery method for heavy oil production. Heavy oil refineries use upgrading processes to improve oil quality. They generally involve the use of catalysts that are used to remove heavy metals, sulfur and nitrogen, or used in hydro-treating and hydro-cracking. In-situ upgrading is thought to have advantages over conventional surface upgrading technology. Experiments were performed to verify the feasibility of in-situ upgrading of heavy crude oil. A hydrogen donor called tetralin was used along with an organometallic catalyst, at steam injection temperatures and pressures normally encountered in the field. Crude oil from the Jobo Oil Field, located in Venezuela was used. The paper described the experimental methodology with reference to the injection cell; fluid injection system; fluid production system; data measurement and recording system; and experimental procedure. It also discussed the extent of upgrading by comparing the properties of the original and produced oil. Oil properties that were measured and compared included hydrogen-to-carbon ratio; heavy metal content; viscosity; and API gravity. The paper also presented a comparison of oil recovery and fluid production between all cases. It was concluded that in the field, the reaction time was significantly longer than encountered in the experiments and may lead to further upgrading, assuming the catalyst could be dispersed in the formation. 10 refs., 1 tab., 9 figs.

  10. High performance sulfur, nitrogen and carbon doped mesoporous anatase–brookite TiO2 photocatalyst for the removal of microcystin-LR under visible light irradiation

    International Nuclear Information System (INIS)

    El-Sheikh, Said M.; Zhang, Geshan; El-Hosainy, Hamza M.; Ismail, Adel A.; O'Shea, Kevin E.; Falaras, Polycarpos; Kontos, Athanassios G.; Dionysiou, Dionysios D.

    2014-01-01

    Graphical abstract: - Highlights: • Synthesis of tailor-designed C, N and S doped titania anatase–brookite nano-heterojunction photocatalyst. • Microcystin-LR was completely removed in the presence of doped sample under visible light. • The MC-LR degradation rate achieved by the doped sample was much better than that of un-doped sample under visible light. - Abstract: Carbon, nitrogen and sulfur (C, N and S) doped mesoporous anatase–brookite nano-heterojunction titania photocatalysts have been synthesized through a simple sol–gel method in the presence of triblock copolymer Pluronic P123. XRD and Raman spectra revealed the formation of anatase and brookite mixed phases. XPS spectra indicated the presence of C, N and S dopants. The TEM images demonstrated the formation of almost monodisperse titania nanoparticles with particle sizes of approximately 10 nm. N 2 isotherm measurements confirmed that both doped and undoped titania anatase–brookite materials have mesoporous structure. The photocatalytic degradation of the cyanotoxin microcystin-LR (MC-LR) has been investigated using these novel nanomaterials under visible light illumination. The photocatalytic efficiency of the mesoporous titania anatase–brookite photocatalyst dramatically increased with the addition of the C, N and S non-metal, achieving complete degradation (∼100%) of MC-LR. The results demonstrate the advantages of the synthetic approach and the great potential of the visible light activated C, N, and S doped titania photocatalysts for the treatment of organic micropollutants in contaminated waters under visible light

  11. Probing the Effects of Templating on the UV and Visible Light Photocatalytic Activity of Porous Nitrogen-Modified Titania Monoliths for Dye Removal.

    Science.gov (United States)

    Nursam, Natalita M; Wang, Xingdong; Tan, Jeannie Z Y; Caruso, Rachel A

    2016-07-13

    Porous nitrogen-modified titania (N-titania) monoliths with tailored morphologies were prepared using phase separation and agarose gel templating techniques. The doping and templating process were simultaneously carried out in a one-pot step using alcohol amine-assisted sol-gel chemistry. The amount of polymer used in the monoliths that were prepared using phase separation was shown to affect both the physical and optical properties: higher poly(ethylene glycol) content increased the specific surface area, porosity, and visible light absorption of the final materials. For the agarose-templated monoliths, the infiltration conditions affected the monolith morphology. A porous monolith with high surface area and the least shrinkage was obtained when the N containing alkoxide precursor was infiltrated into the agarose scaffolds at 60 °C. The effect of the diverse porous morphologies on the photocatalytic activity of N-titania was studied for the decomposition of methylene blue (MB) under visible and UV light irradiation. The highest visible light activity was achieved by the agarose-templated N-titania monolith, in part due to higher N incorporation. This sample also showed better UV activity, partly because of the higher specific surface area (up to 112 m(2) g(-1)) compared to the phase separation-induced monoliths (up to 103 m(2) g(-1)). Overall, agarose-templated, porous N-titania monoliths provided better features for effectively removing the MB contaminant.

  12. Influence of substrates on nitrogen removal performance and microbiology of anaerobic ammonium oxidation by operating two UASB reactors fed with different substrate levels

    Energy Technology Data Exchange (ETDEWEB)

    Tang Chongjian [Department of Environmental Engineering, Zhejiang University, Hangzhou 310029 (China); Zheng Ping, E-mail: pzheng@zju.edu.cn [Department of Environmental Engineering, Zhejiang University, Hangzhou 310029 (China); Hu Baolan; Chen Jianwei; Wang Caihua [Department of Environmental Engineering, Zhejiang University, Hangzhou 310029 (China)

    2010-09-15

    Both ammonium and nitrite act as substrates as well as potential inhibitors of anoxic ammonium-oxidizing (Anammox) bacteria. To satisfy demand of substrates for Anammox bacteria and to prevent substrate inhibition simultaneously; two strategies, namely high or low substrate concentration, were carefully compared in the operation of two Anammox upflow anaerobic sludge blanket (UASB) reactors fed with different substrate concentrations. The reactor working at relatively low influent substrate concentration (NO{sub 2}{sup -}N, 240 mg-N L{sup -1}) was shown to avoid the inhibition caused by nitrite and free ammonia. Using the strategy of low substrate concentration, a record super high volumetric nitrogen removal rate of 45.24 kg-N m{sup -3} day{sup -1} was noted after the operation of 230 days. To our knowledge, such a high value has not been reported previously. The evidence from transmission electron microscopy (TEM) showed that the morphology and ultrastructure of the Anammox cells in both the reactor enrichments was different.

  13. Applying fermentation liquid of food waste as carbon source to a pilot-scale anoxic/oxic-membrane bioreactor for enhancing nitrogen removal: Microbial communities and membrane fouling behaviour.

    Science.gov (United States)

    Tang, Jialing; Wang, Xiaochang C; Hu, Yisong; Ngo, Huu Hao; Li, Yuyou; Zhang, Yongmei

    2017-07-01

    Fermentation liquid of food waste (FLFW) was applied as an external carbon source in a pilot-scale anoxic/oxic-membrane bioreactor (A/O-MBR) system to enhance nitrogen removal for treating low COD/TN ratio domestic wastewater. Results showed that, with the FLFW addition, total nitrogen removal increased from lower than 20% to 44-67% during the 150days of operation. The bacterial metabolic activities were obviously enhanced, and the significant change in microbial community structure promoted pollutants removal and favored membrane fouling mitigation. By monitoring transmembrane pressure and characterizing typical membrane foulants, such as extracellular polymeric substances (EPS), dissolved organic matter (DOM), and inorganics and biopolymers in the cake layer, it was confirmed that FLFW addition did not bring about any additional accumulation of membrane foulants, acceleration of fouling rate, or obvious irreversible membrane fouling in the whole operation period. Therefore, FLFW is a promising alternative carbon source to enhance nitrogen removal for the A/O-MBR system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Mitigation of algal organic matter released from Chaetoceros affinis and Hymenomonas by in situ generated ferrate

    KAUST Repository

    Deka, Bhaskar Jyoti; Jeong, Sanghyun; AlizadehTabatabai, S.Assiyeh; An, Alicia Kyoungjin

    2018-01-01

    This study demonstrates the application of in situ ferrate (Fe(VI)) for the efficient removal of dissolved algal organic matter (AOM) from seawater. Sodium hypochlorite (NaOCl) and ferric (Fe(III)) were used to produce in situ</