WorldWideScience

Sample records for in-situ fibrous composite

  1. Fibrous hydroxyapatite–carbon nanotube composites by chemical vapor deposition: In situ fabrication, structural and morphological characterization

    International Nuclear Information System (INIS)

    Kosma, Vassiliki; Tsoufis, Theodoros; Koliou, Theodora; Kazantzis, Antonios; Beltsios, Konstantinos; De Hosson, Jeff Th. M.; Gournis, Dimitrios

    2013-01-01

    Highlights: ► CNTs synthesized on fibrous HA surfaces supporting Fe–Co bi- metallic catalysts by CVD. ► CNTs are rooted on HA distinct needle-like monocrystals and needle spherulitic aggregates. ► Reaction temperature and metal loading are critical parameters for CNT production. -- Abstract: Fibrous hydroxyapatite (HA)–carbon nanotube composites were synthesized by the catalytic decomposition of acetylene over Fe–Co bimetallic catalysts supported on the fibrous HA. Two forms of fibrous HA (distinct needle-like monocrystals and spherulitic aggregates of needles) were synthesized using a simple precipitation method and loaded with bimetallic catalysts (from 2 up to 20 wt%) by a wet chemical impregnation method. The HA supported catalysts were evaluated for the in situ growth of carbon nanotubes using the catalytic chemical vapor deposition method. The effect of reaction temperature and metal loading on the yield, structural perfection and morphology of the carbon products were investigated using a combination of X-ray diffraction, thermal analysis, Raman spectroscopy and scanning and transmission electron microscopies. The results revealed that both the selection of the growing conditions and the metal loading determine the yield and overall quality of the synthesized carbon nanotubes, which exhibit high graphitization degree when synthesized in high yields

  2. Fibrous hydroxyapatite–carbon nanotube composites by chemical vapor deposition: In situ fabrication, structural and morphological characterization

    Energy Technology Data Exchange (ETDEWEB)

    Kosma, Vassiliki; Tsoufis, Theodoros; Koliou, Theodora [Department of Materials Science and Engineering, University of Ioannina, GR-45110 Ioannina (Greece); Kazantzis, Antonios [Department of Applied Physics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, NL-9747AG Groningen (Netherlands); Beltsios, Konstantinos [Department of Materials Science and Engineering, University of Ioannina, GR-45110 Ioannina (Greece); De Hosson, Jeff Th. M. [Department of Applied Physics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, NL-9747AG Groningen (Netherlands); Gournis, Dimitrios, E-mail: dgourni@cc.uoi.gr [Department of Materials Science and Engineering, University of Ioannina, GR-45110 Ioannina (Greece)

    2013-04-20

    Highlights: ► CNTs synthesized on fibrous HA surfaces supporting Fe–Co bi- metallic catalysts by CVD. ► CNTs are rooted on HA distinct needle-like monocrystals and needle spherulitic aggregates. ► Reaction temperature and metal loading are critical parameters for CNT production. -- Abstract: Fibrous hydroxyapatite (HA)–carbon nanotube composites were synthesized by the catalytic decomposition of acetylene over Fe–Co bimetallic catalysts supported on the fibrous HA. Two forms of fibrous HA (distinct needle-like monocrystals and spherulitic aggregates of needles) were synthesized using a simple precipitation method and loaded with bimetallic catalysts (from 2 up to 20 wt%) by a wet chemical impregnation method. The HA supported catalysts were evaluated for the in situ growth of carbon nanotubes using the catalytic chemical vapor deposition method. The effect of reaction temperature and metal loading on the yield, structural perfection and morphology of the carbon products were investigated using a combination of X-ray diffraction, thermal analysis, Raman spectroscopy and scanning and transmission electron microscopies. The results revealed that both the selection of the growing conditions and the metal loading determine the yield and overall quality of the synthesized carbon nanotubes, which exhibit high graphitization degree when synthesized in high yields.

  3. Fibrous hydroxyapatite-carbon nanotube composites by chemical vapor deposition : In situ fabrication, structural and morphological characterization

    NARCIS (Netherlands)

    Kosma, Vassiliki; Tsoufis, Theodoros; Koliou, Theodora; Kazantzis, Antonios; Beltsios, Konstantinos; De Hosson, Jeff Th. M.; Gournis, Dimitrios

    2013-01-01

    Fibrous hydroxyapatite (HA)-carbon nanotube composites were synthesized by the catalytic decomposition of acetylene over Fe-Co bimetallic catalysts supported on the fibrous HA. Two forms of fibrous HA (distinct needle-like monocrystals and spherulitic aggregates of needles) were synthesized using a

  4. Strength of Fibrous Composites

    CERN Document Server

    Huang, Zheng-Ming

    2012-01-01

    "Strength of Fibrous Composites" addresses evaluation of the strength of a fibrous composite by using its constituent material properties and its fiber architecture parameters. Having gone through the book, a reader is able to predict the progressive failure behavior and ultimate strength of a fibrous laminate subjected to an arbitrary load condition in terms of the constituent fiber and matrix properties, as well as fiber geometric parameters. The book is useful to researchers and engineers working on design and analysis for composite materials. Dr. Zheng-Ming Huang is a professor at the School of Aerospace Engineering & Applied Mechanics, Tongji University, China. Mr. Ye-Xin Zhou is a PhD candidate at the Department of Mechanical Engineering, the University of Hong Kong, China.

  5. Creep of fibrous composite materials

    DEFF Research Database (Denmark)

    Lilholt, Hans

    1985-01-01

    Models are presented for the creep behaviour of fibrous composite materials with aligned fibres. The models comprise both cases where the fibres remain rigid in a creeping matrix and cases where the fibres are creeping in a creeping matrix. The treatment allows for several contributions...... to the creep strength of composites. The advantage of combined analyses of several data sets is emphasized and illustrated for some experimental data. The analyses show that it is possible to derive creep equations for the (in situ) properties of the fibres. The experiments treated include model systems...... such as Ni + W-fibres, high temperature materials such as Ni + Ni3Al + Cr3C2-fibres, and medium temperature materials such as Al + SiC-fibres. For the first two systems reasonable consistency is found for the models and the experiments, while for the third system too many unquantified parameters exist...

  6. Fibrous-Ceramic/Aerogel Composite Insulating Tiles

    Science.gov (United States)

    White, Susan M.; Rasky, Daniel J.

    2004-01-01

    Fibrous-ceramic/aerogel composite tiles have been invented to afford combinations of thermal-insulation and mechanical properties superior to those attainable by making tiles of fibrous ceramics alone or aerogels alone. These lightweight tiles can be tailored to a variety of applications that range from insulating cryogenic tanks to protecting spacecraft against re-entry heating. The advantages and disadvantages of fibrous ceramics and aerogels can be summarized as follows: Tiles made of ceramic fibers are known for mechanical strength, toughness, and machinability. Fibrous ceramic tiles are highly effective as thermal insulators in a vacuum. However, undesirably, the porosity of these materials makes them permeable by gases, so that in the presence of air or other gases, convection and gas-phase conduction contribute to the effective thermal conductivity of the tiles. Other disadvantages of the porosity and permeability of fibrous ceramic tiles arise because gases (e.g., water vapor or cryogenic gases) can condense in pores. This condensation contributes to weight, and in the case of cryogenic systems, the heat of condensation undesirably adds to the heat flowing to the objects that one seeks to keep cold. Moreover, there is a risk of explosion associated with vaporization of previously condensed gas upon reheating. Aerogels offer low permeability, low density, and low thermal conductivity, but are mechanically fragile. The basic idea of the present invention is to exploit the best features of fibrous ceramic tiles and aerogels. In a composite tile according to the invention, the fibrous ceramic serves as a matrix that mechanically supports the aerogel, while the aerogel serves as a low-conductivity, low-permeability filling that closes what would otherwise be the open pores of the fibrous ceramic. Because the aerogel eliminates or at least suppresses permeation by gas, gas-phase conduction, and convection, the thermal conductivity of such a composite even at

  7. Interfacial Micromechanics in Fibrous Composites: Design, Evaluation, and Models

    Science.gov (United States)

    Lei, Zhenkun; Li, Xuan; Qin, Fuyong; Qiu, Wei

    2014-01-01

    Recent advances of interfacial micromechanics in fiber reinforced composites using micro-Raman spectroscopy are given. The faced mechanical problems for interface design in fibrous composites are elaborated from three optimization ways: material, interface, and computation. Some reasons are depicted that the interfacial evaluation methods are difficult to guarantee the integrity, repeatability, and consistency. Micro-Raman study on the fiber interface failure behavior and the main interface mechanical problems in fibrous composites are summarized, including interfacial stress transfer, strength criterion of interface debonding and failure, fiber bridging, frictional slip, slip transition, and friction reloading. The theoretical models of above interface mechanical problems are given. PMID:24977189

  8. Electrospinning synthesis and characterization of PLA-PEG-MNPs composite fibrous membranes

    Science.gov (United States)

    Kumar, M.; Klimke, S.; Preiss, A.; Unruh, D.; Wengerowsky, D.; Lehmann, R.; Sindelar, R.; Klingelhöfer, G.; Boča, R.; Renz, F.

    2017-11-01

    An electrospinning technique was used to fabricate PLA, PLA-PEG and PLA-PEG-MNPs composite fibrous membranes. The morphology of electrospun composite membranes were characterized by scanning electron microscope. To test the potential availability of MNPs in PLA-PEG composite membranes, TG, Raman, Mössbauer, VSM and ICP-OES analysis were used. The PLA-PEG composite fibrous membranes showed the presence of MNPs, hence offers the possibility for magnetically triggered on-demand drug delivery.

  9. Fibrous composite material for textile heart valve design: in vitro assessment.

    Science.gov (United States)

    Amri, Amna; Laroche, Gaetan; Chakfe, Nabil; Heim, Frederic

    2018-04-17

    With over 150,000 implantations performed over the world, transcatheter aortic valve replacement (TAVR) has become a surgical technique, which largely competes with open surgery valve replacement for an increasing number of patients. The success of the procedure favors the research toward synthetic valve leaflet materials as an alternative to biological tissues, whose durability remains unknown. In particular, fibrous constructions have recently proven to be durable in vivo over a 6-month period of time in animal sheep models. Exaggerated fibrotic tissue formation remains, however, a critical issue to be addressed. This work investigates the design of a composite fibrous construction combining a woven polyethylene terephthalate (PET) layer and a non-woven PET mat, which are expected to provide, respectively, strength and appropriate topography toward limited fibrotic tissue ingrowth. For this purpose, a specific equipment has been developed to produce non-woven PET mats made from fibers with small diameter. These mats were assembled with woven PET substrates using various assembling techniques in order to obtain hybrid fibrous constructions. The physical and mechanical properties of the obtained materials were assessed and valve samples were manufactured to be tested in vitro for hydrodynamic performances. The results show that the composite fibrous construction is characterized by properties suitable for the valve leaflet function, but the durability of the assembling is however limited under accelerated cyclic loading.

  10. Composite fibrous glaucoma drainage implant

    Science.gov (United States)

    Klapstova, A.; Horakova, J.; Shynkarenko, A.; Lukas, D.

    2017-10-01

    Glaucoma is a frequent reason of loss vision. It is usually caused by increased intraocular pressure leading to damage of optic nerve head. This work deals with the development of fibrous structure suitable for glaucoma drainage implants (GDI). Commercially produced metallic glaucoma implants are very effective in lowering intraocular pressure. However, these implants may cause adverse events such as damage to adjacent tissue, fibrosis, hypotony or many others [1]. The aim of this study is to reduce undesirable properties of currently produced drains and improve their properties by creating of the composite fibrous drain for achieve a normal intraocular pressure. Two types of electrospinning technologies were used for the production of very small tubular implants. First type was focused for production of outer part of tubular drain and the second type of electrospinning method made the inner part of shape follows the connections of both parts. Complete implant had a special properties suitable for drainage of fluid. Morphological parameters, liquid transport tests and in-vitro cell adhesion tests were detected.

  11. Ninth DOD/NASA/FAA Conference on Fibrous Composites in Structural Design, volume 1

    Science.gov (United States)

    Soderquist, Joseph R. (Compiler); Neri, Lawrence M. (Compiler); Bohon, Herman L. (Compiler)

    1992-01-01

    This publication contains the proceedings of the Ninth DOD/NASA/FAA conference on Fibrous Composites in structural Design. Presentations were made in the following areas of composite structural design: perspectives in composites; design methodology; design applications; design criteria; supporting technology; damage tolerance; and manufacturing.

  12. New Textile Sensors for In Situ Structural Health Monitoring of Textile Reinforced Thermoplastic Composites Based on the Conductive Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) Polymer Complex.

    Science.gov (United States)

    Jerkovic, Ivona; Koncar, Vladan; Grancaric, Ana Marija

    2017-10-10

    Many metallic structural and non-structural parts used in the transportation industry can be replaced by textile-reinforced composites. Composites made from a polymeric matrix and fibrous reinforcement have been increasingly studied during the last decade. On the other hand, the fast development of smart textile structures seems to be a very promising solution for in situ structural health monitoring of composite parts. In order to optimize composites' quality and their lifetime all the production steps have to be monitored in real time. Textile sensors embedded in the composite reinforcement and having the same mechanical properties as the yarns used to make the reinforcement exhibit actuating and sensing capabilities. This paper presents a new generation of textile fibrous sensors based on the conductive polymer complex poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) developed by an original roll to roll coating method. Conductive coating for yarn treatment was defined according to the preliminary study of percolation threshold of this polymer complex. The percolation threshold determination was based on conductive dry films' electrical properties analysis, in order to develop highly sensitive sensors. A novel laboratory equipment was designed and produced for yarn coating to ensure effective and equally distributed coating of electroconductive polymer without distortion of textile properties. The electromechanical properties of the textile fibrous sensors confirmed their suitability for in situ structural damages detection of textile reinforced thermoplastic composites in real time.

  13. Micromechanics approach to the magnetoelectric properties of laminate and fibrous piezoelectric/magnetostrictive composites

    International Nuclear Information System (INIS)

    Huang Haitao; Zhou, L.M.

    2004-01-01

    We use a micromechanics approach to study the magnetoelectric (ME) properties of the piezoelectric/magnetostrictive composite with a 2-2 laminate structure and a 3-1 fibrous structure. It is found that the 3-1 composite has a higher ME coefficient than the 2-2 one, if the volume ratio of piezoelectric material is the same. The reason is that the 3-1 fibrous composite makes use of the longitudinal piezoelectric response and the piezoelectric voltage constant g 33 is 2-3 times that of g 31 . Generally, a smaller volume ratio of the piezoelectric material will generate a higher ME response. The tensile stress at the piezoelectric/magnetostrictive interface of the 3-1 fibrous composite, however, could be high enough to induce plastic deformation or microcracks, which leads to a ME coefficient lower than the theoretically predicted one

  14. Toward negative Poisson's ratio composites: Investigation of the auxetic behavior of fibrous networks

    Science.gov (United States)

    Tatlier, Mehmet Seha

    Random fibrous can be found among natural and synthetic materials. Some of these random fibrous networks possess negative Poisson's ratio and they are extensively called auxetic materials. The governing mechanisms behind this counter intuitive property in random networks are yet to be understood and this kind of auxetic material remains widely under-explored. However, most of synthetic auxetic materials suffer from their low strength. This shortcoming can be rectified by developing high strength auxetic composites. The process of embedding auxetic random fibrous networks in a polymer matrix is an attractive alternate route to the manufacture of auxetic composites, however before such an approach can be developed, a methodology for designing fibrous networks with the desired negative Poisson's ratios must first be established. This requires an understanding of the factors which bring about negative Poisson's ratios in these materials. In this study, a numerical model is presented in order to investigate the auxetic behavior in compressed random fiber networks. Finite element analyses of three-dimensional stochastic fiber networks were performed to gain insight into the effects of parameters such as network anisotropy, network density, and degree of network compression on the out-of-plane Poisson's ratio and Young's modulus. The simulation results suggest that the compression is the critical parameter that gives rise to negative Poisson's ratio while anisotropy significantly promotes the auxetic behavior. This model can be utilized to design fibrous auxetic materials and to evaluate feasibility of developing auxetic composites by using auxetic fibrous networks as the reinforcing layer.

  15. Ninth DOD/NASA/FAA Conference on Fibrous Composites in Structural Design, volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Soderquist, J.R.; Neri, L.M.; Bohon, H.L.

    1992-09-01

    This publication contains the proceedings of the Ninth DOD/NASA/FAA Conference on Fibrous Composites in Structural Design held at Lake Tahoe, Nevada, during 4-7 Nov. 1991. Presentations were made in the following areas of composite structural design: perspectives in composites, design methodology, design applications, design criteria, supporting technology, damage tolerance, and manufacturing.

  16. Ninth DOD/NASA/FAA Conference on Fibrous Composites in Structural Design, volume 3

    Science.gov (United States)

    Soderquist, Joseph R. (Compiler); Neri, Lawrence M. (Compiler); Bohon, Herman L. (Compiler)

    1992-01-01

    This publication contains the proceedings of the Ninth DOD/NASA/FAA Conference on Fibrous Composites in Structural Design held at Lake Tahoe, Nevada, during 4-7 Nov. 1991. Presentations were made in the following areas of composite structural design: perspectives in composites, design methodology, design applications, design criteria, supporting technology, damage tolerance, and manufacturing.

  17. Ninth DOD/NASA/FAA Conference on Fibrous Composites in Structural Design, volume 2

    Science.gov (United States)

    Soderquist, Joseph R. (Compiler); Neri, Lawrence M. (Compiler); Bohon, Herman L. (Compiler)

    1992-01-01

    This publication contains the proceedings of the Ninth DOD/NASA/FAA Conference on Fibrous Composites in Structural Design held at Lake Tahoe, Nevada, during 4-7 Nov. 1991. Presentations were made in the following areas of composite structural design: perspectives in composites, design methodology, design applications, design criteria, supporting technology, damage tolerance, and manufacturing.

  18. Ninth DOD/NASA/FAA Conference on Fibrous Composites in Structural Design, volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Soderquist, J.R.; Neri, L.M.; Bohon, H.L.

    1992-09-01

    This publication contains the proceedings of the Ninth DOD/NASA/FAA conference on Fibrous Composites in structural Design. Presentations were made in the following areas of composite structural design: perspectives in composites; design methodology; design applications; design criteria; supporting technology; damage tolerance; and manufacturing. Separate abstracts have been indexed into the database for articles from this report.

  19. In situ degradability of dry matter and fibrous fraction of sorghum silage

    Directory of Open Access Journals (Sweden)

    Renê Ferreira Costa

    2016-05-01

    Full Text Available This study aimed to evaluate in situ degradability and degradation kinetics of DM, NDF and ADF of silage, with or without tannin in the grains. Two isogenic lines of grain sorghum (CMS-XS 114 with tannin and CMS-XS 165 without tannin and two sorghum hybrids (BR-700 dual purpose with tannin and BR-601 forage without tannin were ensiled; dried and ground silage samples were placed in nylon bags and introduced through the fistulas. After incubation for 6, 12, 24, 48, 72 and 96 hours, bags were taken for subsequent analysis of fibrous fractions. The experimental design was completely randomized with 4 replicates and 4 treatments and means compared by Tukey’s test at 5% probability. As for the DM degradation rate, silage of CMSXS165without tannin was superior. Silages of genotypes BR700 and CMSXS 114 with tannin showed the highest values of indigestible ADF (59.54 and 43.09%. Regarding the NDF, the potential degradation of silage of CMSXS165 line without tannin was superior. Tannin can reduce ruminal degradability of the dry matter and fibrous fractions.

  20. Ninth DOD/NASA/FAA Conference on Fibrous Composites in Structural Design, volume 3

    Energy Technology Data Exchange (ETDEWEB)

    Soderquist, J.R.; Neri, L.M.; Bohon, H.L.

    1992-09-01

    This publication contains the proceedings of the Ninth DOD/NASA/FAA Conference on Fibrous Composites in Structural Design held at Lake Tahoe, Nevada, during 4-7 Nov. 1991. Presentations were made in the following areas of composite structural design: perspectives in composites, design methodology, design applications, design criteria, supporting technology, damage tolerance, and manufacturing. Separate abstracts have been prepared for articles from this report.

  1. New Textile Sensors for In Situ Structural Health Monitoring of Textile Reinforced Thermoplastic Composites Based on the Conductive Poly(3,4-ethylenedioxythiophene-poly(styrenesulfonate Polymer Complex

    Directory of Open Access Journals (Sweden)

    Ivona Jerkovic

    2017-10-01

    Full Text Available Many metallic structural and non-structural parts used in the transportation industry can be replaced by textile-reinforced composites. Composites made from a polymeric matrix and fibrous reinforcement have been increasingly studied during the last decade. On the other hand, the fast development of smart textile structures seems to be a very promising solution for in situ structural health monitoring of composite parts. In order to optimize composites’ quality and their lifetime all the production steps have to be monitored in real time. Textile sensors embedded in the composite reinforcement and having the same mechanical properties as the yarns used to make the reinforcement exhibit actuating and sensing capabilities. This paper presents a new generation of textile fibrous sensors based on the conductive polymer complex poly(3,4-ethylenedioxythiophene-poly(styrenesulfonate developed by an original roll to roll coating method. Conductive coating for yarn treatment was defined according to the preliminary study of percolation threshold of this polymer complex. The percolation threshold determination was based on conductive dry films’ electrical properties analysis, in order to develop highly sensitive sensors. A novel laboratory equipment was designed and produced for yarn coating to ensure effective and equally distributed coating of electroconductive polymer without distortion of textile properties. The electromechanical properties of the textile fibrous sensors confirmed their suitability for in situ structural damages detection of textile reinforced thermoplastic composites in real time.

  2. Fluorescence in situ hybridization and molecular studies in infertile men with dysplasia of the fibrous sheath.

    Science.gov (United States)

    Baccetti, Baccio; Collodel, Giulia; Gambera, Laura; Moretti, Elena; Serafini, Francesca; Piomboni, Paola

    2005-07-01

    To perform fluorescence in situ hybridization (FISH) and molecular analysis in patients with the genetic sperm defect "dysplasia of the fibrous sheath" (DFS). Retrospective study. Regional Referral Center for Male Infertility, Siena, Italy. Twelve infertile patients with DFS sperm defects. Family history, lymphocytic karyotype, physical and hormonal assays, semen analysis. The DFS sperm phenotype was defined by light, fluorescent, and electron microscopy. Sperm chromosomal constitution was examined by FISH. Gene deletions were tested by polymerase chain reaction. The genetic sperm defect DFS was determined by transmission and scanning electron microscopy. Immunofluorescence staining of A-kinase anchoring protein 4 (AKAP4) showed a moderate and diffuse signal, revealing a disorganized and incompletely assembled fibrous sheath. In 11 of 12 DFS patients, polymerase chain reaction for detecting the presence of partial sequence of AKAP4/AKAP3 binding regions gave positive results. Fluorescence in situ hybridization was performed in decondensed sperm nuclei with probes for chromosomes 18, X, and Y. The mean disomy frequency of chromosome 18 was in the normal range, whereas the mean disomy frequencies of sex chromosomes and diploidies were twice those of controls. These results should be considered when DFS sperm are used in assisted reproductive technology, owing to the high risk of transmission of chromosomal unbalance and of DFS sperm defects to male offspring.

  3. Fibrous composites comprising carbon nanotubes and silica

    Science.gov (United States)

    Peng, Huisheng [Shanghai, CN; Zhu, Yuntian Theodore [Cary, NC; Peterson, Dean E [Los Alamos, NM; Jia, Quanxi [Los Alamos, NM

    2011-10-11

    Fibrous composite comprising a plurality of carbon nanotubes; and a silica-containing moiety having one of the structures: (SiO).sub.3Si--(CH.sub.2).sub.n--NR.sub.1R.sub.2) or (SiO).sub.3Si--(CH.sub.2).sub.n--NCO; where n is from 1 to 6, and R.sub.1 and R.sub.2 are each independently H, CH.sub.3, or C.sub.2H.sub.5.

  4. Composite Resin Dosimeters: A New Concept and Design for a Fibrous Color Dosimeter.

    Science.gov (United States)

    Kinashi, Kenji; Iwata, Takato; Tsuchida, Hayato; Sakai, Wataru; Tsutsumi, Naoto

    2018-04-11

    Polystyrene (PS)-based composite microfibers combined with a photochromic spiropyran dye, 1,3,3-trimethylindolino-6'-nitrobenzopyrylospiran (6-nitro BIPS), and a photostimulable phosphor, europium-doped barium fluorochloride (BaFCl:Eu 2+ ), were developed for the detection of X-ray exposure doses on the order of approximately 1 Gy. To produce the PS-based composite microfibers, we employed a forcespinning method that embeds a high concentration of phosphor in PS in a safe, inexpensive, and simple procedure. On the basis of the optimization of the forcespinning process, fibrous color dosimeters with a high radiation dose sensitivity of 1.2-4.4 Gy were fabricated. The color of the dosimeters was found to transition from white to blue in response to X-ray exposure. The optimized fibrous color dosimeter, made from a solution having a PS/6-nitro BIPS/BaFCl:Eu 2+ /C 2 Cl 4 ratio of 7.0/0.21/28.0/28.0 (wt %) and produced with a 290 mm distance between the needle and collectors, a 0.34 mm 23 G needle nozzle, and a spinneret rotational rate of 3000 rpm, exhibited sensitivity to a dose as low as 1.2 Gy. To realize practical applications, we manufactured the optimized fibrous color dosimeter into a clothlike color dosimeter. The clothlike color dosimeter was mounted on a stuffed bear, and its coloring behavior was demonstrated upon X-ray exposure. After exposure with X-ray, a blue colored and shaped in the form of the letter "[Formula: see text]" clearly appeared on the surface of the clothlike color dosimeter. The proposed fibrous color dosimeters having excellent workability will be an unprecedented dosimetry and contributed to all industries utilizing radiation dosimeters. This new fibrous "composite resin dosimeter" should be able to replace traditional, wearable, and individual radiation dose monitoring devices, such as film badges.

  5. Alumina composites for oxide/oxide fibrous monoliths

    International Nuclear Information System (INIS)

    Cruse, T. A.; Polzin, B. J.; Picciolo, J. J.; Singh, D.; Tsaliagos, R. N.; Goretta, K. C.

    2000-01-01

    Most work on ceramic fibrous monoliths (FMs) has focused on the Si 3 N 4 /BN system. In an effort to develop oxidation-resistant FMs, several oxide systems have recently been examined. Zirconia-toughened alumina and alumina/mullite appear to be good candidates for the cell phase of FMs. These composites offer higher strength and toughness than pure alumina and good high-temperature stability. By combining these oxides, possibly with a weaker high-temperature oxide as the cell-boundary phase, it should be possible to product a strong, resilient FM that exhibits graceful failure. Several material combinations have been examined. Results on FM fabrication and microstructural development are presented

  6. Flexural behavior of the fibrous cementitious composites (FCC) containing hybrid fibres

    Science.gov (United States)

    Ramli, Mahyuddin; Ban, Cheah Chee; Samsudin, Muhamad Fadli

    2018-02-01

    In this study, the flexural behavior of the fibrous cementitious composites containing hybrid fibers was investigated. Waste materials or by product materials such as pulverized fuel ash (PFA) and ground granulated blast-furnace slag (GGBS) was used as supplementary cement replacement. In addition, barchip and kenaf fiber will be used as additional materials for enhance the flexural behavior of cementitious composites. A seven mix design of fibrous cementitious composites containing hybrid fiber mortar were fabricated with PFA-GGBS as cement replacement at 50% with hybridization of barchip and kenaf fiber between 0.5% and 2.0% by total volume weight. The FCC with hybrid fibers mortar will be fabricated by using 50 × 50 × 50 mm, 40 × 40 × 160 mm and 350 × 125 × 30 mm steel mold for assessment of mechanical performances and flexural behavior characteristics. The flexural behavior and mechanical performance of the PFA-GGBS with hybrid fiber mortar block was assessed in terms of load deflection response, stress-strain response, crack development, compressive and flexural strength after water curing for 28 days. Moreover, the specimen HBK 1 and HBK 2 was observed equivalent or better in mechanical performance and flexural behavior as compared to control mortar.

  7. Optical and electrochemical studies of polyaniline/SnO2 fibrous nanocomposites

    International Nuclear Information System (INIS)

    Manivel, P.; Ramakrishnan, S.; Kothurkar, Nikhil K.; Balamurugan, A.; Ponpandian, N.; Mangalaraj, D.; Viswanathan, C.

    2013-01-01

    Graphical abstract: Fiber with porous like structure of PANI/SnO 2 nanocomposites were prepared by simplest in situ chemical polymerization method. The PL emission spectra revealed that the band from 404 and 436 nm which is related with oxygen vacancies. The excellent electrochemical properties of composite electrode show the specific capacitance of 173 F/g at a scan rate of 25 m V/s. Display Omitted Highlights: ► Self assembled PANI/SnO 2 nanocomposites were synthesized by simple polymerization method. ► Electrochemical behavior of PANI/SnO 2 nanocomposites electrode was analyzed by CV. ► Nanocomposites exhibit a higher specific capacitance of 173 F/g, compared with pure SnO 2 . -- Abstract: Polyaniline (PANI)/tin oxide (SnO 2 ) fibrous nanocomposites were successfully prepared by an in situ chemical polymerization method with suitable conditions. The obtained composites were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy, photoluminescence (PL), electrical conductivity and cyclic voltammetry studies (CV). The XRD pattern of the as-prepared sample shows the presence of tetragonal SnO 2 and the crystalline structure of SnO 2 was not affected with the incorporation of PANI. The FTIR analysis confirms the uniform attachment of PANI on the surface of SnO 2 nanostructures. SEM images show a fibrous agglomerated structure of PANI/SnO 2 . The PL emission spectra revealed that the band from 404 and 436 nm which is related with oxygen vacancies. The electrochemical behavior of the PANI/SnO 2 composite electrode was evaluated in a H 2 SO 4 solution using cyclic voltammetry. The composite electrode exhibited a specific capacitance of 173 F/g at a scan rate 25 mV/s. Thus the as-prepared PANI/SnO 2 composite shows excellent electrochemical properties, suggesting that this composite is a promising material for supercapacitors.

  8. Improved lifetime of new fibrous carbon/ceramic composites

    Science.gov (United States)

    Gumula, Teresa

    2018-03-01

    New carbon/ceramic composites have been synthesized from low-cost phenol-formaldehyde resin and polysiloxane preceram. A reference carbon composite reinforced with carbon fibre (CC composite) is obtained in first place from a carbon fibre roving impregnated with a solution of phenol-formaldehyde resin in isopropyl alcohol. To obtain fibrous carbon/ceramic composites the CC perform is impregnated with polymethylphenylsiloxane polymer and then a thermal treatment in an inert atmosphere is applied. Depending on the temperature of this process, the resulting ceramics can be silicon carbide (SiC) or silicon oxycarbide (SiCO). Three representative samples, named CC/SiCO( a) (obtained at 1000 °C), CC/SiCO( b) (1500 °C) and CC/SiC (1700 °C), have been tested for fatigue behaviour and oxidation resistance. The value of the Young's modulus remains constant in fatigue tests done in flexion mode for the three new composites during a high number of cycles until sudden degradation begins. This is an unusual and advantageous characteristic for this type of materials and results in the absence of delamination during the measurements. In contrast, the CC reference composite shows a progressive degradation of the Young's modulus accompanied by delamination. SEM micrographs revealed that the formation of filaments of submicrometer diameter during the heat treatment can be responsible for the improved behaviour of these composites. The CC/SiC composite shows the best oxidation resistance among the three types of composites, with a 44% mass loss after 100 h of oxidation.

  9. Composition of silicon fibrous nanostructures synthesized using ultrafast laser pulses under ambient conditions

    Directory of Open Access Journals (Sweden)

    Sivakumar M.

    2015-01-01

    Full Text Available In this study the composition of nanostructures generated owing to ablation of crystalline silicon using high repletion rate femtosecond laser under ambient condition is investigated. The web-like silicon fibrous nanostructures are formed in and around the laser irradiated area. Electron Microscopy investigation revealed that the nanostructures are made of nanoparticles of size about 40 nm. In addition Micro-Raman analysis shows that the nanofibrous structures comprises a mixture of amorphous and polycrystalline silicon. X-ray photoelectron spectroscopy analysis reveals the oxidized and un-oxidized elemental states of silicon in the nanostructures. Moreover web-like fibrous nanostructures are generated due to condensation of super saturated vapour and subsequent nucleus growth in the laser induced plasma plume.

  10. In situ NiTi/Nb(Ti) composite

    International Nuclear Information System (INIS)

    Jiang, Daqiang; Cui, Lishan; Jiang, Jiang; Zheng, Yanjun

    2013-01-01

    Graphical abstract: - Highlights: • In situ NiTi/Nb(Ti) composites were fabricated. • The transformation temperature was affected by the mixing Ti:Ni atomic ratios. • The NiTi component became micron-scale lamella after forging and rolling. • The composite exhibited high strength and high damping capacity. - Abstract: This paper reports on the creation of a series of in situ NiTi/Nb(Ti) composites with controllable transformation temperatures based on the pseudo-binary hypereutectic transformation of NiTi–Nb system. The composite constituent morphology was controlled by forging and rolling. It is found that the thickness of the NiTi lamella in the composite reached micron level after the hot-forging and cold-rolling. The NiTi/Nb(Ti) composite exhibited high damping capacity as well as high yield strength

  11. Processing and Mechanical Properties of NiAl-Based In-Situ Composites. Ph.D. Thesis Final Report

    Science.gov (United States)

    Johnson, David Ray

    1994-01-01

    In-situ composites based on the NiAl-Cr eutectic system were successfully produced by containerless processing and evaluated. The NiAl-Cr alloys had a fibrous microstructure while the NiAl-(Cr,Mo) alloys containing 1 at. percent or more molybdenum exhibited a lamellar structure. The NiAl-28Cr-6Mo eutectic displays promising high temperature strength while still maintaining a reasonable room temperature fracture toughness when compared to other NiAl-based materials. The Laves phase NiAlTa was used to strengthen NiAl and very promising creep strengths were found for the directionally solidified NiAl-NiAlTa eutectic. The eutectic composition was found to be near NiAl-15.5Ta (at. percent) and well aligned microstructures were produced at this composition. An off-eutectic composition of NiAl-14.5Ta was also processed, consisting of NiAl dendrites surrounded by aligned eutectic regions. The room temperature toughness of these two phase alloys was similar to that of polycrystalline NiAl even with the presence of the brittle Laves phase NiAlTa. Polyphase in-situ composites were generated by directional solidification of ternary eutectics. The systems investigated were the Ni-Al-Ta-X (X=Cr, Mo, or V) alloys. Ternary eutectics were found in each of these systems and both the eutectic composition and temperature were determined. Of these ternary eutectics, the one in the NiAl-Ta-Cr system was found to be the most promising. The fracture toughness of the NiAl-(Cr,Al)NiTa-Cr eutectic was intermediate between those of the NiAl-NiAlTa eutectic and the NiAl-Cr eutectic. The creep strength of this ternary eutectic was similar to or greater than that of the NiAl-Cr eutectic.

  12. Optical and electrochemical studies of polyaniline/SnO{sub 2} fibrous nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Manivel, P. [Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641 046, Tamil Nadu (India); Ramakrishnan, S.; Kothurkar, Nikhil K. [Department of Chemical Engineering and Material Science, Amrita Vishwa Vidyapeetham, Coimbatore 641 112, Tamil Nadu (India); Balamurugan, A.; Ponpandian, N.; Mangalaraj, D. [Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641 046, Tamil Nadu (India); Viswanathan, C., E-mail: viswanathan@buc.edu.in [Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641 046, Tamil Nadu (India)

    2013-02-15

    Graphical abstract: Fiber with porous like structure of PANI/SnO{sub 2} nanocomposites were prepared by simplest in situ chemical polymerization method. The PL emission spectra revealed that the band from 404 and 436 nm which is related with oxygen vacancies. The excellent electrochemical properties of composite electrode show the specific capacitance of 173 F/g at a scan rate of 25 m V/s. Display Omitted Highlights: ► Self assembled PANI/SnO{sub 2} nanocomposites were synthesized by simple polymerization method. ► Electrochemical behavior of PANI/SnO{sub 2} nanocomposites electrode was analyzed by CV. ► Nanocomposites exhibit a higher specific capacitance of 173 F/g, compared with pure SnO{sub 2}. -- Abstract: Polyaniline (PANI)/tin oxide (SnO{sub 2}) fibrous nanocomposites were successfully prepared by an in situ chemical polymerization method with suitable conditions. The obtained composites were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy, photoluminescence (PL), electrical conductivity and cyclic voltammetry studies (CV). The XRD pattern of the as-prepared sample shows the presence of tetragonal SnO{sub 2} and the crystalline structure of SnO{sub 2} was not affected with the incorporation of PANI. The FTIR analysis confirms the uniform attachment of PANI on the surface of SnO{sub 2} nanostructures. SEM images show a fibrous agglomerated structure of PANI/SnO{sub 2}. The PL emission spectra revealed that the band from 404 and 436 nm which is related with oxygen vacancies. The electrochemical behavior of the PANI/SnO{sub 2} composite electrode was evaluated in a H{sub 2}SO{sub 4} solution using cyclic voltammetry. The composite electrode exhibited a specific capacitance of 173 F/g at a scan rate 25 mV/s. Thus the as-prepared PANI/SnO{sub 2} composite shows excellent electrochemical properties, suggesting that this composite is a promising material for supercapacitors.

  13. Green and facile synthesis of fibrous Ag/cotton composites and their catalytic properties for 4-nitrophenol reduction

    Science.gov (United States)

    Li, Ziyu; Jia, Zhigang; Ni, Tao; Li, Shengbiao

    2017-12-01

    Natural cotton, featuring abundant oxygen-containing functional groups, has been utilized as a reductant to synthesize Ag nanoparticles on its surface. Through the facile and environment-friendly reduction process, the fibrous Ag/cotton composite (FAC) was conveniently synthesized. Various characterization techniques including XRD, XPS, TEM, SEM, EDS and FT-IR had been utilized to study the material microstructure and surface properties. The resulting FAC exhibited favorable activity on the catalytic reduction of 4-nitrophenol with high reaction rate. Moreover, the fibrous Ag/cotton composites were capable to form a desirable catalytic mat for catalyzing and simultaneous product separation. Reactants passing through the mat could be catalytically transformed to product, which is of great significance for water treatment. Such catalyst (FAC) was thus expected to have the potential as a highly efficient, cost-effective and eco-friendly catalyst for industrial applications. More importantly, this newly developed synthetic methodology could serve as a general tool to design and synthesize other metal/biomass composites catalysts for a wider range of catalytic applications.

  14. The effect of poly (lactic-co-glycolic) acid composition on the mechanical properties of electrospun fibrous mats

    DEFF Research Database (Denmark)

    Liu, Xiaoli; Aho, Johanna; Baldursdottir, Stefania G.

    2017-01-01

    The aim of this study was to investigate the influence of polymer molecular structure on the electrospinnability and mechanical properties of electrospun fibrous mats (EFMs). Polymers with similar molecular weight but different composition ratios (lactic acid (LA) and glycolic acid (GA)) were dis...

  15. Design feasibility study of a divertor component reinforced with fibrous metal matrix composite laminate

    International Nuclear Information System (INIS)

    You, J.-H.

    2005-01-01

    Fibrous metal matrix composites possess advanced mechanical properties compared to conventional alloys. It is expected that the application of these composites to a divertor component will enhance the structural reliability. A possible design concept would be a system consisting of tungsten armour, copper composite interlayer and copper heat sink where the composite interlayer is locally inserted into the highly stressed domain near the bond interface. For assessment of the design feasibility of the composite divertor concept, a non-linear multi-scale finite element analysis was performed. To this end, a micro-mechanics algorithm was implemented into a finite element code. A reactor-relevant heat flux load was assumed. Focus was placed on the evolution of stress state, plastic deformation and ductile damage on both macro- and microscopic scales. The structural response of the component and the micro-scale stress evolution of the composite laminate were investigated

  16. Design feasibility study of a divertor component reinforced with fibrous metal matrix composite laminate

    Energy Technology Data Exchange (ETDEWEB)

    You, J.-H. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmannstr. 2, D-85748 Garching (Germany)]. E-mail: j.h.you@ipp.mpg.de

    2005-01-01

    Fibrous metal matrix composites possess advanced mechanical properties compared to conventional alloys. It is expected that the application of these composites to a divertor component will enhance the structural reliability. A possible design concept would be a system consisting of tungsten armour, copper composite interlayer and copper heat sink where the composite interlayer is locally inserted into the highly stressed domain near the bond interface. For assessment of the design feasibility of the composite divertor concept, a non-linear multi-scale finite element analysis was performed. To this end, a micro-mechanics algorithm was implemented into a finite element code. A reactor-relevant heat flux load was assumed. Focus was placed on the evolution of stress state, plastic deformation and ductile damage on both macro- and microscopic scales. The structural response of the component and the micro-scale stress evolution of the composite laminate were investigated.

  17. Determination of arsenate in water by anion selective membrane electrode using polyurethane–silica gel fibrous anion exchanger composite

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Asif Ali, E-mail: asifkhan42003@yahoo.com; Shaheen, Shakeeba, E-mail: shakeebashaheen@ymail.com

    2014-01-15

    Highlights: • PU–Si gel is new anion exchanger material synthesized and characterized. • This material used as anion exchange membrane is applied for electroanalytical studies. • The method for detection and determination of AsO{sub 4}{sup 3−} in traces amounts discussed. • The results are also verified from arsenic analyzer. -- Abstract: Polyurethane (PU)–silica (Si gel) based fibrous anion exchanger composites were prepared by solid–gel polymerization of polyurethane in the presence of different amounts of silica gel. The formation of PU–Si gel fibrous anion exchanger composite was characterized by Fourier transform infra-red spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA-DTA), scanning electron microscopy (SEM) and elemental analysis. The membrane having a composition of 5:3 (PU:Si gel) shows best results for water content, porosity, thickness and swelling. Our studies show that the present ion selective membrane electrode is selective for arsenic, having detection limit (1 × 10{sup −8} M to 1 × 10{sup −1} M), response time (45 s) and working pH range (5–8). The selectivity coefficient values for interfering ions indicate good selectivity for arsenate (AsO{sub 4}{sup 3−}) over interfering anions. The accuracy of the detection limit results was compared by PCA-Arsenomat.

  18. Microstructural and compositional features of the fibrous and hyaline cartilage on the medial tibial plateau imply a unique role for the hopping locomotion of kangaroo.

    Directory of Open Access Journals (Sweden)

    Bo He

    Full Text Available Hopping provides efficient and energy saving locomotion for kangaroos, but it results in great forces in the knee joints. A previous study has suggested that a unique fibrous cartilage in the central region of the tibial cartilage could serve to decrease the peak stresses generated within kangaroo tibiofemoral joints. However, the influences of the microstructure, composition and mechanical properties of the central fibrous and peripheral hyaline cartilage on the function of the knee joints are still to be defined. The present study showed that the fibrous cartilage was thicker and had a lower chondrocyte density than the hyaline cartilage. Despite having a higher PG content in the middle and deep zones, the fibrous cartilage had an inferior compressive strength compared to the peripheral hyaline cartilage. The fibrous cartilage had a complex three dimensional collagen meshwork with collagen bundles parallel to the surface in the superficial zone, and with collagen bundles both parallel and perpendicular to the surface in the middle and deep zones. The collagen in the hyaline cartilage displayed a typical Benninghoff structure, with collagen fibres parallel to the surface in the superficial zone and collagen fibres perpendicular to the surface in the deep zone. Elastin fibres were found throughout the entire tissue depth of the fibrous cartilage and displayed a similar alignment to the adjacent collagen bundles. In comparison, the elastin fibres in the hyaline cartilage were confined within the superficial zone. This study examined for the first time the fibrillary structure, PG content and compressive properties of the central fibrous cartilage pad and peripheral hyaline cartilage within the kangaroo medial tibial plateau. It provided insights into the microstructure and composition of the fibrous and peripheral hyaline cartilage in relation to the unique mechanical properties of the tissues to provide for the normal activities of kangaroos.

  19. Microstructural and compositional features of the fibrous and hyaline cartilage on the medial tibial plateau imply a unique role for the hopping locomotion of kangaroo.

    Science.gov (United States)

    He, Bo; Wu, Jian Ping; Xu, Jiake; Day, Robert E; Kirk, Thomas Brett

    2013-01-01

    Hopping provides efficient and energy saving locomotion for kangaroos, but it results in great forces in the knee joints. A previous study has suggested that a unique fibrous cartilage in the central region of the tibial cartilage could serve to decrease the peak stresses generated within kangaroo tibiofemoral joints. However, the influences of the microstructure, composition and mechanical properties of the central fibrous and peripheral hyaline cartilage on the function of the knee joints are still to be defined. The present study showed that the fibrous cartilage was thicker and had a lower chondrocyte density than the hyaline cartilage. Despite having a higher PG content in the middle and deep zones, the fibrous cartilage had an inferior compressive strength compared to the peripheral hyaline cartilage. The fibrous cartilage had a complex three dimensional collagen meshwork with collagen bundles parallel to the surface in the superficial zone, and with collagen bundles both parallel and perpendicular to the surface in the middle and deep zones. The collagen in the hyaline cartilage displayed a typical Benninghoff structure, with collagen fibres parallel to the surface in the superficial zone and collagen fibres perpendicular to the surface in the deep zone. Elastin fibres were found throughout the entire tissue depth of the fibrous cartilage and displayed a similar alignment to the adjacent collagen bundles. In comparison, the elastin fibres in the hyaline cartilage were confined within the superficial zone. This study examined for the first time the fibrillary structure, PG content and compressive properties of the central fibrous cartilage pad and peripheral hyaline cartilage within the kangaroo medial tibial plateau. It provided insights into the microstructure and composition of the fibrous and peripheral hyaline cartilage in relation to the unique mechanical properties of the tissues to provide for the normal activities of kangaroos.

  20. Recent Advances in Nb-silicide in-situ composites

    International Nuclear Information System (INIS)

    Bewlay, B.P.; Jackson, M.R.; Subramanian, P.R.; Briant, C.L.

    2001-01-01

    In-situ composites based on Nb silicides have great potential for future high-temperature applications. These Nb-silicide composites combine a ductile Nb-based matrix with high-strength silicides. With the appropriate combination of alloying elements, such as Ti, Hf, Cr, AI, it is possible to achieve a promising balance of fracture toughness, high-temperature creep performance, and oxidation resistance. This paper will describe the effect of volume fraction of silicide on microstructure, high-temperature creep performance, and oxidation resistance. The ratio of Nb:(W+Ti) is critical in determining both creep rate and oxidation performance. If this ratio goes below ∼1.5, the creep rate increases substantially. In more complex silicide-based systems, other intermetallics, such as laves phases and a boron-rich T-2 phase, are added for oxidation resistance. To understand the role of each phase on the creep resistance and oxidation performance of these composites, we determined the creep and oxidation behavior of the individual phases and composites at temperatures up to 1200 o C. These data allow quantification of the load-bearing capability of the individual phases in the Nb-silicide based in-situ composites. (author)

  1. Fabrication of in-situ grown graphene reinforced Cu matrix composites

    Science.gov (United States)

    Chen, Yakun; Zhang, Xiang; Liu, Enzuo; He, Chunnian; Shi, Chunsheng; Li, Jiajun; Nash, Philip; Zhao, Naiqin

    2016-01-01

    Graphene/Cu composites were fabricated through a graphene in-situ grown approach, which involved ball-milling of Cu powders with PMMA as solid carbon source, in-situ growth of graphene on flaky Cu powders and vacuum hot-press sintering. SEM and TEM characterization results indicated that graphene in-situ grown on Cu powders guaranteed a homogeneous dispersion and a good combination between graphene and Cu matrix, as well as the intact structure of graphene, which was beneficial to its strengthening effect. The yield strength of 244 MPa and tensile strength of 274 MPa were achieved in the composite with 0.95 wt.% graphene, which were separately 177% and 27.4% enhancement over pure Cu. Strengthening effect of in-situ grown graphene in the matrix was contributed to load transfer and dislocation strengthening. PMID:26763313

  2. Carbon Fiber Foam Composites and Methods for Making the Same

    Science.gov (United States)

    Leseman, Zayd Chad (Inventor); Atwater, Mark Andrew (Inventor); Phillips, Jonathan (Inventor)

    2014-01-01

    Exemplary embodiments provide methods and apparatus of forming fibrous carbon foams (FCFs). In one embodiment, FCFs can be formed by flowing a fuel rich gas mixture over a catalytic material and components to be encapsulated in a mold to form composite carbon fibers, each composite carbon fiber having a carbon phase grown to encapsulate the component in situ. The composite carbon fibers can be intertwined with one another to form FCFs having a geometry according to the mold.

  3. Bone scintigraphy in polyostotic fibrous dysplasia

    Energy Technology Data Exchange (ETDEWEB)

    Wadhwa, S.S.; Mansberg, R.; Fernandes, V.B. [Illawarra Regional Hospital, Wollongong, NSW, (Australia)

    1998-03-01

    Fibrous dysplasia is a benign skeletal disorder of unknown aetiology. Fibrous dysplasia characteristically involves the fibrous replacement of portions of the medullary cavities of a single bone (monostotic) or multiple bones (polyostotic). Bones typically involved include the femurs, tibiae, ribs and maxillae. The polyostotic form may be accompanied by skin pigmentation and endocrine abnormalities (McCune Allbright Syndrome). Radiological findings in fibrous dysplasia are variable, ranging from completely radiolucent to radio-opaque lesions, depending on the amount of fibrous or osseous tissue deposited in the medulla. The most common radiographic finding is that of a ground glass-like semi-opaque lesion. Case reports on scintigraphic manifestation of fibrous dysplasia are scanty. We present radiological and scintigraphic findings of polyostotic fibrous dysplasia in a young male. (authors). 3 refs., 1 fig.

  4. Characterization of alginate-brushite in-situ hydrogel composites

    Energy Technology Data Exchange (ETDEWEB)

    Dabiri, Seyed Mohammad Hossein [Department of Informatics, Bioengineering, Robotics, and System Engineering, University of Genoa, Genoa (Italy); Lagazzo, Alberto; Barberis, Fabrizio [Department of Civil, Chemical and Environmental Engineering, University of Genoa, Genoa (Italy); Farokhi, Mehdi [National Cell Bank of Iran, Pasteur Institute of Iran, Tehran (Iran, Islamic Republic of); Finochio, Elisabetta [Department of Civil, Chemical and Environmental Engineering, University of Genoa, Genoa (Italy); Pastorino, Laura [Department of Informatics, Bioengineering, Robotics, and System Engineering, University of Genoa, Genoa (Italy)

    2016-10-01

    In the present study alginate-brushite composite hydrogels were in-situ synthetized and characterized with respect to preparation parameters. Specifically, the influence of initial pH value and initial concentration of phosphate precursor on the in-situ fabrication of the composite hydrogel were taken into account. The composite hydrogels were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric (TGA, DTG) and differential thermal analysis (DTA). Finally, the cell viability tests were carried out (MTT) over the incubation time period of 3, 7, and 14 days. The results revealed that the formation and the crystalline stability of brushite were highly dependent on the initial pH value. It was shown that as the pH reached to the value of 6, characteristics peaks of brushite appeared in the FTIR spectra. Besides, the XRD and thermal analysis results were in a good accordance with those of FTIR. In addition, the SEM images demonstrated that the plate like brushite was formed inside the alginate matrix. Also, a considerable impact of pH variation on the biocompatibility of samples was noticed so that the majority of samples especially those prepared in the acidic conditions were toxic. - Highlights: • Alginate-brushite hydrogel composites were obtained through an in-situ process • The brushite crystals started forming at pH value of 6 • The increase in the initial concentration of phosphate precursor resulted in more crystalline structure • Samples prepared at pH value of 8 had the most stable crystalline structure • Brushite crystals promoted the biocompatibility of alginate.

  5. Fabrication of Nanocarbon Composites Using In Situ Chemical Vapor Deposition and Their Applications.

    Science.gov (United States)

    He, Chunnian; Zhao, Naiqin; Shi, Chunsheng; Liu, Enzuo; Li, Jiajun

    2015-09-23

    Nanocarbon (carbon nanotubes (CNTs) and graphene (GN)) composites attract considerable research interest due to their fascinating applications in many fields. Here, recent developments in the field of in situ chemical vapor deposition (CVD) for the design and controlled preparation of advanced nanocarbon composites are highlighted, specifically, CNT-reinforced bulk structural composites, as well as CNT, GN, and CNT/GN functional composites, together with their practical and potential applications. In situ CVD is a very attractive approach for the fabrication of composites because of its engaging features, such as its simplicity, low-cost, versatility, and tunability. The morphologies, structures, dispersion, and interface of the resulting nanocarbon composites can be easily modulated by varying the experimental parameters (such as temperature, catalysts, carbon sources, templates or template catalysts, etc.), which enables a great potential for the in situ synthesis of high-quality nanocarbons with tailored size and dimension for constructing high-performance composites, which has not yet been achieved by conventional methods. In addition, new trends of the in situ CVD toward nanocarbon composites are discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A novel fabrication technology of in situ TiB2/6063Al composites: High energy ball milling and melt in situ reaction

    International Nuclear Information System (INIS)

    Zhang, S.-L.; Yang, J.; Zhang, B.-R.; Zhao, Y.-T.; Chen, G.; Shi, X.-X.; Liang, Z.-P.

    2015-01-01

    Highlights: • This paper presents a novel technology to fabricate the TiB 2 /6063Al composites. • The novel technology decreases in situ reaction temperature and shortens the time. • The reaction mechanism of in situ reaction at the low temperature is discussed. • Effect of ball milling time and in situ reaction time on the composites is studied. - Abstract: TiB 2 /6063Al matrix composites are fabricated from Al–TiO 2 –B 2 O 3 system by the technology combining high energy ball milling with melt in situ reaction. The microstructure and tensile properties of the composites are investigated by XRD, SEM, EDS, TEM and electronic tensile testing. The results indicate that high energy ball milling technology decreases the in situ reaction temperature and shortens the reaction time for Al–TiO 2 –B 2 O 3 system in contrast with the conventional melt in situ synthesis. The morphology of in situ TiB 2 particles is exhibited in irregular shape or nearly circular shape, and the average size of the particles is less than 700 nm, thereinto the minimum size is approximately 200 nm. In addition, the morphology and size of the reinforced particles are affected by the time of ball milling and in situ reaction. TEM images indicate that the interface between 6063Al matrix and TiB 2 particles is clear and no interfacial outgrowth is observed. Tensile testing results show that the as-cast TiB 2 /6063Al composites exhibit a much higher strength, reaching 191 MPa, which is 1.23 times as high as the as-cast 6063Al matrix. Besides, the tensile fracture surface of the composites displays the dimple-fracture character

  7. Study on the fabrication of Al matrix composites strengthened by combined in-situ alumina particle and in-situ alloying elements

    International Nuclear Information System (INIS)

    Huang Zanjun; Yang Bin; Cui Hua; Zhang Jishan

    2003-01-01

    A new idea to fabricate aluminum matrix composites strengthened by combined in-situ particle strengthening and in-situ alloying has been proposed. Following the concept of in-situ alloying and in-situ particle strengthening, aluminum matrix composites reinforced by Cu and α-Al 2 O 3 particulate (material I) and the same matrix reinforced by Cu, Si alloying elements and α-Al 2 O 3 particulate (material II) have been obtained. SEM observation, EDS and XRD analysis show that the alloy elements Cu and Si exist in the two materials, respectively. In-situ Al 2 O 3 particulates are generally spherical and their mean size is less than 0.5 μm. TEM observation shows that the in-situ α-Al 2 O 3 particulates have a good cohesion with the matrix. The reaction mechanism of the Al 2 O 3 particulate obtained by this method was studied. Thermodynamic considerations are given to the in-situ reactions and the distribution characteristic of in-situ the α-Al 2 O 3 particulate in the process of solidification is also discussed

  8. Fabrication and properties of aluminum silicate fibrous materials with in situ synthesized K2Ti6O13 whiskers

    Science.gov (United States)

    Liu, Hao; Wei, Nan; Wang, Zhou-fu; Wang, Xi-tang; Ma, Yan

    2017-11-01

    To improve their mechanical and thermal insulation properties, aluminum silicate fibrous materials with in situ synthesized K2Ti6O13 whiskers were prepared by firing a mixture of short aluminum silicate fibers and gel powders obtained from a sol-gel process. During the preparation process, the fiber surface was coated with K2Ti6O13 whiskers after the fibers were subjected to a heat treatment carried out at various temperatures. The effects of process parameters on the microstructure, compressive strength, and thermal conductivity were analyzed systematically. The results show that higher treatment temperatures and longer treatment durations promoted the development of K2Ti6O13 whiskers on the surface of aluminum silicate fibers; in addition, the intersection structure between whiskers modulated the morphology and volume of the multi-aperture structure among fibers, substantially increasing the fibers' compressive strength and reducing their heat conduction and convective heat transfer at high temperatures.

  9. Polyindole/ carboxylated-multiwall carbon nanotube composites produced by in-situ and interfacial polymerization

    International Nuclear Information System (INIS)

    Joshi, Leela; Singh, Arun Kumar; Prakash, Rajiv

    2012-01-01

    Composites of polyindole (PIn), a conducting polymer, with carboxylated-multiwalled carbon nanotubes (c-MWCNT/PIn) were synthesized; the synthesis was done using (i) two miscible solvents (in-situ method) and (ii) two immiscible solvents (interfacial method). A tubular composite, with a uniform coating of the polymer over c-MWCNTs, was observed in the case of interfacial synthesis. However, the in-situ synthesis of c-MWCNT/PIn composites exhibited a densely packed spherical morphology, with c-MWCNT incorporated within the polymer spheres. The spherical morphology was probably obtained due to fast polymerization kinetics and the formation of micelles in case of in-situ polymerization, whereas tubular morphology was obtained in case of interfacial polymerization due to the sufficient time provided for the growth of polymer chains over the c-MWCNT surfaces. Nanoscale electrical properties of composites, in a metal/(c-MWCNT/PIn) configuration, were studied using current sensing atomic force microscopy. Interfacial c-MWCNT/PIn composite, on Al metal substrate, exhibited a typical rectifying diode behavior. This composite had manifested enormous potential for electronic applications and fabrication of nanoscale organic devices. Highlights: ► Polyindole/c-MWNT nanocomposites produced by in-situ and interfacial polymerization. ► Densely packed spherical morphology was observed in in-situ polymerization route. ► Tubular core-shell morphology was observed in interfacial polymerization route. ► Interfacial nanocomposite manifested a nano-schottky junction with Al metal.

  10. Electrospun PVDF fibers and a novel PVDF/CoFe2O4 fibrous composite as nanostructured sorbent materials for oil spill cleanup

    Science.gov (United States)

    Dorneanu, Petronela Pascariu; Cojocaru, Corneliu; Olaru, Niculae; Samoila, Petrisor; Airinei, Anton; Sacarescu, Liviu

    2017-12-01

    In this work, pure polyvinylidene fluoride (PVDF) and PVDF/cobalt ferrite (CoFe2O4) magnetic fibrous composite were successfully prepared by electrospinning method for oil spill sorption applications. The pure spinel phase of CoFe2O4 and PVDF/CoFe2O4 composites were confirmed by X-ray diffraction analysis (XRD). Electrospun sorbent materials were characterized by scanning and transmission electron microscopy (SEM and TEM) as well as by contact angle measurements. In addition, the composite sorbent (PVDF/CoFe2O4) was characterized by magnetic measurements. It revealed good magnetic properties that are of real interest to facilitate the separation of the oil-loaded sorbent under the external magnetic field. Finally, the produced electrospun sorbents were tested for sorption of oily liquids, such as: decane, dodecane and commercial motor oils. We obtained good oil sorption capacity (between 9.751-23.615 g/g of pure PVDF) and (8.133-18.074 g/g for the magnetic composite) depending on the nature of oil tested. The present electrospun magnetic PVDF/CoFe2O4 fibrous composite could be potentially useful for the efficient removal of oil in water and recovery of sorbent material.

  11. A novel fabrication technology of in situ TiB{sub 2}/6063Al composites: High energy ball milling and melt in situ reaction

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, S.-L.; Yang, J. [School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013 (China); Zhang, B.-R. [School of Mechanical Engineering, Qilu University of Technology, Jinan, Shandong 250022 (China); Zhao, Y.-T., E-mail: 278075525@qq.com [School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013 (China); Chen, G.; Shi, X.-X.; Liang, Z.-P. [School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013 (China)

    2015-08-05

    Highlights: • This paper presents a novel technology to fabricate the TiB{sub 2}/6063Al composites. • The novel technology decreases in situ reaction temperature and shortens the time. • The reaction mechanism of in situ reaction at the low temperature is discussed. • Effect of ball milling time and in situ reaction time on the composites is studied. - Abstract: TiB{sub 2}/6063Al matrix composites are fabricated from Al–TiO{sub 2}–B{sub 2}O{sub 3} system by the technology combining high energy ball milling with melt in situ reaction. The microstructure and tensile properties of the composites are investigated by XRD, SEM, EDS, TEM and electronic tensile testing. The results indicate that high energy ball milling technology decreases the in situ reaction temperature and shortens the reaction time for Al–TiO{sub 2}–B{sub 2}O{sub 3} system in contrast with the conventional melt in situ synthesis. The morphology of in situ TiB{sub 2} particles is exhibited in irregular shape or nearly circular shape, and the average size of the particles is less than 700 nm, thereinto the minimum size is approximately 200 nm. In addition, the morphology and size of the reinforced particles are affected by the time of ball milling and in situ reaction. TEM images indicate that the interface between 6063Al matrix and TiB{sub 2} particles is clear and no interfacial outgrowth is observed. Tensile testing results show that the as-cast TiB{sub 2}/6063Al composites exhibit a much higher strength, reaching 191 MPa, which is 1.23 times as high as the as-cast 6063Al matrix. Besides, the tensile fracture surface of the composites displays the dimple-fracture character.

  12. In situ polymerization of monomers for polyphenylquinoxaline-graphite fiber composites

    Science.gov (United States)

    Serafini, T. T.; Delvigs, P.; Vannucci, R. D.

    1974-01-01

    In situ polymerization of monomers was used to prepare graphite-fiber-reinforced polyphenylquinoxaline composites. Six different monomer combinations were investigated. Composite mechanical property retention characteristics were determined at 316 C (600 F) over an extended time period.

  13. Microstructural evolution and strengthening behavior in in-situ magnesium matrix composites fabricated by solidification processing

    Energy Technology Data Exchange (ETDEWEB)

    Chelliah, Nagaraj M., E-mail: cmnraj.7@gmail.com [Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab (India); Singh, Harpreet, E-mail: harpreetsingh@iitrpr.ac.in [Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab (India); Surappa, M.K., E-mail: mirle@materials.iisc.ac.in [Department of Materials Engineering, Indian Institute of Science, Bengaluru 560012, Karnataka (India)

    2017-06-15

    In-situ magnesium matrix composites with three different matrix materials (including Mg, AZ91 and AE44 Mg-alloys) were fabricated by injecting cross-linked polymer directly into the molten Mg/Mg-alloys, and having it convert to the 2.5 vol% SiCNO ceramic phase using liquid stir-casting method. In-situ chemical reaction took place within the molten slurry tending to produce 42 and 18 vol% Mg{sub 2}Si crystals in Mg and AE44 matrix composites, respectively but not in AZ91 matrix composite. Microstructural evolution of Mg{sub 2}Si crystals was discussed on the basis of availability of heterogeneous nucleation sites and amount of Al-atoms in the molten slurry. The observed micro-hardness and yield strengths are enhanced by factor of four to three as compared to their unreinforced counterparts, and Taylor strengthening was found to be the predominant strengthening mechanism in magnesium and AE44 matrix composites. Summation model predicted the yield strengths of the fabricated composites more preciously when compared to Zhang and Chen, and modified Clyne models. - Highlights: • In-situ magnesium composites were fabricated using liquid stir-casting method. • In-situ pyrolysis of cross-linked polymer has been utilized to obtain ceramic phases. • Mg{sub 2}Si crystals were formed in magnesium and AE44 matrix composites but not in AZ91 matrix composites. • The variation in size and morphology of Mg{sub 2}Si crystals with matrix materials are discussed. • Strengthening mechanisms in in-situ composites are analyzed and discussed.

  14. Malignant fibrous histiocytoma following radiation therapy of fibrous dysplasia: case report

    Energy Technology Data Exchange (ETDEWEB)

    Amin, R.; Ling, R. [Royal Devon and Exeter Hospital (United Kingdom)

    1995-10-01

    Malignant fibrous histiocytoma commonly occurs spontaneously. In some cases it follows previous therapeutic or incidental irradiation, or miscellaneous pre-existing osseous conditions. Recently, it has been associated with total hip arthroplasty. We report a case of malignant fibrous histocytoma following radiation therapy of fibrous dysplasia and review literature. (author).

  15. In situ polymerization of monomers for polyphenylquinoxaline/graphite fiber composites

    Science.gov (United States)

    Serafini, T. T.; Delvigs, P.; Vannucci, R. D.

    1974-01-01

    Methods currently used to prepare fiber reinforced, high temperature resistant polyphenylquinoxaline (PPQ) composites employ extremely viscous, low solids content solutions of high molecular weight PPQ polymers. An improved approach, described in this report, consists of impregnating the fiber with a solution of the appropriate monomers instead of a solution of previously synthesized high molecular weight polymer. Polymerization of the monomers occurs in situ on the fiber during the solvent removal and curing stages. The in situ polymerization approach greatly simplifies the fabrication of PPQ graphite fiber composites. The use of low viscosity monomeric type solutions facilitates fiber wetting, permits a high solids content, and eliminates the need for prior polymer synthesis.

  16. Deformation and recrystallization of Nb-10Si in-situ composite

    International Nuclear Information System (INIS)

    Saqib, M.; Thirukkonda, M.; Cockeram, B.; Srinivasan, R.; Weiss, I.

    1993-01-01

    Materials for elevated temperature applications require a balance of strength, fracture toughness, mechanical and microstructural stability over the temperature range between room temperature and service temperatures which are expected to exceed 1,200 C, as well as oxidation and creep resistance. Recent trends indicate that Carbon/Carbon and Ceramic/Ceramic Composites do not meet all of these requirements. For example, carbon/carbon composites have good strength to density ratio, but inherently possess poor oxidation resistance, and SiC/SiC composites ha e excellent oxidation resistance, but are brittle over the entire temperature range of their stability. Ductile phase toughened composites with refractory intermetallic matrices are attractive alternatives. At service temperatures of about 1,200 C, most of the applied load will be carried by the intermetallic matrix phase, while the ductile (metallic) phase increases toughness by impeding crack propagation. As compared to other materials with potential for elevated temperature applications, mentioned above, these materials provide a better combination of elevated temperature strength and room temperature fracture toughness. Nb 10 a/o Si is a model material for ductile phase toughened in situ composites. In the as-cast condition the microstructure contains both the ductile metallic niobium phase and the continuous inter-metallic Nb 3 Si phase. The microstructure of this in situ composite can be tailored by thermomechanical processing (TMP). The changes in the morphology and spacing of the phases, and microstructural refinement following TMP, have been shown to improve the fracture toughness of the alloy. as compared to the as-cast material. Therefore, understanding of the deformation behavior and the mechanisms of recovery and recrystallization are of great importance in tailoring the microstructure of in situ composites by TMP

  17. Multiscale Stochastic Fracture Mechanics of Composites Informed by In-situ XCT Tests

    Science.gov (United States)

    2016-02-02

    interfacial fracture ) in CFRP was recently found in the fuselages of Dreamliner 787, and two types of cracks were found in the rib feet brackets...AFRL-AFOSR-UK-TR-2016-0003 Multiscale Stochastic Fracture Mechanics of Composites Informed by In-situ XCT Tests Zhenjun Yang UNIVERSITY OF MANCHESTER...Multiscale Stochastic Fracture Mechanics of Composites Informed by In-situ XCT Tests 5a. CONTRACT NUMBER EOARD 12-2100 5b. GRANT NUMBER F8655-12-1

  18. Preparation of Ti-aluminide reinforced in situ aluminium matrix composites by reactive hot pressing

    International Nuclear Information System (INIS)

    Roy, D.; Ghosh, S.; Basumallick, A.; Basu, B.

    2007-01-01

    Aluminium based metal matrix composites reinforced with in situ Ti-aluminide and alumina particles were prepared by reactive hot pressing a powder mix of aluminium and nanosized TiO 2 powders. The reinforcements were formed in situ by exothermal reaction between the TiO 2 nano crystalline powder and aluminium. The thermal characteristics of the in situ reaction were studied with the aid of Differential scanning calorimetry (DSC). X-ray diffraction (XRD), Energy dispersive spectroscopy (EDS) and Scanning electron microscopy (SEM) techniques were employed to study the microstructural architecture of the composites as a function of hot pressing temperature and volume percent reinforcement. Microhardness measurements on the as prepared in situ aluminium matrix composites exhibit significant increase in hardness with increase in hot pressing temperature and volume fraction of reinforcement

  19. Cylindrical concave body of composite fibrous material

    International Nuclear Information System (INIS)

    1979-01-01

    The invention is concerned with a cylindrical concave body of compound fibrous material which is intended to be exposed to high rotation speeds around its own longitudinal axis. The concave body in question has at least one layer of fibrils that are interwoven and enclose an identical angle with the longitudinal axis of the concave body in both directions. The concave body in question also has at least a second layer of fibrils that run in the direction of the circumference and are fitted radially to the outside. The cylindrical concave body of the invention is particularly well suited for application as a rotor tube in a gas ultra-centrifuge

  20. Ductile-phase toughening in V-V3Si in situ composites

    International Nuclear Information System (INIS)

    Henshall, G.; Strum, M.J.; Bewlay, B.P.; Sutliff, J.A.

    1997-01-01

    This article describes the room-temperature fracture behavior of ductile-phase-toughened V-V 3 Si in situ composites that were produced by arc melting (AM), cold-crucible induction melting (IM), and cold-crucible directional solidification (DS). Composites were produced containing a wide range of microstructures, interstitial impurity contents, and volume fractions of the ductile V-Si solid solution phase, denoted (V). The fracture toughness of these composites generally increases as the volume fraction of (V) increases, but is strongly influenced by the microstructure, the mechanical properties of the component phases, and the crystallographic orientation of the (V) phase with respect to the maximum principal stress direction. For eutectic composites that have a (V) volume fraction of about 50 pct, the fracture toughness increases with decreasing ''''effective'''' interstitial impurity concentration, [I] = [N] + 1.33 [O] + 9 [H]. As [I] decreases from 1,400 ppm (AM) to 400 ppm (IM), the fracture toughness of the eutectic composites increases from 10 to 20 MPa √m. Further, the fracture toughness of the DS eutectic composites is greater when the crack propagation direction is perpendicular, rather than parallel, to the composite growth direction. These results are discussed in light of conventional ductile-phase bridging theories, which alone cannot fully explain the fracture toughness of V-Si in situ composites

  1. Fibrous metaphyseal defects

    International Nuclear Information System (INIS)

    Ritschl, P.; Hajek, P.C.; Pechmann, U.

    1989-01-01

    Sixteen patients with fibrous metaphyseal defects were examined with both plain radiography and magnetic resonance (MR) imaging. Depending on the age of the fibrous metaphyseal defects, characteristic radiomorphologic changes were found which correlated well with MR images. Following intravenous Gadolinium-DTPA injection, fibrous metaphyseal defects invariably exhibited a hyperintense border and signal enhancement. (orig./GDG)

  2. Novel in situ coordinated cerium salt/acrylonitrile-butadiene rubber composite

    International Nuclear Information System (INIS)

    Han, Jianjun; Lu, Haifeng; Zhang, Jie; Feng, Shengyu

    2012-01-01

    A novel rubber composite of acrylonitrile-butadiene rubber (NBR) filled with cerium salt particles was vulcanized via in situ coordination for the first time. The resulting materials exhibit good mechanical properties. Curing characteristics analysis, differential scanning calorimetry, X-ray photoelectron spectroscopy, tensile testing, and an equilibrium swelling method were used for the characterization of the composite. The results in this paper indicate that the composite is a kind of elastomer based on the in situ coordination crosslinking interactions between the nitrile groups (–CN) of NBR and cerium ions. The mechanical properties of vulcanized cerium salt/ NBR rubber are altered when changing the sorts of cerium salt. Moreover, these materials show good irradiation resistance because of the introduction of the cerium salt. -- Highlights: ► Cerium salts were firstly used to vulcanize the acrylonitrile-butadiene rubber. ► Cerium salts act as not only crosslink agents but also reinforcing fillers in the matrix. ► These materials show good irradiation resistance and mechanical properties at same time.

  3. Production of mullite-zirconia ceramics composites by 'In situ' reaction

    International Nuclear Information System (INIS)

    Melo, F.C.L. de; Cairo, C.A.A.; Piorino Neto, F.; Devezas, T.C.

    1987-01-01

    Mullita-zirconia ceramic composites were produced by 'In situ' reaction of alumina and brazilian zircon. The ideal curve of thermal treatment (reaction + sinterization) was determined for the obtention of composites of maximum mechanical resistence. The retained fraction of tetragonal fase was evaluated by X-ray difraction and correlated with the values of mechanical resistence obtained by different treatment curves. The performance of the developed composites under corrosion and thermal shock was evaluated by glass casting. (Author) [pt

  4. Green and sustainable succinic acid production from crude glycerol by engineered Yarrowia lipolytica via agricultural residue based in situ fibrous bed bioreactor.

    Science.gov (United States)

    Li, Chong; Gao, Shi; Yang, Xiaofeng; Lin, Carol Sze Ki

    2018-02-01

    In situ fibrous bed bioreactor (isFBB) for efficient succinic acid (SA) production by Yarrowia lipolytica was firstly developed in our former study. In this study, agricultural residues including wheat straw, corn stalk and sugarcane bagasse were investigated for the improvement of isFBB, and sugarcane bagasse was demonstrated to be the best immobilization material. With crude glycerol as the sole carbon source, optimization for isFBB batch fermentation was carried out. Under the optimal conditions of 20g sugarcane bagasse as immobilization material, 120gL -1 crude glycerol as carbon source and 4Lmin -1 of aeration rate, the resultant SA concentration was 53.6gL -1 with an average productivity of 1.45gL -1 h -1 and a SA yield of 0.45gg -1 . By feeding crude glycerol, SA titer up to 209.7gL -1 was obtained from fed batch fermentation, which was the highest value that ever reported. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Fibrous polyaniline@manganese oxide nanocomposites as supercapacitor electrode materials and cathode catalysts for improved power production in microbial fuel cells.

    Science.gov (United States)

    Ansari, Sajid Ali; Parveen, Nazish; Han, Thi Hiep; Ansari, Mohammad Omaish; Cho, Moo Hwan

    2016-04-07

    Fibrous Pani-MnO2 nanocomposite were prepared using a one-step and scalable in situ chemical oxidative polymerization method. The formation, structural and morphological properties were investigated using a range of characterization techniques. The electrochemical capacitive behavior of the fibrous Pani-MnO2 nanocomposite was examined by cyclic voltammetry and galvanostatic charge-discharge measurements using a three-electrode experimental setup in an aqueous electrolyte. The fibrous Pani-MnO2 nanocomposite achieved high capacitance (525 F g(-1) at a current density of 2 A g(-1)) and excellent cycling stability of 76.9% after 1000 cycles at 10 A g(-1). Furthermore, the microbial fuel cell constructed with the fibrous Pani-MnO2 cathode catalyst showed an improved power density of 0.0588 W m(-2), which was higher than that of pure Pani and carbon paper, respectively. The improved electrochemical supercapacitive performance and cathode catalyst performance in microbial fuel cells were attributed mainly to the synergistic effect of Pani and MnO2 in fibrous Pani-MnO2, which provides high surface area for the electrode/electrolyte contact as well as electronic conductive channels and exhibits pseudocapacitance behavior.

  6. Filtration efficiency of an electrostatic fibrous filter: Studying filtration dependency on ultrafine particle exposure and composition

    DEFF Research Database (Denmark)

    Ardkapan, Siamak Rahimi; Johnson, Matthew S.; Yazdi, Sadegh

    2014-01-01

    The objective of the present study is to investigate the relationship between ultrafine particle concentrations and removal efficiencies for an electrostatic fibrous filter in a laboratory environment. Electrostatic fibrous filters capture particles efficiently, with a low pressure drop. Therefor...

  7. Novel in situ coordinated cerium salt/acrylonitrile-butadiene rubber composite

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jianjun [Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Lu, Haifeng, E-mail: lhf@sdu.edu.cn [Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Zhang, Jie [Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Feng, Shengyu, E-mail: fsy@sdu.edu.cn [Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)

    2012-09-14

    A novel rubber composite of acrylonitrile-butadiene rubber (NBR) filled with cerium salt particles was vulcanized via in situ coordination for the first time. The resulting materials exhibit good mechanical properties. Curing characteristics analysis, differential scanning calorimetry, X-ray photoelectron spectroscopy, tensile testing, and an equilibrium swelling method were used for the characterization of the composite. The results in this paper indicate that the composite is a kind of elastomer based on the in situ coordination crosslinking interactions between the nitrile groups (-CN) of NBR and cerium ions. The mechanical properties of vulcanized cerium salt/ NBR rubber are altered when changing the sorts of cerium salt. Moreover, these materials show good irradiation resistance because of the introduction of the cerium salt. -- Highlights: Black-Right-Pointing-Pointer Cerium salts were firstly used to vulcanize the acrylonitrile-butadiene rubber. Black-Right-Pointing-Pointer Cerium salts act as not only crosslink agents but also reinforcing fillers in the matrix. Black-Right-Pointing-Pointer These materials show good irradiation resistance and mechanical properties at same time.

  8. (FSP) of Al–TiC in situ composite

    Indian Academy of Sciences (India)

    An Al-5 wt% TiC composite was processed in situ using K2TiF6 and graphite in Al melt and subjected to FSP. Processing parameters for FSP were optimized to get a defect free stir zone and homogenize the particle distribution. It was found that a rotation speed > 800 rpm is needed. A rotation speed of 1000 rpm and a ...

  9. Impregnated Fibrous Materials. Report of a Study Group on Impregnated Fibrous Materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1968-10-15

    There has recently been renewed interest in the use of radiation from radioisotopes or particle accelerators to initiate and sustain chemical reactions. Particular attention is being paid to the production of wood-plastic composites, a process which is now a commercial reality with radiation competing against chemical methods to enhance the properties of wood. It has been reported that water repellancy, hardness, weathering, insect and chemical resistance, compressive, bending and shear strength can be significantly improved by the process, but so far there has been a limited commercial outlet for the product. Papers on this subject were presented at the International Atomic Energy Agency's Symposium on Industrial Uses of Large Radiation Sources, Salzburg, May 1963, and since then the Agency has been aware of the interest of developing countries in conducting research on wood and other fibrous materials as a means of further exploiting natural resources. It was felt that some attempt should be made to co-ordinate, on a regional basis, the work being done in this field and at the same time review the world status, including the associated technology in such areas as monomer-polymer chemistry and impregnation techniques where they are directly related to this work. Because of the wide range of fibrous materials being studied there, Asia and the Far East was chosen as the most representative area and 39 participants from 13 countries, and from international organizations, met in Bangkok from 20 to 24 November 1967 to assess the potential of impregnated fibrous materials. This report is a record of the meeting and is based not only on work performed both inside and outside the region but also on details of the resources and industries in the area.

  10. A radiopaque electrospun scaffold for engineering fibrous musculoskeletal tissues: Scaffold characterization and in vivo applications.

    Science.gov (United States)

    Martin, John T; Milby, Andrew H; Ikuta, Kensuke; Poudel, Subash; Pfeifer, Christian G; Elliott, Dawn M; Smith, Harvey E; Mauck, Robert L

    2015-10-01

    strategies for the intervertebral disc, meniscus, tendon and ligament have progressed from in vitro to in vivo evaluation using a variety of animal models, and the clinical application of these technologies is imminent. The composition of most scaffold materials however does not allow for visualization by methods available to clinicians (e.g., radiography), and thus it is not possible to assess their performance in situ. In this work, we describe a radiopaque nanofibrous scaffold that can be visualized radiographically in both small and large animal models and serve as a framework for the development of an engineered fibrous tissue. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Tribological behavior of in situ Ag nanoparticles/polyelectrolyte composite molecular deposition films

    International Nuclear Information System (INIS)

    Guo Yanbao; Wang Deguo; Liu Shuhai

    2010-01-01

    Multilayer polyelectrolyte films containing silver ions were obtained by molecular deposition method on a glass plate or a quartz substrate. The in situ Ag nanoparticles were synthesized in the multilayer polyelectrolyte films which were put into fresh NaBH 4 aqueous solution. The structure and surface morphology of composite molecular deposition films were observed by UV-vis spectrophotometer, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Tribological characteristic was investigated by AFM and micro-tribometer. It was found that the in situ Ag nanoparticles/polyelectrolyte composite molecular deposition films have lower coefficient of friction and higher anti-wear life than pure polyelectrolyte molecular deposition films.

  12. In situ observation of mechanical damage within a SiC-SiC ceramic matrix composite

    Energy Technology Data Exchange (ETDEWEB)

    Saucedo-Mora, L. [Institute Eduardo Torroja for Construction Sciences-CSIC, Madrid (Spain); Department of Materials, University of Oxford (United Kingdom); Lowe, T. [Manchester X-ray Imaging Facility, The University of Manchester (United Kingdom); Zhao, S. [Department of Materials, University of Oxford (United Kingdom); Lee, P.D. [Research Complex at Harwell, Rutherford Appleton Laboratory (United Kingdom); Mummery, P.M. [School of Mechanical, Aerospace and Civil Engineering, The University of Manchester (United Kingdom); Marrow, T.J., E-mail: james.marrow@materials.ox.ac.uk [Department of Materials, University of Oxford (United Kingdom)

    2016-12-01

    SiC-SiC ceramic matrix composites are candidate materials for fuel cladding in Generation IV nuclear fission reactors and as accident tolerant fuel clad in current generation plant. Experimental methods are needed that can detect and quantify the development of mechanical damage, to support modelling and qualification tests for these critical components. In situ observations of damage development have been obtained of tensile and C-ring mechanical test specimens of a braided nuclear grade SiC-SiC ceramic composite tube, using a combination of ex situ and in situ computed X-ray tomography observation and digital volume correlation analysis. The gradual development of damage by matrix cracking and also the influence of non-uniform loading are examined. - Highlights: • X-ray tomography with digital volume correlation measures 3D deformation in situ. • Cracking and damage in the microstructure can be detected using the strain field. • Fracture can initiate from the monolithic coating of a SiC-SiC ceramic composite.

  13. In situ observation of mechanical damage within a SiC-SiC ceramic matrix composite

    International Nuclear Information System (INIS)

    Saucedo-Mora, L.; Lowe, T.; Zhao, S.; Lee, P.D.; Mummery, P.M.; Marrow, T.J.

    2016-01-01

    SiC-SiC ceramic matrix composites are candidate materials for fuel cladding in Generation IV nuclear fission reactors and as accident tolerant fuel clad in current generation plant. Experimental methods are needed that can detect and quantify the development of mechanical damage, to support modelling and qualification tests for these critical components. In situ observations of damage development have been obtained of tensile and C-ring mechanical test specimens of a braided nuclear grade SiC-SiC ceramic composite tube, using a combination of ex situ and in situ computed X-ray tomography observation and digital volume correlation analysis. The gradual development of damage by matrix cracking and also the influence of non-uniform loading are examined. - Highlights: • X-ray tomography with digital volume correlation measures 3D deformation in situ. • Cracking and damage in the microstructure can be detected using the strain field. • Fracture can initiate from the monolithic coating of a SiC-SiC ceramic composite.

  14. Laser cladding of in situ TiB2/Fe composite coating on steel

    International Nuclear Information System (INIS)

    Du Baoshuai; Zou Zengda; Wang Xinhong; Qu Shiyao

    2008-01-01

    To enhance the wear resistance of mechanical components, laser cladding has been applied to deposit in situ TiB 2 /Fe composite coating on steel using ferrotitanium and ferroboron as the coating precursor. The phase constituents and microstructure of the composite coating were investigated using X-ray diffraction (XRD), scanning electron micrograph (SEM) and electron probe microanalysis (EPMA). Microhardness tester and block-on-ring wear tester were employed to measure the microhardness and dry-sliding wear resistance of the composite coating. Results show that defect-free composite coating with metallurgical joint to the steel substrate can be obtained. Phases presented in the coating consist of TiB 2 and α-Fe. TiB 2 particles which are formed in situ via nucleation-growth mechanism are distributed uniformly in the α-Fe matrix with blocky morphology. The microhardness and wear properties of the composite coating improved significantly in comparison to the as-received steel substrate due to the presence of the hard reinforcement TiB 2

  15. Fibrous Platinum-Group Minerals in “Floating Chromitites” from the Loma Larga Ni-Laterite Deposit, Dominican Republic

    Directory of Open Access Journals (Sweden)

    Thomas Aiglsperger

    2016-11-01

    Full Text Available This contribution reports on the observation of enigmatic fibrous platinum-group minerals (PGM found within a chromitite body included in limonite (“floating chromitite” from Ni-laterites in the Dominican Republic. Fibrous PGM have a Ru-Os-Ir-Fe dominated composition and are characterized by fibrous textures explained by grain-forming fibers which are significantly longer (1–5 µm than they are wide (~100 nm. Back-scattered electron (BSE images suggest that these nanofibers are platinum-group elements (PGE-bearing and form <5 µm thick layers of bundles which are oriented orthogonal to grains’ surfaces. Trace amounts of Si are most likely associated with PGE-bearing nanofibers. One characteristic fibrous PGM was studied in detail: XRD analyses point to ruthenian hexaferrum. However, the unpolished fibrous PGM shows numerous complex textures on its surface which are suggestive for neoformation processes: (i features suggesting growth of PGE-bearing nanofibers; (ii occurrence of PGM nanoparticles within film material (biofilm? associated with PGE-bearing nanofibers; (iii a Si-rich and crater-like texture hosting PGM nanoparticles and an Ir-rich accumulation of irregular shape; (iv complex PGM nanoparticles with ragged morphologies, resembling sponge spicules and (v oval forms (<1 µm in diameter with included PGM nanoparticles, similar to those observed in experiments with PGE-reducing bacteria. Fibrous PGM found in the limonite may have formed due to supergene (bio-weathering of fibrous Mg-silicates which were incorporated into desulphurized laurite during stages of serpentinization.

  16. Fibrous monolithic ceramics

    International Nuclear Information System (INIS)

    Kovar, D.; King, B.H.; Trice, R.W.; Halloran, J.W.

    1997-01-01

    Fibrous monolithic ceramics are an example of a laminate in which a controlled, three-dimensional structure has been introduced on a submillimeter scale. This unique structure allows this all-ceramic material to fail in a nonbrittle manner. Materials have been fabricated and tested with a variety of architectures. The influence on mechanical properties at room temperature and at high temperature of the structure of the constituent phases and the architecture in which they are arranged are discussed. The elastic properties of these materials can be effectively predicted using existing models. These models also can be extended to predict the strength of fibrous monoliths with an arbitrary orientation and architecture. However, the mechanisms that govern the energy absorption capacity of fibrous monoliths are unique, and experimental results do not follow existing models. Energy dissipation occurs through two dominant mechanisms--delamination of the weak interphases and then frictional sliding after cracking occurs. The properties of the constituent phases that maximize energy absorption are discussed. In this article, the authors examine the structure of Si 3 N 4 -BN fibrous monoliths from the submillimeter scale of the crack-deflecting cell-cell boundary features to the nanometer scale of the BN cell boundaries

  17. Skull infarction in a patient with malignant fibrous histiocytoma.

    Science.gov (United States)

    Nagle, C E; Morayati, S J; LeDuc, M A

    1987-09-01

    The authors describe a case of a skull infarction initially suspected to be an isolated, remote metastasis in a patient diagnosed with soft tissue malignant fibrous histiocytoma. Osseous malignant fibrous histiocytoma has been reported to occur within a bone infarction but the presence of a benign bone infarction remote from a soft tissue malignant fibrous histiocytoma has not been reported previously. Bone infarctions and malignant fibrous histiocytomas are briefly reviewed.

  18. Synthesis of fibrous TiO2 from layered protonic tetratitanate by a hydrothermal soft chemical process

    International Nuclear Information System (INIS)

    Jing Xuezhen; Li Yongxiang; Yang Qunbao; Yin Qingrui

    2004-01-01

    Fibrous TiO 2 (anatase) was prepared by a hydrothermal soft chemical process using H 2 Ti 4 O 9 ·0.25H 2 O as a template precursor. The influence of reaction time, temperature and precursor concentration on the phase formation, morphology and crystal-axis orientation were studied. The results have shown that fibrous anatase can be obtained at 220 deg. C for 24 h with the precursor concentrations in the range of 0.025-0.100 M, and that particles had diameters of 0.2-1 μm and lengths of 2-20 μm. The fibrous TiO 2 anatase prepared by this method showed a high orientation along a-axis direction. X-ray diffractometer (XRD) and SEM analyses have indicated that in situ transformation mechanism dominated the entire hydrothermal process but dissolution-recrystallization also occurred on the surface of the particles

  19. Nanoscale size effect in in situ titanium based composites with cell viability and cytocompatibility studies

    Energy Technology Data Exchange (ETDEWEB)

    Miklaszewski, Andrzej, E-mail: andrzej.miklaszewski@put.poznan.pl [Institute of Materials Science and Engineering, Poznan University of Technology, Jana Pawla II 24, 61-138 Poznan (Poland); Jurczyk, Mieczysława U. [Division Mother' s and Child' s Health, Poznan University of Medical Sciences, Polna 33, 60-535 Poznan (Poland); Kaczmarek, Mariusz [Department of Immunology, Chair of Clinical Immunology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan (Poland); Paszel-Jaworska, Anna; Romaniuk, Aleksandra; Lipińska, Natalia [Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznan (Poland); Żurawski, Jakub [Department of Immunobiochemistry, Chair of Biology and Environmental Sciences, Poznan University of Medical Sciences, Rokietnicka 8, 60-806 Poznan (Poland); Urbaniak, Paulina [Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan (Poland); Jurczyk, Mieczyslaw [Institute of Materials Science and Engineering, Poznan University of Technology, Jana Pawla II 24, 61-138 Poznan (Poland)

    2017-04-01

    Novel in situ Metal Matrix Nanocomposite (MMNC) materials based on titanium and boron, revealed their new properties in the nanoscale range. In situ nanocomposites, obtained through mechanical alloying and traditional powder metallurgy compaction and sintering, show obvious differences to their microstructural analogue. A unique microstructure connected with good mechanical properties reliant on the processing conditions favour the nanoscale range of results of the Ti-TiB in situ MMNC example. The data summarised in this work, support and extend the knowledge boundaries of the nanoscale size effect that influence not only the mechanical properties but also the studies on the cell viability and cytocompatibility. Prepared in the same bulk, in situ MMNC, based on titanium and boron, could be considered as a possible candidate for dental implants and other medical applications. The observed relations and research conclusions are transferable to the in situ MMNC material group. Aside from all the discussed relations, the increasing share of these composites in the ever-growing material markets, heavily depends on the attractiveness and a possible wider application of these composites as well as their operational simplicity presented in this work. - Highlights: • Nano and microscale size precursor influence the final composite microstructure and properties. • Obtained from the nanoscale precursor sinters, characterise with a uniform and highly dispersed microstructure • Mechanical properties favoured Nano scale size precursor • Boron addition could be significantly reduced for moderate properties range. • A possible candidate for dental implants and other medical applications.

  20. Why fibrous proteins are romantic.

    Science.gov (United States)

    Cohen, C

    1998-01-01

    Here I give a personal account of the great history of fibrous protein structure. I describe how Astbury first recognized the essential simplicity of fibrous proteins and their paradigmatic role in protein structure. The poor diffraction patterns yielded by these proteins were then deciphered by Pauling, Crick, Ramachandran and others (in part by model building) to reveal alpha-helical coiled coils, beta-sheets, and the collagen triple helical coiled coil-all characterized by different local sequence periodicities. Longer-range sequence periodicities (or "magic numbers") present in diverse fibrous proteins, such as collagen, tropomyosin, paramyosin, myosin, and were then shown to account for the characteristic axial repeats observed in filaments of these proteins. More recently, analysis of fibrous protein structure has been extended in many cases to atomic resolution, and some systems, such as "leucine zippers," are providing a deeper understanding of protein design than similar studies of globular proteins. In the last sections, I provide some dramatic examples of fibrous protein dynamics. One example is the so-called "spring-loaded" mechanism for viral fusion by the hemagglutinin protein of influenza. Another is the possible conformational changes in prion proteins, implicated in "mad cow disease," which may be related to similar transitions in a variety of globular and fibrous proteins. Copyright 1998 Academic Press.

  1. Self-Sensing Composites: In-Situ Detection of Fibre Fracture

    Directory of Open Access Journals (Sweden)

    Shoaib A. Malik

    2016-04-01

    Full Text Available The primary load-bearing component in a composite material is the reinforcing fibres. This paper reports on a technique to study the fracture of individual reinforcing fibres or filaments in real-time. Custom-made small-diameter optical fibres with a diameter of 12 (±2 micrometres were used to detect the fracture of individual filaments during tensile loading of unreinforced bundles and composites. The unimpregnated bundles were end-tabbed and tensile tested to failure. A simple technique based on resin-infusion was developed to manufacture composites with a negligible void content. In both cases, optical fibre connectors were attached to the ends of the small-diameter optical fibre bundles to enable light to be coupled into the bundle via one end whilst the opposite end was photographed using a high-speed camera. The feasibility of detecting the fracture of each of the filaments in the bundle and composite was demonstrated. The in-situ damage detection technique was also applied to E-glass bundles and composites; this will be reported in a subsequent publication.

  2. Concurrence of metaphyseal fibrous defect and osteosarcoma

    International Nuclear Information System (INIS)

    Kyriakos, M.; Murphy, W.A.

    1981-01-01

    The case of a 15-year-old girl with juxtaposition of a femoral metaphyseal fibrous defect (fibrous cortical defect) and an osteosarcoma is reported. Despite the relatively common occurrence of metaphyseal fibrous defects, their reported association with other bone tumors is exceedingly rare. Only two previous acceptable examples of this association were found. Reports of malignant transformation of metaphyseal fibrous defect were reviewed and rejected because they lacked convincing radiologic or histopathologic evidence of a pre-existent benign fibrous lesion. The finding of a malignant bone tumor in association with a metaphyseal fibrous defect appears to be a chance occurrence. (orig.)

  3. Probing the phase composition of silicon films in situ by etch product detection

    International Nuclear Information System (INIS)

    Dingemans, G.; Donker, M. N. van den; Gordijn, A.; Kessels, W. M. M.; Sanden, M. C. M. van de

    2007-01-01

    Exploiting the higher etch probability for amorphous silicon relative to crystalline silicon, the transiently evolving phase composition of silicon films in the microcrystalline growth regime was probed in situ by monitoring the etch product (SiH 4 ) gas density during a short H 2 plasma treatment step. Etch product detection took place by the easy-to-implement techniques of optical emission spectroscopy and infrared absorption spectroscopy. The phase composition of the films was probed as a function of the SiH 4 concentration during deposition and as a function of the film thickness. The in situ results were corroborated by Raman spectroscopy and solar cell analysis

  4. Polyimide resin composites via in situ polymerization of monomeric reactants

    Science.gov (United States)

    Cavano, P. J.

    1974-01-01

    Thermo-oxidatively stable polyimide/graphite-fiber composites were prepared using a unique in situ polymerization of monomeric reactants directly on reinforcing fibers. This was accomplished by using an aromatic diamine and two ester-acids in a methyl alcohol solvent, rather than a previously synthesized prepolymer varnish, as with other A-type polyimides. A die molding procedure was developed and a composite property characterization conducted with high modulus graphite fiber tow. Flexure, tensile, compressive, and shear tests were conducted at temperatures from 72 to 650 F on laminates before and after exposures at the given temperatures in an air environment for times up to 1000 hours. The composite material was determined to be oxidatively, thermally, and hydrolytically stable.

  5. Microstructure development of in situ porous TiO/Cu composites

    International Nuclear Information System (INIS)

    Qin, Q.D.; Huang, B.W.; Li, W.; Shao, F.

    2016-01-01

    An in situ porous TiO/Cu composite is successfully prepared using powder metallurgy by the reaction of Ti_2CO and Cu powder. Ti_2CO powder is produced by the carbothermic reduction of titanium dioxide (TiO_2) at 1000 °C. Morphological examination of the composite shows that the porosity of composites lies in the range between 10.2% and 35.2%. As the volume fraction of TiO increases, the size of TiO becomes more fine. Scanning electron microscopy (SEM) of the fracture morphology indicates that TiO particles and the Cu matrix are connected by a Cu–Ti phase. - Highlights: • An porous TiO/Cu composite is successfully prepared by powder metallurgy technology. • The porosity of composites lies in the range between 10.2% and 35.2%. • The TiO particles and the Cu matrix are connected by a Cu-Ti phase.

  6. Microstructure Characteristics of Fe-Matrix Composites Reinforced by In-Situ Carbide Particulates

    Science.gov (United States)

    Huang, Xiaodong; Song, Yanpei

    2017-10-01

    Carbide particulates reinforced iron-matrix composites were prepared by in-situ synthesis reaction between Ti, V and C on liquid alloys surface. The microstructure of the composite was characterized by SEM, TEM and OM. The results showed that the main phases were α-Fe, carbide particulate; besides, there were small amounts of γ-Fe and graphite (G) in the composite. The carbides were TiVC2 and VC in the shape of short bar and graininess. The matrix consisted of martensite and small amounts of retained austenite.

  7. Microstructure development of in situ porous TiO/Cu composites

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Q.D., E-mail: 58124812@qq.com [Department of Materials & Metallurgy Engineering, Guizhou Institute of Technology, No.1 Caiguan Road, Guiyang 550003 (China); 2011 Special Functional Materials Collaborative Innovation Center of Guizhou Province, No.1 Caiguan Road, Guiyang 550003 (China); Huang, B.W. [Department of Materials & Metallurgy Engineering, Guizhou Institute of Technology, No.1 Caiguan Road, Guiyang 550003 (China); 2011 Special Functional Materials Collaborative Innovation Center of Guizhou Province, No.1 Caiguan Road, Guiyang 550003 (China); Li, W. [Department of Materials Engineering, Zhengzhou Technology College, No. 81 Zhengshang Road, Zhengzhou, 450051 (China); Shao, F. [2011 Special Functional Materials Collaborative Innovation Center of Guizhou Province, No.1 Caiguan Road, Guiyang 550003 (China)

    2016-07-05

    An in situ porous TiO/Cu composite is successfully prepared using powder metallurgy by the reaction of Ti{sub 2}CO and Cu powder. Ti{sub 2}CO powder is produced by the carbothermic reduction of titanium dioxide (TiO{sub 2}) at 1000 °C. Morphological examination of the composite shows that the porosity of composites lies in the range between 10.2% and 35.2%. As the volume fraction of TiO increases, the size of TiO becomes more fine. Scanning electron microscopy (SEM) of the fracture morphology indicates that TiO particles and the Cu matrix are connected by a Cu–Ti phase. - Highlights: • An porous TiO/Cu composite is successfully prepared by powder metallurgy technology. • The porosity of composites lies in the range between 10.2% and 35.2%. • The TiO particles and the Cu matrix are connected by a Cu-Ti phase.

  8. In-situ poling and structurization of piezoelectric particulate composites.

    Science.gov (United States)

    Khanbareh, H; van der Zwaag, S; Groen, W A

    2017-11-01

    Composites of lead zirconate titanate particles in an epoxy matrix are prepared in the form of 0-3 and quasi 1-3 with different ceramic volume contents from 10% to 50%. Two different processing routes are tested. Firstly a conventional dielectrophoretic structuring is used to induce a chain-like particle configuration, followed by curing the matrix and poling at a high temperature and under a high voltage. Secondly a simultaneous combination of dielectrophoresis and poling is applied at room temperature while the polymer is in the liquid state followed by subsequent curing. This new processing route is practiced in an uncured thermoset system while the polymer matrix still possess a relatively high electrical conductivity. Composites with different degrees of alignment are produced by altering the magnitude of the applied electric field. A significant improvement in piezoelectric properties of quasi 1-3 composites can be achieved by a combination of dielectrophoretic alignment of the ceramic particles and poling process. It has been observed that the degree of structuring as well as the functional properties of the in-situ structured and poled composites enhance significantly compared to those of the conventionally manufactured structured composites. Improving the alignment quality enhances the piezoelectric properties of the particulate composites.

  9. The effect of poly (lactic-co-glycolic) acid composition on the mechanical properties of electrospun fibrous mats.

    Science.gov (United States)

    Liu, X; Aho, J; Baldursdottir, S; Bohr, A; Qu, H; Christensen, L P; Rantanen, J; Yang, M

    2017-08-30

    The aim of this study was to investigate the influence of polymer molecular structure on the electrospinnability and mechanical properties of electrospun fibrous mats (EFMs). Polymers with similar molecular weight but different composition ratios (lactic acid (LA) and glycolic acid (GA)) were dissolved in binary mixtures of N,N-dimethylformamide (DMF) and tetrahydrofuran (THF). The intrinsic viscosity and rheological properties of polymer solutions were investigated prior to electrospinning. The morphology and mechanical properties of the resulting EFMs were characterized by scanning electron microscope (SEM) and dynamic mechanical analysis (DMA). Sufficiently high inter-molecular interactions were found to be a prerequisite to ensure the formation of fibers in the electrospinning process, regardless the polymer composition. The higher the amount of GA in the polymer composition, the more ordered and entangled molecules were formed after electrospinning from the solution in THF-DMF, which resulted in higher Young's modulus and tensile strength of the EFMs. In conclusion, this study shows that the mechanical properties of EFMs, which depend on the polymer molecule-solvent affinity, can be predicted by the inter-molecular interactions in the starting polymer solutions and over the drying process of electrospinning. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Laser cladding of in situ TiB{sub 2}/Fe composite coating on steel

    Energy Technology Data Exchange (ETDEWEB)

    Du Baoshuai; Zou Zengda [School of Materials Science and Engineering, Shandong University, Jinan 250061 (China); Wang Xinhong [School of Materials Science and Engineering, Shandong University, Jinan 250061 (China)], E-mail: xinhongwang@sdu.edu.cn; Qu Shiyao [School of Materials Science and Engineering, Shandong University, Jinan 250061 (China)

    2008-08-15

    To enhance the wear resistance of mechanical components, laser cladding has been applied to deposit in situ TiB{sub 2}/Fe composite coating on steel using ferrotitanium and ferroboron as the coating precursor. The phase constituents and microstructure of the composite coating were investigated using X-ray diffraction (XRD), scanning electron micrograph (SEM) and electron probe microanalysis (EPMA). Microhardness tester and block-on-ring wear tester were employed to measure the microhardness and dry-sliding wear resistance of the composite coating. Results show that defect-free composite coating with metallurgical joint to the steel substrate can be obtained. Phases presented in the coating consist of TiB{sub 2} and {alpha}-Fe. TiB{sub 2} particles which are formed in situ via nucleation-growth mechanism are distributed uniformly in the {alpha}-Fe matrix with blocky morphology. The microhardness and wear properties of the composite coating improved significantly in comparison to the as-received steel substrate due to the presence of the hard reinforcement TiB{sub 2}.

  11. Low Cost Al-Si Casting Alloy As In-Situ Composite for High Temperature Applications

    Science.gov (United States)

    Lee, Jonathan A.

    2000-01-01

    A new aluminum-silicon (Al-Si) alloy has been successfully developed at NASA- Marshall Space Flight Center (MSFC) that has significant improvement in tensile and fatigue strength at elevated temperatures (500 F-700 F). The alloy offers a number of benefits such as light weight, high hardness, low thermal expansion and high surface wear resistance. In hypereutectic form, this alloy is considered as an in-situ Al-Si composite with tensile strength of about 90% higher than the auto industry 390 alloy at 600 F. This composite is very economically produced by using either conventional permanent steel molds or die casting. The projected material cost is less than $0.90 per pound, and automotive components such as pistons can be cast for high production rate using conventional casting techniques with a low and fully accounted cost. Key Words: Metal matrix composites, In-situ composite, aluminum-silicon alloy, hypereutectic alloy, permanent mold casting, die casting.

  12. Effect of Ag micro-alloying on the microstructure and properties of Cu-14Fe in situ composite

    International Nuclear Information System (INIS)

    Liu, K.M.; Lu, D.P.; Zhou, H.T.; Atrens, A.; Zou, J.; Yang, Y.L.; Zeng, S.M.

    2010-01-01

    This paper studied Ag micro-alloying in the deformation-processed Cu-14Fe in situ composite, by a comparison of Cu-14Fe and Cu-14Fe-0.06Ag. Each alloy was prepared by casting and processed into an in situ composite by hot and cold working. The microstructures were documented using light microscopy and scanning electron microscopy (SEM). The mechanical properties were measured with a tensile-testing machine. The electrical conductivity was measured with a micro-ohmmeter. For both alloys, the as-cast microstructure consisted of a Cu matrix and Fe dendrites; after hot and cold working the microstructure consisted of a Cu matrix containing Fe fibres elongated in the working direction. The as-cast Ag-containing alloy contained finer Fe dendrites. The Ag-containing in situ composite had thinner Fe fibres, higher tensile strength, higher ductility, and higher conductivity. The cold worked Cu-14Fe-0.06Ag in situ composite with cumulative cold deformation strain η = 7.8 (where η = ln(A 0 /A) and A 0 and A are the original and final cross-section areas, respectively), achieved a tensile strength of 930 MPa and a conductivity of 56%IACS (International Annealed Copper Standard; 17.241 nΩ m is defined as 100%IACS). The Ag micro-alloyed in situ composite had a combination of properties comparable to that of a much more expensive alloy containing much more Ag. After 1 h heat treatment at 300 deg. C, the tensile strength was increased to 950 MPa and the conductivity was increased to 56.4%IACS.

  13. Three Dimensional Parametric Analyses on Effect of Fibre Orientation for Stress Concentration Factor in Fibrous Composite Cantilever Plate with Central Circular Hole under Transverse Loading

    Directory of Open Access Journals (Sweden)

    Nitin Jain

    2012-10-01

    Full Text Available Normal 0 false false false EN-IN X-NONE X-NONE ABSTRACT: A number of analytical and numerical techniques are available for the two dimensional study of stress concentration around the hole(s in isotropic and composite plates subjected to in-plane or transverse loading conditions. The information on the techniques for three dimensional analyses of stress concentration factor (SCF around the hole in isotropic and composite plates subjected to transverse loading conditions is, however, limited. The present work emphasizes on the effect of fibre orientation (q on the stress concentration factor in fibrous composite plates with central circular hole under transverse static loading condition. The work is carried out for cantilever fibrous composite plates. The effects of thickness -to- width (T/A and diameter-to-width (D/A ratios upon SCF at different fibre orientation are studied. Plates of four different composite materials were considered for hole analysis in order to determine the sensitivity of SCF with elastic constants. Deflections in transverse direction were calculated and analysed. All results are presented in graphical form and discussed. The finite element formulation and its analysis were carried out using ANSYS package.ABSTRAK: Terdapat pelbagai teknik analitikal dan numerical untuk kajian tumpuan tegasan dua dimensi di sekeliling lubang-lubang dalam komposit isotropik dan plat pada satah atau keadaan bebanan melintang. Bagaimanapun, maklumat mengenai kaedah analisis tiga dimensi untuk faktor ketumpatan tegasan (SCF sekitar lubang dalam komposit isotropik dan plat pada keadaan bebanan melintang adalah terhad. Kertas ini menekankan kesan orientasi gentian (q pada faktor tumpuan tegasan dalam komposit plat bergentian dengan lubang berpusat di bawah keadaan bebanan melintang. Kajian ini dilkukan untuk cantilever plat komposit bergentian. Kesan ketebalan terhadap kelebaran plat (T/A dan diameter terhadap kelebaran komposit (D/A dengan SCF

  14. In situ formation of sintered cordierite–mullite nano–micro composites by utilizing of waste silica fume

    International Nuclear Information System (INIS)

    Khattab, R.M.; EL-Rafei, A.M.; Zawrah, M.F.

    2012-01-01

    Highlights: ► We succeeded to obtain in situ formed sintered cordierite–mullite nano–macro composites from waste and pure materials at 1400 °C. ► Their sinterability was greatly dependent on both firing temperature and composition. ► XRD patterns showed that the optimum temperature required for formation of sintered cordierite–mullite nano–macro composites was achieved at 1400 °C. ► The batch containing 70 wt.% cordierite and 30 wt.% mullite exhibited the best properties. ► Microstructures of the densified composites were composed of nano–macro cordierite–mullite structures. -- Abstract: This study aims at in situ formation of sintered cordierite–mullite nano–macro composites having high technological properties using waste silica fume, calcined ball clay, calcined alumina, and magnesia as starting materials. The starting materials were mixed in different ratios to obtain different cordierite–mullite composite batches in which the cordierite contents ranged from 50 to 100 wt.%. The batches were uni-axially pressed at 100 MPa and sintered at 1350, 1400 and 1450 °C to select the optimum temperature required for cordierite–mullite nano–macro composites formation. The formed phases were identified by X-ray diffraction (XRD) pattern. The sintering parameters in terms of bulk density (BD) and apparent porosity (AP) were determined. The microstructure of composites has been investigated by scanning electron microscope (SEM). Cold crushing strength (CCS) of the sintered batches was evaluated. The result revealed that the cordierite–mullite nano–macro composites were in-situ formed at 1400 °C. The batch containing 70 wt.% cordierite showed good physical and mechanical properties.

  15. Flame retardancy of polyaniline-deposited paper composites prepared via in situ polymerization.

    Science.gov (United States)

    Wu, Xianna; Qian, Xueren; An, Xianhui

    2013-01-30

    Polyaniline-deposited paper composites doped with three inorganic acids were prepared via in situ polymerization, and their flame-retardant properties were investigated. Both the conductivity and flame retardancy of the composite increased with the increase of the amount of the polyaniline deposited. The doping acid played a very key role in both the conductivity and flame retardancy of the composite. The comprehensive properties of the composite could be improved when codoped with an equimolar mixture of H(3)PO(4) and H(2)SO(4) or H(3)PO(4) and HCl. The decay of the flame retardancy of the composite in atmosphere was due to the dedoping of the polyaniline deposited on cellulose fibers. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Conductive electrospun PANi-PEO/TiO{sub 2} fibrous membrane for photo catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Neubert, Sebastian [National University of Singapore, 21 Lower Kent Ridge Road, Singapore 119077 (Singapore); Pliszka, Damian, E-mail: nnidp@nus.edu.sg [National University of Singapore, 21 Lower Kent Ridge Road, Singapore 119077 (Singapore); Thavasi, Velmurugan [National University of Singapore, 21 Lower Kent Ridge Road, Singapore 119077 (Singapore); Wintermantel, Erich [Technical University of Munich, Bolzmannstr. 15, 85748 Garching (Germany); Ramakrishna, Seeram [National University of Singapore, 21 Lower Kent Ridge Road, Singapore 119077 (Singapore); King Saud University, Riyadh 11451 (Saudi Arabia)

    2011-05-15

    Graphical abstract: - Abstract: The integration of electrospinning and electrospraying to prepare the fibrous catalytic filter membrane is demonstrated. The non-conductive polyethylene oxide (PEO) is blended with ({+-})-camphor-10-sulfonic acid (CSA) doped conductive polyaniline (PANi) for electrospinning. The conductive CSA/PANi-PEO composite fibers are produced upon electrospinning, which are used as the conductive collector for electrospraying process by which titanium dioxide (TiO{sub 2}) nanoparticles (NPs) are sprayed and allowed to adsorb on the fibers. The degree of adsorption and dispersion of nano TiO{sub 2} catalysts on the surface of the CSA/PANi-PEO fibers exhibit a stronger dependence on weight percentage (wt%) of PANi in PEO solution and the strength of electrical conductivity of the fibers used during electrospraying. CSA/PANi-PEO fibers as collector reduce the wastage of TiO{sub 2} NPs during electrospraying to lesser than 5%. Among the three different composition of PANi studied, PEO with 12 wt% PANi yields very uniform diameter and beads-free fibrous structure with higher electrical conductivity. 12 wt% CSA/PANi-PEO fibrous membrane is found to support for greater dispersion of TiO{sub 2} NPs. The photocatalytic activity of the as-prepared TiO{sub 2}-PANi-PEO catalytic membrane is tested against the toxicant simulant 2-chloroethyl phenyl sulfide (CEPS) under the ultraviolet light irradiation. It is observed that the TiO{sub 2} nanoparticles catalysts embedded PANi-PEO fibrous membrane decontaminated the toxicant CEPS significantly, which is due to uniform dispersion of the catalysts produced by the methodology.

  17. SEM in situ laboratory investigations on damage growth in GFRP composite under three-point bending tests

    DEFF Research Database (Denmark)

    Zhou, Hong Wei; Mishnaevsky, Leon; Brøndsted, Povl

    2010-01-01

    Glass fiber-reinforced polymer (GFRP) composites are widely used in low-weight constructions. SEM (scanning electron microscopy) in situ experiments of damage growth in GFRP composite under three-point bending loads are carried out. By summarizing the experimental results of three groups of samples...

  18. Microstructure of in-situ Synthesized (TiB+TiC)/Ti Composites Prepared by Hot-pressing

    Institute of Scientific and Technical Information of China (English)

    Zhenzhu ZHENG; Lin GENG; Honglin WANG; Weimin ZHOU; Hongyu XU

    2003-01-01

    In-situ 5 vol.pct TiB whiskers and TiC particulates reinforced Ti composites were fabricated by blending Ti powderand B4C particulates followed by reactive hot-pressing. The microstructure of the composites was investigated byusing differential scanning c

  19. Fibrillar polyaniline/diatomite composite synthesized by one-step in situ polymerization method

    International Nuclear Information System (INIS)

    Li Xingwei; Li Xiaoxuan; Wang Gengchao

    2005-01-01

    A fibrillar polyaniline/diatomite composite was prepared by one-step in situ polymerization of aniline in the dispersed system of diatomite, and was characterized via Fourier-transform infrared spectra (FT-IR), UV-vis-NIR spectra, wide-angle X-ray diffraction (WXRD), thermogravimetric analysis (TGA) and transmission electron microscopy (TEM), as well as conductivity. Morphology of the composite is uniform nanofibers, which the diameters of nanofibers are about 50-80 nm. The conductivity of polyaniline/diatomite composite contained 28% polyaniline is 0.29 S cm -1 at 25 deg. C, and temperature of thermal degradation has reached 493 deg. C in air. The composite has potential commercial applications as fillers for electromagnetic shielding materials and conductive coatings

  20. Effect of aging hardening on in situ synthesis magnesium matrix composites

    International Nuclear Information System (INIS)

    Zhang Xiuqing; Liao Lihua; Ma Naiheng; Wang Haowei

    2006-01-01

    Magnesium matrix composites reinforced with TiC particulates was synthesized using in situ synthesis technique. The result of XRD revealed the presence of TiC in precursor blocks and TiC/AZ91 composites. Effect of aging hardening on the composites was described using Brinell hardness measurements and scanning electron microscopy (SEM). The results revealed that the aging hardening peak of TiC/AZ91 composite appeared earlier comparatively with that of AZ91 magnesium alloy. And the appearance of aging hardening peak was earlier under the higher aging temperature such as 200 deg. C. The precipitating behavior of Mg 17 Al 12 phase in AZ91 alloy and TiC/AZ91 composites was described. Little discontinuous was discovered in the composites, and the amount of continuous precipitate in the composite matrix is smaller comparatively to that of AZ91 alloy. These results were analyzed with the fine grain size, much more interface between TiC and magnesium and high-density dislocation in magnesium matrix, which was contributed to the addition of TiC particulates

  1. Republic of Korea [Status and technology of polymer-containing fibrous materials in the Eastern Hemisphere

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Chwa-Kyung [Office of Atomic Energy, Seoul (Korea, Republic of)

    1968-10-15

    In describing the present status of composite materials made from fibrous materials and synthetic polymers, it should first be mentioned that Korea produces almost no polymer-wood combinations. However, Korea has been very active in the production of various resin-fibrous material combinations that mainly employ thermosetting resins as binding agents to improve the quality of woods and other fibrous materials. Plywood, chip board, hard board and straw board are some examples. Korean forest resources are not sufficient to meet industrial needs. Only a small amount of domestic pine timber is used for ground pulp production. However, plywood production, which started some ten years ago, has increased to where domestic consumption is now fully supplied and annual exports are now worth more than 40 million US dollars. Although whole log timber for the industry is imported, urea and formalin for adhesives are produced domestically. To develop an effective means for using waste lumber, chip board, fibre board and hard board have been produced since 1962 and the production of straw board has been started as a means of utilizing agricultural wastes.

  2. Tribological properties and lubrication mechanism of in situ graphene-nickel matrix composite impregnated with lubricating oil

    Science.gov (United States)

    Lei, Yu; Du, Jinfang; Pang, Xianjuan; Wang, Haizhong; Yang, Hua; Jiang, Jinlong

    2018-05-01

    A solid-liquid synergetic lubricating system has been designed to develop a novel self-lubricating nickel matrix composite. The graphene-nickel (G-Ni) matrix composite with porous structure was fabricated by in situ growing graphene in bulk nickel using a powder metallurgy method. The porous structures of the composite were used to store polyalphaolefin (PAO) oil for self-lubricating. It is found that the G-Ni matrix composite under oil lubrication condition exhibited superior tribological properties as compared to pure nickel and the composite under dry sliding condition. The prestored oil was released from pores to the sliding surface forming a lubricating oil film during friction process. This lubricating oil film can protect the worn surface from severe oxidation, and help the formation and transfer of a carbon-based solid tribofilm derived from graphene and lubricating oil. This solid (graphene)-liquid (oil) synergistic lubricating mechanism is responsible for the reduction of friction coefficient and improvement of wear resistance of the in situ fabricated G-Ni matrix composite.

  3. X-ray diffraction study of the mineralogy of microinclusions in fibrous diamond

    Science.gov (United States)

    Smith, Evan; Kopylova, Maya; Dubrovinksy, Leonid

    2010-05-01

    phyllosilicates, serpentine, zircon, a hydrous carbonate and an unidentified zeolite. Many of these phases are deuteric, replacing high-T, high-P micas and carbonates that precipitate from the fluid in the diamond stability field. The ongoing XRD study will (1) elucidate the mineralogy of fluid inclusions in diamonds from Wawa, (2) compare XRD analyses to distinguish between diamonds with carbonatitic versus saline fluid compositions, and (3) reveal whether carbonates occur as crystalline phases or as dissolved or amorphous material in fibrous diamond.

  4. Influence of in situ formed ZrB2 particles on microstructure and mechanical properties of AA6061 metal matrix composites

    International Nuclear Information System (INIS)

    Dinaharan, I.; Murugan, N.; Parameswaran, Siva

    2011-01-01

    Highlights: → In situ fabrication of aluminium metal matrix composite reinforced ZrB 2 particles. → Colour metallography of composites. → Improvement of matrix properties by ZrB 2 particles. → Sliding wear behaviour of in situ composites. - Abstract: Particulate reinforced metal matrix composites (PMMCs) have gained considerable amount of research emphasis and attention in the present era. Research is being carried out across the globe to produce new combination of PMMCs. PMMCs are prepared by adding a variety of ceramic particles with monolithic alloys using several techniques. An attempt has been made to produce aluminium metal matrix composites reinforced with zirconium boride (ZrB 2 ) particles by the in situ reaction of K 2 ZrF 6 and KBF 4 salts with molten aluminium. The influence of in situ formed ZrB 2 particles on the microstructure and mechanical properties of AA6061 alloy was studied in this work. The in situ formed ZrB 2 particles significantly refined the microstructure and enhanced the mechanical properties of AA6061 alloy. The weight percentage of ZrB 2 was varied from 0 to 10 in steps of 2.5. Improvement of hardness, ultimate tensile strength and wear resistance of AA6061 alloy was observed with the increase in ZrB 2 content.

  5. Fibrous metaphyseal defect (fibrous cortical defect, non-ossifying fibroma)

    International Nuclear Information System (INIS)

    Freyschmidt, J.; Saure, D.; Dammenhain, S.

    1981-01-01

    Fibrous cortical defect and nonossifying fibromas can be classified together as fibrous metaphyseal defects (FMD) since they have the same pahtological substrate, with a tendency to the same localisation around the knee, and occuring at the same age. They have a tendency to spontaneous healing, are clinically silent and are usually discovered accidentally during radiological examination. A radiological survey fo 5.674 metaphyseal regions in the upper and lower extremities of 2.065 unselected patients aged one to 20 years revealed an incidence of 1.8%; exlcusive examination of the distal femur showed an incidence of 2.7%. 96% of all lesions were in the lower extremities and only 4% in the upper. The marked discrepancy in the incidence rate between American and German publications is discussed. (orig.) [de

  6. In Situ Manufacturing of Plastics and Composites to Support H&R Exploration, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Makel Engineering and BAE Systems propose to develop processes to manufacture plastics and composites for radiation shielding based on In Situ Resources Utilization...

  7. Electrical capacitance of fibrous carbon composites in supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Babel, Krzysztof [Institute of Chemical Wood Technology, Agricultural Academy in Poznan, ul. Wojska Polskiego 38/42, 60-637 Poznan (Poland); Jurewicz, Krzysztof [Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, ul. Piotrowo 3, 60-965 Poznan (Poland)

    2002-06-20

    The aim of this work was the application of active carbon composites as electrode material for supercapacitors. We have produced and investigated composites from viscose cellulose fibers impregnated with novolak and resolic resins. Composition and porous structure of the composites were described and electrochemical properties determined by galvanostatic and potentiodynamic methods. Dependence of electrical capacitance on treatment procedure and some of the structural parameters was confirmed. The use of novolak resin for activation with carbon dioxide was more advantageous. Positive electrode revealed better performance in acidic conditions (185 F/g) while negative electrode in alkaline conditions (160 F/g)

  8. TiB2 reinforced aluminum based in situ composites fabricated by stir casting

    International Nuclear Information System (INIS)

    Chen, Fei; Chen, Zongning; Mao, Feng; Wang, Tongmin; Cao, Zhiqiang

    2015-01-01

    In this study, a new technique involving mechanical stirring at the salts/aluminum interface was developed to fabricate TiB 2 particulate reinforced aluminum based in situ composites with improved particle distribution. Processing parameters in terms of stirring intensity, stirring duration and stirring start time were optimized according to the microstructure and mechanical properties evaluation. The results show that, the first and last 15 min of the entire 60 min holding are of prime importance to the particle distribution of the final composites. When applying 180 rpm (revolutions per minute) stirring at the salts/aluminum interface in these two intervals, a more uniform microstructure can be achieved and the Al-4 wt% TiB 2 composite thus produced exhibits superior mechanical performance. Synchrotron radiation X-ray computed tomography (SR-CT) was used to give a full-scale imaging of the particle distribution. From the SR-CT results, the in situ Al–xTiB 2 composites (x=1, 4 and 7, all in wt%) fabricated by the present technique are characterized by fine and clean TiB 2 particles distributed uniformly throughout the Al matrix. These composites not only have higher yield strength (σ 0.2 ) and ultimate tensile strength (UTS), but also exhibit superior ductility, with respect to the Al–TiB 2 composites fabricated by the conventional process. The σ 0.2 and UTS of the Al–7TiB 2 composite in the present work, are 260% and 180% higher than those of the matrix. A combined mechanism was also presented to interpret the improvements in yield strength of the composites as influenced by their microstructures and processing history. The predicted values are in good agreement with the experimental results, strongly supporting the strengthening mechanism we proposed. Fractography reveals that the composites thus fabricated, follow ductile fracture mechanism in spite of the presence of stiff reinforcements

  9. A case report of the fibrous dysplasia

    International Nuclear Information System (INIS)

    You, Dong Soo

    1975-01-01

    The author observed a rare case of fibrous dysplasia in 12 year old female who came to the Infirmary of Dental College, Seoul National University, complaining of facial asymmetry of 3 years' duration in right maxillofacial region. The serial radiograms has been taken, and the nature of the lesion established as a typical fibrous dysplasia according to the interpreted findings in their images. The author has obtained the results as follows: 1. Fibrous dysplasia occurred at 3 years of age in this case. 2. On familial tendency, traumatic history and endocrine disturbances were not noted in this patient. 3. The serial radiograms revealed a typical fibrous dysplasia encroaching right zygomatic bone.

  10. A case report of the fibrous dysplasia

    Energy Technology Data Exchange (ETDEWEB)

    You, Dong Soo [Department of Radiology, College of Dentistry, Seoul National University, Seoul (Korea, Republic of)

    1975-11-15

    The author observed a rare case of fibrous dysplasia in 12 year old female who came to the Infirmary of Dental College, Seoul National University, complaining of facial asymmetry of 3 years' duration in right maxillofacial region. The serial radiograms has been taken, and the nature of the lesion established as a typical fibrous dysplasia according to the interpreted findings in their images. The author has obtained the results as follows: 1. Fibrous dysplasia occurred at 3 years of age in this case. 2. On familial tendency, traumatic history and endocrine disturbances were not noted in this patient. 3. The serial radiograms revealed a typical fibrous dysplasia encroaching right zygomatic bone.

  11. Benign fibrous histiocytoma of the lumbar vertebrae

    International Nuclear Information System (INIS)

    Demiralp, Bahtiyar; Oguz, Erbil; Sehirlioglu, Ali; Kose, Ozkan; Sanal, Tuba; Ozcan, Ayhan

    2009-01-01

    Benign fibrous histiocytoma is an extremely rare spinal tumor with ten reported cases in the literature. Benign fibrous histiocytoma constitutes a diagnostic challenge because it shares common clinical symptoms, radiological characteristics, and histological features with other benign lesions involving the spine. We present a case of benign fibrous histiocytoma of the lumbar spine and discuss its differential diagnosis and management. (orig.)

  12. Microstructure and mechanical properties of in situ casting TiC/Ti6Al4V composites through adding multi-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Ya, Bin; Zhou, Bingwen; Yang, Hongshuo; Huang, Bingkun; Jia, Fei; Zhang, Xingguo, E-mail: zxgwj@dlut.edu.cn

    2015-07-15

    Highlights: • Adding MWCNTs in situ casting fabricating TiC/Ti6Al4V composites is first reported. • The solidification process of in situ casting TiC/Ti6Al4V composites is discussed. • Microstructure shows remarkable correlations with adding MWCNTS. • Strength and plasticity show remarkable correlations with adding MWCNTs. - Abstract: In this study, multi-walled carbon nanotubes (MWCNTs) were added as carbon sources to fabricate in situ casting TiC/Ti6Al4V (TC4) composites. The effects of MWCNTs on the microstructure and mechanical properties are studied. The composites are analyzed by X-ray diffraction, field-emission scanning electron microscope and electron probe microanalysis. The fracture behavior of TiC/TC4 composites are also studied. Smaller size of TiC particles and grain compared with TC4-graphite composites can be observed. The tensile strength of TC4-MWCNTs composites is about 1110.1 MPa, which is higher than that of TC4-graphite composites, about 1003.6 MPa. Fracture behavior also was changed by adding MWCNTs in situ casting TiC/TC4 composites.

  13. Mechanical properties enhancement and microstructure study of Al-Si-TiB2 in situ composites

    Science.gov (United States)

    Sahoo, S. K.; Majhi, J.; Pattnaik, A. B.; Sahoo, J. K.; Das, Swagat

    2018-03-01

    Al–Si alloy-based composite is one of the most promising MMC materials owing to its outstanding mechanical properties, wear and corrosion resistance, low cost and ability to be synthesized via conventional casting routes. Challenges in achieving clean interface between reinforced particles and matrix alloy have been overcome by means of in-situ techniques of fabrication. Present investigation is concerned with synthesizing Al-Si-TiB2 in-situ composites through stir casting route using K2TiF6 and KBF4 halide salts for exothermic salt metal reaction. X-Ray diffraction analysis revealed the existence of TiB2 in the prepared samples. Effect of TiB2in-situ particles in the Al-Si base alloy has been investigated from the results obtained from optical microscopy as well as SEM study and wear analysis with a pin on disc wear testing apparatus. Improved hardness and wear properties were observed with addition of TiB2.

  14. Thermodynamics parameters of nano-Ni/PS composites prepared by in situ polymerization method

    International Nuclear Information System (INIS)

    Liao Qilong; Xiong Jie; Ning Haixia

    2011-01-01

    Spherical nickel nanoparticles with about 75∼200 nm in size were obtained by a liquid reduction method. The nickel nanoparticles/PS composites were synthesized via in situ polymerization method. XRD, FTIR, SEM and TG-DSC were respectively used to measure the properties of nickel nanoparticles, the microstructure of as-prepared composites samples, the distribution of nickel nanoparticles in PS and the thermodynamic parameters of as-prepared composites. The results show that the nickel nanoparticles will enhance the glass transition temperature of nano-Ni/PS composites. The enthalpy of composites is heightened by increasing of doping dose, and it reaches the top when the doping dose is from 1% to 2%. The specific heat of the composites will reduce with the doping dose of nickel nanoparticles increasing. (authors)

  15. Dry Sliding Wear Behavior of A356 Alloy/Mg2Sip Functionally Graded in-situ Composites: Effect of Processing Conditions

    Directory of Open Access Journals (Sweden)

    S.C. Ram

    2016-09-01

    Full Text Available In present study, the effect of dry sliding wear conditions of A356 alloy/Mg2Sip functionally graded in-situ composites developed by centrifugal casting method has been studied. A pure commercial A356 alloy (Al–7.5Si–0.3Mg was selected to be the matrix of the composites and primary Mg2Sip reinforcing particles were formed by in-situ chemical reaction with an average grain size of 40-47.8 µm. The Al–(Mg2Sip functionally graded metal matrix composites (FGMMC’s were synthesized by centrifugal casting technique with radial geometry, using two different mould rotating speeds ( 1200 and 1600 rpm. The X-ray diffraction (XRD characterization technique was carried out to confirm the in-situ formed Mg2Si particles in composites. Optical microscopy examination was carried out to reveals the grain refinement of Al-rich grains due to in-situ formed Mg2Si particles. Scanning electron microscope (SEM and Energy dispersive X-ray spectroscopy (EDS techniques were carried out to reveal the distribution of phases, morphological characteristics and confirmation of primary Mg2Si particles in the matrix. The sliding wear behavior was studied using a Pin-on-Disc set-up machine with sliding wear parameters: effect of loads (N, effect of sliding distances (m and effect of Mg on wear at room temperature with a high-carbon chromium steel disc (HRC-64 as counter surfaces. A good correlation was evidenced between the dry sliding behaviour of functionally graded in-situ composites and the distribution of Mg2Si reinforcing particles. Beside the above processing conditions, the dominant wear mechanisms of functionally graded in-situ composites have been correlated with the microstructures. The hardness and wear resistance properties of these composites increase with increasing volume percent of reinforced primary Si/Mg2Si particles toward inner zone of cast cylindrical shapes. The objective of this works was to study the tribological characteristics under dry sliding

  16. Magnetization of in situ multifilamentary superconducting Nb3Sn-Cu composites

    International Nuclear Information System (INIS)

    Shen, S.S.; Verhoeven, J.D.

    1980-01-01

    Magnetic properties are reported for in situ superconducting Nb 3 Sn composites that have exhibited attractive electrical properties and superior mechanical characteristics. Magnetization measurements were conducted up to 4 T at 4.2 K on a variety of samples of different sizes and twist pitches, and the results are presented in absolute M-H curves and losses per cycle. It is observed that the magnetization of such composites is generally proportional to the size of the wire (approx. 0.25 to 0.51 mm) rather than the fiber size (approx. 10 -7 m), which indicates a strong coupling effect among Nb 3 Sn fibers

  17. In-situ reduced graphene oxide-polyvinyl alcohol composite coatings as protective layers on magnesium substrates

    Directory of Open Access Journals (Sweden)

    Xingkai Zhang

    2017-06-01

    Full Text Available A simple and feasible method was developed to fabricate in-situ reduced graphene oxide-polyvinyl alcohol composite (GO-PVA coatings as protective layers on magnesium substrates. Polyvinyl alcohol was used as an in-situ reductant to transform GO into reduced GO. Contiguous and uniform GO-PVA coatings were prepared on magnesium substrates by dip-coating method, and were further thermally treated at 120 °C under ambient condition to obtain in-situ reduced GO-PVA coatings. Owing to the reducing effect of PVA, thermal treatment at low temperature led to effective in-situ reduction of GO as confirmed by XRD, Raman, FTIR and XPS tests. The corrosion current density of magnesium substrates in 3.5 wt% NaCl solution could be lowered to its 1/25 when using in-situ reduced GO-PVA coatings as protective layers.

  18. Microstructure and wear resistance of in situ porous TiO/Cu composites

    Science.gov (United States)

    Qin, Qingdong; Huang, Bowei; Li, Wei

    2016-07-01

    An in situ porous TiO/Cu composite is successfully prepared using powder metallurgy by the reaction of Ti2CO and Cu powder. Morphological examination of the composite shows that the porosity of composites lies in the range between 10.2% and 35.2%. Dry sliding un-lubricated wear tests show that the wear resistance of the composite is higher than that of the Cu-Al alloy ingot. The coefficient of friction test shows that, as the volume fraction of the reinforced phase increases, the coefficient of friction decreases. The wear rate variation trend of the oil-lubricated wear test results is similar to that of the un-lubricated wear test results. The coefficient of friction for oil lubrication is similar for different volume fractions of the reinforced phase. The wear resistance of the composite at a sliding velocity of 200 rpm is slightly larger than that at 50 rpm. The porosity of the composites enhances the high-velocity oil-lubricated sliding wear resistance.

  19. Fibrous scar in the infrapatellar fat pad after arthroscopy. MR imaging

    International Nuclear Information System (INIS)

    Tang, Guangyu; Niitsu, Mamoru; Ikeda, Kotaro; Itai, Yuji; Endo, Hideho

    2000-01-01

    We describe the MR appearance of fibrous scars in the infrapatellar fat pad after arthroscopy. The subjects were 96 patients who underwent arthroscope-assisted anterior cruciate ligament (ACL) reconstruction and were examined by oblique sagittal MR imaging at different follow-up intervals. Two observers evaluated the characteristics of the fibrous scars in the infrapatellar fat pad. All fibrous scars with low signal intensity were accentuated at the portal and coursed horizontally through the infrapatellar fat pad. The fibrous scar within the fat pad occurred and peaked within 6 months after arthroscopy. It then subsided gradually and had disappeared by one year later in nearly half of the patients. Identifying MR imaging characteristics of fibrous scars in the fat pad after arthroscopy may be clinically helpful to differentiate these scars from other abnormalities that involve the infrapatellar fat pad. (author)

  20. Fibrous scar in the infrapatellar fat pad after arthroscopy. MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Guangyu; Niitsu, Mamoru; Ikeda, Kotaro; Itai, Yuji [Tsukuba Univ., Ibaraki (Japan). Inst. of Clinical Medicine; Endo, Hideho

    2000-02-01

    We describe the MR appearance of fibrous scars in the infrapatellar fat pad after arthroscopy. The subjects were 96 patients who underwent arthroscope-assisted anterior cruciate ligament (ACL) reconstruction and were examined by oblique sagittal MR imaging at different follow-up intervals. Two observers evaluated the characteristics of the fibrous scars in the infrapatellar fat pad. All fibrous scars with low signal intensity were accentuated at the portal and coursed horizontally through the infrapatellar fat pad. The fibrous scar within the fat pad occurred and peaked within 6 months after arthroscopy. It then subsided gradually and had disappeared by one year later in nearly half of the patients. Identifying MR imaging characteristics of fibrous scars in the fat pad after arthroscopy may be clinically helpful to differentiate these scars from other abnormalities that involve the infrapatellar fat pad. (author)

  1. NewIn-situ synthesis method of magnesium matrix composites reinforced with TiC particulates

    Directory of Open Access Journals (Sweden)

    Zhang Xiuqing

    2006-12-01

    Full Text Available Magnesium matrix composites reinforced with TiC particulates was prepared using a new in-situ synthesis method of remelting and dilution technique. And measurements were performed on the composites. The results of x ray diffraction (XRD analysis confirmed that TiC particulates were synthesized during the sintering process, and they retained in magnesium matrix composites after the remelting and dilution processing. From the microstructure characterization and electron probe microanalysis (EPMA, we could see that fine TiC particulates distributed uniformly in the matrix material.

  2. Evaluation of carbon fiber composites modified by in situ incorporation of carbon nanofibers

    Directory of Open Access Journals (Sweden)

    André Navarro de Miranda

    2011-12-01

    Full Text Available Nano-carbon materials, such as carbon nanotubes and carbon nanofibers, are being thought to be used as multifunctional reinforcement in composites. The growing of carbon nanofiber at the carbon fiber/epoxy interface results in composites having better electrical properties than conventional carbon fiber/epoxy composites. In this work, carbon nanofibers were grown in situ over the surface of a carbon fiber fabric by chemical vapor deposition. Specimens of carbon fiber/nanofiber/epoxy (CF/CNF/epoxy composites were molded and electrical conductivity was measured. Also, the CF/CNF/epoxy composites were tested under flexure and interlaminar shear. The results showed an overall reduction in mechanical properties as a function of added nanofiber, although electrical conductivity increased up to 74% with the addition of nanofibers. Thus CF/CNF/epoxy composites can be used as electrical dissipation discharge materials.

  3. Ultrafine-grained Al composites reinforced with in-situ Al3Ti filaments

    Czech Academy of Sciences Publication Activity Database

    Krizik, P.; Balog, M.; Nosko, M.; Riglos, M. V. C.; Dvořák, Jiří; Bajana, O.

    2016-01-01

    Roč. 657, MAR (2016), s. 6-14 ISSN 0921-5093 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : Aluminum * Filament * In-situ metal matrix composite * Mechanical properties * Microstructure * Ultrafine-grained Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.094, year: 2016

  4. In situ observations of microscale damage evolution in unidirectional natural fibre composites

    DEFF Research Database (Denmark)

    Rask, Morten; Madsen, Bo; Sørensen, Bent F.

    2012-01-01

    Synchrotron X-ray tomographic microscopy (XTM) has been used to observe in situ damage evolution in unidirectional flax fibre yarn/polypropylene composites loaded in uniaxial tension at stress levels between 20% and 95% of the ultimate failure stress. XTM allows for 3D visualization of the internal...... damage state at each stress level. The overall aim of the study is to gain a better understanding of the damage mechanisms in natural fibre composites. This is necessary if they are to be optimized to fulfil their promising potential. Three dominating damage mechanisms have been identified: (i) interface...... splitting cracks typically seen at the interfaces of bundles of unseparated fibres, (ii) matrix shear cracks, and (iii) fibre failures typically seen at fibre defects. Based on the findings in the present study, well separated fibres with a low number of defects are recommended for composite reinforcements....

  5. Angiomatoid fibrous histiocytoma

    Directory of Open Access Journals (Sweden)

    Sunil Yogiraj Swami

    2016-01-01

    Full Text Available Angiomatoid fibrous histiocytoma[AFH] is a rare soft tissue tumour most commonly occurring in children, adolescents, and young adults. It is considered to be a tumour of intermediate malignancy because of its less aggressive course in contrast to conventional malignant fibrous histiocytoma[MFH]. It accounts for approximately 0.3% of soft-tissue neoplasms. The majority of cases occur in the extremities, are slow growing and are typically painless. We report a case of AFH on the scalp of a 40-year old man, locally recurring within two years of the original operation. AFH is a rare condition with the potential of local recurrence and metastasis. It should be considered in the differential diagnosis of a soft tissue mass in a child or adolescent.

  6. Investigation on microstructural characterization of in situ TiB/Al metal matrix composite by laser cladding

    International Nuclear Information System (INIS)

    Xu Jiang; Li Zhengyang; Zhu Wenhui; Liu Zili; Liu Wenjin

    2007-01-01

    The aluminum matrix composite (AMC) coating reinforced with TiB was prepared utilizing in situ synthesized technique by laser cladding. Microstructural characterization and dry sliding wear behavior of in situ TiB/Al metal matrix composite were studied by SEM, XRD, TEM and Pin-on-disc friction and wear tester. The phase structure of the composite coating consists of α-Al, TiB, Al 3 Ti and Al 3 Fe. It has been found that the shape of in situ synthesized TiB is mainly taken on micro-magnitude lump and nano-magnitude whisker. Owing to B27 structure of TiB, the TiB has an anisotropy axis of growth, which results in the TiB strip and whisker preferring grown along [0 1 0] direction. It is worth to notice that the novel microstructure inside of TiB is particle and strip Al 5 Fe 2 phase and definite crystallographic relationship between the Al 5 Fe 2 phase and TiB has been determined by selected area diffraction pattern. The wear tests results show that the composite coatings can only improve wear resistance at the lower applied load (below 26.7 N), but at higher applied load (26.7-35.6 N) the wear resistance behavior of the coating is worsened due to the fracture and pullout of reinforcement phase

  7. Investigation on microstructural characterization of in situ TiB/Al metal matrix composite by laser cladding

    Energy Technology Data Exchange (ETDEWEB)

    Xu Jiang [Department of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016 (China)]. E-mail: xujiang73@nuaa.edu.cn; Li Zhengyang [Key Laboratory for Advanced Materials Manufacturing Processing, Mechanical Engineering Department, Tsinghua University, Beijing 10084 (China); Zhu Wenhui [Department of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016 (China); Liu Zili [Department of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016 (China); Liu Wenjin [Key Laboratory for Advanced Materials Manufacturing Processing, Mechanical Engineering Department, Tsinghua University, Beijing 10084 (China)

    2007-02-25

    The aluminum matrix composite (AMC) coating reinforced with TiB was prepared utilizing in situ synthesized technique by laser cladding. Microstructural characterization and dry sliding wear behavior of in situ TiB/Al metal matrix composite were studied by SEM, XRD, TEM and Pin-on-disc friction and wear tester. The phase structure of the composite coating consists of {alpha}-Al, TiB, Al{sub 3}Ti and Al{sub 3}Fe. It has been found that the shape of in situ synthesized TiB is mainly taken on micro-magnitude lump and nano-magnitude whisker. Owing to B27 structure of TiB, the TiB has an anisotropy axis of growth, which results in the TiB strip and whisker preferring grown along [0 1 0] direction. It is worth to notice that the novel microstructure inside of TiB is particle and strip Al{sub 5}Fe{sub 2} phase and definite crystallographic relationship between the Al{sub 5}Fe{sub 2} phase and TiB has been determined by selected area diffraction pattern. The wear tests results show that the composite coatings can only improve wear resistance at the lower applied load (below 26.7 N), but at higher applied load (26.7-35.6 N) the wear resistance behavior of the coating is worsened due to the fracture and pullout of reinforcement phase.

  8. Biomimetic composite microspheres of collagen/chitosan/nano-hydroxyapatite: In-situ synthesis and characterization.

    Science.gov (United States)

    Teng, Shu-Hua; Liang, Mian-Hui; Wang, Peng; Luo, Yong

    2016-01-01

    The collagen/chitosan/hydroxyapatite (COL/CS/HA) composite microspheres with a good spherical form and a high dispersity were successfully obtained using an in-situ synthesis method. The FT-IR and XRD results revealed that the inorganic phase in the microspheres was crystalline HA containing carbonate ions. The morphology of the composite microspheres was dependent on the HA content, and a more desirable morphology was achieved when 20 wt.% HA was contained. The composite microspheres exhibited a narrow particle distribution, most of which ranged from 5 to 10 μm. In addition, the needle-like HA nano-particles were uniformly distributed in the composite microspheres, and their crystallinity and crystal size decreased with the HA content. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Solitary Fibrous Tumor Arising from Stomach: CT Findings

    Science.gov (United States)

    Park, Sung Hee; Kwon, Jieun; Park, Jong-pil; Park, Mi-Suk; Lim, Joon Seok; Kim, Joo Hee; Kim, Ki Whang

    2007-01-01

    Solitary fibrous tumors are spindle-cell neoplasms that usually develop in the pleura and peritoneum, and rarely arise in the stomach. To our knowledge, there is only one case reporting a solitary fibrous tumor arising from stomach in the English literature. Here we report the case of a 26-year-old man with a large solitary fibrous tumor arising from the stomach which involved the submucosa and muscular layer and resembled a gastrointestinal stromal tumor in the stomach, based on what was seen during abdominal computed tomography. A solitary fibrous tumor arising from the stomach, although rare, could be considered as a diagnostic possibility for gastric submucosal tumors. PMID:18159603

  10. In-situ synthesis of magnetic iron-oxide nanoparticle-nanofibre composites using electrospinning

    International Nuclear Information System (INIS)

    Burke, Luke; Mortimer, Chris J.; Curtis, Daniel J.; Lewis, Aled R.; Williams, Rhodri; Hawkins, Karl; Maffeis, Thierry G.G.; Wright, Chris J.

    2017-01-01

    We demonstrate a facile, one-step process to form polymer scaffolds composed of magnetic iron oxide nanoparticles (MNPs) contained within electrospun nano- and micro-fibres of two biocompatible polymers, Poly(ethylene oxide) (PEO) and Poly(vinyl pyrrolidone) (PVP). This was achieved with both needle and free-surface electrospinning systems demonstrating the scalability of the composite fibre manufacture; a 228 fold increase in fibre fabrication was observed for the free-surface system. In all cases the nanoparticle-nanofibre composite scaffolds displayed morphological properties as good as or better than those previously described and fabricated using complex multi-stage techniques. Fibres produced had an average diameter (Needle-spun: 125 ± 18 nm (PEO) and 1.58 ± 0.28 μm (PVP); Free-surface electrospun: 155 ± 31 nm (PEO)) similar to that reported previously, were smooth with no bead defects. Nanoparticle-nanofibre composites were characterised using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), dynamic light scattering (DLS) (Nanoparticle average diameter ranging from 8 ± 3 nm to 27 ± 5 nm), XRD (Phase of iron oxide nanoparticles identified as magnetite) and nuclear magnetic resonance relaxation measurements (NMR) (T1/T2: 32.44 for PEO fibres containing MNPs) were used to verify the magnetic behaviour of MNPs. This study represents a significant step forward for production rates of magnetic nanoparticle-nanofibre composite scaffolds by the electrospinning technique. - Graphical abstract: We present a novel facile, one-step process for the in-situ synthesis of magnetic iron oxide nanoparticle-nanofibre composites using both needle and free-surface electrospinning. This is a significant step forward for production rates of magnetic nanoparticle-nanofibre scaffolds both in terms of fibre and nanoparticle production. - Highlights: • We present a novel process for the in-situ synthesis of magnetic iron oxide nanoparticle

  11. In-situ synthesis of magnetic iron-oxide nanoparticle-nanofibre composites using electrospinning

    Energy Technology Data Exchange (ETDEWEB)

    Burke, Luke; Mortimer, Chris J. [Biomaterials, Biofouling and Biofilms Engineering Laboratory (B3EL), Systems and Process Engineering Centre, College of Engineering, Swansea University, Fabian Way, Swansea SA1 8EN (United Kingdom); Systems and Process Engineering Centre, College of Engineering, Swansea University, Fabian Way, Swansea SA1 8EN (United Kingdom); Curtis, Daniel J.; Lewis, Aled R.; Williams, Rhodri [Systems and Process Engineering Centre, College of Engineering, Swansea University, Fabian Way, Swansea SA1 8EN (United Kingdom); Hawkins, Karl [Centre for NanoHealth (CNH), Swansea University, Singleton Park, Swansea SA2 8PP (United Kingdom); Maffeis, Thierry G.G. [Systems and Process Engineering Centre, College of Engineering, Swansea University, Fabian Way, Swansea SA1 8EN (United Kingdom); Wright, Chris J., E-mail: c.wright@swansea.ac.uk [Biomaterials, Biofouling and Biofilms Engineering Laboratory (B3EL), Systems and Process Engineering Centre, College of Engineering, Swansea University, Fabian Way, Swansea SA1 8EN (United Kingdom); Systems and Process Engineering Centre, College of Engineering, Swansea University, Fabian Way, Swansea SA1 8EN (United Kingdom); Centre for NanoHealth (CNH), Swansea University, Singleton Park, Swansea SA2 8PP (United Kingdom)

    2017-01-01

    We demonstrate a facile, one-step process to form polymer scaffolds composed of magnetic iron oxide nanoparticles (MNPs) contained within electrospun nano- and micro-fibres of two biocompatible polymers, Poly(ethylene oxide) (PEO) and Poly(vinyl pyrrolidone) (PVP). This was achieved with both needle and free-surface electrospinning systems demonstrating the scalability of the composite fibre manufacture; a 228 fold increase in fibre fabrication was observed for the free-surface system. In all cases the nanoparticle-nanofibre composite scaffolds displayed morphological properties as good as or better than those previously described and fabricated using complex multi-stage techniques. Fibres produced had an average diameter (Needle-spun: 125 ± 18 nm (PEO) and 1.58 ± 0.28 μm (PVP); Free-surface electrospun: 155 ± 31 nm (PEO)) similar to that reported previously, were smooth with no bead defects. Nanoparticle-nanofibre composites were characterised using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), dynamic light scattering (DLS) (Nanoparticle average diameter ranging from 8 ± 3 nm to 27 ± 5 nm), XRD (Phase of iron oxide nanoparticles identified as magnetite) and nuclear magnetic resonance relaxation measurements (NMR) (T1/T2: 32.44 for PEO fibres containing MNPs) were used to verify the magnetic behaviour of MNPs. This study represents a significant step forward for production rates of magnetic nanoparticle-nanofibre composite scaffolds by the electrospinning technique. - Graphical abstract: We present a novel facile, one-step process for the in-situ synthesis of magnetic iron oxide nanoparticle-nanofibre composites using both needle and free-surface electrospinning. This is a significant step forward for production rates of magnetic nanoparticle-nanofibre scaffolds both in terms of fibre and nanoparticle production. - Highlights: • We present a novel process for the in-situ synthesis of magnetic iron oxide nanoparticle

  12. Malignant transformation of fibrous dysplasia into chondroblastic osteosarcoma

    International Nuclear Information System (INIS)

    Kaushik, Shaifali; Smoker, Wendy R.K.; Frable, William J.

    2002-01-01

    A case of malignant transformation of polyostotic fibrous dysplasia into maxillary chondroblastic osteosarcoma is presented. The clinical, radiographic, CT, MR imaging features and pathological findings of polyostotic fibrous dysplasia and its malignant transformation are described. Malignant transformation of fibrous dysplasia is rare and has not previously been described in the English literature in this location in McCune-Albright syndrome and in the absence of radiation treatment. (orig.)

  13. On the oxidation behaviour of a Cu-10 vol% Cr in situ composite

    International Nuclear Information System (INIS)

    Haugsrud, R.; Lee, K.L.

    2005-01-01

    The oxidation behaviour of copper and Cu-10 vol% Cr in situ composite was studied at 400-700 deg. C in air and in argon containing 10 ppm O 2 . Oxidation kinetics was investigated by means of isothermal thermogravimetry and the oxide scales were characterized by scanning electron microscopy (SEM). The presence of the chromium fibres increases the oxidation resistance compared to unalloyed copper up to 600 deg. C. The oxidation mechanism and the influence of the different oxidation phenomena on the creep characteristics of the alloy composite are discussed

  14. Environmental controls for the precipitation of different fibrous calcite cement fabrics

    Science.gov (United States)

    Ritter, Ann-Christine; Wiethoff, Felix; Neuser, Rolf D.; Richter, Detlev K.; Immenhauser, Adrian

    2016-04-01

    Abiogenic calcite cements are widely used as climate archives. They can yield information on environmental change and climate dynamics at the time when the sediment was lithified in a (marine) diagenetic environment. Radiaxial-fibrous (RFC) and fascicular-optic fibrous (FOFC) calcite cements are two very common and similar pore-filling cement fabrics in Palaeozoic and Mesozoic carbonate rocks (Richter et al., 2011) and in Holocene Mg-calcitic speleothems (Richter et al., 2015). Both fabrics are characterised by distinct crystallographic properties. Current research has shown that these fabrics are often underexplored and that a careful combination of conservative and innovative proxies allows for a better applicability of these carbonate archives to paleoenvironmental reconstructions (Ritter et al., 2015). A main uncertainty in this context is that it is still poorly understood which parameters lead to the formation of either RFC or FOFC and if differential crystallographic parameters affect proxy data from these fabrics. This study aims at a better understanding of the environmental factors that may control either RFC or FOFC precipitation. Therefore, suitable samples (a stalagmite and a Triassic marine cement succession), each with clearly differentiable layers of RFC and FOFC, were identified and analysed in high detail using a multi-proxy approach. Detailed thin section and cathodoluminescence analysis of the samples allowed for a precise identification of layers consisting solely of either RFC or FOFC. Isotopic (δ13C, δ18O) as well as trace elemental compositions have been determined and the comparison of data obtained from these different carbonate archives sheds light on changes in environmental parameters during RFC or FOFC precipitation. References: Richter, D.K., et al., 2011. Radiaxial-fibrous calcites: A new look at an old problem. Sedimentary Geology, 239, 26-36 Richter, D.K., et al., 2015. Radiaxial-fibrous and fascicular-optic Mg-calcitic cave

  15. Fibrous dysplasia of bone

    International Nuclear Information System (INIS)

    Kim, Kyung Soo; Lee, Sang Wook; Cho, Young Jun; Kim, Young Sook

    1983-01-01

    Fibrous dysplasia of bone is a skeletal development anomaly of unknown etiology characterized by single or multiple areas of fibrous tissue replacement of medullary cavity of one or more bones. The disease may be localized to single bone (monostotic form) or may affect multiple bones (polyostotic form). Eighteen cases of fibrous dysplasia diagnosed by roentgenlogic or histologic assessment at Chosun University Hospital, Chosun University Hospital and Kwangju Christian Hospital during recent ten tears were analyzed clinically and radiologically. The results were as follows: 1. 16 case of them had monostotic involvement, and 2 cases showed polyostotic disease, but none of our series presented Albright's syndrome. 2. The male to female ratio in this series was 10 : 8, but then 2 polyostotic forms of them were females. In age distribution, peak incidence at the time of diagnosis was in the age group of second decade (10 cases). 3. Maxilla (6 cases) and femur (4 case) were frequently involved sites in patients with monostotic lesion, whereas polyostotic lesions diffusely affected skull, pelvis, ribs and limb bones. 4. The clinical symptoms according to the extent and site of disease were very variable, which were localized painless or painful swelling, nasal obstruction, deformity of face or extremity and incidentally during routine roentgen study. 5. The chemical abnormality of blood serum was moderate degree of elevated serum alkaline phosphatase in only one patients with monostotic lesion. 6. The main radiologic findings of fibrous dysplasia were relatively well circumscribed single or multiloculated cystilike appearance, bone expansion, cortical thinning and/or erosion, bony deformity and pathologic fracture, but especially in maxilla, dense homogenous area with expanding lesion was observed in our series

  16. Micro/nanoscale mechanical characterization and in situ observation of cracking of laminated Si3N4/BN composites

    International Nuclear Information System (INIS)

    Li Xiaodong; Zou Linhua; Ni Hai; Reynolds, Anthony P.; Wang Changan; Huang Yong

    2008-01-01

    Micro/nanoscale mechanical characterization of laminated Si 3 N 4 /BN composites was carried out by nanoindentation techniques. A custom-designed micro mechanical tester was integrated with an optical microscope and an atomic force microscope to perform in situ three-point bending tests on notched Si 3 N 4 /BN composite bend specimens where the crack initiation and propagation were imaged simultaneously with the optical microscope and atomic force microscope during bending loading. The whole fracture process was in situ captured. It was found that crack deflection was initiated/induced by the pre-existing microvoids and microcracks in BN interfacial layers. New fracture mechanisms were proposed to provide guidelines for the design of biomimetic nacre-like composites

  17. Congenital fibrous hamartoma of the knee

    International Nuclear Information System (INIS)

    Arioni, Cesare; Bellini, Carlo; Risso, Francesco Maria; Scopesi, Fabio; Serra, Giovanni; Oddone, Mauro; Toma, Paolo; Nozza, Paolo

    2006-01-01

    A full-term male infant presented at birth with a hard swelling of the left knee. The lemon-sized lesion was fixed to the underlying knee muscles, while the overlying skin was stretched and shiny; there was no bruit. Radiography, sonography and MRI suggested a soft-tissue tumour. After surgical excision, histology showed the presence of fibrous and mesenchymal tissue, with mature adipose tissue. Fibrous hamartoma of infancy was diagnosed. Among soft-tissue tumours, fibrous hamartoma of infancy is a rare and benign lesion, occurring in the first 2 years of life. The tumour mainly affects the trunk, axilla, and upper extremities. This infant had unique involvement of the knee. The treatment of choice is local excision. (orig.)

  18. Congenital fibrous hamartoma of the knee

    Energy Technology Data Exchange (ETDEWEB)

    Arioni, Cesare; Bellini, Carlo; Risso, Francesco Maria; Scopesi, Fabio; Serra, Giovanni [University of Genoa, Neonatal Pathology Service, Department of Paediatrics, Institute G. Gaslini, Genoa (Italy); Oddone, Mauro; Toma, Paolo [Institute G. Gaslini, Radiology Service, Genoa (Italy); Nozza, Paolo [Institute G. Gaslini, U. O. di Anatomia Patologica, Genoa (Italy)

    2006-05-15

    A full-term male infant presented at birth with a hard swelling of the left knee. The lemon-sized lesion was fixed to the underlying knee muscles, while the overlying skin was stretched and shiny; there was no bruit. Radiography, sonography and MRI suggested a soft-tissue tumour. After surgical excision, histology showed the presence of fibrous and mesenchymal tissue, with mature adipose tissue. Fibrous hamartoma of infancy was diagnosed. Among soft-tissue tumours, fibrous hamartoma of infancy is a rare and benign lesion, occurring in the first 2 years of life. The tumour mainly affects the trunk, axilla, and upper extremities. This infant had unique involvement of the knee. The treatment of choice is local excision. (orig.)

  19. Data on a Laves phase intermetallic matrix composite in situ toughened by ductile precipitates.

    Science.gov (United States)

    Knowles, Alexander J; Bhowmik, Ayan; Purkayastha, Surajit; Jones, Nicholas G; Giuliani, Finn; Clegg, William J; Dye, David; Stone, Howard J

    2017-10-01

    The data presented in this article are related to the research article entitled "Laves phase intermetallic matrix composite in situ toughened by ductile precipitates" (Knowles et al.) [1]. The composite comprised a Fe 2 (Mo, Ti) matrix with bcc (Mo, Ti) precipitated laths produced in situ by an aging heat treatment, which was shown to confer a toughening effect (Knowles et al.) [1]. Here, details are given on a focused ion beam (FIB) slice and view experiment performed on the composite so as to determine that the 3D morphology of the bcc (Mo, Ti) precipitates were laths rather than needles. Scanning transmission electron microscopy (S(TEM)) micrographs of the microstructure as well as energy dispersive X-ray spectroscopy (EDX) maps are presented that identify the elemental partitioning between the C14 Laves matrix and the bcc laths, with Mo rejected from the matrix into laths. A TEM selected area diffraction pattern (SADP) and key is provided that was used to validate the orientation relation between the matrix and laths identified in (Knowles et al.) [1] along with details of the transformation matrix determined.

  20. Data on a Laves phase intermetallic matrix composite in situ toughened by ductile precipitates

    Directory of Open Access Journals (Sweden)

    Alexander J. Knowles

    2017-10-01

    Full Text Available The data presented in this article are related to the research article entitled “Laves phase intermetallic matrix composite in situ toughened by ductile precipitates” (Knowles et al. [1]. The composite comprised a Fe2(Mo, Ti matrix with bcc (Mo, Ti precipitated laths produced in situ by an aging heat treatment, which was shown to confer a toughening effect (Knowles et al. [1]. Here, details are given on a focused ion beam (FIB slice and view experiment performed on the composite so as to determine that the 3D morphology of the bcc (Mo, Ti precipitates were laths rather than needles. Scanning transmission electron microscopy (S(TEM micrographs of the microstructure as well as energy dispersive X-ray spectroscopy (EDX maps are presented that identify the elemental partitioning between the C14 Laves matrix and the bcc laths, with Mo rejected from the matrix into laths. A TEM selected area diffraction pattern (SADP and key is provided that was used to validate the orientation relation between the matrix and laths identified in (Knowles et al. [1] along with details of the transformation matrix determined.

  1. In situ preparation of composite from conjugated polyschiff bases and multiwalled carbon nanotube: Synthesis, electrochromic, acidochromic properties

    International Nuclear Information System (INIS)

    Ma Lina; Cai Jiwei; Zhao Ping; Niu Haijun; Wang Cheng; Bai Xuduo; Wang Wen

    2012-01-01

    Graphical abstract: The introduction of carbon nanotubes greatly improves the photochromic property of the composites. Highlights: ► MWNTs/PSB composite was prepared by in situ polymerization with a new type of PSB. ► The introduction of carbon nanotubes greatly improves the photochromic property of the composites. ► The composites exhibited excellent thermal stability and reversible electrochemical behavior. - Abstract: Polyschiff base (PSB) which has the structure of C=N double bond is well known as conducting material with high thermal resistance, chemical and electrical properties. Recently, it was used as hole transporting material in organic light emitting diode (OLED), chemical sensor and electrochromic materials. Carbon nanotubes (CNTs) with excellent properties such as unique electrical, mechanical, optical and chemical properties are promising reinforcing materials for polymer composites which improve the comprehensive properties of polymers. In this paper, conjugated PSB-grafted multiwalled carbon nanotubes (MWNTs) composite was prepared by in situ polymerization. The resultant composites were characterized by thermogravimetric (TGA), scanning electron microscopy (SEM), UV–vis absorption, photoluminescence (PL), cyclic voltammograms (CV), infrared spectroscopy (IR) and Raman spectroscopy. The composites exhibited high thermal stability and excellent reversibilities of electrochromic, photochromic, acidochromic characteristics, with the color change from the light yellow to blue.

  2. Effect of inter-fibre bonding on the fracture of fibrous networks with strong interactions

    DEFF Research Database (Denmark)

    Goutianos, Stergios; Mao, Rui; Peijs, Ton

    2017-01-01

    Abstract The mechanical response of cellulose nanopaper composites is investigated using a three-dimensional (3D) finite element fibrous network model with focus on the effect of inter-fibre bonds. It is found that the Young’s modulus and strength, for fixed fibre properties, are mainly controlle...

  3. Charge transport in the electrospun nanofiber composite membrane's three-dimensional fibrous structure

    Science.gov (United States)

    DeGostin, Matthew B.; Peracchio, Aldo A.; Myles, Timothy D.; Cassenti, Brice N.; Chiu, Wilson K. S.

    2016-03-01

    In this paper, a Fiber Network (FN) ion transport model is developed to simulate the three-dimensional fibrous microstructural morphology that results from the electrospinning membrane fabrication process. This model is able to approximate fiber layering within a membrane as well as membrane swelling due to water uptake. The discrete random fiber networks representing membranes are converted to resistor networks and solved for current flow and ionic conductivity. Model predictions are validated by comparison with experimental conductivity data from electrospun anion exchange membranes (AEM) and proton exchange membranes (PEM) for fuel cells as well as existing theories. The model is capable of predicting in-plane and thru-plane conductivity and takes into account detailed membrane characteristics, such as volume fraction, fiber diameter, fiber conductivity, and membrane layering, and as such may be used as a tool for advanced electrode design.

  4. In situ mesophase transformation by zirconium chloride in fabrication of carbon/carbon composites

    International Nuclear Information System (INIS)

    Zhang, Bo; Song, Huaihe; Chen, Xiaohong; Ma, Zhaokun; Yang, Xiaoguang; Xu, Zhenghui

    2012-01-01

    Carbon/carbon (C/C) composites were prepared using multiple cycle in situ mesophase densification in the presence of zirconium chloride. The mesophase transformation and the performance of C/C composites were investigated in detail. The results show that higher amount of ZrCl 4 and longer soaking time accelerate the condensation of aromatic hydrocarbons. Additionally, the XRD pattern and ash contents show that the ZrCl 4 is retained in the samples and transformed to t-ZrO 2 and m-ZrO 2 after carbonization. In all the composites, the bulk density increases with cycle times, and the flexural strength increases with bulk density. However, a decrease of flexural strength for low density composites was observed when increasing ZrCl 4 concentrations. This tendency is attributed to more ZrO 2 formation in the composites using 20 wt.% ZrCl 4 . Subsequently, these ZrO 2 particles produce interface defects in the matrix which decreases its strength. Attributed to the very low content of ZrO 2 in high density composites, there is no difference between the samples using 13 wt.% and 20 wt.% ZrCl 4 .

  5. Preparation and properties of in-situ growth of carbon nanotubes reinforced hydroxyapatite coating for carbon/carbon composites

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shoujie, E-mail: jlliushoujie@126.com; Li, Hejun, E-mail: lihejun@nwpu.edu.cn; Su, Yangyang, E-mail: suyangyang@mail.nwpu.edu.cn; Guo, Qian, E-mail: 1729299905@163.com; Zhang, Leilei, E-mail: zhangleilei@nwpu.edu.cn

    2017-01-01

    Carbon nanotubes (CNTs) possess excellent mechanical properties for their role playing in reinforcement as imparting strength to brittle hydroxyapatite (HA) bioceramic coating. However, there are few reports relating to the in-situ grown carbon nanotubes reinforced hydroxyapatite (CNTs-HA) coating. Here we demonstrate the potential application in reinforcing biomaterials by an attempt to use in-situ grown of CNTs strengthen HA coating, using a combined method composited of injection chemical vapor deposition (ICVD) and pulsed electrodeposition. The microstructure, phases and chemical compositions of CNTs-HA coatings were characterized by various advanced methods. The scanning electron microscopy (SEM) images indicated that CNTs-HA coatings avoided the inhomogeneous dispersion of CNTs inside HA coating. The result show that the interfacial shear strength between CNTs-HA coating and the C/C composite matrix reaches to 12.86 ± 1.43 MPa. Potenitodynamic polarization and electrochemical impedance spectroscopy (EIS) studies show that the content of CNTs affects the corrosion resistance of CNTs-HA coating. Cell culturing and simulated body fluid test elicit the biocompatibility with living cells and bioactivity of CNTs-HA coatings, respectively. - Highlights: • A novel bioceramic composite coating of hydroxyapatite reinforced with in-situ grown carbon nanotubes was fabricated. • The doping of carbon nanotubes had almost no impact on the biocompatibility of hydroxyapatite coatings. • The doping of carbon nanotubes improved corrosion resistance of hydroxyapatite coatings in simulated human body solution.

  6. Fibrous dysplasia of the femoral neck

    International Nuclear Information System (INIS)

    Savage, P.E.; Stoker, D.J.

    1984-01-01

    Fibrous dysplasia of the femur is usually observed in the intertrochanteric region. It is rarely confined to the femoral neck. We present four cases illustrating the radiographic appearance and spectrum of this condition which all showed the relatively lucent variety of fibrous dysplasia with varying degrees of expansion and surrounding sclerosis. The natural history of this condition is discussed. (orig.)

  7. Microstructure and property measurements on in situ TiB2/70Si–Al composite for electronic packaging applications

    International Nuclear Information System (INIS)

    Zhang, L.; Gan, G.S.; Yang, B.

    2012-01-01

    Highlights: ► 2.0 wt.%TiB 2 /70Si–Al composite is prepared by a novel reactive technique. ► In situ TiB 2 particles can refine effectively the primary Si phase. ► The composite exhibited attractive physical and mechanical properties. -- Abstract: A novel reactive technique has been employed in fabrication of 2.0 wt.%TiB 2 /70Si–Al composite for electronic packaging applications. The microstructure and properties of composite were studied using scanning electron microscopy, energy dispersive X-ray spectrometer, coefficient of thermal expansion and thermal conductivity measurements, and 3-point bending tests. The results indicate that the in situ TiB 2 particles can effectively refine the primary Si phase. The property measurements results indicate that the 2.0 wt.%TiB 2 /70Si–Al composite has advantageous physical and mechanical properties, including low density, low coefficient of thermal expansion, high thermal conductivity, high Flexural strength and Brinell hardness.

  8. Calcifying Fibrous Pseudotumor of the Esophagus

    Directory of Open Access Journals (Sweden)

    Shou-Wu Lee

    2010-11-01

    Full Text Available Calcifying fibrous pseudotumor is an uncommon lesion and has recently been recognized as a distinctive fibrous lesion. Esophageal calcifying fibrous pseudotumor is extremely rare and, to the best of our knowledge, has never been reported before. A 54-year-old woman underwent upper gastrointestinal endoscopy and endoscopic ultrasound because of intermittent dysphagia. The results showed 1 isoechoic esophageal submucosal tumor over the deep mucosa and submucosal layers, with calcifications inside. The patient underwent tumor excision, and the diagnosis was confirmed by pathological features, with abundant collagen, calcification and inflammatory cell infiltration. She received regular follow-up at the clinic and no evidence of tumor recurrence was found.

  9. Diagnostic pitfalls associated with fine-needle aspiration biopsy in a patient with the myxoid variant of monophasic fibrous synovial sarcoma.

    Science.gov (United States)

    Bergman, Simon; Brownlee, Noel A; Geisinger, Kim R; Ward, William G; Pettenati, Mark J; Koty, Patrick; Ellis, Ezra; Beaty, Michael W; Kilpatrick, Scott E

    2006-11-01

    Synovial sarcoma (SS) is one of the most common soft tissue tumors that typically presents in the extremities of young adults, but may occur at any site and affect children during the first decade. Herein we discuss a 12-yr-old male who complained of left foot pain and plantar mass. A fine-needle aspiration biopsy of an 8 cm subcutaneous mass was performed revealing a myxoid spindle cell neoplasm. The cytologic differential diagnosis included a myxoid neurofibroma, neurothekeoma, and a myxoid sarcoma. Subsequent excision of the mass revealed a monophasic fibrous SS with myxoid features. Examination of the tissue by fluorescence in situ hybridization confirmed the presence of characteristic SS SYT gene rearrangement at chromosome 18q11.2. This case underscores that the cytologic distinction of mxyoid spindle cell tumors may be challenging. We report the cytologic features of a myxoid monophasic fibrous SS, and discuss its distinction from other benign and malignant myxoid soft tissue neoplasms. (C) 2006 Wiley-Liss, Inc.

  10. Fibrous and textile materials for composite applications

    CERN Document Server

    Fangueiro, Raul

    2016-01-01

    This book focuses on the fibers and textiles used in composite materials. It presents both existing technologies currently used in commercial applications and the latest advanced research and developments. It also discusses the different fiber forms and architectures, such as short fibers, unidirectional tows, directionally oriented structures or advanced 2D- and 3D-textile structures that are used in composite materials. In addition, it examines various synthetic, natural and metallic fibers that are used to reinforce polymeric, cementitious and metallic matrices, as well as fiber properties, special functionalities, manufacturing processes, and composite processing and properties. Two entire chapters are dedicated to advanced nanofiber and nanotube reinforced composite materials. The book goes on to highlight different surface treatments and finishes that are applied to improve fiber/matrix interfaces and other essential composite properties. Although a great deal of information about fibers and textile str...

  11. Solvent exfoliated graphene for reinforcement of PMMA composites prepared by in situ polymerization

    International Nuclear Information System (INIS)

    Wang, Jialiang; Shi, Zixing; Ge, Yu; Wang, Yan; Fan, Jinchen; Yin, Jie

    2012-01-01

    Graphene (GP)-based polymer nanocomposites have attracted considerable scientific attention due to its pronounced improvement in mechanical, thermal and electrical properties compared with pure polymers. However, the preparation of well-dispersed and high-quality GP reinforced polymer composites remains a challenge. In this paper, a simple and facile approach for preparation of poly(methyl methacrylate) (PMMA) functionalized GP (GPMMA) via in situ free radical polymerization is reported. Fourier transform infrared (FTIR), X-ray photoelectron spectra (XPS), Raman, transmission electron microscope (TEM) and thermogravimetric analysis (TGA) are used to confirm the successful grafting of PMMA chains onto the GP sheets. Composite films are prepared by incorporating different amounts of GPMMA into the PMMA matrix through solution-casting method. Compared with pure PMMA, PMMA/GPMMA composites show simultaneously improved Young's modulus, tensile stress, elongation at break and thermal stability by addition of only 0.5 wt% GPMMA. The excellent reinforcement is attributed to good dispersion of high-quality GPMMA and strong interfacial adhesion between GPMMA and PMMA matrix as evidenced by scanning electron microscope (SEM) images of the fracture surfaces. Consequently, this simple protocol has great potential in the preparation of various high-performance polymer composites. Highlights: ► Functionalization of solvent exfoliated graphene by in situ polymerization. ► A simple and scalable method for preparing high-quality graphene. ► Functionalized graphene can be well-dispersed and have a strong interfacial adhesion with the polymer matrix. ► The nanocomposites exhibit a remarkable improvement of thermal and mechanical properties.

  12. Chondrosarcoma occurring in a patient with polyostotic fibrous dysplasia

    Energy Technology Data Exchange (ETDEWEB)

    De Smet, A.A.; Travers, H.; Neff, J.R.

    1981-12-01

    A 36-year-old white man with polyostotic fibrous dysplasia was found to have a high-grade chondrosarcoma arising from the left ilium. Although a left hemipelvectomy was performed, the patient subsequently developed sacral and pulmonary metastases and succumbed to his disease. This patient represents the first documented example of an unequivocally high-grade chondrosarcoma arising in an area of fibrous dysplasia without prior irradiation.

  13. Alginate-Collagen Fibril Composite Hydrogel

    Directory of Open Access Journals (Sweden)

    Mahmoud Baniasadi

    2015-02-01

    Full Text Available We report on the synthesis and the mechanical characterization of an alginate-collagen fibril composite hydrogel. Native type I collagen fibrils were used to synthesize the fibrous composite hydrogel. We characterized the mechanical properties of the fabricated fibrous hydrogel using tensile testing; rheometry and atomic force microscope (AFM-based nanoindentation experiments. The results show that addition of type I collagen fibrils improves the rheological and indentation properties of the hydrogel.

  14. Laser processing of in situ TiN/Ti composite coating on titanium.

    Science.gov (United States)

    Sahasrabudhe, Himanshu; Soderlind, Julie; Bandyopadhyay, Amit

    2016-01-01

    Laser remelting of commercially pure titanium (CP-Ti) surface was done in a nitrogen rich inert atmosphere to form in situ TiN/Ti composite coating. Laser surface remelting was performed at two different laser powers of 425 W and 475 W. At each power, samples were fabricated with one or two laser scans. The resultant material was a nitride rich in situ coating that was created on the surface. The cross sections revealed a graded microstructure. There was presence of nitride rich dendrites dispersed in α-Ti matrix at the uppermost region. The structure gradually changed with lesser dendrites and more heat affected α-Ti phase maintaining a smooth interface. With increasing laser power, the dendrites appeared to be larger in size. Samples with two laser scans showed discontinuous dendrites and more α-Ti phase as compared to the samples with one laser scan. The resultant composite of TiN along with Ti2N in α-Ti showed substantially higher hardness and wear resistance than the untreated CP-Ti substrate. Coefficient of friction was also found to reduce due to surface nitridation. Leaching of Ti(4+) ions during wear test in DI water medium was found to reduce due to laser surface nitriding. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Solitary Fibrous Tumor Arising from Stomach: CT Findings

    OpenAIRE

    Park, Sung Hee; Kim, Myeong-Jin; Kwon, Jieun; Park, Jong-pil; Park, Mi-Suk; Lim, Joon Seok; Kim, Joo Hee; Kim, Ki Whang

    2007-01-01

    Solitary fibrous tumors are spindle-cell neoplasms that usually develop in the pleura and peritoneum, and rarely arise in the stomach. To our knowledge, there is only one case reporting a solitary fibrous tumor arising from stomach in the English literature. Here we report the case of a 26-year-old man with a large solitary fibrous tumor arising from the stomach which involved the submucosa and muscular layer and resembled a gastrointestinal stromal tumor in the stomach, based on what was see...

  16. Beta-structures in fibrous proteins.

    Science.gov (United States)

    Kajava, Andrey V; Squire, John M; Parry, David A D

    2006-01-01

    The beta-form of protein folding, one of the earliest protein structures to be defined, was originally observed in studies of silks. It was then seen in early studies of synthetic polypeptides and, of course, is now known to be present in a variety of guises as an essential component of globular protein structures. However, in the last decade or so it has become clear that the beta-conformation of chains is present not only in many of the amyloid structures associated with, for example, Alzheimer's Disease, but also in the prion structures associated with the spongiform encephalopathies. Furthermore, X-ray crystallography studies have revealed the high incidence of the beta-fibrous proteins among virulence factors of pathogenic bacteria and viruses. Here we describe the basic forms of the beta-fold, summarize the many different new forms of beta-structural fibrous arrangements that have been discovered, and review advances in structural studies of amyloid and prion fibrils. These and other issues are described in detail in later chapters.

  17. In-situ conversion of rGO/Ni2P composite from GO/Ni-MOF precursor with enhanced electrochemical property

    Science.gov (United States)

    Lv, Zijian; Zhong, Qin; Bu, Yunfei

    2018-05-01

    Owing to the metalloid characteristic and superior electrical conductivity, the metal phosphides have received increasing interests in energy storage systems. Here, xrGO/Ni2P composites are successfully synthesized via an In-situ phosphorization process with GO/Ni-MOF as precursors. Compared to pure Ni2P, the xrGO/Ni2P composites appear enhanced electrochemical properties in terms of the specific capacitance and cycling performance as electrodes for supercapacitors. Especially, the 2rGO/Ni2P electrode shows a highest specific capacitance of 890 F g-1 at 1 A g-1 among the obtained composites. The enhancement can be attributed to the inherited structure from Ni-MOF and the well assembled of rGO and Ni2P through the In-situ conversion process. Moreover, when applied as positive electrode in a hybrid supercapacitor, an energy density of 35.9 W h kg-1 at a power density of 752 W kg-1 has been achieved. This work provides an In-situ conversion strategy for the synthesis of rGO/Ni2P composite which might be a promising electrode material for SCs.

  18. Effect of ultrasonic stirring on the microstructure and mechanical properties of in situ Mg{sub 2}Si/Al composite

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jixing, E-mail: linjixing@163.com [Department of Material Engineering, Zhejiang Industry & Trade Vocational College, Wenzhou 325003 (China); College of Materials Science and Engineering, Jilin University, Changchun 130000 (China); Bai, Guangzhu [Department of Material Engineering, Zhejiang Industry & Trade Vocational College, Wenzhou 325003 (China); School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000 (China); Liu, Zheng [School of Mechanical and Electrical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000 (China); Niu, Liyuan [Department of Material Engineering, Zhejiang Industry & Trade Vocational College, Wenzhou 325003 (China); Li, Guangyu [College of Materials Science and Engineering, Jilin University, Changchun 130000 (China); Wen, Cuie [School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, Melbourne, Victoria 3001 (Australia)

    2016-08-01

    In situ Mg{sub 2}Si/Al composites are receiving increasing attention for industrial applications because of their inherently stable interfaces, light weight, excellent combination of mechanical properties and low processing costs. The composite is formed through in situ nucleation and growth of a reinforcing phase Mg{sub 2}Si from the parent matrix during solidification. In this study, we report the effect of ultrasonic stirring with different times on the solidification structure and mechanical properties of in situ Mg{sub 2}Si/Al composites. X-ray diffraction analysis, optical microscopy and scanning electron microscopy were used to analyze the microstructural evolution of the composites. The mechanical properties of the composites were tested by using hardness and tensile testers. Our results showed that 40 s ultrasonic stirring resulted in the optimal impact on the refining both the primary and eutectic Mg{sub 2}Si particles and improving the shapes of the primary Mg{sub 2}Si particles. The composites with 40 s ultrasonic stirring exhibited simultaneously enhanced tensile strength and elongation and the tensile fracture morphology was shown to be quasi-cleavage with a large number of dimples. This study proves that ultrasonic stirring is effective in degassing, removal of impurities, refining, and improving the shapes of the reinforcing phase, leading to significantly enhance the mechanical performance of the composites. - Highlights: • Ultrasonic technique shows excellent impact during Al composite processing. • Ultrasonic stirring improves the shapes of Mg{sub 2}Si particles with higher circularity. • Ultrasonic stirring results in an increase in the tensile strength of the composite. • Ultrasonic stirring leads to a significantly increased elongation of the composite. • Tensile fracture of composite with ultrasonic stirring shows more ductile features.

  19. Postirradiation sarcoma (malignant fibrous histiocytoma) following cervix cancer

    International Nuclear Information System (INIS)

    Pinkston, J.A.; Sekine, Ichiro.

    1980-12-01

    A case of postirradiation sarcoma is described. The tumor, a malignant fibrous histiocytoma, occurred in the radiation field 11 years following postoperative external beam radiation therapy (7,000 rad) for carcinoma of the cervix. Reports of postirradiation malignant fibrous histiocytoma are rare, and the occurrence of this neoplasm following treatment for cervix cancer has not previously been described. The literature concerning postirradiation bone and soft tissue sarcomas is briefly reviewed, with special attention to malignant fibrous histiocytomas. (author)

  20. Radon adsorption in fibrous carbon sorbents

    International Nuclear Information System (INIS)

    Anshakov, O.M.; Kish, A.O.; Chudakov, V.A.; Matvejchuk, S.V.; Sokolovskij, A.S.; Ugolev, I.I.

    2006-01-01

    Radon sorption in woven fibrous sorbents 'AUT-M' and 'Busofit' and nonwoven fiber in the temperature range 0-50 degrees centigrade was studied. Adsorption heat of radon from the ambient air in different types of carbon fiber was determined. (authors)

  1. Compositional Simulation of In-Situ Combustion EOR: A Study of Process Characteristics

    DEFF Research Database (Denmark)

    Jain, Priyanka; Stenby, Erling Halfdan; von Solms, Nicolas

    2010-01-01

    In order to facilitate the study of the influence of reservoir process characteristics in In-Situ combustion modeling and advance the work of Kristensen et al. in this domain; a fully compositional In-situ combustion (ISC) model of Virtual Kinetic Cell (VKC; single-cell model) for laboratory scale....... This incorporates fourteen pseudo components and fourteen reactions (distributed amongst thermal cracking, low temperature oxidation and high temperature oxidation). The paper presents a set of derivative plots indicating that reservoir process characterization in terms of thermal behavior of oil can be well...... construed in terms of thermo-oxidative sensitivity of SARA fractions. It can be interpreted from the results that operating parameters like air injection rate, oxygen feed concentration and activation energy have significant influence on oil recovery; an increase in air injection rate can lead to cooling...

  2. A STUDY ON MICROSTRUCTURE CHARACTERISTICS OF IN SITU FORMED TiC REINFORCED COMPOSITE COATINGS

    OpenAIRE

    PENG LIU; WEI GUO; HUI LUO

    2012-01-01

    In situ synthesized TiC reinforced composite coating was fabricated by laser cladding of Al-Ni-Cr-C powders on titanium alloys, which can greatly improve the surface performance of the substrate. In this study, the Al-Ni-Cr-C laser-cladded composite coatings have been researched by means of X-ray diffraction, scanning electron microscope (SEM) and electron probe micro-analyzer (EPMA). There was a metallurgical combination between the Al-Ni-Cr-C laser-cladded coating and the Ti-6Al-4V substrat...

  3. The clinical research of bone scan in patients with fibrous dysplasia of bone

    International Nuclear Information System (INIS)

    Yuan Zhibin; Yu Jianfang; Luo Quanyong; Lu Hankui; Zhu Jifang; Zhu Ruisen

    2002-01-01

    Objective: To study the characteristics of fibrous dysplasia of bone in bone imaging and evaluate the diagnostic value of radionuclide bone scan in fibrous dysplasia of bone. Methods: All 42 cases of fibrous dysplasia of bone patients had radionuclide bone scan performed and compared with other imaging modalities. A retrospective study method was used to analyze the imaging results. Results: Although fibrous dysplasia of bone showed uptake of 99m Tc-MDP in the images, its appearance characteristic was different from those metastatic bone tumors and other bone diseases. Combining with X rays and other imaging modalities can improve the diagnostic accuracy of this disease. Conclusion: Radionuclide bone scan has got certain value in the diagnosis of fibrous dysplasia of bone. Combining with other imaging modality can make up its disadvantage of low specificity

  4. Experimental Investigation on Mechanical and Turning Behavior of Al 7075/x% wt. TiB2-1% Gr In Situ Hybrid Composite

    Directory of Open Access Journals (Sweden)

    K. R. Ramkumar

    2015-01-01

    Full Text Available The present research work involves the study of AA 7075-TiB2-Gr in situ composite through stir casting route. This in situ method involves formation of reinforcements within the matrix by the chemical reaction of two or more compounds which also produces some changes in the matrix material within the vicinity. Titanium Diboride (TiB2 and graphite were the reinforcement in a matrix of AA 7075 alloy. The composite was prepared with the formation of the reinforcement inside the molten matrix by adding salts of Potassium Tetrafluoroborate (KBF4 and Potassium Hexafluorotitanate (K2TiF6. The samples were taken under casted condition and the properties of the composite were tested by conducting characterization using X-ray diffraction (XRD, hardness test, flexural strength by using three-point bend test, scanning electron microscope (SEM, optical microstructure, grain size analysis, and surface roughness. It was found that good/excellent mechanical properties were obtained in AA 7075-TiB2-Gr reinforced in situ hybrid composite compared to alloy due to particulate strengthening of ceramic particles of TiB2 in the matrix. Further, Al 7075-3% TiB2-1% Gr hybrid in situ composite exhibited improved machinability over the alloy and composites due to self-lubricating property given by the Gr particles in the materials.

  5. CT Imaging of Craniofacial Fibrous Dysplasia

    Directory of Open Access Journals (Sweden)

    Zerrin Unal Erzurumlu

    2015-01-01

    Full Text Available Fibrous dysplasia is a benign fibroosseous bone dysplasia that can involve single (monostotic or multiple (polyostotic bones. Monostotic form is more frequent in the jaws. It is termed as craniofacial fibrous dysplasia, when it involves, though rarely, adjacent craniofacial bones. A 16-year-old girl consulted for a painless swelling in the right posterior mandible for two years. Panoramic radiography revealed ground-glass ill-defined lesions in the three different regions of the maxilla and mandible. Axial CT scan (bone window showed multiple lesions involving skull base and facial bones. Despite lesions in the skull base, the patient had no abnormal neurological findings. The lesion was diagnosed as fibrous dysplasia based on radiological and histopathological examination. In this paper, CT findings and differential diagnosis of CFD are discussed. CT is a useful imaging technique for CFD cases.

  6. In-Situ Preparation and Magnetic Properties of Fe3O4/WOOD Composite

    Science.gov (United States)

    Gao, Honglin; Zhang, Genlin; Wu, Guoyuan; Guan, Hongtao

    2011-06-01

    Fe3O4/wood composite, a magnetic material, was prepared by In-situ chemosynthesis method at room temperature. The X-ray diffraction (XRD) shows that the average partical size of Fe3O4 was about 14 nm. The magnetic properties of the resulting composites were investigated by vibrating sample magnetometer (VSM). The composites have saturation magnetization (Ms) values from 4.7 to 25.3 emu/g with the increase of weight percent gains (WPG) of the wood for the composites, but coercive forces (Hc) are invariable, which is different from the magnetic materials reported before. It may be due to the fact that the interaction between wood and Fe3O4 becomes stronger when less of Fe3O4 particles are introduced in the composition, and this also changes the surface anisotropy (Ks) of the magnetism. A structural characterization by Fourier transform infrared (FTIR) proved the interaction between Fe3O4 particles and wood matrix, and it also illustrates that this interaction influences the coercive force of the composite.

  7. The internal microstructure and fibrous mineralogy of fly ash from coal-burning power stations

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Patrick, E-mail: brownpd@cf.ac.uk [School of Earth and Ocean Sciences, Cardiff University, Park Place, CF10 3YE Cardiff (United Kingdom); School of Biosciences, Cardiff University, Museum Avenue, CF10 3US Cardiff (United Kingdom); Jones, Tim, E-mail: jonestp@cf.ac.uk [School of Earth and Ocean Sciences, Cardiff University, Park Place, CF10 3YE Cardiff (United Kingdom); BeruBe, Kelly, E-mail: berube@cf.ac.uk [School of Biosciences, Cardiff University, Museum Avenue, CF10 3US Cardiff (United Kingdom)

    2011-12-15

    Coal fly ash (CFA) is a significant environmental pollutant that presents a respiratory hazard when airborne. Although previous studies have identified the mineral components of CFA, there is a paucity of information on the structural habits of these minerals. Samples from UK, Polish and Chinese power stations were studied to further our understanding of the factors that affect CFA geochemistry and mineralogy. ICP-MS, FE-SEM/EDX, XRD, and laser diffraction were used to study physicochemical characteristics. Analysis revealed important differences in the elemental compositions and particle size distributions of samples between sites. Microscopy of HF acid-etched CFA revealed the mullite present possesses a fibrous habit; fibres ranged in length between 1 and 10 {mu}m. Respirable particles (<10 {mu}m) were frequently observed to contain fibrous mullite. We propose that the biopersistence of these refractory fibres in the lung environment could be contributing towards chronic lung diseases seen in communities and individuals continually exposed to high levels of CFA. - Highlights: > Chinese CFA had a greater crystalline mineral content and smaller particle size. > Mullite and quartz, two hazardous minerals, recrystallise from glass melt particles. > Mullite revealed a fibrous habit, with fibres 1-10 {mu}m in length and 0.5-1 {mu}m in width. - Chinese CFA possessed a greater crystalline mineral content and smaller particle size than UK and Polish CFA, the fibrous mullite prhiesent displayed a high aspect-ratio and thus is likely to be a respiratory hazard in vivo.

  8. The internal microstructure and fibrous mineralogy of fly ash from coal-burning power stations

    International Nuclear Information System (INIS)

    Brown, Patrick; Jones, Tim; BeruBe, Kelly

    2011-01-01

    Coal fly ash (CFA) is a significant environmental pollutant that presents a respiratory hazard when airborne. Although previous studies have identified the mineral components of CFA, there is a paucity of information on the structural habits of these minerals. Samples from UK, Polish and Chinese power stations were studied to further our understanding of the factors that affect CFA geochemistry and mineralogy. ICP-MS, FE-SEM/EDX, XRD, and laser diffraction were used to study physicochemical characteristics. Analysis revealed important differences in the elemental compositions and particle size distributions of samples between sites. Microscopy of HF acid-etched CFA revealed the mullite present possesses a fibrous habit; fibres ranged in length between 1 and 10 μm. Respirable particles (<10 μm) were frequently observed to contain fibrous mullite. We propose that the biopersistence of these refractory fibres in the lung environment could be contributing towards chronic lung diseases seen in communities and individuals continually exposed to high levels of CFA. - Highlights: → Chinese CFA had a greater crystalline mineral content and smaller particle size. → Mullite and quartz, two hazardous minerals, recrystallise from glass melt particles. → Mullite revealed a fibrous habit, with fibres 1-10 μm in length and 0.5-1 μm in width. - Chinese CFA possessed a greater crystalline mineral content and smaller particle size than UK and Polish CFA, the fibrous mullite prhiesent displayed a high aspect-ratio and thus is likely to be a respiratory hazard in vivo.

  9. Radiological analysis of polyostotic fibrous dysplasia in skeletal system

    International Nuclear Information System (INIS)

    Shin, Ma Rie; Kim, Jin Sik; Kim, Han Suk; Park, Soo Soung

    1984-01-01

    Over a period of recent 3 years, the 5 cases of polyostotic fibrous dysplasia were proven histologically at National Medical Center, and they were evaluated and analyzed radiologically and clinically. The results were as follows: 1. The age of 5 patients ranged from 12 to 21. 2. In general, clinical symptoms of these patients were pain of affected sites and swelling , fracture, walking disturbance of lower extremities. 3. The order of frequent site of polyostotic fibrous dysplasia was skull (4 cases), femur (3 cases), maxilla (2 case), humerus, tibia, rib, radius, metacarpal bone and phalanx. 4. The characteristic radiological findings of polyostotic fibrous dysplasia were multicystic lesions with ground glass appearance, osteosclerosis, cortical thinning and pathologic fracture and deformity of long bones. Particularly, in the extremities, multicystic radiolucencies, groud glass appearance, shepherd's crook and coxa vara deformities were noticed, and in the skull and maxilla, sclerotic changes were principally demonstrated.

  10. CHEMICAL COMPOSITION AND IN SITU EVALUATION OF FRESH AND ENSILED SUGARCANE (Saccharum officinarum

    Directory of Open Access Journals (Sweden)

    José Andrés Reyes Gutiérrez

    2015-12-01

    Full Text Available This study evaluated chemical composition and in situ degradability of dry matter (DM, organic matter (OM and ruminal pH of fresh (FSC and ensiled (SCS sugarcane (Saccharum officinarum forage diets. In situ digestibility was determined using the nylon bag technique with four cows fitted with a rumen cannula. Cows were fed with fresh or ensiled sugar cane and supplemented with 1 kg of commercial dairy concentrate (18% CP. Ground sample (5g for each sugar cane (FSC, and SCS were incubated in rumen for 0, 8, 12, 24, 36, 48, 72 and 96 h. Treatments were distributed in a completely randomized design with six replicates. ESC showed significant changes (P0.05 was noted. In situ digestibility of organic matter (ISDOM, % was higher (P0.05 at 12 and 76 h of incubation. The ruminal pH showed no differences (P>0.05 between treatments. It is concluded that the silage of sugar cane is an alternative to provide forage in the season of low growth and quality of the grass. Â

  11. Resin infusion of layered metal/composite hybrid and resulting metal/composite hybrid laminate

    Science.gov (United States)

    Cano, Roberto J. (Inventor); Grimsley, Brian W. (Inventor); Weiser, Erik S. (Inventor); Jensen, Brian J. (Inventor)

    2009-01-01

    A method of fabricating a metal/composite hybrid laminate is provided. One or more layered arrangements are stacked on a solid base to form a layered structure. Each layered arrangement is defined by a fibrous material and a perforated metal sheet. A resin in its liquid state is introduced along a portion of the layered structure while a differential pressure is applied across the laminate structure until the resin permeates the fibrous material of each layered arrangement and fills perforations in each perforated metal sheet. The resin is cured thereby yielding a metal/composite hybrid laminate.

  12. Volumetric composition in composites and historical data

    DEFF Research Database (Denmark)

    Lilholt, Hans; Madsen, Bo

    2013-01-01

    The obtainable volumetric composition in composites is of importance for the prediction of mechanical and physical properties, and in particular to assess the best possible (normally the highest) values for these properties. The volumetric model for the composition of (fibrous) composites gives...... guidance to the optimal combination of fibre content, matrix content and porosity content, in order to achieve the best obtainable properties. Several composite materials systems have been shown to be handleable with this model. An extensive series of experimental data for the system of cellulose fibres...... and polymer (resin) was produced in 1942 – 1944, and these data have been (re-)analysed by the volumetric composition model, and the property values for density, stiffness and strength have been evaluated. Good agreement has been obtained and some further observations have been extracted from the analysis....

  13. Manufacture of nano graphite oxides derived from aqueous glucose solutions and in-situ synthesis of magnetite–graphite oxide composites

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiang, E-mail: liuxiang@ahut.edu.cn; Zhao, Tiantian; Liu, Pengpeng; Cui, Ping, E-mail: cokecp@sohu.com; Hu, Peng

    2015-03-01

    A “bottom up” approach of manufacturing graphite oxides (GOs) derived from aqueous glucose solutions by virtue of an environmentally-friendly process and the way of in-situ synthesizing magnetite–GOs composites are described in this work in detail. The dehydrations among glucose molecules under hydrothermal condition result in the initial carbon quantum dots and ultimate GOs. The structural information of the GOs is obtained by the infrared, ultraviolet–visible and X-ray photoelectron spectra. The magnetite–GOs composites were obtained by a one-pot method under the same hydrothermal conditions as the one of preparing GOs. The composites perform high activities in catalytic degradation of Rhodamine B in the presence of hydrogen peroxides without extra heating or pH adjusting. Both the GOs and the magnetite–GOs composites are also assured by measurements of transmission electron microscope and X-ray powder diffraction. - Highlights: • Graphite oxides are made from aqueous glucose solutions by hydrothermal reaction. • A way of in-situ synthesizing composites of magnetite–graphite oxides is depicted. • The composites perform high activities in catalytic degradation of Rhodamine B.

  14. In situ laser-induced breakdown spectroscopy measurements of chemical compositions in stainless steels during tungsten inert gas welding

    Science.gov (United States)

    Taparli, Ugur Alp; Jacobsen, Lars; Griesche, Axel; Michalik, Katarzyna; Mory, David; Kannengiesser, Thomas

    2018-01-01

    A laser-induced breakdown spectroscopy (LIBS) system was combined with a bead-on-plate Tungsten Inert Gas (TIG) welding process for the in situ measurement of chemical compositions in austenitic stainless steels during welding. Monitoring the weld pool's chemical composition allows governing the weld pool solidification behavior, and thus enables the reduction of susceptibility to weld defects. Conventional inspection methods for weld seams (e.g. ultrasonic inspection) cannot be performed during the welding process. The analysis system also allows in situ study of the correlation between the occurrence of weld defects and changes in the chemical composition in the weld pool or in the two-phase region where solid and liquid phase coexist. First experiments showed that both the shielding Ar gas and the welding arc plasma have a significant effect on the selected Cr II, Ni II and Mn II characteristic emissions, namely an artificial increase of intensity values via unspecific emission in the spectra. In situ investigations showed that this artificial intensity increase reached a maximum in presence of weld plume. Moreover, an explicit decay has been observed with the termination of the welding plume due to infrared radiation during sample cooling. Furthermore, LIBS can be used after welding to map element distribution. For austenitic stainless steels, Mn accumulations on both sides of the weld could be detected between the heat affected zone (HAZ) and the base material.

  15. Fibrous Protein Structures: Hierarchy, History and Heroes.

    Science.gov (United States)

    Squire, John M; Parry, David A D

    2017-01-01

    During the 1930s and 1940s the technique of X-ray diffraction was applied widely by William Astbury and his colleagues to a number of naturally-occurring fibrous materials. On the basis of the diffraction patterns obtained, he observed that the structure of each of the fibres was dominated by one of a small number of different types of molecular conformation. One group of fibres, known as the k-m-e-f group of proteins (keratin - myosin - epidermin - fibrinogen), gave rise to diffraction characteristics that became known as the α-pattern. Others, such as those from a number of silks, gave rise to a different pattern - the β-pattern, while connective tissues yielded a third unique set of diffraction characteristics. At the time of Astbury's work, the structures of these materials were unknown, though the spacings of the main X-ray reflections gave an idea of the axial repeats and the lateral packing distances. In a breakthrough in the early 1950s, the basic structures of all of these fibrous proteins were determined. It was found that the long protein chains, composed of strings of amino acids, could be folded up in a systematic manner to generate a limited number of structures that were consistent with the X-ray data. The most important of these were known as the α-helix, the β-sheet, and the collagen triple helix. These studies provided information about the basic building blocks of all proteins, both fibrous and globular. They did not, however, provide detailed information about how these molecules packed together in three-dimensions to generate the fibres found in vivo. A number of possible packing arrangements were subsequently deduced from the X-ray diffraction and other data, but it is only in the last few years, through the continued improvements of electron microscopy, that the packing details within some fibrous proteins can now be seen directly. Here we outline briefly some of the milestones in fibrous protein structure determination, the role of the

  16. Brisement force in fibrous ankylosis: A technique revisited

    Directory of Open Access Journals (Sweden)

    Udupikrishna M Joshi

    2016-01-01

    Full Text Available Fibrous ankylosis is a common complication of trauma to the temporomandibular joint (TMJ in children. Proper treatment and regular follow-up is necessary for its successful management. This report highlights a case of posttraumatic fibrous ankylosis successfully managed with brisement force-gradual tractional forces applied to the TMJ under local anesthesia without any associated complications. Mouth opening increased significantly from 15 to 35 mm. The patient was advised to perform rigorous physiotherapy at home, to maintain interincisal opening of 35 mm. The case was followed up for 6 months with no decrease in mouth opening.

  17. Novel two-step method to form silk fibroin fibrous hydrogel

    International Nuclear Information System (INIS)

    Ming, Jinfa; Li, Mengmeng; Han, Yuhui; Chen, Ying; Li, Han; Zuo, Baoqi; Pan, Fukui

    2016-01-01

    Hydrogels prepared by silk fibroin solution have been studied. However, mimicking the nanofibrous structures of extracellular matrix for fabricating biomaterials remains a challenge. Here, a novel two-step method was applied to prepare fibrous hydrogels using regenerated silk fibroin solution containing nanofibrils in a range of tens to hundreds of nanometers. When the gelation process of silk solution occurred, it showed a top-down type gel within 30 min. After gelation, silk fibroin fibrous hydrogels exhibited nanofiber network morphology with β-sheet structure. Moreover, the compressive stress and modulus of fibrous hydrogels were 31.9 ± 2.6 and 2.8 ± 0.8 kPa, respectively, which was formed using 2.0 wt.% concentration solutions. In addition, fibrous hydrogels supported BMSCs attachment and proliferation over 12 days. This study provides important insight in the in vitro processing of silk fibroin into useful new materials. - Highlights: • SF fibrous hydrogel was prepared by a novel two-step method. • SF solution containing nanofibrils in a range of tens to hundreds of nanometers was prepared. • Gelation process was top-down type gel with several minutes. • SF fibrous hydrogels exhibited nanofiber network morphology with β-sheet structure. • Fibrous hydrogels had higher compressive stresses superior to porous hydrogels.

  18. In-situ deformation studies of an aluminum metal-matrix composite in a scanning electron microscope

    Science.gov (United States)

    Manoharan, M.; Lewandowski, J. J.

    1989-01-01

    Tensile specimens made of a metal-matrix composite (cast and extruded aluminum alloy-based matrix reinforced with Al2O3 particulate) were tested in situ in a scanning electron microscope equipped with a deformation stage, to directly monitor the crack propagation phenomenon. The in situ SEM observations revealed the presence of microcracks both ahead of and near the crack-tip region. The microcracks were primarily associated with cracks in the alumina particles. The results suggest that a region of intense deformation exists ahead of the crack and corresponds to the region of microcracking. As the crack progresses, a region of plastically deformed material and associated microcracks remains in the wake of the crack.

  19. Formation of fibrous materials from dense caseinate dispersions

    NARCIS (Netherlands)

    Manski, J.M.; Goot, van der A.J.; Boom, R.M.

    2007-01-01

    Application of shear and cross-linking enzyme transglutaminase (Tgase) induced fibrous hierarchical structures in dense (30% w/w) calcium caseinate (Ca-caseinate) dispersions. Using Tgase was essential for the anisotropic structure formation. The fibrous materials showed anisotropy on both micro-

  20. Oxidation protection and behavior of in-situ zirconium diboride–silicon carbide coating for carbon/carbon composites

    International Nuclear Information System (INIS)

    Li, Lu; Li, Hejun; Yin, Xuemin; Chu, Yanhui; Chen, Xi; Fu, Qiangang

    2015-01-01

    Highlights: • ZrB 2 –SiC coating was prepared on C/C composite by in-situ reaction. • A two-layered structure was obtained when the coating was oxidized at 1500 °C. • The formation and collapse of bubbles influenced the coating oxidation greatly. • The morphology evolution of oxide scale during oxidation was illuminated. - Abstract: To protect carbon/carbon (C/C) composites against oxidation, zirconium diboride–silicon carbide (ZrB 2 –SiC) coating was prepared by in-situ reaction using ZrC, B 4 C and Si as raw materials. The in-situ ZrB 2 –SiC coated C/C presented good oxidation resistance, whose weight loss was only 0.15% after isothermal oxidation at 1500 °C for 216 h. Microstructure evolution of coating at 1500 °C was studied, revealing a two-layered structure: (1) ZrO 2 (ZrSiO 4 ) embedded in SiO 2 -rich glass, and (2) unaffected ZrB 2 –SiC. The formation and collapse of bubbles influenced the coating oxidation greatly. A model based on the evolution of oxide scale was proposed to explain the failure mechanism of coating

  1. Effect of directional solidification rate on the microstructure and properties of deformation-processed Cu–7Cr–0.1Ag in situ composites

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Keming [Jiangxi Key Laboratory for Advanced Copper and Tungsten Materials, Jiangxi Academy of Sciences, Nanchang 330029 (China); School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, NSW 2522 (Australia); Jiang, Zhengyi; Zhao, Jingwei [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, NSW 2522 (Australia); Zou, Jin; Chen, Zhibao [Jiangxi Key Laboratory for Advanced Copper and Tungsten Materials, Jiangxi Academy of Sciences, Nanchang 330029 (China); Lu, Deping, E-mail: llludp@163.com [Jiangxi Key Laboratory for Advanced Copper and Tungsten Materials, Jiangxi Academy of Sciences, Nanchang 330029 (China)

    2014-11-05

    Highlights: • Effect of directional solidification (DS) rate on a Cu–Cr–Ag in situ composite. • The microstructure and properties of the DS in situ composite were investigated. • The second-phase Cr grains were parallel to drawing direction, and were finer. • The tensile strength was higher and the combination of properties was better. - Abstract: The influence of directional solidification rate on the microstructure, mechanical properties and conductivity of deformation-processed Cu–7Cr–0.1Ag in situ composites produced by thermo-mechanical processing was systematically investigated. The microstructure was analyzed by optical microscopy and scanning electronic microscopy. The mechanical properties and conductivity were evaluated by tensile-testing machine and micro-ohmmeter, respectively. The results indicate that the size, shape and distribution of second-phase Cr grains are significantly different in the Cu–7Cr–0.1Ag alloys with different growth rates. At a growth rate of 200 μm s{sup −1}, the Cr grains transform into fine Cr fiber-like grains parallel to the pulling direction from the Cr dendrites. The tensile strength of the Cu–7Cr–0.1Ag in situ composites from the directional solidification (DS) alloys is significantly higher than that from the as-cast alloy, while the conductivity of the in situ composites from the DS alloys is slightly lower than that from the as-cast alloy. The following combinations of tensile strength, elongation to fracture and conductivity of the Cu–7Cr–0.1Ag in situ composites from the DS alloy with a growth rate of 200 μm s{sup −1} and a cumulative cold deformation strain of 8 after isochronic aging treatment for 1 h can be obtained respectively as: (i) 1067 MPa, 2.9% and 74.9% IACS; or (ii) 1018 MPa, 3.0%, and 76.0% IACS or (iii) 906 MPa, 3.3% and 77.6% IACS.

  2. Modelling and analysing oriented fibrous structures

    International Nuclear Information System (INIS)

    Rantala, M; Lassas, M; Siltanen, S; Sampo, J; Takalo, J; Timonen, J

    2014-01-01

    A mathematical model for fibrous structures using a direction dependent scaling law is presented. The orientation of fibrous nets (e.g. paper) is analysed with a method based on the curvelet transform. The curvelet-based orientation analysis has been tested successfully on real data from paper samples: the major directions of fibrefibre orientation can apparently be recovered. Similar results are achieved in tests on data simulated by the new model, allowing a comparison with ground truth

  3. Layered titanates with fibrous nanotopographic features as reservoir for bioactive ions to enhance osteogenesis

    Science.gov (United States)

    Song, Xiaoxia; Tang, Wei; Gregurec, Danijela; Yate, Luis; Moya, Sergio Enrique; Wang, Guocheng

    2018-04-01

    In this study, an osteogenic environment was constructed on Ti alloy implants by in-situ formation of nanosized fibrous titanate, Na2Ti6O13, loaded with bioactive ions, i.e. Sr, Mg and Zn, to enhance surface bioactivity. The bioactive ions were loaded by ion exchange with sodium located at inter-layer positions between the TiO6 slabs, and their release was not associated with the degradation of the structural unit of the titanate. In-vitro cell culture experiments using MC3T3-E1 cells proved that both bioactive ions and nanotopographic features are critical in promoting osteogenic differentiation of the cells. It was found that the osteogenic functions of the titanate can be modulated by the type and amount of ions incorporated. This study points out that nanosized fibrous titanate formed on the Ti alloy can be a promising reservoir for bioactive ions. The major advantage of this approach over other alternatives for bioactive ion delivery using degradable bioceramic coatings is its capacity of maintaining the structural integrity of the coating and thus avoiding structural deterioration and potential mechanical failure.

  4. Craniofacial fibrous dysplasia - A review of current management techniques

    Directory of Open Access Journals (Sweden)

    Yadavalli Guruprasad

    2012-01-01

    Full Text Available Fibrous dysplasia is a pathologic condition of bone of unknown etiology with no apparent familial, hereditary or congenital basis. Lichtenstein first coined the term in 1938 and in 1942 he and Jaffe separated it from other fibro-osseous lesions. It is a bone tumor that, although benign, has the potential to cause significant cosmetic and functional disturbance, particularly in the craniofacial skeleton. Its management poses significant challenges to the surgeon. Craniofacial fibrous dysplasia is 1 of 3 types of fibrous dysplasia that can affect the bones of the craniofacial complex, including the mandible and maxilla. Fibrous dysplasia is a skeletal developmental disorder of the bone-forming mesenchyme that manifests as a defect in osteoblastic differentiation and maturation. It is a lesion of unknown etiology, uncertain pathogenesis, and diverse histopathology. Fibrous dysplasia represents about 2, 5% of all bone tumors and over 7% of all benign tumours. Over the years, we have gained a better understanding of its etiology, clinical behavior, and both surgical and non-surgical treatments.

  5. Natural rubber: leather composites

    OpenAIRE

    Ravichandran,K.; Natchimuthu,N.

    2005-01-01

    Leather is a fibrous protein consisting of collagen in a three dimensionally crosslinked network. Chrome tanning of leather improves the appearance of leather but at the same time emits both solid and liquid chrome leather wastes. Scrap rubber recycling using untreated and neutralized leather fibrous particles in natural rubber has been studied. Vulcanization, mechanical, morphological and swelling properties of the natural rubber - scrap rubber composites containing neutralized leather have ...

  6. Microstructure and tribological properties of NiMo/Mo2Ni3Si intermetallic 'in-situ' composites

    International Nuclear Information System (INIS)

    Gui Yongliang; Song Chunyan; Yang Li; Qin Xiaoling

    2011-01-01

    Research highlights: → Wear resistant NiMo/Mo 2 Ni 3 Si intermetallic 'in-situ' composites was fabricated successfully with Mo-Ni-Si powder blends as the starting materials. Microstructure of the NiMo/Mo 2 Ni 3 Si composites consists of Mo 2 Ni 3 Si primary dendrites, binary intermetallic phase NiMo and small amount of Ni/NiMo eutectics structure. The NiMo/Mo 2 Ni 3 Si composites exhibited high hardness and outstanding tribological properties under room-temperature dry-sliding wear test conditions which were attributed to the covalent-dominant strong atomic bonds and excellent combination of strength and ductility and toughness. - Abstract: Wear resistant NiMo/Mo 2 Ni 3 Si intermetallic 'in-situ' composites with a microstructure of ternary metal silicide Mo 2 Ni 3 Si primary dendritic, the long strip-like NiMo intermetallic phase, and a small amount of Ni/NiMo eutectics structure were designed and fabricated using molybdenum, nickel and silicon elemental powders. Friction and wear properties of NiMo/Mo 2 Ni 3 Si composites were evaluated under different contact load at room-temperature dry-sliding wear test conditions. Microstructure, worn surface morphologies and subsurface microstructure were characterized by OM, XRD, SEM and EDS. Results indicate that NiMo/Mo 2 Ni 3 Si composites have low fiction coefficient, excellent wear resistance and sluggish wear-load dependence. The dominant wear mechanisms of NiMo/Mo 2 Ni 3 Si composites are soft abrasion and slightly superficial oxidative wear.

  7. Fibrous epulis associated with impacted lower right third molar

    Directory of Open Access Journals (Sweden)

    Ni Putu Mira Sumarta

    2009-12-01

    Full Text Available Background: Epulis or epulides are lesions associated with gingival tissues. Fibrous epulis is a type of hyperplastic fibrous tissue mass located at the gingival which is slow growing, painless, having same color as the oral mucosa and firm on palpation. Anterior regions of the oral cavity are the frequently affected sites as these areas are more prone to be affected by calculus deposition and poor plaque control due to frequent teeth malposition. Removal of any irritating factors and excision of the lesion are the usual treatments. Purpose: This case report presents a rare case of fibrous epulis which occurred in the posterior region of the oral cavity and associated with impacted lower third molar. Case: A case of fibrous epulis at the lower right third molar area of three months duration is presented. The mass was slow growing, painless and on examination it was a pedunculated mass overlying the unerupted lower right third molar, having same color with the oral mucosa and firm on palpation. Clinically, the lesion was diagnosed as fibrous epulis associated with impacted lower right third molar. Case management: The treatment were surgical excision of the epulis and removal of the lower right third molar. The histopathology result showed tissue with squamous epithelial lining, achanthotic fibrous connective tissue, mononuclear inflammatory cells and few capillaries without signs of malignancy. This is consistent with the diagnosis of fibrous epulis. Conclusion: Fibrous epulis, although frequently occurred at the anterior region of the oral cavity, may rarely grow at the area of lower third molar. This phenomenon supports the theory that epulis can grow on any surface of oral mucous membrane as long as local irritants are present.

  8. Backscatter factor and absorption ratio of fibrous zirconia media in the visible

    International Nuclear Information System (INIS)

    Njomo, Donatien; Tagne, Herve Thierry Kamdem

    2001-11-01

    Fibrous thermal insulations are widely used to conserve energy in ambient to high temperature applications including buildings, solar collectors, heat exchangers, furnaces and thermal protection systems of reusable launch vehicles. It has long been recognised that zirconia has the lowest thermal conductivity of commercial refractories. The thermal conductivity of a zirconia fibrous medium is strongly dependent of its bulk density; high bulk densities of zirconia fibers provide the most effective insulation at high temperatures. Lee's theory for radiative transfer through fibrous media is used in this paper. The two-flux model is applied to determine the backward and forward parameters of a medium of zirconia fibers oriented in parallel planes. Theoretical calculations of the backscatter factor and absorption ratio of this medium are carried out in the visible spectrum for different size parameters of the fibers and for three different temperatures. Our results show that the backscatter factor of zirconia fibrous insulations is maximum, and therefore the heat transfer by the fibrous medium is the lowest, for a size parameter of 0.45 for all the temperatures studied. We also observed that the backscatter factor decreases with increasing temperature. (author)

  9. Locally Aggressive Fibrous Dysplasia Mimicking Malign Calvarial Lesion.

    Science.gov (United States)

    Ogul, Hayri; Keskin, Emine

    2018-05-01

    Fibrous dysplasia is an unusual benign bone tumor. It is divided into 3 groups as monostotic, polyostotic, and craniofacial form. The authors reported an unusual patient with fibrous dysplasia with an aggressive radiologic appearance.

  10. VICI (Venus In Situ Composition Investigations): The Next Step in Understanding Venus Climate Evolution

    Science.gov (United States)

    Glaze, L. S.; Garvin, J. B.

    2017-12-01

    Venus provides a natural laboratory to explore an example of terrestrial planet evolution that may be cosmically ubiquitous. By better understanding the composition of the Venus atmosphere and surface, we can better constrain the efficiency of the Venusian greenhouse. VICI is a proposed NASA New Frontiers mission that delivers two landers to Venus on two separate Venus fly-bys. Following six orbital remote sensing missions to Venus (since 1978), VICI would be the first mission to land on the Venus surface since 1985, and the first U.S. mission to enter the Venus atmosphere in 49 years. The four major VICI science objectives are: Atmospheric origin and evolution: Understand the origin of the Venus atmosphere, how it has evolved, including how recently Venus lost its oceans, and how and why it is different from the atmospheres of Earth and Mars, through in situ measurements of key noble gases, nitrogen, and hydrogen. Atmospheric composition and structure: Reveal the unknown chemical processes and structure in Venus' deepest atmosphere that dominate the current climate through two comprehensive, in situ vertical profiles. Surface properties and geologic evolution: For the first time ever, explore the tessera from the surface, specifically to test hypotheses of ancient content-building cycles, erosion, and links to past climates using multi-point mineralogy, elemental chemistry, imaging and topography. Surface-atmosphere interactions: Characterize Venus' surface weathering environment and provide insight into the sulfur cycle at the surface-atmosphere interface by integrating rich atmospheric composition and structure datasets with imaging, surface mineralogy, and elemental rock composition. VICI is designed to study Venus' climate history through detailed atmospheric composition measurements not possible on earlier missions. In addition, VICI images the tessera surface during descent enabling detailed topography to be generated. Finally, VICI makes multiple elemental

  11. Preparation and mechanical properties of in situ TiC{sub x}–Ni (Si, Ti) alloy composites

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wenjuan [Institute of Materials Science and Engineering, School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Zhai, Hongxiang, E-mail: hxzhai@sina.com [Institute of Materials Science and Engineering, School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Chen, Lin; Huang, Zhenying [Institute of Materials Science and Engineering, School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Bei, Guoping; Baumgärtner, Christoph; Greil, Peter [Department of Materials Science (Glass and Ceramics), University of Erlangen-Nuernberg, Martensstr. 5, 91058 Erlangen (Germany)

    2014-10-20

    Novel in situ TiC{sub x} reinforced Ni (Si, Ti) alloy composites with superior mechanical properties were prepared at 1250 °C for 30 min by pressureless sintering Ti{sub 3}SiC{sub 2} (10 and 20 vol%) and Ni as precursors. The Ti{sub 3}SiC{sub 2} particles decomposed into substoichiometric TiC{sub x} phase, while the additional Si and partial Ti atoms derived from Ti{sub 3}SiC{sub 2} diffused into Ni matrix to form Ni (Si, Ti) alloy. The in situ formed TiC{sub x} phases are mainly dispersed on the grain boundaries of the Ni (Si, Ti) alloying, forming a strong skeleton and refining the microstructures of the metal matrix. The hardness, the yield stress σ{sub 0.2%} and ultimate compressive strength of 20.6 vol%TiC{sub x}–Ni(Si, Ti) composite can reach 2.15±0.04 GPa, 466.8±55.8 MPa and 733.3±78.4 MPa, respectively. The enhanced mechanical properties of TiC{sub x}–Ni(Si, Ti) composites are due to the in situ formation of TiC{sub x} skeleton, the refined microstructures of Ni (Si, Ti) alloys and solid solution effects as well as good wettability between TiC{sub x} and Ni (Si, Ti) matrix.

  12. Corrosion resistant composite materials

    International Nuclear Information System (INIS)

    Ul'yanin, E.A.

    1986-01-01

    Foundations for corrosion-resistant composite materials design are considered with account of components compatibility. Fibrous and lamellar composites with metal matrix, dispersion-hardened steels and alloys, refractory metal carbides-, borides-, nitrides-, silicides-based composites are described. Cermet compositions and fields of their application, such as protective coatings for operation in agressive media at high temperatures, are presented

  13. Diurnal variability in riverine dissolved organic matter composition determined by in situ optical measurement in the San Joaquin River (California, USA)

    Science.gov (United States)

    Spencer, R.G.M.; Pellerin, B.A.; Bergamaschi, B.A.; Downing, B.D.; Kraus, T.E.C.; Smart, D.R.; Dahlgren, R.A.; Hernes, P.J.

    2007-01-01

    Dissolved organic matter (DOM) concentration and composition in riverine and stream systems are known to vary with hydrological and productivity cycles over the annual and interannual time scales. Rivers are commonly perceived as homogeneous with respect to DOM concentration and composition, particularly under steady flow conditions over short time periods. However, few studies have evaluated the impact of short term variability ( DOC) measurement alone. The in situ optical measurements described in this study clearly showed for the first time diurnal variations in DOM measurements, which have previously been related to both composition and concentration, even though diurnal changes were not well reflected in bulk DOC concentrations. An apparent asynchronous trend of DOM absorbance and chlorophyll-a in comparison to chromophoric dissolved organic matter (CDOM) fluorescence and spectral slope S290-350 suggests that no one specific CDOM spectrophotometric measurement explains absolutely DOM diurnal variation in this system; the measurement of multiple optical parameters is therefore recommended. The observed diurnal changes in DOM composition, measured by in situ optical instrumentation likely reflect both photochemical and biologically-mediated processes. The results of this study highlight that short-term variability in DOM composition may complicate trends for studies aiming to distinguish different DOM sources in riverine systems and emphasizes the importance of sampling specific study sites to be compared at the same time of day. The utilization of in situ optical technology allows short-term variability in DOM dynamics to be monitored and serves to increase our understanding of its processing and fundamental role in the aquatic environment. Copyright ?? 2007 John Wiley & Sons, Ltd.

  14. MRI of fibrous cortical defect and non-ossifying fibroma

    Energy Technology Data Exchange (ETDEWEB)

    Mishima, Yoshiko; Aoki, Takatoshi; Watanabe, Hideyuki; Nakata, Hajime; Hashimoto, Hiroshi; Nakamura, Toshitaka [Univ. of Occupational and Environmental Health, Kitakyushu, Fukuoka (Japan). School of Medicine

    1999-02-01

    Fibrous cortical defect and non-ossifying fibroma are the benign fibrous lesions of bone commonly involving children. Their diagnosis is usually done with radiography, and MR examinations are rarely performed. We evaluated MRI findings of 11 lesions in 10 cases of fibrous cortical defect and non-ossifying fibroma. Signal intensity of the lesions was varied and large lesions (2 cm<) tended to show heterogeneous signal intensity on both T1-weighted and T2-weighted images corresponding to a mixture of components including fibrous tissue, hemosiderin and foam cells. MRI helps to delineate the extent of the involved bone and to assess the various histological components of the lesions. However, their diagnosis is basically made on the radiographic findings and the role of MRI is limited. (author)

  15. Fibrous Dysplasia versus Juvenile Ossifying Fibroma: A Dilemma

    Directory of Open Access Journals (Sweden)

    Sreelakshmi N. Nair

    2016-01-01

    Full Text Available Fibrous dysplasia (FD is a condition characterized by excessive proliferation of bone forming mesenchymal cells which can affect one bone (monostotic type or multiple bones (polyostotic type. It is predominantly noticed in adolescents and young adults. Fibrous dysplasia affecting the jaws is an uncommon condition. The most commonly affected facial bone is the maxilla, with facial asymmetry being the chief complaint. The lesion in many instances is confused with ossifying fibroma (OF. Diagnosis of these two lesions has to be done based on clinical, radiographic, and microscopic findings. Here, we present a case of fibrous dysplasia of maxilla in a nine-year-old boy mimicking juvenile ossifying fibroma.

  16. Metallic composite materials

    International Nuclear Information System (INIS)

    Frommeyer, G.

    1987-01-01

    The structure and properties of metallic composite materials and composite materials with metallic matrix are considered. In agreement with the morphology of constituent phases the following types of composite materials are described: dispersion-strengthened composite materials; particle-reinforced composite materials; fibrous composite materials; laminar composite materials. Data on strength and electric properties of the above-mentioned materials, as well as effect of the amount, location and geometric shape of the second phase on them, are presented

  17. Novel Ultrafine Fibrous Poly(tetrafluoroethylene Hollow Fiber Membrane Fabricated by Electrospinning

    Directory of Open Access Journals (Sweden)

    Qinglin Huang

    2018-04-01

    Full Text Available Novel poly(tetrafluoroethylene (PTFE hollow fiber membranes were successfully fabricated by electrospinning, with ultrafine fibrous PTFE membranes as separation layers, while a porous glassfiber braided tube served as the supporting matrix. During this process, PTFE/poly(vinylalcohol (PVA ultrafine fibrous membranes were electrospun while covering the porous glassfiber braided tube; then, the nascent PTFE/PVA hollow fiber membrane was obtained. In the following sintering process, the spinning carrier PVA decomposed; meanwhile, the ultrafine fibrous PTFE membrane shrank inward so as to further integrate with the supporting matrix. Therefore, the ultrafine fibrous PTFE membranes had excellent interface bonding strength with the supporting matrix. Moreover, the obtained ultrafine fibrous PTFE hollow fiber membrane exhibited superior performances in terms of strong hydrophobicity (CA > 140°, high porosity (>70%, and sharp pore size distribution. The comprehensive properties indicated that the ultrafine fibrous PTFE hollow fiber membranes could have potentially useful applications in membrane contactors (MC, especially membrane distillation (MD in harsh water environments.

  18. Evaluation of polyacrylonitrile electrospun nano-fibrous mats as leukocyte removal filter media.

    Science.gov (United States)

    Pourbaghi, Raha; Zarrebini, Mohammad; Semnani, Dariush; Pourazar, Abbasali; Akbari, Nahid; Shamsfar, Reihaneh

    2017-09-13

    Removal of leukocytes from blood products is the most effective means for elimination of undesirable side effects and prevention of possible reactions in recipients. Micro-fibrous mats are currently used for removal of leukocytes from blood. In this study, samples of electrospun nano-fibrous mats were produced. The performance of the produced electrospun nano-fibrous mats as means of leukocytes removal from fresh whole blood was both evaluated and compared with that of commercially available micro-fibrous mats. In order to produce the samples, polyacrylonitrile (PAN) nano-fibrous mats were made under different electrospinning conditions. Mean fiber diameter, pore characterization and surface roughness of the PAN nano-fibrous mats were determined using image processing technique. In order to evaluate the surface tension of the fabricated mats, water contact angle was measured. The leukocyte removal performance, erythrocytes recovery percent and hemolysis rate of the nano-fibrous mats were compared. The effectiveness of nano-fibrous mats in removing leukocyte was established using both scanning electron microscope and optical microscope. Results showed that for given weight, the fabricated nano-fibrous mats were not only more efficient but also more cost-effective than their commercial counterparts. Results confirmed that changes in mean fiber diameter, the number of layer and weight of each layer in the absence of any chemical reaction or physical surface modification, the fabricated nano-fibrous mats were able to remove 5-log of leukocytes. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017. © 2017 Wiley Periodicals, Inc.

  19. Extraction of uranium from sea water by means of fibrous complex adsorbents

    International Nuclear Information System (INIS)

    Miyamatsu, Tokuhisa; Oguchi, Noboru; Kanchiku, Yoshihiko; Aoyagi, Takanobu

    1982-01-01

    Fibrous complex adsorbents for uranium extraction from sea water were prepared by introducing titanic acid or basic zinc carbonate as effective constituents into fibrous ion exchangers. A fibrous chelate type adsorbent was also tested. Among the adsorbents examined, the following ones demonstrated excellent properties for the recovery of uranium from sea water. a) A fibrous, weakly acidic cation exchanger was treated with titanyl sulfate in aqueous sulfuric acid solution, which was followed by neutralization to afford a fibrous adsorbent containing titanic acid (QC-1f(Ti)). The adsorption capacity for uranium in sea water was estimated by extrapolation to be 50μg-U/g-Ad or 1170 μg-U/g-Ti. b) A fibrous, strongly acidic cation exchanger was treated in a similar way to afford another type of fibrous adsorbent with titanic acid incorporated (QCS-Ti). The adsorption capacity was estimated by extrapolation to be 20-30 μg-U/g-Ad. (author)

  20. Microstructure and mechanical properties investigation of in situ TiB2 and ZrB2 reinforced Al-4Cu composites

    Science.gov (United States)

    Lutfi Anis, Ahmad; Ramli, Rosmamuhammadani; Darham, Widyani; Zakaria, Azlan; Talari, Mahesh Kumar

    2016-02-01

    Conventional Al-Cu alloys exhibit coarse grain structure leading to inferior mechanical properties in as-cast condition. Expensive thermo-mechanical treatments are needed to improve microstructure and corresponding mechanical properties. In situ Al-based composites were developed to improve mechanical properties by dispersion strengthening and grain refinement obtained by the presence of particulates in the melt during solidification. In this work Al-4Cu - 3TiB2 and Al-4Cu-3ZrB2 in situ composites were prepared by liquid casting method. XRD, electron microscopy and mechanical tests were performed on suitably sectioned and metallographically prepared surfaces to investigate the phase distribution, hardness and tensile properties. It was found that the reinforcement particles were segregated along the grain boundaries of Al dendrites. Tensile fracture morphology for both Al-4Cu - 3TiB2 and Al-4Cu-3ZrB2 were analyzed and compared to determine the fracture propagation mechanism in the composites. Al-4Cu-3ZrB2 in situ composites displayed higher strength and hardness compared to Al-4Cu-3TiB2 which could be ascribed to the stronger interfacial bonding between the Al dendrites and ZrB2 particulates as evidenced from fractographs.

  1. Mechanical Properties and Tribological Behavior of In Situ NbC/Fe Surface Composites

    Science.gov (United States)

    Cai, Xiaolong; Zhong, Lisheng; Xu, Yunhua

    2017-01-01

    The mechanical properties and tribological behavior of the niobium carbide (NbC)-reinforced gray cast iron surface composites prepared by in situ synthesis have been investigated. Composites are comprised of a thin compound layer and followed by a deep diffusion zone on the surface of gray cast iron. The graded distributions of the hardness and elastic modulus along the depth direction of the cross section of composites form in the ranges of 6.5-20.1 and 159.3-411.2 GPa, respectively. Meanwhile, dry wear tests for composites were implemented on pin-on-disk equipment at sliding speed of 14.7 × 10-2 m/s and under 5 or 20 N, respectively. The result indicates that tribological performances of composites are considerably dependent on the volume fraction and the grain size of the NbC as well as the mechanical properties of the matrices in different areas. The surface compound layer presents the lowest coefficient of friction and wear rate, and exhibits the highest wear resistance, in comparison with diffusion zone and substrate. Furthermore, the worn morphologies observed reveal the dominant wear mechanism is abrasive wear feature in compound layer and diffusion zone.

  2. Microstructure and mechanical properties of in situ TiC and Nd2O3 particles reinforced Ti-4.5 wt.%Si alloy composites

    International Nuclear Information System (INIS)

    Zhang, Xinjiang; Li, Yibin; Song, Guangping; Sun, Yue; Peng, Qingyu; Li, Yuxin; He, Xiaodong

    2011-01-01

    Highlights: → (TiC + Nd 2 O 3 )/Ti-4.5 wt.%Si composites were in situ synthesized. → The phase components and microstructures of the composites were investigated. → In situ reinforcements improve the mechanical properties of the matrix alloy. -- Abstract: (TiC + Nd 2 O 3 )/Ti-4.5 wt.%Si composites were in situ synthesized by a non-consumable arc-melting technology. The phases in the composites were identified by X-ray diffraction. Microstructures of the composites were observed by optical microscope and scanning electron microscope. The composite contains four phases: TiC, Nd 2 O 3 , Ti 5 Si 3 and Ti. The TiC and Nd 2 O 3 particles with dendritic and near-equiaxed shapes are well distributed in Ti-4.5 wt.%Si alloy matrix, and the fine Nd 2 O 3 particles exist in the network Ti + Ti 5 Si 3 eutectic cells and Ti matrix of the composites. The hardness and compressive strength of the composites are markedly higher than that of Ti-4.5 wt.%Si alloy. When the TiC content is fixed as 10 wt.% in the composites, the hardness is enhanced as the Nd 2 O 3 content increases from 8 wt.% to 13 wt.%, but the compressive strength peaks at the Nd 2 O 3 content of 8 wt.%.

  3. The Fiber Content in Fibrous Hemp Depending on Selected Agrotechnical Factors

    Directory of Open Access Journals (Sweden)

    Kryszak N.

    2016-06-01

    Full Text Available Relationship between genotypes represented by two fibrous hemp varieties and some agrotechnical factors was investigated in the study. The aim of it was finding how selected factors (three sowing dates, two sowing densities and five harvest dates influence on total fiber content using osmotic degumming of fibrous plants method for fiber content determination.

  4. ECAP consolidation of Al matrix composites reinforced with in-situ γ-Al{sub 2}O{sub 3} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Casati, R., E-mail: riccardo.casati@polimi.it [Department of Mechanical Engineering, Politecnico di Milano, Via La Masa 1, Milano (Italy); Fabrizi, A. [Department of Management and Engineering, Università di Padova, Stradella S. Nicola 3, Vicenza (Italy); Tuissi, A. [CNR-IENI, Corso Promessi Sposi 29, Lecco (Italy); Xia, K. [Department of Mechanical Engineering, University of Melbourne, Victoria 3010 (Australia); Vedani, M. [Department of Mechanical Engineering, Politecnico di Milano, Via La Masa 1, Milano (Italy)

    2015-11-11

    This work is aimed at proposing a method to prepare aluminum matrix composites reinforced with γ-Al{sub 2}O{sub 3} nanoparticles and at describing the effects of an in-situ reaction on the resulting nano-reinforcement dispersed throughout the metal matrix. Al nano- and micro-particles were used as starting materials. They were consolidated by equal channel angular pressing (ECAP) in as-received conditions and after undergoing high-energy ball milling. Further, γ-Al{sub 2}O{sub 3} reinforcing nanoparticles were produced in-situ from the hydroxide layer that covered the Al powder particles. The powder particle morphology and the composites microstructures were investigated by electron microscopy. The transformation process was monitored by X-ray diffraction, differential scanning calorimetry and thermo-gravimetric analysis.

  5. Electrospun nanocomposite fibrous polymer electrolyte for secondary lithium battery applications

    International Nuclear Information System (INIS)

    Padmaraj, O.; Rao, B. Nageswara; Jena, Paramananda; Satyanarayana, N.; Venkateswarlu, M.

    2014-01-01

    Hybrid nanocomposite [poly(vinylidene fluoride -co- hexafluoropropylene) (PVdF-co-HFP)/magnesium aluminate (MgAl 2 O 4 )] fibrous polymer membranes were prepared by electrospinning method. The prepared pure and nanocomposite fibrous polymer electrolyte membranes were soaked into the liquid electrolyte 1M LiPF 6 in EC: DEC (1:1,v/v). XRD and SEM are used to study the structural and morphological studies of nanocomposite electrospun fibrous polymer membranes. The nanocomposite fibrous polymer electrolyte membrane with 5 wt.% of MgAl 2 O 4 exhibits high ionic conductivity of 2.80 × 10 −3 S/cm at room temperature. The charge-discharge capacity of Li/LiCoO 2 coin cells composed of the newly prepared nanocomposite [(16 wt.%) PVdF-co-HFP+(5 wt.%) MgAl 2 O 4 ] fibrous polymer electrolyte membrane was also studied and compared with commercial Celgard separator

  6. Bilateral fibrous dysplasia of the mandible in a 7-year-old male patient-A rare case

    Directory of Open Access Journals (Sweden)

    Chandar V

    2010-06-01

    Full Text Available Fibrous dysplasia is a disturbance of bone metabolism that is classified as a benign fibro-osseous lesion. Fibrous connective tissue, containing abnormal bone, replaces normal bone. The etiology of fibrous dysplasia is unknown. The radiographic appearance of the irregularly shaped trabeculae aids in the differential diagnosis. Occurring most commonly in the second decade of life, the lesions of fibrous dysplasia can be surgically recontoured for esthetic or functional purposes once they become dormant. Here, we report a case of bilateral fibrous dysplasia in a 7 year old male patient and its diagnostic work-up.

  7. Fabrication of highly modulable fibrous 3D extracellular microenvironments

    KAUST Repository

    Zhang, Xixiang; Han, Fangfei; Syed, Ahad; Bukhari, Ebtihaj M.; Siang, Basil Chew Joo; Yang, Shan; Zhou, Bingpu; Wen, Wei-jia; Jiang, Dechen

    2017-01-01

    Three-dimensional (3D) in vitro scaffolds that mimic the irregular fibrous structures of in vivo extracellular matrix (ECM) are critical for many important biological applications. However, structural properties modulation of fibrous 3D scaffolds remains a challenge. Here, we report the first highly modulable 3D fibrous scaffolds self-assembled by high-aspect-ratio (HAR) microfibers. The scaffolds structural properties can be easily tailored to incorporate various physical cues, including geometry, stiffness, heterogeneity and nanotopography. Moreover, the fibrous scaffolds are readily and accurately patterned on desired locations of the substrate. Cell culture exhibits that our scaffolds can elicit strong bidirectional cell-material interactions. Furthermore, a functional disparity between the two-dimensional substrate and our 3D scaffolds is identified by cell spreading and proliferation data. These results prove the potential of the proposed scaffold as a biomimetic extracellular microenvironment for cell study.

  8. Fabrication of highly modulable fibrous 3D extracellular microenvironments

    KAUST Repository

    Zhang, Xixiang

    2017-06-13

    Three-dimensional (3D) in vitro scaffolds that mimic the irregular fibrous structures of in vivo extracellular matrix (ECM) are critical for many important biological applications. However, structural properties modulation of fibrous 3D scaffolds remains a challenge. Here, we report the first highly modulable 3D fibrous scaffolds self-assembled by high-aspect-ratio (HAR) microfibers. The scaffolds structural properties can be easily tailored to incorporate various physical cues, including geometry, stiffness, heterogeneity and nanotopography. Moreover, the fibrous scaffolds are readily and accurately patterned on desired locations of the substrate. Cell culture exhibits that our scaffolds can elicit strong bidirectional cell-material interactions. Furthermore, a functional disparity between the two-dimensional substrate and our 3D scaffolds is identified by cell spreading and proliferation data. These results prove the potential of the proposed scaffold as a biomimetic extracellular microenvironment for cell study.

  9. Multi-sensor system for in situ shape monitoring and damage identification of high-speed composite rotors

    Science.gov (United States)

    Philipp, K.; Filippatos, A.; Kuschmierz, R.; Langkamp, A.; Gude, M.; Fischer, A.; Czarske, J.

    2016-08-01

    Glass fibre-reinforced polymer (GFRP) composites offer a higher stiffness-to-weight ratio than conventional rotor materials used in turbomachinery. However, the material behaviour of GFRP high-speed rotors is difficult to predict due to the complexity of the composite material and the dynamic loading conditions. Consequently dynamic expansion measurements of GRFP rotors are required in situ and with micron precision. However, the whirling motion amplitude is about two orders of magnitude higher than the desired precision. To overcome this problem, a multi-sensor system capable of separating rotor expansion and whirling motion is proposed. High measurement rates well above the rotational frequency and micron uncertainty are achieved at whirling amplitudes up to 120μm and surface velocities up to 300 m/s. The dynamic elliptical expansion of a GFRP rotor is investigated in a rotor loading test rig under vacuum conditions. In situ measurements identified not only the introduced damage but also damage initiation and propagation.

  10. In situ fabrication and characterization of cobalt ferrite nanorods/graphene composites

    International Nuclear Information System (INIS)

    Fu, Min; Jiao, Qingze; Zhao, Yun

    2013-01-01

    Cobalt ferrite nanorods/graphene composites were prepared by a one-step hydrothermal process using NaHSO 3 as the reducing agent and 1-propyl-3-hexadecylimidazolium bromide as the structure growth-directing template. The reduction of graphene oxide and the in situ formation of cobalt ferrite nanorods were accomplished in a one-step reaction. The structure and morphology of as-obtained composites were characterized by field emission scanning electron microscopy, transmission electron microscopy, high resolution transmission electron microscopy, atomic force microscope, X-ray diffractometer, Fourier transform infrared spectra, X-ray photoelectron spectroscopy and Raman spectroscopy. Uniform rod-like cobalt ferrites with diameters of about 100 nm and length of about 800 nm were homogeneously distributed on the graphene sheets. The hybrid materials showed a saturation magnetization of 42.5 emu/g and coercivity of 495.1 Oe at room temperature. The electromagnetic parameters were measured using a vector network analyzer. A minimum reflection loss (RL) of − 25.8 dB was observed at 16.1 GHz for the cobalt ferrite nanorods/graphene composites with a thickness of 2 mm, and the effective absorption frequency (RL < − 10 dB) ranged from 13.5 to 18.0 GHz. The composites exhibited better absorbing properties than the cobalt ferrite nanorods and the mixture of cobalt ferrite nanorods and graphene. - Highlights: • Reduction of GO and formation of ferrites were accomplished in a one-step reaction. • Ionic liquid was used to control 1D growth of ferrite nanorods for the first time. • Cobalt ferrite nanorods/graphene composites showed dielectric and magnetic loss. • Cobalt ferrite nanorods/graphene composites exhibited better absorbing properties

  11. Radiographic Differential Diagnosis Between The Fibrous Dysplasia And The Ossifying Fibroma

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Karp Shik [Dept. of Dental Radiology, College of Dentistry, Kyungpook National University, Daegu (Korea, Republic of)

    1999-02-15

    The author observed and compared the radiographic features of 49 cases of the fibrous dysplasia and 14 cases of the ossifying fibroma in the osteoblastic or mature stage radiologically and histopathologically. The obtained results were as follows: 1. Fibrous dysplasia occurred most frequently in the 2nd decade, but ossifying fibroma in the 3rd and 4th decades, and both lesions occurred with slight predilection in females. 2. In most cases, chief complaints were painless facial swelling. And 61.1% of fibrous dysplasia occurred in the maxilla, 92.9% of ossifying fibroma in the mandible, and most of these lesions occurred in the premolar-molar region. 3. In the mandibular lesions, ossifying fibroma was shown more oval and round shape, but fibrous dysplasia was shown fusiform shape. 4. Fibrous dysplasia was shown homogeneously distributed, complete radiopaque shadow at 63%, and ossifying fibroma was shown concentric, mixed appearance of radiolucent and radiopaque shadow at 92.9%. 5. Fibrous dysplasia was entirely shown poorly outlined and blended to normal surrounding bone, but ossifying fibroma was shown well-defined border. 6. Cortical thinning and expansion were observed in these lesions, but degree of cortical expansion was more severe in ossifying fibroma than fibrous dysplasia. 7. Loss of lamina dura, tooth displacement, and displacement of mandibular canal were observed in both lesions, but root resorption was observed in ossifying fibroma only.

  12. A Network Model for the Effective Thermal Conductivity of Rigid Fibrous Refractory Insulations

    Science.gov (United States)

    Marschall, Jochen; Cooper, D. M. (Technical Monitor)

    1995-01-01

    A procedure is described for computing the effective thermal conductivity of a rigid fibrous refractory insulation. The insulation is modeled as a 3-dimensional Cartesian network of thermal conductance. The values and volume distributions of the conductance are assigned to reflect the physical properties of the insulation, its constituent fibers, and any permeating gas. The effective thermal conductivity is computed by considering the simultaneous energy transport by solid conduction, gas conduction and radiation through a cubic volume of model insulation; thus the coupling between heat transfer modes is retained (within the simplifications inherent to the model), rather than suppressed by treating these heat transfer modes as independent. The model takes into account insulation composition, density and fiber anisotropy, as well as the geometric and material properties of the constituent fibers. A relatively good agreement, between calculated and experimentally derived thermal conductivity values, is obtained for a variety of rigid fibrous insulations.

  13. Polyurethane/organo clay nano composite materials via in-situ polymerization

    International Nuclear Information System (INIS)

    Rehab, A.; Agag, T; Akelah, A.; Shalaby, N.

    2005-01-01

    Polyurethane/organo clay nano composites have been synthesized via in situ polymerization. The organo clay firstly prepared by intercalation of lyamine or amino lauric acid into montmorillonite-clay (MMT) through ion exchange process. The syntheses of polyurethane/organo clay hybrid films containing different ratio of clay were carried out by swelling the organo clay, into diol and diamine or into different kinds of diols, followed by addition of diisocyanate. The nano composites with dispersed structure of MMT was obtained as evidence by scanning electron microscope and x-ray diffraction. X-ray analysis showed that the d-spacing increased to more than 44A since there is no peaks corresponding to do spacing in organo clay with all the ratios (1, 5, 10, 20%). Also, SEM results confirm the dispersion of nanometer silicate layers in the polyurethane matrix. This indicated that the clay was completely exfoliated and homogeneous dispersion in the polyurethane matrix. Also, it was found that the presence of organo clay leads to improvement the mechanical properties. Since, the tensile strength increased with increasing the organo clay contents to 20% by the ratio 194% in compared to the 1H: with 0% organo clay. Also, the elongation is a decreases with increasing the organo clay contents. The results shown the tensile strength of PU/SMA/ALA-MMT nano composites is high by 6-7 times than the corresponding to PU/Tvr-MMT

  14. Reactivity of sulfide-containing silane toward boehmite and in situ modified rubber/boehmite composites by the silane

    Science.gov (United States)

    Lin, Tengfei; Zhu, Lixin; Chen, Weiwei; Wu, Siwu; Guo, Baochun; Jia, Demin

    2013-09-01

    The silanization reaction between boehmite (BM) nanoplatelets and bis-[3-(triethoxysilyl)-propyl]-tetrasulfide (TESPT) was characterized in detail. Via such modification process, the grafted sulfide moieties on the BM endow reactivity toward rubber and substantially improved hydrophobicity for BM. Accordingly, TESPT was employed as in situ modifier for the nitrile rubber (NBR)/BM compounds to improve the mechanical properties of the reinforced vulcanizates. The effects of BM content and in situ modification on the mechanical properties, curing characteristics and morphology were investigated. BM was found to be effective in improving the mechanical performance of NBR vulcanizates. The NBR/BM composites could be further strengthened by the incorporation of TESPT. The interfacial adhesion of NBR/BM composites was obviously improved by the addition of TESPT. The substantially improved mechanical performance was correlated to the interfacial reaction and the improved dispersion of BM in rubber matrix.

  15. Preparation of in situ hardening composite microcarriers: Calcium phosphate cement combined with alginate for bone regeneration

    Science.gov (United States)

    Park, Jung-Hui; Lee, Eun-Jung; Knowles, Jonathan C

    2014-01-01

    Novel microcarriers consisting of calcium phosphate cement and alginate were prepared for use as three-dimensional scaffolds for the culture and expansion of cells that are effective for bone tissue engineering. The calcium phosphate cement-alginate composite microcarriers were produced by an emulsification of the composite aqueous solutions mixed at varying ratios (calcium phosphate cement powder/alginate solution = 0.8–1.2) in an oil bath and the subsequent in situ hardening of the compositions during spherodization. Moreover, a porous structure could be easily created in the solid microcarriers by soaking the produced microcarriers in water and a subsequent freeze-drying process. Bone mineral-like apatite nanocrystallites were shown to rapidly develop on the calcium phosphate cement–alginate microcarriers under moist conditions due to the conversion of the α-tricalcium phosphate phase in the calcium phosphate cement into a carbonate–hydroxyapatite. Osteoblastic cells cultured on the microspherical scaffolds were proven to be viable, with an active proliferative potential during 14 days of culture, and their osteogenic differentiation was confirmed by the determination of alkaline phosphatase activity. The in situ hardening calcium phosphate cement–alginate microcarriers developed herein may be used as potential three-dimensional scaffolds for cell delivery and tissue engineering of bone. PMID:23836845

  16. Wood Chemical Composition in Species of Cactaceae: The Relationship between Lignification and Stem Morphology

    Science.gov (United States)

    Canché-Escamilla, Gonzalo; Soto-Hernández, Marcos

    2015-01-01

    In Cactaceae, wood anatomy is related to stem morphology in terms of the conferred support. In species of cacti with dimorphic wood, a unique process occurs in which the cambium stops producing wide-band tracheids (WBTs) and produces fibers; this is associated with the aging of individuals and increases in size. Stem support and lignification have only been studied in fibrous tree-like species, and studies in species with WBTs or dimorphic wood are lacking. In this study, we approach this process with a chemical focus, emphasizing the role of wood lignification. We hypothesized that the degree of wood lignification in Cactaceae increases with height of the species and that its chemical composition varies with wood anatomy. To test this, we studied the chemical composition (cellulose, hemicellulose, and lignin content) in 13 species (2 WBTs wood, 3 dimorphic, and 8 fibrous) with contrasting growth forms. We also analyzed lignification in dimorphic and fibrous species to determine the chemical features of WBTs and fibers and their relationship with stem support. The lignin contents were characterized by Fourier transform infrared spectroscopy and high performance liquid chromatography. We found that 11 species have a higher percentage (>35%) of lignin in their wood than other angiosperms or gymnosperms. The lignin chemical composition in fibrous species is similar to that of other dicots, but it is markedly heterogeneous in non-fibrous species where WBTs are abundant. The lignification in WBTs is associated with the resistance to high water pressure within cells rather than the contribution to mechanical support. Dimorphic wood species are usually richer in syringyl lignin, and tree-like species with lignified rays have more guaiacyl lignin. The results suggest that wood anatomy and lignin distribution play an important role in the chemical composition of wood, and further research is needed at the cellular level. PMID:25880223

  17. Wood chemical composition in species of Cactaceae: the relationship between lignification and stem morphology.

    Directory of Open Access Journals (Sweden)

    Jorge Reyes-Rivera

    Full Text Available In Cactaceae, wood anatomy is related to stem morphology in terms of the conferred support. In species of cacti with dimorphic wood, a unique process occurs in which the cambium stops producing wide-band tracheids (WBTs and produces fibers; this is associated with the aging of individuals and increases in size. Stem support and lignification have only been studied in fibrous tree-like species, and studies in species with WBTs or dimorphic wood are lacking. In this study, we approach this process with a chemical focus, emphasizing the role of wood lignification. We hypothesized that the degree of wood lignification in Cactaceae increases with height of the species and that its chemical composition varies with wood anatomy. To test this, we studied the chemical composition (cellulose, hemicellulose, and lignin content in 13 species (2 WBTs wood, 3 dimorphic, and 8 fibrous with contrasting growth forms. We also analyzed lignification in dimorphic and fibrous species to determine the chemical features of WBTs and fibers and their relationship with stem support. The lignin contents were characterized by Fourier transform infrared spectroscopy and high performance liquid chromatography. We found that 11 species have a higher percentage (>35% of lignin in their wood than other angiosperms or gymnosperms. The lignin chemical composition in fibrous species is similar to that of other dicots, but it is markedly heterogeneous in non-fibrous species where WBTs are abundant. The lignification in WBTs is associated with the resistance to high water pressure within cells rather than the contribution to mechanical support. Dimorphic wood species are usually richer in syringyl lignin, and tree-like species with lignified rays have more guaiacyl lignin. The results suggest that wood anatomy and lignin distribution play an important role in the chemical composition of wood, and further research is needed at the cellular level.

  18. Wood chemical composition in species of Cactaceae: the relationship between lignification and stem morphology.

    Science.gov (United States)

    Reyes-Rivera, Jorge; Canché-Escamilla, Gonzalo; Soto-Hernández, Marcos; Terrazas, Teresa

    2015-01-01

    In Cactaceae, wood anatomy is related to stem morphology in terms of the conferred support. In species of cacti with dimorphic wood, a unique process occurs in which the cambium stops producing wide-band tracheids (WBTs) and produces fibers; this is associated with the aging of individuals and increases in size. Stem support and lignification have only been studied in fibrous tree-like species, and studies in species with WBTs or dimorphic wood are lacking. In this study, we approach this process with a chemical focus, emphasizing the role of wood lignification. We hypothesized that the degree of wood lignification in Cactaceae increases with height of the species and that its chemical composition varies with wood anatomy. To test this, we studied the chemical composition (cellulose, hemicellulose, and lignin content) in 13 species (2 WBTs wood, 3 dimorphic, and 8 fibrous) with contrasting growth forms. We also analyzed lignification in dimorphic and fibrous species to determine the chemical features of WBTs and fibers and their relationship with stem support. The lignin contents were characterized by Fourier transform infrared spectroscopy and high performance liquid chromatography. We found that 11 species have a higher percentage (>35%) of lignin in their wood than other angiosperms or gymnosperms. The lignin chemical composition in fibrous species is similar to that of other dicots, but it is markedly heterogeneous in non-fibrous species where WBTs are abundant. The lignification in WBTs is associated with the resistance to high water pressure within cells rather than the contribution to mechanical support. Dimorphic wood species are usually richer in syringyl lignin, and tree-like species with lignified rays have more guaiacyl lignin. The results suggest that wood anatomy and lignin distribution play an important role in the chemical composition of wood, and further research is needed at the cellular level.

  19. Preparation and properties of in situ amino-functionalized graphene oxide/polyimide composite films

    Science.gov (United States)

    Lu, Yunhua; Hao, Jican; Xiao, Guoyong; Chen, Lin; Wang, Tonghua; Hu, Zhizhi

    2017-11-01

    The pure light-colored and transparent polyimide (PI) film was prepared from aromatic dianhydride 4,4‧-(hexafluoroisopropylidene)diphthalic anhydride (6FDA) and diamine 1,4-bis(4-amino-2-trifluoromethylphenoxy)benzene (6FAPB) in the solvent of DMAc via two-step method. Graphene oxide (GO) was in situ grafted with 6FAPB and directly used as a functional inorganic nanofiller to further synthesize poly(amic acid) (PAA)/GO solution. Then, PI/GO composite films with different loadings of GO were prepared by the thermal imidization. The mechanical, thermal, optical, electrical, surface properties, and electrochemical behavior were characterized. The FTIR and XPS results indicate that amino groups can be successfully grafted on the surface of GO. The tensile strength and Young's modulus of the PI-1.0%GO composite film were increased to 118.4 MPa and 2.91 GPa, respectively, which was an approximate improvement of 30.8% and 39.9% compared with pure PI film. These PI/GO composites showed around 256 °C for the glass transition temperature, and around 535 °C for the 5% thermal decomposition temperature, respectively. However, the optical transmittance was significantly decreased from 81.5% (pure PI) to 0.8% (PI-1.0%GO). Besides, the electrical conductivity increased from 1.6 × 10-13 S/m (pure PI) to 2.5 × 10-9 S/m (PI-1.0%GO). Furthermore, when the incorporation of GO was 1.0 wt%, an obvious reduction from 1.08% (pure PI) to 0.65% in the water uptake was observed for the PI/GO composite films, and the water surface contact angle raised from 72.5° (pure PI) to 83.5°. The electrochemical behavior showed that the ability of oxygen atom on the imide ring to gain and loss electron was increased due to incorporation of GO. These results indicated that the strong interfacial interaction between GO and PAA as well as uniform dispersion of GO in PI matrix were benefit to improve the mechanical, thermal, electrical properties and so on. The in situ amino-functionalized approach

  20. CT features of fibrous dysplasia of the temporal bone

    International Nuclear Information System (INIS)

    Charrada-Ben Farhat, L.; Bourkhis, S.; Ben Yaacoub, I.; Dali, N.; Askri, A.; Hendaoui, L.

    2006-01-01

    Fibrous dysplasia is characterized by a progressive replacement of normal bone elements by fibrous tissue. The temporal bone is rarely involved. In this location, complications such as facial deformity, conductive hearing loss and facial peripheral neural involvement can occur. Positive diagnosis can be established with computerized tomography which also enables assessment of extension and detection of complications. We report a case of a 27-year-old man with extensive fibrous dysplasia of the right temporal bone presenting with conductive hearing loss secondary to progressive stenosis of the external auditory canal. Computerized tomography of the temporal region was performed. (authors)

  1. Relative Composition of Fibrous Connective and Fatty/Glandular Tissue in Connective Tissue Grafts Depends on the Harvesting Technique but not the Donor Site of the Hard Palate.

    Science.gov (United States)

    Bertl, Kristina; Pifl, Markus; Hirtler, Lena; Rendl, Barbara; Nürnberger, Sylvia; Stavropoulos, Andreas; Ulm, Christian

    2015-12-01

    Whether the composition of palatal connective tissue grafts (CTGs) varies depending on donor site or harvesting technique in terms of relative amounts of fibrous connective tissue (CT) and fatty/glandular tissue (FGT) is currently unknown and is histologically assessed in the present study. In 10 fresh human cadavers, tissue samples were harvested in the anterior and posterior palate and in areas close to (marginal) and distant from (apical) the mucosal margin. Mucosal thickness, lamina propria thickness (defined as the extent of subepithelial portion of the biopsy containing ≤25% or ≤50% FGT), and proportions of CT and FGT were semi-automatically estimated for the entire mucosa and for CTGs virtually harvested by split-flap (SF) preparation minimum 1 mm deep or after deepithelialization (DE). Palatal mucosal thickness, ranging from 2.35 to 6.89 mm, and histologic composition showed high interindividual variability. Lamina propria thickness (P >0.21) and proportions of CT (P = 0.48) and FGT (P = 0.15) did not differ significantly among the donor sites (anterior, posterior, marginal, apical). However, thicker palatal tissue was associated with higher FGT content (P tissue composition in the hard palate, DE-harvested CTG contains much larger amounts of CT and much lower amounts of FGT than SF-harvested CTG, irrespective of the harvesting site.

  2. Polyostotic Fibrous Dysplasia of Cranio-Maxillofacial Area

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jin Woo; Kwon, Hyuk Rok; Lee, Jin Ho; Park, In Woo [Dept. of Oral and Maxillofacial Radiology, College of Dentistry, Kangnung National University, Kangnung (Korea, Republic of)

    2000-06-15

    Fibrous dysplasia is believed to be a hamartomatous developmental lesion of unknown origin. This disease is divided into monostotic and polyostotic fibrous dysplasia. Polyostotic type can be divided into craniofacial type, Lichtenstein-Jaffe type, and McCune-Albright syndrome. In this case, a 31-year-old female presented spontaneous loss of right mandibular teeth before 5 years and has shown continuous expansion of right mandibular alveolus. Through the radiographic view, the coarse pattern of the mixed radiopaque-lucent lesion was seen on the right mandibular body, and there was diffuse pattern of the mixed radiopaque-lucent lesion with ill-defined margin in the left mandibular body. In the right calvarium, the lesion had cotton-wool appearance. Partial excision for contouring, multiple extraction, and alveoloplasty were accomplished under general anesthesia for supportive treatment. Finally we could conclude this case was polyostotic fibrous dysplasia of cranio-maxillofacial area based on the clinical, radiologic finding, and histopathologic examination.

  3. Polyostotic Fibrous Dysplasia of Cranio-Maxillofacial Area

    International Nuclear Information System (INIS)

    Han, Jin Woo; Kwon, Hyuk Rok; Lee, Jin Ho; Park, In Woo

    2000-01-01

    Fibrous dysplasia is believed to be a hamartomatous developmental lesion of unknown origin. This disease is divided into monostotic and polyostotic fibrous dysplasia. Polyostotic type can be divided into craniofacial type, Lichtenstein-Jaffe type, and McCune-Albright syndrome. In this case, a 31-year-old female presented spontaneous loss of right mandibular teeth before 5 years and has shown continuous expansion of right mandibular alveolus. Through the radiographic view, the coarse pattern of the mixed radiopaque-lucent lesion was seen on the right mandibular body, and there was diffuse pattern of the mixed radiopaque-lucent lesion with ill-defined margin in the left mandibular body. In the right calvarium, the lesion had cotton-wool appearance. Partial excision for contouring, multiple extraction, and alveoloplasty were accomplished under general anesthesia for supportive treatment. Finally we could conclude this case was polyostotic fibrous dysplasia of cranio-maxillofacial area based on the clinical, radiologic finding, and histopathologic examination.

  4. A simple stir casting technique for the preparation of in situ Fe-aluminides reinforced Al-matrix composites

    Directory of Open Access Journals (Sweden)

    Susanta K. Pradhan

    2016-09-01

    Full Text Available This article presents a simple stir casting technique for the development of Fe-aluminides particulate reinforced Al-matrix composites. It has been demonstrated that stirring of super-heated Al-melt by a mild steel plate followed by conventional casting and hot rolled results in uniform dispersion of in situ Al13Fe4 particles in the Al matrix; the amount of reinforcement is found to increase with increasing melt temperature. With reference to base alloy, the developed composite exhibits higher hardness and improved tensile strength without much loss of ductility; since, composite like base alloy undergoes ductile mode of fracture.

  5. Photocatalytic and microwave absorbing properties of polypyrrole/Fe-doped TiO2 composite by in situ polymerization method

    International Nuclear Information System (INIS)

    Li Qiaoling; Zhang Cunrui; Li Jianqiang

    2011-01-01

    Research highlights: → Polypyrrole/Fe-doped TiO 2 composite is prepared by in situ polymerization of pyrrole on the Fe-doped TiO 2 template. → The Fe-doped TiO 2 microbelts are prepared by sol-gel method using the absorbent cotton template for the first time. → Then the Fe-doped TiO 2 microbelts are used as template for the preparation of polypyrrole/Fe-doped TiO 2 composites. → The structure, morphology and properties of the composites are characterized with scanning electron microscope (SEM), IR, Net-work Analyzer. → A possible formation mechanism of Fe-doped TiO 2 microbelts and polypyrrole/Fe-doped TiO 2 composites has been proposed. → The effect of the mol ratio of pyrrole/Fe-doped TiO 2 on the photocatalysis properties and microwave loss properties of the composites is investigated. - Abstract: The Fe-doped TiO 2 microbelts were prepared by sol-gel method using the absorbent cotton template for the first time. Then the Fe-doped TiO 2 microbelts were used as templates for the preparation of polypyrrole/Fe-doped TiO 2 composites. Polypyrrole/Fe-doped TiO 2 composites were prepared by in situ polymerization of pyrrole on the Fe-doped TiO 2 template. The structure, morphology and properties of the composites were characterized with scanning electron microscope (SEM), FTIR, Net-work Analyzer. The possible formation mechanisms of Fe-doped TiO 2 microbelts and polypyrrole/Fe-doped TiO 2 composites have been proposed. The effect of the molar ratio of pyrrole/Fe-doped TiO 2 on the photocatalytic properties and microwave loss properties of the composites was investigated.

  6. In situ composition measurements of Bunsen reaction solution by radiation probes

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Shinji; Nagaya, Yasunobu [Japan Atomic Energy Agency (Japan)

    2010-07-01

    Measuring equipments are integral to chemical process controls. A stable hydrogen production by the Iodine-Sulfur thermochemical water-splitting process is relatively difficult because of lack of existing in situ composition measurement techniques for multiple components and corrosive solution. Composition regulations of Bunsen reaction solution is particularly important, since a closed cycle system provided with this process causes that the many streams with different composition return to this section. Accordingly Bunsen solution becomes changeable composition. Radiation probes have a potential for applications to determine this multiple component solution while the non-contact approach avoids the corrosive issues. Moreover the probes have features of the promptness, contact-less and sequential use. Laboratory scale experiments to evaluate these possibilities of the measurement were conducted with use of simulated Bunsen solution, HIx solution and H{sub 2}SO{sub 4} solution, containing HI, I2, H{sub 2}SO{sub 4} and H{sub 2}O and sealed radiation sources. Radiations were counted, which were interacted with the solutions in various compositions around room temperature contained in vessels. For HIx solution, the obtained counting rates were correlated with hydrogen volume concentrations; moreover, the application of the Monte Carlo method suggests possibilities that the detector responses for HIx solution by the radiation probes are predictable. For H{sub 2}SO{sub 4} solution, iodine atoms had significant influences on the relationship between output values of two gamma-ray density meters, cesium source as higher energy and barium source as lower energy. This results suggest that the neutron ray probe, the gamma-ray probes of both lower energy and higher energy have possibilities to determine the composition of Bunsen solution of HIx and H{sub 2}SO{sub 4} solutions. (orig.)

  7. An in situ carbonization-replication method to synthesize mesostructured WO3/C composite as nonprecious-metal anode catalyst in PEMFC.

    Science.gov (United States)

    Cui, Xiangzhi; Hua, Zile; Wei, Chenyang; Shu, Zhu; Zhang, Liangxia; Chen, Hangrong; Shi, Jianlin

    2013-02-01

    A meostructured WO(3)/C composite with crystalline framework and high electric conductivity has been synthesized by a new in situ carbonization-replication route using the block copolymer (poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol)) present in situ in the pore channels of mesoporous silica template as carbon source. X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, thermogravimetry differential thermal analysis, and N(2) adsorption techniques were adopted for the structural characterization. Cyclic voltammetry, chronoamperometry, and single-cell test for hydrogen electrochemical oxidation were adopted to characterize the electrochemical activities of the mesoporous WO(3)/C composite. The carbon content and consequent electric conductivity of these high-surface-area (108-130 m(2) g(-1)) mesostructured WO(3)/C composite materials can be tuned by variation of the duration of heat treatment, and the composites exhibited high and stable electrochemical catalytic activity. The single-cell test results indicated that the mesostructured WO(3)/C composites showed clear electrochemical catalytic activity toward hydrogen oxidation at 25 °C, which makes them potential non-precious-metal anode catalysts in proton exchange membrane fuel cell. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Properties and Structure of In Situ Transformed PAN-Based Carbon Fibers

    Directory of Open Access Journals (Sweden)

    Jingjing Cao

    2018-06-01

    Full Text Available Carbon fibers in situ prepared during the hot-pressed sintering in a vacuum is termed in situ transformed polyacrylonitrile-based (PAN-based carbon fibers, and the fibrous precursors are the pre-oxidized PAN fibers. The properties and structure of in situ transformed PAN-based carbon fibers are investigated by Nano indenter, SEM, TEM, XRD, and Raman. The results showed that the microstructure of the fiber surface layer was compact, while the core was loose, with evenly-appearing microvoids. The elastic modulus and nanohardness of the fiber surface layer (303.87 GPa and 14.82 GPa were much higher than that of the core (16.57 GPa and 1.54 GPa, and its interlayer spacing d002 and crystallinity were about 0.347 nm and 0.97 respectively. It was found that the preferred orientation of the surface carbon layers with ordered carbon atomic arrangement tended to be parallel to the fiber axis, whereas the fiber core in the amorphous region exhibited a random texture and the carbon atomic arrangement was in a disordered state. It indicates that the in situ transformed PAN-based carbon fibers possess significantly turbostratic structure and anisotropy.

  9. Fabrication of SiCp/Al Alloy Composites by In-situ Vacuum Hot Press Process

    Energy Technology Data Exchange (ETDEWEB)

    Choi, S. W.; Hong, S. K.; Kim, Y. M.; Kang, C. S. [Chonnam National University, Kwangju (Korea); Chang, S. Y. [Hanyang University, Seoul (Korea)

    2001-07-01

    SiCp/pure Al and SiCp/2024Al MMCs were fabricated by in-situ VHP process designed specially just in this study which is composed of the vacuum hot press at range from R.T. to 500 deg.C and the continuous extrusion without canning process at 520 deg.C. It was investigated the effect of SiC particle size, volume fraction and extrusion ratio on the tensile properties and micro structure in all composites. In case of the 10:1 extrusion ratio, but SiCp/pure Al and SiCp/2024Al composites were shown a sound appearance and a good micro structure without crack of SiCp as well as uniform distribution of SiCp. However, in case of the 16:1 extrusion ratio, the number of cracked SiC particles more than increased in a higher volume fraction composite and 2024Al matrix composite compared with pure Al matrix one. The tensile strength of the composites reinforced smaller SiCp was higher than that of the bigger SiCp reinforced in same volume fraction and extrusion ratio. (author) 14 refs., 14 figs.

  10. Case report 525: Benign fibrous histiocytoma (BFH) of thumb

    International Nuclear Information System (INIS)

    Statz, E.M.; Philipps, E.; Pochebit, S.M.; Cooper, A.; Leslie, B.M.

    1989-01-01

    A case was presented of benign fibrous histiocytoma (BFH) involving the distal phalanx of the thumb, a location heretofore not described in the literature. The distinction between BFH and other lesions (e.g. non-ossifying fibroma) was considered in depth. The distinction between benign and malignant fibrous histiocytoma was also described. (orig.)

  11. Marfan syndrome with multiseptate pneumothorax and mandibular fibrous dysplasia

    Directory of Open Access Journals (Sweden)

    Kate A

    2009-01-01

    Full Text Available We describe a rare case of pneumothorax due to Marfan syndrome associated with fibrous dysplasia of the mandible. Marfan syndrome and fibrous dysplasia were possibly due to a common etiological factor. The association between the two and other tumors described in literature related to Marfan syndrome is discussed.

  12. Superior high creep resistance of in situ nano-sized TiCx/Al-Cu-Mg composite.

    Science.gov (United States)

    Wang, Lei; Qiu, Feng; Zhao, Qinglong; Zha, Min; Jiang, Qichuan

    2017-07-03

    The tensile creep behavior of Al-Cu-Mg alloy and its composite containing in situ nano-sized TiC x were explored at temperatures of 493 K, 533 K and 573 K with the applied stresses in the range of 40 to 100 MPa. The composite reinforced by nano-sized TiC x particles exhibited excellent creep resistance ability, which was about 4-15 times higher than those of the unreinforced matrix alloy. The stress exponent of 5 was noticed for both Al-Cu-Mg alloy and its composite, which suggested that their creep behavior was related to dislocation climb mechanism. During deformation at elevated temperatures, the enhanced creep resistance of the composite was mainly attributed to two aspects: (a) Orowan strengthening and grain boundary (GB) strengthening induced by nano-sized TiC x particles, (b) θ' and S' precipitates strengthening.

  13. Mn{sub 2}O{sub 3}/carbon aerogel microbead composites synthesized by in situ coating method for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xingyan, E-mail: wxianyou@yahoo.com [Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Chemistry School, Xiangtan University, Hunan, Xiangtan 411105 (China); Hunan Institute of Humanities Science and Technology, Loudi 417000 (China); Key Laboratory of Materials Design and Preparation Technology of Hunan, Xiangtan 411105 (China); Liu Li [Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Chemistry School, Xiangtan University, Hunan, Xiangtan 411105 (China); Wang Xianyou, E-mail: wqinyan801@yahoo.com.cn [Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Chemistry School, Xiangtan University, Hunan, Xiangtan 411105 (China); Key Laboratory of Materials Design and Preparation Technology of Hunan, Xiangtan 411105 (China); Yi Lanhua [Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Chemistry School, Xiangtan University, Hunan, Xiangtan 411105 (China); Hu Chuanyue [Hunan Institute of Humanities Science and Technology, Loudi 417000 (China); Zhang Xiaoyan [Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Chemistry School, Xiangtan University, Hunan, Xiangtan 411105 (China)

    2011-09-15

    Highlights: > Mn{sub 2}O{sub 3}/CAMB composite materials for supercapacitor were prepared by in situ coating method. > The optimum amount of Mn{sub 2}O{sub 3} in Mn{sub 2}O{sub 3}/CAMB composite is 10 wt%. > Coating nano-sized Mn{sub 2}O{sub 3} on the CAMB could improve the supercapacitive behaviors of composites. - Abstract: A series of Mn{sub 2}O{sub 3}/carbon aerogel microbead (Mn{sub 2}O{sub 3}/CAMB) composites for supercapacitor electrodes have been synthesized by in situ encapsulation method. The structure and morphology of Mn{sub 2}O{sub 3}/CAMB are characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectrum and scanning electron microscopy (SEM). Electrochemical performances of the synthesized composites are evaluated by cyclic voltammetry and galvanostatic charge/discharge measurement. All the composites with different Mn{sub 2}O{sub 3} contents show higher specific capacitance than pure CAMB due to the pseudo-capacitance of the Mn{sub 2}O{sub 3} particles dispersed on the surface of CAMB. The highest specific capacitance is up to 368.01 F g{sup -1} when 10 wt% Mn{sub 2}O{sub 3} is coated on the surface of CAMB. Besides, 10%-Mn{sub 2}O{sub 3}/CAMB supercapacitor exhibits excellent cyclic stability, the specific capacitance still retains 90% of initial capacitance over 5000 cycles.

  14. A call to expand regulation to all carcinogenic fibrous minerals

    Science.gov (United States)

    Baumann, F.; Steele, I.; Ambrosi, J.; Carbone, M.

    2013-05-01

    The regulatory term "asbestos" groups only the six fibrous minerals that were commercially used among approximately 400. The carcinogenicity of these six regulated minerals has been largely demonstrated and is related to fiber structure, fiber length/diameter ratio, and bio-persistence. From a public perception, the generic term "asbestos" refers to the fibrous minerals that cause asbestosis, mesothelioma and other cancers. However, other non-regulated fibrous minerals are potentially as dangerous as the regulatory asbestos because they share similar physical and chemical properties, epidemiological studies have demonstrated their relationship with asbestos-related diseases, and both in vitro and in vivo experiments have established the toxicity of these minerals. For example, the non-regulated asbestiform winchite and richterite minerals that contaminated the vermiculite mined from Libby, Montana, (USA) were associated with mesothelioma, lung cancer and asbestosis observed among the area's residents and miners. Many other examples of non-regulated carcinogenic fibrous minerals include, but are not limited to, antigorite, arfvedsonite, balangeroite, carlosturanite, erionite, fluoro-edenite, hornblende, mordenite, palygorskite, and sepiolite. To propose a regulatory definition that would provide protection from all carcinogenic fibers, we have conducted an interdisciplinary literature review to compare the characteristics of "asbestos" and of non-regulated mineral fibers that relate to carcinogenicity. We specifically studied two non-regulated fibrous minerals that are associated with asbestos-related diseases: the serpentine antigorite and the zeolite erionite. Both examples underscore the problem of regulation based on commercial, rather than scientific principles: 1) the occurrence of fibrous antigorite in materials used to pave roads has been correlated with high mesothelioma rates in New Caledonia. Antigorite was also the cause of asbestosis in Poland, and in

  15. WIPP/SRL in-situ tests

    International Nuclear Information System (INIS)

    Mamsey, W.G.

    1990-01-01

    The Materials Interface Interactions Test (MIIT) is the only in-situ program involving the burial of simulated high-level waste forms operating in the United States. Fifteen glass and waste form compositions and their proposed package materials, supplied by 7 countries, are interred in salt at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. A joint effort between Sandia National Laboratories and Savannah River Laboratory, MIIT is the largest international cooperative in-situ venture yet undertaken. The objective of the current study is to document the waste form compositions used in the MIIT program and then to examine compositional correlations based on structural considerations, bonding energies, and surface layer formation. These correlations show important similarities between the many different waste glass compositions studied world wide and suggest that these glasses would be expected to perform well and in a similar manner

  16. Preparation of micro/nano-fibrous brushite coating on titanium via chemical conversion for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bing [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Ji’nan 250061 (China); School of Materials Science and Engineering, Shandong University, Ji’nan, 250061 (China); Suzhou Institute, Shandong University, Suzhou, 215123 (China); Guo, Yong-yuan [Orthopedic Department, Qilu Hospital of Shandong University, Ji’nan, 250012 (China); Xiao, Gui-yong [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Ji’nan 250061 (China); School of Materials Science and Engineering, Shandong University, Ji’nan, 250061 (China); Suzhou Institute, Shandong University, Suzhou, 215123 (China); Lu, Yu-peng, E-mail: biosdu@sdu.edu.cn [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Ji’nan 250061 (China); School of Materials Science and Engineering, Shandong University, Ji’nan, 250061 (China); Suzhou Institute, Shandong University, Suzhou, 215123 (China)

    2017-03-31

    Highlights: • A chemical conversion brushite coating was prepared on titanium. • The coating exhibits fibrous morphology in micro/nano-scale. • The surface of the coating shows high hydrophilicity and corrosion resistance in the simulated body fluid. • An improvement of cell response was observed on the surface of coated Ti compared to that of the uncoated. - Abstract: Calcium phosphate coatings have been applied on the surface of Ti implants to realize better osseointegration. The formation of dicalcium phosphate dihydrate (CaHPO{sub 4}·2H{sub 2}O), mineralogically named brushite on pure Ti substrate has been investigated via chemical conversion method. Coating composition and microstructure have been investigated by X-ray diffractometer, Fourier transform infrared spectrometer and field emission scanning electron microscope. The results reveal that the coatings are composed of high crystalline brushite with minor scholzite (CaZn{sub 2}(PO{sub 4}){sub 2}·2H{sub 2}O). A micro/nano-scaled fibrous morphology can be produced in the acidic chemical conversion bath with pH 5.00. The surface of the fibrous brushite coating exhibits high hydrophilicity and corrosion resistance in the simulated body fluid. The osteoblast cells grow and spread actively on the coated samples and the proliferation numbers and alkaline phosphate activities of the cells improve significantly compared to the uncoated Ti. It is suggested that the micro/nano-fibrous brushite coating can be a potential approach to improve the osteoinductivity and osteoconductivity of Ti implant, due to its similarity in morphology and dimension to inorganic components of biological hard tissues, and favorable responses to the osteoblasts.

  17. A study on heat transfer characteristics of spherical and fibrous alumina nanofluids

    International Nuclear Information System (INIS)

    Kim, Chang Kyu; Lee, Gyoung-Ja; Rhee, Chang Kyu

    2012-01-01

    Highlights: ► Spherical and fibrous alumina nanoparticles were prepared by pulsed wire evaporation and hydrolysis methods. ► Fibrous alumina nanofluid exhibited higher thermal conductivity enhancement than spherical one due to entangled structure of nanofibers with high aspect-ratio. ► Decreasing rate of viscosity with temperature for fibrous alumina nanofluid was much larger than that for spherical one. - Abstract: Ethylene glycol based nanofluids containing spherical/fibrous alumina nanoparticles were synthesized by pulsed wire evaporation and hydrolysis methods. The crystallographic and morphological properties of the prepared nanoparticles were analyzed by X-ray diffraction, nitrogen gas adsorption and transmission electron microscopy. The average diameter of spherical alumina nanoparticles was about 80 nm and the alumina nanofibers exhibited a high aspect ratio (length/width). The viscosity and thermal conductivity of the spherical/fibrous alumina nanofluids were experimentally measured in the temperature range from 25 to 80 °C. For the fibrous alumina nanofluid, the increase of temperature raised thermal conductivity but lowered viscosity. On the other hand, for the spherical alumina nanofluid, both thermal conductivity and viscosity were decreased with increasing temperature. In particular, the fibrous alumina nanofluid exhibited a higher enhancement of thermal conductivity than the spherical one due to the well-connected structure between entangled nanofibers with high aspect ratio.

  18. Facile in situ solvothermal method to synthesize MWCNT/SnIn4S8 composites with enhanced visible light photocatalytic activity

    International Nuclear Information System (INIS)

    Ding, Chaoying; Tian, Li; Liu, Bo; Liang, Qian; Li, Zhongyu; Xu, Song; Liu, Qiaoli; Lu, Dayong

    2015-01-01

    Highlights: • MWCNT/SnIn 4 S 8 composites were facilely fabricated via in situ solvothermal method. • MWCNT/SnIn 4 S 8 composites exhibited significantly enhanced visible-light activity. • MWCNT/SnIn 4 S 8 composites showed remarkable visible light photocatalytic activity. • MWCNT/SnIn 4 S 8 composites exhibited excellent photo-stability. • Possible photocatalytic mechanism under visible-light irradiation was proposed. - Abstract: Superior photocatalytic activity could be achieved by multi-walled carbon nanotube (MWCNT) incorporated in the porous assembly of marigold-like SnIn 4 S 8 heterostructures synthesized by a flexible in-situ solvothermal method. The as-prepared MWCNT/SnIn 4 S 8 composites were well-characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM) and UV–vis diffuse reflectance spectroscopy (DRS). The photocatalytic properties of the as-prepared samples were tested by photo-degradation of aqueous malachite green (MG) under the irradiation of visible light. It was found that the MWCNT/SnIn 4 S 8 composites showed enhanced visible light photocatalytic activity for dye degradation, and an optimum photocatalytic activity was observed over 3.0 wt.% MWCNT incorporated SnIn 4 S 8 composites. The superior photocatalytic activity of MWCNT/SnIn 4 S 8 composites could be ascribed to the existence of MWCNT which could serve as a good electron acceptor, mediator as well as the co-catalyst for dye degradation. The synergistic effect between SnIn 4 S 8 and MWCNT in the composites facilitated the interfacial charge transfer driven by the excitation of SnIn 4 S 8 under visible-light irradiation. Furthermore, a possible mechanism for the photocatalytic degradation of MWCNT/SnIn 4 S 8 composites was also discussed

  19. Study on the Unsteady Creep of Composite Beams with an Irregular Laminar Fibrous Structure Made from Nonlinear Hereditary Materials

    Science.gov (United States)

    Yankovskii, A. P.

    2017-09-01

    The creep of homogenous and hybrid composite beams of an irregular laminar fibrous structure is investigated. The beams consist of thin walls and flanges (load-carrying layers). The walls may be reinforced longitudinally or crosswise in the plane, and the load-carrying layers are reinforced in the longitudinal direction. The mechanical behavior of phase materials is described by the Rabotnov nonlinear hereditary theory of creep taking into account their possible different resistance to tension and compression. On the basis of hypotheses of the Timoshenko theory, with using the method of time steps, a problem is formulated for the inelastic bending deformation of such beams with account of the weakened resistance of their walls to the transverse shear. It is shown that, at discrete instants of time, the mechanical behavior of such structures can formally be described by the governing relations for composite beams made of nonlinear elastic anisotropic materials with a known initial stress state. The method of successive iterations, similar to the method of variable parameters of elasticity, is used to linearize the boundary-value problem at each instant of time. The bending deformation is investigated for homogeneous and reinforced cantilever and simply supported beams in creep under the action of a uniformly distributed transverse load. The cross sections of the beams considered are I-shaped. It is found that the use of the classical theory for such beams leads to the prediction of indefensibly underestimated flexibility, especially in long-term loading. It is shown that, in beams with reinforced load-carrying layers, the creep mainly develops due to the shear strains of walls. It is found that, in short- and long-term loadings of composite beams, the reinforcement structures rational by the criterion of minimum flexibility are different.

  20. In situ self-polymerization of unsaturated metal methacrylate and its dispersion mechanism in rubber-based composites

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Shipeng; Zhou, Yao; Yao, Lu [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Zhang, Liqun [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Chan, Tung W. [Department of Materials Science and Engineering, Virginia Polytechnic Institute and State University, VA 24061 (United States); Liang, Yongri [Beijing National Laboratory for Molecular Sciences, Joint Laboratory of Polymer Science and Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Liu, Li, E-mail: LiuL@mail.buct.edu.cn [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China)

    2013-11-10

    Highlights: • In situ self-polymerization of unsaturated metal methacrylate was investigated mainly by the thermal effect. • UMM with low melting point can self-polymerize to a large extent. • The fine dispersion phase is composed of poly(UMM) nanoparticles formed by in situ self-polymerization in the rubber matrix. • The UMM crystals in the presence of peroxide and rubber undergo the processes of melting, diffusion, polymerization, and phase separation in this order. - Abstract: Unsaturated metal methacrylate (UMM) as one kind of functional filler has played an important role in reinforcing rubber materials. The in situ self-polymerization of UMM in UMM/rubber composite leads to the uniform dispersion of poly(UMM) in the rubber matrix, while the crosslinking of rubber and grafting between UMM and rubber chains occur simultaneously, making it difficult to clarify the effect of the in situ polymerization on the dispersion of poly(UMM) in the rubber matrix. In this work, we investigated the dispersion mechanism of UMM without rubber matrix for the first time using differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy. Three types of UMMs including zinc methacrylate (Zn(MA){sub 2}), sodium methacrylate (Na(MA)) and samarium methacrylate (Sm(MA){sub 3}) were chosen to investigate the in situ self-polymerization of UMM. Based on DSC results, we conclude that the crystals with low melting point tend to self-polymerize first and generate a large amount of heat in the presence of peroxide. The high heat of reaction can melt the crystals with high melting point, and more UMM molecules are dissolved in the rubber matrix, thus increasing the extent of the in situ polymerization. Hence, the UMM with low melting point can self-polymerize to a large extent. Our findings provide in-depth understanding of the dispersion mechanism of UMM in rubber.

  1. In situ self-polymerization of unsaturated metal methacrylate and its dispersion mechanism in rubber-based composites

    International Nuclear Information System (INIS)

    Wen, Shipeng; Zhou, Yao; Yao, Lu; Zhang, Liqun; Chan, Tung W.; Liang, Yongri; Liu, Li

    2013-01-01

    Highlights: • In situ self-polymerization of unsaturated metal methacrylate was investigated mainly by the thermal effect. • UMM with low melting point can self-polymerize to a large extent. • The fine dispersion phase is composed of poly(UMM) nanoparticles formed by in situ self-polymerization in the rubber matrix. • The UMM crystals in the presence of peroxide and rubber undergo the processes of melting, diffusion, polymerization, and phase separation in this order. - Abstract: Unsaturated metal methacrylate (UMM) as one kind of functional filler has played an important role in reinforcing rubber materials. The in situ self-polymerization of UMM in UMM/rubber composite leads to the uniform dispersion of poly(UMM) in the rubber matrix, while the crosslinking of rubber and grafting between UMM and rubber chains occur simultaneously, making it difficult to clarify the effect of the in situ polymerization on the dispersion of poly(UMM) in the rubber matrix. In this work, we investigated the dispersion mechanism of UMM without rubber matrix for the first time using differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy. Three types of UMMs including zinc methacrylate (Zn(MA) 2 ), sodium methacrylate (Na(MA)) and samarium methacrylate (Sm(MA) 3 ) were chosen to investigate the in situ self-polymerization of UMM. Based on DSC results, we conclude that the crystals with low melting point tend to self-polymerize first and generate a large amount of heat in the presence of peroxide. The high heat of reaction can melt the crystals with high melting point, and more UMM molecules are dissolved in the rubber matrix, thus increasing the extent of the in situ polymerization. Hence, the UMM with low melting point can self-polymerize to a large extent. Our findings provide in-depth understanding of the dispersion mechanism of UMM in rubber

  2. Epithelioid fibrous histiocytoma: molecular characterization of ALK fusion partners in 23 cases.

    Science.gov (United States)

    Dickson, Brendan C; Swanson, David; Charames, George S; Fletcher, Christopher Dm; Hornick, Jason L

    2018-05-01

    Epithelioid fibrous histiocytoma is a rare and distinctive cutaneous neoplasm. Most cases harbor ALK rearrangement and show ALK overexpression, which distinguish this neoplasm from conventional cutaneous fibrous histiocytoma and variants. SQSTM1 and VCL have previously been shown to partner with ALK in one case each of epithelioid fibrous histiocytoma. The purpose of this study was to examine a large cohort of epithelioid fibrous histiocytomas by next-generation sequencing to characterize the nature and prevalence of ALK fusion partners. A retrospective archival review was performed to identify cases of epithelioid fibrous histiocytoma (2012-2016). Immunohistochemistry was performed to confirm ALK expression. Targeted next-generation sequencing was applied on RNA extracted from formalin-fixed paraffin-embedded tissue to identify the fusion partners. Twenty-three cases fulfilled inclusion criteria. The mean patient age was 39 years (range, 8-74), there was no sex predilection, and >75% of cases involved the lower extremities. The most common gene fusions were SQSTM1-ALK (N=12; 52%) and VCL-ALK (N=7; 30%); the other four cases harbored novel fusion partners (DCTN1, ETV6, PPFIBP1, and SPECC1L). The pattern of ALK immunoreactivity was usually granular cytoplasmic (N=12; 52%) or granular cytoplasmic and nuclear (N=10; 43%); the case containing an ETV6 fusion partner showed nuclear staining alone. There was no apparent relationship between tumor morphology and the ALK fusion partner. In summary, SQSTM1 and VCL are the most common ALK fusion partners in epithelioid fibrous histiocytoma; DCTN1, ETV6, PPFIBP1, and SPECC1L represent rare fusion partners. The proteins encoded by these genes play diverse roles in scaffolding, cell adhesion, signaling, and transcription (among others) without clear commonalities. These findings expand the oncogenic promiscuity of many of these ALK fusion genes, which drive neoplasia in tumors of diverse lineages with widely varied clinical

  3. Microstructure and mechanical properties of Al/Fe-aluminide in-situ composite prepared by reactive stir casting route

    International Nuclear Information System (INIS)

    Chatterjee, Subhranshu; Sinha, Arijit; Das, Debdulal; Ghosh, Sumit; Basumallick, Amitava

    2013-01-01

    Iron aluminide particulate reinforced aluminium composites were prepared by a simple liquid metal stir casting route. The particulate intermetallic reinforcements were formed by in-situ reaction between molten aluminium and a rotating mild steel stirrer at 800 °C. X-ray diffraction studies were carried out to identify the types of iron aluminide particulates present in the as cast composite. Compositional variations of the composite samples were estimated with the aid of energy dispersive spectroscopy. The microstructural features of the composite were studied with respect to different heat treatment schedules and deformation conditions. Microhardness and nanoindentation measurements were also carried out to assess the micromechanical behaviour e.g., hardness and elastic modulus in micrometric length scale of the composite samples. Tensile tests and fractographic analysis were performed to estimate the mechanical properties and determine the mode of failure of the samples. The microstructure and mechanical properties of the composite samples were correlated and discussed

  4. Microstructure Evolution and Mechanical Properties of Al-TiB2/TiC In Situ Aluminum-Based Composites during Accumulative Roll Bonding (ARB Process

    Directory of Open Access Journals (Sweden)

    Jinfeng Nie

    2017-01-01

    Full Text Available In this study, a kind of Al-TiB2/TiC in situ composite was successfully prepared using the melt reaction method and the accumulative roll-bonding (ARB technique. The microstructure evolution of the composites with different deformation treatments was characterized using field emission scanning electron microscopy (FESEM and a transmission electron microscope (TEM. The mechanical properties of the Al-TiB2/TiC in situ composite were also studied with tensile and microhardness tests. It was found that the distribution of reinforcement particles becomes more homogenous with an increasing ARB cycle. Meanwhile, the mechanical properties showed great improvement during the ARB process. The ultimate tensile strength (UTS and microhardness of the composites were increased to 173.1 MPa and 63.3 Hv after two ARB cycles, respectively. Furthermore, the strengthening mechanism of the composite was analyzed based on its fracture morphologies.

  5. Fibrous dysplasia and cherubism

    Directory of Open Access Journals (Sweden)

    Surajit Bhattacharya

    2015-01-01

    Full Text Available Fibrous dysplasia (FD is a non-malignant fibro-osseous bony lesion in which the involved bone/bones gradually get converted into expanding cystic and fibrous tissue. The underlying defect in FD is post-natal mutation of GNAS1 gene, which leads to the proliferation and activation of undifferentiated mesenchymal cells arresting the bone development in woven phase and ultimately converting them into fibro-osseous cystic tissue. Cherubism is a hereditary form of fibrous dysplasia in which the causative factor is transmission of autosomal dominant SH3BP2 gene mutation. The disease may present in two distinct forms, a less severe and limited monostotic form, and a more aggressive and more widespread polyostotic form. Polyostotic form may be associated with various endocrine abnormalities, which require active management apart from the management of FD. Management of FD is not free from controversies. While total surgical excision of the involved area and reconstruction using newer micro-vascular technique is the only definitive treatment available from the curative point of view, but this can be only offered to monostotic and very few polyostotic lesions. In polyostotic varieties on many occasions these radical surgeries are very deforming in these slow growing lesions and so their indication is highly debated. The treatment of cranio-facial fibrous dysplasia should be highly individualized, depending on the fact that the clinical behavior of lesion is variable at various ages and in individual patients. A more conservative approach in the form of aesthetic recontouring of deformed bone, orthodontic occlusal correction, and watchful expectancy may be the more accepted form of treatment in young patients. Newer generation real-time imaging guidance during recontouring surgery adds to accuracy and safety of these procedures. Regular clinical and radiological follow up is required to watch for quiescence, regression or reactivation of the disease process

  6. CHEMISORPtION OF SULFUR (IV OXIDeBY PoLYETHYLENEPOLYAMINE IMPREGNATED FIBROUS MATERIALS. 1. HYDROPHILIC POLYETHYLENEPOLYAMINE IMPREGNATED FIBROUS MATERIALS

    Directory of Open Access Journals (Sweden)

    A. A. Ennan

    2015-03-01

    Full Text Available The hydrophilicity of artificial and synthetic fibers and polyethylenepolyamine (PEPA impregnated fibrous materials based on them was investigated under static conditions using a vacuum sorption installation. Water vapor sorption isotherms were analyzed and monolayer capacitance values  and a water molecules adsorption in the first layer heats were determined in the framework of polymolecular adsorption Brunauer – Emmett – Teller. It has been found that the hydrophilicity of the fibers studied to change in the following sequence: viscose > VION AN-3 > VION KN-1 > nylon-polyester > nitrone > polyester > polypropylene; PEPA modified hydrophilic fibrous material does not depend essentially on the chemical nature of the carrier.

  7. Superior electrode performance of LiFePO4/C composite prepared by an in situ polymerization restriction method

    International Nuclear Information System (INIS)

    Chen, Jian; Zou, Yong-Cun; Zhang, Feng; Zhang, Yuan-Chun; Guo, Fei-Fan; Li, Guo-Dong

    2013-01-01

    Highlights: ► LiFePO 4 /C composite was prepared by an in situ polymerization restriction method. ► The size of LiFePO 4 in the composite is effectively restricted. ► The high-rate capability and cycling performance of LiFePO 4 are enhanced greatly. -- Abstract: The LiFePO 4 /C composite is prepared by heating the mixture of resorcinol–formaldehyde gel and FePO 4 , synthesized by an in situ polymerization restriction method, and lithium acetate dihydrate in the atmosphere of nitrogen. The physical and electrochemical properties of the LiFePO 4 /C composite are investigated by X-ray diffraction, Raman spectroscopy, thermogravimetric analysis, scanning electron microscopy, transmission electron microscopy and electrochemical measurements. The discharge capacity of LiFePO 4 is as high as 155.6 mA h g −1 in the first cycle at 0.5C, and it could remain 144.0 mA h g −1 after 50 cycles. Even at the high rates of 10C, 20C and 50C, the initial discharge capacities of the electrodes exhibit 115.6 mA h g −1 , 84.5 mA h g −1 and 67.8 mA h g −1 , and the electrodes deliver capacity retention of 89.5%, 90.9% and 85.7% after 1000 cycles, respectively. The outstanding electrochemical performance could be attributed to the small particle size and good electronic conductivity of the composite

  8. Development of high-speed reactive processing system for carbon fiber-reinforced polyamide-6 composite: In-situ anionic ring-opening polymerization

    International Nuclear Information System (INIS)

    Kim, Sang-Woo; Seong, Dong Gi; Yi, Jin-Woo; Um, Moon-Kwang

    2016-01-01

    In order to manufacture carbon fiber-reinforced polyamide-6 (PA-6) composite, we optimized the reactive processing system. The in-situ anionic ring-opening polymerization of ε-caprolactam was utilized with proper catalyst and initiator for PA-6 matrix. The mechanical properties such as tensile strength, inter-laminar shear strength and compressive strength of the produced carbon fiber-reinforced PA-6 composite were measured, which were compared with the corresponding scanning electron microscope (SEM) images to investigate the polymer properties as well as the interfacial interaction between fiber and polymer matrix. Furthermore, kinetics of in-situ anionic ring-opening polymerization of ε-caprolactam will be discussed in the viewpoint of increasing manufacturing speed and interfacial bonding between PA-6 matrix and carbon fiber during polymerization.

  9. Development of high-speed reactive processing system for carbon fiber-reinforced polyamide-6 composite: In-situ anionic ring-opening polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang-Woo; Seong, Dong Gi; Yi, Jin-Woo; Um, Moon-Kwang [Composites Research Division, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam, 642–831 (Korea, Republic of)

    2016-05-18

    In order to manufacture carbon fiber-reinforced polyamide-6 (PA-6) composite, we optimized the reactive processing system. The in-situ anionic ring-opening polymerization of ε-caprolactam was utilized with proper catalyst and initiator for PA-6 matrix. The mechanical properties such as tensile strength, inter-laminar shear strength and compressive strength of the produced carbon fiber-reinforced PA-6 composite were measured, which were compared with the corresponding scanning electron microscope (SEM) images to investigate the polymer properties as well as the interfacial interaction between fiber and polymer matrix. Furthermore, kinetics of in-situ anionic ring-opening polymerization of ε-caprolactam will be discussed in the viewpoint of increasing manufacturing speed and interfacial bonding between PA-6 matrix and carbon fiber during polymerization.

  10. FIBROUS SILICA-HYDROXYAPATITE COMPOSITE BY ELECTROSPINNING

    OpenAIRE

    Jesús Alberto Garibay-Alvarado; León Francisco Espinosa-Cristóbal; Simón Yobanny Reyes-López

    2017-01-01

    New nanocomposite membrane was fabricated by electrospinning. The nanocomposite combines a glass and hydroxyapatite (HA). This research proposed the incorporation of glass to counteract the brittleness of HA in a composite formed by coaxial fibers which will be used for bone replacement. Calcium phosphate ceramics are used widely for dental and orthopedic reasons, because they can join tightly through chemical bonds and promote bone regeneration. Precursors HA and SiO2 were synthetized throug...

  11. Layer by Layer Ex-Situ Deposited Cobalt-Manganese Oxide as Composite Electrode Material for Electrochemical Capacitor.

    Science.gov (United States)

    Rusi; Chan, P Y; Majid, S R

    2015-01-01

    The composite metal oxide electrode films were fabricated using ex situ electrodeposition method with further heating treatment at 300°C. The obtained composite metal oxide film had a spherical structure with mass loading from 0.13 to 0.21 mg cm(-2). The structure and elements of the composite was investigated using X-ray diffraction (XRD) and energy dispersive X-ray (EDX). The electrochemical performance of different composite metal oxides was studied by cyclic voltammetry (CV) and galvanostatic charge-discharge (CD). As an active electrode material for a supercapacitor, the Co-Mn composite electrode exhibits a specific capacitance of 285 Fg(-1) at current density of 1.85 Ag(-1) in 0.5 M Na2SO4 electrolyte. The best composite electrode, Co-Mn electrode was then further studied in various electrolytes (i.e., 0.5 M KOH and 0.5 M KOH/0.04 M K3Fe(CN) 6 electrolytes). The pseudocapacitive nature of the material of Co-Mn lead to a high specific capacitance of 2.2 x 10(3) Fg(-1) and an energy density of 309 Whkg(-1) in a 0.5 M KOH/0.04 M K3Fe(CN) 6 electrolyte at a current density of 10 Ag(-1). The specific capacitance retention obtained 67% of its initial value after 750 cycles. The results indicate that the ex situ deposited composite metal oxide nanoparticles have promising potential in future practical applications.

  12. Fluorescent composite scaffolds made of nanodiamonds/polycaprolactone

    Science.gov (United States)

    Cao, Li; Hou, Yanwen; Lafdi, Khalid; Urmey, Kirk

    2015-11-01

    Polycaprolactone (PCL) has been widely studied for biological applications. Biodegradable PCL fibrous scaffold can work as an appropriate substrate for tissue regeneration. In this letter, fluorescent nanodiamonds (FNDs) were prepared after surface passivation with octadecylamine. The FNDs were then mixed with PCL polymer and subsequently electrospun into FNDs/PCL fibrous scaffolds. The obtained scaffolds not only exhibited photoluminescence, but also showed reinforced mechanical strength. Toxicity study indicated FNDs/PCL scaffolds were nontoxic. This biocompatible fluorescent composite fibrous scaffold can support in vitro cell growth and also has the potential to act as an optical probe for tissue engineering application in vitro and in vivo.

  13. In situ intercalative polymerization of poly (ε-caprolactone)/ 12-amino lauric acid-modified clay nano composites

    International Nuclear Information System (INIS)

    Reyes, Larry; Monserate, Juvy J.; Sumera, Florentino

    2013-01-01

    Polymer/layered silicate nano composites were prepared by in situ intercalative polymerization method from from ε-caprolactone (ε-CL) and 12-amino lauric acid modified montmorillonite (AMMT). The organo-modified clay was investigated for its capacity to facilitate ring-opening polymerization of ε-caprolactone within its silicate layers. The effect of varying the organo-modified clay loading (5%, 10% and 15% by weight) on the molecular weight of the poly (ε-caprolactone) (PCL) product was assessed by gel-permeation chromatography. The molecular weight of the polymer with different clay loadings ranged from ∼30,000 g/mo to ∼70,000 g/mol, where the 10% loading produced the highest molecular weight. Fourier Transform infrared (FTIR), and 1 H and 13 C Nuclear Magnetic Resonance (NMR) Spectroscopy were conducted to probe the composition of the polymer and the catalytic activity of AMMT to polymerize ε-CL. FTIR analyses showed two medium intensity and narrow CO-O stretching vibrations for the PCL products at around 1240 cm-1 and 1160 cm-1, which are attributed to ester skeletal backbone. 1 HNMR spectroscopic analysis revealed signals at 4.07 ppm and 3.66 ppm which can be attributed to εmethylene of caprolactone and methyl of ending ester group, respectively. The formation of the nano composites were assessed by X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM), XRD analyses showed a broadening and disappearance of diffraction peak of AMMT in the nana composite which may indicate the formation of the intercalated and partially exfoliated PCVL/AMMT nana composites. TEM observations corroborated the presence of intercalated and exfoliated layers of AMMT after polymerization. The present work demonstrates that AMMT can be used as an alternative g reen catalyst's for the production of biodegradable polymers, where the in situ intercalative polymerization was employed as a direct method of preparing polymer/layered silicates (author)

  14. Polyethylene-waste tire dust composites via in situ polymerization

    International Nuclear Information System (INIS)

    Reyes A, Y. K.; Narro C, R. I.; Ramos A, M. E.; Neira V, M. G.; Diaz E, J.; Enriquez M, F.; Valencia L, L. A.; Saade C, H.; Diaz de L, R.

    2014-01-01

    Polyethylene/waste tire dust (WTD) composites were obtained by an in situ polymerization technique. The surface of the WTD was modified with deposition of polyethylene by using plasma polymerization. Ethylene polymerization was carried out using bis(cyclopentadienyl) titanium dichloride (Cp 2 TiCl 2 ) as homogeneous metallocenes catalyst, while diethylaluminum chloride (DEAC), ethyl aluminum sesquichloride (EASC) and methyl alumino xane (Mao) were used as co-catalysts at two different [Al]/[Ti] molar ratio. The main characteristics of the obtained polyethylenes were determined by size exclusion chromatography, thermogravimetric analysis, differential scanning calorimetry and wide-angle X-ray diffraction. The results showed that by using EASC and Mao the highest catalytic activities were presented at a [Al]/[Ti] molar ratio of 9.17 and 18.33 respectively. Even though it was possible to obtain polyethylene using WTD (modified or unmodified) the catalytic activity was lower than in the case in which no WTD was added in ethylene polymerization. Scanning transmission electronic microscopy images evidenced that the original morphology of the polyethylenes was not modified by the presence of WTD. (Author)

  15. Polyethylene-waste tire dust composites via in situ polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Reyes A, Y. K.; Narro C, R. I.; Ramos A, M. E. [Universidad Autonoma de Coahuila, Facultad de Ciencias Quimicas, Blvd. Venustiano Carranza s/n, 25280 Saltillo, Coahuila (Mexico); Neira V, M. G.; Diaz E, J.; Enriquez M, F.; Valencia L, L. A.; Saade C, H.; Diaz de L, R., E-mail: ramon.diazdeleon@ciqa.edu.mx [Centro de Investigacion en Quimica Aplicada, Blvd. Enrique Reyna Hermosillo No. 40, Col. San Jose de los Cerritos, 25293 Saltillo, Coahuila (Mexico)

    2014-10-01

    Polyethylene/waste tire dust (WTD) composites were obtained by an in situ polymerization technique. The surface of the WTD was modified with deposition of polyethylene by using plasma polymerization. Ethylene polymerization was carried out using bis(cyclopentadienyl) titanium dichloride (Cp{sub 2}TiCl{sub 2}) as homogeneous metallocenes catalyst, while diethylaluminum chloride (DEAC), ethyl aluminum sesquichloride (EASC) and methyl alumino xane (Mao) were used as co-catalysts at two different [Al]/[Ti] molar ratio. The main characteristics of the obtained polyethylenes were determined by size exclusion chromatography, thermogravimetric analysis, differential scanning calorimetry and wide-angle X-ray diffraction. The results showed that by using EASC and Mao the highest catalytic activities were presented at a [Al]/[Ti] molar ratio of 9.17 and 18.33 respectively. Even though it was possible to obtain polyethylene using WTD (modified or unmodified) the catalytic activity was lower than in the case in which no WTD was added in ethylene polymerization. Scanning transmission electronic microscopy images evidenced that the original morphology of the polyethylenes was not modified by the presence of WTD. (Author)

  16. A case of intracranial malignant fibrous histiocytoma

    Directory of Open Access Journals (Sweden)

    Amir Hossein Sarrami

    2011-01-01

    Full Text Available We describe a case of intracranial malignant fibrous histiocytoma which had infiltrated pons, cerebellum and basal surface of left temporal lobe without any visible mass. The patient presented with a sudden loss of consciousness and vomiting. Clinical findings, laboratory tests, imaging and examination of the cerebrospinal fluid tended to establish the diagnosis of an infectious condition than a malignancy. Without any response to the antibiotics and with a progressive deterioration of neurologic and mental condition, the patient died after 20 days. In the autopsy, histological and immunohistochemical study of the brain revealed the diagnosis of malignant fibrous histiocytoma (MFH.

  17. Electrospun composite matrices of poly(ε-caprolactone)-montmorillonite made using tenside free Pickering emulsions

    International Nuclear Information System (INIS)

    Samanta, Archana; Takkar, Sonam; Kulshreshtha, Ritu; Nandan, Bhanu; Srivastava, Rajiv K.

    2016-01-01

    The production of composite electrospun matrices of poly(ε-caprolactone) (PCL) using an emulsifier-free emulsion, made with minimal organic solvent, as precursor is reported. Pickering emulsions of PCL were prepared using modified montmorillonite (MMT) clay as the stabilizer. Hydrophobic tallow group of the modified MMT clay resulted in analogous interaction of clay with oil and aqueous phase and its adsorption at the interface to provide stability to the resultant emulsion. Composite fibrous matrices of PCL and MMT were produced using electrospinning under controlled conditions. The fiber fineness was found to alter with PCL concentration and volume fraction of the aqueous and oil phases. A higher tensile strength and modulus was obtained with inclusion of MMT in PCL electrospun matrix in comparison to a matrix made using neat PCL. The presence of clay in the fibrous matrix did not change the cell proliferation efficiency in comparison to neat PCL matrix. Composite fibrous matrices of PCL/MMT bearing enhanced tensile properties may find applications in areas other than tissue engineering for example food packaging and filtration. - Highlights: • Tenside free, clay stabilized Pickering emulsion of PCL is made with minimal organic solvent. • Organic–inorganic composite fibrous matrices were produced via emulsion electrospinning. • Fiber fineness was efficiently controlled by variation in emulsion formulation. • Fibrous matrices of high tensile strength and modulus were obtained in comparison to neat PCL matrix. • PCL/clay matrices showed effective cell proliferation as a neat PCL matrix.

  18. Electrospun composite matrices of poly(ε-caprolactone)-montmorillonite made using tenside free Pickering emulsions

    Energy Technology Data Exchange (ETDEWEB)

    Samanta, Archana [Department of Textile Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India); Takkar, Sonam; Kulshreshtha, Ritu [Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India); Nandan, Bhanu [Department of Textile Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India); Srivastava, Rajiv K., E-mail: rajiv@textile.iitd.ac.in [Department of Textile Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India)

    2016-12-01

    The production of composite electrospun matrices of poly(ε-caprolactone) (PCL) using an emulsifier-free emulsion, made with minimal organic solvent, as precursor is reported. Pickering emulsions of PCL were prepared using modified montmorillonite (MMT) clay as the stabilizer. Hydrophobic tallow group of the modified MMT clay resulted in analogous interaction of clay with oil and aqueous phase and its adsorption at the interface to provide stability to the resultant emulsion. Composite fibrous matrices of PCL and MMT were produced using electrospinning under controlled conditions. The fiber fineness was found to alter with PCL concentration and volume fraction of the aqueous and oil phases. A higher tensile strength and modulus was obtained with inclusion of MMT in PCL electrospun matrix in comparison to a matrix made using neat PCL. The presence of clay in the fibrous matrix did not change the cell proliferation efficiency in comparison to neat PCL matrix. Composite fibrous matrices of PCL/MMT bearing enhanced tensile properties may find applications in areas other than tissue engineering for example food packaging and filtration. - Highlights: • Tenside free, clay stabilized Pickering emulsion of PCL is made with minimal organic solvent. • Organic–inorganic composite fibrous matrices were produced via emulsion electrospinning. • Fiber fineness was efficiently controlled by variation in emulsion formulation. • Fibrous matrices of high tensile strength and modulus were obtained in comparison to neat PCL matrix. • PCL/clay matrices showed effective cell proliferation as a neat PCL matrix.

  19. Fabrication and Characterization of Electrospun Semiconductor Nanoparticle—Polyelectrolyte Ultra-Fine Fiber Composites for Sensing Applications

    Directory of Open Access Journals (Sweden)

    Caroline L. Schauer

    2011-10-01

    Full Text Available Fluorescent composite fibrous assembles of nanoparticle-polyelectrolyte fibers are useful multifunctional materials, utilized in filtration, sensing and tissue engineering applications, with the added benefits of improved mechanical, electrical or structural characteristics over the individual components. Composite fibrous mats were prepared by electrospinning aqueous solutions of 6 wt% poly(acrylic acid (PAA loaded with 0.15 and 0.20% v/v, carboxyl functionalized CdSe/ZnS nanoparticles (SNPs. The resulting fluorescent composite fibrous mats exhibits recoverable quenching when exposed to high humidity. The sensor response is sensitive to water concentration and is attributed to the change in the local charges around the SNPs due to deprotonation of the carboxylic acids on the SNPs and the surrounding polymer matrix.

  20. Microstructure and Mechanical Properties of Multiphase Strengthened Al/Si/Al_2O_3/SiO_2/MWCNTs Nano composites Sintered by In Situ Vacuum Hot Pressing

    International Nuclear Information System (INIS)

    Li, J.; Jiang, X.; Zhu, D.; Zhu, M.; Shao, Z.; Johnson, S.; Luo, Z.

    2015-01-01

    Eutectic Al/Si binary alloy is technically one of the most important Al casting alloys due to its high corrosion resistance, evident shrinkage reduction, low thermal expansion coefficient, high fluidity, and good weldability. In this work, multi phased Al/Si matrix nano composites reinforced with Al_2O_3 and multi walled carbon nano tubes (MWCNTs) have been sintered by an in situ vacuum hot-pressing method. The alumina Al_2O_3 nanoparticles were introduced by an in situ reaction of Al with SiO_2. Microstructure and mechanical properties of the sintered Al/Si/Al_2O_3/SiO_2/MWCNTs nano composites with different alumina contents were investigated. The mechanical properties were determined by micro-Vickers hardness and compressive and shear strength tests. The results demonstrated that in situ alumina and MWCNTs had impacts on microstructure and mechanical properties of the nano composites. Based on the mechanical properties and microstructure of the nano composites, strengthening and fracture mechanisms by multiple reinforcements were analyzed

  1. Assessment of fibrous insulation materials for the selenide isotope generator system

    International Nuclear Information System (INIS)

    Wei, G.C; Tennery, V.J.

    1977-11-01

    Fibrous insulations for use in the converter and the heat source of the radioisotope-powered, selenide element, thermoelectric generator (selenide isotope generator) are assessed. The most recent system design and material selection basis is presented. Several fibrous insulation materials which have the potential for use as load-bearing or nonload-bearing thermal insulations are reviewed, and thermophysical properties supplied by manufacturers or published in the literature are presented. Potential problems with the application of fibrous insulations in the selenide isotope generator are as follows: compatibility with graphite, the thermoelectric elements, and the isolation hot frame; devitrification, grain growth, and sintering with an accompanying degradation of insulation quality; impurity diffusion from the insulation to adjoining structures; outgassing and storage of fibrous materials. Areas in which thermophysical data or quantitative information on the insulation and structural stability is lacking are identified

  2. Process for the preparation of fiber-reinforced ceramic composites by chemical vapor deposition

    Science.gov (United States)

    Lackey, Jr., Walter J.; Caputo, Anthony J.

    1986-01-01

    A chemical vapor deposition (CVD) process for preparing fiber-reinforced ceramic composites. A specially designed apparatus provides a steep thermal gradient across the thickness of a fibrous preform. A flow of gaseous ceramic matrix material is directed into the fibrous preform at the cold surface. The deposition of the matrix occurs progressively from the hot surface of the fibrous preform toward the cold surface. Such deposition prevents the surface of the fibrous preform from becoming plugged. As a result thereof, the flow of reactant matrix gases into the uninfiltrated (undeposited) portion of the fibrous preform occurs throughout the deposition process. The progressive and continuous deposition of ceramic matrix within the fibrous preform provides for a significant reduction in process time over known chemical vapor deposition processes.

  3. Unusual tensile behaviour of fibre-reinforced indium matrix composite and its in-situ TEM straining observation

    International Nuclear Information System (INIS)

    Luo, Xin; Peng, Jianchao; Zandén, Carl; Yang, Yanping; Mu, Wei; Edwards, Michael; Ye, Lilei; Liu, Johan

    2016-01-01

    Indium-based thermal interface materials are superior in thermal management applications of electronic packaging compared to their polymer-based counterparts. However, pure indium has rather low tensile strength resulting in poor reliability. To enhance the mechanical properties of such a material, a new composite consisting of electrospun randomly oriented continuous polyimide fibres and indium was fabricated. The composite has been characterised by tensile tests and in-situ transmission electron microscopy straining observations. It is shown that the composite's ultimate tensile strength at 20 °C is five times higher than that of pure indium, and the strength of the composite exceeds the summation of strengths of the individual components. Furthermore, contrary to most metallic matrix materials, the ultimate tensile strength of the composite decreases with the increased strain rate in a certain range. The chemical composition and tensile fracture of the novel composite have been analysed comprehensively by means of scanning transmission electron microscopy and scanning electron microscopy. A strengthening mechanism based on mutually reinforcing structures formed by the indium and surrounding fibres is also presented, underlining the effect of compressing at the fibre/indium interfaces by dislocation pileups and slip pinning.

  4. The internal microstructure and fibrous mineralogy of fly ash from coal-burning power stations.

    Science.gov (United States)

    Brown, Patrick; Jones, Tim; BéruBé, Kelly

    2011-12-01

    Coal fly ash (CFA) is a significant environmental pollutant that presents a respiratory hazard when airborne. Although previous studies have identified the mineral components of CFA, there is a paucity of information on the structural habits of these minerals. Samples from UK, Polish and Chinese power stations were studied to further our understanding of the factors that affect CFA geochemistry and mineralogy. ICP-MS, FE-SEM/EDX, XRD, and laser diffraction were used to study physicochemical characteristics. Analysis revealed important differences in the elemental compositions and particle size distributions of samples between sites. Microscopy of HF acid-etched CFA revealed the mullite present possesses a fibrous habit; fibres ranged in length between 1 and 10 μm. Respirable particles (<10 μm) were frequently observed to contain fibrous mullite. We propose that the biopersistence of these refractory fibres in the lung environment could be contributing towards chronic lung diseases seen in communities and individuals continually exposed to high levels of CFA. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Effect of silica particles modified by in-situ and ex-situ methods on the reinforcement of silicone rubber

    International Nuclear Information System (INIS)

    Song, Yingze; Yu, Jinhong; Dai, Dan; Song, Lixian; Jiang, Nan

    2014-01-01

    Highlights: • In-situ and ex-situ methods were applied to modify silica particles. • In-situ method was more beneficial to preparing silica particles with high BET surface area. • Silicone rubber filled with in-situ modified silica exhibits excellent mechanical and thermal properties. - Abstract: In-situ and ex-situ methods were applied to modify silica particles in order to investigate their effects on the reinforcement of silicone rubber. Surface area and pore analyzer, laser particle size analyzer, Fourier-transform infrared spectroscopy (FTIR), contact-angle instrument, and transmission electron microscope (TEM) were utilized to investigate the structure and properties of the modified silica particles. Dynamic mechanical thermal analyzer (DMTA) was employed to characterize the vulcanizing behavior and mechanical properties of the composites. Thermogravimetric analysis (TGA) was performed to test the thermal stability of the composites. FTIR and contact angle analysis indicated that silica particles were successfully modified by these two methods. The BET surface area and TEM results reflected that in-situ modification was more beneficial to preparing silica particles with irregular shape and higher BET surface area in comparison with ex-situ modification. The DMTA and TGA data revealed that compared with ex-situ modification, the in-situ modification produced positive influence on the reinforcement of silicone rubber

  6. Gastric Calcifying Fibrous Tumour

    Directory of Open Access Journals (Sweden)

    Tan Attila

    2006-01-01

    Full Text Available Intramucosal gastric tumours are most commonly found to be gastrointestinal stromal tumours or leiomyomas (smooth muscle tumours; however, a variety of other uncommon mesenchymal tumours can occur in the stomach wall. A rare benign calcifying fibrous tumour is reported and the endoscopic appearance, ultrasound findings and morphology are documented. A review of the literature found only two similar cases.

  7. Natural rubber: leather composites

    Directory of Open Access Journals (Sweden)

    K. Ravichandran

    2005-06-01

    Full Text Available Leather is a fibrous protein consisting of collagen in a three dimensionally crosslinked network. Chrome tanning of leather improves the appearance of leather but at the same time emits both solid and liquid chrome leather wastes. Scrap rubber recycling using untreated and neutralized leather fibrous particles in natural rubber has been studied. Vulcanization, mechanical, morphological and swelling properties of the natural rubber - scrap rubber composites containing neutralized leather have been discussed. Use of chrome leather particles has been found to improve the consumption of scrap rubber powder in natural rubber formulations. Polymer composites based on leather wastes as fillers are reported to be useful for many applications such as in construction materials, automobile interior moldings, heat and sound insulating boards, shoe soles, flooring materials and moldings with good anti-static properties, air permeability and good appearances.

  8. Different Structures of PVA Nano fibrous Membrane for Sound Absorption Application

    International Nuclear Information System (INIS)

    Mohrova, J.; Kalinova, K.

    2012-01-01

    The thin nano fibrous layer has different properties in the field of sound absorption in comparison with porous fibrous material which works on a principle of friction of air particles in contact with walls of pores. In case of the thin nano fibrous layer, which represents a sound absorber here, the energy of sonic waves is absorbed by the principle of membrane resonance. The structure of the membrane can play an important role in the process of converting the sonic energy to a different energy type. The vibration system acts differently depending on the presence of smooth fibers in the structure, amount of partly merged fibers, or structure of polymer foil as extreme. Polyvinyl alcohol (PVA) was used as a polymer because of its good water solubility. It is possible to influence the structure of nano fibrous layer during the production process thanks to this property of polyvinyl alcohol.

  9. In situ one-pot preparation of reduced graphene oxide/polyaniline composite for high-performance electrochemical capacitors

    International Nuclear Information System (INIS)

    Chen, Nali; Ren, Yapeng; Kong, Peipei; Tan, Lin; Feng, Huixia; Luo, Yongchun

    2017-01-01

    Highlights: • A new method to prepare reduced graphene oxide/polyaniline composite is developed. • Aniline serves as a reduction for graphene oxide under weak alkali condition. • Different characterizations confirm that GO can be effectively reduced by aniline. • A high specific capacitance of 524.4 F·g"−"1 is obtained at 0.5 A·g"−"1. - Abstract: Reduced graphene oxide/polyaniline (rGO/PANI) composites are prepared through an effective in situ one-pot synthesis route that includes the reduction of graphene oxide (GO) by aniline under weak alkali condition via hydrothermal method and then followed by in situ polymerization of aniline. X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, ultraviolet-visible spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscope and transmission electron microscope are employed to reveal that GO is successfully reduced by aniline under weak alkali condition and PANI can be deposited on the surfaces of reduced graphene oxide (rGO) sheets. The effect of rGO is optimized by tuning the mass ratios of aniline to GO to improve the electrochemical performance of rGO/PANI composites. The maximum specific capacitance of rGO/PANI composites achieves 524.4 F/g with a mass ratio of aniline to GO 10:1 at a current density of 0.5 A/g, in comparison to the specific capacitance of 397 F/g at the same current density of pure PANI. Particularly, the specific capacity retention rate is 81.1% after 2000 cycles at 100 mv/s scan rate, which is an improvement over that of pure PANI (55.5%).

  10. In situ one-pot preparation of reduced graphene oxide/polyaniline composite for high-performance electrochemical capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Nali [College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, Gansu (China); State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, Gansu (China); Ren, Yapeng; Kong, Peipei; Tan, Lin [College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, Gansu (China); Feng, Huixia, E-mail: fenghx@lut.cn [College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, Gansu (China); Luo, Yongchun, E-mail: luoyc@lut.cn [State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, Gansu (China)

    2017-01-15

    Highlights: • A new method to prepare reduced graphene oxide/polyaniline composite is developed. • Aniline serves as a reduction for graphene oxide under weak alkali condition. • Different characterizations confirm that GO can be effectively reduced by aniline. • A high specific capacitance of 524.4 F·g{sup −1} is obtained at 0.5 A·g{sup −1}. - Abstract: Reduced graphene oxide/polyaniline (rGO/PANI) composites are prepared through an effective in situ one-pot synthesis route that includes the reduction of graphene oxide (GO) by aniline under weak alkali condition via hydrothermal method and then followed by in situ polymerization of aniline. X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, ultraviolet-visible spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscope and transmission electron microscope are employed to reveal that GO is successfully reduced by aniline under weak alkali condition and PANI can be deposited on the surfaces of reduced graphene oxide (rGO) sheets. The effect of rGO is optimized by tuning the mass ratios of aniline to GO to improve the electrochemical performance of rGO/PANI composites. The maximum specific capacitance of rGO/PANI composites achieves 524.4 F/g with a mass ratio of aniline to GO 10:1 at a current density of 0.5 A/g, in comparison to the specific capacitance of 397 F/g at the same current density of pure PANI. Particularly, the specific capacity retention rate is 81.1% after 2000 cycles at 100 mv/s scan rate, which is an improvement over that of pure PANI (55.5%).

  11. Fibrous metaphyseal defect (fibrous cortical defect, non-ossifying fibroma). Pt. 2

    International Nuclear Information System (INIS)

    Freyschmidt, J.; Ostertag, H.; Saure, D.

    1981-01-01

    FMD, whether in the stage of a fibrous cortical defect or a non-ossifying fibroma, possesses very characteristic radiological appearances which rarely make it necessary to resort to biopsy. In order to avoid mistakes, it is necessary to observe strictly the known radiological features: metaphyseal position, clearcut relationship to the cortex, well defined margins, maximal size 6 to 7 cm., presence during growth, rarely observed in the upper extremity. The differential diagnosis, which needs to be considered only rarely, is discussed. (orig.) [de

  12. The crack propagating behavior of composite coatings prepared by PEO on aluminized steel during in situ tensile processing

    International Nuclear Information System (INIS)

    Chen Zhitong; Li Guang; Wu Zhenqiang; Xia Yuan

    2011-01-01

    Research highlights: → Composite coatings on the aluminized steel were prepared by the plasma electrolytic oxidation (PEO) technique, which comprised of Fe-Al layer, Al layer and Al 2 O 3 layer. → The evaluation method of the crack critical opening displacement δ c was introduced to describe quantitatively the resistance of Al layer to the propagation behavior of cracks and evaluate the fracture behavior of composite coatings. → The crack propagating model was established. - Abstract: This paper investigates the in situ tensile cracks propagating behavior of composite coatings on the aluminized steel generated using the plasma electrolytic oxidation (PEO) technique. Cross-sectional micrographs and elemental compositions were investigated by scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS). The composite coatings were shown to consist of Fe-Al, Al and Al 2 O 3 layers. The cracks propagating behavior was observed in real-time in situ SEM tensile test. In tensile process, the cracks were temporarily stopped when cracks propagated from Fe-Al layer to Al layer. The critical crack opening displacement δ c was introduced to quantitatively describe the resistance of the Al layer. There was a functional relation among the thickness ratio t Al /t Al 2 O 3 , the δ c of composite coatings and tensile cracks' spacing. The δ c increased with the increasing of the thickness ratio (t Al /t Al 2 O 3 ). The high δ c value means high fracture resistance. Therefore, a control of the thickness ratio t Al /t Al 2 O 3 was concerned as a key to improve the toughness and strength of the aluminized steel.

  13. Solitary Fibrous Tumor of the Pancreas: Imaging Findings

    International Nuclear Information System (INIS)

    Kwon, Heon Ju; Byun, Jae Ho; Kang, Jun; Park, Seong Ho; Lee, Moon Gyu

    2008-01-01

    We report here a case of a pathologically proven solitary fibrous tumor of the pancreas. A 54-year-old man was referred to our hospital for further evaluation of a pancreatic mass that was found incidentally. CT, MR imaging, and endoscopic ultrasonography showed a well-defined, enhancing mass with cystic portions of the pancreas body. MR cholangiopancreatography showed no pancreatic duct dilatation. A solitary fibrous tumor of the pancreas is a very rare lesion

  14. Neonatal respiratory distress secondary to nasal fibrous histiocytoma.

    Science.gov (United States)

    Koopmann, C F; Nagle, R B; Crone, R

    1987-08-01

    A full term one-day-old neonate developed respiratory distress secondary to a right intranasal mass. After exploratory craniotomy revealed no intracranial lesions, the child was observed for 6 months. At that time he experienced severe apnea with cyanosis necessitating removal of the mass, which was diagnosed histologically as a fibrous histiocytoma. Seven year follow-up reveals no further problems. A discussion of fibrous histiocytoma of the nose and paranasal sinuses is briefly given.

  15. Microstructure and wear of in-situ Ti/(TiN + TiB) hybrid composite layers produced using liquid phase process

    Energy Technology Data Exchange (ETDEWEB)

    Yazdi, R., E-mail: ryazdi@ut.ac.ir; Kashani-Bozorg, S.F.

    2015-02-15

    Tungsten inert gas (TIG) technique was conducted on commercially pure (CP)-Ti substrate, which was coated with h-BN-based powder mixture prior to the treatment. The treated surfaces were evaluated and characterized by means of scanning electron microscope (SEM), X-ray diffraction analysis, and electron dispersive spectrometry (EDS). The microhardness and wear experiment were also performed by using a microhardness machine and pin-on-disk tribometer. As h-BN reacted with titanium, an in-situ hybrid composite layer was formed showing near stoichiometric dendrites of TiN, platelets of TiB and interdendritic regions of α′-Ti martensite crystal structures. The population level of TiN and TiB regions were found to increase using a pre-placed powder mixture with greater h-BN content. However, the fabricated layers exhibited cracking and porosity; these were minimized by adjusting arc energy density and h-BN content of powder mixture. The microhardness value of the fabricated hybrid composite layers was found to be in the range of ∼650 HV{sub 0.2}–1000 HV{sub 0.2}; this is three to five times higher than that of the untreated CP-Ti substrate. In addition, the in-situ hybrid composite layers exhibited superior wear behavior over CP-Ti substrate; this is attributed to the formation of newly formed ceramic phases in the solidified surface layers and good coherent interface between the composite layer and CP-substrate. Meanwhile, severe adhesive wear mechanism of CP-titanium surface changed to mild abrasive one as a result of surface treatment. - Highlights: • In-situ Ti/(TiN + TiB) hybrid composite layers were synthesized by TIG processing on commercially pure titanium. • The microstructure features were characterized by several methods. • Microhardness enhanced three to five times higher than that of the CP-Ti substrate after surface modification. • The fabricated composite layers improved wear resistance of CP-titanium. • Severe adhesive wear mechanism of

  16. Effects of compression on the sound absorption of fibrous

    DEFF Research Database (Denmark)

    Castagnede, Bernard; Akninen, Achour; Brouard, Achour

    2000-01-01

    During the compression of a fibrous mat, it is well known that the absorption properties are decreasing. In order to predict this change, some heuristic formulae are proposed which take into account the modifications of the physical parameters(porosity, resistivity, tortousity and shappe factors)......) which enter in the standard "equivalent fluid" model. Numerical predictions are then discussed and compared to experimental data obtained on a fibrous material(uncompressed and the compressed) used in automotive industry....

  17. Localized fibrous mesothelioma of the liver: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Hwan; Lee, Moon Gyu; Weon, Young Cheol; Lee, Seung Gyu; Kim, Yoon Jeong; Lee, In Chul; Auh, Yong Ho [Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    1995-10-15

    Localized fibrous mesothelioma of the liver is very rare benign tumor. It usually manifest large palpable hepatic mass in right upper quadrant area, and the prognosis is excellent by surgical resection. Contrast enhanced CT scan shows well defined hyperattenuating mass and celiac angiogram shows hypervascular mass. Recently we experienced 1 case of localized fibrous mesothelioma of the liver, and we report CT and angiographic findings of this tumor.

  18. Heat transfer in Rockwool modelling and method of measurement. Modelling radiative heat transfer in fibrous materials

    Energy Technology Data Exchange (ETDEWEB)

    Dyrboel, Susanne

    1998-05-01

    Fibrous materials are some of the most widely used materials for thermal insulation. In this project the focus of interest has been on fibrous materials for building application. Interest in improving the thermal properties of insulation materials is increasing as legislation is being tightened to reduce the overall energy consumption. A knowledge of the individual heat transfer mechanisms - whereby heat is transferred within a particular material is an essential tool to improve continuously the thermal properties of the material. Heat is transferred in fibrous materials by four different transfer mechanisms: conduction through air, conduction through fibres, thermal radiation and convection. In a particular temperature range the conduction through air can be regarded as a constant, and conduction through fibres is an insignificant part of the total heat transfer. Radiation, however, constitutes 25-40% of the total heat transfer in light fibrous materials. In Denmark and a number of other countries convection in fibrous materials is considered as non-existent when calculating heat transmission as well as when designing building structures. Two heat transfer mechanisms have been the focus of the current project: radiation heat transfer and convection. The radiation analysis serves to develop a model that can be used in further work to gain a wider knowledge of the way in which the morphology of the fibrous material, i.e. fibre diameter distribution, fibre orientation distribution etc., influences the radiation heat transfer under different conditions. The convection investigation serves to examine whether considering convection as non-existent is a fair assumption to use in present and future building structures. The assumption applied in practically is that convection makes a notable difference only in very thick insulation, at external temperatures below -20 deg. C, and at very low densities. For lager thickness dimensions the resulting heat transfer through the

  19. Conductive nano composites based on cellulose nano fiber coated poly aniline via in situ polymerization

    International Nuclear Information System (INIS)

    Silva, Michael J. da; Sanches, Alex O.; Malmonge, Luiz F.; Malmonge, Jose A.; Medeiros, Eliton S. de; Rosa, Morsyleide F.

    2011-01-01

    Cellulose nano fiber (CNF) was extracted by acid hydrolysis from cotton microfibril and nano composites of CNF/PANI-DBSA were obtained by in situ polymerization of aniline onto CNF. The ratios between DBSA/aniline and aniline/oxidant were varied and the nano composites were characterized by four probes direct current (dc) electrical conductivity, ultraviolet-visible (UV-Vis-NIR) and FTIR spectroscopy and X-ray diffraction (XRD). Electrical conductive about ∼10 -1 S/cm was research and was independent of DBSA/aniline molar ratio between 2-4 and the aniline/oxidant molar ratio between 1-5. X-ray patterns of the samples show crystalline peaks characteristic of cellulose I. The FTIR spectra confirmed the presence of PANI and CNF in all samples. (author)

  20. Fibrous tumours in children: imaging features of a heterogeneous group of disorders

    Energy Technology Data Exchange (ETDEWEB)

    Eich, G.F.; Hoeffel, J.C.; Tschaeppeler, H.; Gassner, I.; Willi, U.V. [Division of Diagnostic Imaging and Radiology, The University Children`s Hospital, Steinwiesstrasse 75, CH-8032 Zurich (Switzerland)

    1998-07-01

    Background. Fibrous tumours are predominantly soft tissue lesions which are relatively frequent in childhood but are little known. Imaging is often used in the evaluation of these tumours but their characteristics, particularly on US or MRI, have not been studied systematically. Objectives. To provide an overview of the clinical and imaging features of the different disorders, and to correlate them with the currently used classification schemes. Material and methods. Twenty-five patients with fibrous tumours were evaluated retrospectively. Clinical histories were studied for the histopathological diagnosis, age, signs and symptoms at presentation, mode of therapy and follow-up where available. Imaging findings were analysed for the following variables: number, location, size, margin and architecture of soft tissue and/or visceral lesions and the presence and pattern of osseous involvement. Comparison with the available literature was performed. Results. The following tumour types were encountered: desmoid fibromatosis (n = 9), myofibromatosis (n = 7), fibromatosis colli (n = 2), congenital-infantile fibrosarcoma (n = 2), adult-type fibrosarcoma (n = 2), fibrous hamartoma of infancy (n = 1), angiofibroma (n = 1) and hyaline fibromatosis (n = 1). Conclusions. While some tumours were non-specific in their clinical and radiological manifestation, others such as myofibromatosis, fibromatosis colli, fibrous hamartoma of infancy and angiofibroma exhibited a characteristic pattern which allowed a diagnosis to be made even without histology. (orig.) With 10 figs., 1 tab., 20 refs.

  1. Solitary Fibrous Tumor of the Uterus

    Directory of Open Access Journals (Sweden)

    Po-Wei Chu

    2006-12-01

    Conclusion: The behavior of solitary fibrous tumors arising from the uterus is difficult to evaluate; therefore, complete surgical excision featuring clear margins and comprehensive follow-up is recommended.

  2. In situ one-pot synthesis of graphene–polyaniline nanofiber composite for high-performance electrochemical capacitors

    International Nuclear Information System (INIS)

    Jin, Yuhong; Fang, Mou; Jia, Mengqiu

    2014-01-01

    In this work, graphene–polyaniline nanofiber (G/PANI-F) composite is prepared through a new and one-pot method that includes the reduction of graphene oxide (GO) by aniline and then followed by in-situ polymerization. Aniline plays the two roles in this method: as a chemical reducing agent to reduce GO to graphene and as a monomer to prepare polyaniline nanofiber (PANI-F). Fourier transform infrared spectroscopy, X-ray diffraction, Raman spectra, X-ray photoelectron spectroscopy and transmission electron microscopy are employed to confirm that GO can be reduced by aniline and PANI-F can be deposited on the surface of graphene. The electrochemical properties of G/PANI-F composite electrode are measured by using cyclic voltammetry, galvanostatic charge–discharge test and electrochemical impedance spectroscopy. The G/PANI-F composite electrode exhibits enhanced specific capacitance of 965 F g −1 at 0.5 A g −1 and the capacity retention is 90% after 2000 cycles.

  3. Matrix vesicles in the fibrous cap of atherosclerotic plaque: possible contribution to plaque rupture.

    Science.gov (United States)

    Bobryshev, Y V; Killingsworth, M C; Lord, R S A; Grabs, A J

    2008-10-01

    Plaque rupture is the most common type of plaque complication and leads to acute ischaemic events such as myocardial infarction and stroke. Calcification has been suggested as a possible indicator of plaque instability. Although the role of matrix vesicles in the initial stages of arterial calcification has been recognized, no studies have yet been carried out to examine a possible role of matrix vesicles in plaque destabilization. Tissue specimens selected for the present study represented carotid specimens obtained from patients undergoing carotid endarterectomy. Serial frozen cross-sections of the tissue specimens were cut and mounted on glass slides. The thickness of the fibrous cap (FCT) in each advanced atherosclerotic lesion, containing a well developed lipid/necrotic core, was measured at its narrowest sites in sets of serial sections. According to established criteria, atherosclerotic plaque specimens were histologically subdivided into two groups: vulnerable plaques with thin fibrous caps (FCT <100 microm) and presumably stable plaques, in which fibrous caps were thicker than 100 microm. Twenty-four carotid plaques (12 vulnerable and 12 presumably stable plaques) were collected for the present analysis of matrix vesicles in fibrous caps. In order to provide a sufficient number of representative areas from each plaque, laser capture microdissection (LCM) was carried out. The quantification of matrix vesicles in ultrathin sections of vulnerable and stable plaques revealed that the numbers of matrix vesicles were significantly higher in fibrous caps of vulnerable plaques than those in stable plaques (8.908+0.544 versus 6.208+0.467 matrix vesicles per 1.92 microm2 standard area; P= 0.0002). Electron microscopy combined with X-ray elemental microanalysis showed that some matrix vesicles in atherosclerotic plaques were undergoing calcification and were characterized by a high content of calcium and phosphorus. The percentage of calcified matrix vesicles

  4. Effect of different oxidants on polyaniline/single walled carbon nanotubes composites synthesized via ultrasonically initiated in-situ chemical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Gull, Nafisa, E-mail: gullchemist@gmail.com [Department of Polymer Engineering and Technology, University of the Punjab, Lahore, 54590 (Pakistan); Khan, Shahzad Maqsood, E-mail: shahzadkhan81@hotmail.com [Department of Polymer Engineering and Technology, University of the Punjab, Lahore, 54590 (Pakistan); Islam, Atif; Zia, Saba; Shafiq, Muhammad; Sabir, Aneela; Munawar, Muhammad Azeem [Department of Polymer Engineering and Technology, University of the Punjab, Lahore, 54590 (Pakistan); Butt, Muhammad Taqi Zahid [College of Engineering and Emerging Technologies, University of the Punjab, Lahore, 54590 (Pakistan); Jamil, Tahir [Department of Polymer Engineering and Technology, University of the Punjab, Lahore, 54590 (Pakistan)

    2016-04-01

    This study is aimed at investigating the effect of different oxidants on properties of polyaniline/single walled carbon nanotubes (PANI/SWCNT) composites and scrutinizing a suitable oxidant to improve the properties of composites. PANI/SWCNT composites were fabricated via ultrasonically initiated in-situ chemical polymerization technique using four different oxidants; hydrogen peroxide (H{sub 2}O{sub 2}), ammonium peroxidisulphate ((NH{sub 4}){sub 2}S{sub 2}O{sub 8}), potassium dichromate (K{sub 2}Cr{sub 2}O{sub 7}) and potassium iodate (KIO{sub 3}). Percent yield (97%), molecular weight (45532 g mol{sup −1}) and electrical conductivity (0.835 S cm{sup −1}) were found maximum for composite prepared in the presence of H{sub 2}O{sub 2}. Structural confirmation of PANI and charge transfer complex formation between PANI and SWCNT were confirmed by fourier transform infrared spectroscopy, UV–visible spectroscopy and X-ray diffraction spectroscopy. Thermogravimetric analysis verified that the PANI/SWCNT composite synthesized using H{sub 2}O{sub 2} had maximum thermal stability with least thermal degradation (∼28%). Minimal thermal transitions of the composite were also observed for same composite by differential scanning calorimetry. Scanning electron microscopic images of PANI/SWCNT composites revealed that SWCNT were properly dispersed in PANI matrix when H{sub 2}O{sub 2} was used. Above results provide the valuable suggestion that; H{sub 2}O{sub 2} is a promising oxidant to enhance structural, thermal, electrical and microscopic properties of composites. - Highlights: • Ultrasonically initiated in-situ chemical polymerization protocol was devised for synthesis of PANI/SWCNT composites. • SEM micrographs of PANI/SWCNT-1 showed uniform dispersed structure. • Better thermal stability and conductivity was evidenced for H{sub 2}O{sub 2} based PANI/SWCNT composite. • π–π interaction between PANI and SWCNT is confirmed by FTIR and UV

  5. Embedding of MEMS pressure and temperature sensors in carbon fiber composites: a manufacturing approach

    Science.gov (United States)

    Javidinejad, Amir; Joshi, Shiv P.

    2000-06-01

    In this paper embedding of surface mount pressure and temperature sensors in the Carbon fiber composites are described. A commercially available surface mount pressure and temperature sensor are used for embedding in a composite lay- up of IM6/HST-7, IM6/3501 and AS4/E7T1-2 prepregs. The fabrication techniques developed here are the focus of this paper and provide for a successful embedding procedure of pressure sensors in fibrous composites. The techniques for positioning and insulating, the sensor and the lead wires, from the conductive carbon prepregs are described and illustrated. Procedural techniques are developed and discussed for isolating the sensor's flow-opening, from the exposure to the prepreg epoxy flow and exposure to the fibrous particles, during the autoclave curing of the composite laminate. The effects of the autoclave cycle (if any) on the operation of the embedded pressure sensor are discussed.

  6. Mitochondrial Respiration Is Reduced in Atherosclerosis, Promoting Necrotic Core Formation and Reducing Relative Fibrous Cap Thickness.

    Science.gov (United States)

    Yu, Emma P K; Reinhold, Johannes; Yu, Haixiang; Starks, Lakshi; Uryga, Anna K; Foote, Kirsty; Finigan, Alison; Figg, Nichola; Pung, Yuh-Fen; Logan, Angela; Murphy, Michael P; Bennett, Martin

    2017-12-01

    Mitochondrial DNA (mtDNA) damage is present in murine and human atherosclerotic plaques. However, whether endogenous levels of mtDNA damage are sufficient to cause mitochondrial dysfunction and whether decreasing mtDNA damage and improving mitochondrial respiration affects plaque burden or composition are unclear. We examined mitochondrial respiration in human atherosclerotic plaques and whether augmenting mitochondrial respiration affects atherogenesis. Human atherosclerotic plaques showed marked mitochondrial dysfunction, manifested as reduced mtDNA copy number and oxygen consumption rate in fibrous cap and core regions. Vascular smooth muscle cells derived from plaques showed impaired mitochondrial respiration, reduced complex I expression, and increased mitophagy, which was induced by oxidized low-density lipoprotein. Apolipoprotein E-deficient (ApoE -/- ) mice showed decreased mtDNA integrity and mitochondrial respiration, associated with increased mitochondrial reactive oxygen species. To determine whether alleviating mtDNA damage and increasing mitochondrial respiration affects atherogenesis, we studied ApoE -/- mice overexpressing the mitochondrial helicase Twinkle (Tw + /ApoE -/- ). Tw + /ApoE -/- mice showed increased mtDNA integrity, copy number, respiratory complex abundance, and respiration. Tw + /ApoE -/- mice had decreased necrotic core and increased fibrous cap areas, and Tw + /ApoE -/- bone marrow transplantation also reduced core areas. Twinkle increased vascular smooth muscle cell mtDNA integrity and respiration. Twinkle also promoted vascular smooth muscle cell proliferation and protected both vascular smooth muscle cells and macrophages from oxidative stress-induced apoptosis. Endogenous mtDNA damage in mouse and human atherosclerosis is associated with significantly reduced mitochondrial respiration. Reducing mtDNA damage and increasing mitochondrial respiration decrease necrotic core and increase fibrous cap areas independently of changes in

  7. In situ synthesis of α-MoO3/graphene composites as anode materials for lithium ion battery

    International Nuclear Information System (INIS)

    Liu, Chun-Ling; Wang, Yan; Zhang, Chen; Li, Xiao-Shan; Dong, Wen-Sheng

    2014-01-01

    The α-MoO 3 /graphene composites (MoO 3 /G) were prepared via an in situ hydrothermal synthesis. The composites were characterized using various characterization techniques including powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, and the electrochemical performance test. The results show that these MoO 3 /G composites exhibit high capacity and good cycle stability when used as the lithium-ion battery anode. Among all the samples, the MoO 3 /G-27 reveals the best electrochemical performance with an initial charge capacity of 977.7 mAh g −1 at a current density of 50 mA g −1 , the first coulombic efficiency of 69.5%. After eighty cycles the electrode still maintains a capacity of 869.2 mAh g −1 , giving high capacity retention of 88.9%. The good electrochemical performance of the composite anode is close related to its structure, in which the MoO 3 nanobelts are not only homogeneously anchored on the surface but also embedded in the interlayer of the graphene sheets; hence the volume change and aggregation of the MoO 3 nanobelts during lithium ion insertion/extraction process can be effectively hindered. On the other hand, graphene itself is an electronic conductor; the graphene and MoO 3 nanobelts connect closely, which offers large electrode/electrolyte contacting area, short path length for Li + transporting during lithium insertion and extraction. - Highlights: • The α-MoO 3 /graphene composites were prepared via an in situ hydrothermal synthesis. • The MoO 3 /G-27 anode delivers an initial reversible capacity of 977.7 mAh g −1 . • After 80 cycles it has a reversible capacity of 869.2 mAh g −1 at 50 mA g −1

  8. Reinforcement of nylon 6,6/nylon 6,6 grafted nanodiamond composites by in situ reactive extrusion

    Science.gov (United States)

    Choi, Eun-Yeob; Kim, Kiho; Kim, Chang-Keun; Kang, Eunah

    2016-11-01

    Nanodiamond (ND), an emerging new carbon material, was exploited to reinforce nylon 6,6 (PA66) polymer composites. Surface modified nanodiamonds with acyl chloride end groups were employed to chemically graft into PA66, enhancing the interfacial adhesion and thus the mechanical properties. The ND grafted PA66 (PA66-g-ND) reinforced PA66 composite prepared by in situ reactive extrusion exhibited increased tensile strength and modulus. The tensile strength and modulus of PA66/3 wt.% PA66-g-ND composites were enhanced by 11.6 and 20.8%, respectively when compared to those of the bare PA66 matrix. Even the PA66/pristine ND composites exhibited enhanced mechanical properties. The PA66-g-ND and the homogeneously dispersed PA66-g-ND in PA66 matrix were examined using X-ray photoelectron spectroscopy, thermogravimetric analysis, scanning electron microscopy and transmission electron microscopy techniques. The mechanical properties and thermal conductivities of the nanodiamond incorporated PA66 composites were also explored. The enhanced mechanical properties and thermal conductivities of the PA66-g-ND/PA66 composites make them potential materials for new applications as functional engineered thermoplastics.

  9. Asbestos free friction composition for brake linings

    Indian Academy of Sciences (India)

    An asbestos free friction material composite for brake linings is synthesized containing fibrous reinforcing constituents, friction imparting and controlling additives, elastomeric additives, fire retarding components and a thermosetting resin. The composite shows exemplary friction characteristics and has great resistance to ...

  10. Avoiding transport bottlenecks in an expanding root system: xylem vessel development in fibrous and pioneer roots under field conditions.

    Science.gov (United States)

    Bagniewska-Zadworna, Agnieszka; Byczyk, Julia; Eissenstat, David M; Oleksyn, Jacek; Zadworny, Marcin

    2012-09-01

    Root systems develop to effectively absorb water and nutrients and to rapidly transport these materials to the transpiring shoot. In woody plants, roots can be born with different functions: fibrous roots are primarily used for water and nutrient absorption, whereas pioneer roots have a greater role in transport. Because pioneer roots extend rapidly in the soil and typically quickly produce fibrous roots, they need to develop transport capacity rapidly so as to avoid becoming a bottleneck to the absorbed water of the developing fibrous roots and, as we hypothesized, immediately activate a specific type of autophagy at a precise time of their development. Using microscopy techniques, we monitored xylem development in Populus trichocarpa roots in the first 7 d after emergence under field conditions. Newly formed pioneer roots contained more primary xylem poles and had larger diameter tracheary elements than fibrous roots. While xylogenesis started later in pioneer roots than in fibrous, it was completed at the same time, resulting in functional vessels on the third to fourth day following root emergence. Programmed cell death was responsible for creating the water conducting capacity of xylem. Although the early xylogenesis processes were similar in fibrous and pioneer roots, secondary vascular development proceeded much more rapidly in pioneer roots. Compared to fibrous roots, rapid development of transport capacity in pioneer roots is not primarily caused by accelerated xylogenesis but by larger and more numerous tracheary elements and by rapid initiation of secondary growth.

  11. Preparation and characterization of nano-hydroxyapatite within chitosan matrix

    International Nuclear Information System (INIS)

    Rogina, A.; Ivanković, M.; Ivanković, H.

    2013-01-01

    Nano-composites that show some features of natural bone both in composition and in microstructure have been prepared by in situ precipitation method. Apatite phase has been prepared from cost-effective precursors (calcite and urea phosphate) within chitosan (CS) matrix dissolved in aqueous acetic acid solution. The compositional and morphological properties of composites were studied by means of Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) thermogravimetric analysis (TGA) and transmission electron microscopy (TEM). Depending on the reaction conditions (temperature, reaction time, glucose addition and pH control) in addition to hydroxyapatite (HA) as a major phase, octacalcium hydrogen phosphate pentahydrate (OCP) and dicalcium phosphate anhydrate (DCPD) were formed as shown by XRD and FTIR. Crystallite lengths of precipitated HA estimated by Scherrer's equation were between 20 and 30 nm. A fibrous morphology (∼ 400 nm) of HA observed by TEM indicates that HA nucleates on chitosan chains. - Highlights: • Nano-hydroxyapatite (HA) was prepared by in situ precipitation within chitosan hydrogels and colloidal chitosan solution. • pH control was regulated by ammonia and urea degradation. • In situ urea degradation provides homogenous HA formation. • TEM imaging indicates fibrous morphology of HA with crystalline size of 400 nm. • Glucose addition and temperature variation affect inorganic phase formation

  12. In situ reactive compatibilization of natural rubber/acrylic-bentonite composites via peroxide-induced vulcanization

    International Nuclear Information System (INIS)

    Fu, Lihua; Lei, Zhiwen; Xu, Chuanhui; Chen, Yukun

    2016-01-01

    To achieve good interfacial interaction between fillers and rubber matrix is always a hot topic in rubber reinforcing industry. In this paper, acid activated bentonite (Bt) was alkalified to be alkaline calcium-bentonite (ACBt), then acrylic acid (AA) was employed to modify ACBt to obtain acrylic-bentonite (ABt). The results of Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) illustrated that acrylate groups were chemically boned onto the surface of Bt and the layer spacing of Bt was increased. During peroxide-induced vulcanization, in situ compatibilization of ABt was realized via the reaction between the unsaturated bonds of acrylate groups on the surface of Bt and the natural rubber (NR) chains. This resulted in an enhanced cross-linked network which contributed to the improved mechanical properties of NR/ABt composites. - Highlights: • Acrylate groups were chemically boned onto the surface of bentonite. • In situ compatibilization was realized via the reaction of acrylate group and NR. • ABt particles participated in forming the NR crosslink network. • A potential reinforcing material options for “white” rubber products.

  13. In situ reactive compatibilization of natural rubber/acrylic-bentonite composites via peroxide-induced vulcanization

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Lihua; Lei, Zhiwen [Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Xu, Chuanhui, E-mail: xuhuiyee@gxu.edu.cn [Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Chen, Yukun, E-mail: cyk@scut.edu.cn [The Key Laboratory of Polymer Processing Engineering, Ministry of Education, China(South China University of Technology), Guangzhou, 510640 (China)

    2016-02-15

    To achieve good interfacial interaction between fillers and rubber matrix is always a hot topic in rubber reinforcing industry. In this paper, acid activated bentonite (Bt) was alkalified to be alkaline calcium-bentonite (ACBt), then acrylic acid (AA) was employed to modify ACBt to obtain acrylic-bentonite (ABt). The results of Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) illustrated that acrylate groups were chemically boned onto the surface of Bt and the layer spacing of Bt was increased. During peroxide-induced vulcanization, in situ compatibilization of ABt was realized via the reaction between the unsaturated bonds of acrylate groups on the surface of Bt and the natural rubber (NR) chains. This resulted in an enhanced cross-linked network which contributed to the improved mechanical properties of NR/ABt composites. - Highlights: • Acrylate groups were chemically boned onto the surface of bentonite. • In situ compatibilization was realized via the reaction of acrylate group and NR. • ABt particles participated in forming the NR crosslink network. • A potential reinforcing material options for “white” rubber products.

  14. Effect of friction stir welding on microstructure, mechanical and wear properties of AA6061/ZrB2 in situ cast composites

    International Nuclear Information System (INIS)

    Dinaharan, I.; Murugan, N.

    2012-01-01

    Highlights: ► Application of FSW to join AA6061/ZrB 2 in situ composites. ► Homogenous distribution of ZrB 2 particles in the weld zone. ► Clusters in the parent composite are fragmented by the stirring action of the tool. ► Hardening of weld zone. ► FSW enhanced the wear resistance of the composite. - Abstract: Inadequate development of fabrication methods restricts the applications of new families of aluminum matrix composites (AMCs). Friction stir welding (FSW) is a potential candidate to join AMCs without any defects associated with conventional fusion welding processes. The primary objective of the present work is to apply FSW process to join AA6061/(0, 5 and 10 wt.%) ZrB 2 in situ cast composites and evaluate the joint properties. The composites were prepared by reacting inorganic salts K 2 ZrF 6 and KBF 4 with molten aluminum and joined using a FSW machine at a tool rotational speed of 1150 rpm, welding speed of 50 mm/min and axial force of 6 kN. The joints showed the presence of various zones such as weld zone (WZ), thermomechanically affected zone (TMAZ) and heat affected zone (HAZ). The weld zone was characterized with a homogenous distribution of ZrB 2 particles. The stirring action of the tool resulted in fragmentation of several clusters present in the parent composite. The weld zone exhibited higher hardness than that of the parent composite. The tensile strength of welded joints was comparable to that of parent composites. The wear resistance of the composites improved subsequent to FSW.

  15. Natural triple beta-stranded fibrous folds.

    Science.gov (United States)

    Mitraki, Anna; Papanikolopoulou, Katerina; Van Raaij, Mark J

    2006-01-01

    A distinctive family of beta-structured folds has recently been described for fibrous proteins from viruses. Virus fibers are usually involved in specific host-cell recognition. They are asymmetric homotrimeric proteins consisting of an N-terminal virus-binding tail, a central shaft or stalk domain, and a C-terminal globular receptor-binding domain. Often they are entirely or nearly entirely composed of beta-structure. Apart from their biological relevance and possible gene therapy applications, their shape, stability, and rigidity suggest they may be useful as blueprints for biomechanical design. Folding and unfolding studies suggest their globular C-terminal domain may fold first, followed by a "zipping-up" of the shaft domains. The C-terminal domains appear to be important for registration because peptides corresponding to shaft domains alone aggregate into nonnative fibers and/or amyloid structures. C-terminal domains can be exchanged between different fibers and the resulting chimeric proteins are useful as a way to solve structures of unknown parts of the shaft domains. The following natural triple beta-stranded fibrous folds have been discovered by X-ray crystallography: the triple beta-spiral, triple beta-helix, and T4 short tail fiber fold. All have a central longitudinal hydrophobic core and extensive intermonomer polar and nonpolar interactions. Now that a reasonable body of structural and folding knowledge has been assembled about these fibrous proteins, the next challenge and opportunity is to start using this information in medical and industrial applications such as gene therapy and nanotechnology.

  16. High-Grade Transformation of Adenoid Cystic Carcinoma Delineated with a Fibrous Rim: A Case Report

    Directory of Open Access Journals (Sweden)

    Hamide Sayar

    2013-09-01

    Full Text Available Background: High-grade transformation or dedifferentiation in carcinoma is progression of a low-grade malignant neoplasm to a high-grade carcinoma or poorly differentiated adenocarcinoma. This is rarely observed in adenoid cystic carcinoma of the salivary glands. Case Report: A 39 year-old woman presented with a painless mass at the left submandibulary region that had been growing slowly for 5 years. Submandibulary mass resection revealed a mass with peripheral adenoid cystic carcinoma and a central high-grade tumor delineated with a fibrous rim, raising the possibility of a hybrid or composite carcinoma, requiring differential diagnosis depending upon morphology and immunohistochemistry findings. The final histopathological diagnosis was high-grade transformation of adenoid cystic carcinoma. After surgical therapy, the patient was irradiated to the neck and submandibulary region. No sign of tumor recurrence has been evident for 36 months. Conclusion: This present case seems to be another rare case with high-grade transformation of adenoid cystic carcinoma and the fibrous rim may be a histopathological feature of such cases, which should be kept in mind.

  17. In Situ Mechanical Testing of Nanostructured Bijel Fibers.

    Science.gov (United States)

    Haase, Martin F; Sharifi-Mood, Nima; Lee, Daeyeon; Stebe, Kathleen J

    2016-06-28

    Bijels are a class of soft materials with potential for application in diverse areas including healthcare, food, energy, and reaction engineering due to their unique structural, mechanical, and transport properties. To realize their potential, means to fabricate, characterize, and manipulate bijel mechanics are needed. We recently developed a method based on solvent transfer-induced phase separation (STRIPS) that enables continuous fabrication of hierarchically structured bijel fibers from a broad array of constituent fluids and nanoparticles using a microfluidic platform. Here, we introduce an in situ technique to characterize bijel fiber mechanics at initial and final stages of the formation process within a microfluidics device. By manipulation of the hydrodynamic stresses applied to the fiber, the fiber is placed under tension until it breaks into segments. Analysis of the stress field allows fracture strength to be inferred; fracture strengths can be as high as several thousand Pa, depending on nanoparticle content. These findings broaden the potential for the use of STRIPS bijels in applications with different mechanical demands. Moreover, our in situ mechanical characterization method could potentially enable determination of properties of other soft fibrous materials made of hydrogels, capillary suspensions, colloidal gels, or high internal phase emulsions.

  18. Robust hydrophobic polyurethane fibrous membranes with tunable porous structure for waterproof and breathable application

    Science.gov (United States)

    Gu, Jiatai; Gu, Haihong; Cao, Jin; Chen, Shaojie; Li, Ni; Xiong, Jie

    2018-05-01

    In this work, novel nanofibrous membranes with waterproof and breathable (W&B) performance were successfully fabricated by the combination of electrospinning and surface modification technology. This fibrous membranes consisted of polyurethane (PU), NaCl, and fluoroalkylsilane (FAS). Firstly, The fibrous construction and porous structure of fibrous membranes were regulated by tuning the NaCl concentrations in PU solutions. Then, the obtained PU/NaCl fibrous membranes were further modified with fluoroalkylsilane (FAS) to improve hydrophobic property. The synergistic effect of porous structure and hydrophobicity on waterproof and breathable performance was investigated. Furthermore, the mechanical property of fibrous membranes was deeply analysed on the basis of macromolecule orientation and adhesive structure. Benefiting from the optimized porous structure and hydrophobic modification, the resultant fibrous membranes exhibited excellent waterproof (hydrostatic pressure of 1261 Mbar), breathable (water vapor transmission (WVT) rate of 9.06 kg m-2 d-1 and air permeability of 4.8 mm s-1) performance, as well as high tensile strength (breakage stress of 10.4 MPa), suggesting a promising candidate for various applications, especially in protective clothing.

  19. Controlling the Sn-C bonds content in SnO2@CNTs composite to form in situ pulverized structure for enhanced electrochemical kinetics.

    Science.gov (United States)

    Cheng, Yayi; Huang, Jianfeng; Qi, Hui; Cao, Liyun; Luo, Xiaomin; Li, Jiayin; Xu, Zhanwei; Yang, Jun

    2017-12-07

    The Sn-C bonding content between the SnO 2 and CNTs interface was controlled by the hydrothermal method and subsequent heat treatment. Electrochemical analysis found that the SnO 2 @CNTs with high Sn-C bonding content exhibited much higher capacity contribution from alloying and conversion reaction compared with the low content of Sn-C bonding even after 200 cycles. The high Sn-C bonding content enabled the SnO 2 nanoparticles to stabilize on the CNTs surface, realizing an in situ pulverization process of SnO 2 . The in situ pulverized structure was beneficial to maintain the close electrochemical contact of the working electrode during the long-term cycling and provide ultrafast transfer paths for lithium ions and electrons, which promoted the alloying and conversion reaction kinetics greatly. Therefore, the SnO 2 @CNTs composite with high Sn-C bonding content displayed highly reversible alloying and conversion reaction. It is believed that the composite could be used as a reference for design chemically bonded metal oxide/carbon composite anode materials in lithium-ion batteries.

  20. Conductive additive content balance in Li-ion battery cathodes: Commercial carbon blacks vs. in situ carbon from LiFePO{sub 4}/C composites

    Energy Technology Data Exchange (ETDEWEB)

    Palomares, Veronica; Goni, Aintzane; Muro, Izaskun Gil de; Rojo, Teofilo [Departamento de Quimica Inorganica, Universidad del Pais Vasco UPV/EHU, P.O. Box. 644, 48080, Bilbao (Spain); de Meatza, Iratxe; Bengoechea, Miguel [Energy Department, CIDETEC-IK4, P Miramon 196, Parque Tecnologico de San Sebastian, 20009, San Sebastian (Spain); Cantero, Igor [Departamento I+D+i Nuevas Tecnologias, CEGASA, Artapadura, 11, 01013 Vitoria-Gasteiz (Spain)

    2010-11-15

    Two samples of commercial conducting carbon black and the carbon generated in situ during LiFePO{sub 4}/C composite synthesis from citric acid are studied, with the aim of finding out whether carbon from the composite can fulfil the same function as carbon black in the electrode blend for a Li-ion battery. For this purpose, the carbon samples are analyzed by several techniques, such as X-ray diffraction, Raman spectroscopy, transmission electron microscopy, granulometry, BET specific area and conductivity measurements. Different cathode compositions and component proportions are tested for pellet and cast electrodes. Electrochemical results show that a moderate reduction of commercial carbon black content in both kinds of cathodes, by adding more LiFePO{sub 4}/C composite, enhanced the electrochemical behaviour by around 10%. In situ generated carbon can partially replace commercial conducting carbon black because its high specific surface probably enhances electrolyte penetration into the cathode, but it is always necessary to maintain a minimum amount of carbon black that provides better conductivity in order to obtain a good electrochemical response. (author)

  1. Malign Fibrous Histiocytoma of the Bladder: A Rare Case Report

    Directory of Open Access Journals (Sweden)

    Ižbrahim Bozkurt

    2014-06-01

    Full Text Available Malignant fibrous histocytoma is a mesenchimal tumor, which was described in 1964. It is the most common soft tissue sarcoma in patients over the age of 40 years. There were very few reports about malignant fibrous histocytoma in urinary tract especially in bladder with 30 patients. Patients usually present with gross hematuria. Because of its agressive characteristics; recurrences, progressions and metastasis are likely. Tumor grade, tumor size, amount of invasion and histological type are the risk factors for metastasis. Early radical cystectomy is the first treatment option because of poor prognosis of these tumors but usually can not be sufficient. Chemotherapy and radiotherapy are used to as an alternative treatment or adjuvant treatment with surgery. We would like to present a bladder malignant fibrous histocytoma case to contribute to the lirature.

  2. Pulping and papermaking properties of the leaf fiber and fibrous residue from Agave tequilana

    Energy Technology Data Exchange (ETDEWEB)

    Kurita, T.; Mitsuhashi, S.; Kanetsuna, H.; Iguchi, M.; Shirota, T.; Trujillo, J.J.; Herrera, T.

    1981-01-01

    The leaves and fibrous residue of A. tequilana had fibriles with parallel orientation and helical arrangement to the fiber axis and contained fibers in average length and width of 1.7 mm and 10.3 mu m and 0.8 mm and 25.5 mu m, respectively. The cell wall in leaves was thicker and narrower than those in fibrous residue, and leaves contained cellulose and lignin lower than fibrous residue did. Alkali sulfite cooking of leaves gave pulp, the yield of which was lower than that from fibrous residue. The H/sub 2/On retention and bulk density of leaf pulps increased rapidly on beating suggesting that an internal fibrillation in pulp occurs easily during beating. The breaking length and burst and tear factors of paper from leaf pulp were higher than those from fibrous residue.

  3. Unexpected finding of elevated glucose uptake in fibrous dysplasia mimicking malignancy: contradicting metabolism and morphology in combined PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Stegger, Lars; Weckesser, Matthias [University Hospital of Muenster, Department of Nuclear Medicine (Germany); Juergens, Kai U.; Wormanns, Dag [University Hospital of Muenster, Department of Clinical Radiology (Germany); Kliesch, Sabine [University Hospital of Muenster, Department of Urology (Germany)

    2007-07-15

    Fibrous dysplasia is a common benign disorder of bone in which fibro-osseous tissue replaces bone spongiosa. Lesions have a typical appearance on computed tomography (CT) images and regularly show a markedly increased uptake in bone scintigraphy using {sup 99m}Tc-labelled methylene diphosphonate ({sup 99m}Tc-MDP) as radiotracer. The glucose avidity of these lesions depicted by positron emission tomography (PET) using the radiolabelled glucose derivative {sup 18}F-fluoro-2-deoxy-glucose (FDG) is less well known since FDG-PET does not have a role in the assessment of this disease. However, single cases have been reported in which fibrous dysplasia was present in patients undergoing FDG-PET scanning for oncological reasons, and no significant FDG uptake was observed for lesions identified as fibrous dysplasia. We report on a 24-year-old man with known fibrous dysplasia who underwent combined FDG-PET/CT scanning because of suspected recurrence of testicular cancer. In contrast to prior reports, a markedly elevated uptake of FDG was seen in numerous locations that were identified as fibrous dysplasia by CT. Based on this result, we conclude that fibrous dysplasia may mimick malignancy in FDG-PET and that coregistered CT may help to resolve these equivocal findings. (orig.)

  4. Structure property relationship of biological nano composites studies by combination of in-situ synchrotron scattering and mechanical tests

    International Nuclear Information System (INIS)

    Martinschitz, K.

    2005-06-01

    Biological materials represent hierarchical nano fibre composites with complicated morphology and architecture varying on the nm level. The mechanical response of those materials is influenced by many parameters like chemical composition and crystal structure of constituents, preferred orientation, internal morphology with specific sizes of features etc. In-situ wide-angle x-ray scattering (WAXS) combined with mechanical tests provide a unique means to evaluate structural changes in biological materials at specific stages of tensile experiments. In this way it is possible to identify distinct architectural/compositional elements responsible for specific mechanical characteristics of the biological materials. In this thesis, structure-property relationship is analyzed using in-situ WAXS in the tissues of Picea abies, coir fibre, bacterial cellulose and cellulose II based composites. The experiments were performed at the beamline ID01 of European synchrotron radiation facility in Grenoble, France. The tissues were strained in a tensile stage, while the structural changes were monitored using WAXS. Complex straining procedures were applied including cyclic straining. One of the main goals was to understand the stiffness recovery and strain hardening effects in the tissues. The results demonstrate that, in all cellulosics, the orientation of the cellulose crystallites is only the function of the external strain while the stiffness depends on the specific stage of the tensile experiment. Whenever the strain is increased, the tissues exhibit stiffness equal or larger than the initial one. The recovery of the mechanical function is attributed to the molecular mechanistic effects operating between the crystalline domains of the cellulose. (author)

  5. Recurring fibrous dysplasia of anthro maxillary with cranial base invasion

    Directory of Open Access Journals (Sweden)

    Sousa, Kátia Maria Marabuco de

    2009-09-01

    Full Text Available Introduction: Fibrous dysplasia is an osseous lesion with an unknown etiology. It is characterized by the osseous maturation insufficiency. It may affect any bone, but the affection of craniofacial bones is the most critical for otorhinolaryngology. Maxilla is the most affected facial bone and the orbitary invasion is an uncommon event. The symptoms are unspecific and for its low suspicion and uncommonness, the diagnosis is generally late. The monostotic form presents a slow growth and asymptomatic course and needs to be followed up. The polyostotic type has a progressive behavior and is associated to recurrence and complications. Objective: To present two cases of patients with fibrous dysplasia diagnosis and describe the clinical presentation, radiological findings and the treatment of this pathology. Cases Report: Two cases of fibrous dysplasia are reported, which initially presented unspecific symptomatology, but with characteristic radiologic signs. They were submitted to surgical treatment for resection of the lesions and evolved with frequent recurrences with extensive affection of the facial sinuses, one patient had cranial base invasion and frontal craniotomy was needed for tumoral excision. Final Comments: Fibrous dysplasia is an uncommon osteopathy. The tomography is the choice method for characterization of the tumoral expansion, and helps in the surgical planning. The surgical strategy is indicated for symptomatic lesions, functions alterations or anatomic disorders. This article describes two uncommon manifestations of recurrent fibrous dysplasia with an extensive affection of anthro maxillary, ethmoidal and sphenoid sinuses, in addition to orbitary and cranial base invasion.

  6. Growth Performance and Behaviour in Grouped Pigs Fed Fibrous Diet

    Directory of Open Access Journals (Sweden)

    A. G. Bakare

    2014-08-01

    Full Text Available The objective of the study was to investigate the effect of feeding fibrous diets on growth performance and occurrence of aggressive behaviours in growing pigs. Sixty healthy castrated pigs (initial body weight: 46.7±4.35 kg were used. A basal diet was diluted with maize cobs to two levels (0 and 160 g/kg dry matter. Behavioural activities were observed using video cameras for three weeks, 8 h/d starting at 0800 h. Pigs subjected to control diet gained more weight compared to pigs receiving fibrous diet in week 1 (0.47 vs 0.15 kg, respectively and 2 (1.37 vs 1.04, respectively (p<0.05. Average daily gain was not affected by treatment diet in the third week. Pigs on high fibrous spent more time eating, lying down, standing, walking and fighting (p<0.05 compared to pigs on control diet. Time spent eating increased as the weeks progressed whilst time spent lying down decreased. Time of day had an effect on time spent on different behavioural activities exhibited by all pigs on different treatment diet (p<0.05. Inactivity was greatest in 5th (1200 to 1300 h hour of the day for all the pigs on different dietary treatments. Skin lesions appeared the most on neck and shoulder region followed by chest, stomach and hind leg region, and finally head region (p<0.05. Pigs on high fibre diet had more skin lesions in all body regions compared to pigs on control diet (p<0.05. It can be concluded that the high fibrous diet with maize cobs did not affect growth performance and also did not reduce aggressive behaviours. Aggressive behaviours emanated out of frustration when queuing on the feeder. The findings of this study suggest that maize cobs can be included at a level of 160 g/kg in diets of pigs. However, to reduce the level of aggression more feeding space should be provided.

  7. In-Situ Preparation of Aramid-Multiwalled CNT Nano-Composites: Morphology, Thermal Mechanical and Electric Properties

    Directory of Open Access Journals (Sweden)

    Jessy Shiju

    2018-05-01

    Full Text Available In this work in-situ polymerization technique has been used to chemically link the functionalized multiwalled carbon nanotubes (CNTs with aramid matrix chains. Phenylene diamine monomers were reacted in the first stage with the carboxylic acid functionalized CNTs and then amidized in-situ using terephthaloyl chloride generating chemically bonded CNTs with the matrix. Various proportions of the CNTs were used to prepare the hybrid materials. The functionalization procedure was studied by Fourier transform infrared (FTIR spectroscopy and composite morphology investigated by scanning electron microscopy (SEM. Thermal mechanical properties of these hybrids, together with those where pristine CNTs with similar loadings were used, are compared using tensile and dynamic mechanical analysis (DMA. The tensile strength and temperature involving α-relaxations on CNT loading increased with CNT loading in both systems, but much higher values, i.e., 267 MPa and 353 °C, respectively, were obtained in the chemically bonded system, which are related to the nature of the interface developed as observed in SE micrographs. The water absorption capacity of the films was significantly reduced from 6.2 to 1.45% in the presence pristine CNTs. The inclusion of pristine CNTs increased the electric conductivity of the aramid films with a minimum threshold value at the loading of 3.5 wt % of CNTs. Such mechanically strong and thermally stable aramid and easily processable composites can be suitable for various applications including high performance films, electromagnetic shielding and radar absorption.

  8. Aging behavior of an in-situ TiB2/Al-Cu-Li-x matrix composite

    International Nuclear Information System (INIS)

    Shen, Yanwei; Hong, Tianran; Geng, Jiwei; Han, Gaoyang; Chen, Dong; Li, Xianfeng; Wang, Haowei

    2017-01-01

    Transmission electron microscopy, differential scanning calorimetry and hardness tests have been performed on an in-situ TiB 2 /Al-3.3Cu-1.0Li-0.60Mg-0.40Ag-0.14Zr-0.13Si composite to study its aging behavior at 175 °C. A cubic phase suspected to be the σ (Al 5 Cu 6 Mg 2 ) phase or its variant is precipitated at all aging stages studied, and this phase is not typically observed in the Al-Cu-Li alloys. The primary hardening (aging for 3 h) phases consist of δ′ (Al 3 Li), β′ (Al 3 Zr) and the cubic phase. After aging for 18 h, all precipitates including T 1 (Al 2 CuLi), S (Al 2 CuMg), θ′ (Al 2 Cu), δ′, β′ and the cubic phase have appeared, and the formation of T 1 and S results in a rapid increase in hardness. With prolonging of aging time, the apparent coarsening of T 1 and S results in a decline in hardness. - Highlights: •The aging behavior of an in-situ TiB 2 /Al-Cu-Li-x composite was studied. •A cubic phase suspected to be σ (Al 5 Cu 6 Mg 2 ) or its variant was precipitated. •The hardness change was dominated by the evolution of T 1 (Al 2 CuLi) and S (Al 2 CuMg).

  9. Fabrication of SiC Composites with Synergistic Toughening of Carbon Whisker and In Situ 3C-SiC Nanowire

    Directory of Open Access Journals (Sweden)

    Zhang Yunlong

    2016-01-01

    Full Text Available The SiC composites with synergistic toughening of carbon whisker and in situ 3C-SiC nanowire have been fabricated by hot press sinter technology and annealed treatment technology. Effect of annealed time on the morphology of SiC nanowires and mechanical properties of the Cw/SiC composites was surveyed in detail. The appropriate annealed time improved mechanical properties of the Cw/SiC composites. The synergistic effect of carbon whisker and SiC nanowire can improve the fracture toughness for Cw/SiC composites. The vapor-liquid-solid growth (VLS mechanism was proposed. TEM photo showed that 3C-SiC nanowire can be obtained with preferential growth plane ({111}, which corresponded to interplanar spacing about 0.25 nm.

  10. Fibrous dysplasia: rapid malignant transformation into osteogenic sarcoma - A rare occurance

    Directory of Open Access Journals (Sweden)

    S Gon

    2012-09-01

    Full Text Available Malignant transformation of fibrous dysplasia is rare, occurring in less than 1% of cases with a mean lag period of 13.5 years. We report a case of Osteogenic Sarcoma with chondroid differentiation in a pre-existing Fibrous Dysplasia occurring within one year of surgical resection and without any history of exposure to radiation. To the best of our knowledge and extensive search of literature, malignant transformation of Fibrous Dysplasia in such a short period of time, and without history of radiation exposure has never been reported from India.Journal of Pathology of Nepal (2012 Vol. 2, 335-337DOI: http://dx.doi.org/10.3126/jpn.v2i4.6891

  11. In-situ polymerisation of fully bioresorbable polycaprolactone/phosphate glass fibre composites: In vitro degradation and mechanical properties.

    Science.gov (United States)

    Chen, Menghao; Parsons, Andrew J; Felfel, Reda M; Rudd, Christopher D; Irvine, Derek J; Ahmed, Ifty

    2016-06-01

    Fully bioresorbable composites have been investigated in order to replace metal implant plates used for hard tissue repair. Retention of the composite mechanical properties within a physiological environment has been shown to be significantly affected due to loss of the integrity of the fibre/matrix interface. This study investigated phosphate based glass fibre (PGF) reinforced polycaprolactone (PCL) composites with 20%, 35% and 50% fibre volume fractions (Vf) manufactured via an in-situ polymerisation (ISP) process and a conventional laminate stacking (LS) followed by compression moulding. Reinforcing efficiency between the LS and ISP manufacturing process was compared, and the ISP composites revealed significant improvements in mechanical properties when compared to LS composites. The degradation profiles and mechanical properties were monitored in phosphate buffered saline (PBS) at 37°C for 28 days. ISP composites revealed significantly less media uptake and mass loss (pproperties of ISP composites were substantially higher (p<0.0001) than those of the LS composites, which showed that the ISP manufacturing process provided a significantly enhanced reinforcement effect than the LS process. During the degradation study, statistically higher flexural property retention profiles were also seen for the ISP composites compared to LS composites. SEM micrographs of fracture surfaces for the LS composites revealed dry fibre bundles and poor fibre dispersion with polymer rich zones, which indicated poor interfacial bonding, distribution and adhesion. In contrast, evenly distributed fibres without dry fibre bundles or polymer rich zones, were clearly observed for the ISP composite samples, which showed that a superior fibre/matrix interface was achieved with highly improved adhesion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Antibacterial and anti-adhesion effects of the silver nanoparticles-loaded poly(L-lactide) fibrous membrane

    International Nuclear Information System (INIS)

    Liu, Shen; Zhao, Jingwen; Ruan, Hongjiang; Wang, Wei; Wu, Tianyi; Cui, Wenguo; Fan, Cunyi

    2013-01-01

    The complications of tendon injury are frequently compromised by peritendinous adhesions and tendon sheath infection. Physical barriers for anti-adhesion may increase the incidence of postoperative infection. This study was designed to evaluate the potential of silver nanoparticles (AgNPs)-loaded poly(L-lactide) (PLLA) electrospun fibrous membranes to prevent adhesion formation and infection. Results of an in vitro drug release study showed that a burst release was followed by sustained release from electrospun fibrous membranes with a high initial silver content. Fewer fibroblasts adhered to and proliferated on the AgNP-loaded PLLA electrospun fibrous membranes compared with pure PLLA electrospun fibrous membrane. In the antibacterial test, the AgNP-loaded PLLA electrospun fibrous membranes can prevent the adhesion of Gram-positive Staphylococcus aureus and Staphylococcus epidermidis and Gram-negative Pseudomonas aeruginosa. Taken together, these results demonstrate that AgNP-loaded PLLA electrospun fibrous membranes have the convenient practical medical potential of reduction of infection and adhesion formation after tendon injury. - Highlights: ► Silver nanoparticles are directly electrospun into PLLA fibrous membrane. ► Long-lasting release of Ag + ions is achieved. ► Cytotoxicity of silver ions benefits the anti-proliferation of physical barriers. ► Broad anti-microbial effect of drug-loaded fibrous membrane is revealed. ► Antibacterial and anti-adhesion effects of the physical barriers are combined

  13. Effect of homogeneity of particle distribution on tensile crack propagation in mushy state rolled in situ Al–4.5Cu–5TiB2 particulate composite

    International Nuclear Information System (INIS)

    Jana, A.; Siddhalingeshwar, I.G.; Mitra, R.

    2013-01-01

    The effect of mushy state rolling with 20 vol% liquid at 626 °C for 5% thickness reduction per pass on homogeneity of TiB 2 and CuAl 2 particle distribution in the in situ Al–4.5Cu–5TiB 2 composite has been examined. These particles, appearing as segregated at grain boundaries in the as-cast composite, are redistributed on mushy state rolling. The homogeneity of particle distribution has been quantitatively evaluated by developing a computer program for multi-scalar analysis of area-fractions in scanning electron microscope (SEM) images to estimate homogeneous length scales. The optimum homogeneity is found in the composite subjected to two mushy state roll passes. The matrix microhardness increases with decrease in the homogeneous length scale. In situ tensile straining experiments inside SEM have shown linkage of particle–matrix interfacial microcracks at particle-clusters as fracture mechanism in as-cast or 4-pass mushy state rolled composites. In contrast, crack propagation through matrix is favored in the 2-pass mushy state rolled composite

  14. A Novel FCC Catalyst Based on a Porous Composite Material Synthesized via an In Situ Technique

    Directory of Open Access Journals (Sweden)

    Shu-Qin Zheng

    2015-11-01

    Full Text Available To overcome diffusion limitations and improve transport in microporous zeolite, the materials with a wide-pore structure have been developed. In this paper, composite microspheres with hierarchical porous structure were synthesized by an in situ technique using sepiolite, kaolin and pseudoboehmite as raw material. A novel fluid catalytic cracking (FCC catalyst for maximizing light oil yield was prepared based on the composite materials. The catalyst was characterized by XRD, FT-IR, SEM, nitrogen adsorption-desorption techniques and tested in a bench FCC unit. The results indicated that the catalyst had more meso- and macropores and more acid sites than the reference catalyst, and thus can increase light oil yield by 1.31 %, while exhibiting better gasoline and coke selectivity.

  15. Feed Technology of Fibrous Sugarcane Residues for Ruminants

    Directory of Open Access Journals (Sweden)

    Kuswandi

    2007-06-01

    Full Text Available Abundant sugarcane residue during shortage of roughage in dry season gives an opportunity to raise ruminants around sugarcane industries. However, these products are not widely used by farmers due to an assumption that the usage is inefficient and that the feed utilization technology is not widely recognized. Sugarcane fibrous residues (tops, bagasse and pith may be a potential feed component if pre-treated to increase its digestion and consumption by the animal, and/or supplemented by other ingredients to balance nutrients in the rumen as well as those for production purpose. Digestibility can be increased by chemical treatments such as ammoniation and other alkaline treatments, whereas consumption can be increased by physical treatments such as grinding, hammermilling or pelleting. Nutrients that are missing in these fibrous residues can be provided by addition of urea, molasses and minerals for maintenance need, and bypass nutrients (carbohydrates, protein and fats that are digested in the small intestine and available for tissue or milk synthesis. There are three options for development of livestock agribusiness based on fibrous sugarcane residues; however, these require several technologies to optimize the utilization of these residues.

  16. Toxicity and Carcinogenicity Mechanisms of Fibrous Antigorite

    Directory of Open Access Journals (Sweden)

    Michael Balazy

    2007-03-01

    Full Text Available We studied the effects of fibrous antigorite on mesothelial MeT-5A and monocyte-macrophage J774 cell lines to further understand cellular mechanisms induced by asbestos fibers leading to lung damage and cancer. Antigorite is a mineral with asbestiform properties, which tends to associate with chrysotile or tremolite, and frequently occurs as the predominant mineral in the veins of several serpentinite rocks found abundantly in the Western Alps. Particles containing antigorite are more abundant in the breathing air of this region than those typically found in urban ambient air. Exposure of MeT-5A and J774 cells to fibrous antigorite at concentrations of 5-100 μg/ml for 72 hr induced dose-dependent cytotoxicity. Antigorite also stimulated the ROS production, induced the generation of nitrite and PGE2. MeT-5A cells were more sensitive to antigorite than J774 cells. The results of this study revealed that the fibrous antigorite stimulates cyclooxygenase and formation of hydroxyl and nitric oxide radicals. These changes represent early cellular responses to antigorite fibers, which lead to a host of pathological and neoplastic conditions because free radicals and PGE2 play important roles as mediators of tumor pathogenesis. Understanding the mechanisms of the cellular responses to antigorite and other asbestos particles should be helpful in designing rational prevention and treatment approaches.

  17. Congenital costo-vertebral fibrous band and congenital kyphoscoliosis: a previously unreported combination.

    Science.gov (United States)

    Eid, Tony; Ghostine, Bachir; Kreichaty, Gaby; Daher, Paul; Ghanem, Ismat

    2013-05-01

    Congenital kyphoscoliosis (CKS) results from abnormal vertebral chondrification. Congenital fibrous bands occur in several locations with variable impact on vertebral development. We report a previously unreported case of a female infant with CKS presenting with an L2 hypoplastic vertebra and a costo-vertebral fibrous band extending to the skin in the form of a dimple. We also describe the therapeutic approach, consisting of surgical excision of the fibrous band and postoperative fulltime bracing, with a 7-year follow-up. We recommend a high index of suspicion in any unusual presentation of CKS and insist on case by case management in such cases.

  18. Case study of the gradient features of in situ concrete

    Directory of Open Access Journals (Sweden)

    Pengkun Hou

    2014-01-01

    Full Text Available The recognition of gradient features of the properties of in situ concrete is important for the interpretation/prediction of service life. In this work, the gradient features: water absorption, porosity, mineralogy, morphology and micromechanical properties were studied on two in situ road concretes (15 and 5 years old, respectively by weighing, MIP, XRD, IR, SEM/EDS and micro-indentation techniques. Results showed that a coarsening trend of the pores of the concrete leads to a gradual increase of liquid transport property from inside to outside. Although the carbonation of the exposed surface results in a compact microstructure of the paste, its combined action with calcium-leaching leads to a comparable porosity of different concrete layers. Moreover, the combining factors result in three morphological features, i.e. a porous and granular exposed-layer, a fibrous and porous subexposed-layer and a compact inner-layer. Micro-indentation test results showed that a hard layer that moves inward with aging exists due to the alterations of the mineralogy, the pore and the gel structure.

  19. Synthesis of HNTs@PEDOT composites via in situ chemical oxidative polymerization and their application in electrode materials

    Science.gov (United States)

    Wang, Fang; Zhang, Xianhong; Ma, Yuhong; Yang, Wantai

    2018-01-01

    The hybrid composite of poly(3,4-ethylenedioxythiophene) (PEDOT) and halloysite nanotubes (HNTs) was synthesized by a two-step process. First, poly(sodium styrene sulfonate) (PSSNa) was grafted onto HNTs via surface initiated atom transfer radical polymerization. Then with the HNTs-g-PSS as a template and the grafted PSS chains as the counterion dopant, PEDOT was precipitated onto the template via in situ oxidization polymerization of EDOT to form HNTs@PEDOT hybrid composites. The conductivity of HNTs@PEDOT can reach up to 9.35 S/cm with the content of 40% HNTs-g-PSS, which increased almost 78 times than that of pure PEDOT (about 0.12 S/cm) prepared at the similar condition. Further treated with p-toluenesulfonic acid (TsOH) as external dopant, the conductivity of HNTs@PEDOT increased to 24.3 S/cm. The electrochemical properties of the composites were investigated with cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy with three-electrode cell configuration. The results showed that the capacitance of HNTs@PEDOT composite increased 55% than that of pure PEDOT.

  20. Electrospun PVdF-based fibrous polymer electrolytes for lithium ion polymer batteries

    International Nuclear Information System (INIS)

    Kim, Jeong Rae; Choi, Sung Won; Jo, Seong Mu; Lee, Wha Seop; Kim, Byung Chul

    2004-01-01

    This paper discusses the preparation of microporous fibrous membranes from PVdF solutions with different polymer contents, using the electrospinning technique. Electrospun PVdF-based fibrous membranes with average fiber diameters (AFD's) of 0.45-1.38 μm have an apparent porosity and a mean pore size (MPS) of 80-89% and 1.1-4.3 μm, respectively. They exhibited a high uptake of the electrolyte solution (320-350%) and a high ionic conductivity of above 1 x 10 -3 s/cm at room temperature. Their ionic conductivity increased with the decrease in the AFD of the fibrous membrane due to its high electrolyte uptake. The interaction between the electrolyte molecules and the PVdF with a high crystalline content may have had a minor effect on the lithium ion transfer in the fibrous polymer electrolyte, unlike in a nanoporous gel polymer electrolyte. The fibrous polymer electrolyte that contained a 1 M LiPF 6 -EC/DMC/DEC (1/1/1 by weight) solution showed a high electrochemical stability of above 5.0 V, which increased with the decrease in the AFD The interfacial resistance (R i ) between the polymer electrolyte and the lithium electrode slightly increased with the storage time, compared with the higher increase in the interfacial resistance of other gel polymer electrolytes. The prototype cell (MCMB/PVdF-based fibrous electrolyte/LiCoO 2 ) showed a very stable charge-discharge behavior with a slight capacity loss under constant current and voltage conditions at the C/2-rate of 20 and 60 deg. C

  1. Carbon nanotubes-porous ceramic composite by in situ CCVD growth of CNTs

    International Nuclear Information System (INIS)

    Mazumder, Sangram; Sarkar, Naboneeta; Park, Jung Gyu; Han, In Sub; Kim, Ik Jin

    2016-01-01

    A novel approach towards the formation of Carbon nanotubes-porous alumina ceramic composite was attempted by the application of three different reaction techniques. Porous alumina ceramics having micrometer pore dimensions were developed using the direct foaming technique. NaA zeolites were simultaneously synthesized and coated within the porous ceramics by an in situ hydrothermal process and were subjected to a simple ion exchange reaction for preparing the suitable catalyst material for Carbon nanotubes (CNTs) synthesis. The catalytic chemical vapour deposition (CCVD) technique was used to grow CNTs within the porous ceramics and the effect of growth time on the synthesized CNTs were investigated. Phase compositions of the samples were analysed by X-ray diffractometer (XRD). Field Emission Scanning Electron Microscopy (FESEM) and Transmission Electron Microscopy (TEM) were used for morphology, surface quality and structural analysis. Crystallinity, defects and yield were studied by Raman spectroscopy and thermogravimetric analysis (TGA). - Highlights: • Novel processing route of MWCNTs grown on Cobalt-zeolites-porous ceramics by CCVD. • CCVD time of 120 min produced MWCNTs with most prominent tube-like structure. • 120 min produced highest yield (19.46%) of CNTs with an I_D/I_G ratio of 0.88.

  2. a Study on Microstructure Characteristics of IN SITU Formed TiC Reinforced Composite Coatings

    Science.gov (United States)

    Liu, Peng; Guo, Wei; Luo, Hui

    2012-04-01

    In situ synthesized TiC reinforced composite coating was fabricated by laser cladding of Al-Ni-Cr-C powders on titanium alloys, which can greatly improve the surface performance of the substrate. In this study, the Al-Ni-Cr-C laser-cladded composite coatings have been researched by means of X-ray diffraction, scanning electron microscope (SEM) and electron probe micro-analyzer (EPMA). There was a metallurgical combination between the Al-Ni-Cr-C laser-cladded coating and the Ti-6Al-4V substrate, and the micro-hardness of the Al-Ni-Cr-C laser-cladded coating was in the range of 1200-1450 HV0.2, which was 3-4 times higher than that of Ti-6Al-4V substrate. Furthermore, the reinforcement of theAl-Ni-Cr-C laser-cladded coating were mainly contributed to the action of the TiC, Ti3Al, Cr7C3, Al8Cr5 phases and the solution strengthening.

  3. Mechanical compression of a fibrous membrane surrounding bone causes bone resorption

    NARCIS (Netherlands)

    van der Vis, H. M.; Aspenberg, P.; Tigchelaar, W.; van Noorden, C. J.

    1999-01-01

    Early micromovement and migration of a prosthesis of a hip or knee predicts late clinical loosening of the prosthesis. Such migration is likely to be associated with mechanical compression of the fibrous membrane interpositioned between bone and prosthesis during movement. Compression of the fibrous

  4. First description of Phanerozoic radiaxial fibrous dolomite

    Science.gov (United States)

    Richter, D. K.; Heinrich, F.; Geske, A.; Neuser, R. D.; Gies, H.; Immenhauser, A.

    2014-05-01

    The petrographic analysis and crystallographic analysis of concretionary carbonate cements ("coal balls") from Carboniferous paralic swamp deposits reveal the presence of (length fast) radiaxial fibrous dolomite (RFD), a fabric not previously reported from the Phanerozoic. This finding is of significance as earlier reports of Phanerozoic radiaxial fibrous carbonates are exclusively of calcite mineralogy. Dolomite concretions described here formed beneath marine transgressive intervals within palustrine coal seams. This is of significance as seawater was arguably the main source of Mg2 + ions for dolomite formation. Here, data from optical microscopy, cathodoluminescence, electron backscattered diffraction, X-ray diffraction and geochemical analyses are presented to characterize three paragenetic dolomite phases and one calcite phase in these concretions. The main focus is on the earliest diagenetic, non-stoichiometric (degree of order: 0.41-0.46) phase I, characterized by botryoidal dolomite constructed of fibres up to 110 μm wide with a systematic undulatory extinction and converging crystal axes. Petrographic and crystallographic evidence clearly qualifies phase I dolomite as radiaxial fibrous. Conversely, fascicular optical fabrics were not found. Carbon-isotope ratios (δ13C) are depleted (between - 11.8 and - 22.1‰) as expected for carbonate precipitation from marine pore-fluids in organic-matter-rich, paralic sediment. Oxygen isotope (δ18O) ratios range between - 1.3 and - 6.0‰. The earliest diagenetic nature of these cements is documented by the presence of ubiquitous, non-compacted fossil plant remains encased in phase I dolomite as well as by the complex zoned luminescence patterns in the crystals and is supported by crystallographic and thermodynamic considerations. It is argued that organic matter, and specifically carboxyl groups, reduced thermodynamic barriers for dolomite formation and facilitated Mg/CaCO3 precipitation. The data shown here

  5. In-situ Observation of Fracture Behavior on Nano Structure in NITE SiC/SiC Composite by HVEM

    International Nuclear Information System (INIS)

    Shibayama, Tamaki; Hamada, Kouichi; Watanabe, Seiichi; Matsuo, Genichiro; Kishimoto, Hirotatsu

    2011-01-01

    We have been successfully done in situ observation on the sequence of fracture event at the interface of NITE SiC/SiC composite examined by using miniaturized double notched shear specimen for TEM prepared by Focused Ion Beam method. In this study, we used nano-mechanics TEM experimental apparatus to investigate not only microstructure evolution and but also load and displacement curve at once in High Voltage Electron Microscope. Our results summarize as follows. Cracks were initiated at the interface between carbon coating layer on the SiC fiber and SiC matrices, and propagated along the interface. Load drop in the load and displacement curve during in-situ TEM was clearly observed at the crack initiation. The shear strength by using the miniaturized specimen is about ten times higher than that obtained by the standard testing.

  6. In situ polymerization and characterization of grafted poly (3,4-ethylenedioxythiophene)/multiwalled carbon nanotubes composite with high electrochemical performances

    International Nuclear Information System (INIS)

    Bai, Xiaoxia; Hu, Xiujie; Zhou, Shuyun; Yan, Jun; Sun, Chenghua; Chen, Ping; Li, Laifeng

    2013-01-01

    Graphical abstract: The homogeneously grafted PEDOT/MWCNTs containing numerous whorl fingerprint-like open ends endows with excellent electrochemical performances. Highlights: ► A ternary phase system with the surfactant AOT is utilized to efficiently solve the problem of the aggregation of MWCNTs. ► The homogenously grafted PEDOT/MWCNTs composite is synthesized by in situ chemical polymerization in the ternary phase system. ► The core–shell nanotubes contain many whorl fingerprint-like open ends that are greatly favorable for the transportation of the electrons and ions. ► The energy density of grafted PEDOT/MWCNTs has been enhanced by a factor of four comparing to that of native MWCNTs. ► The grafted PEDOT/MWCNTs composite manifests better cycle durability than both the constituents. - Abstract: The homogenously grafted composite of poly (3,4-ethylenedioxythiophene)/multiwalled carbon nanotubes (PEDOT/MWCNTs) is synthesized by in situ chemical polymerization in a ternary phase system. When carbon nanotubes are dispersed in this system containing sodium bis(2-ethylhexyl) sulfosuccinate (AOT), the surfactant AOT can efficiently hinter the aggregation of MWCNTs by absorbing and arranging regularly on the MWCNT surface. It is greatly advantageous to the stabilization of MWCNTs, which leads to the equally grafted composite. Its morphology was observed by scanning and transmission electron microscopes. Especially, the core–shell nanotubes contain many whorl fingerprint-like open ends that are efficiently favorable for the transportation of the electrons and ions. Such grafted PEDOT/MWCNTs composite nanotubes manifest enhanced electrochemical performances. We investigate the application of PEDOT/MWCNTs as a high-property supercapacitor and test its capacitive performance by cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy. The energy density of grafted composite, 11.3 Wh kg −1 , has been enhanced by a factor

  7. Fibrous dysplasia of the jaws associated with secondary hyperparathyroidism: a case report

    International Nuclear Information System (INIS)

    Whi, Jung Hyun; Kim, Young Joo; Chun, Kyung Ah; Kim, Ki Tae; Chang, Eun Deok; Kim, Young Ok; Lee, Won

    2007-01-01

    There have been few reports on fibrous dyplasia associated with secondary hyperparathyroidism. We report a case of a hemodialysis patient with secondary hyperparathyroidism concomitant with fibrous dysplasia of the jaws causing an abnormal deformity

  8. Cellulose nanocrystal-filled poly(acrylic acid) nanocomposite fibrous membranes

    International Nuclear Information System (INIS)

    Lu Ping; Hsieh, You-Lo

    2009-01-01

    Nanocomposite fibrous membranes have been fabricated by electrospinning cellulose nanocrystal (CNC)-loaded poly(acrylic acid) (PAA) ethanol mixtures. Incorporating CNC in PAA significantly reduced fiber diameters and improved fiber uniformity. The average diameters of the as-spun nanocomposite fibers were significantly reduced from 349 nm to 162 nm, 141 nm, 90 nm and 69 nm at 5%, 10%, 15% and 20% CNC loading (by weight of a constant 4% PAA solution), respectively. CNC was well dispersed in the fibers as isolated rods oriented along the fiber axis and as spheres in the PAA matrix. The Young modulus and stress of the PAA/CNC nanocomposite fibers were significantly improved with increasing CNC loadings by up to 35-fold and 16-fold, respectively. Heat-induced esterification between the CNC surface hydroxyls and PAA carboxyl groups produced covalent crosslinks at the CNC-PAA interfaces, rendering the nanocomposite fibrous membranes insoluble in water, more thermally stable and far more superior in tensile strength. With 20% CNC, the crosslinked nanocomposite fibrous membrane exhibited a very impressive 77-fold increase in modulus and 58-fold increase in stress.

  9. Combined Heat Transfer in High-Porosity High-Temperature Fibrous Insulations: Theory and Experimental Validation

    Science.gov (United States)

    Daryabeigi, Kamran; Cunnington, George R.; Miller, Steve D.; Knutson, Jeffry R.

    2010-01-01

    Combined radiation and conduction heat transfer through various high-temperature, high-porosity, unbonded (loose) fibrous insulations was modeled based on first principles. The diffusion approximation was used for modeling the radiation component of heat transfer in the optically thick insulations. The relevant parameters needed for the heat transfer model were derived from experimental data. Semi-empirical formulations were used to model the solid conduction contribution of heat transfer in fibrous insulations with the relevant parameters inferred from thermal conductivity measurements at cryogenic temperatures in a vacuum. The specific extinction coefficient for radiation heat transfer was obtained from high-temperature steady-state thermal measurements with large temperature gradients maintained across the sample thickness in a vacuum. Standard gas conduction modeling was used in the heat transfer formulation. This heat transfer modeling methodology was applied to silica, two types of alumina, and a zirconia-based fibrous insulation, and to a variation of opacified fibrous insulation (OFI). OFI is a class of insulations manufactured by embedding efficient ceramic opacifiers in various unbonded fibrous insulations to significantly attenuate the radiation component of heat transfer. The heat transfer modeling methodology was validated by comparison with more rigorous analytical solutions and with standard thermal conductivity measurements. The validated heat transfer model is applicable to various densities of these high-porosity insulations as long as the fiber properties are the same (index of refraction, size distribution, orientation, and length). Furthermore, the heat transfer data for these insulations can be obtained at any static pressure in any working gas environment without the need to perform tests in various gases at various pressures.

  10. Flexural Behaviour of Reinforced Fibrous Concrete Beams: Experiments and Analytical Modelling

    International Nuclear Information System (INIS)

    Hameed, R.; Sellier, A.; Turatsinze, A.; Duprat, F.

    2013-01-01

    Flexural behaviour of reinforced fibrous concrete beams was investigated in this research study. Two types of metallic fibers were studied: amorphous metallic fibers (FibraFlex fibers), and carbon steel hooked-end fibers (Dramix fibers). Four types of reinforced concretes were made: one control (without fibers) and three fibrous. Among three reinforced fibrous concretes, two contained fibers in mono form and one contained fibers in hybrid form. The total quantity of fibers in mono and hybrid forms was 20 kg/m3 and 40 kg/m3, respectively. Three point bending tests were performed according to European standards NF EN 14651 on beams of 150 x 150 mm cross section and length of 550 mm. The results showed that due to positive synergetic interaction between the two metallic fibers used, reinforced fibrous concret (RFC) beams containing fibers in hybrid form exhibited better response at all loading stages. Analytical model to predict ultimate moment capacity of the RFC beam of rectangular section was developed and is presented in this paper. Analytical results for ultimate moment were found to be in good agreement with experimental results. (author)

  11. Processing map and hot working mechanisms in a P/M TiAl alloy composite with in situ carbide and silicide dispersions

    International Nuclear Information System (INIS)

    Rao, K.P.; Prasad, Y.V.R.K.

    2010-01-01

    Research highlights: Mechanical alloying of Ti and Al with small additions of Si and C was used to synthesize metastable phases, which were incorporated in Ti-Al matrices using powder metallurgy techniques. These metastable phases (or also called as precursors), at higher temperatures, transformed in situ into very fine hard reinforcements that develop coherent interface with the surrounding matrix. Typically, Ti5Si3 and TiC are the end products after the synthesis of composite. In this study, hot working behavior of such composites has been studied using the concepts of processing maps to identify the safe and best processing conditions that should be adopted while forming this composite. Also, kinetic analysis of hot deformation has been performed to identify the dominant deformation mechanism. The results are compared with that of base TiAl matrix. The powder metallurgy route offers the advantage of working the material at much lower temperatures compared to the traditional cast and forge route. - Abstract: A titanium aluminide alloy composite with in situ carbide and silicide dispersions has been synthesized by mixing 90% of matrix with elemental composition of 46Ti-46Al-4Nb-2Cr-2Mn and 10% precursor with composition 55Ti-27Al-12Si-6C prepared by mechanical alloying. The powder mixture was blended for 2 h followed by hot isostatic pressing (HIP) at 1150 deg. C for 4 h under a pressure of 150 MPa. In addition to TiAl alloy matrix, the microstructure of the HIP'ed billet showed a small volume fraction of Nb-rich intermetallic phase along with carbide and silicide dispersions formed in situ during HIP'ing. Cylindrical specimens from the HIP'ed billets were compressed at temperatures and strain rates in the ranges of 800-1050 deg. C and 0.0001-1 s -1 . The flow curves exhibited flow softening leading to a steady-state flow at strain rates lower than 0.01 s -1 while fracture occurred at higher strain rates. The processing map developed on the basis of flow stress at

  12. Laser cladding in-situ carbide particle reinforced Fe-based composite coatings with rare earth oxide addition

    Institute of Scientific and Technical Information of China (English)

    吴朝锋; 马明星; 刘文今; 钟敏霖; 张红军; 张伟明

    2009-01-01

    Particulate reinforced metal matrix composite(PR-MMC) has excellent properties such as good wear resistance,corrosion resistance and high temperature properties.Laser cladding is usually used to form PR-MMC on metal surface with various volume fractions of ceramic particles.Recent literatures showed that laser melting of powder mixture containing carbon and carbide-forming elements,was favorable for the formation of in-situ synthesized carbide particles.In this paper,rare earth oxide(RE2O3) was added into t...

  13. Attenuation coefficients for fibrous self-compacting concrete in the energy range of 50-3000 keV

    Energy Technology Data Exchange (ETDEWEB)

    Bento, W.V.; Magalhaes, L.A.M.; Conti, C.C., E-mail: ccconti@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-04-01

    The fibrous self-compacting concrete is a high performance concrete with uniformly distributed iron fibers. Transmission measurements, with {sup 137}Cs and {sup 60}Co sources were performed for the attenuation coefficients determination for both ordinary and fibrous self-compacting concretes. The results were compared to each other and to the values found in the literature for ordinary concrete. The mass attenuation coefficient for the fibrous self-compacting concrete showed to be higher than those for ordinary concrete of about 5%, depending on the gamma energy. However, it should be noted that the density of fibrous self-compacting concrete is higher than ordinary concrete, 2.4 g/cm{sup 3} and 1.9 g/cm{sup 3} respectively, increasing still further the difference in mass attenuation coefficient. In addition to that, by using Monte Carlo simulations, with MCNP5 Monte Carlo computer code, the data was extended to the 50-3000 keV gamma energy range. (author)

  14. Attenuation coefficients for fibrous self-compacting concrete in the energy range of 50-3000 keV

    International Nuclear Information System (INIS)

    Bento, W.V.; Magalhaes, L.A.M.; Conti, C.C.

    2017-01-01

    The fibrous self-compacting concrete is a high performance concrete with uniformly distributed iron fibers. Transmission measurements, with "1"3"7Cs and "6"0Co sources were performed for the attenuation coefficients determination for both ordinary and fibrous self-compacting concretes. The results were compared to each other and to the values found in the literature for ordinary concrete. The mass attenuation coefficient for the fibrous self-compacting concrete showed to be higher than those for ordinary concrete of about 5%, depending on the gamma energy. However, it should be noted that the density of fibrous self-compacting concrete is higher than ordinary concrete, 2.4 g/cm"3 and 1.9 g/cm"3 respectively, increasing still further the difference in mass attenuation coefficient. In addition to that, by using Monte Carlo simulations, with MCNP5 Monte Carlo computer code, the data was extended to the 50-3000 keV gamma energy range. (author)

  15. Fibrous Myopathy as a Complication of Repeated Intramuscular Injections for Chronic Headache

    Directory of Open Access Journals (Sweden)

    R Burnham

    2006-01-01

    Full Text Available Two cases of fibrous myopathy associated with repeated, long-term intramuscular injections for treatment of chronic temporomandibular joint pain and chronic headache, respectively, are described. Both patients developed severe, function-limiting contractures in upper and lower extremity muscles used as injection sites. In one of the cases, the contractures were painful. Electrophysiological testing, magnetic resonance imaging and muscle biopsy results were all consistent with myopathy and replacement of skeletal muscle with noncontractile fibrous tissue. These cases are presented to increase awareness of fibrous myopathy and to promote surveillance for this serious potential complication of long-term intramuscular injections in chronic headache and other pain patients.

  16. Micromechanics of deformation of metallic-glass-matrix composites from in situ synchrotron strain measurements and finite element modeling

    International Nuclear Information System (INIS)

    Ott, R.T.; Sansoz, F.; Molinari, J.F.; Almer, J.; Ramesh, K.T.; Hufunagel, T.C.

    2005-01-01

    In situ X-ray scattering and finite element modeling (FEM) were used to examine the micromechanics of deformation of in situ formed metallic-glass-matrix composites consisting of Ta-rich particles dispersed in an amorphous matrix. The strain measurements show that under uniaxial compression the second-phase particles yield at an applied stress of approx. 325 MPa. After yielding, the particles do not strain harden significantly; we show that this is due to an increasingly hydrostatic stress state arising from the lateral constraint on deformation of the particles imposed by the elastic matrix. Shear band initiation in the matrix is not due to the difference in elastic properties between the matrix and the particles. Rather, the development of a plastic misfit strain causes stress concentrations around the particles, resulting in localized yielding of the matrix by shear band formation at an applied stress of approx. 1450 MPa, considerably lower than the macroscopic yield stress of the composite (approx. 1725 MPa). Shear bands do not propagate at the lower stress because the yield criterion of the matrix is only satisfied in the region immediately around the particles. At the higher stresses, the yield criterion is satisfied in large regions of the matrix, allowing extensive shear band propagation and significant macroscopic plastic deformation. However, the presence of the particles makes the stress state highly inhomogeneous, which may partially explain why fracture is suppressed in the composite, allowing the development of large plastic strains

  17. Bi-functional Au/FeS (Au/Co{sub 3}O{sub 4}) composite for in situ SERS monitoring and degradation of organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Shuzhen; Cai, Qian; Lu, Kailing; Liao, Fan, E-mail: fliao@suda.edu.cn; Shao, Mingwang, E-mail: mwshao@suda.edu.cn [Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University (China)

    2016-01-15

    The bi-functional Au/FeS (Au/Co{sub 3}O{sub 4}) composite was fabricated by in situ reducing Au nanoparticles onto the surface of FeS (Co{sub 3}O{sub 4}). The as-prepared FeS possessed a multi-structure composed of plenty of nanoplates, which were coated by Au nanoparticles with an average size of ∼47.5 nm. While the Co{sub 3}O{sub 4} showed a thin hexagonal sheet containing Au nanoparticles on its surface with an average size of ∼79.0 nm. Both the as-prepared Au/FeS and Au/Co{sub 3}O{sub 4} composites exhibited excellent SERS performance, capable of enhancing the Raman signals of R6G molecules with the enhancement factor up to 1.81 × 10{sup 6} and 7.60 × 10{sup 4}, respectively. Moreover, Au/FeS (Au/Co{sub 3}O{sub 4}) composite also has been verified to have intrinsic peroxidase-like activity, which could decompose H{sub 2}O{sub 2} into hydroxyl radicals and then degrade organic pollutants into small molecules. Therefore, SERS can be used to real-time and in situ monitoring the degradation process of R6G molecules, employing the Au/FeS (Au/Co{sub 3}O{sub 4}) composite both as SERS substrate and catalyst. Graphical abstract: SERS was used to real-time and in situ monitoring the degradation of R6G, employing the Au/FeS and Au/Co{sub 3}O{sub 4} composites both as SERS substrates and catalysts.

  18. Permeability and compression of fibrous porous media generated from dilute suspensions of fiberglass debris during a loss of coolant accident

    International Nuclear Information System (INIS)

    Lee, Saya; Abdulsattar, Suhaeb S.; Vaghetto, Rodolfo; Hassan, Yassin A.

    2015-01-01

    Highlights: • Experimental investigation on fibrous debris buildup was conducted. • Head loss through fibrous media was recorded at different approach velocities. • A head loss model through fibrous media was proposed for high porosity (>0.99). • A compression model of fibrous media was developed. - Abstract: Permeability of fibrous porous media has been studied for decades in various engineering applications, including liquid purifications, air filters, and textiles. In nuclear engineering, fiberglass has been found to be a hazard during a Loss-of-Coolant Accident. The high energy steam jet from a break impinges on surrounding fiberglass insulation materials, producing a large amount of fibrous debris. The fibrous debris is then transported through the reactor containment and reaches the sump strainers. Accumulation of such debris on the surface of the strainers produces a fibrous bed, which is a fibrous porous medium that can undermine reactor core cooling. The present study investigated the buildup of fibrous porous media on two types of perforated plate and the pressure drop through the fibrous porous media without chemical effect. The development of the fibrous bed was visually recorded in order to correlate the pressure drop, the approach velocity, and the thickness of the fibrous porous media. The experimental results were compared to semi-theoretical models and theoretical models proposed by other researchers. Additionally, a compression model was developed to predict the thickness and the local porosity of a fibrous bed as a function of pressure

  19. Case report 359: Gigantic benign fibrous histiocytoma (nonossifying fibroma)

    International Nuclear Information System (INIS)

    Remagen, W.; Nidecker, A.; Prein, J.

    1986-01-01

    In summary, a fascinating case is presented of an enormous 'blow-out' lesion in the left half of the mandible in a 17-year-old boy. The histological diagnosis was benign fibrous histiocytoma or non-ossifying fibroma. An extensive differential diagnosis was presented by the authors and although benign fibrous histiocytoma was their final diagnosis, they could not exclude an example of the rarely encountered entity called the Jaffe-Campanacci syndrome. This syndrome consists of multiple non-ossifying fibromas of the mandible, cafe-au-lait spots, various endocrine disorders, mental retardation, occular anomalies and cardiovascular malformations. (orig./SHA)

  20. In situ synthesized TiB-TiN reinforced Ti6Al4V alloy composite coatings: microstructure, tribological and in-vitro biocompatibility.

    Science.gov (United States)

    Das, Mitun; Bhattacharya, Kaushik; Dittrick, Stanley A; Mandal, Chitra; Balla, Vamsi Krishna; Sampath Kumar, T S; Bandyopadhyay, Amit; Manna, Indranil

    2014-01-01

    Wear resistant TiB-TiN reinforced Ti6Al4V alloy composite coatings were deposited on Ti substrate using laser based additive manufacturing technology. Ti6Al4V alloy powder premixed with 5wt% and 15wt% of boron nitride (BN) powder was used to synthesize TiB-TiN reinforcements in situ during laser deposition. Influences of laser power, scanning speed and concentration of BN on the microstructure, mechanical, in vitro tribological and biological properties of the coatings were investigated. Microstructural analysis of the composite coatings showed that the high temperature generated due to laser interaction with Ti6Al4V alloy and BN results in situ formation of TiB and TiN phases. With increasing BN concentration, from 5wt% to 15wt%, the Young's modulus of the composite coatings, measured by nanoindentation, increased from 170±5GPa to 204±14GPa. In vitro tribological tests showed significant increase in the wear resistance with increasing BN concentration. Under identical test conditions TiB-TiN composite coatings with 15wt% BN exhibited an order of magnitude less wear rate than CoCrMo alloy-a common material for articulating surfaces of orthopedic implants. Average top surface hardness of the composite coatings increased from 543±21HV to 877±75HV with increase in the BN concentration. In vitro biocompatibility and flow cytometry study showed that these composite coatings were non-toxic, exhibit similar cell-materials interactions and biocompatibility as that of commercially pure titanium (CP-Ti) samples. In summary, excellent in vitro wear resistance, high stiffness and suitable biocompatibility make these composite coatings as a potential material for load-bearing articulating surfaces towards orthopaedic implants. © 2013 Elsevier Ltd. All rights reserved.

  1. Characterization of polymethyl methacrylate/polyethylene glycol/aluminum nitride composite as form-stable phase change material prepared by in situ polymerization method

    International Nuclear Information System (INIS)

    Zhang, Lei; Zhu, Jiaoqun; Zhou, Weibin; Wang, Jun; Wang, Yan

    2011-01-01

    Highlights: → Form-stable PMMA/PEG/AlN PCMs were prepared by in situ polymerization method. → AlN additive effectively enhanced the heat transfer property of composite PCMs. → The composites exhibited desirable thermal performance and electric insulativity. → The composites were available for the thermal management of electronic device. - Abstract: This work was focused on the preparation and characterization of a new type of form-stable phase change material (PCM) employed in thermal management. Using the method of in situ polymerization, polyethylene glycol (PEG) acting as the PCM and aluminum nitride (AlN) serving as the thermal conductivity promoter were uniformly encapsulated and embedded inside the three-dimensional network structure of PMMA matrix. When the mass fraction of PEG was below 70%, the prepared composite PCMs remained solid without leakage above the melting point of the PEG. XRD and FT-IR results indicated that the PEG was physically combined with PMMA matrix and AlN additive and did not participate in the polymerization. Thermal analysis results showed that the prepared composite PCMs possess available latent heat capacity and thermal stability, and the AlN additive was able to effectively enhance the heat transfer property of organic PCM. Moreover, the volume resistivity of composite achieved (5.92 ± 0.16) x 10 10 Ω cm when the mass ratio of AlN was 30%. To sum up, the prepared form-stable PCMs were competent for the thermal management of electronic device due to their acceptable thermal performance and electric insulativity.

  2. Potassium diperiodatocuprate-mediated preparation of poly(methyl methacrylate/organo-montmorillonite composites via in situ grafting copolymerization

    Directory of Open Access Journals (Sweden)

    2008-09-01

    Full Text Available In this study, potassium diperiodatocuprate (Cu3+ was selected as an initiator to prepare poly(methyl methacrylate/organo-montmorillonite composites (OMMT-g-PMMA by in situ graft copolymerization. Three synthetic parameters were systematically evaluated as a function of the temperature, the concentration of initiator, pH and the ratio of MMA to OMMT. It was found that Cu3+ was a highly efficient initiator for the preparation of OMMT-g-PMMA i.e., monomer conversion and grafting efficiency were as higher as 95%. The X-ray diffraction measurement showed the intercalation of PMMA chains into OMMT layers on base of an increasing basal spacing after polymerization. FTIR analysis also suggested that the PMMA chains were effectively grafted onto OMMT substrate. The enhanced thermal stabilities of OMMT-g-PMMA composites were confirmed by the thermal gravimetric analysis (TGA. Finally, a single-electron-transfer mechanism was proposed to illustrate the formation of radicals and the preparation process of OMMT-g-PMMA composites. Cu3+ can be used as an effective and practical initiator in preparing the organic/inorganic composite due to its high grafting efficiency and the milder reaction condition.

  3. Compositional and structural changes in TiB2 films induced by bias, in situ and post-deposition annealing, respectively

    International Nuclear Information System (INIS)

    Pelleg, Joshua; Sade, G.; Sinder, M.; Mogilyanski, D.

    2006-01-01

    Structural changes in TiB 2 films were induced at relatively low temperatures by the application of bias and in situ annealing or by post-deposition heat treatment of samples subjected to bias with simultaneous in situ annealing. In situ annealing by itself evoked only partial crystallization. Application of bias by itself only modified the composition of the as deposited film. A simple model is presented to explain the variation of the composition when RF bias is applied to a cold substrate. The crystallized films had a (0001) texture. A model has been suggested to explain the observed preferred orientation, based on the contribution of surface and strain energies. Both, the surface energy and strain energy are direction dependent. These were evaluated for two film orientations reported in the literature, namely, the (0001) and (101-bar 1)orientations. The preferred orientation of the film is determined by the lowest overall free energy resulting from the competition between the surface energy and the strain energy on different lattice planes. The surface energy is not film thickness dependent while the strain energy is thickness dependent and increases with it. For small film thickness, as in this work, the surface energy term is significant and (0001) orientation with a minimum surface energy is preferred. At large film thicknesses the strain energy becomes dominant and the (101-bar 1) preferred orientation is observed. Under certain experimental conditions strain energy effects may tip the preferred orientation to (101-bar 1). The elastic moduli in the (0001) and (101-bar 1) directions were determined as 435 and 538GPa, respectively

  4. Effect of Bi modification treatment on microstructure, tensile properties, and fracture behavior of cast Al-Mg2Si metal matrix composite

    Directory of Open Access Journals (Sweden)

    Wu Xiaofeng

    2013-01-01

    Full Text Available Bi has a good modification effect on the hypoeutectic Al-Si alloy, and the morphology of eutectic Si changes from coarse acicular to fine fibrous. Based on the similarity between Mg2Si and Si phases in crystalline structure and crystallization process, the present study investigated the effects of different concentrations of Bi on the microstructure, tensile properties, and fracture behavior of cast Al-15wt.%Mg2Si in-situ metal matrix composite. The results show that the addition of the proper amount of Bi has a significant modification effect on both primary and eutectic Mg2Si in the Al-15wt.%Mg2Si composite. With an increase in Bi content from 0 to 1wt.%, the morphology of the primary Mg2Si is changed from irregular or dendritic to polyhedral shape; and its average particle size is significantly decreased from 70 to 6 μm. Moreover, the morphology of the eutectic Mg2Si phase is altered from flake-like to very short fibrous or dot-like. When the Bi addition exceeds 4.0wt.%, the primary Mg2Si becomes coarse again. However, the eutectic Mg2Si still exhibits the modified morphology. Tensile tests reveal that the Bi addition can improve the tensile strength and ductility of the material. Compared with those of the unmodified composite, the ultimate tensile strength and percentage elongation after fracture with 1.0wt.% Bi increase 51.2% and 100%, respectively. At the same time, the Bi addition changes the fracture behavior from brittle to ductile.

  5. Effect of Mo on Microstructures and Wear Properties of In Situ Synthesized Ti(C,N)/Ni-Based Composite Coatings by Laser Cladding.

    Science.gov (United States)

    Wu, Fan; Chen, Tao; Wang, Haojun; Liu, Defu

    2017-09-06

    Using Ni60 alloy, C, TiN and Mo mixed powders as the precursor materials, in situ synthesized Ti(C,N) particles reinforcing Ni-based composite coatings are produced on Ti6Al4V alloys by laser cladding. Phase constituents, microstructures and wear properties of the composite coatings with 0 wt % Mo, 4 wt % Mo and 8 wt % Mo additions are studied comparatively. Results indicate that Ti(C,N) is formed by the in situ metallurgical reaction, the (Ti,Mo)(C,N) rim phase surrounding the Ti(C,N) ceramic particle is synthesized with the addition of Mo, and the increase of Mo content is beneficial to improve the wear properties of the cladding coatings. Because of the effect of Mo, the grains are remarkably refined and a unique core-rim structure that is uniformly dispersed in the matrix appears; meanwhile, the composite coatings with Mo addition exhibit high hardness and excellent wear resistance due to the comprehensive action of dispersion strengthening, fine grain strengthening and solid solution strengthening.

  6. Microstructural Control via Copious Nucleation Manipulated by In Situ Formed Nucleants: Large-Sized and Ductile Metallic Glass Composites.

    Science.gov (United States)

    Song, Wenli; Wu, Yuan; Wang, Hui; Liu, Xiongjun; Chen, Houwen; Guo, Zhenxi; Lu, Zhaoping

    2016-10-01

    A novel strategy to control the precipitation behavior of the austenitic phase, and to obtain large-sized, transformation-induced, plasticity-reinforced bulk metallic glass matrix composites, with good tensile properties, is proposed. By inducing heterogeneous nucleation of the transformable reinforcement via potent nucleants formed in situ, the characteristics of the austenitic phase are well manipulated. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The chemical composition and mineralogy of meteorites measured with very high spatial resolution by a laser mass spectrometer for in situ planetary research

    Science.gov (United States)

    Brigitte Neuland, Maike; Mezger, Klaus; Tulej, Marek; Frey, Samira; Riedo, Andreas; Wurz, Peter; Wiesendanger, Reto

    2017-04-01

    The knowledge of the chemical composition of moons, comets, asteroids or other planetary bodies is of particular importance for the investigation of the origin and evolution of the Solar System. High resolution in situ studies on planetary surfaces can yield important information on surface heterogeneity, basic grain mineralogy and chemical composition of surface and subsurface. In turn, these data are the basis for our understanding of the physical and chemical processes which led to the formation and alteration of planetary material [1]. We investigated samples of Allende and Sayh al Uhaymir with a highly miniaturised laser mass spectrometer (LMS), which has been designed and built for in situ space research [2,3]. Both meteorite samples were investigated with a spatial resolution of about 10μm in lateral direction. The high sensitivity and high dynamic range of the LMS allow for quantitative measurements of the abundances of the rock-forming and minor and trace elements with high accuracy [4]. From the data, the modal mineralogy of micrometre-sized chondrules can be inferred [5], conclusions about the condensation sequence of the material are possible and the sensitivity for radiogenic elements allows for dating analyses of the investigated material. We measured the composition of various chondrules in Allende, offering valuable clues about the condensation sequence of the different components of the meteorite. We explicitly investigated the chemical composition and heterogeneity of the Allende matrix with an accuracy that cannot be reached by the mechanical analysis methods that were and are widely used in meteoritic research. We demonstrate the capabilities for dating analyses with the LMS. By applying the U-Th-dating method, the age of the SaU169 sample could be determined. Our analyses show that the LMS would be a suitable instrument for high-quality quantitative chemical composition measurements on the surface of a celestial body like a planet, moon or

  8. In situ observations of the isotopic composition of methane at the Cabauw tall tower site

    Directory of Open Access Journals (Sweden)

    T. Röckmann

    2016-08-01

    Full Text Available High-precision analyses of the isotopic composition of methane in ambient air can potentially be used to discriminate between different source categories. Due to the complexity of isotope ratio measurements, such analyses have generally been performed in the laboratory on air samples collected in the field. This poses a limitation on the temporal resolution at which the isotopic composition can be monitored with reasonable logistical effort. Here we present the performance of a dual isotope ratio mass spectrometric system (IRMS and a quantum cascade laser absorption spectroscopy (QCLAS-based technique for in situ analysis of the isotopic composition of methane under field conditions. Both systems were deployed at the Cabauw Experimental Site for Atmospheric Research (CESAR in the Netherlands and performed in situ, high-frequency (approx. hourly measurements for a period of more than 5 months. The IRMS and QCLAS instruments were in excellent agreement with a slight systematic offset of (+0.25 ± 0.04 ‰ for δ13C and (−4.3 ± 0.4 ‰ for δD. This was corrected for, yielding a combined dataset with more than 2500 measurements of both δ13C and δD. The high-precision and high-temporal-resolution dataset not only reveals the overwhelming contribution of isotopically depleted agricultural CH4 emissions from ruminants at the Cabauw site but also allows the identification of specific events with elevated contributions from more enriched sources such as natural gas and landfills. The final dataset was compared to model calculations using the global model TM5 and the mesoscale model FLEXPART-COSMO. The results of both models agree better with the measurements when the TNO-MACC emission inventory is used in the models than when the EDGAR inventory is used. This suggests that high-resolution isotope measurements have the potential to further constrain the methane budget when they are performed at multiple sites that are representative for

  9. Carbon nanotubes-porous ceramic composite by in situ CCVD growth of CNTs

    Energy Technology Data Exchange (ETDEWEB)

    Mazumder, Sangram; Sarkar, Naboneeta; Park, Jung Gyu [Institute of Processing and Application of Inorganic Materials (PAIM), Department of Materials Science and Engineering, Hanseo University, #360 Daegok-ri, Haemi-myeon, Seosan-si, Chungnam, 356-706 (Korea, Republic of); Han, In Sub [Korea Institute of Energy Research (KIER), #152 Gajeong-gu, Daejeon 305-343 (Korea, Republic of); Kim, Ik Jin, E-mail: ijkim@hanseo.ac.kr [Institute of Processing and Application of Inorganic Materials (PAIM), Department of Materials Science and Engineering, Hanseo University, #360 Daegok-ri, Haemi-myeon, Seosan-si, Chungnam, 356-706 (Korea, Republic of)

    2016-03-01

    A novel approach towards the formation of Carbon nanotubes-porous alumina ceramic composite was attempted by the application of three different reaction techniques. Porous alumina ceramics having micrometer pore dimensions were developed using the direct foaming technique. NaA zeolites were simultaneously synthesized and coated within the porous ceramics by an in situ hydrothermal process and were subjected to a simple ion exchange reaction for preparing the suitable catalyst material for Carbon nanotubes (CNTs) synthesis. The catalytic chemical vapour deposition (CCVD) technique was used to grow CNTs within the porous ceramics and the effect of growth time on the synthesized CNTs were investigated. Phase compositions of the samples were analysed by X-ray diffractometer (XRD). Field Emission Scanning Electron Microscopy (FESEM) and Transmission Electron Microscopy (TEM) were used for morphology, surface quality and structural analysis. Crystallinity, defects and yield were studied by Raman spectroscopy and thermogravimetric analysis (TGA). - Highlights: • Novel processing route of MWCNTs grown on Cobalt-zeolites-porous ceramics by CCVD. • CCVD time of 120 min produced MWCNTs with most prominent tube-like structure. • 120 min produced highest yield (19.46%) of CNTs with an I{sub D}/I{sub G} ratio of 0.88.

  10. Microstructure and properties of copper composite containing in situ NbC reinforcement: Effects of milling speed

    International Nuclear Information System (INIS)

    Zuhailawati, Hussain; Salihin, Hassin Mohd; Mahani, Yusoff

    2010-01-01

    This paper presents a study on the effects of milling speed on the properties of in situ copper-based composite produced by mechanical alloying followed by cold pressing and sintering. A powdered mixture of copper, niobium and graphite with the composition of Cu-30%NbC was milled at various speeds (100, 200, 300 and 400 rpm). The NbC phase started to precipitate in the as-milled powder after 30 h milling at 400 rpm and the formation was completed after sintering at 950 o C. Enhancements of NbC phase formation with a reduction in Cu crystallite size were observed with the increase of milling speed. Density, hardness and electrical conductivity of the sintered composite were evaluated. An increase in milling speed resulted in an increase in sintered density and hardness but a reduction of electrical conductivity. The changes in the properties were correlated to the formation of NbC phase and refinement of copper and niobium carbide crystallite size since higher milling speed is associated with higher kinetic energy per hit.

  11. Assessment of in situ biodegradation of monochlorobenzene in contaminated groundwater treated in a constructed wetland

    International Nuclear Information System (INIS)

    Braeckevelt, Mareike; Rokadia, Hemal; Imfeld, Gwenael; Stelzer, Nicole; Paschke, Heidrun; Kuschk, Peter; Kaestner, Matthias; Richnow, Hans-H.; Weber, Stefanie

    2007-01-01

    The degradation of monochlorobenzene (MCB) was assessed in a constructed wetland treating MCB contaminated groundwater using a detailed geochemical characterisation, stable isotope composition analysis and in situ microcosm experiments. A correlation between ferrous iron mobilisation, decreasing MCB concentration and enrichment in carbon isotope composition was visible at increasing distance from the inflow point, indicating biodegradation of MCB in the wetland. Additionally, in situ microcosm systems loaded with 13 C-labelled MCB were deployed for the first time in sediments to investigate the biotransformation of MCB. Incorporation of 13 C-labelled carbon derived from the MCB into bacterial fatty acids substantiated in situ degradation of MCB. The detection of 13 C-labelled benzene indicated reductive dehalogenation of MCB. This integrated approach indicated the natural attenuation of the MCB in a wetland system. Further investigations are required to document and optimise the in situ biodegradation of MCB in constructed and natural wetland systems treating contaminated groundwater. - An integrated approach including isotope composition analysis and in situ microcosm experiments provided evidences for in situ biodegradation of MCB in a wetland system

  12. Assessment of in situ biodegradation of monochlorobenzene in contaminated groundwater treated in a constructed wetland

    Energy Technology Data Exchange (ETDEWEB)

    Braeckevelt, Mareike [Departments of Bioremediation, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, Leipzig D-04318, Saxonia (Germany); Rokadia, Hemal [Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, Leipzig D-04318, Saxonia (Germany); Imfeld, Gwenael [Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, Leipzig D-04318, Saxonia (Germany)]. E-mail: gwenael.imfeld@ufz.de; Stelzer, Nicole [Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, Leipzig D-04318, Saxonia (Germany); Paschke, Heidrun [Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, Leipzig D-04318, Saxonia (Germany); Kuschk, Peter [Departments of Bioremediation, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, Leipzig D-04318, Saxonia (Germany); Kaestner, Matthias [Departments of Bioremediation, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, Leipzig D-04318, Saxonia (Germany); Richnow, Hans-H. [Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, Leipzig D-04318, Saxonia (Germany); Weber, Stefanie [Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, Leipzig D-04318, Saxonia (Germany)

    2007-07-15

    The degradation of monochlorobenzene (MCB) was assessed in a constructed wetland treating MCB contaminated groundwater using a detailed geochemical characterisation, stable isotope composition analysis and in situ microcosm experiments. A correlation between ferrous iron mobilisation, decreasing MCB concentration and enrichment in carbon isotope composition was visible at increasing distance from the inflow point, indicating biodegradation of MCB in the wetland. Additionally, in situ microcosm systems loaded with {sup 13}C-labelled MCB were deployed for the first time in sediments to investigate the biotransformation of MCB. Incorporation of {sup 13}C-labelled carbon derived from the MCB into bacterial fatty acids substantiated in situ degradation of MCB. The detection of {sup 13}C-labelled benzene indicated reductive dehalogenation of MCB. This integrated approach indicated the natural attenuation of the MCB in a wetland system. Further investigations are required to document and optimise the in situ biodegradation of MCB in constructed and natural wetland systems treating contaminated groundwater. - An integrated approach including isotope composition analysis and in situ microcosm experiments provided evidences for in situ biodegradation of MCB in a wetland system.

  13. Use of Zoledronic Acid in Paediatric Craniofacial Fibrous Dysplasia

    Directory of Open Access Journals (Sweden)

    Chiara Di Pede

    2016-01-01

    Full Text Available We describe a case of a paediatric patient affected by mandibular fibrous dysplasia (FD with severe and chronic pain who was successfully treated with zoledronic acid (ZOL: a third-generation bisphosphonate. Further research is needed to assess its safety and efficacy as a treatment option for FD in the paediatric population.

  14. High-surface-area silica nanospheres (KCC-1) with a fibrous morphology

    KAUST Repository

    Polshettiwar, Vivek; Cha, Dong Kyu; Zhang, Xixiang; Basset, Jean-Marie

    2010-01-01

    Fibrous nanosilica: A new family of high-surface-area silica nanospheres (KCC-1) have been prepared (see picture). KCC-1 features excellent physical properties, including high surface area, unprecedented fibrous surface morphology, high thermal (up to 950 °C) and hydrothermal stabilities, and high mechanical stability. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. High-surface-area silica nanospheres (KCC-1) with a fibrous morphology

    KAUST Repository

    Polshettiwar, Vivek

    2010-08-02

    Fibrous nanosilica: A new family of high-surface-area silica nanospheres (KCC-1) have been prepared (see picture). KCC-1 features excellent physical properties, including high surface area, unprecedented fibrous surface morphology, high thermal (up to 950 °C) and hydrothermal stabilities, and high mechanical stability. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Hybrid Ceramic Matrix Fibrous Composites: an Overview

    International Nuclear Information System (INIS)

    Naslain, R

    2011-01-01

    Ceramic-Matrix Composites (CMCs) consist of a ceramic fiber architecture in a ceramic matrix, bonded together through a thin interphase. The present contribution is limited to non-oxide CMCs. Their constituents being oxidation-prone, they are protected by external coatings. We state here that CMCs display a hybrid feature, when at least one of their components is not homogeneous from a chemical or microstructural standpoint. Hybrid fiber architectures are used to tailor the mechanical or thermal CMC-properties whereas hybrid interphases, matrices and coatings to improve CMC resistance to aggressive environments.

  17. Hybrid Ceramic Matrix Fibrous Composites: an Overview

    Science.gov (United States)

    Naslain, R.

    2011-10-01

    Ceramic-Matrix Composites (CMCs) consist of a ceramic fiber architecture in a ceramic matrix, bonded together through a thin interphase. The present contribution is limited to non-oxide CMCs. Their constituents being oxidation-prone, they are protected by external coatings. We state here that CMCs display a hybrid feature, when at least one of their components is not homogeneous from a chemical or microstructural standpoint. Hybrid fiber architectures are used to tailor the mechanical or thermal CMC-properties whereas hybrid interphases, matrices and coatings to improve CMC resistance to aggressive environments.

  18. Influence of bending deflection rate on properties of fibrous mortar

    Directory of Open Access Journals (Sweden)

    Metwally Abd Allah Abd el Aty

    2013-04-01

    Full Text Available Selection of the construction materials is affected by many factors including their properties under the applied loads. Loading rate is considered as a very important parameter which influences the behavior of the materials. Fibrous concrete is commonly used in applications in which the loading rate exceeds quasi static conditions by a large margin. This paper investigates the influence of flexural loading rate on the performance of fibrous concrete prisms in flexure. Two hundred and fifty two prisms include fibrous concrete and control specimens were prepared and tested. Fiber type, fiber dosage and flexural loading rate were the main parameters considered in this study. Two types of fibers were investigated namely polypropylene fibers and glass fibers. Three dosages of fiber volume fractions were implemented as 0.5%, 1.0% and 2.0%. A total of 12 different rates of displacement (0.0039 up to 8 mm/s for load application were conducted. A computer controlled universal testing machine provided with data acquisition system capable of performing 1000 loop per second was used. Load–central deflection, flexural strength and toughness were the evaluated properties for the investigated specimens. The results indicated that the flexure strength values exhibited loading rate dependence not only for the control mix but also for the investigated fibrous mortar mixes. Also the performance in flexure varied substantially not only with loading rate but with fiber type and fiber volume fractions as well.

  19. The effect of powder composition on the morphology of in situ TiC composite coating deposited by Laser-Assisted Powder Deposition (LAPD)

    International Nuclear Information System (INIS)

    Emamian, Ali; Corbin, Stephen F.; Khajepour, Amir

    2012-01-01

    Highlights: ► The novel idea was to develop Fe-TiC containing high volume fraction of TiC. ► Increased TiC volume fraction enhanced clad hardness profile. ► Both, laser conditions and fed powder compositions affected the clad microstructure. ► Hardness and TiC volume fraction was maximized by control over melt pool composition. ► Hardness/TiC volume fraction was maximized by controlling of laser parameters. - Abstract: In this paper, the effect of powder composition on in situ TiC formation within an Fe-based matrix coating during laser cladding was studied. Different atomic ratios of C:Ti (45% and 55%) were selected in order to adjust the matrix from an Fe-Ti-based composition to an Fe-C-based one. Fe percentages of 70, 60, 50 and 10 wt% were explored to increase the volume fraction of TiC in the clad. Results showed that chemical composition affects the TiC morphology as well as the TiC distribution and hardness profile in the clad. By increasing the C:Ti ratio from 45 at% to 55 at%, the volume fraction of the formed TiC increases. A higher volume fraction of TiC in the clad resulted in increases clad hardness. SEM and EDS analyses were used to characterize the phases in the clad, while increasing the C ratio promoted the formation of excess graphite in the Fe matrix.

  20. The effect of powder composition on the morphology of in situ TiC composite coating deposited by Laser-Assisted Powder Deposition (LAPD)

    Energy Technology Data Exchange (ETDEWEB)

    Emamian, Ali, E-mail: aemamian@uwaterloo.ca [Research Associate and Postdoctoral fellow in the Department of Mechanics and Mechatronics, University of Waterloo, 200 University West, Waterloo, N2L 4 3G1 (Canada); Corbin, Stephen F. [Professor and Canada Research Chair in the Department of Civil and Resource Engineering, Dalhousie University, Halifax, Nova Scotia, P.O. Box 15000, B3H 5 4R2 (Canada); Khajepour, Amir [Professor and Canada Research Chair in the Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo (Canada)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer The novel idea was to develop Fe-TiC containing high volume fraction of TiC. Black-Right-Pointing-Pointer Increased TiC volume fraction enhanced clad hardness profile. Black-Right-Pointing-Pointer Both, laser conditions and fed powder compositions affected the clad microstructure. Black-Right-Pointing-Pointer Hardness and TiC volume fraction was maximized by control over melt pool composition. Black-Right-Pointing-Pointer Hardness/TiC volume fraction was maximized by controlling of laser parameters. - Abstract: In this paper, the effect of powder composition on in situ TiC formation within an Fe-based matrix coating during laser cladding was studied. Different atomic ratios of C:Ti (45% and 55%) were selected in order to adjust the matrix from an Fe-Ti-based composition to an Fe-C-based one. Fe percentages of 70, 60, 50 and 10 wt% were explored to increase the volume fraction of TiC in the clad. Results showed that chemical composition affects the TiC morphology as well as the TiC distribution and hardness profile in the clad. By increasing the C:Ti ratio from 45 at% to 55 at%, the volume fraction of the formed TiC increases. A higher volume fraction of TiC in the clad resulted in increases clad hardness. SEM and EDS analyses were used to characterize the phases in the clad, while increasing the C ratio promoted the formation of excess graphite in the Fe matrix.

  1. Flexible bipolar nanofibrous membranes for improving gradient microstructure in tendon-to-bone healing.

    Science.gov (United States)

    Li, Xiaoxi; Cheng, Ruoyu; Sun, Zhiyong; Su, Wei; Pan, Guoqing; Zhao, Song; Zhao, Jinzhong; Cui, Wenguo

    2017-10-01

    Enthesis is a specialized tissue interface between the tendon and bone. Enthesis structure is very complex because of gradient changes in its composition and structure. There is currently no strategy to create a suitable environment and to regenerate the gradual-changing enthesis because of the modular complexities between two tissue types. Herein, a dual-layer organic/inorganic flexible bipolar fibrous membrane (BFM) was successfully fabricated by electrospinning to generate biomimetic non-mineralized fibrocartilage and mineralized fibrocartilage in tendon-to-bone integration of enthesis. The growth of the in situ apatite nanoparticle layer was induced on the nano hydroxyapatite-poly-l-lactic acid (nHA-PLLA) fibrous layer in simulated body solution, and the poly-l-lactic acid (PLLA) fibrous layer retained its original properties to induce tendon regeneration. The in vivo results showed that BFM significantly increased the area of glycosaminoglycan staining at the tendon-bone interface and improved collagen organization when compared to the simplex fibrous membrane (SFM) of PLLA. Implanting the bipolar membrane also induced bone formation and fibrillogenesis as assessed by micro-CT and histological analysis. Biomechanical testing showed that the BFM group had a greater ultimate load-to-failure and stiffness than the SFM group at 12weeks after surgery. Therefore, this flexible bipolar nanofibrous membrane improves the healing and regeneration process of the enthesis in rotator cuff repair. In this study, we generated a biomimetic dual-layer organic/inorganic flexible bipolar fibrous membrane by sequential electrospinning and in situ biomineralization, producing integrated bipolar fibrous membranes of PLLA fibrous membrane as the upper layer and nHA-PLLA fibrous membrane as the lower layer to mimic non-mineralized fibrocartilage and mineralized fibrocartilage in tendon-to-bone integration of enthesis. Flexible bipolar nanofibrous membranes could be easily fabricated

  2. In-situ studies of stress- and magnetic-field-induced phase transformation in a polymer-bonded Ni-Co-Mn-In composite

    International Nuclear Information System (INIS)

    Liu, D.M.; Nie, Z.H.; Wang, G.; Wang, Y.D.; Brown, D.E.; Pearson, J.; Liaw, P.K.; Ren, Y.

    2010-01-01

    A polymer-bonded Ni 45 Co 5 Mn 36.6 In 13.4 ferromagnetic shape-memory composite was fabricated, having magnetic-field-driven shape recovery properties. The thermo-magnetization curves of the composite suggested that the magnetic-field-induced reverse martensitic transformation occurs in the composite. The effects of temperature, stress, and magnetic-field on the phase transformation properties were systematically investigated using an in-situ high-energy X-ray diffraction technique. A temperature-induced reversible martensitic phase transformation was confirmed within the composite, showing a broad phase transformation interval. Stress-induced highly textured martensite was observed in the composite during uniaxial compressive loading, with a residual strain after unloading. The origin of the textured martensite can be explained by the grain-orientation-dependent Bain distortion energy. A recovery strain of ∼1.76% along the compression direction was evidenced in the pre-strained composite with an applied magnetic-field of 5 T. This recovery was caused by the magnetic-field-induced reverse martensitic phase transformation. The phase transformation properties of the ferromagnetic shape-memory composite, different from its bulk alloys, can be well explained by the Clausius-Clapeyron relation. The large magnetic-field-induced strain, together with good ductility and low cost, make the polymer-bonded Ni-Co-Mn-In composites potential candidates for magnetic-field-driven actuators.

  3. Ehlers-Danlos syndrome with monostotic fibrous dysplasia

    Directory of Open Access Journals (Sweden)

    Rao A

    1979-01-01

    Full Text Available An unusual case of Ehlers-Danlos syndrome with monostotic fibrous dysplasia of the humorus is presented. The other orthopae-dic manifestations, its complications and associated features are re-viewed and summarised.

  4. Paloma: In-Situ Measurement of the Isotopic Composition of Mars Atmosphere

    Science.gov (United States)

    Jambon, A.; Quemerais, E.; Chassiefiere, E.; Berthelier, J. J.; Agrinier, P.; Cartigny, P.; Javoy, M.; Moreira, M.; Sabroux, J. -C.; Sarda, P.; Pineau, J. -F.

    2000-07-01

    Scientific objectives for an atmospheric analysis of Mars are presented in the DREAM project. Among the information presently available most are fragmentary or limited in their precision for both major element (H, C, O, N) and noble gas isotopes. These data are necessary for the understanding and modelling of Mars atmospheric formation and evolution, and consequently for other planets, particularly the Earth. To fulfill the above requirements, two approaches can be envisonned: 1) analysis of a returned sample (DREAM project) or 2) in situ analysis, e.g. PALOMA project presented here. Among the advantages of in situ analysis, we notice: the minimal terrestrial contamination, the unlimited availability of gas to be analyzed and the possibility of multiple analyses (replicates, daynight... ). Difficulties specific to in situ analyses are of a very different kind to those of returned samples. In situ analysis could also be viewed as a preparation to future analysis of returned samples. Finally, some of the measurements will not be possible on Earth: for instance, radon and its short lived decay products, will provide complementary information to 4-He analysis and can only be obtained in situ, independently of analytical capabilities.

  5. Manipulation of chemical composition and architecture of non-biodegradable poly(ethylene terephthalate)/chitosan fibrous scaffolds and their effects on L929 cell behavior

    Energy Technology Data Exchange (ETDEWEB)

    Veleirinho, Beatriz [QOPNA Research Unit, Department of Chemistry, University of Aveiro, 3810-193 Aveiro (Portugal); Berti, Fernanda V. [Integrated Technologies Laboratory, Chemical and Food Engineering Department, Federal University of Santa Catarina, 88040-900 Florianopolis (Brazil); Dias, Paulo F. [Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900 Florianopolis (Brazil); Maraschin, Marcelo [Department of Plant Science, Federal University of Santa Catarina, 88040-900 Florianopolis (Brazil); Ribeiro-do-Valle, Rosa M. [Department of Pharmacology, Federal University of Santa Catarina, 88040-900 Florianopolis (Brazil); Lopes-da-Silva, Jose A., E-mail: jals@ua.pt [QOPNA Research Unit, Department of Chemistry, University of Aveiro, 3810-193 Aveiro (Portugal)

    2013-01-01

    Microporous, non-woven fibrous scaffolds made of poly(ethylene terephthalate) and chitosan were produced by electrospinning. Fiber morphology, diameter, pore size, and wettability were manipulated by varying the chemical composition of the electrospinning solution, i.e. chitosan concentration and molecular weight, and by post-electrospinning treatment with glutaraldehyde. In vitro studies were conducted using a fibroblast cell line toward a comprehensive understanding of how scaffolds characteristics can modulate the cell behavior, i.e. viability, adhesion, proliferation, extracellular matrix secretion, and three-dimensional colonization. Substantial differences were found as a result of scaffold morphological changes. Higher levels of adhesion, spreading, and superficial proliferation were achieved for scaffolds with smaller fiber and pore diameters while cell penetration and internal colonization were enhanced for scaffolds with larger pores. Additionally, the available area for cell adhesion, which is related to fiber and pore size, was a crucial factor for the viability of L929 cells. This paper provides significant insights for the development and optimization of electrospun scaffolds toward an improved biological performance. Highlights: Black-Right-Pointing-Pointer Hybrid PET/chitosan mats were produced by electrospinning. Black-Right-Pointing-Pointer Scaffold architecture was manipulated by changing composition of the spun solution. Black-Right-Pointing-Pointer The scaffolds showed in vitro biocompatibility to L929 cells. Black-Right-Pointing-Pointer Smaller fiber diameters and pore areas allowed for higher levels of cell adhesion and proliferation. Black-Right-Pointing-Pointer A 3D cell colonization was achieved for scaffolds with higher fiber diameters.

  6. Manipulation of chemical composition and architecture of non-biodegradable poly(ethylene terephthalate)/chitosan fibrous scaffolds and their effects on L929 cell behavior

    International Nuclear Information System (INIS)

    Veleirinho, Beatriz; Berti, Fernanda V.; Dias, Paulo F.; Maraschin, Marcelo; Ribeiro-do-Valle, Rosa M.; Lopes-da-Silva, José A.

    2013-01-01

    Microporous, non-woven fibrous scaffolds made of poly(ethylene terephthalate) and chitosan were produced by electrospinning. Fiber morphology, diameter, pore size, and wettability were manipulated by varying the chemical composition of the electrospinning solution, i.e. chitosan concentration and molecular weight, and by post-electrospinning treatment with glutaraldehyde. In vitro studies were conducted using a fibroblast cell line toward a comprehensive understanding of how scaffolds characteristics can modulate the cell behavior, i.e. viability, adhesion, proliferation, extracellular matrix secretion, and three-dimensional colonization. Substantial differences were found as a result of scaffold morphological changes. Higher levels of adhesion, spreading, and superficial proliferation were achieved for scaffolds with smaller fiber and pore diameters while cell penetration and internal colonization were enhanced for scaffolds with larger pores. Additionally, the available area for cell adhesion, which is related to fiber and pore size, was a crucial factor for the viability of L929 cells. This paper provides significant insights for the development and optimization of electrospun scaffolds toward an improved biological performance. Highlights: ► Hybrid PET/chitosan mats were produced by electrospinning. ► Scaffold architecture was manipulated by changing composition of the spun solution. ► The scaffolds showed in vitro biocompatibility to L929 cells. ► Smaller fiber diameters and pore areas allowed for higher levels of cell adhesion and proliferation. ► A 3D cell colonization was achieved for scaffolds with higher fiber diameters.

  7. Factors influencing malignant evolution and long-term survival in solitary fibrous tumours of the pleura

    OpenAIRE

    Rodríguez-González, Marta; Novoa, Nuria M.; Gomez, Maria T.; García, Juan L.; Ludeña, María Dolores

    2014-01-01

    Solitary pleuro-pulmonary fibrous tumours are relatively uncommon neoplasms that are difficult to manage therapeutically and which, cytogenetically, have been poorly studied. The aim of the present work was to analyse the characteristics of a series of consecutive operated solitary pleural fibrous tumours in an attempt to discover a malignant pattern of evolution. This was a retrospective observational study of 19 cases. Samples were studied for clinical, histological, immunohistochemical and...

  8. Fibrous osteodystrophy in two Northern Royal albatross chicks (Diomedea sanfordi).

    Science.gov (United States)

    Morgan, K J; Alley, M R; Gartrell, B D; Thompson, K G; Perriman, L

    2011-09-01

    In February 2004, two Northern Royal albatross chicks aged 20 and 25 days old were presented for necropsy. Both chicks had been hand-fed in situ at a breeding colony, from 2-3 days post-hatch. The hand-rearing diet consisted of boneless hoki fillets (Macraronus novaezelandiae), electrolytes, and sooty shearwater (Puffinus griseus) proventricular oil obtained as a by-product of cultural harvest. Routine necropsies on the affected chicks revealed many bones were soft and easily bent. Radiography and histopathology revealed decreased bone density, pathological fractures, and extensive remodelling suggestive of fibrous osteodystrophy. Nutritional secondary hyperparathyroidism, resulting from an imbalance in the dietary Ca:P ratio. The imbalance in the dietary Ca:P ratio was a result of feeding deboned and eviscerated fish. This investigation also highlighted potential health risks associated with the practice of feeding stored rancid proventricular oil, including the destruction of fat-soluble vitamins. It is therefore possible that oxidative degradation of vitamin D may have contributed to the development of nutritional secondary hyperparathyroidism. Subsequently, dietary recommendations for supplementary feeding of orphaned Northern Royal albatross chicks include the feeding of whole human-grade fish with an appropriate Ca:P ratio, and the exclusion of proventricular oil. These cases highlight the need for scientific input into wildlife conservation projects, as lack of appropriate nutritional advice resulted in the feeding of a nutritionally inadequate diet. Following the recommended changes in diet, no further cases of osteodystrophy have been diagnosed in hand-raised chicks in the albatross colony.

  9. Fibrous metaphyseal defects

    International Nuclear Information System (INIS)

    Hajek, P.C.; Ritschi, P.; Kramer, J.; Imhof, H.; Karnel, F.

    1988-01-01

    Eighty-two patients (107 fibrous metaphyseal defects [FMDs]) were investigated with standard radiography and MR imaging (N = 15). Twenty-two of these were followed up sequentially up to 10 years (mean, 7.3 years). Histologic studies proved that FMDs originate at the site of insertion of a tendon in the perichondrium of the epiphyseal cartilage. After normal bone growth is regained, all FMDs were found to move diaphysically, following a straight line parallel to the long axis of the FMDs. This line pointed to the insertion of the tendon originally involved, a fact that was proved with MR imaging. Four characteristic stages were found to define a typical radiomorphologic course of an FMD

  10. A Solitary Fibrous Tumor of the Pleura Revealed by Hiccups

    Directory of Open Access Journals (Sweden)

    A. Chafik

    2011-01-01

    Full Text Available Solitary fibrous tumors of the pleura are rare and benign primary localized tumors; they possess a malignant potential and thus should be excised. We report a case of a 43-year-old woman, who had suffered for 5 years from right basithoracic pain associated with progressive dyspnea and persistent hiccups during the last 6 months. We have not found any similar case in the literature. Further testing after excision by thoracotomy revealed a solitary fibrous pleural tumor. A brief discussion of the clinical presentation and incidence of these tumors is included.

  11. In situ formation of ZrB2 particulates and their influence on microstructure and tensile behavior of AA7075 aluminum matrix composites

    Directory of Open Access Journals (Sweden)

    J. David Raja Selvam

    2017-02-01

    Full Text Available In situ synthesis of aluminum matrix composites (AMCs has become a popular method due to several advantages over conventional stir casting method. In the present study, AA7075/ZrB2 AMCs reinforced with various content of ZrB2 particulates (0, 3, 6, 9 and 12 wt.% were synthesized by the in situ reaction of molten aluminum with inorganic salts K2ZrF6 and KBF4. The composites were characterized using XRD, OM, SEM, EBSD and TEM. The XRD patterns revealed the formation of ZrB2 particulates without the presence of any other compounds. The formation of ZrB2 particulates refined the grains of aluminum matrix extensively. Most of the ZrB2 particulates were located near the grain boundaries. The ZrB2 particulates exhibited various morphologies including spherical, cylindrical and hexagonal shapes. The size of the ZrB2 particulates was in the order of nano, sub micron and micron level. A good interfacial bonding was observed between the aluminum matrix and the ZrB2 particulates. The in situ formed ZrB2 particulates enhanced the mechanical properties such as microhardness and the ultimate tensile strength. Various strengthening mechanisms were identified.

  12. Radiative Heat Transfer Modeling in Fibrous Porous Media

    Science.gov (United States)

    Sobhani, Sadaf; Panerai, Francesco; Borner, Arnaud; Ferguson, Joseph C.; Wray, Alan; Mansour, Nagi N.

    2017-01-01

    Phenolic-Impregnated Carbon Ablator (PICA) was developed at NASA Ames Research Center as a lightweight thermal protection system material for successful atmospheric entries. The objective of the current work is to compute the effective radiative conductivity of fibrous porous media, such as preforms used to make PICA, to enable the efficient design of materials that can meet the thermal performance goals of forthcoming space exploration missions.

  13. Microstructure and property evolutions of titanium/nano-hydroxyapatite composites in-situ prepared by selective laser melting.

    Science.gov (United States)

    Han, Changjun; Wang, Qian; Song, Bo; Li, Wei; Wei, Qingsong; Wen, Shifeng; Liu, Jie; Shi, Yusheng

    2017-07-01

    Titanium (Ti)-hydroxyapatite (HA) composites have the potential for orthopedic applications due to their favorable mechanical properties, excellent biocompatibility and bioactivity. In this work, the pure Ti and nano-scale HA (Ti-nHA) composites were in-situ prepared by selective laser melting (SLM) for the first time. The phase, microstructure, surface characteristic and mechanical properties of the SLM-processed Ti-nHA composites were studied by X-ray diffraction, transmission electron microscope, atomic force microscope and tensile tests, respectively. Results show that SLM is a suitable method for fabricating the Ti-nHA composites with refined microstructure, low modulus and high strength. A novel microstructure evolution can be illustrated as: Relatively long lath-shaped grains of pure Ti evolved into short acicular-shaped and quasi-continuous circle-shaped grains with the varying contents of nHA. The elastic modulus of the Ti-nHA composites is 3.7% higher than that of pure Ti due to the effect of grain refinement. With the addition of 2% nHA, the ultimate tensile strength significantly reduces to 289MPa but still meets the application requirement of bone implants. The Ti-nHA composites exhibit a remarkable improvement of microhardness from 336.2 to 600.8 HV and nanohardness from 5.6 to 8.3GPa, compared to those of pure Ti. Moreover, the microstructure and property evolution mechanisms of the composites with the addition of HA were discussed and analyzed. It provides some new knowledge to the design and fabrication of biomedical material composites for bone implant applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Aging behavior of an in-situ TiB{sub 2}/Al-Cu-Li-x matrix composite

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Yanwei; Hong, Tianran; Geng, Jiwei; Han, Gaoyang; Chen, Dong; Li, Xianfeng, E-mail: brucelee75cn@sjtu.edu.cn; Wang, Haowei

    2017-02-15

    Transmission electron microscopy, differential scanning calorimetry and hardness tests have been performed on an in-situ TiB{sub 2}/Al-3.3Cu-1.0Li-0.60Mg-0.40Ag-0.14Zr-0.13Si composite to study its aging behavior at 175 °C. A cubic phase suspected to be the σ (Al{sub 5}Cu{sub 6}Mg{sub 2}) phase or its variant is precipitated at all aging stages studied, and this phase is not typically observed in the Al-Cu-Li alloys. The primary hardening (aging for 3 h) phases consist of δ′ (Al{sub 3}Li), β′ (Al{sub 3}Zr) and the cubic phase. After aging for 18 h, all precipitates including T{sub 1} (Al{sub 2}CuLi), S (Al{sub 2}CuMg), θ′ (Al{sub 2}Cu), δ′, β′ and the cubic phase have appeared, and the formation of T{sub 1} and S results in a rapid increase in hardness. With prolonging of aging time, the apparent coarsening of T{sub 1} and S results in a decline in hardness. - Highlights: •The aging behavior of an in-situ TiB{sub 2}/Al-Cu-Li-x composite was studied. •A cubic phase suspected to be σ (Al{sub 5}Cu{sub 6}Mg{sub 2}) or its variant was precipitated. •The hardness change was dominated by the evolution of T{sub 1} (Al{sub 2}CuLi) and S (Al{sub 2}CuMg).

  15. Solitary Fibrous Tumor of Retromolar Pad; a Rare Challenging Case

    Science.gov (United States)

    Lotfi, Ali; Mokhtari, Sepideh; Moshref, Mohammad; Shahla, Maryam; Atarbashi Moghadam, Saede

    2017-01-01

    Solitary fibrous tumor has a wide spectrum of histopathologic features and many tumors show similar microscopic features. This similarity poses diagnostic challenges to the pathologists and immunohistochemical analysis is required in many cases. Moreover, it is a rare entity in orofacial region which consequently would make its diagnosis more challenging in oral cavity. The knowledge of various microscopic patterns of this tumor contributes to a proper diagnosis and prevents unnecessary treatment. This study reports a case of solitary fibrous tumor in the retromolar pad area and discusses its various histological features and differential diagnoses. PMID:28620640

  16. A case of malignant fibrous histiocytoma arising in the irradiated maxilla

    International Nuclear Information System (INIS)

    Fukuta, Yoshiyasu; Yamada, Kazumi; Ohmura, Hiromi; Kudo, Keigo; Takeda, Yasunori

    1994-01-01

    A malignant fibrous histiocytoma (MFH) arising in the irradiated maxilla is reported. The patient was a 59-year-old Japanese female who was referred to us for a relatively well defined and lobulated tumor extending from the right buccal mucosa to left hard palate. Her past medical history revealed that she had had a squamous cell carcinoma of the right buccal mucosa treated by 145 Gy of radiotherapy 3 years previously. Although the patient underwent a bilateral partial maxillectomy, she died due to extensive local recurrence 14 months postoperatively. Histopathologically, proliferation of atypical tumor cells of non-epithelial origin, i.e., spindle-shaped fibroblastic cells, histiocytic cells and bizarre multinucleated giant cells, were noted. Furthermore, a storiform pattern was also seen in part of the lesion. These features suggested that this care was a postirradiation malignant fibrous histiocytoma. (author)

  17. A case of malignant fibrous histiocytoma arising in the irradiated maxilla

    Energy Technology Data Exchange (ETDEWEB)

    Fukuta, Yoshiyasu; Yamada, Kazumi; Ohmura, Hiromi; Kudo, Keigo; Takeda, Yasunori (Iwate Medical Univ., Morioka (Japan). School of Dentistry)

    1994-03-01

    A malignant fibrous histiocytoma (MFH) arising in the irradiated maxilla is reported. The patient was a 59-year-old Japanese female who was referred to us for a relatively well defined and lobulated tumor extending from the right buccal mucosa to left hard palate. Her past medical history revealed that she had had a squamous cell carcinoma of the right buccal mucosa treated by 145 Gy of radiotherapy 3 years previously. Although the patient underwent a bilateral partial maxillectomy, she died due to extensive local recurrence 14 months postoperatively. Histopathologically, proliferation of atypical tumor cells of non-epithelial origin, i.e., spindle-shaped fibroblastic cells, histiocytic cells and bizarre multinucleated giant cells, were noted. Furthermore, a storiform pattern was also seen in part of the lesion. These features suggested that this care was a postirradiation malignant fibrous histiocytoma. (author).

  18. "Fibrous nests" in human hepatocellular carcinoma express a Wnt-induced gene signature associated with poor clinical outcome.

    Science.gov (United States)

    Désert, Romain; Mebarki, Sihem; Desille, Mireille; Sicard, Marie; Lavergne, Elise; Renaud, Stéphanie; Bergeat, Damien; Sulpice, Laurent; Perret, Christine; Turlin, Bruno; Clément, Bruno; Musso, Orlando

    2016-12-01

    Hepatocellular carcinoma (HCC) is the 3rd cause of cancer-related death worldwide. Most cases arise in a background of chronic inflammation, extracellular matrix (ECM) remodeling, severe fibrosis and stem/progenitor cell amplification. Although HCCs are soft cellular tumors, they may contain fibrous nests within the tumor mass. Thus, the aim of this study was to explore cancer cell phenotypes in fibrous nests. Combined anatomic pathology, tissue microarray and real-time PCR analyses revealed that HCCs (n=82) containing fibrous nests were poorly differentiated, expressed Wnt pathway components and target genes, as well as markers of stem/progenitor cells, such as CD44, LGR5 and SOX9. Consistently, in severe liver fibroses (n=66) and in HCCs containing fibrous nests, weighted correlation analysis revealed a gene network including the myofibroblast marker ACTA2, the basement membrane components COL4A1 and LAMC1, the Wnt pathway members FZD1; FZD7; WNT2; LEF1; DKK1 and the Secreted Frizzled Related Proteins (SFRPs) 1; 2 and 5. Moreover, unbiased random survival forest analysis of a transcriptomic dataset of 247 HCC patients revealed high DKK1, COL4A1, SFRP1 and LAMC1 to be associated with advanced tumor staging as well as with bad overall and disease-free survival. In vitro, these genes were upregulated in liver cancer stem/progenitor cells upon Wnt-induced mesenchymal commitment and myofibroblast differentiation. In conclusion, fibrous nests express Wnt target genes, as well as markers of cancer stem cells and mesenchymal commitment. Fibrous nests embody the specific microenvironment of the cancer stem cell niche and can be detected by routine anatomic pathology analyses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. High Dielectric Constant Study of TiO2-Polypyrrole Composites with Low Contents of Filler Prepared by In Situ Polymerization

    Directory of Open Access Journals (Sweden)

    Khalil Ahmed

    2016-01-01

    Full Text Available TiO2/polypyrrole composites with high dielectric constant have been synthesized by in situ polymerization of pyrrole in an aqueous dispersion of low concentration of TiO2, in the presence of small amount of HCl. Structural, optical, surface morphological, and thermal properties of the composites were investigated by X-ray diffractometer, Fourier transform infrared spectroscopy, field-emission scanning electron microscopy, and thermogravimetric analysis, respectively. The data obtained from diffractometer and thermal gravimetric analysis confirmed the crystalline nature and thermal stability of the prepared composites. The dielectric constant of 5 wt% TiO2 increased with filler content up to 4.3 × 103 at 1 kHz and then decreased to 1.25 × 103 at 10 kHz.

  20. Statistical model for the mechanical behavior of the tissue engineering non-woven fibrous matrices under large deformation.

    Science.gov (United States)

    Rizvi, Mohd Suhail; Pal, Anupam

    2014-09-01

    The fibrous matrices are widely used as scaffolds for the regeneration of load-bearing tissues due to their structural and mechanical similarities with the fibrous components of the extracellular matrix. These scaffolds not only provide the appropriate microenvironment for the residing cells but also act as medium for the transmission of the mechanical stimuli, essential for the tissue regeneration, from macroscopic scale of the scaffolds to the microscopic scale of cells. The requirement of the mechanical loading for the tissue regeneration requires the fibrous scaffolds to be able to sustain the complex three-dimensional mechanical loading conditions. In order to gain insight into the mechanical behavior of the fibrous matrices under large amount of elongation as well as shear, a statistical model has been formulated to study the macroscopic mechanical behavior of the electrospun fibrous matrix and the transmission of the mechanical stimuli from scaffolds to the cells via the constituting fibers. The study establishes the load-deformation relationships for the fibrous matrices for different structural parameters. It also quantifies the changes in the fiber arrangement and tension generated in the fibers with the deformation of the matrix. The model reveals that the tension generated in the fibers on matrix deformation is not homogeneous and hence the cells located in different regions of the fibrous scaffold might experience different mechanical stimuli. The mechanical response of fibrous matrices was also found to be dependent on the aspect ratio of the matrix. Therefore, the model establishes a structure-mechanics interdependence of the fibrous matrices under large deformation, which can be utilized in identifying the appropriate structure and external mechanical loading conditions for the regeneration of load-bearing tissues. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Scanning electron microscopic observations of fibrous structure of cemento-dentinal junction in healthy teeth.

    Science.gov (United States)

    Pratebha, B; Jaikumar, N D; Sudhakar, R

    2014-01-01

    The cemento-dentinal junction (CDJ) is a structural and biologic link between cementum and dentin present in the roots of teeth. Conflicting reports about the origin, structure and composition of this layer are present in literature. The width of this junctional tissue is reported to be about 2-4 μm with adhesion of cementum and dentin by proteoglycans and by collagen fiber intermingling. The objective of this study is to observe and report the fibrous architecture of the CDJ of healthy tooth roots. A total of 15 healthy teeth samples were collected, sectioned into halves, demineralized in 5% ethylenediaminetetraacetic acid, processed using NaOH maceration technique and observed under a scanning electron microscope. The CDJ appeared to be a fibril poor groove with a width of 2-4 µm. Few areas of collagen fiber intermingling could be appreciated. A detailed observation of these tissues has been presented.

  2. A structure-based extracellular matrix expansion mechanism of fibrous tissue growth.

    Science.gov (United States)

    Kalson, Nicholas S; Lu, Yinhui; Taylor, Susan H; Starborg, Tobias; Holmes, David F; Kadler, Karl E

    2015-05-20

    Embryonic growth occurs predominately by an increase in cell number; little is known about growth mechanisms later in development when fibrous tissues account for the bulk of adult vertebrate mass. We present a model for fibrous tissue growth based on 3D-electron microscopy of mouse tendon. We show that the number of collagen fibrils increases during embryonic development and then remains constant during postnatal growth. Embryonic growth was explained predominately by increases in fibril number and length. Postnatal growth arose predominately from increases in fibril length and diameter. A helical crimp structure was established in embryogenesis, and persisted postnatally. The data support a model where the shape and size of tendon is determined by the number and position of embryonic fibroblasts. The collagen fibrils that these cells synthesise provide a template for postnatal growth by structure-based matrix expansion. The model has important implications for growth of other fibrous tissues and fibrosis.

  3. MRI of intracranial meningeal malignant fibrous histiocytoma

    International Nuclear Information System (INIS)

    Ogino, A.; Ochi, M.; Hayashi, K.; Hirata, K.; Hayashi, T.; Yasunaga, A.; Shibata, S.

    1996-01-01

    We describe the CT and MRI findings in a patient with primary intracranial meningeal malignant fibrous histiocytoma (MFH). CT delineated the anatomical relations and MRI aided in tissue characterisation. To our knowledge, this is the first report describing the MRI findings in primary intracranial meningeal MFH. (orig.). With 1 fig

  4. The Philippines [Status and technology of polymer-containing fibrous materials in the Eastern Hemisphere

    Energy Technology Data Exchange (ETDEWEB)

    Bonoan, Leticia S. [Philippine Atomic Research Center, Philippine Atomic Energy Commission, Manila (Philippines)

    1968-10-15

    Fibrous materials (timber and fibres) constitute one of the most steady dollar-earning industries in the Philippines. In 1966 the produce from this industry alone was worth 1061 million pesos, which was almost 6% of the country's national income. The total timber production amounted to 3 325 541 899 board feet, of which 15. 2% was consumed locally and the rest exported to different countries, with Japan as one of the largest importers. The Philippines produces quite a number of varieties of timber and fibre which have earned a good reputation for quality in the world market. However, there are also other varieties of timber and fibres which need improvement to gain a market. Plastic impregnation of these fibrous materials seems a very promising technique for improving their quality. Plastic impregnation of fibrous materials, being a relatively new field, has only recently been started in the Philippines. So far, only the Philippine Atomic Research Center (PARC) has been working in this field. Exploratory studies were initiated in November 1966. Initial work was confined to wood plastic combination (WPC)

  5. Creation of Hybrid Nanorods From Sequences of Natural Trimeric Fibrous Proteins Using the Fibritin Trimerization Motif

    Science.gov (United States)

    Papanikolopoulou, Katerina; van Raaij, Mark J.; Mitraki, Anna

    Stable, artificial fibrous proteins that can be functionalized open new avenues in fields such as bionanomaterials design and fiber engineering. An important source of inspiration for the creation of such proteins are natural fibrous proteins such as collagen, elastin, insect silks, and fibers from phages and viruses. The fibrous parts of this last class of proteins usually adopt trimeric, β-stranded structural folds and are appended to globular, receptor-binding domains. It has been recently shown that the globular domains are essential for correct folding and trimerization and can be successfully substituted by a very small (27-amino acid) trimerization motif from phage T4 fibritin. The hybrid proteins are correctly folded nanorods that can withstand extreme conditions. When the fibrous part derives from the adenovirus fiber shaft, different tissue-targeting specificities can be engineered into the hybrid proteins, which therefore can be used as gene therapy vectors. The integration of such stable nanorods in devices is also a big challenge in the field of biomechanical design. The fibritin foldon domain is a versatile trimerization motif and can be combined with a variety of fibrous motifs, such as coiled-coil, collagenous, and triple β-stranded motifs, provided the appropriate linkers are used. The combination of different motifs within the same fibrous molecule to create stable rods with multiple functions can even be envisioned. We provide a comprehensive overview of the experimental procedures used for designing, creating, and characterizing hybrid fibrous nanorods using the fibritin trimerization motif.

  6. Transformation of the released asbestos, carbon fibers and carbon nanotubes from composite materials and the changes of their potential health impacts.

    Science.gov (United States)

    Wang, Jing; Schlagenhauf, Lukas; Setyan, Ari

    2017-02-20

    Composite materials with fibrous reinforcement often provide superior mechanical, thermal, electrical and optical properties than the matrix. Asbestos, carbon fibers and carbon nanotubes (CNTs) have been widely used in composites with profound impacts not only on technology and economy but also on human health and environment. A large number of studies have been dedicated to the release of fibrous particles from composites. Here we focus on the transformation of the fibrous fillers after their release, especially the change of the properties essential for the health impacts. Asbestos fibers exist in a large number of products and the end-of-the-life treatment of asbestos-containing materials poses potential risks. Thermal treatment can transform asbestos to non-hazardous phase which provides opportunities of safe disposal of asbestos-containing materials by incineration, but challenges still exist. Carbon fibers with diameters in the range of 5-10 μm are not considered to be respirable, however, during the release process from composites, the carbon fibers may be split along the fiber axis, generating smaller and respirable fibers. CNTs may be exposed on the surface of the composites or released as free standing fibers, which have lengths shorter than the original ones. CNTs have high thermal stability and may be exposed after thermal treatment of the composites and still keep their structural integrity. Due to the transformation of the fibrous fillers during the release process, their toxicity may be significantly different from the virgin fibers, which should be taken into account in the risk assessment of fiber-containing composites.

  7. Utilization of poly(methyl methacrylate) – carbon nanotube and polystyrene – carbon nanotube in situ polymerized composites as masterbatches for melt mixing

    OpenAIRE

    M. Lahelin; M. Annala; J. Seppala

    2012-01-01

    Carbon nanotubes (CNTs) were melt mixed directly or by using an in situ polymerized masterbatch into a matrix polymer, polystyrene (PS) or poly(methyl methacrylate) (PMMA). The mechanical properties of the composites were mostly determined by the amount of CNTs, and not by the use of directly melt mixed CNTs or the use of the masterbatch. In contrast, the electrical resistivity of the composites was dependent on the manner in which the CNTs were added to the matrix polymer. When there was inc...

  8. Asbestos free friction composition for brake linings

    Indian Academy of Sciences (India)

    WINTEC

    Abstract. An asbestos free friction material composite for brake linings is synthesized containing fibrous re- inforcing ... every manufacturer of automotive friction materials uses phenolics as ... The resin binder is a critical compo- nent. The limits ...

  9. In-situ heating TEM observation of microscopic structural changes of size-controlled metallic copper/gelatin composite.

    Science.gov (United States)

    Narushima, Takashi; Hyono, Atsushi; Nishida, Naoki; Yonezawa, Tetsu

    2012-10-01

    Copper/gelatin composite particles with controlled sizes were prepared at room temperature from cupric sulfate pentahydrate in the presence of gelatin as a protective reagent by using hydrazine monohydrate as a reducing agent. The formed particles with the size between 190-940 nm were secondary aggregated particles which were composed of smaller nanosized particles ("particle-in-particle"), the presence of which was established by XRD patterns and a cross-sectional TEM image. The sintering behavior of these copper/gelatin composite particles was demonstrated by in-situ heating TEM under a high vacuum (approximately 10(-5) Pa) and separately with the oxygen partial pressure controlled at the 10(-4) Pa level. It was established that the particles began to sinter at about 330 degrees C with the oxygen and that they sublimate above 450 degrees C both in the vacuum and oxygen conditions. This result shows that the introduction of an adequate amount of oxygen was effective to remove the gelatin surrounding the particles. It can also be concluded that the sintering of the copper/gelatin composite particles occurred even in the absence of a reducing agent such as hydrogen gas.

  10. High-Temperature Tensile and Tribological Behavior of Hybrid (ZrB2+Al3Zr)/AA5052 In Situ Composite

    Science.gov (United States)

    Gautam, G.; Kumar, N.; Mohan, A.; Gautam, R. K.; Mohan, S.

    2016-09-01

    During service life, components such as piston, cylinder blocks, brakes, and discs/drums, have to work under high-temperature conditions. In order to have appropriate material for such applications high-temperature studies are important. Hybrid (ZrB2+Al3Zr)/AA5052 in situ composite has been investigated from ambient to 523 K (250 °C) at an interval of 50 deg. (ZrB2+Al3Zr)/AA5052 in situ composite has been fabricated by the direct melt reaction of AA5052 alloy with zirconium and boron salts. Microstructure studies show refinement in the grain size of base alloy on in situ formation of reinforcement particles. Al3Zr particles are observed in rectangular and polyhedron shapes. It is observed from the tensile studies that ultimate tensile strength, yield strength, and percentage elongation decrease with increase in test temperature. Similar kind of behavior is also observed for flow curve properties. The tensile results have also been correlated with fractography. Wear and friction results indicate that the wear rate increases with increase in normal load, whereas coefficient of friction shows decreasing trend. With increasing test temperature, wear rate exhibits a typical phenomenon. After an initial increase, wear rate follows a decreasing trend up to 423 K (150 °C), and finally a rapid increase is observed, whereas coefficient of friction increases continuously with increase in test temperature. The mechanisms responsible for the variation of wear and friction with different temperatures have been discussed in detail with the help of worn surfaces studies under scanning electron microscope (SEM) & 3D-profilometer and debris analysis by XRD.

  11. FIBROUS CERAMIC-CERAMIC COMPOSITE MATERIALS PROCESSING AND PROPERTIES

    OpenAIRE

    Naslain , R.

    1986-01-01

    The introduction of continuous fibers in a ceramic matrix can improve its toughness, if the fiber-matrix bonding is weak enough, due to matrix microcracking and fiber pull-out. Ceramic-ceramic composite materials are processed according to liquid or gas phase techniques. The most important are made of glass, carbide, nitride or oxide matrices reinforced with carbon, SiC or Al2O3 fibers.

  12. Study of the morphology exhibited by exfoliated polyurethane/montmorillonite nano composites during in situ recovery tests

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Iaci M., E-mail: iaci@ctex.eb.br [Divisao Belica do Centro Tecnologico do Exercito. CTEx, Rio de Janeiro, RJ (Brazil); Orefice, Rodrigo L. [Universidade Federal de Minas Gerais Departamento de Metalurgia e Materiais. UFMG, Belo Horizonte, MG (Brazil)

    2011-07-01

    By using small-angle X-ray scattering, this study aims to examine the SM behavior of montmorillonite polyurethane nano composites. To investigate the phase morphology, a deformed specimen was placed on a heating stage mounted at the Synchrotron beamline; the shape recovery was measured during 15 min. As temperature increases, the crystalline fraction rapidly decreases. The degree of clay delamination within the matrix increases, disturbing the formation of hard and soft segments. Deformation induces changes in the phase proportion, increasing the disperse phase contribution. During in situ tests, the ratio between matrix and disperse phase reaches an equilibrium controlled by the temperature. (author)

  13. Heat transfer in Rockwool modelling and method of measurement. The effect of natural convection on heat transfer in fibrous materials

    Energy Technology Data Exchange (ETDEWEB)

    Dyrboel, Susanne

    1998-05-01

    Fibrous materials are some of the most widely used materials for thermal insulation. In this project the focus of interest has been on fibrous materials for building application. Interest in improving the thermal properties of insulation materials is increasing as legislation is being tightened to reduce the overall energy consumption. A knowledge of the individual heat transfer mechanisms - whereby heat is transferred within a particular material is an essential tool to improve continuously the thermal properties of the material. Heat is transferred in fibrous materials by four different transfer mechanisms: conduction through air, conduction through fibres, thermal radiation and convection. In a particular temperature range the conduction through air can be regarded as a constant, and conduction through fibres is an insignificant part of the total heat transfer. Radiation, however, constitutes 25-40% of the total heat transfer in light fibrous materials. In Denmark and a number of other countries convection in fibrous materials is considered as non-existent when calculating heat transmission as well as when designing building structures. Two heat transfer mechanisms have been the focus of the current project: radiation heat transfer and convection. The radiation analysis serves to develop a model that can be used in further work to gain a wider knowledge of the way in which the morphology of the fibrous material, i.e. fibre diameter distribution, fibre orientation distribution etc., influences the radiation heat transfer under different conditions. The convection investigation serves to examine whether considering convection as non-existent is a fair assumption to use in present and future building structures. The assumption applied in practically is that convection makes a notable difference only in very thick insulation, at external temperatures below -20 deg. C, and at very low densities. For large thickness dimensions the resulting heat transfer through the

  14. Atomic force microscopy and Raman scattering spectroscopy studies on heat-induced fibrous aggregates of β-lactoglobulin

    OpenAIRE

    Ikeda, Shinya

    2003-01-01

    Nanometer-thick fibrous aggregates of β-lactoglobulin alone and its mixture with other globular proteins were formed by heating aqueous solutions at pH 2 with maintaining an effective level of electrostatic repulsion among denatured protein molecules. In atomic force microscopy (AFM) images, these fibrous aggregates appeared to be fairly uniform in width and height and composed of strings of globular elements. Fibrous aggregates formed in β-lactoglobulin individual systems were only slightly ...

  15. Tensor-based morphometry of fibrous structures with application to human brain white matter.

    Science.gov (United States)

    Zhang, Hui; Yushkevich, Paul A; Rueckert, Daniel; Gee, James C

    2009-01-01

    Tensor-based morphometry (TBM) is a powerful approach for examining shape changes in anatomy both across populations and in time. Our work extends the standard TBM for quantifying local volumetric changes to establish both rich and intuitive descriptors of shape changes in fibrous structures. It leverages the data from diffusion tensor imaging to determine local spatial configuration of fibrous structures and combines this information with spatial transformations derived from image registration to quantify fibrous structure-specific changes, such as local changes in fiber length and in thickness of fiber bundles. In this paper, we describe the theoretical framework of our approach in detail and illustrate its application to study brain white matter. Our results show that additional insights can be gained with the proposed analysis.

  16. Steam Reformer With Fibrous Catalytic Combustor

    Science.gov (United States)

    Voecks, Gerald E.

    1987-01-01

    Proposed steam-reforming reactor derives heat from internal combustion on fibrous catalyst. Supplies of fuel and air to combustor controlled to meet demand for heat for steam-reforming reaction. Enables use of less expensive reactor-tube material by limiting temperature to value safe for material yet not so low as to reduce reactor efficiency.

  17. Wear particle diffusion and tissue differentiation in TKA implant fibrous interfaces

    NARCIS (Netherlands)

    Yuan, X.; Ryd, L.; Huiskes, H.W.J.

    2000-01-01

    In the context of mechanical loosening, we studied the hypothesis that wear-particle migration in the fibrous membrane under tibial plateaus after total knee arthroplasty can be explained by the pumping effects of the interstitial fluid in the tissue. Further, as a secondary objective we

  18. Polymerization in situ by means of radiation gamma for the production of conducting polymeric composites

    International Nuclear Information System (INIS)

    Poblete Pulgar, Victor; Pilleux Cepeda, Mauricio; Fuenzalida Escobar, Victor; Alvarez Vargas, Mariela

    2002-01-01

    The nanocomposites synthesis of copper-methyl metacritate is made using copper spheres from 80 to 120 diameter nm, suspended in a methyl metacrilato (MMA) matrix, for different concentrations (5% to 30% of copper-v/v). The polymerization is carried out by means of gamma radiation, with 16 kGy dose applied 'in situ'. A high homogenous samples were obtained. The morphology and formation of the composite was studied by means of scanning electronic microscopy (SEM). The observed electric resistance is analyzed in function of the distance among electric contacts, meeting a strong dependence of the resistance with the homogeneous distribution of the metal in the composite. The obtained specific resistivities, in function of the concentration of the conductive metal, they are in the order of 42 Ωm for 10% v/v, being this critical concentration, the percolation threshold of the system. The obtained results show a material that is able to conserve principally the mechanical properties of the polymer and the electric properties of the conductive metal (author)

  19. Establishment of a new human pleomorphic malignant fibrous histiocytoma cell line, FU-MFH-2: molecular cytogenetic characterization by multicolor fluorescence in situ hybridization and comparative genomic hybridization

    Directory of Open Access Journals (Sweden)

    Isayama Teruto

    2010-11-01

    Full Text Available Abstract Background Pleomorphic malignant fibrous histiocytoma (MFH is one of the most frequent malignant soft tissue tumors in adults. Despite the considerable amount of research on MFH cell lines, their characterization at a molecular cytogenetic level has not been extensively analyzed. Methods and results We established a new permanent human cell line, FU-MFH-2, from a metastatic pleomorphic MFH of a 72-year-old Japanese man, and applied multicolor fluorescence in situ hybridization (M-FISH, Urovysion™ FISH, and comparative genomic hybridization (CGH for the characterization of chromosomal aberrations. FU-MFH-2 cells were spindle or polygonal in shape with oval nuclei, and were successfully maintained in vitro for over 80 passages. The histological features of heterotransplanted tumors in severe combined immunodeficiency mice were essentially the same as those of the original tumor. Cytogenetic and M-FISH analyses displayed a hypotriploid karyotype with numerous structural aberrations. Urovysion™ FISH revealed a homozygous deletion of the p16INK4A locus on chromosome band 9p21. CGH analysis showed a high-level amplification of 9q31-q34, gains of 1p12-p34.3, 2p21, 2q11.2-q21, 3p, 4p, 6q22-qter, 8p11.2, 8q11.2-q21.1, 9q21-qter, 11q13, 12q24, 15q21-qter, 16p13, 17, 20, and X, and losses of 1q43-qter, 4q32-qter, 5q14-q23, 7q32-qter, 8p21-pter, 8q23, 9p21-pter, 10p11.2-p13, and 10q11.2-q22. Conclusion The FU-MFH-2 cell line will be a particularly useful model for studying molecular pathogenesis of human pleomorphic MFH.

  20. In-situ synthesized Ni–Zr intermetallic/ceramic reinforced composite coatings on zirconium substrate by high power diode laser

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Kun; Li, Yajiang, E-mail: yajli@sdu.edu.cn; Wang, Juan; Ma, Qunshuang

    2015-03-05

    Highlights: • In-situ synthesized Ni–Zr intermetallics/ceramic reinforced composite coatings. • Si enrichment and Ni replacing site of Si both resulted in forming Zr{sub 5}(Si{sub x}Ni{sub 1−x}){sub 4.} • Microstructure and forming of ZrB{sub 2} depended on affinity of elements and Si/B ratio. - Abstract: Ni–Zr intermetallic/ceramic reinforced composite coatings were in-situ synthesized by laser cladding series of Ni–Cr–B–Si powders on zirconium substrate. Microstructure, phase constituents and microhardness of coatings were investigated by means of optical microscope (OM), scanning electron microscope (SEM), energy dispersive spectrometer (EDS), X-ray diffraction (XRD) and microsclemeter. Results indicated that coatings with metallurgical bonding to substrate consisted of cellular NiZr matrix and massive reinforcements including NiZr{sub 2}, Zr{sub 5}(Si{sub x}Ni{sub 1−x}){sub 4} and ZrB{sub 2}. Morphologies of reinforcements were mainly dominated by temperature gradient and cooling rate from surface to bottom of the coating produced by same powder. In different coatings, microstructure and forming of ZrB{sub 2} mainly depended on affinity of elements and Si/B ratio in different powders. In addition, the mean microhardness of coatings up to 1200–1300 HV{sub 0.2} is nearly 7 times higher than that of R60702 zirconium substrate.

  1. Prospectively randomized clinical trial to compare in situ and reversed saphenous vein grafts for femoropopliteal bypass.

    Science.gov (United States)

    Harris, P L; How, T V; Jones, D R

    1987-04-01

    Two hundred and fifteen femoropopliteal bypass procedures using autologous saphenous vein grafts were randomly allocated to either the reversed or in situ technique. Eleven veins (5 per cent) were rejected at operation on the basis of their small size, nine in the reversed group and two in the in situ group, and there were two (2 per cent) perioperative deaths in each group, leaving 102 reversed and 98 in situ grafts for further study. The cumulative patency at 3 years of the reversed grafts was 77 per cent and that of the in situ grafts was 68 per cent (n.s.). The patency of all grafts was affected adversely by small veins (P less than 0.005), long grafts (P less than 0.05), low volume of blood flow in the grafts (P less than 0.001) and poor run-off (P less than 0.05). These factors influenced the outcome of the in situ and reversed operations to a similar degree and there was no statistically significant difference between them within any subgroup. The mean compliance of the in situ grafts measured 3 months or more after operation with an ultrasonic echo-tracking system was 0.024 +/- 0.01 per cent/mmHg (+/- s.d.) compared with 0.017 +/- 0.01 per cent/mmHg for the reversed grafts (t = 2.43, P less than 0.02). The incidence of fibrous stricture formation as shown by intravenous digital subtraction angiography was 29 per cent in both the reversed and the in situ grafts. The results of the study to date indicate that reversed and in situ vein grafts are equally effective for femoropopliteal bypass.

  2. The interface interaction behavior between E. coli and two kinds of fibrous minerals.

    Science.gov (United States)

    Dai, Qunwei; Han, Linbao; Deng, Jianjun; Zhao, Yulian; Dang, Zheng; Tan, Daoyong; Dong, Faqin

    2017-11-09

    In the present, studies of interaction between human normal flora and fibrous mineral are still lacking. Batch experiments were performed to deal with the interaction of Escherichia coli and two fibrous minerals (brucite and palygorskite), and the interface and liquid phase characteristics in the short-term interaction processes were discussed. The bacterial concentrations, the remnant glucose (GLU), pyruvic acid, and the activity of β-galactosidase and six elements were measured, and the results show that the promoting effect of brucite on the growth of E. coli was more significant than that of palygorskite. FTIR and XRD analysis results also confirmed E. coli has obviously dissolved on brucite and damage effect on palygorskite silicon structure. SEM results show that the interfacial contact degree between E. coli cells and brucite fibers was higher than that of palygorskite. These may be due to the zeta potential difference between E. coli and palygorskite was 14.57-22.37 mV, while it of brucite was 44.04-64.24 mV. The elements dissolving of two fibrous minerals not only increased regularly to liquid EC but also had a good buffer effect to the decrease of liquid pH. Studies of short-term interaction between E. coli and brucite and palygorskite can help to understand the effect of fibrous minerals on microeubiosis of human normal flora and the contribution of microbial behaviors on the fibrous minerals weathering in the natural environment.

  3. Al-Si/Al2O3 in situ composite prepared by displacement reaction of CuO/Al system

    Directory of Open Access Journals (Sweden)

    Zhang Jing

    2010-02-01

    Full Text Available Al2O3 particle-reinforced ZL109 composite was prepared by in situ reaction between CuO and Al. The microstructure was observed by means of OM, SEM and TEM. The Al2O3 particles in sub-micron sizes distribute uniformly in the matrix, and the Cu displaced from the in situ reaction forms net-like alloy phases with other alloy elements. The hardness and the tensile strength of the composites at room temperature have a slight increase as compared to that of the matrix. However, the tensile strength at 350 ℃ has reached 90.23 MPa, or 16.92 MPa higher than that of the matrix. The mechanism of the reaction in the CuO/Al system was studied by using of differential scanning calorimetry(DSC and thermodynamic calculation. The reaction between CuO and Al involves two steps. First, CuO reacts with Al to form Cu2O and Al2O3 at the melting temperature of the matrix alloy, and second, Cu2O reacts with Al to form Cu and Al2O3 at a higher temperature. At ZL109 casting temperature of 750–780 ℃, the second step can also take place because of the effect of exothermic reaction of the first step.

  4. Microwave-assisted extraction of metal elements from glass fibrous filters for aerosol sampling

    International Nuclear Information System (INIS)

    Li Dong-Mei; Zhang Li-Xing; Wang Xu-Hui; Liu Long-Bo

    2003-01-01

    Atmospheric aerosols are generally collected on filters according to the International Monitoring System (IMS) designed in the Comprehensive Nuclear-Test-Ban Treaty (CTBT). More information could be revealed when the filter sample is pretreated rather than measured directly by γ-ray spectrometer. Microwave-assisted extraction (MAE) is a suitable method that gives higher recoveries of elements from glass fibrous filters under different conditions. The results indicate that the MAE is a highly efficient and robust method for the treatment of glass fibrous filter samples. The recoveries of potential fission products from glass fibrous filter samples by microwave-assisted extraction meet the efficiency of the extraction by both aqua regia and 2% HCl. (author)

  5. In situ fabrication of nickel aluminum-layered double hydroxide nanosheets/hollow carbon nanofibers composite as a novel electrode material for supercapacitors

    Science.gov (United States)

    He, Fang; Hu, Zhibiao; Liu, Kaiyu; Zhang, Shuirong; Liu, Hongtao; Sang, Shangbin

    2014-12-01

    This paper introduces a new design route to fabricate nickel aluminum-layered double hydroxide (NiAl-LDH) nanosheets/hollow carbon nanofibers (CNFs) composite through an in situ growth method. The NiAl-LDH thin layers which grow on hollow carbon nanofibers have an average thickness of 13.6 nm. The galvanostatic charge-discharge test of the NiAl-LDH/CNFs composite yields an impressive specific capacitance of 1613 F g-1 at 1 A g-1 in 6 M KOH solution, the composite shows a remarkable specific capacitance of 1110 F g-1 even at a high current density of 10 A g-1. Furthermore, the composite remains a specific capacitance of 1406 F g-1 after 1000 cycles at 2 A g-1, indicating the composite has excellent high-current capacitive behavior and good cycle stability in compared to pristine NiAl-LDH.

  6. In-situ chemical analyses of trans-polyisoprene by histochemical staining and Fourier transform infrared microspectroscopy in a rubber-producing plant, Eucommia ulmoides Oliver.

    Science.gov (United States)

    Bamba, Takeshi; Fukusaki, Ei-Ichiro; Nakazawa, Yoshihisa; Kobayashi, Akio

    2002-10-01

    The localization of polyisoprene in young stem tissues of Eucommia ulmoides Oliver was investigated by histochemical staining and Fourier transform infrared (FT-IR) microspectroscopy. The fibrous structures were stained with Oil Red O. FT-IR microspectroscopic analysis proved that the fibrous structures were trans-polyisoprene. Granular structures stained with the dye, and characteristic absorptions at 2,960 cm(-1) and 1,430 cm(-1) in FT-IR suggested that trans-polyisoprene accumulated in the vicinity of the cambium layer. We have thus successfully shown for the first time the localization of trans-polyisoprene in plant tissues, and our histological investigation allowed us to presume the main sites of biosynthesis and accumulation of trans-rubber. Furthermore, a new technical approach, the preparation of sections using an electronic freezing unit and the in situ analysis of polyisoprene using FT-IR microspectroscopy, is demonstrated to be a promising method for determining the accumulation of polyisoprene as well as other metabolites.

  7. High surface area fibrous silica nanoparticles

    KAUST Repository

    Polshettiwar, Vivek; Basset, Jean-Marie

    2014-01-01

    Disclosed are high surface area nanoparticles that have a fibrous morphology. The nanoparticles have a plurality of fibers, wherein each fiber is in contact with one other fiber and each fiber has a length of between about 1 nm and about 5000 nm. Also disclosed are applications of the nanoparticles of the present invention, and methods of fabrication of the nanoparticles of the present invention.

  8. High surface area fibrous silica nanoparticles

    KAUST Repository

    Polshettiwar, Vivek

    2014-11-11

    Disclosed are high surface area nanoparticles that have a fibrous morphology. The nanoparticles have a plurality of fibers, wherein each fiber is in contact with one other fiber and each fiber has a length of between about 1 nm and about 5000 nm. Also disclosed are applications of the nanoparticles of the present invention, and methods of fabrication of the nanoparticles of the present invention.

  9. FGF-23 in fibrous dysplasia of bone and its relationship to renal phosphate wasting

    Science.gov (United States)

    Riminucci, Mara; Collins, Michael T.; Fedarko, Neal S.; Cherman, Natasha; Corsi, Alessandro; White, Kenneth E.; Waguespack, Steven; Gupta, Anurag; Hannon, Tamara; Econs, Michael J.; Bianco, Paolo; Gehron Robey, Pamela

    2003-01-01

    FGF-23, a novel member of the FGF family, is the product of the gene mutated in autosomal dominant hypophosphatemic rickets (ADHR). FGF-23 has been proposed as a circulating factor causing renal phosphate wasting not only in ADHR (as a result of inadequate degradation), but also in tumor-induced osteomalacia (as a result of excess synthesis by tumor cells). Renal phosphate wasting occurs in approximately 50% of patients with McCune-Albright syndrome (MAS) and fibrous dysplasia of bone (FD), which result from postzygotic mutations of the GNAS1 gene. We found that FGF-23 is produced by normal and FD osteoprogenitors and bone-forming cells in vivo and in vitro. In situ hybridization analysis of FGF-23 mRNA expression identified “fibrous” cells, osteogenic cells, and cells associated with microvascular walls as specific cellular sources of FGF-23 in FD. Serum levels of FGF-23 were increased in FD/MAS patients compared with normal age-matched controls and significantly higher in FD/MAS patients with renal phosphate wasting compared with those without, and correlated with disease burden bone turnover markers commonly used to assess disease activity. Production of FGF-23 by FD tissue may play an important role in the renal phosphate–wasting syndrome associated with FD/MAS. PMID:12952917

  10. Microstructure and mechanical properties of diffusion bonded Al/Mg2Si metal matrix in situ composite

    International Nuclear Information System (INIS)

    Nami, H.; Halvaee, A.; Adgi, H.; Hadian, A.

    2010-01-01

    In this research, Al/Mg 2 Si composite produced by gravity casting, was joined by diffusion welding technique at 6 MPa pressure with various welding temperatures and durations. This metal matrix composite (MMC) containing 15% Mg 2 Si particles was produced by in situ technique. Specific diffusion bonding process was introduced as a low vacuum technique. Microstructure and shear strength of the joined areas were determined. Scanning electron microscopy examination was carried out on the welded interfaces and shear tests were conducted to the samples interface to find out the effect of welding temperatures and durations on the weldability. It was found that high welding temperatures resulted in increase of shear strength. However, increase in welding duration did not make any detectable changes. The bonded interface could be developed as a wavy state depending on the amount of parent material deformation that was associated with bonding temperature. Results indicated that MMC can be joined by diffusion welding technique successfully with satisfactory shear strength.

  11. In situ polymerization of monomers for polyphenylquinoxaline/graphite

    Science.gov (United States)

    Serafini, T. T.; Delvigs, P.; Vannucci, R. D.

    1973-01-01

    Methods currently used to prepare fiber reinforced, high temperature resistant polyphenylquinoxaline (PPQ) composites employ extremely viscous, low solids content solutions of high molecular weight PPQ polymers. An improved approach, described in this report, consists of impregnating the fiber with a solution of the appropriate monomers instead of a solution of previously synthesized high molecular weight polymer. Polymerization of the monomers occurs in situ on the fiber during the solvent removal and curing stages. The in situ polymerization approach greatly simplifies the fabrication of PPQ graphite fiber composites. The use of low viscosity monomeric type solutions facilitates fiber wetting, permits a high solids content, and eliminates the need for prior polymer synthesis.

  12. Electrospun composite matrices of poly(ε-caprolactone)-montmorillonite made using tenside free Pickering emulsions.

    Science.gov (United States)

    Samanta, Archana; Takkar, Sonam; Kulshreshtha, Ritu; Nandan, Bhanu; Srivastava, Rajiv K

    2016-12-01

    The production of composite electrospun matrices of poly(ε-caprolactone) (PCL) using an emulsifier-free emulsion, made with minimal organic solvent, as precursor is reported. Pickering emulsions of PCL were prepared using modified montmorillonite (MMT) clay as the stabilizer. Hydrophobic tallow group of the modified MMT clay resulted in analogous interaction of clay with oil and aqueous phase and its adsorption at the interface to provide stability to the resultant emulsion. Composite fibrous matrices of PCL and MMT were produced using electrospinning under controlled conditions. The fiber fineness was found to alter with PCL concentration and volume fraction of the aqueous and oil phases. A higher tensile strength and modulus was obtained with inclusion of MMT in PCL electrospun matrix in comparison to a matrix made using neat PCL. The presence of clay in the fibrous matrix did not change the cell proliferation efficiency in comparison to neat PCL matrix. Composite fibrous matrices of PCL/MMT bearing enhanced tensile properties may find applications in areas other than tissue engineering for example food packaging and filtration. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Transient desorption characteristics of fibrous organic adsorbent; Sen'ikei yuki kyuchakuzai no katoteki dacchaku tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Inaba, H.; Ozaki, K.; Horibe, A. [Okayama University, Okayama (Japan). Faculty of Engineering; Shimoyama, R. [Okayama University, Okayama (Japan); Kida, T. [Japan Exlan Co. Ltd., Osaka (Japan)

    1999-11-25

    An experimental investigation was performed to determine time transient desorption characteristics of a fibrous type organic adsorbent, which was composed of the bridged complex of sodium polyacrylate as a new kind of adsorbent. The test fibrous adsorbent was packed in a cylindrical vessel, and dry air was passed through it. The experiments were conducted under various conditions of air velocity, temperature, relative humidity and vessel length. As a result, time pressure loss for the packed bed of the test fibrous adsorbent showed a similar tendency to that for the packed bed of spherical particles. The mass transfer data was correlated by the modified Sherwood number, the Reynolds number, the Schmidt number, the ratio of desorbed water vapor mass to fibrous absorbent mass, the nondimensional temperature and the ratio of vessel length to fiber diameter. Fourier number for the nondimensional temperature and the ratio of desorbed water vapor mass to fibrous adsorbent mass, the nondimensional temperature and the ratio of vessel length to fiber diameter. (author)

  14. In situ electron microscopy of Braille microsystems: photo-actuation of ethylene vinyl acetate/carbon nanotube composites

    Science.gov (United States)

    Czaniková, Klaudia; Krupa, Igor; Račko, Dušan; Šmatko, Vasilij; Campo, Eva M.; Pavlova, Ewa; Omastová, Mária

    2015-02-01

    The development of new types of tactile displays based on the actuation of composite materials can aid the visually impaired. Micro/nano systems based on ethylene vinyl acetate (EVA) polymeric matrices enriched with multiwalled carbon nanotubes (MWCNT) can produce ensembles capable of light-induced actuation. In this report, we investigate two types of commercial EVA copolymers matrices containing 28 and 50 wt% vinyl-acetate (VA). Non-covalent modification of carbon nanotubes was achieved through a compatibilization technique that appends the pyrenenyl and cholesteryl groups on the carbon nanotubes (CNTs) surface. EVA/MWCNT nanocomposites were prepared by casting from a solution. These composites were shaped into Braille elements using molds. The deformation of the Braille element (BE) under light-emitting diode (LED) illumination was observed for the first time by in situ scanning electron microscopy (SEM). The superior actuation performance promoted by the EVA/MWCNT nanocomposites indicates that these materials will be useful in the future as light-driven micro/nano system actuators.

  15. In situ electron microscopy of Braille microsystems: photo-actuation of ethylene vinyl acetate/carbon nanotube composites

    International Nuclear Information System (INIS)

    Czaniková, Klaudia; Krupa, Igor; Račko, Dušan; Omastová, Mária; Šmatko, Vasilij; Campo, Eva M; Pavlova, Ewa

    2015-01-01

    The development of new types of tactile displays based on the actuation of composite materials can aid the visually impaired. Micro/nano systems based on ethylene vinyl acetate (EVA) polymeric matrices enriched with multiwalled carbon nanotubes (MWCNT) can produce ensembles capable of light-induced actuation. In this report, we investigate two types of commercial EVA copolymers matrices containing 28 and 50 wt% vinyl-acetate (VA). Non-covalent modification of carbon nanotubes was achieved through a compatibilization technique that appends the pyrenenyl and cholesteryl groups on the carbon nanotubes (CNTs) surface. EVA/MWCNT nanocomposites were prepared by casting from a solution. These composites were shaped into Braille elements using molds. The deformation of the Braille element (BE) under light-emitting diode (LED) illumination was observed for the first time by in situ scanning electron microscopy (SEM). The superior actuation performance promoted by the EVA/MWCNT nanocomposites indicates that these materials will be useful in the future as light-driven micro/nano system actuators. (paper)

  16. Aligned composite structures for mitigation of impact damage and resistance to wear in dynamic environments

    Science.gov (United States)

    Mulligan, Anthony C.; Rigali, Mark J.; Sutaria, Manish P.; Popovich, Dragan; Halloran, Joseph P.; Fulcher, Michael L.; Cook, Randy C.

    2009-04-14

    Fibrous monolith composites having architectures that provide increased flaw insensitivity, improved hardness, wear resistance and damage tolerance and methods of manufacture thereof are provided for use in dynamic environments to mitigate impact damage and increase wear resistance.

  17. Nitridated fibrous silica (KCC-1) as a sustainable solid base nanocatalyst

    KAUST Repository

    Bouhrara, Mohamed; Ranga, Chanakya; Fihri, Aziz; Shaikh, Rafik; Sarawade, Pradip; Emwas, Abdul-Hamid M.; Hedhili, Mohamed N.; Polshettiwar, Vivek

    2013-01-01

    We observed that support morphology has dramatic effects on the performance of nitridated silica as a base. By simply replacing conventional silica supports (such as SBA-15 and MCM-41) with fibrous nanosilica (KCC-1), we observed multifold enhancement in the catalytic activity of the nitridated solid base for Knoevenagel condensations and transesterification reactions. This enhancement of the activity can be explained by amine accessibility, which is excellent in KCC-1 due to its open and flexible fibrous structure, that facilitates penetration and interaction with basic amine sites. © 2013 American Chemical Society.

  18. Nitridated fibrous silica (KCC-1) as a sustainable solid base nanocatalyst

    KAUST Repository

    Bouhrara, Mohamed

    2013-09-03

    We observed that support morphology has dramatic effects on the performance of nitridated silica as a base. By simply replacing conventional silica supports (such as SBA-15 and MCM-41) with fibrous nanosilica (KCC-1), we observed multifold enhancement in the catalytic activity of the nitridated solid base for Knoevenagel condensations and transesterification reactions. This enhancement of the activity can be explained by amine accessibility, which is excellent in KCC-1 due to its open and flexible fibrous structure, that facilitates penetration and interaction with basic amine sites. © 2013 American Chemical Society.

  19. Structure, thermal and mechanical properties of in situ Al-based metal matrix composite reinforced with Al2O3 and TiC submicron particles

    International Nuclear Information System (INIS)

    Yu Peng; Mei Zhi; Tjong, S.C.

    2005-01-01

    We report herein the structure and characterization of in situ Al-based metal matrix composites (MMCs) prepared from the Al-10 wt.% TiO 2 and Al-10 wt.% TiO 2 -1.5 wt.% C systems via hot isostatic pressing (HIP) at 1000 deg C and 100 MPa. The structure, morphology and thermal behavior of HIPed samples were studied by means of the X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). The results indicated that fined Al 2 O 3 particles and large intermetallic Al 3 Ti plates were in situ formed in the Al-10 wt.% TiO 2 sample during HIPing. However, the introduction of C to the Al-TiO 2 system was beneficial to eliminate large intermetallic Al 3 Ti plates. In this case, Al 2 O 3 and TiC submicron particles were in situ formed in the Al-10 wt.% TiO 2 -1.5 wt.% C sample. Three-point-bending test showed that the strength and the strain-at-break of the HIPed Al-10 wt.% TiO 2 -1.5 wt.% C sample were significantly higher than those of its Al-10 wt.% TiO 2 counterpart. The improvement was derived from the elimination of bulk Al 3 Ti intermetallic plates and from the formation of TiC submicron particles. DSC measurements and thermodynamic analyses were carried out to reveal the reaction formation mechanisms of in situ reinforcing phases. The DSC results generally correlated well with the theoretical predictions. Finally, the correlation between the structure-property relationships of in situ composites is discussed

  20. Electrospun propolis/polyurethane composite nanofibers for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong In [Department of Bio-nano System Engineering, Chonbuk National University, Jeonju 561–756 (Korea, Republic of); Pant, Hem Raj, E-mail: hempant@jbnu.ac.kr [Department of Bio-nano System Engineering, Chonbuk National University, Jeonju 561–756 (Korea, Republic of); Department of Engineering Science and Humanities, Pulchowk Campus, Tribhuvan University, Kathmandu (Nepal); Research Institute for Next Generation, Kalanki, Kathmandu (Nepal); Sim, Hyun-Jaung [Department of Bioactive Material Science, Research Center of Bioactive Material, Chonbuk National University, Jeonju, Chonbuk (Korea, Republic of); Lee, Kang Min [Department of Molecular Biology, College of Natural Science, Chonbuk National University, Jeonju, 561–756 (Korea, Republic of); Kim, Cheol Sang, E-mail: chskim@jbnu.ac.kr [Department of Bio-nano System Engineering, Chonbuk National University, Jeonju 561–756 (Korea, Republic of)

    2014-11-01

    Tissue engineering requires functional polymeric membrane for adequate space for cell migration and attachment within the nanostructure. Therefore, biocompatible propolis loaded polyurethane (propolis/PU) nanofibers were successfully prepared using electrospinning of propolis/PU blend solution. Here, composite nanofibers were subjected to detailed analysis using electron microscopy, FT-IR spectroscopy, thermal gravimetric analysis (TGA), and mechanical properties and water contact angle measurement. FE-SEM images revealed that the composite nanofibers became point-bonded with increasing amounts of propolis in the blend due to its adhesive properties. Incorporation of small amount of propolis through PU matrix could improve the hydrophilicity and mechanical strength of the fibrous membrane. In order to assay the cytocompatibility and cell behavior on the composite scaffolds, fibroblast cells were seeded on the matrix. Results suggest that the incorporation of propolis into PU fibers could increase its cell compatibility. Moreover, composite nanofibers have effective antibacterial activity. Therefore, as-synthesized nanocomposite fibrous mat has great potentiality in wound dressing and skin tissue engineering. - Highlights: • Sufficient amount of propolis is simply loaded through PU fibers. • Propolis increases the hydrophilicity and mechanical properties of PU fibers. • Composite mat shows excellent antibacterial activity. • Small amount of propolis can enhance the cell compatibility of PU fibers.

  1. Electrospun propolis/polyurethane composite nanofibers for biomedical applications

    International Nuclear Information System (INIS)

    Kim, Jeong In; Pant, Hem Raj; Sim, Hyun-Jaung; Lee, Kang Min; Kim, Cheol Sang

    2014-01-01

    Tissue engineering requires functional polymeric membrane for adequate space for cell migration and attachment within the nanostructure. Therefore, biocompatible propolis loaded polyurethane (propolis/PU) nanofibers were successfully prepared using electrospinning of propolis/PU blend solution. Here, composite nanofibers were subjected to detailed analysis using electron microscopy, FT-IR spectroscopy, thermal gravimetric analysis (TGA), and mechanical properties and water contact angle measurement. FE-SEM images revealed that the composite nanofibers became point-bonded with increasing amounts of propolis in the blend due to its adhesive properties. Incorporation of small amount of propolis through PU matrix could improve the hydrophilicity and mechanical strength of the fibrous membrane. In order to assay the cytocompatibility and cell behavior on the composite scaffolds, fibroblast cells were seeded on the matrix. Results suggest that the incorporation of propolis into PU fibers could increase its cell compatibility. Moreover, composite nanofibers have effective antibacterial activity. Therefore, as-synthesized nanocomposite fibrous mat has great potentiality in wound dressing and skin tissue engineering. - Highlights: • Sufficient amount of propolis is simply loaded through PU fibers. • Propolis increases the hydrophilicity and mechanical properties of PU fibers. • Composite mat shows excellent antibacterial activity. • Small amount of propolis can enhance the cell compatibility of PU fibers

  2. Eighth DOD/NASA/FAA Conference on Fibrous Composites in Structural Design, part 2

    Energy Technology Data Exchange (ETDEWEB)

    Starnes, J.H. Jr.; Bohon, H.L.; Garzon, S.B.

    1990-09-01

    Papers presented at the conference are compiled. The conference provided a forum for the scientific community to exchange composite structures design information and an opportunity to observe recent progress in composite structures design and technology. Part 2 contains papers related to the following subject areas: the application in design; methodology in design; and reliability in design.

  3. Eighth DOD/NASA/FAA Conference on Fibrous Composites in Structural Design, Part 2

    Science.gov (United States)

    Starnes, James H., Jr. (Compiler); Bohon, Herman L. (Compiler); Garzon, Sherry B. (Compiler)

    1990-01-01

    Papers presented at the conference are compiled. The conference provided a forum for the scientific community to exchange composite structures design information and an opportunity to observe recent progress in composite structures design and technology. Part 2 contains papers related to the following subject areas: the application in design; methodology in design; and reliability in design.

  4. Micropatterned coculture of vascular endothelial and smooth muscle cells on layered electrospun fibrous mats toward blood vessel engineering.

    Science.gov (United States)

    Li, Huinan; Liu, Yaowen; Lu, Jinfu; Wei, Jiaojun; Li, Xiaohong

    2015-06-01

    A major challenge in vascular engineering is the establishment of proper microenvironment to guide the spatial organization, growth, and extracellular matrix (ECM) productions of cells found in blood vessels. In the current study, micropatterned fibrous mats with distinct ridges and grooves of different width were created to load smooth muscle cells (SMCs), which were assembled by stacking on vascular endothelial cell (EC)-loaded flat fibrous mats to mimic the in vivo-like organized structure of blood vessels. SMCs were mainly distributed in the ridges, and aligned fibers in the patterned regions led to the formation of elongated cell bodies, intense actin filaments, and expressions of collagen I and α-smooth muscle actin in a parallel direction with fibers. ECs spread over the flat fibrous mats and expressed collagen IV and laminin with a cobblestone-like feature. A z-stack scanning of fluorescently stained fibrous mats indicated that SMCs effectively infiltrated into fibrous scaffolds at the depth of around 200 μm. Compared with SMCs cultured alone, the coculture with ECs enhanced the proliferation, infiltration, and cytoskeleton elongation of SMCs on patterned fibrous mats. Although the coculture of SMCs made no significant difference in the EC growth, the coculture system on patterned fibrous scaffolds promoted ECM productions of both ECs and SMCs. Thus, this patterned fibrous configuration not only offers a promising technology in the design of tissue engineering scaffolds to construct blood vessels with durable mechanical properties, but also provides a platform for patterned coculture to investigate cell-matrix and cell-cell interactions in highly organized tissues. © 2014 Wiley Periodicals, Inc.

  5. Design of a fibrous composite preform for wind turbine rotor blades

    DEFF Research Database (Denmark)

    Hansen, Jens Zangenberg; Brøndsted, Povl; Kofoed, M.

    2014-01-01

    The present work addresses the different factors and challenges one must cope with in the design process of a composite preform used for the load-carrying main laminate of a wind turbine rotor blade. The design process is split up into different key elements, each of which are presented...... and discussed separately. The key elements are all interconnected, which complicate the design process and involves an iterative procedure. The aim is to provide an overview of the process that governs the design of composite preforms for wind turbine blades. The survey can be used as an information source...... on composite preform manufacturing. Basic knowledge on wind turbine blade technology and composites is assumed. © 2013 Elsevier Ltd. All rights reserved....

  6. Preparation of poly (methyl methacrylate)/nanometer calcium carbonate composite by in-situ emulsion polymerization

    Institute of Scientific and Technical Information of China (English)

    史建明; 包永忠; 黄志明; 翁志学

    2004-01-01

    Methyl methacrylate (MMA) emulsion polymerization in the presence of nanometer calcium carbonate (nano-CaCO3) surface modified with (-methacryloxypropyltrimethoxysilane (MPTMS) was carried out to prepare poly (methyl methacrylate) (PMMA)/nano-CaCO3 composite. The reaction between nano-CaCO3 and MPTMS, and the grafting of PMMA onto nano-CaCO3 were confirmed by infrared spectrum. The grafting ratio and grafting efficiency of PMMA on nano-CaCO3 modified with MPTMS were much higher than that on nano-CaCO3 modified with stearic acid. The grafting ratio of PMMA increased as the weight ratio between MMA and nano-CaCO3 increased, while the grafting efficiency of PMMA decreased. Transmission electron micrograph showed that nano-CaCO3 covered with PMMA was formed by in-situ emulsion polymerization.

  7. X-ray tomography studies on porosity and particle size distribution in cast in-situ Al-Cu-TiB{sub 2} semi-solid forged composites

    Energy Technology Data Exchange (ETDEWEB)

    Mathew, James; Mandal, Animesh [School of Minerals, Metallurgical and Materials Engineering, Indian Institute of Technology, Bhubaneswar (India); Warnett, Jason; Williams, Mark A. [WMG, University of Warwick, Coventry CV4 7AL (United Kingdom); Chakraborty, Madhusudan [Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur (India); Srirangam, Prakash, E-mail: p.srirangam@warwick.ac.uk [WMG, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2016-08-15

    X-ray computed tomography (XCT) was used to characterise the internal microstructure and clustering behaviour of TiB{sub 2} particles in in-situ processed Al-Cu metal matrix composites prepared by casting method. Forging was used in semi-solid state to reduce the porosity and to uniformly disperse TiB{sub 2} particles in the composite. Quantification of porosity and clustering of TiB{sub 2} particles was evaluated for different forging reductions (30% and 50% reductions) and compared with an as-cast sample using XCT. Results show that the porosity content was decreased by about 40% due to semi-solid forging as compared to the as-cast condition. Further, XCT results show that the 30% forging reduction resulted in greater uniformity in distribution of TiB{sub 2} particles within the composite compared to as-cast and the 50% forge reduction in semi-solid state. These results show that the application of forging in semi-solid state enhances particle distribution and reduces porosity formation in cast in-situ Al-Cu-TiB{sub 2} metal matrix composites. - Highlights: •XCT was used to visualise 3D internal structure of Al-Cu-TiB{sub 2} MMCs. •Al-Cu-TiB{sub 2} MMC was prepared by casting using flux assisted synthesis method. •TiB{sub 2} particles and porosity size distribution were evaluated. •Results show that forging in semi-solid condition decreases the porosity content and improve the particle dispersion in MMCs.

  8. Self-healing composites: in-situ repair solutions

    NARCIS (Netherlands)

    Coope, T.S.; Luterbacher, R.; Turkenburg, D.H.; Fischer, H.R.; Bond, I.P.

    2015-01-01

    Realising self-healing composites in a commercial environment remains a challenge for the transport sector. Herein, this research considers the design envelope and the implications of embedding self-healing agents into commercially relevant fibre reinforced polymer (FRP) composite applications. A

  9. Effect of Rare Earth Element on Microstructure and Properties of in situ Synthesized TiB2/Al Composites

    Directory of Open Access Journals (Sweden)

    QU Min

    2018-03-01

    Full Text Available The effect of rare earth element Ce, Sc and Er on TiB2 particles and matrix alloy micros-tructure of TiB2/Al composites was studied with in situ synthesis method. It shows that the addition of rare earth element improves the microstructure and properties of TiB2/Al composites notably. The particles of TiB2 are relatively homogenously distributed as adding 0.3% (mass fraction rare earth element Sc and Er, moreover, it is Er that refines the microstructure of matrix alloy most significantly, then is Sc. Similarly, it is demonstrated that the addition of Sc and Er results in better tensile strength, which is enhanced by 32% and 31%, respectively; the addition of Er also leads to the best ductility by 85% with optimal tensile property. Meanwhile, fracture morphology analysis reveals that the fracture of the composites is microporous gathered ductile fracture when adding Sc and Er. Finally, it is verified that the mechanism of rare earth element on composites lies in two aspects:one is that the addition of rare earth element improves the wettability of the composites and suppresses the agglomeration of TiB2 particles; the other is that the addition of rare earth element refines the microstructure of matrix alloy and then improves the tensile strength of the composites.

  10. Mediating human stem cell behaviour via defined fibrous architectures by melt electrospinning writing.

    Science.gov (United States)

    Eichholz, Kian F; Hoey, David A

    2018-05-29

    The architecture within which cells reside is key to mediating their specific functions within the body. In this study, we use melt electrospinning writing (MEW) to fabricate cell micro-environments with various fibrous architectures to study their effect on human stem cell behaviour. We designed, built and optimised a MEW apparatus and used it to fabricate four different platform designs of 10.4±2μm fibre diameter, with angles between fibres on adjacent layers of 90°, 45°, 10° and R (random). Mechanical characterisation was conducted via tensile testing, and human skeletal stem cells (hSSCs) were seeded to scaffolds to study the effect of architecture on cell morphology and mechanosensing (nuclear YAP). Cell morphology was significantly altered between groups, with cells on 90° scaffolds having a lower aspect ratio, greater spreading, greater cytoskeletal tension and nuclear YAP expression. Long term cell culture studies were then conducted to determine the differentiation potential of scaffolds in terms of alkaline phosphatase activity, collagen and mineral production. Across these studies, an increased cell spreading in 3-dimensions is seen with decreasing alignment of architecture correlated with enhanced osteogenesis. This study therefore highlights the critical role of fibrous architecture in regulating stem cell behaviour with implications for tissue engineering and disease progression. This is the first study which has investigated the effect of controlled fibrous architectures fabricated via melt electrospinning writing on cell behaviour and differentiation. After optimising the process and characterising scaffolds via SEM and tensile testing, cells were seeded to fibrous scaffolds with various micro-architectures and studied in terms of cell morphology. Nuclear YAP expression was further investigated as a marker of cell shape, cytoskeletal tension and differentiation potential. In agreement with these early markers, long term cell culture studies

  11. [In Situ Polymerization and Characterization of Hydroxyapatite/polyurethane Implanted Material].

    Science.gov (United States)

    Gu, Muqing; Xiao, Fengjuan; Liang, Ye; Yue, Lin; Li, Song; Li, Lanlan; Feng, Feifei

    2015-08-01

    In order to improve the interfacial bonding strength of hydroxyapatite/polyurethane implanted material and dispersion of hydroxyapatite in the polyurethane matrix, we in the present study synthesized nano-hydroxyapatite/polyurethane composites by in situ polymerization. We then characterized and analyzed the fracture morphology, thermal stability, glass transition temperature and mechanical properties. We seeded MG63 cells on composites to evaluate the cytocompatibility of the composites. In situ polymerization could improve the interfacial bonding strength, ameliorate dispersion of hydroxyapatite in the properties of the composites. After adding 20 wt% hydroxyapatite into the polyurethane, the thermal stability was improved and the glass transition temperatures were increased. The tensile strength and maximum elongation were 6.83 MPa and 861.17%, respectively. Compared with those of pure polyurethane the tensile strength and maximum elongation increased by 236.45% and 143.30%, respectively. The composites were helpful for cell adhesion and proliferation in cultivation.

  12. Fibrous dysplasia as a rare cause of nasolacrimal duct obstruction

    Directory of Open Access Journals (Sweden)

    Bahtiyar Polat

    2015-09-01

    Full Text Available Fibrous dysplasia of the paranasal sinuses is mostly asymptomatic, but sometimes may cause signs and symptoms de- pending on its location. We report two cases of maxillary fibrous dysplasia obstructing the lacrimal drainage system as a reason of chronic dacryocystitis, and reviewed the related literature. The first case underwent an endonasal endoscopic approach combined with external dacryocystorhinostomy. He had a patent lacrimal system at one-year follow-up. The le- sion was completely removed via an endonasal endoscopic approach in the second case, wherein the patient was asymp- tomatic of the six-month follow-up period. [Arch Clin Exp Surg 2015; 4(3.000: 172-175

  13. Nutritional fibrous osteodystrophy in goats

    Directory of Open Access Journals (Sweden)

    Paulo M Bandarra

    2011-10-01

    Full Text Available Seven out of 25 goats from a southern Brazilian flock developed nutritional fibrous osteodystrophy. Affected animals were younger than 1 year of age and were confined in stalls and fed a concentrate ration containing 1:6 calcium:phosphorus ratio. The remaining flock (35 goats was managed at pasture and showed no disease. Clinical signs were characterized by mandibular and maxillary enlargements, varying degrees of mouth opening and protruding tongue, dyspnea, apart of abnormalities of prehension and mastication. Affected animals had increased seric levels of phosphorus and parathormone, as well as higher alkaline phosphatase activity. Postmortem examination on three succumbed goats revealed bilateral enlargement of the maxilla and mandibula, and loose teeth, apart of multiple incomplete rib fractures in one of them. Severe diffuse proliferation of loose connective tissue surrounded the osteoid trabeculae, many of which were partially or completely non-mineralized. Mineralized osteoid trabeculae showed osteoclasts in the Howship's lacunae.

  14. Influence of Sintering Temperature on the Microstructure and Mechanical Properties of In Situ Reinforced Titanium Composites by Inductive Hot Pressing

    Directory of Open Access Journals (Sweden)

    Cristina Arévalo

    2016-11-01

    Full Text Available This research is focused on the influence of processing temperature on titanium matrix composites reinforced through Ti, Al, and B4C reactions. In order to investigate the effect of Ti-Al based intermetallic compounds on the properties of the composites, aluminum powder was incorporated into the starting materials. In this way, in situ TixAly were expected to form as well as TiB and TiC. The specimens were fabricated by the powder metallurgy technique known as inductive hot pressing (iHP, using a temperature range between 900 °C and 1400 °C, at 40 MPa for 5 min. Raising the inductive hot pressing temperature may affect the microstructure and properties of the composites. Consequently, the variations of the reinforcing phases were investigated. X-ray diffraction, microstructural analysis, and mechanical properties (Young’s modulus and hardness of the specimens were carried out to evaluate and determine the significant influence of the processing temperature on the behavior of the composites.

  15. Malignant fibrous histiocytoma of soft tissue with metaplastic bone and cartilage formation

    International Nuclear Information System (INIS)

    Dorfman, H.D.; Bhagavan, B.S.

    1982-01-01

    The presence of bone and cartilage in some cases of malignant fibrous histiocytoma of the soft tissue as a microscopic finding has been reported previously but little note has been taken of the radiologic manifestations of these tumor elements. A series of five such cases with sufficient metaplastic osseous and cartilaginous elements to produce roentgenographic evidence of their presence is reported here. An additional two cases showed only histologic evidence of bone or cartilage formation. The reactive ossification tends to be peripheral in location, involving the pseudocapsule of the sarcoma or its fibrous septa. In three there was a zoning pattern with peripheral or polar orientation, strongly suggesting the diagnosis of myositis ossificans. The latter was the diagnosis considered radiologically in four of the five cases. Malignant fibrous histiocytoma with reactive bone and cartilage must be considered in the differential diagnosis of soft tissue masses with calcific densities, particularly when these occur in tumors of the extremities. (orig.)

  16. Engineered electrospun poly(caprolactone)/polycaprolactone-g-hydroxyapatite nano-fibrous scaffold promotes human fibroblasts adhesion and proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Keivani, F. [Biology Department, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Shokrollahi, P., E-mail: p.shokrolahi@ippi.ac.ir [Department of Biomaterials, Faculty of Science, Iran Polymer and Petrochemical Institute, Tehran (Iran, Islamic Republic of); Zandi, M. [Department of Biomaterials, Faculty of Science, Iran Polymer and Petrochemical Institute, Tehran (Iran, Islamic Republic of); Irani, S. [Biology Department, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Shokrolahi, F. [Department of Biomaterials, Faculty of Science, Iran Polymer and Petrochemical Institute, Tehran (Iran, Islamic Republic of); Khorasani, S.C. [Biology Department, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2016-11-01

    Polycaprolactone (PCL)/hydroxyapatite nano-composites are among the best candidates for tissue engineering. However, interactions between nHAp and PCL are difficult to control leading to inhomogeneous dispersion of the bio-ceramic particles. Grafting of polymer chains at high density/chain length while promotes the phase compatibility may result in reduced HAp exposed surface area and therefore, bioactivity is compromised. This issue is addressed here by grafting PCL chains onto HAp nano-particles through ring opening polymerization of ε-caprolactone (PCL-g-HAp). FTIR and TGA analysis showed that PCL (6.9 wt%), was successfully grafted on the HAp. PCL/PCL-g-HAp nano-fibrous scaffold showed up to 10 and 33% enhancement in tensile strength and modulus, respectively, compared to those of PCL/HAp. The effects of HAp on the in vitro HAp formation were investigated for both the PCL/HAp and PCL/PCL-g-HAp scaffolds. Precipitation of HAp on the nano-composite scaffolds observed after 15 days incubation in simulated body fluid (SBF), as confirmed by scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX). Human fibroblasts were seeded on PCL, PCL/HAp and PCL/PCL-g-HAp scaffolds. According to MTT assay, the highest cell proliferation was recorded for PCL/PCL-g-HAp nano-composite, at all time intervals (1–21 days, P < 0.001). Fluorescent microscopy (of DAPI stained samples) and electron microscopy images showed that all nano-fibrous scaffolds (PCL, PCL/HAp, and PCL/PCL-g-HAp), were non-toxic against cells, while more cell adhesion, and the most uniform cell distribution observed on the PCL/PCL-g-HAp. Overall, grafting of relatively short chains of PCL on the surface of HAp nano-particles stimulates fibroblasts adhesion and proliferation on the PCL/PCL-g-HAp nano-composite. - Highlights: • PCL chains were grafted on HAp nano-particles at relatively low density, through ROP of ε-caprolactone (PCL-g-HAp) • PCL-g-HAp featured a relatively high

  17. Reduction Dynamics of Doped Ceria, Nickel Oxide, and Cermet Composites Probed Using In Situ Raman Spectroscopy.

    Science.gov (United States)

    Maher, Robert C; Shearing, Paul R; Brightman, Edward; Brett, Dan J L; Brandon, Nigel P; Cohen, Lesley F

    2016-01-01

    The redox properties of gadolinium doped ceria (CGO) and nickel oxide (NiO) composite cermets underpin the operation of solid oxide electrochemical cells. Although these systems have been widely studied, a full comprehension of the reaction dynamics at the interface of these materials is lacking. Here, in situ Raman spectroscopic monitoring of the redox cycle is used to investigate the interplay between the dynamic and competing processes of hydrogen spillover and water dissociation on the doped ceria surface. In order to elucidate these mechanisms, the redox process in pure CGO and NiO is studied when exposed to wet and dry hydrogen and is compared to the cermet behavior. In dry hydrogen, CGO reduces relatively rapidly via a series of intermediate phases, while NiO reduces via a single-step process. In wet reducing atmospheres, however, the oxidation state of pure CGO is initially stabilized due to the dissociation of water by reduced Ce(III) and subsequent incorporation of oxygen into the structure. In the reduction process involving the composite cermet, the close proximity of the NiO improves the efficiency and speed of the composite reduction process. Although NiO is already incorporated into working cells, these observations suggest direct routes to further improve cell performance.

  18. Preparation and Wear Resistance of Aluminum Composites Reinforced with In Situ Formed TiO/Al2O3

    Science.gov (United States)

    Qin, Q. D.; Huang, B. W.; Li, W.; Zeng, Z. Y.

    2016-05-01

    An in situ TiO/Al2O3-reinforced Al composite is successfully prepared using a powder metallurgy route by the reaction of Ti2CO and Al powder. The Ti2CO powder is produced by carrying out a carbothermic reduction of titanium dioxide at 1000 °C. XRD results show that the final product is composed of Al, TiO, Al2O3, and Al3Ti. Morphology examination of the composite reveals the presence of bigger blocks of TiO and fine particles of Al2O3 and the volume fraction of reinforcement is found to range between 18 and 55%. As the volume fraction of the reinforced materials approaches 50%, the particles start to agglomerate. Dry sliding wear tests conducted using a conventional pin-on-disk testing machine show that the wear resistance of the composite is higher than that of the pure aluminum ingot. The wear rate of the composite increases almost linearly with the increase in the wear distance. The sliding wear test shows that as the volume fraction of the reinforced phase increases, the coefficient of friction decreases. The wear mechanism is also discussed.

  19. Visual impairment from fibrous dysplasia in a middle-aged African man: a case report

    Directory of Open Access Journals (Sweden)

    Bekibele Charles O

    2009-01-01

    Full Text Available Abstract Introduction Fibrous dysplasia is a benign tumour of the bones and is a disease of unknown aetiology. This report discusses a case of proptosis and visual deterioration with associated bony mass involving the right orbit. Case presentation A 32-year-old Nigerian man of Yoruba ethnic origin presented to the eye clinic of our hospital with right-eye proptosis and visual deterioration of 7-year duration. Presentation was preceded by a history of trauma. Proptosis was preceded by trauma but was non-pulsatile with no thrill or bruit but was associated with bony orbital mass. The patient reported no weight loss. Examination of his right eye showed visual acuity of 6/60 with relative afferent pupillary defect. Fundal examination revealed optic atrophy. Computed tomography showed an expansile bony mass involving all the walls of the orbit. The bony orbital mass was diagnosed histologically as fibrous dysplasia. Treatment included orbital exploration and orbital shaping to create room for the globe and relieve pressure on the optic nerve. Conclusion Fibrous dysplasia should be considered in the differential diagnosis of slowly developing proptosis with associated visual loss in young adults.

  20. Method of forming composite fiber blends

    Science.gov (United States)

    McMahon, Paul E. (Inventor); Chung, Tai-Shung (Inventor); Ying, Lincoln (Inventor)

    1989-01-01

    The instant invention involves a process used in preparing fibrous tows which may be formed into polymeric plastic composites. The process involves the steps of (a) forming a tow of strong filamentary materials; (b) forming a thermoplastic polymeric fiber; (c) intermixing the two tows; and (d) withdrawing the intermixed tow for further use.

  1. Shock Wave Response of Iron-based In Situ Metallic Glass Matrix Composites.

    Science.gov (United States)

    Khanolkar, Gauri R; Rauls, Michael B; Kelly, James P; Graeve, Olivia A; Hodge, Andrea M; Eliasson, Veronica

    2016-03-02

    The response of amorphous steels to shock wave compression has been explored for the first time. Further, the effect of partial devitrification on the shock response of bulk metallic glasses is examined by conducting experiments on two iron-based in situ metallic glass matrix composites, containing varying amounts of crystalline precipitates, both with initial composition Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4. The samples, designated SAM2X5-600 and SAM2X5-630, are X-ray amorphous and partially crystalline, respectively, due to differences in sintering parameters during sample preparation. Shock response is determined by making velocity measurements using interferometry techniques at the rear free surface of the samples, which have been subjected to impact from a high-velocity projectile launched from a powder gun. Experiments have yielded results indicating a Hugoniot Elastic Limit (HEL) to be 8.58 ± 0.53 GPa for SAM2X5-600 and 11.76 ± 1.26 GPa for SAM2X5-630. The latter HEL result is higher than elastic limits for any BMG reported in the literature thus far. SAM2X5-600 catastrophically loses post-yield strength whereas SAM2X5-630, while showing some strain-softening, retains strength beyond the HEL. The presence of crystallinity within the amorphous matrix is thus seen to significantly aid in strengthening the material as well as preserving material strength beyond yielding.

  2. Influence of in situ synthesized TiC on thermal stability and corrosion behavior of Zr60Cu10Al15Ni15 amorphous composites

    International Nuclear Information System (INIS)

    Geng, Jiwei; Teng, Xinying; Zhou, Guorong; Leng, Jinfeng; Zhao, Degang

    2014-01-01

    In situ synthesized TiC particles were prepared by a thermal explosion method. Adding “in situ synthesized” TiC into Zr 60 Cu 10 Al 15 Ni 15 glass matrix to obtain amorphous matrix composites was achieved. The corrosion behavior of Zr 60 Cu 10 Al 15 Ni 15 amorphous composites was evaluated using potentiodynamic polarization measurements in 3.5 wt% NaCl solution at room temperature. The results show that the microhardness and thermal stability are improved apparently, while the TiC (≤0.6 wt%) does not significantly affect the supercooled liquid behavior. Moreover, the corrosion resistance is improved apparently because the nanocrystals accelerate the diffusion of passive elements for faster formation of the protective passive film at nanocrystals/amorphous interfaces. However, when the TiC content is more than 0.6 wt%, both glass forming ability and corrosion resistance are reduced significantly

  3. IMPREGNATED FIBROUS CHEMOSORBENTS OF ACID GASES FOR RESPIRATORY PURPOSE

    Directory of Open Access Journals (Sweden)

    A. A. Ennan

    2017-11-01

    Full Text Available The present review is dedicated to the analysis of scientific works carried out in Physico- Chemical Institute of Environment and Human Protection (Odessa, Ukrainie and directed to the development of import-substituting sorption-filtering materials for respiratory purposes – impregnated fibrous chemisorbents (IFCS of acid gases, which are manufactured using standard equipment, as well as affordable and inexpensive chemical reagents and carriers of domestic origin. The process of chemisorption of sulphur dioxide by hexamethylenetetramine (HMTA modified nonwoven fibrous material resulted acid-catalyzed hydrolysis of HMTA to form aminomethanesulfonic acid and toxic formaldehyde. The IFCS with HMTA carried was recommended to use for air purification only from SiF4, HF, HCl and Cl2. Chemisorption of sulphur dioxide by fibrous materials impregnated by ethanolamines (monoethanolamine, diethanomamine, triethanomamine and N-methylethanolamine and polyethylenepolyamine (PEPA occurs only in the presence of “free” water with formation of “onium” sulphites, hydrosulphites and pyrosulphites. IFCS-PEPA (dynamic activity is 1,38 mmol(SO2/g are not inferior to the protective characteristics of IFCS with Na2CO3, HMTA, ethanolamines and the best foreign ionexchange fibrous chemisorbents brand VION and FIBAN (dynamic activity is 0,263 ÷0,422 mmol(SO2/g under conditions of respirators actual use (jAGM = 60 ÷ 90 %, TAGM = 297 K, VAGM = 2,0 sm/s, СSO2 = 20 ÷ 1000 mg/g3, QPEPA = 3,45 mmol/g. It is recommended to use the condensation products of primary alkylamines with formaldehyde (with large molar masses than the bases, complex compounds of amines with 3d-metals (Ni(II and Cu(II, salts of amine with aminoacids (glycine and polybasic acids (orthophosphoric acid (pKa1 = 2,12 and citric acid (pKa1 = 3,13 for manufacturing of IFCS of acid gases The IFCS with indication of dynamic absorptive capacity “wearing” (IVKS-I was developed.

  4. Non-oxidative and oxidative torrefaction characterization and SEM observations of fibrous and ligneous biomass

    International Nuclear Information System (INIS)

    Chen, Wei-Hsin; Lu, Ke-Miao; Lee, Wen-Jhy; Liu, Shih-Hsien; Lin, Ta-Chang

    2014-01-01

    Highlights: • Non-oxidative and oxidative torrefaction of biomass is studied. • Two fibrous biomasses and two ligneous biomasses are tested. • SEM observations of four biomasses are provided. • Fibrous biomass is more sensitive to O 2 concentration than ligneous biomass. • The performance of non-oxidative torrefaction is better than that of oxidative torrefaction. - Abstract: Oxidative torrefaction is a method to reduce the operating cost of upgrading biomass. To understand the potential of oxidative torrefaction and its impact on the internal structure of biomass, non-oxidative and oxidative torrefaction of two fibrous biomass materials (oil palm fiber and coconut fiber) and two ligneous ones (eucalyptus and Cryptomeria japonica) at 300 °C for 1 h are studied and compared with each other. Scanning electron microscope (SEM) observations are also performed to explore the impact of torrefaction atmosphere on the lignocellulosic structure of biomass. The results indicate that the fibrous biomass is more sensitive to O 2 concentration than the ligneous biomass. In oxidative torrefaction, an increase in O 2 concentration decreases the solid yield. The energy yield is linearly proportional to the solid yield, which is opposite to the behavior of non-oxidative torrefaction. The performance of non-oxidative torrefaction is better than that of oxidative torrefaction. As a whole, ligneous biomass can be torrefied in oxidative environments at lower O 2 concentrations, whereas fibrous biomass is more suitable for non-oxidative torrefaction

  5. Tuning of colossal dielectric constant in gold-polypyrrole composite nanotubes using in-situ x-ray diffraction techniques

    Energy Technology Data Exchange (ETDEWEB)

    Sarma, Abhisakh; Sanyal, Milan K., E-mail: milank.sanyal@saha.ac.in [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064 (India)

    2014-09-15

    In-situ x-ray diffraction technique has been used to study the growth process of gold incorporated polypyrrole nanotubes that exhibit colossal dielectric constant due to existence of quasi-one-dimensional charge density wave state. These composite nanotubes were formed within nanopores of a polycarbonate membrane by flowing pyrrole monomer from one side and mixture of ferric chloride and chloroauric acid from other side in a sample cell that allows collection of x-ray data during the reaction. The size of the gold nanoparticle embedded in the walls of the nanotubes was found to be dependent on chloroauric acid concentration for nanowires having diameter more than 100 nm. For lower diameter nanotubes the nanoparticle size become independent of chloroauric acid concentration and depends on the diameter of nanotubes only. The result of this study also shows that for 50 nm gold-polypyrrole composite nanotubes obtained with 5.3 mM chloroauric acid gives colossal dielectric constant of about 10{sup 7}. This value remain almost constant over a frequency range from 1Hz to 10{sup 6} Hz even at 80 K temperature.

  6. Tuning of colossal dielectric constant in gold-polypyrrole composite nanotubes using in-situ x-ray diffraction techniques

    Directory of Open Access Journals (Sweden)

    Abhisakh Sarma

    2014-09-01

    Full Text Available In-situ x-ray diffraction technique has been used to study the growth process of gold incorporated polypyrrole nanotubes that exhibit colossal dielectric constant due to existence of quasi-one-dimensional charge density wave state. These composite nanotubes were formed within nanopores of a polycarbonate membrane by flowing pyrrole monomer from one side and mixture of ferric chloride and chloroauric acid from other side in a sample cell that allows collection of x-ray data during the reaction. The size of the gold nanoparticle embedded in the walls of the nanotubes was found to be dependent on chloroauric acid concentration for nanowires having diameter more than 100 nm. For lower diameter nanotubes the nanoparticle size become independent of chloroauric acid concentration and depends on the diameter of nanotubes only. The result of this study also shows that for 50 nm gold-polypyrrole composite nanotubes obtained with 5.3 mM chloroauric acid gives colossal dielectric constant of about 107. This value remain almost constant over a frequency range from 1Hz to 106 Hz even at 80 K temperature.

  7. Electrically and Thermally Conductive Carbon Fibre Fabric Reinforced Polymer Composites Based on Nanocarbons and an In-situ Polymerizable Cyclic Oligoester.

    Science.gov (United States)

    Jang, Ji-Un; Park, Hyeong Cheol; Lee, Hun Su; Khil, Myung-Seob; Kim, Seong Yun

    2018-05-16

    There is growing interest in carbon fibre fabric reinforced polymer (CFRP) composites based on a thermoplastic matrix, which is easy to rapidly produce, repair or recycle. To expand the applications of thermoplastic CFRP composites, we propose a process for fabricating conductive CFRP composites with improved electrical and thermal conductivities using an in-situ polymerizable and thermoplastic cyclic butylene terephthalate oligomer matrix, which can induce good impregnation of carbon fibres and a high dispersion of nanocarbon fillers. Under optimal processing conditions, the surface resistivity below the order of 10 +10 Ω/sq, which can enable electrostatic powder painting application for automotive outer panels, can be induced with a low nanofiller content of 1 wt%. Furthermore, CFRP composites containing 20 wt% graphene nanoplatelets (GNPs) were found to exhibit an excellent thermal conductivity of 13.7 W/m·K. Incorporating multi-walled carbon nanotubes into CFRP composites is more advantageous for improving electrical conductivity, whereas incorporating GNPs is more beneficial for enhancing thermal conductivity. It is possible to fabricate the developed thermoplastic CFRP composites within 2 min. The proposed composites have sufficient potential for use in automotive outer panels, engine blocks and other mechanical components that require conductive characteristics.

  8. Extracranial metastasizing solitary fibrous tumors (SFT) of meninges: histopathological features of a case with long-term follow-up.

    Science.gov (United States)

    Gessi, Marco; Gielen, Gerrit H; Roeder-Geyer, Eva-Dorette; Sommer, Clemens; Vieth, Michael; Braun, Veit; Kuchelmeister, Klaus; Pietsch, Torsten

    2013-02-01

    Extrapleural solitary fibrous tumors are uncommon mesenchymal neoplasms frequently observed in middle-aged adults and are classified, according to the WHO classification of soft tissue tumors, as part of the hemangiopericytoma tumor group. However, these two entities remain separated in the WHO classification of tumors of the central nervous system. In fact, meningeal solitary fibrous tumors are believed to be benign lesion and only in a minority of cases local relapses have been described, although detailed survival clinical studies on solitary fibrous tumors of meninges are rare. In contrast to hemangiopericytoma, which frequently shows distant extracranial metastases, such an event is exceptional in patients with meningeal solitary fibrous tumors and has been clinically reported in a handful of cases only and their histopathological features have not been investigated in detail. In this report, we describe the detailed clinico-pathological features of a meningeal solitary fibrous tumor presenting during a 17-year follow-up period, multiple intra-, extracranial relapses and lung metastases. © 2012 Japanese Society of Neuropathology.

  9. The explosive cathode on the base of carbon-fibrous plastic material

    International Nuclear Information System (INIS)

    Korenev, S.A.; Baranov, A.M.; Kostyuchenko, S.V.; Chernenko, N.M.

    1988-01-01

    Production process of exploseve cathodes on the base of carbon-fibrous plastic material of any geometric form and size is discussed. Experimental study of current take-off from cathodes with diameter 2 cm of 10 kV and 150-250 kV voltage are given. It is shown that ignition voltage of cathode plasma is 2 kV with 5 mm gap electrode of diode and 5 ·10 -5 Tor pressure of residual gas. It is shown that carbon-fibrous cathode, made by this technology, provides more stable current take-off electron beam (withoud oscillations) in comparison with other cathodes

  10. Chemical composition and digestibility of some browse plant species collected from Algerian arid rangelands

    Energy Technology Data Exchange (ETDEWEB)

    Boufennara, S.; Lopez, S.; Boussebouna, H.; Bodas, R.; Bouazza, L.

    2012-11-01

    Many wild browse and bush species are undervalued mainly because of insufficient knowledge about their potential feeding value. The objective was to evaluate some nutritional attributes of various Algerian browse and shub species (Atriplex halimus, Artemisia campestris, Artemisia herba-alba, Astragalus gombiformis, Calobota saharae, Retama raetam, Stipagrostis pungens, Lygeum spartum and Stipa tenacissima). Chemical composition, phenols and tannins concentration, in vitro digestibility, in vitro gas production kinetics and in vitro bio-assay for assessment of tannins using buffered rumen fluid, and in situ disappearence of the edible parts of the plants (leaves, thin twigs and flowers) were determined. In general, protein content in dicotyledon species was always greater than in monocotyledon grasses, these showing higher neutral and acid detergent fibre and lower lignin contents than dicots. The tannin concentrations varied considerably between species, but in general the plants investigated in this study had low tannin contents (except for Artemisia spp. and S. tenacissima). Monocots showed lower in vitro and in situ digestibilities, fermentation rate, cumulative gas production and extent of degradation than dicot species. The plants were clustered by principal components analysis in two groups: poor-quality grasses and the most digestible dicot species. Chemical composition (neutral detergent fibre and protein) and digestibility were the main influential variables determining the ranking. In conclusion, A. halimus, A. campestris, A. herba-alba and A. gombiformis can be considered of greater nutritional value than the highly fibrous and low digestible grasses (S. pungens, L. spartum and S. tenacissima) that should be considered emergency roughages. (Author) 46 refs.

  11. Viet Nam [Status and technology of polymer-containing fibrous materials in the Eastern Hemisphere

    Energy Technology Data Exchange (ETDEWEB)

    Le-Van-Thoi, [Viet Nam Atomic Energy Office, Saigon (Viet Nam)

    1968-10-15

    In South Viet Nam, forest covers about 30% of the land area or approximately 6 000 000 ha. Hardwoods comprise about 80% of the timber stock. The total growing stock is not known exactly. Forest inventory is difficult in Viet Nam since some areas are inaccessible in the virgin forest. Overcutting by the population for domestic uses should also be mentioned together with fire damage, destruction by the war, etc. Practically all species of fibrous wood which are common in South- East Asia grow in Viet Nam. Pine trees especially account for about 2% of the forest and bamboo for 1%, and rubber trees, kenaf and jute are abundant. Valuable fibrous materials other than wood are agricultural wastes such as rice straw and bagasse. Table I presents a list of the most common fibrous plants of Viet Nam; their importance, however, cannot be evaluated. In addition, restricted numbers of these plants are consumed by the population of the region where they grow wild. Exploitation is, in fact, purely artisanal and tends merely to meet local needs. Cotton plants (Gossipium herbaceum) grow mainly in Central Viet Nam; the cotton product is not of good quality since the fibres are not very long.

  12. Facile in situ hydrothermal synthesis of g-C{sub 3}N{sub 4}/SnS{sub 2} composites with excellent visible-light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Fang; Zhao, Lina; Pei, Xule [Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang 330063 (China); College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Luo, Xubiao, E-mail: luoxubiao@126.com [Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang 330063 (China); College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Luo, Shenglian, E-mail: sllou@hnu.edu.cn [Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang 330063 (China); College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China)

    2017-03-01

    The g-C{sub 3}N{sub 4}/SnS{sub 2} composites were prepared by in situ hydrothermal method, and the effect of g-C{sub 3}N{sub 4} content on the physical and chemical properties, and photocatalytic performance of g-C{sub 3}N{sub 4}/SnS{sub 2} composites was investigated. The introduction of g-C{sub 3}N{sub 4} enhanced the visible-light absorption of SnS{sub 2}, and reduced the recombination rate of electron-hole pairs. The photocatalytic performance of g-C{sub 3}N{sub 4}/SnS{sub 2} composites was also obviously influenced by g-C{sub 3}N{sub 4} content, and it was found that 15% g-C{sub 3}N{sub 4}/SnS{sub 2} composite exhibited the highest photocatalytic activity and excellent regeneration, which was attributed to the most efficient charge separation, the largest specific surface area and the formation of dominant active species (h{sup +} and ·O{sub 2}{sup −} radicals) during the photocatalytic process. - Graphical abstract: Photocatalytic mechanism of g-C{sub 3}N{sub 4}/SnS{sub 2} composites. - Highlights: • g-C{sub 3}N{sub 4}/SnS{sub 2} composites were fabricated by a in situ hydrothermal process. • g-C{sub 3}N{sub 4} content was optimized, and the optimal g-C{sub 3}N{sub 4} content is 15%. • 15% g-C{sub 3}N{sub 4}/SnS{sub 2} shows the highest visible-light photocatalytic activity. • g-C{sub 3}N{sub 4}/SnS{sub 2} composites exhibit excellent reusability.

  13. Physical and chemical characteristics of fibrous peat

    Science.gov (United States)

    Sutejo, Yulindasari; Saggaff, Anis; Rahayu, Wiwik; Hanafiah

    2017-11-01

    Banyuasin is one of the regency in South Sumatera which has an area of 200.000 Ha of peat land. Peat soil are characterized by high compressibility parameters and low initial shear strength. Block sampling method was used to obtain undisturbed sample. The results of this paper describe the characteristics of peat soil from physical and chemical testing. The physical and chemical characteristics of peat include water content (ω), specific gravity (Gs), Acidity (pH), unit weight (γ), and ignition loss tests. SEM and EDS test was done to determine the differences in fiber content and to analyze chemical elements of the specimen. The average results ω, Gs, and pH are 263.538 %, 1.847, and 3.353. Peat is classified in H4 (by Von Post). The results of organic content (OC), ash content (AC), and fiber content (FC) are found 78.693 %, 21.310 %, and 73.703 %. From the results of physical and chemical tests, the peat in Banyuasin is classified as fibrous peat. All the results of the characteristics and classification of fibrous peat compared with published data were close.

  14. Effect of in-situ TiC particulate on the wear resistance of spray-deposited 7075 Al matrix composite

    International Nuclear Information System (INIS)

    Wang Feng; Liu Huimin; Yang Bin

    2005-01-01

    TiC reinforced 7075 Al matrix composites have been fabricated by a melt in-situ reaction spray deposition. The microstructures of spray-deposited alloys were studied using scanning electron microscopy (SEM) and X-ray diffraction (XRD). The dry sliding wear behavior of the alloys was investigated using a pin-on-disc machine under four loads, namely 8.9, 17.8, 26.7 and 35.6 N. It has been found that the wear behavior of the alloys was dependent on the TiC content in the microstructure and the applied load. At a lower load (8.9 N), with increasing TiC content, the wear rate of the alloy was decreased. At a higher loads (26.7, 35.6 N), a spray-deposited 7075 Al alloy exhibited superior wear resistance to the 7075/TiC composites

  15. In situ electrochemical polymerization of a nanorod-PANI-Graphene composite in a reverse micelle electrolyte and its application in a supercapacitor.

    Science.gov (United States)

    Hu, Liwen; Tu, Jiguo; Jiao, Shuqiang; Hou, Jungang; Zhu, Hongmin; Fray, Derek J

    2012-12-05

    Highly porous nanorod-PANI-Graphene composite films were prepared by in situ electrochemical polymerization onto an ITO substrate in a reverse micelle electrolyte. The morphology and microstructure of the composite films were analyzed by using a field emission scanning electron microscope. It was observed that the films were highly porous and the nanorod PANI films were inserted by graphene nanosheets. This indicated that a good conductive network between PANI nanorods and graphene sheets was formed. Further electrochemical tests involved cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS) in 1 mol L(-1) HClO(4) solution. The results showed that the composite film had a favorable capacitance with a high electron transfer rate and low resistance. The highest specific capacitance that could be achieved was as high as 878.57 F g(-1) with the charge loading of 500 mC at a current density of 1 A g(-1). The GCD at different charge loadings showed good cycle stability with a low fading rate of specific capacitance after 1000 cycles. The results demonstrated that the nanorod-PANI-Graphene composite was proved to be of great potential as an electrode material for supercapacitors.

  16. In-situ reduced silver nanoparticles on populus fiber and the catalytic application

    Energy Technology Data Exchange (ETDEWEB)

    Li, Miaomiao; Gong, Yumei, E-mail: ymgong@dlpu.edu.cn; Wang, Wenheng; Xu, Guangpeng; Liu, Yuanfa; Guo, Jing, E-mail: guojing8161@163.com

    2017-02-01

    Highlights: • A composite involved in in-situ chelating AgNPs on natural cellulose was prepared. • Polyamidoxime grafted from the cellulose adsorbed Ag+ which was reduced to AgNPs. • The composite exhibits excellent catalytic activity in reducing 4-nitrophenol. - Abstract: One kind of composites involved in silver nanoparticles (AgNPs) loading in-situ on natural populus fiber (PF) matrix was prepared by polyamidoxime (PAO) functionalized the cellulose fiber. In which PAO worked as trapping and stabilizing agents chelating silver ions and made it reduced in-situ to obtain AgNPs by borohydride at room temperature. The synthesized composites were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). Moreover, the composites showed significant catalytic activity 1.87 s{sup −1} g{sup −1} and repeated usability more than 7 cycles in reducing 4-nitrophenol (4-NP) into 4-aminophenol (4-AP) detected by UV–vis spectrophotometer in aqueous solution due to the surface-enhanced immobility and large amount of AgNPs. The natural cellulose fiber provides a green platform to react and support other noble metals for wide catalytic reactions.

  17. Microwave-assisted in situ synthesis of reduced graphene oxide-BiVO{sub 4} composite photocatalysts and their enhanced photocatalytic performance for the degradation of ciprofloxacin

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yan [School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013 (China); Sun, Shaofang [School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013 (China); School of Environmental Science and Engineering, Chang’an University, Yanta Road 126, Xi’an, 710054 (China); Song, Yang; Yan, Xu [School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013 (China); Guan, Weisheng [School of Environmental Science and Engineering, Chang’an University, Yanta Road 126, Xi’an, 710054 (China); Liu, Xinlin [School of Material Science and Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013 (China); Shi, Weidong, E-mail: swd1978@ujs.edu.cn [School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013 (China)

    2013-04-15

    Highlights: ► Microwave-assisted in situ growth of RGO-BiVO{sub 4} composite was proposed. ► A relatively small particle size with organic-additives free. ► Graphene was formed during the microwave-heating by oxygen capture. ► GB-2 sample exhibits the highest CIP degradation ratio (3 times over pure BiVO{sub 4}). ► The enhancements of activities result from the effective charge separation. -- Abstract: To improve the photodegradation efficiency for ciprofloxacin (CIP), a new-type microwave-assisted in situ growth method is developed for the preparation of reduced graphene oxide (RGO) -BiVO{sub 4} composite photocatalysts. The as-produced RGO-BiVO{sub 4} composite photocatalysts show extremely high enhancement of CIP degradation ratio over the pure BiVO{sub 4} photocatalyst under visible light. Specially, the 2 wt% RGO-BiVO{sub 4} composite photocatalyst exhibits the highest CIP degradation ratio (68.2%) in 60 min, which is over 3 times than that (22.7%) of the pure BiVO{sub 4} particles. The enhancement of photocatalytic activities of RGO-BiVO{sub 4} photocatalysts can be attributed to the effective separation of electron–hole pairs rather than the improvement of light absorption.

  18. Effects of ZrB{sub 2} on substructure and wear properties of laser melted in situ ZrB{sub 2p}/6061Al composites

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Yida [School of Material Science and Engineering, Tianjin University, Tianjin 300072 (China); State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Chao, Yuhjin [School of Material Science and Engineering, Tianjin University, Tianjin 300072 (China); Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208 (United States); Luo, Zhen, E-mail: lz@tju.edu.cn [School of Material Science and Engineering, Tianjin University, Tianjin 300072 (China); State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Cai, Yangchuan [School of Material Science and Engineering, Tianjin University, Tianjin 300072 (China); State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Huang, Yongxian [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China)

    2016-03-01

    Graphical abstract: - Highlights: • Laser beam partly disperses ZrB{sub 2} particle clusters and showing dispersed particles state after matrix solidification. • Laser melting process narrower cellular spacing in composites than AA6061 matrix. • Compared with matrix alloy, crystal orientation near melted layer edge of the composites is almost random duo to heterogeneous nucleation in melt and pinning effect of laser dispersed ZrB{sub 2} nanoparticles at solidification front. • Laser melted layer shows better wear properties than matrix and composite without laser melting. - Abstract: Aluminum matrix composites reinforced by in situ ZrB{sub 2} particles were successfully fabricated from an Al-KBF{sub 4}-K{sub 2}ZrF{sub 6} system via a direct melt reaction. A laser surface melting strategy is used to improve the surface strength of the in situ ZrB{sub 2p}/6061Al composite, which includes a series of laser-melted composites with different laser power processed by a 2 kW YAG laser generator. XRD and EDS results demonstrated the existence of ZrB{sub 2} nanoparticles in the composite. After laser melting, the penetration depth of the molten pool increases with increasing power density. OM and SEM analysis indicate that the laser melting process yields narrower cellular spacing of the matrix and partly disperses the ZrB{sub 2} particle clusters. Compared with laser-melted matrix alloys, the crystal orientations near the melted layers edge of the composite are almost random due to heterogeneous nucleation in the melt and the pinning effect of laser-dispersed ZrB{sub 2} nanoparticles at the solidification front. Wear test results show that the laser melted layer performs better at wear resistance than both the substrate and the matrix AA6061 by measuring wear mass loss. Compared with composite samples prepared without laser melting, the wear mass loss of the laser melted composites decreased from 61 to 56 mg under a load of 98 N for 60 min.

  19. Solitary fibrous tumor arising in an intrathoracic goiter

    DEFF Research Database (Denmark)

    Larsen, Stine Rosenkilde; Godballe, Christian; Krogdahl, Annelise

    2010-01-01

    . CONCLUSION: The histological appearance and immunohistochemical reaction pattern of SFT is characteristic. The entity should be considered when dealing with a spindle cell lesion in the thyroid gland. All cases of this site of origin reported have had a benign clinical course. As only a small number of cases......BACKGROUND: Solitary fibrous tumor (SFT) is a rare spindle cell tumor most often found in the mediastinal pleura. Nineteen cases of SFT arising in the thyroid gland have been reported. We report a case of SFT of the thyroid gland with immunohistochemical and cytogenetic investigation. SUMMARY: A 58...

  20. Biodiesel fuel production from waste cooking oil using radiation-grafted fibrous catalysts

    Science.gov (United States)

    Ueki, Yuji; Saiki, Seiichi; Hoshina, Hiroyuki; Seko, Noriaki

    2018-02-01

    Waste cooking oil, which can be used as a raw material for biodiesel fuel (BDF), contains two kinds of oil components: triglycerides (TGs) and free fatty acids (FFAs). Therefore, both alkaline-type and acid-type catalysts are needed to produce BDF from waste cooking oil. In this study, an alkaline-type grafted fibrous catalyst bearing OH- ions was synthesized by radiation-induced emulsion grafting of 4-chloromethylstyrene onto a polyethylene-coated polypropylene (PE/PP) nonwoven fabric, amination with trimethylamine, and further treatment with NaOH. Furthermore, an acid-type catalyst bearing H+ ions was synthesized by radiation-induced emulsion grafting of ethyl p-styrenesulfonate onto a PE/PP nonwoven fabric, saponification with NaOH, and protonation with HNO3. The OH- and H+ densities of the grafted fibrous catalysts were controlled by the grafting yield. The maximum OH- and H+ densities of the catalysts were 3.6 mmol-OH-/g-catalyst and 3.4 mmol-H+/g-catalyst, respectively. The performances of the catalysts were evaluated in the batchwise transesterification of TGs and ethanol, and the batchwise esterification of FFAs and ethanol. In both cases, TGs and FFAs were gradually converted into BDF. The mixed oil and four actual waste cooking oils, which contained both TGs and FFAs, were completely converted into BDF by sequential catalytic reactions with the acid-type grafted fibrous catalyst and then the alkaline-type grafted fibrous catalyst.

  1. [The influence of "rigidity" and structure of fibrous dust on their biological activity].

    Science.gov (United States)

    Troitskaia, N A; Velichkovskiĭ, B T; Vanchugova, N N

    2000-01-01

    The authors represent experimental data on cytotoxic, fibrogenic and mutagenic effects of fibrous dusts--"soft" pulp fibers and "stiff" ones (chrysotile-asbestos, carbon, basalt and fiber glass) in comparison with the nonfibrous analogs (antigorit, quartz DQ-12 and others). Viability of peritoneal macrophages was depressed more dramatically by "stiff" fibers vs. the "soft" ones. Mutagenic activity was associated with the "stiffness" degree of the dust particles. When compared to fibrous chemical dusts, nonfibrous ones appeared inert in micronuclear test.

  2. Quantitative measurement of the chemical composition of geological standards with a miniature laser ablation/ionization mass spectrometer designed for in situ application in space research

    International Nuclear Information System (INIS)

    Neuland, M B; Riedo, A; Tulej, M; Wurz, P; Grimaudo, V; Moreno-García, P; Mezger, K

    2016-01-01

    A key interest of planetary space missions is the quantitative determination of the chemical composition of the planetary surface material. The chemical composition of surface material (minerals, rocks, soils) yields fundamental information that can be used to answer key scientific questions about the formation and evolution of the planetary body in particular and the Solar System in general. We present a miniature time-of-flight type laser ablation/ionization mass spectrometer (LMS) and demonstrate its capability in measuring the elemental and mineralogical composition of planetary surface samples quantitatively by using a femtosecond laser for ablation/ionization. The small size and weight of the LMS make it a remarkable tool for in situ chemical composition measurements in space research, convenient for operation on a lander or rover exploring a planetary surface. In the laboratory, we measured the chemical composition of four geological standard reference samples USGS AGV-2 Andesite, USGS SCo-l Cody Shale, NIST 97b Flint Clay and USGS QLO-1 Quartz Latite with LMS. These standard samples are used to determine the sensitivity factors of the instrument. One important result is that all sensitivity factors are close to 1. Additionally, it is observed that the sensitivity factor of an element depends on its electron configuration, hence on the electron work function and the elemental group in agreement with existing theory. Furthermore, the conformity of the sensitivity factors is supported by mineralogical analyses of the USGS SCo-l and the NIST 97b samples. With the four different reference samples, the consistency of the calibration factors can be demonstrated, which constitutes the fundamental basis for a standard-less measurement-technique for in situ quantitative chemical composition measurements on planetary surface. (paper)

  3. A SOLITARY FIBROUS ORBITAL TUMOR IN A PATIENT WITH NEUROFIBROMATOSIS AND AN UTERINE CARCINOMA

    Directory of Open Access Journals (Sweden)

    E. E. Grishina

    2016-01-01

    Full Text Available We present a rare combination of a solitary fibrous orbital tumor and uterine cancer in a  female patient with type I  neurofibromatosis. This 77-year old patient developed a  left painless exophthalmos within 2 years and decreased visual acuity of the left eye. At the age of 20  she was diagnosed with type I neurofibromatosis. Half a year ago she underwent hysteron-oophorectomy due to uterine adenocarcinoma. The visual acuity of her left eye was decreased to 0.3, with an increase of intraocular pressure to 30 mm Hg. She had a 13-mm left-sided exophthalmos with misplacement of the eye downwards and laterally at 40°. Reposition of the left eye was severely impaired, with limitation of the eye movements to all directions. Ophthalmoscopy showed optic disc discoloration and blunting of its inner border. The patient underwent trans-conjunctival orbitotomy, with removal of three encapsulated tumor nodules. Histological and immunochemical studies of the removed tissue identified solitary fibrous tumor of the left orbit with an undetermined malignant potential. In the post-operative period, visual acuity of the left eye was 0.2, with no exophthalmos and right position of the eye. There was a non-significant limitation of the left eye movement to the left and to the right. X-ray computed tomography confirmed radical tumor excision. Conclusion: Solitary fibrous tumor is a  rare orbital neoplasm. Nevertheless, it should be included into the differential diagnosis list of spin-cell orbital tumors. It is necessary to aim at tumor removal through the least traumatic orbital access. Relapsing course of the tumor is the rationale for a  long-term follow-up of patients after removal of solitary fibrous orbital tumor.

  4. Biomimetic poly(lactide) based fibrous scaffolds for ligament tissue engineering.

    Science.gov (United States)

    Surrao, Denver C; Waldman, Stephen D; Amsden, Brian G

    2012-11-01

    The aim of this study was to fabricate a fibrous scaffold that closely resembled the micro-structural architecture and mechanical properties of collagen fibres found in the anterior cruciate ligament (ACL). To achieve this aim, fibrous scaffolds were made by electrospinning L-lactide based polymers. L-Lactide was chosen primarily due to its demonstrated biocompatibility, biodegradability and high modulus. The electrospun fibres were collected in tension on a rotating wire mandrel. Upon treating these fibres in a heated aqueous environment, they possessed a crimp-like pattern having a wavelength and amplitude similar to that of native ACL collagen. Of the polymer fibre scaffolds studied, those made from poly(L-lactide-co-D,L-lactide) PLDLA exhibited the highest modulus and were also the most resilient to in vitro hydrolytic degradation, undergoing a slight decrease in modulus compared to the other polymeric fibres over a 6 month period. Bovine fibroblasts seeded on the wavy, crimp-like PLDLA fibres attached, proliferated and deposited extracellular matrix (ECM) molecules on the surface of the fibrous scaffold. In addition, the deposited ECM exhibited bundle formation that resembled the fascicles found in native ACL. These findings demonstrate the importance of replicating the geometric microenvironment in developing effective tissue engineering scaffolds. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. Erionite and other fibrous zeolites in volcanic environments: the need for a risk assessment in Italy

    Science.gov (United States)

    Cavallo, A.; Rimoldi, B.

    2012-04-01

    In many European countries in the '90s there was a significant increase in mortality linked to mesothelioma, a cancer of the lung, involving pleural, pericardial and peritoneal mesothelial cells, which unfortunately has no cure at present. Though most of these cases have been attributed to t asbestos, in Italy at least 17% of cases of mesothelioma is still not fully explained. In the years between 1990 and 2000, it was discovered that the inhalation of erionite fibers (a zeolite group mineral, that can be found in altered volcanic rocks) was the cause of a regional epidemic of mesothelioma in some villages of Cappadocia (Turkey). Erionite, in fact, was recently included in Class 1 (highly carcinogenic) by the World Health Organization, up to 800 times more carcinogenic than asbestos; on the other hand, little is known about the toxicity of other fibrous zeolites, commonly intergrown with erionite, such as offretite and mordenite. Erionite was reported in different regions of Italy; nevertheless, a systematic mapping of its distribution, the quantification of its presence in rocks and data about airborne fibers are still missing. We carried out first preliminary sampling in Veneto, in Tertiary volcanic rocks, mainly hydrothermally altered basalts. The first mineralogical investigations by means of XRPD, SEM-EDS and OM confirmed the presence of small amounts of erionite and abundant fibrous offretite, in vugs of basaltic rocks. Intergrowths and overgrowths with other fibrous minerals are quite common, and the morphological-chemical similarities among these zeolites pose a special analytical problem, with the need of combining different techniques. Our first findings, combined with the fact that zeolites are important industrial minerals, emphasize the need of a risk assessment in Italy and Europe, because there are no systematic studies on the distribution of erionite or similar fibrous zeolites in the environment. The knowledge of the epidemiology of mesothelioma

  6. Mechanisms of de cohesion in cutting aluminium matrix composites

    International Nuclear Information System (INIS)

    Cichosz, Piotr; Karolczak, Pawel; Kuzinovski, Mikolaj

    2008-01-01

    In this paper properties and applications of aluminium matrix composites are presented with a composite reinforced with saffil fibres selected for topical study. Behavior of matrix and reinforcement during machining with a cutting tool is analyzed. The paper presents an explosive quick-stop device designed to obtain undisturbed machined surface for examination. Meso hardness measurements of deformed structure, resultant chips and built-up-edge were carried out. Scanning micrographs of machined surface are presented with morphology and types of chips analysed. Values of the fibrousness angle ψ and thickening index k h of chip are evaluated. The research performed has enabled the authors to define mechanisms of e cohesion during cutting aluminium matrix composites. The results received for composite material are compared with those pertinent to aluminum alloys.

  7. MICROSTRUCTURE, THERMO-PHYSICAL, MECHANICAL AND WEAR PROPERTIES OF IN-SITU FORMED BORON CARBIDE - ZIRCONIUM DIBORIDE COMPOSITE

    Directory of Open Access Journals (Sweden)

    T. S. R. Ch. Murthy

    2017-12-01

    Full Text Available Microstructure, thermos-physical, mechanical and wear properties of in-situ formed B₄C- ZrB₂ composite were investigated. Coefficient of thermal expansion, thermal diffusivity and electrical resistivity of the composite were measured at different temperatures up to 1000 °C in inert atmosphere. Flexural strength was measured up to 900 °C in air. Friction and wear properties have been studied at different loads under reciprocative sliding, using a counter body (ball of cemented tungsten carbide (WC-Co at ambient conditions. X-ray diffraction (XRD and electron probe microanalysis (EPMA confirmed the formation of ZrB₂ as the reaction product in the composite. Electrical resistivity was measured as 3.02 x 10-4Ω.m at 1000°C. Thermal conductivity measured at temperatures between 25°C and 1000 °C was in the range of 8 to 10 W/m-K. Flexural strength of the composite decreased with increase in temperature and reached a value of 92 MPa at 900°C. The average value of coefficient of friction (COF was measured as 0.15 at 20 N load and 10 Hz frequency. Increase of load from 5 N to 20 N resulted in decrease in COF from 0.24 to 0.15 at 10 Hz frequency. Specific wear rate data observed was of the order of 10-6 mm³/N-m. Both abrasive and tribo-chemical reaction wear mechanisms were observed on the worn surface of flat and counter body materials. At higher loads (≥10 N a tribo-chemical reaction wear mechanism was dominant.

  8. Diagenetic conditions of fibrous calcite vein formation in black shales: Petrographic, chemical and isotopic evidence

    Energy Technology Data Exchange (ETDEWEB)

    Al-Aasm, I.S.; Muir, I. (Imperial Oil Resources, Calgary, AB (Canada)); Morad, S. (Windsor Univ., ON (Canada))

    1992-03-01

    Antiaxial fibrous calcite veins 2-6 cm thick outcrop parallel to bedding in the Bluefish Member of the Middle Devonian Hare Indian Formation in the Norman Wells area of the Northwest Territories. The Bluefish Member consists of dark brown to black laminated shales with total organic matter content in the 1.8-8.0 wt % range. The basal part of the Member, characterized by the presence of low diversity macrofossils, was deposited under anaerobic conditions on top of the drowned Hume carbonate platform. The pattern of incorporation of host-shale fragments and tiny inclusions into the fibrous calcite indicates repeated episodes of vein opening and sealing. The [delta][sup 13]C values and the low Mn and Fe contents indicate a dominantly marine source of carbonate ions was related to the dissolution of metastable skeletal carbonates in the host shales. The [delta][sup 18]O values suggest precipitation at 30-50[degree]C and burial depths of tens to hundreds of meters. The formation of finely crystalline non-stoichiometric Ca-rich dolomite disseminated in the shale inclusions occurred subsequent to the emplacement of fibrous calcite veins under elevated burial temperatures. 54 refs., 8 figs., 3 tabs.

  9. In situ hydrothermal synthesis of a novel hierarchically porous TS-1/modified-diatomite composite for methylene blue (MB) removal by the synergistic effect of adsorption and photocatalysis.

    Science.gov (United States)

    Yuan, Weiwei; Yuan, Peng; Liu, Dong; Yu, Wenbin; Laipan, Minwang; Deng, Liangliang; Chen, Fanrong

    2016-01-15

    Hierarchically porous TS-1/modified-diatomite composites with high removal efficiency for methylene blue (MB) were prepared via a facile in situ hydrothermal route. The surface charge state of the diatomite was modified to enhance the electrostatic interactions, followed by in situ hydrothermal coating with TS-1 nanoparticles. The zeolite loading amount in the composites could be adjusted by changing the hydrothermal time. The highest specific surface area and micropore volume of the obtained composites were 521.3m(2)/g and 0.254cm(3)/g, respectively, with an optimized zeolite loading amount of 96.8%. Based on the synergistic effect of efficient adsorption and photocatalysis resulting from the newly formed hierarchically porous structure and improved dispersion of TS-1 nanoparticles onto diatomite, the composites' removal efficiency for MB reached 99.1% after 2h of photocatalytic reaction, even higher than that observed using pure TS-1 nanoparticles. Moreover, the superior MB removal kinetics of the composites were well represented by a pseudo-first-order model, with a rate constant (5.28×10(-2)min(-1)) more than twice as high as that of pure TS-1 nanoparticles (2.43×10(-2)min(-1)). The significant dye removal performance of this novel TS-1/modified-diatomite composite indicates that it is a promising candidate for use in waste water treatment. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Adsorption behavior of cation-exchange resin-mixed polyethersulfone-based fibrous adsorbents with bovine serum albumin

    NARCIS (Netherlands)

    Zhang, Y.; Zhang, Yuzhong; Borneman, Zandrie; Koops, G.H.; Wessling, Matthias

    2006-01-01

    The cation-exchange resin-mixed polyethersulfone (PES)-based fibrous adsorbents were developed to study their adsorption behavior with bovine serum albumin (BSA). A fibrous adsorbent with an open pore surface had much better adsorption behavior with a higher adsorbing rate. The adsorption capacity

  11. Extraction of in situ cosmogenic 14C from olivine

    Science.gov (United States)

    Pigati, J.S.; Lifton, N.A.; Timothy, Jull A.J.; Quade, Jay

    2010-01-01

    Chemical pretreatment and extraction techniques have been developed previously to extract in situ cosmogenic radiocarbon (in situ 14C) from quartz and carbonate. These minerals can be found in most environments on Earth, but are usually absent from mafic terrains. To fill this gap, we conducted numerous experiments aimed at extracting in situ 14C from olivine ((Fe,Mg)2SiO4). We were able to extract a stable and reproducible in situ 14C component from olivine using stepped heating and a lithium metaborate (LiBO2) flux, following treatment with dilute HNO3 over a variety of experimental conditions. However, measured concentrations for samples from the Tabernacle Hill basalt flow (17.3 ?? 0.3 ka4) in central Utah and the McCarty's basalt flow (3.0 ?? 0.2 ka) in western New Mexico were significantly lower than expected based on exposure of olivine in our samples to cosmic rays at each site. The source of the discrepancy is not clear. We speculate that in situ 14C atoms may not have been released from Mg-rich crystal lattices (the olivine composition at both sites was ~Fo65Fa35). Alternatively, a portion of the 14C atoms released from the olivine grains may have become trapped in synthetic spinel-like minerals that were created in the olivine-flux mixture during the extraction process, or were simply retained in the mixture itself. Regardless, the magnitude of the discrepancy appears to be inversely proportional to the Fe/(Fe+Mg) ratio of the olivine separates. If we apply a simple correction factor based on the chemical composition of the separates, then corrected in situ 14C concentrations are similar to theoretical values at both sites. At this time, we do not know if this agreement is fortuitous or real. Future research should include measurement of in situ 14C concentrations in olivine from known-age basalt flows with different chemical compositions (i.e. more Fe-rich) to determine if this correction is robust for all olivine-bearing rocks. ?? 2010 by the Arizona

  12. Novel concept of recycling sludge and dust to BOF converter through dispersed in-situ phase induced by composite ball explosive reaction

    Science.gov (United States)

    Tang, Fu-ping; Yu, Shu-juan; Fei, Peng; Hou, Hou-yu; Qian, Feng; Wang, Xiao-feng

    2017-08-01

    Recycling of iron and steelmaking dusts is a key issue in environmental protection efforts and to ensure efficient utilization. In this investigation, we developed a novel recovery process that uses a dispersed in-situ phase induced by an explosive reaction of composite balls of iron and steelmaking dusts. We designed and prepared composite balls for this function using a laboratory model batch-type balling disc (at 12 r/min) and optimized the feeding modes in 180-t and 260-t basic oxygen furnace (BOF) converters. The results indicate that feeding composite balls into BOF converters is an effective novel technology for recovering iron and steelmaking dusts. The period after hot metal charging and prior to the oxygen-blowing process is the most reasonable time to feed composite balls. Composite ball treatment is not appropriate for steel production with sulfur requirements lower than 80 ppm. The maximum composite ball feeding amount is 40 kg/t and the iron yield rate is better than 95%. Compared with the conventional recycling process of sludge and dust, this novel technology is more convenient and efficient, saving up to 309 RMB per ton of steel. Further investigation of this novel recycling technology is merited.

  13. Development of in-Situ Al-Si/CuAl₂ Metal Matrix Composites: Microstructure, Hardness, and Wear Behavior.

    Science.gov (United States)

    Tash, Mahmoud M; Mahmoud, Essam R I

    2016-06-02

    In the present work, in-situ metal matrix composites were fabricated through squeeze casting. The copper particles were dispersed with different weight percentages (3%, 6%, 10%, and 15%) into Al-12% Si piston alloy. Also, heat treatments were performed at 380 °C and 450 °C for holding times of 6 and 18 h. The microstructures, X-ray diffractometer (XRD) pattern, hardness, and wear characteristics were evaluated. The results showed that these copper particles have reacted with the aluminum under all of the aforementioned processing conditions resulting in the formation of fine copper aluminide intermetallics. Most of the intermetallics were CuAl₂, while AlCu appeared in a small ratio. Additionally, these intermetallics were homogenously distributed within the alloy matrix with up to 6% Cu addition. The amounts of those intermetallics increased after performing heat treatment. Most of these intermetallics were CuAl₂ at 380 °C, while the Cu-rich intermetallics appeared at 450 °C. Increasing the holding time to 18 h, however, led to grain coarsening and resulted in the formation of some cracks. The hardness of the resulting composite materials was improved. The hardness value reached to about 170 HV after heat treating at 380 °C for 8 h. The wear resistance of the resulting composite materials was remarkably improved, especially at lower additions of Cu and at the lower heat treatment temperature.

  14. Cystic solitary fibrous tumor arising from the left occipital meninges: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Bae Geun; Hwang, Yoon Joon; Cha, Soon Joo; Hur, Gham; Kim, Yong Hoon; Kim, Su Young; Seo, Jung Wook; Lee, Ji Young; Kim, Han Seung [Ilsan Paik Hospital, Inje University, School of Medicine, Goyang (Korea, Republic of)

    2007-02-15

    Solitary fibrous tumor (SFT) is a benign mesenchymal neoplasm of a spindle-cell origin, and it usually involves the pleura. It's occurrence in various organs of the body has recently been described. Meningeal SFT is very rare. Radiologically, it is a strongly enhancing solid mass and is undistinguishable from fibrous meningioma and hemangiopericytoma. Yet we report here on a case of SFT with massive cystic degeneration that arose from the meninges of the left occipital region.

  15. Compressibility of air in fibrous materials

    DEFF Research Database (Denmark)

    Tarnow, Viggo

    1996-01-01

    The dynamic compressibility of air in fibrous materials has been computed for two assumed configurations of fibers which are close to the geometry of real fiber materials. Models with parallel cylinders placed in a regular square lattice and placed randomly are treated. For these models...... the compressibility is computed approximately from the diameter and mean distances between cylinders. This requires calculation of the air temperature, which is calculated for cylinders in a regular lattive by the Wigner-Seitz cell approximation. In the case of random placement, the calculation is done by a summation...... over thermal waves from all fibers, and by a self-consistent procedure. Figuren of the compressibility in the frequency range 10-100 000 Hz, are given for diameter of the cylinders of 6.8 µm, and mean distances between them from 50 to 110 µm, which corresponds to glass wool with a density of 40 to 16...

  16. Structure and Identification of Solenin: A Novel Fibrous Protein from Bivalve Solen grandis Ligament

    Directory of Open Access Journals (Sweden)

    Jun Meng

    2014-01-01

    Full Text Available Fibrous proteins, which derived from natural sources, have been acting as templates for the production of new materials for decades, and most of them have been modified to improve mechanical performance. Insight into the structures of fibrous proteins is a key step for fabricating of bioinspired materials. Here, we revealed the microstructure of a novel fibrous protein: solenin from Solen grandis ligament and identified the protein by MALDI-TOF-TOF-MS and LC-MS-MS analyses. We found that the protein fiber has no hierarchical structure and is homologous to keratin type II cytoskeletal 1 and type I cytoskeletal 9-like, containing “SGGG,” “SYGSGGG,” “GS,” and “GSS” repeat sequences. Secondary structure analysis by FTIR shows that solenin is composed of 41.8% β-sheet, 16.2% β-turn, 26.5% α-helix, and 9.8% disordered structure. We believe that the β-sheet structure and those repeat sequences which form “glycine loops” may give solenin excellence elastic and flexible properties to withstand tensile stress caused by repeating opening and closing of the shell valves in vivo. This paper contributes a novel fibrous protein for the protein materials world.

  17. Clinical characteristics of the primary hepatic malignant fibrous histiocytoma in China: case report and review of the literature

    Directory of Open Access Journals (Sweden)

    Yao Dianbo

    2012-01-01

    Full Text Available Abstract Background A malignant fibrous histiocytoma is a soft tissue tumor that most commonly occurs in the extremities, but rarely involves the liver. The clinical characteristics and therapeutic experiences of primary hepatic malignant fibrous histiocytoma are still limited. Methods Two cases of primary hepatic malignant fibrous histiocytoma were analyzed retrospectively, and all the literature concerning primary hepatic malignant fibrous histiocytoma was analyzed. Results In China, a total of 76 cases had been reported, among which 50 were men, with a male to female ratio of 1.9:1. Mean age of the patients was 51.0 years old, and more than 85 percent were older than 40 years. 82.9 percent (63/76 of hepatic MFH were solitary lesions, with tumor size ranging from 2.5 to 23.5 cm (average 10.3 cm. Major clinical presentation (78.4% was abdominal pain or discomfort, accompanied with some other non-specific symptoms such as malaise, anorexia, weight loss, jaundice and fever, and small cases (14.9% were asymptomatic. Computed tomography and ultrasound usually revealed the location of lesions. The rate of pre-operative misdiagnosis was extremely high, and 14.9 percent of patients were even misdiagnosed as a benign liver cyst, liver abscess or hematoma. Integrated resection was performed among the most cases (49/68, among which only a few ones (12 cases were introduced to have no recurrence or metastasis or be still alive with no detail information provided, while among the cases with palliative operation or only a biopsy, the cases that were followed-up all died. Conclusions Hepatic malignant fibrous histiocytoma is a rare malignant mesenchymal tumor. The variable features of clinical presentations and images make the diagnosis difficult. Though the prognosis of primary hepatic malignant fibrous histiocytoma was rather poor, integrated resection might provide a few cases a good opportunity for surviving, suggesting that surgery might be an effective

  18. Micro-poromechanics model of fluid-saturated chemically active fibrous media.

    Science.gov (United States)

    Misra, Anil; Parthasarathy, Ranganathan; Singh, Viraj; Spencer, Paulette

    2015-02-01

    We have developed a micromechanics based model for chemically active saturated fibrous media that incorporates fiber network microstructure, chemical potential driven fluid flow, and micro-poromechanics. The stress-strain relationship of the dry fibrous media is first obtained by considering the fiber behavior. The constitutive relationships applicable to saturated media are then derived in the poromechanics framework using Hill's volume averaging. The advantage of this approach is that the resultant continuum model accounts for the discrete nature of the individual fibers while retaining a form suitable for porous materials. As a result, the model is able to predict the influence of micro-scale phenomena, such as the fiber pre-strain caused by osmotic effects and evolution of fiber network structure with loading, on the overall behavior and in particular, on the poromechanics parameters. Additionally, the model can describe fluid-flow related rate-dependent behavior under confined and unconfined conditions and varying chemical environments. The significance of the approach is demonstrated by simulating unconfined drained monotonic uniaxial compression under different surrounding fluid bath molarity, and fluid-flow related creep and relaxation at different loading-levels and different surrounding fluid bath molarity. The model predictions conform to the experimental observations for saturated soft fibrous materials. The method can potentially be extended to other porous materials such as bone, clays, foams and concrete.

  19. On nature of microcomposite in situ superconductors bond

    International Nuclear Information System (INIS)

    Pan, V.M.; Flis, V.S.; Latysheva, V.I.; Vasilenko, M.G.; Mukhin, S.I.

    1985-01-01

    The behaviour of current and field characteristics of copper-niobium composite containing 36.5% at. niobium has been studied depending on the degree of deformation. Nonmonotonic change of density of critical current Jsub(c) and upper critical field Hsub(Csub(2)) on the degree of deformation is determined. The composite critical currents have been investigated using the copper matrix and without it. On the basis of the results obtained peculiarities of the proximity effect in copper-niobium in situ composites have been discussed

  20. Monitoring of the microbial community composition of the saline aquifers during CO2 storage by fluorescence in situ hybridisation

    OpenAIRE

    Daria Morozova; M. Wandrey; Mashal Alawi; Martin Zimmer; Andrea Vieth-Hillebrand [Vieth; M. Zettlitzer; Hilke Würdemann

    2010-01-01

    This study reveals the first analyses of the composition and activity of the microbial community of a saline CO2 storage aquifer. Microbial monitoring during CO2 injection has been reported. By using fluorescence in situ hybridisation (FISH), we have shown that the microbial community was strongly influenced by the CO2 injection. Before CO2 arrival, up to 6 × 106 cells ml−1 were detected by DAPI staining at a depth of 647 m below the surface. The microbial community was dominated by the dom...

  1. Design and characterization of a biodegradable composite scaffold for ligament tissue engineering.

    Science.gov (United States)

    Hayami, James W S; Surrao, Denver C; Waldman, Stephen D; Amsden, Brian G

    2010-03-15

    Herein we report on the development and characterization of a biodegradable composite scaffold for ligament tissue engineering based on the fundamental morphological features of the native ligament. An aligned fibrous component was used to mimic the fibrous collagen network and a hydrogel component to mimic the proteoglycan-water matrix of the ligament. The composite scaffold was constructed from cell-adherent, base-etched, electrospun poly(epsilon-caprolactone-co-D,L-lactide) (PCLDLLA) fibers embedded in a noncell-adherent photocrosslinked N-methacrylated glycol chitosan (MGC) hydrogel seeded with primary ligament fibroblasts. Base etching improved cellular adhesion to the PCLDLLA material. Cells within the MGC hydrogel remained viable (72 +/- 4%) during the 4-week culture period. Immunohistochemistry staining revealed ligament ECM markers collagen type I, collagen type III, and decorin organizing and accumulating along the PCLDLLA fibers within the composite scaffolds. On the basis of these results, it was determined that the composite scaffold design was a viable alternative to the current approaches used for ligament tissue engineering and merits further study. (c) 2009 Wiley Periodicals, Inc.

  2. Tubing-Electrospinning: A One-Step Process for Fabricating Fibrous Matrices with Spatial, Chemical, and Mechanical Gradients.

    Science.gov (United States)

    Kim, Jung-Suk; Im, Byung Gee; Jin, Gyuhyung; Jang, Jae-Hyung

    2016-08-31

    Guiding newly generated tissues in a gradient pattern, thereby precisely mimicking inherent tissue morphology and subsequently arranging the intimate networks between adjacent tissues, is essential to raise the technical levels of tissue engineering and facilitate its transition into the clinic. In this study, a straightforward electrospinning method (the tubing-electrospinning technique) was developed to create fibrous matrices readily with diverse gradient patterns and to induce patterned cellular responses. Gradient fibrous matrices can be produced simply by installing a series of polymer-containing lengths of tubing into an electrospinning circuit and sequentially processing polymers without a time lag. The loading of polymer samples with different characteristics, including concentration, wettability, and mechanical properties, into the tubing system enabled unique features in fibrous matrices, such as longitudinal gradients in fiber density, surface properties, and mechanical stiffness. The resulting fibrous gradients were shown to arrange cellular migration and residence in a gradient manner, thereby offering efficient cues to mediate patterned tissue formation. The one-step process using tubing-electrospinning apparatus can be used without significant modifications regardless of the type of fibrous gradient. Hence, the tubing-electrospinning system can serve as a platform that can be readily used by a wide-range of users to induce patterned tissue formation in a gradient manner, which will ultimately improve the functionality of tissue engineering scaffolds.

  3. Explicit modeling the progressive interface damage in fibrous composite: Analytical vs. numerical approach

    DEFF Research Database (Denmark)

    Kushch, V.I.; Shmegera, S.V.; Mishnaevsky, Leon

    2011-01-01

    of the multiple inclusion problem by means of complex potentials. The second, finite element model of FRC is based on the cohesive zone model of interface. Simulation of progressive debonding in FRC using the many-fiber models of composite has been performed. The advantageous features and applicability areas...... of both models are discussed. It has been shown that the developed models provide detailed analysis of the progressive debonding phenomena including the interface crack cluster formation, overall stiffness reduction and induced anisotropy of the effective elastic moduli of composite....

  4. Cytogenetic, genomic in situ hybridization (GISH) and agronomic ...

    African Journals Online (AJOL)

    F3 generations of a wheat-Psathyrostachys huashanica intergeneric cross. Their agronomic traits were evaluated in the field and their meiotic behaviors and chromosome composition were analyzed by cytogenetic and GISH (genomic in situ ...

  5. HONO and Inorganic Fine Particle Composition in Typical Monsoon Region with Intensive Anthropogenic Emission: In-situ Observations and Source Identification.

    Science.gov (United States)

    Xie, Y.; Nie, W.; Ding, A.; Huang, X.

    2015-12-01

    Yangtze River Delta (YRD) is one of the most typical monsoon area with probably the most largest population intensity in the world. With sharply economic development and the large anthropogenic emissions, fine particle pollution have been one of the major air quality problem and may further have impact on the climate system. Though a lot of control policy (sulfur emission have been decreasing from 2007) have been conducted in the region, studies showed the sulfate in fine particles still take major fraction as the nitrate from nitrogen oxides increased significantly. In this study, the role of inorganic chemical compositions in fine particles was investigated with two years in-situ observation. Sulfate and Nitrate contribute to fine particle mass equally in general, but sulfate contributes more during summer and nitrate played more important role in winter. Using lagrangian dispersion backward modeling and source contribution clustering method, the impact of airmass coming from different source region (industrial, dust, biogenic emissions, etc) on fine particle inorganic compositions were discussed. Furthermore, we found two unique cases showing in-situ implications for sulfate formation by nitrogen dioxide oxidation mechanisms. It was showed that the mixing of anthropogenic pollutants with long-range transported mineral dust and biomass burning plume would enhance the sulfate formation by different chemistry mechanisms. This study focus on the complex aspects of fine particle formation in airmasses from different source regions: . It highlights the effect of NOx in enhancing the atmospheric oxidization capacity and indicates a potentially very important impact of increasing NOx on air pollution formation and regional climate change in East Asia.

  6. Angiomatoid fibrous histiocytoma: novel MR imaging findings

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Salutario J.; Vinson, Emily N. [Duke University Medical Center, Department of Radiology, Durham, NC (United States); Moreno, Courtney Coursey [Emory University School of Medicine, Department of Radiology and Imaging Sciences, Atlanta, GA (United States); Dodd, Leslie G. [University of North Carolina School of Medicine, Department of Pathology and Laboratory Medicine, Chapel Hill, NC (United States); Brigman, Brian E. [Duke University Medical Center, Department of Orthopedic Surgery, Durham, NC (United States)

    2016-05-15

    To describe novel MR imaging features, and clinical characteristics of soft tissue angiomatoid fibrous histiocytoma (AFH) at presentation, local recurrence, and metastases. We described the MRI findings of six cases of histologically proven AFH. Pathologic findings, clinical presentation, and outcome were reviewed. Lesions were primarily cystic. At initial presentation, tumors were surrounded by low signal intensity fibrous pseudocapsule. High signal intensity consistent with the lymphoplasmacytic infiltrate was seen in T2-weighted and post-contrast images as a rim over the hypointense pseudocapsule (double rim sign). High signal intensity infiltrating tumoral cords extended into adjacent tissues, through pseudocapsular defects on T2-weighted and post-contrast images. The cystic component and tumor cell nodularity were demonstrated at post-contrast images. Clinically, lesions were often thought to be benign, underwent marginal resection, developed local recurrence, and one developed second recurrence consisting of metastases. Recurrent tumors appeared as multiple masses, misinterpreted as post-surgical changes. An intramuscular recurrence demonstrated double rim and infiltrating margin. A predominantly well-circumscribed, primarily cystic mass with double-rim and marginal infiltration on MRI suggests the possibility of AFH, in particular in child or young adult. Inclusion of these novel observations in AFH differential diagnosis may have a significant impact on treatment and prevention of recurrence. (orig.)

  7. Angiomatoid fibrous histiocytoma: novel MR imaging findings

    International Nuclear Information System (INIS)

    Martinez, Salutario J.; Vinson, Emily N.; Moreno, Courtney Coursey; Dodd, Leslie G.; Brigman, Brian E.

    2016-01-01

    To describe novel MR imaging features, and clinical characteristics of soft tissue angiomatoid fibrous histiocytoma (AFH) at presentation, local recurrence, and metastases. We described the MRI findings of six cases of histologically proven AFH. Pathologic findings, clinical presentation, and outcome were reviewed. Lesions were primarily cystic. At initial presentation, tumors were surrounded by low signal intensity fibrous pseudocapsule. High signal intensity consistent with the lymphoplasmacytic infiltrate was seen in T2-weighted and post-contrast images as a rim over the hypointense pseudocapsule (double rim sign). High signal intensity infiltrating tumoral cords extended into adjacent tissues, through pseudocapsular defects on T2-weighted and post-contrast images. The cystic component and tumor cell nodularity were demonstrated at post-contrast images. Clinically, lesions were often thought to be benign, underwent marginal resection, developed local recurrence, and one developed second recurrence consisting of metastases. Recurrent tumors appeared as multiple masses, misinterpreted as post-surgical changes. An intramuscular recurrence demonstrated double rim and infiltrating margin. A predominantly well-circumscribed, primarily cystic mass with double-rim and marginal infiltration on MRI suggests the possibility of AFH, in particular in child or young adult. Inclusion of these novel observations in AFH differential diagnosis may have a significant impact on treatment and prevention of recurrence. (orig.)

  8. Ex-situ X-ray computed tomography data for a non-crimp fabric based glass fibre composite under fatigue loading

    DEFF Research Database (Denmark)

    Jespersen, Kristine Munk; Mikkelsen, Lars Pilgaard

    2017-01-01

    The data published with this article are high resolution X-ray computed tomography (CT) data obtained during an ex-situ fatigue test of a coupon test specimen made from a non-crimp fabric based glass fibre composite similar to those used for wind turbine blades. The fatigue test was interrupted...

  9. Haematoma-like primary intracranial malignant fibrous histiocytoma in a 5-year-old girl

    International Nuclear Information System (INIS)

    Oezhan, S.; Tali, E.T.; Isik, S.; Saygili, M.R.; Baykaner, K.

    1999-01-01

    We present CT and MRI of an intracranial malignant fibrous histiocytoma in a 5-year-old girl with headache and vomiting. This case is unusual particular by virtue of its radiological appearances and the young age of the patient. (orig.)

  10. Environmental concentrations of fibers with fluoro-edenitic composition and population exposure in Biancavilla (Sicily, Italy

    Directory of Open Access Journals (Sweden)

    Biagio Maria Bruni

    2014-06-01

    Full Text Available INTRODUCTION. The town of Biancavilla (Sicily was included in the National Priorities List of Contaminated Sites due to environmental dispersion of amphibole fibers owing to the extraction of materials from a local quarry. The present report summarizes results from several, hitherto unpublished, environmental surveys carried out in the area, as well as from published analyses of the chemistry and composition of fibers. METHODS. Data included here comprises environmental fiber concentrations by scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS analysis in soil, indoor and outdoor air, personal monitoring, as well as a chemical characterization of the fibers. The full chemical structure and spectroscopic characterization of fibers were obtained through a multi-analytical approach: SEM-EDS, X-ray powder diffraction (XRPD, as well as Mössbauer (MS and Fourier transform infrared (FT-IR spectroscopies. RESULTS. Data analyzed provided a spatial and temporal picture of fiber concentrations in Biancavilla, and a qualitative assessment of population exposure. Results suggest that until 2000, the population had been exposed to high levels of amphibole fibers. Mitigation measures adopted since 2001, gradually reduced exposure levels to about 0.10.4 ff/l. Previous studies on fibrous amphiboles from Biancavilla reported considerable chemical variability. Differences in composition, especially concerning the presence of Si, Ca, Fe, and Na, were found both within and between samples. Compared to the previously investigated prismatic fluoro-edenite, these fibrous fluorine amphiboles consistently showed higher average values of Si and Fe content, whereas Ca was significantly lower, which we consider a distinctive characteristic of the fluorine fibrous variety. CONCLUSIONS. The population of Biancavilla had been highly exposed to a suite of fibrous amphiboles for over 50 years. Dust mitigation measures have gradually reduced exposure, but

  11. Solitary fibrous tumor of the orbit presenting in pregnancy

    Directory of Open Access Journals (Sweden)

    Das Jayanta

    2009-01-01

    Full Text Available A 32-year-old woman, three months pregnant, reported with the complaint of protrusion of the right eye for six months. She gave history of rapid protrusion of eyeball for the last two months along with the history of double vision for the last one month. Computer tomography (CT scan revealed a well-defined mass lesion in the intraconal space of the right orbit which was excised through a lateral orbitotomy approach. Histological examination and immunohistochemistry revealed a solitary fibrous tumor, which showed a rapid progression in pregnancy.

  12. In situ studies of uranium-plutonium mixed oxides. Influence of composition on phase equilibria and thermodynamic properties

    International Nuclear Information System (INIS)

    Strach, Michal

    2015-01-01

    Due to their physical and chemical properties, mixed uranium-plutonium oxides are considered for fuel in 4. generation nuclear reactors. In this frame, complementary experimental studies are necessary to develop a better understanding of the phenomena that take place during fabrication and operation in the reactor. The focus of this work was to study the U-Pu-O phase diagram in a wide range of compositions and temperatures to ameliorate our knowledge of the phase equilibria in this system. Most of experiments were done using in situ X-ray diffraction at elevated temperatures. The control of the oxygen partial pressure during the treatments made it possible to change the oxygen stoichiometry of the sample, which gave us an opportunity to study rapidly different compositions and the processes involved. The experimental approach was coupled with thermodynamic modeling using the CALPHAD method, to precisely plan the experiments and interpret the obtained results. This approach enabled us to enhance the knowledge of phase equilibria in the U-Pu-O system. (author) [fr

  13. Ceramic matrix composites by microwave assisted CVI

    International Nuclear Information System (INIS)

    Currier, R.P.; Devlin, D.J.

    1993-01-01

    Chemical vapor infiltration (CVI) processes for producing continuously reinforced ceramic composites are reviewed. Potential advantages of microwave assisted CVI are noted and numerical studies of microwave assisted CVI are reviewed. The models predict inverted thermal gradients in fibrous ceramic preforms subjected to microwave radiation and suggest processing strategies for achieving uniformly dense composites. Comparisons are made to experimental results on silicon-based composite systems. The role played by the relative ability of fiber and matrix to dissipate microwave energy is noted. Results suggest that microwave induced inverted gradients can be exploited to promote inside-out densification. 10 refs., 2 figs

  14. Frictional behaviour of high performance fibrous tows: Friction experiments

    NARCIS (Netherlands)

    Cornelissen, Bo; Rietman, Bert; Akkerman, Remko

    2013-01-01

    Tow friction is an important mechanism in the production and processing of high performance fibrous tows. The frictional behaviour of these tows is anisotropic due to the texture of the filaments as well as the tows. This work describes capstan experiments that were performed to measure the

  15. Wear behaviour of Zr-based in situ bulk metallic glass matrix ...

    Indian Academy of Sciences (India)

    based bulk metallic glass (BMG) and its in situ BMG matrix composites with diameter of 3 mm were fabricated by conventional Cu-mould casting method and ... The composites showed lower friction coefficient and wear rate than the pure BMG.

  16. Wood-plastic composites as promising green-composites for automotive industries!

    Science.gov (United States)

    Ashori, Alireza

    2008-07-01

    Wood-plastic composite (WPC) is a very promising and sustainable green material to achieve durability without using toxic chemicals. The term WPCs refers to any composites that contain plant fiber and thermosets or thermoplastics. In comparison to other fibrous materials, plant fibers are in general suitable to reinforce plastics due to relative high strength and stiffness, low cost, low density, low CO2 emission, biodegradability and annually renewable. Plant fibers as fillers and reinforcements for polymers are currently the fastest-growing type of polymer additives. Since automakers are aiming to make every part either recyclable or biodegradable, there still seems to be some scope for green-composites based on biodegradable polymers and plant fibers. From a technical point of view, these bio-based composites will enhance mechanical strength and acoustic performance, reduce material weight and fuel consumption, lower production cost, improve passenger safety and shatterproof performance under extreme temperature changes, and improve biodegradability for the auto interior parts.

  17. Tensile strength characteristics of polypropylene composites reinforced with stone groundwood fibers from softwood

    OpenAIRE

    López, Joan Pere; Méndez González, José Alberto; Espinach Orús, Xavier; Julián Pérez, Fernando; Mutjé Pujol, Pere; Vilaseca Morera, Fabiola

    2012-01-01

    The behavior of stone groundwood / polypropylene injection-molded composites was evaluated with and without coupling agent. Stone groundwood (SGW) is a fibrous material commonly prepared in a high yield process and mainly used for papermaking applications. In this work, the use of SGW fibers was explored as a reinforcing element of polypropylene (PP) composites. The surface charge density of the composite components was evaluated, as well as the fiber’s length and diameter inside the composit...

  18. Al-TiC in situ composite coating fabricated by low power pulsed laser cladding on AZ91D magnesium alloy

    Science.gov (United States)

    Yang, Liuqing; Li, Zhiyong; Zhang, Yingqiao; Wei, Shouzheng; Liu, Fuqiang

    2018-03-01

    Al + (Ti + B4C) composite coating was cladded on AZ91D magnesium alloy by a low power pulsed Nd-YAG laser. The Ti+B4C mixed powder is with the ratio of Ti: B4C = 5:1, which was then mixed with Al powder by weight fraction of 10%, 15% and 20%, respectively. Scanning electron microscopy, energy dispersive spectrometer and X-ray diffraction were used to study the microstructure, chemical composition and phase composition of the coating. Results showed that the coating had satisfied metallurgical bonding with the magnesium substrate. Al3Mg2, Al12Mg17, Al3Ti and TiC were formed by in-situ reaction. The coatings have micro-hardness of 348HV, which is about 5-6 times higher than that of AZ91D. The wear resistance and corrosion resistance of the coatings are enhanced with the addition of the mixed powder.

  19. Application of in situ current normalized PIGE method for determination of total boron and its isotopic composition

    International Nuclear Information System (INIS)

    Chhillar, Sumit; Acharya, R.; Sodaye, S.; Pujari, P.K.

    2014-01-01

    A particle induced gamma-ray emission (PIGE) method using proton beam has been standardized for determination of isotopic composition of natural boron and enriched boron samples. Target pellets of boron standard and samples were prepared in cellulose matrix. The prompt gamma rays of 429 keV, 718 keV and 2125 keV were measured from 10 B(p,αγ) 7 Be, 10 B(p, p'γ) 10 B and 11 B(p, p'γ) 11 B nuclear reactions, respectively. For normalizing the beam current variations in situ current normalization method was used. Validation of method was carried out using synthetic samples of boron carbide, borax, borazine and lithium metaborate in cellulose matrix. (author)

  20. Pleomorphic malignant fibrous histiocytoma/undifferentiated high-grade pleomorphic sarcoma of the scrotum in a patient presenting as fournier gangrene: a case report.

    Science.gov (United States)

    Guo, Juan; Zhou, Shengmei; Rao, Nagesh P; Pez, Gholam H

    2010-10-01

    Pleomorphic malignant fibrous histiocytoma (MFH), also known as undifferentiated high-grade pleomorphic sarcoma according to the latest World Health Organization classification, is a diagnosis of exclusion and extremely rare in adult scrotal/paratesticular region. Clinical presentation of scrotal/paratesticular pleomorphic MFH is usually a painless and gradual scrotal swelling. We report a case of scrotal MFH in a 63-year-old man who presented as Fournier gangrene after 10-month painful scrotal swelling and multiple procedures. The specimen of emergent debridement was submitted for pathologic and bacteriologic examination. Microscopically, the lesion had marked architectural and cytologic pleomorphism. The neoplastic cells were positive for vimentin, but negative for all lineage-specific markers. Fluorescence in-situ hybridization showed an aneuploid karyotype and negative results for lipomatous tumor abnormalities. Bacterial cultures of the specimen showed extensive growth of virulent polymicrobes. The diagnosis of scrotal/paratesticular pleomorphic MFH with concurrent Fournier gangrene was made. Thoracic computed tomography scan showed bilateral multiple pulmonary nodules. The patient died 1 month later.