WorldWideScience

Sample records for in-plane optical anisotropy

  1. Characterization of optical anisotropy in quantum wells under compressive anisotropic in-plane strain

    Energy Technology Data Exchange (ETDEWEB)

    Biermann, Mark L [Physics Department, 566 Brownson Rd., U.S. Naval Academy, Annapolis, MD 21402 (United States); Walters, Matthew [Physics Department, 566 Brownson Rd., U.S. Naval Academy, Annapolis, MD 21402 (United States); Diaz-Barriga, James [Physics Department, 566 Brownson Rd., U.S. Naval Academy, Annapolis, MD 21402 (United States); Rabinovich, W S [Naval Research Laboratory, Code 5652, 4555 Overlook Ave. SW, Washington, DC 20375-5320 (United States)

    2003-10-21

    Anisotropic in-plane strain in quantum wells leads to an optical polarization anisotropy that can be exploited for device applications. We have determined that for many anisotropic compressive strain cases, the dependence of the optical anisotropy is linear in the strain anisotropy. This result holds for a variety of well and barrier materials and widths and for various overall strain conditions. Further, the polarization anisotropy per strain anisotropy varies as the reciprocal of the energy separation of the relevant hole sub-bands. Hence, a general result for the polarization anisotropy per strain anisotropy is available for cases of compressive anisotropic in-plane strain.

  2. Characterization of optical anisotropy in quantum wells under compressive anisotropic in-plane strain

    International Nuclear Information System (INIS)

    Biermann, Mark L; Walters, Matthew; Diaz-Barriga, James; Rabinovich, W S

    2003-01-01

    Anisotropic in-plane strain in quantum wells leads to an optical polarization anisotropy that can be exploited for device applications. We have determined that for many anisotropic compressive strain cases, the dependence of the optical anisotropy is linear in the strain anisotropy. This result holds for a variety of well and barrier materials and widths and for various overall strain conditions. Further, the polarization anisotropy per strain anisotropy varies as the reciprocal of the energy separation of the relevant hole sub-bands. Hence, a general result for the polarization anisotropy per strain anisotropy is available for cases of compressive anisotropic in-plane strain

  3. Giant optical anisotropy in M-plane GaN/AlGaN quantum wells due to crystal-field effect

    International Nuclear Information System (INIS)

    Chen, C.-N.; Su, W.-L.; Chang, K.-C.; Chang, S.-H.; Chiang, J.-C.; Lo Ikai; Wang, W.-T.; Kao, H.-F.; Lee, M.-E.

    2008-01-01

    The optical polarization of GaN/AlGaN wurtzite quantum wells in various orientations is studied using an arbitrarily-oriented [hkil] Hamiltonian potential matrix. The optical matrix elements in the wurtzite quantum wells are calculated using the k.p finite difference scheme. The results reveal the presence of giant in-plane optical anisotropy (polarized normal to [0001]) in the M-plane (i.e., the (101-bar0)-oriented layer plane) GaN/Al 0.2 Ga 0.8 N quantum well, due to the positive crystal-field split energy effect (Δ CR >0). The present theoretical results are consistent with the photoluminescence measurements presented in the literature [B. Rau, et al., Appl. Phys. Lett. 77 (2000) 3343

  4. Through-plane uniformity of optical anisotropy in spin-coated biphenyl dianhydride-p-phenylenediamine films

    International Nuclear Information System (INIS)

    Diao Jie; Hess, Dennis W.

    2005-01-01

    The uniformity of the average refractive index and birefringence of poly-(biphenyl dianhydride-p-phenylenediamine) (BPDA-PDA) films has been investigated experimentally as a function of film thickness. Spin-cast and cured BPDA-PDA films were thinned sequentially by reactive ion etching and the dependence of average refractive index and birefringence on the post-thinned film thickness was determined using a prism wave-guide coupler. Negligible changes in the average refractive index and the birefringence were observed as a result of the thinning process. These results confirm previous assumptions that assert uniform optical anisotropy in the through-plane direction for spin-cast BPDA-PDA films

  5. The Effect of Tensile Strain on Optical Anisotropy and Exciton of m-Plane ZnO

    KAUST Repository

    Wang, H. H.

    2015-03-20

    The near band edge emission of the tensile-strained m-plane ZnO film grown on (112)LaAlO3 substrates shows abnormal low polarization degree (ρ = 0.1). The temperature dependency of polarization degree clarifies the origins of different emission peaks. In tensile-strained m-plane ZnO, the [0001] polarized state is upper shifted and is overlapping with the [112̅0] polarized state. This phenomenon causes the abnormal low polarization degree and reveals the effect of strain on the emission anisotropy of m-plane ZnO.

  6. Optical anisotropy of Bi2Sr2CaCu2O8

    Science.gov (United States)

    Kim, J. H.; Bozovic, I.; Mitzi, D. B.; Kapitulnik, A.; Harris, J. S., Jr.

    1990-04-01

    The optical anisotropy of Bi2Sr2CaCu2O8 in the 0.08-0.5-eV region is investigated by polarized reflectance measurements on single crystals. A very large anisotropy is found in this spectral region. The in-plane reflectance exhibits metallic behavior, while the c-axis reflectance exhibits insulatorlike behavior. This result is consistent with the large anisotropy found in the resistivity of Bi2Sr2CaCu2O8. Our spectroscopic data suggest that Bi2Sr2CaCu2O8 is a quasi-two-dimensional metal similar to La2-xSrxCuO4.

  7. Determination of the out-of-plane anisotropy contributions (first and second anisotropy terms) in amorphous Nd-Co thin films by micromagnetic numerical simulations

    Science.gov (United States)

    Alvarez-Prado, L. M.; Cid, R.; Morales, R.; Diaz, J.; Vélez, M.; Rubio, H.; Hierro-Rodriguez, A.; Alameda, J. M.

    2018-06-01

    Amorphous Nd-Co thin films exhibit stripe shaped periodic magnetic domains with local out-of-plane magnetization components due to their perpendicular magnetic anisotropy. This anisotropy has been quantified in a fairly simple way by reproducing the experimental magnetization curves by means of micromagnetic numerical simulations. The simulations show that the first (K1) and second (K2) anisotropy constants must be used to properly describe the variation of the stripe domains with the in plane applied magnetic field. A strong temperature dependence of both K1 and K2 has been obtained between 10 K and room temperature. This anisotropy behavior is characteristic of two magnetically coupled 3d-4f sublattices with competing anisotropies.

  8. Control of the magnetic in-plane anisotropy in off-stoichiometric NiMnSb

    International Nuclear Information System (INIS)

    Gerhard, F.; Schumacher, C.; Gould, C.; Molenkamp, L. W.

    2014-01-01

    NiMnSb is a ferromagnetic half-metal which, because of its rich anisotropy and very low Gilbert damping, is a promising candidate for applications in information technologies. We have investigated the in-plane anisotropy properties of thin, molecular beam epitaxy-grown NiMnSb films as a function of their Mn concentration. Using ferromagnetic resonance to determine the uniaxial and four-fold anisotropy fields, (2K U )/(M s ) and (2K 1 )/(M s ) , we find that a variation in composition can change the strength of the four-fold anisotropy by more than an order of magnitude and cause a complete 90° rotation of the uniaxial anisotropy. This provides valuable flexibility in designing new device geometries

  9. Discrete breathers in classical ferromagnetic lattices with easy-plane anisotropy

    DEFF Research Database (Denmark)

    Khalack, J. M.; Zolotaryuk, Yaroslav; Christiansen, Peter Leth

    2003-01-01

    Discrete breathers (nonlinear localized modes) have been shown to exist in various nonlinear Hamiltonian lattice systems. This paper is devoted to the investigation of a classical d-dimensional ferromagnetic lattice with easy plane anisotropy. Its dynamics is described via the Heisenberg model...

  10. Electric-regulated enhanced in-plane uniaxial anisotropy in FeGa/PMN-PT composite using oblique pulsed laser deposition

    Science.gov (United States)

    Zhang, Yi; Huang, Chaojuan; Turghun, Mutellip; Duan, Zhihua; Wang, Feifei; Shi, Wangzhou

    2018-04-01

    The FeGa film with in-plane uniaxial magnetic anisotropy was fabricated onto different oriented single-crystal lead magnesium niobate-lead titanate using oblique pulsed laser deposition. An enhanced in-plane uniaxial magnetic anisotropy field of FeGa film can be adjusted from 18 Oe to 275 Oe by tuning the oblique angle and polarizing voltage. The competitive relationship of shape anisotropy and strain anisotropy has been discussed, which was induced by oblique angle and polarizing voltage, respectively. The (100)-oriented and (110)-oriented PMN-PT show completely different characters on voltage-dependent magnetic properties, which could be attributed to various anisotropy directions depended on different strain directions.

  11. Exchange bias energy in Co/Pt/IrMn multilayers with perpendicular and in-plane anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Czapkiewicz, M. [Department of Electronics, AGH University of Science and Technology, 30-059 Cracow (Poland)]. E-mail: czapkiew@agh.edu.pl; Stobiecki, T. [Department of Electronics, AGH University of Science and Technology, 30-059 Cracow (Poland); Rak, R. [Department of Electronics, AGH University of Science and Technology, 30-059 Cracow (Poland); Zoladz, M. [Department of Electronics, AGH University of Science and Technology, 30-059 Cracow (Poland); Dijken, S. van [CRANN and School of Physics, Trinity College, Dublin 2 (Ireland)

    2007-09-15

    The magnetization reversal process in perpendicularly biased [Pt/Co]{sub 3}/d{sub Pt} Pt/IrMn and in-plane biased Co/d{sub Pt} Pt/IrMn multilayers with 0nm=in-plane magnetic anisotropy, the exchange bias field decreases monotonically with Pt insertion layer thickness, while its coercivity remains constant. The samples with perpendicular magnetic anisotropy, on the other hand, exhibit maximum exchange bias and minimum coercivity for d{sub Pt}=0.1nm. In both cases, the existence of large exchange bias fields correlates with a high domain density during magnetization reversal. The interface exchange coupling energy is larger for the in-plane biased films than for the perpendicularly biased multilayers.

  12. Magnetic domain pattern asymmetry in (Ga, Mn)As/(Ga,In)As with in-plane anisotropy

    Science.gov (United States)

    Herrera Diez, L.; Rapp, C.; Schoch, W.; Limmer, W.; Gourdon, C.; Jeudy, V.; Honolka, J.; Kern, K.

    2012-04-01

    Appropriate adjustment of the tensile strain in (Ga, Mn)As/(Ga,In)As films allows for the coexistence of in-plane magnetic anisotropy, typical of compressively strained (Ga, Mn)As/GaAs films, and the so-called cross-hatch dislocation pattern seeded at the (Ga,In)As/GaAs interface. Kerr microscopy reveals a close correlation between the in-plane magnetic domain and dislocation patterns, absent in compressively strained materials. Moreover, the magnetic domain pattern presents a strong asymmetry in the size and number of domains for applied fields along the easy [11¯0] and hard [110] directions which is attributed to different domain wall nucleation/propagation energies. This strong influence of the dislocation lines in the domain wall propagation/nucleation provides a lithography-free route to the effective trapping of domain walls in magneto-transport devices based on (Ga, Mn)As with in-plane anisotropy.

  13. Phase states of a 2D easy-plane ferromagnet with strong inclined anisotropy

    International Nuclear Information System (INIS)

    Fridman, Yu. A.; Klevets, F. N.; Gorelikov, G. A.; Meleshko, A. G.

    2012-01-01

    We investigate the spin states of a 2D film exhibiting easy-axis anisotropy and a strong single-ion inclined anisotropy whose axis forms a certain angle with the normal to the film surface. Such a system may have an angular ferromagnetic phase, a spatially inhomogeneous state, and a quadrupole phase, whose realization depends substantially on the inclined anisotropy and the orientation of the wavevector in the film plane.

  14. Spin waves in two-dimensional ferromagnet with large easy-plane anisotropy

    International Nuclear Information System (INIS)

    Fridman, Yu.A.; Spirin, D.V.

    2002-01-01

    Spin waves in easy-plane two-dimensional ferromagnet when anisotropy is much stronger than exchange are investigated. The spectra of magnons, the spin-spin and quadrupolar correlation functions have been derived. It is shown that in such a system there exist spin waves at low temperatures. Some properties of the quadrupolar ordering in ferromagnets are discussed

  15. Probing in-plane anisotropy in few-layer ReS2 using low frequency noise measurement

    Science.gov (United States)

    Mitra, Richa; Jariwala, Bhakti; Bhattacharya, Arnab; Das, Anindya

    2018-04-01

    ReS2, a layered two-dimensional material popular for its in-plane anisotropic properties, is emerging as one of the potential candidates for flexible electronics and ultrafast optical applications. It is an n-type semiconducting material having a layer independent bandgap of 1.55 eV. In this paper we have characterized the intrinsic electronic noise level of few-layer ReS2 for the first time. Few-layer ReS2 field effect transistor devices show a 1/f nature of noise for frequency ranging over three orders of magnitude. We have also observed that not only the electrical response of the material is anisotropic; the noise level is also dependent on direction. In fact the noise is found to be more sensitive towards the anisotropy. This fact has been explained by evoking the theory where the Hooge parameter is not a constant quantity, but has a distinct power law dependence on mobility along the two-axes direction. The anisotropy in 1/f noise measurement will pave the way to quantify the anisotropic nature of two-dimensional (2D) materials, which will be helpful for the design of low-noise transistors in future.

  16. Observation of the in-plane spin-dephasing anisotropy in [111]-grown GaAs/AlGaAs quantum well

    International Nuclear Information System (INIS)

    Zhao, Chunbo; Li, Junbin; Yu, Ying; Ni, Haiqiao; Niu, Zhichuan; Zhang, Xinhui

    2014-01-01

    The electron density and temperature dependent in-plane spin-dephasing anisotropy in [111]-grown GaAs quantum well (QW) has been investigated by time-resolved magneto-Kerr rotation technique. Due to the specific symmetry of [111]-grown quantum well, the in-plane Rashba and linear Dresselhaus effective spin-orbit magnetic field is parallel to each other for electron wave vectors in all directions. However, an obvious in-plane spin-dephasing anisotropy comparing [2 ¯ 11] with [01 ¯ 1] crystalline orientations has been observed and discussed in this work. Our results demonstrate the innegligible spin dephasing channel through inhomogeneous broadening induced by the out-of-plane non-linear Dresselhaus field, which arises naturally from the C 3 symmetry of [111]-grown GaAs QW

  17. Spectroscopic ellipsometry investigations of optical anisotropy in obliquely deposited hafnia thin films

    Energy Technology Data Exchange (ETDEWEB)

    Tokas, R. B., E-mail: tokasstar@gmail.com; Jena, Shuvendu; Thakur, S.; Sahoo, N. K. [Atomic & Molecular Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai-85 (India); Haque, S. Maidul; Rao, K. Divakar [Photonics & Nanotechnology Section, Atomic & Molecular Physics Division, Bhabha Atomic Research Centre facility, Visakhapatnam-530012 (India)

    2016-05-23

    In present work, HfO{sub 2} thin films have been deposited at various oblique incidences on Si substrates by electron beam evaporation. These refractory oxide films exhibited anisotropy in refractive index predictably due to special columnar microstructure. Spectroscopic ellipsometry being a powerful tool for optical characterization has been employed to investigate optical anisotropy. It was observed that the film deposited at glancing angle (80°) exhibits the highest optical anisotropy. Further, anisotropy was noticed to decrease with lower values of deposition angles while effective refractive index depicts opposite trend. Variation in refractive index and anisotropy has been explained in light of atomic shadowing during growth of thin films at oblique angles.

  18. Thermal effects and in-plane magnetic anisotropy in thin-film recording media

    International Nuclear Information System (INIS)

    Ajan, Antony; Abarra, E.N.; Acharya, B.R.; Inomata, A.; Okamoto, I.; Shinohara, M.

    2003-01-01

    The effect of thermal activation on the in-plane magnetic anisotropy [measured as orientation ratio (OR)] of granular longitudinal magnetic recording media is investigated. Temperature and time dependent studies were made on media with different magnetic layer thicknesses. We find that OR is independent of temperature for a stable medium but shows a large increase with temperature for thermally unstable media. At low temperatures and high field sweep rates, the OR values are found to be the same, independent of the magnetic layer thickness. The unique value when thermal activation is reduced is consistent with the high population of the cobalt c axes along the texturing direction as the origin of anisotropy

  19. Symmetry and optical anisotropy in CdSe/ZnSe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Kiessling, Tobias

    2009-10-29

    backbone we turn to the investigation of the optical anisotropy of the radiative recombination of excitons confined to CdSe/ZnSe QDs. This is done by angle-dependent polarization-resolved PL. We demonstrate experimentally that the electron-hole exchange interaction in asymmetric QDs gives rise to an effective conversion of the optical polarization from linear to circular and vice versa. The experiment is succesfully modeled in the frame of an exciton pseudospin-formalism that is based on the exchange induced finestructure splitting of the radiative excitonic states and unambiguously proves that the observed polarization conversion is the continuous-wave equivalent to quantum beats between the exchange split states in the time domain. These results indicate that QDs may offer extended functionality beyond non- classical light sources in highly integrated all-optical device schemes, such as polarization converters or modulators. In a further extension we apply the exciton pseudospin-formalism to optical alignment studies and demonstrate how these can be used to directly measure the otherwise hidden symmetry distribution over an ensemble of QDs. This kind of measurement may be used on future optical studies in order to link optical data more directly to structural investigations, as it yields valuable information on capped QDs that cannot be looked at directly by topological methods. In the last part of this work we study the influence of an in-plane magnetic field on the optical anisotropy. We find that the optical axis of the linear polarization component of the photoluminescence signal either rotates in the opposite direction to that of the magnetic field or remains fixed to a given crystalline direction. A qualitative theoretical analysis based on the exciton pseudospin Hamiltonian unambiguously demonstrates that these effects are induced by isotropic and anisotropic contributions to the heavy-hole Zeeman term, respectively. The latter is shown to be compensated by a

  20. Symmetry and optical anisotropy in CdSe/ZnSe quantum dots

    International Nuclear Information System (INIS)

    Kiessling, Tobias

    2009-01-01

    backbone we turn to the investigation of the optical anisotropy of the radiative recombination of excitons confined to CdSe/ZnSe QDs. This is done by angle-dependent polarization-resolved PL. We demonstrate experimentally that the electron-hole exchange interaction in asymmetric QDs gives rise to an effective conversion of the optical polarization from linear to circular and vice versa. The experiment is succesfully modeled in the frame of an exciton pseudospin-formalism that is based on the exchange induced finestructure splitting of the radiative excitonic states and unambiguously proves that the observed polarization conversion is the continuous-wave equivalent to quantum beats between the exchange split states in the time domain. These results indicate that QDs may offer extended functionality beyond non-classical light sources in highly integrated all-optical device schemes, such as polarization converters or modulators. In a further extension we apply the exciton pseudospin-formalism to optical alignment studies and demonstrate how these can be used to directly measure the otherwise hidden symmetry distribution over an ensemble of QDs. This kind of measurement may be used on future optical studies in order to link optical data more directly to structural investigations, as it yields valuable information on capped QDs that cannot be looked at directly by topological methods. In the last part of this work we study the influence of an in-plane magnetic field on the optical anisotropy. We find that the optical axis of the linear polarization component of the photoluminescence signal either rotates in the opposite direction to that of the magnetic field or remains fixed to a given crystalline direction. A qualitative theoretical analysis based on the exciton pseudospin Hamiltonian unambiguously demonstrates that these effects are induced by isotropic and anisotropic contributions to the heavy-hole Zeeman term, respectively. The latter is shown to be compensated by a built-in

  1. Magneto-optical measurement of anisotropy energy constant(s) for amorphous rare earth, transition metal alloys

    International Nuclear Information System (INIS)

    Uber, R.E.; Mansuripur, M.

    1988-01-01

    Optical investigation of magneto-optical films is complementary to conventional torque and VSM magnetometry. In the authors' laboratory, they are now measuring anisotropy energy constants of RE-TM thin films at temperatures from ambient to 150 0 C. An in-plane magnetic field (up to 16.5 KOe) is applied to a saturated sample with perpendicular magnetization. The movement away from the perpendicular direction is monitored using the polar Kerr effect. At the HeNe wavelength, the Kerr effect is principally due to the top 500 angstroms of the transition metal subnetwork in the films

  2. Heisenberg magnetic chain with single-ion easy-plane anisotropy: Hubbard operators approach

    International Nuclear Information System (INIS)

    Spirin, D.V.; Fridman, Y.A.

    2003-01-01

    We investigate the gap in excitation spectrum of one-dimensional S=1 ferro- and antiferromagnets with easy-plane single-ion anisotropy. The self-consistent modification of Hubbard operators approach which enables to account single-site term exactly is used. For antiferromagnetic model we found Haldane phase that exists up to point D=4J (where D is anisotropy parameter, J is exchange coupling), while quadrupolar phase realizes at larger values of anisotropy. Our results specify those of Golinelli et al. (Phys. Rev. B. 45 (1992) 9798), where similar model was studied. Besides the method gives gap value closer to numerical estimations than usual spin-wave theories

  3. Out- versus in-plane magnetic anisotropy of free Fe and Co nanocrystals

    DEFF Research Database (Denmark)

    Li, Dongzhe; Barreteau, Cyrille; Castell, Martin R.

    2014-01-01

    We report tight-binding and density functional theory calculations of magnetocrystalline anisotropy energy (MAE) of free Fe (body-centered-cubic) and Co (face-centered-cubic) slabs and nanocrystals. The nanocrystals are truncated square pyramids which can be grown experimentally by deposition...... of metal on a SrTiO3(001) substrate. For both elements our local analysis shows that the totalMAE of the nanocrystals is largely dominated by the contribution of (001) facets. However, while the easy axis of Fe(001) is out-of-plane, it is in-plane for Co(001). This has direct consequences on the magnetic...

  4. Theoretical and experimental investigation of optical absorption anisotropy in β-Ga2O3.

    Science.gov (United States)

    Ricci, F; Boschi, F; Baraldi, A; Filippetti, A; Higashiwaki, M; Kuramata, A; Fiorentini, V; Fornari, R

    2016-06-08

    The question of optical bandgap anisotropy in the monoclinic semiconductor β-Ga2O3 was revisited by combining accurate optical absorption measurements with theoretical analysis, performed using different advanced computation methods. As expected, the bandgap edge of bulk β-Ga2O3 was found to be a function of light polarization and crystal orientation, with the lowest onset occurring at polarization in the ac crystal plane around 4.5-4.6 eV; polarization along b unambiguously shifts the onset up by 0.2 eV. The theoretical analysis clearly indicates that the shift in the b onset is due to a suppression of the transition matrix elements of the three top valence bands at Γ point.

  5. Crystallographic tilt and in-plane anisotropies of an a-plane InGaN/GaN layered structure grown by MOCVD on r-plane sapphire using a ZnO buffer

    International Nuclear Information System (INIS)

    Liu, H F; Chi, D Z; Liu, W; Guo, S

    2016-01-01

    High-resolution x-ray diffraction (HRXRD) was used to investigate the crystallographic tilts and structural anisotropies in epitaxial nonpolar a-plane InGaN/GaN grown by metal–organic chemical vapor deposition on r-plane sapphire using a ZnO buffer. The substrate had an unintentional miscut of 0.14° towards its [–4 2 2 3] axis. However, HRXRD revealed a tilt of 0.26° (0.20°) between the ZnO (GaN) (11-20) and the Al 2 O 3 (1-102) atomic planes, with the (11-20) axis of ZnO (GaN) tilted towards its c-axis, which has a difference of 163° in azimuth from that of the substrate’s miscut. Excess broadenings in the GaN/ZnO (11-20) rocking curves (RCs) were observed along its c-axis. Specific analyses revealed that partial dislocations and anisotropic in-plane strains, rather than surface-related effects, wafer curvature or stacking faults, are the dominant factors for the structural anisotropy. The orientation of the partial dislocations is most likely affected by the miscut of the substrate, e.g. via tilting of the misfit dislocation gliding planes created during island coalescences. Their Burgers vector components in the growth direction, in turn, gave rise to crystallographic tilts in the same direction as that of the excess RC-broadenings. (paper)

  6. Crystallographic tilt and in-plane anisotropies of an a-plane InGaN/GaN layered structure grown by MOCVD on r-plane sapphire using a ZnO buffer

    Science.gov (United States)

    Liu, H. F.; Liu, W.; Guo, S.; Chi, D. Z.

    2016-03-01

    High-resolution x-ray diffraction (HRXRD) was used to investigate the crystallographic tilts and structural anisotropies in epitaxial nonpolar a-plane InGaN/GaN grown by metal-organic chemical vapor deposition on r-plane sapphire using a ZnO buffer. The substrate had an unintentional miscut of 0.14° towards its [-4 2 2 3] axis. However, HRXRD revealed a tilt of 0.26° (0.20°) between the ZnO (GaN) (11-20) and the Al2O3 (1-102) atomic planes, with the (11-20) axis of ZnO (GaN) tilted towards its c-axis, which has a difference of 163° in azimuth from that of the substrate’s miscut. Excess broadenings in the GaN/ZnO (11-20) rocking curves (RCs) were observed along its c-axis. Specific analyses revealed that partial dislocations and anisotropic in-plane strains, rather than surface-related effects, wafer curvature or stacking faults, are the dominant factors for the structural anisotropy. The orientation of the partial dislocations is most likely affected by the miscut of the substrate, e.g. via tilting of the misfit dislocation gliding planes created during island coalescences. Their Burgers vector components in the growth direction, in turn, gave rise to crystallographic tilts in the same direction as that of the excess RC-broadenings.

  7. Island dynamics and anisotropy during vapor phase epitaxy of m-plane GaN

    Energy Technology Data Exchange (ETDEWEB)

    Perret, Edith [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; University of Fribourg, Department of Physics and Fribourg Center for Nanomaterials, Chemin du Musée 3, CH-1700 Fribourg, Switzerland; Xu, Dongwei [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Highland, M. J. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Stephenson, G. B. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Zapol, P. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Fuoss, P. H. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA; Munkholm, A. [Munkholm Consulting, Mountain View, California 94043, USA; Thompson, Carol [Department of Physics, Northern Illinois University, DeKalb, Illinois 60115, USA

    2017-12-04

    Using in situ grazing-incidence x-ray scattering, we have measured the diffuse scattering from islands that form during layer-by-layer growth of GaN by metal-organic vapor phase epitaxy on the (1010) m-plane surface. The diffuse scattering is extended in the (0001) in-plane direction in reciprocal space, indicating a strong anisotropy with islands elongated along [1210] and closely spaced along [0001]. This is confirmed by atomic force microscopy of a quenched sample. Islands were characterized as a function of growth rate F and temperature. The island spacing along [0001] observed during the growth of the first monolayer obeys a power-law dependence on growth rate F-n, with an exponent n = 0:25 + 0.02. The results are in agreement with recent kinetic Monte Carlo simulations, indicating that elongated islands result from the dominant anisotropy in step edge energy and not from surface diffusion anisotropy. The observed power-law exponent can be explained using a simple steady-state model, which gives n = 1/4.

  8. Tailoring of in-plane magnetic anisotropy in polycrystalline cobalt thin films by external stress

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Dileep, E-mail: dkumar@csr.res.in [UGC-DAE Consortium for Scientic Research, Khandwa Road, Indore 452001 (India); Singh, Sadhana [UGC-DAE Consortium for Scientic Research, Khandwa Road, Indore 452001 (India); Vishawakarma, Pramod [School of Nanotechnology, RGPV, Bhopal 462036 (India); Dev, Arun Singh; Reddy, V.R. [UGC-DAE Consortium for Scientic Research, Khandwa Road, Indore 452001 (India); Gupta, Ajay [Amity Center for Spintronic Materials, Amity University, Sector 125, Noida 201303 (India)

    2016-11-15

    Polycrystalline Co films of nominal thickness ~180 Å were deposited on intentionally curved Si substrates. Tensile and compressive stresses of 100 MPa and 150 MPa were induced in the films by relieving the curvature. It has been found that, within the elastic limit, presence of stress leads to an in-plane magnetic anisotropy in the film and its strength increases with increasing stress. Easy axis of magnetization in the films is found to be parallel/ transverse to the compressive /tensile stresses respectively. The origin of magnetic anisotropy in the stressed films is understood in terms of magneto- elastic coupling, where the stress try to align the magnetic moments in order to minimize the magneto-elastic as well as anisotropy energy. Tensile stress is also found to be responsible for the surface smoothening of the films, which is attributed to the movement of the atoms associated with the applied stress. The present work provides a possible way to tailor the magnetic anisotropy and its direction in polycrystalline and amorphous films using external stress. - Highlights: • Tensile and compressive stresses were induced in Co films by removing the bending force from the substrates after film deposition. • Controlled external mechanical stress is found to be responsible for magnetic anisotropies in amorphous and polycrystalline thin films, where crystalline anisotropy is absent. • Tensile stress leads to surface smoothening of the polycrystalline Co films.

  9. Thickness and angular dependent magnetic anisotropy of La0.67Sr0.33MnO3 thin films by Vectorial Magneto Optical Kerr Magnetometry

    Science.gov (United States)

    Chaluvadi, S. K.; Perna, P.; Ajejas, F.; Camarero, J.; Pautrat, A.; Flament, S.; Méchin, L.

    2017-10-01

    We investigate the in-plane magnetic anisotropy in La0.67Sr0.33MnO3 thin films grown on SrTiO3 (001) substrate using angular dependent room temperature Vectorial Magneto-Optical Kerr Magnetometry. The experimental data reveals that the magnetic anisotropy symmetry landscape significantly changes depending upon the strain and thickness. At low film thickness (12 and 25 nm) the dominant uniaxial anisotropy is due to interface effects, step edges due to mis-cut angle of SrTiO3 substrate. At intermediate thickness, the magnetic anisotropy presents a competition between magnetocrystalline (biaxial) and substrate step induced (uniaxial) anisotropy. Depending upon their relative strengths, a profound biaxial or uniaxial or mixed anisotropy is favoured. Above the critical thickness, magnetocrystalline anisotropy dominates all other effects and shows a biaxial anisotropy.

  10. Polarimetric study of the optical anisotropy of polymers

    International Nuclear Information System (INIS)

    Sinyavsky, N; Korneva, I

    2017-01-01

    This paper presents the results of an optical anisotropy study of a polymer film and the effect of temperature on birefringence. A method using a polariscope for the quantitative determination of the optical path difference is offered. The research findings are useful to students of physical and engineering specialities studying electromagnetic theory and optics. The described experiments and theoretical approaches are based on prominent aspects of modern optics. This work can be used to teach students the methods of polarimetry, the method of measuring optical anisotropy, and the basics of colorimetry. Students will learn a color description system to demonstrate the interference of polarized light, as well as being able to make a comparison between the numerical simulation and experiment of the interference pattern. (paper)

  11. Magnetic anisotropies in SmCo thin films

    International Nuclear Information System (INIS)

    Chen, K.

    1993-01-01

    A systemic study of the deposition processes and magnetic properties for the Sm-Co film system has been carried out. Films of Sm-Co system with various magnetic anisotropies have been synthesized through sputter deposition in both crystalline and amorphous phases. The origins of various anisotropies have been studied. Thermalized sputter deposition process control was used to synthesize Fe enriched Sm-Co films with rhombohedral Th 2 Zn 17 type structure. The film exhibited unusually strong textures with the crystallographic c axes of the crystallites aligned in the film plane. A large anisotropy was resulted with easy axis in the film plane. A well defined and large in-the-film-plane anisotropy of exceptionally high value of 3.3 x 10 6 erg/cm 3 has been obtained in the amorphous SmCo films by applying a magnetic field in the film plane during deposition. It was found that the in-the-film-plane anisotropy depended essentially on the applied field and Sm concentration. For films not synthesized through thermallized sputtering, the easy axis of the film could reoriented. A perpendicular anisotropy was also presented in the film synthesized through thermallized sputtering deposition. A large in-plane anisotropy was obtained in films deposited above ambient temperatures. It was concluded that the surface induced short range ordering was the origin of the in-the-film-phase anisotropy observed in amorphous film deposited in the presence of a magnetic field. The formation mechanism was different from that of the short range ordering induced by field annealing. The perpendicular anisotropy was shown to be growth induced. Large in-plane anisotropy in amorphous films was resulted form partial crystallization in the film. Both the formation of growth induced structure and partial crystallization in the film prevented the formation of the pair ordering and decreased in-the-film-plane anisotropy

  12. Molecular anisotropy effects in carbon K-edge scattering: depolarized diffuse scattering and optical anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Stone, Kevin H.

    2014-07-14

    Some polymer properties, such as conductivity, are very sensitive to short- and intermediate-range orientational and positional ordering of anisotropic molecular functional groups, and yet means to characterize orientational order in disordered systems are very limited. We demonstrate that resonant scattering at the carbon K-edge is uniquely sensitive to short-range orientation correlations in polymers through depolarized scattering at high momentum transfers, using atactic polystyrene as a well-characterized test system. Depolarized scattering is found to coexist with unpolarized fluorescence, and to exhibit pronounced anisotropy. We also quantify the spatially averaged optical anisotropy from low-angle reflectivity measurements, finding anisotropy consistent with prior visible, x-ray absorption, and theoretical studies. The average anisotropy is much smaller than that in the depolarized scattering and the two have different character. Both measurements exhibit clear spectral signatures from the phenyl rings and the polyethylene-like backbone. Discussion focuses on analysis considerations and prospects for using this depolarized scattering for studies of disorder in soft condensed matter.

  13. Instability of in-plane vortices in two-dimensional easy-plane ferromagnets

    International Nuclear Information System (INIS)

    Wysin, G.M.

    1994-01-01

    An analysis of the core region of an in-plane vortex in the two-dimensional Heisenberg model with easy-plane anisotropy λ=J z /J xy leads to a clear understanding of the instability towards transformation into an out-of-plane vortex as a function of anisotropy. The anisotropy parameter λ c at which the in-plane vortex becomes unstable and develops into an out-of-plane vortex is determined with an accuracy comparable to computer simulations for square, hexagonal, and triangular lattices. For λ c , the in-plane vortex is stable but exhibits a normal mode whose frequency goes to zero as ω∝(λ c -λ) 1/2 as λ approaches λ c . For λ>λ c , the static nonzero out-of-plane spin components grow as (λ-λ c ) 1/2 . The lattice dependence of λ c is determined strongly by the number of spins in the core plaquette, is fundamentally a discreteness effect, and cannot be obtained in a continuum theory

  14. J/$\\psi$ azimuthal anisotropy relative to the reaction plane in Pb-Pb collisions at 158 GeV per nucleon

    CERN Document Server

    Prino, F; Alexa, C; Arnaldi, R; Atayan, M; Beolè, S; Boldea, V; Bordalo, P; Borges, G; Castanier, C; Castor, J; Chaurand, B; Cheynis, B; Chiavassa, E; Cicalo, C; Comets, M P; Constantinescu, S; Cortese, P; De Falco, A; De Marco, N; Dellacasa, G; Devaux, A; Dita, S; Fargeix, J; Force, P; Gallio, M; Gerschel, C; Giubellino, P; Golubeva, M B; Grigoryan, A A; Grigoryan, S; Guber, F F; Guichard, A; Gulkanyan, H; Idzik, M; Jouan, D; Karavicheva, T L; Kluberg, L; Kurepin, A B; Le Bornec, Y; Lourenço, C; Mac Cormick, M; Marzari-Chiesa, A; Masera, M; Masoni, A; Monteno, M; Musso, A; Petiau, P; Piccotti, A; Pizzi, J R; Puddu, G; Quintans, C; Ramello, L; Ramos, S; Riccati, L; Santos, H; Saturnini, P; Scomparin, E; Serci, S; Shahoyan, R; Sigaudo, F; Sitta, M; Sonderegger, P; Tarrago, X; Topilskaya, N S; Usai, G L; Vercellin, E; Villatte, L; Willis, N; Wu, T

    2009-01-01

    The J/$\\psi$ azimuthal distribution relative to the reaction plane has been measured by the NA50 experiment in Pb-Pb collisions at 158 GeV/nucleon. Various physical mechanisms related to charmonium dissociation in the medium created in the heavy ion collision are expected to introduce an anisotropy in the azimuthal distribution of the observed J/$\\psi$ mesons at SPS energies. Hence, the measurement of J/$\\psi$ elliptic anisotropy, quantified by the Fourier coefficient v$_2$ of the J/$\\psi$ azimuthal distribution relative to the reaction plane, is an important tool to constrain theoretical models aimed at explaining the anomalous J/$\\psi$ suppression observed in Pb-Pb collisions. We present the measured J/$\\psi$ yields in different bins of azimuthal angle relative to the reaction plane, as well as the resulting values of the Fourier coefficient v$_{2}$ as a function of the collision centrality and of the J/$\\psi$ transverse momentum. The reaction plane has been estimated from the azimuthal distribution of the ...

  15. Polycrystal plasticity as applied to the problem of in-plane anisotropy in rolled cubic metals

    International Nuclear Information System (INIS)

    Rollett, A.D.; Stout, M.G.; Kocks, U.F.

    1989-01-01

    A fundamental property of cubic metals is that slip occurs on close-packed planes in close-packed directions, which for the f.c.c. case results in 12 /111/ slip systems. This crystallographic restriction on the plastic behavior causes significant crystallographic preferred orientation (texture), hence anisotropy, to develop once a large strain has been imposed. Moreover, whereas annealing can generally ''reset'' the flow stress and ductility, it does not generally randomize the texture: therefore most metallic materials have some degree of texture and consequent anisotropy. The problem of tearing in deep drawing can be simply related to the variation of r-value with angle from the rolling direction, i.e. the in-plane anisotropy of the sheet. The r-value can be calculated from a given texture with the use of a polycrystal plasticity model. The Los Alamos polycrystal plasticity (LApp) code is based on the Bishop-Hill single crystal yield surface (SCYS) but with a mildly strain-rate sensitive modification where the stress exponent is of order 30. This modification of the SCYS removes the ambiguity of slip system selection inherent in the Bishop-Hill formulation and permits other phenomena to be treated such as latent hardening and pencil glide. The use of LApp to simulate texture formation and consequent anisotropy is described. Experimental textures in the form of X-ray pole figures are analyzed with a Williams-Imhof-Matthies-Vinel (WIMV) code, as implemented by Kallend, to give full orientation distributions (OD's). The OD obtained this way contains approximately 5000 points on a 5/degree/ by 5/degree/ lattice; this is used to assign weights to approximately 1000 discrete orientations for calculations with LApp. 11 refs., 2 figs

  16. In-plane electronic anisotropy of underdoped '122' Fe-arsenide superconductors revealed by measurements of detwinned single crystals

    International Nuclear Information System (INIS)

    Fisher, I R; Shen, Z X; Degiorgi, L

    2011-01-01

    The parent phases of the Fe-arsenide superconductors harbor an antiferromagnetic ground state. Significantly, the Neel transition is either preceded or accompanied by a structural transition that breaks the four-fold symmetry of the high-temperature lattice. Borrowing language from the field of soft condensed matter physics, this broken discrete rotational symmetry is widely referred to as an Ising nematic phase transition. Understanding the origin of this effect is a key component of a complete theoretical description of the occurrence of superconductivity in this family of compounds, motivating both theoretical and experimental investigation of the nematic transition and the associated in-plane anisotropy. Here we review recent experimental progress in determining the intrinsic in-plane electronic anisotropy as revealed by resistivity, reflectivity and angle-resolved photoemission spectroscopy measurements of detwinned single crystals of underdoped Fe-arsenide superconductors in the '122' family of compounds.

  17. In-Plane Electronic Anisotropy of Underdoped ___122___ Fe-Arsenide Superconductors Revealed by Measurements of Detwinned Single Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Ian Randal

    2012-05-08

    The parent phases of the Fe-arsenide superconductors harbor an antiferromagnetic ground state. Significantly, the Neel transition is either preceded or accompanied by a structural transition that breaks the four fold symmetry of the high-temperature lattice. Borrowing language from the field of soft condensed matter physics, this broken discrete rotational symmetry is widely referred to as an Ising nematic phase transition. Understanding the origin of this effect is a key component of a complete theoretical description of the occurrence of superconductivity in this family of compounds, motivating both theoretical and experimental investigation of the nematic transition and the associated in-plane anisotropy. Here we review recent experimental progress in determining the intrinsic in-plane electronic anisotropy as revealed by resistivity, reflectivity and ARPES measurements of detwinned single crystals of underdoped Fe arsenide superconductors in the '122' family of compounds.

  18. Direct observation of in-plane anisotropy of the superconducting critical current density in Ba (Fe1-xCox) 2As2 crystals

    Science.gov (United States)

    Hecher, J.; Ishida, S.; Song, D.; Ogino, H.; Iyo, A.; Eisaki, H.; Nakajima, M.; Kagerbauer, D.; Eisterer, M.

    2018-01-01

    The phase diagram of iron-based superconductors exhibits structural transitions, electronic nematicity, and magnetic ordering, which are often accompanied by an electronic in-plane anisotropy and a sharp maximum of the superconducting critical current density (Jc) near the phase boundary of the tetragonal and the antiferromagnetic-orthorhombic phase. We utilized scanning Hall-probe microscopy to visualize the Jc of twinned and detwinned Ba (Fe1-xCox) 2As2 (x =5 %-8 % ) crystals to compare the electronic normal state properties with superconducting properties. We find that the electronic in-plane anisotropy continues into the superconducting state. The observed correlation between the electronic and the Jc anisotropy agrees qualitatively with basic models, however, the Jc anisotropy is larger than predicted from the resistivity data. Furthermore, our measurements show that the maximum of Jc at the phase boundary does not vanish when the crystals are detwinned. This shows that twin boundaries are not responsible for the large Jc, suggesting an exotic pinning mechanism.

  19. Optical and mechanical anisotropy of oxide glass fibers

    DEFF Research Database (Denmark)

    Deubener, J.; Yue, Yuanzheng

    2012-01-01

    products [1], whereas stretching (frozen-in strain) results in optical and mechanical anisotropy of glass fibers, which is quantified inter alia by the specific birefringence [2]. The paper will stress the later effects by combining previous results on the structural origins of birefringence...... and anisotropic shrinkage in silica and phosphate fibers with recent studies on relaxation of optical anisotropy in E-glass fibers [3,4].......Upon fiber drawing, glass forming oxide melts are thermally quenched and mechanically stretched. High cooling rates (up to 106 K/min) of quenched glass fibres lead to higher enthalpy state of liquids, thereby, to higher fictive temperature than regular quenching (e.g. 20 K/min) of bulk glass...

  20. Tuning the effective parameters in (Ta/Cu/[Ni/Co]x/Ta) multilayers with perpendicular magnetic anisotropy

    Science.gov (United States)

    Ayareh, Zohreh; Moradi, Mehrdad; Mahmoodi, Saman

    2018-06-01

    In this paper, we report perpendicular magnetic anisotropy (PMA) in a (Ta/Cu/[Ni/Co]x/Ta) multilayers structure. These typical structures usually include a multilayer of ferromagnetic and transition metal thin films. Usually, magnetic anisotropy is characterized by magnetization loops determined by magnetometer or magneto-optical Kerr effect (MOKE). The interface between ferromagnetic and metallic layers plays an important role in magnetic anisotropy evolution from out-of-plane to in-plane in (Ta/Cu/[Ni/Co]/Ta) structure. Obtained results from MOKE and magnetometry of these samples show that they have different easy axes due to change in thickness of Cu as spacer layer and difference in number of repetition of [Ni/Co] stacks.

  1. Optically sectioned imaging by oblique plane microscopy

    Science.gov (United States)

    Kumar, Sunil; Lin, Ziduo; Lyon, Alex R.; MacLeod, Ken T.; Dunsby, Chris

    2011-03-01

    Oblique Plane Microscopy (OPM) is a light sheet microscopy technique that combines oblique illumination with correction optics that tilt the focal plane of the collection system. OPM can be used to image conventionally mounted specimens on coverslips or tissue culture dishes and has low out-of-plane photobleaching and phototoxicity. No moving parts are required to achieve an optically sectioned image and so high speed optically sectioned imaging is possible. The first OPM results obtained using a high NA water immersion lens on a commercially available inverted microscope frame are presented, together with a measurement of the achievable optical resolution.

  2. Higher-order anisotropies in the Buda-Lund model: Disentangling flow and density field anisotropies

    Energy Technology Data Exchange (ETDEWEB)

    Loekoes, Sandor [Eoetvoes Lorand University, Budapest (Hungary); Csanad, Mate [Eoetvoes Lorand University, Budapest (Hungary); Stony Brook University, Stony Brook, NY (United States); Tomasik, Boris [Univerzita Mateja Bela, Banska Bystrica (Slovakia); Czech Technical University in Prague, FNSPE, Prague (Czech Republic); Csoergo, Tamas [Wigner RCP, Budapest (Hungary); KRF, Gyoengyoes (Hungary)

    2016-10-15

    The Buda-Lund hydro model describes an expanding ellipsoidal fireball, and fits the observed elliptic flow and oscillating HBT radii successfully. Due to fluctuations in energy depositions, the fireball shape however fluctuates on an event-by-event basis. The transverse plane asymmetry can be translated into a series of multipole anisotropy coefficients. These anisotropies then result in measurable momentum-space anisotropies, to be measured with respect to their respective symmetry planes. In this paper we detail an extension of the Buda-Lund model to multipole anisotropies and investigate the resulting flow coefficients and oscillations of HBT radii. (orig.)

  3. Optical and electro-optic anisotropy of epitaxial PZT thin films

    Science.gov (United States)

    Zhu, Minmin; Du, Zehui; Jing, Lin; Yoong Tok, Alfred Iing; Tong Teo, Edwin Hang

    2015-07-01

    Strong optical and electro-optic (EO) anisotropy has been investigated in ferroelectric Pb(Zr0.48Ti0.52)O3 thin films epitaxially grown on Nb-SrTiO3 (001), (011), and (111) substrates using magnetron sputtering. The refractive index, electro-optic, and ferroelectric properties of the samples demonstrate the significant dependence on the growth orientation. The linear electro-optic coefficients of the (001), (011), and (111)-oriented PZT thin films were 270.8, 198.8, and 125.7 pm/V, respectively. Such remarkable anisotropic EO behaviors have been explained according to the structure correlation between the orientation dependent distribution, spontaneous polarization, epitaxial strain, and domain pattern.

  4. Origin of perpendicular magnetic anisotropy in Co/Ni multilayers

    Science.gov (United States)

    Arora, M.; Hübner, R.; Suess, D.; Heinrich, B.; Girt, E.

    2017-07-01

    We studied the variation in perpendicular magnetic anisotropy of (111) textured Au /N ×[Co /Ni ]/Au films as a function of the number of bilayer repeats N . The ferromagnetic resonance and superconducting quantum interference device magnetometer measurements show that the perpendicular magnetic anisotropy of Co/Ni multilayers first increases with N for N ≤10 and then moderately decreases for N >10 . The model we propose reveals that the decrease of the anisotropy for N reduction in the magnetoelastic and magnetocrystalline anisotropies. A moderate decrease in the perpendicular magnetic anisotropy for N >10 is due to the reduction in the magnetocrystalline and the surface anisotropies. To calculate the contribution of magnetoelastic anisotropy in the Co/Ni multilayers, in-plane and out-of-plane x-ray diffraction measurements are performed to determine the spacing between Co/Ni (111) and (220) planes. The magnetocrystalline bulk anisotropy is estimated from the difference in the perpendicular and parallel g factors of Co/Ni multilayers that are measured using the in-plane and out-of-plane ferromagnetic resonance measurements. Transmission electron microscopy has been used to estimate the multilayer film roughness. These values are used to calculate the roughness-induced surface and magnetocrystalline anisotropy coefficients as a function of N .

  5. Investigation of the spin-1 honeycomb antiferromagnet BaNi2V2O8 with easy-plane anisotropy

    Science.gov (United States)

    Klyushina, E. S.; Lake, B.; Islam, A. T. M. N.; Park, J. T.; Schneidewind, A.; Guidi, T.; Goremychkin, E. A.; Klemke, B.; Mânsson, M.

    2017-12-01

    The magnetic properties of the two-dimensional, S =1 honeycomb antiferromagnet BaNi2V2O8 have been comprehensively studied using dc susceptibility measurements and inelastic neutron scattering techniques. The magnetic excitation spectrum is found to be dispersionless within experimental resolution between the honeycomb layers, while it disperses strongly within the honeycomb plane where it consists of two gapped spin-wave modes. The magnetic excitations are compared to linear spin-wave theory allowing the Hamiltonian to be determined. The first- and second-neighbor magnetic exchange interactions are antiferromagnetic and lie within the ranges 10.90 meV ≤Jn≤13.35 meV and 0.85 meV ≤Jn n≤1.65 meV, respectively. The interplane coupling Jout is four orders of magnitude weaker than the intraplane interactions, confirming the highly two-dimensional magnetic behavior of this compound. The sizes of the energy gaps are used to extract the magnetic anisotropies and reveal substantial easy-plane anisotropy and a very weak in-plane easy-axis anisotropy. Together these results reveal that BaNi2V2O8 is a candidate compound for the investigation of vortex excitations and Berezinsky-Kosterliz-Thouless phenomenon.

  6. Adsorption induced modification of in-plane magnetic anisotropy in epitaxial Co and Fe/Co films on Fe(110)

    Science.gov (United States)

    Ślezak, M.; Ślezak, T.; Matlak, K.; DróŻdŻ, P.; Korecki, J.

    2018-05-01

    A study of in-plane magnetic anisotropy (MA) in epitaxial bcc Co films and Fe/Co bilayers on a Fe(110) surface is reported. Surface MA of as-deposited Co films and Fe/Co bilayers strongly depends on the Co (dCo) and Fe (dFe) thickness. Adsorption of residual gases drastically modifies in-plane MA of both Co films and Fe/Co bilayers. We present two dimensional MA maps in the (dCo, dFe) space for both as grown and adsorption-modified films. Our results indicate how to precisely engineer in-plane MA that can be controlled by dCo, dFe and is sensitive to the residual gas adsorption.

  7. Optical anisotropy of non-common-atom quantum wells and dots: effects of interface symmetry reduction

    International Nuclear Information System (INIS)

    Toropov, A.A.; Sorokin, S.V.; Shubina, T.V.; Nekrutkina, O.V.; Solnyshkov, D.D.; Ivanov, S.V.; Waag, A.; Landwehr, G.

    2003-01-01

    We report on the investigations of in-plane optical anisotropy in non-common-atom heterostructures: ZnSe/BeTe perfect quantum wells (QWs) and CdSe/BeTe rough QWs and quantum dots. A noticeable linear polarization of photoluminescence (PL) with respect to the in-plane [1-10] and [110] crystal axes was observed in the ZnSe/BeTe QWs with equivalent ZnTe-type interfaces due to the reduction of QW symmetry, induced by unintentional formation of BeSe chemical bonds at a ''BeTe-ZnSe'' interface. The BeSe bond concentration and, hence, the polarization degree depend on the Te/Be flux ratio during molecular beam epitaxy growth of the samples. Strongly linearly polarized (up to 80%) PL was detected in the CdSe/BeTe structures, evidencing QW-like flat symmetry of the emitting sites of carrier localization. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  8. Applicability of geometrical optics to in-plane liquid-crystal configurations.

    Science.gov (United States)

    Sluijter, M; Xu, M; Urbach, H P; de Boer, D K G

    2010-02-15

    We study the applicability of geometrical optics to inhomogeneous dielectric nongyrotropic optically anisotropic media typically found in in-plane liquid-crystal configurations with refractive indices n(o)=1.5 and n(e)=1.7. To this end, we compare the results of advanced ray- and wave-optics simulations of the propagation of an incident plane wave to a special anisotropic configuration. Based on the results, we conclude that for a good agreement between ray and wave optics, a maximum change in optical properties should occur over a distance of at least 20 wavelengths.

  9. Studies on longitudinal fluctuations of anisotropy flow event planes in PbPb and pPb collisions at CMS

    CERN Document Server

    AUTHOR|(CDS)2080008

    2016-01-01

    Most studies of anisotropy flow phenomena have assumed a global flow phase angle (or event plane angle) that is boost invariant in pseudorapidity ($\\eta$). It was realized in recent years that this assumption may not be valid in presence of initial-state fluctuations, especially along the longitudinal direction. The effect of eta-dependent event plane fluctuations would break the factorization relation of Fourier coefficients from two-particle azimuthal correlations into a product of single-particle anisotropy Fourier harmonics as a function of $\\eta$. First study of factorization breakdown effect in $\\eta$ is carried out using the CMS detector, which covers a wide $\\eta$ range of 10 units. A novel method is employed to suppress nonflow correlations at small pseudorapidity gaps of two particles. Significant eta-dependent factorization breakdown is observed in both PbPb and high-multiplicity pPb collisions. The measurements are presented for various orders of flow harmonics as a function of centrality or event...

  10. In-plane optical response in underdoped YBCO

    Science.gov (United States)

    Kakeshita, Teruhisa; Masui, Takahiko; Tajima, Setsuko

    2005-03-01

    The recent STM experiments demonstrated that the electronic state in CuO2 plane is inhomogeneous [1], which becomes conspicuous in the underdoped regime. In such an inhomogeneous state, it is not obvious whether a superfluid density is correctly estimated by a conventional way. We investigated the in-plane optical response for underdoped YBCO crystal to discuss the relation between inhomogeneity and superfluid density in the pseudo-gapped state. The a-axis optical spectrum shows a larger residual conductivity than that for the optimum doping. The superfluid density estimated from our optical spectrum at the lowest temperature is substantially smaller than that determined by μSR. We discuss this strongly suppressed superfluid density and the large residual conductivity in terms of the inhomogeneity in real- and k-space. This work was supported by the New Energy and Industrial Technology Development Organization(NEDO) through ISTEC as the Collaborative Research and Development of Fundamental Technologies for Superconductivity Applications. [1]K.M.Lang et al., Nature 415, 412 (2002). *present address: Dept. of Physics, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan

  11. In-plane anisotropy of the electric field gradient in Ba(Fe 1 -xCox)2As2 observed by 75As NMR

    Science.gov (United States)

    Toyoda, Masayuki; Ichikawa, Akihiro; Kobayashi, Yoshiaki; Sato, Masatoshi; Itoh, Masayuki

    2018-05-01

    We have performed 75As NMR measurements on single crystals to investigate the nematic behavior via the in-plane anisotropy of the electronic state at the As site far from Co impurities in the representative iron arsenides Ba (Fe1-xCox) 2As2 . From the analysis of the angular dependence of the NMR satellites in the c plane using the binominal distribution, we find that there is the in-plane fourfold symmetry breaking, namely, the orthorhombic-type anisotropy in the electric field gradient (EFG) at the As site with no Co atom at the nearest neighboring Fe sites even in the tetragonal phase of both BaFe2As2 and Ba (Fe1-xCox) 2As2(x ≠0 ) . The NMR spectrum in the antiferromagnetically ordered state of BaFe2As2 is shown not to support a nanotwin model on the basis of the nematic order proposed from the pair-distribution analysis of neutron scattering data. Based on results of the x and temperature T dependences of the in-plane anisotropy in the wide x and T ranges, the symmetry breaking is concluded to come from the local orthorhombic domains induced by disorder such as Co impurities or lattice imperfections. Furthermore, we find that the asymmetry parameter of EFG η obeys the Curie-Weiss law which may be governed by nematic susceptibility, and the Weiss temperature becomes zero at xc˜0.05 in Ba (Fe1-xCox) 2As2 .

  12. J/ψ azimuthal anisotropy relative to the reaction plane in Pb-Pb collisions at 158 GeV per nucleon

    International Nuclear Information System (INIS)

    Prino, F.; Alessandro, B.; Arnaldi, R.; Beole, S.; Chiavassa, E.; De Marco, N.; Gallio, M.; Giubellino, P.; Marzari-Chiesa, A.; Masera, M.; Monteno, M.; Musso, A.; Piccotti, A.; Riccati, L.; Scomparin, E.; Sigaudo, F.; Vercellin, E.; Alexa, C.; Boldea, V.; Constantinescu, S.; Dita, S.; Atayan, M.; Grigoryan, A.A.; Grigoryan, S.; Gulkanyan, H.; Bordalo, P.; Borges, G.; Quintans, C.; Ramos, S.; Santos, H.; Shahoyan, R.; Castanier, C.; Castor, J.; Devaux, A.; Fargeix, J.; Force, P.; Saturnini, P.; Chaurand, B.; Petiau, P.; Cheynis, B.; Guichard, A.; Pizzi, J.R.; Cicalo, C.; De Falco, A.; Masoni, A.; Puddu, G.; Serci, S.; Usai, G.L.; Comets, M.P.; Gerschel, C.; Jouan, D.; Le Bornec, Y.; Mac Cormick, M.; Tarrago, X.; Villatte, L.; Willis, N.; Wu, T.; Cortese, P.; Dellacasa, G.; Ramello, L.; Sitta, M.; Golubeva, M.B.; Guber, F.F.; Karavicheva, T.L.; Kurepin, A.B.; Topilskaya, N.S.; Idzik, M.; Kluberg, L.; Lourenco, C.; Sonderegger, P.

    2009-01-01

    The J/ψ azimuthal distribution relative to the reaction plane has been measured by the NA50 experiment in Pb-Pb collisions at 158 GeV/nucleon. Various physical mechanisms related to charmonium dissociation in the medium created in the heavy ion collision are expected to introduce an anisotropy in the azimuthal distribution of the observed J/ψ mesons at SPS energies. Hence, the measurement of J/ψ elliptic anisotropy, quantified by the Fourier coefficient v 2 of the J/ψ azimuthal distribution relative to the reaction plane, is an important tool to constrain theoretical models aimed at explaining the anomalous J/ψ suppression observed in Pb-Pb collisions. We present the measured J/ψ yields in different bins of azimuthal angle relative to the reaction plane, as well as the resulting values of the Fourier coefficient v 2 as a function of the collision centrality and of the J/ψ transverse momentum. The reaction plane has been estimated from the azimuthal distribution of the neutral transverse energy detected in an electromagnetic calorimeter. The analysis has been performed on a data sample of about 100,000 events, distributed in five centrality or p T sub-samples. The extracted v 2 values are significantly larger than zero for non-central collisions and are seen to increase with p T . (orig.)

  13. Optical anisotropy of non-common-atom quantum wells and dots: effects of interface symmetry reduction

    Energy Technology Data Exchange (ETDEWEB)

    Toropov, A.A.; Sorokin, S.V.; Shubina, T.V.; Nekrutkina, O.V.; Solnyshkov, D.D.; Ivanov, S.V. [Ioffe Physico-Technical Institute of RAS, St. Petersburg 194021 (Russian Federation); Waag, A. [Abteilung Halbleiterphysik, Universitaet Ulm, 89081 Ulm (Germany); Landwehr, G. [Physikalisches Institut der Universitaet Wuerzburg, D-97074 Wuerzburg (Germany)

    2003-02-01

    We report on the investigations of in-plane optical anisotropy in non-common-atom heterostructures: ZnSe/BeTe perfect quantum wells (QWs) and CdSe/BeTe rough QWs and quantum dots. A noticeable linear polarization of photoluminescence (PL) with respect to the in-plane [1-10] and [110] crystal axes was observed in the ZnSe/BeTe QWs with equivalent ZnTe-type interfaces due to the reduction of QW symmetry, induced by unintentional formation of BeSe chemical bonds at a ''BeTe-ZnSe'' interface. The BeSe bond concentration and, hence, the polarization degree depend on the Te/Be flux ratio during molecular beam epitaxy growth of the samples. Strongly linearly polarized (up to 80%) PL was detected in the CdSe/BeTe structures, evidencing QW-like flat symmetry of the emitting sites of carrier localization. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  14. Magnetic anisotropy in a permalloy microgrid fabricated by near-field optical lithography

    International Nuclear Information System (INIS)

    Li, S. P.; Lebib, A.; Peyrade, D.; Natali, M.; Chen, Y.; Lew, W. S.; Bland, J. A. C.

    2001-01-01

    We report the fabrication and magnetic properties of permalloy microgrids prepared by near-field optical lithography and characterized using high-sensitivity magneto-optical Kerr effect techniques. A fourfold magnetic anisotropy induced by the grid architecture is identified. [copyright] 2001 American Institute of Physics

  15. Induced anisotropy in amorphous Sm-Co sputtered films

    International Nuclear Information System (INIS)

    Chen, K.; Hegde, H.; Cadieu, F.J.

    1992-01-01

    The variation of the in-the-film-plane anisotropy constant, K u , with composition and the magnitude of the field, H s , applied in plane during the sputter deposition of amorphous Sm x Co 1-x , 0.08≤x≤0.40, thin films has been studied. We demonstrate here that with a large H s , 5.0 kOe, a well defined and large in-the-film-plane anisotropy can be obtained. An exceptionally high value of K u =3.3x10 6 erg/cm 3 has been obtained. For the loop measured along the in-plane hard direction, the opening of the loop was undetectable, and the loop along the easy axis was a perfect rectangle. For certain conditions, the anisotropy field measured perpendicular to the film plane when corrected for demagnetization (N d =4π) was the same as that for the in-plane measurements. It is concluded that surface induced short range ordering was the origin of the anisotropy observed in amorphous films deposited in a magnetic field. The formation mechanism is different from that of the short range ordering induced by field annealing

  16. Polarized time-resolved photoluminescence measurements of m-plane AlGaN/GaN MQWs

    Science.gov (United States)

    Rosales, Daniel; Gil, B.; Bretagnon, T.; Zhang, F.; Okur, S.; Monavarian, M.; Izioumskaia, N.; Avrutin, V.; Özgür, Ü.; Morkoç, H.; Leach, J. H.

    2014-03-01

    The optical properties of GaN/Al0.15Ga0.85N multiple quantum wells grown on m-plane oriented substrate are studied in 8K-300K temperature range. The optical spectra reveal strong in-plane optical anisotropies as predicted by group theory. Polarized time resolved temperature-dependent photoluminescence experiments are performed providing access to the relative contributions of the non-radiative and radiative recombination processes. We deduce the variation of the radiative decay time with temperature in the two polarizations.

  17. Step-flow anisotropy of the m-plane GaN (1100) grown under nitrogen-rich conditions by plasma-assisted molecular beam epitaxy

    International Nuclear Information System (INIS)

    Sawicka, Marta; Siekacz, Marcin; Skierbiszewski, Czeslaw; Turski, Henryk; Krysko, Marcin; DziePcielewski, Igor; Grzegory, Izabella; Smalc-Koziorowska, Julita

    2011-01-01

    The homoepitaxial growth of m-plane (1100) GaN was investigated by plasma-assisted molecular beam epitaxy under nitrogen-rich conditions. The surface morphologies as a function of sample miscut were studied, providing evidence for a strong growth anisotropy that is a consequence of the anisotropy of Ga adatom diffusion barriers on the m-plane surface recently calculated ab initio[Lymperakis and Neugebauer, Phys. Rev. B 79, 241308(R) (2009)]. We found that substrate miscut toward [0001] implies a step flow toward while substrate miscut toward [0001] causes formation of atomic steps either perpendicular or parallel to the [0001] direction, under N-rich conditions at 730 deg C. We describe the growth conditions for achieving atomically flat m-plane GaN layers with parallel atomic steps.

  18. Higher-order anisotropies in the blast-wave model: Disentangling flow and density field anisotropies

    Energy Technology Data Exchange (ETDEWEB)

    Cimerman, Jakub [Czech Technical University in Prague, FNSPE, Prague (Czech Republic); Comenius University, FMPI, Bratislava (Slovakia); Tomasik, Boris [Czech Technical University in Prague, FNSPE, Prague (Czech Republic); Univerzita Mateja Bela, FPV, Banska Bystrica (Slovakia); Csanad, Mate; Loekoes, Sandor [Eoetvoes Lorand University, Budapest (Hungary)

    2017-08-15

    We formulate a generalisation of the blast-wave model which is suitable for the description of higher-order azimuthal anisotropies of the hadron production. The model includes anisotropy in the density profile as well as an anisotropy in the transverse expansion velocity field. We then study how these two kinds of anisotropies influence the single-particle distributions and the correlation radii of two-particle correlation functions. Particularly we focus on the third-order anisotropy and consideration is given averaging over different orientations of the event plane. (orig.)

  19. Role of the substrate on the magnetic anisotropy of magnetite thin films grown by ion-assisted deposition

    International Nuclear Information System (INIS)

    Prieto, Pilar; Prieto, José Emilio; Gargallo-Caballero, Raquel; Marco, José Francisco; Figuera, Juan de la

    2015-01-01

    Graphical abstract: - Highlights: • The magnetic anisotropy of magnetite thin films is controlled by the substrate induced microstructure. • Single-crystal oxide substrates induce fourfold in-plane magnetic anisotropy • MgO and SrTiO_3 substrates show the same magnetic behavior despite its different mismatch with Fe_3O_4 films. • Silicon and glass substrates induce in-plane magnetic isotropy and uniaxial anisotropy, respectively. - Abstract: Magnetite (Fe_3O_4) thin films were deposited on MgO (0 0 1), SrTiO_3 (0 0 1), LaAlO_3 (0 0 1) single crystal substrates as well on as silicon and amorphous glass in order to study the effect of the substrate on their magnetic properties, mainly the magnetic anisotropy. We have performed a structural, morphological and compositional characterization by X-ray diffraction, atomic force microscopy and Rutherford backscattering ion channeling in oxygen resonance mode. The magnetic anisotropy has been investigated by vectorial magneto-optical Kerr effect. The results indicate that the magnetic anisotropy is especially influenced by the substrate-induced microstructure. In-plane isotropy and uniaxial anisotropy behavior have been observed on silicon and glass substrates, respectively. The transition between both behaviors depends on grain size. For LaAlO_3 substrates, in which the lattice mismatch between the Fe_3O_4 films and the substrate is significant, a weak in-plane fourfold magnetic anisotropy is induced. However when magnetite is deposited on MgO (0 0 1) and SrTiO_3 (0 0 1) substrates, a well-defined fourfold in-plane magnetic anisotropy is observed with easy axes along [1 0 0] and [0 1 0] directions. The magnetic properties on these two latter substrates are similar in terms of magnetic anisotropy and coercive fields.

  20. Optical anisotropy of polyimide and polymethacrylate containing photocrosslinkable chalcone group in the side chain under irradiation of a linearly polarized UV light

    CERN Document Server

    Choi, D H

    2002-01-01

    Photocrosslinkable soluble polyimide and polymethacrylate compound were synthesized for studying the optically induced anisotropy of the thin films. Chalcone group was introduced into the side chain unit of two polymers. We observed a photodimerization behavior between the double bonds in the chalcone group and an optical anisotropy of these materials by irradiation of a linearly polarized UV light (LPL). Optical anisotropy of the thin film was also investigated by using polarized UV absorption spectroscopy.The dynamic property of optical anisotropy in photoreactive polyimide was compared to that in polymethacrylate containing chalcone group in the side chain.

  1. Magnetic anisotropy in (Ga,Mn)As: Influence of epitaxial strain and hole concentration

    Science.gov (United States)

    Glunk, M.; Daeubler, J.; Dreher, L.; Schwaiger, S.; Schoch, W.; Sauer, R.; Limmer, W.; Brandlmaier, A.; Goennenwein, S. T. B.; Bihler, C.; Brandt, M. S.

    2009-05-01

    We present a systematic study on the influence of epitaxial strain and hole concentration on the magnetic anisotropy in (Ga,Mn)As at 4.2 K. The strain was gradually varied over a wide range from tensile to compressive by growing a series of (Ga,Mn)As layers with 5% Mn on relaxed graded (In,Ga)As/GaAs templates with different In concentration. The hole density, the Curie temperature, and the relaxed lattice constant of the as-grown and annealed (Ga,Mn)As layers turned out to be essentially unaffected by the strain. Angle-dependent magnetotransport measurements performed at different magnetic-field strengths were used to probe the magnetic anisotropy. The measurements reveal a pronounced linear dependence of the uniaxial out-of-plane anisotropy on both strain and hole density. Whereas the uniaxial and cubic in-plane anisotropies are nearly constant, the cubic out-of-plane anisotropy changes sign when the magnetic easy axis flips from in-plane to out-of-plane. The experimental results for the magnetic anisotropy are quantitatively compared with calculations of the free energy based on a mean-field Zener model. Almost perfect agreement between experiment and theory is found for the uniaxial out-of-plane and cubic in-plane anisotropy parameters of the as-grown samples. In addition, magnetostriction constants are derived from the anisotropy data.

  2. Influence of carbonization conditions on the development of different types of optical anisotropy in cokes

    Energy Technology Data Exchange (ETDEWEB)

    Patrick, J W; Reynolds, M J; Shaw, F H

    1975-01-01

    The vitrain components of a series of coal samples were carbonized at temperatures from 400 to 1000/sup 0/C at different rates of heating ranging from 0.5 to 10/sup 0/K/min and utilizing soaking times up to 24 hr. Polished specimens prepared from the carbonized products were examined microscopically under polarized light in order to determine the proportions of the various types of optical anisotropy present in them. The variations in heating rate and soaking time were found to exert little significant influence on the anisotropy developed in high-temperature cokes. But in semicokes produced at carbonization temperatures within the plastic range the influence of the carbonization conditions was much more pronounced with the effects being interrelated. Decreasing the heating rate or increasing the soaking time led to the optical anisotropy generally becoming detectable at lower carbonization temperatures. Fast heating rates caused an increase in the rate of transformation of the fine-grain mosaic anisotropy into coarser-grained types of anisotropy and increased soaking time led to enhanced anisotropic development in the semicokes produced at temperatures within the plastic range. The type of anisotropy developed in cokes is closely related to the release of volatile matter and the plasticity developed during carbonization and the conclusion is drawn that the balance between these factors controls the extent of the anisotropic development.

  3. On the in-plane uniaxial anisotropy formation by using Fe–Co–Zr–N films: A theoretical and experimental investigation

    Energy Technology Data Exchange (ETDEWEB)

    Seemann, K., E-mail: klaus.seemann@kit.edu; Beirle, S.; Leiste, H.

    2016-09-01

    In the present paper a simple theoretical approach for the in-plane uniaxial anisotropy evolution in thin films is introduced. In order to show, what are the conditions for a uniaxial anisotropy formation during annealing a ferromagnetic film in an external static magnetic field, a Hamiltonian, i.e., mean energy balances were established with introducing their annealing temperature dependence. At this point, a 1-dimesional chain-like arrangement of Fe and Co elements for an “isotropic” and uniaxial anisotropy state for the numerical computation was assumed. It was shown that a critical energy and annealing temperature (temperature threshold) can be attained from which a uniaxial anisotropy arises. Comparatively, calculations according to the Neél theory delivered the activation energy for inducing a uniaxial anisotropy. The experimental verification of the calculations, by using Fe{sub 40}Co{sub 37}Zr{sub 11}N{sub 12} films which were produced by reactive magnetron sputtering, yielded the activation energy of about 250 meV. Annealing temperatures above 473 K (200 °C) enabled marked uniaxial anisotropies. This correlated with the numerical quantum mechanical estimations which yielded a critical annealing temperature of approximately 449 K (176 °C). The calculated critical energy of 243 meV was in a good agreement with the verified experiments if one assumes a short range order of at least 10 ferromagnetic atoms in line (5Fe+5Co) for computation. - Highlights: • Model and theoretical description of the uniaxial anisotropy in ferromagnetic films. • Critical energy and a critical temperature for inducing the uniaxial anisotropy. • Investigation of the activation energy for inducing the uniaxial anisotropy. • Comparison with the model and according to the Neél theory.

  4. Anisotropy of exciton spectrum and spin-orbit interactions in quantum wells in tilted magnetic field

    International Nuclear Information System (INIS)

    Olendski, Oleg; Shahbazyan, Tigran V

    2006-01-01

    We study theoretically excitonic energy spectrum and optical absorption in narrowgap semiconductor quantum wells in strong magnetic field. We show that, in the presence of an in-plane field component, the absorption coefficient exhibit a double-peak structure due to hybridization of bright and dark excitons. If both Rashba and Dresselhaus spin-orbit terms are present, the spectrum is anisotropic in in-plane field orientation with respect to [100] axis. In particular, the magnitude of the splitting can be tuned in a wide interval by varying the azimuthal angle of the in-plane field. The absorption spectrrum anisotropy would allow simultaneous measurement Dresselhaus and Rashba spin-orbit coefficients

  5. Applicability of geometrical optics to in-plane liquid-crystal configurations

    NARCIS (Netherlands)

    Sluijter, M.; Xu, M.; Urbach, H.P.; De Boer, D.K.G.

    2010-01-01

    We study the applicability of geometrical optics to inhomogeneous dielectric nongyrotropic optically anisotropic media typically found in in-plane liquid-crystal configurations with refractive indices no=1.5 and ne=1.7. To this end, we compare the results of advanced ray- and wave-optics simulations

  6. ab-Plane Anisotropy of Transport Properties in Unidirectionally Twinned YBa2Cu3O7-δ Films

    International Nuclear Information System (INIS)

    Villard, C.; Chateignier, D.; Thrane, B.; Koren, G.; Cohen, D.; Polturak, E.

    1996-01-01

    A unidirectionally twinned, c oriented YBa 2 Cu 3 O 7-δ film was prepared on a (001) NdGaO 3 substrate. In the normal state between 100 and 300K, the unidirectional twin plane lattice induces a strong anisotropy of ρ ab , leading to a temperature independent ratio of 6 between the resisitivities across and along the twin boundaries. At 77K, the self-field critical current parallel to twin planes is 1.2x10 6 A/cm 2 , a value which is 25 times higher than along the perpendicular direction. This shows that, at this temperature, twin boundaries control the critical current values in YBCO films by either channeling or pinning effects. copyright 1996 The American Physical Society

  7. Influence of planar macrodefects on the anisotropy of magnetic-flux penetration in YBa 2Cu 3O 7-δ

    Science.gov (United States)

    Cuche, E.; Indenbom, M. V.; André, M.-O.; Richard, P.; Benoit, W.; Wolf, Th.

    1996-02-01

    The magnetic flux penetration in a high-quality YBa 2Cu 3O 7-δ single crystal with an external field applied perpendicular to the crystalline c axis is directly visualized by means of the magneto-optical technique. The observations show that the field penetrates preferentially along the ab planes. Scanning acoustic microscopy reveals macrodefects along ab planes which strongly affect this anisotropy of the field penetration.

  8. Magnetic Phase Transition in Ion-Irradiated Ultrathin CoN Films via Magneto-Optic Faraday Effect.

    Science.gov (United States)

    Su, Chiung-Wu; Chang, Yen-Chu; Chang, Sheng-Chi

    2013-11-15

    The magnetic properties of 1 nm thick in-plane anisotropic Co ultrathin film on ZnO(0001) were investigated through successive 500 eV nitrogen-ion sputtering. Magneto-optical Faraday effects were used to observe the evolution of the ion-irradiated sample in longitudinal and perpendicular magnetic fields. The ferromagnetic phase of the initial in-plane anisotropic fcc β-Co phase transformation to β-Co(N) phase was terminated at paramagnetic CoN x phase. In-plane anisotropy with weak out-of-plane anisotropy of the Co/ZnO sample was initially observed in the as-grown condition. In the sputtering process, the N⁺ ions induced simultaneous sputtering and doping. An abrupt spin reorientation behavior from in-plane to out-of-plane was found under prolonged sputtering condition. The existence of perpendicular anisotropy measured from the out-of-plane Faraday effect may be attributed to the co-existence of residual β-Co and Co₄N exchange bonding force by the gradual depletion of Co-N thickness.

  9. Vectorial magnetometry with the magneto-optic Kerr effect applied to Co/Cu/Co trilayer structures

    Science.gov (United States)

    Daboo, C.; Bland, J. A. C.; Hicken, R. J.; Ives, A. J. R.; Baird, M. J.; Walker, M. J.

    1993-05-01

    We describe an arrangement in which the magnetization components parallel and perpendicular to the applied field are both determined from longitudinal magneto-optic Kerr effect measurements. This arrangement differs from the usual procedures in that the same optical geometry is used but the magnet geometry altered. This leads to two magneto-optic signals which are directly comparable in magnitude thereby giving the in-plane magnetization vector directly. We show that it is of great value to study both in-plane magnetization vector components when studying coupled structures where significant anisotropies are also present. We discuss simulations which show that it is possible to accurately determine the coupling strength in such structures by examining the behavior of the component of magnetization perpendicular to the applied field in the vicinity of the hard in-plane anisotropy axis. We illustrate this technique by examining the magnetization and magnetic anisotropy behavior of ultrathin Co/Cu(111)/Co (dCu=20 Å and 27 Å) trilayer structures prepared by molecular beam epitaxy, in which coherent rotation of the magnetization vector is observed when the magnetic field B is applied along the hard in-plane anisotropy axis, with the magnitude of the magnetization vector constant and close to its bulk value. Results of micromagnetic calculations closely reproduce the observed parallel and perpendicular magnetization loops, and yield strong uniaxial magnetic anisotropies in both layers, while the interlayer coupling appears to be absent or negligible in comparison with the anisotropy strengths.

  10. Semi-quantitative evaluation of texture components and anisotropy of the yield strength in 2524 T3 alloy sheets

    International Nuclear Information System (INIS)

    Shen, Fanghua; Yi, Danqing; Wang, Bin; Liu, Huiqun; Jiang, Yong; Tang, Cong; Jiang, Bo

    2016-01-01

    Decreasing the anisotropy of 2524 alloys is a key factor for their use in applications such as high-performance inertial components or space robots. Studying the interaction between sheet textures and anisotropy is a key factor to overcome this problem. In this study, the semi-quantitative approach to estimate the relation between texture and in-plane anisotropy (IPA) of yield strength has been developed. The intensity ratio between Cube and Brass texture components (F CGB ) was used as an effective variable for this purpose. This approach has been tested in 2524 T3 aluminum alloy sheets, which were investigated using X-Ray diffraction, scanning electron microscopy, optical microscopy and tensile tests. The results show that F CGB decreased with an increase in cold reduction. The 2524 T3 sheet, dominated by Cube texture grains, possesses the lowest in-plane anisotropy for the yield strength of all texture components investigated. The alloy sheet dominated by Brass texture exhibits the highest anisotropy, while the Goss texture-led sheets fall in between them. These results agree with the trends seen in the factor F CGB , suggesting that is suited to evaluate the anisotropy of yield strength in 2524 T3 alloy sheets semi-quantitatively.

  11. Semi-quantitative evaluation of texture components and anisotropy of the yield strength in 2524 T3 alloy sheets

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Fanghua [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Yi, Danqing, E-mail: yioffice@csu.edu.cn [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Light Alloy Research Institute, Central South University, Changsha, Hunan 410083 (China); National Collaborative Innovation Center of Advanced Nonferrous Structural Materials and Manufacturing, Central South University, Changsha 410083 (China); Wang, Bin; Liu, Huiqun; Jiang, Yong; Tang, Cong; Jiang, Bo [School of Materials Science and Engineering, Central South University, Changsha 410083 (China)

    2016-10-15

    Decreasing the anisotropy of 2524 alloys is a key factor for their use in applications such as high-performance inertial components or space robots. Studying the interaction between sheet textures and anisotropy is a key factor to overcome this problem. In this study, the semi-quantitative approach to estimate the relation between texture and in-plane anisotropy (IPA) of yield strength has been developed. The intensity ratio between Cube and Brass texture components (F{sub CGB}) was used as an effective variable for this purpose. This approach has been tested in 2524 T3 aluminum alloy sheets, which were investigated using X-Ray diffraction, scanning electron microscopy, optical microscopy and tensile tests. The results show that F{sub CGB} decreased with an increase in cold reduction. The 2524 T3 sheet, dominated by Cube texture grains, possesses the lowest in-plane anisotropy for the yield strength of all texture components investigated. The alloy sheet dominated by Brass texture exhibits the highest anisotropy, while the Goss texture-led sheets fall in between them. These results agree with the trends seen in the factor F{sub CGB}, suggesting that is suited to evaluate the anisotropy of yield strength in 2524 T3 alloy sheets semi-quantitatively.

  12. In-plane current induced domain wall nucleation and its stochasticity in perpendicular magnetic anisotropy Hall cross structures

    International Nuclear Information System (INIS)

    Sethi, P.; Murapaka, C.; Lim, G. J.; Lew, W. S.

    2015-01-01

    Hall cross structures in magnetic nanowires are commonly used for electrical detection of magnetization reversal in which a domain wall (DW) is conventionally nucleated by a local Oersted field. In this letter, we demonstrate DW nucleation in Co/Ni perpendicular magnetic anisotropy nanowire at the magnetic Hall cross junction. The DWs are nucleated by applying an in-plane pulsed current through the nanowire without the need of a local Oersted field. The change in Hall resistance, detected using anomalous Hall effect, is governed by the magnetic volume switched at the Hall junction, which can be tuned by varying the magnitude of the applied current density and pulse width. The nucleated DWs are driven simultaneously under the spin transfer torque effect when the applied current density is above a threshold. The possibility of multiple DW generation and variation in magnetic volume switched makes nucleation process stochastic in nature. The in-plane current induced stochastic nature of DW generation may find applications in random number generation

  13. Effect of anisotropy on the magnon energy gap in a two-layer ferromagnetic superlattice

    International Nuclear Information System (INIS)

    Qiu Rongke; Liang Jing; Li Qingfeng; Zhang Zhidong; Song Panpan; Hong Xiaomin

    2009-01-01

    The magnon energy bands or spectra in a two-layer ferromagnetic superlattice are studied. It is found that a modulated energy gap exists in the magnon energy band along K x direction perpendicular to the superlattice plane, which is different from the optical magnon gap at K x =0. The anisotropy, the spin quantum numbers and the interlayer exchange couplings all affect the magnon energy gap. If the anisotropy exists, there will be no acoustic energy branch in the system. There is a competition effect of the anisotropy and the spin quantum number on the magnon energy gap. The competition achieves a balance at the zero energy gap, at which the symmetry of the system is higher. The two energy spectra of the two-layer ferromagnetic superlattice are lowered with increasing temperature.

  14. Magnetic anisotropy of Ni/Cr multilayers

    International Nuclear Information System (INIS)

    Kang, S.; Xia, H.

    1997-01-01

    The magnetic anisotropy of Ni/Cr multilayers has been investigated by using vibrating sample magnetometer (VSM) and ferromagnetic resonance techniques (FMR). The FMR spectra are obtained as a function of the orientation of the applied magnetic field from in-plane to out-of-plane. The results are fitted theoretically to determine the magnetic anisotropy. From VSM and FMR, a positive value for Ni/Cr interface anisotropy is obtained, which favours a perpendicular easy axis. The possible mechanism for the perpendicular anisotropy has been discussed and it may be attributed to the magnetostriction, caused by intrinsic stress due to lattice mismatch. (orig.). With 005 figs., 001 tabs

  15. Mueller-matrix mapping of biological tissues in differential diagnosis of optical anisotropy mechanisms of protein networks

    Energy Technology Data Exchange (ETDEWEB)

    Ushenko, V A; Sidor, M I [Yuriy Fedkovych Chernivtsi National University, Chernivtsi (Ukraine); Marchuk, Yu F; Pashkovskaya, N V; Andreichuk, D R [Bukovinian State Medical University, Chernivtsi (Ukraine)

    2015-03-31

    We report a model of Mueller-matrix description of optical anisotropy of protein networks in biological tissues with allowance for the linear birefringence and dichroism. The model is used to construct the reconstruction algorithms of coordinate distributions of phase shifts and the linear dichroism coefficient. In the statistical analysis of such distributions, we have found the objective criteria of differentiation between benign and malignant tissues of the female reproductive system. From the standpoint of evidence-based medicine, we have determined the operating characteristics (sensitivity, specificity and accuracy) of the Mueller-matrix reconstruction method of optical anisotropy parameters and demonstrated its effectiveness in the differentiation of benign and malignant tumours. (laser applications and other topics in quantum electronics)

  16. Some device implications of voltage controlled magnetic anisotropy in Co/Gd2O3 thin films through REDOX chemistry

    Science.gov (United States)

    Hao, Guanhua; Noviasky, Nicholas; Cao, Shi; Sabirianov, Ildar; Yin, Yuewei; Ilie, Carolina C.; Kirianov, Eugene; Sharma, Nishtha; Sokolov, Andrei; Marshall, Andrew; Xu, Xiaoshan; Dowben, Peter A.

    2018-04-01

    The effect of intermediate interfacial oxidation on the in-plane magnetization of multilayer stack Pt/Co/Gd2O3, on a p-type silicon substrate, has been investigated by magneto-optical Kerr effect (MOKE) measurements, the anomalous Hall effect, and magnetoresistance measurements. While voltage controlled perpendicular magnetic anisotropy of a metal/oxide heterostructure is known, this heterostructure displays an inverse relationship between voltage and coercivity. The anomalous Hall effect demonstrates a significant change in hysteresis, with the applied bias sign. There is a higher perpendicular magnetic anisotropy with positive bias exposure.

  17. Tuning the electrical and optical anisotropy of a monolayer black phosphorus magnetic superlattice

    Science.gov (United States)

    Li, X. J.; Yu, J. H.; Luo, K.; Wu, Z. H.; Yang, W.

    2018-04-01

    We investigate theoretically the effects of modulated periodic perpendicular magnetic fields on the electronic states and optical absorption spectrum in monolayer black phosphorus (phosphorene). We demonstrate that different phosphorene magnetic superlattice (PMS) orientations can give rise to distinct energy spectra, i.e. tuning the intrinsic electronic anisotropy. Rashba spin-orbit coupling (RSOC) develops a spin-splitting energy dispersion in this phosphorene magnetic superlattice. Anisotropic momentum-dependent carrier distributions along/perpendicular to the magnetic strips are demonstrated. The manipulations of these exotic electronic properties by tuning superlattice geometry, magnetic field and the RSOC term are addressed systematically. Accordingly, we find bright-to-dark transitions in the ground-state electron-hole pair transition rate spectrum and the PMS orientation-dependent anisotropic optical absorption spectrum. This feature offers us a practical way of modulating the electronic anisotropy in phosphorene by magnetic superlattice configurations and detecting this modulation capability by using an optical technique.

  18. The elasticity anisotropy in the basal atomic planes of Mg(OH)2 and Ca(OH)2 associated with auxetic elastic properties of the hydrogen sub-lattice

    International Nuclear Information System (INIS)

    Harutyunyan, Valeri S.; Abrahamyan, Aren A.; Aivazyan, Ashot P.

    2013-01-01

    Graphical abstract: To the out-of-plane strain ε x induced in the (0 0 0 1) atomic planes of Mg(OH) 2 , the contributions of constituent octahedral layers ε x (1) and interlayers ε x (2) are of opposite sign. Highlights: ► Elasticity anisotropy of rare earth metal hydroxides is theoretically analyzed. ► Elastic anisotropy within (0 0 0 1) atomic planes is studied from energy consideration. ► The out-of-plane Poisson’s ratios of octahedral layers and interlayers are of opposite sign. ► Auxeticity of the hydrogen sublattice (interlayers) results from weak interlayer bonding. ► The obtained expression for the in-plane Young’s modulus results in useful conclusions. - Abstract: Within the framework of the Hook’s generalized law and using the experimental data for characteristic crystallographic parameters and stiffness constants available from literature, the individual elastic properties of constituent octahedral layers and interlayers of the (0 0 0 1) atomic planes in the Mg(OH) 2 and Ca(OH) 2 crystal lattices are theoretically quantified from intermolecular interaction energy. It is shown that, under uniaxial type of deformation applied along the (0 0 0 1) basal planes, in the “load-deformation response” the octahedral layers and interlayers exhibit the positive and negative Poisson’s ratio, respectively. Manifestation of such a type strong elastic anisotropy in the basal atomic planes and auxetic elastic behavior of the hydrogen sub-lattice (interlayers) upon applied uniaxial load result from a large difference in the strength of bonding within octahedral layers and interlayers. The intermolecular binding energy is contributed both by “hydroxyl–hydroxyl” and “metal atom–hydroxyl” dispersion interactions, whereas the Young’s modulus in the direction parallel to a (0 0 0 1) plane is practically contributed only by the former interaction. For this Young’s modulus, an approximate analytical expression is derived, which is

  19. Geometric characteristics of aberrations of plane-symmetric optical systems

    International Nuclear Information System (INIS)

    Lu Lijun; Deng Zhiyong

    2009-01-01

    The geometric characteristics of aberrations of plane-symmetric optical systems are studied in detail with a wave-aberration theory. It is dealt with as an extension of the Seidel aberrations to realize a consistent aberration theory from axially symmetric to plane-symmetric systems. The aberration distribution is analyzed with the spot diagram of a ray and an aberration curve. Moreover, the root-mean-square value and the centroid of aberration distribution are discussed. The numerical results are obtained with the focusing optics of a toroidal mirror at grazing incidence.

  20. Designer Shape Anisotropy on Transition-Metal-Dichalcogenide Nanosheets.

    Science.gov (United States)

    Martella, Christian; Mennucci, Carlo; Lamperti, Alessio; Cappelluti, Emmanuele; de Mongeot, Francesco Buatier; Molle, Alessandro

    2018-03-01

    MoS 2 and generally speaking, the wide family of transition-metal dichalcogenides represents a solid nanotechnology platform on which to engineer a wealth of new and outperforming applications involving 2D materials. An even richer flexibility can be gained by extrinsically inducing an in-plane shape anisotropy of the nanosheets. Here, the synthesis of anisotropic MoS 2 nanosheets is proposed as a prototypical example in this respect starting from a highly conformal chemical vapor deposition on prepatterend substrates and aiming at the more general purpose of tailoring anisotropy of 2D nanosheets by design. This is envisioned to be a suitable configuration for strain engineering as far as strain can be spatially redistributed in morphologically different regions. With a similar approach, both the optical and electronic properties of the 2D transition-metal dichalcogenides can be tailored over macroscopic sample areas in a self-organized fashion, thus paving the way for new applications in the field of optical metasurfaces, light harvesting, and catalysis. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Tuning the Magnetic Anisotropy at a Molecule-Metal Interface

    DEFF Research Database (Denmark)

    Bairagi, K.; Bellec, A.; Repain, V.

    2015-01-01

    We demonstrate that a C60 overlayer enhances the perpendicular magnetic anisotropy of a Co thin film, inducing an inverse spin reorientation transition from in plane to out of plane. The driving force is the C60/Co interfacial magnetic anisotropy that we have measured quantitatively in situ...

  2. In-plane magnetization behaviors in the Shastry-Sutherland system TbB{sub 4}: Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Feng, J. J.; Li, W. C. [Institute for Advanced Materials and Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510006 (China); Qin, M. H., E-mail: qinmh@scnu.edu.cn, E-mail: liujm@nju.edu.cn [Institute for Advanced Materials and Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510006 (China); Department of Physics and TcSUH, University of Houston, Houston, Texas 77204 (United States); Xie, Y. L.; Yan, Z. B.; Liu, J.-M., E-mail: qinmh@scnu.edu.cn, E-mail: liujm@nju.edu.cn [Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Jia, X. T. [School of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000 (China)

    2015-05-07

    The in-plane magnetization behaviors in TbB{sub 4} are theoretically studied using the frustrated classical XY model, including the exchange and biquadratic interactions, and the anisotropy energy. The magnetization curves at various temperatures are simulated, and the magnetic orders are uncovered by the tracking of the spin configurations. In addition, the effects of the in-plane anisotropy and biquadratic interaction on the magnetization curves are investigated in detail. The simulated results suggest that the magnetic anisotropy within the (001) plane owes to the complex interplay between these couplings, and the anisotropy term plays an important role.

  3. Growth and in-plane magnetic anisotropy of inverse spinel Co{sub 2}MnO{sub 4} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Taeyeong; Kim, Jaeyeong [Pohang University of Science and Technology, Pohang (Korea, Republic of); Song, Jonghyun [Chungnam National University, Daejeon (Korea, Republic of)

    2014-11-15

    Epitaxial Co{sub 2}MnO{sub 4} thin films were grown on Nb(0.1wt.)-doped SrTiO{sub 3} single-crystal substrates with (100) and (110) crystal orientations by using pulsed laser deposition. Their crystal structures and magnetic properties were investigated. Both samples exhibited ferrimagnetic transitions with enhanced transition temperatures. Isotropic M-H loops were observed on the in-plane surface of Co{sub 2}MnO{sub 4}(00l) grown on Nb(0.1wt)-doped SrTiO{sub 3}(100). Strong magnetic anisotropy was observed on the in-plane surface for Co{sub 2}MnO{sub 4} (ll0) grown on Nb(0.1wt)-doped SrTiO{sub 3}(110). A magnetic easy axis existed along the elongated tetragonal direction. This was attributed to the strong interplay between the spin and lattice degrees of freedom in the Co{sub 2}MnO{sub 4} thin film.

  4. Innovative soft magnetic multilayers with enhanced in-plane anisotropy and ferromagnetic resonance frequency for integrated RF passive devices

    Science.gov (United States)

    Falub, Claudiu V.; Bless, Martin; Hida, Rachid; MeduÅa, Mojmír; Ammann, Arnold

    2018-04-01

    We present an innovative, economical method for manufacturing soft magnetic materials that may pave the way for integrated thin film magnetic cores with dramatically improved properties. Soft magnetic multilayered thin films based on the Fe-28%Co20%B (at.%) and Co-4.5%Ta4%Zr (at.%) amorphous alloys are deposited on 8" bare Si and Si/200nm-thermal-SiO2 wafers in an industrial, high-throughput Evatec LLS EVO II magnetron sputtering system. The multilayers consist of stacks of alternating 80-nm-thick ferromagnetic layers and 4-nm-thick Al2O3 dielectric interlayers. Since in our dynamic sputter system the substrate cage rotates continuously, such that the substrates face different targets alternatively, each ferromagnetic sublayer in the multilayer consists of a fine structure comprising alternating CoTaZr and FeCoB nanolayers with very sharp interfaces. We adjust the thickness of these individual nanolayers between 0.5 and 1.5 nm by changing the cage rotation speed and the power of each gun, which is an excellent mode to engineer new, composite ferromagnetic materials. Using X-ray reflectometry (XRR) we reveal that the interfaces between the FeCoB and CoTaZr nanolayers are perfectly smooth with roughness of 0.2-0.3 nm. Kerr magnetometry and B-H looper measurements for the as-deposited samples show that the coercivity of these thin films is very low, 0.2-0.3 Oe, and gradually scales up with the thickness of FeCoB nanolayers, i.e. with the increase of the overall Fe content from 0 % (e.g. CoTaZr-based multilayers) to 52 % (e.g. FeCoB-based multilayers). We explain this trend in the random anisotropy model, based on considerations of grain size growth, as revealed by glancing angle X-ray diffraction (GAXRD), but also because of the increase of magnetostriction with the increase of Fe content as shown by B-H looper measurements performed on strained wafers. The unexpected enhancement of the in-plane anisotropy field from 18.3 Oe and 25.8 Oe for the conventional Co

  5. Innovative soft magnetic multilayers with enhanced in-plane anisotropy and ferromagnetic resonance frequency for integrated RF passive devices

    Directory of Open Access Journals (Sweden)

    Claudiu V. Falub

    2018-04-01

    Full Text Available We present an innovative, economical method for manufacturing soft magnetic materials that may pave the way for integrated thin film magnetic cores with dramatically improved properties. Soft magnetic multilayered thin films based on the Fe-28%Co20%B (at.% and Co-4.5%Ta4%Zr (at.% amorphous alloys are deposited on 8” bare Si and Si/200nm-thermal-SiO2 wafers in an industrial, high-throughput Evatec LLS EVO II magnetron sputtering system. The multilayers consist of stacks of alternating 80-nm-thick ferromagnetic layers and 4-nm-thick Al2O3 dielectric interlayers. Since in our dynamic sputter system the substrate cage rotates continuously, such that the substrates face different targets alternatively, each ferromagnetic sublayer in the multilayer consists of a fine structure comprising alternating CoTaZr and FeCoB nanolayers with very sharp interfaces. We adjust the thickness of these individual nanolayers between 0.5 and 1.5 nm by changing the cage rotation speed and the power of each gun, which is an excellent mode to engineer new, composite ferromagnetic materials. Using X-ray reflectometry (XRR we reveal that the interfaces between the FeCoB and CoTaZr nanolayers are perfectly smooth with roughness of 0.2-0.3 nm. Kerr magnetometry and B-H looper measurements for the as-deposited samples show that the coercivity of these thin films is very low, 0.2-0.3 Oe, and gradually scales up with the thickness of FeCoB nanolayers, i.e. with the increase of the overall Fe content from 0 % (e.g. CoTaZr-based multilayers to 52 % (e.g. FeCoB-based multilayers. We explain this trend in the random anisotropy model, based on considerations of grain size growth, as revealed by glancing angle X-ray diffraction (GAXRD, but also because of the increase of magnetostriction with the increase of Fe content as shown by B-H looper measurements performed on strained wafers. The unexpected enhancement of the in-plane anisotropy field from 18.3 Oe and 25.8 Oe for the

  6. Magnetic anisotropy and magnetostriction in nanocrystalline Fe–Al alloys obtained by melt spinning technique

    Energy Technology Data Exchange (ETDEWEB)

    García, J.A.; Carrizo, J. [Depto. de Física de la Universidad de Oviedo, c/Calvo Sotelo s/n, 33007 Oviedo (Spain); Elbaile, L., E-mail: elbaile@uniovi.es [Depto. de Física de la Universidad de Oviedo, c/Calvo Sotelo s/n, 33007 Oviedo (Spain); Lago-Cachón, D.; Rivas, M. [Depto. de Física de la Universidad de Oviedo, c/Calvo Sotelo s/n, 33007 Oviedo (Spain); Castrillo, D. [Depto. de Ciencias de los Materiales de la Universidad de Oviedo, c/Independencia, 33004 Oviedo (Spain); Pierna, A.R. [Depto. de Ingeniería Química y Medio Ambiente, EUPSS, UPV/EHU, San Sebastián (Spain)

    2014-12-15

    A study about the magnetic anisotropy and magnetostriction in ribbons of composition Fe{sub 81}Al{sub 19} and Fe{sub 70}Al{sub 30} obtained by the melt spinning technique is presented. The hysteresis loops indicate that the easy magnetization direction lies in both cases on the plane of the ribbon. Torque magnetometry measurements show that the in-plane magnetic anisotropy constant results 10100 J m{sup −3} and 490 J m{sup −3} for the Fe{sub 81}Al{sub 19} and Fe{sub 70}Al{sub 30} respectively. After a thermal treatment of 2 h at 473 K to remove the residual stresses, the in-plane magnetic anisotropy constants falls down to 2500 J m{sup −3} in the first composition and remains the same in the second one, while the easy direction remains the same. Measurements of the magnetostriction and the residual stresses of both ribbons allow us to explain the above mentioned results about the magnetic anisotropy and to conclude that the residual stresses via magnetostriction are the main source of magnetic anisotropy in the case of Fe{sub 81}Al{sub 19} ribbon but they do not influence this property in the ribbon of composition Fe{sub 70}Al{sub 30}. - Highlights: • The origin of magnetic anisotropy of Fe{sub 81}Al{sub 19} and Fe{sub 70}Al{sub 30} ribbons has been studied. • The magnetic anisotropy lies in the plane of the ribbons. • A huge difference in magnetic anisotropy between two ribbons has been observed. • Magnetostriction and residual stresses explain the magnetic anisotropy in Fe{sub 81}Al{sub 19} ribbon.

  7. Optical escape factors for Doppler profiles in spherical, cylindrical and plane parallel geometries

    International Nuclear Information System (INIS)

    Otsuka, Masamoto.

    1977-12-01

    Optical escape factors for Doppler profiles in spherical, cylindrical and plane parallel geometries are tabulated over the range of optical depths from 10 -3 to 10 5 . Relations with the known formulae are discussed also. (auth.)

  8. Role of the magnetic anisotropy in organic spin valves

    Directory of Open Access Journals (Sweden)

    V. Kalappattil

    2017-09-01

    Full Text Available Magnetic anisotropy plays an important role in determining the magnetic functionality of thin film based electronic devices. We present here, the first systematic study of the correlation between magnetoresistance (MR response in organic spin valves (OSVs and magnetic anisotropy of the bottom ferromagnetic electrode over a wide temperature range (10 K–350 K. The magnetic anisotropy of a La0.67Sr0.33MnO3 (LSMO film epitaxially grown on a SrTiO3 (STO substrate was manipulated by reducing film thickness from 200 nm to 20 nm. Substrate-induced compressive strain was shown to drastically increase the bulk in-plane magnetic anisotropy when the LSMO became thinner. In contrast, the MR response of LSMO/OSC/Co OSVs for many organic semiconductors (OSCs does not depend on either the in-plane magnetic anisotropy of the LSMO electrodes or their bulk magnetization. All the studied OSV devices show a similar temperature dependence of MR, indicating a similar temperature-dependent spinterface effect irrespective of LSMO thickness, resulting from the orbital hybridization of carriers at the OSC/LSMO interface.

  9. Raman Signatures of Broken Inversion Symmetry and In-Plane Anisotropy in Type-II Weyl Semimetal Candidate TaIrTe4.

    Science.gov (United States)

    Liu, Yinan; Gu, Qiangqiang; Peng, Yu; Qi, Shaomian; Zhang, Na; Zhang, Yinong; Ma, Xiumei; Zhu, Rui; Tong, Lianming; Feng, Ji; Liu, Zheng; Chen, Jian-Hao

    2018-05-07

    The layered ternary compound TaIrTe 4 is an important candidate to host the recently predicted type-II Weyl fermions. However, a direct and definitive proof of the absence of inversion symmetry in this material, a prerequisite for the existence of Weyl Fermions, has so far remained evasive. Herein, an unambiguous identification of the broken inversion symmetry in TaIrTe 4 is established using angle-resolved polarized Raman spectroscopy. Combining with high-resolution transmission electron microscopy, an efficient and nondestructive recipe to determine the exact crystallographic orientation of TaIrTe 4 crystals is demonstrated. Such technique could be extended to the fast identification and characterization of other type-II Weyl fermions candidates. A surprisingly strong in-plane electrical anisotropy in TaIrTe 4 thin flakes is also revealed, up to 200% at 10 K, which is the strongest known electrical anisotropy for materials with comparable carrier density, notably in such good metals as copper and silver. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Magnetic anisotropies and magnetic switching in Co films

    Science.gov (United States)

    Bland, J. A. C.; Baird, M. J.; Leung, H. T.; Ives, A. J. R.; Mackay, K. D.; Hughes, H. P.

    1992-07-01

    We have used the magneto-optical Kerr effect to investigate the role of the substrate and growth conditions in determining the magnetic switching behaviour of Co films in the thickness range 100-200 Å supported by GaAs(001) and Si(111) substrates. We discuss the anisotropic magnetic hysteresis behaviour observed for Co/GaAs and Co/Si films in terms of coherent rotation of the magnetisation vector during magnetic switching. Equivalent films supported by glass substrates are found to be almost isotropic in-plane. The in-plane coercive and saturation fields are observed to lie in the range 20-80 Oe but perpendicular saturation fields of 25 and 19 kOe are found for the Co/Si and Co/GaAs systems respectively which substantially exceed the demagnetising field in each case. The measured perpendicular anisotropy fields differ strongly from the values for hcp and bcc Co and are attributed to the details of the interface and film structure. We also report strongly frequency dependent magnetic switching behaviour in these Co films.

  11. Interplay of uniaxial and cubic anisotropy in epitaxial Fe thin films on MgO (001 substrate

    Directory of Open Access Journals (Sweden)

    Srijani Mallik

    2014-09-01

    Full Text Available Epitaxial Fe thin films were grown on annealed MgO(001 substrates at oblique incidence by DC magnetron sputtering. Due to the oblique growth configuration, uniaxial anisotropy was found to be superimposed on the expected four-fold cubic anisotropy. A detailed study of in-plane magnetic hysteresis for Fe on MgO thin films has been performed by Magneto Optic Kerr Effect (MOKE magnetometer. Both single step and double step loops have been observed depending on the angle between the applied field and easy axis i.e. along ⟨100⟩ direction. Domain images during magnetization reversal were captured by Kerr microscope. Domain images clearly evidence two successive and separate 90° domain wall (DW nucleation and motion along cubic easy cum uniaxial easy axis and cubic easy cum uniaxial hard axis, respectively. However, along cubic hard axis two 180° domain wall motion dominate the magnetization reversal process. In spite of having four-fold anisotropy it is essential to explain magnetization reversal mechanism in 0°< ϕ < 90° span as uniaxial anisotropy plays a major role in this system. Also it is shown that substrate rotation can suppress the effect of uniaxial anisotropy superimposed on four-fold anisotropy.

  12. On the formation of a plasma pressure anisotropy in the dayside magnetosheath

    Directory of Open Access Journals (Sweden)

    B. V. Rezhenov

    Full Text Available We present a numerical solution for the momentum equation of the magnetosheath particles that describes the distribution of the pressure anisotropy of the magnetosheath plasma in the midday meridian plane. The pressure anisotropy is a maximum near the magnetopause subsolar point (p/pVert ≌ 10. The pressure anisotropy is caused by two factors: particles with small pitch angles (VVert>V which travel along the magnetic field lines away from the equatorial plane of the magnetosheath; and particles, after crossing the bowshock, which reach the bulk velocity component directed along the magnetic field lines again, away from the magnetosheath equatorial plane. This velocity increases with increasing distance from the subsolar point of the bowshock, and does not permit particles with large pitch angles (V>VVert to move toward the equatorial plane.

  13. Optical Third-Harmonic Generation in Graphene

    Directory of Open Access Journals (Sweden)

    Sung-Young Hong

    2013-06-01

    Full Text Available We report strong third-harmonic generation in monolayer graphene grown by chemical vapor deposition and transferred to an amorphous silica (glass substrate; the photon energy is in three-photon resonance with the exciton-shifted van Hove singularity at the M point of graphene. The polarization selection rules are derived and experimentally verified. In addition, our polarization- and azimuthal-rotation-dependent third-harmonic-generation measurements reveal in-plane isotropy as well as anisotropy between the in-plane and out-of-plane nonlinear optical responses of graphene. Since the third-harmonic signal exceeds that from bulk glass by more than 2 orders of magnitude, the signal contrast permits background-free scanning of graphene and provides insight into the structural properties of graphene.

  14. Exchange coupling in hybrid anisotropy magnetic multilayers quantified by vector magnetometry

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, C., E-mail: C.Morrison.2@warwick.ac.uk; Miles, J. J.; Thomson, T. [School of Computer Science, University of Manchester, Manchester M13 9PL (United Kingdom); Anh Nguyen, T. N. [Materials Physics, School of ICT, KTH Royal Institute of Technology, Electrum 229, 164 40 Kista (Sweden); Spintronics Research Group, Laboratory for Nanotechnology (LNT), VNU-HCM, Ho Chi Minh City (Viet Nam); Fang, Y.; Dumas, R. K. [Department of Physics, University of Gothenburg, 412 96 Gothenburg (Sweden); Åkerman, J. [Materials Physics, School of ICT, KTH Royal Institute of Technology, Electrum 229, 164 40 Kista (Sweden); Department of Physics, University of Gothenburg, 412 96 Gothenburg (Sweden)

    2015-05-07

    Hybrid anisotropy thin film heterostructures, where layers with perpendicular and in-plane anisotropy are separated by a thin spacer, are novel materials for zero/low field spin torque oscillators and bit patterned media. Here, we report on magnetization reversal and exchange coupling in a archetypal Co/Pd (perpendicular)-NiFe (in-plane) hybrid anisotropy system studied using vector vibrating sample magnetometry. This technique allows us to quantify the magnetization reversal in each individual magnetic layer, and measure of the interlayer exchange as a function of non-magnetic spacer thickness. At large (>1 nm) spacer thicknesses Ruderman-Kittel-Kasuya-Yosida-like exchange dominates, with orange-peel coupling providing a significant contribution only for sub-nm spacer thickness.

  15. Implementing digital holograms to create and measure complex-plane optical fields

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2016-02-01

    Full Text Available The coherent superposition of a Gaussian beam with an optical vortex can be mathematically described to occupy the complex plane. The authors provide a simple analogy between the mathematics, in the form of the complex plane, and the visual...

  16. T=0 phase diagram and nature of domains in ultrathin ferromagnetic films with perpendicular anisotropy

    International Nuclear Information System (INIS)

    Pighin, Santiago A.; Billoni, Orlando V.; Stariolo, Daniel A.; Cannas, Sergio A.

    2010-01-01

    We present the complete zero temperature phase diagram of a model for ultrathin films with perpendicular anisotropy. The whole parameter space of relevant coupling constants is studied in first order anisotropy approximation. Because the ground state is known to be formed by perpendicular stripes separated by Bloch walls, a standard variational approach is used, complemented with specially designed Monte Carlo simulations. We can distinguish four regimes according to the different nature of striped domains: a high anisotropy Ising regime with sharp domain walls, a saturated stripe regime with thicker walls inside which an in-plane component of the magnetization develops, a narrow canted-like regime, characterized by a sinusoidal variation of both the in-plane and the out of plane magnetization components, which upon further decrease of the anisotropy leads to an in-plane ferromagnetic state via a spin reorientation transition (SRT). The nature of domains and walls are described in some detail together with the variation of domain width with anisotropy, for any value of exchange and dipolar interactions. Our results, although strictly valid at T=0, can be valuable for interpreting data on the evolution of domain width at finite temperature, a still largely open problem.

  17. Optical anisotropy, molecular orientations, and internal stresses in thin sulfonated poly(ether ether ketone) films

    NARCIS (Netherlands)

    Koziara, B.T.; Nijmeijer, K.; Benes, N.E.

    2015-01-01

    The thickness, the refractive index, and the optical anisotropy of thin sulfonated poly(ether ether ketone) films, prepared by spin-coating or solvent deposition, have been investigated with spectroscopic ellipsometry. For not too high polymer concentrations (≤5 wt%) and not too low spin speeds

  18. Optical anisotropy, molecular orientations, and internal stresses in thin sulfonated poly(ether ether ketone) films

    NARCIS (Netherlands)

    Koziara, Beata; Nijmeijer, Dorothea C.; Benes, Nieck Edwin

    2015-01-01

    The thickness, the refractive index, and the optical anisotropy of thin sulfonated poly(ether ether ketone) films, prepared by spin-coating or solvent deposition, have been investigated with spectroscopic ellipsometry. For not too high polymer concentrations (B5 wt%) and not too low spin speeds

  19. Anisotropy of creep for vortex motion along twin planes in YBa2Cu3O7-x single crystals

    International Nuclear Information System (INIS)

    Bondarenko, A.V.; Prodan, A.A.; Obolenskij, M.A.; Vovk, R.V.; Arouri, T.R.

    2001-01-01

    Anisotropy of magnetic flux creep was investigated for the flux motion along the twin boundaries. It is shown that in relatively low magnetic fields the velocity of vortex creep does not depend on magnetic field and angle α identical H, ab. It is found that the differential resistivity ρ identical dE/dJ at high transport currents tends to saturation and its value is close to the viscous friction resistivity in the Bardeen-Stephen model. In low magnetic fields for the field applied in the vicinity of the ab-plane of the crystal a lock-in transition of vortices between the superconducting CuO layers was observed

  20. Remarkable strain-induced magnetic anisotropy in epitaxial Co2MnGa (0 0 1) films

    International Nuclear Information System (INIS)

    Pechan, Michael J.; Yu, Chengtao; Carr, David; Palmstroem, Chris J.

    2005-01-01

    Remarkably large, strain-induced anisotropy is observed in the thin-film Heusler alloy Co 2 MnGa. 30 nm Co 2 MnGa (0 0 1) films have been epitaxially grown on different interlayers/substrates with varied strain, and investigated with ferromagnetic resonance. The film grown on ErAs/InGaAs/InP experiences tension strain, resulting in an out-of-plane strain-induced anisotropy (∼1.1x10 6 erg/cm 3 ) adding to the effects of shape anisotropy. In contrast, the film grown on ScErAs/GaAs, experiences a compression strain, resulting in an out-of-plane strain-induced anisotropy (∼3.3x10 6 erg/cm 3 ) which almost totally cancels the effects of shape anisotropy, thus rendering the film virtually isotropic. This results in the formation of stripe domains in remanence. In addition, small, but well-defined 2-fold and 4-fold in-plane anisotropy coexist in each sample with weak, but interesting strain dependence. Transport measurement shows small (<1%) magnetoresistance effects in the compression film, but negligible magnetoresistance in the relaxed and tension strained samples

  1. Transport current anisotropy in oriented grained bulk YBa2Cu3Ox superconductor

    International Nuclear Information System (INIS)

    Selvamanickam, V.; Salama, K.

    1990-01-01

    The anisotropy in transport current density has been studied on bulk YBa 2 Cu 3 O x superconductor. The transport current density measurements were performed on oriented grained YBa 2 Cu 3 O x superconductor with the current aligned at different angles to the a endash b plane. The angular dependence of J c shows a rapid drop when the transport current is misaligned from the a endash b plane at small angles and then a slow decrease at higher angles. An anisotropy ratio of about 25 is observed at 77 K and zero field between the J c along a endash b plane and that perpendicular to the plane

  2. Mechanism of tailored magnetic anisotropy in amorphous Co{sub 68}Fe{sub 24}Zr{sub 8} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Yu, E-mail: yu.fu@uni-due.de, E-mail: cangcangzhulin@gmail.com; Meckenstock, R.; Farle, M. [Fakultät für Physik and Center for Nanointegration Duisburg-Essen (CeNIDE), Universität Duisburg-Essen, 47057 Duisburg (Germany); Barsukov, I., E-mail: ibarsuko@uci.edu [Fakultät für Physik and Center for Nanointegration Duisburg-Essen (CeNIDE), Universität Duisburg-Essen, 47057 Duisburg (Germany); Physics and Astronomy, University of California, Irvine, California 92697 (United States); Lindner, J. [Fakultät für Physik and Center for Nanointegration Duisburg-Essen (CeNIDE), Universität Duisburg-Essen, 47057 Duisburg (Germany); Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf e.V., Bautzner Landstr. 400, 01328 Dresden (Germany); Raanaei, H. [Department of Physics, Persian Gulf University, Bushehr 75169 (Iran, Islamic Republic of); Hjörvarsson, B. [Department of Physics and Astronomy, Uppsala University, Box 516 SE-75120 Uppsala (Sweden)

    2014-02-17

    The mechanism of tailored magnetic anisotropy in amorphous Co{sub 68}Fe{sub 24}Zr{sub 8} thin films was investigated by ferromagnetic resonance (FMR) on samples deposited without an applied magnetic field, with an out-of-plane field and an in-plane field. Analysis of FMR spectra profiles, high frequency susceptibility calculations, and statistical simulations using a distribution of local uniaxial magnetic anisotropy reveal the presence of atomic configurations with local uniaxial anisotropy, of which the direction can be tailored while the magnitude remains at an intrinsically constant value of 3.0(2) kJ/m{sup 3}. The in-plane growth field remarkably sharpens the anisotropy distribution and increases the sample homogeneity. The results benefit designing multilayer spintronic devices based on highly homogeneous amorphous layers with tailored magnetic anisotropy.

  3. Exploring machine-learning-based control plane intrusion detection techniques in software defined optical networks

    Science.gov (United States)

    Zhang, Huibin; Wang, Yuqiao; Chen, Haoran; Zhao, Yongli; Zhang, Jie

    2017-12-01

    In software defined optical networks (SDON), the centralized control plane may encounter numerous intrusion threatens which compromise the security level of provisioned services. In this paper, the issue of control plane security is studied and two machine-learning-based control plane intrusion detection techniques are proposed for SDON with properly selected features such as bandwidth, route length, etc. We validate the feasibility and efficiency of the proposed techniques by simulations. Results show an accuracy of 83% for intrusion detection can be achieved with the proposed machine-learning-based control plane intrusion detection techniques.

  4. Optical and x-ray alignment approaches for off-plane reflection gratings

    Science.gov (United States)

    Allured, Ryan; Donovan, Benjamin D.; DeRoo, Casey T.; Marlowe, Hannah R.; McEntaffer, Randall L.; Tutt, James H.; Cheimets, Peter N.; Hertz, Edward; Smith, Randall K.; Burwitz, Vadim; Hartner, Gisela; Menz, Benedikt

    2015-09-01

    Off-plane reflection gratings offer the potential for high-resolution, high-throughput X-ray spectroscopy on future missions. Typically, the gratings are placed in the path of a converging beam from an X-ray telescope. In the off-plane reflection grating case, these gratings must be co-aligned such that their diffracted spectra overlap at the focal plane. Misalignments degrade spectral resolution and effective area. In-situ X-ray alignment of a pair of off-plane reflection gratings in the path of a silicon pore optics module has been performed at the MPE PANTER beamline in Germany. However, in-situ X-ray alignment may not be feasible when assembling all of the gratings required for a satellite mission. In that event, optical methods must be developed to achieve spectral alignment. We have developed an alignment approach utilizing a Shack-Hartmann wavefront sensor and diffraction of an ultraviolet laser. We are fabricating the necessary hardware, and will be taking a prototype grating module to an X-ray beamline for performance testing following assembly and alignment.

  5. In-plane deeply-etched optical MEMS notch filter with high-speed tunability

    International Nuclear Information System (INIS)

    Sabry, Yasser M; Eltagoury, Yomna M; Shebl, Ahmed; Khalil, Diaa; Soliman, Mostafa; Sadek, Mohamed

    2015-01-01

    Notch filters are used in spectroscopy, multi-photon microscopy, fluorescence instrumentation, optical sensors and other life science applications. One type of notch filter is based on a fiber-coupled Fabry–Pérot cavity, which is formed by a reflector (external mirror) facing a dielectric-coated end of an optical fiber. Tailoring this kind of optical filter for different applications is possible because the external mirror has fewer mechanical and optical constraints. In this paper we present optical modeling and implementation of a fiber-coupled Fabry–Pérot filter based on dielectric-coated optical fiber inserted into a micromachined fiber groove facing a metallized micromirror, which is driven by a high-speed MEMS actuator. The optical MEMS chip is fabricated using deep reactive ion etching (DRIE) technology on a silicon on insulator wafer, where the optical axis is parallel to the substrate (in-plane) and the optical/mechanical components are self-aligned by the photolithographic process. The DRIE etching depth is 150 μm, chosen to increase the micromirror optical throughput and improving the out-of-plane stiffness of the MEMS actuator. The MEMS actuator type is closing-gap, while its quality factor is almost doubled by slotting the fixed plate. A low-finesse Fabry–Pérot interferometer is formed by the metallized surface of the micromirror and a cleaved end of a standard single-mode fiber, for characterization of the MEMS actuator stroke and resonance frequency. The actuator achieves a travel distance of 800 nm at a resonance frequency of 89.9 kHz. The notch filter characteristics were measured using an optical spectrum analyzer, and the filter exhibits a free spectral range up to 100 nm and a notch rejection ratio up to 20 dB around a wavelength of 1300 nm. The presented device provides batch processing and low-cost production of the filter. (paper)

  6. Effect of tilted anisotropy on spin states of strongly anisotropic 2D film

    International Nuclear Information System (INIS)

    Fridman, Yu. A.; Klevets, F. N.; Gorelikov, G. A.

    2012-01-01

    The spin states of a 2D film with a strong easy-plane anisotropy and single-ion tilted anisotropy, the axis of which forms a certain angle with the normal to the film plane are investigated. In this system, an angular ferromagnetic phase, a spatially inhomogeneous state, and a quadrupole phase can be formed; the realization of these states noticeably depends on the degree of tilted anisotropy.

  7. Dimensional Crossover and Its Interplay with In-Plane Anisotropy of Upper Critical Field in β-(BDA-TTP)2SbF6

    Science.gov (United States)

    Yasuzuka, Syuma; Koga, Hiroaki; Yamamura, Yasuhisa; Saito, Kazuya; Uji, Shinya; Terashima, Taichi; Akutsu, Hiroki; Yamada, Jun-ichi

    2017-08-01

    Resistance measurements have been performed to investigate the dimensionality and the in-plane anisotropy of the upper critical field (Hc2) for β-(BDA-TTP)2SbF6 in fields H up to 15 T and at temperatures T from 1.5 to 7.5 K, where BDA-TTP stands for 2,5-bis(1,3-dithian-2-ylidene)-1,3,4,6-tetrathiapentalene. The upper critical fields parallel and perpendicular to the conduction layer are determined and dimensional crossover from anisotropic three-dimensional behavior to two-dimensional behavior is found at around 6 K. When the direction of H is varied within the conducting layer at 6.0 K, Hc2 shows twofold symmetry: Hc2 along the minimum Fermi wave vector (maximum Fermi velocity) is larger than that along the maximum Fermi wave vector (minimum Fermi velocity). The normal-state magnetoresistance has twofold symmetry similar to Hc2 and shows a maximum when the magnetic field is nearly parallel to the maximum Fermi wave vector. This tendency is consistent with the Fermi surface anisotropy. At 3.5 K, we found clear fourfold symmetry of Hc2 despite the fact that the normal-state magnetoresistance shows twofold symmetry arising from the Fermi surface anisotropy. The origin of the fourfold symmetry of Hc2 is discussed in terms of the superconducting gap structure in β-(BDA-TTP)2SbF6.

  8. Dimensional crossover and its interplay with in-plane anisotropy of upper critical field in β-(BDA-TTP)_2SbF_6

    International Nuclear Information System (INIS)

    Yasuzuka, Syuma; Koga, Hiroaki; Yamamura, Yasuhisa; Saito, Kazuya; Uji, Shinya; Terashima, Taichi; Akutsu, Hiroki; Yamada, Jun-ichi

    2017-01-01

    Resistance measurements have been performed to investigate the dimensionality and the in-plane anisotropy of the upper critical field (H_c_2) for β-(BDA-TTP)_2SbF_6 in fields H up to 15 T and at temperatures T from 1.5 to 7.5 K, where BDA-TTP stands for 2,5-bis(1,3-dithian-2-ylidene)-1,3,4,6-tetrathiapentalene. The upper critical fields parallel and perpendicular to the conduction layer are determined and dimensional crossover from anisotropic three-dimensional behavior to two-dimensional behavior is found at around 6 K. When the direction of H is varied within the conducting layer at 6.0 K, H_c_2 shows twofold symmetry: H_c_2 along the minimum Fermi wave vector (maximum Fermi velocity) is larger than that along the maximum Fermi wave vector (minimum Fermi velocity). The normal-state magnetoresistance has twofold symmetry similar to H_c_2 and shows a maximum when the magnetic field is nearly parallel to the maximum Fermi wave vector. This tendency is consistent with the Fermi surface anisotropy. At 3.5 K, we found clear fourfold symmetry of H_c_2 despite the fact that the normal-state magnetoresistance shows twofold symmetry arising from the Fermi surface anisotropy. The origin of the fourfold symmetry of H_c_2 is discussed in terms of the superconducting gap structure in β-(BDA-TTP)_2SbF_6. (author)

  9. Plagioclase-dominated Seismic Anisotropy in the Basin and Range Lower Crust

    Science.gov (United States)

    Bernard, R. E.; Behr, W. M.

    2017-12-01

    Observations of seismic anisotropy have the ability to provide important information on deformation and structures within the lithosphere. While the mechanisms controlling seismic anisotropy in the upper mantle are fairly well understood (i.e., olivine "lattice preferred orientation" or LPO), less is known about the minerals and structures controlling regional lower crustal anisotropy. We use lower crustal xenoliths from young cinder cones in the eastern Mojave/western Basin and Range to investigate mineral LPOs and their effect on seismic anisotropy. Lower crustal gabbros were collected from two areas roughly 80 km apart — the Cima and Deadman Lake Volcanic Fields. Lower crustal fabrics measured using EBSD are dominated by LPOs in plagioclase associated with both plastic deformation and magmatic flow. In all fabric types, plagioclase LPOs produce seismic fast axes oriented perpendicular to the foliation plane. This is in contrast to mantle peridotite xenoliths from the same locations, which preserve olivine LPOs with fast axes aligned parallel to the foliation plane. The orthogonal orientations of mantle and lower crustal fast axes relative to foliation implies that even where fabric development in both layers is coeval and kinematically compatible, their measured anisotropies can be perpendicular to each other, therefore appearing anti-correlated when measured seismically. Furthermore, our observation of plagioclase-dominated LPO and negligible concentrations of mica is at odds with the common assumption that lower crustal anisotropy is dominated by micaceous minerals, whose slow axes reliably align parallel to lineation or flow. In contrast, our data show that for plagioclase, fast axes align perpendicular to flow and the slow axes are variably aligned within the foliation plane. Therefore, for a crustal section dominated by plagioclase LPO with assumed horizontal foliation, there would be a vertical rather than a horizontal axis of symmetry, resulting in a

  10. X-ray diffraction study of A- plane non-polar InN epilayer grown by MOCVD

    Science.gov (United States)

    Moret, Matthieu; Briot, Olivier; Gil, Bernard

    2015-03-01

    Strong polarisation-induced electric fields in C-plane oriented nitrides semiconductor layers reduce the performance of devices. Eliminating the polarization fields can be achieved by growing nitrides along non polar direction. We have grown non polar A-plane oriented InN on R-plane (1‾102) nitridated sapphire substrate by MOCVD. We have studied the structural anisotropy observed in these layers by analyzing High Resolution XRay Diffraction rocking curve (RC) experiments as a function of the in-plane beam orientation. A-plane InN epilayer have a unique epitaxial relationship on R-Plane sapphire and show a strong structural anisotropy. Full width at half maximum (FWHM) of the InN(11‾20) XRD RC values are contained between 44 and 81 Arcmin. FWHM is smaller when the diffraction occurs along the [0001] and the largest FWHM values, of the (11‾20) RC, are obtained when the diffraction occurs along the [1‾100] in-plane direction. Atomic Force Microscopy imaging revealed morphologies with well organized crystallites. The grains are structured along a unique crystallographic orientation of InN, leading to larger domains in this direction. This structural anisotropy can be, in first approximation, attributed to the difference in the domain sizes observed. XRD reciprocal space mappings (RSM) were performed in asymmetrical configuration on (13‾40) and (2‾202) diffraction plane. RSM are measured with a beam orientation corresponding to a maximal and a minimal width of the (11‾20) Rocking curves, respectively. A simple theoretical model is exposed to interpret the RSM. We concluded that the dominant contribution to the anisotropy is due to the scattering coherence length anisotropy present in our samples.

  11. Magnetic anisotropy in GaMnAs; Magnetische Anisotropie in GaMnAs

    Energy Technology Data Exchange (ETDEWEB)

    Daeubler, Joachim

    2009-07-02

    The goal of the present work was the detailed investigation of the impact of parameters like vertical strain, hole concentration, substrate orientation and patterning on the MA in GaMnAs. At first a method is introduced enabling us to determine the MA from angle-dependent magnetotransport measurements. This method was used to analyze the impact of vertical strain {epsilon}{sub zz} on the MA in a series of GaMnAs layers with a Mn content of 5% grown on relaxed InGaAs-templates. While hole concentration and Curie temperature were found to be unaffected by vertical strain, a significant dependence of the MA on {epsilon}{sub zz} was found. The most pronounced dependence was observed for the anisotropy parameter B{sub 2} {sub perpendicular} {sub to}, representing the intrinsic contribution to the MA perpendicular to the layer plane. For this parameter a linear dependence on {epsilon}{sub zz} was found, resulting in a strain-induced transition of the magnetic easy axis with increasing strain from in-plane to out-of-plane at {epsilon}{sub zz} {approx} -0.13%. Post-growth annealing of the samples leads to an outdiffusion and/or regrouping of the highly mobile Mn interstitial donor defects, resulting in an increase in both p and T{sub C}. For the annealed samples, the transition from in-plane to out-of-plane easy axis takes place at {epsilon}{sub zz} {approx} -0.07%. From a comparison of as-grown and annealed samples, B{sub 2} {sub perpendicular} {sub to} was found to be proportional to both p and {epsilon}{sub zz}, B{sub 2} {sub perpendicular} {sub to} {proportional_to} p .{epsilon}{sub zz}. To study the influence of substrate orientation on the magnetic properties of GaMnAs, a series of GaMnAs layers with Mn contents up to 5% was grown on (001)- and (113)A-oriented GaAs substrates. The hole densities and Curie temperatures, determined from magnetotransport measurements, are drastically reduced in the (113)A layers. The differences in the magnetic properties of (113)A- and

  12. The role of Triton surfactant in anisotropic etching of {1 1 0} reflective planes on (1 0 0) silicon

    Science.gov (United States)

    Resnik, Drago; Vrtacnik, Danilo; Aljancic, Uros; Mozek, Matej; Amon, Slavko

    2005-06-01

    Etching characteristics and properties of {1 1 0} silicon crystal planes used as 45° optical mirrors for deflecting optical beams from/to optical fibers were investigated. Fiber aligning grooves and passive mirror-like planes were realized by wet micromachining of (1 0 0) silicon in KOH IPA and TMAH IPA systems. Implementation of Triton-x-100 surfactant as an additive to 25% TMAH in anisotropic etching of {1 1 0} silicon passive mirror planes is reported and discussed. It was found that Triton-x-100 contents in the range of 10 200 ppm to the 25% TMAH water etchant significantly increase the anisotropy mostly by decreasing the {1 1 0} etch rate and retaining the {1 0 0} etch rate. It is also shown that {1 1 0} surface roughness is substantially improved compared to two other etching systems. Furthermore, efficient convex corner underetching reduction is demonstrated. The results of optical characterization of passive mirrors with 632 nm incident light show reduced scattering of reflected optical beam due to improved microroughness for mirrors made by TMAH Triton. For the reflection of the optical beam with 1.33 µm and 1.54 µm wavelengths, sputtered layer of gold is used as reflective coating on silicon mirrors thus increasing the reflected optical beam intensity by an additional 8%.

  13. Switching the uniaxial magnetic anisotropy by ion irradiation induced compensation

    Science.gov (United States)

    Yuan, Ye; Amarouche, Teyri; Xu, Chi; Rushforth, Andrew; Böttger, Roman; Edmonds, Kevin; Campion, Richard; Gallagher, Bryan; Helm, Manfred; Jürgen von Bardeleben, Hans; Zhou, Shengqiang

    2018-04-01

    In the present work, the uniaxial magnetic anisotropy of GaMnAsP is modified by helium ion irradiation. According to the micro-magnetic parameters, e.g. resonance fields and anisotropy constants deduced from ferromagnetic resonance measurements, a rotation of the magnetic easy axis from out-of-plane [0 0 1] to in-plane [1 0 0] direction is achieved. From the application point of view, our work presents a novel avenue in modifying the uniaxial magnetic anisotropy in GaMnAsP with the possibility of lateral patterning by using lithography or focused ion beam.

  14. Influence of the method of measurement on the optical anisotropy factor OPTAF of pyrocarbon

    Energy Technology Data Exchange (ETDEWEB)

    Koizlik, K; Taeuber, K; Nickel, H; Wasmund, H

    1974-07-01

    This study describes the development and installation of an automatic microscope photometer for the measurement of the optical anisotropy factor OPTAF on the pyrocarbon coatings of fuel particles. After a short representation of the physical basis of this procedure the new microscope photometer is introduced. First measurements for the adaptation of the new instrument of the so far used microscope photometer are discussed. By these measurements the influence of the instrument on the value of OPTAF in the case of some special ways of measuring are explained and the appearance of an apparent anisotropy is interpreted. (auth)

  15. Influence of the method of measurement on the optical anisotropy factor OPTAF of pyrocarbon

    International Nuclear Information System (INIS)

    Koizlik, K.; Taeuber, K.; Nickel, H.; Wasmund, H.

    This study describes the development and installation of an automatic microscope photometer for the measurement of the optical anisotropy factor OPTAF on the pyrocarbon coatings of fuel particles. After a short representation of the physical basis of this procedure the new microscope photometer is introduced. First measurements for the adaptation of the new instrument of the so far used microscope photometer are discussed. By these measurements the influence of the instrument on the value of OPTAF in the case of some special ways of measuring are explained and the appearance of an apparent anisotropy is interpreted. (auth)

  16. Influence of the method of measurment on the optical anisotropy factor OPTAF of pyrocarbon

    International Nuclear Information System (INIS)

    Koizlik, K.; Taeuber, K.; Nicke, H.; Wasmund, H.

    1974-07-01

    This study describes the development and installation of an automatic microscope photometer for the measurement of the optical anisotropy factor OPTAF on the pyrocarbon coatings of fuel particles. After a short representation of the physical basis of this procedure the new microscope photometer is introduced. First measurements for the adaptation of the new instrument of the so far used microscope photometer are discussed. By these measurements the influence of the instrument on the value of OPTAF in the case of some special ways of measuring are explained and the appearance of an apparent anisotropy is interpreted

  17. Transport current anisotropy in oriented grained bulk YBa2Cu3O(x) superconductor

    International Nuclear Information System (INIS)

    Selvamanickam, V.; Salama, K.

    1990-01-01

    The anisotropy in transport current density has been studied on bulk YBa2Cu3O(x) superconductor. The transport current density measurements were performed on oriented grained YBa2Cu3O(x) superconductor with the current aligned at different angles to the a-b plane. The angular dependence of Jc shows a rapid drop when the transport current is misaligned from the a-b plane at small angles and then a slow decrease at higher angles. An anisotropy ratio of about 25 is observed at 77 K and zero field between the Jc along a-b plane and that perpendicular to the plane. 15 refs

  18. Current sheets and pressure anisotropy in the reconnection exhaust

    International Nuclear Information System (INIS)

    Le, A.; Karimabadi, H.; Roytershteyn, V.; Egedal, J.; Ng, J.; Scudder, J.; Daughton, W.; Liu, Y.-H.

    2014-01-01

    A particle-in-cell simulation shows that the exhaust during anti-parallel reconnection in the collisionless regime contains a current sheet extending 100 inertial lengths from the X line. The current sheet is supported by electron pressure anisotropy near the X line and ion anisotropy farther downstream. Field-aligned electron currents flowing outside the magnetic separatrices feed the exhaust current sheet and generate the out-of-plane, or Hall, magnetic field. Existing models based on different mechanisms for each particle species provide good estimates for the levels of pressure anisotropy. The ion anisotropy, which is strong enough to reach the firehose instability threshold, is also important for overall force balance. It reduces the outflow speed of the plasma

  19. Current sheets and pressure anisotropy in the reconnection exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Le, A.; Karimabadi, H.; Roytershteyn, V. [SciberQuest, Inc., Del Mar, California 92014 (United States); Egedal, J. [University of Wisconsin–Madison, Madison, Wisconsin 53706 (United States); Ng, J. [PPPL, Princeton University, Princeton, New Jersey 08543 (United States); Scudder, J. [University of Iowa, Iowa City, Iowa 52242 (United States); Daughton, W.; Liu, Y.-H. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2014-01-15

    A particle-in-cell simulation shows that the exhaust during anti-parallel reconnection in the collisionless regime contains a current sheet extending 100 inertial lengths from the X line. The current sheet is supported by electron pressure anisotropy near the X line and ion anisotropy farther downstream. Field-aligned electron currents flowing outside the magnetic separatrices feed the exhaust current sheet and generate the out-of-plane, or Hall, magnetic field. Existing models based on different mechanisms for each particle species provide good estimates for the levels of pressure anisotropy. The ion anisotropy, which is strong enough to reach the firehose instability threshold, is also important for overall force balance. It reduces the outflow speed of the plasma.

  20. Four-fold magnetic anisotropy in a Co film on MgO(0 0 1)

    International Nuclear Information System (INIS)

    Pires, M.J.M.; Cotta, A.A.C.; Martins, M.D.; Silva, A.M.A.; Macedo, W.A.A.

    2011-01-01

    The development of devices based on magnetic tunnel junctions has raised new interests on the structural and magnetic properties of the interface Co/MgO. In this context, we have grown ultrathin Co films (≤30 A) by molecular-beam epitaxy on MgO(0 0 1) substrates kept at different temperatures (T S ). Their structural and magnetic properties were correlated and discussed in the context of distinct magnetic anisotropies for Co phases reported in the literature. The sample characterization has been done by reflection high energy electron diffraction, magneto-optical Kerr effect and ferromagnetic resonance. The main focus of the work is on a sample deposited at T S =25 o C, as its particular way of growth has enabled a bct Co structure to settle on the substrate, where it is not normally obtained without specific seed layers. This sample presented the best crystallinity, softer magnetic properties and a four-fold in-plane magnetic anisotropy with Co easy directions. Concerning the samples prepared at T S =200 and 500 o C, they show fcc and polycrystalline structures, respectively and more intricate magnetic anisotropy patterns. - Research Highlights: →Results suggest the lattice is already after the Bain transformation for T S =25 o C, and the Co film has a bct structure instead of an fct one. →For deposition temperature of T S =25 o C, a four-fold in-plane magnetic anisotropy with Co easy directions has been obtained. →The growth mode of Co on MgO single crystals at different temperatures resulted in bct Co at T S =25 o C, fcc Co at T S =200 o C and polycrystalline Co at T S =500 o C.

  1. Giant anisotropy of magnetocaloric effect in TbMnO3 single crystals

    Science.gov (United States)

    Jin, Jin-Ling; Zhang, Xiang-Qun; Li, Guo-Ke; Cheng, Zhao-Hua; Zheng, Lin; Lu, Yi

    2011-05-01

    The magnetocaloric effect (MCE) in TbMnO3 single crystals was investigated by isothermal magnetization curves for the ab plane at low temperatures. Large magnetic entropy change, ΔSM = -18.0 J/kg K, and the refrigerant capacity, RC = 390.7 J/kg, are achieved near the ordering temperature of Tb3+ moment (TNTb) under 70 kOe along the a axis. Furthermore, the TbMnO3 single crystal exhibits a giant MCE anisotropy. The difference of ΔSMand RC between the a and b axes is field and temperature dependent, which reaches maximum values of 11.4 J/kg K and 304.1 J/kg, respectively. By taking magnetocrystalline anisotropy into account, the rotating ΔSMwithin the ab plane can be well simulated, indicating that the anisotropy of ΔSMis directly contributed from the magnetocrystalline anisotropy. Our finding for giant MCE anisotropy in TbMnO3 single crystals explores the possibility of using this material for magnetic refrigerators by rotating its magnetization vector rather than moving it in and out of the magnet.

  2. Electric field controlled reversible magnetic anisotropy switching studied by spin rectification

    International Nuclear Information System (INIS)

    Zhou, Hengan; Fan, Xiaolong; Wang, Fenglong; Jiang, Changjun; Rao, Jinwei; Zhao, Xiaobing; Xue, Desheng; Gui, Y. S.; Hu, C.-M.

    2014-01-01

    In this letter, spin rectification was used to study the electric field controlled dynamic magnetic properties of the multiferroic composite which is a Co stripe with induced in-plane anisotropy deposited onto a Pb(Mg 1∕3 Nb 2∕3 )O 3 -PbTiO 3 substrate. Due to the coupling between piezoelectric and magnetoelastic effects, a reversible in-plane anisotropy switching has been realized by varying the history of the applied electric field. This merit results from the electric hysteresis of the polarization in the nonlinear piezoelectric regime, which has been proved by a butterfly type electric field dependence of the in-plane anisotropy field. Moreover, the electric field dependent effective demagnetization field and linewidth have been observed at the same time

  3. COSIGN – developing an optical software controlled data plane for future large-scale datacenter networks

    DEFF Research Database (Denmark)

    Galili, Michael; Kamchevska, Valerija; Fagertun, Anna Manolova

    2015-01-01

    This talk will present the work of the EU project COSIGN targeting the development of optical data plane solutions for future high-capacity datacenter networks (DCNs). Optical data planes with high capacity and high flexibility through software control are developed in order to enable a coherent...

  4. On the influence of lipid-induced optical anisotropy for the bioimaging of exo- or endocytosis with interference microscopic imaging.

    Science.gov (United States)

    Marques, D; Miranda, A; Silva, A G; Munro, P R T; DE Beule, P A A

    2018-05-01

    Some implementations of interference microscopy imaging use digital holographic measurements of complex scattered fields to reconstruct three-dimensional refractive index maps of weakly scattering, semi-transparent objects, frequently encountered in biological investigations. Reconstruction occurs through application of the object scattering potential which assumes an isotropic refractive index throughout the object. Here, we demonstrate that this assumption can in some circumstances be invalid for biological imaging due to the presence of lipid-induced optical anisotropy. We show that the nanoscale organization of lipids in the observation of cellular endocytosis with polarized light induces a significant change in far-field scattering. We obtain this result by presenting a general solution to Maxwell's equations describing light scattering of core-shell particles near an isotropic substrate covered with an anisotropic thin film. This solution is based on an extension of the Bobbert-Vlieger solution for particle scattering near a substrate delivering an exact solution to the scattering problem in the near field as well as far field. By applying this solution to study light scattering by a lipid vesicle near a lipid bilayer, whereby the lipids are represented through a biaxial optical model, we conclude through ellipsometry concepts that effective amounts of lipid-induced optical anisotropy significantly alter far-field optical scattering in respect to an equivalent optical model that neglects the presence of optical anisotropy. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.

  5. In-plane anisotropy in tensile deformation and its influence on the ...

    Indian Academy of Sciences (India)

    in yield stress and work hardening exponent to the deep drawability. ... reported on the simulation of yield criteria and anisotropy in more anisotropic ... studies are very important in determining the sheet metal forming in general and drawability in ...... compression (Asgari et al 1997) and precipitation hardenable iron based ...

  6. Optical anisotropy of quasi-1D rare-earth silicide nanostructures on Si(001)

    Energy Technology Data Exchange (ETDEWEB)

    Chandola, S., E-mail: sandhya.chandola@isas.de [Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V., Schwarzschildstraße 8, 12489 Berlin (Germany); Speiser, E.; Esser, N. [Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V., Schwarzschildstraße 8, 12489 Berlin (Germany); Appelfeller, S.; Franz, M.; Dähne, M. [Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin (Germany)

    2017-03-31

    Highlights: • Reflectance anisotropy spectroscopy (RAS) is capable of distinguishing optically between the semiconducting wetting layer and the metallic nanowires of rare earth (Tb and Dy) silicide nanostructures grown on vicinal Si(001). • The spectra of the wetting layer show a distinctive line shape with a large peak appearing at 3.8 eV, which is assigned to the formation of 2 × 3 and 2 × 4-like subunits of the 2 × 7 reconstruction. The spectra of the metallic nanowires show peaks at the E{sub 1} and E{sub 2} transitions of bulk Si which is assigned to strong substrate strain induced by the nanowires. • The optical anisotropy of the Tb nanowires is larger than for the Dy nanowires, which is related to the preferential formation of more strained bundles as well as larger areas of clean Si surfaces in the case of Tb. • RAS is shown to be a powerful addition to surface science techniques for studying the formation of rare-earth silicide nanostructures. Its surface sensitivity and rapidity of response make it an ideal complement to the slower but higher resolution of scanning probes of STM and AFM. - Abstract: Rare earth metals are known to interact strongly with Si(001) surfaces to form different types of silicide nanostructures. Using STM to structurally characterize Dy and Tb silicide nanostructures on vicinal Si(001), it will be shown that reflectance anisotropy spectroscopy (RAS) can be used as an optical fingerprint technique to clearly distinguish between the formation of a semiconducting two-dimensional wetting layer and the metallic one-dimensional nanowires. Moreover, the distinctive spectral features can be related to structural units of the nanostructures. RAS spectra of Tb and Dy nanostructures are found to show similar features.

  7. First principles study on the magnetocrystalline anisotropy of Fe–Ga magnetostrictive alloys

    International Nuclear Information System (INIS)

    Lei, Zheng; Cheng-Bao, Jiang; Jia-Xiang, Shang; Hui-Bin, Xu

    2009-01-01

    This paper investigates the electronic structure and magnetocrystalline anisotropy of Fe-Ga magnetostrictive material by means of the full potential-linearized augmented plane-wave method within the generalized gradient approximation. The 3d-orbit splitting of Fe atoms in D0 3 , B2-like and L1 2 crystalline structures of Fe–Ga is calculated with consideration of the crystal field as well as the spin–orbit coupling effect. Because of the frozen orbital angular momenta of the 3d-orbit for Fe atoms in Fe–Ga magnetostrictive alloys and the spin–orbit coupling, the distribution of the electron cloud is not isotropic, which leads to the anisotropy of exchange interaction between the different atoms. A method on estimating the magnetocrystalline anisotropy of Fe–Ga alloys by means of calculating orbit-projected density of states for Fe atoms is performed. The anisotropic distribution of the electron cloud of Fe atoms in these three crystalline structures of Fe–Ga is studied based on the above method showing the highest magnetic anisotropy for B2-like structure. This qualitative method comes closer to physical reality with a vivid physical view, which can evaluate the anisotropy of electron cloud for 3d transition atoms directly. The calculated results are in good agreement with both the previous theoretical computation and the tested value on the magnetic anisotropy constant, which confirms that the electron cloud anisotropy of Fe atoms could well characterize the magnetocrystalline anisotropy of Fe–Ga magnetostrictive material. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  8. Electric field controlled reversible magnetic anisotropy switching studied by spin rectification

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hengan; Fan, Xiaolong, E-mail: fanxiaolong@lzu.edu.cn; Wang, Fenglong; Jiang, Changjun; Rao, Jinwei; Zhao, Xiaobing; Xue, Desheng [Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Gui, Y. S.; Hu, C.-M. [Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada)

    2014-03-10

    In this letter, spin rectification was used to study the electric field controlled dynamic magnetic properties of the multiferroic composite which is a Co stripe with induced in-plane anisotropy deposited onto a Pb(Mg{sub 1∕3}Nb{sub 2∕3})O{sub 3}-PbTiO{sub 3} substrate. Due to the coupling between piezoelectric and magnetoelastic effects, a reversible in-plane anisotropy switching has been realized by varying the history of the applied electric field. This merit results from the electric hysteresis of the polarization in the nonlinear piezoelectric regime, which has been proved by a butterfly type electric field dependence of the in-plane anisotropy field. Moreover, the electric field dependent effective demagnetization field and linewidth have been observed at the same time.

  9. Polarized photoluminescence excitation spectroscopy of a-plane InGaN/GaN multiple quantum wells grown on r-plane sapphire

    Energy Technology Data Exchange (ETDEWEB)

    Kundys, D., E-mail: dmytro.kundys@manchester.ac.uk; Sutherland, D.; Badcock, T. J.; Dawson, P. [School of Physics and Astronomy, Photon Science Institute, University of Manchester, Manchester M13 9PL (United Kingdom); Schulz, S. [Photonics Theory group, Tyndall National Institute, Lee Maltings, Cork (Ireland); Oehler, F.; Kappers, M. J.; Oliver, R. A.; Humphreys, C. J. [Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS (United Kingdom)

    2014-03-21

    We have performed a detailed study of the impact of basal plane stacking faults (BSFs) on the optical properties of both a-plane InGaN/GaN quantum wells (QWs) and GaN template samples grown on r-sapphire. In particular, we have used polarised photoluminescence excitation spectroscopy (P-PLE) to investigate the nature of the low temperature recombination as well as extracting information on the valence band (VB) polarisation anisotropy. Our low temperature P-PLE results revealed not only excitons associated with intersubband quantum well transitions and the GaN barrier material but also a transition associated with creation of excitons in BSFs. The strength of this BSF transition varied with detection energy across the quantum well emission suggesting that there is a significant contribution to the emission line width from changes in the local electronic environment of the QWs due to interactions with BSFs. Furthermore, we observed a corresponding progressive increase in the VB splitting of the QWs as the detection energy was varied across the quantum well emission spectrum.

  10. Evidence for nanoscale two-dimensional Co clusters in CoPt{sub 3} films with perpendicular magnetic anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Cross, J O [Department of Physics, University of Washington, Seattle, WA 98195 (United States); Newville, M [Consortium for Advanced Radiation Sources, University of Chicago, Chicago, IL 60637 (United States); Maranville, B B; Hellman, F [Department of Physics, University of California at San Diego, La Jolla, CA 92093 (United States); Bordel, C [Department of Physics, University of California at Berkeley, CA 94720 (United States); Harris, V G, E-mail: cbordel@berkeley.ed [Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115 (United States)

    2010-04-14

    The length scale of the local chemical anisotropy responsible for the growth-temperature-induced perpendicular magnetic anisotropy of face-centered cubic CoPt{sub 3} alloy films was investigated using polarized extended x-ray absorption fine structure (EXAFS). These x-ray measurements were performed on a series of four (111) CoPt{sub 3} films epitaxially grown on (0001) sapphire substrates. The EXAFS data show a preference for Co-Co pairs parallel to the film plane when the film exhibits magnetic anisotropy, and random chemical order otherwise. Furthermore, atomic pair correlation anisotropy was evidenced only in the EXAFS signal from the next neighbors to the absorbing Co atoms and from multiple scattering paths focused through the next neighbors. This suggests that the Co clusters are no more than a few atoms in extent in the plane and one monolayer in extent out of the plane. Our EXAFS results confirm the correlation between perpendicular magnetic anisotropy and two-dimensional Co segregation in CoPt{sub 3} alloy films, and establish a length scale on the order of 10 A for the Co clusters.

  11. Energy efficiency with QoS control in dynamic optical networks with SDN enabled integrated control plane

    DEFF Research Database (Denmark)

    Wang, Jiayuan; Chen, Xin; Phillips, Chris

    2014-01-01

    The paper presents energy efficient routing algorithms based on a novel integrated control plane platform. The centralized control plane structure enables the use of flexible heuristic algorithms for route selection in optical networks. Differentiated routing for various traffic types is used in ...

  12. Optical properties of a-plane (Al, Ga)N/GaN multiple quantum wells grown on strain engineered Zn1-xMgxO layers by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Xia, Y.; Vinter, B.; Chauveau, J.-M.; Brault, J.; Nemoz, M.; Teisseire, M.; Leroux, M.

    2011-01-01

    Nonpolar (1120) Al 0.2 Ga 0.8 N/GaN multiple quantum wells (MQWs) have been grown by molecular beam epitaxy on (1120) Zn 0.74 Mg 0.26 O templates on r-plane sapphire substrates. The quantum wells exhibit well-resolved photoluminescence peaks in the ultra-violet region, and no sign of quantum confined Stark effect is observed in the complete multiple quantum well series. The results agree well with flat band quantum well calculations. Furthermore, we show that the MQW structures are strongly polarized along the [0001] direction. The origin of the polarization is discussed in terms of the strain anisotropy dependence of the exciton optical oscillator strengths.

  13. Paraxial design of an optical element with variable focal length and fixed position of principal planes.

    Science.gov (United States)

    Mikš, Antonín; Novák, Pavel

    2018-05-10

    In this article, we analyze the problem of the paraxial design of an active optical element with variable focal length, which maintains the positions of its principal planes fixed during the change of its optical power. Such optical elements are important in the process of design of complex optical systems (e.g., zoom systems), where the fixed position of principal planes during the change of optical power is essential for the design process. The proposed solution is based on the generalized membrane tunable-focus fluidic lens with several membrane surfaces.

  14. Optical nonlinearities and ultrafast all-optical switching of m-plane GaN in the near-infrared

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Yu; Zhou, Feng; Yang, Junyi; Yang, Yong [College of Physics, Optoelectronics and Energy, Soochow University, 215006 Suzhou (China); Xiao, Zhengguo; Wu, Xingzhi [Department of Physics, Harbin Institute of Technology, 150001 Harbin (China); Song, Yinglin, E-mail: ylsong@hit.edu.cn [College of Physics, Optoelectronics and Energy, Soochow University, 215006 Suzhou (China); Department of Physics, Harbin Institute of Technology, 150001 Harbin (China)

    2015-06-22

    We reported a systematic investigation on the three-photon absorption (3PA) spectra and wavelength dispersion of Kerr refraction of bulk m-plane GaN crystal with both polarization E⊥c and E//c by femtosecond Z-scan technique in the near-infrared region from 760 to 1030 nm. Both 3PA spectra and Kerr refraction dispersion were in good agreement with two-band models. The calculated nonlinear figure of merit and measured ultrafast nonlinear refraction dynamics via femtosecond pump-probe with phase object method revealed that m-plane GaN would be a promising candidate for ultrafast all-optical switching and autocorrelation applications at telecommunication wavelengths.

  15. Strain-dependent magnetic anisotropy in GaMnAs on InGaAs templates

    Energy Technology Data Exchange (ETDEWEB)

    Daeubler, Joachim; Glunk, Michael; Schwaiger, Stephan; Dreher, Lukas; Schoch, Wladimir; Sauer, Rolf; Limmer, Wolfgang [Institut fuer Halbleiterphysik, Universitaet Ulm, 89069 Ulm (Germany)

    2008-07-01

    We have systematically studied the influence of strain on the magnetic anisotropy of GaMnAs by means of HRXRD reciprocal space mapping and angle-dependent magnetotransport. For this purpose, a series of GaMnAs layers with Mn contents of {proportional_to}5% was grown by low-temperature MBE on relaxed InGaAs/GaAs templates with different In concentrations, enabling us to vary the strain in the GaMnAs layers continuously from tensile to compressive, including the unstrained state. Considering both, as-grown and annealed samples, the anisotropy parameter describing the uniaxial out-of-plane magnetic anisotropy has been found to vary linearly with hole density and strain. As a consequence, the out-of-plane direction gradually undergoes a transition from a magnetic hard axis to a magnetic easy axis from compressive to tensile strain.

  16. Magnetic anisotropies in ultrathin bismuth iron garnet films

    International Nuclear Information System (INIS)

    Popova, Elena; Franco Galeano, Andres Felipe; Deb, Marwan; Warot-Fonrose, Bénédicte; Kachkachi, Hamid; Gendron, François; Ott, Frédéric

    2013-01-01

    Ultrathin bismuth iron garnet Bi 3 Fe 5 O 12 films were grown epitaxially on (001)-oriented gadolinium gallium garnet substrates. Film thickness varied from two to three dozens of unit cells. Bi 3 Fe 5 O 12 films grow pseudomorphically on substrates up to a thickness of 20 nm, and then a lattice relaxation occurs. Magnetic properties of the films were studied as a function of bismuth iron garnet thickness. The magnetization and cubic anisotropy decrease with decreasing film thickness. The uniaxial magnetocrystalline anisotropy is constant for all film thicknesses. For two unit cell thick films, the easy magnetization axis changes from in-plane to perpendicular to the plane direction. Such a reorientation takes place as a result of the competition of constant uniaxial perpendicular anisotropy with weakening film magnetization. - Highlights: ► Ultrathin Bi 3 Fe 5 O 12 films were grown epitaxially on structure-matching substrates. ► Magnetic properties of Bi 3 Fe 5 O 12 were studied down to the thickness of 2.5 nm. ► Reorientation of easy magnetization axis as a function of film thickness was observed

  17. Magnetic anisotropies in ultrathin bismuth iron garnet films

    Energy Technology Data Exchange (ETDEWEB)

    Popova, Elena, E-mail: popova@physique.uvsq.fr [Groupe d' Etude de la Matière Condensée (GEMaC), CNRS/Université de Versailles-Saint-Quentin, 45 Avenue des Etats-Unis, 78035 Versailles (France); Franco Galeano, Andres Felipe [Laboratoire PROcédés, Matériaux et Energie Solaire (PROMES), CNRS/Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan (France); Deb, Marwan [Groupe d' Etude de la Matière Condensée (GEMaC), CNRS/Université de Versailles-Saint-Quentin, 45 Avenue des Etats-Unis, 78035 Versailles (France); Warot-Fonrose, Bénédicte [Centre d' Elaboration de Matériaux et d' Etudes Structurales (CEMES), CNRS, 29 rue Jeanne Marvig, 31055 Toulouse (France); Transpyrenean Associated Laboratory for Electron Microscopy (TALEM), CEMES-INA, CNRS–Universidad de Zaragoza (Spain); Kachkachi, Hamid [Laboratoire PROcédés, Matériaux et Energie Solaire (PROMES), CNRS/Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan (France); Gendron, François [Institut des NanoSciences de Paris (INSP), CNRS/Université Pierre et Marie Curie-Paris 6, 4 place Jussieu, Boîte courrier 840, 75252 Paris Cedex 05 (France); Ott, Frédéric [Laboratoire Léon Brillouin (LLB), CNRS/CEA, Bâtiment 563, CEA Saclay, 91191 Gif sur Yvette Cedex (France); and others

    2013-06-15

    Ultrathin bismuth iron garnet Bi{sub 3}Fe{sub 5}O{sub 12} films were grown epitaxially on (001)-oriented gadolinium gallium garnet substrates. Film thickness varied from two to three dozens of unit cells. Bi{sub 3}Fe{sub 5}O{sub 12} films grow pseudomorphically on substrates up to a thickness of 20 nm, and then a lattice relaxation occurs. Magnetic properties of the films were studied as a function of bismuth iron garnet thickness. The magnetization and cubic anisotropy decrease with decreasing film thickness. The uniaxial magnetocrystalline anisotropy is constant for all film thicknesses. For two unit cell thick films, the easy magnetization axis changes from in-plane to perpendicular to the plane direction. Such a reorientation takes place as a result of the competition of constant uniaxial perpendicular anisotropy with weakening film magnetization. - Highlights: ► Ultrathin Bi{sub 3}Fe{sub 5}O{sub 12} films were grown epitaxially on structure-matching substrates. ► Magnetic properties of Bi{sub 3}Fe{sub 5}O{sub 12} were studied down to the thickness of 2.5 nm. ► Reorientation of easy magnetization axis as a function of film thickness was observed.

  18. Optical anisotropy induced by mechanical strain around the fundamental gap of GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Ortega-Gallegos, J.; Lastras-Martinez, A.; Lastras-Martinez, L.F. [Instituto de Investigacion en Comunicacion Optica, Universidad Autonoma de San Luis Potosi, Alvaro Obregon 64, San Luis Potosi (Mexico); Balderas-Navarro, R.E. [Instituto de Investigacion en Comunicacion Optica, Universidad Autonoma de San Luis Potosi, Alvaro Obregon 64, San Luis Potosi (Mexico); Facultad de Ciencias, Universidad Autonoma de San Luis Potosi, Alvaro Obregon 64, San Luis Potosi (Mexico)

    2008-07-01

    We report on a theoretical-experimental study of reflectance anisotropy spectroscopy (RAS) of GaAs (001) crystals under uniaxial stress. The study was carried out in the energy region around the fundamental transition. RAS spectra in the energy range from 1.2-1.7 eV were measured with a photoelastic-modulator-based spectrometer. To induce an optical anisotropy, the GaAs crystals were thinned down to 400 {mu}m and an calibrated uniaxial stress was applied by deflection. RAS showed a line shape consisting of an oscillation at around E{sub 0}. On the basis of a perturbative approach employing the Pikus-Bir Hamiltonian, we calculated the RAS line shape and found a close agreement with the experimental spectra. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Reverse-mode PSLC multi-plane optical see-through display for AR applications.

    Science.gov (United States)

    Liu, Shuxin; Li, Yan; Zhou, Pengcheng; Chen, Quanming; Su, Yikai

    2018-02-05

    In this paper we propose an optical see-through multi-plane display with reverse-mode polymer-stabilized liquid crystal (PSLC). Our design solves the problem of accommodation-vergence conflict with correct focus cues. In the reverse mode PSLC system, power consumption could be reduced to ~1/(N-1) of that in a normal mode system if N planes are displayed. The PSLC films fabricated in our experiment exhibit a low saturation voltage ~20 V rms , a high transparent-state transmittance (92%), and a fast switching time within 2 ms and polarization insensitivity. A proof-of-concept two-plane color display prototype and a four-plane monocolor display prototype were implemented.

  20. Selection of unstable patterns and control of optical turbulence by Fourier plane filtering

    DEFF Research Database (Denmark)

    Mamaev, A.V.; Saffman, M.

    1998-01-01

    We report on selection and stabilization of transverse optical patterns in a feedback mirror experiment. Amplitude filtering in the Fourier plane is used to select otherwise unstable spatial patterns. Optical turbulence observed for nonlinearities far above the pattern formation threshold...

  1. Plasma sheet pressure anisotropies

    International Nuclear Information System (INIS)

    Stiles, G.S.; Hones, E.W. Jr; Bame, S.J.; Asbridge, J.R.

    1978-01-01

    The ecliptic plane components of the pressure tensors for low-energy ( or =1.2 approximately 25% of the time. Due to the low energy density of the electrons, however, this anisotropy is not itself sufficient to balance the tension of the magnetic field

  2. Structural anisotropy of nonpolar and semipolar InN epitaxial layers

    Science.gov (United States)

    Darakchieva, V.; Xie, M.-Y.; Franco, N.; Giuliani, F.; Nunes, B.; Alves, E.; Hsiao, C. L.; Chen, L. C.; Yamaguchi, T.; Takagi, Y.; Kawashima, K.; Nanishi, Y.

    2010-10-01

    We present a detailed study of the structural characteristics of molecular beam epitaxy grown nonpolar InN films with a- and m-plane surface orientations on r-plane sapphire and (100) γ-LiAlO2, respectively, and semipolar (101¯1) InN grown on r-plane sapphire. The on-axis rocking curve (RC) widths were found to exhibit anisotropic dependence on the azimuth angle with minima at InN [0001] for the a-plane films, and maxima at InN [0001] for the m-plane and semipolar films. The different contributions to the RC broadening are analyzed and discussed. The finite size of the crystallites and extended defects are suggested to be the dominant factors determining the RC anisotropy in a-plane InN, while surface roughness and curvature could not play a major role. Furthermore, strategy to reduce the anisotropy and magnitude of the tilt and minimize defect densities in a-plane InN films is suggested. In contrast to the nonpolar films, the semipolar InN was found to contain two domains nucleating on zinc-blende InN(111)A and InN(111)B faces. These two wurtzite domains develop with different growth rates, which was suggested to be a consequence of their different polarity. Both, a- and m-plane InN films have basal stacking fault densities similar or even lower compared to nonpolar InN grown on free-standing GaN substrates, indicating good prospects of heteroepitaxy on foreign substrates for the growth of InN-based devices.

  3. Structural anisotropy of nonpolar and semipolar InN epitaxial layers

    International Nuclear Information System (INIS)

    Darakchieva, V.; Xie, M.-Y.; Franco, N.; Alves, E.; Giuliani, F.; Nunes, B.; Hsiao, C. L.; Chen, L. C.; Yamaguchi, T.; Takagi, Y.; Kawashima, K.; Nanishi, Y.

    2010-01-01

    We present a detailed study of the structural characteristics of molecular beam epitaxy grown nonpolar InN films with a- and m-plane surface orientations on r-plane sapphire and (100) γ-LiAlO 2 , respectively, and semipolar (1011) InN grown on r-plane sapphire. The on-axis rocking curve (RC) widths were found to exhibit anisotropic dependence on the azimuth angle with minima at InN [0001] for the a-plane films, and maxima at InN [0001] for the m-plane and semipolar films. The different contributions to the RC broadening are analyzed and discussed. The finite size of the crystallites and extended defects are suggested to be the dominant factors determining the RC anisotropy in a-plane InN, while surface roughness and curvature could not play a major role. Furthermore, strategy to reduce the anisotropy and magnitude of the tilt and minimize defect densities in a-plane InN films is suggested. In contrast to the nonpolar films, the semipolar InN was found to contain two domains nucleating on zinc-blende InN(111)A and InN(111)B faces. These two wurtzite domains develop with different growth rates, which was suggested to be a consequence of their different polarity. Both, a- and m-plane InN films have basal stacking fault densities similar or even lower compared to nonpolar InN grown on free-standing GaN substrates, indicating good prospects of heteroepitaxy on foreign substrates for the growth of InN-based devices.

  4. Anisotropy of Solid Breast Lesions in 2D Shear Wave Elastography is an Indicator of Malignancy.

    Science.gov (United States)

    Skerl, Katrin; Vinnicombe, Sarah; Thomson, Kim; McLean, Denis; Giannotti, Elisabetta; Evans, Andrew

    2016-01-01

    To investigate if anisotropy at two-dimensional shear wave elastography (SWE) suggests malignancy and whether it correlates with prognostic and predictive factors in breast cancer. Study group A of 244 solid breast lesions was imaged with SWE between April 2013 and May 2014. Each lesion was imaged in radial and in antiradial planes, and the maximum elasticity, mean elasticity, and standard deviation were recorded and correlated with benign/malignant status, and if malignant, correlated with conventional predictive and prognostic factors. The results were compared to a study group B of 968 solid breast lesions, which were imaged in sagittal and in axial planes between 2010 and 2013. Neither benign nor malignant lesion anisotropy is plane dependent. However, malignant lesions are more anisotropic than benign lesions (P ≤ 0.001). Anisotropy correlates with increasing elasticity parameters, breast imaging-reporting and data system categories, core biopsy result, and tumor grade. Large cancers are significantly more anisotropic than small cancers (P ≤ 0.001). The optimal anisotropy cutoff threshold for benign/malignant differentiation of 150 kPa(2) achieves the best sensitivity (74%) with a reasonable specificity (63%). Anisotropy may be useful during benign/malignant differentiation of solid breast masses using SWE. Anisotropy also correlates with some prognostic factors in breast cancer. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  5. Anisotropy of Single-Crystal Silicon in Nanometric Cutting.

    Science.gov (United States)

    Wang, Zhiguo; Chen, Jiaxuan; Wang, Guilian; Bai, Qingshun; Liang, Yingchun

    2017-12-01

    The anisotropy exhibited by single-crystal silicon in nanometric cutting is very significant. In order to profoundly understand the effect of crystal anisotropy on cutting behaviors, a large-scale molecular dynamics model was conducted to simulate the nanometric cutting of single-crystal silicon in the (100)[0-10], (100)[0-1-1], (110)[-110], (110)[00-1], (111)[-101], and (111)[-12-1] crystal directions in this study. The simulation results show the variations of different degrees in chip, subsurface damage, cutting force, and friction coefficient with changes in crystal plane and crystal direction. Shear deformation is the formation mechanism of subsurface damage, and the direction and complexity it forms are the primary causes that result in the anisotropy of subsurface damage. Structurally, chips could be classified into completely amorphous ones and incompletely amorphous ones containing a few crystallites. The formation mechanism of the former is high-pressure phase transformation, while the latter is obtained under the combined action of high-pressure phase transformation and cleavage. Based on an analysis of the material removal mode, it can be found that compared with the other crystal direction on the same crystal plane, the (100)[0-10], (110)[-110], and (111)[-101] directions are more suitable for ductile cutting.

  6. In-plane magnetic anisotropy and temperature dependence of switching field in (Ga, Mn) as ferromagnetic semiconductors.

    Science.gov (United States)

    Kamara, S; Terki, F; Dumas, R; Dehbaoui, M; Sadowski, J; Galéra, R M; Tran, Q-H; Charar, S

    2012-06-01

    We explore the magnetic anisotropy of GaMnAs ferromagnetic semiconductor by Planar Hall Effect (PHE) measurements. Using low magnitude of applied magnetic field (i.e., when the magnitude H is smaller than both cubic Hc and uniaxial Hu anisotropy field), we have observed various shapes of applied magnetic field direction dependence of Planar Hall Resistance (PHR). In particular, in two regions of temperature. At T Tc/2 the "zigzag-shape" signal of PHR. They reflect different magnetic anisotropy and provide information about magnetization reversal process in GaMnAs ferromagnetic semiconductor. The theoretical model calculation of PHR based on the free energy density reproduces well the experimental data. We report also the temperature dependence of anisotropy constants and magnetization orientations. The transition of easy axis from biaxial to uniaxiale axes has been observed and confirmed by SQUID measurements.

  7. Cross-layer shared protection strategy towards data plane in software defined optical networks

    Science.gov (United States)

    Xiong, Yu; Li, Zhiqiang; Zhou, Bin; Dong, Xiancun

    2018-04-01

    In order to ensure reliable data transmission on the data plane and minimize resource consumption, a novel protection strategy towards data plane is proposed in software defined optical networks (SDON). Firstly, we establish a SDON architecture with hierarchical structure of data plane, which divides the data plane into four layers for getting fine-grained bandwidth resource. Then, we design the cross-layer routing and resource allocation based on this network architecture. Through jointly considering the bandwidth resource on all the layers, the SDN controller could allocate bandwidth resource to working path and backup path in an economical manner. Next, we construct auxiliary graphs and transform the shared protection problem into the graph vertex coloring problem. Therefore, the resource consumption on backup paths can be reduced further. The simulation results demonstrate that the proposed protection strategy can achieve lower protection overhead and higher resource utilization ratio.

  8. The Effect of Tensile Strain on Optical Anisotropy and Exciton of m-Plane ZnO

    KAUST Repository

    Wang, H. H.; Tian, J. S.; Chen, C. Y.; Huang, H. H.; Yeh, Y. C.; Deng, P. Y.; Chang, L.; Chu, Y. H.; Wu, Y. R.; He, Jr-Hau

    2015-01-01

    The near band edge emission of the tensile-strained m-plane ZnO film grown on (112)LaAlO3 substrates shows abnormal low polarization degree (ρ = 0.1). The temperature dependency of polarization degree clarifies the origins of different emission

  9. Global universe anisotropy probed by the alignment of structures in the cosmic microwave background.

    Science.gov (United States)

    Wiaux, Y; Vielva, P; Martínez-González, E; Vandergheynst, P

    2006-04-21

    We question the global universe isotropy by probing the alignment of local structures in the cosmic microwave background (CMB) radiation. The original method proposed relies on a steerable wavelet decomposition of the CMB signal on the sphere. The analysis of the first-year Wilkinson Microwave Anisotropy Probe data identifies a mean preferred plane with a normal direction close to the CMB dipole axis, and a mean preferred direction in this plane, very close to the ecliptic poles axis. Previous statistical anisotropy results are thereby synthesized, but further analyses are still required to establish their origin.

  10. Irradiation creep induced anisotropy in a/2 dislocation populations

    International Nuclear Information System (INIS)

    Gelles, D.S.

    1984-05-01

    The contribution of anisotropy in Burgers vector distribution to irradiation creep behavior has been largely ignored in irradiation creep models. However, findings on Frank loops suggest that it may be very important. Procedures are defined to identify the orientations of a/2 Burgers vectors for dislocations in face-centered cubic crystals. By means of these procedures the anisotropy in Burgers vector populations was determined for three Nimonic PE16 pressurized tube specimens irradiated under stress. Considerable anisotropy in Burgers vector population develops during irradiation creep. It is inferred that dislocation motion during irradiation creep is restricted primarily to a climb of a/2 dislocations on 100 planes. Effect of these results on irradiation creep modeling and deformation induced irradiation growth is considered

  11. Magnetization reversal and domain correlation for a non-collinear and out-of-plane exchange-coupled system

    International Nuclear Information System (INIS)

    Paul, Amitesh; Paul, N; Mattauch, Stefan

    2011-01-01

    We have investigated the impact of out-of-plane ferromagnetic (FM) anisotropy (which can be coincident with the direction of unidirectional anisotropy), where antiferromagnetic (AF) anisotropy is along the film plane. This provides a platform for non-collinear exchange coupling in an archetypal exchange coupled system in an unconventional way. We probe the in-plane magnetization by the depth-sensitive vector magnetometry technique. The experimental findings reveal a magnetization reversal (i) that is symmetric for both the branches of the hysteresis loop, (ii) that is characterized by vertically correlated domains associated with a strong transverse component of magnetization and (iii) that remains untrained (suppression of trained state) with field cycling. This scenario has been compared with in-plane magnetization reversal for a conventional in-plane unidirectional anisotropic case in the same system that shows usual asymmetric reversal and training for vertically uncorrelated domains. We explain the above observations for the out-of-plane case in terms of inhomogeneous magnetic states due to competing perpendicular anisotropies that result in non-collinear FM-AF coupling. This study provides direct evidence for the vertical correlation of domains mediated by out-of-plane exchange coupling.

  12. Diffraction Plane Dependence of Micro Residual Stresses in Uniaxially Extended Carbon Steels

    Directory of Open Access Journals (Sweden)

    T. Hanabusa

    2010-12-01

    Full Text Available In the stress measurement using X-ray or neutron diffraction, an elastic anisotropy as well as a plastic anisotropy of crystal must be carefully considered. In the X-ray and neutron diffraction stress measurement for polycrystalline materials, a particular {hkl} plane is used in measuring lattice strains. The dependence of an X-ray elastic constant on a diffraction plane is a typical example caused by an elastic anisotropy of the crystal. The yield strength and the work hardening rate of a single crystal depend on a crystallographic direction of the crystal. The difference in the yield strength and the work hardening rate relating to the crystallographic direction develops different residual stresses measured on each {hkl} diffraction after plastic deformation of a polycrystalline material. The present paper describes the result of the neutron stress measurement on uniaxially extended low and middle carbon steels. A tri-axial residual stress state developed in the extended specimens was measured on different kind of {hkl} diffraction plane. The measurement on the {110}, {200} and {211} diffraction showed that residual stresses increased with increasing the plastic elongation and the residual stresses on {110} were compressive, {200} were tensile and those on {211} were the middle of the former two planes.

  13. Soft modes in the easy plane pyrochlore antiferromagnet

    International Nuclear Information System (INIS)

    Champion, J D M; Holdsworth, P C W

    2004-01-01

    Thermal fluctuations lift the high ground state degeneracy of the classical nearest neighbour pyrochlore antiferromagnet, with easy plane anisotropy, giving a first-order phase transition to a long range ordered state. We show, from spin wave analysis and numerical simulation, that even below this transition a continuous manifold of states, of dimension N 2/3 , exist (N is the number of degrees of freedom). As the temperature goes to zero a further 'order by disorder' selection is made from this manifold. The pyrochlore antiferromagnet Er 2 Ti 2 O 7 is believed to have an easy plane anisotropy and is reported to have the same magnetic structure. This is perhaps surprising, given that the dipole interaction lifts the degeneracy of the classical model in favour of a different structure. We interpret our results in the light of these facts

  14. Robust indirect band gap and anisotropy of optical absorption in B-doped phosphorene.

    Science.gov (United States)

    Wu, Zhi-Feng; Gao, Peng-Fei; Guo, Lei; Kang, Jun; Fang, Dang-Qi; Zhang, Yang; Xia, Ming-Gang; Zhang, Sheng-Li; Wen, Yu-Hua

    2017-12-06

    A traditional doping technique plays an important role in the band structure engineering of two-dimensional nanostructures. Since electron interaction is changed by doping, the optical and electrochemical properties could also be significantly tuned. In this study, density functional theory calculations have been employed to explore the structural stability, and electronic and optical properties of B-doped phosphorene. The results show that all B-doped phosphorenes are stable with a relatively low binding energy. Of particular interest is that these B-doped systems exhibit an indirect band gap, which is distinct from the direct one of pure phosphorene. Despite the different concentrations and configurations of B dopants, such indirect band gaps are robust. The screened hybrid density functional HSE06 predicts that the band gap of B-doped phosphorene is slightly smaller than that of pure phosphorene. Spatial charge distributions at the valence band maximum (VBM) and the conduction band minimum (CBM) are analyzed to understand the features of an indirect band gap. By comparison with pure phosphorene, B-doped phosphorenes exhibit strong anisotropy and intensity of optical absorption. Moreover, B dopants could enhance the stability of Li adsorption on phosphorene with less sacrifice of the Li diffusion rate. Our results suggest that B-doping is an effective way of tuning the band gap, enhancing the intensity of optical absorption and improving the performances of Li adsorption, which could promote potential applications in novel optical devices and lithium-ion batteries.

  15. The origin of transverse anisotropy in axially symmetric single molecule magnets.

    Science.gov (United States)

    Barra, Anne-Laure; Caneschi, Andrea; Cornia, Andrea; Gatteschi, Dante; Gorini, Lapo; Heiniger, Leo-Philipp; Sessoli, Roberta; Sorace, Lorenzo

    2007-09-05

    Single-crystal high-frequency electron paramagnetic resonance spectroscopy has been employed on a truly axial single molecule magnet of formula [Mn(12)O(12)(tBu-CH(2)CO(2))16(CH(3)OH)4].CH(3)OH to investigate the origin of the transverse magnetic anisotropy, a crucial parameter that rules the quantum tunneling of the magnetization. The crystal structure, including the absolute structure of the crystal used for EPR experiments, has been fully determined and found to belong to I4 tetragonal space group. The angular dependence of the resonance fields in the crystallographic ab plane shows the presence of high-order tetragonal anisotropy and strong dependence on the MS sublevels with the second-highest-field transition being angular independent. This was rationalized including competing fourth- and sixth-order transverse parameters in a giant spin Hamiltonian which describes the magnetic anisotropy in the ground S = 10 spin state of the cluster. To establish the origin of these anisotropy terms, the experimental results have been further analyzed using a simplified multispin Hamiltonian which takes into account the exchange interactions and the single ion magnetic anisotropy of the Mn(III) centers. It has been possible to establish magnetostructural correlations with spin Hamiltonian parameters up to the sixth order. Transverse anisotropy in axial single molecule magnets was found to originate from the multispin nature of the system and from the breakdown of the strong exchange approximation. The tilting of the single-ion easy axes of magnetization with respect to the 4-fold molecular axis of the cluster plays the major role in determining the transverse anisotropy. Counterintuitively, the projections of the single ion easy axes on the ab plane correspond to hard axes of magnetization.

  16. Electronic-Optical Amplifier in the measurement of light polarization plane

    International Nuclear Information System (INIS)

    Miranda Diaz, Lazaro

    2009-01-01

    This paper analyzes the behavior of the output response of two electronic-optical amplifiers with constant amplitude and phase variable, in which photodiodes each them are arranged spatially 90th each other and both with their faces detection parallel to the axis of light transmission. Outward both amplifiers are going to a digital circuit that compares the fronts outputs to the front of the pulse signal that feeds the light source, to finally obtain the difference in time when fronts of light capture the photodiodes. This configuration permit to analyze the influence of the geometric arrangement of the system optical and understand the principle of why the diodes with their faces parallel to the axis of light transmission are capable of capturing variations of this, and even detect the rotation of the plane of light polarized. (Author)

  17. Anisotropic in-plane spin splitting in an asymmetric (001 GaAs/AlGaAs quantum well

    Directory of Open Access Journals (Sweden)

    Zhang Xiuwen

    2011-01-01

    Full Text Available Abstract The in-plane spin splitting of conduction-band electron has been investigated in an asymmetric (001 GaAs/Al x Ga1-x As quantum well by time-resolved Kerr rotation technique under a transverse magnetic field. The distinctive anisotropy of the spin splitting was observed while the temperature is below approximately 200 K. This anisotropy emerges from the combined effect of Dresselhaus spin-orbit coupling plus asymmetric potential gradients. We also exploit the temperature dependence of spin-splitting energy. Both the anisotropy of spin splitting and the in-plane effective g-factor decrease with increasing temperature. PACS: 78.47.jm, 71.70.Ej, 75.75.+a, 72.25.Fe,

  18. Critical Role of Crystalline Anisotropy in the Stability of Cellular Array Structures in Directional Solidification

    International Nuclear Information System (INIS)

    Kopczynski, P.; Rappel, W.; Karma, A.

    1996-01-01

    We calculate numerically the full Floquet-Bloch stability spectrum of cellular array structures in a symmetric model of directional solidification. Our results demonstrate that crystalline anisotropy critically influences the stability of these structures. Without anisotropy, the stability balloon of cells in the plane of wave number and velocity closes near the onset of morphological instability. With a finite, but even small, amount of anisotropy this balloon remains open and a band of stable solutions persists for higher velocities into a deep cell regime. The width of the balloon depends critically on the anisotropy strength. copyright 1996 The American Physical Society

  19. Magnetic Anisotropy by Rashba Spin-Orbit Coupling in Antiferromagnetic Thin Films

    Science.gov (United States)

    Ieda, Jun'ichi; Barnes, Stewart E.; Maekawa, Sadamichi

    2018-05-01

    Magnetic anisotropy in an antiferromagnet (AFM) with inversion symmetry breaking (ISB) is investigated. The magnetic anisotropy energy (MAE) resulting from the Rashba spin-orbit and s-d type exchange interactions is determined for two different models of AFMs. The global ISB model, representing the effect of a surface, an interface, or a gating electric field, results in an easy-plane magnetic anisotropy. In contrast, for a local ISB model, i.e., for a noncentrosymmetric AFM, perpendicular magnetic anisotropy (PMA) arises. Both results differ from the ferromagnetic case, in which the result for PMA depends on the band structure and dimensionality. These MAE contributions play a key role in determining the direction of the Néel order parameter in antiferromagnetic nanostructures, and reflect the possibility of electrical-field control of the Néel vector.

  20. Use of Mueller matrix polarimetry and optical coherence tomography in the characterization of cervical collagen anisotropy.

    Science.gov (United States)

    Chue-Sang, Joseph; Bai, Yuqiang; Stoff, Susan; Gonzalez, Mariacarla; Holness, Nola; Gomes, Jefferson; Jung, Ranu; Gandjbakhche, Amir; Chernomordik, Viktor V; Ramella-Roman, Jessica C

    2017-08-01

    Preterm birth (PTB) presents a serious medical health concern throughout the world. There is a high incidence of PTB in both developed and developing countries ranging from 11% to 15%, respectively. Recent research has shown that cervical collagen orientation and distribution changes during pregnancy may be useful in predicting PTB. Polarization imaging is an effective means to measure optical anisotropy in birefringent materials, such as the cervix's extracellular matrix. Noninvasive, full-field Mueller matrix polarimetry (MMP) imaging methodologies, and optical coherence tomography (OCT) imaging were used to assess cervical collagen content and structure in nonpregnant porcine cervices. We demonstrate that the highly ordered structure of the nonpregnant porcine cervix can be observed with MMP. Furthermore, when utilized ex vivo, OCT and MMP yield very similar results with a mean error of 3.46% between the two modalities. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  1. Origin and spectroscopic determination of trigonal anisotropy in a heteronuclear single-molecule magnet

    Science.gov (United States)

    Sorace, L.; Boulon, M.-E.; Totaro, P.; Cornia, A.; Fernandes-Soares, J.; Sessoli, R.

    2013-09-01

    W-band (ν ≅ 94 GHz) electron paramagnetic resonance (EPR) spectroscopy was used for a single-crystal study of a star-shaped Fe3Cr single-molecule magnet (SMM) with crystallographically imposed trigonal symmetry. The high resolution and sensitivity accessible with W-band EPR allowed us to determine accurately the axial zero-field splitting terms for the ground (S = 6) and first two excited states (S = 5 and S = 4). Furthermore, spectra recorded by applying the magnetic field perpendicular to the trigonal axis showed a π/6 angular modulation. This behavior is a signature of the presence of trigonal transverse magnetic anisotropy terms whose values had not been spectroscopically determined in any SMM prior to this work. Such in-plane anisotropy could only be justified by dropping the so-called “giant spin approach” and by considering a complete multispin approach. From a detailed analysis of experimental data with the two models, it emerged that the observed trigonal anisotropy directly reflects the structural features of the cluster, i.e., the relative orientation of single-ion anisotropy tensors and the angular modulation of single-ion anisotropy components in the hard plane of the cluster. Finally, since high-order transverse anisotropy is pivotal in determining the spin dynamics in the quantum tunneling regime, we have compared the angular dependence of the tunnel splitting predicted by the two models upon application of a transverse field (Berry-phase interference).

  2. Thickness dependence of the magnetic anisotropy and dynamic magnetic response of ferromagnetic NiFe films

    International Nuclear Information System (INIS)

    Silva, E F; Corrêa, M A; Chesman, C; Bohn, F; Della Pace, R D; Plá Cid, C C; Kern, P R; Carara, M; Alves Santos, O; Rodríguez-Suárez, R L; Azevedo, A; Rezende, S M

    2017-01-01

    We investigate the thickness dependence of the magnetic anisotropy and dynamic magnetic response of ferromagnetic NiFe films. We go beyond quasi-static measurements and focus on the dynamic magnetic response by considering three complementary techniques: the ferromagnetic resonance, magnetoimpedance and magnetic permeability measurements. We verify remarkable modifications in the magnetic anisotropy, i.e. the well-known behavior of in-plane uniaxial magnetic anisotropy systems gives place to a complex magnetic behavior as the thickness increases, and splits the films in two groups according to the magnetic properties. We identify magnetoimpedance and magnetic permeability curves with multiple resonance peaks, as well as the evolution of the ferromagnetic resonance absorption spectra, as fingerprints of strong changes of the magnetic properties associated to the vanishing of the in-plane magnetic anisotropy and to the emergence of non-homogeneous magnetization configuration, local anisotropies and out-of-plane anisotropy contribution arisen as a consequence of the non-uniformities of the stress stored in the film as the thickness is increased and/or to the columnar growth of the film. We interpret the experimental results in terms of the structural and morphological properties, quasi-static magnetic behavior, magnetic domain structure and different mechanisms governing the magnetization dynamics at distinct frequency ranges. (paper)

  3. Influence of Sn on the optical anisotropy of single-domain Si(001)

    International Nuclear Information System (INIS)

    Astropekakis, A.; Power, J.R.; Fleischer, K.; Esser, N.; Richter, W.; Galata, S.; Papadimitriou, D.

    2001-01-01

    We apply reflectance anisotropy spectroscopy (RAS) and low-energy electron diffraction (LEED) to the study of Sn deposited on a single-domain vicinal Si(001) sample. Large variations in RAS are recorded when up to 5 monolayers (ML) of Sn is deposited on the Si substrate at room temperature. We observe (2x2) and (1x1) LEED patterns for the 0.5-ML and 1.0-ML Sn covered surfaces, respectively. The (1x1) LEED pattern exists beyond this coverage and up to 5.0-ML deposition. Even though a (1x1) LEED pattern is observed upon deposition of 1.5 ML, surprisingly, a significant optical anisotropy is observed. After annealing to 570 degree sign C for 2 min, we observe a progression of LEED pattern changes from c(4x4)→(6x2)→c(8x4)→(5x1) with increased Sn coverage up to 1.5 ML. Similar RAS line shapes are obtained for all reconstructions produced through annealing with the exception of the (5x1). For the (5x1) phase, a significant anisotropy appears in the region of 1.8 eV. Similarities in the RAS line shape for both the (5x1) phase and that obtained after deposition of 1.5 ML of Sn at room temperature may indicate a RAS sensitivity to Sn dimer orientation within the uppermost layer

  4. BER Analysis of Coherent Free-Space Optical Communication Systems with a Focal-Plane-Based Wavefront Sensor

    Science.gov (United States)

    Cao, Jingtai; Zhao, Xiaohui; Liu, Wei; Gu, Haijun

    2018-03-01

    A wavefront sensor is one of most important units for an adaptive optics system. Based on our previous works, in this paper, we discuss the bit-error-rate (BER) performance of coherent free space optical communication systems with a focal-plane-based wavefront sensor. Firstly, the theory of a focal-plane-based wavefront sensor is given. Then the relationship between the BER and the mixing efficiency with a homodyne receiver is discussed on the basis of binary-phase-shift-keying (BPSK) modulation. Finally, the numerical simulation results are shown that the BER will be decreased obviously after aberrations correction with the focal-plane-based wavefront sensor. In addition, the BER will decrease along with increasing number of photons received within a single bit. These analysis results will provide a reference for the design of the coherent Free space optical communication (FSOC) system.

  5. Skyrmion robustness in noncentrosymmetric magnets with axial symmetry: The role of anisotropy and tilted magnetic fields

    Science.gov (United States)

    Leonov, A. O.; Kézsmárki, I.

    2017-12-01

    We investigate the stability of Néel skyrmions against tilted magnetic fields in polar magnets with uniaxial anisotropy ranging from easy-plane to easy-axis type. We construct the corresponding phase diagrams and investigate the internal structure of skewed skyrmions with displaced cores. We find that moderate easy-plane anisotropy increases the stability range of Néel skyrmions for fields along the symmetry axis, while moderate easy-axis anisotropy enhances their robustness against tilted magnetic fields. We stress that the direction along which the skyrmion cores are shifted depends on the symmetry of the underlying crystal lattice. The cores of Néel skyrmions, realized in polar magnets with Cn v symmetry, are displaced either along or opposite to the off-axis (in-plane) component of the magnetic field depending on the rotation sense of the magnetization, dictated by the sign of the Dzyaloshinskii constant. The core shift of antiskyrmions, present in noncentrosymmetric magnets with D2 d symmetry, depends on the in-plane orientation of the magnetic field and can be parallel, antiparallel, or perpendicular to it. We argue that the role of anisotropy in magnets with axially symmetric crystal structure is different from that in cubic helimagnets. Our results can be applied to address recent experiments on polar magnets with C3 v symmetry, GaV4S8 and GaV4Se8 , and Mn1.4Pt0.9Pd0.1Sn with D2 d symmetry.

  6. A magneto-optic technique for studying magnetization reversal processes and anisotropies applied to Co/Cu/Co trilayer structures

    Science.gov (United States)

    Daboo, C.; Bland, J. A. C.; Hicken, R. J.; Ives, A. J. R.; Baird, M. J.; Walker, M. J.

    1993-05-01

    We report the magnetization reversal and magnetic anisotropy behavior of ultrathin Co/Cu(111)/Co (dCu=20 and 27 Å) trilayer structures prepared by MBE on a 500-Å Ge/GaAs(110) epilayer. We describe an arrangement in which the magnetization components parallel and perpendicular to the applied field are both determined from longitudinal MOKE measurements. For the samples examined, coherent rotation of the magnetization vector is observed when the magnetic field is applied along the hard in-plane anisotropy axis, with the magnitude of the magnetization vector constant and close to its bulk value. Results of micromagnetic calculations closely reproduce the observed parallel and perpendicular magnetization loops, and yield strong uniaxial magnetic anisotropies in both layers while the interlayer coupling appears to be absent or negligible in comparison with the anisotropy strengths. An absence of antiferromagnetic (AF) coupling has been observed previously [W. F. Egelhoff, Jr. and M. T. Kief, Phys. Rev. B 45, 7795 (1992)] in contrast to recent results, indicating that AF coupling [M. T. Johnson et al., Phys. Rev. Lett. 69, 969 (1992)] and GMR [D. Grieg et al., J. Magn. Magn. Mater. 110, L239 (1992)] can occur in Co/Cu(111)/Co structures grown by MBE, but these properties are sensitively dependent on growth conditions. The absence of coupling in our samples is attributed to the presence of a significant interface roughness induced by the Ge epilayer. The uniaxial anisotropies are assumed to arise from strain or defects induced in the film.

  7. Scalar product and event plane methods for measurements of the azimuthal anisotropy in Pb+Pb and Xe+Xe collisions with the ATLAS detector at the LHC

    CERN Document Server

    Burka, Klaudia; The ATLAS collaboration

    2018-01-01

    Measurements of the azimuthal anisotropy of charged particles in heavy-ion collisions are sensitive to the detailed properties of the quark-gluon plasma, in particular its dependence on initial conditions, transport coefficients and time evolution. The presented measurements are based on 0.49 $n\\mathrm{b}^{-1}$ Pb+Pb data collected by the ATLAS detector in 2015 with center-of-mass energy $\\sqrt{s_{\\mathrm{NN}}}$ = 5.02 TeV. The elliptic flow and higher-order Fourier coefficients ($v_{2} - v_{7}$) are presented in a wide range of transverse momenta ($p_{\\mathrm{T}} <$ 60 GeV), pseudorapidity ($|\\eta|$ < 2.5) and 0-80% collision centrality. The collected minimum-bias sample is enhanced by triggers for ”ultra-central” collisions, providing an opportunity to perform precise measurements of flow harmonics in the fluctuation-dominated regime. The magnitude of azimuthal anisotropy is estimated by measuring the angular correlations of produced particles using both the scalar product and event plane methods....

  8. The in-focus variable line spacing plane grating monochromator

    International Nuclear Information System (INIS)

    Reininger, R.

    2011-01-01

    The in-focus variable line spacing plane grating monochromator is based on only two plane optical elements, a variable line spacing plane grating and a plane pre-mirror that illuminates the grating at the angle of incidence that will focus the required photon energy. A high throughput beamline requires only a third optical element after the exit slit, an aberration corrected elliptical toroid. Since plane elements can be manufactured with the smallest figure errors, this monochromator design can achieve very high resolving power. Furthermore, this optical design can correct the deformations induced by the heat load on the optics along the dispersion plane. This should allow obtaining a resolution of 10 meV at 1 keV with currently achievable figure errors on plane optics. The position of the photon source when an insertion device center is not located at the center of the straight section, a common occurrence in new insertion device beamlines, is investigated.

  9. Anisotropy of the rates of propagation of seismic waves on Sakhalin

    Energy Technology Data Exchange (ETDEWEB)

    Telegin, A.N.; Antonova, L.P.; Shmain, M.M.; Trubachev, B.P.

    1983-01-01

    An examination is made of the difference in effective rates of OGT computed from latitudinal and meridional profiles which is explained by anisotropy in velocities of the horizontal plane associated with tectonic conditions. A quantitative investigation of changes in the coefficient of anisotropy can yield additional information about the condition of the rocks.

  10. Thickness dependence of magnetic anisotropy and domains in amorphous Co{sub 40}Fe{sub 40}B{sub 20} thin films grown on PET flexible substrates

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zhenhua, E-mail: tangzhenhua1988@163.com [Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006 (China); Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Ni, Hao [Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong (China); College of science, China university of petroleum, Qingdao, Shandong 266580 China (China); Lu, Biao [Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006 (China); Zheng, Ming [Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Huang, Yong-An [Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006 (China); Lu, Sheng-Guo, E-mail: sglu@gdut.edu.cn [Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006 (China); Tang, Minghua [Key Laboratory of Low Dimensional Materials and Application Technology, Ministry of Education (Xiangtan University), Xiangtan, Hunan 411105 (China); Gao, Ju [Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong (China)

    2017-03-15

    The amorphous Co{sub 40}Fe{sub 40}B{sub 20} (CoFeB) films (5–200 nm in thickness) were grown on flexible polyethylene terephthalate (PET) substrates using the DC magnetron-sputtering method. The thickness dependence of structural and magnetic properties of flexible CoFeB thin films was investigated in detail. The in-plane uniaxial magnetic anisotropy induced by strain as a function of thickness was obtained in flexible CoFeB thin films, and a critical thickness of ~150 nm for in-plane magnetic anisotropy was observed. Moreover, the domains and the uniaxial anisotropy as a function of angular direction of applied magnetic field were characterized. The results show potential for designing CoFeB-based flexible spintronic devices in which the physical parameters could be tailored by controlling the thickness of the thin film. - Graphical abstract: The in-plane uniaxial magnetic anisotropy induced by strain as a function of thickness was obtained in flexible CoFeB thin films, and a critical thickness of ~150 nm for in-plane magnetic anisotropy was observed. Moreover, the domains and the uniaxial anisotropy as a function of angular direction of applied magnetic field were characterized. - Highlights: • The thickness effect on the magnetic properties in amorphous CoFeB thin films grown on flexible substrates was investigated. • The in-plane uniaxial magnetic anisotropy induced by strains was observed. • A critical thickness of ~ 150 nm for the flexible CoFeB thin film on PET substrate was obtained.

  11. Highly Anisotropic in-Plane Excitons in Atomically Thin and Bulklike 1T '-ReSe2

    DEFF Research Database (Denmark)

    Arora, Ashish; Noky, Jonathan; Drueppel, Matthias

    2017-01-01

    and photoluminescence spectroscopy of excitons in 1T '-ReSe2. On reducing the crystal thickness from bulk to a monolayer, we observe a strong blue shift of the optical band gap from 1.37 to 1.50 eV. The excitons are strongly polarized with dipole vectors along different crystal directions, which persist from bulk down......Atomically thin materials such as graphene or MoS2 are of high in-plane symmetry. Crystals with reduced symmetry hold the promise for novel optoelectronic devices based on their anisotropy in current flow or light polarization. Here, we present polarization-resolved optical transmission...... crystal. In addition, we find in our calculations a direct band gap in 1T '-ReSe2 regardless of crystal thickness, indicating weak interlayer coupling effects on the band gap characteristics. Our results pave the way for polarization-sensitive applications, such as optical logic circuits operating...

  12. Giant enhancement of magnetocrystalline anisotropy in ultrathin manganite films via nanoscale 1D periodic depth modulation

    Science.gov (United States)

    Rajapitamahuni, Anil; Zhang, Le; Singh, Vijay; Burton, John; Koten, Mak; Shield, Jeffrey; Tsymbal, Evgeny; Hong, Xia

    We report a unusual giant enhancement of in-plane magnetocrystalline anisotropy (MCA) in ultrathin colossal magnetoresistive oxide films due to 1D nanoscale periodic depth modulation. High quality epitaxial thin films of La0.67Sr0.33MnO3 (LSMO) of thickness 6 nm were grown on (001) SrTiO3 substrates via off-axis radio frequency magnetron sputtering. The top 2 nm of LSMO films are patterned into periodic nano-stripes using e-beam lithography and reactive ion etching. The resulting structure consists of nano-stripes of 2 nm height and 100-200 nm width on top of a 4 nm thick continuous base layer. We employed planar Hall effect measurements to study the in-plane magnetic anisotropy of the unpatterned and nanopatterned films. The unpatterned films show a biaxial anisotropy with easy axis along [110]. The extracted anisotropy energy density is ~1.1 x 105 erg/cm3, comparable to previously reported values. In the nanopatterned films, a strong uniaxial anisotropy is developed along one of the biaxial easy axes. The corresponding anisotropy energy density is ~5.6 x 106 erg/cm3 within the nano-striped volume, comparable to that of Co. We attribute the observed uniaxial MCA to MnO6 octahedral rotations/tilts and the enhancement in the anisotropy energy density to the strain gradient within the nano-stripes.

  13. Periodic reversal of magneto-optic Faraday rotation on uniaxial birefringence crystal with ultrathin magnetic films

    Directory of Open Access Journals (Sweden)

    C. W. Su

    2013-07-01

    Full Text Available An experimental approach of inclined incidence magneto-optic Faraday effect observed in the polar plane is applied. Three samples containing ferromagnetic cobalt ultrathin films on a semiconductor zinc oxide (0001 single crystal substrate with in-plane and out-of-plane anisotropy are evaluated. Through the fine adjustment of crossed polarizers in the magneto-optic effect measurement completely recorded the detail optical and magneto-optical responses from the birefringent crystal substrate and the magnetic film, especially for the signal induced from the substrate with uniaxial optical axis. The angle dependency of interference phenomena periodically from the optical and magneto-optical responses is attributed to the birefringence even in the absence of a magnetic field. The new type of observation finds that the transmission Faraday intensity in the oblique incidence includes a combination of polarization rotations, which results from optical compensation from the substrate and magneto-optical Faraday effects from the film. The samples grown at different rates and examined by this method exhibit magnetic structure discriminations. This result can be applied in the advanced polarized-light technologies to enhance the spatial resolution of magnetic surfaces with microstructural information under various magnetic field direction.

  14. Improved surface quality of anisotropically etched silicon {111} planes for mm-scale optics

    International Nuclear Information System (INIS)

    Cotter, J P; Hinds, E A; Zeimpekis, I; Kraft, M

    2013-01-01

    We have studied the surface quality of millimetre-scale optical mirrors produced by etching CZ and FZ silicon wafers in potassium hydroxide to expose the {111} planes. We find that the FZ surfaces have four times lower noise power at spatial frequencies up to 500 mm −1 . We conclude that mirrors made using FZ wafers have higher optical quality. (technical note)

  15. Spin waves in terbium. III. Magnetic anisotropy at zero wave vector

    DEFF Research Database (Denmark)

    Houmann, Jens Christian Gylden; Jensen, J.; Touborg, P.

    1975-01-01

    The energy gap at zero wave vector in the spin-wave dispersion relation of ferromagnetic. Tb has been studied by inelastic neutron scattering. The energy was measured as a function of temperature and applied magnetic field, and the dynamic anisotropy parameters were deduced from the results...... the effects of zero-point deviations from the fully aligned ground state, and we tentatively propose polarization-dependent two-ion couplings as their origin........ The axial anisotropy is found to depend sensitively on the orientation of the magnetic moments in the basal plane. This behavior is shown to be a convincing indication of considerable two-ion contributions to the magnetic anisotropy at zero wave vector. With the exception of the sixfold basal...

  16. Friction anisotropy in boronated graphite

    International Nuclear Information System (INIS)

    Kumar, N.; Radhika, R.; Kozakov, A.T.; Pandian, R.; Chakravarty, S.; Ravindran, T.R.; Dash, S.; Tyagi, A.K.

    2015-01-01

    Graphical abstract: - Highlights: • Friction anisotropy in boronated graphite is observed in macroscopic sliding condition. • Low friction coefficient is observed in basal plane and becomes high in prismatic direction. • 3D phase of boronated graphite transformed into 2D structure after friction test. • Chemical activity is high in prismatic plane forming strong bonds between the sliding interfaces. - Abstract: Anisotropic friction behavior in macroscopic scale was observed in boronated graphite. Depending upon sliding speed and normal loads, this value was found to be in the range 0.1–0.35 in the direction of basal plane and becomes high 0.2–0.8 in prismatic face. Grazing-incidence X-ray diffraction analysis shows prominent reflection of (0 0 2) plane at basal and prismatic directions of boronated graphite. However, in both the wear tracks (1 1 0) plane become prominent and this transformation is induced by frictional energy. The structural transformation in wear tracks is supported by micro-Raman analysis which revealed that 3D phase of boronated graphite converted into a disordered 2D lattice structure. Thus, the structural aspect of disorder is similar in both the wear tracks and graphite transfer layers. Therefore, the crystallographic aspect is not adequate to explain anisotropic friction behavior. Results of X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy shows weak signature of oxygen complexes and functional groups in wear track of basal plane while these species dominate in prismatic direction. Abundance of these functional groups in prismatic plane indicates availability of chemically active sites tends to forming strong bonds between the sliding interfaces which eventually increases friction coefficient

  17. Friction anisotropy in boronated graphite

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, N., E-mail: niranjan@igcar.gov.in [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Radhika, R. [Crystal Growth Centre, Anna University, Chennai (India); Kozakov, A.T. [Research Institute of Physics, Southern Federal University, Rostov-on-Don (Russian Federation); Pandian, R. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Chakravarty, S. [UGC-DAE CSR, Kalpakkam (India); Ravindran, T.R.; Dash, S.; Tyagi, A.K. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2015-01-01

    Graphical abstract: - Highlights: • Friction anisotropy in boronated graphite is observed in macroscopic sliding condition. • Low friction coefficient is observed in basal plane and becomes high in prismatic direction. • 3D phase of boronated graphite transformed into 2D structure after friction test. • Chemical activity is high in prismatic plane forming strong bonds between the sliding interfaces. - Abstract: Anisotropic friction behavior in macroscopic scale was observed in boronated graphite. Depending upon sliding speed and normal loads, this value was found to be in the range 0.1–0.35 in the direction of basal plane and becomes high 0.2–0.8 in prismatic face. Grazing-incidence X-ray diffraction analysis shows prominent reflection of (0 0 2) plane at basal and prismatic directions of boronated graphite. However, in both the wear tracks (1 1 0) plane become prominent and this transformation is induced by frictional energy. The structural transformation in wear tracks is supported by micro-Raman analysis which revealed that 3D phase of boronated graphite converted into a disordered 2D lattice structure. Thus, the structural aspect of disorder is similar in both the wear tracks and graphite transfer layers. Therefore, the crystallographic aspect is not adequate to explain anisotropic friction behavior. Results of X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy shows weak signature of oxygen complexes and functional groups in wear track of basal plane while these species dominate in prismatic direction. Abundance of these functional groups in prismatic plane indicates availability of chemically active sites tends to forming strong bonds between the sliding interfaces which eventually increases friction coefficient.

  18. Non-interferometric determination of optical anisotropy in highly-oriented fibres using transport intensity equation technique

    Science.gov (United States)

    Sokkar, T. Z. N.; El-Farahaty, K. A.; El-Bakary, M. A.; Raslan, M. I.; Omar, E. Z.; Hamza, A. A.

    2018-03-01

    The optical setup of the transport intensity equation (TIE) technique is developed to be valid for measuring the optical properties of the highly-oriented anisotropic fibres. This development is based on the microstructure models of the highly-oriented anisotropic fibres and the principle of anisotropy. We provide the setup of TIE technique with polarizer which is controlled via stepper motor. This developed technique is used to investigate the refractive indices in the parallel and perpendicular polarization directions of light for the highly-oriented poly (ethylene terephthalate) (PET) fibres and hence its birefringence. The obtained results through the developed TIE technique for PET fibre are compared with that determined experimentally using the Mach-Zehnder interferometer under the same conditions. The comparison shows a good agreement between the obtained results from the developed technique and that obtained from the Mach-Zehnder interferometer technique.

  19. Anisotropy and intergrain current density in oriented grained bulk YBa2Cu3Ox superconductor

    International Nuclear Information System (INIS)

    Selvamanickam, V.; Salama, K.

    1990-01-01

    The intergrain transport current density and its anisotropy have been studied in oriented grained bulk YBa 2 Cu 3 O x superconductors fabricated by the liquid phase processing method. Current density measurements were performed on oriented grained samples with the transport current aligned at different angles to the a-b plane. In these measurements, the transport current passed through several oriented grain boundaries. The results indicate that the critical current density drops rapidly when the transport current flows at small angles to the a-b plane and then decreases slowly at larger angles. At 77 K and zero magnetic field, an anisotropy ratio of about 25 is observed between J c along a-b plane and that perpendicular to the plane. Further, the critical current density in these samples is found to depend weakly on magnetic field even though the current crosses grain boundaries. These results support the notion that grain boundaries of these superconductors are different in nature from those of solid-state sintered samples.

  20. On the determination of general plane stress states in orthotropic materials from ultrasonic velocity data in non symmetry planes

    International Nuclear Information System (INIS)

    Goncalves Filho, Orlando J.A.

    2015-01-01

    This work reports the progress in the development of a new experimental protocol for plane stress determination in orthotropic materials based on the ultrasonic velocity of bulk waves propagating in non symmetry planes with oblique incidence. The presence of stress-induced deformation introduces an acoustic anisotropy in the material in addition to that defined by its texture. Orthotropic materials under general plane stress states become acoustically monoclic and its orthotropic planes orthogonal to the stress plane become non symmetry planes. The inverse solution of the generalized Christoffel equation for ultrasonic bulk waves propagating in non symmetry planes of anisotropic bodies is known to be numerically unstable. The suggested protocol deals with this numerical instability without recourse to bulk wave propagation in the stress plane as proposed in the literature. Hence, it should be useful for plane stress analysis of thin wall pressure vessels where ultrasonic measurements in the direction of the wall plane are not possible. For the initial validation of the suggested protocol and verification of the stability of the inversion algorithm, computer simulation of stress determination have been performed from synthetic sets of velocity data obtained by the forward solution of the generalized Christoffel equation. Preliminary results for slightly orthotropic aluminium highlight the potential of the suggested protocol. (author)

  1. Temporal formation of optical anisotropy and surface relief during polarization holographic recording in polymethylmethacrylate with azobenzene side groups

    Science.gov (United States)

    Sasaki, Tomoyuki; Izawa, Masahiro; Noda, Kohei; Nishioka, Emi; Kawatsuki, Nobuhiro; Ono, Hiroshi

    2014-03-01

    The formation of polarization holographic gratings with both optical anisotropy and surface relief (SR) deformation was studied for polymethylmethacrylate with azobenzene side groups. Temporal contributions of isotropic and anisotropic phase gratings were simultaneously determined by observing transitional intensity and polarization states of the diffraction beams and characterizing by means of Jones calculus. To clarify the mechanism of SR deformation, cross sections of SR were characterized based on the optical gradient force model; experimental observations were in good agreement with the theoretical expectation. We clarified that the anisotropic phase change originating in the reorientation of the azobenzene side groups was induced immediately at the beginning of the holographic recording, while the response time of the isotropic phase change originating in the molecular migration due to the optical gradient force was relatively slow.

  2. Evolution of anisotropy in bcc Fe distorted by interstitial boron

    Science.gov (United States)

    Gölden, Dominik; Zhang, Hongbin; Radulov, Iliya; Dirba, Imants; Komissinskiy, Philipp; Hildebrandt, Erwin; Alff, Lambert

    2018-01-01

    The evolution of magnetic anisotropy in bcc Fe as a function of interstitial boron atoms was investigated in thin films grown by molecular beam epitaxy. The thermodynamic nonequilibrium conditions during film growth allowed one to stabilize an interstitial boron content of about 14 at .% accompanied by lattice tetragonalization. The c /a ratio scaled linearly with the boron content up to a maximum value of 1.05 at 300 °C substrate growth temperature, with a room-temperature magnetization of. In contrast to nitrogen interstitials, the magnetic easy axis remained in-plane with an anisotropy of approximately -5.1 ×106erg /cm3 . Density functional theory calculations using the measured lattice parameters confirm this value and show that boron local ordering indeed favors in-plane magnetization. Given the increased temperature stability of boron interstitials as compared to nitrogen interstitials, this study will help to find possible ways to manipulate boron interstitials into a more favorable local order.

  3. A separation of antiferromagnetic spin motion modes in the training effect of exchange biased Co/CoO film with in-plane anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Wu, R. [State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871 (China); Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS (United Kingdom); Yun, C.; Ding, S. L.; Wen, X.; Liu, S. Q.; Wang, C. S.; Han, J. Z.; Du, H. L. [State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871 (China); Yang, J. B., E-mail: jbyang@pku.edu.cn [State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100871 (China)

    2016-08-07

    The motion of antiferromagnetic interfacial spins is investigated through the temperature evolution of training effect in a Co/CoO film with in-plane biaxial anisotropy. Significant differences in the training effect and its temperature dependence are observed in the magnetic easy axis and hard axis (HA) and ascribed to the different motion modes of antiferromagnetic interfacial spins, the collective spin cluster rotation (CSR) and the single spin reversal (SSR), caused by different magnetization reversal modes of ferromagnetic layer. These motion modes of antiferromagnetic spins are successfully separated using a combination of an exponential function and a classic n{sup −1/2} function. A larger CSR to SSR ratio and a shorter lifetime of CSR found in the HA indicates that the domain rotation in the ferromagnetic layer tends to activate and accelerate a CSR mode in the antiferromagnetic spins.

  4. A separation of antiferromagnetic spin motion modes in the training effect of exchange biased Co/CoO film with in-plane anisotropy

    International Nuclear Information System (INIS)

    Wu, R.; Yun, C.; Ding, S. L.; Wen, X.; Liu, S. Q.; Wang, C. S.; Han, J. Z.; Du, H. L.; Yang, J. B.

    2016-01-01

    The motion of antiferromagnetic interfacial spins is investigated through the temperature evolution of training effect in a Co/CoO film with in-plane biaxial anisotropy. Significant differences in the training effect and its temperature dependence are observed in the magnetic easy axis and hard axis (HA) and ascribed to the different motion modes of antiferromagnetic interfacial spins, the collective spin cluster rotation (CSR) and the single spin reversal (SSR), caused by different magnetization reversal modes of ferromagnetic layer. These motion modes of antiferromagnetic spins are successfully separated using a combination of an exponential function and a classic n"−"1"/"2 function. A larger CSR to SSR ratio and a shorter lifetime of CSR found in the HA indicates that the domain rotation in the ferromagnetic layer tends to activate and accelerate a CSR mode in the antiferromagnetic spins.

  5. Effects of aging and sheet thickness on the room temperature deformation behavior and in-plane anisotropy of cold rolled and solution treated Nimonic C-263 alloy sheet

    Energy Technology Data Exchange (ETDEWEB)

    Ankamma, Kandula; Chandra Mohan Reddy, Gangireddy [Mahatma Ghandi Institute of Technology, Hyderabad (India). Mechanical Engineering Dept.; Singh, Ashok Kumar; Prasad, Konduri Satya [Defence Research and Development Organisation (DRDO), Hyderabad (India). Defence Metallurgical Research Lab.; Komaraiah, Methuku [Malla Reddy College of Engineering and Technology, Secunderabad (India); Eswara Prasad, Namburi [Regional Centre for Military Airworthiness (Materials), Hyderabad (India)

    2011-10-15

    The deformation behavior under uni-axial tensile loading is investigated and reported in the case of cold rolled Nimonic C-263 alloy sheet products of different thicknesses (0.5 mm and 1 mm) in the solution treated and aged conditions. The studies conducted include (i) Microstructure, (ii) X-ray diffraction, (iii) Texture and (iv) Tensile properties and inplane anisotropy in the yield behavior (both tensile yield strength and ultimate tensile strength as well as ductility). The results of the present study showed that despite the presence of weak crystallographic texture in this crystal symmetric material, the degrees of in-plane anisotropy in strength as well as plastic deformation properties are found to be significant in both solution treated and aged conditions, thus having significant technological relevance for both further processing and design purposes. Further, the influence of aging and sheet thickness on the tensile deformation behaviour is also found to be considerable. A brief discussion on the technological implications of these results is also included. (orig.)

  6. Anisotropy of transverse sound in the heavy Fermian supersonductor UPt3

    International Nuclear Information System (INIS)

    Shiveram, B.S.; Jeong, Y.H.; Rosenbaum, T.F.; Hinks, D.G.

    1986-03-01

    We report the first measurements of the attenuation of ultrasound in the basal plane of superconducting UPt 3 . Transverse sound propagating along the b-axis shows a marked anisotropy in its temperature dependence when the polarization is rotated in and out of the basal plane. For polarization in the basal plane the attenuation varies linearly with temperature down to 35 mK and the slope scales as the square of the frequency. Our results appear to indicate the presence of an additional attenuation mechanism when compared with recent theories of anisotropic superconductors in the dirty limit. 18 refs., 3 figs

  7. Search for anisotropy in the Debye-Waller factor of HCP solid 4He

    Science.gov (United States)

    Barnes, Ashleigh L.; Hinde, Robert J.

    2016-02-01

    The properties of hexagonal close packed (hcp) solid 4He are dominated by large atomic zero point motions. An accurate description of these motions is therefore necessary in order to accurately calculate the properties of the system, such as the Debye-Waller (DW) factors. A recent neutron scattering experiment reported significant anisotropy in the in-plane and out-of-plane DW factors for hcp solid 4He at low temperatures, where thermal effects are negligible and only zero-point motions are expected to contribute. By contrast, no such anisotropy was observed either in earlier experiments or in path integral Monte Carlo (PIMC) simulations of solid hcp 4He. However, the earlier experiments and the PIMC simulations were both carried out at higher temperatures where thermal effects could be substantial. We seek to understand the cause of this discrepancy through variational quantum Monte Carlo simulations utilizing an accurate pair potential and a modified trial wavefunction which allows for anisotropy. Near the melting density, we find no anisotropy in an ideal hcp 4He crystal. A theoretical equation of state is derived from the calculated energies of the ideal crystal over a range of molar volumes from 7.88 to 21.3 cm3, and is found to be in good qualitative agreement with experimental data.

  8. A design for an internet router with a digital optical data plane

    Science.gov (United States)

    Touch, Joe; Bannister, Joseph; Suryaputra, Stephen; Willner, Alan E.

    2013-12-01

    This paper presents a complete design for an optical Internet router based on decomposing the steps required for IP packet forwarding. Implementations of hopcount decrement and header matching are integrated with a simulation-based approach to variable-length packet merging that avoids recirculation, resulting in an all-optical data plane. A method for IPv4 checksum computation is introduced, and this and previously designed components are extended from binary to higher-density (multiple bits per symbol) encodings. The implications of this design are considered, including the potential for chip-level and system integration, as well as the requirements of basic optical processing components.

  9. Interfaces anisotropy in single crystal V/Fe/V trilayer

    Energy Technology Data Exchange (ETDEWEB)

    Louis, D. [Institut Jean Lamour, UMR CNRS 7198, Université de Lorraine, 54506 Vandoeuvre-lès-Nancy (France); Lytvynenko, Ia. [Sumy State University, 2, Rymskogo-Korsakova Street, 40007 Sumy (Ukraine); Hauet, T., E-mail: thomas.hauet@univ-lorraine.fr [Institut Jean Lamour, UMR CNRS 7198, Université de Lorraine, 54506 Vandoeuvre-lès-Nancy (France); Lacour, D.; Hehn, M.; Andrieu, S.; Montaigne, F. [Institut Jean Lamour, UMR CNRS 7198, Université de Lorraine, 54506 Vandoeuvre-lès-Nancy (France)

    2014-12-15

    The value and sign of V/Fe interface anisotropy are investigated. Epitaxial V/Fe/V/Au layers with different iron thicknesses were grown on single-crystalline (001) MgO substrate by ultra-high vacuum molecular beam epitaxy. Magnetometry was used to measure magnetization and out-of-plane anisotropy field. From these values, we quantify the number of dead layers due to V/Fe or Fe/V interfaces, and compare it with the literature. We deduce that dead layers occur mostly at the bottom V/Fe interface. An average value for V/Fe and Fe/V interface anisotropy around 0±0.1 erg/cm{sup 2} (mJ/m{sup 2}) was thus deduced. - Highlights: • In a V/Fe/V stack, dead layers (i.e. overall magnetization reduction) originate mostly from the bottom V/Fe interface. • The average value for V/Fe and Fe/V interface anisotropy in V/Fe/V stack has been quantified as 0±0.1 erg/cm{sup 2} (mJ/m{sup 2})

  10. Strong out-of-plane magnetic anisotropy in ion irradiated anatase TiO2 thin films

    Directory of Open Access Journals (Sweden)

    M. Stiller

    2016-12-01

    Full Text Available The temperature and field dependence of the magnetization of epitaxial, undoped anatase TiO2 thin films on SrTiO3 substrates was investigated. Low-energy ion irradiation was used to modify the surface of the films within a few nanometers, yet with high enough energy to produce oxygen and titanium vacancies. The as-prepared thin film shows ferromagnetism which increases after irradiation with low-energy ions. An optimal and clear magnetic anisotropy was observed after the first irradiation, opposite to the expected form anisotropy. Taking into account the experimental parameters, titanium vacancies as di-Frenkel pairs appear to be responsible for the enhanced ferromagnetism and the strong anisotropy observed in our films. The magnetic impurities concentrations was measured by particle-induced X-ray emission with ppm resolution. They are ruled out as a source of the observed ferromagnetism before and after irradiation.

  11. Thermal conductivity anisotropy in holey silicon nanostructures and its impact on thermoelectric cooling

    Science.gov (United States)

    Ren, Zongqing; Lee, Jaeho

    2018-01-01

    Artificial nanostructures have improved prospects of thermoelectric systems by enabling selective scattering of phonons and demonstrating significant thermal conductivity reductions. While the low thermal conductivity provides necessary temperature gradients for thermoelectric conversion, the heat generation is detrimental to electronic systems where high thermal conductivity are preferred. The contrasting needs of thermal conductivity are evident in thermoelectric cooling systems, which call for a fundamental breakthrough. Here we show a silicon nanostructure with vertically etched holes, or holey silicon, uniquely combines the low thermal conductivity in the in-plane direction and the high thermal conductivity in the cross-plane direction, and that the anisotropy is ideal for lateral thermoelectric cooling. The low in-plane thermal conductivity due to substantial phonon boundary scattering in small necks sustains large temperature gradients for lateral Peltier junctions. The high cross-plane thermal conductivity due to persistent long-wavelength phonons effectively dissipates heat from a hot spot to the on-chip cooling system. Our scaling analysis based on spectral phonon properties captures the anisotropic size effects in holey silicon and predicts the thermal conductivity anisotropy ratio up to 20. Our numerical simulations demonstrate the thermoelectric cooling effectiveness of holey silicon is at least 30% greater than that of high-thermal-conductivity bulk silicon and 400% greater than that of low-thermal-conductivity chalcogenides; these results contrast with the conventional perception preferring either high or low thermal conductivity materials. The thermal conductivity anisotropy is even more favorable in laterally confined systems and will provide effective thermal management solutions for advanced electronics.

  12. Thermal conductivity anisotropy in holey silicon nanostructures and its impact on thermoelectric cooling.

    Science.gov (United States)

    Ren, Zongqing; Lee, Jaeho

    2018-01-26

    Artificial nanostructures have improved prospects of thermoelectric systems by enabling selective scattering of phonons and demonstrating significant thermal conductivity reductions. While the low thermal conductivity provides necessary temperature gradients for thermoelectric conversion, the heat generation is detrimental to electronic systems where high thermal conductivity are preferred. The contrasting needs of thermal conductivity are evident in thermoelectric cooling systems, which call for a fundamental breakthrough. Here we show a silicon nanostructure with vertically etched holes, or holey silicon, uniquely combines the low thermal conductivity in the in-plane direction and the high thermal conductivity in the cross-plane direction, and that the anisotropy is ideal for lateral thermoelectric cooling. The low in-plane thermal conductivity due to substantial phonon boundary scattering in small necks sustains large temperature gradients for lateral Peltier junctions. The high cross-plane thermal conductivity due to persistent long-wavelength phonons effectively dissipates heat from a hot spot to the on-chip cooling system. Our scaling analysis based on spectral phonon properties captures the anisotropic size effects in holey silicon and predicts the thermal conductivity anisotropy ratio up to 20. Our numerical simulations demonstrate the thermoelectric cooling effectiveness of holey silicon is at least 30% greater than that of high-thermal-conductivity bulk silicon and 400% greater than that of low-thermal-conductivity chalcogenides; these results contrast with the conventional perception preferring either high or low thermal conductivity materials. The thermal conductivity anisotropy is even more favorable in laterally confined systems and will provide effective thermal management solutions for advanced electronics.

  13. Modification of magnetic anisotropy in metallic glasses using high ...

    Indian Academy of Sciences (India)

    The data gives a straight line as a best fit as shown in figure 4. It can be safely inferred that the residual stresses produced in the glassy metals could be the main cause of the reduction in in-plane magnetic anisotropy. This phe- nomenon is in conformity with the magnetostriction effect in which mechanical stresses. 1098.

  14. Transference of Fermi Contour Anisotropy to Composite Fermions.

    Science.gov (United States)

    Jo, Insun; Rosales, K A Villegas; Mueed, M A; Pfeiffer, L N; West, K W; Baldwin, K W; Winkler, R; Padmanabhan, Medini; Shayegan, M

    2017-07-07

    There has been a surge of recent interest in the role of anisotropy in interaction-induced phenomena in two-dimensional (2D) charged carrier systems. A fundamental question is how an anisotropy in the energy-band structure of the carriers at zero magnetic field affects the properties of the interacting particles at high fields, in particular of the composite fermions (CFs) and the fractional quantum Hall states (FQHSs). We demonstrate here tunable anisotropy for holes and hole-flux CFs confined to GaAs quantum wells, via applying in situ in-plane strain and measuring their Fermi wave vector anisotropy through commensurability oscillations. For strains on the order of 10^{-4} we observe significant deformations of the shapes of the Fermi contours for both holes and CFs. The measured Fermi contour anisotropy for CFs at high magnetic field (α_{CF}) is less than the anisotropy of their low-field hole (fermion) counterparts (α_{F}), and closely follows the relation α_{CF}=sqrt[α_{F}]. The energy gap measured for the ν=2/3 FQHS, on the other hand, is nearly unaffected by the Fermi contour anisotropy up to α_{F}∼3.3, the highest anisotropy achieved in our experiments.

  15. In-plane reversal of the magnetic anisotropy in (110)-oriented LaCoO3/La0.67Sr0.33MnO3 heterostructures

    Science.gov (United States)

    Zhang, Jing; Yan, Xi; Han, Furong; Zhang, Jine; Liu, Dan; Shen, Baogen; Sun, Jirong

    2018-05-01

    The interface engineering of the complex oxides with strongly coupled degrees of freedom opens a wide space for the exploration of novel effects. La0.67Sr0.33MnO3 is one of the most typical complex oxides used for atomic level material engineering. Herein we reported an in-plane reversal of the magnetic anisotropy in (110)-oriented LaCoO3/La0.67Sr0.33MnO3 (LCO/LSMO) bilayers grown on (110)-oriented LaAlO3 substrates. Fixing the LSMO layer thickness to 8 nm and varying the LCO layer from 0 to 8 nm, totally six bilayers were fabricated. Without the LCO layer, the LSMO film exhibits an easy axis along the [1-10] direction. However, when the thickness of the LCO layer exceeds 1 nm, a signature of spin-reorientation appears; the easy axis turns from the [1-10] to the [001] direction below 225 K. This tendency is continuously enhanced by increasing the LCO. We reveal that lattice strains are different along these two directions. The magnetic anisotropy is not only controlled by lattice strain but also by structural distortion at interface. This work shows the great potential of the interface engineering with differently structured oxides for the exploration of novel functional materials.

  16. Design of energy efficient optical networks with software enabled integrated control plane

    DEFF Research Database (Denmark)

    Wang, Jiayuan; Yan, Ying; Dittmann, Lars

    2015-01-01

    energy consumption by proposing a new integrated control plane structure utilising Software Defined Networking technologies. The integrated control plane increases the efficiencies of exchanging control information across different network domains, while introducing new possibilities to the routing...... methods and the control over quality of service (QoS). The structure is defined as an overlay generalised multi-protocol label switching (GMPLS) control model. With the defined structure, the integrated control plane is able to gather information from different domains (i.e. optical core network......'s) routing behaviours. With the flexibility of the routing structure, results show that the energy efficiency of the network can be improved without compromising the QoS for delay/blocking sensitive services....

  17. Use of Mueller matrix polarimetry and optical coherence tomography in the characterization of cervical collagen anisotropy

    Science.gov (United States)

    Chue-Sang, Joseph; Bai, Yuqiang; Stoff, Susan; Gonzalez, Mariacarla; Holness, Nola; Gomes, Jefferson; Jung, Ranu; Gandjbakhche, Amir; Chernomordik, Viktor V.; Ramella-Roman, Jessica C.

    2017-08-01

    Preterm birth (PTB) presents a serious medical health concern throughout the world. There is a high incidence of PTB in both developed and developing countries ranging from 11% to 15%, respectively. Recent research has shown that cervical collagen orientation and distribution changes during pregnancy may be useful in predicting PTB. Polarization imaging is an effective means to measure optical anisotropy in birefringent materials, such as the cervix's extracellular matrix. Noninvasive, full-field Mueller matrix polarimetry (MMP) imaging methodologies, and optical coherence tomography (OCT) imaging were used to assess cervical collagen content and structure in nonpregnant porcine cervices. We demonstrate that the highly ordered structure of the nonpregnant porcine cervix can be observed with MMP. Furthermore, when utilized ex vivo, OCT and MMP yield very similar results with a mean error of 3.46% between the two modalities.

  18. Achieving perpendicular anisotropy in half-metallic Heusler alloys for spin device applications

    Science.gov (United States)

    Munira, Kamaram; Romero, Jonathon; Butler, William H.

    2014-05-01

    Various full Heusler alloys are interfaced with MgO and the magnetic properties of the Heusler-MgO junctions are studied. Next to MgO, the cubic Heusler system distorts to a tetragonal one, thereby inducing an anisotropy. The half-metallicity and nature of anisotropy (in-plane or perpendicular) in the Heusler-MgO system is governed mostly by the interface Heusler layers. There is a trend that Mn-O bonding near the MgO-Heusler junction results in perpendicular anisotropy. The ability to remain half-metallic and have perpendicular anisotropy makes some of these alloys potential candidates as free-layers in Spin Transfer Torque Random Access Memory (STT-RAM) devices, particularly, Cr2MnAs-MgO system with MnAs interface layers and Co2MnSi-MgO system with Mn2 interface layers.

  19. Magnetic and structural investigation of growth induced magnetic anisotropies in Fe50Co50 thin films

    Directory of Open Access Journals (Sweden)

    Neri I.

    2013-01-01

    Full Text Available In this paper, we investigate the magnetic properties of Fe50 Co50 polycrystalline thin films, grown by dc-magnetron sputtering, with thickness (t ranging from 2.5 nm up to 100 nm. We focused on the magnetic properties of the samples to highlight the effects of possible intrinsic stress that may develop during growth, and their dependence on film thickness. Indeed, during film deposition, due to the growth technique and growth conditions, a metallic film may display an intrinsic compressive or tensile stress. In our case, due to the Fe50Co50 magnetolastic properties, this stress may in its turn promote the development of magnetic anisotropies. Samples magnetic properties were monitored with a SQUID magnetometer and a magneto–optic Kerr effect apparatus, using both an in–plane and an out–of–plane magnetic field. Magnetoresistance measurements were collected, as well, to further investigate the magnetic behavior of the samples. Indications about the presence of intrinsic stress were obtained accessing samples curvature with an optical profilometer. For t ≤ 20 nm, the shape of the in-plane magnetization loops is squared and coercivity increases with t, possibly due to fact that, for small t values, the grain size grows with t. The magnetoresistive response is anisotropic in character. For t > 20 nm, coercivity smoothly decreases, the approach to saturation gets slower and the shape of the whole loop gets less and less squared. The magnetoresistive effect becomes almost isotropic and its intensity increases of about one order of magnitude. These results suggest that the magnetization reorientation process changes for t > 20 nm, and are in agreement with the progressive development of an out-of-plane easy axis. This hypothesis is substantiated by profilometric analysis that reveals the presence of an in-plane compressive stress.

  20. Flow stress anisotropy caused by geometrically necessary boundaries

    DEFF Research Database (Denmark)

    Hansen, N.; Juul Jensen, D.

    1992-01-01

    of dislocations. A model has been proposed for this microstructural anisotropy based on the assumptions that (i) the average slip plane is at an angle of 45-degrees to the direction of the applied stress and that (ii) a strengthening parameter is the mean distance in the slip plane between the geometrically...... necessary boundaries. For different macroscopic arrangements of such boundaries, the model predictions are in good qualitative and quantitative agreement with experiments....

  1. On the inversion of an integral equation relating two wavefunctions in planes of an optical system suffering from an arbitrary number of aberrations

    NARCIS (Netherlands)

    Hoenders, B.J.

    1979-01-01

    If the wavefunction in the (not necessarily gaussian) image plane of an optical instrument is distorted by an arbitrary number of aberrations, the wavefunction in planes situated between the image plane and the plane of the specimen holder cannot be reconstructed by a Fourier series or a Fourier

  2. Design and performance evaluation of an OpenFlow-based control plane for software-defined elastic optical networks with direct-detection optical OFDM (DDO-OFDM) transmission.

    Science.gov (United States)

    Liu, Lei; Peng, Wei-Ren; Casellas, Ramon; Tsuritani, Takehiro; Morita, Itsuro; Martínez, Ricardo; Muñoz, Raül; Yoo, S J B

    2014-01-13

    Optical Orthogonal Frequency Division Multiplexing (O-OFDM), which transmits high speed optical signals using multiple spectrally overlapped lower-speed subcarriers, is a promising candidate for supporting future elastic optical networks. In contrast to previous works which focus on Coherent Optical OFDM (CO-OFDM), in this paper, we consider the direct-detection optical OFDM (DDO-OFDM) as the transport technique, which leads to simpler hardware and software realizations, potentially offering a low-cost solution for elastic optical networks, especially in metro networks, and short or medium distance core networks. Based on this network scenario, we design and deploy a software-defined networking (SDN) control plane enabled by extending OpenFlow, detailing the network architecture, the routing and spectrum assignment algorithm, OpenFlow protocol extensions and the experimental validation. To the best of our knowledge, it is the first time that an OpenFlow-based control plane is reported and its performance is quantitatively measured in an elastic optical network with DDO-OFDM transmission.

  3. X-ray verification of an optically-aligned off-plane grating module

    Science.gov (United States)

    Donovan, Benjamin; McEntaffer, Randall; Tutt, James; DeRoo, Casey; Allured, Ryan; Gaskin, Jessica; Kolodziejczak, Jeffery

    2017-08-01

    The next generation of X-ray spectrometer missions are baselined to have order-of-magnitude improvements in both spectral resolving power and effective area when compared to existing X-ray spectrometer missions. Off-plane X-ray reflection gratings are capable of achieving high resolution and high diffraction efficiencies over the entire X-ray bandpass, making them an ideal technology to implement on these future missions. To achieve the high effective area desired while maintaining high spectral resolution, many off-plane gratings must be precisely aligned such that their diffraction arcs overlap at the focal plane. Methods are under development to align a number of these gratings into a grating module using optical metrology techniques in support of the Off-plane Grating Rocket Experiment (OGRE), a suborbital rocket payload scheduled to launch in late 2018. X-ray testing was performed on an aligned grating module at the Straylight Test Facility (SLTF) at NASA Marshall Space Flight Center (MSFC) to assess the current alignment methodology and its ability to meet the desired performance of OGRE. We report on the results from the test campaign at MSFC, as well as plans for future development.

  4. Tailoring of Perpendicular Magnetic Anisotropy in Dy13Fe87 Thin Films with Hexagonal Antidot Lattice Nanostructure

    Directory of Open Access Journals (Sweden)

    Mohamed Salaheldeen

    2018-04-01

    Full Text Available In this article, the magnetic properties of hexagonally ordered antidot arrays made of Dy13Fe87 alloy are studied and compared with corresponding ones of continuous thin films with the same compositions and thicknesses, varying between 20 nm and 50 nm. Both samples, the continuous thin films and antidot arrays, were prepared by high vacuum e-beam evaporation of the alloy on the top-surface of glass and hexagonally self-ordered nanoporous alumina templates, which serve as substrates, respectively. By using a highly sensitive magneto-optical Kerr effect (MOKE and vibrating sample magnetometer (VSM measurements an interesting phenomenon has been observed, consisting in the easy magnetization axis transfer from a purely in-plane (INP magnetic anisotropy to out-of-plane (OOP magnetization. For the 30 nm film thickness we have measured the volume hysteresis loops by VSM with the easy magnetization axis lying along the OOP direction. Using magnetic force microscopy measurements (MFM, there is strong evidence to suggest that the formation of magnetic domains with OOP magnetization occurs in this sample. This phenomenon can be of high interest for the development of novel magnetic and magneto-optic perpendicular recording patterned media based on template-assisted deposition techniques.

  5. Nanocrystalline iron nitride films with perpendicular magnetic anisotropy

    International Nuclear Information System (INIS)

    Gupta, Ajay; Dubey, Ranu; Leitenberger, W.; Pietsch, U.

    2008-01-01

    Nanocrystalline α-iron nitride films have been prepared using reactive ion-beam sputtering. Films develop significant perpendicualr magnetic anisotropy (PMA) with increasing thickness. A comparison of x-ray diffraction patterns taken with scattering vectors in the film plane and out of the film plane provides a clear evidence for development of compressive strain in the film plane with thickness. Thermal annealing results in relaxation of the strain, which correlates very well with the relaxation of PMA. This suggests that the observed PMA is a consequence of the breaking of the symmetry of the crystal structure due to the compressive strain

  6. Early anisotropy changes in the corpus callosum of patients with optic neuritis

    International Nuclear Information System (INIS)

    Bester, M.; Ding, X.Q.; Holst, B.; Fiehler, J.; Heesen, C.; Schippling, S.; Martin, R.

    2008-01-01

    Optic neuritis (ON) and any other early manifestation of multiple sclerosis (MS) are referred to as clinically isolated syndrome (CIS) as long as MS is suspected. In this prospective study we aimed to determine whether diffusion tensor imaging (DTI) could quantify structural changes in patients with early MS. A total of 24 patients and 15 control subjects were prospectively followed by clinical examinations and MRI. the main inclusion criterion was presentation with ON. Patients underwent serial MRI scans: MRI1 (baseline, n=24), MRI2 (mean 6.6 months, n=24), MRI3 (mean 13.0 months, n=14), MRI4 (mean 39.4 months, n=5). Apparent diffusion coefficient (ADC) and fractional anisotropy (FA) maps were derived from DTI. Four regions of interest (ROIs) were defined in normal-appearing white matter (NAWM). In the temporal course FA decreased in the genu of the callosal body (GCC) from MRI1 to MRI4 (P=0.005) and in the splenium of the callosal body (SCC) (P=0.006). Patients already had lower FA values in the SCC (P<0.01) on MRI1 compared with the controls. Patients had lower FA values in the GCC (P<0.01) starting from MRI2. Patients with definite MS on follow-up (n=9) showed a correlation between FA in the SCC and time (r=-0.40, P=0.004), whereas patients without progression did not. Our findings suggest that the corpus callosum is an early site for development of anisotropy changes in MS patients with ON. There seems to be a primary FA decrease in all patients with ON that only deteriorates in the group developing definite MS. (orig.)

  7. Magnetic anisotropy, damping, and interfacial spin transport in Pt/LSMO bilayers

    Directory of Open Access Journals (Sweden)

    H. K. Lee

    2016-05-01

    Full Text Available We report ferromagnetic resonance measurements of magnetic anisotropy and damping in epitaxial La0.7Sr0.3MnO3 (LSMO and Pt capped LSMO thin films on SrTiO3 (001 substrates. The measurements reveal large negative perpendicular magnetic anisotropy and a weaker uniaxial in-plane anisotropy that are unaffected by the Pt cap. The Gilbert damping of the bare LSMO films is found to be low α = 1.9(1 × 10−3, and two-magnon scattering is determined to be significant and strongly anisotropic. The Pt cap increases the damping by 50% due to spin pumping, which is also directly detected via inverse spin Hall effect in Pt. Our work demonstrates efficient spin transport across the Pt/LSMO interface.

  8. Magnetic anisotropy, damping, and interfacial spin transport in Pt/LSMO bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H. K., E-mail: hankl@uci.edu; Barsukov, I.; Yang, L.; Krivorotov, I. N. [Physics and Astronomy, University of California, Irvine, California 92697 (United States); Swartz, A. G.; Kim, B. [Geballe Laboratory for Advanced Materials, Department of Applied Physics, Stanford University, Stanford, California 94305 (United States); Hwang, H. Y. [Geballe Laboratory for Advanced Materials, Department of Applied Physics, Stanford University, Stanford, California 94305 (United States); Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)

    2016-05-15

    We report ferromagnetic resonance measurements of magnetic anisotropy and damping in epitaxial La{sub 0.7}Sr{sub 0.3}MnO{sub 3} (LSMO) and Pt capped LSMO thin films on SrTiO{sub 3} (001) substrates. The measurements reveal large negative perpendicular magnetic anisotropy and a weaker uniaxial in-plane anisotropy that are unaffected by the Pt cap. The Gilbert damping of the bare LSMO films is found to be low α = 1.9(1) × 10{sup −3}, and two-magnon scattering is determined to be significant and strongly anisotropic. The Pt cap increases the damping by 50% due to spin pumping, which is also directly detected via inverse spin Hall effect in Pt. Our work demonstrates efficient spin transport across the Pt/LSMO interface.

  9. Agreement between fiber optic and optoelectronic systems for quantifying sagittal plane spinal curvature in sitting.

    Science.gov (United States)

    Cloud, Beth A; Zhao, Kristin D; Breighner, Ryan; Giambini, Hugo; An, Kai-Nan

    2014-07-01

    Spinal posture affects how individuals function from a manual wheelchair. There is a need to directly quantify spinal posture in this population to ultimately improve function. A fiber optic system, comprised of an attached series of sensors, is promising for measuring large regions of the spine in individuals sitting in a wheelchair. The purpose of this study was to determine the agreement between fiber optic and optoelectronic systems for measuring spinal curvature, and describe the range of sagittal plane spinal curvatures in natural sitting. Able-bodied adults (n = 26, 13 male) participated. Each participant assumed three sitting postures: natural, slouched (accentuated kyphosis), and extension (accentuated lordosis) sitting. Fiber optic (ShapeTape) and optoelectronic (Optotrak) systems were applied to the skin over spinous processes from S1 to C7 and used to measure sagittal plane spinal curvature. Regions of kyphosis and lordosis were identified. A Cobb angle-like method was used to quantify lordosis and kyphosis. Generalized linear model and Bland-Altman analyses were used to assess agreement. A strong correlation exists between curvature values obtained with Optotrak and ShapeTape (R(2) = 0.98). The mean difference between Optotrak and ShapeTape for kyphosis in natural, extension, and slouched postures was 4.30° (95% LOA: -3.43 to 12.04°), 3.64° (95% LOA: -1.07 to 8.36°), and 4.02° (95% LOA: -2.80 to 10.84°), respectively. The mean difference for lordosis, when present, in natural and extension postures was 2.86° (95% LOA: -1.18 to 6.90°) and 2.55° (95% LOA: -3.38 to 8.48°), respectively. In natural sitting, the mean ± SD of kyphosis values was 35.07 ± 6.75°. Lordosis was detected in 8/26 participants: 11.72 ± 7.32°. The fiber optic and optoelectronic systems demonstrate acceptable agreement for measuring sagittal plane thoracolumbar spinal curvature. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Magnetocrystalline and configurational anisotropies in Fe nanostructures

    International Nuclear Information System (INIS)

    Vavassori, P.; Bisero, D.; Carace, F.; Liberati, M.; Di Bona, A.; Gazzadi, G.C.; Valeri, S.

    2005-01-01

    Arrays of single-crystal Fe micron and submicron squares and disks, have been fabricated using a focused ion beam apparatus from a film epitaxially grown on MgO. The hysteresis loops of the patterned areas differ from those of the continuous film as a consequence of the different reversal determined by the lateral confinement of the Fe film. By means of modulated field magneto-optical anisometry measurements we studied the symmetry and the strength of the overall anisotropy. For the smaller square elements we observed a higher-order term in the overall anisotropy with eightfold symmetry arising from the configurational contribution

  11. Band structure and optical properties of highly anisotropic LiBa2[B10O16(OH)3] decaborate crystal

    International Nuclear Information System (INIS)

    Smok, P.; Kityk, I.V.; Berdowski, J.

    2003-01-01

    The band structure (BS), charge density distribution and linear-optical properties of the anisotropic crystal LiBa 2 [B 10 O 16 (OH) 3 ] (LBBOH) are calculated using a self-consistent norm-conserving pseudopotential method within the framework of the local-density approximation theory. A high anisotropy of the band energy gap (4.22 eV for the E parallel b, 4.46 eV for the E parallel c) and giant birefringence (up to 0.20) are found. Comparison of the theoretically calculated and the experimentally measured polarised spectra of the imaginary part of the dielectric susceptibility ε 2 shows a good agreement. The anisotropy of the charge density distribution, BS dispersion and of the optical spectra originate from anisotropy between the 2p z B-2p z O and 2p y,x B-2p y,y O bonding orbitals. The observed anisotropy in the LBBOH is principally different from that of β-BaB 2 O 4 (BBO) single crystals. In the LBBOH single crystals the anisotropy of optical and charge density distribution is caused by different projection of the orbitals originating from particular borate clusters on the particular crystallographic axes, contrary to the BBO, where the anisotropy is caused prevailingly by a different local site symmetry of oxygen within the borate planes. The observed anisotropy is analysed in terms of the band energy dispersion and space charge density distribution

  12. Uniaxial anisotropy in magnetite thin film-Magnetization studies

    International Nuclear Information System (INIS)

    Wiechec, A.; Korecki, J.; Handke, B.; Kakol, Z.; Owoc, D.; Antolak, D.A.; Kozlowski, A.

    2006-01-01

    Magnetization and electrical resistivity measurements have been performed on a stoichiometric single crystalline magnetite Fe 3 O 4 thin film (thickness of ca. 500 nm) MBE deposited on MgO (1 0 0) substrate. The aim of these studies was to check the influence of preparation method and sample form (bulk vs. thin film) on magnetic anisotropy properties in magnetite. The film magnetization along versus applied magnetic field has been determined both in the direction parallel and perpendicular to the film surface, and at temperatures above and below the Verwey transition. We have found, in agreement with published results, that the in-plane field of 10 kOe was not sufficient to saturate the sample. This can be understood if some additional factor, on top of the bulk magnetocrystalline anisotropy, is taken into account

  13. Ultrathin nanosheets of Mn3O4: A new two-dimensional ferromagnetic material with strong magnetocrystalline anisotropy

    Science.gov (United States)

    Wu, Jun-Chi; Peng, Xu; Guo, Yu-Qiao; Zhou, Hao-Dong; Zhao, Ji-Yin; Ruan, Ke-Qin; Chu, Wang-Sheng; Wu, Changzheng

    2018-06-01

    Two-dimensional (2D) materials with robust ferromagnetism have played a key role in realizing nextgeneration spin-electronic devices, but many challenges remain, especially the lack of intrinsic ferromagnetic behavior in almost all 2D materials. Here, we highlight ultrathin Mn3O4 nanosheets as a new 2D ferromagnetic material with strong magnetocrystalline anisotropy. Magnetic measurements along the in-plane and out-of-plane directions confirm that the out-of-plane direction is the easy axis. The 2D-confined environment and Rashba-type spin-orbit coupling are thought to be responsible for the magnetocrystalline anisotropy. The robust ferromagnetism in 2D Mn3O4 nanosheets with magnetocrystalline anisotropy not only paves a new way for realizing the intrinsic ferromagnetic behavior in 2D materials but also provides a novel candidate for building next-generation spin-electronic devices.

  14. Anisotropy effects during dwell-fatigue caused by δ-phase orientation in forged Inconel 718

    Energy Technology Data Exchange (ETDEWEB)

    Saarimäki, Jonas, E-mail: jonas.saarimaki@liu.se [Division of Engineering Materials, Department of Management and Engineering, Linköping University, SE-58183 Linköping (Sweden); Colliander, Magnus Hörnqvist [Department of Applied Physics, Chalmers University of Technology, SE-41296 Göteborg (Sweden); GKN Aerospace Engine Systems, R& T Centre, SE-46181 Trollhättan (Sweden); Moverare, Johan J. [Division of Engineering Materials, Department of Management and Engineering, Linköping University, SE-58183 Linköping (Sweden)

    2017-04-24

    Inconel 718 is a commonly used superalloy for turbine discs in the gas turbine industry. Turbine discs are often subjected to dwell-fatigue as a result of long constant load cycles. The effect of anisotropy on dwell-fatigue cracking in forged turbine discs have not yet been thoroughly investigated. Crack propagation behaviour was characterised using compact tension (CT) samples cut in different orientations from a real turbine disc forging. Samples were also cut in two different thicknesses in order to investigate the influence of plane strain and plane stress condition on the crack propagation rates. The samples were subjected to dwell-fatigue tests at 550 °C with 90 s or 2160 s dwell-times at maximum load. Microstructure characterisation was done using scanning electron microscopy (SEM) techniques such as electron channelling contrast imaging (ECCI), electron backscatter diffraction (EBSD), and light optical microscopy (LOM). The forged alloy exhibits strong anisotropic behaviour caused by the non-random δ-phase orientation. When δ-phases were oriented perpendicular compared to parallel to the loading direction, the crack growth rates were approximately ten times faster. Crack growth occurred preferably in the interface between the γ-matrix and the δ-phase.

  15. Voltage-Controllable Colossal Magnetocrystalline Anisotropy in Single Layer Dichalcogenides

    Science.gov (United States)

    Sui, Xuelei; Hu, Tao; Wang, Jianfeng; Gu, Bing-Lin; Duan, Wenhui; Miao, Mao-Sheng

    Materials with large magnetocrystalline anisotropy and strong electric field effects are in great need for new types of memory devices that are based on electric field control of spin orientations. Instead of using modified transition metal films, we propose that some monolayer transition metal dichalcogenides are ideal candidate materials for this purpose. Using density functional calculations, we illustrate that they exhibit not only exceedingly large magnetocrystalline anisotropy (MCA) but also colossal voltage modulation under external field. Especially, spins in some materials like CrSe2 and FeSe2, which is strongly preferred to in-plane orientation, can be totally switched to out-of-plane direction. The effect is attributed to the large band character alteration of transition metal d-states around the Fermi level by electric field. We further demonstrate that strain can also greatly change MCA, and can help to improve the modulation efficiency while combining with electric field. Acknowledge the support of the Ministry of Science and Technology of China (Grant No.2016YFA0301001), and the National Natural Science Foundation of China (Grants No. 11674188 and 11334006), NSF-funded XSEDE resources (TG-DMR130005) especially on Stampede.

  16. Spin transport anisotropy in (110)GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Odilon, D.D.C. Jr.; Rudolph, Joerg; Hey, Rudolf; Santos, Paulo V. [Paul-Drude-Institut fuer Festkoerperelektronik, Berlin (Germany); Iikawa, Fernando [Universidade Estadual de Campinas, IFGW, Campinas SP (Brazil)

    2007-07-01

    Mobile piezoelectric potentials are used to coherently transport electron spins in GaAs(110) quantum wells (QW) over distances exceeding 60{mu}m. We demonstrate that the dynamics of mobile spins under external magnetic fields depends on the direction of motion in the QW plane. The weak piezoelectric fields impart a non-vanishing average velocity to the carriers, allowing for the direct observation of the carrier momentum dependence of the spin polarization dynamics. While transport along [001] direction presents high in-plane spin relaxation rates, transport along [ anti 110] shows a much weaker external field dependence due to the non-vanishing internal magnetic field. We show that the anisotropy is an intrinsic property of the underling GaAs matrix, associated with the bulk inversion asymmetry contribution to the LS-coupling.

  17. Three-dimensional spin mapping of antiferromagnetic nanopyramids having spatially alternating surface anisotropy at room temperature.

    Science.gov (United States)

    Wang, Kangkang; Smith, Arthur R

    2012-11-14

    Antiferromagnets play a key role in modern spintronic devices owing to their ability to modify the switching behavior of adjacent ferromagnets via the exchange bias effect. Consequently, detailed measurements of the spin structure at antiferromagnetic interfaces and surfaces are highly desirable, not only for advancing technologies but also for enabling new insights into the underlying physics. Here using spin-polarized scanning tunneling microscopy at room-temperature, we reveal in three-dimensions an orthogonal spin structure on antiferromagnetic compound nanopyramids. Contrary to expected uniaxial anisotropy based on bulk properties, the atomic terraces are found to have alternating in-plane and out-of-plane magnetic anisotropies. The observed layer-wise alternation in anisotropy could have strong influences on future nanoscale spintronic applications.

  18. Anisotropy of the Mechanical Properties of TbF3 Crystals

    Science.gov (United States)

    Karimov, D. N.; Lisovenko, D. S.; Sizova, N. L.; Sobolev, B. P.

    2018-01-01

    TbF3 (sp. gr. Pnma) crystals up to 40 mm in diameter have been grown from melt by a Bridgman technique. The anisotropy of their mechanical properties is studied for the first time. the technical elasticity constants are calculated, and room-temperature values of Vickers microhardness for the (010) and (100) planes are measured. The shape of indentation impressions is found to correlate with Young's modulus anisotropy for TbF3 crystals.

  19. Polarization Control with Plasmonic Antenna Tips: A Universal Approach to Optical Nanocrystallography and Vector-Field Imaging

    Science.gov (United States)

    Park, Kyoung-Duck; Raschke, Markus B.

    2018-05-01

    Controlling the propagation and polarization vectors in linear and nonlinear optical spectroscopy enables to probe the anisotropy of optical responses providing structural symmetry selective contrast in optical imaging. Here we present a novel tilted antenna-tip approach to control the optical vector-field by breaking the axial symmetry of the nano-probe in tip-enhanced near-field microscopy. This gives rise to a localized plasmonic antenna effect with significantly enhanced optical field vectors with control of both \\textit{in-plane} and \\textit{out-of-plane} components. We use the resulting vector-field specificity in the symmetry selective nonlinear optical response of second-harmonic generation (SHG) for a generalized approach to optical nano-crystallography and -imaging. In tip-enhanced SHG imaging of monolayer MoS$_2$ films and single-crystalline ferroelectric YMnO$_3$, we reveal nano-crystallographic details of domain boundaries and domain topology with enhanced sensitivity and nanoscale spatial resolution. The approach is applicable to any anisotropic linear and nonlinear optical response, and provides for optical nano-crystallographic imaging of molecular or quantum materials.

  20. Out-of-plane spin-orientation dependent magnetotransport properties in the anisotropic helimagnet CR1/3NbS2 [Spin-Orbit Coupling Induced Anisotropy in the Magnetotransport of the Chiral Helimagnet Cr1=3NbS2

    International Nuclear Information System (INIS)

    Bornstein, Alexander C.; Chapman, Benjamin J.; Ghimire, Nirmal J.; Oak Ridge National Lab.; Technology Div.); Mandrus, David G.; Oak Ridge National Lab.; Technology Div.); Parker, David S.; Technology Div.); Lee, Minhyea

    2015-01-01

    Understanding the role of spin-orbit coupling (SOC) has been crucial for controlling magnetic anisotropy in magnetic multilayer films. It has been shown that electronic structure can be altered via interface SOC by varying the superlattice structure, resulting in spontaneous magnetization perpendicular or parallel to the plane. In lieu of magnetic thin films, we study the similarly anisotropic helimagnet Cr1/3NbS2 where the spin-polarization direction, controlled by the applied magnetic field, can modify the electronic structure. As a result, the direction of spin polarization can modulate the density of states and in turn affect the in-plane electrical conductivity. In Cr1/3NbS2, we found an enhancement of in-plane conductivity when the spin polarization is out-of-plane as compared to in-plane spin polarization. This is consistent with the increase in density of states near the Fermi energy at the same spin configuration, found from first-principles calculations. We also observe unusual field dependence of the Hall signal in the same temperature range. This is unlikely to originate from the noncollinear spin texture but rather further indicates strong dependence of electronic structure on spin orientation relative to the plane

  1. Effects of plastic anisotropy on crack-tip behaviour

    DEFF Research Database (Denmark)

    Legarth, Brian Nyvang; Tvergaard, Viggo; Kuroda, Mitsutoshi

    2002-01-01

    For a crack in a homogeneous material the effect of plastic anisotropy on crack-tip blunting and on the near-tip stress and strain fields is analyzed numerically. The full finite strain analyses are carried out for plane strain under small scale yielding conditions, with purely symmetric mode I...... loading remote from the crack-tip. In cases where the principal axes of the anisotropy are inclined to the plane of the crack it is found that the plastic zones as well as the stress and strain fields just around the blunted tip of the crack become non-symmetric. In these cases the peak strain...... on the blunted tip occurs off the center line of the crack, thus indicating that the crack may want to grow in a different direction. When the anisotropic axes are parallel to the crack symmetry is retained, but the plastic zones and the near-tip fields still differ from those predicted by standard isotropic...

  2. Thermoelectric anisotropy in the iron-based superconductor Ba (Fe1-xCox) 2As2

    Science.gov (United States)

    Matusiak, Marcin; Rogacki, Krzysztof; Wolf, Thomas

    2018-06-01

    We report on the in-plane anisotropy of the Seebeck and Nernst coefficients as well as of the electrical resistivity determined for a series of strain-detwinned single crystals of Ba (Fe1-xC ox) 2A s2 . Two underdoped samples (x =0.024 , 0.045) exhibiting a transition from the tetragonal paramagnetic phase to the orthorhombic spin density wave (SDW) phase (at Ttr=100 and 60 K, respectively) show an onset of Nernst anisotropy at temperatures above 200 K, which is significantly higher than Ttr. In the optimally doped sample (x =0.06 ) the transport properties also appear to be in-plane anisotropic below T ≈120 K, despite the fact that this particular composition does not show any evidence of long-range magnetic order. However, the anisotropy observed in the optimally doped crystal is rather small, and for the Seebeck and Nernst coefficients the difference between values measured along and across the uniaxial strain has an opposite sign to those observed for underdoped crystals with x =0.024 and 0.045. For these two samples, the insensitivity of the Nernst anisotropy to the SDW transition suggests that the origin of nematicity might be something other than magnetic.

  3. Role of electron filling in the magnetic anisotropy of monolayer WSe2 doped with 5 d transition metals

    Science.gov (United States)

    Song, Yan; Wang, Xiaocha; Mi, Wenbo

    2017-12-01

    Exploring magnetic anisotropy (MA) in single-atom-doped two-dimensional materials provides a viable ground for realizing information storage and processing at ultimate length scales. Herein, the MA of 5 d transition-metal doped monolayer WSe2 is investigated by first-principles calculations. Large MA energy (MAE) is achieved in several doping systems. The direction of MA is determined by the dopant in-plane d states in the vicinity of the Fermi level in line with previous studies. An occupation rule that the parity of the occupation number of the in-plane d orbital of the dopant determines the preference between in-plane and out-of-plane anisotropy is found in this 5 d -doped system. Furthermore, this rule is understood by second-order perturbation theory and proved by charge-doping analysis. Considering relatively little research on two-dimensional MA and not sufficiently large MAE, suitable contact medium dopant pairs with large MAE and tunable MA pave the way to novel data storage paradigms.

  4. Calibration of optical tweezers with positional detection in the back focal plane

    DEFF Research Database (Denmark)

    Tolic-Nørrelykke, S.F.; Schäffer, E.; Howard, J.

    2006-01-01

    We explain and demonstrate a new method of force and position calibrations for optical tweezers with back-focal-plane photodetection. The method combines power spectral measurements of thermal motion and the response to a sinusoidal motion of a translation stage. It consequently does not use...... and precise: true values are returned, with small error bars. We tested this experimentally, near and far from surfaces in the lateral directions. Both position and force calibrations were accurate to within 3%. To calibrate, we moved the sample with a piezoelectric translation stage, but the laser beam could...

  5. Perpendicular Magnetic Anisotropy in FePt Patterned Media Employing a CrV Seed Layer

    Directory of Open Access Journals (Sweden)

    Chun Dong

    2011-01-01

    Full Text Available Abstract A thin FePt film was deposited onto a CrV seed layer at 400°C and showed a high coercivity (~3,400 Oe and high magnetization (900–1,000 emu/cm3 characteristic of L10 phase. However, the magnetic properties of patterned media fabricated from the film stack were degraded due to the Ar-ion bombardment. We employed a deposition-last process, in which FePt film deposited at room temperature underwent lift-off and post-annealing processes, to avoid the exposure of FePt to Ar plasma. A patterned medium with 100-nm nano-columns showed an out-of-plane coercivity fivefold larger than its in-plane counterpart and a remanent magnetization comparable to saturation magnetization in the out-of-plane direction, indicating a high perpendicular anisotropy. These results demonstrate the high perpendicular anisotropy in FePt patterned media using a Cr-based compound seed layer for the first time and suggest that ultra-high-density magnetic recording media can be achieved using this optimized top-down approach.

  6. Performance testing of an off-plane reflection grating and silicon pore optic spectrograph at PANTER

    Science.gov (United States)

    Marlowe, Hannah; McEntaffer, Randall L.; Allured, Ryan; DeRoo, Casey T.; Donovan, Benjamin D.; Miles, Drew M.; Tutt, James H.; Burwitz, Vadim; Menz, Benedikt; Hartner, Gisela D.; Smith, Randall K.; Cheimets, Peter; Hertz, Edward; Bookbinder, Jay A.; Günther, Ramses; Yanson, Alex; Vacanti, Giuseppe; Ackermann, Marcelo

    2015-10-01

    An x-ray spectrograph consisting of aligned, radially ruled off-plane reflection gratings and silicon pore optics (SPO) was tested at the Max Planck Institute for Extraterrestrial Physics PANTER x-ray test facility. SPO is a test module for the proposed Arcus mission, which will also feature aligned off-plane reflection gratings. This test is the first time two off-plane gratings were actively aligned to each other and with an SPO to produce an overlapped spectrum. We report the performance of the complete spectrograph utilizing the aligned gratings module and plans for future development.

  7. Photoinduced Circular Anisotropy in Side-Chain Azobenzene Polyesters

    DEFF Research Database (Denmark)

    Nikolova, L.; Todorov, T.; Ivanov, M.

    1997-01-01

    We report for the first time the inducing of large circular anisotropy in previously unoriented films of side-chain azobenzene polyesters on illumination with circularly polarized light at a wavelength of 488 nm. The circular dichroism and optical activity are measured simultaneously in real time...

  8. A Design for an Internet Router with a Digital Optical Data Plane

    Directory of Open Access Journals (Sweden)

    Joe Touch

    2017-02-01

    Full Text Available This paper presents a complete design for an optical Internet router based on the component steps required for Internet protocol (IP packet forwarding. Implementations of hop count decrement and header matching are integrated with a simulation-based approach to variable-length packet traffic merging that avoids recirculation, demonstrating an approach for an all-optical data plane. A method for IPv4 checksum computation is introduced, and this and previously designed components are extended from binary to higher-density (multiple bits per symbol encodings. The implications of this design are considered, including the potential for chip-level and system integration, as well as the requirements of basic optical processing components.

  9. Strain-induced recovery of electronic anisotropy in 90°-twisted bilayer phosphorene

    Science.gov (United States)

    Xie, Jiafeng; Luo, Qiangjun; Jia, Lei; Zhang, Z. Y.; Shi, H. G.; Yang, D. Z.; Si, M. S.

    2018-01-01

    It is well known that anisotropy determines the preferred transport direction of carriers. To manipulate the anisotropy is an exciting topic in two-dimensional materials, where the carriers are confined within individual layers. In this work, it is found that uniaxial strain can tune the electronic anisotropy of the 90°-twisted bilayer phosphorene. In this unique bilayer structure, the zigzag direction of one layer corresponds to the armchair one of the other layer and vice versa. Owing to this complementary structure, the directional (zigzag or armchair) deformation response to strain of one layer is opposite to that of the other layer, where the in-plane positive Poisson's ratio plays a key role. As a result, the doubly degenerate highest valence bands split, followed by a recovery of anisotropy. More interestingly, such an anisotropy, namely, the ratio of the effective mass along the Γ \\text- X direction to that along the Γ \\text- Y direction, reaches as high as 6 under a small strain of 1%, and keeps nearly unchanged up to a strain of 3%. In addition, high anisotropy only holds for hole carriers as the conduction band is insensitive to strain. These findings should shed new light on the design of semiconducting devices, where the hole acts as the transport carrier.

  10. High Field Linear Magnetoresistance Sensors with Perpendicular Anisotropy L10-FePt Reference Layer

    Directory of Open Access Journals (Sweden)

    X. Liu

    2016-01-01

    Full Text Available High field linear magnetoresistance is an important feature for magnetic sensors applied in magnetic levitating train and high field positioning measurements. Here, we investigate linear magnetoresistance in Pt/FePt/ZnO/Fe/Pt multilayer magnetic sensor, where FePt and Fe ferromagnetic layers exhibit out-of-plane and in-plane magnetic anisotropy, respectively. Perpendicular anisotropy L10-FePt reference layer with large coercivity and high squareness ratio was obtained by in situ substrate heating. Linear magnetoresistance is observed in this sensor in a large range between +5 kOe and −5 kOe with the current parallel to the film plane. This L10-FePt based sensor is significant for the expansion of linear range and the simplification of preparation for future high field magnetic sensors.

  11. The effect of the MgO buffer layer thickness on magnetic anisotropy in MgO/Fe/Cr/MgO buffer/MgO(001)

    Energy Technology Data Exchange (ETDEWEB)

    Kozioł-Rachwał, Anna, E-mail: a.koziolrachwal@aist.go.jp [National Institute of Advanced Industrial Science and Technology, Spintronics Research Center, Tsukuba, Ibaraki 305-8568 (Japan); AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, al. Mickiewicza 30, 30-059 Kraków (Poland); Nozaki, Takayuki; Zayets, Vadym; Kubota, Hitoshi; Fukushima, Akio; Yuasa, Shinji [National Institute of Advanced Industrial Science and Technology, Spintronics Research Center, Tsukuba, Ibaraki 305-8568 (Japan); Suzuki, Yoshishige [National Institute of Advanced Industrial Science and Technology, Spintronics Research Center, Tsukuba, Ibaraki 305-8568 (Japan); Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan)

    2016-08-28

    The relationship between the magnetic properties and MgO buffer layer thickness d was studied in epitaxial MgO/Fe(t)/Cr/MgO(d) layers grown on MgO(001) substrate in which the Fe thickness t ranged from 0.4 nm to 1.1 nm. For 0.4 nm ≤ t ≤ 0.7 nm, a non-monotonic coercivity dependence on the MgO buffer thickness was shown by perpendicular magneto-optic Kerr effect magnetometry. For thicker Fe films, an increase in the buffer layer thickness resulted in a spin reorientation transition from perpendicular to the in-plane magnetization direction. Possible origins of these unusual behaviors were discussed in terms of the suppression of carbon contamination at the Fe surface and changes in the magnetoelastic anisotropy in the system. These results illustrate a method to control magnetic anisotropy in MgO/Fe/Cr/MgO(d) via an appropriate choice of MgO buffer layer thickness d.

  12. Abnormal optical anisotropy in correlated disorder KTa1-xNbxO3:Cu with refractive index gradient.

    Science.gov (United States)

    Zhang, Xin; He, Shan; Zhao, Zhuan; Wu, Pengfei; Wang, Xuping; Liu, Hongliang

    2018-02-13

    In this report, an abnormal optical anisotropy in KTa 1-x Nb x O 3 :Cu (Cu:KTN) crystals with refractive index gradient is presented. Contrary to general regulation in a cross-polarization setup, the transmitted intensity of both TE (horizontally polarized) and TM (vertically polarized) lasers aligned with the basic crystallographic directions can be modulated quasiperiodically. The mechanism is supposed to be based on the polarization induced by the temperature gradient and the refractive index gradient. Meanwhile, the correlated disorder property of the crystals in the range of the freezing temperature (T f ) and the intermediate temperature (T  * ) also plays an important role. With the results verified both theoretically and experimentally, we believe this work is not only beneficial for the development of the theory associated with the correlated disorder structures in relaxor ferroelectrics, but also significant for the exploitation of numerous optical functional devices.

  13. Measurement and control of in-plane surface chemistry during the oxidation of H-terminated (111) Si

    Science.gov (United States)

    Gokce, Bilal; Adles, Eric J.; Aspnes, David E.; Gundogdu, Kenan

    2010-01-01

    In-plane directional control of surface chemistry during interface formation can lead to new opportunities regarding device structures and applications. Control of this type requires techniques that can probe and hence provide feedback on the chemical reactivity of bonds not only in specific directions but also in real time. Here, we demonstrate both control and measurement of the oxidation of H-terminated (111) Si. Control is achieved by externally applying uniaxial strain, and measurement by second-harmonic generation (SHG) together with the anisotropic-bond model of nonlinear optics. In this system anisotropy results because bonds in the strain direction oxidize faster than those perpendicular to it, leading in addition to transient structural changes that can also be detected at the bond level by SHG. PMID:20876145

  14. Effect of twinning plane on superconductor magnetic properties

    International Nuclear Information System (INIS)

    Buzdin, A.I.; Kuptsov, D.A.

    1989-01-01

    Effect of twinning planes on pinning of the Abrikosov vortices in superconductors of the second order with the Ginsburg-Landau parameter, κ >> 1, is considered. The modified Ginsburg-Landau functional, where the effect of superconducting properties improvement near the twinning plane is taken into account by adding the additional δ-function component, is used to descibe superconductivity of twinning plane. Force of interaction of a vortex filament and the twinning plane is calculated. It is shown that in case of the twinning plane opaque to electrons, additional attractive force, being analogous to that occurring in the problem on the surface Been-Livingston barrier, affects the vortex filament. The results can explain anisotropy of vortex pinning observed in the periodic twinning structure in high-temperature superconductors

  15. NaAuS chicken-wire-like semiconductor: Electronic structure and optical properties

    International Nuclear Information System (INIS)

    Reshak, A.H.; Khan, Saleem Ayaz; Kamarudin, H.; Bila, Jiri

    2014-01-01

    Highlights: • Chicken wire like semiconductor NaAuS was investigated. • Good agreement with experimental data was found. • Electronic charge density of chicken wire like semiconductor NaAuS was obtained. • The calculated uniaxial anisotropy is −0.0005, indicating the strong anisotropy. -- Abstract: The electronic structure, charge density and optical properties of NaAuS a chicken-wire-like semiconductor was calculated using full potential linear augmented plane wave based on density functional theory. The Ceperley-Alder local density approximation, Perdew Becke Ernzerhof Generalized gradient approximation and Engel Voskov Generalized Gradient Approximation were applied to solve the exchange correlation potential. The investigation of band structures and density of states elucidates that Engle Vasko Generalized Gradient Approximation shows close agreement to the experimental data. The calculated valence charge density shows pure ionic nature of Au–Au bond. It becomes partially covalent when Au is connected with two Na atoms. The linear optical susceptibilities of chicken-wire-like NaAuS semiconductor are calculated so as to obtain further insight into the electronic properties. The uniaxial anisotropy is −0.0005, indicating the strong anisotropy of the dielectric function in the NaAuS a chicken-wire-like semiconductor

  16. NaAuS chicken-wire-like semiconductor: Electronic structure and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Reshak, A.H. [Institute of Complex Systems, FFPW, CENAKVA, University of South Bohemia in CB, Nove Hrady 37333 (Czech Republic); Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia); Khan, Saleem Ayaz, E-mail: sayaz_usb@yahoo.com [Institute of Complex Systems, FFPW, CENAKVA, University of South Bohemia in CB, Nove Hrady 37333 (Czech Republic); Kamarudin, H. [Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia); Bila, Jiri [Department of Instrumentation and Control Engineering, Faculty of Mechanical Engineering, CTU in Prague, Technicka 4, 166 07 Prague 6 (Czech Republic)

    2014-01-05

    Highlights: • Chicken wire like semiconductor NaAuS was investigated. • Good agreement with experimental data was found. • Electronic charge density of chicken wire like semiconductor NaAuS was obtained. • The calculated uniaxial anisotropy is −0.0005, indicating the strong anisotropy. -- Abstract: The electronic structure, charge density and optical properties of NaAuS a chicken-wire-like semiconductor was calculated using full potential linear augmented plane wave based on density functional theory. The Ceperley-Alder local density approximation, Perdew Becke Ernzerhof Generalized gradient approximation and Engel Voskov Generalized Gradient Approximation were applied to solve the exchange correlation potential. The investigation of band structures and density of states elucidates that Engle Vasko Generalized Gradient Approximation shows close agreement to the experimental data. The calculated valence charge density shows pure ionic nature of Au–Au bond. It becomes partially covalent when Au is connected with two Na atoms. The linear optical susceptibilities of chicken-wire-like NaAuS semiconductor are calculated so as to obtain further insight into the electronic properties. The uniaxial anisotropy is −0.0005, indicating the strong anisotropy of the dielectric function in the NaAuS a chicken-wire-like semiconductor.

  17. Optically induced anisotropy in photo responsive sol-gel matrix bearing a silylated disperse red 1

    International Nuclear Information System (INIS)

    Choi, Dong Hoon; Cho, Kang Jin; Cha, Young Kwan; Oh, Sang Joon

    2000-01-01

    We synthesized the simple triethoxysilanes (SGDR1) bearing a disperse red 1 for thin film fabrication. The thin films were prepared using the solution of SGDR1 after hydrolysis and condensation. The films were annealed at two different temperatures such as 150.deg.C and 200.deg.C. Trans-to-cis photoisomerization was observed under the exposure of 532 nm light with UV-Vis absorption spectroscopy. The kinetic study of photoisomerization was performed in the film. Reorientation of the polar azobenzene molecules induced optical anisotropy under a linearly polarized light at 532 nm. The effect of aggregation of the chromophores and annealing of the silicon oxide in the matrix were studied on the dynamic properties of isomerization and induced birefringence

  18. Thermal strain-induced dielectric anisotropy in Ba0.7Sr0.3TiO3 thin films grown on silicon-based substrates

    International Nuclear Information System (INIS)

    Zhu, X. H.; Defaye, E.; Aied, M.; Guigues, B.; Dubarry, C.

    2009-01-01

    Dielectric properties of Ba 0.7 Sr 0.3 TiO 3 (BST) thin films, which were prepared on silicon-based substrates by ion beam sputtering and postdeposition annealing method, were systematically investigated in different electrode configurations of metal-insulator-metal and coplanar interdigital capacitors. It was found that a large dielectric anisotropy exists in the films with better in-plane dielectric properties (higher dielectric permittivity and tunability) than those along the out-of-plane direction. The observed anisotropic dielectric responses are explained qualitatively in terms of a thermal strain effect that is related to dissimilar film strains along the in-plane and out-of-plane directions. Another reason for the dielectric anisotropy is due to different influences of the interfacial low-dielectric layer between the BST film and the substrate (metal electrode).

  19. Thermal strain-induced dielectric anisotropy in Ba0.7Sr0.3TiO3 thin films grown on silicon-based substrates

    Science.gov (United States)

    Zhu, X. H.; Guigues, B.; Defaÿ, E.; Dubarry, C.; Aïd, M.

    2009-07-01

    Dielectric properties of Ba0.7Sr0.3TiO3 (BST) thin films, which were prepared on silicon-based substrates by ion beam sputtering and postdeposition annealing method, were systematically investigated in different electrode configurations of metal-insulator-metal and coplanar interdigital capacitors. It was found that a large dielectric anisotropy exists in the films with better in-plane dielectric properties (higher dielectric permittivity and tunability) than those along the out-of-plane direction. The observed anisotropic dielectric responses are explained qualitatively in terms of a thermal strain effect that is related to dissimilar film strains along the in-plane and out-of-plane directions. Another reason for the dielectric anisotropy is due to different influences of the interfacial low-dielectric layer between the BST film and the substrate (metal electrode).

  20. Multiple projection optical diffusion tomography with plane wave illumination

    International Nuclear Information System (INIS)

    Markel, Vadim A; Schotland, John C

    2005-01-01

    We describe a new data collection scheme for optical diffusion tomography in which plane wave illumination is combined with multiple projections in the slab imaging geometry. Multiple projection measurements are performed by rotating the slab around the sample. The advantage of the proposed method is that the measured data are more compatible with the dynamic range of most commonly used detectors. At the same time, multiple projections improve image quality by mutually interchanging the depth and transverse directions, and the scanned (detection) and integrated (illumination) surfaces. Inversion methods are derived for image reconstructions with extremely large data sets. Numerical simulations are performed for fixed and rotated slabs

  1. Enhanced emission of high-energy photons perpendicular to the reaction plane in α+Th reactions

    International Nuclear Information System (INIS)

    Tegner, P.; Marianski, B.; Morsch, H.P.; Rogge, M.; Bargholtz, C.; Decowski, P.; Zemlo, L.

    1991-01-01

    High-energy photon and neutron emission has been measured in coincidence with fission fragments in α+ 232 Th reactions at 170 MeV. From measurements parallel and perpendicular to the fission plane, anisotropies relative to the reaction plane were determined. The in-plane/out-of-plane intensity ratio is 0.72(7) for photons with energies above 20 MeV and 11(3) for neutrons at 35 MeV. The result for high-energy photons can be explained by nucleon-nucleon bremsstrahlung if the initial flow of nucleons has a correlation to the reaction plane similar to the one observed for fast neutrons

  2. Flow stress anisotropy

    DEFF Research Database (Denmark)

    Winther, G.

    1996-01-01

    stress Variation in the rolling plane, which may be as high as 20%, are presented. The traditional Taylor model is applied to the data to account for the effect of texture. However, texture effects alone are not enough to explain all of the observed anisotropy. New models which take the combined effects...... of texture and deformation microstructure into account are presented. The models are based on the Taylor and Sachs models but modified with an anisotropic critical shear stress to account for the effect of the microstructure. The agreement between experimental data and model predictions is definitely better...

  3. Structural and magnetic anisotropy in the epitaxial FeV2O4 (110) spinel thin films

    Science.gov (United States)

    Shi, Xiaolan; Wang, Yuhang; Zhao, Kehan; Liu, Na; Sun, Gaofeng; Zhang, Liuwan

    2015-11-01

    The epitaxial 200-nm-thick FeV2O4(110) films on (110)-oriented SrTiO3, LaAlO3 and MgAl2O4 substrates were fabricated for the first time by pulsed laser deposition, and the structural, magnetic, and magnetoresistance anisotropy were investigated systematically. All the films are monoclinic, whereas its bulk is cubic. Compared to FeV2O4 single crystals, films on SrTiO3 and MgAl2O4 are strongly compressively strained in [001] direction, while slightly tensily strained along normal [110] and in-plane [ 1 1 ¯ 0 ] directions. In contrast, films on LaAlO3 are only slightly distorted from cubic. The magnetic hard axis is in direction, while the easier axis is along normal [110] direction for films on SrTiO3 and MgAl2O4, and in-plane [ 1 1 ¯ 0 ] direction for films on LaAlO3. Magnetoresistance anisotropy follows the magnetization. The magnetic anisotropy is dominated by the magnetocrystalline energy, and tuned by the magneto-elastic coupling.

  4. Laboratory-based recording of holographic fine structure in X-ray absorption anisotropy using polycapillary optics

    Energy Technology Data Exchange (ETDEWEB)

    Dabrowski, K.M. [Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Krakow (Poland); Korecki, P., E-mail: pawel.korecki@uj.edu.pl [Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Krakow (Poland)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Holographic fine structures in X-ray absorption recorded using a tabletop setup. Black-Right-Pointing-Pointer Setup based on polycapillary collimating optics and an HOPG crystal. Black-Right-Pointing-Pointer Demonstration of element sensitivity by detection of X-ray fluorescence. Black-Right-Pointing-Pointer Potential of laboratory-based experiments for heavily doped crystals and thin films. - Abstract: A tabletop setup composed of a collimating polycapillary optics and a highly oriented pyrolytic graphite monochromator (HOPG) was characterized and used for recording two-dimensional maps of X-ray absorption anisotropy (XAA). XAA originates from interference of X-rays directly inside the sample. Depending on experimental conditions, fine structures in XAA can be interpreted in terms of X-ray holograms or X-ray standing waves and can be used for an element selective atomic-resolved structural analysis. The implementation of polycapillary optics resulted in a two-order of magnitude gain in the radiant intensity (photons/s/solid angle) as compared to a system without optics and enabled efficient recording of XAA with a resolution of 0.15 Degree-Sign for Mo K{alpha} radiation. Element sensitivity was demonstrated by acquisition of distinct XAA signals for Ga and As atoms in a GaAs (1 1 1) wafer by using X-ray fluorescence as a secondary signal. These results indicate the possibility of performing laboratory-based XAA experiments for heavily doped single crystals or thin films. So far, because of the weak holographic modulation of XAA, such experiments could be only performed using synchrotron radiation.

  5. Electric field dependence of the spin relaxation anisotropy in (111) GaAs/AlGaAs quantum wells

    International Nuclear Information System (INIS)

    Balocchi, A; Amand, T; Renucci, P; Duong, Q H; Marie, X; Wang, G; Liu, B L

    2013-01-01

    Time-resolved optical spectroscopy experiments in (111)-oriented GaAs/AlGaAs quantum wells (QWs) show a strong electric field dependence of the conduction electron spin relaxation anisotropy. This results from the interplay between the Dresselhaus and Rashba spin splitting in this system with C 3v symmetry. By varying the electric field applied perpendicular to the QW plane from 20 to 50 kV cm −1 the anisotropy of the spin relaxation time parallel (τ s ∥ ) and perpendicular (τ s ⊥ ) to the growth axis can be first canceled and eventually inversed with respect to the one usually observed in III–V zinc-blende QW (τ s ⊥ = 2τ s ∥ ). This dependence stems from the nonlinear contributions of the k-dependent conduction band spin splitting terms which begin to play the dominant spin relaxing role while the linear Dresselhaus terms are compensated by the Rashba ones through the applied bias. A spin density matrix model for the conduction band spin splitting including both linear and cubic terms of the Dresselhaus Hamiltonian is used which allows a quantitative description of the measured electric field dependence of the spin relaxation anisotropy. The existence of an isotropic point where the spin relaxation tensor reduces to a scalar is predicted and confirmed experimentally. The spin splitting compensation electric field and collision processes type in the QW can be likewise directly extracted from the model without complementary measurements. (paper)

  6. Study on the Cross Plane Thermal Transport of Polycrystalline Molybdenum Nanofilms by Applying Picosecond Laser Transient Thermoreflectance Method

    Directory of Open Access Journals (Sweden)

    Tingting Miao

    2014-01-01

    Full Text Available Thin metal films are widely used as interconnecting wires and coatings in electronic devices and optical components. Reliable thermophysical properties of the films are required from the viewpoint of thermal management. The cross plane thermal transport of four polycrystalline molybdenum nanofilms with different thickness deposited on glass substrates has been studied by applying the picosecond laser transient thermoreflectance technique. The measurement is performed by applying both front pump-front probe and rear pump-front probe configurations with high quality signal. The determined cross plane thermal diffusivity of the Mo films greatly decreases compared to the corresponding bulk value and tends to increase as films become thicker, exhibiting significant size effect. The main mechanism responsible for the thermal diffusivity decrease of the present polycrystalline Mo nanofilms is the grain boundary scattering on the free electrons. Comparing the cross plane thermal diffusivity and inplane electrical conductivity indicates the anisotropy of the transport properties of the Mo films.

  7. Anisotropy indices and the effects on the hydric behaviour of natural stone

    Science.gov (United States)

    Fort, Rafael; Alvarez de Buergo, Monica; Varas, Maria Jose; Gomez-Heras, Miguel

    2010-05-01

    anisotropy are those with the highest capillarity coefficient. It can also be observed that for each petrological variety, this capillarity coefficient is higher in the specimens classified as a high level anisotropy class. At the same time, when capillary water is absorbed along the direction perpendicular to the anisotropic planes, the absorption capacity diminishes, no matter the anisotropy level of the stone is. On the contrary, capillary coefficients are higher when measurements are performed in a parallel direction to that of the greatest anisotropy of the stone specimen, where absorption tends to be faster with higher coefficients according to the porosity size and its geometry. These increments are more significant in the stone varieties in which anisotropy is mainly due to fissuring or schistosity planes, or related to stromatolitic planes or oriented minerals accumulation. The arrangement and placing of rocks used as building materials with a significant anisotropy will highly condition the durability and lifetime of a considered element. For that reason, is essential to determine anisotropy indices to obtain the best and most adequate arrangement of stone elements in building works, minimizing water entry and thus, the material decay. Acknowledgements: to both MATERNAS (0505/MAT/0094) and GEOMATERIALES (2009-1629) research programmes, funded by the Regional Government of Madrid; to the CONSOLIDER-INGENIO programme (CSD2007-0058), funded by the Spanish Ministry of Education and Science; and to the Spanish Geological and Mining Institute (IGME) for the specimens preparation and hydric behaviour measurements.

  8. Anisotropy of the incommensurate fluctuations in Sr2RuO4: a study with polarized neutrons.

    Science.gov (United States)

    Braden, M; Steffens, P; Sidis, Y; Kulda, J; Bourges, P; Hayden, S; Kikugawa, N; Maeno, Y

    2004-03-05

    The anisotropy of the magnetic incommensurate fluctuations in Sr2RuO4 has been studied by inelastic neutron scattering with polarized neutrons. We find a sizable enhancement of the out-of-plane component by a factor of 2 for intermediate energy transfer, which appears to decrease for higher energies. Our results qualitatively confirm calculations of the spin-orbit coupling, but the experimental anisotropy and its energy dependence are weaker than predicted.

  9. Determination of the Fe magnetic anisotropies and the CoO frozen spins in epitaxial CoO/Fe/Ag(001)

    Energy Technology Data Exchange (ETDEWEB)

    Meng, J. Li, Y.; Park, J. S.; Jenkins, C. A.; Arenholz, E.; Scholl, A.; Tan, A.; Son, H.; Zhao, H. W.; Hwang, Chanyong; Qiu, Z. Q.

    2011-04-28

    CoO/Fe/Ag(001) films were grown epitaxially and studied by X-ray Magnetic Circular Dichroism (XMCD) and X-ray Magnetic Linear Dichroism (XMLD). After field cooling along the Fe[100] axis to 80 K, exchange bias, uniaxial anisotropy, and 4-fold anisotropy of the films were determined by hysteresis loop and XMCD measurements by rotating the Fe magnetization within the film plane. The CoO frozen spins were determined by XMLD measurement as a function of CoO thickness.We find that among the exchange bias, uniaxial anisotropy, and 4-fold anisotropy, only the uniaxial magnetic anisotropy follows thickness dependence of the CoO frozen spins.

  10. Anisotropy of the pion emission in relativistic nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Babinet, R.; Cavata, C.; Demoulins, M.; Fanet, H.; Gosset, J.; Lemaire, M.C.; Le Merdy, A.; L'Hote, D.; Lucas, B.; Poitou, J.; Alard, J.P.; Augerat, J.; Bastid, N.; Charmensat, P.; Dupieux, P.; Fraysse, L.; Marroncle, J.; Montarou, G.; Parizet, M.J.; Ramani, A.; Brochard, F.; Gorodetzky, P.; Racca, C.

    1990-01-01

    The production of pions and baryons from Ne and Ar induced reactions on Ca, NaF, Nb and Pb targets, in the range of .2 to 1 GeV per nucleon, is discussed. The 4π detector Diogenes at the Saturne accelerator facility is applied. The reaction plane is determined from the baryon momenta distribution and used as a reference for the pion triple differential cross-sections. A transverse momentum analysis is carried out for baryons and pions. The pion squared reduced impact parameter and the flow characteristics are given. The results show that the azimuthal anisotropy of pion emission increases with the asymmetry of the system. The evidence that pion absorption effects may be responsible for the azimuthal anisotropy of the pion emission is provided

  11. Symmetry mismatch-driven perpendicular magnetic anisotropy for perovskite/brownmillerite heterostructures.

    Science.gov (United States)

    Zhang, Jing; Zhong, Zhicheng; Guan, Xiangxiang; Shen, Xi; Zhang, Jine; Han, Furong; Zhang, Hui; Zhang, Hongrui; Yan, Xi; Zhang, Qinghua; Gu, Lin; Hu, Fengxia; Yu, Richeng; Shen, Baogen; Sun, Jirong

    2018-05-15

    Grouping different transition metal oxides together by interface engineering is an important route toward emergent phenomenon. While most of the previous works focused on the interface effects in perovskite/perovskite heterostructures, here we reported on a symmetry mismatch-driven spin reorientation toward perpendicular magnetic anisotropy in perovskite/brownmillerite heterostructures, which is scarcely seen in tensile perovskite/perovskite heterostructures. We show that alternately stacking perovskite La 2/3 Sr 1/3 MnO 3 and brownmillerite LaCoO 2.5 causes a strong interface reconstruction due to symmetry discontinuity at interface: neighboring MnO 6 octahedra and CoO 4 tetrahedra at the perovskite/brownmillerite interface cooperatively relax in a manner that is unavailable for perovskite/perovskite interface, leading to distinct orbital reconstructions and thus the perpendicular magnetic anisotropy. Moreover, the perpendicular magnetic anisotropy is robust, with an anisotropy constant two orders of magnitude greater than the in-plane anisotropy of the perovskite/perovskite interface. The present work demonstrates the great potential of symmetry engineering in designing artificial materials on demand.

  12. Extremely high thermal conductivity anisotropy of double-walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Zhaoji Ma

    2017-06-01

    Full Text Available Based on molecular dynamics simulations, we reveal that double-walled carbon nanotubes can possess an extremely high anisotropy ratio of radial to axial thermal conductivities. The mechanism is basically the same as that for the high thermal conductivity anisotropy of graphene layers - the in-plane strong sp2 bonds lead to a very high intralayer thermal conductivity while the weak van der Waals interactions to a very low interlayer thermal conductivity. However, different from flat graphene layers, the tubular structures of carbon nanotubes result in a diameter dependent thermal conductivity. The smaller the diameter, the larger the axial thermal conductivity but the smaller the radial thermal conductivity. As a result, a DWCNT with a small diameter may have an anisotropy ratio of thermal conductivity significantly higher than that for graphene layers. The extremely high thermal conductivity anisotropy allows DWCNTs to be a promising candidate for thermal management materials.

  13. Out-of-plane emission of nuclear matter in Au+Au collisions between 100 and 800 AMeV

    International Nuclear Information System (INIS)

    Bastid, N.; Buta, A.; Crochet, P.

    1996-01-01

    We present new experimental results concerning the azimuthal distributions of light and intermediate mass fragments at midrapidity for Au (100 - 800 AMeV) +Au collisions measured with the phase I setup of the FOPI detector at GSI in Darmstadt. The azimuthal distributions are investigated as a function of the collision centrality, the incident energy, the fragment charge and transverse momentum. The maximum of the azimuthal anisotropy is obtained for collisions associated with impact parameters around 7 fm. Intermediate mass fragments present a stronger out-of-plane emission signal that light fragments. We show in particular that the azimuthal anisotropy as a function of the scaled fragment transverse momentum follows an universal curve for incident energies ranging from 250 to 800 AMeV. A signature for a transition from in-plane to out-of-plane emission is evidenced at the lowest beam energies. (author)

  14. Out-of-plane emission of nuclear matter in Au+Au collisions between 100 and 800 AMeV

    Energy Technology Data Exchange (ETDEWEB)

    Bastid, N.; Buta, A.; Crochet, P. [and others; FOPI Collaboration

    1996-12-31

    We present new experimental results concerning the azimuthal distributions of light and intermediate mass fragments at midrapidity for Au (100 - 800 AMeV) +Au collisions measured with the phase I setup of the FOPI detector at GSI in Darmstadt. The azimuthal distributions are investigated as a function of the collision centrality, the incident energy, the fragment charge and transverse momentum. The maximum of the azimuthal anisotropy is obtained for collisions associated with impact parameters around 7 fm. Intermediate mass fragments present a stronger out-of-plane emission signal that light fragments. We show in particular that the azimuthal anisotropy as a function of the scaled fragment transverse momentum follows an universal curve for incident energies ranging from 250 to 800 AMeV. A signature for a transition from in-plane to out-of-plane emission is evidenced at the lowest beam energies. (author).

  15. Anisotropic contrast optical microscope.

    Science.gov (United States)

    Peev, D; Hofmann, T; Kananizadeh, N; Beeram, S; Rodriguez, E; Wimer, S; Rodenhausen, K B; Herzinger, C M; Kasputis, T; Pfaunmiller, E; Nguyen, A; Korlacki, R; Pannier, A; Li, Y; Schubert, E; Hage, D; Schubert, M

    2016-11-01

    An optical microscope is described that reveals contrast in the Mueller matrix images of a thin, transparent, or semi-transparent specimen located within an anisotropic object plane (anisotropic filter). The specimen changes the anisotropy of the filter and thereby produces contrast within the Mueller matrix images. Here we use an anisotropic filter composed of a semi-transparent, nanostructured thin film with sub-wavelength thickness placed within the object plane. The sample is illuminated as in common optical microscopy but the light is modulated in its polarization using combinations of linear polarizers and phase plate (compensator) to control and analyze the state of polarization. Direct generalized ellipsometry data analysis approaches permit extraction of fundamental Mueller matrix object plane images dispensing with the need of Fourier expansion methods. Generalized ellipsometry model approaches are used for quantitative image analyses. These images are obtained from sets of multiple images obtained under various polarizer, analyzer, and compensator settings. Up to 16 independent Mueller matrix images can be obtained, while our current setup is limited to 11 images normalized by the unpolarized intensity. We demonstrate the anisotropic contrast optical microscope by measuring lithographically defined micro-patterned anisotropic filters, and we quantify the adsorption of an organic self-assembled monolayer film onto the anisotropic filter. Comparison with an isotropic glass slide demonstrates the image enhancement obtained by our method over microscopy without the use of an anisotropic filter. In our current instrument, we estimate the limit of detection for organic volumetric mass within the object plane of ≈49 fg within ≈7 × 7 μm 2 object surface area. Compared to a quartz crystal microbalance with dissipation instrumentation, where contemporary limits require a total load of ≈500 pg for detection, the instrumentation demonstrated here improves

  16. Measuring Fractional Anisotropy of the Corpus Callosum Using Diffusion Tensor Imaging: Mid-Sagittal versus Axial Imaging Planes

    International Nuclear Information System (INIS)

    Kim, Eung Yeop; Park, Hae Jeong; Kim, Dong Hyun; Lee, Seung Koo; Kim, Jin Na

    2008-01-01

    Many diffusion tensor imaging (DTI) studies of the corpus callosum (CC) have been performed with a relatively thick slice thickness in the axial plane, which may result in underestimating the fractional anisotropy (FA) of the CC due to a partial volume effect. We hypothesized that the FA of the CC can be more accurately measured by using mid-sagittal DTI. We compared the FA values of the CC between the axial and mid-sagittal DTI. Fourteen healthy volunteers underwent MRI at 3.0 T. DTI was performed in both the mid-sagittal and axial planes. One 5-mm mid-sagittal image and twenty-five 2-mm axial images were obtained for the CC. The five regions of interest (ROIs) that included the prefrontal (I), premotor and supplementary motor (II), motor (III), sensory (IV) and parietal, temporal and occipital regions (V) were drawn along the border of the CC on each sagittal FA map. The FA values obtained from each region were compared between the two sagittal maps. The FA values of all the regions, except for region V, were significantly increased on the mid-sagittal imaging. The FA values in region IV were significantly underestimated on the mid-sagittal image from the axial imaging, compared with those in the regions I and V (p = 0.037 and p = 0.001, respectively). The FA values of the CC were significantly higher on the midsagittal DTI than those on the axial DTI in regions I-IV, and particularly in the region IV. Mid-sagittal DTI may provide more accurate FA values of the CC than can the axial DTI, and mid-sagittal DTI may be more desirable for studies that compare between patients and healthy subjects

  17. Perpendicular magnetic anisotropy influence on voltage-driven spin-diode effect in magnetic tunnel junctions: A micromagnetic study

    Energy Technology Data Exchange (ETDEWEB)

    Frankowski, Marek, E-mail: mfrankow@agh.edu.pl [AGH University of Science and Technology, al. Mickiewicza 30, Department of Electronics, 30-059 Kraków (Poland); Chȩciński, Jakub [AGH University of Science and Technology, al. Mickiewicza 30, Department of Electronics, 30-059 Kraków (Poland); AGH University of Science and Technology, al. Mickiewicza 30, Faculty of Physics and Applied Computer Science, 30-059 Kraków (Poland); Skowroński, Witold; Stobiecki, Tomasz [AGH University of Science and Technology, al. Mickiewicza 30, Department of Electronics, 30-059 Kraków (Poland)

    2017-05-01

    We study the influence of the perpendicular magnetic anisotropy on the voltage-induced ferromagnetic resonance in magnetic tunnel junctions (MTJs). An MTJ response to the applied radio-frequency voltage excitation is investigated using micromagnetic calculations with the free layer oriented both in-plane and out-of-plane. Our model allows for a quantitative description of the magnetic system parameters such as resonance frequency, sensitivity or quality factor and for a distinction between material-dependent internal damping and disorder-dependent effective damping. We find that the sensitivity abruptly increases up to three orders of magnitude near the anisotropy transition regime, while the quality factor declines due to effective damping increase. We attribute the origin of this behaviour to the changes of the exchange energy in the system, which is calculated using micromagnetic approach. - Highlights: • Micromagnetic approach is used for modelling of voltage-induced spin-diode effect. • Voltage-induced switching simulations are performed. • Spin-diode line is analyzed as a function of perpendicular anisotropy energy. • Effective damping, quality factor and sensitivity are calculated.

  18. Quantum criticality of a spin-1 XY model with easy-plane single-ion anisotropy via a two-time Green function approach avoiding the Anderson-Callen decoupling

    Science.gov (United States)

    Mercaldo, M. T.; Rabuffo, I.; De Cesare, L.; Caramico D'Auria, A.

    2016-04-01

    In this work we study the quantum phase transition, the phase diagram and the quantum criticality induced by the easy-plane single-ion anisotropy in a d-dimensional quantum spin-1 XY model in absence of an external longitudinal magnetic field. We employ the two-time Green function method by avoiding the Anderson-Callen decoupling of spin operators at the same sites which is of doubtful accuracy. Following the original Devlin procedure we treat exactly the higher order single-site anisotropy Green functions and use Tyablikov-like decouplings for the exchange higher order ones. The related self-consistent equations appear suitable for an analysis of the thermodynamic properties at and around second order phase transition points. Remarkably, the equivalence between the microscopic spin model and the continuous O(2) -vector model with transverse-Ising model (TIM)-like dynamics, characterized by a dynamic critical exponent z=1, emerges at low temperatures close to the quantum critical point with the single-ion anisotropy parameter D as the non-thermal control parameter. The zero-temperature critic anisotropy parameter Dc is obtained for dimensionalities d > 1 as a function of the microscopic exchange coupling parameter and the related numerical data for different lattices are found to be in reasonable agreement with those obtained by means of alternative analytical and numerical methods. For d > 2, and in particular for d=3, we determine the finite-temperature critical line ending in the quantum critical point and the related TIM-like shift exponent, consistently with recent renormalization group predictions. The main crossover lines between different asymptotic regimes around the quantum critical point are also estimated providing a global phase diagram and a quantum criticality very similar to the conventional ones.

  19. Plane-wave diffraction by periodic structures with artificial anisotropic dielectrics

    International Nuclear Information System (INIS)

    Kazerooni, Azadeh Semsar; Shahabadi, Mahmoud

    2010-01-01

    Periodic structures with artificial anisotropic dielectrics are studied. The artificial anisotropic dielectric material in this work is made of two alternating isotropic dielectric layers. By a proper choice of the dielectric constant of the layers, we can realize a uniaxial anisotropic medium with controllable anisotropy. The artificial anisotropic dielectric is then used in periodic structures. For these structures, the optical axis of the artificial dielectric is assumed to be parallel or perpendicular to the period of the structure. Diffraction of plane waves by these structures is analyzed by a fully vectorial rigorous matrix method based on a generalized transmission line (TL) formulation. The propagation constants and field distributions are computed and diffraction properties of such structures are studied to show that, by a proper choice of structural parameters, these periodic structures with artificial anisotropic dielectrics can be used as polarizers or polarizing mirrors

  20. Investigation of the in-plane and out-of-plane electrical properties of metallic nanoparticles in dielectric matrix thin films elaborated by atomic layer deposition

    Science.gov (United States)

    Thomas, D.; Puyoo, E.; Le Berre, M.; Militaru, L.; Koneti, S.; Malchère, A.; Epicier, T.; Roiban, L.; Albertini, D.; Sabac, A.; Calmon, F.

    2017-11-01

    Pt nanoparticles in a Al2O3 dielectric matrix thin films are elaborated by means of atomic layer deposition. These nanostructured thin films are integrated in vertical and planar test structures in order to assess both their in-plane and out-of-plane electrical properties. A shadow edge evaporation process is used to develop planar devices with electrode separation distances in the range of 30 nm. Both vertical and planar test structures show a Poole-Frenkel conduction mechanism. Low trap energy levels (<0.1 eV) are identified for the two test structures which indicates that the Pt islands themselves are not acting as traps in the PF mechanism. Furthermore, a more than three order of magnitude current density difference is observed between the two geometries. This electrical anisotropy is attributed to a large electron mobility difference in the in-plane and out-of-plane directions which can be related to different trap distributions in both directions.

  1. Performance testing of a novel off-plane reflection grating and silicon pore optic spectrograph at PANTER

    Science.gov (United States)

    Marlowe, Hannah; McEntaffer, Randall L.; Allured, Ryan; DeRoo, Casey; Miles, Drew M.; Donovan, Benjamin D.; Tutt, James H.; Burwitz, Vadim; Menz, Benedikt; Hartner, Gisela D.; Smith, Randall K.; Günther, Ramses; Yanson, Alex; Vacanti, Giuseppe; Ackermann, Marcelo

    2015-05-01

    An X-ray spectrograph consisting of aligned, radially ruled off-plane reflection gratings and silicon pore optics (SPO) was tested at the Max Planck Institute for extraterrestrial Physics PANTER X-ray test facility. The SPO is a test module for the proposed Arcus mission, which will also feature aligned off-plane reflection gratings. This test is the first time two off-plane gratings were actively aligned to each other and with a SPO to produce an overlapped spectrum. We report the performance of the complete spectrograph utilizing the aligned gratings module and plans for future development.

  2. Investigation of magnon dispersion relations and neutron scattering cross sections with special attention to anisotropy effects

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker; Kowalska, A.; Laut, Peter

    1967-01-01

    curves are suggested. The magnon cross section for unpolarized neutrons is calculated and shown to be dependent on the anisotropy in the spin interaction. Thus in principle it allows the detection of anisotropy in the exchange interaction. Some remarks are made concerning antiferromagnetic and plane...... for the exchange interaction seem to be necessary for agreement with experimental dispersion curves be obtained. The effect of the anisotropy in the cross section is estimated and shown to be important for small magnon energies....

  3. Magnetic anisotropy of thin sputtered MgB2 films on MgO substrates in high magnetic fields

    Directory of Open Access Journals (Sweden)

    Savio Fabretti

    2014-03-01

    Full Text Available We investigated the magnetic anisotropy ratio of thin sputtered polycrystalline MgB2 films on MgO substrates. Using high magnetic field measurements, we estimated an anisotropy ratio of 1.35 for T = 0 K with an upper critical field of 31.74 T in the parallel case and 23.5 T in the perpendicular case. Direct measurements of a magnetic-field sweep at 4.2 K show a linear behavior, confirmed by a linear fit for magnetic fields perpendicular to the film plane. Furthermore, we observed a change of up to 12% of the anisotropy ratio in dependence of the film thickness.

  4. Method and means for measuring the anisotropy of a plasma in a magnetic field

    Science.gov (United States)

    Shohet, J.L.; Greene, D.G.S.

    1973-10-23

    Anisotropy is measured of a free-free-bremsstrahlungradiation-generating plasma in a magnetic field by collimating the free-free bremsstrahlung radiation in a direction normal to the magnetic field and scattering the collimated free- free bremsstrahlung radiation to resolve the radiation into its vector components in a plane parallel to the electric field of the bremsstrahlung radiation. The scattered vector components are counted at particular energy levels in a direction parallel to the magnetic field and also normal to the magnetic field of the plasma to provide a measure of anisotropy of the plasma. (Official Gazette)

  5. Ferromagnetic resonance frequency increase and resonance line broadening of a ferromagnetic Fe–Co–Hf–N film with in-plane uniaxial anisotropy by high-frequency field perturbation

    International Nuclear Information System (INIS)

    Seemann, K.; Leiste, H.; Krüger, K.

    2013-01-01

    Soft ferromagnetic Fe-Co-Hf-N films, produced by reactive r.f. magnetron sputtering, are useful to study the ferromagnetic resonance (FMR) by means of frequency domain permeability measurements up to the GHz range. Films with the composition Fe 33 Co 43 Hf 10 N 14 exhibit a saturation polarisation J s of around 1.35 T. They are consequently considered as being uniformly magnetised due to an in-plane uniaxial anisotropy of approximately μ 0 H u ≈4.5 m T after annealing them, e.g., at 400 °C in a static magnetic field for 1 h. Being exposed to a high-frequency field, the precession of magnetic moments leads to a marked frequency-dependent permeability with a sharp Lorentzian shaped imaginary part at around 2.33 GHz (natural resonance peak), which is in a very good agreement with the modified Landau–Lifschitz–Gilbert (LLG) differential equation. A slightly increased FMR frequency and a clear increase in the resonance line broadening due to an increase of the exciting high-frequency power (1–25.1 mW), considered as an additional perturbation of the precessing system of magnetic moments, could be discovered. By solving the homogenous LLG differential equation with respect to the in-plane uniaxial anisotropy, it was revealed that the high-frequency field perturbation impacts the resonance peak position f FMR and resonance line broadening Δf FMR characterised by a completed damping parameter α=α eff +Δα. Adapted from this result, the increase in f FMR and decrease in lifetime of the excited level of magnetic moments associated with Δf FMR , similar to a spin-½ particle in a static magnetic field, was theoretically elaborated as well as compared with experimental data. - Highlights: • Impact on the resonance frequency and resonance line by the high-frequency power. • Theoretic approach by solving the LLG differential equation. • Experimental verification and magnon processes. • Theoretical and experimental determination of the resonance state

  6. Ferromagnetic resonance linewidth and damping in perpendicular-anisotropy magnetic multilayers thin films

    Science.gov (United States)

    Beaujour, Jean-Marc

    2010-03-01

    Transition metal ferromagnetic films with perpendicular magnetic anisotropy (PMA) have ferromagnetic resonance (FMR) linewidths that are one order of magnitude larger than soft magnetic materials, such as pure iron (Fe) and permalloy (NiFe) thin films. We have conducted systematic studies of a variety of thin film materials with perpendicular magnetic anisotropy to investigate the origin of the enhanced FMR linewidths, including Ni/Co and CoFeB/Co/Ni multilayers. In Ni/Co multilayers the PMA was systematically reduced by irradiation with Helium ions, leading to a transition from out-of-plane to in-plane easy axis with increasing He ion fluence [1,2]. The FMR linewidth depends linearly on frequency for perpendicular applied fields and increases significantly when the magnetization is rotated into the film plane with an applied in-plane magnetic field. Irradiation of the film with Helium ions decreases the PMA and the distribution of PMA parameters, leading to a large reduction in the FMR linewidth for in-plane magnetization. These results suggest that fluctuations in the PMA lead to a large two magnon scattering contribution to the linewidth for in-plane magnetization and establish that the Gilbert damping is enhanced in such materials (α˜0.04, compared to α˜0.002 for pure Fe) [2]. We compare these results to those on CoFeB/Co/Ni and published results on other thin film materials with PMA [e.g., Ref. 3]. [1] D. Stanescu et al., J. Appl. Phys. 103, 07B529 (2008). [2] J-M. L. Beaujour, D. Ravelosona, I. Tudosa, E. Fullerton, and A. D. Kent, Phys. Rev. B RC 80, 180415 (2009). [3] N. Mo, J. Hohlfeld, M. ulIslam, C. S. Brown, E. Girt, P. Krivosik, W. Tong, A. Rebel, and C. E. Patton, Appl. Phys. Lett. 92, 022506 (2008). *Research done in collaboration with: A. D. Kent, New York University, D. Ravelosona, Institut d'Electronique Fondamentale, UMR CNRS 8622, Universit'e Paris Sud, E. E. Fullerton, Center for Magnetic Recording Research, UCSD, and supported by NSF

  7. Probing VCMA in MTJs with in-plane magnetization

    Directory of Open Access Journals (Sweden)

    M. Williamson

    2017-11-01

    Full Text Available Voltage controlled magnetic anisotropy (VCMA is a novel method to switch magnetizations in low-power and ultra-fast applications based on magnetic tunnel junctions (MTJs. Here we explore the ferromagnetic resonance (FMR technique to probe VCMA in situations where other methods cannot be applied. We quantify VCMA in CoFeB/MgO/CoFeB MTJ nanopillars with in-plane magnetizations where our FMR method is unique in providing direct information about VCMA. We observe a quadratic shift of the FMR resonance field when a voltage bias is applied across the MTJ. The VCMA energy corresponding to the quadratic shift varies with an energy factor of 8.2μJ/m2 for 1 V2/nm2. These results are important for understanding magnetodynamics in MTJ-based applications with in-plane magnetizations.

  8. Secondary electron emission anisotropy in oblique incidence of electrons on the (100) Mo

    International Nuclear Information System (INIS)

    Gomoyunova, M.V.; Zaslavskij, S.L.; Pronin, I.I.

    1978-01-01

    Studied was the influence of azimuthal plane of incidence of primary particles with energies of 0.5-1.5 keV on the secondary electron emission of the (100) Mo face at the constant polar angle of 45 deg. The measurements were carried out in vacuum of (2-4)x10 -10 torr by modulation technique. It is shown that anisotropy is peculiar to the secondary electron emission of all energies. The anisotropy of emission has two maxima; the high-energy maximum connected with reflected primary electrons and situated near the elastically reflected electrons and weaker pronounced the low-energy one which is found at energies of 100-200 eV and is conditioned by truly secondary electrons. It is shown that the anisotropy, characterizing secondary electrons responsible for the appearance of structure in spectrum, particularly the Auger electrons and the electrons suffering ionizing energy losses, exceeds the anisotropy of continuous spectrum electrons possessing the same energy. The electron diffraction dynamic theory, based on the conception of the united wave field of electrons, has been used to explain the regularities stated

  9. Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities.

    Science.gov (United States)

    Aieta, Francesco; Genevet, Patrice; Yu, Nanfang; Kats, Mikhail A; Gaburro, Zeno; Capasso, Federico

    2012-03-14

    Experiments on ultrathin anisotropic arrays of subwavelength optical antennas display out-of-plane refraction. A powerful three-dimensional (3D) extension of the recently demonstrated generalized laws of refraction and reflection shows that the interface imparts a tangential wavevector to the incident light leading to anomalous beams, which in general are noncoplanar with the incident beam. The refracted beam direction can be controlled by varying the angle between the plane of incidence and the antenna array. © 2012 American Chemical Society

  10. Electron states in quantum rings with structural distortions under axial or in-plane magnetic fields

    International Nuclear Information System (INIS)

    Planelles, J; Rajadell, F; Climente, J I

    2007-01-01

    A comprehensive study of anisotropic quantum rings, QRs, subject to axial and in-plane magnetic field, both aligned and transverse to the anisotropy direction, is carried out. Elliptical QRs for a wide range of eccentricity values and also perfectly circular QRs including one or more barriers disturbing the QR current are considered. These models mimic anisotropic geometry deformations and mass diffusion occurring in the QR fabrication process. Symmetry considerations and simplified analytical models supply physical insight into the obtained numerical results. Our study demonstrates that, except for unusual extremely large eccentricities, QR geometry deformations only appreciably influence a few low-lying states, while the effect of barriers disturbing the QR current is stronger and affects all studied states to a similar extent. We also show that the response of the electron states to in-plane magnetic fields provides accurate information on the structural anisotropy

  11. Mapping Inherited Fractures in the Critical Zone Using Seismic Anisotropy From Circular Surveys

    Science.gov (United States)

    Novitsky, Christopher G.; Holbrook, W. Steven; Carr, Bradley J.; Pasquet, Sylvain; Okaya, David; Flinchum, Brady A.

    2018-04-01

    Weathering and hydrological processes in Earth's shallow subsurface are influenced by inherited bedrock structures, such as bedding planes, faults, joints, and fractures. However, these structures are difficult to observe in soil-mantled landscapes. Steeply dipping structures with a dominant orientation are detectable by seismic anisotropy, with fast wave speeds along the strike of structures. We measured shallow ( 2-4 m) seismic anisotropy using "circle shots," geophones deployed in a circle around a central shot point, in a weathered granite terrain in the Laramie Range of Wyoming. The inferred remnant fracture orientations agree with brittle fracture orientations measured at tens of meters depth in boreholes, demonstrating that bedrock fractures persist through the weathering process into the shallow critical zone. Seismic anisotropy positively correlates with saprolite thickness, suggesting that inherited bedrock fractures may control saprolite thickness by providing preferential pathways for corrosive meteoric waters to access the deep critical zone.

  12. Hc2 of anisotropy two-band superconductors by Ginzburg-Landau approach

    International Nuclear Information System (INIS)

    Udomsamuthirun, P.; Changjan, A.; Kumvongsa, C.; Yoksan, S.

    2006-01-01

    The purpose of this research is to study the upper critical field H c2 of two-band superconductors by two-band Ginzburg-Landau approach. The analytical formula of H c2 included anisotropy of order parameter and anisotropy of effective-mass are found. The parameters of the upper critical field in ab-plane (H c2 - bar ab ) and c-axis (H c2 - bar c ) can be found by fitting to the experimental data. Finally, we can find the ratio of upper critical field that temperature dependent in the range of experimental result

  13. Millimeter Wavelength Observations of Galactic Sources with the Mobile Anisotropy Telescope (MAT)

    Science.gov (United States)

    Cruz, K. L.; Caldwell, R.; Devlin, M. J.; Dorwart, W. B.; Herbig, T.; Miller, A. D.; Nolta, M. R.; Page, L. A.; Puchalla, J. L.; Torbet, E.; Tran, H. T.

    1999-12-01

    The Mobile Anisotropy Telescope (MAT) has completed two observing seasons (1997 and 1998) in Chile from the Cerro Toco site. Although the primary goal of MAT was to measure anisotropy in the Cosmic Microwave Background (CMB) radiation, the chosen observation scheme also allowed daily viewing of the Galactic Plane. We present filtered maps at 30, 40 and 144 GHz of a region of the Galactic Plane which contains several millimeter-bright regions including the Carinae nebula and IRAS 11097-6102. We report the best fit brightness temperatures as well as the total flux densities in the MAT beams (0.9, 0.6 and 0.2 degrees FWHM) . The data are calibrated with respect to Jupiter whose flux is known to better than 8% in all frequency bands. This work was funded by the National Science Foundation and the Packard Foundation.

  14. Shear bands and anisotropy of the mechanical properties of an MA2-1pch magnesium alloy after equal-channel angular pressing

    Science.gov (United States)

    Serebryany, V. N.; Khar'kova, M. A.; D'yakonov, G. S.; Kopylov, V. I.; Dobatkin, S. V.

    2017-10-01

    Effect of structure and texture on the anisotropy of the mechanical properties of the MA2-1pch magnesium alloy subjected to equal-channel angular pressing and subsequent annealing has been studied in two mutually perpendicular planes Y and X (along and across the pressing direction). The anisotropy of the mechanical properties is shown to be due to various orientations of shear bands and various types of texture inside the bands and outside them in planes X and Y.

  15. Miniaturized Fourier-plane fiber scanner for OCT endoscopy

    International Nuclear Information System (INIS)

    Vilches, Sergio; Kretschmer, Simon; Ataman, Çağlar; Zappe, Hans

    2017-01-01

    A forward-looking endoscopic optical coherence tomography (OCT) probe featuring a Fourier-plane fiber scanner is designed, manufactured and characterized. In contrast to common image-plane fiber scanners, the Fourier-plane scanner is a telecentric arrangement that eliminates vignetting and spatial resolution variations across the image plane. To scan the OCT beam in a spiral pattern, a tubular piezoelectric actuator is used to resonate an optical fiber bearing a collimating GRIN lens at its tip. The free-end of the GRIN lens sits at the back focal plane of an objective lens, such that its rotation replicates the beam angles in the collimated region of a classical telecentric 4f optical system. Such an optical arrangement inherently has a low numerical aperture combined with a relatively large field-of-view, rendering it particularly useful for endoscopic OCT imaging. Furthermore, the optical train of the Fourier-plane scanner is shorter than that of a comparable image-plane scanner by one focal length of the objective lens, significantly shortening the final arrangement. As a result, enclosed within a 3D printed housing of 2.5 mm outer diameter and 15 mm total length, the developed probe is the most compact forward-looking endoscopic OCT imager to date. Due to its compact form factor and compatibility with real-time OCT imaging, the developed probe is also ideal for use in the working channel of flexible endoscopes as a potential optical biopsy tool. (paper)

  16. Miniaturized Fourier-plane fiber scanner for OCT endoscopy

    Science.gov (United States)

    Vilches, Sergio; Kretschmer, Simon; Ataman, Çağlar; Zappe, Hans

    2017-10-01

    A forward-looking endoscopic optical coherence tomography (OCT) probe featuring a Fourier-plane fiber scanner is designed, manufactured and characterized. In contrast to common image-plane fiber scanners, the Fourier-plane scanner is a telecentric arrangement that eliminates vignetting and spatial resolution variations across the image plane. To scan the OCT beam in a spiral pattern, a tubular piezoelectric actuator is used to resonate an optical fiber bearing a collimating GRIN lens at its tip. The free-end of the GRIN lens sits at the back focal plane of an objective lens, such that its rotation replicates the beam angles in the collimated region of a classical telecentric 4f optical system. Such an optical arrangement inherently has a low numerical aperture combined with a relatively large field-of-view, rendering it particularly useful for endoscopic OCT imaging. Furthermore, the optical train of the Fourier-plane scanner is shorter than that of a comparable image-plane scanner by one focal length of the objective lens, significantly shortening the final arrangement. As a result, enclosed within a 3D printed housing of 2.5 mm outer diameter and 15 mm total length, the developed probe is the most compact forward-looking endoscopic OCT imager to date. Due to its compact form factor and compatibility with real-time OCT imaging, the developed probe is also ideal for use in the working channel of flexible endoscopes as a potential optical biopsy tool.

  17. Modified geometrical optics of a smoothly inhomogeneous isotropic medium: The anisotropy, Berry phase, and the optical Magnus effect

    International Nuclear Information System (INIS)

    Bliokh, K.Yu.; Bliokh, Yu.P.

    2004-01-01

    We present a modification of the geometrical optics method, which allows one to properly separate the complex amplitude and the phase of the wave solution. Applying this modification to a smoothly inhomogeneous isotropic medium, we show that in the first geometrical optics approximation the medium is weakly anisotropic. The refractive index, being dependent on the direction of the wave vector, contains the correction, which is proportional to the Berry geometric phase. Two independent eigenmodes of right-hand and left-hand circular polarizations exist in the medium. Their group velocities and phase velocities differ. The difference in the group velocities results in the shift of the rays of different polarizations (the optical Magnus effect). The difference in the phase velocities causes an increase of the Berry phase along with the interference of two modes leading to the familiar Rytov law about the rotation of the polarization plane of a wave. The theory developed suggests that both the optical Magnus effect and the Berry phase are accompanying nonlocal topological effects. In this paper the Hamilton ray equations giving a unified description for both of these phenomena have been derived and also a novel splitting effect for a ray of noncircular polarization has been predicted. Specific examples are also discussed

  18. Modified geometrical optics of a smoothly inhomogeneous isotropic medium: the anisotropy, Berry phase, and the optical Magnus effect.

    Science.gov (United States)

    Bliokh, K Yu; Bliokh, Yu P

    2004-08-01

    We present a modification of the geometrical optics method, which allows one to properly separate the complex amplitude and the phase of the wave solution. Appling this modification to a smoothly inhomogeneous isotropic medium, we show that in the first geometrical optics approximation the medium is weakly anisotropic. The refractive index, being dependent on the direction of the wave vector, contains the correction, which is proportional to the Berry geometric phase. Two independent eigenmodes of right-hand and left-hand circular polarizations exist in the medium. Their group velocities and phase velocities differ. The difference in the group velocities results in the shift of the rays of different polarizations (the optical Magnus effect). The difference in the phase velocities causes an increase of the Berry phase along with the interference of two modes leading to the familiar Rytov law about the rotation of the polarization plane of a wave. The theory developed suggests that both the optical Magnus effect and the Berry phase are accompanying nonlocal topological effects. In this paper the Hamilton ray equations giving a unified description for both of these phenomena have been derived and also a novel splitting effect for a ray of noncircular polarization has been predicted. Specific examples are also discussed.

  19. 3D Anisotropy of Solar Wind Turbulence, Tubes, or Ribbons?

    Science.gov (United States)

    Verdini, Andrea; Grappin, Roland; Alexandrova, Olga; Lion, Sonny

    2018-01-01

    We study the anisotropy with respect to the local magnetic field of turbulent magnetic fluctuations at magnetofluid scales in the solar wind. Previous measurements in the fast solar wind obtained axisymmetric anisotropy, despite that the analysis method allows nonaxisymmetric structures. These results are probably contaminated by the wind expansion that introduces another symmetry axis, namely, the radial direction, as indicated by recent numerical simulations. These simulations also show that while the expansion is strong, the principal fluctuations are in the plane perpendicular to the radial direction. Using this property, we separate 11 yr of Wind spacecraft data into two subsets characterized by strong and weak expansion and determine the corresponding turbulence anisotropy. Under strong expansion, the small-scale anisotropy is consistent with the Goldreich & Sridhar critical balance. As in previous works, when the radial symmetry axis is not eliminated, the turbulent structures are field-aligned tubes. Under weak expansion, we find 3D anisotropy predicted by the Boldyrev model, that is, turbulent structures are ribbons and not tubes. However, the very basis of the Boldyrev phenomenology, namely, a cross-helicity increasing at small scales, is not observed in the solar wind: the origin of the ribbon formation is unknown.

  20. Manipulation of perpendicular magnetic anisotropy of single Fe atom adsorbed graphene via MgO(1 1 1) substrate

    Science.gov (United States)

    Fu, Mingming; Tang, Weiqing; Wu, Yaping; Ke, Congming; Guo, Fei; Zhang, Chunmiao; Yang, Weihuang; Wu, Zhiming; Kang, Junyong

    2018-05-01

    Perpendicular magnetic anisotropy is significantly important for realizing a long-term retention of information for spintronics devices. Inspired by 2D graphene with its high charge carrier mobility and long spin diffusion length, we report a first-principles design framework on perpendicular magnetic anisotropy engineering of a Fe atom adsorbed graphene by employing a O-terminated MgO (1 1 1) substrate. Determined by the adsorption sites of the Fe atom, a tunable magnetic anisotropy is realized in Fe/graphene/MgO (1 1 1) structure, with the magnetic anisotropy energy of  ‑0.48 meV and 0.23 meV, respectively, corresponding to the in-plane and out of plane easy magnetizations. Total density of states suggest a half-metallicity with a 100% spin polarization in the system. Decomposed densities of Fe-3d states reveal the orbital contributions to the magnetic anisotropy for different Fe adsorption sites. Bonding interaction and charge redistribution regulated by MgO substrate are found responsible for the novel perpendicular magnetic anisotropy engineering in the system. The effective manipulation of perpendicular magnetic anisotropy in present work offers some references for the design and construction of 2D spintronics devices.

  1. The Groenewold-Moyal Plane and its Quantum Physics

    International Nuclear Information System (INIS)

    Balachandran, A. P.; Padmanabhan, Pramod

    2009-01-01

    Quantum theories constructed on the noncommutative spacetime called the Groenewold-Moyal(GM) plane exhibit many interesting properties such as causality violation, Lorentz and CPT non-invariance and twisted statistics. Such violations lead to many striking features that may be tested experimentally. Thus these theories predict Pauli-forbidden transitions due to twisted statistics, anisotropies and acausal effects in the cosmic microwave background radiation in correlations of observables and Lorentz and CPT violations in scattering amplitudes. Such features of quantum physics on the GM plane are surveyed in this review.

  2. D" anisotropy and slip systems in post-perovskite

    Science.gov (United States)

    Nowacki, Andy; Wookey, James; Kendall, J.-Michael

    2010-05-01

    -distinct material such as melt. TTI planes of isotropy dip south beneath Florida, southwest beneath western USA and southeast beneath Yucatan. However we test other slip systems in MgO, pv and ppv to determine if deformation in these phases can account for the observed anisotropy. The systems [100](010) and [¯110](110) in ppv are consistent everywhere; pv is not beneath Yucatan. If we assume a general downwelling and displacement of mantle material in the seismically fast D″, corresponding to the impingement of slab material, slip along [100](010) seems more likely. With a new breed of detailed mantle deformation models, or experimental evidence of which slip system dominates, seismic anisotropy may be used to map deformation in D″ and provide greater insight into Earth's convecting interior.

  3. Exchange bias energy in Co/Pt/IrMn multilayers with perpendicular and in-plane anisotropy

    International Nuclear Information System (INIS)

    Czapkiewicz, M.; Stobiecki, T.; Rak, R.; Zoladz, M.; Dijken, S. van

    2007-01-01

    The magnetization reversal process in perpendicularly biased [Pt/Co] 3 /d Pt Pt/IrMn and in-plane biased Co/d Pt Pt/IrMn multilayers with 0nm= Pt = Pt =0.1nm. In both cases, the existence of large exchange bias fields correlates with a high domain density during magnetization reversal. The interface exchange coupling energy is larger for the in-plane biased films than for the perpendicularly biased multilayers

  4. The anisotropy of fluorescence in ring units II: transfer integral fluctuations

    International Nuclear Information System (INIS)

    Herman, Pavel; Barvik, Ivan; Reiter, Michal

    2005-01-01

    The time dependence of the anisotropy of fluorescence after an impulsive excitation in the molecular ring (resembling the B850 ring of the purple bacterium Rhodopseudomonas acidophila) is calculated. Fast fluctuations of the environment are simulated by dynamic disorder and slow fluctuations by static disorder. Without dynamic disorder, modest degrees of static disorder are sufficient to cause the experimentally found initial drop of the anisotropy on a sub-100 fs time scale. In the present investigation we are comparing results for the time-dependent optical anisotropy of the molecular ring for three models of the static disorder: Gaussian disorder in the local energies (Model A), Gaussian disorder in the transfer integrals (Model B) and Gaussian disorder in radial positions of molecules (Model C). Both types of disorder-static and dynamic-are taken into account simultaneously

  5. Experimental determination of Rashba and Dresselhaus parameters and g *-factor anisotropy via Shubnikov-de Haas oscillations

    Science.gov (United States)

    Herzog, F.; Hardtdegen, H.; Schäpers, Th; Grundler, D.; Wilde, M. A.

    2017-10-01

    The spin splitting of conduction band electrons in inversion-asymmetric InGaAs/InP quantum wells (QWs) is studied by Shubnikov-de Haas measurements combining the analysis of beating patterns and coincidence measurements in doubly tilted magnetic fields. The method allows us to determine the absolute values of the Rashba and linear Dresselhaus spin-orbit interaction (SOI) coefficients, their relative sign and the full Landé g-tensor. This is achieved by analyzing the anisotropy of the beat node positions with respect to both polar and azimuthal angles between the magnetic field direction and the QW normal. We show that the SOI is dominated by a large Rashba coefficient together with a linear Dresselhaus coefficient that is 10% of the Rashba coefficient. Their relative sign is found to be positive. The g-tensor is found to have a marked out-of-plane anisotropy and a smaller but distinct in-plane anisotropy due to SOI.

  6. Experimental determination of Rashba and Dresselhaus parameters and g *-factor anisotropy via Shubnikov-de Haas oscillations

    International Nuclear Information System (INIS)

    Herzog, F; Grundler, D; Wilde, M A; Hardtdegen, H; Schäpers, Th

    2017-01-01

    The spin splitting of conduction band electrons in inversion-asymmetric InGaAs/InP quantum wells (QWs) is studied by Shubnikov-de Haas measurements combining the analysis of beating patterns and coincidence measurements in doubly tilted magnetic fields. The method allows us to determine the absolute values of the Rashba and linear Dresselhaus spin–orbit interaction (SOI) coefficients, their relative sign and the full Landé g-tensor. This is achieved by analyzing the anisotropy of the beat node positions with respect to both polar and azimuthal angles between the magnetic field direction and the QW normal. We show that the SOI is dominated by a large Rashba coefficient together with a linear Dresselhaus coefficient that is 10% of the Rashba coefficient. Their relative sign is found to be positive. The g-tensor is found to have a marked out-of-plane anisotropy and a smaller but distinct in-plane anisotropy due to SOI. (paper)

  7. Anisotropy of the optical absorption in layered single crystals of MoRe0.001Se1.999

    International Nuclear Information System (INIS)

    Vora, Mihir M.; Vora, Aditya M.

    2007-01-01

    Energy gap of MoRe 0.001 Se 1.999 single crystal has been determined by fundamental absorption methods. The incident light was polarized along c-axis of the crystals. The interpretion of the data is given within frameworks of two and three dimensional models. Both direct and indirect transitions are involved in the absorption process. The indirect transition was found to be allowed with two phonons participating in the process. The three dimensional model could be used to describe the optical properties of the single crystal. The energy gaps depend upon the amount of the intercalating Re material, which show the anisotropy of the chemical bonds. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Time scales of bias voltage effects in FE/MgO-based magnetic tunnel junctions with voltage-dependent perpendicular anisotropy

    International Nuclear Information System (INIS)

    Lytvynenko, Ia.M.; Hauet, T.; Montaigne, F.; Bibyk, V.V.; Andrieu, S.

    2015-01-01

    Interplay between voltage-induced magnetic anisotropy transition and voltage-induced atomic diffusion is studied in epitaxial V/Fe (0.7 nm)/ MgO/ Fe(5 nm)/Co/Au magnetic tunnel junction where thin Fe soft electrode has in-plane or out-of-plane anisotropy depending on the sign of the bias voltage. We investigate the origin of the slow resistance variation occurring when switching bias voltage in opposite polarity. We demonstrate that the time to reach resistance stability after voltage switching is reduced when increasing the voltage amplitude or the temperature. A single energy barrier of about 0.2 eV height is deduced from temperature dependence. Finally, we demonstrate that the resistance change is not correlated to a change in soft electrode anisotropy. This conclusion contrasts with observations recently reported on analogous systems. - Highlights: • Voltage-induced time dependence of resistance is studied in epitaxial Fe/MgO/Fe. • Resistance change is not related to the bottom Fe/MgO interface. • The effect is thermally activated with an energy barrier of the order of 0.2 eV height

  9. Large Friction Anisotropy of a Polydiacetylene Monolayer

    International Nuclear Information System (INIS)

    Burns, A.R.; Carpick, R.W.; Sasaki, D.Y.

    1999-01-01

    Friction force microscopy measurements of a polydiacetylene monolayer film reveal a 300% friction anisotropy that is correlated with the film structure. The film consists of a monolayer of the red form of N-(2-ethanol)- 10,12 pentacosadiynamide, prepared on a Langmuir trough and deposited on a mica substrate. As confirmed by atomic force microscopy and fluorescence microscopy, the monolayer consists of domains of linearly oriented conjugated backbones with pendant hydrocarbon side chains above and below the backbones. Maximum friction occurs when the sliding direction is perpendicular to the backbone. We propose that the backbones impose anisotropic packing of the hydrocarbon side chains which leads to the observed friction anisotropy. Friction anisotropy is therefore a sensitive, optically-independent indicator of polymer backbone direction and monolayer structural properties

  10. Electronic, magnetic, and magnetocrystalline anisotropy properties of light lanthanides

    Science.gov (United States)

    Hackett, Timothy A.; Baldwin, D. J.; Paudyal, D.

    2017-11-01

    Theoretical understanding of interactions between localized and mobile electrons and the crystal environment in light lanthanides is important because of their key role in much needed magnetic anisotropy in permanent magnet materials that have a great impact in automobile and wind turbine applications. We report electronic, magnetic, and magnetocrystalline properties of these basic light lanthanide elements studied from advanced density functional theory (DFT) calculations. We find that the inclusion of onsite 4f electron correlation and spin orbit coupling within the full-potential band structure is needed to understand the unique magnetocrystalline properties of these light lanthanides. The onsite electron correlation, spin orbit coupling, and full potential for the asphericity of charge densities must be taken into account for the proper treatment of 4f states. We find the variation of total energy as a function of lattice constants that indicate multiple structural phases in Ce contrasting to a single stable structure obtained in other light lanthanides. The 4f orbital magnetic moments are partially quenched as a result of crystalline electric field splitting that leads to magnetocrystalline anisotropy. The charge density plots have similar asphericity and environment in Pr and Nd indicating similar magnetic anisotropy. However, Ce and Sm show completely different asphericity and environment as both orbital moments are significantly quenched. In addition, the Fermi surface structures exemplified in Nd indicate structural stability and unravel a cause of anisotropy. The calculated magnetocrystalline anisotropy energy (MAE) reveals competing c-axis and in-plane anisotropies, and also predicts possibilities of unusual structural deformations in light lanthanides. The uniaxial magnetic anisotropy is obtained in the double hexagonal closed pack structures of the most of the light lanthanides, however, the anisotropy is reduced or turned to planar in the low symmetry

  11. Analysis of electrical-field-dependent Dzyaloshinskii-Moriya interaction and magnetocrystalline anisotropy in a two-dimensional ferromagnetic monolayer

    Science.gov (United States)

    Liu, Jie; Shi, Mengchao; Lu, Jiwu; Anantram, M. P.

    2018-02-01

    We analyze the impacts of the electric field on the Dzyaloshinskii-Moriya interaction, magnetocrystalline anisotropy, and intrinsic ferromagnetism of the recently discovered two-dimensional ferromagnetic chromium tri-iodide (Cr I3 ) monolayer, by combining density functional theory and Monte Carlo simulations. By taking advantage of the counterbalancing effects of anisotropic symmetric exchange energy and antisymmetric exchange energy, it is shown that the intrinsic ferromagnetism can be manipulated by externally applied off-plane electric fields. The results quantitatively reveal the impacts of off-plane electric field on the lattice structure, magnetic anisotropy energy, symmetric and antisymmetric exchange energies, Curie temperature, magnetic hysteresis, and coercive field. The physical mechanism of all-electrical control of magnetism proposed here is useful for creating next-generation magnetic device technologies based on the recently discovered two-dimensional ferromagnetic crystals.

  12. Deflection of a vortex pair by an interface in easy-plane ferromagnets

    Energy Technology Data Exchange (ETDEWEB)

    Caputo, J-G [Laboratoire de Mathematiques, INSA de Rouen, BP 8, 76131 Mont-Saint-Aignan Cedex (France); Zagorodny, J P [Physics Institute, University of Bayreuth, Bayreuth (Germany); Gaididei, Yu [Bogoliubov Institute of Theoretical Physics, Academy of Sciences of Ukraine, Kiev, Ukraine (Ukraine); Mertens, F G [Physics Institute, University of Bayreuth, Bayreuth (Germany)

    2003-04-18

    We study the motion of a vortex-antivortex pair in easy-plane ferromagnets crossing an interface between two media with different anisotropy. A simple description based on the Thiele approach is obtained. The collective variables are the vortex centres and core radii, the latter are assumed to be slaved to the former. For a normal crossing of the interface by the vortex pair, a simple estimate of the ratio of the separation distances is obtained from energy conservation. This prediction is validated by direct numerical simulations of the Landau-Lifshitz equations for the anisotropic Heisenberg model, on a spin lattice divided into two regions which have different anisotropies.

  13. Laser-induced nuclear orientation and gamma anisotropy in sodium

    International Nuclear Information System (INIS)

    Pappas, P.G.

    1980-12-01

    The use of laser optical pumping to induce nuclear orientation in several isotopes and one isomer of atomic sodium vapor is described. Essentially complete nuclear polarization, P > 90%, has been achieved in stable 23 Na when pumping with modest laser intensities (I approx. = 10 mW/cm 2 ). The volume of the sample cell was approximately 10 cc, and was filled with a sodium density of about 10'' atoms/cc. Complete coverage of the Doppler distribution was accomplished with the use of trace amounts (less than or equal to 1 torr) of argon buffer gas to induce velocity changing collisions. A theoretical model which accurately predicts the amount of polarization is developed. The orientation of nuclei which are unstable to gamma decay can manifest itself in anisotropic gamma ray emission. This anisotropy can be used to measure isotope and isomer shifts, from which nuclear properties can be derived. Gamma anisotropy was observed in two systems, 22 Na and /sup 24m/Na. From the observed anisotropy in /sup 24m/Na, a negative sign for the g factor is determined. Values are derived for the magnetic moment, μ = 2.56 +- 0.64 nm, and the isomer shift, deltaν/sub 24m/ = 288 +- 191 MHz (D1 line). A model is described which relates various laser and fubber gas parameters to the observed gamma anisotropy lineshape. This model facilitates the extraction of physical parameters from knowledge of the laser frequency at which the anisotropy is a maximum

  14. Nanoconstriction spin-Hall oscillator with perpendicular magnetic anisotropy

    Science.gov (United States)

    Divinskiy, B.; Demidov, V. E.; Kozhanov, A.; Rinkevich, A. B.; Demokritov, S. O.; Urazhdin, S.

    2017-07-01

    We experimentally study spin-Hall nano-oscillators based on [Co/Ni] multilayers with perpendicular magnetic anisotropy. We show that these devices exhibit single-frequency auto-oscillations at current densities comparable to those for in-plane magnetized oscillators. The demonstrated oscillators exhibit large magnetization precession amplitudes, and their oscillation frequency is highly tunable by the electric current. These features make them promising for applications in high-speed integrated microwave circuits.

  15. Out-of-plane coercive field of Ni80Fe20 antidot arrays

    International Nuclear Information System (INIS)

    Gao Chunhong; Chen Ke; Lue Ling; Zhao Jianwei; Chen Peng

    2010-01-01

    The out-of-plane magnetic anisotropy and out-of-plane magnetization reversal process of nanoscale Ni 80 Fe 20 antidot arrays deposited by magnetron sputtering technique on an anodic aluminum oxide (AAO) membrane are investigated. The angular dependence of out-of-plane remanent magnetization of Ni 80 Fe 20 antidot arrays shows that the maximum remanence is in-plane and the squareness of the out-of-plane hysteresis loop follow a |cos θ| dependence. The angular dependence of out-of-plane coercivity of Ni 80 Fe 20 antidot arrays shows that the maximum coercivity lies on the surface of a cone with its symmetric axis normal to the sample plane, which indicates a transition of magnetic reversal from curling to coherent rotation when changing the angle between the applied magnetic field and the sample plane.

  16. Out-of-plane coercive field of Ni 80Fe 20 antidot arrays

    Science.gov (United States)

    Gao, Chunhong; Chen, Ke; Lü, Ling; Zhao, Jianwei; Chen, Peng

    2010-11-01

    The out-of-plane magnetic anisotropy and out-of-plane magnetization reversal process of nanoscale Ni 80Fe 20 antidot arrays deposited by magnetron sputtering technique on an anodic aluminum oxide (AAO) membrane are investigated. The angular dependence of out-of-plane remanent magnetization of Ni 80Fe 20 antidot arrays shows that the maximum remanence is in-plane and the squareness of the out-of-plane hysteresis loop follow a |cos θ| dependence. The angular dependence of out-of-plane coercivity of Ni 80Fe 20 antidot arrays shows that the maximum coercivity lies on the surface of a cone with its symmetric axis normal to the sample plane, which indicates a transition of magnetic reversal from curling to coherent rotation when changing the angle between the applied magnetic field and the sample plane.

  17. Tailoring the photoluminescence polarization anisotropy of a single InAs quantum dash by a post-growth modification of its dielectric environment

    Energy Technology Data Exchange (ETDEWEB)

    Mrowiński, P.; Misiewicz, J.; Sęk, G. [Laboratory for Optical Spectroscopy of Nanostructures, Division of Experimental Physics, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wrocław (Poland); Tarnowski, K.; Olszewski, J.; Urbańczyk, W. [Division of Optics and Photonics, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wrocław (Poland); Somers, A.; Kamp, M. [Technische Physik & W. C. Röntgen-Center for Complex Material Systems, Universität Würzburg, Würzburg Germany (Germany); Reithmaier, J. P. [Institute of Nanostructure Technologies and Analytics (INA), CINSaT, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel (Germany); Machnikowski, P. [Division of Theoretical Physics, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wrocław (Poland)

    2016-08-21

    Excitonic emission from single InAs/InGaAlAs/InP quantum dashes has been investigated in terms of controlling the polarization anisotropy by altering the shape of the processed sub-micrometer mesa structures. Photoluminescence has been measured from exemplary single quantum dashes emitting around 1.3 and 1.55 μm and placed inside rectangular mesas of various orientation, asymmetry, and sizes. The detected degree of linear polarization of bright exciton emission ranges from −0.1 to ca. 0.55, compared to 0.25 for dashes in unaltered or isotropic in-plane dielectric surrounding. These results are interpreted by numerical simulations using an emitter coupled with a single optical mode in such a mesa and outgoing in the direction normal to the sample surface.

  18. The single-ion anisotropy effects in the mixed-spin ternary-alloy

    Science.gov (United States)

    Albayrak, Erhan

    2018-04-01

    The effect of single-ion anisotropy on the thermal properties of the ternary-alloy in the form of ABpC1-p is investigated on the Bethe lattice (BL) in terms of exact recursion relations. The simulation on the BL consists of placing A atoms (spin-1/2) on the odd shells and randomly placing B (spin-3/2) or C (spin-5/2) atoms with concentrations p and 1 - p, respectively, on the even shells. The phase diagrams are calculated in possible planes spanned by the system parameters: temperature, single-ion anisotropy, concentration and ratio of the bilinear interaction parameters for z = 3 corresponding to the honeycomb lattice. It is found that the crystal field drives the system to the lowest possible state therefore reducing the temperatures of the critical lines in agreement with the literature.

  19. Statistical framework for the utilization of simultaneous pupil plane and focal plane telemetry for exoplanet imaging. I. Accounting for aberrations in multiple planes.

    Science.gov (United States)

    Frazin, Richard A

    2016-04-01

    A new generation of telescopes with mirror diameters of 20 m or more, called extremely large telescopes (ELTs), has the potential to provide unprecedented imaging and spectroscopy of exoplanetary systems, if the difficulties in achieving the extremely high dynamic range required to differentiate the planetary signal from the star can be overcome to a sufficient degree. Fully utilizing the potential of ELTs for exoplanet imaging will likely require simultaneous and self-consistent determination of both the planetary image and the unknown aberrations in multiple planes of the optical system, using statistical inference based on the wavefront sensor and science camera data streams. This approach promises to overcome the most important systematic errors inherent in the various schemes based on differential imaging, such as angular differential imaging and spectral differential imaging. This paper is the first in a series on this subject, in which a formalism is established for the exoplanet imaging problem, setting the stage for the statistical inference methods to follow in the future. Every effort has been made to be rigorous and complete, so that validity of approximations to be made later can be assessed. Here, the polarimetric image is expressed in terms of aberrations in the various planes of a polarizing telescope with an adaptive optics system. Further, it is shown that current methods that utilize focal plane sensing to correct the speckle field, e.g., electric field conjugation, rely on the tacit assumption that aberrations on multiple optical surfaces can be represented as aberration on a single optical surface, ultimately limiting their potential effectiveness for ground-based astronomy.

  20. Magnetocrystalline anisotropy in a (110) (Tb0.27Dy0.73)Fe2 thin-film

    International Nuclear Information System (INIS)

    Fuente, C de la; Arnaudas, J I; Benito, L; Ciria, M; Moral, A del; Dufour, C; Dumesnil, K

    2004-01-01

    Magnetic anisotropy measurements performed in a (110) (Tb 0.27 Dy 0.73 )Fe 2 (Terfenol-D) film epitaxially grown on a sapphire substrate are presented. The magnetic torque curves have been determined by using a vectorial vibrating sample magnetometer, which allows us to measure the angular dependence of magnetization components parallel, M parallel , and perpendicular, M perp , to the applied field up to 2 T. The fourfold symmetry associated with the cubic structure within the (110) plane is clearly observed. The analysis of the experimental torque has been carried out considering magnetocrystalline anisotropy up to sixth order and magnetoelastic energy up to second order; so, the magnetocrystalline anisotropy constants in the (110) plane of the film, K 1 and K 2 , have been obtained. This allows us to determine the direction of the magnetization easy axis for (110) Terfenol-D thin-film: it is [1bar12] at RT, passes through [3bar34] at 140 K and then changes to [1bar20] at 40 K. It was completely impossible to explain the angular dependence of the experimental magnetic torque without including shear and tetragonal magnetoelastic stress parameters, b 2 and b 1 , respectively. This confirms the paramount role of the strain in the determination of the magnetic properties in this kind of Terfenol-D thin film

  1. Optical devices based on liquid crystal photonic bandgap fibers

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard

    2005-01-01

    the waveguiding mechanism of LC filled PCFs. The principle of tunable fibers based on LCs is thereafter discussed and an alignment and coating study of LC in capillaries is presented. Next, the Liquid Crystal Photonic BandGap (LCPBG) fiber is presented and the waveguiding mechanism is analyzed through plane...... hole. The presence of a LC in the holes of the PCF transforms the fiber from a Total Internal Reflection (TIR) guiding type into a Photonic BandGap (PBG) guiding type, where light is confined to the silica core by coherent scattering from the LC-billed holes. The high dielectric and optical anisotropy...

  2. Combined multi-plane phase retrieval and super-resolution optical fluctuation imaging for 4D cell microscopy

    Science.gov (United States)

    Descloux, A.; Grußmayer, K. S.; Bostan, E.; Lukes, T.; Bouwens, A.; Sharipov, A.; Geissbuehler, S.; Mahul-Mellier, A.-L.; Lashuel, H. A.; Leutenegger, M.; Lasser, T.

    2018-03-01

    Super-resolution fluorescence microscopy provides unprecedented insight into cellular and subcellular structures. However, going `beyond the diffraction barrier' comes at a price, since most far-field super-resolution imaging techniques trade temporal for spatial super-resolution. We propose the combination of a novel label-free white light quantitative phase imaging with fluorescence to provide high-speed imaging and spatial super-resolution. The non-iterative phase retrieval relies on the acquisition of single images at each z-location and thus enables straightforward 3D phase imaging using a classical microscope. We realized multi-plane imaging using a customized prism for the simultaneous acquisition of eight planes. This allowed us to not only image live cells in 3D at up to 200 Hz, but also to integrate fluorescence super-resolution optical fluctuation imaging within the same optical instrument. The 4D microscope platform unifies the sensitivity and high temporal resolution of phase imaging with the specificity and high spatial resolution of fluorescence microscopy.

  3. Optical properties of m-plane GaN grown on patterned Si(112) substrates by MOCVD using a two-step approach

    Science.gov (United States)

    Izyumskaya, N.; Okur, S.; Zhang, F.; Monavarian, M.; Avrutin, V.; Özgür, Ü.; Metzner, S.; Karbaum, C.; Bertram, F.; Christen, J.; Morkoç, H.

    2014-03-01

    Nonpolar m-plane GaN layers were grown on patterned Si (112) substrates by metal-organic chemical vapor deposition (MOCVD). A two-step growth procedure involving a low-pressure (30 Torr) first step to ensure formation of the m-plane facet and a high-pressure step (200 Torr) for improvement of optical quality was employed. The layers grown in two steps show improvement of the optical quality: the near-bandedge photoluminescence (PL) intensity is about 3 times higher than that for the layers grown at low pressure, and deep emission is considerably weaker. However, emission intensity from m-GaN is still lower than that of polar and semipolar (1 100 ) reference samples grown under the same conditions. To shed light on this problem, spatial distribution of optical emission over the c+ and c- wings of the nonpolar GaN/Si was studied by spatially resolved cathodoluminescence and near-field scanning optical microscopy.

  4. Deformation in D″ Beneath North America From Anisotropy

    Science.gov (United States)

    Nowacki, A. J.; Wookey, J.; Kendall, J. M.

    2009-12-01

    same but with a tilted axis is possible (TTI) and would be consistent with inclusions of seismically-distinct material such as melt. TTI planes of isotropy dip south beneath Florida, southwest beneath western USA and southeast beneath Yucatan. However we test other slip systems in MgO, pv and ppv to determine if deformation in these phases can account for the observed anisotropy. The systems [100](010) and [1̅10](110) in ppv are consistent everywhere; pv is not beneath Yucatan. If we assume a general downwelling and displacement of mantle material in the seismically fast D″, corresponding to the impingement of slab material, slip along [100](010) seems more likely, with the possibility that slip along (110) as a transformation texture also occurs in the seismically fastest regions (Walte et al, GRL, 2009). With a new breed of detailed mantle deformation models, or experimental evidence of which system dominates, seismic anisotropy may be used to map deformation in D″ and provide greater insight into Earth's convecting interior.

  5. Current induced multi-mode propagating spin waves in a spin transfer torque nano-contact with strong perpendicular magnetic anisotropy

    Science.gov (United States)

    Mohseni, S. Morteza; Yazdi, H. F.; Hamdi, M.; Brächer, T.; Mohseni, S. Majid

    2018-03-01

    Current induced spin wave excitations in spin transfer torque nano-contacts are known as a promising way to generate exchange-dominated spin waves at the nano-scale. It has been shown that when these systems are magnetized in the film plane, broken spatial symmetry of the field around the nano-contact induced by the Oersted field opens the possibility for spin wave mode co-existence including a non-linear self-localized spin-wave bullet and a propagating mode. By means of micromagnetic simulations, here we show that in systems with strong perpendicular magnetic anisotropy (PMA) in the free layer, two propagating spin wave modes with different frequency and spatial distribution can be excited simultaneously. Our results indicate that in-plane magnetized spin transfer nano-contacts in PMA materials do not host a solitonic self-localized spin-wave bullet, which is different from previous studies for systems with in plane magnetic anisotropy. This feature renders them interesting for nano-scale magnonic waveguides and crystals since magnon transport can be configured by tuning the applied current.

  6. In-plane ultrasonic needle tracking using a fiber-optic hydrophone

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Wenfeng, E-mail: wenfeng.xia@ucl.ac.uk; Desjardins, Adrien E. [Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT (United Kingdom); Mari, Jean Martial [Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom and GePaSud, University of French Polynesia, Faa’a 98702, French Polynesia (France); West, Simeon J. [Department of Anaesthesia, University College Hospital, Main Theatres, Maple Bridge Link Corridor, Podium 3, 235 Euston Road, London NW1 2BU (United Kingdom); Ginsberg, Yuval; David, Anna L. [Institute for Women’s Health, University College London, 86-96 Chenies Mews, London WC1E 6HX (United Kingdom); Ourselin, Sebastien [Center for Medical Imaging Computing, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2015-10-15

    Purpose: Accurate and efficient guidance of needles to procedural targets is critically important during percutaneous interventional procedures. Ultrasound imaging is widely used for real-time image guidance in a variety of clinical contexts, but with this modality, uncertainties about the location of the needle tip within the image plane lead to significant complications. Whilst several methods have been proposed to improve the visibility of the needle, achieving accuracy and compatibility with current clinical practice is an ongoing challenge. In this paper, the authors present a method for directly visualizing the needle tip using an integrated fiber-optic ultrasound receiver in conjunction with the imaging probe used to acquire B-mode ultrasound images. Methods: Needle visualization and ultrasound imaging were performed with a clinical ultrasound imaging system. A miniature fiber-optic ultrasound hydrophone was integrated into a 20 gauge injection needle tip to receive transmissions from individual transducer elements of the ultrasound imaging probe. The received signals were reconstructed to create an image of the needle tip. Ultrasound B-mode imaging was interleaved with needle tip imaging. A first set of measurements was acquired in water and tissue ex vivo with a wide range of insertion angles (15°–68°) to study the accuracy and sensitivity of the tracking method. A second set was acquired in an in vivo swine model, with needle insertions to the brachial plexus. A third set was acquired in an in vivo ovine model for fetal interventions, with insertions to different locations within the uterine cavity. Two linear ultrasound imaging probes were used: a 14–5 MHz probe for the first and second sets, and a 9–4 MHz probe for the third. Results: During insertions in tissue ex vivo and in vivo, the imaged needle tip had submillimeter axial and lateral dimensions. The signal-to-noise (SNR) of the needle tip was found to depend on the insertion angle. With

  7. Characterization of the magnetic anisotropy in thin films of La1-xSrxMnO3 using the planar Hall effect

    International Nuclear Information System (INIS)

    Bason, Y.; Klein, L.; Yau, J.B.; Hong, X.; Ahn, C.H.

    2004-01-01

    Thin films of the colossal magnetoresistance material La 1-x Sr x MnO 3 (LSMO) grown on SrTiO 3 substrates exhibit bi-axial magnetocrystalline anisotropy with easy axes along the [110] and [1 anti 1 0] directions. We have recently discovered that the intrinsic biaxial magnetic anisotropy combined with a giant planar Hall effect lead to striking switching behavior in the transverse resistivity of LSMO films (Appl. Phys. Lett. 84, 2593 (2004)). Here we use this phenomenon as a sensitive tool for measuring in-plane magnetization in order to characterize the magnetic anisotropy. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  8. Dual-mode ferromagnetic resonance in an FeCoB/Ru/FeCoB synthetic antiferromagnet with uniaxial anisotropy

    Science.gov (United States)

    Wang, Cuiling; Zhang, Shouheng; Qiao, Shizhu; Du, Honglei; Liu, Xiaomin; Sun, Ruicong; Chu, Xian-Ming; Miao, Guo-Xing; Dai, Youyong; Kang, Shishou; Yan, Shishen; Li, Shandong

    2018-05-01

    Dual-mode ferromagnetic resonance is observed in FeCoB/Ru/FeCoB trilayer synthetic antiferromagnets with uniaxial in-plane magnetic anisotropy. The optical mode is present in the (0-108 Oe) magnetic field range, where the top and bottom layer magnetizations are aligned in opposite directions. The strong acoustic mode appears, when the magnetic field exceeds the 300 Oe value, which corresponds to the flop transition in the trilayer. Magnetic field and angular dependences of resonant frequencies are studied for both optical (low-field) and acoustic (high field) modes. The low-field mode is found to be anisotropic but insensitive to the magnetic field value. In contrast, the high field mode is quasi-isotropic, but its resonant frequency is tunable by the value of the magnetic field. The coexistence of two modes of ferromagnetic resonance as well as switching between them with the increase in the magnetic field originates from the difference in the sign of interlayer coupling energy at the parallel and antiparallel configurations of the synthetic antiferromagnet. The dual-mode resonance in the studied trilayer structures provides greater flexibility in the design and functionalization of micro-inductors in monolithic microwave integrated circuits.

  9. Specific features of band structure and optical anisotropy of Cu{sub 2}CdGeSe{sub 4} quaternary compounds

    Energy Technology Data Exchange (ETDEWEB)

    Brik, M.G., E-mail: brik@fi.tartu.ee [College of Mathematics and Physics, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China); Institute of Physics, University of Tartu, Riia 142, Tartu 51014 (Estonia); Institute of Physics, Jan Dlugosz University, Armii Krajowej 13/15, PL-42200 Czestochowa (Poland); Parasyuk, O.V. [Department of Chemistry, Eastern European National University, Voli 13, Lutsk 43025 (Ukraine); Myronchuk, G.L. [Department of Physics, Eastern European National University, Voli 13, Lutsk 43025 (Ukraine); Kityk, I.V. [Institute of Materials Science and Engineering, Technical University of Czestochowa, Al. Armii Krajowej 19, 42-200 Czestochowa (Poland)

    2014-09-15

    Complex theoretical and experimental studies of the band structure and optical functions of a new Cu{sub 2}CdGeSe{sub 4} quaternary crystal are reported. The benchmark band structure calculations were performed using the first-principles methods. As a result, the structural, electronic, optical and elastic properties of Cu{sub 2}CdGeSe{sub 4} were calculated in the general gradient approximation (GGA) and local density approximation (LDA). The calculated dielectric function and optical absorption spectra exhibit some anisotropic behavior. Detailed analysis of the band energy dispersion and effective space charge density helped in establishing the origin of the band structure anisotropy. All calculated properties are compared with the experimental data. An additional comparison with a similar crystal of Cu{sub 2}CdGeSe{sub 4} allowed to reveal the role played by the anions (S or Se) in formation of the optical properties of these two materials. - Highlights: • The structural, electronic, optical properties of Cu{sub 2}CdGeSe{sub 4} were calculated. • Pressure effects on these properties were modeled. • Comparison with a similar compound of Cu{sub 2}CdGeS{sub 4} was performed.

  10. Tailoring perpendicular magnetic anisotropy with graphene oxide membranes

    KAUST Repository

    Ning, Keyu; Liu, Houfang; Li, Linsen; Li, Huanglong; Feng, Jiafeng; Yang, Baishun; Liu, Xiao; Li, Yuxing; Chen, Yanhui; Wei, Hongxiang; Han, Xiufeng; Mao, Shengcheng; Zhang, Xixiang; Yang, Yi; Ren, Tian-ling

    2017-01-01

    Graphene oxide (GO) membranes have been widely explored for their excellent physical and chemical properties, and abundant functional groups. In this work, we report the improvement of the perpendicular magnetic anisotropy (PMA) of CoFeB thin films by applying a coating of GO membranes. We observe that the PMA of the CoFeB/MgAl–O stacks is strongly enhanced by the coating of GO membranes and even reaches 0.6 mJ m−2 at room temperature after an annealing process. The critical thickness of the membrane-coated CoFeB for switching the magnetization from the out-of-plane to the in-plane axis exceeds 1.6 nm. First-principle calculations are performed to investigate the contribution of the GO membranes to the magnetic anisotropy energy (MAE). Due to changes in the hybridization of 3d orbitals, varying the location of the C atomic layer with Co changes the contribution of the Co–C stacks to PMA. Thus, the large PMA achieved with GO membranes can be attributed to the orbital hybridization of the C and O atoms with the Co orbitals. These results provide a comprehensive understanding of the PMA and point towards opportunities to achieve multifunctional graphene-composite spintronic devices.

  11. Tailoring perpendicular magnetic anisotropy with graphene oxide membranes

    KAUST Repository

    Ning, Keyu

    2017-11-15

    Graphene oxide (GO) membranes have been widely explored for their excellent physical and chemical properties, and abundant functional groups. In this work, we report the improvement of the perpendicular magnetic anisotropy (PMA) of CoFeB thin films by applying a coating of GO membranes. We observe that the PMA of the CoFeB/MgAl–O stacks is strongly enhanced by the coating of GO membranes and even reaches 0.6 mJ m−2 at room temperature after an annealing process. The critical thickness of the membrane-coated CoFeB for switching the magnetization from the out-of-plane to the in-plane axis exceeds 1.6 nm. First-principle calculations are performed to investigate the contribution of the GO membranes to the magnetic anisotropy energy (MAE). Due to changes in the hybridization of 3d orbitals, varying the location of the C atomic layer with Co changes the contribution of the Co–C stacks to PMA. Thus, the large PMA achieved with GO membranes can be attributed to the orbital hybridization of the C and O atoms with the Co orbitals. These results provide a comprehensive understanding of the PMA and point towards opportunities to achieve multifunctional graphene-composite spintronic devices.

  12. Anisotropy of Doppler spectral parameters in the VHF radar observations at MU and White Sands

    Directory of Open Access Journals (Sweden)

    G. D. Nastrom

    2001-08-01

    Full Text Available Significant differences are found between the mean spectral widths from beams in the meridional plane and in the zonal plane at both the MU and the White Sands VHF radars. The spectral width in the beam directed perpendicular to the prevailing wind is greater than that in the beam parallel to the wind. The magnitudes of the differences in spectral width show a linear relationship with wind speed, with the greatest differences at the greatest wind speeds. The differences in spectral width show a positive correlation with the differences in backscattered power. The anisotropy in backscattered power is well-known and is usually attributed to aspect sensitivity effects. However, the anisotropy in spectral width does not appear to be due to the same mechanism, and while several hypotheses to account for this are considered, including finite range-volume effects, effects from the tilting of isentropic layers, and anisotropic turbulence effects, it is seen that each of these suggestions has its shortcomings.Key words. Meteorology and atmospheric dynamics (turbulence; instruments and techniques

  13. Effects of oxide replacement with fluoride at the CoFeB interface on interface magnetic anisotropy and its voltage control

    Science.gov (United States)

    Pankieiev, Mykhailo; Kita, Koji

    2018-05-01

    In this paper we report results of improving Co60Fe20B20 interface perpendicular magnetic anisotropy (PMA) by replacing neighbor oxide layer with fluoride one. We expected that fluorine as element with higher than oxide electronegativity could more effectively attract electrons from out-of-plane d orbitals of ferromagnetic, increasing role of in-plane orbitals. By this we wanted to increase PMA and its response to applied voltage bias. Polar magneto-optic Kerr effect measurement show decreasing of out-of-plane magnetic field needed to change magnetization to perpendicular in stacks with oxygen replaced by fluorine as well as increasing of coefficient of response to applied voltage α from < 10 fJ/Vm for CoFeB/Al2O3 interface to 20 fJ/Vm for CoFeB/AlF3/Al2O3 and 22 fJ/Vm for CoFeB/MgF2 stacks. Direct chemical interaction of Co with F was confirmed by x-ray photoelectron spectroscopy (XPS) measurement of Co2p core level region. Moreover angular-resolved XPS showed that F tends to stay at CoFeB interface rather than diffuse out of it.

  14. Quantifying the effects of UV-A/riboflavin crosslinking on the elastic anisotropy and hysteresis of the porcine cornea by noncontact optical coherence elastography

    Science.gov (United States)

    Singh, Manmohan; Li, Jiasong; Raghunathan, Raksha; Han, Zhaolong; Nair, Achuth; Liu, Chih-Hao; Aglyamov, Salavat R.; Twa, Michael D.; Larin, Kirill V.

    2017-02-01

    The collagen fibril orientation of the cornea can provide critical information about cornea tissue health because diseases such as keratoconus and therapeutic interventions such as UV-A/riboflavin corneal collagen crosslinking (CXL) can alter the ultrastructural arrangement of collagen fibrils. Here, we quantify the elastic anisotropy and hysteresis of in situ porcine corneas as a function of intraocular pressure (IOP) with noncontact optical coherence elastography. Moreover, the effects of UV-A riboflavin corneal collagen crosslinking on the elastic anisotropy and hysteresis were evaluated. The propagation of an air-pulse induced elastic wave was imaged at stepped meridional angles by a home built phasestabilized swept source OCE system. The stiffness of the cornea was translated from the velocity of the wave, and the elastic anisotropy was quantified by modifying the planar anisotropy coefficient. As the IOP increased, the stiffness of the corneas increased from 18 kPa at 15 mmHg IOP to 120 kPa at 30 mmHg IOP. While there was a measureable hysteresis, it was not significant. After CXL, the Young's modulus of the corneas significantly increased from 18 kPa to 44 kPa at 15 mmHg IOP. The mechanical anisotropy also increased significantly from 10 a.u. in the untreated corneas to 23 a.u. in the CXL treated corneas, 15 mmHg IOP. However, CXL did not change the elastic anisotropic orientation, and the mechanical anisotropic hysteresis was not significant after CXL.

  15. Magnetic anisotropy and quantized spin waves in hematite nanoparticles

    DEFF Research Database (Denmark)

    Klausen, Stine Nyborg; Lefmann, Kim; Lindgård, Per-Anker

    2004-01-01

    We report on the observation of high-frequency collective magnetic excitations, (h) over bar omegaapproximate to1.1 meV, in hematite (alpha-Fe2O3) nanoparticles. The neutron scattering experiments include measurements at temperatures in the range 6-300 K and applied fields up to 7.5 T as well...... as polarization analysis. We give an explanation for the field- and temperature dependence of the excitations, which are found to have strongly elliptical out-of-plane precession. The frequency of the excitations gives information on the magnetic anisotropy constants in the system. We have in this way determined...

  16. Study of the in-plane magnetic structure of a layered system using polarized neutron scattering under grazing incidence geometry

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, R., E-mail: ryuji.maruyama@j-parc.jp [J-PARC Center, Japan Atomic Energy Agency, 2-4 Shirakata Shirane, Tokai, Ibaraki 319-1195 (Japan); Bigault, T.; Wildes, A.R.; Dewhurst, C.D. [Institut Laue Langevin, 71 avenue des Martyrs, 38042 Grenoble (France); Soyama, K. [J-PARC Center, Japan Atomic Energy Agency, 2-4 Shirakata Shirane, Tokai, Ibaraki 319-1195 (Japan); Courtois, P. [Institut Laue Langevin, 71 avenue des Martyrs, 38042 Grenoble (France)

    2016-05-21

    The in-plane magnetic structure of a layered system with a polycrystalline grain size less than the ferromagnetic exchange length was investigated using polarized neutron off-specular scattering and grazing incidence small angle scattering measurements to gain insight into the mechanism that controls the magnetic properties which are different from the bulk. These complementary measurements with different length scales and the data analysis based on the distorted wave Born approximation revealed the lateral correlation on a length scale of sub- μm due to the fluctuating orientation of the magnetization in the layer. The obtained in-plane magnetic structure is consistent with the random anisotropy model, i.e. competition between the exchange interactions between neighboring spins and the local magnetocrystalline anisotropy.

  17. The use of x-ray interferometry to investigate the linearity of the NPL Differential Plane Mirror Optical Interferometer

    Science.gov (United States)

    Yacoot, Andrew; Downs, Michael J.

    2000-08-01

    The x-ray interferometer from the combined optical and x-ray interferometer (COXI) facility at NPL has been used to investigate the performance of the NPL Jamin Differential Plane Mirror Interferometer when it is fitted with stabilized and unstabilized lasers. This Jamin interferometer employs a common path design using a double pass configuration and one fringe is realized by a displacement of 158 nm between its two plane mirror retroreflectors. Displacements over ranges of several optical fringes were measured simultaneously using the COXI x-ray interferometer and the Jamin interferometer and the results were compared. In order to realize the highest measurement accuracy from the Jamin interferometer, the air paths were shielded to prevent effects from air turbulence and electrical signals generated by the photodetectors were analysed and corrected using an optimizing routine in order to subdivide the optical fringes accurately. When an unstabilized laser was used the maximum peak-to-peak difference between the two interferometers was 80 pm, compared with 20 pm when the stabilized laser was used.

  18. Dzyaloshinskii-Moriya interaction and magnetic anisotropies in Uranium compounds

    Science.gov (United States)

    Sandratskii, L. M.

    2018-05-01

    We report on the first-principles study of complex noncollinear magnetic structures in Uranium compounds. We contrast two cases. The first is the periodic magnetic structure of U2Pd2In with exactly orthogonal atomic moments, the second is an incommensurate plane spiral structure of UPtGe where the angle between atomic moments of nearest neighbors is also close to 90°. We demonstrate that the hierarchy of magnetic interactions leading to the formation of the magnetic structure is opposite in the two cases. In U2Pd2In, the magnetic anisotropy plays the leading role, followed by the Dzyaloshinskii-Moriya interaction (DMI) interaction specifying the chirality of the structure. Here, the interatomic exchange interaction does not play important role. In UPtGe the hierarchy of the interactions is opposite. The leading interaction is the interatomic exchange interaction responsible for the formation of the incommensurate spiral structure followed by the DMI responsible for the selected chirality of the helix. The magnetic anisotropy is very weak that is a prerequisite for keeping the distortion of the helical structure weak.

  19. Temperature dependence of the anisotropy of fluorescence in ring molecular systems

    International Nuclear Information System (INIS)

    Herman, Pavel; Barvik, Ivan

    2007-01-01

    The time dependence of the anisotropy of fluorescence after an impulsive excitation in the molecular ring (resembling the B850 ring of the purple bacterium Rhodopseudomonas acidophila) is calculated. Fast fluctuations of the environment are simulated by dynamic disorder and slow fluctuations by uncorrelated static disorder. Without dynamic disorder modest degrees of static disorder are sufficient to cause the experimentally found initial drop of the anisotropy on a sub-100 fs time scale. In the present investigation we are comparing results for the time-dependent optical anisotropy of the molecular ring for four models of the uncorrelated static disorder: Gaussian disorder in the local energies (model A), Gaussian disorder in the transfer integrals (model B), Gaussian disorder in radial positions of molecules (model C) and Gaussian disorder in angular positions of molecules (model D). Both types of disorder-static and dynamic-are taken into account simultaneously

  20. Optical second-harmonic and reflectance-anisotropy spectroscopy of molecular adsorption at Si(001) step-edges

    Energy Technology Data Exchange (ETDEWEB)

    Ehlert, Robert; Kwon, Jinhee; Downer, Michael C. [University of Texas at Austin, Department of Physics, Austin, TX 78712-1081 (United States)

    2008-07-01

    Reflectance-anisotropy spectroscopy (RAS) and spectroscopic second harmonic generation (SHG) are used to probe a single-domain reconstructed stepped Si(001) surface offcut 6 toward[110] before and after dissociative adsorption of H{sub 2} at the D{sub B} step edges. Preliminary analysis with a simplified bond hyperpolarizability model supports the mutual consistency of RA and SHG spectra and suggests that hydrogen termination redistributes oscillator strength from the chemically active step dangling bond into the step back bonds. The data provide a benchmark for first-principles calculations of the optical response of stepped Si surfaces to step edge molecular adsorption. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Characterizing the spin orbit torque field-like term in in-plane magnetic system using transverse field

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Feilong [School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore); Data Storage Institute, A*STAR Agency for Science, Technology and Research, DSI Building, 5 Engineering Drive 1, Singapore 117608 (Singapore); Goolaup, Sarjoosing; Li, Sihua; Lim, Gerard Joseph; Tan, Funan; Engel, Christian; Zhang, Senfu; Ma, Fusheng; Lew, Wen Siang, E-mail: wensiang@ntu.edu.sg [School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore); Zhou, Tiejun [Data Storage Institute, A*STAR Agency for Science, Technology and Research, DSI Building, 5 Engineering Drive 1, Singapore 117608 (Singapore)

    2016-08-28

    In this work, we present an efficient method for characterizing the spin orbit torque field-like term in an in-plane magnetized system using the harmonic measurement technique. This method does not require a priori knowledge of the planar and anomalous hall resistances and is insensitive to non-uniformity in magnetization, as opposed to the conventional harmonic technique. We theoretically and experimentally demonstrate that the field-like term in the Ta/Co/Pt film stack with in-plane magnetic anisotropy can be obtained by an in-plane transverse field sweep as expected, and magnetization non-uniformity is prevented by the application of fixed magnetic field. The experimental results are in agreement with the analytical calculations.

  2. Methods and means of Fourier-Stokes polarimetry and the spatial-frequency filtering of phase anisotropy manifestations in endometriosis diagnostics

    Science.gov (United States)

    Ushenko, A. G.; Dubolazov, O. V.; Ushenko, Vladimir A.; Ushenko, Yu. A.; Sakhnovskiy, M. Yu.; Prydiy, O. G.; Lakusta, I. I.; Novakovskaya, O. Yu.; Melenko, S. R.

    2016-12-01

    This research presents investigation results of diagnostic efficiency of a new azimuthally stable Mueller-matrix method of laser autofluorescence coordinate distributions analysis of dried polycrystalline films of uterine cavity peritoneal fluid. A new model of generalized optical anisotropy of biological tissues protein networks is proposed in order to define the processes of laser autofluorescence. The influence of complex mechanisms of both phase anisotropy (linear birefringence and optical activity) and linear (circular) dichroism is taken into account. The interconnections between the azimuthally stable Mueller-matrix elements characterizing laser autofluorescence and different mechanisms of optical anisotropy are determined. The statistic analysis of coordinate distributions of such Mueller-matrix rotation invariants is proposed. Thereupon the quantitative criteria (statistic moments of the 1st to the 4th order) of differentiation of dried polycrystalline films of peritoneal fluid - group 1 (healthy donors) and group 2 (uterus endometriosis patients) are estimated.

  3. Plasmonic reflectance anisotropy spectroscopy of metal nanoparticles on a semiconductor surface

    Science.gov (United States)

    Kosobukin, V. A.; Korotchenkov, A. V.

    2016-12-01

    A theory of plasmonic differential anisotropic reflection of light from nanoparticles located near the interface between media is developed. The model of a monolayer consisting of identical ellipsoidal metal particles occupying sites of a rectangular lattice is investigated. Effective plasmonic polarizabilities of nanoparticles in the layer are calculated self-consistently using the Green's function technique in the quasipoint dipole approximation. The local-field effect caused by anisotropic dipole plasmons of particles in the layer and their image dipoles is taken into account. The lately observed resonant reflectance anisotropy spectra of indium nanoclusters on InAs surface are explained by the difference between frequencies of plasmons with the orthogonal polarizations in the surface plane. The difference between the plasmon frequencies is attributed to anisotropy of the particles shape or/and the layer structure; the signs of frequency difference for the two types of anisotropy being different.

  4. Direct observation of the current distribution in thin superconducting strips using magneto-optic imaging

    International Nuclear Information System (INIS)

    Johansen, T.H.; Baziljevich, M.; Bratsberg, H.; Galperin, Y.; Lindelof, P.E.; Shen, Y.; Vase, P.

    1996-01-01

    Magneto-optic imaging was used for a detailed study of the flux and current distribution of a long thin strip of YBa 2 Cu 3 O 7-δ placed in a perpendicular external magnetic field. The inverse magnetic problem, i.e., that of deriving from a field map the underlying current distribution, is formulated and solved for the strip geometry. Applying the inversion to the magneto-optically found field map we find on a model-independent basis the current distribution across the strip to be in remarkable agreement with the profile predicted by the Bean model. The paper also presents results on the behavior of the Bi-doped YIG film with in-plane anisotropy which we use as field indicator, explaining why previous measurements of flux density profiles have displayed surprisingly large deviations from the expected behavior. copyright 1996 The American Physical Society

  5. The breakage behaviour of Aspirin under quasi-static indentation and single particle impact loading: effect of crystallographic anisotropy.

    Science.gov (United States)

    Olusanmi, D; Roberts, K J; Ghadiri, M; Ding, Y

    2011-06-15

    The influence of crystallographic structural anisotropy on the breakage behaviour of Aspirin under impact loading is highlighted. Under both quasi-static testing conditions, using nano-indentation, and dynamic impact tests, Aspirin demonstrates clear anisotropy in its slip and fracture behaviour. During nano-indentation on the (100) and (001) faces, cracks were propagated along the [010] direction. While the hardness was found to be comparatively similar for both these faces, it was observed that slip due to plastic deformation occurred more readily on the (100) than the (001) crystal planes suggesting the former as the preferred slip plane. Furthermore, the fracture toughness on the (001) planes was found to be distinctly lower than that of the (100) planes, indicating the former as the preferred cleavage plane. Observations of the crystal morphology of damaged particles after dynamic impact testing showed that both the chipping and fragmentation of Aspirin mostly occurred via cleavage in a manner consistent with the observed fracture behaviour following nano-indentation. This work highlights the importance of cleavage as a dominant factor underpinning the fracture mechanism of Aspirin under both quasi-static and impact loading conditions. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Magnetic stripes and holes: Complex domain patterns in perforated films with weak perpendicular anisotropy

    Directory of Open Access Journals (Sweden)

    F. Valdés-Bango

    2017-05-01

    Full Text Available Hexagonal antidot arrays have been patterned on weak perpendicular magnetic anisotropy NdCo films by e-beam lithography and lift off. Domain structure has been characterized by Magnetic Force Microscopy at remanence. On a local length scale, of the order of stripe pattern period, domain configuration is controlled by edge effects within the stripe pattern: stripe domains meet the hole boundary at either perpendicular or parallel orientation. On a longer length scale, in-plane magnetostatic effects dominate the system: clear superdomains are observed in the patterned film with average in-plane magnetization along the easy directions of the antidot array, correlated over several antidot array cells.

  7. Magnetic stripes and holes: Complex domain patterns in perforated films with weak perpendicular anisotropy

    Science.gov (United States)

    Valdés-Bango, F.; Vélez, M.; Alvarez-Prado, L. M.; Alameda, J. M.; Martín, J. I.

    2017-05-01

    Hexagonal antidot arrays have been patterned on weak perpendicular magnetic anisotropy NdCo films by e-beam lithography and lift off. Domain structure has been characterized by Magnetic Force Microscopy at remanence. On a local length scale, of the order of stripe pattern period, domain configuration is controlled by edge effects within the stripe pattern: stripe domains meet the hole boundary at either perpendicular or parallel orientation. On a longer length scale, in-plane magnetostatic effects dominate the system: clear superdomains are observed in the patterned film with average in-plane magnetization along the easy directions of the antidot array, correlated over several antidot array cells.

  8. Polyaniline/TiO2/kaolinite: The composite material with high electrical anisotropy

    International Nuclear Information System (INIS)

    Tokarský, Jonáš; Neuwirthová, Lucie; Peikertová, Pavlína; Kulhánková, Lenka; Mamulová Kutláková, Kateřina; Matějka, Vlastimil; Čapková, Pavla

    2014-01-01

    Kaolinite–TiO 2 nanocomposite matrix (KATI) coated with polyaniline (PANI) layer has been prepared in powder form and pressed into tablets. The conductivity was studied in dependence on (1) wt.% of TiO 2 in KATI matrix and (2) thermal pre-treatment of KATI matrix. The anisotropy factor α, i.e. the ratio of in-plane conductivity and conductivity in the direction perpendicular to the tablet plane, was found to be very high for PANI/KATI tablet (α is of the order of 10 3 –10 4 ) in comparison with pure PANI tablet (α is of the order of 10 2 ). Structure has been studied using Raman spectroscopy, X-ray diffraction analysis, scanning electron microscopy and molecular modeling. The possibility of using the tablets as a load sensors have been tested and tablets pressed from composites containing calcined KATI seem to be promising material for this purpose. - Graphical abstract: Tablets pressed from powder form of polyaniline/TiO 2 /kaolinite composites exhibit very high electrical anisotropy and were found to be suitable as load sensors. - Highlights: • Kaolinite/TiO 2 /polyaniline composites exhibit very high electrical anisotropy. • Presence of TiO 2 helps polyaniline to fully cover the kaolinite particles. • Tablets pressed from these composites can be used as load sensors. • Calcination of kaolinite/TiO 2 matrix improves the sensing properties

  9. Plastic anisotropy of straight and cross rolled molybdenum sheets

    International Nuclear Information System (INIS)

    Oertel, C.-G.; Huensche, I.; Skrotzki, W.; Knabl, W.; Lorich, A.; Resch, J.

    2008-01-01

    The microstructure, texture and mechanical properties of molybdenum sheets produced by different rolling processes were investigated by orientation imaging in the scanning electron microscope, X-ray diffraction and tensile tests, respectively. For comparable recrystallization degree of the sheets investigated, straight rolling with low reduction ratio produces α-fiber textures with a maximum at {100} . At higher rolling degrees the maximum shifts to {112} . Cross rolling increases the rotated cube component {100} . The strong differences in the texture measured are reflected in the plastic anisotropy characterized by differences in the yield stress and Lankford parameter which were measured along directions in the rolling plane at angles of 0 deg., 45 deg. and 90 deg. with the rolling direction. The Taylor-Bishop-Hill theory is used successfully to qualitatively explain the plastic anisotropy

  10. Controlling the anisotropy and domain structure with oblique deposition and substrate rotation

    Directory of Open Access Journals (Sweden)

    N. Chowdhury

    2014-02-01

    Full Text Available Effect of substrate rotation on anisotropy and domain structure for a thin ferromagnetic film has been investigated in this work. For this purpose Co films with 10 nm thickness have been prepared by sputtering with oblique angle of incidence for various substrate rotations. This method of preparation induces a uniaxial anisotropy due to shadow deposition effect. The magnetization reversal is studied by magneto-optic Kerr effect (MOKE based microscope in the longitudinal geometry. The Co films prepared by rotating the substrate with 10 and 20 rpm weakens the anisotropy but does not completely give isotropic films. But this leads to high dispersion in local grain anisotropy resulting in ripple and labyrinth domains. It is observed that the substrate rotation has moderate effect on uniaxial anisotropy but has significant effect on the magnetization reversal process and the domain structure.

  11. Influence of crystallographic texture in X70 pipeline steels on toughness anisotropy and delamination

    Science.gov (United States)

    Al-Jabr, Haytham M.

    The effects of microstructure and crystallographic texture in four commercially-produced API X70 pipeline steels and their relation to planar anisotropy of toughness and delamination were evaluated. The experimental steels were processed through either a hot strip mill, a Steckel mill, or a compact strip mill. Different processing routes were selected to obtain plates with potential variations in the microstructure and anisotropic characteristics. Tensile and Charpy impact testing were used to evaluate the mechanical properties in three orientations: longitudinal (L), transverse (T) and diagonal (D) with respect to the rolling direction to evaluate mechanical property anisotropy. The yield and tensile strengths were higher in the T orientation and toughness was lower in the D orientation for all plates. Delamination was observed in some of the ductile fracture surfaces of the impact samples. To further study the splitting behavior and effects on impact toughness, a modified impact test (MCVN) specimen with side grooves was designed to intensify induced stresses parallel to the notch root and thus facilitate evaluation of delamination. Scanning electron microscopy combined with electron backscattered diffraction (EBSD) were used to evaluate the grain size, microstructural constituents, and crystallographic texture to determine the factors leading to delamination and the anisotropy in toughness. The ferrite grain size is mainly responsible for the differences in DBTTs between the L and T orientations. The higher DBTT in the D orientation observed in pipeline steels is attributed to crystallographic texture. The higher DBTT in the D direction is due to the higher volume fraction of grains having their {100} planes parallel or close to the primary fracture plane for the D orientation. An equation based on a new "brittleness parameter," based on an assessment of grain orientations based on EBSD data, was developed to predict the changes in DBTTs with respect to sample

  12. Ray-optics analysis of inhomogeneous optically anisotropic media

    NARCIS (Netherlands)

    Sluijter, M.

    2010-01-01

    When the optical behavior of light in a medium depends on the direction in which light is traveling, the medium is called optically anisotropic. Light is an electromagnetic wave and in this thesis, we discuss the electromagnetic theory on optical anisotropy. We do this with the assumption that the

  13. Control Demonstration of a Thin Deformable In-Plane Actuated Mirror

    National Research Council Canada - National Science Library

    Peterson, Gina A

    2006-01-01

    .... The primary goal of this research is to demonstrate that an in-plane actuated membrane-like deformable optical mirror can be controlled to optical wavelength tolerances in a closed-loop system...

  14. Shape anisotropy enhanced optomagnetic measurement for prostate-specific antigen detection via magnetic chain formation

    DEFF Research Database (Denmark)

    Tian, Bo; Wetterskog, Erik; Qiu, Zhen

    2017-01-01

    anisotropy), and directly increasing the optomagnetic signal (via optical shape anisotropy). We achieve a limit of detection (LOD) of 5.5 pM (0.82 ng/mL) for the detection of a model multivalent molecule, biotinylated anti-streptavidin, in PBS. For the measurements of prostate-specific antigen (PSA) in 50...

  15. Scanned Image Projection System Employing Intermediate Image Plane

    Science.gov (United States)

    DeJong, Christian Dean (Inventor); Hudman, Joshua M. (Inventor)

    2014-01-01

    In imaging system, a spatial light modulator is configured to produce images by scanning a plurality light beams. A first optical element is configured to cause the plurality of light beams to converge along an optical path defined between the first optical element and the spatial light modulator. A second optical element is disposed between the spatial light modulator and a waveguide. The first optical element and the spatial light modulator are arranged such that an image plane is created between the spatial light modulator and the second optical element. The second optical element is configured to collect the diverging light from the image plane and collimate it. The second optical element then delivers the collimated light to a pupil at an input of the waveguide.

  16. Magnetization switching behavior with competing anisotropies in epitaxial Co3FeN /MnN exchange-coupled bilayers

    Science.gov (United States)

    Hajiri, T.; Yoshida, T.; Jaiswal, S.; Filianina, M.; Borie, B.; Ando, H.; Asano, H.; Zabel, H.; Kläui, M.

    2016-11-01

    We report unusual magnetization switching processes and angular-dependent exchange bias effects in fully epitaxial Co3FeN /MnN bilayers, where magnetocrystalline anisotropy and exchange coupling compete, probed by longitudinal and transverse magneto-optic Kerr effect (MOKE) magnetometry. The MOKE loops show multistep jumps corresponding to the nucleation and propagation of 90∘ domain walls in as-grown bilayers. By inducing exchange coupling, we confirm changes of the magnetization switching process due to the unidirectional anisotropy field of the exchange coupling. Taking into account the experimentally obtained values of the fourfold magnetocrystalline anisotropy, the unidirectional anisotropy field, the exchange-coupling constant, and the uniaxial anisotropy including its direction, the calculated angular-dependent exchange bias reproduces the experimental results. These results demonstrate the essential role of the competition between magnetocrystalline anisotropy and exchange coupling for understanding and tailoring exchange-coupling phenomena usable for engineering switching in fully epitaxial bilayers made of tailored materials.

  17. Study of the out-of-plane emission of protons and light fragments in symmetric heavy-ion collisions

    International Nuclear Information System (INIS)

    Brill, D.; Beckerle, P.; Bormann, C.; Schwab, E.; Shin, Y.; Stock, R.; Stroebele, H.; Baltes, P.; Muentz, C.; Oeschler, H.; Sturm, C.; Wagner, A.; Barth, R.; Cieslak, M.; Debowski, M.; Grosse, E.; Koczon, P.; Mang, M.; Miskowiec, D.; Schicker, R.; Senger, P.; Kohlmeyer, B.; Puehlhofer, F.; Speer, J.; Voelkel, K.; Walus, W.

    1996-01-01

    Midrapidity protons from 209 Bi+ 209 Bi collisions were measured with the Kaon Spectrometer at SIS at incident energies of E Lab /A=400, 700 and 1000 MeV. Additionally, light fragments were analysed at 400 MeV. We have investigated the azimuthal emission pattern of the particles relative to the reaction plane as function of transverse momentum, bombarding energy and impact parameter. We observe an enhanced emission of particles perpendicular to the reaction plane at all bombarding energies. The ratio of the number of particles emitted out-of-plane/in-plane increases strongly with the particles transverse momentum. The anisotropy decreases with increasing beam energy. Composite particles show a much stronger effect than protons. (orig.)

  18. Multifunctional polarization tomography of optical anisotropy of biological layers in diagnosis of endometriosis

    Science.gov (United States)

    Ushenko, O. G.; Koval, L. D.; Dubolazov, O. V.; Ushenko, Yu. O.; Savich, V. O.; Sidor, M. I.; Marchuk, Yu. F.

    2015-09-01

    The theoretical background of azimuthally stable method Jones matrix mapping of histological sections of biopsy of uterine neck on the basis of spatial-frequency selection of the mechanisms of linear and circular birefringence is presented. The comparative results of measuring the coordinate distributions of complex degree of mutual anisotropy formed by polycristalline networks of blood plasma layers of donors (group 1) and patients with endometriosis (group 2). The values and ranges of change of the statistical (moments of the 1st - 4th order) parameters of complex degree of mutual anisotropy coordinate distributions are studied. The objective criteria of diagnostics of the pathology and differentiation of its severity degree are determined.

  19. Anisotropy, magnetostriction and local chemical order in amorphous TbxFe1-x (0.1

    International Nuclear Information System (INIS)

    Hernando, A.; Prados, C.; Prieto, C.

    1996-01-01

    Local chemical order in amorphous TbFe thin films has been investigated in a variety of compositions, using EXAFS, magnetostriction and anisotropy measurements. Data reported here are consistent with a density of Fe-Tb pairs in the film plane larger than in the perpendicular direction. (orig.)

  20. Ab-initio calculations of structural, electronic, and optical properties of Zn3(VO4)2

    Science.gov (United States)

    Ahmed, Nisar; Mukhtar, S.; Gao, Wei; Zafar Ilyas, Syed

    2018-03-01

    The structural, electronic, and optical properties of Zn3(VO4)2 are investigated using full potential linearized augmented plane wave (FP-LAPW) method within the framework of density functional theory (DFT). Various approaches are adopted to treat the exchange and correlation potential energy such as generalized gradient approximation (GGA), GGA+U, and the Tran–Blaha modified Becke–Johnson (TB-mBJ) potential. The calculated band gap of 3.424 eV by TB-mBJ is found to be close to the experimental result (3.3 eV). The optical anisotropy is analyzed through optical constants, such as dielectric function and absorption coefficient along parallel and perpendicular crystal orientations. The absorption coefficient reveals high absorption (1.5× {10}6 {cm}}-1) of photons in the ultraviolet region.

  1. Observation of high magnetocrystalline anisotropy on Co doping in rare earth free Fe2P magnetic material

    Science.gov (United States)

    Thakur, Jyoti; Singh, Om Pal; Tomar, Monika; Gupta, Vinay; Kashyap, Manish K.

    2018-04-01

    ab-initio investigation of magnetocrystalline anisotropy energy (MAE) for Fe2P and CoFeP using density functional theory based full-potential linear augmented plane wave (FPLAPW) is reported. CoFeP alloy exhibits large magnetic moment 13.28 µB and enhanced anisotropy energy reaching as high as 1326 µeV/f.u. This energy is nearly doubled as compared to its parent Fe2P alloy, making this system a promising candidate for a rare earth free permanent magnet. Substituitng Co at Fe-3f site in Fe2P helps in stabilizing the new structure and further improves the magnetic properties.

  2. Out-of-plane coercive field of Ni{sub 80}Fe{sub 20} antidot arrays

    Energy Technology Data Exchange (ETDEWEB)

    Chunhong, Gao [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China); Ke, Chen [Chongqing Electric Power College, Chongqing (China); Ling, Lue; Jianwei, Zhao [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China); Chen Peng, E-mail: pchen@swu.edu.c [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China)

    2010-11-15

    The out-of-plane magnetic anisotropy and out-of-plane magnetization reversal process of nanoscale Ni{sub 80}Fe{sub 20} antidot arrays deposited by magnetron sputtering technique on an anodic aluminum oxide (AAO) membrane are investigated. The angular dependence of out-of-plane remanent magnetization of Ni{sub 80}Fe{sub 20} antidot arrays shows that the maximum remanence is in-plane and the squareness of the out-of-plane hysteresis loop follow a |cos {theta}| dependence. The angular dependence of out-of-plane coercivity of Ni{sub 80}Fe{sub 20} antidot arrays shows that the maximum coercivity lies on the surface of a cone with its symmetric axis normal to the sample plane, which indicates a transition of magnetic reversal from curling to coherent rotation when changing the angle between the applied magnetic field and the sample plane.

  3. Uniaxial in-plane magnetization of iron nanolayers grown within an amorphous matrix

    Energy Technology Data Exchange (ETDEWEB)

    Ghafari, M., E-mail: mohammad.ghafari@kit.edu; Hahn, H. [Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094 (China); Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Mattheis, R. [Leibniz Institute for Photonic Technology IPHT, Jena (Germany); McCord, J. [Institute for Materials Science, Kiel University Kiel, Kaiserstraße 2, 24143 Kiel (Germany); Brand, R. A. [Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Macedo, W. A. A. [Laboratório de Física Aplicada, Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), 31270-901 Belo Horizonte, MG (Brazil)

    2014-08-18

    Conversion electron Mössbauer spectroscopy is used to determine the magnetic ground state at zero magnetic field of four-monolayer thick amorphous iron layers as part of a CoFeB-Fe multilayer stack. By comparing the intensities of the magnetic hyperfine field, an easy in-plane axis of the amorphous embedded Fe layer is verified, which is collinear to the uniaxial anisotropy axis of the neighboring amorphous CoFeB. Despite the soft magnetic character of the Fe layers, external fields up to 4 T perpendicular to the film plane are insufficient to completely align the embedded Fe moments parallel to the magnetic field due to a local disorder of the magnetic moments of the Fe atoms.

  4. Anisotropies in the cosmic neutrino background after Wilkinson Microwave Anisotropy Probe five-year data

    International Nuclear Information System (INIS)

    De Bernardis, Francesco; Pagano, Luca; Melchiorri, Alessandro; Serra, Paolo; Cooray, Asantha

    2008-01-01

    We search for the presence of cosmological neutrino background (CNB) anisotropies in recent Wilkinson Microwave Anisotropy Probe (WMAP) five-year data using their signature imprinted on modifications to the cosmic microwave background (CMB) anisotropy power spectrum. By parameterizing the neutrino background anisotropies with the speed viscosity parameter c vis , we find that the WMAP five-year data alone provide only a weak indication for CNB anisotropies with c vis 2 >0.06 at the 95% confidence level. When we combine CMB anisotropy data with measurements of galaxy clustering, the SN-Ia Hubble diagram, and other cosmological information, the detection increases to c vis 2 >0.16 at the same 95% confidence level. Future data from Planck, combined with a weak lensing survey such as the one expected with DUNE from space, will be able to measure the CNB anisotropy parameter at about 10% accuracy. We discuss the degeneracy between neutrino background anisotropies and other cosmological parameters such as the number of effective neutrinos species and the dark energy equation of state

  5. Enhancement of the optical response in a biodegradable polymer/azo-dye film by the addition of carbon nanotubes

    International Nuclear Information System (INIS)

    Costanzo, Guadalupe Díaz; Ledesma, Silvia; Ribba, Laura; Goyanes, Silvia

    2014-01-01

    A new biodegradable photoresponsive material was developed using poly(lactic acid) (PLA) as the matrix material and Disperse Orange 3 (DO3) as photoisomerizable azo-dye. It was observed that the addition of multi-walled carbon nanotubes (MWCNTs) leads to a new phenomenon consisting of an enhancement of the optical anisotropy in a wide range of temperatures. In particular, the optical anisotropy increases 100% at room temperature. Moreover, the material containing MWCNTs shows a faster optical response that is evidenced as an increase in the growth rate of optical anisotropy. Spectroscopic data is provided to study the interaction among DO3, MWCNTs and PLA. The enhancement of optical anisotropy obtained with the addition of MWCNTs was related to the glass transition temperature (T g ) of each material. Maximum optical anisotropy was obtained 15 °C below the T g for both materials. Results are interpreted in terms of the interactions among DO3, MWCNTs and PLA and the packing density of the dye into the polymer chains. (paper)

  6. Fourier plane imaging microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez, Daniel, E-mail: daniel.dominguez@ttu.edu; Peralta, Luis Grave de [Department of Physics, Texas Tech University, Lubbock, Texas 79409 (United States); Nano Tech Center, Texas Tech University, Lubbock, Texas 79409 (United States); Alharbi, Nouf; Alhusain, Mdhaoui [Department of Physics, Texas Tech University, Lubbock, Texas 79409 (United States); Bernussi, Ayrton A. [Nano Tech Center, Texas Tech University, Lubbock, Texas 79409 (United States); Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409 (United States)

    2014-09-14

    We show how the image of an unresolved photonic crystal can be reconstructed using a single Fourier plane (FP) image obtained with a second camera that was added to a traditional compound microscope. We discuss how Fourier plane imaging microscopy is an application of a remarkable property of the obtained FP images: they contain more information about the photonic crystals than the images recorded by the camera commonly placed at the real plane of the microscope. We argue that the experimental results support the hypothesis that surface waves, contributing to enhanced resolution abilities, were optically excited in the studied photonic crystals.

  7. NMR studies of interfaces, strain and anisotropy in Co/Cu multilayers

    International Nuclear Information System (INIS)

    Thomson, T.; Riedi, P.C.

    1999-01-01

    59 Co NMR studies of multilayers are able to give three direct pieces of information: (i) the crystal phase of Co, fcc (217.4 MHz), hcp (220-228 MHz) and in exotic cases bcc (198 MHz) for films measured at T= 4.2 K, (ii) the nature of the interfaces from low frequency satellite lines, and (iii) the strain state deduced from small changes in the line positions. Extensive studies of Co/Cu multilayer interfacial structures as a function of deposition technique, layer thickness, substrate/buffer layer structure and annealing temperature have been undertaken. This work has shed new light on the relationship between interfacial structure and magnetoresistance and in particular has demonstrated that flat, atomic scale, interfaces lead to greater magnetoresistance. The difference between the Co and Cu lattice constant results in an extensive, tensile in-plane strain developing in Co layers provided that some epitaxial registry is present. Information on strain effects can be obtained from the position and width of the NMR lines. The magnetic anisotropy field can be determined by measuring the field dependence of the enhancement effect due to electronic magnetisation. This provides unique insight into the distribution of magnetic anisotropy within the Co layers, as the enhancement can be investigated independently for each NMR line and, hence, provides environment specific information on magnetic anisotropy at the interfaces and in the interior of the layers

  8. Magnetic anisotropy of graphene quantum dots decorated with a ruthenium adatom

    Directory of Open Access Journals (Sweden)

    Igor Beljakov

    2013-07-01

    Full Text Available The creation of magnetic storage devices by decoration of a graphene sheet by magnetic transition-metal adatoms, utilizing the high in-plane versus out-of-plane magnetic anisotropy energy (MAE, has recently been proposed. This concept is extended in our density-functional-based modeling study by incorporating the influence of the graphene edge on the MAE. We consider triangular graphene flakes with both armchair and zigzag edges in which a single ruthenium adatom is placed at symmetrically inequivalent positions. Depending on the edge-type, the graphene edge was found to influence the MAE in opposite ways: for the armchair flake the MAE increases close to the edge, while the opposite is true for the zigzag edge. Additionally, in-plane pinning of the magnetization direction perpendicular to the edge itself is observed for the first time.

  9. Focal Plane Alignment Utilizing Optical CMM

    Science.gov (United States)

    Liebe, Carl Christian; Meras, Patrick L.; Clark, Gerald J.; Sedaka, Jack J.; Kaluzny, Joel V.; Hirsch, Brian; Decker, Todd A.; Scholtz, Christopher R.

    2012-01-01

    In many applications, an optical detector has to be located relative to mechanical reference points. One solution is to specify stringent requirements on (1) mounting the optical detector relative to the chip carrier, (2) soldering the chip carrier onto the printed circuit board (PCB), and (3) installing the PCB to the mechanical structure of the subsystem. Figure 1 shows a sketch of an optical detector mounted relative to mechanical reference with high positional accuracy. The optical detector is typically a fragile wafer that cannot be physically touched by any measurement tool. An optical coordinate measuring machine (CMM) can be used to position optical detectors relative to mechanical reference points. This approach will eliminate all requirements on positional tolerances. The only requirement is that the PCB is manufactured with oversized holes. An exaggerated sketch of this situation is shown in Figure 2. The sketch shows very loose tolerances on mounting the optical detector in the chip carrier, loose tolerance on soldering the chip carrier to the PCB, and finally large tolerance on where the mounting screws are located. The PCB is held with large screws and oversized holes. The PCB is mounted loosely so it can move freely around. The optical CMM measures the mechanical reference points. Based on these measurements, the required positions of the optical detector corners can be calculated. The optical CMM is commanded to go to the position where one detector corner is supposed to be. This is indicated with the cross-hairs in Figure 2(a). This figure is representative of the image of the optical CMM monitor. Using a suitable tapping tool, the PCB is manually tapped around until the corner of the optical detector is at the crosshairs of the optical CMM. The CMM is commanded to another corner, and the process is repeated a number of times until all corners of the optical detector are within a distance of 10 to 30 microns of the required position. The situation

  10. New optical sensing technique of tissue viability and blood flow based on nanophotonic iterative multi-plane reflectance measurements

    Directory of Open Access Journals (Sweden)

    Yariv I

    2016-10-01

    Full Text Available Inbar Yariv,1 Menashe Haddad,2,3 Hamootal Duadi,1 Menachem Motiei,1 Dror Fixler1 1Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel; 2Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel; 3Mayanei Hayeshua Medical Center, Benei Brak, Israel Abstract: Physiological substances pose a challenge for researchers since their optical properties change constantly according to their physiological state. Examination of those substances noninvasively can be achieved by different optical methods with high sensitivity. Our research suggests the application of a novel noninvasive nanophotonics technique, ie, iterative multi-plane optical property extraction (IMOPE based on reflectance measurements, for tissue viability examination and gold nanorods (GNRs and blood flow detection. The IMOPE model combines an experimental setup designed for recording light intensity images with the multi-plane iterative Gerchberg-Saxton algorithm for reconstructing the reemitted light phase and calculating its standard deviation (STD. Changes in tissue composition affect its optical properties which results in changes in the light phase that can be measured by its STD. We have demonstrated this new concept of correlating the light phase STD and the optical properties of a substance, using transmission measurements only. This paper presents, for the first time, reflectance based IMOPE tissue viability examination, producing a decrease in the computed STD for older tissues, as well as investigating their organic material absorption capability. Finally, differentiation of the femoral vein from adjacent tissues using GNRs and the detection of their presence within blood circulation and tissues are also presented with high sensitivity (better than computed tomography to low quantities of GNRs (<3 mg. Keywords: Gerchberg-Saxton, optical properties, gold nanorods, blood vessel, tissue viability

  11. Parton self-energies for general momentum-space anisotropy

    Science.gov (United States)

    Kasmaei, Babak S.; Strickland, Michael

    2018-03-01

    We introduce an efficient general method for calculating the self-energies, collective modes, and dispersion relations of quarks and gluons in a momentum-anisotropic high-temperature quark-gluon plasma. The method introduced is applicable to the most general classes of deformed anisotropic momentum distributions and the resulting self-energies are expressed in terms of a series of hypergeometric basis functions which are valid in the entire complex phase-velocity plane. Comparing to direct numerical integration of the self-energies, the proposed method is orders of magnitude faster and provides results with similar or better accuracy. To extend previous studies and demonstrate the application of the proposed method, we present numerical results for the parton self-energies and dispersion relations of partonic collective excitations for the case of an ellipsoidal momentum-space anisotropy. Finally, we also present, for the first time, the gluon unstable mode growth rate for the case of an ellipsoidal momentum-space anisotropy.

  12. Experimental studies on the crystallographic and plastic anisotropies of zircaloy-4 tubes

    International Nuclear Information System (INIS)

    Costa Viana, C.S. da

    1982-01-01

    The crystallographic and plastic anisotropies of a zircaloy-4 tubing using direct pole figures and experimental yield loci are analyzed. Tensile and plane-strain compression tests were used to assess the mecahnical behaviour. The results are discussed with respect to the dimensional stability and mechanical behaviour expected for the tube in its use in the core of pressurized water cooled reactors. (Author) [pt

  13. Application of oblique plane microscopy to high speed live cell imaging

    Science.gov (United States)

    Kumar, Sunil; Wilding, Dean; Sikkel, Markus B.; Lyon, Alexander R.; MacLeod, Ken T.; Dunsby, Chris

    2011-07-01

    Oblique Plane Microscopy (OPM) is a light sheet microscopy technique that combines oblique illumination with correction optics that tilt the focal plane of the collection system. OPM can be used to image conventionally mounted specimens on coverslips or tissue culture dishes and has low out-of-plane photobleaching and phototoxicity. No moving parts are required to achieve an optically sectioned image and so high speed optically sectioned imaging is possible. We present high speed 2D and 3D optically sectioned OPM imaging of live cells using a high NA water immersion lens.

  14. Epidemic Propagation of Control Plane Failures in GMPLS Controlled Optical Transport Networks

    DEFF Research Database (Denmark)

    Ruepp, Sarah Renée; Fagertun, Anna Manolova

    2013-01-01

    In this paper, we investigate the behaviour of a dataplane-decoupled GMPLS control plane, when it is affected by failures that spread in the network in an epidemic manner. In particular, we consider network nodes to be either fully functional, or having a failed control plane, or having both...... a failed control and data plane. Through large-scale network simulation, we evaluate the effect of epidemically spreading control plane failures in terms of blocked connections requests and the amount of stranded capacity due to a dysfunctional control plane. Furthermore, we investigate the effect...... of the epidemic and the epidemic spreading intensity. In particular, networks with long epidemic durations do not necessarily result in worst performance in terms of blocked requests and capacity. Also epidemic scenarios, resulting in worst impact on the network availability does not necessarily result in worst...

  15. Optical Rabi Oscillations in a Quantum Dot Ensemble

    Science.gov (United States)

    Kujiraoka, Mamiko; Ishi-Hayase, Junko; Akahane, Kouichi; Yamamoto, Naokatsu; Ema, Kazuhiro; Sasaki, Masahide

    2010-09-01

    We have investigated Rabi oscillations of exciton polarization in a self-assembled InAs quantum dot ensemble. The four-wave mixing signals measured as a function of the average of the pulse area showed the large in-plane anisotropy and nonharmonic oscillations. The experimental results can be well reproduced by a two-level model calculation including three types of inhomogeneities without any fitting parameter. The large anisotropy can be well explained by the anisotropic dipole moments. We also find that the nonharmonic behaviors partly originate from the polarization interference.

  16. Improvement of the surface morphology of a-plane InN using low-temperature InN buffer layers

    International Nuclear Information System (INIS)

    Shikata, G.; Hirano, S.; Inoue, T.; Hijikata, Y.; Orihara, M.; Yaguchi, H.; Yoshida, S.

    2008-01-01

    We report on the improvement of the surface morphology of a-plane InN films grown by RF molecular beam epitaxy. By using low-temperature (LT) InN buffer layers, we could successfully obtain InN films with a smooth surface. The full width at half maximum values of the X-ray diffraction (11-20) rocking curve along the [0001]InN direction were 2870 arcsec and 3410 arcsec for a-plane InN samples grown at 500 C with and without LT-InN buffer layers, respectively. Thus, we could improve also the crystalline quality of a-plane InN films by using LT-InN buffer layers. We observed strong polarization anisotropy in the photoluminescence spectra of a-plane InN, which is typical of nonpolar wurtzite III-nitride films. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Theoretical analysis of low-energy proton and helium anisotropies in the outer heliosphere

    International Nuclear Information System (INIS)

    Forman, M.A.; McDonald, F.B.

    1982-01-01

    Analysis of the anisotropies of low-energy protons and helium near the ecliptic plane at 12 AU in 1977 reported by McDonald and Forman, in terms of the standard convection-diffusion and drift expressions, and using the observed gradients and spectral indices, shows that their mean free paths are approximately 10 AU parallel to the mean magnetic field, that k perpendicular may be substantially larger than k transverse 2 /k parallel and that these particles may be flowing radially

  18. The distribution of intervariant crystallographic planes in a lath martensite using five macroscopic parameters

    International Nuclear Information System (INIS)

    Beladi, Hossein; Rohrer, Gregory S.; Rollett, Anthony D.; Tari, Vahid; Hodgson, Peter D.

    2014-01-01

    Electron backscatter diffraction analysis was employed to compute the closest orientation relationship and the distribution of intervariant boundary character in a lath martensitic microstructure. The misorientations were close to the Kurdjumov–Sachs orientation relationship. The intervariant crystallographic plane distribution exhibited a relatively high anisotropy with a tendency for the lath interfaces to terminate on (1 1 0) planes. This results from the crystallographic constraints associated with the shear transformation rather than a low energy interface configuration. The lath martensite habit plane was determined to be mostly (1 1 0) or near (1 1 0). The relative populations of boundaries with [1 1 1] and [1 1 0] misorientations were greater than other high index misorientations, mostly characterized as (1 1 0) symmetric tilt and (1 1 0) twist boundary types, respectively. Analysis with homology metrics of the connectivity in the lath martensitic microstructure revealed the connectivity dominated by population of misorientation angle and boundary plane type

  19. CeCo5 thin films with perpendicular anisotropy grown by molecular beam epitaxy

    Science.gov (United States)

    Sharma, S.; Hildebrandt, E.; Major, M.; Komissinskiy, P.; Radulov, I.; Alff, L.

    2018-04-01

    Buffer-free, highly textured (0 0 1) oriented CeCo5 thin films showing perpendicular magnetic anisotropy were synthesized on (0 0 1) Al2O3 substrates by molecular beam epitaxy. Ce exists in a mixture of Ce3+ and Ce4+ valence states as shown by X-ray photoelectron spectroscopy. The first anisotropy constant, K1, as measured by torque magnetometry was 0.82 MJ/m3 (8.2 ×106erg /cm3) . A maximum coercivity of 5.16 kOe with a negative temperature coefficient of -0.304%K-1 and a magnetization of 527.30 emu/cm3 was measured perpendicular to the film plane at 5 K. In addition, a large anisotropy of the magnetic moment of 15.5% was observed. These magnetic parameters make CeCo5 a potential candidate material for spintronic and magnetic recording applications.

  20. Texture and Elastic Anisotropy of Mantle Olivine

    Science.gov (United States)

    Nikitin, A. N.; Ivankina, T. I.; Bourilitchev, D. E.; Klima, K.; Locajicek, T.; Pros, Z.

    Eight olivine rock samples from different European regions were collected for neu- tron texture analyses and for P-wave velocity measurements by means of ultrasonic sounding at various confining pressures. The orientation distribution functions (ODFs) of olivine were determined and pole figures of the main crystallographic planes were calculated. The spatial P-wave velocity distributions were determined at confining pressures from 0.1 to 400 MPa and modelled from the olivine textures. In dependence upon the type of rock (xenolith or dunite) different behavior of both the P-wave veloc- ity distributions and the anisotropy coefficients with various confining pressures was observed. In order to explain the interdependence of elastic anisotropy and hydrostatic pressure, a model for polycrystalline olivine rocks was suggested, which considers the influence of the crystallographic and the mechanical textures on the elastic behaviour of the polycrystal. Since the olivine texture depends upon the active slip systems and the deformation temperature, neutron texture analyses enable us to estimate depth and thermodynamical conditions during texture formation.

  1. Localized modes in optics of photonic liquid crystals with local anisotropy of absorption

    Energy Technology Data Exchange (ETDEWEB)

    Belyakov, V. A., E-mail: bel1937@mail.ru, E-mail: bel@landau.ac.ru [Russian Academy of Science, Landau Institute for Theoretical Physics (Russian Federation); Semenov, S. V. [National Research Center “Kurchatov Institute,” (Russian Federation)

    2016-05-15

    The localized optical modes in spiral photonic liquid crystals are theoretically studied for the certainty at the example of chiral liquid crystals (CLCs) for the case of CLC with an anisotropic local absorption. The model adopted here (absence of dielectric interfaces in the structures under investigation) makes it possible to get rid of mixing of polarizations on the surfaces of the CLC layer and of the defect structure and to reduce the corresponding equations to only the equations for light with polarization diffracting in the CLC. The dispersion equations determining connection of the edge mode (EM) and defect mode (DM) frequencies with the CLC layer parameters (anisotropy of local absorption, CLC order parameter) and other parameters of the DMS are obtained. Analytic expressions for the transmission and reflection coefficients of CLC layer and DMS for the case of CLC with an anisotropic local absorption are presented and analyzed. It is shown that the CLC layers with locally anisotropic absorption reduce the EM and DM lifetimes (and increase the lasing threshold) in the way different from the case of CLC with an isotropic local absorption. Due to the Borrmann effect revealing of which is different at the opposite stop-band edges in the case of CLC layers with an anisotropic local absorption the EM life-times for the EM frequencies at the opposite stop-bands edges may be significantly different. The options of experimental observations of the theoretically revealed phenomena are briefly discussed.

  2. Polyaniline/TiO{sub 2}/kaolinite: The composite material with high electrical anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Tokarský, Jonáš, E-mail: jonas.tokarsky@vsb.cz [Nanotechnology Centre, VŠB – Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava (Czech Republic); Neuwirthová, Lucie; Peikertová, Pavlína [Nanotechnology Centre, VŠB – Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava (Czech Republic); Kulhánková, Lenka [Faculty of Metallurgy and Materials Engineering, VŠB – Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava (Czech Republic); Mamulová Kutláková, Kateřina; Matějka, Vlastimil [Nanotechnology Centre, VŠB – Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava (Czech Republic); Čapková, Pavla [Faculty of Science, J.E. Purkyně University, České mládeže 8, 400 96 Ústí nad Labem (Czech Republic)

    2014-07-01

    Kaolinite–TiO{sub 2} nanocomposite matrix (KATI) coated with polyaniline (PANI) layer has been prepared in powder form and pressed into tablets. The conductivity was studied in dependence on (1) wt.% of TiO{sub 2} in KATI matrix and (2) thermal pre-treatment of KATI matrix. The anisotropy factor α, i.e. the ratio of in-plane conductivity and conductivity in the direction perpendicular to the tablet plane, was found to be very high for PANI/KATI tablet (α is of the order of 10{sup 3}–10{sup 4}) in comparison with pure PANI tablet (α is of the order of 10{sup 2}). Structure has been studied using Raman spectroscopy, X-ray diffraction analysis, scanning electron microscopy and molecular modeling. The possibility of using the tablets as a load sensors have been tested and tablets pressed from composites containing calcined KATI seem to be promising material for this purpose. - Graphical abstract: Tablets pressed from powder form of polyaniline/TiO{sub 2}/kaolinite composites exhibit very high electrical anisotropy and were found to be suitable as load sensors. - Highlights: • Kaolinite/TiO{sub 2}/polyaniline composites exhibit very high electrical anisotropy. • Presence of TiO{sub 2} helps polyaniline to fully cover the kaolinite particles. • Tablets pressed from these composites can be used as load sensors. • Calcination of kaolinite/TiO{sub 2} matrix improves the sensing properties.

  3. Anisotropy in the deep Earth

    Science.gov (United States)

    Romanowicz, Barbara; Wenk, Hans-Rudolf

    2017-08-01

    Seismic anisotropy has been found in many regions of the Earth's interior. Its presence in the Earth's crust has been known since the 19th century, and is due in part to the alignment of anisotropic crystals in rocks, and in part to patterns in the distribution of fractures and pores. In the upper mantle, seismic anisotropy was discovered 50 years ago, and can be attributed for the most part, to the alignment of intrinsically anisotropic olivine crystals during large scale deformation associated with convection. There is some indication for anisotropy in the transition zone, particularly in the vicinity of subducted slabs. Here we focus on the deep Earth - the lower mantle and core, where anisotropy is not yet mapped in detail, nor is there consensus on its origin. Most of the lower mantle appears largely isotropic, except in the last 200-300 km, in the D″ region, where evidence for seismic anisotropy has been accumulating since the late 1980s, mostly from shear wave splitting measurements. Recently, a picture has been emerging, where strong anisotropy is associated with high shear velocities at the edges of the large low shear velocity provinces (LLSVPs) in the central Pacific and under Africa. These observations are consistent with being due to the presence of highly anisotropic MgSiO3 post-perovskite crystals, aligned during the deformation of slabs impinging on the core-mantle boundary, and upwelling flow within the LLSVPs. We also discuss mineral physics aspects such as ultrahigh pressure deformation experiments, first principles calculations to obtain information about elastic properties, and derivation of dislocation activity based on bonding characteristics. Polycrystal plasticity simulations can predict anisotropy but models are still highly idealized and neglect the complex microstructure of polyphase aggregates with strong and weak components. A promising direction for future progress in understanding the origin of seismic anisotropy in the deep mantle

  4. Demonstrating optical aberrations in the laboratory

    CSIR Research Space (South Africa)

    Naidoo, Darryl

    2009-07-01

    Full Text Available THE TANGENTIAL AND SAGITTAL FOCI DO NOT COINCIDE AND THE SYSTEM APPEARS TO HAVE 2 POINTS OF FOCUS SAGITTAL PLANE TANGENTIAL PLANE TANGENTIAL IMAGE OPTICAL AXIS OBJECT POINT SAGITTAL IMAGE ASTIGMATISM © CSIR 2008 www....csir.co.za ASTIGMATISM ARISES WHEN THE TANGENTIAL AND SAGITTAL FOCI DO NOT COINCIDE AND THE SYSTEM APPEARS TO HAVE 2 POINTS OF FOCUS SAGITTAL PLANE TANGENTIAL PLANE TANGENTIAL IMAGE OPTICAL AXIS OBJECT POINT SAGITTAL IMAGE FOCAL PLANE COMA IMAGE A B θ COMA...

  5. Projecting non-diffracting waves with intermediate-plane holography.

    Science.gov (United States)

    Mondal, Argha; Yevick, Aaron; Blackburn, Lauren C; Kanellakopoulos, Nikitas; Grier, David G

    2018-02-19

    We introduce intermediate-plane holography, which substantially improves the ability of holographic trapping systems to project propagation-invariant modes of light using phase-only diffractive optical elements. Translating the mode-forming hologram to an intermediate plane in the optical train can reduce the need to encode amplitude variations in the field, and therefore complements well-established techniques for encoding complex-valued transfer functions into phase-only holograms. Compared to standard holographic trapping implementations, intermediate-plane holograms greatly improve diffraction efficiency and mode purity of propagation-invariant modes, and so increase their useful non-diffracting range. We demonstrate this technique through experimental realizations of accelerating modes and long-range tractor beams.

  6. Fe/V and Fe/Co (0 0 1) superlattices: growth, anisotropy, magnetisation and magnetoresistance

    International Nuclear Information System (INIS)

    Nordblad, P.; Broddefalk, A.; Mathieu, R.; Blomqvist, P.; Eriksson, O.; Waeppling, R.

    2003-01-01

    Some physical properties of BCC Fe/V and Fe/Co (0 0 1) superlattices are reviewed. The dependence of the magnetic anisotropy on the in-plane strain introduced by the lattice mismatch between Fe and V is measured and compared to a theoretical derivation. The dependence of the magnetic anisotropy (and saturation magnetisation) on the layer thickness ratio Fe/Co is measured and a value for the anisotropy of BCC Co is derived from extrapolation. The interlayer exchange coupling of Fe/V superlattices is studied as a function of the V layer thickness (constant Fe thickness) and layer thickness of Fe (constant V thickness). A region of antiferromagnetic coupling and GMR is found for V thicknesses 12-14 monolayers. However, surprisingly, a 'cutoff' of the antiferromagnetic coupling and GMR is found when the iron layer thickness exceeds about 10 monolayers

  7. Estimation of anisotropy factor spectrum for determination of optical properties in biological tissues

    Science.gov (United States)

    Iwamoto, Misako; Honda, Norihiro; Ishii, Katsunori; Awazu, Kunio

    2017-07-01

    Spectroscopic setup for measuring anisotropy factor g spectrum of biological tissues was constructed. g of chicken liver tissue was lower than chicken breast tissue. High absorption of hemoglobin can have an influence on g spectrum.

  8. Spin-Orbit Torque-Assisted Switching in Magnetic Insulator Thin Films with Perpendicular Magnetic Anisotropy

    Science.gov (United States)

    Wu, Mingzhong

    As an in-plane charge current flows in a heavy metal film with spin-orbit coupling, it produces a torque that can induce magnetization switching in a neighboring ferromagnetic metal film. Such spin-orbit torque (SOT)-induced switching has been studied extensively in recent years and has shown higher efficiency than switching using conventional spin-transfer torque. This presentation reports the SOT-assisted switching in heavy metal/magnetic insulator systems.1 The experiments made use of Pt/BaFe12O19 bi-layered structures. Thanks to its strong spin-orbit coupling, Pt has been widely used to produce pure spin currents in previous studies. BaFe12O19 is an M-type barium hexagonal ferrite and is often referred as BaM. It is one of the few magnetic insulators with strong magneto-crystalline anisotropy and shows an effective uniaxial anisotropy field of about 17 kOe. It's found that the switching response in the BaM film strongly depends on the charge current applied to the Pt film. When a constant magnetic field is applied in the film plane, the charge current in the Pt film can switch the normal component of the magnetization (M⊥) in the BaM film between the up and down states. The current also dictates the up and down states of the remnant magnetization when the in-plane field is reduced to zero. When M⊥ is measured by sweeping an in-plane field, the response manifests itself as a hysteresis loop, which evolves in a completely opposite manner if the sign of the charge current is flipped. When the coercivity is measured by sweeping an out-of-plane field, its value can be reduced or increased by as much as about 500 Oe if an appropriate charge current is applied. 1. P. Li, T. Liu, H. Chang, A. Kalitsov, W. Zhang, G. Csaba, W. Li, D. Richardson, A. Demann, G. Rimal, H. Dey, J. S. Jiang, W. Porod, S. Field, J. Tang, M. C. Marconi, A. Hoffmann, O. Mryasov, and M. Wu, Nature Commun. 7:12688 doi: 10.1038/ncomms12688 (2016).

  9. Shape anisotropy: tensor distance to anisotropy measure

    Science.gov (United States)

    Weldeselassie, Yonas T.; El-Hilo, Saba; Atkins, M. S.

    2011-03-01

    Fractional anisotropy, defined as the distance of a diffusion tensor from its closest isotropic tensor, has been extensively studied as quantitative anisotropy measure for diffusion tensor magnetic resonance images (DT-MRI). It has been used to reveal the white matter profile of brain images, as guiding feature for seeding and stopping in fiber tractography and for the diagnosis and assessment of degenerative brain diseases. Despite its extensive use in DT-MRI community, however, not much attention has been given to the mathematical correctness of its derivation from diffusion tensors which is achieved using Euclidean dot product in 9D space. But, recent progress in DT-MRI has shown that the space of diffusion tensors does not form a Euclidean vector space and thus Euclidean dot product is not appropriate for tensors. In this paper, we propose a novel and robust rotationally invariant diffusion anisotropy measure derived using the recently proposed Log-Euclidean and J-divergence tensor distance measures. An interesting finding of our work is that given a diffusion tensor, its closest isotropic tensor is different for different tensor distance metrics used. We demonstrate qualitatively that our new anisotropy measure reveals superior white matter profile of DT-MR brain images and analytically show that it has a higher signal to noise ratio than fractional anisotropy.

  10. Emergence of an Out-of-Plane Optical Phonon (ZO) Kohn Anomaly in Quasifreestanding Epitaxial Graphene.

    Science.gov (United States)

    Politano, Antonio; de Juan, Fernando; Chiarello, Gennaro; Fertig, Herbert A

    2015-08-14

    In neutral graphene, two prominent cusps known as Kohn anomalies are found in the phonon dispersion of the highest optical phonon at q=Γ (LO branch) and q=K (TO branch), reflecting a significant electron-phonon coupling (EPC) to undoped Dirac electrons. In this work, high-resolution electron energy loss spectroscopy is used to measure the phonon dispersion around the Γ point in quasifreestanding graphene epitaxially grown on Pt(111). The Kohn anomaly for the LO phonon is observed at finite momentum q~2k_{F} from Γ, with a shape in excellent agreement with the theory and consistent with known values of the EPC and the Fermi level. More strikingly, we also observe a Kohn anomaly at the same momentum for the out-of-plane optical phonon (ZO) branch. This observation is the first direct evidence of the coupling of the ZO mode with Dirac electrons, which is forbidden for freestanding graphene but becomes allowed in the presence of a substrate. Moreover, we estimate the EPC to be even greater than that of the LO mode, making graphene on Pt(111) an optimal system to explore the effects of this new coupling in the electronic properties.

  11. Measurement of the elliptic anisotropy of charged particles produced in PbPb collisions at $\\sqrt{s_{NN}}$ = 2.76 TeV

    CERN Document Server

    Chatrchyan, Serguei; Sirunyan, Albert M; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hammer, Josef; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Krammer, Manfred; Liko, Dietrich; Mikulec, Ivan; Pernicka, Manfred; Rahbaran, Babak; Rohringer, Christine; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Teischinger, Florian; Wagner, Philipp; Waltenberger, Wolfgang; Walzel, Gerhard; Widl, Edmund; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Bansal, Sunil; Cerny, Karel; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Luyckx, Sten; Maes, Thomas; Mucibello, Luca; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Selvaggi, Michele; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Gonzalez Suarez, Rebeca; Kalogeropoulos, Alexis; Maes, Michael; Olbrechts, Annik; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Charaf, Otman; Clerbaux, Barbara; De Lentdecker, Gilles; Dero, Vincent; Gay, Arnaud; Hreus, Tomas; Léonard, Alexandre; Marage, Pierre Edouard; Reis, Thomas; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Adler, Volker; Beernaert, Kelly; Cimmino, Anna; Costantini, Silvia; Garcia, Guillaume; Grunewald, Martin; Klein, Benjamin; Lellouch, Jérémie; Marinov, Andrey; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Vanelderen, Lukas; Verwilligen, Piet; Walsh, Sinead; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Bruno, Giacomo; Ceard, Ludivine; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Lemaitre, Vincent; Liao, Junhui; Militaru, Otilia; Nuttens, Claude; Pagano, Davide; Pin, Arnaud; Piotrzkowski, Krzysztof; Schul, Nicolas; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Alves, Gilvan; Correa Martins Junior, Marcos; De Jesus Damiao, Dilson; Martins, Thiago; Pol, Maria Elena; Henrique Gomes E Souza, Moacyr; Aldá Júnior, Walter Luiz; Carvalho, Wagner; Custódio, Analu; Melo Da Costa, Eliza; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Oguri, Vitor; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Silva Do Amaral, Sheila Mara; Soares Jorge, Luana; Sznajder, Andre; Souza Dos Anjos, Tiago; Bernardes, Cesar Augusto; De Almeida Dias, Flavia; Tomei, Thiago; De Moraes Gregores, Eduardo; Lagana, Caio; Da Cunha Marinho, Franciole; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Genchev, Vladimir; Iaydjiev, Plamen; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Tcholakov, Vanio; Trayanov, Rumen; Vutova, Mariana; Dimitrov, Anton; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Meng, Xiangwei; Tao, Junquan; Wang, Jian; Wang, Jian; Wang, Xianyou; Wang, Zheng; Xiao, Hong; Xu, Ming; Zang, Jingjing; Zhang, Zhen; Asawatangtrakuldee, Chayanit; Ban, Yong; Guo, Shuang; Guo, Yifei; Li, Wenbo; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Teng, Haiyun; Wang, Siguang; Zhu, Bo; Zou, Wei; Avila, Carlos; Gomez Moreno, Bernardo; Osorio Oliveros, Andres Felipe; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Plestina, Roko; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Dzelalija, Mile; Kovac, Marko; Brigljevic, Vuko; Duric, Senka; Kadija, Kreso; Luetic, Jelena; Morovic, Srecko; Attikis, Alexandros; Galanti, Mario; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Elgammal, Sherif; Ellithi Kamel, Ali; Khalil, Shaaban; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Müntel, Mait; Raidal, Martti; Rebane, Liis; Tiko, Andres; Azzolini, Virginia; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Härkönen, Jaakko; Heikkinen, Mika Aatos; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Ungaro, Donatella; Wendland, Lauri; Banzuzi, Kukka; Korpela, Arja; Tuuva, Tuure; Besancon, Marc; Choudhury, Somnath; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Millischer, Laurent; Nayak, Aruna; Rander, John; Rosowsky, André; Shreyber, Irina; Titov, Maksym; Baffioni, Stephanie; Beaudette, Florian; Benhabib, Lamia; Bianchini, Lorenzo; Bluj, Michal; Broutin, Clementine; Busson, Philippe; Charlot, Claude; Daci, Nadir; Dahms, Torsten; Dobrzynski, Ludwik; Granier de Cassagnac, Raphael; Haguenauer, Maurice; Miné, Philippe; Mironov, Camelia; Ochando, Christophe; Paganini, Pascal; Sabes, David; Salerno, Roberto; Sirois, Yves; Veelken, Christian; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Bloch, Daniel; Bodin, David; Brom, Jean-Marie; Cardaci, Marco; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Drouhin, Frédéric; Ferro, Cristina; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Juillot, Pierre; Karim, Mehdi; Le Bihan, Anne-Catherine; Van Hove, Pierre; Fassi, Farida; Mercier, Damien; Beauceron, Stephanie; Beaupere, Nicolas; Bondu, Olivier; Boudoul, Gaelle; Brun, Hugues; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Kurca, Tibor; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Sordini, Viola; Tosi, Silvano; Tschudi, Yohann; Verdier, Patrice; Viret, Sébastien; Tsamalaidze, Zviad; Anagnostou, Georgios; Beranek, Sarah; Edelhoff, Matthias; Feld, Lutz; Heracleous, Natalie; Hindrichs, Otto; Jussen, Ruediger; Klein, Katja; Merz, Jennifer; Ostapchuk, Andrey; Perieanu, Adrian; Raupach, Frank; Sammet, Jan; Schael, Stefan; Sprenger, Daniel; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Caudron, Julien; Dietz-Laursonn, Erik; Duchardt, Deborah; Erdmann, Martin; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klimkovich, Tatsiana; Klingebiel, Dennis; Kreuzer, Peter; Lanske, Dankfried; Lingemann, Joschka; Magass, Carsten; Merschmeyer, Markus; Meyer, Arnd; Olschewski, Mark; Papacz, Paul; Pieta, Holger; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Steggemann, Jan; Teyssier, Daniel; Weber, Martin; Bontenackels, Michael; Cherepanov, Vladimir; Davids, Martina; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Haj Ahmad, Wael; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Linn, Alexander; Nowack, Andreas; Perchalla, Lars; Pooth, Oliver; Rennefeld, Jörg; Sauerland, Philip; Stahl, Achim; Aldaya Martin, Maria; Behr, Joerg; Behrenhoff, Wolf; Behrens, Ulf; Bergholz, Matthias; Bethani, Agni; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Castro, Elena; Costanza, Francesco; Dammann, Dirk; Eckerlin, Guenter; Eckstein, Doris; Fischer, David; Flucke, Gero; Geiser, Achim; Glushkov, Ivan; Habib, Shiraz; Hauk, Johannes; Jung, Hannes; Kasemann, Matthias; Katsas, Panagiotis; Kleinwort, Claus; Kluge, Hannelies; Knutsson, Albert; Krämer, Mira; Krücker, Dirk; Kuznetsova, Ekaterina; Lange, Wolfgang; Lohmann, Wolfgang; Lutz, Benjamin; Mankel, Rainer; Marfin, Ihar; Marienfeld, Markus; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Olzem, Jan; Perrey, Hanno; Petrukhin, Alexey; Pitzl, Daniel; Raspereza, Alexei; Ribeiro Cipriano, Pedro M; Riedl, Caroline; Rosin, Michele; Salfeld-Nebgen, Jakob; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Sen, Niladri; Spiridonov, Alexander; Stein, Matthias; Walsh, Roberval; Wissing, Christoph; Autermann, Christian; Blobel, Volker; Bobrovskyi, Sergei; Draeger, Jula; Enderle, Holger; Erfle, Joachim; Gebbert, Ulla; Görner, Martin; Hermanns, Thomas; Höing, Rebekka Sophie; Kaschube, Kolja; Kaussen, Gordon; Kirschenmann, Henning; Klanner, Robert; Lange, Jörn; Mura, Benedikt; Nowak, Friederike; Pietsch, Niklas; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Schröder, Matthias; Schum, Torben; Seidel, Markus; Stadie, Hartmut; Steinbrück, Georg; Thomsen, Jan; Barth, Christian; Berger, Joram; Chwalek, Thorsten; De Boer, Wim; Dierlamm, Alexander; Feindt, Michael; Guthoff, Moritz; Hackstein, Christoph; Hartmann, Frank; Heinrich, Michael; Held, Hauke; Hoffmann, Karl-Heinz; Honc, Simon; Husemann, Ulrich; Katkov, Igor; Komaragiri, Jyothsna Rani; Martschei, Daniel; Mueller, Steffen; Müller, Thomas; Niegel, Martin; Nürnberg, Andreas; Oberst, Oliver; Oehler, Andreas; Ott, Jochen; Peiffer, Thomas; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Ratnikova, Natalia; Röcker, Steffen; Saout, Christophe; Scheurer, Armin; Schilling, Frank-Peter; Schmanau, Mike; Schott, Gregory; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Troendle, Daniel; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Weiler, Thomas; Zeise, Manuel; Ziebarth, Eva Barbara; Daskalakis, Georgios; Geralis, Theodoros; Kesisoglou, Stilianos; Kyriakis, Aristotelis; Loukas, Demetrios; Manolakos, Ioannis; Markou, Athanasios; Markou, Christos; Mavrommatis, Charalampos; Ntomari, Eleni; Gouskos, Loukas; Mertzimekis, Theodoros; Panagiotou, Apostolos; Saoulidou, Niki; Evangelou, Ioannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Patras, Vaios; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Krajczar, Krisztian; Radics, Balint; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Beni, Noemi; Czellar, Sandor; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Karancsi, János; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Beri, Suman Bala; Bhatnagar, Vipin; Dhingra, Nitish; Gupta, Ruchi; Jindal, Monika; Kaur, Manjit; Kohli, Jatinder Mohan; Mehta, Manuk Zubin; Nishu, Nishu; Saini, Lovedeep Kaur; Sharma, Archana; Singh, Jasbir; Singh, Supreet Pal; Ahuja, Sudha; Choudhary, Brajesh C; Kumar, Ashok; Kumar, Arun; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Varun; Shivpuri, Ram Krishen; Banerjee, Sunanda; Bhattacharya, Satyaki; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Sarkar, Subir; Abdulsalam, Abdulla; Choudhury, Rajani Kant; Dutta, Dipanwita; Kailas, Swaminathan; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Aziz, Tariq; Ganguly, Sanmay; Guchait, Monoranjan; Gurtu, Atul; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Parida, Bibhuti; Sudhakar, Katta; Wickramage, Nadeesha; Banerjee, Sudeshna; Dugad, Shashikant; Arfaei, Hessamaddin; Bakhshiansohi, Hamed; Etesami, Seyed Mohsen; Fahim, Ali; Hashemi, Majid; Hesari, Hoda; Jafari, Abideh; Khakzad, Mohsen; Mohammadi, Abdollah; Mohammadi Najafabadi, Mojtaba; Paktinat Mehdiabadi, Saeid; Safarzadeh, Batool; Zeinali, Maryam; Abbrescia, Marcello; Barbone, Lucia; Calabria, Cesare; Chhibra, Simranjit Singh; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Lusito, Letizia; Maggi, Giorgio; Maggi, Marcello; Marangelli, Bartolomeo; My, Salvatore; Nuzzo, Salvatore; Pacifico, Nicola; Pompili, Alexis; Pugliese, Gabriella; Selvaggi, Giovanna; Silvestris, Lucia; Singh, Gurpreet; Zito, Giuseppe; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Meneghelli, Marco; Montanari, Alessandro; Navarria, Francesco; Odorici, Fabrizio; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gianni; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Frosali, Simone; Gallo, Elisabetta; Gonzi, Sandro; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Colafranceschi, Stefano; Fabbri, Franco; Piccolo, Davide; Fabbricatore, Pasquale; Musenich, Riccardo; Benaglia, Andrea; De Guio, Federico; Di Matteo, Leonardo; Fiorendi, Sara; Gennai, Simone; Ghezzi, Alessio; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Martelli, Arabella; Massironi, Andrea; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Sala, Silvano; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Carrillo Montoya, Camilo Andres; Cavallo, Nicola; De Cosa, Annapaola; Dogangun, Oktay; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bellan, Paolo; Biasotto, Massimo; Bisello, Dario; Branca, Antonio; Checchia, Paolo; Dorigo, Tommaso; Dosselli, Umberto; Gasparini, Fabrizio; Gozzelino, Andrea; Gulmini, Michele; Kanishchev, Konstantin; Lacaprara, Stefano; Lazzizzera, Ignazio; Margoni, Martino; Maron, Gaetano; Meneguzzo, Anna Teresa; Perrozzi, Luca; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Vanini, Sara; Gabusi, Michele; Ratti, Sergio P; Riccardi, Cristina; Torre, Paola; Vitulo, Paolo; Bilei, Gian Mario; Fanò, Livio; Lariccia, Paolo; Lucaroni, Andrea; Mantovani, Giancarlo; Menichelli, Mauro; Nappi, Aniello; Romeo, Francesco; Saha, Anirban; Santocchia, Attilio; Taroni, Silvia; Azzurri, Paolo; Bagliesi, Giuseppe; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; D'Agnolo, Raffaele Tito; Dell'Orso, Roberto; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Kraan, Aafke; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Palmonari, Francesco; Rizzi, Andrea; Serban, Alin Titus; Spagnolo, Paolo; Squillacioti, Paola; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Del Re, Daniele; Diemoz, Marcella; Fanelli, Cristiano; Grassi, Marco; Longo, Egidio; Meridiani, Paolo; Micheli, Francesco; Nourbakhsh, Shervin; Organtini, Giovanni; Pandolfi, Francesco; Paramatti, Riccardo; Rahatlou, Shahram; Sigamani, Michael; Soffi, Livia; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Biino, Cristina; Botta, Cristina; Cartiglia, Nicolo; Castello, Roberto; Costa, Marco; Demaria, Natale; Graziano, Alberto; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Pastrone, Nadia; Pelliccioni, Mario; Potenza, Alberto; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Sola, Valentina; Solano, Ada; Staiano, Amedeo; Vilela Pereira, Antonio; Belforte, Stefano; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; Marone, Matteo; Montanino, Damiana; Penzo, Aldo; Schizzi, Andrea; Heo, Seong Gu; Kim, Tae Yeon; Nam, Soon-Kwon; Chang, Sunghyun; Chung, Jin Hyuk; Kim, Dong Hee; Kim, Gui Nyun; Kong, Dae Jung; Park, Hyangkyu; Ro, Sang-Ryul; Son, Dong-Chul; Son, Taejin; Kim, Jae Yool; Kim, Zero Jaeho; Song, Sanghyeon; Jo, Hyun Yong; Choi, Suyong; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Tae Jeong; Lee, Kyong Sei; Moon, Dong Ho; Park, Sung Keun; Seo, Eunsung; Choi, Minkyoo; Kang, Seokon; Kim, Hyunyong; Kim, Ji Hyun; Park, Chawon; Park, Inkyu; Park, Sangnam; Ryu, Geonmo; Cho, Yongjin; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Min Suk; Kwon, Eunhyang; Lee, Byounghoon; Lee, Jongseok; Lee, Sungeun; Seo, Hyunkwan; Yu, Intae; Bilinskas, Mykolas Jurgis; Grigelionis, Ignas; Janulis, Mindaugas; Juodagalvis, Andrius; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Lopez-Fernandez, Ricardo; Magaña Villalba, Ricardo; Martínez-Ortega, Jorge; Sánchez-Hernández, Alberto; Villasenor-Cendejas, Luis Manuel; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Salazar Ibarguen, Humberto Antonio; Casimiro Linares, Edgar; Morelos Pineda, Antonio; Reyes-Santos, Marco A; Krofcheck, David; Bell, Alan James; Butler, Philip H; Doesburg, Robert; Reucroft, Steve; Silverwood, Hamish; Ahmad, Muhammad; Asghar, Muhammad Irfan; Hoorani, Hafeez R; Khalid, Shoaib; Khan, Wajid Ali; Khurshid, Taimoor; Qazi, Shamona; Shah, Mehar Ali; Shoaib, Muhammad; Brona, Grzegorz; Bunkowski, Karol; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Bialkowska, Helena; Boimska, Bozena; Frueboes, Tomasz; Gokieli, Ryszard; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Wrochna, Grzegorz; Zalewski, Piotr; Almeida, Nuno; Bargassa, Pedrame; David Tinoco Mendes, Andre; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Musella, Pasquale; Seixas, Joao; Varela, Joao; Vischia, Pietro; Afanasiev, Serguei; Belotelov, Ivan; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Kamenev, Alexey; Karjavin, Vladimir; Kozlov, Guennady; Lanev, Alexander; Malakhov, Alexander; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Smirnov, Vitaly; Volodko, Anton; Zarubin, Anatoli; Evstyukhin, Sergey; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Matveev, Viktor; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Erofeeva, Maria; Gavrilov, Vladimir; Kossov, Mikhail; Lychkovskaya, Natalia; Popov, Vladimir; Safronov, Grigory; Semenov, Sergey; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Belyaev, Andrey; Boos, Edouard; Ershov, Alexander; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Korotkikh, Vladimir; Lokhtin, Igor; Markina, Anastasia; Obraztsov, Stepan; Perfilov, Maxim; Petrushanko, Sergey; Sarycheva, Ludmila; Savrin, Viktor; Snigirev, Alexander; Vardanyan, Irina; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Grishin, Viatcheslav; Kachanov, Vassili; Konstantinov, Dmitri; Korablev, Andrey; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Djordjevic, Milos; Ekmedzic, Marko; Krpic, Dragomir; Milosevic, Jovan; Aguilar-Benitez, Manuel; Alcaraz Maestre, Juan; Arce, Pedro; Battilana, Carlo; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Diez Pardos, Carmen; Domínguez Vázquez, Daniel; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Ferrando, Antonio; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Merino, Gonzalo; Puerta Pelayo, Jesus; Redondo, Ignacio; Romero, Luciano; Santaolalla, Javier; Senghi Soares, Mara; Willmott, Carlos; Albajar, Carmen; Codispoti, Giuseppe; de Trocóniz, Jorge F; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Lloret Iglesias, Lara; Piedra Gomez, Jonatan; Vizan Garcia, Jesus Manuel; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Chuang, Shan-Huei; Duarte Campderros, Jordi; Felcini, Marta; Fernandez, Marcos; Gomez, Gervasio; Gonzalez Sanchez, Javier; Jorda, Clara; Lobelle Pardo, Patricia; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Sobron Sanudo, Mar; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Baillon, Paul; Ball, Austin; Barney, David; Bernet, Colin; Bianchi, Giovanni; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Breuker, Horst; Camporesi, Tiziano; Cerminara, Gianluca; Christiansen, Tim; Coarasa Perez, Jose Antonio; D'Enterria, David; De Roeck, Albert; Di Guida, Salvatore; Dobson, Marc; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Frisch, Benjamin; Funk, Wolfgang; Georgiou, Georgios; Giffels, Manuel; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Giunta, Marina; Glege, Frank; Gomez-Reino Garrido, Robert; Govoni, Pietro; Gowdy, Stephen; Guida, Roberto; Hansen, Magnus; Harris, Philip; Hartl, Christian; Harvey, John; Hegner, Benedikt; Hinzmann, Andreas; Innocente, Vincenzo; Janot, Patrick; Kaadze, Ketino; Karavakis, Edward; Kousouris, Konstantinos; Lecoq, Paul; Lenzi, Piergiulio; Lourenco, Carlos; Maki, Tuula; Malberti, Martina; Malgeri, Luca; Mannelli, Marcello; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moser, Roland; Mozer, Matthias Ulrich; Mulders, Martijn; Nesvold, Erik; Nguyen, Matthew; Orimoto, Toyoko; Orsini, Luciano; Palencia Cortezon, Enrique; Perez, Emmanuelle; Petrilli, Achille; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Piparo, Danilo; Polese, Giovanni; Quertenmont, Loic; Racz, Attila; Reece, William; Rodrigues Antunes, Joao; Rolandi, Gigi; Rommerskirchen, Tanja; Rovelli, Chiara; Rovere, Marco; Sakulin, Hannes; Santanastasio, Francesco; Schäfer, Christoph; Schwick, Christoph; Segoni, Ilaria; Sekmen, Sezen; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Spiropulu, Maria; Stoye, Markus; Tsirou, Andromachi; Veres, Gabor Istvan; Vlimant, Jean-Roch; Wöhri, Hermine Katharina; Worm, Steven; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Gabathuler, Kurt; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; König, Stefan; Kotlinski, Danek; Langenegger, Urs; Meier, Frank; Renker, Dieter; Rohe, Tilman; Sibille, Jennifer; Bäni, Lukas; Bortignon, Pierluigi; Buchmann, Marco-Andrea; Casal, Bruno; Chanon, Nicolas; Chen, Zhiling; Deisher, Amanda; Dissertori, Günther; Dittmar, Michael; Dünser, Marc; Eugster, Jürg; Freudenreich, Klaus; Grab, Christoph; Lecomte, Pierre; Lustermann, Werner; Marini, Andrea Carlo; Martinez Ruiz del Arbol, Pablo; Mohr, Niklas; Moortgat, Filip; Nägeli, Christoph; Nef, Pascal; Nessi-Tedaldi, Francesca; Pape, Luc; Pauss, Felicitas; Peruzzi, Marco; Ronga, Frederic Jean; Rossini, Marco; Sala, Leonardo; Sanchez, Ann - Karin; Starodumov, Andrei; Stieger, Benjamin; Takahashi, Maiko; Tauscher, Ludwig; Thea, Alessandro; Theofilatos, Konstantinos; Treille, Daniel; Urscheler, Christina; Wallny, Rainer; Weber, Hannsjoerg Artur; Wehrli, Lukas; Aguilo, Ernest; Amsler, Claude; Chiochia, Vincenzo; De Visscher, Simon; Favaro, Carlotta; Ivova Rikova, Mirena; Millan Mejias, Barbara; Otiougova, Polina; Robmann, Peter; Snoek, Hella; Tupputi, Salvatore; Verzetti, Mauro; Chang, Yuan-Hann; Chen, Kuan-Hsin; Go, Apollo; Kuo, Chia-Ming; Li, Syue-Wei; Lin, Willis; Liu, Zong-Kai; Lu, Yun-Ju; Mekterovic, Darko; Singh, Anil; Volpe, Roberta; Yu, Shin-Shan; Bartalini, Paolo; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Dietz, Charles; Grundler, Ulysses; Hou, George Wei-Shu; Hsiung, Yee; Kao, Kai-Yi; Lei, Yeong-Jyi; Lu, Rong-Shyang; Majumder, Devdatta; Petrakou, Eleni; Shi, Xin; Shiu, Jing-Ge; Tzeng, Yeng-Ming; Wang, Minzu; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Hos, Ilknur; Kangal, Evrim Ersin; Karapinar, Guler; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sogut, Kenan; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Vergili, Latife Nukhet; Vergili, Mehmet; Akin, Ilina Vasileva; Aliev, Takhmasib; Bilin, Bugra; Bilmis, Selcuk; Deniz, Muhammed; Gamsizkan, Halil; Guler, Ali Murat; Ocalan, Kadir; Ozpineci, Altug; Serin, Meltem; Sever, Ramazan; Surat, Ugur Emrah; Yalvac, Metin; Yildirim, Eda; Zeyrek, Mehmet; Deliomeroglu, Mehmet; Gülmez, Erhan; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Ozkorucuklu, Suat; Sonmez, Nasuf; Cankocak, Kerem; Levchuk, Leonid; Bostock, Francis; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Frazier, Robert; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Kreczko, Lukasz; Metson, Simon; Newbold, Dave M; Nirunpong, Kachanon; Poll, Anthony; Senkin, Sergey; Smith, Vincent J; Williams, Thomas; Basso, Lorenzo; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Jackson, James; Kennedy, Bruce W; Olaiya, Emmanuel; Petyt, David; Radburn-Smith, Benjamin Charles; Shepherd-Themistocleous, Claire; Tomalin, Ian R; Womersley, William John; Bainbridge, Robert; Ball, Gordon; Beuselinck, Raymond; Buchmuller, Oliver; Colling, David; Cripps, Nicholas; Cutajar, Michael; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Ferguson, William; Fulcher, Jonathan; Futyan, David; Gilbert, Andrew; Guneratne Bryer, Arlo; Hall, Geoffrey; Hatherell, Zoe; Hays, Jonathan; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Lyons, Louis; Magnan, Anne-Marie; Marrouche, Jad; Mathias, Bryn; Nandi, Robin; Nash, Jordan; Nikitenko, Alexander; Papageorgiou, Anastasios; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Pioppi, Michele; Raymond, David Mark; Rogerson, Samuel; Rompotis, Nikolaos; Rose, Andrew; Ryan, Matthew John; Seez, Christopher; Sharp, Peter; Sparrow, Alex; Tapper, Alexander; Vazquez Acosta, Monica; Virdee, Tejinder; Wakefield, Stuart; Wardle, Nicholas; Whyntie, Tom; Barrett, Matthew; Chadwick, Matthew; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Martin, William; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Hatakeyama, Kenichi; Liu, Hongxuan; Scarborough, Tara; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Heister, Arno; St John, Jason; Lawson, Philip; Lazic, Dragoslav; Rohlf, James; Sperka, David; Sulak, Lawrence; Alimena, Juliette; Bhattacharya, Saptaparna; Cutts, David; Ferapontov, Alexey; Heintz, Ulrich; Jabeen, Shabnam; Kukartsev, Gennadiy; Landsberg, Greg; Luk, Michael; Narain, Meenakshi; Nguyen, Duong; Segala, Michael; Sinthuprasith, Tutanon; Speer, Thomas; Tsang, Ka Vang; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Dolen, James; Erbacher, Robin; Gardner, Michael; Houtz, Rachel; Ko, Winston; Kopecky, Alexandra; Lander, Richard; Mall, Orpheus; Miceli, Tia; Nelson, Randy; Pellett, Dave; Rutherford, Britney; Searle, Matthew; Smith, John; Squires, Michael; Tripathi, Mani; Vasquez Sierra, Ricardo; Andreev, Valeri; Cline, David; Cousins, Robert; Duris, Joseph; Erhan, Samim; Everaerts, Pieter; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Plager, Charles; Rakness, Gregory; Schlein, Peter; Tucker, Jordan; Valuev, Vyacheslav; Weber, Matthias; Babb, John; Clare, Robert; Dinardo, Mauro Emanuele; Ellison, John Anthony; Gary, J William; Giordano, Ferdinando; Hanson, Gail; Jeng, Geng-Yuan; Liu, Hongliang; Long, Owen Rosser; Luthra, Arun; Nguyen, Harold; Paramesvaran, Sudarshan; Sturdy, Jared; Sumowidagdo, Suharyo; Wilken, Rachel; Wimpenny, Stephen; Andrews, Warren; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; Evans, David; Golf, Frank; Holzner, André; Kelley, Ryan; Lebourgeois, Matthew; Letts, James; Macneill, Ian; Mangano, Boris; Muelmenstaedt, Johannes; Padhi, Sanjay; Palmer, Christopher; Petrucciani, Giovanni; Pieri, Marco; Ranieri, Riccardo; Sani, Matteo; Sharma, Vivek; Simon, Sean; Sudano, Elizabeth; Tadel, Matevz; Tu, Yanjun; Vartak, Adish; Wasserbaech, Steven; Würthwein, Frank; Yagil, Avraham; Yoo, Jaehyeok; Barge, Derek; Bellan, Riccardo; Campagnari, Claudio; D'Alfonso, Mariarosaria; Danielson, Thomas; Flowers, Kristen; Geffert, Paul; Incandela, Joe; Justus, Christopher; Kalavase, Puneeth; Koay, Sue Ann; Kovalskyi, Dmytro; Krutelyov, Vyacheslav; Lowette, Steven; Mccoll, Nickolas; Pavlunin, Viktor; Rebassoo, Finn; Ribnik, Jacob; Richman, Jeffrey; Rossin, Roberto; Stuart, David; To, Wing; West, Christopher; Apresyan, Artur; Bornheim, Adolf; Chen, Yi; Di Marco, Emanuele; Duarte, Javier; Gataullin, Marat; Ma, Yousi; Mott, Alexander; Newman, Harvey B; Rogan, Christopher; Timciuc, Vladlen; Traczyk, Piotr; Veverka, Jan; Wilkinson, Richard; Yang, Yong; Zhu, Ren-Yuan; Akgun, Bora; Carroll, Ryan; Ferguson, Thomas; Iiyama, Yutaro; Jang, Dong Wook; Liu, Yueh-Feng; Paulini, Manfred; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Drell, Brian Robert; Edelmaier, Christopher; Ford, William T; Gaz, Alessandro; Heyburn, Bernadette; Luiggi Lopez, Eduardo; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Agostino, Lorenzo; Alexander, James; Chatterjee, Avishek; Eggert, Nicholas; Gibbons, Lawrence Kent; Heltsley, Brian; Hopkins, Walter; Khukhunaishvili, Aleko; Kreis, Benjamin; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Ryd, Anders; Salvati, Emmanuele; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Vaughan, Jennifer; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bloch, Ingo; Burkett, Kevin; Butler, Joel Nathan; Chetluru, Vasundhara; Cheung, Harry; Chlebana, Frank; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Green, Dan; Gutsche, Oliver; Hahn, Alan; Hanlon, Jim; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Kilminster, Benjamin; Klima, Boaz; Kunori, Shuichi; Kwan, Simon; Lincoln, Don; Lipton, Ron; Lueking, Lee; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Maruyama, Sho; Mason, David; McBride, Patricia; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Newman-Holmes, Catherine; O'Dell, Vivian; Prokofyev, Oleg; Sexton-Kennedy, Elizabeth; Sharma, Seema; Spalding, William J; Spiegel, Leonard; Tan, Ping; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitmore, Juliana; Wu, Weimin; Yang, Fan; Yumiceva, Francisco; Yun, Jae Chul; Acosta, Darin; Avery, Paul; Bourilkov, Dimitri; Chen, Mingshui; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Dobur, Didar; Drozdetskiy, Alexey; Field, Richard D; Fisher, Matthew; Fu, Yu; Furic, Ivan-Kresimir; Gartner, Joseph; Hugon, Justin; Kim, Bockjoo; Konigsberg, Jacobo; Korytov, Andrey; Kropivnitskaya, Anna; Kypreos, Theodore; Low, Jia Fu; Matchev, Konstantin; Milenovic, Predrag; Mitselmakher, Guenakh; Muniz, Lana; Remington, Ronald; Rinkevicius, Aurelijus; Sellers, Paul; Skhirtladze, Nikoloz; Snowball, Matthew; Yelton, John; Zakaria, Mohammed; Gaultney, Vanessa; Lebolo, Luis Miguel; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Chen, Jie; Diamond, Brendan; Gleyzer, Sergei V; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Jenkins, Merrill; Johnson, Kurtis F; Prosper, Harrison; Veeraraghavan, Venkatesh; Weinberg, Marc; Baarmand, Marc M; Dorney, Brian; Hohlmann, Marcus; Kalakhety, Himali; Vodopiyanov, Igor; Adams, Mark Raymond; Anghel, Ioana Maria; Apanasevich, Leonard; Bai, Yuting; Bazterra, Victor Eduardo; Betts, Russell Richard; Callner, Jeremy; Cavanaugh, Richard; Dragoiu, Cosmin; Evdokimov, Olga; Garcia-Solis, Edmundo Javier; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Khalatyan, Samvel; Lacroix, Florent; Malek, Magdalena; O'Brien, Christine; Silkworth, Christopher; Strom, Derek; Varelas, Nikos; Akgun, Ugur; Albayrak, Elif Asli; Bilki, Burak; Chung, Kwangzoo; Clarida, Warren; Duru, Firdevs; Griffiths, Scott; Lae, Chung Khim; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Newsom, Charles Ray; Norbeck, Edwin; Olson, Jonathan; Onel, Yasar; Ozok, Ferhat; Sen, Sercan; Tiras, Emrah; Wetzel, James; Yetkin, Taylan; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Bolognesi, Sara; Fehling, David; Giurgiu, Gavril; Gritsan, Andrei; Guo, Zijin; Hu, Guofan; Maksimovic, Petar; Rappoccio, Salvatore; Swartz, Morris; Whitbeck, Andrew; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Grachov, Oleg; Kenny Iii, Raymond Patrick; Murray, Michael; Noonan, Daniel; Radicci, Valeria; Sanders, Stephen; Stringer, Robert; Tinti, Gemma; Wood, Jeffrey Scott; Zhukova, Victoria; Barfuss, Anne-Fleur; Bolton, Tim; Chakaberia, Irakli; Ivanov, Andrew; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Shrestha, Shruti; Svintradze, Irakli; Gronberg, Jeffrey; Lange, David; Wright, Douglas; Baden, Drew; Boutemeur, Madjid; Calvert, Brian; Eno, Sarah Catherine; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kirn, Malina; Kolberg, Ted; Lu, Ying; Marionneau, Matthieu; Mignerey, Alice; Peterman, Alison; Rossato, Kenneth; Skuja, Andris; Temple, Jeffrey; Tonjes, Marguerite; Tonwar, Suresh C; Twedt, Elizabeth; Bauer, Gerry; Bendavid, Joshua; Busza, Wit; Butz, Erik; Cali, Ivan Amos; Chan, Matthew; Dutta, Valentina; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Hahn, Kristan Allan; Kim, Yongsun; Klute, Markus; Lee, Yen-Jie; Li, Wei; Luckey, Paul David; Ma, Teng; Nahn, Steve; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Rudolph, Matthew; Stephans, George; Stöckli, Fabian; Sumorok, Konstanty; Sung, Kevin; Velicanu, Dragos; Wenger, Edward Allen; Wolf, Roger; Wyslouch, Bolek; Xie, Si; Yang, Mingming; Yilmaz, Yetkin; Yoon, Sungho; Zanetti, Marco; Cooper, Seth; Cushman, Priscilla; Dahmes, Bryan; De Benedetti, Abraham; Franzoni, Giovanni; Gude, Alexander; Haupt, Jason; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Pastika, Nathaniel; Rusack, Roger; Sasseville, Michael; Singovsky, Alexander; Tambe, Norbert; Turkewitz, Jared; Cremaldi, Lucien Marcus; Kroeger, Rob; Perera, Lalith; Rahmat, Rahmat; Sanders, David A; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Butt, Jamila; Claes, Daniel R; Dominguez, Aaron; Eads, Michael; Jindal, Pratima; Keller, Jason; Kravchenko, Ilya; Lazo-Flores, Jose; Malbouisson, Helena; Malik, Sudhir; Snow, Gregory R; Baur, Ulrich; Godshalk, Andrew; Iashvili, Ia; Jain, Supriya; Kharchilava, Avto; Kumar, Ashish; Shipkowski, Simon Peter; Smith, Kenneth; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Haley, Joseph; Trocino, Daniele; Wood, Darien; Zhang, Jinzhong; Anastassov, Anton; Kubik, Andrew; Mucia, Nicholas; Odell, Nathaniel; Ofierzynski, Radoslaw Adrian; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael Henry; Stoynev, Stoyan; Velasco, Mayda; Won, Steven; Antonelli, Louis; Berry, Douglas; Brinkerhoff, Andrew; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kolb, Jeff; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Morse, David Michael; Pearson, Tessa; Ruchti, Randy; Slaunwhite, Jason; Valls, Nil; Warchol, Jadwiga; Wayne, Mitchell; Wolf, Matthias; Ziegler, Jill; Bylsma, Ben; Durkin, Lloyd Stanley; Hill, Christopher; Hughes, Richard; Killewald, Phillip; Kotov, Khristian; Ling, Ta-Yung; Puigh, Darren; Rodenburg, Marissa; Vuosalo, Carl; Williams, Grayson; Winer, Brian L; Adam, Nadia; Berry, Edmund; Elmer, Peter; Gerbaudo, Davide; Halyo, Valerie; Hebda, Philip; Hegeman, Jeroen; Hunt, Adam; Laird, Edward; Lopes Pegna, David; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Raval, Amita; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zuranski, Andrzej; Acosta, Jhon Gabriel; Huang, Xing Tao; Lopez, Angel; Mendez, Hector; Oliveros, Sandra; Ramirez Vargas, Juan Eduardo; Zatserklyaniy, Andriy; Alagoz, Enver; Barnes, Virgil E; Benedetti, Daniele; Bolla, Gino; Bortoletto, Daniela; De Mattia, Marco; Everett, Adam; Hu, Zhen; Jones, Matthew; Koybasi, Ozhan; Kress, Matthew; Laasanen, Alvin T; Leonardo, Nuno; Maroussov, Vassili; Merkel, Petra; Miller, David Harry; Neumeister, Norbert; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Vidal Marono, Miguel; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Guragain, Samir; Parashar, Neeti; Adair, Antony; Boulahouache, Chaouki; Cuplov, Vesna; Ecklund, Karl Matthew; Geurts, Frank JM; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Chung, Yeon Sei; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Garcia-Bellido, Aran; Goldenzweig, Pablo; Gotra, Yury; Han, Jiyeon; Harel, Amnon; Korjenevski, Sergey; Miner, Daniel Carl; Vishnevskiy, Dmitry; Zielinski, Marek; Bhatti, Anwar; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Malik, Sarah; Mesropian, Christina; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Hits, Dmitry; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Patel, Rishi; Rekovic, Vladimir; Richards, Alan; Robles, Jorge; Rose, Keith; Salur, Sevil; Schnetzer, Steve; Seitz, Claudia; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Cerizza, Giordano; Hollingsworth, Matthew; Spanier, Stefan; Yang, Zong-Chang; York, Andrew; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Khotilovich, Vadim; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Perloff, Alexx; Roe, Jeffrey; Safonov, Alexei; Sakuma, Tai; Sengupta, Sinjini; Suarez, Indara; Tatarinov, Aysen; Toback, David; Akchurin, Nural; Damgov, Jordan; Dudero, Phillip Russell; Jeong, Chiyoung; Kovitanggoon, Kittikul; Lee, Sung Won; Libeiro, Terence; Roh, Youn; Volobouev, Igor; Appelt, Eric; Engh, Daniel; Florez, Carlos; Greene, Senta; Gurrola, Alfredo; Johns, Willard; Kurt, Pelin; Maguire, Charles; Melo, Andrew; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Balazs, Michael; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Lin, Chuanzhe; Neu, Christopher; Wood, John; Yohay, Rachel; Gollapinni, Sowjanya; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sakharov, Alexandre; Anderson, Michael; Bachtis, Michail; Belknap, Donald; Borrello, Laura; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Gray, Lindsey; Grogg, Kira Suzanne; Grothe, Monika; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Klukas, Jeffrey; Lanaro, Armando; Lazaridis, Christos; Leonard, Jessica; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Pierro, Giuseppe Antonio; Ross, Ian; Savin, Alexander; Smith, Wesley H; Swanson, Joshua

    2013-01-07

    The anisotropy of the azimuthal distributions of charged particles produced in PbPb collisions with a nucleon-nucleon center-of-mass energy of 2.76 TeV is studied with the CMS experiment at the LHC. The elliptic anisotropy parameter defined as the second coefficient in a Fourier expansion of the particle invariant yields, is extracted using the event-plane method, two- and four-particle cumulants, and Lee--Yang zeros. The anisotropy is presented as a function of transverse momentum (pt), pseudorapidity (eta) over a broad kinematic range: 0.3 < pt < 20 GeV, abs(eta) < 2.4, and in 12 classes of collision centrality from 0 to 80%. The results are compared to those obtained at lower center-of-mass energies, and various scaling behaviors are examined. When scaled by the geometric eccentricity of the collision zone, the elliptic anisotropy is found to obey a universal scaling with the transverse particle density for different collision systems and center-of-mass energies.

  12. Optical second harmonic generation from V-shaped chromium nanohole arrays

    Science.gov (United States)

    Khoa Quang, Ngo; Miyauchi, Yoshihiro; Mizutani, Goro; Charlton, Martin D.; Chen, Ruiqi; Boden, Stuart; Rutt, Harvey

    2014-02-01

    We observed rotational anisotropy of optical second harmonic generation (SHG) from an array of V-shaped chromium nanoholes fabricated by electron beam lithography. Phenomenological analysis indicated that the effective nonlinear susceptibility element \\chi _{313}^{(2)} had a characteristic contribution to the observed anisotropic SHG intensity patterns. Here, coordinate 1 is in the direction of the tip of V shapes in the substrate plane, and 3 indicates the direction perpendicular to the sample surface. The SHG intensity for the S-polarized output light was very weak, probably owing to the cancellation effect of the image dipoles generated at the metal-air boundary. The possible origin of the observed nonlinearity is discussed in terms of the susceptibility elements obtained.

  13. Seismic anisotropy from compositional banding in granulites from the deep magmatic arc of Fiordland, New Zealand

    Science.gov (United States)

    Cyprych, Daria; Piazolo, Sandra; Almqvist, Bjarne S. G.

    2017-11-01

    We present calculated seismic velocities and anisotropies of mafic granulites and eclogites from the Cretaceous deep lower crust (∼40-65 km) of Fiordland, New Zealand. Both rock types show a distinct foliation defined by cm-scale compositional banding. Seismic properties are estimated using the Asymptotic Expansion Homogenisation - Finite Element (AEH-FE) method that, unlike the commonly used Voigt-Reuss-Hill homogenisation, incorporates the phase boundary network into calculations. The predicted mean P- and S-wave velocities are consistent with previously published data for similar lithologies from other locations (e.g., Kohistan Arc), although we find higher than expected anisotropies (AVP ∼ 5.0-8.0%, AVS ∼ 3.0-6.5%) and substantial S-wave splitting along foliation planes in granulites. This seismic signature of granulites results from a density and elasticity contrast between cm-scale pyroxene ± garnet stringers and plagioclase matrix rather than from crystallographic orientations alone. Banded eclogites do not show elevated anisotropies as the contrast in density and elastic constants of garnet and pyroxene is too small. The origin of compositional banding in Fiordland granulites is primarily magmatic and structures described here are expected to be typical for the base of present day magmatic arcs. Hence, we identify a new potential source of anisotropy within this geotectonic setting.

  14. Field-impressed anisotropy of susceptibility in iron-terbium thin films

    International Nuclear Information System (INIS)

    Stephenson, A.; Booth, N.A.

    1995-01-01

    Two thin films of Fe 1-x Tb x where x=0.17 and 0.23 are shown to exhibit the effect of field-impressed anisotropy. After application of a direct field of 80 mT, which gives them an isothermal remanent magnetization (IRM) in their plane, the anisotropy of initial susceptibility differs from that measured after the films have been tumble-demagnetized. By subtracting the susceptibility results of the tumble-demagnetized state from those obtained after the application of the 80 mT direct field, it is shown that the effect of this field is to decrease the susceptibility measured along the former applied field direction and to increase the susceptibility at right angles to this. The effect is almost certainly due to changes in domain alignment. Even though these films contain many domains, the above results are similar to those previously obtained for single-domain γFe 2 O 3 and magnetite particles. The sense of the effect is opposite to that for multi-domain magnetite particles where the susceptibility has been found to increase along the previously applied field direction. ((orig.))

  15. One-dimensional in-plane edge domain walls in ultrathin ferromagnetic films

    Science.gov (United States)

    Lund, Ross G.; Muratov, Cyrill B.; Slastikov, Valeriy V.

    2018-03-01

    We study existence and properties of 1D edge domain walls in ultrathin ferromagnetic films with uniaxial in-plane magnetic anisotropy. In these materials, the magnetization vector is constrained to lie entirely in the film plane, with the preferred directions dictated by the magnetocrystalline easy axis. We consider magnetization profiles in the vicinity of a straight film edge oriented at an arbitrary angle with respect to the easy axis. To minimize the micromagnetic energy, these profiles form transition layers in which the magnetization vector rotates away from the direction of the easy axis to align with the film edge. We prove existence of edge domain walls as minimizers of the appropriate 1D micromagnetic energy functional and show that they are classical solutions of the associated Euler-Lagrange equation with a Dirichlet boundary condition at the edge. We also perform a numerical study of these 1D domain walls and uncover further properties of these domain wall profiles.

  16. Perpendicular magnetic anisotropy and the magnetization process in CoFeB/Pd multilayer films

    International Nuclear Information System (INIS)

    Ngo, Duc-The; Tran, Quang-Hung; Møhave, Kristian; Quach, Duy-Truong; Phan, The-Long; Kim, Dong-Hyun

    2014-01-01

    The perpendicular magnetic anisotropy (PMA) and dynamic magnetization-reversal process in [CoFeB t nm/Pd 1.0 nm] n (t = 0.4, 0.6, 0.8, 1.0 and 1.2 nm; n = 2 − 20) multilayer films have been studied by means of magnetic hysteresis and Kerr effect measurements. Strong and controllable PMA with an effective uniaxial anisotropy up to 7.7 × 10 6  Jm −3 and a saturation magnetization as low as 200 emu cm −3 are achieved. The surface/interfacial anisotropy of the CoFeB/Pd interfaces—the main contribution to the PMA—is separated from the effective uniaxial anisotropy of the films and appears to increase with the number of CoFeB/Pd bilayers. Observation of the magnetic domains during a magnetization-reversal process, using polar magneto-optical Kerr microscopy, reveals the detailed behavior of the nucleation and displacement of the domain walls. (paper)

  17. Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus

    Science.gov (United States)

    Luo, Zhe; Maassen, Jesse; Deng, Yexin; Du, Yuchen; Garrelts, Richard P.; Lundstrom, Mark S; Ye, Peide D.; Xu, Xianfan

    2015-01-01

    Black phosphorus has been revisited recently as a new two-dimensional material showing potential applications in electronics and optoelectronics. Here we report the anisotropic in-plane thermal conductivity of suspended few-layer black phosphorus measured by micro-Raman spectroscopy. The armchair and zigzag thermal conductivities are ∼20 and ∼40 W m−1 K−1 for black phosphorus films thicker than 15 nm, respectively, and decrease to ∼10 and ∼20 W m−1 K−1 as the film thickness is reduced, exhibiting significant anisotropy. The thermal conductivity anisotropic ratio is found to be ∼2 for thick black phosphorus films and drops to ∼1.5 for the thinnest 9.5-nm-thick film. Theoretical modelling reveals that the observed anisotropy is primarily related to the anisotropic phonon dispersion, whereas the intrinsic phonon scattering rates are found to be similar along the armchair and zigzag directions. Surface scattering in the black phosphorus films is shown to strongly suppress the contribution of long mean-free-path acoustic phonons. PMID:26472191

  18. Swelling-induced optical anisotropy of thermoresponsive hydrogels based on poly(2-(2-methoxyethoxy)ethyl methacrylate): deswelling kinetics probed by quantitative Mueller matrix polarimetry.

    Science.gov (United States)

    Patil, Nagaraj; Soni, Jalpa; Ghosh, Nirmalya; De, Priyadarsi

    2012-11-29

    Thermodynamically favored polymer-water interactions below the lower critical solution temperature (LCST) caused swelling-induced optical anisotropy (linear retardance) of thermoresponsive hydrogels based on poly(2-(2-methoxyethoxy)ethyl methacrylate). This was exploited to study the macroscopic deswelling kinetics quantitatively by a generalized polarimetry analysis method, based on measurement of the Mueller matrix and its subsequent inverse analysis via the polar decomposition approach. The derived medium polarization parameters, namely, linear retardance (δ), diattenuation (d), and depolarization coefficient (Δ), of the hydrogels showed interesting differences between the gels prepared by conventional free radical polymerization (FRP) and reversible addition-fragmentation chain transfer polymerization (RAFT) and also between dry and swollen state. The effect of temperature, cross-linking density, and polymerization technique employed to synthesize hydrogel on deswelling kinetics was systematically studied via conventional gravimetry and corroborated further with the corresponding Mueller matrix derived quantitative polarimetry characteristics (δ, d, and Δ). The RAFT gels exhibited higher swelling ratio and swelling-induced optical anisotropy compared to FRP gels and also deswelled faster at 30 °C. On the contrary, at 45 °C, deswelling was significantly retarded for the RAFT gels due to formation of a skin layer, which was confirmed and quantified via the enhanced diattenuation and depolarization parameters.

  19. Primordial anisotropies in gauged hybrid inflation

    Science.gov (United States)

    Akbar Abolhasani, Ali; Emami, Razieh; Firouzjahi, Hassan

    2014-05-01

    We study primordial anisotropies generated in the model of gauged hybrid inflation in which the complex waterfall field is charged under a U(1)gauge field. Primordial anisotropies are generated either actively during inflation or from inhomogeneities modulating the surface of end of inflation during waterfall transition. We present a consistent δN mechanism to calculate the anisotropic power spectrum and bispectrum. We show that the primordial anisotropies generated at the surface of end of inflation do not depend on the number of e-folds and therefore do not produce dangerously large anisotropies associated with the IR modes. Furthermore, one can find the parameter space that the anisotropies generated from the surface of end of inflation cancel the anisotropies generated during inflation, therefore relaxing the constrains on model parameters imposed from IR anisotropies. We also show that the gauge field fluctuations induce a red-tilted power spectrum so the averaged power spectrum from the gauge field can change the total power spectrum from blue to red. Therefore, hybrid inflation, once gauged under a U(1) field, can be consistent with the cosmological observations.

  20. Primordial anisotropies in gauged hybrid inflation

    International Nuclear Information System (INIS)

    Abolhasani, Ali Akbar; Emami, Razieh; Firouzjahi, Hassan

    2014-01-01

    We study primordial anisotropies generated in the model of gauged hybrid inflation in which the complex waterfall field is charged under a U(1)gauge field. Primordial anisotropies are generated either actively during inflation or from inhomogeneities modulating the surface of end of inflation during waterfall transition. We present a consistent δN mechanism to calculate the anisotropic power spectrum and bispectrum. We show that the primordial anisotropies generated at the surface of end of inflation do not depend on the number of e-folds and therefore do not produce dangerously large anisotropies associated with the IR modes. Furthermore, one can find the parameter space that the anisotropies generated from the surface of end of inflation cancel the anisotropies generated during inflation, therefore relaxing the constrains on model parameters imposed from IR anisotropies. We also show that the gauge field fluctuations induce a red-tilted power spectrum so the averaged power spectrum from the gauge field can change the total power spectrum from blue to red. Therefore, hybrid inflation, once gauged under a U(1) field, can be consistent with the cosmological observations

  1. The second Herschel-ATLAS Data Release - III. Optical and near-infrared counterparts in the North Galactic Plane field

    Science.gov (United States)

    Furlanetto, C.; Dye, S.; Bourne, N.; Maddox, S.; Dunne, L.; Eales, S.; Valiante, E.; Smith, M. W.; Smith, D. J. B.; Ivison, R. J.; Ibar, E.

    2018-05-01

    This paper forms part of the second major public data release of the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS). In this work, we describe the identification of optical and near-infrared counterparts to the submillimetre detected sources in the 177 deg2 North Galactic Plane (NGP) field. We used the likelihood ratio method to identify counterparts in the Sloan Digital Sky Survey and in the United Kingdom InfraRed Telescope Imaging Deep Sky Survey within a search radius of 10 arcsec of the H-ATLAS sources with a 4σ detection at 250 μm. We obtained reliable (R ≥ 0.8) optical counterparts with r performance of the likelihood ratio method to identify optical and near-infrared counterparts taking into account the depth and area of both input catalogues. Using catalogues with the same surface density of objects in the overlapping ˜25 deg2 area, we obtained that the reliable fraction in the near-infrared (54.8 per cent) is significantly higher than in the optical (36.4 per cent). Finally, using deep radio data which covers a small region of the NGP field, we found that 80-90 per cent of our reliable identifications are correct.

  2. A recipe for practical full-waveform inversion in orthorhombic anisotropy

    KAUST Repository

    Alkhalifah, Tariq Ali; Masmoudi, Nabil; Oh, Juwon

    2016-01-01

    Multi parameter full waveform inversion (FWI) usually suffers from the inherent tradeoffin the multi parameter nature of the model space. In orthorhombic anisotropy, such tradeoffis magnified by the large number of parameters involved in representing the elastic or even the acoustic approximation of such a medium. However, using a new parameterization with distinctive scattering features, we can condition FWI to invert for the parameters the data are sensitive to at different stages, scales, and locations in the model. Specifically, with a combination made up of a velocity and particular dimensionless ratios of the elastic coefficients, the scattering potential of the anisotropic parameters have stationary scattering radiation patterns as a function of the type of anisotropy. With our new parametrization, the data is mainly sensitive to the scattering potential of 4 parameters: the horizontal velocity in the x direction, x, which provides scattering mainly near zero offset in the x vertical plane, εd, which is the ratio of the horizontal velocity squared in the x and x direction, and δ3 describing the anellipticity in the horizontal plane. Since, with this parametrization, the radiation pattern for the horizontal velocity and ε is azimuth independent, we can perform an initial VTI inversion for these two parameters, and then use the other two parameters to fit the azimuth variation in the data. This can be done at the reservoir level or any region of the model. Including the transmission from reflections, the migration velocity analysis (MVA) component, into the picture, the multi azimuth surface seismic data are mainly sensitive to the long wavelength components of uh, δ3, and εd through the diving waves, and η1, ηd, and δ3, in the transmission to or from reflectors (especially, in the presence of large offsets). They are also sensitive to the short wavelength component of uh and ε.

  3. A recipe for practical full-waveform inversion in orthorhombic anisotropy

    KAUST Repository

    Alkhalifah, Tariq Ali

    2016-09-06

    Multi parameter full waveform inversion (FWI) usually suffers from the inherent tradeoffin the multi parameter nature of the model space. In orthorhombic anisotropy, such tradeoffis magnified by the large number of parameters involved in representing the elastic or even the acoustic approximation of such a medium. However, using a new parameterization with distinctive scattering features, we can condition FWI to invert for the parameters the data are sensitive to at different stages, scales, and locations in the model. Specifically, with a combination made up of a velocity and particular dimensionless ratios of the elastic coefficients, the scattering potential of the anisotropic parameters have stationary scattering radiation patterns as a function of the type of anisotropy. With our new parametrization, the data is mainly sensitive to the scattering potential of 4 parameters: the horizontal velocity in the x direction, x, which provides scattering mainly near zero offset in the x vertical plane, εd, which is the ratio of the horizontal velocity squared in the x and x direction, and δ3 describing the anellipticity in the horizontal plane. Since, with this parametrization, the radiation pattern for the horizontal velocity and ε is azimuth independent, we can perform an initial VTI inversion for these two parameters, and then use the other two parameters to fit the azimuth variation in the data. This can be done at the reservoir level or any region of the model. Including the transmission from reflections, the migration velocity analysis (MVA) component, into the picture, the multi azimuth surface seismic data are mainly sensitive to the long wavelength components of uh, δ3, and εd through the diving waves, and η1, ηd, and δ3, in the transmission to or from reflectors (especially, in the presence of large offsets). They are also sensitive to the short wavelength component of uh and ε.

  4. Elastic anisotropy of crystals

    Directory of Open Access Journals (Sweden)

    Christopher M. Kube

    2016-09-01

    Full Text Available An anisotropy index seeks to quantify how directionally dependent the properties of a system are. In this article, the focus is on quantifying the elastic anisotropy of crystalline materials. Previous elastic anisotropy indices are reviewed and their shortcomings discussed. A new scalar log-Euclidean anisotropy measure AL is proposed, which overcomes these deficiencies. It is based on a distance measure in a log-Euclidean space applied to fourth-rank elastic tensors. AL is an absolute measure of anisotropy where the limiting case of perfect isotropy yields zero. It is a universal measure of anisotropy applicable to all crystalline materials. Specific examples of strong anisotropy are highlighted. A supplementary material provides an anisotropy table giving the values of AL for 2,176 crystallite compounds.

  5. Anisotropic Light Diffraction by Ultrasound in Crystals with Strong Acoustic Anisotropy

    Science.gov (United States)

    Voloshin, Andrey S.; Balakshy, Vladimir I.

    In modern acousto-optics, crystalline materials are used predominantly for manufacturing acousto-optic instruments. Among these materials, such crystals as paratellurite, tellurium, calomel, TAS and some others occupy a prominent place, which are distinguished by exceptionally large anisotropy of acoustic properties. In this work, the influence of acoustic beam energy walk-off on characteristics of Bragg diffraction of light is studied by the example of tellurium crystal. It is shown that the walk-off can substantially change angular and frequency ranges, resulting in their narrowing or broadening subject to position of the operating point in the Bragg angle frequency characteristic. Coefficients of broadening are introduced for characterization of this effect.

  6. Study of the magnetic anisotropy in Ni/Cu and Ni/glass thin films

    International Nuclear Information System (INIS)

    Cherif, S.-M.; Layadi, A.; Ben Youssef, J.; Nacereddine, C.; Roussigne, Y.

    2007-01-01

    The magnetic properties of evaporated Ni/Cu and Ni/glass thin films have been investigated by means of the vibrating sample magnetometer (VSM), the Brillouin light scattering (BLS) and magnetic force microscopy (MFM). The Ni thickness, t, ranges from 31 to 165 nm. The second- and fourth-order magnetic anisotropy constants, K 1 and K 2 , have been included; for the Ni/Cu series, K 1 was found to decrease from 1.0x10 6 to 0.18x10 6 erg/cm 3 as t increases from 31 to 165 nm, while K 2 increased from 0.24x10 6 to 0.8x10 6 erg/cm 3 . Over all the thickness range, the magnetization easy axis is in plane. For thinner films, there is a good agreement between anisotropy constant values inferred from VSM and BLS. Stripe domains were observed for t≥165 nm in Ni/glass and t≥90 nm in Ni/Cu

  7. Anisotropy in electron-atom collisions

    International Nuclear Information System (INIS)

    Linden van den Heuvel, H.B. van.

    1982-01-01

    Most of the work described in this thesis deals with studies using coincidence experiments, particularly for investigating the electron impact excitation of the 2 1 P and 3 1 D states in helium. A peculiarity is that in the 3 1 D studies the directly emitted 3 1 D → 2 1 P photons are not observed but the 2 1 P → 1 1 S photons resulting from the 3 1 D → 2 1 P → 1 1 S cascade instead. Another interesting point is the choice of the quantisation axis. The author demonstrates that it is of great advantage to take the quantisation axis perpendicular to the scattering plane rather than in the direction of the incident beam, as was done (on historical grounds) in previously reported electron-photon coincidence experiments. Contrary to the incident beam direction the axis perpendicular to the scattering plane really represents an axis of symmetry in the coincidence experiment. In Chapter II the so-called 'parity unfavoured' excitation of the (2p 2 ) 3 P state of helium by electrons is studied. In chapter III the anisotropy parameters for the electron impact excitation of the 2 1 P state of helium in the energy range from 26.6 to 40 eV and in the angular range from 30 0 to 110 0 are determined. Chapter IV contains a description of a scattered electron cascaded-photon coincidence experiment on the electron impact excitation of helium's 3 1 D state. The measurement of complex scattering amplitudes for electron impact excitation of the 3 1 D and 3 1 P states of helium is discussed in Chapter V. (Auth./C.F.)

  8. The anisotropy of fluorescence in ring units III: Tangential versus radial dipole arrangement

    Energy Technology Data Exchange (ETDEWEB)

    Herman, P. [Department of Physics, Faculty of Education, University of Hradec Kralove (Czech Republic); Zapletal, D. [Department of Physics, Faculty of Education, University of Hradec Kralove (Czech Republic); Department of Mathematics, University of Pardubice (Czech Republic)], E-mail: david.zapletal@upce.cz; Barvik, I. [Institute of Physics of Charles University, Faculty of Mathematics and Physics, Prague (Czech Republic)

    2008-05-15

    The time dependence of the anisotropy of fluorescence can indicate the coherent exciton transfer regime in molecular rings. We are comparing time development of this quantity after an impulsive excitation obtained for the ring models of bacterial antenna complexes with tangential and radial optical transition dipole moments arrangement as in nonameric LH2 and octameric LH4 units. We use non-correlated static Gaussian disorder in the local exciton energies. We take into account simultaneously dynamic disorder using a Markovian treatment of the interaction with the bath. We show that the influence of dynamic disorder on difference of the anisotropy of fluorescence is more important then the influence of static disorder in consequence of different band width.

  9. The anisotropy of fluorescence in ring units III: Tangential versus radial dipole arrangement

    International Nuclear Information System (INIS)

    Herman, P.; Zapletal, D.; Barvik, I.

    2008-01-01

    The time dependence of the anisotropy of fluorescence can indicate the coherent exciton transfer regime in molecular rings. We are comparing time development of this quantity after an impulsive excitation obtained for the ring models of bacterial antenna complexes with tangential and radial optical transition dipole moments arrangement as in nonameric LH2 and octameric LH4 units. We use non-correlated static Gaussian disorder in the local exciton energies. We take into account simultaneously dynamic disorder using a Markovian treatment of the interaction with the bath. We show that the influence of dynamic disorder on difference of the anisotropy of fluorescence is more important then the influence of static disorder in consequence of different band width

  10. Automated optical testing of LWIR objective lenses using focal plane array sensors

    Science.gov (United States)

    Winters, Daniel; Erichsen, Patrik; Domagalski, Christian; Peter, Frank; Heinisch, Josef; Dumitrescu, Eugen

    2012-10-01

    The image quality of today's state-of-the-art IR objective lenses is constantly improving while at the same time the market for thermography and vision grows strongly. Because of increasing demands on the quality of IR optics and increasing production volumes, the standards for image quality testing increase and tests need to be performed in shorter time. Most high-precision MTF testing equipment for the IR spectral bands in use today relies on the scanning slit method that scans a 1D detector over a pattern in the image generated by the lens under test, followed by image analysis to extract performance parameters. The disadvantages of this approach are that it is relatively slow, it requires highly trained operators for aligning the sample and the number of parameters that can be extracted is limited. In this paper we present lessons learned from the R and D process on using focal plane array (FPA) sensors for testing of long-wave IR (LWIR, 8-12 m) optics. Factors that need to be taken into account when switching from scanning slit to FPAs are e.g.: the thermal background from the environment, the low scene contrast in the LWIR, the need for advanced image processing algorithms to pre-process camera images for analysis and camera artifacts. Finally, we discuss 2 measurement systems for LWIR lens characterization that we recently developed with different target applications: 1) A fully automated system suitable for production testing and metrology that uses uncooled microbolometer cameras to automatically measure MTF (on-axis and at several o-axis positions) and parameters like EFL, FFL, autofocus curves, image plane tilt, etc. for LWIR objectives with an EFL between 1 and 12mm. The measurement cycle time for one sample is typically between 6 and 8s. 2) A high-precision research-grade system using again an uncooled LWIR camera as detector, that is very simple to align and operate. A wide range of lens parameters (MTF, EFL, astigmatism, distortion, etc.) can be

  11. Determination of perpendicular magnetic anisotropy based on the magnetic droplet nucleation

    Science.gov (United States)

    Nishimura, Tomoe; Kim, Duck-Ho; Okuno, Takaya; Hirata, Yuushou; Futakawa, Yasuhiro; Yoshikawa, Hiroki; Kim, Sanghoon; Tsukamoto, Arata; Shiota, Yoichi; Moriyama, Takahiro; Ono, Teruo

    2018-05-01

    We propose an alternative method of determining the magnetic anisotropy field μ0 H K in ferro-/ferrimagnets. On the basis of the droplet nucleation model, there exists linearity between domain-wall (DW) energy density and in-plane magnetic field. We find that the slope is simply represented by μ0 H K and Dzyaloshinskii–Moriya interaction (DMI). By measuring the in-plane magnetic field dependence of the coercivity field, closely corresponding to the DW energy density, a robust value for μ0 H K can be quantified. This robust value can be used to determine μ0 H K over a wide range of values, overcoming the limitations caused by the small strength of the external magnetic field typically used in experiments.

  12. Influence of Shape Anisotropy on Magnetization Dynamics Driven by Spin Hall Effect

    Directory of Open Access Journals (Sweden)

    X. G. Li

    2016-01-01

    Full Text Available As the lateral dimension of spin Hall effect based magnetic random-access memory (SHE-RAM devices is scaled down, shape anisotropy has varied influence on both the magnetic field and the current-driven switching characteristics. In this paper, we study such influences on elliptic film nanomagnets and theoretically investigate the switching characteristics for SHE-RAM element with in-plane magnetization. The analytical expressions for critical current density are presented and the results are compared with those obtained from macrospin and micromagnetic simulation. It is found that the key performance indicators for in-plane SHE-RAM, including thermal stability and spin torque efficiency, are highly geometry dependent and can be effectively improved by geometric design.

  13. Multi-physics and multi-scale characterization of shale anisotropy

    Science.gov (United States)

    Sarout, J.; Nadri, D.; Delle Piane, C.; Esteban, L.; Dewhurst, D.; Clennell, M. B.

    2012-12-01

    Shales are the most abundant sedimentary rock type in the Earth's shallow crust. In the past decade or so, they have attracted increased attention from the petroleum industry as reservoirs, as well as more traditionally for their sealing capacity for hydrocarbon/CO2 traps or underground waste repositories. The effectiveness of both fundamental and applied shale research is currently limited by (i) the extreme variability of physical, mechanical and chemical properties observed for these rocks, and by (ii) the scarce data currently available. The variability in observed properties is poorly understood due to many factors that are often irrelevant for other sedimentary rocks. The relationships between these properties and the petrophysical measurements performed at the field and laboratory scales are not straightforward, translating to a scale dependency typical of shale behaviour. In addition, the complex and often anisotropic micro-/meso-structures of shales give rise to a directional dependency of some of the measured physical properties that are tensorial by nature such as permeability or elastic stiffness. Currently, fundamental understanding of the parameters controlling the directional and scale dependency of shale properties is far from complete. Selected results of a multi-physics laboratory investigation of the directional and scale dependency of some critical shale properties are reported. In particular, anisotropic features of shale micro-/meso-structures are related to the directional-dependency of elastic and fluid transport properties: - Micro-/meso-structure (μm to cm scale) characterization by electron microscopy and X-ray tomography; - Estimation of elastic anisotropy parameters on a single specimen using elastic wave propagation (cm scale); - Estimation of the permeability tensor using the steady-state method on orthogonal specimens (cm scale); - Estimation of the low-frequency diffusivity tensor using NMR method on orthogonal specimens (example

  14. Engineering modes in optical fibers with metamaterial

    DEFF Research Database (Denmark)

    Yan, Min; Mortensen, Asger; Qiu, Min

    2009-01-01

    In this paper, we report a preliminary theoretical study on optical fibers with fine material inclusions whose geometrical inhomogeneity is almost indistinguishable by the operating wavelength.We refer to such fibers as metamaterial optical fibers, which can conceptually be considered...... as an extension from the previously much publicized microstructured optical fibers. Metamaterials can have optical properties not obtainable in naturally existing materials, including artificial anisotropy as well as graded material properties. Therefore, incorporation of metamaterial in optical fiber designs can...

  15. Translational invariance and the anisotropy of the cosmic microwave background

    International Nuclear Information System (INIS)

    Carroll, Sean M.; Tseng, C.-Y.; Wise, Mark B.

    2010-01-01

    Primordial quantum fluctuations produced by inflation are conventionally assumed to be statistically homogeneous, a consequence of translational invariance. In this paper we quantify the potentially observable effects of a small violation of translational invariance during inflation, as characterized by the presence of a preferred point, line, or plane. We explore the imprint such a violation would leave on the cosmic microwave background anisotropy, and provide explicit formulas for the expected amplitudes lm a l ' m ' *> of the spherical-harmonic coefficients.

  16. Translational invariance and the anisotropy of the cosmic microwave background

    Science.gov (United States)

    Carroll, Sean M.; Tseng, Chien-Yao; Wise, Mark B.

    2010-04-01

    Primordial quantum fluctuations produced by inflation are conventionally assumed to be statistically homogeneous, a consequence of translational invariance. In this paper we quantify the potentially observable effects of a small violation of translational invariance during inflation, as characterized by the presence of a preferred point, line, or plane. We explore the imprint such a violation would leave on the cosmic microwave background anisotropy, and provide explicit formulas for the expected amplitudes ⟨almal'm'*⟩ of the spherical-harmonic coefficients.

  17. Ultraviolet irradiance of inclined planes at the top of plant canopies

    International Nuclear Information System (INIS)

    Grant, R.H.

    1998-01-01

    The potential increase in ultraviolet-B (UV-B) irradiance and potential decrease in productivity of agricultural crops due to stratospheric ozone loss requires knowledge of the characteristics of UV irradiance above and within crops. Measurements of UV irradiance at the top of two crops were made during the growing seasons of 1990 and 1991. Maximum levels of irradiance relative to the horizontal (I s ) did not occur at slopes equal to the solar elevation angle, but typically occurred at slopes closer to the horizontal due to the high diffuse fraction in the UV. In general, I s for the UV tends to be smaller than that for the total short wave solar radiation (SW) as a result of the greater diffuse fraction in the UV over that for the SW. Results also showed that the UV I s over the maize and winter wheat canopies are similar. The measured I s was compared against inclined plane I s models incorporating either an isotropic or anisotropic sky radiance model. The anisotropic sky model was more accurate than the isotropic model for predicting the measured I s for planes inclined at any angle. The isotropic model was, however, found adequate to describe I s for azimuthally-invariate distributions of inclined planes typical of many canopy radiation models. Corrections for the anisotropy of the sky radiation were developed to be applied to the diffuse sky radiation term in the isotropic model to estimate the relative irradiance for specific azimuths. Using the anisotropy correction factors in a simple analytic model of irradiance improved the isotropic I s estimates by 7% (accounting for 97% of the measured I s variance). A set of functions were developed to provide analytic solutions for the anisotropy factor. The irradiance model can be used to predict the influence of orientation of plant, animal, or human surfaces on the received global UV-B irradiance above most plant canopies under clear skies. (author)

  18. Influence of the mechanic boundary conditions on the dynamic and static properties of the ferromagnet with competing anisotropies

    International Nuclear Information System (INIS)

    Krivtsova, A.V.; Meleshko, A.G.; Gorelikov, G.A.; Fridman, Yu.A.

    2014-01-01

    The phase transitions on the material constants in a semi-infinite ferromagnet with mechanic boundary conditions and competing “inclined” ease-axis anisotropy and easy-plane anisotropy have been investigated. The phase states and the spectra of coupled magnetoelastic waves have been researched. The analysis of the spectra of elementary excitations allowed the construction of the phase diagram of the system. - Highlights: • This article analyzes the influence of boundary conditions on the system's properties. • It is shown that the QU and IFM phases can be realized in the researched system. • Phase transition between these phases is not reorientation. • The inclined anisotropy increases the effect of quantum spin reducing. • The phase diagram of the investigated system is built

  19. Perpendicular Magnetic Anisotropy in Heusler Alloy Films and Their Magnetoresistive Junctions

    Directory of Open Access Journals (Sweden)

    Atsufumi Hirohata

    2018-01-01

    Full Text Available For the sustainable development of spintronic devices, a half-metallic ferromagnetic film needs to be developed as a spin source with exhibiting 100% spin polarisation at its Fermi level at room temperature. One of the most promising candidates for such a film is a Heusler-alloy film, which has already been proven to achieve the half-metallicity in the bulk region of the film. The Heusler alloys have predominantly cubic crystalline structures with small magnetocrystalline anisotropy. In order to use these alloys in perpendicularly magnetised devices, which are advantageous over in-plane devices due to their scalability, lattice distortion is required by introducing atomic substitution and interfacial lattice mismatch. In this review, recent development in perpendicularly-magnetised Heusler-alloy films is overviewed and their magnetoresistive junctions are discussed. Especially, focus is given to binary Heusler alloys by replacing the second element in the ternary Heusler alloys with the third one, e.g., MnGa and MnGe, and to interfacially-induced anisotropy by attaching oxides and metals with different lattice constants to the Heusler alloys. These alloys can improve the performance of spintronic devices with higher recording capacity.

  20. Microscopic investigations of the optical and structural properties of nonpolar InGaN MQWs on a-plane GaN ELOG structures

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Torsten; Bastek, Barbara; Hempel, Thomas; Veit, Peter; Christen, Juergen [Institute of Experimental Physics, Otto-von-Guericke-University Magdeburg (Germany); Wernicke, Tim; Weyers, Markus [Ferdinand-Braun-Institut fuer Hoechstfrequenztechnik, Berlin (Germany); Kneissl, Michael [Ferdinand-Braun-Institut fuer Hoechstfrequenztechnik, Berlin (Germany); Institute of Solid State Physics, Technical University Berlin (Germany)

    2010-07-01

    We present the optical and structural properties of InGaN MQWs which were grown by MOVPE on fully coalesced lateral epitaxially overgrown (ELOG) a-plane GaN on r-plane sapphire substrate and stripe masks orientated in the [0110] direction. Photoluminescence (PL) measurements exhibit a strong emission from the InGaN MQW at 3.109 eV at 4 K dominating the GaN (D{sup 0},X) emission at 3.488 eV by two orders of magnitude. The emission from basal plane stacking faults (BSF) was even more suppressed. Transmission electron microscopy showed a drastic reduction of the BSF in the lateral overgrown area (I) compared to the area of coherent growth (II). {mu}-PL and highly spatially resolved cathodoluminescence (CL) measurements revealed an intensity increase of the MQW emission by a factor of two for the defect reduced region (I) compared to the defective region (II). Also a blue shift by 20 meV of the MQW peak emission wavelength in the area (I) in comparison with defective area (II) was observed.

  1. Anisotropy of acoustic properties in paratellurite

    International Nuclear Information System (INIS)

    Parygin, Vladimir N.

    1996-01-01

    One of the peculiarities of the TeO 2 crystal consists of its strong acoustic anisotropy. This anisotropy demonstrates itself by acoustic energy walk-off and anisotropic distortion of an acoustic beam. Four constants completely characterise the acoustic anisotropy of the medium. In this paper these constants are calculated for various directions of the acoustic beam in crystal. (authors)

  2. High quality TmIG films with perpendicular magnetic anisotropy grown by sputtering

    Science.gov (United States)

    Wu, C. N.; Tseng, C. C.; Yeh, S. L.; Lin, K. Y.; Cheng, C. K.; Fanchiang, Y. T.; Hong, M.; Kwo, J.

    Ferrimagnetic thulium iron garnet (TmIG) films grown on gadolinium gallium garnet substrates recently showed stress-induced perpendicular magnetic anisotropy (PMA), attractive for realization of quantum anomalous Hall effect (QAHE) of topological insulator (TI) films via the proximity effect. Moreover, current induced magnetization switching of Pt/TmIG has been demonstrated for the development of room temperature (RT) spintronic devices. In this work, high quality TmIG films (about 25nm) were grown by sputtering at RT followed by post-annealing. We showed that the film composition is tunable by varying the growth parameters. The XRD results showed excellent crystallinity of stoichiometric TmIG films with an out-of-plane lattice constant of 1.2322nm, a narrow film rocking curve of 0.017 degree, and a film roughness of 0.2 nm. The stoichiometric films exhibited PMA and the saturation magnetization at RT was 109 emu/cm3 (RT bulk value 110 emu/cm3) with a coercive field of 2.7 Oe. In contrast, TmIG films of Fe deficiency showed in-plane magnetic anisotropy. The high quality sputtered TmIG films will be applied to heterostructures with TIs or metals with strong spin-orbit coupling for novel spintronics.

  3. Defect structure in m-plane GaN grown on LiAlO{sub 2} using metalorganic and hydride vapour phase epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Wernicke, Tim; Netzel, Carsten; Richter, Eberhard; Knauer, Arne; Brunner, Frank; Weyers, Markus [FBH Berlin (Germany); Mogliatenko, Anna; Neumann, Wolfgang [AG Kristallographie, Institut fuer Physik, HU Berlin (Germany); Kneissl, Michael [FBH Berlin (Germany); Institute of Solid State Physics, TU Berlin (Germany)

    2008-07-01

    The FWHM of symmetric (10 anti 10) XRD rocking curves of m-plane GaN grown on LiAlO{sub 2} is anisotropic. By investigating the microstructure with transmission electron microscopy (TEM) we identified basal plane stacking faults (BSF) and stacking mismatch boundaries (SMB) in the GaN layers. BSFs are aligned in-plane along the a-direction and therefore cause an anisotropic broadening of the FWHM{sub (10 anti 10)} with incidence along [0001]. SMBs have no preferential direction and hence result in an isotropic broadening of the FWHM{sub (10 anti 10)}. We observed that this anisotropy can be reduced by lowering the MOVPE growth temperature. We propose that the lowering of the growth temperature leads to a reduction of BSFs which is accompanied by an increase in SMBs. The MOVPE grown layers were used as templates for the growth of 200 {mu}m thick m-plane GaN layers by HVPE. During HVPE growth the LiAlO{sub 2} substrate thermally decomposed and peeled off after cool-down. On the surface a network of cracks not being aligned to crystallographic directions was found. The layers were not transparent probably due to metallic Ga inclusions and exhibited an asymmetric bow according to the lattice anisotropy of the (100) LiAlO{sub 2} surface.

  4. Symmetry-Breaking Orbital Anisotropy Observed for Detwinned Ba(Fe1-xCox)2As2 above the Spin Density Wave Transition

    International Nuclear Information System (INIS)

    Yi, Ming

    2011-01-01

    Nematicity, defined as broken rotational symmetry, has recently been observed in competing phases proximate to the superconducting phase in the cuprate high temperature superconductors. Similarly, the new iron-based high temperature superconductors exhibit a tetragonal to orthorhombic structural transition (i.e. a broken C 4 symmetry) that either precedes or is coincident with a collinear spin density wave (SDW) transition in undoped parent compounds, and superconductivity arises when both transitions are suppressed via doping. Evidence for strong in-plane anisotropy in the SDW state in this family of compounds has been reported by neutron scattering, scanning tunneling microscopy, and transport measurements. Here we present an angle resolved photoemission spectroscopy study of detwinned single crystals of a representative family of electron-doped iron-arsenide superconductors, Ba(Fe 1-x Co x ) 2 As 2 in the underdoped region. The crystals were detwinned via application of in-plane uniaxial stress, enabling measurements of single domain electronic structure in the orthorhombic state. At low temperatures, our results clearly demonstrate an in-plane electronic anisotropy characterized by a large energy splitting of two orthogonal bands with dominant d xz and d yz character, which is consistent with anisotropy observed by other probes. For compositions x > 0, for which the structural transition (T S ) precedes the magnetic transition (T SDW ), an anisotropic splitting is observed to develop above T SDW , indicating that it is specifically associated with T S . For unstressed crystals, the band splitting is observed close to T S , whereas for stressed crystals the splitting is observed to considerably higher temperatures, revealing the presence of a surprisingly large in-plane nematic susceptibility in the electronic structure.

  5. Plasma pressure and anisotropy inferred from the Tsyganenkomagnetic field model

    Directory of Open Access Journals (Sweden)

    F. Cao

    Full Text Available A numerical procedure has been developed to deduce the plasma pressure and anisotropy from the Tsyganenko magnetic field model. The Tsyganenko empirical field model, which is based on vast satellite field data, provides a realistic description of magnetic field configuration in the magnetosphere. When the force balance under the static condition is assumed, the electromagnetic J×B force from the Tsyganenko field model can be used to infer the plasma pressure and anisotropy distributions consistent with the field model. It is found that the J×B force obtained from the Tsyganenko field model is not curl-free. The curl-free part of the J×B force in an empirical field model can be balanced by the gradient of the isotropic pressure, while the nonzero curl of the J×B force can only be associated with the pressure anisotropy. The plasma pressure and anisotropy in the near-Earth plasma sheet are numerically calculated to obtain a static equilibrium consistent with the Tsyganenko field model both in the noon-midnight meridian and in the equatorial plane. The plasma pressure distribution deduced from the Tsyganenko 1989 field model is highly anisotropic and shows this feature early in the substorm growth phase. The pressure anisotropy parameter αP, defined as αP=1-PVertP, is typically ~0.3 at x ≈ -4.5RE and gradually decreases to a small negative value with an increasing tailward distance. The pressure anisotropy from the Tsyganenko 1989 model accounts for 50% of the cross-tail current at maximum and only in a highly localized region near xsim-10RE. In comparison, the plasma pressure anisotropy inferred from the Tsyganenko 1987 model is much smaller. We also find that the boundary

  6. Modified magnetic anisotropy at LaCoO3/La0.7Sr0.3MnO3 interfaces

    Directory of Open Access Journals (Sweden)

    M. Cabero

    2017-09-01

    Full Text Available Controlling magnetic anisotropy is an important objective towards engineering novel magnetic device concepts in oxide electronics. In thin film manganites, magnetic anisotropy is weak and it is primarily determined by the substrate, through induced structural distortions resulting from epitaxial mismatch strain. On the other hand, in cobaltites, with a stronger spin orbit interaction, magnetic anisotropy is typically much stronger. In this paper, we show that interfacing La0.7Sr0.3MnO3 (LSMO with an ultrathin LaCoO3 (LCO layer drastically modifies the magnetic anisotropy of the manganite, making it independent of the substrate and closer to the magnetic isotropy characterizing its rhombohedral structure. Ferromagnetic resonance measurements evidence a tendency of manganite magnetic moments to point out-of-plane suggesting non collinear magnetic interactions at the interface. These results may be of interest for the design of oxide interfaces with tailored magnetic structures for new oxide devices.

  7. Optical reflectance studies of highly specular anisotropic nanoporous (111) InP membrane

    International Nuclear Information System (INIS)

    Steele, J A; Lewis, R A; Sirbu, L; Enachi, M; Tiginyanu, I M; Skuratov, V A

    2015-01-01

    High-precision optical angular reflectance measurements are reported for a specular anisotropic nanoporous (111) InP membrane prepared by doping-assisted wet-electrochemical etching. The membrane surface morphology was investigated using scanning electron microscope imaging and revealed a quasi-uniform and self-organized nanoporous network consisting of semiconductor ‘islands’ in the sub-wavelength regime. The optical response of the nanoporous InP surface was studied at 405 nm (740 THz; UV), 633 nm (474 THz; VIS) and 1064 nm (282 THz; NIR), and exhibited a retention of basic macro-dielectric properties. Refractive index determinations demonstrate an optical anisotropy for the membrane which is strongly dependent on the wavelength of incident light, and exhibits an interesting inversion (positive anisotropy to negative) between 405 and 633 nm. The inversion of optical anisotropy is attributed to a strongly reduced ‘metallic’ behaviour in the membrane when subject to above-bandgap illumination. For the simplest case of sub-bandgap incident irradiation, the optical properties of the nanoporous InP sample are analysed in terms of an effective refractive index n eff and compared to effective media approximations. (invited article)

  8. Small-scale cosmic microwave background anisotropies as probe of the geometry of the universe

    Science.gov (United States)

    Kamionkowski, Marc; Spergel, David N.; Sugiyama, Naoshi

    1994-01-01

    We perform detailed calculations of cosmic microwave background (CMB) anisotropies in a cold dark matter (CDM)-dominated open universe with primordial adiabatic density perturbations for a variety of reionization histories. The CMB anisotropies depend primarily on the geometry of the universe, which in a matter-dominated universe is determined by Omega and the optical depth to the surface of last scattering. In particular, the location on the primary Doppler peak depends primarily on Omega and is fairly insensitive to the other unknown parameters, such as Omega(sub b), h, Lambda, and the shape of the power spectrum. Therefore, if the primordial density perturbations are adiabatic, measurements of CMB anisotropies on small scales may be used to determine Omega.

  9. Coherent field propagation between tilted planes.

    Science.gov (United States)

    Stock, Johannes; Worku, Norman Girma; Gross, Herbert

    2017-10-01

    Propagating electromagnetic light fields between nonparallel planes is of special importance, e.g., within the design of novel computer-generated holograms or the simulation of optical systems. In contrast to the extensively discussed evaluation between parallel planes, the diffraction-based propagation of light onto a tilted plane is more burdensome, since discrete fast Fourier transforms cannot be applied directly. In this work, we propose a quasi-fast algorithm (O(N 3  log N)) that deals with this problem. Based on a proper decomposition into three rotations, the vectorial field distribution is calculated on a tilted plane using the spectrum of plane waves. The algorithm works on equidistant grids, so neither nonuniform Fourier transforms nor an explicit complex interpolation is necessary. The proposed algorithm is discussed in detail and applied to several examples of practical interest.

  10. Composite microstructural anisotropies in reservoir rocks: consequences on elastic properties and relation with deformation; Anisotropies microstructurales composites dans les roches reservoir: consequences sur les proprietes elastiques et relation a la deformation

    Energy Technology Data Exchange (ETDEWEB)

    Louis, L.

    2003-10-15

    From diagenesis to tectonic stress induced deformation, rock microstructures always present some anisotropy associated with a preferential orientation, shape or spatial arrangement of its constituents. Considering the consequences anisotropy has on directional transport properties and compliance, as the geological history it carries, this approach has received a particular attention in numerous works. In this work, the microstructural features of various sedimentary rocks were investigated through direct observations and laboratory measurements in naturally deformed and undeformed blocks, samples being considered as effective media. All investigated samples were found to be anisotropic with respect to the physical properties we measured (i.e. ultrasonic P-wave velocity, magnetic susceptibility, electrical conductivity). Considering that P-wave velocities can be described by a second order tensor, we applied to the velocity data the same inversion procedure as the one routinely used in magnetic studies, which provided an efficient tool to estimate and compare these 3D anisotropies with respect to the original sample geographical position. In each case, we tried to identify as thoroughly as possible the microstructural source of the observed anisotropies, first by the mean of existing models, then through direct observations (optic and electronic microscopy). Depending on the rock investigated, anisotropy was found to be controlled by pore shape, intergranular contact distribution, preferentially oriented microcracks interacting with compaction pattern or pressure solution cleavages interacting with each other. The net result of this work is that P-wave velocity anisotropy can express the interaction between different microstructural features as well as their evolution during deformation. (author)

  11. Tunnel Junction with Perpendicular Magnetic Anisotropy: Status and Challenges

    Directory of Open Access Journals (Sweden)

    Mengxing Wang

    2015-08-01

    Full Text Available Magnetic tunnel junction (MTJ, which arises from emerging spintronics, has the potential to become the basic component of novel memory, logic circuits, and other applications. Particularly since the first demonstration of current induced magnetization switching in MTJ, spin transfer torque magnetic random access memory (STT-MRAM has sparked a huge interest thanks to its non-volatility, fast access speed, and infinite endurance. However, along with the advanced nodes scaling, MTJ with in-plane magnetic anisotropy suffers from modest thermal stability, high power consumption, and manufactural challenges. To address these concerns, focus of research has converted to the preferable perpendicular magnetic anisotropy (PMA based MTJ, whereas a number of conditions still have to be met before its practical application. This paper overviews the principles of PMA and STT, where relevant issues are preliminarily discussed. Centering on the interfacial PMA in CoFeB/MgO system, we present the fundamentals and latest progress in the engineering, material, and structural points of view. The last part illustrates potential investigations and applications with regard to MTJ with interfacial PMA.

  12. Polarization-insensitive optical gain characteristics of highly stacked InAs/GaAs quantum dots

    International Nuclear Information System (INIS)

    Kita, Takashi; Suwa, Masaya; Kaizu, Toshiyuki; Harada, Yukihiro

    2014-01-01

    The polarized optical gain characteristics of highly stacked InAs/GaAs quantum dots (QDs) with a thin spacer layer fabricated on an n + -GaAs (001) substrate were studied in the sub-threshold gain region. Using a 4.0-nm-thick spacer layer, we realized an electronically coupled QD superlattice structure along the stacking direction, which enabled the enhancement of the optical gain of the [001] transverse-magnetic (TM) polarization component. We systematically studied the polarized electroluminescence properties of laser devices containing 30 and 40 stacked InAs/GaAs QDs. The net modal gain was analyzed using the Hakki-Paoli method. Owing to the in-plane shape anisotropy of QDs, the polarization sensitivity of the gain depends on the waveguide direction. The gain showing polarization isotropy between the TM and transverse-electric polarization components is high for the [110] waveguide structure, which occurs for higher amounts of stacked QDs. Conversely, the isotropy of the [−110] waveguide is easily achieved even if the stacking is relatively low, although the gain is small.

  13. Study of the magnetic anisotropy in Ni/Cu and Ni/glass thin films

    Energy Technology Data Exchange (ETDEWEB)

    Cherif, S.-M. [Laboratoire PMTM, Institut Galilee, Univeriste Paris 13, Villetaneuse, 93340 (France); Layadi, A. [Departement de Physique, Universite Ferhat Abbas, Setif 19000 (Algeria)]. E-mail: a_layadi@yahoo.fr; Ben Youssef, J. [Laboratoire de Magnetisme de Bretagne, U.B.O., Brest 29238 (France); Nacereddine, C. [Departement de Physique, Universite Ferhat Abbas, Setif 19000 (Algeria); Roussigne, Y. [Laboratoire PMTM, Institut Galilee, Univeriste Paris 13, Villetaneuse, 93340 (France)

    2007-01-01

    The magnetic properties of evaporated Ni/Cu and Ni/glass thin films have been investigated by means of the vibrating sample magnetometer (VSM), the Brillouin light scattering (BLS) and magnetic force microscopy (MFM). The Ni thickness, t, ranges from 31 to 165 nm. The second- and fourth-order magnetic anisotropy constants, K {sub 1} and K {sub 2}, have been included; for the Ni/Cu series, K {sub 1} was found to decrease from 1.0x10{sup 6} to 0.18x10{sup 6} erg/cm{sup 3} as t increases from 31 to 165 nm, while K {sub 2} increased from 0.24x10{sup 6} to 0.8x10{sup 6} erg/cm{sup 3}. Over all the thickness range, the magnetization easy axis is in plane. For thinner films, there is a good agreement between anisotropy constant values inferred from VSM and BLS. Stripe domains were observed for t{>=}165 nm in Ni/glass and t{>=}90 nm in Ni/Cu.

  14. Digital polarization holography advancing geometrical phase optics.

    Science.gov (United States)

    De Sio, Luciano; Roberts, David E; Liao, Zhi; Nersisyan, Sarik; Uskova, Olena; Wickboldt, Lloyd; Tabiryan, Nelson; Steeves, Diane M; Kimball, Brian R

    2016-08-08

    Geometrical phase or the fourth generation (4G) optics enables realization of optical components (lenses, prisms, gratings, spiral phase plates, etc.) by patterning the optical axis orientation in the plane of thin anisotropic films. Such components exhibit near 100% diffraction efficiency over a broadband of wavelengths. The films are obtained by coating liquid crystalline (LC) materials over substrates with patterned alignment conditions. Photo-anisotropic materials are used for producing desired alignment conditions at the substrate surface. We present and discuss here an opportunity of producing the widest variety of "free-form" 4G optical components with arbitrary spatial patterns of the optical anisotropy axis orientation with the aid of a digital spatial light polarization converter (DSLPC). The DSLPC is based on a reflective, high resolution spatial light modulator (SLM) combined with an "ad hoc" optical setup. The most attractive feature of the use of a DSLPC for photoalignment of nanometer thin photo-anisotropic coatings is that the orientation of the alignment layer, and therefore of the fabricated LC or LC polymer (LCP) components can be specified on a pixel-by-pixel basis with high spatial resolution. By varying the optical magnification or de-magnification the spatial resolution of the photoaligned layer can be adjusted to an optimum for each application. With a simple "click" it is possible to record different optical components as well as arbitrary patterns ranging from lenses to invisible labels and other transparent labels that reveal different images depending on the side from which they are viewed.

  15. Photoinduced optical anisotropy in azobenzene methacrylate block copolymers: Influence of molecular weight and irradiation conditions

    DEFF Research Database (Denmark)

    Gimeno, Sofia; Forcen, Patricia; Oriol, Luis

    2009-01-01

    The photoinduced anisotropy in a series of azomethacrylate block copolymers with different Molecular weights and azo contents has been investigated under several irradiation conditions. Depending on molecular weight and composition, different microstructures (disordered, lamellar, spherical) appe...

  16. A Line Integral Representation of the Physical Optics Far Field from Plane PEC Scatterers Illuminated by Electric or Magnetic Hertzian Dipoles

    DEFF Research Database (Denmark)

    Arslanagic, S.; Meincke, Peter; Jørgensen, E.

    2002-01-01

    We derive a line integral representation of the physical optics (PO) scattered far field that yields the exact same result as the conventional surface radiation integral. This representation applies to a perfectly electrically conducting plane scatterer illuminated by electric or magnetic Hertzian...... dipoles....

  17. What does anisotropy measure? Insights from increased and decreased anisotropy in selective fiber tracts in schizophrenia.

    Directory of Open Access Journals (Sweden)

    Gabriel A De Erausquin

    2013-03-01

    Full Text Available Schizophrenia is a common, severe and chronically disabling mental illness of unknown cause. Recent MRI studies have focused attention on white matter abnormalities in schizophrenia using diffusion tensor imaging (DTI. Indices commonly derived from DTI include (a mean diffusivity, independent of direction, (b fractional anisotropy (FA or relative anisotropy (RA, (c axial diffusivity, and (d radial diffusivity. In cerebral white matter, contributions to these indices come from fiber arrangements, degree of myelination, and axonal integrity. Relatively pure deficits in myelin result in a modest increase in radial diffusivity, without affecting axial diffusivity and with preservation of anisotropy. Although schizophrenia is not characterized by gross abnormalities of white matter, it does involve a profound dysregulation of myelin-associated gene expression, reductions in oligodendrocyte numbers, and marked abnormalities in the ultrastructure of myelin sheaths. Since each oligodendrocyte myelinates as many as 40 axon segments, changes in the number of oligodendrocytes, and/or in the integrity of myelin sheaths, and/or axoglial contacts can have a profound impact on signal propagation and the integrity of neuronal circuits. Whereas a number of studies have revealed inconsistent decreases in anisotropy in schizophrenia, we and others have found increased fractional anisotropy in key subcortical tracts associated with the circuits underlying symptom generation in schizophrenia. We review data revealing increased anisotropy in dopaminergic tracts in the mesencephalon of schizophrenics and their unaffected relatives, and discuss the possible biological underpinnings and physiological significance of this finding.

  18. Anisotropic universal conductance fluctuations in disordered quantum wires with Rashba and Dresselhaus spin–orbit interaction and an applied in-plane magnetic field

    International Nuclear Information System (INIS)

    Scheid, Matthias; Adagideli, İnanç; Richter, Klaus; Nitta, Junsaku

    2009-01-01

    We investigate the transport properties of narrow quantum wires realized in disordered two-dimensional electron gases in the presence of k-linear Rashba and Dresselhaus spin–orbit interaction, and an applied in-plane magnetic field. Building on previous work (Scheid et al 2008 Phys. Rev. Lett. 101 266401), we find that in addition to the conductance, the universal conductance fluctuations also feature anisotropy with respect to the magnetic field direction. This anisotropy can be explained solely from the symmetries exhibited by the Hamiltonian as well as the relative strengths of the Rashba and Dresselhaus spin–orbit interaction and thus can be utilized to detect this ratio from purely electrical measurements

  19. Hybrid iterative phase retrieval algorithm based on fusion of intensity information in three defocused planes.

    Science.gov (United States)

    Zeng, Fa; Tan, Qiaofeng; Yan, Yingbai; Jin, Guofan

    2007-10-01

    Study of phase retrieval technology is quite meaningful, for its wide applications related to many domains, such as adaptive optics, detection of laser quality, precise measurement of optical surface, and so on. Here a hybrid iterative phase retrieval algorithm is proposed, based on fusion of the intensity information in three defocused planes. First the conjugate gradient algorithm is adapted to achieve a coarse solution of phase distribution in the input plane; then the iterative angular spectrum method is applied in succession for better retrieval result. This algorithm is still applicable even when the exact shape and size of the aperture in the input plane are unknown. Moreover, this algorithm always exhibits good convergence, i.e., the retrieved results are insensitive to the chosen positions of the three defocused planes and the initial guess of complex amplitude in the input plane, which has been proved by both simulations and further experiments.

  20. Optical anisotropy in micromechanically rolled carbon nanotube forest

    Science.gov (United States)

    Razib, Mohd Asyraf bin Mohd; Rana, Masud; Saleh, Tanveer; Fan, Harrison; Koch, Andrew; Nojeh, Alireza; Takahata, Kenichi; Muthalif, Asan Gani Bin Abdul

    2017-09-01

    The bulk appearance of arrays of vertically aligned carbon nanotubes (VACNT arrays or CNT forests) is dark as they absorb most of the incident light. In this paper, two postprocessing techniques have been described where the CNT forest can be patterned by selective bending of the tips of the nanotubes using a rigid cylindrical tool. A tungsten tool was used to bend the vertical structure of CNTs with predefined parameters in two different ways as stated above: bending using the bottom surface of the tool (micromechanical bending (M2B)) and rolling using the side of the tool (micromechanical rolling (M2R)). The processed zone was investigated using a Field Emission Scanning Electron Microscope (FESEM) and optical setup to reveal the surface morphology and optical characteristics of the patterned CNTs on the substrate. Interestingly, the polarized optical reflection from the micromechanical rolled (M2R) sample was found to be significantly influenced by the rotation of the sample. It was observed that, if the polarization of the light is parallel to the alignment of the CNTs, the reflectance is at least 2 x higher than for the perpendicular direction. Furthermore, the reflectance varied almost linearly with good repeatability ( 10%) as the processed CNT forest sample was rotated from 0° to 90°. [Figure not available: see fulltext.

  1. Three-dimensional fluorescent microscopy via simultaneous illumination and detection at multiple planes.

    Science.gov (United States)

    Ma, Qian; Khademhosseinieh, Bahar; Huang, Eric; Qian, Haoliang; Bakowski, Malina A; Troemel, Emily R; Liu, Zhaowei

    2016-08-16

    The conventional optical microscope is an inherently two-dimensional (2D) imaging tool. The objective lens, eyepiece and image sensor are all designed to capture light emitted from a 2D 'object plane'. Existing technologies, such as confocal or light sheet fluorescence microscopy have to utilize mechanical scanning, a time-multiplexing process, to capture a 3D image. In this paper, we present a 3D optical microscopy method based upon simultaneously illuminating and detecting multiple focal planes. This is implemented by adding two diffractive optical elements to modify the illumination and detection optics. We demonstrate that the image quality of this technique is comparable to conventional light sheet fluorescent microscopy with the advantage of the simultaneous imaging of multiple axial planes and reduced number of scans required to image the whole sample volume.

  2. Manipulating magnetic anisotropy of the ultrathin Co2FeAl full-Heusler alloy film via growth orientation of the Pt buffer layer

    International Nuclear Information System (INIS)

    Wen, F.S.; Xiang, J.Y.; Hao, C.X.; Zhang, F.; Lv, Y.F.; Wang, W.H.; Hu, W.T.; Liu, Z.Y.

    2013-01-01

    The ultrathin films of Co 2 FeAl (CFA) full-Heusler alloy were prepared between two Pt layers on MgO single crystals by magnetron sputtering. By controlling the substrate temperature, different growth orientations of the Pt underlayers were realized, and their effects were investigated on the magnetic anisotropy of the ultrathin CFA film. It was revealed that different Pt orientations lead to distinctly different magnetic anisotropy for the sandwiched ultrathin CFA films. The Pt (111) orientation favors the perpendicular anisotropy, while the appearance of partial Pt (001) orientation leads to the quick decrease of perpendicular anisotropy and the complete Pt (001) orientation gives rise to the in-plane anisotropy. With the Pt (111) orientation, the temperature and thickness-induced spin reorientation transitions were investigated in the sandwiched ultrathin CFA films. - Highlights: • Different Pt orientations lead to different magnetic anisotropy for sandwiched ultrathin CFA films. • The Pt (111) orientation favors the perpendicular anisotropy for CFA layer. • Temperature and thickness-induced spin reorientation transitions were investigated in sandwiched ultrathin CFA films. • 0.8 nm CFA film is good candidate as electrode in magnetic tunnel junctions

  3. Relationship between Magnetic Anisotropy below Pseudogap Temperature and Short-Range Antiferromagnetic Order in High-Temperature Cuprate Superconductor

    Science.gov (United States)

    Morinari, Takao

    2018-06-01

    The central issue in high-temperature cuprate superconductors is the pseudogap state appearing below the pseudogap temperature T*, which is well above the superconducting transition temperature. In this study, we theoretically investigate the rapid increase of the magnetic anisotropy below the pseudogap temperature detected by the recent torque-magnetometry measurements on YBa2Cu3Oy [Y. Sato et al., 10.1038/nphys4205" xlink:type="simple">Nat. Phys. 13, 1074 (2017)]. Applying the spin Green's function formalism including the Dzyaloshinskii-Moriya interaction arising from the buckling of the CuO2 plane, we obtain results that are in good agreement with the experiment and find a scaling relationship. Our analysis suggests that the characteristic temperature associated with the magnetic anisotropy, which coincides with T*, is not a phase transition temperature but a crossover temperature associated with the short-range antiferromagnetic order.

  4. Modeling elastic anisotropy in strained heteroepitaxy.

    Science.gov (United States)

    Dixit, Gopal Krishna; Ranganathan, Madhav

    2017-09-20

    Using a continuum evolution equation, we model the growth and evolution of quantum dots in the heteroepitaxial Ge on Si(0 0 1) system in a molecular beam epitaxy unit. We formulate our model in terms of evolution due to deposition, and due to surface diffusion which is governed by a free energy. This free energy has contributions from surface energy, curvature, wetting effects and elastic energy due to lattice mismatch between the film and the substrate. In addition to anisotropy due to surface energy which favors facet formation, we also incorporate elastic anisotropy due to an underlying crystal lattice. The complicated elastic problem of the film-substrate system subjected to boundary conditions at the free surface, interface and the bulk substrate is solved by perturbation analysis using a small slope approximation. This permits an analysis of effects at different orders in the slope and sheds new light on the observed behavior. Linear stability analysis shows the early evolution of the instability towards dot formation. The elastic anisotropy causes a change in the alignment of dots in the linear regime, whereas the surface energy anisotropy changes the dot shapes at the nonlinear regime. Numerical simulation of the full nonlinear equations shows the evolution of the surface morphology. In particular, we show, for parameters of the [Formula: see text] [Formula: see text] on Si(0 0 1), the surface energy anisotropy dominates the shapes of the quantum dots, whereas their alignment is influenced by the elastic energy anisotropy. The anisotropy in elasticity causes a further elongation of the islands whose coarsening is interrupted due to [Formula: see text] facets on the surface.

  5. Modeling elastic anisotropy in strained heteroepitaxy

    Science.gov (United States)

    Krishna Dixit, Gopal; Ranganathan, Madhav

    2017-09-01

    Using a continuum evolution equation, we model the growth and evolution of quantum dots in the heteroepitaxial Ge on Si(0 0 1) system in a molecular beam epitaxy unit. We formulate our model in terms of evolution due to deposition, and due to surface diffusion which is governed by a free energy. This free energy has contributions from surface energy, curvature, wetting effects and elastic energy due to lattice mismatch between the film and the substrate. In addition to anisotropy due to surface energy which favors facet formation, we also incorporate elastic anisotropy due to an underlying crystal lattice. The complicated elastic problem of the film-substrate system subjected to boundary conditions at the free surface, interface and the bulk substrate is solved by perturbation analysis using a small slope approximation. This permits an analysis of effects at different orders in the slope and sheds new light on the observed behavior. Linear stability analysis shows the early evolution of the instability towards dot formation. The elastic anisotropy causes a change in the alignment of dots in the linear regime, whereas the surface energy anisotropy changes the dot shapes at the nonlinear regime. Numerical simulation of the full nonlinear equations shows the evolution of the surface morphology. In particular, we show, for parameters of the Ge0.25 Si0.75 on Si(0 0 1), the surface energy anisotropy dominates the shapes of the quantum dots, whereas their alignment is influenced by the elastic energy anisotropy. The anisotropy in elasticity causes a further elongation of the islands whose coarsening is interrupted due to facets on the surface.

  6. Acousto-optic control of internal acoustic reflection in tellurium dioxide crystal in case of strong elastic energy walkoff [Invited].

    Science.gov (United States)

    Voloshinov, Vitaly; Polikarpova, Nataliya; Ivanova, Polina; Khorkin, Vladimir

    2018-04-01

    Peculiar cases of acoustic wave propagation and reflection may be observed in strongly anisotropic acousto-optical crystals. A tellurium dioxide crystal serves as a prime example of such media, since it possesses record indexes of acoustic anisotropy. We studied one of the unusual scenarios of acoustic incidence and reflection from a free crystal-vacuum boundary in paratellurite. The directions of the acoustic waves in the (001) plane of the crystal were determined, and their basic characteristics were calculated. The carried-out acousto-optic experiment at the wavelength of light 532 nm and the acoustic frequency 73 MHz confirmed the theoretical predictions. The effects examined in the paper include the acoustic wave propagation with the record walkoff angle 74°. We also observed the incidence of the wave on the boundary at the angle exceeding 90°. Finally, we registered the close-to-back reflection of acoustic energy following the incidence. One of the stunning aspects is the distribution of energy between the incident and the back-reflected wave. The unusual features of the acoustic wave reflections pointed out in the paper are valuable for their possible applications in acousto-optic devices.

  7. Performance of an optical filter for the XMM focal plane CCD camera EPIC

    Science.gov (United States)

    Stephan, Karl-Heinz; Reppin, C.; Hirschinger, M.; Maier, H. J.; Frischke, D.; Fuchs, Detlef; Mueller, Peter; Guertler, Peter

    1996-10-01

    We have been developing optical filters for ESA's x-ray astronomy project XMM (x-ray multi mirror mission). Specific CCDs will be used as detectors in the focal plane on board the observatory. Since these detectors are sensitive from the x-ray to the NIR (near infrared) spectral range, x-ray observations require optical filters, which combine a high transparency for photon energies in the soft x-ray region and a high opacity for UV (ultraviolet) and VIS (visible) radiation as well. With respect to the mission goal in orbit three types of flight model filters are designed having different spectral transmittance functions. We report on one of these types, a so-called 'thick' filter, which has been realized within the EQM (electrical qualification model)- phase of the project. The filter features a cut-off in the EUV (extreme ultraviolet) spectral range and suppresses radiation below 10 eV photon energy by more than 8 orders of magnitude. It has an effective aperture of 73 mm without any support structure. A 0.35 micrometer thick polypropylene carrier foil is coated with metallic films of Al and Sn. The manufacturing process, the qualification measurements and the environmental tests are described, and the resulting performance data is presented.

  8. Microstructure-property relationships in a gas diffusion layer (GDL) for Polymer Electrolyte Fuel Cells, Part I: effect of compression and anisotropy of dry GDL

    International Nuclear Information System (INIS)

    Holzer, L.; Pecho, O.; Schumacher, J.; Marmet, Ph.; Stenzel, O.; Büchi, F.N.; Lamibrac, A.; Münch, B.

    2017-01-01

    Highlights: • Methods are developed to predict transport properties of dry GDL in PE Fuel Cells. • Diffusivity and Permeability are reliably predicted based on 3D characteristics. • Predictions based on 3D microstructure match well with numerical simulations. • Anisotropy is due to in- and through-plane variation of tortuosity and hydraulic rad. • The methods can be used to predict relative permeability and diffusivity in wet GDL. - Abstract: New quantitative relationships are established between effective properties (gas diffusivity, permeability and electrical conductivity) for a dry GDL (25 BA) from SGL Carbon with the corresponding microstructure characteristics from 3D analysis. These microstructure characteristics include phase volume fractions, geodesic tortuosity, constrictivity and hydraulic radius. The latter two parameters include information from two different size distribution curves for bulges (continuous PSD) and for bottlenecks (MIP-PSD). X-ray tomographic microscopy is performed for GDL at different compression levels and the micro-macro-relationships are then established for the in-plane and through-plane directions. The predicted properties based on these relationships are compared with numerical transport simulations, which give very similar results and which can be summarized as follows: Gas diffusivity is higher in the in-plane than in the through-plane direction. Its variation with compression is mainly related to changes of porosity and geodesic tortuosity. Permeability is dominated by variations in hydraulic radius. Through-plane permeability is slightly higher than in-plane. Anisotropy of electrical conductivity is controlled by tortuosity, which is higher for the through-plane direction. A table with new quantitative relationships is provided, which are considered to be more accurate and precise than older descriptions (e.g. Carman-Kozeny, Bruggeman), because they are based on detailed topological information from 3D analysis

  9. Multispectral Thermal Imager Optical Assembly Performance and Integration of the Flight Focal Plane Assembly

    International Nuclear Information System (INIS)

    Blake, Dick; Byrd, Don; Christensen, Wynn; Henson, Tammy; Krumel, Les; Rappoport, William; Shen, Gon-Yen

    1999-01-01

    The Multispectral Thermal Imager Optical Assembly (OA) has been fabricated, assembled, successfully performance tested, and integrated into the flight payload structure with the flight Focal Plane Assembly (FPA) integrated and aligned to it. This represents a major milestone achieved towards completion of this earth observing E-O imaging sensor that is to be operated in low earth orbit. The OA consists of an off-axis three mirror anastigmatic (TMA) telescope with a 36 cm unobscured clear aperture, a wide-field-of-view (WFOV) of 1.82 along the direction of spacecraft motion and 1.38 across the direction of spacecraft motion. It also contains a comprehensive on-board radiometric calibration system. The OA is part of a multispectral pushbroom imaging sensor which employs a single mechanically cooled focal plane with 15 spectral bands covering a wavelength range from 0.45 to 10.7 m. The OA achieves near diffraction-limited performance from visible to the long-wave infrared (LWIR) wavelengths. The two major design drivers for the OA are 80% enpixeled energy in the visible bands and radiometric stability. Enpixeled energy in the visible bands also drove the alignment of the FPA detectors to the OA image plane to a requirement of less than 20 m over the entire visible detector field of view (FOV). Radiometric stability requirements mandated a cold Lyot stop for stray light rejection and thermal background reduction. The Lyot stop is part of the FPA assembly and acts as the aperture stop for the imaging system. The alignment of the Lyot stop to the OA drove the centering and to some extent the tilt alignment requirements of the FPA to the OA

  10. Electron dynamics and optical properties modulation of monolayer MoS{sub 2} by femtosecond laser pulse: a simulation using time-dependent density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Su, Xiaoxing; Jiang, Lan [Beijing Institute of Technology, Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing (China); Wang, Feng [Beijing Institute of Technology, School of Physics, Beijing (China); Su, Gaoshi [Beijing Institute of Technology, School of Mechatronical Engineering, Beijing (China); Qu, Liangti [Beijing Institute of Technology, Key Laboratory of Cluster Science, Ministry of Education, School of Chemistry, Beijing (China); Lu, Yongfeng [University of Nebraska-Lincoln, Department of Electrical Engineering, Lincoln, NE (United States)

    2017-07-15

    In this study, we adopted time-dependent density functional theory to investigate the optical properties of monolayer MoS{sub 2} and the effect of intense few-cycle femtosecond laser pulses on these properties. The electron dynamics of monolayer MoS{sub 2} under few-cycle and multi-cycle laser irradiation were described. The polarization direction of the laser had a marked effect on the energy absorption and electronic excitation of monolayer MoS{sub 2} because of anisotropy. Change in the polarization direction of few-cycle pulse changed the absorbed energy by a factor over 4000. Few-cycle pulse showed a higher sensitivity to the electronic property of material than multi-cycle pulse. The modulation of the dielectric properties of the material was observed on the femtosecond time scale. The negative divergence appeared in the real part of the function at low frequencies and photoinduced blue shift occurred due to Burstein-Moss effect. The irradiation of femtosecond laser caused the dielectric response within the infrared region and introduced anisotropy to the in-plane optical properties. Laser-based engineering of optical properties through controlling transient electron dynamics expands the functionality of MoS{sub 2} and has potential applications in direction-dependent optoelectronic devices. (orig.)

  11. Ising-like spin anisotropy and competing antiferromagnetic-ferromagnetic orders in GdBaCo2O5.5 single crystals.

    Science.gov (United States)

    Taskin, A A; Lavrov, A N; Ando, Yoichi

    2003-06-06

    In RBaCo2O5+x compounds (R is rare earth), a ferromagnetic-antiferromagnetic competition is accompanied by a giant magnetoresistance. We study the magnetization of detwinned GdBaCo2O5.5 single crystals and find a remarkable uniaxial anisotropy of Co3+ spins which is tightly linked with the chain oxygen ordering in GdO0.5 planes. Reflecting the underlying oxygen order, CoO2 planes also develop a spin-state order consisting of Co3+ ions in alternating rows of S=1 and S=0 states. The magnetic structure appears to be composed of weakly coupled ferromagnetic ladders with Ising-like moments, which gives a simple picture for magnetotransport phenomena.

  12. Manipulating magnetic anisotropy of the ultrathin Co{sub 2}FeAl full-Heusler alloy film via growth orientation of the Pt buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Wen, F.S., E-mail: wenfsh03@126.com [State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Xiang, J.Y.; Hao, C.X.; Zhang, F.; Lv, Y.F. [State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Wang, W.H. [Institute of Physics, Chinese Academy of Science, Beijing 100080 (China); Hu, W.T.; Liu, Z.Y. [State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China)

    2013-12-15

    The ultrathin films of Co{sub 2}FeAl (CFA) full-Heusler alloy were prepared between two Pt layers on MgO single crystals by magnetron sputtering. By controlling the substrate temperature, different growth orientations of the Pt underlayers were realized, and their effects were investigated on the magnetic anisotropy of the ultrathin CFA film. It was revealed that different Pt orientations lead to distinctly different magnetic anisotropy for the sandwiched ultrathin CFA films. The Pt (111) orientation favors the perpendicular anisotropy, while the appearance of partial Pt (001) orientation leads to the quick decrease of perpendicular anisotropy and the complete Pt (001) orientation gives rise to the in-plane anisotropy. With the Pt (111) orientation, the temperature and thickness-induced spin reorientation transitions were investigated in the sandwiched ultrathin CFA films. - Highlights: • Different Pt orientations lead to different magnetic anisotropy for sandwiched ultrathin CFA films. • The Pt (111) orientation favors the perpendicular anisotropy for CFA layer. • Temperature and thickness-induced spin reorientation transitions were investigated in sandwiched ultrathin CFA films. • 0.8 nm CFA film is good candidate as electrode in magnetic tunnel junctions.

  13. Strain-induced fermi contour anisotropy of GaAs 2D holes.

    Science.gov (United States)

    Shabani, J; Shayegan, M; Winkler, R

    2008-03-07

    We report measurements of magnetoresistance commensurability peaks, induced by a square array of antidots, in GaAs (311)A two-dimensional holes as a function of applied in-plane strain. The data directly probe the shapes of the Fermi contours of the two spin subbands that are split thanks to the spin-orbit interaction and strain. The experimental results are in quantitative agreement with the predictions of accurate energy band calculations, and reveal that the majority spin subband has a severely distorted Fermi contour whose anisotropy can be tuned with strain.

  14. In-plane optical spectral weight redistribution in the optimally doped Ba0.6 K0.4Fe2As2 superconductor

    International Nuclear Information System (INIS)

    Xu Bing; Dai Yao-Min; Xiao Hong; Qiu Xiang-Gang; Lobo, R. P. S. M.

    2014-01-01

    We performed detailed temperature-dependent optical measurements on optimally doped Ba 0.6 K 0.4 Fe 2 As 2 single crystal. We examine the changes of the in-plane optical conductivity spectral weight in the normal state and the evolution of the superconducting condensate in the superconducting state. In the normal state, the low-frequency spectral weight shows a metallic response with an arctan (T) dependence, indicating a T-linear scattering rate behavior for the carriers. A high energy spectral weight transfer associated with the Hund's coupling occurs from the low frequencies below 4000 cm −1 ∼ 5000 cm −1 to higher frequencies up to at least 10 cm −1 . Its temperature dependence analysis suggests that the Hund's coupling strength is continuously enhanced as the temperature is reduced. In the superconducting state, the FGT sum rule is conserved according to the spectral weight estimation within the conduction bands, only about 40% of the conduction bands participates in the superconducting condensate indicating that Ba 0.6 K 0.4 Fe 2 As 2 is in dirty limit. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  15. Electronic in-plane symmetry breaking at field-tuned quantum criticality in CeRhIn5.

    Science.gov (United States)

    Ronning, F; Helm, T; Shirer, K R; Bachmann, M D; Balicas, L; Chan, M K; Ramshaw, B J; McDonald, R D; Balakirev, F F; Jaime, M; Bauer, E D; Moll, P J W

    2017-08-17

    Electronic nematic materials are characterized by a lowered symmetry of the electronic system compared to the underlying lattice, in analogy to the directional alignment without translational order in nematic liquid crystals. Such nematic phases appear in the copper- and iron-based high-temperature superconductors, and their role in establishing superconductivity remains an open question. Nematicity may take an active part, cooperating or competing with superconductivity, or may appear accidentally in such systems. Here we present experimental evidence for a phase of fluctuating nematic character in a heavy-fermion superconductor, CeRhIn 5 (ref. 5). We observe a magnetic-field-induced state in the vicinity of a field-tuned antiferromagnetic quantum critical point at H c  ≈ 50 tesla. This phase appears above an out-of-plane critical field H* ≈ 28 tesla and is characterized by a substantial in-plane resistivity anisotropy in the presence of a small in-plane field component. The in-plane symmetry breaking has little apparent connection to the underlying lattice, as evidenced by the small magnitude of the magnetostriction anomaly at H*. Furthermore, no anomalies appear in the magnetic torque, suggesting the absence of metamagnetism in this field range. The appearance of nematic behaviour in a prototypical heavy-fermion superconductor highlights the interrelation of nematicity and unconventional superconductivity, suggesting nematicity to be common among correlated materials.

  16. A Laboratory Goniometer System for Measuring Reflectance and Emittance Anisotropy

    Directory of Open Access Journals (Sweden)

    Arjan de Jong

    2012-12-01

    Full Text Available In this paper, a laboratory goniometer system for performing multi-angular measurements under controlled illumination conditions is described. A commercially available robotic arm enables the acquisition of a large number of measurements over the full hemisphere within a short time span making it much faster than other goniometers. In addition, the presented set-up enables assessment of anisotropic reflectance and emittance behaviour of soils, leaves and small canopies. Mounting a spectrometer enables acquisition of either hemispherical measurements or measurements in the horizontal plane. Mounting a thermal camera allows directional observations of the thermal emittance. This paper also presents three showcases of these different measurement set-ups in order to illustrate its possibilities. Finally, suggestions for applying this instrument and for future research directions are given, including linking the measured reflectance anisotropy with physically-based anisotropy models on the one hand and combining them with field goniometry measurements for joint analysis with remote sensing data on the other hand. The speed and flexibility of the system offer a large added value to the existing pool of laboratory goniometers.

  17. Control Plane Strategies for Elastic Optical Networks

    DEFF Research Database (Denmark)

    Turus, Ioan

    Networks (EONs) concept is proposed as a solution to enable a more flexible handling of the optical capacity and allows an increase of available capacity over the existing optical infrastructure. One main requirement for enabling EONs is to have a flexible spectrum structure (i.e.Flex-Grid) which allows...... the spectrum to be used as an on-demand resource. Flex-Grid raises new challenges for controlling the dynamic spectrum slots environment. This thesis addresses, as part of the Celtic project “Elastic Optical Networks” (EONet), the control of Flex-Grid architectures by extending the capabilities of a GMPLS...... (Generalized Multi-Protocol Label Switching)-based control framework in accordance with existing IETF standards and recommendations. The usual approach of extending capacity in transport networks by incrementally adding more optical resources results in a very inefficient usage and determines a high power...

  18. Experimental Studies on the Changes in Resistivity and Its Anisotropy Using Electrical Resistivity Tomography

    Directory of Open Access Journals (Sweden)

    Tao Zhu

    2012-01-01

    Full Text Available Three measuring lines were arranged on one of free planes of magnetite cuboid samples. Apparent resistivity data were acquired by MIR-2007 resistivity meter when samples were under uniaxial compression of servocontrol YAW-5000F loadingmachine in laboratory. Then we constructed the residual resistivity images using electrical resistivity tomography (ERT and plotted the diagrams of apparent resistivity anisotropy coefficient (ARAC λ∗ and the included angle α between the major axis of apparent resistivity anisotropy ellipse and the axis of load with pressure and effective depth. Our results show that with increasing pressure, resistivity and the decreased (D region and increased (I region resistivity regions have complex behaviors, but when pressure is higher than a certain value, the average resistivity decrease and the area of D region expand gradually in all time with the increase of pressure, which may be significant to the monitoring and prediction of earthquake, volcanic activities, and large-scale geologic motions. The effects of pressure on λ∗ and α are not very outstanding for dry magnetite samples.

  19. On the molecular anisotropy of liquid crystalline and flexible polymer systems

    Science.gov (United States)

    van Horn, Brett L.

    The demand for products of ever increasing quality or for novel applications has required increasing attention to or manipulation of the anisotropy of manufactured parts. Oriented plastics are used everywhere from recording film to automotive body parts to monofilament fishing line. Liquid crystals are also used in a wide array of applications including their dominance in the flat panel display industry, color changing temperature sensors, and woven bullet resistant fabrics. Anisotropy can also be detrimental, for instance sometimes leading to poor fracture resistance or low yield stress along specific directions. Controlling and measuring anisotropy of materials has become increasingly important, but doing so is wrought with challenges. Measuring physical properties of isotropic liquids, such as water or most oils can be done in a straightforward fashion. Their viscosities and densities, for example, have unique values under a given set of conditions. With anisotropic fluids, like liquid crystals, the viscosity, for instance, will not only depend upon temperature, concentration, etc. but also upon the direction of observation, degree of anisotropy, source of anisotropy, and so forth. This added degree of complexity complicates our ability to define the state of the material at which the measurements are made and generally necessitates the use of more sophisticated measurement strategies or techniques. This work presents techniques and tools for investigating anisotropy in liquid crystalline and stretched polymeric systems. Included are the use of conoscopy for the determination of birefringence and orientation of nematic liquid crystals and stretched polymers, the shear response of flow aligning nematic liquid crystal monodomains, and the design of a novel linear rheometer that allows for in situ optical or scattering investigations.

  20. Electric-field-control of magnetic anisotropy of Co0.6Fe0.2B0.2/oxide stacks using reduced voltage

    Science.gov (United States)

    Kita, Koji; Abraham, David W.; Gajek, Martin J.; Worledge, D. C.

    2012-08-01

    We have demonstrated purely electrical manipulation of the magnetic anisotropy of a Co0.6Fe0.2B0.2 film by applying only 8 V across the CoFeB/oxide stack. A clear transition from in-plane to perpendicular anisotropy was observed. The quantitative relationship between interface anisotropy energy and the applied electric-field was determined from the linear voltage dependence of the saturation field. By comparing the dielectric stacks of MgO/Al2O3 and MgO/HfO2/Al2O3, enhanced voltage control was also demonstrated, due to the higher dielectric constant of the HfO2. These results suggest the feasibility of purely electrical control of magnetization with small voltage bias for spintronics applications.

  1. Use of Mueller matrix colposcopy in the characterization of cervical collagen anisotropy

    Science.gov (United States)

    Montejo, Karla A.; Chue-Sang, Joseph; Bai, Yuqiang; Stoff, Susan; Holness, Nola; Gonzalez, Mariacarla; Gomes, Jefferson; Gandjbakhche, Amir; Chernomordik, Viktor V.; Ramella-Roman, Jessica C.

    2017-02-01

    Preterm birth (PTB) presents a serious medical heath concern in both economically developed and developing nations, with incidence rate from 15%-11% respectively. Changes in cervical collagen bundle orientation and distribution may prove to be a predictor of PTB. Polarization imaging is an effective means to measure optical anisotropy in birefringent biological tissue such as those rich in collagen. Non-invasive, full-field Mueller Matrix polarimetry (MMP) imaging methodologies, optical coherence tomography (OCT), and second harmonic generation (SHG) microscopy were used to assess cervical collagen content and structure in non-pregnant cervices. In vivo studies using a Mueller Matrix colposcope are underway. Further studies of cervical collagen orientation throughout pregnancy are needed to understand if Mueller matrix polarimetry can effectively identify at-risk conditions for PTB.

  2. Reduced ventral cingulum integrity and increased behavioral problems in children with isolated optic nerve hypoplasia and mild to moderate or no visual impairment.

    Directory of Open Access Journals (Sweden)

    Emma A Webb

    Full Text Available OBJECTIVES: To assess the prevalence of behavioral problems in children with isolated optic nerve hypoplasia, mild to moderate or no visual impairment, and no developmental delay. To identify white matter abnormalities that may provide neural correlates for any behavioral abnormalities identified. PATIENTS AND METHODS: Eleven children with isolated optic nerve hypoplasia (mean age 5.9 years underwent behavioral assessment and brain diffusion tensor imaging, Twenty four controls with isolated short stature (mean age 6.4 years underwent MRI, 11 of whom also completed behavioral assessments. Fractional anisotropy images were processed using tract-based spatial statistics. Partial correlation between ventral cingulum, corpus callosum and optic radiation fractional anisotropy, and child behavioral checklist scores (controlled for age at scan and sex was performed. RESULTS: Children with optic nerve hypoplasia had significantly higher scores on the child behavioral checklist (p<0.05 than controls (4 had scores in the clinically significant range. Ventral cingulum, corpus callosum and optic radiation fractional anisotropy were significantly reduced in children with optic nerve hypoplasia. Right ventral cingulum fractional anisotropy correlated with total and externalising child behavioral checklist scores (r = -0.52, p<0.02, r = -0.46, p<0.049 respectively. There were no significant correlations between left ventral cingulum, corpus callosum or optic radiation fractional anisotropy and behavioral scores. CONCLUSIONS: Our findings suggest that children with optic nerve hypoplasia and mild to moderate or no visual impairment require behavioral assessment to determine the presence of clinically significant behavioral problems. Reduced structural integrity of the ventral cingulum correlated with behavioral scores, suggesting that these white matter abnormalities may be clinically significant. The presence of reduced fractional anisotropy in the optic

  3. Electrostatic Comb-Drive Actuator with High In-Plane Translational Velocity

    Directory of Open Access Journals (Sweden)

    Yomna M. Eltagoury

    2016-10-01

    Full Text Available This work reports the design and opto-mechanical characterization of high velocity comb-drive actuators producing in-plane motion and fabricated using the technology of deep reactive ion etching (DRIE of silicon-on-insulator (SOI substrate. The actuators drive vertical mirrors acting on optical beams propagating in-plane with respect to the substrate. The actuator-mirror device is a fabrication on an SOI wafer with 80 μm etching depth, surface roughness of about 15 nm peak to valley and etching verticality that is better than 0.1 degree. The travel range of the actuators is extracted using an optical method based on optical cavity response and accounting for the diffraction effect. One design achieves a travel range of approximately 9.1 µm at a resonance frequency of approximately 26.1 kHz, while the second design achieves about 2 µm at 93.5 kHz. The two specific designs reported achieve peak velocities of about 1.48 and 1.18 m/s, respectively, which is the highest product of the travel range and frequency for an in-plane microelectromechanical system (MEMS motion under atmospheric pressure, to the best of the authors’ knowledge. The first design possesses high spring linearity over its travel range with about 350 ppm change in the resonance frequency, while the second design achieves higher resonance frequency on the expense of linearity. The theoretical predications and the experimental results show good agreement.

  4. Focal plane optics in far-infrared and submillimeter astronomy

    Science.gov (United States)

    Hildebrand, R. H.

    1985-01-01

    The construction of airborne observatories, high mountain-top observatories, and space observatories designed especially for infrared and submillimeter astronomy has opened fields of research requiring new optical techniques. A typical far-IR photometric study involves measurement of a continuum spectrum in several passbands between approx 30 microns and 1000 microns and diffraction-limited mapping of the source. At these wavelengths, diffraction effects strongly influence the design of the field optics systems which couple the incoming flux to the radiation sensors (cold bolometers). The Airy diffraction disk for a typical telescope at submillimeter wavelengths approx 100 microns-1000 microns is many millimeters in diameter; the size of the field stop must be comparable. The dilute radiation at the stop is fed through a Winston nonimaging concentrator to a small cavity containing the bolometer. The purpose of this paper is to review the principles and techniques of infrared field optics systems, including spectral filters, concentrators, cavities, and bolometers (as optical elements), with emphasis on photometric systems for wavelengths longer than 60 microns.

  5. Focal plane optics in far-infrared and submillimeter astronomy

    Science.gov (United States)

    Hildebrand, R. H.

    1986-02-01

    The construction of airborne observatories, high mountain-top observatories, and space observatories designed especially for infrared and submillimeter astronomy has opened fields of research requiring new optical techniques. A typical far-IR photometric study involves measurement of a continuum spectrum in several passbands between approx 30 microns and 1000 microns and diffraction-limited mapping of the source. At these wavelengths, diffraction effects strongly influence the design of the field optics systems which couple the incoming flux to the radiation sensors (cold bolometers). The Airy diffraction disk for a typical telescope at submillimeter wavelengths approx 100 microns-1000 microns is many millimeters in diameter; the size of the field stop must be comparable. The dilute radiation at the stop is fed through a Winston nonimaging concentrator to a small cavity containing the bolometer. The purpose of this paper is to review the principles and techniques of infrared field optics systems, including spectral filters, concentrators, cavities, and bolometers (as optical elements), with emphasis on photometric systems for wavelengths longer than 60 microns.

  6. Polarization-interference mapping of biological fluids polycrystalline films in differentiation of weak changes of optical anisotropy

    Science.gov (United States)

    Ushenko, V. O.; Vanchuliak, O.; Sakhnovskiy, M. Y.; Dubolazov, O. V.; Grygoryshyn, P.; Soltys, I. V.; Olar, O. V.; Antoniv, A.

    2017-09-01

    The theoretical background of the azimuthally stable method of polarization-interference mapping of the histological sections of the biopsy of the prostate tissue on the basis of the spatial frequency selection of the mechanisms of linear and circular birefringence is presented. The diagnostic application of a new correlation parameter - complex degree of mutual anisotropy - is analytically substantiated. The method of measuring coordinate distributions of complex degree of mutual anisotropy with further spatial filtration of their high- and low-frequency components is developed. The interconnections of such distributions with parameters of linear and circular birefringence of prostate tissue histological sections are found. The objective criteria of differentiation of benign and malignant conditions of prostate tissue are determined.

  7. Electronic structure of antiferromagnetic UN and UPtGe single crystals from optical and magneto-optical spectroscopy

    International Nuclear Information System (INIS)

    Marutzky, M.

    2006-01-01

    In this thesis the study of the magneto-optical Kerr effect and the determination of the optical constants by means of ellipsometry and Fourier-transformation infrared spectroscopy of UN and UPtGe is described. In UPtGe an optical anisotropy was detected over a spectral range from 6 meV to 32 eV. (HSI)

  8. Improvement of optical quality of semipolar (11 2 ¯ 2 ) GaN on m-plane sapphire by in-situ epitaxial lateral overgrowth

    Science.gov (United States)

    Monavarian, Morteza; Izyumskaya, Natalia; Müller, Marcus; Metzner, Sebastian; Veit, Peter; Can, Nuri; Das, Saikat; Özgür, Ümit; Bertram, Frank; Christen, Jürgen; Morkoç, Hadis; Avrutin, Vitaliy

    2016-04-01

    Among the major obstacles for development of non-polar and semipolar GaN structures on foreign substrates are stacking faults which deteriorate the structural and optical quality of the material. In this work, an in-situ SiNx nano-network has been employed to achieve high quality heteroepitaxial semipolar (11 2 ¯ 2 ) GaN on m-plane sapphire with reduced stacking fault density. This approach involves in-situ deposition of a porous SiNx interlayer on GaN that serves as a nano-mask for the subsequent growth, which starts in the nanometer-sized pores (window regions) and then progresses laterally as well, as in the case of conventional epitaxial lateral overgrowth (ELO). The inserted SiNx nano-mask effectively prevents the propagation of defects, such as dislocations and stacking faults, in the growth direction and thus reduces their density in the overgrown layers. The resulting semipolar (11 2 ¯ 2 ) GaN layers exhibit relatively smooth surface morphology and improved optical properties (PL intensity enhanced by a factor of 5 and carrier lifetimes by 35% to 85% compared to the reference semipolar (11 2 ¯ 2 ) GaN layer) which approach to those of the c-plane in-situ nano-ELO GaN reference and, therefore, holds promise for light emitting and detecting devices.

  9. Magnetic properties of in-plane oriented barium hexaferrite thin films prepared by direct current magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaozhi; Yue, Zhenxing, E-mail: yuezhx@mail.tsinghua.edu.cn; Meng, Siqin; Yuan, Lixin [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2014-12-28

    In-plane c-axis oriented Ba-hexaferrite (BaM) thin films were prepared on a-plane (112{sup ¯}0) sapphire (Al{sub 2}O{sub 3}) substrates by DC magnetron sputtering followed by ex-situ annealing. The DC magnetron sputtering was demonstrated to have obvious advantages over the traditionally used RF magnetron sputtering in sputtering rate and operation simplicity. The sputtering power had a remarkable influence on the Ba/Fe ratio, the hematite secondary phase, and the grain morphology of the as-prepared BaM films. Under 80 W of sputtering power, in-plane c-axis highly oriented BaM films were obtained. These films had strong magnetic anisotropy with high hysteresis loop squareness (M{sub r}/M{sub s} of 0.96) along the in-plane easy axis and low M{sub r}/M{sub s} of 0.03 along the in-plane hard axis. X-ray diffraction patterns and pole figures revealed that the oriented BaM films grew via an epitaxy-like growth process with the crystallographic relationship BaM (101{sup ¯}0)//α-Fe{sub 2}O{sub 3}(112{sup ¯}0)//Al{sub 2}O{sub 3}(112{sup ¯}0)

  10. In-plane technologies for transflective mobile displays: A Literature Survey

    NARCIS (Netherlands)

    Strömer, J.F.

    2007-01-01

    This report discusses the optical design of transflective displaysusing in-plane technologies, such as IPS or FFS. It demonstrates theevolutional develpement of the technology of important companies and Universities that are active in this area. It discusses relevant theoretical studies and

  11. Electron temperature anisotropy modeling and its effect on anisotropy-magnetic field coupling in an underdense laser heated plasma

    Energy Technology Data Exchange (ETDEWEB)

    Morreeuw, J.P.; Dubroca, B. [CEA Centre d' Etudes Scientifiques et Techniques d' Aquitaine, 33 - Le Barp (France); Sangam, A.; Dubroca, B.; Charrier, P.; Tikhonchuk, V.T. [Bordeaux-1 Univ., CELIA, 33 - Talence (France); Sangam, A.; Dubroca, B.; Charrier, P. [Bordeaux-1 Univ., MAB, 33 - Talence (France)

    2006-06-15

    The laser interaction with an underdense plasma leads to an anisotropic laser heating of electrons. This temperature anisotropy gradient in turn is the source of an early magnetic field, which has an important effect on the plasma evolution, due to the thermal flux reduction. We describe the temperature anisotropy by an evolution equation including the anisotropy-magnetic field coupling and observe a rather efficient magnetic field generation. However at high anisotropy levels, a small-scale instability emerges, leading to a serious problem in numerical calculations. We introduce the kinetics effects, which fix the problem by the anisotropy diffusion through the heat flux tensor. A constant-coefficient Fokker-Planck model in the 2-dimensional geometry allows us to derive an anisotropy diffusion term. The diffusion coefficient is fitted from the kinetic theory of the collisional anisotropic (Weibel) instability growth rate. Such an anisotropy diffusion term wipes out the unphysical instability without any undesirable smoothing. This diffusion along with the viscosity term leads also to a quite good restitution of the Weibel instability growth rate and to the short wavelength cutoff, even in a weakly collisional situation. This allows us to use such a model to predict the emergence of the Weibel instability as well as its saturation. (authors)

  12. What does anisotropy measure? Insights from increased and decreased anisotropy in selective fiber tracts in schizophrenia.

    Science.gov (United States)

    Alba-Ferrara, L M; de Erausquin, Gabriel A

    2013-01-01

    Schizophrenia is a common, severe, and chronically disabling mental illness of unknown cause. Recent MRI studies have focused attention on white matter abnormalities in schizophrenia using diffusion tensor imaging (DTI). Indices commonly derived from DTI include (1) mean diffusivity, independent of direction, (2) fractional anisotropy (FA) or relative anisotropy (RA), (3) axial diffusivity, and (4) radial diffusivity. In cerebral white matter, contributions to these indices come from fiber arrangements, degree of myelination, and axonal integrity. Relatively pure deficits in myelin result in a modest increase in radial diffusivity, without affecting axial diffusivity and with preservation of anisotropy. Although schizophrenia is not characterized by gross abnormalities of white matter, it does involve a profound dysregulation of myelin-associated gene expression, reductions in oligodendrocyte numbers, and marked abnormalities in the ultrastructure of myelin sheaths. Since each oligodendrocyte myelinates as many as 40 axon segments, changes in the number of oligodendrocytes (OLG), and/or in the integrity of myelin sheaths, and/or axoglial contacts can have a profound impact on signal propagation and the integrity of neuronal circuits. Whereas a number of studies have revealed inconsistent decreases in anisotropy in schizophrenia, we and others have found increased FA in key subcortical tracts associated with the circuits underlying symptom generation in schizophrenia. We review data revealing increased anisotropy in dopaminergic tracts in the mesencephalon of schizophrenics and their unaffected relatives, and discuss the possible biological underpinnings and physiological significance of this finding.

  13. Texture and anisotropy analysis of Qusaiba shales

    KAUST Repository

    Kanitpanyacharoen, Waruntorn

    2011-02-17

    Scanning and transmission electron microscopy, synchrotron X-ray diffraction, microtomography and ultrasonic velocity measurements were used to characterize microstructures and anisotropy of three deeply buried Qusaiba shales from the Rub\\'al-Khali basin, Saudi Arabia. Kaolinite, illite-smectite, illite-mica and chlorite show strong preferred orientation with (001) pole figure maxima perpendicular to the bedding plane ranging from 2.4-6.8 multiples of a random distribution (m.r.d.). Quartz, feldspars and pyrite crystals have a random orientation distribution. Elastic properties of the polyphase aggregate are calculated by averaging the single crystal elastic properties over the orientation distribution, assuming a nonporous material. The average calculated bulk P-wave velocities are 6.2 km/s (maximum) and 5.5 km/s (minimum), resulting in a P-wave anisotropy of 12%. The calculated velocities are compared with those determined from ultrasonic velocity measurements on a similar sample. In the ultrasonic experiment, which measures the effects of the shale matrix as well as the effects of porosity, velocities are smaller (P-wave maximum 5.3 km/s and minimum 4.1 km/s). The difference between calculated and measured velocities is attributed to the effects of anisotropic pore structure and to microfractures present in the sample, which have not been taken into account in the matrix averaging. © 2011 European Association of Geoscientists & Engineers.

  14. Perpendicular magnetic anisotropy in CoXPd100-X alloys for magnetic tunnel junctions

    Science.gov (United States)

    Clark, B. D.; Natarajarathinam, A.; Tadisina, Z. R.; Chen, P. J.; Shull, R. D.; Gupta, S.

    2017-08-01

    CoFeB/MgO-based perpendicular magnetic tunnel junctions (p-MTJ's) with high anisotropy and low damping are critical for spin-torque transfer random access memory (STT-RAM). Most schemes of making the pinned CoFeB fully perpendicular require ferrimagnets with high damping constants, a high temperature-grown L10 alloy, or an overly complex multilayered synthetic antiferromagnet (SyAF). We report a compositional study of perpendicular CoxPd alloy-pinned Co20Fe60B20/MgO based MTJ stacks, grown at moderate temperatures in a planetary deposition system. The perpendicular anisotropy of the CoxPd alloy films can be tuned based on the layer thickness and composition. The films were characterized by alternating gradient magnetometry (AGM), energy-dispersive X-rays (EDX), and X-ray diffraction (XRD). Current-in-plane tunneling (CIPT) measurements have also been performed on the compositionally varied CoxPd MTJ stacks. The CoxPd alloy becomes fully perpendicular at approximately x = 30% (atomic fraction) Co. Full-film MTJ stacks of Si/SiO2/MgO (13)/CoXPd100-x (50)/Ta (0.3)/CoFeB (1)/MgO (1.6)/CoFeB (1)/Ta (5)/Ru (10), with the numbers enclosed in parentheses being the layer thicknesses in nm, were sputtered onto thermally oxidized silicon substrates and in-situ lamp annealed at 400 °C for 5 min. CIPT measurements indicate that the highest TMR is observed for the CoPd composition with the highest perpendicular magnetic anisotropy.

  15. Study and realisation of plane optical waveguides in amorphous silica by ion implantation

    International Nuclear Information System (INIS)

    Moutonnet, Danielle

    1974-01-01

    Within the framework of the replacement of radio-electric waves by light waves as support of information transmission in telecommunications, this research thesis addresses the use of ion implantation for the development of small waveguides with low losses. The author first describes how such waveguides can be characterised by studying the propagation of an electromagnetic wave in a plane waveguide, and the different ways to introduce energy in these waveguides. Then, she discusses how the obtained results can be used to determine the main parameters of an optical waveguide, or more generally of a thin transparent layer for a chosen wavelength. In the second part, the author reports the application of this general method to the case of guides obtained by ion implantation. She notably identifies the possibilities of ion implantation as technological tool to develop waveguides, and discusses how the performed experiments allow a better understanding of physical mechanisms occurring during implantation. In this second part, she recalls generally admitted theories about ion implantation, describes experiment principles (implantation of oxygen or nitrogen ions into amorphous silica followed by annealing) and discusses the obtained results (increase of the refraction index, i.e. of the guiding effect, stronger for oxygen than for nitrogen) [fr

  16. Middle-energy electron anisotropies in the auroral region

    Directory of Open Access Journals (Sweden)

    P. Janhunen

    2004-01-01

    Full Text Available Field-aligned anisotropic electron distribution functions of T > T type are observed on auroral field lines at both low and high altitudes. We show that typically the anisotropy is limited to a certain range of energies, often below 1keV, although sometimes extending to slightly higher energies as well. Almost always there is simultaneously an isotropic electron distribution at higher energies. Often the anisotropies are up/down symmetrical, although cases with net upward or downward electron flow also occur. For a statistical analysis of the anisotropies we divide the energy range into low (below 100eV, middle (100eV–1keV and high (above 1keV energies and develop a measure of anisotropy expressed in density units. The statistical magnetic local time and invariant latitude distribution of the middle-energy anisotropies obeys that of the average auroral oval, whereas the distributions of the low and high energy anisotropies are more irregular. This suggests that it is specifically the middle-energy anisotropies that have something to do with auroral processes. The anisotropy magnitude decreases monotonically with altitude, as one would expect, because electrons have high mobility along the magnetic field and thus, the anisotropy properties spread rapidly to different altitudes.

    Key words. Magnetospheric physics (auroral phenomena. Space plasma physics (wave-particle interactions; changed particle motion and acceleration

  17. 45° sign switching of effective exchange bias due to competing anisotropies in fully epitaxial Co3FeN/MnN bilayers

    Science.gov (United States)

    Hajiri, T.; Yoshida, T.; Filianina, M.; Jaiswal, S.; Borie, B.; Asano, H.; Zabel, H.; Kläui, M.

    2018-01-01

    We report an unusual angular-dependent exchange bias effect in ferromagnet/antiferromagnet bilayers, where both ferromagnet and antiferromagnet are epitaxially grown. Numerical model calculations predict an approximately 45° period for the sign switching of the exchange-bias field, depending on the ratio between magnetocrystalline anisotropy and exchange-coupling constant. The switching of the sign is indicative of a competition between a fourfold magnetocrystalline anisotropy of the ferromagnet and a unidirectional anisotropy field of the exchange coupling. This predicted unusual angular-dependent exchange bias and its magnetization switching process are confirmed by measurements on fully epitaxial Co3FeN/MnN bilayers by longitudinal and transverse magneto-optic Kerr effect magnetometry. These results provide a deeper understanding of the exchange coupling phenomena in fully epitaxial bilayers with tailored materials and open up a complex switching energy landscape engineering by anisotropies.

  18. Focal plane based wavefront sensing with random DM probes

    Science.gov (United States)

    Pluzhnik, Eugene; Sirbu, Dan; Belikov, Ruslan; Bendek, Eduardo; Dudinov, Vladimir N.

    2017-09-01

    An internal coronagraph with an adaptive optical system for wavefront control is being considered for direct imaging of exoplanets with upcoming space missions and concepts, including WFIRST, HabEx, LUVOIR, EXCEDE and ACESat. The main technical challenge associated with direct imaging of exoplanets is to control of both diffracted and scattered light from the star so that even a dim planetary companion can be imaged. For a deformable mirror (DM) to create a dark hole with 10-10 contrast in the image plane, wavefront errors must be accurately measured on the science focal plane detector to ensure a common optical path. We present here a method that uses a set of random phase probes applied to the DM to obtain a high accuracy wavefront estimate even for a dynamically changing optical system. The presented numerical simulations and experimental results show low noise sensitivity, high reliability, and robustness of the proposed approach. The method does not use any additional optics or complex calibration procedures and can be used during the calibration stage of any direct imaging mission. It can also be used in any optical experiment that uses a DM as an active optical element in the layout.

  19. Optics of multiple ultrasharp grooves in metal

    DEFF Research Database (Denmark)

    Skjølstrup, Enok Johannes Haahr; Søndergaard, Thomas

    2017-01-01

    . When the multiple-groove array is illuminated by a plane wave the out-of-plane scattering is found to be extraordinarily large compared with the expected maximum from a geometric-optics estimate even for array widths of many wavelengths. The out-of-plane scattering is even higher per groove compared......The optics of multiple ultrasharp sub-wavelength grooves in metal is studied theoretically. Focus is on the transition from a single groove, where the scattering cross section is significant and can exceed the groove width, to infinitely many grooves in a periodic array with very low reflectance...

  20. Polarisation-sensitive switch: An integrated intensity-independent solution for 1.3 μm based on the polarisation anisotropy of ordered InGaAsP

    International Nuclear Information System (INIS)

    Kraemer, S.; Malzer, S.; Doehler, G.H.; Neumann, S.; Prost, W.; Tegude, F.J.

    2005-01-01

    Ordered materials provide new possibilities for optical device applications. Through a strong polarisation anisotropy of absorption a high functional polarisation-sensitive switch can be fabricated which in addition is nearly independent on the optical power. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Charge-doping and chemical composition-driven magnetocrystalline anisotropy in CoPt core-shell alloy clusters

    Science.gov (United States)

    Ruiz-Díaz, P.; Muñoz-Navia, M.; Dorantes-Dávila, J.

    2018-03-01

    Charge-doping together with 3 d-4 d alloying emerges as promising mechanisms for tailoring the magnetic properties of low-dimensional systems. Here, throughout ab initio calculations, we present a systematic overview regarding the impact of both electron(hole) charge-doping and chemical composition on the magnetocrystalline anisotropy (MA) of CoPt core-shell alloy clusters. By taking medium-sized Co n Pt m ( N = n + m = 85) octahedral-like alloy nanoparticles for some illustrative core-sizes as examples, we found enhanced MA energies and large induced spin(orbital) moments in Pt-rich clusters. Moreover, depending on the Pt-core-size, both in-plane and off-plane directions of magnetization are observed. In general, the MA of these binary compounds further stabilizes upon charge-doping. In addition, in the clusters with small MA, the doping promotes magnetization switching. Insights into the microscopical origins of the MA behavior are associated to changes in the electronic structure of the clusters. [Figure not available: see fulltext.

  2. Shape-induced anisotropy in antiferromagnetic nanoparticles

    International Nuclear Information System (INIS)

    Gomonay, O.; Kondovych, S.; Loktev, V.

    2014-01-01

    High fraction of the surface atoms considerably enhances the influence of size and shape on the magnetic and electronic properties of nanoparticles. Shape effects in ferromagnetic nanoparticles are well understood and allow us to set and control the parameters of a sample that affect its magnetic anisotropy during production. In the present paper we study the shape effects in the other widely used magnetic materials – antiferromagnets, – which possess vanishingly small or zero macroscopic magnetization. We take into account the difference between the surface and bulk magnetic anisotropy of a nanoparticle and show that the effective magnetic anisotropy depends on the particle shape and crystallographic orientation of its faces. The corresponding shape-induced contribution to the magnetic anisotropy energy is proportional to the particle volume, depends on magnetostriction, and can cause formation of equilibrium domain structure. Crystallographic orientation of the nanoparticle surface determines the type of domain structure. The proposed model allows us to predict the magnetic properties of antiferromagnetic nanoparticles depending on their shape and treatment. - Highlights: • We demonstrate that the shape effects in antiferromagnetic nanoparticles stem from the difference of surface and bulk magnetic properties combined with strong magnetoelastic coupling. • We predict shape-induced anisotropy in antiferromagnetic particles with large aspect ratio. • We predict different types of domain structures depending on the orientation of the particle faces

  3. Field emission study of ammonia absorption and catalytic decomposition on individual molybdenum planes

    International Nuclear Information System (INIS)

    Abon, M.; Bergeret, G.; Tardy, B.

    1977-01-01

    A probe-hole field emission microscope was used to investigate the crystallographic specificity of ammonia adsorption at 200 and 300 K on (110), (100), (211) and (111) molybdenum crystal planes. Chemisorbed NH 3 causes a large work function decrease, especially at 200 K in agreement with an associative adsorption model which can also explain that this decrease is more important on the crystal planes of highest work function (At 200 K, Δpsi = -2.25 eV on Mo(110) compared to Δpsi = -1.55 eV on Mo(111). The decomposition of NH 3 was followed by measuring the work function changes for stepwise heating of the Mo tip covered with NH 3 at 200 K. On the four studied planes NH 3 decomposition and H 2 desorption are completed at about 400 K. Δpsi changes above 400 K depend on the crystal planes and have been related to two different nitrogen surface states. No inactive plane towards NH 3 adsorption and decomposition has been found but the noted crystallographic anisotropy in this low pressure study is relevant to the structure sensitive character of the NH 3 decomposition and synthesis reactions. (Auth.)

  4. Diffractive optical elements for transformation of modes in lasers

    Science.gov (United States)

    Sridharan, Arun K.; Pax, Paul H.; Heebner, John E.; Drachenberg, Derrek R.; Armstrong, James P.; Dawson, Jay W.

    2015-09-01

    Spatial mode conversion modules are described, with the capability of efficiently transforming a given optical beam profile, at one plane in space into another well-defined optical beam profile at a different plane in space, whose detailed spatial features and symmetry properties can, in general, differ significantly. The modules are comprised of passive, high-efficiency, low-loss diffractive optical elements, combined with Fourier transform optics. Design rules are described that employ phase retrieval techniques and associated algorithms to determine the necessary profiles of the diffractive optical components. System augmentations are described that utilize real-time adaptive optical techniques for enhanced performance as well as power scaling.

  5. In-plane g factor of low-density two-dimensional holes in a Ge quantum well.

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Tzu-Ming [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Harris, Charles Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Huang, Shih-Hsien [National Taiwan Univ., Taipei (Taiwan); Chuang, Yen [National Taiwan Univ., Taipei (Taiwan); Li, Jiun-Yun [National Taiwan Univ., Taipei (Taiwan); Liu, CheeWee [National Taiwan Univ., Taipei (Taiwan)

    2017-12-01

    High-mobility two-dimensional (2D) holes residing in a Ge quantum well are a new electronic system with potentials in quantum computing and spintronics. Since for any electronic material, the effective mass and the g factor are two fundamental material parameters that determine the material response to electric and magnetic fields, measuring these two parameters in this material system is thus an important task that needs to be completed urgently. Because of the quantum confinement in the crystal growth direction (z), the biaxial strain of epitaxial Ge on SiGe, and the valance band nature, both the effective mass and the g factor can show very strong anisotropy. In particular, the in-plane g factor (gip) can be vanishingly small while the perpendicular g factor (gz) can be much larger than 2. Here we report the measurement of gip at very low hole densities using in-plane magneto-resistance measurement performed at the NHMFL.

  6. PSB Chromaticity Correction in both Planes

    CERN Document Server

    Bartosik, Hannes; CERN. Geneva. ATS Department

    2017-01-01

    In view of the LHC injector upgrade program (LIU[1]), all LHC pre-accelerators and in particular the CERN Booster (PSB) are being reviewed for potential lattice optics and equipment optimizations. The option to correct the chromaticity in both planes would be very helpful for a better control of the beam in the presence of both non-linearities and space charge. Moreover, one could reduce decoherence phenomena that otherwise limit the usefulness of resonance measurement techniques based on a turn-by-turn BPM system.

  7. The in-plane deformation of a tire carcass: analysis and measurement

    OpenAIRE

    Xiong, Yi; Tuononen, Ari

    2015-01-01

    The deformation of parts of a tire is the direct result of tire–road interactions, and therefore is of great interest in tire sensor development. This case study focuses on the analysis of the deformation of the tire carcass and investigates its potential for the estimation of the in-plane tire force. The deformation of the tire carcass due to applied steady-state in-plane forces is first analyzed with the flexible ring model and then validated through optical tire sensor measurements. Couple...

  8. Dispersion of the electron g factor anisotropy in InAs/InP self-assembled quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Belykh, V. V., E-mail: vasilii.belykh@tu-dortmund.de [Experimentelle Physik 2, Technische Universität Dortmund, D-44221 Dortmund (Germany); P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991 (Russian Federation); Yakovlev, D. R.; Bayer, M. [Experimentelle Physik 2, Technische Universität Dortmund, D-44221 Dortmund (Germany); Ioffe Institute, Russian Academy of Sciences, 194021 St. Petersburg (Russian Federation); Schindler, J. J. [Experimentelle Physik 2, Technische Universität Dortmund, D-44221 Dortmund (Germany); Bree, J. van; Koenraad, P. M.; Silov, A. Yu., E-mail: A.Y.Silov@tue.nl [Department of Applied Physics and COBRA Research Institute, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Averkiev, N. S. [Ioffe Institute, Russian Academy of Sciences, 194021 St. Petersburg (Russian Federation)

    2016-08-28

    The electron g factor in an ensemble of InAs/InP quantum dots with emission wavelengths around 1.4 μm is measured using time-resolved pump-probe Faraday rotation spectroscopy in different magnetic field orientations. Thereby, we can extend recent single dot photoluminescence measurements significantly towards lower optical transition energies through 0.86 eV. This allows us to obtain detailed insight into the dispersion of the recently discovered g factor anisotropy in these infrared emitting quantum dots. We find with decreasing transition energy over a range of 50 meV a strong enhancement of the g factor difference between magnetic field normal and along the dot growth axis, namely, from 1 to 1.7. We argue that the g factor cannot be solely determined by the confinement energy, but the dot asymmetry underlying this anisotropy therefore has to increase with increasing dot size.

  9. Electronic structure and magnetic anisotropy of Sm2Fe17Nx

    Science.gov (United States)

    Akai, Hisazumi; Ogura, Masako

    2014-03-01

    Electronic structure and magnetic properties of Sm2Fe17Nx are studies on the basis of the first-principles electronic structure calculation in the framework of the density functional theory within the local density and coherent potential approximations. The magnetic anisotropy of the system as a function of nitrogen concentration x is discussed by taking account not only of the crystal field effects but also of the effects of the f-electron transfer from Sm to the neighboring sites. Also discussed is the magnetic transition temperature that is estimated by mapping the system into a Heisenberg model. The results show the crystalline magnetic anisotropy changes its direction from in-plane to uniaxial ones as x increases. It takes the maximum value near x ~ 2 . 8 and then decreases slightly towards x = 3 . The mechanism for these behaviors is discussed in the light of the results of detailed calculations on the bonding properties between Sm and its neighboring N. This work was partly supported by Elements Strategy Initiative Center for Magnetic Materials Project, the Ministry of Education, Culture, Sports, Science and Technology, Japan.

  10. Simulation of a plane wavefront propagating in cardiac tissue using a cellular automata model

    International Nuclear Information System (INIS)

    Barbosa, Carlos R Hall

    2003-01-01

    We present a detailed description of a cellular automata model for the propagation of action potential in a planar cardiac tissue, which is very fast and easy to use. The model incorporates anisotropy in the electrical conductivity and a spatial variation of the refractory time. The transmembrane potential distribution is directly derived from the cell states, and the intracellular and extracellular potential distributions are calculated for the particular case of a plane wavefront. Once the potential distributions are known, the associated current densities are calculated by Ohm's law, and the magnetic field is determined at a plane parallel to the cardiac tissue by applying the law of Biot and Savart. The results obtained for propagation speed and for magnetic field amplitude with the cellular automata model are compared with values predicted by the bidomain formulation, for various angles between wavefront propagation and fibre direction, characterizing excellent agreement between the models

  11. Differential Polarization Nonlinear Optical Microscopy with Adaptive Optics Controlled Multiplexed Beams

    Directory of Open Access Journals (Sweden)

    Virginijus Barzda

    2013-09-01

    Full Text Available Differential polarization nonlinear optical microscopy has the potential to become an indispensable tool for structural investigations of ordered biological assemblies and microcrystalline aggregates. Their microscopic organization can be probed through fast and sensitive measurements of nonlinear optical signal anisotropy, which can be achieved with microscopic spatial resolution by using time-multiplexed pulsed laser beams with perpendicular polarization orientations and photon-counting detection electronics for signal demultiplexing. In addition, deformable membrane mirrors can be used to correct for optical aberrations in the microscope and simultaneously optimize beam overlap using a genetic algorithm. The beam overlap can be achieved with better accuracy than diffraction limited point-spread function, which allows to perform polarization-resolved measurements on the pixel-by-pixel basis. We describe a newly developed differential polarization microscope and present applications of the differential microscopy technique for structural studies of collagen and cellulose. Both, second harmonic generation, and fluorescence-detected nonlinear absorption anisotropy are used in these investigations. It is shown that the orientation and structural properties of the fibers in biological tissue can be deduced and that the orientation of fluorescent molecules (Congo Red, which label the fibers, can be determined. Differential polarization microscopy sidesteps common issues such as photobleaching and sample movement. Due to tens of megahertz alternating polarization of excitation pulses fast data acquisition can be conveniently applied to measure changes in the nonlinear signal anisotropy in dynamically changing in vivo structures.

  12. Azimuthal anisotropy of charged particles at high transverse momenta in PbPb collisions at $\\sqrt{s_{NN}}$ = 2.76 TeV

    CERN Document Server

    Chatrchyan, Serguei; Sirunyan, Albert M; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hammer, Josef; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Krammer, Manfred; Liko, Dietrich; Mikulec, Ivan; Pernicka, Manfred; Rahbaran, Babak; Rohringer, Christine; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Teischinger, Florian; Wagner, Philipp; Waltenberger, Wolfgang; Walzel, Gerhard; Widl, Edmund; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Bansal, Sunil; Cerny, Karel; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Luyckx, Sten; Maes, Thomas; Mucibello, Luca; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Selvaggi, Michele; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Gonzalez Suarez, Rebeca; Kalogeropoulos, Alexis; Maes, Michael; Olbrechts, Annik; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Charaf, Otman; Clerbaux, Barbara; De Lentdecker, Gilles; Dero, Vincent; Gay, Arnaud; Hreus, Tomas; Léonard, Alexandre; Marage, Pierre Edouard; Reis, Thomas; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Adler, Volker; Beernaert, Kelly; Cimmino, Anna; Costantini, Silvia; Garcia, Guillaume; Grunewald, Martin; Klein, Benjamin; Lellouch, Jérémie; Marinov, Andrey; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Vanelderen, Lukas; Verwilligen, Piet; Walsh, Sinead; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Bruno, Giacomo; Ceard, Ludivine; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Lemaitre, Vincent; Liao, Junhui; Militaru, Otilia; Nuttens, Claude; Pagano, Davide; Pin, Arnaud; Piotrzkowski, Krzysztof; Schul, Nicolas; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Alves, Gilvan; Correa Martins Junior, Marcos; De Jesus Damiao, Dilson; Martins, Thiago; Pol, Maria Elena; Henrique Gomes E Souza, Moacyr; Aldá Júnior, Walter Luiz; Carvalho, Wagner; Custódio, Analu; Melo Da Costa, Eliza; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Oguri, Vitor; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Silva Do Amaral, Sheila Mara; Soares Jorge, Luana; Sznajder, Andre; Souza Dos Anjos, Tiago; Bernardes, Cesar Augusto; De Almeida Dias, Flavia; Tomei, Thiago; De Moraes Gregores, Eduardo; Lagana, Caio; Da Cunha Marinho, Franciole; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Genchev, Vladimir; Iaydjiev, Plamen; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Tcholakov, Vanio; Trayanov, Rumen; Vutova, Mariana; Dimitrov, Anton; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Meng, Xiangwei; Tao, Junquan; Wang, Jian; Wang, Jian; Wang, Xianyou; Wang, Zheng; Xiao, Hong; Xu, Ming; Zang, Jingjing; Zhang, Zhen; Asawatangtrakuldee, Chayanit; Ban, Yong; Guo, Shuang; Guo, Yifei; Li, Wenbo; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Teng, Haiyun; Wang, Siguang; Zhu, Bo; Zou, Wei; Avila, Carlos; Gomez Moreno, Bernardo; Osorio Oliveros, Andres Felipe; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Plestina, Roko; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Dzelalija, Mile; Kovac, Marko; Brigljevic, Vuko; Duric, Senka; Kadija, Kreso; Luetic, Jelena; Morovic, Srecko; Attikis, Alexandros; Galanti, Mario; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Elgammal, Sherif; Ellithi Kamel, Ali; Khalil, Shaaban; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Müntel, Mait; Raidal, Martti; Rebane, Liis; Tiko, Andres; Azzolini, Virginia; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Härkönen, Jaakko; Heikkinen, Mika Aatos; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Ungaro, Donatella; Wendland, Lauri; Banzuzi, Kukka; Korpela, Arja; Tuuva, Tuure; Besancon, Marc; Choudhury, Somnath; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Millischer, Laurent; Nayak, Aruna; Rander, John; Rosowsky, André; Shreyber, Irina; Titov, Maksym; Baffioni, Stephanie; Beaudette, Florian; Benhabib, Lamia; Bianchini, Lorenzo; Bluj, Michal; Broutin, Clementine; Busson, Philippe; Charlot, Claude; Daci, Nadir; Dahms, Torsten; Dobrzynski, Ludwik; Granier de Cassagnac, Raphael; Haguenauer, Maurice; Miné, Philippe; Mironov, Camelia; Ochando, Christophe; Paganini, Pascal; Sabes, David; Salerno, Roberto; Sirois, Yves; Veelken, Christian; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Bloch, Daniel; Bodin, David; Brom, Jean-Marie; Cardaci, Marco; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Drouhin, Frédéric; Ferro, Cristina; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Juillot, Pierre; Karim, Mehdi; Le Bihan, Anne-Catherine; Van Hove, Pierre; Fassi, Farida; Mercier, Damien; Beauceron, Stephanie; Beaupere, Nicolas; Bondu, Olivier; Boudoul, Gaelle; Brun, Hugues; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Kurca, Tibor; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Sordini, Viola; Tosi, Silvano; Tschudi, Yohann; Verdier, Patrice; Viret, Sébastien; Tsamalaidze, Zviad; Anagnostou, Georgios; Beranek, Sarah; Edelhoff, Matthias; Feld, Lutz; Heracleous, Natalie; Hindrichs, Otto; Jussen, Ruediger; Klein, Katja; Merz, Jennifer; Ostapchuk, Andrey; Perieanu, Adrian; Raupach, Frank; Sammet, Jan; Schael, Stefan; Sprenger, Daniel; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Caudron, Julien; Dietz-Laursonn, Erik; Duchardt, Deborah; Erdmann, Martin; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klimkovich, Tatsiana; Klingebiel, Dennis; Kreuzer, Peter; Lanske, Dankfried; Lingemann, Joschka; Magass, Carsten; Merschmeyer, Markus; Meyer, Arnd; Olschewski, Mark; Papacz, Paul; Pieta, Holger; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Steggemann, Jan; Teyssier, Daniel; Weber, Martin; Bontenackels, Michael; Cherepanov, Vladimir; Davids, Martina; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Haj Ahmad, Wael; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Linn, Alexander; Nowack, Andreas; Perchalla, Lars; Pooth, Oliver; Rennefeld, Jörg; Sauerland, Philip; Stahl, Achim; Aldaya Martin, Maria; Behr, Joerg; Behrenhoff, Wolf; Behrens, Ulf; Bergholz, Matthias; Bethani, Agni; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Castro, Elena; Costanza, Francesco; Dammann, Dirk; Eckerlin, Guenter; Eckstein, Doris; Fischer, David; Flucke, Gero; Geiser, Achim; Glushkov, Ivan; Habib, Shiraz; Hauk, Johannes; Jung, Hannes; Kasemann, Matthias; Katsas, Panagiotis; Kleinwort, Claus; Kluge, Hannelies; Knutsson, Albert; Krämer, Mira; Krücker, Dirk; Kuznetsova, Ekaterina; Lange, Wolfgang; Lohmann, Wolfgang; Lutz, Benjamin; Mankel, Rainer; Marfin, Ihar; Marienfeld, Markus; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Olzem, Jan; Perrey, Hanno; Petrukhin, Alexey; Pitzl, Daniel; Raspereza, Alexei; Ribeiro Cipriano, Pedro M; Riedl, Caroline; Rosin, Michele; Salfeld-Nebgen, Jakob; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Sen, Niladri; Spiridonov, Alexander; Stein, Matthias; Walsh, Roberval; Wissing, Christoph; Autermann, Christian; Blobel, Volker; Bobrovskyi, Sergei; Draeger, Jula; Enderle, Holger; Erfle, Joachim; Gebbert, Ulla; Görner, Martin; Hermanns, Thomas; Höing, Rebekka Sophie; Kaschube, Kolja; Kaussen, Gordon; Kirschenmann, Henning; Klanner, Robert; Lange, Jörn; Mura, Benedikt; Nowak, Friederike; Pietsch, Niklas; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Schröder, Matthias; Schum, Torben; Seidel, Markus; Stadie, Hartmut; Steinbrück, Georg; Thomsen, Jan; Barth, Christian; Berger, Joram; Chwalek, Thorsten; De Boer, Wim; Dierlamm, Alexander; Feindt, Michael; Guthoff, Moritz; Hackstein, Christoph; Hartmann, Frank; Heinrich, Michael; Held, Hauke; Hoffmann, Karl-Heinz; Honc, Simon; Husemann, Ulrich; Katkov, Igor; Komaragiri, Jyothsna Rani; Martschei, Daniel; Mueller, Steffen; Müller, Thomas; Niegel, Martin; Nürnberg, Andreas; Oberst, Oliver; Oehler, Andreas; Ott, Jochen; Peiffer, Thomas; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Ratnikova, Natalia; Röcker, Steffen; Saout, Christophe; Scheurer, Armin; Schilling, Frank-Peter; Schmanau, Mike; Schott, Gregory; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Troendle, Daniel; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Weiler, Thomas; Zeise, Manuel; Ziebarth, Eva Barbara; Daskalakis, Georgios; Geralis, Theodoros; Kesisoglou, Stilianos; Kyriakis, Aristotelis; Loukas, Demetrios; Manolakos, Ioannis; Markou, Athanasios; Markou, Christos; Mavrommatis, Charalampos; Ntomari, Eleni; Gouskos, Loukas; Mertzimekis, Theodoros; Panagiotou, Apostolos; Saoulidou, Niki; Evangelou, Ioannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Patras, Vaios; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Krajczar, Krisztian; Radics, Balint; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Beni, Noemi; Czellar, Sandor; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Karancsi, János; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Beri, Suman Bala; Bhatnagar, Vipin; Dhingra, Nitish; Gupta, Ruchi; Jindal, Monika; Kaur, Manjit; Kohli, Jatinder Mohan; Mehta, Manuk Zubin; Nishu, Nishu; Saini, Lovedeep Kaur; Sharma, Archana; Singh, Jasbir; Singh, Supreet Pal; Ahuja, Sudha; Choudhary, Brajesh C; Kumar, Ashok; Kumar, Arun; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Varun; Shivpuri, Ram Krishen; Banerjee, Sunanda; Bhattacharya, Satyaki; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Sarkar, Subir; Abdulsalam, Abdulla; Choudhury, Rajani Kant; Dutta, Dipanwita; Kailas, Swaminathan; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Aziz, Tariq; Ganguly, Sanmay; Guchait, Monoranjan; Gurtu, Atul; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Parida, Bibhuti; Sudhakar, Katta; Wickramage, Nadeesha; Banerjee, Sudeshna; Dugad, Shashikant; Arfaei, Hessamaddin; Bakhshiansohi, Hamed; Etesami, Seyed Mohsen; Fahim, Ali; Hashemi, Majid; Hesari, Hoda; Jafari, Abideh; Khakzad, Mohsen; Mohammadi, Abdollah; Mohammadi Najafabadi, Mojtaba; Paktinat Mehdiabadi, Saeid; Safarzadeh, Batool; Zeinali, Maryam; Abbrescia, Marcello; Barbone, Lucia; Calabria, Cesare; Chhibra, Simranjit Singh; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Lusito, Letizia; Maggi, Giorgio; Maggi, Marcello; Marangelli, Bartolomeo; My, Salvatore; Nuzzo, Salvatore; Pacifico, Nicola; Pompili, Alexis; Pugliese, Gabriella; Selvaggi, Giovanna; Silvestris, Lucia; Singh, Gurpreet; Zito, Giuseppe; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Meneghelli, Marco; Montanari, Alessandro; Navarria, Francesco; Odorici, Fabrizio; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gianni; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Frosali, Simone; Gallo, Elisabetta; Gonzi, Sandro; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Colafranceschi, Stefano; Fabbri, Franco; Piccolo, Davide; Fabbricatore, Pasquale; Musenich, Riccardo; Benaglia, Andrea; De Guio, Federico; Di Matteo, Leonardo; Fiorendi, Sara; Gennai, Simone; Ghezzi, Alessio; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Martelli, Arabella; Massironi, Andrea; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Sala, Silvano; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Carrillo Montoya, Camilo Andres; Cavallo, Nicola; De Cosa, Annapaola; Dogangun, Oktay; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bisello, Dario; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; Dorigo, Tommaso; Dosselli, Umberto; Gasparini, Fabrizio; Gozzelino, Andrea; Kanishchev, Konstantin; Lacaprara, Stefano; Lazzizzera, Ignazio; Margoni, Martino; Meneguzzo, Anna Teresa; Nespolo, Massimo; Perrozzi, Luca; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Vanini, Sara; Zotto, Pierluigi; Zumerle, Gianni; Gabusi, Michele; Ratti, Sergio P; Riccardi, Cristina; Torre, Paola; Vitulo, Paolo; Bilei, Gian Mario; Fanò, Livio; Lariccia, Paolo; Lucaroni, Andrea; Mantovani, Giancarlo; Menichelli, Mauro; Nappi, Aniello; Romeo, Francesco; Saha, Anirban; Santocchia, Attilio; Taroni, Silvia; Azzurri, Paolo; Bagliesi, Giuseppe; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; D'Agnolo, Raffaele Tito; Dell'Orso, Roberto; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Kraan, Aafke; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Palmonari, Francesco; Rizzi, Andrea; Serban, Alin Titus; Spagnolo, Paolo; Squillacioti, Paola; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Del Re, Daniele; Diemoz, Marcella; Fanelli, Cristiano; Grassi, Marco; Longo, Egidio; Meridiani, Paolo; Micheli, Francesco; Nourbakhsh, Shervin; Organtini, Giovanni; Pandolfi, Francesco; Paramatti, Riccardo; Rahatlou, Shahram; Sigamani, Michael; Soffi, Livia; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Biino, Cristina; Botta, Cristina; Cartiglia, Nicolo; Castello, Roberto; Costa, Marco; Demaria, Natale; Graziano, Alberto; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Pastrone, Nadia; Pelliccioni, Mario; Potenza, Alberto; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Sola, Valentina; Solano, Ada; Staiano, Amedeo; Vilela Pereira, Antonio; Belforte, Stefano; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; Marone, Matteo; Montanino, Damiana; Penzo, Aldo; Schizzi, Andrea; Heo, Seong Gu; Kim, Tae Yeon; Nam, Soon-Kwon; Chang, Sunghyun; Chung, Jin Hyuk; Kim, Dong Hee; Kim, Gui Nyun; Kong, Dae Jung; Park, Hyangkyu; Ro, Sang-Ryul; Son, Dong-Chul; Son, Taejin; Kim, Jae Yool; Kim, Zero Jaeho; Song, Sanghyeon; Jo, Hyun Yong; Choi, Suyong; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Tae Jeong; Lee, Kyong Sei; Moon, Dong Ho; Park, Sung Keun; Seo, Eunsung; Choi, Minkyoo; Kang, Seokon; Kim, Hyunyong; Kim, Ji Hyun; Park, Chawon; Park, Inkyu; Park, Sangnam; Ryu, Geonmo; Cho, Yongjin; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Min Suk; Kwon, Eunhyang; Lee, Byounghoon; Lee, Jongseok; Lee, Sungeun; Seo, Hyunkwan; Yu, Intae; Bilinskas, Mykolas Jurgis; Grigelionis, Ignas; Janulis, Mindaugas; Juodagalvis, Andrius; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Lopez-Fernandez, Ricardo; Magaña Villalba, Ricardo; Martínez-Ortega, Jorge; Sánchez-Hernández, Alberto; Villasenor-Cendejas, Luis Manuel; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Salazar Ibarguen, Humberto Antonio; Casimiro Linares, Edgar; Morelos Pineda, Antonio; Reyes-Santos, Marco A; Krofcheck, David; Bell, Alan James; Butler, Philip H; Doesburg, Robert; Reucroft, Steve; Silverwood, Hamish; Ahmad, Muhammad; Asghar, Muhammad Irfan; Hoorani, Hafeez R; Khalid, Shoaib; Khan, Wajid Ali; Khurshid, Taimoor; Qazi, Shamona; Shah, Mehar Ali; Shoaib, Muhammad; Brona, Grzegorz; Bunkowski, Karol; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Bialkowska, Helena; Boimska, Bozena; Frueboes, Tomasz; Gokieli, Ryszard; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Wrochna, Grzegorz; Zalewski, Piotr; Almeida, Nuno; Bargassa, Pedrame; David Tinoco Mendes, Andre; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Musella, Pasquale; Seixas, Joao; Varela, Joao; Vischia, Pietro; Afanasiev, Serguei; Belotelov, Ivan; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Kamenev, Alexey; Karjavin, Vladimir; Kozlov, Guennady; Lanev, Alexander; Malakhov, Alexander; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Smirnov, Vitaly; Volodko, Anton; Zarubin, Anatoli; Evstyukhin, Sergey; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Matveev, Viktor; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Erofeeva, Maria; Gavrilov, Vladimir; Kossov, Mikhail; Lychkovskaya, Natalia; Popov, Vladimir; Safronov, Grigory; Semenov, Sergey; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Belyaev, Andrey; Boos, Edouard; Ershov, Alexander; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Korotkikh, Vladimir; Lokhtin, Igor; Markina, Anastasia; Obraztsov, Stepan; Perfilov, Maxim; Petrushanko, Sergey; Sarycheva, Ludmila; Savrin, Viktor; Snigirev, Alexander; Vardanyan, Irina; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Grishin, Viatcheslav; Kachanov, Vassili; Konstantinov, Dmitri; Korablev, Andrey; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Djordjevic, Milos; Ekmedzic, Marko; Krpic, Dragomir; Milosevic, Jovan; Aguilar-Benitez, Manuel; Alcaraz Maestre, Juan; Arce, Pedro; Battilana, Carlo; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Diez Pardos, Carmen; Domínguez Vázquez, Daniel; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Ferrando, Antonio; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Merino, Gonzalo; Puerta Pelayo, Jesus; Redondo, Ignacio; Romero, Luciano; Santaolalla, Javier; Senghi Soares, Mara; Willmott, Carlos; Albajar, Carmen; Codispoti, Giuseppe; de Trocóniz, Jorge F; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Lloret Iglesias, Lara; Piedra Gomez, Jonatan; Vizan Garcia, Jesus Manuel; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Chuang, Shan-Huei; Duarte Campderros, Jordi; Felcini, Marta; Fernandez, Marcos; Gomez, Gervasio; Gonzalez Sanchez, Javier; Jorda, Clara; Lobelle Pardo, Patricia; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Sobron Sanudo, Mar; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Baillon, Paul; Ball, Austin; Barney, David; Bernet, Colin; Bianchi, Giovanni; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Breuker, Horst; Camporesi, Tiziano; Cerminara, Gianluca; Christiansen, Tim; Coarasa Perez, Jose Antonio; D'Enterria, David; De Roeck, Albert; Di Guida, Salvatore; Dobson, Marc; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Frisch, Benjamin; Funk, Wolfgang; Georgiou, Georgios; Giffels, Manuel; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Giunta, Marina; Glege, Frank; Gomez-Reino Garrido, Robert; Govoni, Pietro; Gowdy, Stephen; Guida, Roberto; Hansen, Magnus; Harris, Philip; Hartl, Christian; Harvey, John; Hegner, Benedikt; Hinzmann, Andreas; Innocente, Vincenzo; Janot, Patrick; Kaadze, Ketino; Karavakis, Edward; Kousouris, Konstantinos; Lecoq, Paul; Lenzi, Piergiulio; Lourenco, Carlos; Maki, Tuula; Malberti, Martina; Malgeri, Luca; Mannelli, Marcello; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moser, Roland; Mozer, Matthias Ulrich; Mulders, Martijn; Nesvold, Erik; Nguyen, Matthew; Orimoto, Toyoko; Orsini, Luciano; Palencia Cortezon, Enrique; Perez, Emmanuelle; Petrilli, Achille; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Piparo, Danilo; Polese, Giovanni; Quertenmont, Loic; Racz, Attila; Reece, William; Rodrigues Antunes, Joao; Rolandi, Gigi; Rommerskirchen, Tanja; Rovelli, Chiara; Rovere, Marco; Sakulin, Hannes; Santanastasio, Francesco; Schäfer, Christoph; Schwick, Christoph; Segoni, Ilaria; Sekmen, Sezen; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Spiropulu, Maria; Stoye, Markus; Tsirou, Andromachi; Veres, Gabor Istvan; Vlimant, Jean-Roch; Wöhri, Hermine Katharina; Worm, Steven; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Gabathuler, Kurt; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; König, Stefan; Kotlinski, Danek; Langenegger, Urs; Meier, Frank; Renker, Dieter; Rohe, Tilman; Sibille, Jennifer; Bäni, Lukas; Bortignon, Pierluigi; Buchmann, Marco-Andrea; Casal, Bruno; Chanon, Nicolas; Chen, Zhiling; Deisher, Amanda; Dissertori, Günther; Dittmar, Michael; Dünser, Marc; Eugster, Jürg; Freudenreich, Klaus; Grab, Christoph; Lecomte, Pierre; Lustermann, Werner; Marini, Andrea Carlo; Martinez Ruiz del Arbol, Pablo; Mohr, Niklas; Moortgat, Filip; Nägeli, Christoph; Nef, Pascal; Nessi-Tedaldi, Francesca; Pape, Luc; Pauss, Felicitas; Peruzzi, Marco; Ronga, Frederic Jean; Rossini, Marco; Sala, Leonardo; Sanchez, Ann - Karin; Starodumov, Andrei; Stieger, Benjamin; Takahashi, Maiko; Tauscher, Ludwig; Thea, Alessandro; Theofilatos, Konstantinos; Treille, Daniel; Urscheler, Christina; Wallny, Rainer; Weber, Hannsjoerg Artur; Wehrli, Lukas; Aguilo, Ernest; Amsler, Claude; Chiochia, Vincenzo; De Visscher, Simon; Favaro, Carlotta; Ivova Rikova, Mirena; Millan Mejias, Barbara; Otiougova, Polina; Robmann, Peter; Snoek, Hella; Tupputi, Salvatore; Verzetti, Mauro; Chang, Yuan-Hann; Chen, Kuan-Hsin; Go, Apollo; Kuo, Chia-Ming; Li, Syue-Wei; Lin, Willis; Liu, Zong-Kai; Lu, Yun-Ju; Mekterovic, Darko; Singh, Anil; Volpe, Roberta; Yu, Shin-Shan; Bartalini, Paolo; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Dietz, Charles; Grundler, Ulysses; Hou, George Wei-Shu; Hsiung, Yee; Kao, Kai-Yi; Lei, Yeong-Jyi; Lu, Rong-Shyang; Majumder, Devdatta; Petrakou, Eleni; Shi, Xin; Shiu, Jing-Ge; Tzeng, Yeng-Ming; Wang, Minzu; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Hos, Ilknur; Kangal, Evrim Ersin; Karapinar, Guler; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sogut, Kenan; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Vergili, Latife Nukhet; Vergili, Mehmet; Akin, Ilina Vasileva; Aliev, Takhmasib; Bilin, Bugra; Bilmis, Selcuk; Deniz, Muhammed; Gamsizkan, Halil; Guler, Ali Murat; Ocalan, Kadir; Ozpineci, Altug; Serin, Meltem; Sever, Ramazan; Surat, Ugur Emrah; Yalvac, Metin; Yildirim, Eda; Zeyrek, Mehmet; Deliomeroglu, Mehmet; Gülmez, Erhan; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Ozkorucuklu, Suat; Sonmez, Nasuf; Cankocak, Kerem; Levchuk, Leonid; Bostock, Francis; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Frazier, Robert; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Kreczko, Lukasz; Metson, Simon; Newbold, Dave M; Nirunpong, Kachanon; Poll, Anthony; Senkin, Sergey; Smith, Vincent J; Williams, Thomas; Basso, Lorenzo; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Jackson, James; Kennedy, Bruce W; Olaiya, Emmanuel; Petyt, David; Radburn-Smith, Benjamin Charles; Shepherd-Themistocleous, Claire; Tomalin, Ian R; Womersley, William John; Bainbridge, Robert; Ball, Gordon; Beuselinck, Raymond; Buchmuller, Oliver; Colling, David; Cripps, Nicholas; Cutajar, Michael; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Ferguson, William; Fulcher, Jonathan; Futyan, David; Gilbert, Andrew; Guneratne Bryer, Arlo; Hall, Geoffrey; Hatherell, Zoe; Hays, Jonathan; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Lyons, Louis; Magnan, Anne-Marie; Marrouche, Jad; Mathias, Bryn; Nandi, Robin; Nash, Jordan; Nikitenko, Alexander; Papageorgiou, Anastasios; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Pioppi, Michele; Raymond, David Mark; Rogerson, Samuel; Rompotis, Nikolaos; Rose, Andrew; Ryan, Matthew John; Seez, Christopher; Sharp, Peter; Sparrow, Alex; Tapper, Alexander; Vazquez Acosta, Monica; Virdee, Tejinder; Wakefield, Stuart; Wardle, Nicholas; Whyntie, Tom; Barrett, Matthew; Chadwick, Matthew; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Martin, William; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Hatakeyama, Kenichi; Liu, Hongxuan; Scarborough, Tara; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Heister, Arno; St John, Jason; Lawson, Philip; Lazic, Dragoslav; Rohlf, James; Sperka, David; Sulak, Lawrence; Alimena, Juliette; Bhattacharya, Saptaparna; Cutts, David; Ferapontov, Alexey; Heintz, Ulrich; Jabeen, Shabnam; Kukartsev, Gennadiy; Landsberg, Greg; Luk, Michael; Narain, Meenakshi; Nguyen, Duong; Segala, Michael; Sinthuprasith, Tutanon; Speer, Thomas; Tsang, Ka Vang; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Dolen, James; Erbacher, Robin; Gardner, Michael; Houtz, Rachel; Ko, Winston; Kopecky, Alexandra; Lander, Richard; Mall, Orpheus; Miceli, Tia; Nelson, Randy; Pellett, Dave; Rutherford, Britney; Searle, Matthew; Smith, John; Squires, Michael; Tripathi, Mani; Vasquez Sierra, Ricardo; Andreev, Valeri; Cline, David; Cousins, Robert; Duris, Joseph; Erhan, Samim; Everaerts, Pieter; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Plager, Charles; Rakness, Gregory; Schlein, Peter; Tucker, Jordan; Valuev, Vyacheslav; Weber, Matthias; Babb, John; Clare, Robert; Dinardo, Mauro Emanuele; Ellison, John Anthony; Gary, J William; Giordano, Ferdinando; Hanson, Gail; Jeng, Geng-Yuan; Liu, Hongliang; Long, Owen Rosser; Luthra, Arun; Nguyen, Harold; Paramesvaran, Sudarshan; Sturdy, Jared; Sumowidagdo, Suharyo; Wilken, Rachel; Wimpenny, Stephen; Andrews, Warren; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; Evans, David; Golf, Frank; Holzner, André; Kelley, Ryan; Lebourgeois, Matthew; Letts, James; Macneill, Ian; Mangano, Boris; Muelmenstaedt, Johannes; Padhi, Sanjay; Palmer, Christopher; Petrucciani, Giovanni; Pieri, Marco; Ranieri, Riccardo; Sani, Matteo; Sharma, Vivek; Simon, Sean; Sudano, Elizabeth; Tadel, Matevz; Tu, Yanjun; Vartak, Adish; Wasserbaech, Steven; Würthwein, Frank; Yagil, Avraham; Yoo, Jaehyeok; Barge, Derek; Bellan, Riccardo; Campagnari, Claudio; D'Alfonso, Mariarosaria; Danielson, Thomas; Flowers, Kristen; Geffert, Paul; Incandela, Joe; Justus, Christopher; Kalavase, Puneeth; Koay, Sue Ann; Kovalskyi, Dmytro; Krutelyov, Vyacheslav; Lowette, Steven; Mccoll, Nickolas; Pavlunin, Viktor; Rebassoo, Finn; Ribnik, Jacob; Richman, Jeffrey; Rossin, Roberto; Stuart, David; To, Wing; West, Christopher; Apresyan, Artur; Bornheim, Adolf; Chen, Yi; Di Marco, Emanuele; Duarte, Javier; Gataullin, Marat; Ma, Yousi; Mott, Alexander; Newman, Harvey B; Rogan, Christopher; Timciuc, Vladlen; Traczyk, Piotr; Veverka, Jan; Wilkinson, Richard; Yang, Yong; Zhu, Ren-Yuan; Akgun, Bora; Carroll, Ryan; Ferguson, Thomas; Iiyama, Yutaro; Jang, Dong Wook; Liu, Yueh-Feng; Paulini, Manfred; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Drell, Brian Robert; Edelmaier, Christopher; Ford, William T; Gaz, Alessandro; Heyburn, Bernadette; Luiggi Lopez, Eduardo; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Agostino, Lorenzo; Alexander, James; Chatterjee, Avishek; Eggert, Nicholas; Gibbons, Lawrence Kent; Heltsley, Brian; Hopkins, Walter; Khukhunaishvili, Aleko; Kreis, Benjamin; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Ryd, Anders; Salvati, Emmanuele; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Vaughan, Jennifer; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bloch, Ingo; Burkett, Kevin; Butler, Joel Nathan; Chetluru, Vasundhara; Cheung, Harry; Chlebana, Frank; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Green, Dan; Gutsche, Oliver; Hahn, Alan; Hanlon, Jim; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Kilminster, Benjamin; Klima, Boaz; Kunori, Shuichi; Kwan, Simon; Lincoln, Don; Lipton, Ron; Lueking, Lee; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Maruyama, Sho; Mason, David; McBride, Patricia; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Newman-Holmes, Catherine; O'Dell, Vivian; Prokofyev, Oleg; Sexton-Kennedy, Elizabeth; Sharma, Seema; Spalding, William J; Spiegel, Leonard; Tan, Ping; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitmore, Juliana; Wu, Weimin; Yang, Fan; Yumiceva, Francisco; Yun, Jae Chul; Acosta, Darin; Avery, Paul; Bourilkov, Dimitri; Chen, Mingshui; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Dobur, Didar; Drozdetskiy, Alexey; Field, Richard D; Fisher, Matthew; Fu, Yu; Furic, Ivan-Kresimir; Gartner, Joseph; Hugon, Justin; Kim, Bockjoo; Konigsberg, Jacobo; Korytov, Andrey; Kropivnitskaya, Anna; Kypreos, Theodore; Low, Jia Fu; Matchev, Konstantin; Milenovic, Predrag; Mitselmakher, Guenakh; Muniz, Lana; Remington, Ronald; Rinkevicius, Aurelijus; Sellers, Paul; Skhirtladze, Nikoloz; Snowball, Matthew; Yelton, John; Zakaria, Mohammed; Gaultney, Vanessa; Lebolo, Luis Miguel; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Chen, Jie; Diamond, Brendan; Gleyzer, Sergei V; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Jenkins, Merrill; Johnson, Kurtis F; Prosper, Harrison; Veeraraghavan, Venkatesh; Weinberg, Marc; Baarmand, Marc M; Dorney, Brian; Hohlmann, Marcus; Kalakhety, Himali; Vodopiyanov, Igor; Adams, Mark Raymond; Anghel, Ioana Maria; Apanasevich, Leonard; Bai, Yuting; Bazterra, Victor Eduardo; Betts, Russell Richard; Callner, Jeremy; Cavanaugh, Richard; Dragoiu, Cosmin; Evdokimov, Olga; Garcia-Solis, Edmundo Javier; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Khalatyan, Samvel; Lacroix, Florent; Malek, Magdalena; O'Brien, Christine; Silkworth, Christopher; Strom, Derek; Varelas, Nikos; Akgun, Ugur; Albayrak, Elif Asli; Bilki, Burak; Chung, Kwangzoo; Clarida, Warren; Duru, Firdevs; Griffiths, Scott; Lae, Chung Khim; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Newsom, Charles Ray; Norbeck, Edwin; Olson, Jonathan; Onel, Yasar; Ozok, Ferhat; Sen, Sercan; Tiras, Emrah; Wetzel, James; Yetkin, Taylan; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Bolognesi, Sara; Fehling, David; Giurgiu, Gavril; Gritsan, Andrei; Guo, Zijin; Hu, Guofan; Maksimovic, Petar; Rappoccio, Salvatore; Swartz, Morris; Whitbeck, Andrew; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Grachov, Oleg; Kenny Iii, Raymond Patrick; Murray, Michael; Noonan, Daniel; Radicci, Valeria; Sanders, Stephen; Stringer, Robert; Tinti, Gemma; Wood, Jeffrey Scott; Zhukova, Victoria; Barfuss, Anne-Fleur; Bolton, Tim; Chakaberia, Irakli; Ivanov, Andrew; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Shrestha, Shruti; Svintradze, Irakli; Gronberg, Jeffrey; Lange, David; Wright, Douglas; Baden, Drew; Boutemeur, Madjid; Calvert, Brian; Eno, Sarah Catherine; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kirn, Malina; Kolberg, Ted; Lu, Ying; Marionneau, Matthieu; Mignerey, Alice; Peterman, Alison; Rossato, Kenneth; Skuja, Andris; Temple, Jeffrey; Tonjes, Marguerite; Tonwar, Suresh C; Twedt, Elizabeth; Bauer, Gerry; Bendavid, Joshua; Busza, Wit; Butz, Erik; Cali, Ivan Amos; Chan, Matthew; Dutta, Valentina; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Hahn, Kristan Allan; Kim, Yongsun; Klute, Markus; Lee, Yen-Jie; Li, Wei; Luckey, Paul David; Ma, Teng; Nahn, Steve; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Rudolph, Matthew; Stephans, George; Stöckli, Fabian; Sumorok, Konstanty; Sung, Kevin; Velicanu, Dragos; Wenger, Edward Allen; Wolf, Roger; Wyslouch, Bolek; Xie, Si; Yang, Mingming; Yilmaz, Yetkin; Yoon, Sungho; Zanetti, Marco; Cooper, Seth; Cushman, Priscilla; Dahmes, Bryan; De Benedetti, Abraham; Franzoni, Giovanni; Gude, Alexander; Haupt, Jason; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Pastika, Nathaniel; Rusack, Roger; Sasseville, Michael; Singovsky, Alexander; Tambe, Norbert; Turkewitz, Jared; Cremaldi, Lucien Marcus; Kroeger, Rob; Perera, Lalith; Rahmat, Rahmat; Sanders, David A; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Butt, Jamila; Claes, Daniel R; Dominguez, Aaron; Eads, Michael; Jindal, Pratima; Keller, Jason; Kravchenko, Ilya; Lazo-Flores, Jose; Malbouisson, Helena; Malik, Sudhir; Snow, Gregory R; Baur, Ulrich; Godshalk, Andrew; Iashvili, Ia; Jain, Supriya; Kharchilava, Avto; Kumar, Ashish; Shipkowski, Simon Peter; Smith, Kenneth; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Haley, Joseph; Trocino, Daniele; Wood, Darien; Zhang, Jinzhong; Anastassov, Anton; Kubik, Andrew; Mucia, Nicholas; Odell, Nathaniel; Ofierzynski, Radoslaw Adrian; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael Henry; Stoynev, Stoyan; Velasco, Mayda; Won, Steven; Antonelli, Louis; Berry, Douglas; Brinkerhoff, Andrew; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kolb, Jeff; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Morse, David Michael; Pearson, Tessa; Ruchti, Randy; Slaunwhite, Jason; Valls, Nil; Warchol, Jadwiga; Wayne, Mitchell; Wolf, Matthias; Ziegler, Jill; Bylsma, Ben; Durkin, Lloyd Stanley; Hill, Christopher; Hughes, Richard; Killewald, Phillip; Kotov, Khristian; Ling, Ta-Yung; Puigh, Darren; Rodenburg, Marissa; Vuosalo, Carl; Williams, Grayson; Winer, Brian L; Adam, Nadia; Berry, Edmund; Elmer, Peter; Gerbaudo, Davide; Halyo, Valerie; Hebda, Philip; Hegeman, Jeroen; Hunt, Adam; Laird, Edward; Lopes Pegna, David; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Raval, Amita; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zuranski, Andrzej; Acosta, Jhon Gabriel; Huang, Xing Tao; Lopez, Angel; Mendez, Hector; Oliveros, Sandra; Ramirez Vargas, Juan Eduardo; Zatserklyaniy, Andriy; Alagoz, Enver; Barnes, Virgil E; Benedetti, Daniele; Bolla, Gino; Bortoletto, Daniela; De Mattia, Marco; Everett, Adam; Hu, Zhen; Jones, Matthew; Koybasi, Ozhan; Kress, Matthew; Laasanen, Alvin T; Leonardo, Nuno; Maroussov, Vassili; Merkel, Petra; Miller, David Harry; Neumeister, Norbert; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Vidal Marono, Miguel; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Guragain, Samir; Parashar, Neeti; Adair, Antony; Boulahouache, Chaouki; Cuplov, Vesna; Ecklund, Karl Matthew; Geurts, Frank JM; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Chung, Yeon Sei; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Garcia-Bellido, Aran; Goldenzweig, Pablo; Gotra, Yury; Han, Jiyeon; Harel, Amnon; Korjenevski, Sergey; Miner, Daniel Carl; Vishnevskiy, Dmitry; Zielinski, Marek; Bhatti, Anwar; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Malik, Sarah; Mesropian, Christina; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Hits, Dmitry; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Patel, Rishi; Rekovic, Vladimir; Richards, Alan; Robles, Jorge; Rose, Keith; Salur, Sevil; Schnetzer, Steve; Seitz, Claudia; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Cerizza, Giordano; Hollingsworth, Matthew; Spanier, Stefan; Yang, Zong-Chang; York, Andrew; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Khotilovich, Vadim; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Perloff, Alexx; Roe, Jeffrey; Safonov, Alexei; Sakuma, Tai; Sengupta, Sinjini; Suarez, Indara; Tatarinov, Aysen; Toback, David; Akchurin, Nural; Damgov, Jordan; Dudero, Phillip Russell; Jeong, Chiyoung; Kovitanggoon, Kittikul; Lee, Sung Won; Libeiro, Terence; Roh, Youn; Volobouev, Igor; Appelt, Eric; Engh, Daniel; Florez, Carlos; Greene, Senta; Gurrola, Alfredo; Johns, Willard; Kurt, Pelin; Maguire, Charles; Melo, Andrew; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Balazs, Michael; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Lin, Chuanzhe; Neu, Christopher; Wood, John; Yohay, Rachel; Gollapinni, Sowjanya; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sakharov, Alexandre; Anderson, Michael; Bachtis, Michail; Belknap, Donald; Borrello, Laura; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Gray, Lindsey; Grogg, Kira Suzanne; Grothe, Monika; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Klukas, Jeffrey; Lanaro, Armando; Lazaridis, Christos; Leonard, Jessica; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Pierro, Giuseppe Antonio; Ross, Ian; Savin, Alexander; Smith, Wesley H; Swanson, Joshua

    2012-01-01

    The azimuthal anisotropy of charged particles in PbPb collisions at nucleon-nucleon center of mass energy of 2.76 TeV is measured over an extended transverse momentum (pt) range up to approximately 60 GeV. The data cover both the low-pt region associated with hydrodynamic flow phenomena and the high-pt region where the anisotropies may reflect the path-length dependence of parton energy loss in the created medium. A data sample corresponding to an integrated luminosity of 150 inverse microbarns is analyzed with the CMS detector at the LHC. The anisotropy parameter (v2) of the particles is extracted by correlating charged tracks with respect to the event plane reconstructed using the energy deposited in forward-angle calorimeters. For the six bins of collision centrality studied, spanning the range of 0-60% most-central events, the observed v2 values are found to first increase with pt, reaching a maximum around pt = 3 GeV, then gradually decrease to almost zero, with the decline persisting up to at least pt =...

  13. Spatial filtering velocimetry for real-time out-of-plane displacement measurements

    DEFF Research Database (Denmark)

    Olesen, Anders Sig; Yura, H.T.; Jakobsen, Michael Linde

    2016-01-01

    power spectrum of the photocurrent produced by this filter. This main contribution of this paper is a model, which describe the selectivity of the sensor, applied to speckle dynamics generated by an object moving out-of-plane. To motivate our interest in these filters we also present an all optical......We probe the dynamics of objective laser speckles as the axial distance between the object and the observation plane changes. With the purpose of measuring out-of-plane motion in real time, we apply optical spatial filtering velocimetry to the speckle dynamics. To achieve this, a rotationally...... symmetric spatial filter is designed. The spatial filter converts the speckle dynamics into a photocurrent with a quasi-sinusoidal response to the out-of-plane motion. The selectivity of the sensor relates directly to the uncertainty on sensor measurements. The selectivity most be derived from a temporal...

  14. CL 19: Anisotropy of the electron diffraction from femtosecond Laser excited Bismuth

    International Nuclear Information System (INIS)

    Zhou, P.; Ligges, M.; Streubuehr, C.; Brazda, Th.; Payer, Th.; Meyer zu Heringdorf, F.; Horn-von Hoegen, M.; Von der Linde, D.

    2010-01-01

    electron probe pulse. The diffraction intensity drops within a few picoseconds to a lower level and relaxes within approximately 100 ps. The levels in the different diffraction spots corresponding to the same lattice plane distance are different. In fact, the comparison of the various diffraction orders reveals a distinct orientation pattern. The greatest drop (approximately 5 percent) is observed in the direction parallel to the laser polarization whereas a reduction of only 2 percent is observed in the perpendicular direction. A rotation of the laser polarization results in a rotation of the orientation pattern. A thermal excitation would lead to a drop in diffraction intensity independent of the laser polarization (Debye-Waller-effect). The anisotropy indicates the presence of a linearly polarized E g mode. The excitation of a linearly polarized optical mode and its dependence on the laser polarization suggests that the stimulated Raman effect is the excitation mechanism. (authors)

  15. Apodised aperture using rotation of plane of polarization

    International Nuclear Information System (INIS)

    Simmons, W.W.; Leppelmeier, G.W.; Johnson, B.C.

    1975-01-01

    An apodised aperture based on the rotation of plane of polarization producing desirable characteristics on a transmitted light beam such as beam profiling in high flux laser amplifier chains is described. The apodised aperture is made with a lossless element by using one or more polarizers and/or analyzers and magneto-optical Faraday means for selectively rotating the plane of polarized radiation over the cross section to effect the desired apodisation

  16. Infrared anisotropy of La/sub 1.85/Sr/sub 0.15/CuO/sub 4-//sub y/

    International Nuclear Information System (INIS)

    Doll, G.L.; Steinbeck, J.; Dresselhaus, G.; Dresselhaus, M.S.; Strauss, A.J.; Zeiger, H.J.

    1987-01-01

    By calculating the infrared reflectance R(ω) for a collection of randomly oriented crystallites, we fit the reflectance of polycrystalline La/sub 1.85/Sr/sub 0.15/CuO/sub 4-//sub y/. From this calculation, the normal state of La/sub 1.85/Sr/sub 0.15/CuO/sub 4-//sub y/ is found to be metallic in the Cu-O planes and nonmetallic out-of-plane. The deconvolution of R(ω) into R/sub X/ and R/sub perpendicular/ allows the anisotropy of the system to be examined and provides a method by which infrared measurements of polycrystalline materials can be interpreted

  17. Thermal properties of the mixed spin-1 and spin-3/2 Ising ferrimagnetic system with two different random single-ion anisotropies

    Science.gov (United States)

    Pereira, J. R. V.; Tunes, T. M.; de Arruda, A. S.; Godoy, M.

    2018-06-01

    In this work, we have performed Monte Carlo simulations to study a mixed spin-1 and spin-3/2 Ising ferrimagnetic system on a square lattice with two different random single-ion anisotropies. This lattice is divided in two interpenetrating sublattices with spins SA = 1 in the sublattice A and SB = 3 / 2 in the sublattice B. The exchange interaction between the spins on the sublattices is antiferromagnetic (J single-ion anisotropies, DiA and DjB , on the sublattices A and B, respectively. We have determined the phase diagram of the model in the critical temperature Tc versus strength of the random single-ion anisotropy D plane and we shown that it exhibits only second-order phase transition lines. We also shown that this system displays compensation temperatures for some cases of the random single-ion distribution.

  18. Influence of the interface corrugation on the subband dispersions and the optical properties of (113)-oriented GaAs/AlAs superlattices

    DEFF Research Database (Denmark)

    Langbein, Wolfgang Werner; Lüerssen, D.; Kalt, H.

    1996-01-01

    We report on the influence of the interface corrugation in (113)-grown GaAs/AlAs superlattices on their band-edge optical properties both in theory and experiment. We calculate the subband dispersions and the optical anisotropies in a multiband k . p formalism. The dominating contribution...... to the optical anisotropies is found to be due to the intrinsic properties of the valence-band structure. The corrugation modifies the density of states only slightly, giving no evidence of a quantum-win behavior. By comparing the calculation with the experimental optical anisotropy, we can estimate...... of the localized type-I states at the band-edge show an enhanced optical anisotropy in comparison to the luminescence of the extended states, revealing the anisotropic nature of their localization sites. In type-II samples, deeply localized, isolated type-I states (Gamma quantum boxes) dominate the luminescence...

  19. An Exact Line Integral Representation of the Physical Optics Far Field from Plane PEC Scatterers Illuminnated by Hertzian Dipoles

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Meincke, Peter; Jørgensen, Erik

    2003-01-01

    We derive a line integral representation of the physical optics scattered far field that yields the exact same result as the conventional surface radiation integral. This representation applies to a perfectly electrically conducting plane scatterer illuminated by electric or magnetic Hertzian...... dipoles. The source and observation points can take on almost arbitrary positions. To illustrate the exactness and efficiency of the new line integral, numerical comparisons with the conventional surface radiation integral are carried out....

  20. 45○ sign switching of effective exchange bias due to competing anisotropies in fully epitaxial Co3FeN/MnN bilayers.

    Science.gov (United States)

    Hajiri, Tetsuya; Yoshida, Takuya; Filianina, Mariia; Jaiswal, Samridh; Borie, Benjamin; Asano, H; Zabel, Hartmut; Klaui, Mathias

    2017-11-20

    We report an unusual angular-dependent exchange bias effect in ferromagnet/antiferromagnet bilayers, where both ferromagnet and antiferromagnet are epitaxially grown. Numerical model calculations predict an approximately 45$^\\circ$ period for the sign switching of the exchange-bias field, depending on the ratio between magnetocrystalline anisotropy and exchange-coupling constant. The switching of the sign is indicative of a competition between a fourfold magnetocrystalline anisotropy of the ferromagnet and a unidirectional anisotropy field of the exchange coupling. This predicted unusual angular-dependent exchange bias and its magnetization switching process are confirmed by measurements on fully epitaxial Co$_3$FeN/MnN bilayers by longitudinal and transverse magneto-optic Kerr effect magnetometry. These results provide a deeper understanding of the exchange coupling phenomena in fully epitaxial bilayers with tailored materials and open up a complex switching energy landscape engineering by anisotropies. © 2017 IOP Publishing Ltd.

  1. Electrical resistivity characterization of anisotropy in the Biscayne Aquifer.

    Science.gov (United States)

    Yeboah-Forson, Albert; Whitman, Dean

    2014-01-01

    Electrical anisotropy occurs when electric current flow varies with azimuth. In porous media, this may correspond to anisotropy in the hydraulic conductivity resulting from sedimentary fabric, fractures, or dissolution. In this study, a 28-electrode resistivity imaging system was used to investigate electrical anisotropy at 13 sites in the Biscayne Aquifer of SE Florida using the rotated square array method. The measured coefficient of electrical anisotropy generally ranged from 1.01 to 1.12 with values as high as 1.36 found at one site. The observed electrical anisotropy was used to estimate hydraulic anisotropy (ratio of maximum to minimum hydraulic conductivity) which ranged from 1.18 to 2.83. The largest values generally were located on the Atlantic Coastal Ridge while the lowest values were in low elevation areas on the margin of the Everglades to the west. The higher values of anisotropy found on the ridge may be due to increased dissolution rates of the oolitic facies of the Miami formation limestone compared with the bryozoan facies to the west. The predominate trend of minimum resistivity and maximum hydraulic conductivity was E-W/SE-NW beneath the ridge and E-W/SW-NE farther west. The anisotropy directions are similar to the predevelopment groundwater flow direction as indicated in published studies. This suggests that the observed anisotropy is related to the paleo-groundwater flow in the Biscayne Aquifer. © 2013, National Ground Water Association.

  2. Fourfold magnetic anisotropy, coercivity and magnetization reversal of Co/V bilayers grown on MgO(0 0 1)

    Energy Technology Data Exchange (ETDEWEB)

    Calleja, J F [Departamento de Fisica, Facultad de Ciencias, Universidad de Oviedo, Calvo Sotelo s/n, 33007 Oviedo (Spain); Muro, M GarcIa del [Departament de Fisica Fonamental and Institut de Nanociencia i Nanotecnologia IN2UB de la Universitat de Barcelona, MartIi Franques, 1, E-08028 Barcelona (Spain); Presa, B [Departamento de Fisica, Facultad de Ciencias, Universidad de Oviedo, Calvo Sotelo s/n, 33007 Oviedo (Spain); Matarranz, R [Departamento de Fisica, Facultad de Ciencias, Universidad de Oviedo, Calvo Sotelo s/n, 33007 Oviedo (Spain); Corrales, J A [Departmento de Informatica, Universidad de Oviedo, Edificio Departamental 1, Campus de Viesques s/n, 33204 Gijon (Spain); Labarta, A [Departament de Fisica Fonamental and Institut de Nanociencia i Nanotecnologia IN2UB de la Universitat de Barcelona, MartIi Franques, 1, E-08028 Barcelona (Spain); Contreras, M C [Departamento de Fisica, Facultad de Ciencias, Universidad de Oviedo, Calvo Sotelo s/n, 33007 Oviedo (Spain)

    2007-11-21

    Magnetic anisotropy and magnetization reversal of Al/Co/V/MgO(0 0 1) thin films have been investigated. The films were fabricated by magnetron sputtering. The roles of both Co and V layers thicknesses have been studied. Magnetic characterization has been carried out by transverse susceptibility (TS) measurements and hysteresis loops. Cobalt is grown in the hcp structure on V with the c axis parallel to the film plane. Two types of hcp Co crystal are grown with the c axes perpendicular to each other. This structure gives rise to a fourfold magnetic anisotropy. When the V layer thickness is below 40 A a superimposed uniaxial anisotropy develops, the effect of which is a depression in the TS, in agreement with theoretical calculations. This uniaxial anisotropy is induced by the substrate and due to a discontinuous growth of the V layer. For hcp Co grown on V, the magnetic anisotropy rapidly increases with Co layer thickness. In this case, unexpected shifted hysteresis loops along the hard axes were observed when the films were not saturated. This has been explained by taking into account the magnetization reversal along the hard axis: it proceeds via magnetization rotation of some portions of the film at high fields, and by domain wall motion of the rest of the film at lower field values.

  3. Fourfold magnetic anisotropy, coercivity and magnetization reversal of Co/V bilayers grown on MgO(0 0 1)

    International Nuclear Information System (INIS)

    Calleja, J F; Muro, M GarcIa del; Presa, B; Matarranz, R; Corrales, J A; Labarta, A; Contreras, M C

    2007-01-01

    Magnetic anisotropy and magnetization reversal of Al/Co/V/MgO(0 0 1) thin films have been investigated. The films were fabricated by magnetron sputtering. The roles of both Co and V layers thicknesses have been studied. Magnetic characterization has been carried out by transverse susceptibility (TS) measurements and hysteresis loops. Cobalt is grown in the hcp structure on V with the c axis parallel to the film plane. Two types of hcp Co crystal are grown with the c axes perpendicular to each other. This structure gives rise to a fourfold magnetic anisotropy. When the V layer thickness is below 40 A a superimposed uniaxial anisotropy develops, the effect of which is a depression in the TS, in agreement with theoretical calculations. This uniaxial anisotropy is induced by the substrate and due to a discontinuous growth of the V layer. For hcp Co grown on V, the magnetic anisotropy rapidly increases with Co layer thickness. In this case, unexpected shifted hysteresis loops along the hard axes were observed when the films were not saturated. This has been explained by taking into account the magnetization reversal along the hard axis: it proceeds via magnetization rotation of some portions of the film at high fields, and by domain wall motion of the rest of the film at lower field values

  4. Transmutation of singularities in optical instruments

    Energy Technology Data Exchange (ETDEWEB)

    Tyc, Tomas [Institute of Theoretical Physics and Astrophysics, Masaryk University, Kotlarska 2, 61137 Brno (Czech Republic); Leonhardt, Ulf [School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS (United Kingdom)], E-mail: tomtyc@physics.muni.cz

    2008-11-15

    We propose a method for eliminating a class of singularities in optical media where the refractive index goes to zero or infinity at one or more isolated points. Employing transformation optics, we find a refractive index distribution equivalent to the original one that is nonsingular but shows a slight anisotropy. In this way, the original singularity is 'transmuted' into another, weaker type of singularity where the permittivity and permeability tensors are discontinuous at one point. The method is likely to find applications in designing and improving optical devices by making them easier to implement or to operate in a broad band of the spectrum.

  5. A Bayesian method to quantify azimuthal anisotropy model uncertainties: application to global azimuthal anisotropy in the upper mantle and transition zone

    Science.gov (United States)

    Yuan, K.; Beghein, C.

    2018-04-01

    Seismic anisotropy is a powerful tool to constrain mantle deformation, but its existence in the deep upper mantle and topmost lower mantle is still uncertain. Recent results from higher mode Rayleigh waves have, however, revealed the presence of 1 per cent azimuthal anisotropy between 300 and 800 km depth, and changes in azimuthal anisotropy across the mantle transition zone boundaries. This has important consequences for our understanding of mantle convection patterns and deformation of deep mantle material. Here, we propose a Bayesian method to model depth variations in azimuthal anisotropy and to obtain quantitative uncertainties on the fast seismic direction and anisotropy amplitude from phase velocity dispersion maps. We applied this new method to existing global fundamental and higher mode Rayleigh wave phase velocity maps to assess the likelihood of azimuthal anisotropy in the deep upper mantle and to determine whether previously detected changes in anisotropy at the transition zone boundaries are robustly constrained by those data. Our results confirm that deep upper-mantle azimuthal anisotropy is favoured and well constrained by the higher mode data employed. The fast seismic directions are in agreement with our previously published model. The data favour a model characterized, on average, by changes in azimuthal anisotropy at the top and bottom of the transition zone. However, this change in fast axes is not a global feature as there are regions of the model where the azimuthal anisotropy direction is unlikely to change across depths in the deep upper mantle. We were, however, unable to detect any clear pattern or connection with surface tectonics. Future studies will be needed to further improve the lateral resolution of this type of model at transition zone depths.

  6. Magnetic field sensor for isotropically sensing an incident magnetic field in a sensor plane

    Science.gov (United States)

    Pant, Bharat B. (Inventor); Wan, Hong (Inventor)

    2001-01-01

    A magnetic field sensor that isotropically senses an incident magnetic field. This is preferably accomplished by providing a magnetic field sensor device that has one or more circular shaped magnetoresistive sensor elements for sensing the incident magnetic field. The magnetoresistive material used is preferably isotropic, and may be a CMR material or some form of a GMR material. Because the sensor elements are circular in shape, shape anisotropy is eliminated. Thus, the resulting magnetic field sensor device provides an output that is relatively independent of the direction of the incident magnetic field in the sensor plane.

  7. Interplay between magnetocrystalline anisotropy and exchange bias in epitaxial CoO/Co films

    International Nuclear Information System (INIS)

    Liu, Hao-Liang; Zeng, Yu-Jia; Van Haesendonck, Chris; Brems, Steven; Temst, Kristiaan; Vantomme, André

    2016-01-01

    The interplay between magnetocrystalline anisotropy and exchange bias is investigated in CoO/Co bilayer films, which are grown epitaxially on MgO (0 0 1), by magnetization reversal measurements based on the anisotropic magnetoresistance (AMR) effect. While an asymmetric magnetization reversal survives after training for cooling field (CF) along the hard axis, the magnetization reversal becomes symmetric and is dominated in both branches of the hysteresis loop by domain wall motion before and after training for CF along the easy axis. When performing an in-plane hysteresis loop perpendicular to the CF, the hysteresis loop along the easy axis becomes asymmetric: magnetization rotation dominates in the ascending branch, while there is a larger contribution of domain wall motion in the descending branch. Furthermore, the azimuthal angular dependence of the AMR shows two minima after performing a perpendicular hysteresis loop, instead of only one minimum after training. Relying on the extended Fulcomer and Charap model, these effects can be related to an increased deviation of the average uncompensated antiferromagnetic magnetization from the CF direction. This model provides a consistent interpretation of training and asymmetry of the magnetization reversal for epitaxial films with pronounced magnetocrystalline anisotropy as well as for the previously investigated polycrystalline films. (paper)

  8. High-resolution vector magnetometry: Piezo-spin-polarization effect and in-plane strain-induced dominating uniaxial magnetic anisotropy in a 200-nm-thick Ni thin film

    Science.gov (United States)

    Benito, L.

    2018-04-01

    Owing to its high-sensitivity, reliability, fast, versatile and cost-effective operation, vibrating sample magnetometers (VSM) are massively popular characterization instruments at Magnetism laboratories worldwide. Nevertheless, the inherent appearance of synchronous noise represents a major drawback, which critically limits the fine probing of nanometer-sized media. I here report on an innovative approach to eliminate synchronous noise in VSM. This consists of fitting engineered mechanical devices that absorbs vibration energy, dissipating that into heat. Complementarily, a novel transversal pick-up coil system is also presented and analyzed; this detection system has been engineered to enhance the noise-to-signal ratio and optimized for measuring small size thin film samples. The implementation of a combined mechanical and electromagnetic approach enables to notably enhance the VSM performance, achieving a sensitivity better than 1 ×10-6 emu and a resolution below 5 ×10-8 emu, so that the magnetization vector in nanostructured media can be accurately mapped out down to cryogenic temperatures. I lastly show precision magnetometry measurements carried out in an epitaxial (0 0 1)-oriented 200 nm-thick Ni thin film. The analysis reveals the arising of an in-plane dominating strain-induced uniaxial magnetic anisotropy, K2ef = - 6.455kJ m - 3 , and a stunning piezo-spin-polarization effect resulting in a remarkable 10% modulation of the magnetization vector, ∼ 27 emu/cm3, with respect to the cubic lattice axes. Both effects are attributed to the likely existence of an orthorhombic lattice distortion, i.e.εxx -εyy ≈ - 2 ×10-3 . This categorical link enables to assign the observed anisotropic spin-polarization in the Ni overlayer to a two-ion magnetoelastic coupling effect.

  9. Elevated Temperature Effects on the Plastic Anisotropy of an Extruded Mg-4 Wt Pct Li Alloy: Experiments and Polycrystal Modeling

    Science.gov (United States)

    Risse, Marcel; Lentz, Martin; Fahrenson, Christoph; Reimers, Walter; Knezevic, Marko; Beyerlein, Irene J.

    2017-01-01

    In this work, we study the deformation behavior of Mg-4 wt pct Li in uniaxial tension as a function of temperature and loading direction. Standard tensile tests were performed at temperatures in the range of 293 K (20 °C) ≤ T ≤ 473 K (200 °C) and in two in-plane directions: the extrusion and the transverse. We find that while the in-plane plastic anisotropy (PA) decreases with temperature, the anisotropy in failure strain and texture development increases. To uncover the temperature dependence in the critical stresses for slip and in the amounts of slip and twinning systems mediating deformation, we employ the elastic-plastic self-consistent polycrystal plasticity model with a thermally activated dislocation density based hardening law for activating slip with individual crystals. We demonstrate that the model, with a single set of intrinsic material parameters, achieves good agreement with the stress-strain curves, deformation textures, and intragranular misorientation axis analysis for all test directions and temperatures. With the model, we show that at all temperatures the in-plane tensile behavior is driven primarily by analysis explains that the in-plane PA decreases and failure strains increase with temperature as a result of a significant reduction in the activation stress for pyramidal multiple types of < a rangle and < {c + a} rangle slip. The results also show that because of the strong initial texture, in-plane texture development is anisotropic since prismatic slip dominates the deformation in one test, although it is not the easiest slip mode, and basal slip in the other. These findings reveal the relationship between the temperature-sensitive thresholds needed to activate crystallographic slip and the development of texture and macroscopic PA.

  10. Mathematical Formalism for an Experimental Test of Space-Time Anisotropy

    International Nuclear Information System (INIS)

    Voicu-Brinzei, Nicoleta; Siparov, Sergey

    2010-01-01

    Some specific astrophysical data collected during the last decade suggest the need of a modification of the expression for the Einstein-Hilbert action, and several attempts are known in this respect. The modification suggested in this paper stems from a possible anisotropy of space-time--which leads to a dependence on directional variables of the simplest scalar in the least action principle. In order to provide a testable support to this idea, the optic-metrical parametric resonance is regarded - an experiment on a galactic scale, based on the interaction between the electromagnetic radiation of cosmic masers and periodical gravitational waves emitted by close double systems or pulsars. Since the effect depends on the space-time metric, a possible anisotropy could be revealed through observations. We prove that if space-time is anisotropic, then the orientation of the astrophysical systems suitable for observations would show it.

  11. Geometrical optics in the near field: local plane-interface approach with evanescent waves.

    Science.gov (United States)

    Bose, Gaurav; Hyvärinen, Heikki J; Tervo, Jani; Turunen, Jari

    2015-01-12

    We show that geometrical models may provide useful information on light propagation in wavelength-scale structures even if evanescent fields are present. We apply a so-called local plane-wave and local plane-interface methods to study a geometry that resembles a scanning near-field microscope. We show that fair agreement between the geometrical approach and rigorous electromagnetic theory can be achieved in the case where evanescent waves are required to predict any transmission through the structure.

  12. Magnetoresistance anisotropy of ultrathin epitaxial La0.83Sr0.17MnO3 films

    Science.gov (United States)

    Balevičius, Saulius; Tornau, Evaldas E.; ŽurauskienÄ--, Nerija; Stankevič, Voitech; Šimkevičius, Česlovas; TolvaišienÄ--, Sonata; PlaušinaitienÄ--, Valentina; Abrutis, Adulfas

    2017-12-01

    We present the study of temperature dependence of resistivity (ρ), magnetoresistance (MR), and magnetoresistance anisotropy (AMR) of thin epitaxial La0.83Sr0.17MnO3 films. The films with thickness from 4 nm to 140 nm were grown on an NdGaO3 (001) substrate by a pulsed injection metal organic chemical vapor deposition technique. We demonstrate that the resistivity of these films significantly increases and the temperature Tm of the resistivity maximum in ρ(T) dependence decreases with the decrease of film thickness. The anisotropy of ρ(T) dependence with respect to the electrical current direction along the [100] or [010] crystallographic axis of the film is found for ultrathin films (4-8 nm) at temperatures close to Tm. Both MR and AMR, measured in magnetic fields up to 0.7 T applied in the film plane parallel and perpendicular to the current direction, have shown strong dependence on the film thickness. It was also found that the anisotropy of magnetoresistance could change its sign from positive (thicker films) to negative (ultrathin films) and obtain very small values at a certain intermediate thickness (20 nm) when the current is flowing perpendicular to the easy magnetization axis [010]. While the positive AMR effect was assigned to the conventional magnetic ordering of manganites, the AMR of ultrathin films was influenced by the pinning of magnetization to the easy axis. The temperature dependence and change of the AMR sign with film thickness is shown to be well described by the two-region model (more strained closer to the film substrate and more relaxed further from it) assuming that the relative concentration of both regions changes with the film thickness. The possibility to use the effect of the AMR compensation for the development of scalar in-plane magnetic field sensors is discussed.

  13. Relationship between electrical conductivity anisotropy and fabric anisotropy in granular materials during drained triaxial compressive tests: a numerical approach

    Science.gov (United States)

    Niu, Qifei; Revil, André; Li, Zhaofeng; Wang, Yu-Hsing

    2017-07-01

    The anisotropy of granular media and its evolution during shearing are important aspects required in developing physics-based constitutive models in Earth sciences. The development of relationships between geoelectrical properties and the deformation of porous media has applications to the monitoring of faulting and landslides. However, such relationships are still poorly understood. In this study, we first investigate the definition of the electrical conductivity anisotropy tensor of granular materials in presence of surface conductivity of the grains. Fabric anisotropy is related to the components of the fabric tensor. We define an electrical anisotropy factor based on the Archie's exponent second-order symmetric tensor m of granular materials. We use numerical simulations to confirm a relationship between the evolution of electrical and fabric anisotropy factors during shearing. To realize the simulations, we build a virtual laboratory in which we can easily perform synthetic experiments. We first simulate drained compressive triaxial tests of loose and dense granular materials (porosity 0.45 and 0.38, respectively) using the discrete element method. Then, the electrical conductivity tensor of a set of deformed synthetic samples is computed using the finite-difference method. The numerical results show that shear strains are responsible for a measurable anisotropy in the bulk conductivity of granular media. The observed electrical anisotropy response, during shearing, is distinct for dense and loose synthetic samples. Electrical and fabric anisotropy factors exhibit however a unique linear correlation, regardless of the shear strain and the initial state (porosity) of the synthetic samples. The practical implication of this finding confirms the usefulness of the electrical conductivity method in studying the fabric tensor of granular media. This result opens the door in using time-lapse electrical resistivity to study non-intrusively the evolution of anisotropy

  14. Azimuthal anisotropy and correlations at large transverse momenta in p + p and Au + Au collisions at square root sNN=200 GeV.

    Science.gov (United States)

    Adams, J; Aggarwal, M M; Ahammed, Z; Amonett, J; Anderson, B D; Arkhipkin, D; Averichev, G S; Badyal, S K; Bai, Y; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellwied, R; Berger, J; Bezverkhny, B I; Bharadwaj, S; Bhasin, A; Bhati, A K; Bhatia, V S; Bichsel, H; Billmeier, A; Bland, L C; Blyth, C O; Bonner, B E; Botje, M; Boucham, A; Brandin, A V; Bravar, A; Bystersky, M; Cadman, R V; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Carroll, J; Castillo, J; Cebra, D; Chajecki, Z; Chaloupka, P; Chattopdhyay, S; Chen, H F; Chen, Y; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Coffin, J P; Cormier, T M; Cramer, J G; Crawford, H J; Das, D; Das, S; de Moura, M M; Derevschikov, A A; Didenko, L; Dietel, T; Dogra, S M; Dong, W J; Dong, X; Draper, J E; Du, F; Dubey, A K; Dunin, V B; Dunlop, J C; Dutta Mazumdar, M R; Eckardt, V; Edwards, W R; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Fachini, P; Faivre, J; Fatemi, R; Fedorisin, J; Filimonov, K; Filip, P; Finch, E; Fine, V; Fisyak, Y; Foley, K J; Fomenko, K; Fu, J; Gagliardi, C A; Gans, J; Ganti, M S; Gaudichet, L; Geurts, F; Ghazikhanian, V; Ghosh, P; Gonzalez, J E; Grachov, O; Grebenyuk, O; Grosnick, D; Guertin, S M; Guo, Y; Gupta, A; Gutierrez, T D; Hallman, T J; Hamed, A; Hardtke, D; Harris, J W; Heinz, M; Henry, T W; Hepplemann, S; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Huang, H Z; Huang, S L; Hughes, E W; Humanic, T J; Igo, G; Ishihara, A; Jacobs, P; Jacobs, W W; Janik, M; Jiang, H; Jones, P G; Judd, E G; Kabana, S; Kang, K; Kaplan, M; Keane, D; Khodyrev, V Yu; Kiryluk, J; Kisiel, A; Kislov, E M; Klay, J; Klein, S R; Klyachko, A; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kramer, M; Kravtsov, P; Kravtsov, V I; Krueger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kunz, C L; Kutuev, R Kh; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; Laue, F; Lauret, J; Lebedev, A; Lednicky, R; Lehocka, S; LeVine, M J; Li, C; Li, Q; Li, Y; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, L; Liu, Q J; Liu, Z; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Lu, Y; Ludlam, T; Lynn, D; Ma, G L; Ma, J G; Ma, Y G; Magestro, D; Mahajan, S; Mahapatra, D P; Majka, R; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Martin, L; Marx, J N; Matis, H S; Matulenko, Yu A; McClain, C J; McShane, T S; Meissner, F; Melnick, Yu; Meschanin, A; Miller, M L; Milosevich, Z; Minaev, N G; Mironov, C; Mischke, A; Mishra, D K; Mitchell, J; Mohanty, B; Molnar, L; Moore, C F; Morozov, D A; Munhoz, M G; Nandi, B K; Nayak, S K; Nayak, T K; Nelson, J M; Netrakanti, P K; Nikitin, V A; Nogach, L V; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Pal, S K; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Peitzmann, T; Perevoztchikov, V; Perkins, C; Peryt, W; Petrov, V A; Phatak, S C; Picha, R; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potekhin, M; Potrebenikova, E; Potukuchi, B V K S; Prindle, D; Pruneau, C; Putschke, J; Rai, G; Rakness, G; Raniwala, R; Raniwala, S; Ravel, O; Ray, R L; Razin, S V; Reichhold, D; Reid, J G; Renault, G; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Sahoo, R; Sakrejda, I; Salur, S; Sandweiss, J; Savin, I; Sazhin, P S; Schambach, J; Scharenberg, R P; Schmitz, N; Schroeder, L S; Schweda, K; Seger, J; Seyboth, P; Shahaliev, E; Shao, M; Shao, W; Sharma, M; Shen, W Q; Shestermanov, K E; Shimanskiy, S S; Sichtermann, E; Simon, F; Singaraju, R N; Skoro, G; Smirnov, N; Snellings, R; Sood, G; Sorensen, P; Sowinski, J; Speltz, J; Spinka, H M; Srivastava, B; Stadnik, A; Stanislaus, T D S; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Suaide, A A P; Sugarbaker, E; Suire, C; Sumbera, M; Surrow, B; Symons, T J M; Szanto de Toledo, A; Szarwas, P; Tai, A; Takahashi, J; Tang, A H; Tarnowsky, T; Thein, D; Thomas, J H; Timoshenko, S; Tokarev, M; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Urkinbaev, A; Van Buren, G; van Leeuwen, M; Vander Molen, A M; Varma, R; Vasilevski, I M; Vasiliev, A N; Vernet, R; Vigdor, S E; Viyogi, Y P; Vokal, S; Voloshin, S A; Vznuzdaev, M; Waggoner, W T; Wang, F; Wang, G; Wang, G; Wang, X L; Wang, Y; Wang, Y; Wang, Z M; Ward, H; Watson, J W; Webb, J C; Wells, R; Westfall, G D; Wetzler, A; Whitten, C; Wieman, H; Wissink, S W; Witt, R; Wood, J; Wu, J; Xu, N; Xu, Z; Xu, Z Z; Yamamoto, E; Yepes, P; Yurevich, V I; Zanevsky, Y V; Zhang, H; Zhang, W M; Zhang, Z P; Zolnierczuk, P A; Zoulkarneev, R; Zoulkarneeva, Y; Zubarev, A N

    2004-12-17

    Results on high transverse momentum charged particle emission with respect to the reaction plane are presented for Au + Au collisions at square root s(NN)=200 GeV. Two- and four-particle correlations results are presented as well as a comparison of azimuthal correlations in Au + Au collisions to those in p + p at the same energy. The elliptic anisotropy v(2) is found to reach its maximum at p(t) approximately 3 GeV/c, then decrease slowly and remain significant up to p(t) approximately 7-10 GeV/c. Stronger suppression is found in the back-to-back high-p(t) particle correlations for particles emitted out of plane compared to those emitted in plane. The centrality dependence of v(2) at intermediate p(t) is compared to simple models based on jet quenching.

  15. Gigantic transverse x-ray magnetic circular dichroism in ultrathin Co in Au/Co/Au(001)

    Science.gov (United States)

    Koide, T.; Mamiya, K.; Asakura, D.; Osatune, Y.; Fujimori, A.; Suzuki, Y.; Katayama, T.; Yuasa, S.

    2014-04-01

    Transverse-geometry x-ray magnetic circular dichroism (TXMCD) measurements on Au/Co-staircase/Au(001) reveal the orbital origin of intrinsic in-plane magnetic anisotropy A gigantic TXMCD was successfully observed at the Co L3,2 edges for Co thickness (tC0) in the 2-monolayer regime. A TXMCD-sum-rule analysis shows a remarkable enhancement of an orbital-moment anisotropy (Δmorb) and of an in-plane magnetic dipole moment (m||T). Both Δmorb and m||T exhibit close similarity in tCo dependence, reflecting the in-plane magnetic anisotropy These observations evidence that extremely strong, intrinsic, in-plane magnetic anisotropy originates from the anisotropic orbital part of the wave function, dominating the dipole-dipole-interaction-derived, extrinsic, in-plane magnetic anisotropy.

  16. Accounting for optical errors in microtensiometry.

    Science.gov (United States)

    Hinton, Zachary R; Alvarez, Nicolas J

    2018-09-15

    Drop shape analysis (DSA) techniques measure interfacial tension subject to error in image analysis and the optical system. While considerable efforts have been made to minimize image analysis errors, very little work has treated optical errors. There are two main sources of error when considering the optical system: the angle of misalignment and the choice of focal plane. Due to the convoluted nature of these sources, small angles of misalignment can lead to large errors in measured curvature. We demonstrate using microtensiometry the contributions of these sources to measured errors in radius, and, more importantly, deconvolute the effects of misalignment and focal plane. Our findings are expected to have broad implications on all optical techniques measuring interfacial curvature. A geometric model is developed to analytically determine the contributions of misalignment angle and choice of focal plane on measurement error for spherical cap interfaces. This work utilizes a microtensiometer to validate the geometric model and to quantify the effect of both sources of error. For the case of a microtensiometer, an empirical calibration is demonstrated that corrects for optical errors and drastically simplifies implementation. The combination of geometric modeling and experimental results reveal a convoluted relationship between the true and measured interfacial radius as a function of the misalignment angle and choice of focal plane. The validated geometric model produces a full operating window that is strongly dependent on the capillary radius and spherical cap height. In all cases, the contribution of optical errors is minimized when the height of the spherical cap is equivalent to the capillary radius, i.e. a hemispherical interface. The understanding of these errors allow for correct measure of interfacial curvature and interfacial tension regardless of experimental setup. For the case of microtensiometry, this greatly decreases the time for experimental setup

  17. Large-format InGaAs focal plane arrays for SWIR imaging

    Science.gov (United States)

    Hood, Andrew D.; MacDougal, Michael H.; Manzo, Juan; Follman, David; Geske, Jonathan C.

    2012-06-01

    FLIR Electro Optical Components will present our latest developments in large InGaAs focal plane arrays, which are used for low light level imaging in the short wavelength infrared (SWIR) regime. FLIR will present imaging from their latest small pitch (15 μm) focal plane arrays in VGA and High Definition (HD) formats. FLIR will present characterization of the FPA including dark current measurements as well as the use of correlated double sampling to reduce read noise. FLIR will show imagery as well as FPA-level characterization data.

  18. Latest results on anisotropy flow of light and heavy flavors in PbPb collisions at CMS

    CERN Document Server

    Milosevic, Jovan

    2017-01-01

    Nonlinear response coefficients of higher-order $v_{n}$ anisotropy harmonics for charged particles, as a function of transverse momentum ($p_{\\mathrm{T}}$) and collision centrality, are measured in PbPb collisions at $\\sqrt{s_{NN}}$ = 2.76 and 5.02~TeV. The nonlinear response coefficients are obtained using $v_{n}$ harmonics measured with respect to their own plane and the mixed harmonics. The results are compared with hydrodynamic models with different shear viscosity to entropy density ratios and initial conditions. Additionally, the $v_{2}$ and $v_{3}$ anisotropy harmonics of charged particles and prompt $D^{0}$ mesons are measured at $\\lvert y \\rvert \\le$ 1 as a function of $p_{\\mathrm{T}}$ and centrality in PbPb data at $\\sqrt{s_{NN}}$ = 5.02~TeV collected with the CMS detector. Prompt $D^{0}$ mesons, formed from the $c$ quarks produced via initial hard scatterings, are separated up to a high extent from nonprompt $D^{0}$ mesons emerged from decays of b hadrons. The results indicate that the charm quarks...

  19. Off-plane x-ray reflection grating fabrication

    Science.gov (United States)

    Peterson, Thomas J.; DeRoo, Casey T.; Marlowe, Hannah; McEntaffer, Randall L.; Miles, Drew M.; Tutt, James H.; Schultz, Ted B.

    2015-09-01

    Off-plane X-ray diffraction gratings with precision groove profiles at the submicron scale will be used in next generation X-ray spectrometers. Such gratings will be used on a current NASA suborbital rocket mission, the Off-plane Grating Rocket Experiment (OGRE), and have application for future grating missions. The fabrication of these gratings does not come without challenges. High performance off-plane gratings must be fabricated with precise radial grating patterns, optically at surfaces, and specific facet angles. Such gratings can be made using a series of common micro-fabrication techniques. The resulting process is highly customizable, making it useful for a variety of different mission architectures. In this paper, we detail the fabrication method used to produce high performance off-plane gratings and report the results of a preliminary qualification test of a grating fabricated in this manner. The grating was tested in the off-plane `Littrow' configuration, for which the grating is most efficient for a given diffraction order, and found to achieve 42% relative efficiency in the blaze order with respect to all diffracted light.

  20. Determination of the components of three dimensional vector and tensor anisotropy of cosmic radiation with application to the results of the Musala experiment

    International Nuclear Information System (INIS)

    Somogyi, A.J.

    1976-09-01

    The paper proves that it is possible to interpret the experimental results of the Musala experiment as being consequences of a vector anisotropy with maximum in the direction of the galactic centre and a tensor anisotropy with principal axes in the physically plausible directions of the galactic arm, the normal direction of the galactic plane and the direction perpendicular them, respectively. It is underlined that the interpretation is not the only possible one and, in addition to this, statistical errors are rather large. The results favour the galactic origin of the particles concerned (E=6x10 13 eV). (Sz.N.Z.)