WorldWideScience

Sample records for in-core neutron monitoring

  1. Core component vibration monitoring in BWRs using neutron noise

    International Nuclear Information System (INIS)

    Fry, D.N.; Robinson, J.C.; Kryter, R.C.; Cole, O.C.

    1975-01-01

    Neutron noise from in-core fission detectors in a BWR was investigated to determine its effectiveness as a monitor of mechanical vibrations of core components. In this study the general properties of BWR neutron noise were characterized, and a signal enhancement method was implemented to improve the measurement sensitivity. (auth)

  2. Design and fabrication of self-powered in-core neutron flux monitor assembly

    International Nuclear Information System (INIS)

    Chung, M.K.; Cho, S.W.; Kang, H.D.; Cho, K.K.; Cho, B.S.; Kang, S.S.

    1980-01-01

    This is the final report on the prototypical fabrication of an in-core neutron flux monitor detector assembly for a specific power reactor conducted by KAERI from July 1, 1978 to December 31, 1979. It is well known that power reactors require a large number of in-core neutron flux detector for reactor regulation and the structures of detector assemblies are different from reactor to reactor. Therefore, from the nature of this project, it should be noted here that the target model of the prototypical farbrication of an in-core neutron flux monitor detector assembly is a VFD-2 System for Wolsung CANDU. It is concluded that fabrication of in-core neutron flux monitor detector assembly for CANDU reactor is technically feasible and will bring economical benefit as much as 50 % of the unit price if they are fabricated in Korea by using partially materials which are available from local market. (author)

  3. The development of ex-core neutron flux monitoring system for integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. K.; Kwon, H. J.; Park, H. Y.; Koo, I. S

    2004-12-01

    Due to the arrangement of major components within the reactor vessel, the integral reactor has relatively long distance between the core support barrel and the reactor vessel when compared with the currently operating plants. So, a neutron flux leakage at the ex-vessel represents a relatively low flux level which may generate some difficulties in obtaining a wide range of neutron flux information including the source range one. This fact may have an impact upon the design and fabrication of an ex-core neutron flux detector. Therefore, it is required to study neutron flux detectors that are suitable for the installation location and characteristics of an integral reactor. The physical constraints of an integral reactor should be considered when one designs and develops the ex-core neutron flux monitoring detectors and their systems. As a possible installation location of the integral reactor ex-core neutron flux detector assembly, two candidate locations are considered, that is, one is between the core support barrel and the reactor vessel and the other is within the Internal Shielding Tank(IST). And, for these locations, some factors such as the environmental requirements and geometrical restrictions are investigated In the case of considering the inside of the IST as a ex-core neutron flux detector installation position, an electrical insulation problem and a low neutron flux measurement problem arose and when considering the inside of the reactor vessel, a detector's sensitivity variation problem, an electrical insulation problem, a detector's insertion and withdrawal problem, and a high neutron flux measurement problem were encountered. Through a survey of the detector installation of the currently operating plants and detector manufacturer's products, the proposed structure and specifications of an ex-core neutron flux detector are suggested. And, the joint ownership strategy for a proposed detector model is also depicted. At the end, by studying

  4. The development of ex-core neutron flux monitoring system for integral reactor

    International Nuclear Information System (INIS)

    Lee, J. K.; Kwon, H. J.; Park, H. Y.; Koo, I. S.

    2004-12-01

    Due to the arrangement of major components within the reactor vessel, the integral reactor has relatively long distance between the core support barrel and the reactor vessel when compared with the currently operating plants. So, a neutron flux leakage at the ex-vessel represents a relatively low flux level which may generate some difficulties in obtaining a wide range of neutron flux information including the source range one. This fact may have an impact upon the design and fabrication of an ex-core neutron flux detector. Therefore, it is required to study neutron flux detectors that are suitable for the installation location and characteristics of an integral reactor. The physical constraints of an integral reactor should be considered when one designs and develops the ex-core neutron flux monitoring detectors and their systems. As a possible installation location of the integral reactor ex-core neutron flux detector assembly, two candidate locations are considered, that is, one is between the core support barrel and the reactor vessel and the other is within the Internal Shielding Tank(IST). And, for these locations, some factors such as the environmental requirements and geometrical restrictions are investigated In the case of considering the inside of the IST as a ex-core neutron flux detector installation position, an electrical insulation problem and a low neutron flux measurement problem arose and when considering the inside of the reactor vessel, a detector's sensitivity variation problem, an electrical insulation problem, a detector's insertion and withdrawal problem, and a high neutron flux measurement problem were encountered. Through a survey of the detector installation of the currently operating plants and detector manufacturer's products, the proposed structure and specifications of an ex-core neutron flux detector are suggested. And, the joint ownership strategy for a proposed detector model is also depicted. At the end, by studying the ex-core

  5. Development of three methods for control rod position monitoring based on fixed in-core neutron detectors

    International Nuclear Information System (INIS)

    Peng, Xingjie; Li, Qing; Wang, Kan

    2015-01-01

    Highlights: • Three methods are utilized separately to unfold the control rod position from the fixed in-core neutron detector measurements. • Fixed in-core neutron detector measurements are simulated by neutronics code SMART. • Numerical results show that all these methods can unfold the control rod position accurately. • Two correction strategies are proposed to correct the simulated fixed in-core detector signals. - Abstract: Nuclear reactor core power distribution on-line monitoring system is very important in core surveillance, and this system should have the ability to indicate some abnormal conditions, such as the unacceptable control rod misalignment. In this study, the methodologies of radial basis function neural network (RBFNN), group method of data handling (GMDH) and Levenberg–Marquardt (LM) algorithm are utilized separately to unfold the control rod position from the fixed in-core neutron detector measurements. For using these methods, a large number of in-core detector signals corresponding to various known rod positions are needed. These data can be generated by an advanced core calculation code. In this study, the neutronics code SMART was used. The simulation results show that all these methods can unfold the control rod position accurately, and the performance comparison shows that the regularized RBFNN performs best. Two correction strategies are proposed to correct the simulated fixed in-core detector signals and improve the rod position monitoring accuracy when there are mismatches between actual physical factors and modeled physical factors

  6. Study of core support barrel vibration monitoring using ex-core neutron noise analysis and fuzzy logic algorithm

    International Nuclear Information System (INIS)

    Christian, Robby; Song, Seon Ho; Kang, Hyun Gook

    2015-01-01

    The application of neutron noise analysis (NNA) to the ex-core neutron detector signal for monitoring the vibration characteristics of a reactor core support barrel (CSB) was investigated. Ex-core flux data were generated by using a nonanalog Monte Carlo neutron transport method in a simulated CSB model where the implicit capture and Russian roulette technique were utilized. First and third order beam and shell modes of CSB vibration were modeled based on parallel processing simulation. A NNA module was developed to analyze the ex-core flux data based on its time variation, normalized power spectral density, normalized cross-power spectral density, coherence, and phase differences. The data were then analyzed with a fuzzy logic module to determine the vibration characteristics. The ex-core neutron signal fluctuation was directly proportional to the CSB's vibration observed at 8Hz and15Hzin the beam mode vibration, and at 8Hz in the shell mode vibration. The coherence result between flux pairs was unity at the vibration peak frequencies. A distinct pattern of phase differences was observed for each of the vibration models. The developed fuzzy logic module demonstrated successful recognition of the vibration frequencies, modes, orders, directions, and phase differences within 0.4 ms for the beam and shell mode vibrations.

  7. Development of an asymmetric multiple-position neutron source (AMPNS) method to monitor the criticality of a degraded reactor core

    International Nuclear Information System (INIS)

    Kim, S.S.; Levine, S.H.

    1985-01-01

    An analytical/experimental method has been developed to monitor the subcritical reactivity and unfold the k/sub infinity/ distribution of a degraded reactor core. The method uses several fixed neutron detectors and a Cf-252 neutron source placed sequentially in multiple positions in the core. Therefore, it is called the Asymmetric Multiple Position Neutron Source (AMPNS) method. The AMPNS method employs nucleonic codes to analyze the neutron multiplication of a Cf-252 neutron source. An optimization program, GPM, is utilized to unfold the k/sub infinity/ distribution of the degraded core, in which the desired performance measure minimizes the error between the calculated and the measured count rates of the degraded reactor core. The analytical/experimental approach is validated by performing experiments using the Penn State Breazeale TRIGA Reactor (PSBR). A significant result of this study is that it provides a method to monitor the criticality of a damaged core during the recovery period

  8. Vanadium Beta Emission Detectors for Reactor In-Core Neutron Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, I Oe; Soederlund, B

    1969-06-15

    In-core flux measurements are becoming increasingly important in both power reactors and test reactors. In particular power distribution measurements in large power reactors have to be performed with a great number of neutron detectors capable of withstanding high integrated flux values. This report presents a summary of the development and application of a new type of nuclear radiation sensor, a beta emission detector, for measurements at high neutron flux levels. The work has been carried out at the Section for Instrumentation and has been the basis for a type of neutron detector employed in the Marviken in-core system as well as for other types. The report describes the design and principle of operation, experiments and tests. Also included are the results and comments from a long-term irradiation of some detectors in the Halden reactor.

  9. Online monitoring of fast neutron (DT/DD) at Purnima neutron generator

    International Nuclear Information System (INIS)

    Bishnoi, S.; Patel, T.; Shukla, M.; Adhikari, P.S.; Sinha, A.

    2012-01-01

    A neutron generator (NG) at Purnima Labs, BARC has been developed for DT accelerator driven zero power subcritical (ADSS) system. Subcritical core of ADSS will be coupled to the NG for benchmarking experiments. Kinetic parameters of ADSS such as K-source, flux, power etc depends on this external neutron source strength injected to the core. However the neutron emission rate of NG does not remain stable throughout its operation. In view of this a reliable, precise and online monitoring of NG's neutron emission rate is required. An online neutron monitoring system based on associated particle method has been designed, developed and installed at NG. The monitoring unit consists of an ion implanted planar silicon detector, placed inside the drift tube of NG at an angle with respect to D + beam direction. A series of experiments were carried out with increasing neutron yield to optimize the position of detector such that it has sufficient counting statistics and minimum pileup. A complementary calibration procedure for validating these results based on activation technique was also carried out with standard Cu foil. The reaction rate monitored with online monitor and foil activation technique were compared, their variations with the predicted (theoretical) results were within 16%. This paper deals with the development and performance of online neutron monitoring system for DT and DD neutrons

  10. New measurement system for on line in core high-energy neutron flux monitoring in materials testing reactor conditions

    International Nuclear Information System (INIS)

    Geslot, B.; Filliatre, P.; Barbot, L.; Jammes, C.; Breaud, S.; Oriol, L.; Villard, J.-F.; Vermeeren, L.; Lopez, A. Legrand

    2011-01-01

    Flux monitoring is of great interest for experimental studies in material testing reactors. Nowadays, only the thermal neutron flux can be monitored on line, e.g., using fission chambers or self-powered neutron detectors. In the framework of the Joint Instrumentation Laboratory between SCK-CEN and CEA, we have developed a fast neutron detector system (FNDS) capable of measuring on line the local high-energy neutron flux in fission reactor core and reflector locations. FNDS is based on fission chambers measurements in Campbelling mode. The system consists of two detectors, one detector being mainly sensitive to fast neutrons and the other one to thermal neutrons. On line data processing uses the CEA depletion code DARWIN in order to disentangle fast and thermal neutrons components, taking into account the isotopic evolution of the fissile deposit. The first results of FNDS experimental test in the BR2 reactor are presented in this paper. Several fission chambers have been irradiated up to a fluence of about 7 x 10 20 n/cm 2 . A good agreement (less than 10% discrepancy) was observed between FNDS fast flux estimation and reference flux measurement.

  11. New measurement system for on line in core high-energy neutron flux monitoring in materials testing reactor conditions

    Science.gov (United States)

    Geslot, B.; Vermeeren, L.; Filliatre, P.; Lopez, A. Legrand; Barbot, L.; Jammes, C.; Bréaud, S.; Oriol, L.; Villard, J.-F.

    2011-03-01

    Flux monitoring is of great interest for experimental studies in material testing reactors. Nowadays, only the thermal neutron flux can be monitored on line, e.g., using fission chambers or self-powered neutron detectors. In the framework of the Joint Instrumentation Laboratory between SCK-CEN and CEA, we have developed a fast neutron detector system (FNDS) capable of measuring on line the local high-energy neutron flux in fission reactor core and reflector locations. FNDS is based on fission chambers measurements in Campbelling mode. The system consists of two detectors, one detector being mainly sensitive to fast neutrons and the other one to thermal neutrons. On line data processing uses the CEA depletion code DARWIN in order to disentangle fast and thermal neutrons components, taking into account the isotopic evolution of the fissile deposit. The first results of FNDS experimental test in the BR2 reactor are presented in this paper. Several fission chambers have been irradiated up to a fluence of about 7 × 1020 n/cm2. A good agreement (less than 10% discrepancy) was observed between FNDS fast flux estimation and reference flux measurement.

  12. New measurement system for on line in core high-energy neutron flux monitoring in materials testing reactor conditions

    Energy Technology Data Exchange (ETDEWEB)

    Geslot, B.; Filliatre, P.; Barbot, L.; Jammes, C.; Breaud, S.; Oriol, L.; Villard, J.-F. [CEA, DEN, Cadarache, SPEx/LDCI, F-13108 Saint-Paul-lez-Durance (France); Vermeeren, L. [SCK-CEN, Boeretang 200, B-2400 Mol (Belgium); Lopez, A. Legrand [CEA, DEN, Saclay, SIREN/LECSI, F-91400 Saclay (France)

    2011-03-15

    Flux monitoring is of great interest for experimental studies in material testing reactors. Nowadays, only the thermal neutron flux can be monitored on line, e.g., using fission chambers or self-powered neutron detectors. In the framework of the Joint Instrumentation Laboratory between SCK-CEN and CEA, we have developed a fast neutron detector system (FNDS) capable of measuring on line the local high-energy neutron flux in fission reactor core and reflector locations. FNDS is based on fission chambers measurements in Campbelling mode. The system consists of two detectors, one detector being mainly sensitive to fast neutrons and the other one to thermal neutrons. On line data processing uses the CEA depletion code DARWIN in order to disentangle fast and thermal neutrons components, taking into account the isotopic evolution of the fissile deposit. The first results of FNDS experimental test in the BR2 reactor are presented in this paper. Several fission chambers have been irradiated up to a fluence of about 7 x 10{sup 20} n/cm{sup 2}. A good agreement (less than 10% discrepancy) was observed between FNDS fast flux estimation and reference flux measurement.

  13. Demonstration of the importance of a dedicated neutron beam monitoring system for BNCT facility

    International Nuclear Information System (INIS)

    Chao, Der-Sheng; Liu, Yuan-Hao; Jiang, Shiang-Huei

    2016-01-01

    The neutron beam monitoring system is indispensable to BNCT facility in order to achieve an accurate patient dose delivery. The neutron beam monitoring of a reactor-based BNCT (RB-BNCT) facility can be implemented through the instrumentation and control system of a reactor provided that the reactor power level remains constant during reactor operation. However, since the neutron flux in reactor core is highly correlative to complicated reactor kinetics resulting from such as fuel depletion, poison production, and control blade movement, some extent of variation may occur in the spatial distribution of neutron flux in reactor core. Therefore, a dedicated neutron beam monitoring system is needed to be installed in the vicinity of the beam path close to the beam exit of the RB-BNCT facility, where it can measure the BNCT beam intensity as closely as possible and be free from the influence of the objects present around the beam exit. In this study, in order to demonstrate the importance of a dedicated BNCT neutron beam monitoring system, the signals originating from the two in-core neutron detectors installed at THOR were extracted and compared with the three dedicated neutron beam monitors of the THOR BNCT facility. The correlation of the readings between the in-core neutron detectors and the BNCT neutron beam monitors was established to evaluate the improvable quality of the beam intensity measurement inferred by the in-core neutron detectors. In 29 sampled intervals within 16 days of measurement, the fluctuations in the mean value of the normalized ratios between readings of the three BNCT neutron beam monitors lay within 0.2%. However, the normalized ratios of readings of the two in-core neutron detectors to one of the BNCT neutron beam monitors show great fluctuations of 5.9% and 17.5%, respectively. - Highlights: • Two in-core neutron detectors and three BNCT neutron beam monitors were compared. • BNCT neutron beam monitors improve the stability in neutron

  14. In-core monitoring detectors

    International Nuclear Information System (INIS)

    Mitelman, M.G.

    2001-01-01

    The main task of in-core monitoring consists in securing observability of the reactor installation in all possible operation modes (normal, transient, accident and post-accident). Operation safety at acceptable cost can be achieved by optimized measurement errors. The range of sensors applied as in-core detectors for operative measurements in the industry is very limited in number. Among them might be cited self powered neutron detectors (SPND) and thermocouples. Sensors are incorporated in the in-core detectors assemblies (SVRD). The presentation makes an effort to touch upon the problems of assuring and increasing quality of in-core on-line measurements. So we do not consider systems using movable detectors, as the latter do not assure on-line measurements. (Authors)

  15. A Polyethylene Moderator Design for Auxiliary Ex-core Neutron Detector

    International Nuclear Information System (INIS)

    Lee, Hwan Soo; Shin, Ho Cheol; Bae, Seong Man

    2012-01-01

    The moderator of detector assembly in ENFMS (Excore Neutron Flux Monitoring System) plays a key role for slowing down from fast neutron to thermal neutron at outside of reactor vessel. Since neutron monitoring detector such as BF3, fission chamber detectors mostly responds to thermal neutron, moderator should be included to neutron detector assembly to detect more efficiently. Generally, resin has been used for moderator of detector in ENFMS of OPR1000 and APR1400, because resin has stable thermal resistance, availability and high neutron moderation characteristics due to the light atomic materials. In case of an auxiliary ex-core neutron detector, the polyethylene is suggested that polyethylene has a better moderator rather than resin, then, the amounts of moderator are reduced. This is important thing for auxiliary ex-core detector equipment at reactor, because the auxiliary equipment should affect minimally to another system. In this study, polyethylene moderator is designed for auxiliary ex-core neutron detector. To find out the optimal thickness of polyethylene moderator, preliminary simulation and experiments are performed. And sensitivity simulation for detector moderator at actual reactor is performed by DORT code

  16. Development of SiC Neutron Detector Assembly to Measure the Neutron Flux of the Reactor Core

    Energy Technology Data Exchange (ETDEWEB)

    Park, Se Hwan; Park, June Sic; Shin, Hee Sung; Kim, Ho Dong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Yong Kyun [Hanyang University, Seoul (Korea, Republic of)

    2012-05-15

    At present, the conventional detector to measure the neutron at harsh environment is a Self Powered Neutron Detector (SPND). Rhodium(Rh)-103 is in the SPND. When neutron is incident on the Rhodium, the neutron capture reaction occurs, and the Rh-103 is converted to Rh-104. The Rh-104 is decayed to Pd-104 by {beta}-decay, and electrons are generated as the decay products. Because of the half life of Rh-104, approximately 5 minutes are required for the SPND output to reach the equilibrium condition. Therefore the on-line monitoring of the nuclear reactor state is limited if the neutron flux in the reactor core is monitored with the SPND. Silicon carbide (SiC) has the possibility to be developed as neutron detector at harsh environment, because the SiC can be operative at high temperature and high neutron flux conditions. Previously, the basic operation properties of the SiC detector were studied. Also, the radiation response of the SiC detector was studied at high neutron and gamma dose rate. The measurement results for an ex-core neutron flux monitor or a neutron flux monitor of the spent fuel were published. The SiC detector was also developed as neutron detector to measure the fissile material with active interrogation method. However, the studies about the development of SiC detector are still limited. In the present work, the radiation damage effect of the SiC detector was studied. The detector structure was determined based on the study, and a neutron detector assembly was made with the SiC detectors. The neutron and gamma-ray response of the detector assembly is presented in this paper. The detector assembly was positioned in the HANARO research reactor core, the performance test was done. The preliminary results are also included in this paper

  17. Monitoring core barrel motion by neutron noise diagnostics

    International Nuclear Information System (INIS)

    Por, G.

    1985-08-01

    The core barrel motion is detected by ionization chambers located around the reactor vessel. The method is based on the measurement of the neutron flux fluctuations. Calculations to determine the direction and the size of the motion are discussed. The identification of core barrel motion and its connection with the error of one of the main circulating pumps in the Rheinsberg nuclear power plant are described. Core barrel motion of 10 Hz with an amplitude less than 50 μm could be diagnozed at the Paks-1 reactor using the Dutch high accuracy evaluation system. (V.N.)

  18. Study of the core compaction effects and its monitoring in sodium cooled fast reactors

    International Nuclear Information System (INIS)

    Zylbersztejn, F.

    2012-01-01

    Conclusions: • On calculation of reactivity impacts of core compaction/flowering: → Upper bound of the reactivity coefficients for each type of deformation; → Uniform compaction model: significant reactivity impact; Circular symmetric model: small reactivity impact. • On the visibility of these phenomena by the neutron detectors: → The direct monitoring of the core compaction by neutron detector in the BCC is not possible. (the identification that the reactivity perturbations observed are due to variation of the core geometry). Perspectives of solutions: → Improved core design: reducing the effects. → Physical improvements: Steel resistance to deformations (irradiation, flexion); Direct devices: core constraint (prevents deformations). → Additional calculations: Considering more localized deformations; Advanced monitoring with neutron noise (in progress)

  19. Self powered neutron detectors as in-core detectors for Sodium-cooled Fast Reactors

    Science.gov (United States)

    Verma, V.; Barbot, L.; Filliatre, P.; Hellesen, C.; Jammes, C.; Svärd, S. Jacobsson

    2017-07-01

    Neutron flux monitoring system forms an integral part of the design of a Generation IV sodium cooled fast reactor. Diverse possibilities of detector system installation must be studied for various locations in the reactor vessel in order to detect any perturbations in the core. Results from a previous paper indicated that it is possible to detect changes in neutron source distribution initiated by an inadvertent withdrawal of outer control rod with in-vessel fission chambers located azimuthally around the core. It is, however, not possible to follow inner control rod withdrawal and precisely know the location of the perturbation in the core. Hence the use of complimentary in-core detectors coupled with the peripheral fission chambers is proposed to enable robust core monitoring across the radial direction. In this paper, we assess the feasibility of using self-powered neutron detectors (SPNDs) as in-core detectors in fast reactors for detecting local changes in the power distribution when the reactor is operated at nominal power. We study the neutron and gamma contributions to the total output current of the detector modelled with Platinum as the emitter material. It is shown that this SPND placed in an SFR-like environment would give a sufficiently measurable prompt neutron induced current of the order of 600 nA/m. The corresponding induced current in the connecting cable is two orders of magnitude lower and can be neglected. This means that the SPND can follow in-core power fluctuations. This validates the operability of an SPND in an SFR-like environment.

  20. Development of an inconel self powered neutron detector for in-core reactor monitoring

    Science.gov (United States)

    Alex, M.; Ghodgaonkar, M. D.

    2007-04-01

    The paper describes the development and testing of an Inconel600 (2 mm diameter×21 cm long) self-powered neutron detector for in-core neutron monitoring. The detector has 3.5 mm overall diameter and 22 cm length and is integrally coupled to a 12 m long mineral insulated cable. The performance of the detector was compared with cobalt and platinum detectors of similar dimensions. Gamma sensitivity measurements performed at the 60Co irradiation facility in 14 MR/h gamma field showed values of -4.4×10 -18 A/R/h/cm (-9.3×10 -24 A/ γ/cm 2-s/cm), -5.2×10 -18 A/R/h/cm (-1.133×10 -23 A/ γ/cm 2-s/cm) and 34×10 -18 A/R/h/cm (7.14×10 -23 A/ γ/cm 2-s/cm) for the Inconel, Co and Pt detectors, respectively. The detectors together with a miniature gamma ion chamber and fission chamber were tested in the in-core Apsara Swimming Pool type reactor. The ion chambers were used to estimate the neutron and gamma fields. With an effective neutron cross-section of 4b, the Inconel detector has a total sensitivity of 6×10 -23 A/nv/cm while the corresponding sensitivities for the platinum and cobalt detectors were 1.69×10 -22 and 2.64×10 -22 A/nv/cm. The linearity of the detector responses at power levels ranging from 100 to 200 kW was within ±5%. The response of the detectors to reactor scram showed that the prompt response of the Inconel detector was 0.95 while it was 0.7 and 0.95 for the platinum and cobalt self-powered detectors, respectively. The detector was also installed in the horizontal flux unit of 540 MW Pressurised Heavy Water Reactor (PHWR). The neutron flux at the detector location was calculated by Triveni code. The detector response was measured from 0.02% to 0.07% of full power and showed good correlation between power level and detector signals. Long-term tests and the dynamic response of the detector to shut down in PHWR are in progress.

  1. Development of an inconel self powered neutron detector for in-core reactor monitoring

    International Nuclear Information System (INIS)

    Alex, M.; Ghodgaonkar, M.D.

    2007-01-01

    The paper describes the development and testing of an Inconel600 (2 mm diameterx21 cm long) self-powered neutron detector for in-core neutron monitoring. The detector has 3.5 mm overall diameter and 22 cm length and is integrally coupled to a 12 m long mineral insulated cable. The performance of the detector was compared with cobalt and platinum detectors of similar dimensions. Gamma sensitivity measurements performed at the 60 Co irradiation facility in 14 MR/h gamma field showed values of -4.4x10 -18 A/R/h/cm (-9.3x10 -24 A/γ/cm 2 -s/cm), -5.2x10 -18 A/R/h/cm (-1.133x10 -23 A/γ/cm 2 -s/cm) and 34x10 -18 A/R/h/cm (7.14x10 -23 A/γ/cm 2 -s/cm) for the Inconel, Co and Pt detectors, respectively. The detectors together with a miniature gamma ion chamber and fission chamber were tested in the in-core Apsara Swimming Pool type reactor. The ion chambers were used to estimate the neutron and gamma fields. With an effective neutron cross-section of 4b, the Inconel detector has a total sensitivity of 6x10 -23 A/nv/cm while the corresponding sensitivities for the platinum and cobalt detectors were 1.69x10 -22 and 2.64x10 -22 A/nv/cm. The linearity of the detector responses at power levels ranging from 100 to 200 kW was within ±5%. The response of the detectors to reactor scram showed that the prompt response of the Inconel detector was 0.95 while it was 0.7 and 0.95 for the platinum and cobalt self-powered detectors, respectively. The detector was also installed in the horizontal flux unit of 540 MW Pressurised Heavy Water Reactor (PHWR). The neutron flux at the detector location was calculated by Triveni code. The detector response was measured from 0.02% to 0.07% of full power and showed good correlation between power level and detector signals. Long-term tests and the dynamic response of the detector to shut down in PHWR are in progress

  2. Nuclear reactor ex-core startup neutron detector

    International Nuclear Information System (INIS)

    Wyvill, J.R.

    1980-01-01

    A sensitive ex-core neutron detector is needed to monitor the power level of reactors during startup. The neutron detector of this invention has a photomultiplier with window resistant to radiation darkening at the input end and an electrical connector at the output end. The photomultiplier receives light signals from a neutron-responsive scintillator medium, typically a cerium-doped lithium silicate glass, that responds to neutrons after they have been thermalized by a silicone resin moderator. Enclosing and shielding the photmultiplier, the scintillator medium and the moderator is a combined lead and borated silicone resin housing

  3. Development of an inconel self powered neutron detector for in-core reactor monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Alex, M. [Electronics Division, BARC, Mumbai (India)]. E-mail: maryalex@barc.gov.in; Ghodgaonkar, M.D. [Electronics Division, BARC, Mumbai (India)

    2007-04-21

    The paper describes the development and testing of an Inconel600 (2 mm diameterx21 cm long) self-powered neutron detector for in-core neutron monitoring. The detector has 3.5 mm overall diameter and 22 cm length and is integrally coupled to a 12 m long mineral insulated cable. The performance of the detector was compared with cobalt and platinum detectors of similar dimensions. Gamma sensitivity measurements performed at the {sup 60}Co irradiation facility in 14 MR/h gamma field showed values of -4.4x10{sup -18} A/R/h/cm (-9.3x10{sup -24} A/{gamma}/cm{sup 2}-s/cm), -5.2x10{sup -18} A/R/h/cm (-1.133x10{sup -23} A/{gamma}/cm{sup 2}-s/cm) and 34x10{sup -18} A/R/h/cm (7.14x10{sup -23} A/{gamma}/cm{sup 2}-s/cm) for the Inconel, Co and Pt detectors, respectively. The detectors together with a miniature gamma ion chamber and fission chamber were tested in the in-core Apsara Swimming Pool type reactor. The ion chambers were used to estimate the neutron and gamma fields. With an effective neutron cross-section of 4b, the Inconel detector has a total sensitivity of 6x10{sup -23} A/nv/cm while the corresponding sensitivities for the platinum and cobalt detectors were 1.69x10{sup -22} and 2.64x10{sup -22} A/nv/cm. The linearity of the detector responses at power levels ranging from 100 to 200 kW was within {+-}5%. The response of the detectors to reactor scram showed that the prompt response of the Inconel detector was 0.95 while it was 0.7 and 0.95 for the platinum and cobalt self-powered detectors, respectively. The detector was also installed in the horizontal flux unit of 540 MW Pressurised Heavy Water Reactor (PHWR). The neutron flux at the detector location was calculated by Triveni code. The detector response was measured from 0.02% to 0.07% of full power and showed good correlation between power level and detector signals. Long-term tests and the dynamic response of the detector to shut down in PHWR are in progress.

  4. Self powered neutron detectors as in-core detectors for Sodium-cooled Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Verma, V., E-mail: vasudha.verma@physics.uu.se [Division of Applied Nuclear Physics, Uppsala University, Box 516, SE-75120 Uppsala (Sweden); CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St-Paul-lez-Durance (France); Barbot, L.; Filliatre, P. [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St-Paul-lez-Durance (France); Hellesen, C. [Division of Applied Nuclear Physics, Uppsala University, Box 516, SE-75120 Uppsala (Sweden); Jammes, C. [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St-Paul-lez-Durance (France); Svärd, S. Jacobsson [Division of Applied Nuclear Physics, Uppsala University, Box 516, SE-75120 Uppsala (Sweden)

    2017-07-11

    Neutron flux monitoring system forms an integral part of the design of a Generation IV sodium cooled fast reactor. Diverse possibilities of detector system installation must be studied for various locations in the reactor vessel in order to detect any perturbations in the core. Results from a previous paper indicated that it is possible to detect changes in neutron source distribution initiated by an inadvertent withdrawal of outer control rod with in-vessel fission chambers located azimuthally around the core. It is, however, not possible to follow inner control rod withdrawal and precisely know the location of the perturbation in the core. Hence the use of complimentary in-core detectors coupled with the peripheral fission chambers is proposed to enable robust core monitoring across the radial direction. In this paper, we assess the feasibility of using self-powered neutron detectors (SPNDs) as in-core detectors in fast reactors for detecting local changes in the power distribution when the reactor is operated at nominal power. We study the neutron and gamma contributions to the total output current of the detector modelled with Platinum as the emitter material. It is shown that this SPND placed in an SFR-like environment would give a sufficiently measurable prompt neutron induced current of the order of 600 nA/m. The corresponding induced current in the connecting cable is two orders of magnitude lower and can be neglected. This means that the SPND can follow in-core power fluctuations. This validates the operability of an SPND in an SFR-like environment. - Highlights: • Studied possibility of using SPNDs as in-core detectors in SFRs. • Study done to detect local power profile changes when reactor is at nominal power. • SPND with a Pt-emitter gives measurable prompt current of the order of 600 nA/m. • Dominant proportion of prompt response is maintained throughout the operation. • Detector signal gives dynamic information on the power fluctuations.

  5. Neutronics calculation of RTP core

    Science.gov (United States)

    Rabir, Mohamad Hairie B.; Zin, Muhammad Rawi B. Mohamed; Karim, Julia Bt. Abdul; Bayar, Abi Muttaqin B. Jalal; Usang, Mark Dennis Anak; Mustafa, Muhammad Khairul Ariff B.; Hamzah, Na'im Syauqi B.; Said, Norfarizan Bt. Mohd; Jalil, Muhammad Husamuddin B.

    2017-01-01

    Reactor calculation and simulation are significantly important to ensure safety and better utilization of a research reactor. The Malaysian's PUSPATI TRIGA Reactor (RTP) achieved initial criticality on June 28, 1982. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes. Since early 90s, neutronics modelling were used as part of its routine in-core fuel management activities. The are several computer codes have been used in RTP since then, based on 1D neutron diffusion, 2D neutron diffusion and 3D Monte Carlo neutron transport method. This paper describes current progress and overview on neutronics modelling development in RTP. Several important parameters were analysed such as keff, reactivity, neutron flux, power distribution and fission product build-up for the latest core configuration. The developed core neutronics model was validated by means of comparison with experimental and measurement data. Along with the RTP core model, the calculation procedure also developed to establish better prediction capability of RTP's behaviour.

  6. Extensive Air Showers Detected by Aragats Neutron Monitor

    International Nuclear Information System (INIS)

    Badalyan, A.; Chilingarian, A.; Hovsepyan, G.; Grigoryan, A.; Khanikyants, Y.; Manukyan, A.; Pokhsraryan, D.; Soghomonyan, S.

    2017-01-01

    Extensive Air Shower (EAS) duration as registered by the surface particle detectors does not exceed a few tens of nanosecond. However, Neutron monitors containing plenty of absorbing matter can respond to EAS core traversal during 1 ∼ms by registering secondary slow neutrons born by EAS hadrons in the soil, walls of buildings and in the matter of detector itself. Thus, the time distribution of the pulses from the proportional counters of the neutron monitor after EAS propagation extends to ∼l ms, ∼5 orders of magnitude larger than the EAS passing time. The Aragats Neutron Monitor (ArNM) has a special option for the EAS core detection. In general, the dead time of NM is ∼1 ms that provides the one-to-one relation of incident hadrons and detector counts. The pulses generated by the neutrons possibly entering the proportional chamber after the first one will be neglected. In ArNM, we use several “electronic” dead times, and with the shortest one, 400 ns, the detector counts all pulses that enter the proportional chambers. If ArNM one-second time series corresponding to the shortest dead time contain much more signals (a neutron burst) than with l-ms dead time, then we conclude that the EAS core hits the detector. We assume that he distribution of registered burst multiplicities is proportional to the energy of the primary particle. The primary cosmic ray energy spectrum was obtained by the frequency analysis through the counting frequencies of the multiplicities of different magnitudes and relating them to the integral energy spectrum measured by the MAKET array at the same place several years ago. (author)

  7. Reactor internals vibration monitoring by neutron noise methods in PWRs

    International Nuclear Information System (INIS)

    Pazsit, I.; Por, G.; Lux, I.

    1983-01-01

    Certain elements of PWR cores such as control/fuel rods or cassettes, or other parts of reactor internals, often represent a vibration problem. Early analyses at operating PWR plant revealed that these vibrations can be detected by in-core neutron detectors, opening up the possibility of vibration monitoring and diagnostics by noise methods. Theoretical methods of calculating vibration induced neutron noise and its application to vibration diagnostics are summarized. Experiments to check theoretical conclusions are under way at the Central Research Institute for Physics, Budapest. (author)

  8. Influence of fuel vibration on PWR neutron noise associated with core barrel motion

    International Nuclear Information System (INIS)

    Sweeney, F.J.; March-Leuba, J.

    1984-01-01

    Ex-core neutron detector noise has been utilized to monitor core support barrel (CSB) vibrations. In order to observe long-term changes, noise signals at Sequoyah-1 were monitored continuously during the whole first fuel cycle and part of the second cycle. Results suggest that neutron noise measurements performed infrequently may not provide adequate surveillance of the CSB because it may be difficult to separate noise amplitude changes due solely to CSB motion from changes caused by fuel motion and burnup

  9. On-line core monitoring system based on buckling corrected modified one group model

    International Nuclear Information System (INIS)

    Freire, Fernando S.

    2011-01-01

    Nuclear power reactors require core monitoring during plant operation. To provide safe, clean and reliable core continuously evaluate core conditions. Currently, the reactor core monitoring process is carried out by nuclear code systems that together with data from plant instrumentation, such as, thermocouples, ex-core detectors and fixed or moveable In-core detectors, can easily predict and monitor a variety of plant conditions. Typically, the standard nodal methods can be found on the heart of such nuclear monitoring code systems. However, standard nodal methods require large computer running times when compared with standards course-mesh finite difference schemes. Unfortunately, classic finite-difference models require a fine mesh reactor core representation. To override this unlikely model characteristic we can usually use the classic modified one group model to take some account for the main core neutronic behavior. In this model a course-mesh core representation can be easily evaluated with a crude treatment of thermal neutrons leakage. In this work, an improvement made on classic modified one group model based on a buckling thermal correction was used to obtain a fast, accurate and reliable core monitoring system methodology for future applications, providing a powerful tool for core monitoring process. (author)

  10. In core monitor having multi-step seals

    International Nuclear Information System (INIS)

    Kasai, Makoto; Ono, Susumu.

    1976-01-01

    Purpose: To completely prevent a sensor gas sealed in a pipe from leaking in an in-core neutron detector for use with a bwr type reactor. Constitution: In an in core monitor fabricated by disposing inner and outer electrodes in a housing, forming a layer of neutron conversion material on the outer electrode, filling an ionizing gas within the space between the layer and the inner electrode and, thereafter, attaching an insulation cable and an exhaust pipe respectively by way of insulators to both ends of the housing, the exhaust pipe is sealed in two-steps through pressure bonding using a multi-stepped pincher tool having two pressure bonding bits of a step shape and the outer sealing portion is further welded. The sensor gas sealed in the pipe can thus be prevented from leaking upon pressure bonding and welding. (Horiuchi, T.)

  11. In core monitor having multi-step seals

    Energy Technology Data Exchange (ETDEWEB)

    Kasai, M; Ono, S

    1976-12-09

    A method to completely prevent a sensor gas sealed in a pipe from leaking in an in-core neutron detector for use with a BWR type reactor is described. In an in core monitor fabricated by disposing inner and outer electrodes in a housing, forming a layer of neutron conversion material on the outer electrode, filling an ionizing gas within the space between the layer and the inner electrode and, thereafter, attaching an insulation cable and an exhaust pipe respectively by way of insulators to both ends of the housing, the exhaust pipe is sealed in two-steps through pressure bonding using a multi-stepped pincher tool having two pressure bonding bits of a step shape and the outer sealing portion is further welded. The sensor gas sealed in the pipe can thus be prevented from leaking upon pressure bonding and welding.

  12. Prompt Neutron Decay Constant Determination Of Silicide Transition Core Using Noise Method

    International Nuclear Information System (INIS)

    Jujuratisbela, Uju; Yulianto, Yusi Eko; Cahyana

    2001-01-01

    Chairman of BATAN had decided to replace the Oxide fuel element type of RSG-GAS into silicide element type step by step. The replacement will create core transitions. Kinetic characteristic of the transition cores have to be monitored in order to know the deviation of core behavior. For that reason, the kinetic parameters have to be measured. Prompt neutron decay constant (alpha) is one of the kinetic parameters that has to be monitored continuously in the transition cores. In order not to disturb the normal operation of reactor, alpha parameter should be measured by using noise analysis method. The voltage of neutron flux at power of 15 MW is connected to preamplifier and filter then to the Dynamic Signal Analyzer Version-2 and then the auto power spectral density (APSD) was determined by using Fast Fourier transform. From the APSD curve of each channel of JKT03, the cut off frequency of each channel can be determined by using linear regression technique such that the prompt neutron decay constant can be estimated

  13. Neutron activation for logging the distribution of gold in bore-hole cores

    International Nuclear Information System (INIS)

    Rahmanian, H.; Watterson, J.I.W.

    1992-01-01

    A new method for the non-destructive determination of gold in bore-hole cores has been developed using instrumental neutron activation analysis with a 252 Cf source. The procedure obtains the distribution and concentration of gold along the longitudinal axis of the core i.e. a log of the gold concentration. The accuracy of the method is comparable to fire assay at a level of 2 ppm and has a detection limit of 1 ppm under the conditions used. The assay of the gold is carried out by employing a novel variation of the conventional comparator method using gold wires as both standard and flux monitor. A method is described for logging gold in bore-hole cores using neutron activation with a 160 μg 252 Cf neutron source. The method has a limit of detection of about 1 ppm under the described conditions. (author)

  14. In-core neutron flux measurements at PARR using self powered neutron detector

    International Nuclear Information System (INIS)

    Hussain, A.; Ansari, S.A.

    1989-10-01

    This report describes experimental reactor physics measure ments at PARR using the in-core neutron detectors. Rhodium self powered neutron detectors (SPND) were used in the PARR core and several measurements were made aimed at detector calibration, response time determination and neutron flux measurements. The detectors were calibrated at low power using gold foils and full power by the thermal channel. Based on this calibration it was observed that the detector response remains almost linear throughout the power range. The self powered detectors were used for on-line determination of absolute neutron flux in the core as well as the spatial distribution of neutron flux or reactor power. The experimental, axial and horizontal flux mapping results at certain locations in the core are presented. The total response time of rhodium detector was experimentally determined to be about 5 minutes, which agree well with the theoretical results. Because of longer response time of SPND of the detectors it is not possible to use them in the reactor protection system. (author). 10 figs

  15. Characteristics of Fabricated SiC Neutron Detectors for Neutron Flux Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Han Soo; Ha, Jang Ho; Park, Se Hwan; Lee, Kyu Hong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Cheol Ho [Hanyang University, Seoul (Korea, Republic of)

    2011-05-15

    An SPND (Self-powered Neutron Detector) is commonly used for neutron detection in NPP (Nuclear Power Plant) by virtue of un-reactivity for gamma-rays. But it has a drawback, which is that it cannot detect neutrons in real time due to beta emissions (about > 48 s) after reactions between neutrons and {sup 103}Rh in an SPND. And Generation IV reactors such as MSR (Molten-salt reactor), SFR (Sodium-cooled fast reactor), and GFR (Gas-cooled fast reactor) are designed to compact size and integration type. For GEN IV reactor, neutron monitor also must be compact-sized to apply such reactor easily and much more reliable. The wide band-gap semiconductors such as SiC, AlN, and diamond make them an attractive alternative in applications in harsh environments by virtue of the lower operating voltage, faster charge-collection times compared with gas-filled detectors, and compact size.1) In this study, two PIN-type SiC semiconductor neutron detectors, which are for fast neutron detection by elastic and inelastic scattering SiC atoms and for thermal neutron detection by charged particle emissions of 6LiF reaction, were designed and fabricated for NPP-related applications. Preliminary tests such as I-V and alpha response were performed and neutron responses at ENF in HANARO research reactor were also addressed. The application feasibility of the fabricated SiC neutron detector as an in-core neutron monitor was discussed

  16. Comparison study on in-core neutron detector for online neutron flux mapping of research and power reactor

    International Nuclear Information System (INIS)

    Zareen Khan Abdul Jalil Khan; Mohd Idris Taib; Izhar Abu Husin; Nurfarhana Ayuni

    2010-01-01

    This paper presents the comparison study on In-Core neutron detector using for online flux mapping of Research and Power reactor. Technical description of in-core neutron also taken into consideration to identify the different characterization of neutron detector and describe on Self Power neutron detector (SPND) for online neutron flux mapping. Able to provide information on the neutron flux distribution and understand how in-core neutron detector are being used in nuclear power plant including to enable to state the principles of neutron detector. (author)

  17. Measurement of two-phase flow variables in a BWR by analysis of in-core neutron detector noise signals

    International Nuclear Information System (INIS)

    Stekelenburg, A.J.C.; Hagen, T.H.J.J. van der

    1996-01-01

    In this paper, the state of the art of the measurement of two-phase flow variables in a boiling water reactor (BWR) by analysis of in-core neutron detector noise signals is given. It is concluded that the neutronic processes involved in neutron noise are quite well understood, but that little is known about the density fluctuations in two-phase flow which are the main cause of the neutron noise. For this reason, the neutron noise measurements, like the well known two-detector velocity measurements, are still difficult to interpret. By analyzing neutron noise measurements in a natural circulation cooled BWR, it is illustrated that, once a theory on the density fluctuations is developed, two-phase flow can be monitored with a single in-core detector. (author). 70 refs, 4 figs

  18. Long-lived Hybrid Incore Detector for Core Monitoring and Protection

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Kyoon Ho [KEPCO Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    The signal production mechanism in a rhodium (Rh) fixed in-core detector emitter relies primarily on the beta particles resulting from neutron absorptions in either of two Rh isotopes to produce an electric current. As the neutron transmutation process depletes the Rh isotopes, the signal output per unit neutron flux from an Rh detector emitter will decrease. A vanadium detector is primarily sensitive to neutrons, but with a somewhat slower reaction time as that of a Rh detector. The benefit of vanadium over rhodium is its low depletion rate, which is a factor of 7 times less than that of rhodium. Platinum detectors are very sensitive to gamma flux, but only mildly sensitive to neutron flux. Because the depletion rate of platinum is very small, it can be neglected. Generally, both gamma and neutron signals are proportional to the assembly power. The characteristics of a new detector are the long life time due to the low depletion of emitter materials and the capability of reactor protection as well as reactor monitoring. The new detector uses vanadium and platinum as the emitter materials to meet the long life time and reactor protection capability. Vanadium detector is used for reactor monitoring and platinum detector is used for reactor protection. To determine the number of emitter strings, a comparative study of the power peaking factor monitoring accuracy for various self-powered fixed in-core detector geometries was made, and the configuration of the optimal detector design was also established and verified. The design of a new detector consists of five-string vanadium detector elements, and three-string platinum detector elements. The detector assembly also contains a background wire for compensation of noise signal and a thermocouple for use in the post-accident monitoring system. This new hybrid detector can be used for both reactor Monitoring And reactor Protection (MAP)

  19. Neutron energy spectrum flux profile of Ghana's miniature neutron source reactor core

    International Nuclear Information System (INIS)

    Sogbadji, R.B.M.; Abrefah, R.G.; Ampomah-Amoako, E.; Agbemava, S.E.; Nyarko, B.J.B.

    2011-01-01

    Highlights: → The total neutron flux spectrum of the compact core of Ghana's miniature neutron source reactor was studied. → Using 20,484 energy grids, the thermal, slowing down and fast neutron energy regions were studied. - Abstract: The total neutron flux spectrum of the compact core of Ghana's miniature neutron source reactor was understudied using the Monte Carlo method. To create small energy groups, 20,484 energy grids were used for the three neutron energy regions: thermal, slowing down and fast. The moderator, the inner irradiation channels, the annulus beryllium reflector and the outer irradiation channels were the region monitored. The thermal neutrons recorded their highest flux in the inner irradiation channel with a peak flux of (1.2068 ± 0.0008) x 10 12 n/cm 2 s, followed by the outer irradiation channel with a peak flux of (7.9166 ± 0.0055) x 10 11 n/cm 2 s. The beryllium reflector recorded the lowest flux in the thermal region with a peak flux of (2.3288 ± 0.0004) x 10 11 n/cm 2 s. The peak values of the thermal energy range occurred in the energy range (1.8939-3.7880) x 10 -08 MeV. The inner channel again recorded the highest flux of (1.8745 ± 0.0306) x 10 09 n/cm 2 s at the lower energy end of the slowing down region between 8.2491 x 10 -01 MeV and 8.2680 x 10 -01 MeV, but was over taken by the moderator as the neutron energies increased to 2.0465 MeV. The outer irradiation channel recorded the lowest flux in this region. In the fast region, the core, where the moderator is found, the highest flux was recorded as expected, at a peak flux of (2.9110 ± 0.0198) x 10 08 n/cm 2 s at 6.961 MeV. The inner channel recorded the second highest while the outer channel and annulus beryllium recorded very low flux in this region. The flux values in this region reduce asymptotically to 20 MeV.

  20. Fast measurements of the in-core coolant velocity in a BWR by neutron noise analysis

    International Nuclear Information System (INIS)

    Hagen, T.H.J.J. van der; Hoogenboom, J.E.

    1988-01-01

    A method to determine in-core coolant velocities from neutron noise within short time intervals has been developed. The accuracy of the method was determined by using a simulation set-up and by using signals of a twin self-powered neutron detector installed in the core of the Dodewaard BWR in the Netherlands. In-core coolant velocities can be estimated within 2.5 s with a standard deviation (due to statistics) less than 2.1%. The method is suitable for velocity monitoring as is shown by the application to a stepwise velocity change of the coolant in a model of a coolant channel of a BWR. The presented technique was applied to determine the variations of the coolant velocity in the Dodewaard core during normal operation and during pressure steps. Only minor variations of the coolant velocity were detected during normal reactor conditions. An increase of those variations with pressure lowering - indicating a lower thermal hydraulic stability - could be detected. A clear velocity response to pressure steps could be determined which was also reflected in the cross-spectrum of the velocity with the vessel pressure and with the in-core neutron flux. (author)

  1. Neutron monitoring for radiological protection

    International Nuclear Information System (INIS)

    Gibson, J.A.B.

    1985-01-01

    Neutron monitoring is a subject of increasing general interest and considerable attention is being paid to the development of improved techniques and methods for neutron monitoring. The Agency, therefore, considered it important to prepare a guide on the subject of neutron monitoring for radiation protection purposes. The present Manual is intended for those persons or authorities in Member States, particularly developing countries, who are responsible for the organization of neutron monitoring programmes and practical neutron monitoring. This Manual consequently, deals with topics such as neutron dosimetry, sources of neutrons and neutron detection as well as field instruments and operational systems used in this context

  2. Measurement and simulation of thermal neutron flux distribution in the RTP core

    Science.gov (United States)

    Rabir, Mohamad Hairie B.; Jalal Bayar, Abi Muttaqin B.; Hamzah, Na'im Syauqi B.; Mustafa, Muhammad Khairul Ariff B.; Karim, Julia Bt. Abdul; Zin, Muhammad Rawi B. Mohamed; Ismail, Yahya B.; Hussain, Mohd Huzair B.; Mat Husin, Mat Zin B.; Dan, Roslan B. Md; Ismail, Ahmad Razali B.; Husain, Nurfazila Bt.; Jalil Khan, Zareen Khan B. Abdul; Yakin, Shaiful Rizaide B. Mohd; Saad, Mohamad Fauzi B.; Masood, Zarina Bt.

    2018-01-01

    The in-core thermal neutron flux distribution was determined using measurement and simulation methods for the Malaysian’s PUSPATI TRIGA Reactor (RTP). In this work, online thermal neutron flux measurement using Self Powered Neutron Detector (SPND) has been performed to verify and validate the computational methods for neutron flux calculation in RTP calculations. The experimental results were used as a validation to the calculations performed with Monte Carlo code MCNP. The detail in-core neutron flux distributions were estimated using MCNP mesh tally method. The neutron flux mapping obtained revealed the heterogeneous configuration of the core. Based on the measurement and simulation, the thermal flux profile peaked at the centre of the core and gradually decreased towards the outer side of the core. The results show a good agreement (relatively) between calculation and measurement where both show the same radial thermal flux profile inside the core: MCNP model over estimation with maximum discrepancy around 20% higher compared to SPND measurement. As our model also predicts well the neutron flux distribution in the core it can be used for the characterization of the full core, that is neutron flux and spectra calculation, dose rate calculations, reaction rate calculations, etc.

  3. Status of radiation detector and neutron monitor technology

    CERN Document Server

    Kim, Y K; Ha, J H; Han, S H; Hong, S B; Hwang, I K; Lee, W G; Moon, B S; Park, S H; Song, M H

    2002-01-01

    In this report, we describe the current states of the radiation detection technology, detectors for industrial application, and neutron monitors. We also survey the new technologies being applied to this field. The method to detect radiation is the measurement of the observable secondary effect from the interaction between incident radiation and detector material, such as ionization, excitation, fluorescence, and chemical reaction. The radiation detectors can be categorized into gas detectors, scintillation detectors, and semiconductor detectors according to major effects and main applications. This report contains the current status and operational principles of these detectors. The application fields of radiation detectors are industrial measurement system, in-core neutron monitor, medical radiation diagnostic device, nondestructive inspection device, environmental radiation monitoring, cosmic-ray measurement, security system, fundamental science experiment, and radiation measurement standardization. The st...

  4. Determination of PWR core water level using ex-core detectors signals

    International Nuclear Information System (INIS)

    Bernal, Alvaro; Abarca, Agustin; Miro, Rafael; Verdu, Gumersindo

    2013-01-01

    The core water level provides relevant neutronic and thermalhydraulic information of the reactor such as power, k eff and cooling ability; in fact, core water level monitoring could be used to predict LOCA and cooling reduction which may deal with core damage. Although different detection equipment is used to monitor several parameters such as the power, core water level monitoring is not an evident task. However, ex-core detectors can measure the fast neutrons leaking the core and several studies demonstrate the existence of a relationship between fast neutron leakage and core water level due to the shielding effect of the water. In addition, new ex-core detectors are being developed, such as silicon carbide semiconductor radiation detectors, monitoring the neutron flux with higher accuracy and in higher temperatures conditions. Therefore, a methodology to determine this relationship has been developed based on a Monte Carlo calculation using MCNP code and applying variance reduction with adjoint functions based on the adjoint flux obtained with the discrete ordinates code TORT. (author)

  5. Strong Neutron Pairing in core+4n Nuclei.

    Science.gov (United States)

    Revel, A; Marqués, F M; Sorlin, O; Aumann, T; Caesar, C; Holl, M; Panin, V; Vandebrouck, M; Wamers, F; Alvarez-Pol, H; Atar, L; Avdeichikov, V; Beceiro-Novo, S; Bemmerer, D; Benlliure, J; Bertulani, C A; Boillos, J M; Boretzky, K; Borge, M J G; Caamaño, M; Casarejos, E; Catford, W N; Cederkäll, J; Chartier, M; Chulkov, L; Cortina-Gil, D; Cravo, E; Crespo, R; Datta Pramanik, U; Díaz Fernández, P; Dillmann, I; Elekes, Z; Enders, J; Ershova, O; Estradé, A; Farinon, F; Fraile, L M; Freer, M; Galaviz, D; Geissel, H; Gernhäuser, R; Golubev, P; Göbel, K; Hagdahl, J; Heftrich, T; Heil, M; Heine, M; Heinz, A; Henriques, A; Ignatov, A; Johansson, H T; Jonson, B; Kahlbow, J; Kalantar-Nayestanaki, N; Kanungo, R; Kelic-Heil, A; Knyazev, A; Kröll, T; Kurz, N; Labiche, M; Langer, C; Le Bleis, T; Lemmon, R; Lindberg, S; Machado, J; Marganiec, J; Movsesyan, A; Nacher, E; Najafi, M; Nilsson, T; Nociforo, C; Paschalis, S; Perea, A; Petri, M; Pietri, S; Plag, R; Reifarth, R; Ribeiro, G; Rigollet, C; Röder, M; Rossi, D; Savran, D; Scheit, H; Simon, H; Syndikus, I; Taylor, J T; Tengblad, O; Thies, R; Togano, Y; Velho, P; Volkov, V; Wagner, A; Weick, H; Wheldon, C; Wilson, G; Winfield, J S; Woods, P; Yakorev, D; Zhukov, M; Zilges, A; Zuber, K

    2018-04-13

    The emission of neutron pairs from the neutron-rich N=12 isotones ^{18}C and ^{20}O has been studied by high-energy nucleon knockout from ^{19}N and ^{21}O secondary beams, populating unbound states of the two isotones up to 15 MeV above their two-neutron emission thresholds. The analysis of triple fragment-n-n correlations shows that the decay ^{19}N(-1p)^{18}C^{*}→^{16}C+n+n is clearly dominated by direct pair emission. The two-neutron correlation strength, the largest ever observed, suggests the predominance of a ^{14}C core surrounded by four valence neutrons arranged in strongly correlated pairs. On the other hand, a significant competition of a sequential branch is found in the decay ^{21}O(-1n)^{20}O^{*}→^{18}O+n+n, attributed to its formation through the knockout of a deeply bound neutron that breaks the ^{16}O core and reduces the number of pairs.

  6. Effective delayed neutron fraction and prompt neutron lifetime of Tehran research reactor mixed-core

    International Nuclear Information System (INIS)

    Lashkari, A.; Khalafi, H.; Kazeminejad, H.

    2013-01-01

    Highlights: ► Kinetic parameters of Tehran research reactor mixed-core have been calculated. ► Burn-up effect on TRR kinetics parameters has been studied. ► Replacement of LEU-CFE with HEU-CFE in the TRR core has been investigated. ► Results of each mixed core were compared to the reference core. ► Calculation of kinetic parameters are necessary for reactivity and power excursion transient analysis. - Abstract: In this work, kinetic parameters of Tehran research reactor (TRR) mixed cores have been calculated. The mixed core configurations are made by replacement of the low enriched uranium control fuel elements with highly enriched uranium control fuel elements in the reference core. The MTR P C package, a nuclear reactor analysis tool, is used to perform the analysis. Simulations were carried out to compute effective delayed neutron fraction and prompt neutron lifetime. Calculation of kinetic parameters is necessary for reactivity and power excursion transient analysis. The results of this research show that effective delayed neutron fraction decreases and prompt neutron lifetime increases with the fuels burn-up. Also, by increasing the number of highly enriched uranium control fuel elements in the reference core, the prompt neutron lifetime increases, but effective delayed neutron fraction does not show any considerable change

  7. Inference of core barrel motion from neutron noise spectral density. [PWR

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, J.C.; Shahrokhi, F.; Kryter, R.C.

    1977-03-15

    A method was developed for inference of core barrel motion from the following statistical descriptors: cross-power spectral density, autopower spectral density, and amplitude probability density. To quantify the core barrel motion in a typical pressurized water reactor (PWR), a scale factor was calculated in both one- and two-dimensional geometries using forward, variational, and perturbation methods of discrete ordinates neutron transport. A procedure for selection of the proper frequency band limits for the statistical descriptors was developed. It was found that although perturbation theory is adequate for the calculation of the scale factor, two-dimensional geometric effects are important enough to rule out the use of a one-dimensional approximation for all but the crudest calculations. It was also found that contributions of gamma rays can be ignored and that the results are relatively insensitive to the cross-section set employed. The proper frequency band for the statistical descriptors is conveniently determined from the coherence and phase information from two ex-core power range neutron monitors positioned diametrically across the reactor vessel. Core barrel motion can then be quantified from the integral of the band-limited cross-power spectral density of two diametrically opposed ex-core monitors or, if the coherence between the pair is greater than or equal to 0.7, from a properly band-limited amplitude probability density function. Wide-band amplitude probability density functions were demonstrated to yield erroneous estimates for the magnitude of core barrel motion.

  8. A search for solar neutron response in neutron monitor data

    International Nuclear Information System (INIS)

    Kudela, K.

    1990-01-01

    The search for an impulsive increase corresponding to a solar neutron response on high-mountain neutron monitors requires control of the stability of the measurement and elimination of other sources of short-time increases of different kinds which are involved in fluctuations of cosmic-ray intensity. For the solar flare of June 3, 1982 the excess of counting rate on the Lomnicky stit neutron monitor is, within a factor or 1.8, equal to that expected from solar neutrons. Superposed epoch analysis of 17 flares with gamma-ray or hard X-ray production gives a slight tendency of an occurring signal in cases of high heliocentric angles, indicating anisotropic production of neutrons on the sun. The low statistical significance of the result indicates that higher temporal resolution, better evaluation of multiplicity, better knowledge of the power spectra of short-term intensity fluctuations on neutron monitors, as well as coordinated measurements of solar gamma-rays and neutrons on satellites, are required. 21 refs

  9. Preliminary Uncertainty Analysis for SMART Digital Core Protection and Monitoring System

    International Nuclear Information System (INIS)

    Koo, Bon Seung; In, Wang Kee; Hwang, Dae Hyun

    2012-01-01

    The Korea Atomic Energy Research Institute (KAERI) developed on-line digital core protection and monitoring systems, called SCOPS and SCOMS as a part of SMART plant protection and monitoring system. SCOPS simplified the protection system by directly connecting the four RSPT signals to each core protection channel and eliminated the control element assembly calculator (CEAC) hardware. SCOMS adopted DPCM3D method in synthesizing core power distribution instead of Fourier expansion method being used in conventional PWRs. The DPCM3D method produces a synthetic 3-D power distribution by coupling a neutronics code and measured in-core detector signals. The overall uncertainty analysis methodology which is used statistically combining uncertainty components of SMART core protection and monitoring system was developed. In this paper, preliminary overall uncertainty factors for SCOPS/SCOMS of SMART initial core were evaluated by applying newly developed uncertainty analysis method

  10. A Monte-Carlo method for ex-core neutron response

    International Nuclear Information System (INIS)

    Gamino, R.G.; Ward, J.T.; Hughes, J.C.

    1997-10-01

    A Monte Carlo neutron transport kernel capability primarily for ex-core neutron response is described. The capability consists of the generation of a set of response kernels, which represent the neutron transport from the core to a specific ex-core volume. This is accomplished by tagging individual neutron histories from their initial source sites and tracking them throughout the problem geometry, tallying those that interact in the geometric regions of interest. These transport kernels can subsequently be combined with any number of core power distributions to determine detector response for a variety of reactor Thus, the transport kernels are analogous to an integrated adjoint response. Examples of pressure vessel response and ex-core neutron detector response are provided to illustrate the method

  11. Discrimination of ex-core neutron noise signatures using artificial neural networks

    International Nuclear Information System (INIS)

    Alguindigue, I.E.; Uhrig, R.E.; Cai, M.; Trenty, A.

    1993-01-01

    The vibratory behavior of the internals in a Pressurized Water Reactor, PWR, can be identified and monitored using ex-core neutron noise data from power detectors located at ionization chambers outside the vessel. The signatures collected from these sensors provide information regarding presence of contacts between the core barrel and the pressure vessel, and more importantly, a means of verifying the integrity of components in the system. This report describes a neural-network-based methodology for identifying the vibration mode of the core barrel, and for detecting a particular family of mechanical failures. Features are extracted from the neutron noise spectra and used for training neural network models to identify the different states of vibratory behavior typically exhibited by PWR'S. The technique was tested on data from twenty eight 900MW pressurized water reactors in France, and the results achieved are over 98% accurate

  12. Develop a practical means to monitor the criticality of the TMI-2 core

    International Nuclear Information System (INIS)

    Kim, S.S.; Levine, S.H.; Imel, G.

    1984-06-01

    A method has been developed to monitor the subcritical reactivity and unfold the k/sub infinity/ distribution of a degraded reactor core. The method uses several fixed neutron detectors and a Cf-252 neutron source placed sequentially in multiple positions in the core. It is called the Asymmetric Multiple Position Neutron Source (AMPNS) method. The AMPNS method employs the nucleonic codes to analyze in two dimensions the neutron multiplication of a Cf-252 neutron source. Experiments were performed on the Penn State Breazeale TRIGA Reactor (PSBR). The first set of experiments calibrates the k/sub infinity/'s of the fuel elements moved during the second set of experiments. The second set of experiments provides a means for both developing and validating the AMPNS method. Several test runs of optimization calculations have been made on the PSBR core assuming one of the subcritical configurations is a damaged core. Test runs of the AMPNS method reveals that when the core cell size and source position are correctly chosen, the solution converges to the correct k/sub eff/ and k/sub infinity/ distribution without any oscillations or instabilities. Application of the AMPNS method to the degraded TMI-2 core has been studied to provide some initial insight into this problem

  13. Power distribution monitor in a nuclear reactor

    International Nuclear Information System (INIS)

    Uematsu, Hitoshi

    1983-01-01

    Purpose: To enable accurate monitoring for the reactor power distribution within a short time in a case where abnormality occurs in in-core neutron monitors or in a case where the reactor core state changes after the calibration for the neutron monitors. Constitution: The power distribution monitor comprises a power distribution calculator adapted to be inputted counted values from a reactor core present state data instruments and calculate the neutron flux distribution in the reactor core and the power distribution based on previously incorporated physical models, an RCF calculator adapted to be inputted with the counted values from the in-core neutron monitors and the neutron flux distribution and the power distribution calculated in the power distribution calculator and compensate the counted errors included in the counted values form the in-core neutron monitors and the calculation errors included in the power distribution calculated in the power distribution calculator to thereby calculate the power distribution within the reactor core, and an input/output device for the input of the data required for said power distribution calculator and the display for the calculation result calculated in the RCF calculator. (Ikeda, J.)

  14. Application of Periodic 3DPCM for Core Monitoring System

    International Nuclear Information System (INIS)

    Jeong, Wi-Soo; Lee, Hae-Chan; Kim, Hyeong-Seog; Lee, Chang-Kue; Park, Sang-weon; Baek, Jin-su

    2014-01-01

    The OASIS (Online core Analysis and Simulation System) was developed for WH type PWR which has movable in-core detector. 3DPCM (3D Power Connection Method) was also developed to measure 3D core power distribution using the fixed in-core detector signals and tested for KSNP (Korea Standard Nuclear Plant) such as OPR1000 and APR1400. According to previous study, 3DPCM coupling with neutronics code shows high accuracy. However, this method requires the neutronics code results at each calculation. Therefore, the long calculation time makes it impractical in the online monitoring system requiring the real-time 3D power distribution. In this paper, the 3DPCM based alternative methodology which called periodic 3DPCM is proposed to reduce the calculation time within the reasonable accuracy. The periodic 3DPCM is proposed to reduce the number of neutronics calculation with reasonable accuracy for the application to the online monitoring system development. The periodic 3DPCM is analyzed by 3 cases of sensitivity studies. The errors for the results of power changing operation, ASI changing simulation, and lead control rod insertion are bounded in 0.25%, 1.07%, and 1.15%, respectively. If the update time is shorten as 1 hour, the errors for power changing operation and ASI changing simulation are bounded in 0.07% and 0.56%, respectively. As a result, the update time of 1 hour and prompt update at 30% control rod position change are reasonable considering both conservativeness and effectiveness to update the prediction values. OASIS program utilizing periodic 3DPCM is verified using the plant measurement data and snapshot files which were generated during 45 days operation

  15. Experimentation of a fixed in-core-based system for core limiting conditions of operation (LCO) monitoring

    International Nuclear Information System (INIS)

    Piguet, F.; Carrasco, M.; Mourlevat, J.L.; Rio, G.; Verneret, C.

    2006-01-01

    In order to comply with the needs of Utilities for improvements in the economic competitiveness of nuclear energy, one of the solutions proposed is to reduce the cost of the fuel cycle. To this aim, increasing the lifetime of cycles by introducing so-called 'low leakage' fuel loading patterns to the reactor is a rather promising solution. However, these loading patterns lead to an increase in the core hotspot factors and therefore to a reduction in the operating margins with respect to the core operating limits also called 'Limiting Conditions of Operations (LCO)'. For many years FRAMATOME-ANP has developed and proposed solutions aiming at increasing and therefore restoring these margins, namely: the improvement in design methods based on three-dimensional modelling of the core, on kinetic representation of transients and on neutron-thermohydraulic coupling or the improvement in the fuel with the introduction of intermediate grids. A complementary approach is to improve the core instrumentation associated with the system for monitoring the core operating margins to the LCO thresholds. The core operating limits monitoring function calls on real-time knowledge of the current power distribution in the core. If we take the French 1300 MWe units as an example, this knowledge is based on the measurement of the mean axial power distribution made by six sections neutron detectors, located outside the pressure vessel and equipped with a fast neutron filtering device. The results of this measurement are combined with pre-tabulated radial hotspot factors (Fxy), in order to calculate the total hotspot factor (FQ) of the core, the minimum Departure from Nucleate Boiling Ratio (DNBR) and, consequently, the margins with respect to the core operating limits. The limitations of a measurement made outside the vessel, and those of the 1D/2D modelling adopted, mean that these margins calculations have a high potential for improving the level of their accuracy. This is the reason why

  16. Neutronic analysis of JET external neutron monitor response

    Energy Technology Data Exchange (ETDEWEB)

    Snoj, Luka, E-mail: luka.snoj@ijs.si [Reactor Physics Division, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Lengar, Igor; Čufar, Aljaž [Reactor Physics Division, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Syme, Brian; Popovichev, Sergey [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, OX14 3DB, United Kingdom (United Kingdom); Batistoni, Paola [ENEA C. R. Frascati, via E. Fermi 45, 00044 Frascati, Roma (Italy); Conroy, Sean [VR Association, Uppsala University, Department of Physics and Astronomy, PO Box 516, SE-75120 Uppsala (Sweden)

    2016-11-01

    Highlights: • We model JET tokamak containing JET remote handling system. • We investigate effect of remote handling system on external neutron monitor response. • Remote handling system correction factors are calculated. • Integral correction factors are relatively small, i.e up to 8%. - Abstract: The power output of fusion devices is measured in terms of the neutron yield which relates directly to the fusion yield. JET made a transition from Carbon wall to ITER-Like Wall (Beryllium/Tungsten/Carbon) during 2010–11. Absolutely calibrated measurement of the neutron yield by JET neutron monitors was ensured by direct measurements using a calibrated {sup 252}Cf neutron source (NS) deployed by the in-vessel remote handling system (RHS) inside the JET vacuum vessel. Neutronic calculations were required in order to understand the neutron transport from the source in the vacuum vessel to the fission chamber detectors mounted outside the vessel on the transformer limbs of the tokamak. We developed a simplified computational model of JET and the JET RHS in Monte Carlo neutron transport code MCNP and analyzed the paths and structures through which neutrons reach the detectors and the effect of the JET RHS on the neutron monitor response. In addition we performed several sensitivity studies of the effect of substantial massive structures blocking the ports on the external neutron monitor response. As the simplified model provided a qualitative picture of the process only, some calculations were repeated using a more detailed full 3D model of the JET tokamak.

  17. Online In-Core Thermal Neutron Flux Measurement for the Validation of Computational Methods

    International Nuclear Information System (INIS)

    Mohamad Hairie Rabir; Muhammad Rawi Mohamed Zin; Yahya Ismail

    2016-01-01

    In order to verify and validate the computational methods for neutron flux calculation in RTP calculations, a series of thermal neutron flux measurement has been performed. The Self Powered Neutron Detector (SPND) was used to measure thermal neutron flux to verify the calculated neutron flux distribution in the TRIGA reactor. Measurements results obtained online for different power level of the reactor. The experimental results were compared to the calculations performed with Monte Carlo code MCNP using detailed geometrical model of the reactor. The calculated and measured thermal neutron flux in the core are in very good agreement indicating that the material and geometrical properties of the reactor core are modelled well. In conclusion one can state that our computational model describes very well the neutron flux distribution in the reactor core. Since the computational model properly describes the reactor core it can be used for calculations of reactor core parameters and for optimization of RTP utilization. (author)

  18. On the problem of monitoring the neutron parameters of the Fast Energy Amplifier

    International Nuclear Information System (INIS)

    Behringer, K.; Wydler, P.

    1998-10-01

    The conceptual Fast Energy Amplifier, proposed by Rubbia et al. (1995), consists of a combination of a U-233/Th-232 fuelled fast-neutron subcritical facility with a proton accelerator. An intense beam of 1 GeV protons is injected into liquid lead at the core centre and drives the reactor by producing spallation neutrons. The burst of spallation neutrons produced by a single proton alters the basic neutron statistics which are well known for thermal neutrons in conventional nuclear reactors. A short assessment of standard neutron noise analysis methods is made with respect to monitoring neutron parameter data. (author)

  19. Application of Integral Ex-Core and Differential In-Core Neutron Measurements for Adjustment of Fuel Burn-Up Distributions in VVER-1000

    Science.gov (United States)

    Borodkin, Pavel G.; Borodkin, Gennady I.; Khrennikov, Nikolay N.

    2010-10-01

    The paper deals with calculational and semi-analytical evaluations of VVER-1000 reactor core neutron source distributions and their influence on measurements and calculations of the integral through-vessel neutron leakage. Time-integrated neutron source distributions used for DORT calculations were prepared by two different approaches based on a) calculated fuel burn-up (standard routine procedure) and b) in-core measurements by means of SPD & TC (new approach). Taking into account that fuel burn-up distributions in operating VVER may be evaluated now by analytical methods (calculations) only it is needed to develop new approaches for testing and correction of calculational evaluations. Results presented in this paper allow to consider a reverse task of alternative estimation of fuel burn-up distributions. The approach proposed is based on adjustment (fitting) of time-integrated neutron source distributions, and hence fuel burn-up patterns in some part of reactor core, on the base of ex-core neutron leakage measurement, neutron-physical calculation and in-core SPD & TC measurement data.

  20. Rotating neutron stars with exotic cores: masses, radii, stability

    Energy Technology Data Exchange (ETDEWEB)

    Haensel, P.; Bejger, M.; Fortin, M.; Zdunik, L. [Polish Academy of Sciences, N. Copernicus Astronomical Center, Warszawa (Poland)

    2016-03-15

    A set of theoretical mass-radius relations for rigidly rotating neutron stars with exotic cores, obtained in various theories of dense matter, is reviewed. Two basic observational constraints are used: the largest measured rotation frequency (716Hz) and the maximum measured mass (2M {sub CircleDot}). The present status of measuring the radii of neutron stars is described. The theory of rigidly rotating stars in general relativity is reviewed and limitations of the slow rotation approximation are pointed out. Mass-radius relations for rotating neutron stars with hyperon and quark cores are illustrated using several models. Problems related to the non-uniqueness of the crust-core matching are mentioned. Limits on rigid rotation resulting from the mass-shedding instability and the instability with respect to the axisymmetric perturbations are summarized. The problem of instabilities and of the back-bending phenomenon are discussed in detail. Metastability and instability of a neutron star core in the case of a first-order phase transition, both between pure phases, and into a mixed-phase state, are reviewed. The case of two disjoint families (branches) of rotating neutron stars is discussed and generic features of neutron-star families and of core-quakes triggered by the instabilities are considered. (orig.)

  1. SCORPIO-VVER core monitoring and surveillance system with advanced capabilities

    International Nuclear Information System (INIS)

    Molnar, Jozef; Vocka, Radim

    2010-01-01

    The SCORPIO (SCORPIO-VVER) core monitoring system, its basic features and history of implementation at Czech NPPs are described. The most important improvements in the area of neutron physics, core thermal analysis and operation support are as follows: Moving to the 42 axial nodes across the whole system (2004); Implementation of new cross section library to support mixed reactor core with differences in axial geometry of used fuel types and enhancement of Core Simulator boundary conditions model, to properly address the 'wild' geometry in axial direction; Adjusting the thermohydraulic and neutron-physical models regarding to the Gd2 fuel needs; Support up to 5 types of FAs and 2 types of SPND (Posit, IST); Extension of form functions for pin-wise reconstruction to improve pin-power prediction in control rod coupler region; System adaptation to the new upgraded digital I and C unit system; Integration of the SCORPIO-VVER system and its workstation into the plant redundant in-core system; Implementation of new On-Line form function generation to module RECON; New design of the Strategy Generator with advanced predictions; Adaptation of the system to support the new up-rated reactor thermal power; Adding new online SDM calculation function into to system; Implementation of the new 3D power reconstruction with SPND interpretation; Extending the limit checking to the 'full core' checking. The control of margins to the technical specification: Extended to full core - all FA is controlled individually in core; The limits are definable up to 59 FA (1/6 symmetry); 4 limited parameters are controlled - Kr, qlin, Tout-fa, dTfa; 2 additional parameters are monitored - dTsat, DNBR; New MMI are developed to present the limited and controlled parameters in core. Upgrade 3 is planned for the Slovak Bohunice NPP in 2011-2012. (P.A.)

  2. Monitor for reactor neutron detector

    International Nuclear Information System (INIS)

    Shirakami, Hisayuki; Shibata, Masatoshi

    1992-01-01

    The device of the present invention judges as to whether a neutron detector is normal or not while considering the change of indication value depending on the power change of a reactor core. That is, the device of the present invention comprises a standard value setting device for setting the standard value for calibrating the neutron detector and an abnormality judging device for comparing the standard value with a measured value of the neutron detector and judging the abnormality when the difference is greater than a predetermined value. The measured value upon initialization of each of the neutron detectors is determined as a quasi-standard value. An average value of the difference between the measured value and the quasi-standard value of a plurality of effective neutron detectors at a same level for the height of the reactor core is multiplied to a power rate based on the reactor core power at a position where the neutron detector is disposed upon calibration. The value obtained by adding the multiplied value and the quasi-standard value is determined as a standard value. The abnormality judging device compares the standard value with the measured value of the neutron detector and, if the difference is greater than a predetermined value, the neutron detector is determined as abnormal. As a result, judgement can be conducted more accurately than conventional cases. (I.S.)

  3. Power distribution monitoring system in the boiling water cooled reactor core

    International Nuclear Information System (INIS)

    Leshchenko, Yu.I.; Sadulin, V.P.; Semidotskij, I.I.

    1987-01-01

    Consideration is being given to the system of physical power distribution monitoring, used during several years in the VK-50 tank type boiling water cooled reactor. Experiments were conducted to measure the ratios of detector prompt and activation currents, coefficients of detector relative sensitivity with respect to neutrons and effective cross sections of 103 Rh interaction with thermal and epithermal neutrons. Mobile self-powered detectors (SPD) with rhodium emitters are used as the power distribution detectors in the considered system. All detectors move simultaneously with constant rate in channels, located in fuel assembly central tubes, when conducting the measurements. It is concluded on the basis of analyzing the obtained data, that investigated system with calibrated SPD enables to monitor the absolute power distribution in fuel assemblies under conditions of boiling water cooled reactor and is independent of thermal engineering measurements conducted by in core instruments

  4. Structure and stability of warm cores in neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Ibanez Cabanell, J M [Departamento de Mecanica y Astronomia, Facultad de Matematicas, Burjasot-Valencia (Spain)

    1981-12-01

    Relativistic equations of structure are solved using Lamb's equations of state for warm neutron degenerate matter. The stability of isothermal cores in neutron stars is discussed and also the possible compatibility of the results obtained with experimental evidence is shown.

  5. Identifying functions for ex-core neutron noise analysis

    International Nuclear Information System (INIS)

    Avila, J.M.; Oliveira, J.C.

    1987-01-01

    A method of performing the phase analysis of signals arising from neutron detectors placed in the periphery of a pressurized water reactor is proposed. It consists in the definition of several identifying functions, based on the phases of cross power spectral densities corresponding to four ex-core neutron detectors. Each of these functions enhances the appearance of different sources of noise. The method, applied to the ex-core neutron fluctuation analysis of a French PWR, proved to be very useful as it allows quick recognition of various patterns in the power spectral densities. (orig.) [de

  6. Device for neutron flux monitoring in IEA-R1 reactor using rhodium self powered neutron detector; Dispositivo de mapeamento de fluxo de neutron atraves do SPN/Rodio no IEA-R1

    Energy Technology Data Exchange (ETDEWEB)

    Ricci Filho, Walter; Fernando, Alberto de Jesus; Jerez, Rogerio; Tondin, Julio B.M.; Pasqualetto, Hertz [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)

    2000-07-01

    The IEA-R1 reactor has undergone a modernization tio increase its operating power to 5 MW, in order to allow a more efficient production of radioisotopes. The objective of this work is to provide the reactor with flux monitoring device using a rhodium self powered neutron detector. Self powered detectors are rugged miniature devices with are increasingly being used for fixed in core reactor monitoring both for safety purposes and flux mapping. The work presents the results obtained with Rhodium-SPND in several irradiation position inside the reactor core. (author)

  7. Development of concept and neutronic calculation method for large LMFBR core

    International Nuclear Information System (INIS)

    Shirakata, K.; Ishikawa, M.; Ikegami, T.; Sanda, T.; Kaneto, K.; Kawashima, M.; Kaise, Y.; Shirakawa, M.; Hibi, K.

    1991-01-01

    Presented in this paper is the state of the art of reactor physics R and Ds for the development of concept and neutronic calculation method for large Liquid Metal Fast Breeder Reactor (LMFBR) core. Physics characteristics of concepts for mixed oxide (MOX) fueled large FBR core were investigated by a series of benchmark critical experiments. Next, an adequacy and accuracy of the current neutronic calculation method was assessed by the experiments analyses, and then neutronic prediction accuracies by the method were evaluated for physics characteristics of the large core. Concerns on core development were discussed in terms of neutronics. (author)

  8. Neutron flux monitoring device

    International Nuclear Information System (INIS)

    Goto, Yasushi; Mitsubori, Minehisa; Ohashi, Kazunori.

    1997-01-01

    The present invention provides a neutron flux monitoring device for preventing occurrence of erroneous reactor scram caused by the elevation of the indication of a start region monitor (SRM) due to a factor different from actual increase of neutron fluxes. Namely, judgement based on measured values obtained by a pulse counting method and a judgment based on measured values obtained by a Cambel method are combined. A logic of switching neutron flux measuring method to be used for monitoring, namely, switching to an intermediate region when both of the judgements are valid is adopted. Then, even if the indication value is elevated based on the Cambel method with no increase of the counter rate in a neutron source region, the switching to the intermediate region is not conducted. As a result, erroneous reactor scram such as 'shorter reactor period' can be avoided. (I.S.)

  9. Compact neutron flux monitor

    International Nuclear Information System (INIS)

    Madhavi, V.; Phatak, P.R.; Bahadur, C.; Bayala, A.K.; Jakati, R.K.; Sathian, V.

    2003-01-01

    Full text: A compact size neutron flux monitor has been developed incorporating standard boards developed for smart radiation monitors. The sensitivity of the monitors is 0.4cps/nV. It has been tested up to 2075 nV flux with standard neutron sources. It shows convincing results even in high flux areas like 6m away from the accelerator in RMC (Parel) for 106/107 nV. These monitors have a focal and remote display, alarm function with potential free contacts for centralized control and additional provision of connectivity via RS485/Ethernet. This paper describes the construction, working and results of the above flux monitor

  10. A fixed incore based system for an on line core margin monitoring

    International Nuclear Information System (INIS)

    Mourlevat, J. L.; Carrasco, M.

    2002-01-01

    In order to comply with the needs of Utilities for improvements in the economic competitiveness of nuclear energy, one of the solutions proposed is to reduce the cost of the fuel cycle. To this aim, increasing the lifetime of cycles by introducing so-called low leakage fuel loading patterns to the reactor is a rather promising solution. However, these loading patterns lead to an increase in the core hostspot factors and therefore to a reduction in the core operating margins. For many years FRAMATOME-ANP has developed and proposed solutions aiming at increasing and therefore restoring these margins, namely; the improvement in design methods based on three-dimensional modelling of the core,on kinetic representation of transients and on neutron-thermohydraulic coupling, or the improvement in the fuel with the introduction of intermediate mixing girds. A third approach is to improve the core instrumentation associated with the system for monitoring the core operating limits: it is this approach that is described in this presentation. The core operating limits monitoring function calls on realtime knowledge of the power distribution. At present time, for most of the PWRs operated in the world, this knowledge is based on the measurement of the axial power distribution made by two-section neutron detectors located outside the pressure vessel. This kind of detectors is only able to provide the operators with a rustic picture of the axial power distribution through the axial dissymmetry index so called axial-offset. During normal core operation operators have to control the axial power distribution that means to keep the axial-offset value inside a pre-determined domain of which the width is a function of the mean power level. This pre-determined domain is calculated or checked during the nuclear design phase of the reload and due to th emethodology used to calculate it, a consderable potential for improving the core operating margin does ewxist. This the reason why

  11. Analysis the Response Function of the HTR Ex-core Neutron Detectors in Different Core Status

    International Nuclear Information System (INIS)

    Fan Kai; Li Fu; Zhou Xuhua

    2014-01-01

    Modular high temperature gas cooled reactor HTR-PM demonstration plant, designed by INET, Tsinghua University, is being built in Shidao Bay, Shandong province, China. HTR-PM adopts pebble bed concept. The harmonic synthesis method has been developed to reconstruct the power distributions on HTR-PM. The method based on the assumption that the neutron detector readings are mainly determined by the status of the core through the power distribution, and the response functions changed little when the status of the core changed. To verify the assumption, the influence factors to the ex-core neutron detectors are calculated in this paper, including the control rod position and the temperature of the core. The results shows that when the status of the core changed, the power distribution changed more remarkable than the response function, but the detector readings could change about 5% because of the response function changing. (author)

  12. VHTR core modeling: coupling between neutronic and thermal-hydraulics

    International Nuclear Information System (INIS)

    Limaiem, I.; Damian, F.; Raepsaet, X.; Studer, E.

    2005-01-01

    Following the present interest in the next generation nuclear power plan (NGNP), Cea is deploying special effort to develop new models and qualify its research tools for this next generation reactors core. In this framework, the Very High Temperature Reactor concept (VHTR) has an increasing place in the actual research program. In such type of core, a strong interaction exists between neutronic and thermal-hydraulics. Consequently, the global core modelling requires accounting for the temperature feedback in the neutronic models. The purpose of this paper is to present the new neutronic and thermal-hydraulics coupling model dedicated to the High Temperature Reactors (HTR). The coupling model integrates a new version of the neutronic scheme calculation developed in collaboration between Cea and Framatome-ANP. The neutronic calculations are performed using a specific calculation processes based on the APOLLO2 transport code and CRONOS2 diffusion code which are part of the French reactor physics code system SAPHYR. The thermal-hydraulics model is characterised by an equivalent porous media and 1-D fluid/3-D thermal model implemented in the CAST3M/ARCTURUS code. The porous media approach involves the definition of both homogenous and heterogeneous models to ensure a correct temperature feedback. This study highlights the sensitivity of the coupling system's parameters (radial/axial meshing and data exchange strategy between neutronic and thermal-hydraulics code). The parameters sensitivity study leads to the definition of an optimal coupling system specification for the VHTR. Besides, this work presents the first physical analysis of the VHTR core in steady-state condition. The analysis gives information about the 3-D power peaking and the temperature coefficient. Indeed, it covers different core configurations with different helium distribution in the core bypass. (authors)

  13. Neutronic design of mixed oxide-silicide cores for the core conversion of rsg-gas reactor

    International Nuclear Information System (INIS)

    Sembiring, Tagor Malem; Tukiran; Pinem surian; Febrianto

    2001-01-01

    The core conversion of rsg-gas reactor from an all-oxide (U 3 O 8 -Al) core, through a series of mixed oxide-silicide core, to an all-silicide (U 3 Si 2 -Al) core for the same meat density of 2.96 g U/cc is in progress. The conversion is first step of the step-wise conversion and will be followed by the second step that is the core conversion from low meat density of silicide core, through a series of mixed lower-higher density of silicide core, to an all-higher meat density of 3.55 g/cc core. Therefore, the objectives of this work is to design the mixed cores on the neutronic performance to achieve safety a first full-silicide core for the reactor with the low uranium meat density of 2.96gU/cc. The neutronic design of the mixed cores was performed by means of Batan-EQUIL-2D and Batan-3DIFF computer codes for 2 and 3 dimension diffusion calculation, respectively. The result shows that all mixed oxide-silicide cores will be feasible to achieve safety a fist full-silicide core. The core performs the same neutronic core parameters as those of the equilibrium silicide core. Therefore, the reactor availability and utilization during the core conversion is not changed

  14. Development of a Neutron Flux Monitoring System for Sodium-cooled Fast Reactors

    OpenAIRE

    Verma, Vasudha

    2017-01-01

    Safety and reliability are one of the key objectives for future Generation IV nuclear energy systems. The neutron flux monitoring system forms an integral part of the safety design of a nuclear reactor and must be able to detect any irregularities during all states of reactor operation. The work in this thesis mainly concerns the detection of in-core perturbations arising from unwanted movements of control rods with in-vessel neutron detectors in a sodium-cooled fast reactor. Feasibility stud...

  15. Dispersion and decay of collective modes in neutron star cores

    OpenAIRE

    Kobyakov, D. N.; Pethick, C. J.; Reddy, S.; Schwenk, A.

    2017-01-01

    We calculate the frequencies of collective modes of neutrons, protons and electrons in the outer core of neutron stars. The neutrons and protons are treated in a hydrodynamic approximation and the electrons are regarded as collisionless. The coupling of the nucleons to the electrons leads to Landau damping of the collective modes and to significant dispersion of the low-lying modes. We investigate the sensitivity of the mode frequencies to the strength of entrainment between neutrons and prot...

  16. Real time neutron flux monitoring using Rh self powered neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    Juna, Byung Jin; Lee, Byung Chul; Park, Sang Jun; Jung, Hoan Sung [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    Rhodium (Rh) self powered neutron detectors (SPNDs) are widely used for on line monitoring of local neutron flux. Its signal is slower than the actual variation of neutron flux owing to a delayed {beta} decay of the Rh activation product, but real time monitoring is possible by solving equations between the neutron reaction rate in the detector and its signal. While the measuring system is highly reliable, the accuracy depends on the method solving the equations and accuracy of the parameters in the equations. The uncertain parameters are the contribution of gamma rays to the signal, and the branching ratios of Rh 104 and Rh 104m after the neutron absorption of Rh 103. Real time neutron flux monitoring using Rh SPNDs has been quite successful for neutron transmutation doping (NTD) at HANARO. We revisited the initial data used for the verification of a real time monitoring system, to refine algorithm for a better solution and to check the parameters for correctness. As a result, we suggest an effective way to determine the prompt parameter.

  17. Real time neutron flux monitoring using Rh self powered neutron detector

    International Nuclear Information System (INIS)

    Juna, Byung Jin; Lee, Byung Chul; Park, Sang Jun; Jung, Hoan Sung

    2012-01-01

    Rhodium (Rh) self powered neutron detectors (SPNDs) are widely used for on line monitoring of local neutron flux. Its signal is slower than the actual variation of neutron flux owing to a delayed β decay of the Rh activation product, but real time monitoring is possible by solving equations between the neutron reaction rate in the detector and its signal. While the measuring system is highly reliable, the accuracy depends on the method solving the equations and accuracy of the parameters in the equations. The uncertain parameters are the contribution of gamma rays to the signal, and the branching ratios of Rh 104 and Rh 104m after the neutron absorption of Rh 103. Real time neutron flux monitoring using Rh SPNDs has been quite successful for neutron transmutation doping (NTD) at HANARO. We revisited the initial data used for the verification of a real time monitoring system, to refine algorithm for a better solution and to check the parameters for correctness. As a result, we suggest an effective way to determine the prompt parameter

  18. Wide range neutron flux monitor

    International Nuclear Information System (INIS)

    Endo, Yorimasa; Fukushima, Toshiki.

    1983-01-01

    Purpose: To provide a wide range neutron-flux monitor adapted such that the flux monitoring function and alarming function can automatically by shifted from pulse counting system to cambel method system. Constitution: A wide range neutron-flux monitor comprises (la) pulse counting system and (lb) cambel-method system for inputting detection signals from neutron detectors and separating them into signals for the pulse measuring system and the cambel measuring system, (2) overlap detection and calculation circuit for detecting the existence of the overlap of two output signals from the (la) and (lb) systems, and (3) trip circuit for judging the abnormal state of neutron detectors upon input of the detection signals. (Seki, T.)

  19. LAMBDA-hyperon superfluidity in neutron star cores

    CERN Document Server

    Takatsuka, T

    2000-01-01

    Superfluidity of LAMBDA hyperons in neutron star cores is investigated by a realistic approach to use reliable LAMBDA LAMBDA interactions and the effective mass of LAMBDA based on the G-matrix calculations. It is found that LAMBDA superfluid can exist at rho approx = (rho sub t approx rho sub d) with rho sub t approx = 2 rho sub 0 (rho sub 0 being the nuclear density) and rho sub d approx = (3 - 4.5)rho sub 0 , depending on hyperon core models.

  20. Modeling and analysis of neutron noise from an ex-core detector at a pressurized water reactor

    International Nuclear Information System (INIS)

    Wood, R.T.; Perez, R.B.

    1991-01-01

    Two applications of a noise diagnostic methodology were performed using ex-core neutron detector data from a pressurized water reactor (PWR). A feedback dynamics model of the neutron power spectral density (PSD) was derived from a low-order whole-plant physical model made stochastic using the Langevin technique. From a functional fit to plant data, the response of the dynamic system to changes in important physical parameters was evaluated by a direct sensitivity analysis. In addition, changes in monitored spectra were related to changes in physical parameters and detection thresholds using common surveillance discriminants were determined. A resonance model was developed from perturbation theory to give the ex-core neutron detector response for small in-core mechanical motions in terms of a pole-strength factor, a resonance asymmetry (or skewness) factor, a vibration damping factor, and a frequency of vibration. The mechanical motion parameters for several resonances were determined by a functional fit of the model to plant data taken at various times during a fuel cycle and were tracked to determine trends that indicated vibrational changes of reactor internals. In addition, the resonance model gave the ability to separate the resonant components of the PSD after the parameters had been identified. As a result, the behavior of several vibration peaks were monitored over a fuel cycle. 9 refs., 6 figs., 1 tab

  1. The JET neutron emission profile monitor

    International Nuclear Information System (INIS)

    Adams, J.M.; Syme, D.B.; Watkins, N.; Jarvis, O.N.; Sadler, G.J.

    1993-01-01

    This paper provides a technical description of the neutron emission profile monitor as used routinely at the Joint European Torus (JET), and includes representative examples of its operational capabilities. The primary function of this instrument is to measure the neutron emission as a function of both position and time in a poloidal (vertical along major radius) section through the torus. For the first time the spatially localised effects of sawteeth (magnetic relaxation phenomena) have been observed using a neutron diagnostic. The total (global) neutron emission can be obtained from the profile monitor data by performing a volume integral over the plasma; the absolute neutron emission rates agree with those obtained from the JET time-resolved neutron monitor to within ±15%. This was the first such instrument routinely in use on any tokamak. It provides unique data which are independent of all other diagnostic measurements. (orig.)

  2. Simulating Neutronic Core Parameters in a Research and Test Reactor

    International Nuclear Information System (INIS)

    Selim, H.K.; Amin, E.A.; Koutb, M.E.

    2011-01-01

    The present study proposes an Artificial Neural Network (ANN) modeling technique that predicts the control rods positions in a nuclear research reactor. The neutron, flux in the core of the reactor is used as the training data for the neural network model. The data used to train and validate the network are obtained by modeling the reactor core with the neutronic calculation code: CITVAP. The type of the network used in this study is the feed forward multilayer neural network with the backpropagation algorithm. The results show that the proposed ANN has good generalization capability to estimate the control rods positions knowing neutron flux for a research and test reactor. This method can be used to predict critical control rods positions to be used for reactor operation after reload

  3. Neutronic calculations of PARR-1 cores using LEU silicide fuel

    International Nuclear Information System (INIS)

    Arshad, M.; Bakhtyar, S.; Hayat, T.; Salahuddin, A.

    1991-08-01

    Detailed neutronic calculations have been carried out for different PARR-1 cores utilizing low enriched uranium (LEU) silicide fuel and operating at an upgraded power of 9 MW. The calculations include the search for critical loadings in open and stall ends of the pool, neutronic analysis of the first full equilibrium core and calculations cores. The burnup study of inventory have also been carried out. Further, the reactivity coefficients of the first full power operation core are evaluated for use in the accident analysis. 14 figs. (author)

  4. Toward whole-core neutron transport without spatial homogenization

    International Nuclear Information System (INIS)

    Lewis, E. E.

    2009-01-01

    Full text of publication follows: A long-term goal of computational reactor physics is the deterministic analysis of power reactor core neutronics without incurring significant discretization errors in the energy, spatial or angular variables. In principle, given large enough parallel configurations with unlimited CPU time and memory, this goal could be achieved using existing three-dimensional neutron transport codes. In practice, however, solving the Boltzmann equation for neutrons over the six-dimensional phase space is made intractable by the nature of neutron cross-sections and the complexity and size of power reactor cores. Tens of thousands of energy groups would be required for faithful cross section representation. Likewise, the numerous material interfaces present in power reactor lattices require exceedingly fine spatial mesh structures; these ubiquitous interfaces preclude effective implementation of adaptive grid, mesh-less methods and related techniques that have been applied so successfully in other areas of engineering science. These challenges notwithstanding, substantial progress continues in the pursuit for more robust deterministic methods for whole-core neutronics analysis. This paper examines the progress over roughly the last decade, emphasizing the space-angle variables and the quest to eliminate errors attributable to spatial homogenization. As prolog we briefly assess 1990's methods used in light water reactor analysis and review the lessons learned from the C5G7 benchmark exercises which were originated in 1999 to appraise the ability of transport codes to perform core calculations without homogenization. We proceed by examining progress over the last decade much of which falls into three areas. These may be broadly characterized as reduced homogenization, dynamic homogenization and planar-axial synthesis. In the first, homogenization in three-dimensional calculations is reduced from the fuel assembly to the pin-cell level. In the second

  5. Dispersion and decay of collective modes in neutron star cores

    Science.gov (United States)

    Kobyakov, D. N.; Pethick, C. J.; Reddy, S.; Schwenk, A.

    2017-08-01

    We calculate the frequencies of collective modes of neutrons, protons, and electrons in the outer core of neutron stars. The neutrons and protons are treated in a hydrodynamic approximation and the electrons are regarded as collisionless. The coupling of the nucleons to the electrons leads to Landau damping of the collective modes and to significant dispersion of the low-lying modes. We investigate the sensitivity of the mode frequencies to the strength of entrainment between neutrons and protons, which is not well characterized. The contribution of collective modes to the thermal conductivity is evaluated.

  6. Thimble vibration analysis and monitoring on 1300 and 900 MW reactors using accelerometers and in core neutron noise

    International Nuclear Information System (INIS)

    Trenty, A.; Puyal, C.; Vincent, C.; Baeyens, R.; Messainguiral-Bruynooghe, C.; Lagarde, G.

    1988-01-01

    The axial flow along the thimbles of the in core instrumentation induces vibration and shocks against their guides in the vessel, producing wear and even leakage, either on the thimbles, or on the instrumentation tube of the fuel assemblies. In order to characterize the phenomenon and help to reduce or suppress vibration of the thimbles, two methods have been developed and applied to French and Belgian reactors. The first one consists of an analysis of the shocks perceived on the thimbles tubes by accelerometers; this analysis, based on the study of statistical distribution (amplitude, impulse rate of shocks...) has allowed to choose among the different solutions proposed to solve the problem; this choice has been confirmed by direct wear measurements made later. The second method is based on spectral and time analysis of the fluctuating signals from in core neutron chambers. The correlation appears clearly between shocks and fluctuations. An estimation of the thimble model shape in the instrumentation tube of the assembly, has been made. These two analysis methods have been widely applied during start-up of the first eight 1300 MW reactors: they have contributed to solve the problem and to increase the availability of these plants. On the 900 MW reactors, where the problem is less severe, the approach has been to study the mechanical behaviour of one new plant, Chinon B3: all in core guide tubes have been equipped with accelerometers and an on line monitoring system directly transmits to Chatou the parameters of shocks, in order to define an acoustic parameter able to characterize wear, and so, to define a new type of maintenance for the thimbles. The first results are presented. (author)

  7. Neutronic feasibility of an LMFBR super long-life core (SLLC)

    International Nuclear Information System (INIS)

    Kawashima, Masatoshi; Aoki, Katsutada; Arie, Kazuo; Tsuboi, Yasushi

    1988-01-01

    The LMFBR Super Long-Life Core (SLLC) concept has evolved over the last few years as one of the targets of innovative approaches for future FBR cost reduction. An idea for SLLC has been developed wherein the core lifetime is extended up to the plant life of about 30 years by applying the radially and axially multi-zoned core concept (the improved homogeneous core concept). The main purpose of the present study is placed on the evaluation of neutronic feasibility of the 1000 MWe class SLLC concept. The core size of the present SLLC, which is approximately 3 to 4 times as large as those of the current 1000 MWe core design, was determined by the limit of the maximum fast neutron fluence level, which was tentatively assumed to be 5-6x10 23 nvt as the target of the future development of advanced cladding materials. Emphasis is placed on the discussion of neutronic performances of cores with oxide fuels rather than metal or carbide fuels. The present study has shown that proper zoning of the different plutonium enrichment fuels at the initial core makes it possible to achieve small enough reactivity loss during 30-year burnup while satisfying mild variation of the subassembly power distributions using a higher fuel volume fraction of about 50%. Effects of important neutronic parameters on the core performances are also discussed. (orig.)

  8. Core excitations across the neutron shell gap in 207Tl

    Directory of Open Access Journals (Sweden)

    E. Wilson

    2015-07-01

    Full Text Available The single closed-neutron-shell, one proton–hole nucleus 207Tl was populated in deep-inelastic collisions of a 208Pb beam with a 208Pb target. The yrast and near-yrast level scheme has been established up to high excitation energy, comprising an octupole phonon state and a large number of core excited states. Based on shell-model calculations, all observed single core excitations were established to arise from the breaking of the N=126 neutron core. While the shell-model calculations correctly predict the ordering of these states, their energies are compressed at high spins. It is concluded that this compression is an intrinsic feature of shell-model calculations using two-body matrix elements developed for the description of two-body states, and that multiple core excitations need to be considered in order to accurately calculate the energy spacings of the predominantly three-quasiparticle states.

  9. Transient thermal-hydraulic/neutronic analysis in a VVER-1000 reactor core

    International Nuclear Information System (INIS)

    Seyed khalil Mousavian; Mohammad Mohsen Ertejaei; Majid Shahabfar

    2005-01-01

    Full text of publication follows: Nowadays, coupled thermal-hydraulic and three-dimensional neutronic codes in order to consider different feedback effects is state of the art subject in nuclear engineering researches. In this study, RELAP5/COBRA and WIMS/CITATION codes are implemented to investigate the VVER-1000 reactor core parameters during Large Break Loss of Coolant Accident (LB-LOCA). In a LB-LOCA, the primary side pressure, coolant density and fuel temperature strongly decrease but the cladding temperature experiences a strong peak. For this purpose, the RELAP5 Best Estimate (BE) system code is used to simulate the LB-LOCA analysis in VVER-1000 nuclear thermal-hydraulic loops. Also, the modified COBRA-IIIc software as a sub-channel analysis code is applied for modeling of VVER-1000 reactor core. Moreover, WIMS and CITATION as a cross section and 3-D neutron flux codes are coupled with thermal-hydraulic codes with the aim of consider the spatial effects through the reactor core. For this reason, suitable software is developed to link and speed up the coupled thermalhydraulic and three-dimensional neutronic calculations. This software utilizes of external coupling concept in order to integrate thermal-hydraulic and neutronic calculations. (authors)

  10. Basis and algorithms applied in modern neutron flux monitoring equipment for WWER. Some results of its operation

    International Nuclear Information System (INIS)

    Alpatov, A. M.; Kamyshan, A. N.; Louzhnov, A. M.; Sokolov, I. V.

    2007-01-01

    The report presents the principle of operation and description of equipment complex for monitoring, control and protection by power, period, reactivity and local parameters of the core of WWER type reactor. The use in NFME of programmed computing means permitted on basis of signals from ex-core neutron detectors of working range, distributed over IC channel height, to realize operative non-inertia monitoring of mean axial power distribution shape in the core and its main characteristics (axial offset and axial non-uniformity coefficient). With regard for this and due to the use of information on position of control banks and on coolant temperature in the reactor vessel downcomer the equipment for power correction, eliminating the influence of the above factors on resulting signal and permitting to increase significantly the accuracy of power monitoring, was designed(Authors)

  11. Neutron flux monitor

    International Nuclear Information System (INIS)

    Oda, Naotaka.

    1993-01-01

    The device of the present invention greatly saves an analog processing section such as an analog filter and an analog processing circuit. That is, the device of the present invention comprises (1) a neutron flux detection means for detecting neutron fluxed in the reactor, (2) a digital filter means for dividing signals corresponding to the detected neutron fluxes into predetermined frequency band regions, (3) a calculation processing means for applying a calculation processing corresponding to the frequency band regions to the neutron flux detection signals divided by the digital filter means. With such a constitution, since the neutron detection signals are processed by the digital filter means, the accuracy is improved and the change for the property of the filter is facilitated. Further, when a neutron flux level is obtained, a calculation processing corresponding to the frequency band region can be conducted without the analog processing circuit. Accordingly, maintenance and accuracy are improved by greatly decreasing the number of parts. Further, since problems inherent to the analog circuit are solved, neutron fluxes are monitored at high reliability. (I.S.)

  12. Determination of neutron flux densities in WWR-S reactor core

    International Nuclear Information System (INIS)

    Tomasek, F.

    1989-04-01

    The method is described of determining neutron flux densities and neutron fluences using activation detectors. The basic definitions and relations for determining reaction rates, fluence and neutron flux as well as the characteristics of some reactions and of sitable activation detectors are reported. The flux densities were determined of thermal and fast neutrons and of gamma quanta in the WWR-S reactor core. The data measured in the period 1984-1987 are tabulated. Cross sections for the individual reactions were determined from spectra measurements processed using program SAND-II and cross section library ENDF-B IV. Neutron flux densities were also measured for the WWR-S reactor vertical channels. (E.J.). 10 figs., 8 tabs., 111 refs

  13. Measurement of the Effective Delayed Neutron Fraction in Three Different FR0-cores

    Energy Technology Data Exchange (ETDEWEB)

    Moberg, L; Kockum, J

    1972-06-15

    The effective delayed neutron fraction, beta{sub eff}, has been measured in the three cores 3, 5 and 8 of the fast zero-power reactor FR0. The variance-to-mean method, in which the statistical fluctuations of the neutron density in the reactor is studied, was used. A 3He-gas scintillator was placed in the reflector and used as a neutron detector. It was made more sensitive to fast neutrons by surrounding it with polythene. Its efficiency, expressed as the number of counts per fission in the reactor, was determined using fission chambers with known efficiency placed in the core. The space distribution of the fission rate in the core was determined by foil activation technique. The experimental results were compared with theoretical beta{sub eff}-values calculated with perturbation theory. The difference was about 3 % which is of the same order as the accuracy in the experimental values

  14. Feasibility study of Self Powered Neutron Detectors in Fast Reactors for detecting local change in neutron flux distribution

    International Nuclear Information System (INIS)

    Jammes, Christian; Filliatre, Philippe; Verma, Vasudha; Hellesen, Carl; Jacobsson Svard, Staffan

    2015-01-01

    Neutron flux monitoring system forms an integral part of the design of a Generation IV sodium cooled fast reactor system. Diverse possibilities of detector systems installation have to be investigated with respect to practicality and feasibility according to the detection parameters. In this paper, we demonstrate the feasibility of using self powered neutron detectors as in-core detectors in fast reactors for detecting local change in neutron flux distribution. We show that the gamma contribution from fission products decay in the fuel and activation of structural materials is very small compared to the fission gammas. Thus, it is possible for the in-core SPND signal to follow changes in local neutron flux as they are proportional to each other. This implies that the signal from an in-core SPND can provide dynamic information on the neutron flux perturbations occurring inside the reactor core. (authors)

  15. Feasibility study of Self Powered Neutron Detectors in Fast Reactors for detecting local change in neutron flux distribution

    Energy Technology Data Exchange (ETDEWEB)

    Jammes, Christian; Filliatre, Philippe [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St Paul-Lez-Durance, (France); Verma, Vasudha; Hellesen, Carl; Jacobsson Svard, Staffan [Division of Applied Nuclear Physics, Uppsala University, SE-75120 Uppsala, (Sweden)

    2015-07-01

    Neutron flux monitoring system forms an integral part of the design of a Generation IV sodium cooled fast reactor system. Diverse possibilities of detector systems installation have to be investigated with respect to practicality and feasibility according to the detection parameters. In this paper, we demonstrate the feasibility of using self powered neutron detectors as in-core detectors in fast reactors for detecting local change in neutron flux distribution. We show that the gamma contribution from fission products decay in the fuel and activation of structural materials is very small compared to the fission gammas. Thus, it is possible for the in-core SPND signal to follow changes in local neutron flux as they are proportional to each other. This implies that the signal from an in-core SPND can provide dynamic information on the neutron flux perturbations occurring inside the reactor core. (authors)

  16. Base neutron noise in PWRs

    International Nuclear Information System (INIS)

    Kosaly, G.; Albrecht, R.W.; Dailey, D.J.; Fry, D.N.

    1981-01-01

    Considerable activity has been devoted in recent years to the use of neutron noise for investigation of problems in pressurized-water reactors (PWRs). The investigators have found that neutron noise provides an effective way to monitor reactor internal vibrations such as vertical and lateral core motion; core support barrel and thermal shield shell modes, bending modes of fuel assemblies, and control rod vibrations. However, noise analysts have also concluded that diagnosis of a problem is easier if baseline data for normal plant operation is available. Therefore, the authors have obtained ex-core neutron noise signatures from eight PWRs to determine the similarity of signatures between plants and to build a base of data to determine the sources of neutron noise and thus the potential diagnostic information contained in the data. It is concluded that: (1) ex-core neutron noise contains information about the vibration of components in the pressure vessel; (2) baseline signature acquisition can aid understanding of plant specific vibration frequencies and provide a bases for diagnosis of future problems if they occur; and (3) abnormal core support barrel vibration can most likely be detected over and above the plant-to-plant signature variation observed thus far

  17. CAREM 25: actual status of the core neutronic design. Calculation line

    International Nuclear Information System (INIS)

    Lecot, C.A.

    1990-01-01

    This work follows the one titled 'Criteria for the CAREM 25 reactor core design. Neutronic aspects' presented at this congress, gives in detail the typical values regarding the core defined at this point. Besides, the neutronic calculation line used for the CAREM 25 reactor design is presented. (Author) [es

  18. Neutron flux measurement in the central channel (XC-1) of TRIGA 14 MW LEU core

    International Nuclear Information System (INIS)

    BARBOS, D.; BUSUIOC, P.; ROTH, Cs.; PAUNOIU, C.

    2008-01-01

    The TRIGA 14 MW reactor, operated by Institute for Nuclear Research Pitesti, Romania, is a pool type reactor, and has a rectangular shape which holds fuel bundles and is surrounded with beryllium reflectors. Each fuel bundle is composed of 25 nuclear fuel rods. The TRIGA 14 MW reactor was commissioned 28 years ago with HEU fuel rods. The conversion was gradually achieved, starting in February 1992 and completed in March 2006. The full conversion of the 14 MW TRIGA Research Reactor was completed in May 2006 and each step of the conversion was achieved by removal of HEU fuel, replaced by LEU fuel, accompanied by a large set of theoretical evaluation and physical measurements intended to confirm the performances of gradual conversion. After the core full conversion, a program of measurements and comparisons with previous results of core physics and measurements is underway, allowing data acquisition for normal operation, demonstration of safety and economics of the converted core. Neutron flux spectrum measurements in the XC in the XC-1 water 1 water-filled channel were performed using multi multi-foil activation techniques. The neutron spectra and flux are obtained by unfolding from measured reaction rates using SAND II computer code. The integral neutron flux value for LEU core is greater of 13% than for the standard HEU core. Also thermal neutron flux value for converted LEU core is smaller by 0.38% than for the standard HEU core. These differences appear because the foil activation detectors have been irradiated using a pneumatic rabbit having a diameter of 32 mm, whereas foil irradiations in standard HEU core has been performed with a pneumatic rabbit having a diameter of 14 mm, and therefore the neutron spectra in LEU core is less thermalized and the weight of fast neutron is greater

  19. Development of self-powered neutron detectors for neutron flux monitoring in HCLL and HCPB ITER-TBM

    International Nuclear Information System (INIS)

    Angelone, M.; Klix, A.; Pillon, M.; Batistoni, P.; Fischer, U.; Santagata, A.

    2014-01-01

    Highlights: •Self powered neutron detector (SPND) is attractive neutron monitor for TBM in ITER. •In hard neutron spectra (e.g. TBM) there is the need to optimize their response. •Three state-of-the-art SPNDs were tested using fast and 14 MeV neutrons. •The response of SPNDs is much lower than in thermal neutron flux. •FISPACT calculations performed to find out candidate materials in hard spectra. -- Abstract: Self powered neutron detectors (SPND) have a number of interesting properties (e.g. small dimensions, capability to operate in harsh environments, absence of external bias), so they are attractive neutron monitors for TBM in ITER. However, commercially available SPNDs are optimized for operation in a thermal nuclear reactor where the neutron spectrum is much softer than that expected in a TBM. This fact can limit the use of SPND in a TBM since the effective cross sections for the production of beta emitters are much lower in a fast neutron spectrum. This work represents the first attempt to study SPNDs as neutron flux monitors for TBM. Three state-of-the-art SPND available on the market were bought and tested using fast neutrons at TAPIRO fast neutron source of ENEA Casaccia and with 14 MeV neutrons at the Frascati neutron generator (FNG). The results clearly indicate that in fast neutron spectra, the response of SPNDs is much lower than in thermal neutron flux. Activation calculations were performed using the FISPACT code to find out possible material candidates for SPND suitable for operation in TBM neutron spectra

  20. Development of self-powered neutron detectors for neutron flux monitoring in HCLL and HCPB ITER-TBM

    Energy Technology Data Exchange (ETDEWEB)

    Angelone, M., E-mail: maurizio.angelone@enea.it [Associazione ENEA-EURATOM sulla FusioneENEA C.R. Frascati, Via E. Fermi 45, 00044 Frascati (Italy); Klix, A. [Association KIT-EURATOM, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Pillon, M.; Batistoni, P. [Associazione ENEA-EURATOM sulla FusioneENEA C.R. Frascati, Via E. Fermi 45, 00044 Frascati (Italy); Fischer, U. [Association KIT-EURATOM, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Santagata, A. [ENEA C.R. Casaccia, via Anguillarese Km. 1,300, 00100 Roma (Italy)

    2014-10-15

    Highlights: •Self powered neutron detector (SPND) is attractive neutron monitor for TBM in ITER. •In hard neutron spectra (e.g. TBM) there is the need to optimize their response. •Three state-of-the-art SPNDs were tested using fast and 14 MeV neutrons. •The response of SPNDs is much lower than in thermal neutron flux. •FISPACT calculations performed to find out candidate materials in hard spectra. -- Abstract: Self powered neutron detectors (SPND) have a number of interesting properties (e.g. small dimensions, capability to operate in harsh environments, absence of external bias), so they are attractive neutron monitors for TBM in ITER. However, commercially available SPNDs are optimized for operation in a thermal nuclear reactor where the neutron spectrum is much softer than that expected in a TBM. This fact can limit the use of SPND in a TBM since the effective cross sections for the production of beta emitters are much lower in a fast neutron spectrum. This work represents the first attempt to study SPNDs as neutron flux monitors for TBM. Three state-of-the-art SPND available on the market were bought and tested using fast neutrons at TAPIRO fast neutron source of ENEA Casaccia and with 14 MeV neutrons at the Frascati neutron generator (FNG). The results clearly indicate that in fast neutron spectra, the response of SPNDs is much lower than in thermal neutron flux. Activation calculations were performed using the FISPACT code to find out possible material candidates for SPND suitable for operation in TBM neutron spectra.

  1. EPRTM Reactor neutron instrumentation

    International Nuclear Information System (INIS)

    Pfeiffer, Maxime; SALA, Stephanie

    2013-06-01

    The core safety during operation is linked, in particular, to the respect of criteria related to the heat generated in fuel rods and to the heat exchange between the rods and the coolant. This local power information is linked to the power distribution in the core. In order to evaluate the core power distribution, the EPR TM reactor relies on several types of neutron detectors: - ionization chambers located outside the vessel and used for protection and monitoring - a fixed in-core instrumentation based on Cobalt Self Powered Neutron Detectors used for protection and monitoring - a mobile reference in-core instrumentation based on Vanadium aero-balls This document provides a description of this instrumentation and its use in core protection, limitation, monitoring and control functions. In particular, a description of the detectors and the principles of their signal generation is supplied as well as the description of the treatments related to these detectors in the EPR TM reactor I and C systems (including periodical calibration). (authors)

  2. Development of signal processing electronics for self powered neutron detector signal with built-in on-line insulation monitoring [Paper No.:E3

    International Nuclear Information System (INIS)

    Das, Amitabha; Chaganty, S.P.

    1993-01-01

    Self powered neutron detectors (SPNDs) are employed to monitor in-core neutron flux in nuclear reactors for control, safety and mapping of in-core neutron flux. The d.c. current produced by SPND is converted into a proportional d.c. voltage, which in turn is used for various purposes stated above. This paper describes various features of the SPND amplifier developed in the Electronics Division of Bhabha Atomic Research Centre (BARC). It also outlines the principle of working of on-line monitoring of insulation resistance (IR) of the detector and associated mineral insulated (MI) and soft cables. The amplifier generates an alarm in case of the IR of the detector and the cable assembly falls below an accepted value or the cable is not connected to the amplifier and relieves the operator from periodic and manual checking of each of the individual detectors and ensures the validity of the signal for further processing. (author). 3 figs

  3. Method and apparatus for removing an in-core monitor

    International Nuclear Information System (INIS)

    Yoshida, Tomiji; Saito, Takashi; Ishii, Yoshimi; Arikawa, Isamu; Yamagata, Hiroko.

    1976-01-01

    Object: To cut an unremovable in-core monitor in a suitable position by remote control within a reactor and thereafter to remove the in-core monitor. Structure: A cutter body comprises an upper gripping mechanism, a mechanism for upwardly and downwardly moving the upper gripping mechanism, a cutter portion, and a lower gripping mechanism, and when the in-core monitor becomes impossible to be removed from a core, the cutter body is set within a cell of a top guide. First, the in-core monitor can be gripped by the gripping mechanism and then cut by operation of the cutter portion. Next, the lower part of the monitor is gripped by the lower gripping mechanism. Whereafter, the upwardly and downwardly moving mechanism can be operated to remove the head of the in-core monitor from a recess in a top guide. When the cutter body is then removed from the top guide, the in-core monitor is completed to be cut and removed. (Kamimura, M.)

  4. Neutronics analysis on mini test fuel in the RSG-GAS core

    International Nuclear Information System (INIS)

    Tukiran S; Tagor M Sembiring

    2016-01-01

    Research on UMo fuel for research reactor has been developed. The fuel of research reactor is uranium molybdenum low enrichment with high density. For supporting the development of fuel fabrication, an neutronic analysis of mini fuel plates in the RSG-GAS core was performed. The aim of analysis is to determine the numbers of fuel cycles in the core to know the maximum fuel burn-up. The mini fuel plates of U_7Mo-Al and U_6Zr-Al with densities of 7.0 gU/cc and 5.2 gU/cc, respectively, will be irradiated in the RSG-GAS core. The size of both fuels, namely 630 x 70.75 x 1.30 mm were inserted to the 3 plates of dummy fuel. Before the fuel will be irradiated in the core, a calculation for safety analysis from neutronics and thermal-hydraulics aspects were required. However, in this paper, it will be discussed safety analysis of the U_7Mo-Al and U_6Zr-Al mini fuels from neutronic point of view. The calculation was done using WIMSD-5B and Batan-3DIFF codes. The result showed that both of the mini fuels could be irradiated in the RSG-GAS core with burn up less than 70 % within 12 cycles of operation without over limiting the safety margin. If it is compared, the power density of U_7Mo-Al mini fuel is bigger than U_6Zr-Al fuel. (author)

  5. Advanced in-core monitoring system for high-power reactors

    International Nuclear Information System (INIS)

    Mitin, V.I.; Alekseev, A.N.; Golovanov, M.N.; Zorin, A.V.; Kalinushkin, A.E.; Kovel, A.I.; Milto, N.V.; Musikhin, A.M.; Tikhonova, N.V.; Filatov, V.P.

    2006-01-01

    This paper encompasses such section as objective, conception and engineering solution for construction of advanced in-core instrumentation system for high power reactor, including WWER-1000. The ICIS main task is known to be an on-line monitoring of power distribution and functionals independently of design programs to avoid a common cause error. This paper shows in what way the recovery of power distribution has been carried out using the signals from in-core neutron detectors or temperature sensors. On the basis of both measured and processed data, the signals of preventive and emergency protection on local parameters (linear power of the maximum intensive fuel rods, departure from nucleate boiling ratio peaking factor) have been automatically generated. The paper presents a detection technology and processing methods for signals from SPNDs and TCs, ICIS composition and structure, computer hardware, system and applied software. Structure, composition and the taken decisions allow combining class IE and class B and C tasks in accordance with international standards of separation and safety category realization. Nowadays, ICIS-M is a system that is capable to ensure: monitoring, safety, information display and diagnostics function, which allow securing actual increase of quality, reliability and safety in operation of nuclear fuel and power units. Meanwhile, it reduce negative influence of human factor on thermal technical reliability in the operational process (Authors)

  6. Research on intelligent monitor for 3D power distribution of reactor core

    International Nuclear Information System (INIS)

    Xia, Hong; Li, Bin; Liu, Jianxin

    2014-01-01

    Highlights: • Core power distribution of ex-core measurement system has been reconstructed. • Building up an artificial intelligence model for 3-D core power distribution. • Error of the experiments has been reduced to 0.76%. • Methods for improving the accuracy of the model have been obtained. - Abstract: A real-time monitor for 3D reactor power distribution is critical for nuclear safety and high efficiency of NPP’s operation as well as for optimizing the control system, especially when the nuclear power plant (NPP) works at a certain power level or it works in load following operation. This paper was based on analyzing the monitor for 3D reactor power distribution technologies used in modern NPPs. Furthermore, considering the latest research outcomes, the paper proposed a method based on using an ex-core neutron detector system and a neural network to set up a real time monitor system for reactor’s 3D power distribution supervision. The results of the experiments performed on a reactor simulation machine illustrated that the new monitor system worked very well for a certain burn-up range during the fuel cycle. In addition, this new model could reduce the errors associated with the fitting of the distribution effectively, and several optimization methods were also obtained to improve the accuracy of the simulation model

  7. Neutron measurements in the core and blankets of the reactor Rapsodie

    International Nuclear Information System (INIS)

    Gourdon, J.; Edeline, J.C.

    1968-01-01

    Beside a brief general discussion, the report contains all the core and blanket neutronic measurements. It covers successively the methods, the measurements themselves and the results. The later concern: spectral indexes, axial and radial fission rates, activation foil measurements and neutronic power determination. (authors) [fr

  8. Solving the uncommon nuclear reactor core neutronics problems

    International Nuclear Information System (INIS)

    Vondy, D.R.; Fowler, T.B.

    1983-01-01

    Calculational procedures have been implemented for solving importance and higher harmonic neutronics problems. Solutions are obtained routinely to support analysis of reactor core performance, treating up to three space coordinates with the multigroup diffusion theory approximation to neutron transport. The techniques used and some of the calculational difficulties are discussed

  9. Monitoring device for the power distribution within a nuclear reactor core

    International Nuclear Information System (INIS)

    Tanzawa, Tomio; Kumanomido, Hironori; Toyoshi, Isamu.

    1986-01-01

    Purpose: To provide a monitoring device for the power distribution in the reactor core that calculates the power distribution based on the measurement by instruments disposed within the reactor core of BWR type reactors. Constitution: The power distribution monitoring device in a reactor core comprises a signal correcting device, a signal normalizing device and a power distribution calculating device, in which the power distribution calculating device is constituted with an average power calculating device for four fuel assemblies and an average power calculating device for fuel assemblies. Gamma-ray signals corrected by the signal correcting device and signals from neutron detectors are inputted to the signal normalizing device, both of which are calibrated to determine the axial gamma-ray signal distribution in the central water gap region with the four fuel assemblies being as the unit. The average power from the four fuel assemblies are inputted to the fuel assembly average power calculating device to allocate to each of the fuel assembly average power thereby attaining the purpose. Further, thermal restriction values are calculated thereby enabling to secure the fuel integrity. (Kamimura, M.)

  10. Determination of prompt neutron decay constant of the AP-600 reactor core

    International Nuclear Information System (INIS)

    Surbakti, T.

    1998-01-01

    Determination of prompt neutron decay constant of the AP-600 reactor core has been performed using combination of two codes WIMS/D4 and Batan-2DIFF. The calculation was done at beginning of cycle and all of control rods pulled out. Cell generation from various kinds of core materials was done with 4 neutron energy group in 1-D transport code (WIMS/D4). The cell is considered for 1/4 fuel assembly in cluster model with square pitch arrange and then, the dimension of its unit cell is calculated. The unit cell consist of a fuel and moderator unit. The unit cell dimension as input data of WIMS/D4 code, called it annulus, is obtained from the equivalent unit cell. Macroscopic cross sections as output was used as input on neutron diffusion code Batan-2DIFF for core calculation as appropriate with three enrichment regions of the fuel of AP-600 core, namely 2, 2.5, and 3%. From result of diffusion code ( Batan-2DIFF) is obtained the value of delayed neutron fraction of 6.932E-03 and average prompt neutron life-time of 26.38 μs, so that the value of prompt neutron decay constant is 262.8 s-1. If it is compared the calculation result with the design value, the deviation are, for the design value of delayed neutron fraction is 7.5E-03, about 8% and the design value of average prompt neutron life time is 19.6 μs, about 34% respectively. The deviation because there are still unknown several core components of AP-600, so it didn't include in calculation yet

  11. Split core experiments; Part I. Axial neutron flux distribution measurements in the reactor core with a central horizontal reflector

    Energy Technology Data Exchange (ETDEWEB)

    Strugar, P; Raisic, N; Obradovic, D; Jovanovic, S [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1965-05-01

    A series of critical experiments were performed on the RB reactor in order to determine the thermal neutron flux increase in the central horizontal reflector formed by a split reactor core. The objectives of these experiments were to study the possibilities of improving the thermal neutron flux characteristics of the neutron beam in the horizontal beam tube of the RA research reactor. The construction of RA reactor enables to split the core in two, to form a central horizontal reflector in front of the beam tube. This is achieved by replacing 2% enriched uranium slugs in the fuel channel by dummy aluminium slugs. The purpose of the first series of experiments was to study the gain in thermal neutron component inside the horizontal reflector and the loss of reactivity as a function of the lattice pitch and central reflector thickness.

  12. Self-powered in-core neutron detector assembly with uniform perturbation characteristics

    International Nuclear Information System (INIS)

    Todt, W.H.; Playfoot, K.C.

    1979-01-01

    Disclosed is a self-powered in-core neutron detector assembly in which a plurality of longitudinally extending self-powered detectors have neutron responsive active portions spaced along a longitudinal path. A low neutron absorptive extension extends from the active portions of the spaced active portions of the detectors in symmetrical longitudinal relationship with the spaced active detector portions of each succeeding detector. The detector extension terminates with the detector assembly to provide a uniform perturbation characteristic over the entire assembly length

  13. Monitoring of the Irradiated Neutron Fluence in the Neutron Transmutation Doping Process of Hanaro

    Science.gov (United States)

    Kim, Myong-Seop; Park, Sang-Jun

    2009-08-01

    Neutron transmutation doping (NTD) for silicon is a process of the creation of phosphorus impurities in intrinsic or extrinsic silicon by neutron irradiation to obtain silicon semiconductors with extremely uniform dopant distribution. HANARO has two vertical holes for the NTD, and the irradiation for 5 and 6 inch silicon ingots has been going on at one hole. In order to achieve the accurate neutron fluence corresponding to the target resistivity, the real time neutron flux is monitored by self-powered neutron detectors. After irradiation, the total irradiation fluence is confirmed by measuring the absolute activity of activation detectors. In this work, a neutron fluence monitoring method using zirconium foils with the mass of 10 ~ 50 mg was applied to the NTD process of HANARO. We determined the proportional constant of the relationship between the resistivity of the irradiated silicon and the neutron fluence determined by using zirconium foils. The determined constant for the initially n-type silicon was 3.126 × 1019 n·Ω/cm. It was confirmed that the difference between this empirical value and the theoretical one was only 0.5%. Conclusively, the practical methodology to perform the neutron transmutation doping of silicon was established.

  14. Heliospheric Modulation Strength During The Neutron Monitor Era

    Science.gov (United States)

    Usoskin, I. G.; Alanko, K.; Mursula, K.; Kovaltsov, G. A.

    Using a stochastic simulation of a one-dimensional heliosphere we calculate galactic cosmic ray spectra at the Earth's orbit for different values of the heliospheric mod- ulation strength. Convoluting these spectra with the specific yield function of a neu- tron monitor, we obtain the expected neutron monitor count rates for different values of the modulation strength. Finally, inverting this relation, we calculate the modula- tion strength using the actually recorded neutron monitor count rates. We present the reconstructed annual heliospheric modulation strengths for the neutron monitor era (1953­2000) using several neutron monitors from different latitudes, covering a large range of geomagnetic rigidity cutoffs from polar to equatorial regions. The estimated modulation strengths are shown to be in good agreement with the corresponding esti- mates reported earlier for some years.

  15. Neutron spectrum effects on TRU recycling in Pb-Bi cooled fast reactor core

    International Nuclear Information System (INIS)

    Kim, Yong Nam; Kim, Jong Kyung; Park, Won Seok

    2003-01-01

    This study is intended to evaluate the dependency of TRU recycling characteristics on the neutron spectrum shift in a Pb-Bi cooled core. Considering two Pb-Bi cooled cores with the soft and the hard spectrum, respectively, various characteristics of the recycled core are carefully examined and compared with each other. Assuming very simplified fuel cycle management with the homogeneous and single region fuel loading, the burnup calculations are performed until the recycled core reached to the (quasi-) equilibrium state. The mechanism of TRU recycling toward the equilibrium is analyzed in terms of burnup reactivity and the isotopic compositions of TRU fuel. In the comparative analyses, the difference in the recycling behavior between the two cores is clarified. In addition, the basic safety characteristics of the recycled core are also discussed in terms of the Doppler coefficient, the coolant loss reactivity coefficient, and the effective delayed neutron fraction

  16. Neutron detector with monitoring elements

    International Nuclear Information System (INIS)

    Haller, P.

    1976-01-01

    To check the reliable reading of a neutron detector the signal of which results from (n,e) processes and which is used for neutron flux supervision in the reactor core of pressurized-water reactors, a circuit is given which makes it possible to record the isolation resistivity of the cable connected to the input of the current amplifier and of the neutron detector, this resistivity determining, among others, the output signal. For supervision, the input offset voltage of the current amplifier is modulated by a low-frequency ac voltage and a filter is assigned to the output of an op amplifier, this filter feeding a limiting value recorder. (ORU) [de

  17. Power monitoring in space nuclear reactors using silicon carbide radiation detectors

    Science.gov (United States)

    Ruddy, Frank H.; Patel, Jagdish U.; Williams, John G.

    2005-01-01

    Space reactor power monitors based on silicon carbide (SiC) semiconductor neutron detectors are proposed. Detection of fast leakage neutrons using SiC detectors in ex-core locations could be used to determine reactor power: Neutron fluxes, gamma-ray dose rates and ambient temperatures have been calculated as a function of distance from the reactor core, and the feasibility of power monitoring with SiC detectors has been evaluated at several ex-core locations. Arrays of SiC diodes can be configured to provide the required count rates to monitor reactor power from startup to full power Due to their resistance to temperature and the effects of neutron and gamma-ray exposure, SiC detectors can be expected to provide power monitoring information for the fill mission of a space reactor.

  18. Response of a neutron monitor area with TLDs pairs

    Energy Technology Data Exchange (ETDEWEB)

    Guzman G, K. A.; Borja H, C. G.; Valero L, C.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Gallego, E.; Lorente, A., E-mail: ing_karen_guzman@yahoo.com.mx [Universidad Politecnica de Madrid, Departamento de Ingenieria Nuclear, Jose Gutierrez Abascal 2, E-28006 Madrid (Spain)

    2011-10-15

    The response of a passive neutron monitor area has been calculated using the Monte Carlo code MCNP5. The response was the amount of n({sup 6}Li, T){alpha} reactions occurring in a TLD-600 located at the center of a cylindrical polyethylene moderator. Fluence, (n, a) and H*(10) responses were calculated for 47 monoenergetic neutron sources. The H*(10) relative response was compared with responses of commercially available neutron monitors being alike. Due to {sup 6}Li cross section (n, {alpha}) reactions are mainly produced by thermal neutrons, however TLD-600 is sensitive to gamma-rays; to eliminate the signal due to photons monitor area was built to hold 2 pairs of TLD-600 and 2 pairs of TLD-700, thus from the difference between TLD-600 and TLD-700 readouts the net signal due to neutrons is obtained. The monitor area was calibrated at the Universidad Politecnica de Madrid using a {sup 241}AmBe neutron source; net TLD readout was compared with the H*(10) measured with a Bert hold Lb-6411. Performance of the neutron monitor area was determined through two independent experiments, in both cases the H*(10) was statistically equal to H*(10) measured with a Bert hold Lb-6411. Neutron monitor area with TLDs pairs can be used in working areas with intense, mixed and pulsed radiation fields. (Author)

  19. Calculation of the ex-core neutron noise induced by fuel vibrations in PWRs

    International Nuclear Information System (INIS)

    Tran Hoai Nam; Cao Van Chung; Hoang Thanh Phi Hung; Hoang Van Khanh

    2015-01-01

    Calculation of the neutron noise induced by fuel assembly vibrations in two pressurized water reactor (PWR) cores has been performed to investigate the effect of cycle burnup on the properties of the ex-core detector noise. Pendular vibrations of individual fuel assemblies were assumed to occur at different locations in the core. The auto power spectra density (APSD) of the ex-core detector noise was evaluated with the assumption of stochastic vibrations along a random two-dimensional trajectory. The results show that no general monotonic variation of APSD was found. The increase of APSD occurs predominantly for peripheral assemblies. Assuming simultaneous vibrations of a number of fuel assemblies uniformly distributed over the core with the more realistic perturbation model, the effect of the peripheral assemblies will dominate and the increase of the amplitude of the ex-core neutron noise with burnup can be confirmed. (author)

  20. Neutron monitoring system

    International Nuclear Information System (INIS)

    Okido, Fumiyasu; Arita, Setsuo.

    1994-01-01

    The present invention concerns neutron monitoring for monitoring reactor power, and presents a generation state of abnormal signals by monitoring output signals from neutron sensors, judges abnormal signals at an excessively high level outputted from the sensors to a measuring operator or a reactor operator. That is, a threshold value judging means judges whether a sensor signal exceeds a predetermined threshold value or not. When it exceeds the value, recognition signals are outputted to a memory means. The memory means memorizes the times of input of the recognition signals on every period of interval signals outputted from a reference signal generation means. The memory content of the memory means and the previously inputted hysteresis of the sensor are compared and judged, to determine the extent of the degradation of the sensors and output the result of the judgement and hysteresis information to the display means. The input means accesses to the judging means and the memory means to retrieve and correct the content of the memory means and the hysteresis information inputted to the judging means. (I.S.)

  1. Method for monitoring stability of channel within a core in a reactor

    International Nuclear Information System (INIS)

    Monta, Kazuo; Takigawa, Yukio.

    1976-01-01

    Object: To obtain a flow rate as a factor for determining a safety limit of hydraulic vibration in a fuel channel within a core from signals of an incore neutron detector every channel to thereby monitor stability of the fuel channel. Structure: On the basis of hydraulic data of fuel channels such as power distribution and flow distribution obtained in each fuel channel, average pressure of fuel channels, measured value relating to inlet sub-cleaning of recycling water and throttling of inlet and outlet orifices, discrimination of stability is effected by a channel stability monitoring device, or on the basis of comparison between the limit value of stability in connecting with those parameters designated among parameters and the actual value thereof, determination of stability allowance is carried out. (Yoshihara, H.)

  2. Neutron flux parameters for k{sub 0}-NAA method at the Malaysian nuclear agency research reactor after core reconfiguration

    Energy Technology Data Exchange (ETDEWEB)

    Yavar, A.R. [School of Applied Physics, Faculty of Science and Technology, University Kebangsaan Malaysia (UKM), Bangi, Selangor 43600 (Malaysia); Sarmani, S. [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, University Kebangsaan Malaysia (UKM), Bangi, Selangor 43600 (Malaysia); Wood, A.K. [Analytical Chemistry Application Group, Industrial Technology Division, Malaysian Nuclear Agency (MNA), Bangi, Kajang, Selangor 43000 (Malaysia); Fadzil, S.M. [School of Applied Physics, Faculty of Science and Technology, University Kebangsaan Malaysia (UKM), Bangi, Selangor 43600 (Malaysia); Masood, Z. [Analytical Chemistry Application Group, Industrial Technology Division, Malaysian Nuclear Agency (MNA), Bangi, Kajang, Selangor 43000 (Malaysia); Khoo, K.S., E-mail: khoo@ukm.m [School of Applied Physics, Faculty of Science and Technology, University Kebangsaan Malaysia (UKM), Bangi, Selangor 43600 (Malaysia)

    2011-02-15

    The Malaysian Nuclear Agency (MNA) research reactor, commissioned in 1982, is a TRIGA Mark II swimming pool type reactor. When the core configuration changed in June 2009, it became essential to re-determine such neutron flux parameters as thermal to epithermal neutron flux ratio (f), epithermal neutron flux shape factor ({alpha}), thermal neutron flux ({phi}{sub th}) and epithermal neutron flux ({phi}{sub epi}) in the irradiation positions of MNA research reactor in order to guarantee accuracy in the application of k{sub 0}-neutron activation analysis (k{sub 0}-NAA).The f and {alpha} were determined using the bare bi-isotopic monitor and bare triple monitor methods, respectively; Au and Zr monitors were utilized in present study. The results for four irradiation positions are presented and discussed in the present work. The calculated values of f and {alpha} ranged from 33.49 to 47.33 and -0.07 to -0.14, respectively. The {phi}{sub th} and the {phi}{sub epi} were measured as 2.03 x 10{sup 12} (cm{sup -2} s{sup -1}) and 6.05 x 10{sup 10} (cm{sup -2} s{sup -1}) respectively. These results were compared to those of previous studies at this reactor as well as to those of reactors in other countries. The results indicate a good conformity with other findings.

  3. Systematic approach to personnel neutron monitoring

    International Nuclear Information System (INIS)

    Griffith, R.V.; Hankins, D.E.

    1980-01-01

    NTA film and albedo detectors represent the major portion of personnel dosimeters now used for occupational neutron monitoring. However, recent attention to the spectral response of these systems has demonstrated the need for detectors that have a better match to the fields being monitored. Recent developments in direct recoil track etch dosimeters present some intriguing alternatives, and careful use of 237 Np fission fragment detectors offers the advantage of a good dose equivalent spectral match. Work continues on a number of other new detector mechanisms, but problems with sensitivity, energy response, gamma interference, etc., continue to prevent development of most mechanisms into viable personnel dosimeters. Current dosimeter limitations make a systematic approach to personnel neutron monitoring particularly important. Techniques have been developed and tested, using available portable survey instruments, that significantly improve the quality of dosimeter interpretation. Even simple spectrometry can be done with modest effort, significantly improving the health physicists ability to provide accurate neutron monitoring

  4. Data analysis for neutron monitoring in an enrichment facility

    International Nuclear Information System (INIS)

    Markin, J.T.; Stewart, J.E.; Goldman, A.S.

    1982-01-01

    Area monitoring of neutron radiation to detect high-enriched uranium production is a potential strategy for inspector verification of operations in the cascade area of a centrifuge enrichment facility. This paper discusses the application of statistical filtering and hypothesis testing procedures to experimental data taken in an enrichment facility. The results demonstrate that these data analysis methods can enhance detection of facility misoperation by neutron monitoring

  5. Advanced core monitoring technology for WWER reactors

    International Nuclear Information System (INIS)

    Nguyen, T.Q.; Casadei, A.L.; Doshi, P.K.

    1993-01-01

    The Westinghouse BEACON online monitoring system has been developed to provide continuous core monitoring and operational support for pressurized water reactor using movable detectors (fission chamber) and core thermocouples. The basic BEACON core monitoring methodology is described. Traditional WWER reactors use rhodium fixed in-core detectors as the means to provide detailed core power distribution for surveillance purposes. An adapted version of the BEACON advanced core monitoring and support system is described which seems to be, due to the different demand/response requirements, the optimal solution (for routine surveillance and anomaly detection) for WWER reactors with existing fixed in-core detectors. (Z.S.) 4 refs

  6. Space weather monitoring with neutron monitor measurements

    Energy Technology Data Exchange (ETDEWEB)

    Steigies, Christian [Christian-Albrechts-Universitaet zu Kiel (Germany)

    2013-07-01

    Space Weather affects many areas of the modern society, advance knowledge about space weather events is important to protect personnel and infrastructure. Cosmic Rays (CR) measurements by ground-based Neutron Monitors are influenced by Coronal Mass Ejections (CME), the intensity of the ever present Cosmic Rays is reduced in a Forbush decrease (Fd). In the case of very energetic CMEs, the measured intensity can be significantly increased in a Ground Level Enhancement (GLE). By detecting the anisotropy of the CR environment, a CME can be detected hours before it arrives at Earth. During a GLE the high-energy particles from the Sun can be detected before the more abundant lower energy particles arrive at Earth, thus allowing to take protective measures. Since the beginning of the Neutron Monitor Database (NMDB) project, which has been started in 2008 with funding from the European Commission, real-time data from Neutron Monitors around the world has been made available through one web-portal. We have more than doubled the number of stations providing data since the start of the project to now over 30 stations. The effectiveness of the ALERT applications which are based on NMDB data has been shown by the recent GLE71. We present different applications through which the measurements and different data products are accessible.

  7. Qualification of the monitor Pug-7N like dosimeter for neutrons; Habilitacion del monitor PUG-7N como dosimetro para neutrones

    Energy Technology Data Exchange (ETDEWEB)

    Benites R, J. L. [Centro Estatal de Cancerologia de Nayarit, Av. Enfermeria, Fracc. Fray Junipero Serra, 63000 Tepic, Nayarit (Mexico); Vega C, H. R.; Murillo O, R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Velazquez F, J. B., E-mail: jlbenitesr@prodigy.net.mx [Universidad Autonoma de Nayarit, Postgrado CBAP, Carretera Tepic Compostela Km. 9, Xalisco, Nayarit (Mexico)

    2011-10-15

    By means of an inter-comparison method, the monitor for neutrons Pug-7N was enabled like dosimeter for neutrons of two magnitudes: the environmental equivalent dose, H*(10), and the H equivalent dose. The monitor Pug-7N has a plastic detector of scintillation Pns-20 that can be used inside or outside of its polyethylene cylindrical moderator. This designed to detect the neutrons presence that is shown in ana logical form by means of a fast count. Although the instrument is useful to detect the neutrons presence its design it does not allow to estimate the dose. With the purpose of enabling it as dosimeter for neutrons, their response was compared with the response of the area monitor for neutrons Bert hold Lb 6411 and Eberline NRD model Asp-1. Under the same irradiation conditions the 3 instruments were exposed to a source of {sup 241}AmBe of 3.7E(9) Bq (100 mCi) of activity whose spectrum and dosimetric magnitudes were determined with a spectrometric system of Bonner spheres with scintillator of {sup 6}Lil(Eu) and the NSDUAZ code. Conversion factors of H*(10)/cpm and H/cpm were obtained for the two options of the monitor detector Pug-7N, with this procedure the monitor Pug-7N besides determining the presence of neutrons, it has been enabled for their use as dosimeter for neutrons. (Author)

  8. Core monitoring with analytical model adaption

    International Nuclear Information System (INIS)

    Linford, R.B.; Martin, C.L.; Parkos, G.R.; Rahnema, F.; Williams, R.D.

    1992-01-01

    The monitoring of BWR cores has evolved rapidly due to more capable computer systems, improved analytical models and new types of core instrumentation. Coupling of first principles diffusion theory models such as applied to design to the core instrumentation has been achieved by GE with an adaptive methodology in the 3D Minicore system. The adaptive methods allow definition of 'leakage parameters' which are incorporated directly into the diffusion models to enhance monitoring accuracy and predictions. These improved models for core monitoring allow for substitution of traversing in-core probe (TIP) and local power range monitor (LPRM) with calculations to continue monitoring with no loss of accuracy or reduction of thermal limits. Experience in small BWR cores has shown that with one out of three TIP machines failed there was no operating limitation or impact from the substitute calculations. Other capabilities exist in 3D Monicore to align TIPs more accurately and accommodate other types of system measurements or anomalies. 3D Monicore also includes an accurate predictive capability which uses the adaptive results from previous monitoring calculations and is used to plan and optimize reactor maneuvers/operations to improve operating efficiency and reduce support requirements

  9. Neutronic and thermo-hydraulic design of LEU core for Japan Research Reactor 4

    International Nuclear Information System (INIS)

    Arigane, Kenji; Watanabe, Shukichi; Tsuruta, Harumichi

    1988-04-01

    As a part of the Reduced Enrichment Research and Test Reactor (RERTR) program in JAERI, the enrichment reduction for Japan Research Reactor 4 (JRR-4) is in progress. A fuel element using a 19.75 % enriched UAlx-Al dispersion type with a uranium density of 2.2 g/cm 3 was designed as the LEU fuel and the neutronic and thermo-hydraulic performances of the LEU core were compared with those of the current HEU core. The results of the neutronic design are as follows: (1) the excess reactivity of the LEU core becomes about 1 % Δk/k less, (2) the thermal neutron flux in the fuel region decreases about 25 % on the average, (3) the thermal neutron fluxes in the irradiation pipes are almost the same and (4) the core burnup lifetime becomes about 20 % longer. The thermo-hydraulic design also shows that: (1) the fuel plate surface temperature decreases about 10 deg C due to the increase of the number of fuel plates and (2) the temperature margin with respect to the ONB temperature increases. Therefore, it is confirmed that the same utilization performance as the HEU core is attainable with the LEU core. (author)

  10. Neutronics aspects associated to irregular lattices in sodium fast reactors cores

    International Nuclear Information System (INIS)

    Gentili, Michele

    2015-01-01

    The fuel assemblies of SFR cores (sodium fast reactors) are normally arranged in hexagonal regular lattices, whose compactness is ensured in nominal operating conditions by thermal expansion of assemblies pads disposed on the six assembly wrapper faces. During the reactor operations, thermal expansion phenomena and irradiation creep phenomena occur and they cause the fuel assemblies to bow and to deform both radially and axially. The main goal of this PhD is the understanding of the neutronic aspects and phenomena occurring in case of core and lattice deformations, as much as the design and implementation of deterministic neutronic calculation schemes and methods in order to evaluate the consequences for the core design activities and the safety analysis. The first part of this work is focused on the development of an analytical model with the purpose to identify the neutronic phenomena that are the main contributors to the reactivity changes induced by lattice and core deformations. A first scheme based on the spatial mesh projection method has been conceived and implemented for the ERANOS codes (BISTRO, H3D and VARIANT) and to the SNATCH solver. The second calculation scheme propose is based on mesh deformation: the computing mesh is deformed as a function of the assembly displacement field. This methodology has been implemented for the solver SNATCH, which normally allows the Boltzmann equation to be solved for a regular mesh. Finally, an iterative method has been developed in order to fulfill an a-priori estimation of the maximal reactivity insertion as a function of the postulated mechanical energy provided to the core, as much as the deformation causing it. (author) [fr

  11. Review of modifications performed to core monitoring systems related to core reloading

    International Nuclear Information System (INIS)

    Carew, J.F.; Diamond, D.J.

    1978-09-01

    The recent increase in the number of licensees selecting new fuel suppliers for reload cycles has resulted in a trend toward Core Monitoring Systems (CMS) for which the cycle dependent data and the CMS software are supplied by different vendors. At the request of and under the direction of the Division of Operating Reactors, USNRC, a review of the qualification and documentation for these CMS has been made. Several potential problem areas in the determination of CMS cycle dependent input involving empirical normalizations and relatively complex neutronic analysis were identified. As representative of present qualification and documentation practices, Yankee Atomic Electric Co., Virginia Electric Power Co., Nuclear Associations International, Exxon Nuclear Co., Northeast Utilities Service Co. and Jersey Central Power and Light were selected and reviewed in detail

  12. Solving the uncommon reactor core neutronics problems

    International Nuclear Information System (INIS)

    Vondy, D.R.; Fowler, T.B.

    1980-01-01

    The common reactor core neutronics problems have fundamental neutron space, energy spectrum solutions. Typically the most positive eigenvalue is associated with an all-positive flux for the pseudo-steady-state condition (k/sub eff/), or the critical state is to be effected by selective adjustment of some variable such as the fuel concentration. With sophistication in reactor analysis has come the demand for solutions of other, uncommon neutronics problems. Importance functionss are needed for sensitivity and uncertainty analyses, as for ratios of intergral reaction rates such as the fuel conversion (breeding) ratio. The dominant higher harmonic solution is needed in stability analysis. Typically the desired neutronics solution must contain negative values to qualify as a higher harmonic or to satisfy a fixed source containing negative values. Both regular and adjoint solutions are of interest as are special integrals of the solutions to support analysis

  13. Measurements of neutron flux distributions in the core of the Ljubljana TRIGA Mark II Reactor

    International Nuclear Information System (INIS)

    Rant, J.; Ravnik, M.; Mele, I.; Dimic, V.

    2008-01-01

    Recently the Ljubljana TRIGA Mark II Reactor has been refurbished and upgraded to pulsed operation. To verify the core design calculations using TRIGAP and PULSTR1 codes and to obtain necessary data for future irradiation and neutron beam experiments, an extensive experimental program of neutron flux mapping and neutron field characterization was carried out. Using the existing neutron measuring thimbles complete axial and radial distributions in two radial directions were determined for two different core configurations. For one core configuration the measurements were also carried out in the pulsed mode. For flux distributions thin Cu (relative measurements) and diluted Au wires (absolute values) were used. For each radial position the cadmium ratio was determined in two axial levels. The core configuration was rather uniform, well defined (fresh fuel of a single type, including fuelled followers) and compact (no irradiation channels or gaps), offering unique opportunity to test the computer codes for TRIGA reactor calculations. The neutron flux measuring procedures and techniques are described and the experimental results are presented. The agreement between the predicted and measured power peaking factors are within the error limits of the measurements (<±5%) and calculations (±10%). Power peaking occurs in the B ring, and in the A ring (centre) there is a significant flux depression. (authors)

  14. A Direction Sensitive Fast Neutron Monitor

    Energy Technology Data Exchange (ETDEWEB)

    Antolkovic, B; Holmqvist, B; Wiedling, T

    1964-06-15

    A direction sensitive fast neutron monitor is described and its properties are discussed in some detail. The counter is a modification of the standard long counter of the Hanson and McKibben type. Directional sensitivity is obtained by increasing the shielding of the counter and providing it with a 70 cm long collimator channel. The behaviour of this long counter monitor is compared with that of a standard long counter when both are used in neutron experiments.

  15. Coupled neutronic core and subchannel analysis of nanofluids in VVER-1000 type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zarifi, Ehsan; Sepanloo, Kamran [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of). Reactor and Nuclear Safety School; Jahanfarnia, Golamreza [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Dept. of Nuclear Engineering, Science and Research Branch

    2017-05-15

    This study is aimed to perform the coupled thermal-hydraulic/neutronic analysis of nanofluids as the coolant in the hot fuel assembly of VVER-1000 reactor core. Water-based nanofluid containing various volume fractions of Al{sub 2}O{sub 3} nanoparticle is analyzed. WIMS and CITATION codes are used for neutronic simulation of the reactor core, calculating neutron flux and thermal power distribution. In the thermal-hydraulic modeling, the porous media approach is used to analyze the thermal behavior of the reactor core and the subchannel analysis is used to calculate the hottest fuel assembly thermal-hydraulic parameters. The derived conservation equations for coolant and conduction heat transfer equation for fuel and clad are discretized by Finite volume method and solved numerically using visual FORTRAN program. Finally the analysis results for nanofluids and pure water are compared together. The achieved results show that at low concentration (0.1 percent volume fraction) alumina is the optimum nanoparticles for normal reactor operation.

  16. Neutronic characteristics of FLWR in the transition phase changing from high conversion core to breeder core

    International Nuclear Information System (INIS)

    Akie, Hiroshi; Nakano, Yoshihiro; Okubo, Tsutomu

    2009-01-01

    Innovative Water Reactor for Flexible Fuel Cycle (FLWR) is a low moderation type boiling water reactor which can realize plutonium multiple recycling and breeding. For the introduction stage of FLWR, a high conversion (HC) type FLWR is proposed to keep technical continuity from current light water reactors. The HC core of FLWR has a less tight fuel lattice with lower coolant void fraction than the breeder (BR) type core. The HC type FLWR core is to be shifted to the BR core by only replacing the fuel assemblies of the same outer shape and size in the same reactor system. In the HC to BR transition phase of FLWR, there exist both types of fuel assemblies in the same core configuration. In the HC assembly, neutron spectrum is softer than in the BR assembly, and the axial fuel and blanket arrangement is different from the BR assembly. Due to these differences, there might appear a power peaking in the adjacent region between HC and BR assemblies. The power distribution in the HC + BR assemblies mixed core configuration is studied by performing assembly calculations and core calculations on a few assemblies local geometry and the whole core geometry. As a result, although a power peaking can be locally very large in the HC and BR assemblies adjacent regions, such local power peakings are shown to be effectively reduced by considering a rod-wise fuel enrichment distribution. In the whole core calculation, it seems possible to optimize the fuel assembly loading and shuffling pattern to avoid large power level mismatch between the assemblies. It is expected that FLWR can be shifted from HC type to BR type without major neutronic difficulties. (author)

  17. Neutron and thermal dynamics of a gaseous core fission reactor

    International Nuclear Information System (INIS)

    van Dam, H.; Kuijper, J.C.; Stekelenburg, A.J.C.; Hoogenboom, J.E.; Boersma-Klein, W.; Kistemaker, J.

    1989-01-01

    In this paper neutron kinetics and thermal dynamics of a Gaseous Core Fission Reactor with magnetical pumping are shown to have many unconventional aspects. Attention is focused on the properties of the fuel gas, the non-linear neutron kinetics and the energy balance in thermodynamical cycles

  18. Measurement of the energy spectrum of the neutrons inside the neutron flux trap assembled in the center of the reactor core IPEN/MB-01

    Energy Technology Data Exchange (ETDEWEB)

    Bitelli, Ulysses d' Utra; Mura, Luiz Ernesto Credidio; Santos, Diogo Feliciano dos; Jerez, Rogerio; Mura, Luis Felipe Liamos, E-mail: ubitelli@ipen.br, E-mail: credidiomura@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    This paper presents the neutron energy spectrum in the central position of a neutron flux trap assembled in the core center of the research nuclear reactor IPEN/MB-01 obtained by an unfolding method. To this end, have been used several different types of activation foils (Au, Sc, Ti, Ni, and plates) which have been irradiated in the central position of the reactor core (setting number 203) at a reactor power level of 64.57 ±2.91 watts . The activation foils were counted by solid-state detector HPGe (gamma spectrometry). The experimental data of nuclear reaction rates (saturated activity per target nucleus) and a neutron spectrum estimated by a reactor physics computer code are the main input data to get the most suitable neutron spectrum in the irradiation position obtained through SANDBP code: a neutron spectra unfolding code that use an iterative adjustment method. The adjustment resulted in 3.85 ± 0.14 10{sup 9} n cm{sup -2} s{sup -1} for the integral neutron flux, 2.41 ± 0.01 10{sup 9} n cm{sup -2} s{sup -1} for the thermal neutron flux, 1.09 ± 0.02 10{sup 9} n cm{sup -2} s{sup -1} for intermediate neutron flux and 3.41± 0.02 10{sup 8} n cm{sup -2} s{sup -1} for the fast neutrons flux. These results can be used to verify and validate the nuclear reactor codes and its associated nuclear data libraries, besides show how much is effective the use of a neutron flux trap in the nuclear reactor core to increase the thermal neutron flux without increase the operation reactor power level. The thermal neutral flux increased 4.04 ± 0.21 times compared with the standard configuration of the reactor core. (author)

  19. Development of in-core measurements in the reactor KS-150

    International Nuclear Information System (INIS)

    Rana, S.B.

    1977-01-01

    Mapping of the neutron flux density distribution and of the neutron fluence distribution in the KS-150 reactor core was carried out using an in-core measuring system. The system allows the in-service monitoring of important operating properties of the reactor core and fuel elements and consists of a mapping fuel element assembly with built-in SPN detectors, of transmission paths and a computer facility. The measurement of the neutron flux, neutron fluence and temperature fields in the reactor core was carried out during the power start-up of the reactor using self-powered DPZ-1 detectors. The obtained data are given and the axial distribution of neutron flux is graphically represented for different values of burnup at the same configuration of regulating rods, as is the axial distribution of neutron fluence for different configurations of the regulating rods during operation, and the in-service neutron fluence distribution. The maximal fuel temperature of 500.2 degC was found at a distance of 291.2 cm from the upper boundary of the reactor core, at a neutron flux of 1.46x10 14 n/cm 2 s. In comparison with other methods, this method proved easy and quick, the results reliable, reactivity perturbance negligible and the fuel element cost increase a negligible 4%. Neutron flux mapping using in-core self-powered detectors will be performed on a wider scale. (J.P./J.O.)

  20. Neutron area monitor with TLD pairs

    International Nuclear Information System (INIS)

    Guzman G, K. A.; Borja H, C. G.; Valero L, C.; Hernandez D, V. M.; Vega C, H. R.

    2011-11-01

    The response of a passive neutron area monitor with pairs of thermoluminescent dosimeters has been calculated using the Monte Carlo code MCNP5. The response was calculated for one TLD 600 located at the center of a polyethylene cylinder, as moderator. When neutrons collide with the moderator lose their energy reaching the TLD with thermal energies where the ambient dose equivalent is calculated. The response was calculated for 47 monoenergetic neutron sources ranging from 1E(-9) to 20 MeV. Response was calculated using two irradiation geometries, one with an upper source and another with a lateral source. For both irradiation schemes the response was calculated with the TLDs in two positions, one parallel to the source and another perpendicular to the source. The advantage of this passive neutron monitor area is that can be used in locations with intense, pulsed and mixed radiation fields. (Author)

  1. Sensitivity Analysis of Core Neutronic Parameters in Electron Accelerator-driven Subcritical Advanced Liquid Metal Reactor

    Directory of Open Access Journals (Sweden)

    Marziye Ebrahimkhani

    2016-02-01

    Full Text Available Calculation of the core neutronic parameters is one of the key components in all nuclear reactors. In this research, the energy spectrum and spatial distribution of the neutron flux in a uranium target have been calculated. In addition, sensitivity of the core neutronic parameters in accelerator-driven subcritical advanced liquid metal reactors, such as electron beam energy (Ee and source multiplication coefficient (ks, has been investigated. A Monte Carlo code (MCNPX_2.6 has been used to calculate neutronic parameters such as effective multiplication coefficient (keff, net neutron multiplication (M, neutron yield (Yn/e, energy constant gain (G0, energy gain (G, importance of neutron source (φ∗, axial and radial distributions of neutron flux, and power peaking factor (Pmax/Pave in two axial and radial directions of the reactor core for four fuel loading patterns. According to the results, safety margin and accelerator current (Ie have been decreased in the highest case of ks, but G and φ∗ have increased by 88.9% and 21.6%, respectively. In addition, for LP1 loading pattern, with increasing Ee from 100 MeV up to 1 GeV, Yn/e and G improved by 91.09% and 10.21%, and Ie and Pacc decreased by 91.05% and 10.57%, respectively. The results indicate that placement of the Np–Pu assemblies on the periphery allows for a consistent keff because the Np–Pu assemblies experience less burn-up.

  2. Burnup dependent core neutronic calculations for research and training reactors via SCALE4.4

    International Nuclear Information System (INIS)

    Tombakoglu, M.; Cecen, Y.

    2001-01-01

    In this work, the full core modelling is performed to improve neutronic analyses capability for nuclear research reactors using SCALE4.4 code system. KENOV.a module of SCALE4.4 code system is utilized for full core neutronic analysis. The ORIGEN-S module is coupled with the KENOV.a module to perform burnup dependent neutronic analyses. Results of neutronic calculations for 1 st cycle of Cekmece TR-2 research reactor are presented. In particular, coupling of KENOV.a and ORIGEN-S modules of SCALE4.4 is discussed. The preliminary results of 2-D burnup dependent neutronic calculations are also given. These results are extended to burnup dependent core calculations of TRIGA Mark-II research reactors. The code system developed here is similar to the code system that couples MCNP and ORIGEN2.(author)

  3. Supervisory system to monitor the neutron flux of the IPR-R1 TRIGA research reactor at CDTN

    International Nuclear Information System (INIS)

    Pinto, Antonio Juscelino; Mesquita, Amir Zacarias; Tello, Cledola Cassia Oliveira

    2009-01-01

    The IPR-R1 TRIGA Mark I nuclear research reactor at the Nuclear Technology Development Center - CDTN (Belo Horizonte) is a pool type reactor. It was designed for research, training and radioisotope production. The International Atomic Energy Agency- IAEA - recommends the use of friendly interfaces for monitoring and controlling the operational parameters of nuclear reactors. This paper reports the activities for implementing a supervisory system, using LabVIEW software, with the purpose to provide the IPR-R1 TRIGA research reactor with a modern, safe and reliable system to monitor the time evolution of the power of its core. The use of the LabVIEW will introduce modern techniques, based on electronic processor and visual interface in video monitor, substituting the mechanical strip chart recorders (ink-pen drive and paper) that monitor the current neutrons flux, which is proportional to the thermal power supplied by reactor core. The main objective of the system will be to follow the evolution of the neutronic flux originated in the Linear and Logarithmic channels. A great advantage of the supervisory software nowadays, in relation to computer programs currently used in the facility, is the existence of new resources such as the data transmission and graphical interfaces by net, grid lines display in the graphs, and resources for real time reactor core video recordings. The considered system could also in the future be optimized, not only for data acquisition, but also for the total control of IPR-R1 TRIGA reactor(author)

  4. Effects of moderation level on core reactivity and. neutron fluxes in natural uranium fueled and heavy water moderated reactors

    International Nuclear Information System (INIS)

    Khan, M.J.; Aslam; Ahmad, N.; Ahmed, R.; Ahmad, S.I.

    2005-01-01

    The neutron moderation level in a nuclear reactor has a strong influence on core multiplication, reactivity control, fuel burnup, neutron fluxes etc. In the study presented in this article, the effects of neutron moderation level on core reactivity and neutron fluxes in a typical heavy water moderated nuclear research reactor is explored and the results are discussed. (author)

  5. Determination of the level of water in the core of reactors PWR using neutron detectors signal ex core; Determinacion del nivel del agua del nucleo de reactores PWR usando la senal de detectores neutronicos excore

    Energy Technology Data Exchange (ETDEWEB)

    Bernal, A.; Abarca, A.; Miro, R.; Verdu, G.

    2014-07-01

    The level of water from the core provides relevant information of the neutronic and thermal hydraulic of the reactor as the power, k EFF and cooling capacity. In fact, this level monitoring can be used for prediction of LOCA and reduction of cooling that can cause damage to the core. There are several teams that measure a variety of parameters of the reactor, as opposed to the level of the water of the core. However, the detectors 'excore' measure fast neutrons which escape from the core and there are studies that demonstrate the existence of a relationship between them and the water level of the kernel due to the water shield. Therefore, a methodology has been developed to determine this relationship, using the Monte Carlo method using the MCNP code and apply variance reduction techniques based on the attached flow that is obtained using the method of discrete ordinates using code TORT. (Author)

  6. Development of a spherical neutron rem monitor

    International Nuclear Information System (INIS)

    Panchal, C.G.; Madhavi, V.; Bansode, P.Y.; Jakati, R.K.; Ghodgaonkar, M.D.; Desai, S.S.; Shaikh, A.M.; Sathian, V.

    2007-01-01

    A new neutron rem monitor based on spherical LINUS with the state of art electronic circuits has been designed in Electronics Division. This prototype instrument encompasses a spherical double polythene moderator to improve an isotropic response and a lead layer to extend its energy response compared to the conventional neutron rem monitors. A systematic testing and calibration of the energy and directional response of the prototype monitor have been carried out. Although the monitor is expected to perform satisfactorily upto an energy ∼ 55 MeV, at present its response has been tested upto 5 MeV. (author)

  7. Neutronic analysis of the ford nuclear reactor leu core

    International Nuclear Information System (INIS)

    Raza, S.S.; Hayat, T.

    1989-08-01

    Neutronic analysis of the ford nuclear reactor low enriched uranium core has been carried out to gain confidence in the com puting methodology being used for Pakistan Research Reactor-1 core conversion calculations. The computed value of the effective multiplication factor (Keff) is found to be in good agreement with that quoted by others. (author). 6 figs

  8. Neutrons individual monitoring: 18 years of experience

    International Nuclear Information System (INIS)

    Goncalves, Sergio Alves; Mauricio, Claudia Lucia de Pinho; Moura Junior, Jose; Martins, Marcelo Marques; Meira, Nilton Ferreira; Diz, Ricardo; Seda, Rosangela Pinto Guimaraes

    2002-01-01

    The Thermoluminescent Dosimetry Laboratory of the Departamento de Monitoracao Individual of the Instituto de Radioprotecao e Dosimetria (LDT/DEMIN/IRD) is the only one in Brazil that operates routinely a whole body external individual monitoring service for neutrons. An albedo type monitor is used with thermoluminescent detectors pairs of 6 LiF:Mg,Ti and 7 LiF:Mg,Ti, made by Harshaw/Bicron and named, respectively, TLD-600 and TLD-700. In its 18 years of activities, the laboratory has ever made a great effort to be continuously updated. Equipment and procedures have been updated and optimized in order to guarantee the quality of all measurements. Nowadays, the neutron individual monitoring service evaluates doses of about 300 workers occupationally exposed to neutrons in several facilities of different areas of Brazil. The system history and the results obtained by the service in international intercomparisons and in its routine monitoring are presented in this work. (author)

  9. Theoretical methods for neutronics calculations of core-blanket and core-reflector systems in fast reactors

    International Nuclear Information System (INIS)

    Corcuera, Roberto.

    1975-12-01

    The present work is a contribution to the neutronics calculational methods of fast neutron reactors. The first step is devoted to the analysis of the validity of the few-groups (of the order of 25) multigroup scheme, and of the transport-correction approximation for the treatment of the scattering anisotropy. This analysis includes both the reactor core, where the usual approximations are found to be satisfactory, and the reflector, where it turns out that the rapid variations of the neutron flux and of it's spectrum necessitate the improvement of the multigroup cross-sections' generation. Therefore, a zero-dimensional simple and accurate model for the average spectrum in the reflector is developed by the space-energy synthesis method. Finally using the Rayleigh-Ritz method, a model is developed in which the flux is spatially represented by an analytical function. This model is applied to the analysis of the sensitivity of reflector neutronics parameters to the variations of the cross sections [fr

  10. On-line core monitoring with CORE MASTER / PRESTO

    International Nuclear Information System (INIS)

    Lindahl, S.O.; Borresen, S.; Ovrum, S.

    1986-01-01

    Advanced calculational tools are instrumental in improving reactor plant capacity factors and fuel utilization. The computer code package CORE MASTER is an integrated system designed to achieve this objective. The system covers all main activities in the area of in-core fuel management for boiling water reactors; design, operation support, and on-line core monitoring. CORE MASTER operates on a common data base, which defines the reactor and documents the operating history of the core and of all fuel bundles ever used

  11. Optimizing a three-element core design for the Advanced Neutron Source Reactor

    International Nuclear Information System (INIS)

    West, C.D.

    1995-01-01

    Source of neutrons in the proposed Advanced Neutron Source facility is a multipurpose research reactor providing 5-10 times the flux, for neutron beams, of the best existing facilities. Baseline design for the reactor core, based on the ''no new inventions'' rule, was an assembly of two annular fuel elements similar to those used in the Oak Ridge and Grenoble high flux reactors, containing highly enriched U silicide particles. DOE commissioned a study of the use of medium- or low-enriched U; a three-element core design was studied as a means to provide extra volume to accommodate the additional U compound required when the fissionable 235 U has to be diluted with 238 U to reduce the enrichment. This paper describes the design and optimization of that three-element core

  12. Monte Carlo neutronics analysis of the ANS reactor three-element core design

    International Nuclear Information System (INIS)

    Wemple, C.A.

    1995-01-01

    The advanced neutron source (ANS) is a world-class research reactor and experimental center for neutron research, currently being designed at the Oak Ridge National Laboratory (ORNL). The reactor consists of a 330-MW(fission) highly enriched uranium core, which is cooled, moderated, and reflected with heavy water. It was designed to be the preeminent ultrahigh neutron flux reactor in the world, with facilities for research programs in biology, materials science, chemistry, fundamental and nuclear physics, and analytical chemistry. Irradiation facilities are provided for a variety of isotope production capabilities, as well as materials irradiation. This paper summarizes the neutronics efforts at the Idaho National Engineering Laboratory in support of the development and analysis of the three-element core for the advanced conceptual design phase

  13. Neutron radiography (NRAD) reactor 64-element core upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Bess, John D. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-03-01

    The neutron radiography (NRAD) reactor is a 250 kW TRIGA (registered) (Training, Research, Isotopes, General Atomics) Mark II , tank-type research reactor currently located in the basement, below the main hot cell, of the Hot Fuel Examination Facility (HFEF) at the Idaho National Laboratory (INL). It is equipped with two beam tubes with separate radiography stations for the performance of neutron radiography irradiation on small test components. The interim critical configuration developed during the core upgrade, which contains only 62 fuel elements, has been evaluated as an acceptable benchmark experiment. The final 64-fuel-element operational core configuration of the NRAD LEU TRIGA reactor has also been evaluated as an acceptable benchmark experiment. Calculated eigenvalues differ significantly (approximately ±1%) from the benchmark eigenvalue and have demonstrated sensitivity to the thermal scattering treatment of hydrogen in the U-Er-Zr-H fuel.

  14. Formulation of detector response function to calculate the power density profiles using in-core neutron detectors

    International Nuclear Information System (INIS)

    Ahmed, S. A.; Peter, J. K.; Semmler, W.; Shultis, J. K.

    2007-01-01

    By measuring neutron fluxes at different locations throughout a core, it's possible to derive the power-density profile P k (W cm - 3), at an axial depth z of fuel rod k. Micro-pocket fission detectors (MPFD) have been fabricated to perform such in-core neutron flux measurements. The purpose of this study is to develop a mathematical model to obtain axial power density distributions in the fuel rods from the in-core responses of the MPFDs

  15. CORE SIM: A multi-purpose neutronic tool for research and education

    International Nuclear Information System (INIS)

    Demaziere, Christophe

    2011-01-01

    Highlights: → A highly flexible neutronic core simulator was developed. → The tool estimates the static neutron flux, the eigenmodes, and the neutron noise. → The tool was successfully validated via many benchmark cases. → The tool can be used for research and education. → The tool is freely available. - Abstract: This paper deals with the development, validation, and demonstration of an innovative neutronic tool. The novelty of the tool resides in its versatility, since many different systems can be investigated and different kinds of calculations can be performed. More precisely, both critical systems and subcritical systems with an external neutron source can be studied, and static and dynamic cases in the frequency domain (i.e. for stationary fluctuations) can be considered. In addition, the tool has the ability to determine the different eigenfunctions of any nuclear core. For each situation, the static neutron flux, the different eigenmodes and eigenvalues, the first-order neutron noise, and their adjoint functions are estimated, as well as the effective multiplication factor of the system. The main advantages of the tool, which is entirely MatLab based, lie with the robustness of the implemented numerical algorithms, its high portability between different computer platforms and operative systems, and finally its ease of use since no input deck writing is required. The present version of the tool, which is based on two-group diffusion theory, is mostly suited to investigate thermal systems. The definition of both the static and dynamic core configurations directly from the static macroscopic cross-sections and their fluctuations, respectively, makes the tool particularly well suited for research and education. Some of the many benchmark cases used to validate the tool are briefly reported. The static and dynamic capabilities of the tool are also demonstrated for the following configurations: a vibrating control rod, a perturbation traveling upwards

  16. Two-component Superfluid Hydrodynamics of Neutron Star Cores

    Energy Technology Data Exchange (ETDEWEB)

    Kobyakov, D. N. [Institute of Applied Physics of the Russian Academy of Sciences, 603950 Nizhny Novgorod (Russian Federation); Pethick, C. J., E-mail: dmitry.kobyakov@appl.sci-nnov.ru, E-mail: pethick@nbi.dk [The Niels Bohr International Academy, The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen Ø (Denmark)

    2017-02-20

    We consider the hydrodynamics of the outer core of a neutron star under conditions when both neutrons and protons are superfluid. Starting from the equation of motion for the phases of the wave functions of the condensates of neutron pairs and proton pairs, we derive the generalization of the Euler equation for a one-component fluid. These equations are supplemented by the conditions for conservation of neutron number and proton number. Of particular interest is the effect of entrainment, the fact that the current of one nucleon species depends on the momenta per nucleon of both condensates. We find that the nonlinear terms in the Euler-like equation contain contributions that have not always been taken into account in previous applications of superfluid hydrodynamics. We apply the formalism to determine the frequency of oscillations about a state with stationary condensates and states with a spatially uniform counterflow of neutrons and protons. The velocities of the coupled sound-like modes of neutrons and protons are calculated from properties of uniform neutron star matter evaluated on the basis of chiral effective field theory. We also derive the condition for the two-stream instability to occur.

  17. Neutron flux monitoring device

    International Nuclear Information System (INIS)

    Shimazu, Yoichiro.

    1995-01-01

    In a neutron flux monitoring device, there are disposed a neutron flux measuring means for outputting signals in accordance with the intensity of neutron fluxes, a calculation means for calculating a self power density spectrum at a frequency band suitable to an object to be measured based on the output of the neutron flux measuring means, an alarm set value generation means for outputting an alarm set value as a comparative reference, and an alarm judging means for comparing the alarm set value with the outputted value of the calculation means to judge requirement of generating an alarm and generate an alarm in accordance with the result of the judgement. Namely, the time-series of neutron flux signals is put to fourier transformation for a predetermined period of time by the calculation means, and from each of square sums for real number component and imaginary number component for each of the frequencies, a self power density spectrum in the frequency band suitable to the object to be measured is calculated. Then, when the set reference value is exceeded, an alarm is generated. This can reliably prevent generation of erroneous alarm due to neutron flux noises and can accurately generate an alarm at an appropriate time. (N.H.)

  18. Exchange of transverse plasmons and electrical conductivity of neutron star cores

    International Nuclear Information System (INIS)

    Shternin, P. S.

    2008-01-01

    We study the electrical conductivity in magnetized neutron star cores produced by collisions between charged particles. We take into account the ordinary exchange of longitudinal plasmons and the exchange of transverse plasmons in collisions between particles. The exchange of transverse plasmons is important for collisions between relativistic particles, but it has been disregarded previously when calculating the electrical conductivity. We show that taking this exchange into account changes the electrical conductivity, including its temperature dependence (thus, for example, the temperature dependence of the electrical resistivity along the magnetic field in the low-temperature limit takes the form R parallel ∝ T 5/3 instead of the standard dependence R parallel ∝ T 2 for degenerate Fermi systems). We briefly describe the effect of possible neutron and proton superfluidity in neutron star cores on the electrical conductivity and discuss various scenarios for the evolution of neutron star magnetic fields

  19. Improvement of core monitoring code cecor by the virtual segmentation of the self powered neutron detector loaded at Korean Standard Nuclear Plant

    International Nuclear Information System (INIS)

    Choi, T.; Jung, Y.S.

    2006-01-01

    Full text: Full text: Korean Standard Nuclear Plant uses Self Powered Neutron Detectors (SPNDs) to measure the neutron flux in the reactor core. The SPND's height is 40 cm and is located axially at the five different positions and 45 radial places. The design code simulated a reactor core is calculated by segmentation of the core. The segmentation is called as 'node', of which size is normally 20 cm. The axial height of the detector is larger than that of the node, and the larger detector's height maybe product some error on the axially complex shape. The analysis with the detector's signals showed some errors at the non-cosine axial flux shape. In order to reduce the errors for the shape, we tried to divide the detector by introducing the virtual boundary in the detector. Then, each axially 5 detectors had two virtual segmentations respectively and the detector's signal was divided by the inputs. So the more virtual detector's signals were gotten, the more accurate axial shape was produced. The result with virtual segmentations in a detector gave less deviation than the case without virtual segmentation (the current model). After the middle of cycle at the initial core specially, the axial neutron flux shape is changed to the saddle type one. The current model gave some error in Root Mean Square (RMS) between the measured value and the calculated one. The virtual segmentation model gave the better agreement at that time

  20. Use of cellulose nitrate plastic track detectors in neutron personnel monitoring

    International Nuclear Information System (INIS)

    Venkataraman, G.; Marathe, P.K.; Joshi, R.V.

    1975-01-01

    Cellulose nitrate, which is a sensitive plastic material wherein even proton tracks could be recorded, was studied with a view to using it for personnel neutron monitoring work. It was found that among the commercially available plastics, the colourless transparent Daicel 6000 variety having a thickness of 0.6mm is satisfactory form the point of view of track recognition. The material was exposed to thermal neutrons, fission neutrons, neutrons from an Am-Be source and to 14 MeV neutrons. As is to be expected, there is no thermal neutron sensitivity. The sensitivity to fast neutrons is less by a factor of two as compared to that of the NTA nuclear track emulsion. It was observed that the background tracks found in the plastic correspond to nearly 100 mrem of fast neutron dose equivalent. It is felt that at present cellulose nitrate is useful for monitoring personnel involved in nuclear criticality accidents. (author)

  1. On-line generation of core monitoring power distribution in the SCOMS couppled with core design code

    International Nuclear Information System (INIS)

    Lee, K. B.; Kim, K. K.; In, W. K.; Ji, S. K.; Jang, M. H.

    2002-01-01

    The paper provides the description of the methodology and main program module of power distribution calculation of SCOMS(SMART COre Monitoring System). The simulation results of the SMART core using the developed SCOMS are included. The planar radial peaking factor(Fxy) is relatively high in SMART core because control banks are inserted to the core at normal operation. If the conventional core monitoring method is adapted to SMART, highly skewed planar radial peaking factor Fxy yields an excessive conservatism and reduces the operation margin. In addition to this, the error of the core monitoring would be enlarged and thus operating margin would be degraded, because it is impossible to precalculate the core monitoring constants for all the control banks configurations taking into account the operation history in the design stage. To get rid of these drawbacks in the conventional power distribution calculation methodology, new methodology to calculate the three dimensional power distribution is developed. Core monitoring constants are calculated with the core design code (MASTER) which is on-line coupled with SCOMS. Three dimensional (3D) power distribution and the several peaking factors are calculated using the in-core detector signals and core monitoring constant provided at real time. Developed methodology is applied to the SMART core and the various core states are simulated. Based on the simulation results, it is founded that the three dimensional peaking factor to calculate the Linear Power Density and the pseudo hot-pin axial power distribution to calculate the Departure Nucleate Boiling Ratio show the more conservative values than those of the best-estimated core design code, and SCOMS adapted developed methodology can secures the more operation margin than the conventional methodology

  2. A benefit assessment of using in-core neutron detector signals in core protection calculator system (CPCS)

    International Nuclear Information System (INIS)

    Han, S.; Park, S.J.; Seong, P.H.

    1997-01-01

    A Core Protection Calculator System (CPCS) is a digital computer based safety system generating trip signals based on the calculation of Departure from Nucleate Boiling Ratio (DNBR) and Local Power Density (LPD). Currently, CPCS uses ex-core detector signals for core power calculation and it has some uncertainties. In this study, in-core detector signals which directly measure inside flux of core are applied to CPCS to get more accurate power distribution profile, DNBR and LPD. In order to improve axial power distribution calculation, piece-wise cubic Spline method is applied; from the 40 nodes of expanded signals, more accurate and detailed core information can be provided. Simulation is carried out to verify its applicability to power distribution calculation. Simulation result shows that the improved method reduces the calculational uncertainties significantly and it allows larger operational margin. It is also expected that no power reduction is required while Core Operating Limit Supervisory System (COLSS) is out-of-service due to reduced uncertainties when the improved method is applied. In this study, a quantitative economic benefit assessment of using in-core neutron detector signals is also carried out. (authors)

  3. A benefit assessment of using in-core neutron detector signals in core protection calculator system(CPCS)

    International Nuclear Information System (INIS)

    Han, Seung

    1996-02-01

    A Core Protection Calculator System(CPCS) is a digital computer based safety system generating trip signals based on the calculation of Departure from Nucleate Boiling Ratio(DNBR) and Local Power Density(LPD). Currently, CPCS uses ex-core detector signals for core power calculation and it has some uncertainties. In this study, In-core detector signals which directly measure inside flux of core are applied to CPCS to get more accurate power distribution profile, DNBR and LPD. In order to improve axial power distribution calculation, piecewise cubic spline method is applied: From the 40 nodes of expanded signals, more accurate and detailed core information can be provided. Simulation is carried out to verify its applicability to power distribution calculation. Simulation result shows that the improved method reduces the calculational uncertainties significantly and it allows larger operational margin. It is also expected that no power reduction is required while Core Operating Limit Supervisory System(COLSS) is out-of-service due to reduced uncertainties when the improved method is applied. In this study, a quantitative economic benefit assessment of using in-core neutron detector signals is also carried out

  4. Progress in the neutronic core conversion (HEU-LEU) analysis of Ghana research reactor-1.

    Energy Technology Data Exchange (ETDEWEB)

    Anim-Sampong, S.; Maakuu, B. T.; Akaho, E. H. K.; Andam, A.; Liaw, J. J. R.; Matos, J. E.; Nuclear Engineering Division; Ghana Atomic Energy Commission; Kwame Nkrumah Univ. of Science and Technology

    2006-01-01

    The Ghana Research Reactor-1 (GHARR-1) is a commercial version of the Miniature Neutron Source Reactor (MNSR) and has operated at different power levels since its commissioning in March 1995. As required for all nuclear reactors, neutronic and thermal hydraulic analysis are being performed for the HEU-LEU core conversion studies of the Ghana Research Reactor-1 (GHARR-1) facility, which is a commercial version of the Miniature Neutron Source Reactor (MNSR). Stochastic Monte Carlo particle transport methods and tools (MCNP4c/MCNP5) were used to fine-tune a previously developed 3-D MCNP model of the GHARR-1 facility and perform neutronic analysis of the 90.2% HEU reference and candidate LEU (UO{sub 2}, U{sub 3}Si{sub 2}, U-9Mo) fresh cores with varying enrichments from 12.6%-19.75%. In this paper, the results of the progress made in the Monte Carlo neutronic analysis of the HEU reference and candidate LEU fuels are presented. In particular, a comparative performance assessment of the LEU with respect to neutron flux variations in the fission chamber and experimental irradiation channels are highlighted.

  5. Method of exchanging cables of neutron monitoring instrumentation tube and folding device of the cable

    International Nuclear Information System (INIS)

    Sakamaki, Kazuo.

    1990-01-01

    In a BWR type reactor, a wide range monitor (WRNM) is used instead of a conventional neutron source range monitor (SRM) or an intermediate range monitor (IRM). The WRNM is always fixed to a predetermined position in a reactor core while containing a detection section in a dry tube, different from a conventional monitor. Accordingly, driving devices for the conventional detection section such as in SRM and IRM are not necessary but, when the reactor is operated for a long period of time, it is sometimes necessary to be replaced with new WRNM. According to the present invention, the cable of the detector placed in a neutron instrumentation tube is connected to a cable take-up drum in a take-up device passing through a cask. Then, the cable is taken-up by driving the take-up drum by a driving motor and the WRNM detection section attached to the top end of the cable is contained in the cask. With this constitution, replacing and processing operation for the detection section can be facilitated and operator's exposure dose can be reduced. (I.S.)

  6. Neutronic characterization of cylindrical core of minor excess reactivity in the nuclear reactor IPEN/MB-01 from the measure of spatial and energetic distribution of neutron flux distribution

    International Nuclear Information System (INIS)

    Aredes, Vitor Ottoni Garcia

    2014-01-01

    In this work was conducted the mapping of the thermal and epithermal neutrons flux and the energy spectrum of the neutrons in the reactor core IPEN/MB-01 for a cylindrical core configuration with minor excess reactivity, which is 28 x 28 fuel rods arranged in north-south and east-west directions. The calibration of control rods for this configuration determined their excess reactivity. The lower excess reactivity in the core decreased neutron flux disturbance caused by the neutron absorbing rods , given that the nuclear reactor was operated with the rods almost completely removed . Was used the 'Activation Analysis Technique' with the thin foil activation detectors ( infinitely diluted and hyper-pure), of different materials that work in different energy ranges, to calculate the saturation activity, used for determining the neutron flux and in the SANDBP code as input for the calculation of the neutrons energy spectrum. To discriminate thermal and epithermal flux , was used the 'Cadmium RatioTechnique' . The activation detectors were distributed in a total of 140 radial and axial positions in the reactor core and 16 irradiation, with bare and covered with cadmium activation foils. A model of this configuration was simulated by MCNP-5 code to determine the cadmium correction factor and comparison of the results obtained experimentally. The cylindrical configuration desired, with 17% less fuel than the standard rectangular configuration (28 x 26 fuel rods), reached criticality with the control rods approximately 90% removed, which decreased considerably the disturbance in neutron flux. Given the highest power density of the 28 x 28 cylindrical core, the neutron flux increased by over 50% in the central regions of the core compared to the values of the 28 x 26 standard rectangular core. (author)

  7. Progress in the development of the neutron flux monitoring system of the French GEN-IV SFR: simulations and experimental validations [ANIMMA--2015-IO-392

    Energy Technology Data Exchange (ETDEWEB)

    Jammes, C.; Filliatre, P.; Izarra, G. de [CEA, DEN, Cadarache, Reactor Studies Department, 13108 Saint-Paul-lez-Durance (France); Elter, Zs. [CEA, DEN, Cadarache, Reactor Studies Department, 13108 Saint-Paul-lez-Durance (France); Chalmers University of Technology, Department of Applied Physics, Division of Nuclear Engineering, SE-412 96 Goeteborg (Sweden); Verma, V. [CEA, DEN, Cadarache, Reactor Studies Department, 13108 Saint-Paul-lez-Durance (France); Uppsala University, Division of Applied Nuclear Physics, Box 516, SE-75120 Uppsala (Sweden); Hamrita, H.; Bakkali, M. [CEA, DRT, LIST, Metrology, Instrumentation and Information Department, Saclay, 91191 Gif-sur-Yvette (France); Chapoutier, N.; Scholer, A.C.; Verrier, D. [AREVA NP, 10 rue Juliette Recamier F-69456 Lyon (France); Hellesen, C.; Jacobsson, S. [Uppsala University, Division of Applied Nuclear Physics, Box 516, SE-75120 Uppsala (Sweden); Pazsit, I. [Chalmers University of Technology, Department of Applied Physics, Division of Nuclear Engineering, SE-412 96 Goeteborg (Sweden); Cantonnet, B.; Nappe, J.C. [PHOTONIS France, Nuclear Instrumentation, 19100 Brive-la-Gaillarde (France); Molinie, P.; Dessante, P.; Hanna, R.; Kirkpatrick, M.; Odic, E. [Supelec, Energy Department, 3 rue Joliot-Curie, 91191 Gif-sur-Yvette (France)

    2015-07-01

    France has a long experience of about 50 years in designing, building and operating sodium-cooled fast reactors (SFR) such as RAPSODIE, PHENIX and SUPER PHENIX. Fast reactors feature the double capability of reducing nuclear waste and saving nuclear energy resources by burning actinides. Since this reactor type is one of those selected by the Generation IV International Forum, the French government asked, in the year 2006, CEA, namely the French Alternative Energies and Atomic Energy Commission, to lead the development of an innovative GEN-IV nuclear- fission power demonstrator. The major objective is to improve the safety and availability of an SFR. The neutron flux monitoring (NFM) system of any reactor must, in any situation, permit both reactivity control and power level monitoring from startup to full power. It also has to monitor possible changes in neutron flux distribution within the core region in order to prevent any local melting accident. The neutron detectors will have to be installed inside the reactor vessel because locations outside the vessel will suffer from severe disadvantages; radially the neutron shield that is also contained in the reactor vessel will cause unacceptable losses in neutron flux; below the core the presence of a core-catcher prevents from inserting neutron guides; and above the core the distance is too large to obtain decent neutron signals outside the vessel. Another important point is to limit the number of detectors placed in the vessel in order to alleviate their installation into the vessel. In this paper, we show that the architecture of the NFM system will rely on high-temperature fission chambers (HTFC) featuring wide-range flux monitoring capability. The definition of such a system is presented and the justifications of technological options are brought with the use of simulation and experimental results. Firstly, neutron-transport calculations allow us to propose two in-vessel regions, namely the above-core and under-core

  8. Real time n/γ discrimination for the JET neutron profile monitor

    Energy Technology Data Exchange (ETDEWEB)

    Riva, M., E-mail: marco.riva@enea.it [Associazione EURATOM-ENEA sulla Fusione, C.P. 65, Frascati I-00044, Roma (Italy); Esposito, B.; Marocco, D.; Belli, F. [Associazione EURATOM-ENEA sulla Fusione, C.P. 65, Frascati I-00044, Roma (Italy); Syme, B. [EURATOM/CCFE Fusion Association, OX14 3DB Abingdon (United Kingdom); Giacomelli, L. [Dipartimento di Fisica, Università degli Studi di Milano-Bicocca (Italy); Istituto di Fisica del Plasma, Associazione EURATOM-ENEA-CNR, 20100 Milano (Italy); JET-EFDA, Culham Science Centre, OX14 3DB Abingdon (United Kingdom)

    2013-10-15

    Highlights: ► Development of a pulse oriented acquisition system able for the JET neutron profile monitor to separate neutron and gamma pulses. ► Description of the FPGA hardware architecture. ► Comparison between the off-line and real time neutron count rates from the last JET experimental campaign. ► Estimate of the maximum sustainable count rate of the system. ► Statistical analysis of neutron measurements from JET neutron profile monitor and neutron monitors. -- Abstract: The JET neutron profile monitor provides the measurement of the neutron flux along 19 collimated lines of sight from which the neutron emissivity profile can be obtained through reconstruction based on inversion methods. The neutron detectors are liquid organic scintillators featuring n/γ pulse shape discrimination. A recent digital upgrade of the neutron profile monitor acquisition system (200 MSamples/s sampling rate per channel, 14 bit resolution) offers new real-time capabilities. An algorithm performing real-time n/γ discrimination by means of the charge comparison method is implemented in the acquisition system FPGA. The algorithm produces two distinct count rates (n and γ) that are sent to the JET real time network ready for control applications and are simultaneously stored into the JET archive together with all the samples of each pulse. The paper describes the architecture of the FPGA implementation and reports the analysis of data collected during the 2011–2012 JET campaigns. The comparison between the real-time and post-processed (off-line) neutron count rates shows an agreement within 5% for all 19 detectors. Moreover, it is shown that the maximum count rate sustainable by the acquisition system when storing raw data (∼900 kHz as evaluated in laboratory tests) can be extended up to 5 MHz when using the real-time implementation with no local data storage. Finally, a statistical analysis of the ratio between the line-integrated measurements from the neutron profile

  9. Reliability analysis of neutron flux monitoring system for PFBR

    International Nuclear Information System (INIS)

    Rajesh, M.G.; Bhatnagar, P.V.; Das, D.; Pithawa, C.K.; Vinod, Gopika; Rao, V.V.S.S.

    2010-01-01

    The Neutron Flux Monitoring System (NFMS) measures reactor power, rate of change of power and reactivity changes in the core in all states of operation and shutdown. The system consists of instrument channels that are designed and built to have high reliability. All channels are required to have a Mean Time Between Failures (MTBF) of 150000 hours minimum. Failure Mode and Effects Analysis (FMEA) and failure rate estimation of NFMS channels has been carried out. FMEA is carried out in compliance with MIL-STD-338B. Reliability estimation of the channels is done according to MIL-HDBK-217FN2. Paper discusses the methodology followed for FMEA and failure rate estimation of two safety channels and results. (author)

  10. Nuclear detectors for in-core power-reactors

    International Nuclear Information System (INIS)

    Duchene, Jean; Verdant, Robert.

    1979-12-01

    Nuclear reactor control is commonly obtained through neutronic measurements, ex-core and in-core. In large size reactors flux instabilities may take place. For a good monitoring of them, local in-core power measurements become particularly useful. This paper intends to review the questions about neutronic sensors with could be used in-core. A historical account about methods is given first, from early power reactors with brief description of each system. Sensors presently used (ionization fission chambers, self-powered detectors) are then considered and also those which could be developped such as gamma thermometers. Their physical basis, main characteristics and operation modes are detailed. Preliminary tests and works needed for an extension of their life-time are indicated. As an example present irradiation tests at the CEA are then proposed. Two tables will help comparing the characteristics of each type in terms of its precise purpose: fuel monitoring, safety or power control. Finally a table summarizes the kind of sensors mounted on working power reactors and another one is a review of characteristics for some detectors from obtainable commercial sheets [fr

  11. Development of CANDU core monitoring system

    International Nuclear Information System (INIS)

    Yoon, M. Y.; Yeam, C. S.; Kwon, O. H.; Kim, K. H.

    2003-01-01

    The research was performed to develop a CANDU Core Monitoring System(CCMS) that enables operators to have efficient core management by monitoring core power distribution, burnup distribution, and the other important core variables and managing the past core history for Wolsong Nuclear Power Plant(NPP) No. 1. CCMS uses RFSP(Reactor Fueling Simulation Program) for continuous core calculation by integrating the algorithm and assumptions validated and uses the information taken from DCC(Digital Control Computer) for the purpose of producing basic input data. CCMS could be largely divided into two modules; CCMS server program and CCMS client program. CCMS server program plays the role in automatic and continuous RFSP run and management of the past output data resulting from the run using Data Base Management System(DBMS). CCMS client program enables users to monitor current and past core status with GUI(Graphic-User Interface) environment predefined. The effectiveness of CCMS was verified by comparing the data resulted from field-test of the system for about 43 hours with the data used in the field of Wolsong NPP No. 1

  12. Development of CANDU core monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, M. Y.; Yeam, C. S.; Kwon, O. H.; Kim, K. H. [Institute for Advanced Engineering, Yongin (Korea, Republic of)

    2003-07-01

    The research was performed to develop a CANDU Core Monitoring System(CCMS) that enables operators to have efficient core management by monitoring core power distribution, burnup distribution, and the other important core variables and managing the past core history for Wolsong Nuclear Power Plant(NPP) No. 1. CCMS uses RFSP(Reactor Fueling Simulation Program) for continuous core calculation by integrating the algorithm and assumptions validated and uses the information taken from DCC(Digital Control Computer) for the purpose of producing basic input data. CCMS could be largely divided into two modules; CCMS server program and CCMS client program. CCMS server program plays the role in automatic and continuous RFSP run and management of the past output data resulting from the run using Data Base Management System(DBMS). CCMS client program enables users to monitor current and past core status with GUI(Graphic-User Interface) environment predefined. The effectiveness of CCMS was verified by comparing the data resulted from field-test of the system for about 43 hours with the data used in the field of Wolsong NPP No. 1.

  13. Design features of HANARO Neutron Flux Monitoring System and its operating experiences

    International Nuclear Information System (INIS)

    Kim, Young-Ki; Ahn, Guk-Hoon

    1999-01-01

    The Neutron Flux Monitoring System for HANARO provides reliable neutron flux measurement from reactor shutdown to reactor full power level ranging 10 decades from 10 0 nv to 10 10 nv. The neutron flux monitoring system consists of a guarded fission chamber, amplifier and signal processor. The neutron flux as the measure of reactor power is continuously monitored by six(6) fission chambers mounted on the courtside wall of the reflector tank in the pool. Three(3) of the fission chambers are used for reactor power control, while the other three(3) are used for tripping the reactor in case of power excursion. Only the wide range fission chamber-based neutron monitoring system is employed for neutron power measurement thereby source range and intermediate range detectors are not necessary and the number of neutron monitoring channels are minimized at HANARO. (author)

  14. On-line generation of three-dimensional core power distribution using incore detector signals to monitor safety limits

    International Nuclear Information System (INIS)

    Jang, Jin Wook; Lee, Ki Bog; Na, Man Gyun; Lee, Yoon Joon

    2004-01-01

    It is essential in commercial reactors that the safety limits imposed on the fuel pellets and fuel clad barriers, such as the Linear Power Density (LPD) and the Departure from Nucleate Boiling Ratio (DNBR), are not violated during reactor operations. In order to accurately monitor the safety limits of current reactor states, a detailed three-dimensional (3D) core power distribution should be estimated from the in-core detector signals. In this paper, we propose a calculation methodology for detailed 3D core power distribution, using in-core detector signals and core monitoring constants such as the 3D Coupling Coefficients (3DCC), node power fraction, and pin-to-node factors. Also, the calculation method for several core safety parameters is introduced. The core monitoring constants for the real core state are promptly provided by the core design code and on-line MASTER(Multi-purpose Analyzer for Static and Transient Effects of Reactors), coupled with the core monitoring program. Through the plant computer, core state variables, which include reactor thermal power, control rod bank position, boron concentration, inlet moderator temperature, and flow rate, are supplied as input data for MASTER. MASTER performs the core calculation based on the neutron balance equation and generates several core monitoring constants corresponding to the real core state in addition to the expected core power distribution. The accuracy of the developed method is verified through a comparison with the current CECOR method. Because in all the verification calculation cases the proposed method shows a more conservative value than the best estimated value and a less conservative one than the current CECOR and COLSS methods, it is also confirmed that this method secures a greater operating margin through the simulation of the YGN-3 cycle-1 core from the viewpoint of the power peaking factor for the LPD and the pseudo hot pin axial power distribution for the DNBR calculation

  15. Calculation of the neutron noise induced by periodic deformations of a large sodium-cooled fast reactor core

    International Nuclear Information System (INIS)

    Zylbersztejn, F.; Tran, H.N.; Pazsit, I.; Filliatre, P.; Jammes, C.

    2014-01-01

    The subject of this paper is the calculation of the neutron noise induced by small-amplitude stationary radial variations of the core size (core expansion/compaction, also called core flowering) of a large sodium-cooled fast reactor. The calculations were performed on a realistic model of the European Sodium Fast Reactor (ESFR) core with a thermal output of 3600 MW(thermal), using a multigroup neutron noise simulator. The multigroup cross sections and their fluctuations that represent the core geometry changes for the neutron noise calculations were generated by the code ERANOS. The space and energy dependences of the noise source represented by the core expansion/compaction and the induced neutron noise are calculated and discussed. (authors)

  16. Evaluation of the current fast neutron flux monitoring instrumentation applied to LFR demonstrator ALFRED. Capabilities and limitations

    International Nuclear Information System (INIS)

    Lepore, Luigi; Remetti, Romolo; Cappelli, Mauro

    2015-01-01

    Among Gen IV projects for future nuclear power plants, Lead Fast Reactors (LFR) seem to be a very interesting solution due to their benefits in terms of fuel cycle, coolant-safety and waste management. The novelty of the matter causes some open issues about coolant chemical aspect, structural aspects, monitoring instrumentation, etc. Particularly hard neutron flux spectra would make traditional neutron instrumentation unfit to all reactor conditions, i.e. source, intermediate, and power range. Identification of new models of nuclear instrumentation specialized for LFR neutron flux monitoring asks for an accurate evaluation of the environment the sensor will work in. In this study, thermal-hydraulics and chemical conditions for LFR core environment will be assumed, as the neutron flux will be studied extensively by means of the Monte Carlo transport code MCNPX. The core coolant’s high temperature drastically reduces the candidate instrumentation, because only some kind of fission chambers and Self Powered Neutron Detectors can be operated in such an environment. This work aims to evaluate the capabilities of the available instrumentation (usually designed for Sodium Fast Reactors, SFRs) when exposed to the neutron spectrum derived from ALFRED, a pool-type small-power LFR project to demonstrate the feasibility of this technology into the European framework. This paper shows that such instruments do follow the power evolution, but they are not completely suitable to detect the whole range of reactor power. Some improvements are then possible in order to increase the signal-to-noise ratio, by optimizing each instrument in the range of reactor power, such to get the best solution. Some new detector designs are here proposed, and the possibilities for prototyping and testing by means of a fast reactor investigated. (author)

  17. Energy response of neutron area monitor with silicon semiconductor detector

    International Nuclear Information System (INIS)

    Kitaguchi, Hiroshi; Izumi, Sigeru; Kobayashi, Kaoru; Kaihara, Akihisa; Nakamura, Takashi.

    1993-01-01

    A prototype neutron area monitor with a silicon semiconductor detector has been developed which has the energy response of 1 cm dose equivalent recommended by the ICRP-26. Boron and proton radiators are coated on the surface of the silicon semiconductor detector. The detector is set at the center of a cylindrical polyethylene moderator. This moderator is covered by a porous cadmium board which serves as the thermal neutron absorber. Neutrons are detected as α-particles generated by the nuclear reaction 10 B(n,α) 7 Li and as recoil protons generated by the interaction of fast neutrons with hydrogen. The neutron energy response of the monitor was measured using thermal neutrons and monoenergetic fast neutrons generated by an accelerator. The response was consistent with the 1 cm dose equivalent response required for the monitor within ±34% in the range of 0.025 - 15 Mev. (author)

  18. Preliminary characterization of the passive neutron dose equivalent monitor with TLDs

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimura, Norio; Kanai, Katsuta; Momose, Takumaro; Hayashi, Naomi [Japan Nuclear Cycle Development Inst., Tokai Works, Tokai, Ibaraki (Japan); Chen Erhu [Beijing Institute of Nuclear Engineering, Beijing (China)

    2001-02-01

    The passive neutron dose equivalent monitor with TLDs is composed of a cubic polyethylene moderator and TLDs at the center of moderator. This monitor was originally designed for measurements of neutron doses over long-term period of time around the nuclear facilities. In this study, the energy response of this monitor was calculated by Monte Carlo methods and experimentally obtained under {sup 241}Am-Be, {sup 252}Cf and moderated {sup 252}Cf neutron irradiation. Additionally, the responses of two types of conventional neutron dose equivalent meters (rem counters) were also investigated as comparison. The authors concluded that this passive neutron monitor with TLDs had a good energy response similar to conventional rem counters and could evaluate neutron doses within 10% of accuracy to the moderated fission spectra. (author)

  19. Sensitive and transportable gadolinium-core plastic scintillator sphere for neutron detection and counting

    Energy Technology Data Exchange (ETDEWEB)

    Dumazert, Jonathan; Coulon, Romain; Carrel, Frédérick; Corre, Gwenolé; Normand, Stéphane [CEA, LIST, Laboratoire Capteurs Architectures Electroniques, 91191 Gif-sur-Yvette (France); Méchin, Laurence [CNRS, UCBN, Groupe de Recherche en Informatique, Image, Automatique et Instrumentation de Caen, 14050 Caen (France); Hamel, Matthieu [CEA, LIST, Laboratoire Capteurs Architectures Electroniques, 91191 Gif-sur-Yvette (France)

    2016-08-21

    Neutron detection forms a critical branch of nuclear-related issues, currently driven by the search for competitive alternative technologies to neutron counters based on the helium-3 isotope. The deployment of plastic scintillators shows a high potential for efficient detectors, safer and more reliable than liquids, more easily scalable and cost-effective than inorganic. In the meantime, natural gadolinium, through its 155 and mostly 157 isotopes, presents an exceptionally high interaction probability with thermal neutrons. This paper introduces a dual system including a metal gadolinium core inserted at the center of a high-scale plastic scintillator sphere. Incident fast neutrons are thermalized by the scintillator shell and then may be captured with a significant probability by gadolinium 155 and 157 nuclei in the core. The deposition of a sufficient fraction of the capture high-energy prompt gamma signature inside the scintillator shell will then allow discrimination from background radiations by energy threshold, and therefore neutron detection. The scaling of the system with the Monte Carlo MCNPX2.7 code was carried out according to a tradeoff between the moderation of incident fast neutrons and the probability of slow neutron capture by a moderate-cost metal gadolinium core. Based on the parameters extracted from simulation, a first laboratory prototype for the assessment of the detection method principle has been synthetized. The robustness and sensitivity of the neutron detection principle are then assessed by counting measurement experiments. Experimental results confirm the potential for a stable, highly sensitive, transportable and cost-efficient neutron detector and orientate future investigation toward promising axes.

  20. Sensitive and transportable gadolinium-core plastic scintillator sphere for neutron detection and counting

    International Nuclear Information System (INIS)

    Dumazert, Jonathan; Coulon, Romain; Carrel, Frédérick; Corre, Gwenolé; Normand, Stéphane; Méchin, Laurence; Hamel, Matthieu

    2016-01-01

    Neutron detection forms a critical branch of nuclear-related issues, currently driven by the search for competitive alternative technologies to neutron counters based on the helium-3 isotope. The deployment of plastic scintillators shows a high potential for efficient detectors, safer and more reliable than liquids, more easily scalable and cost-effective than inorganic. In the meantime, natural gadolinium, through its 155 and mostly 157 isotopes, presents an exceptionally high interaction probability with thermal neutrons. This paper introduces a dual system including a metal gadolinium core inserted at the center of a high-scale plastic scintillator sphere. Incident fast neutrons are thermalized by the scintillator shell and then may be captured with a significant probability by gadolinium 155 and 157 nuclei in the core. The deposition of a sufficient fraction of the capture high-energy prompt gamma signature inside the scintillator shell will then allow discrimination from background radiations by energy threshold, and therefore neutron detection. The scaling of the system with the Monte Carlo MCNPX2.7 code was carried out according to a tradeoff between the moderation of incident fast neutrons and the probability of slow neutron capture by a moderate-cost metal gadolinium core. Based on the parameters extracted from simulation, a first laboratory prototype for the assessment of the detection method principle has been synthetized. The robustness and sensitivity of the neutron detection principle are then assessed by counting measurement experiments. Experimental results confirm the potential for a stable, highly sensitive, transportable and cost-efficient neutron detector and orientate future investigation toward promising axes.

  1. DANDE: a linked code system for core neutronics/depletion analysis

    International Nuclear Information System (INIS)

    LaBauve, R.J.; England, T.R.; George, D.C.; MacFarlane, R.E.; Wilson, W.B.

    1985-06-01

    This report describes DANDE - a modular neutronics, depletion code system for reactor analysis. It consists of nuclear data processing, core physics, and fuel depletion modules, and allows one to use diffusion and transport methods interchangeably in core neutronics calculations. This latter capability is especially important in the design of small modular cores. Additional unique features include the capability of updating the nuclear data file during a calculation; a detailed treatment of depletion, burnable poisons as well as fuel; and the ability to make geometric changes such as control rod repositioning and fuel relocation in the course of a calculation. The detailed treatment of reactor fuel burnup, fission-product creation and decay, as well as inventories of higher-order actinides is a necessity when predicting the behavior of reactor fuel under increased burn conditions. The operation of the code system is made clear in this report by following a sample problem

  2. DANDE: a linked code system for core neutronics/depletion analysis

    International Nuclear Information System (INIS)

    LaBauve, R.J.; England, T.R.; George, D.C.; MacFarlane, R.E.; Wilson, W.B.

    1986-01-01

    This report describes DANDE - a modular neutronics, depletion code system for reactor analysis. It consists of nuclear data processing, core physics, and fuel depletion modules, and allows one to use diffusion and transport methods interchangeably in core neutronics calculations. This latter capability is especially important in the design of small modular cores. Additional unique features include the capability of updating the nuclear data file during a calculation; a detailed treatment of depletion, burnable poisons as well as fuel; and the ability to make geometric changes such as control rod repositioning and fuel relocation in the cource of a calculation. The detailed treatment of reactor fuel burnup, fission-product creation and decay, as well as inventories of higher-order actinides is a necessity when predicting the behavior of reactor fuel under increased burn conditions. The operation of the code system is illustrated in this report by two sample problems. 25 refs

  3. DANDE-a linked code system for core neutronics/depletion analysis

    International Nuclear Information System (INIS)

    LaBauve, R.J.; England, T.R.; George, D.C.; MacFarlane, R.E.; Wilson, W.B.

    1986-01-01

    This report describes DANDE-a modular neutronics, depletion code system for reactor analysis. It consists of nuclear data processing, core physics, and fuel depletion modules, and allows one to use diffusion and transport methods interchangeably in core neutronics calculations. This latter capability is especially important in the design of small modular cores. Additional unique features include the capability of updating the nuclear data file during a calculation; a detailed treatment of depletion, burnable poisons as well as fuel; and the ability to make geometric changes such as control rod repositioning and fuel relocation in the course of a calculation. The detailed treatment of reactor fuel burnup, fission-product creation and decay, as well as inventories of higher-order actinides is a necessity when predicting the behavior of the reactor fuel under increased burn conditions. The operation of the code system is illustrated in this report by two actual problems

  4. Cylindrization of a PWR core for neutronic calculations

    International Nuclear Information System (INIS)

    Santos, Rubens Souza dos

    2005-01-01

    In this work we propose a core cylindrization, starting from a PWR core configuration, through the use of an algorithm that becomes the process automated in the program, independent of the discretization. This approach overcomes the problem stemmed from the use of the neutron transport theory on the core boundary, in addition with the singularities associated with the presence of corners on the outer fuel element core of, existents in the light water reactors (LWR). The algorithm was implemented in a computational program used to identification of the control rod drop accident in a typical PWR core. The results showed that the algorithm presented consistent results comparing with an production code, for a problem with uniform properties. In our conclusions, we suggest, for future works, for analyzing the effect on mesh sizes for the Cylindrical geometry, and to compare the transport theory calculations versus diffusion theory, for the boundary conditions with corners, for typical PWR cores. (author)

  5. An automated neutron monitor maintenance system

    International Nuclear Information System (INIS)

    Moore, F.S.; Griffin, J.C.; Odell, D.M.C.

    1996-01-01

    Neutron detectors are commonly used by the nuclear materials processing industry to monitor fissile materials in process vessels and tanks. The proper functioning of these neutron monitors must be periodically evaluated. We have developed and placed in routine use a PC-based multichannel analyzer (MCA) system for on-line BF3 and He-3 gas-filled detector function testing. The automated system: 1) acquires spectral data from the monitor system, 2) analyzes the spectrum to determine the detector's functionality, 3) makes suggestions for maintenance or repair, as required, and 4) saves the spectrum and results to disk for review. The operator interface has been designed to be user-friendly and to minimize the training requirements of the user. The system may also be easily customized for various applications

  6. Brazilian two-component TLD albedo neutron individual monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Martins, M.M., E-mail: marcelo@ird.gov.b [Instituto de Radioprotecao e Dosimetria (IRD), Av. Salvador Allende, s/n, CEP: 22780-160, Rio de Janeiro, RJ (Brazil); Mauricio, C.L.P., E-mail: claudia@ird.gov.b [Instituto de Radioprotecao e Dosimetria (IRD), Av. Salvador Allende, s/n, CEP: 22780-160, Rio de Janeiro, RJ (Brazil); Fonseca, E.S. da, E-mail: evaldo@ird.gov.b [Instituto de Radioprotecao e Dosimetria (IRD), Av. Salvador Allende, s/n, CEP: 22780-160, Rio de Janeiro, RJ (Brazil); Silva, A.X. da, E-mail: ademir@con.ufrj.b [Coordenacao dos Programas de Pos-Graduacao em Engenharia, COPPE/PEN Caixa Postal 68509, CEP: 21941-972, Rio de Janeiro, RJ (Brazil)

    2010-12-15

    Since 1983, Instituto de Radioprotecao e Dosimetria, Brazil, uses a TLD one-component albedo neutron monitor, which has a single different calibration factor specifically for each installation type. In order to improve its energy response, a two-component albedo monitor was developed, which measure the thermal neutron component besides the albedo one. The two-component monitor has been calibrated in reference neutron fields: thermal, five accelerator-produced monoenergetic beams (70, 144, 565, 1200 and 5000 keV) and five radionuclide sources ({sup 252}Cf, {sup 252}Cf(D{sub 2}O), {sup 241}Am-Be, {sup 241}Am-B and {sup 238}Pu-Be) at several distances. Since January 2008, mainly Brazilian workers who handle neutron sources at different distances and moderation, such as in well logging and calibration facilities are using it routinely.

  7. A neutron portal monitor for vehicles

    International Nuclear Information System (INIS)

    Coop, K.L.; Fehlau, P.E.; Atwater, H.F.

    1987-01-01

    We have designed and built a portal vehicle monitoring systems for detecting neutron-emitting special nuclear material (SNM) such as plutonium. Monte Carlo calculations were used to optimize the design of the 15-cm-deep x 122-cm-high x 244-cm-long detector chambers, which utilize 3 He proportional counters inside a hollow polyethylene box. Results for a variety of parametric studies, including polyethylene thickness and detector number, are described. Our experimental measurements are in good agreement with the computer calculations. The monitor's decision logic uses the Sequential Probability Ratio Test (SPRT) on Poisson distributed counting data, which is superior to other statistical tests in many applications. We performed computer simulations of the SPRT logic to determine expected false-positive decision rates. A controller unit of our design that uses this SPRT was built commercially. The cost of the complete monitoring system is similar to that of vehicle portal monitors that detect gamma rays. This new neutron monitor can serve as an addition to standard gamma-ray vehicle portals or as a stand-alone portal monitor in particular safeguards monitoring situations. The monitor is being tested at Los Alamos and is scheduled for in-plant evaluation of another DOE facility in 1987. 7 refs

  8. Criteria design of the CAREM 25 reactor's core: neutronic aspects

    International Nuclear Information System (INIS)

    Lecot, C.A.

    1990-01-01

    The criteria that guided the design, from the neutronic point of view, of the CAREM reactor's core were presented. The minimum set of objectives and general criteria which permitted the design of the particular systems constituting the CAREM 25 reactor's core is detailed and stated. (Author) [es

  9. Neutron dosimetry. Environmental monitoring in a BWR type reactor

    International Nuclear Information System (INIS)

    Tavera D, L.; Camacho L, M.E.

    1991-01-01

    The measurements carried out on reactor dosimetry are applied mainly to the study on the effects of the radiation in 108 materials of the reactor; little is on the environmental dosimetry outside of the primary container of BWR reactors. In this work the application of a neutron spectrometer formed by plastic detectors of nuclear traces manufactured in the ININ, for the environmental monitoring in penetrations around the primary container of the unit I of the Laguna Verde central is presented. The neutron monitoring carries out with purposes of radiological protection, during the operational tests of the reactor. (Author)

  10. Self-powered in-core neutron detector assembly with uniform perturbation characteristics

    International Nuclear Information System (INIS)

    1981-01-01

    An in-core neutron detector assembly consisting of a number of longitudinally extending self-powered detectors is described. The uniform mechanical structures and materials are placed symmetrically at each active detector portion thus ensuring that local perturbation factors are uniform. (U.K.)

  11. Neutron flux and power in RTP core-15

    Energy Technology Data Exchange (ETDEWEB)

    Rabir, Mohamad Hairie, E-mail: m-hairie@nuclearmalaysia.gov.my; Zin, Muhammad Rawi Md; Usang, Mark Dennis; Bayar, Abi Muttaqin Jalal; Hamzah, Na’im Syauqi Bin [Nuclear and reactor Physics Section, Nuclear Technology Center, Technical Support Division, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia)

    2016-01-22

    PUSPATI TRIGA Reactor achieved initial criticality on June 28, 1982. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes. This paper describes the reactor parameters calculation for the PUSPATI TRIGA REACTOR (RTP); focusing on the application of the developed reactor 3D model for criticality calculation, analysis of power and neutron flux distribution of TRIGA core. The 3D continuous energy Monte Carlo code MCNP was used to develop a versatile and accurate full model of the TRIGA reactor. The model represents in detailed all important components of the core with literally no physical approximation. The consistency and accuracy of the developed RTP MCNP model was established by comparing calculations to the available experimental results and TRIGLAV code calculation.

  12. Increasing the neutron flux study for the TRR-II core design

    International Nuclear Information System (INIS)

    Chen, C.-H.; Yang, J.-T.; Chou, Y.-C.

    1999-01-01

    The maximum unperturbed thermal flux of the originally proposed core design, which is a 6x6 square arrangement with power level of 20 MW and has been presented at the 6th Meeting of IGORR, for the TRR-II reactor is about 2.0x10 14 n/cm 2 -sec. However, it is no longer satisfied the user's requirement, that is, it must reach at least 2.5x10 14 n/cm 2 -sec. In order to enhance the thermal neutron flux, one of the most effective ways is to increase the average power density. Therefore, two new designs with more compact cores are then proposed and studied. One is 5x6 rectangular arrangement with power of 20 MW; the other one is 5x5 square arrangement with power of 16 MW. It is for sure that both core designs can satisfy thermal hydraulic safety limits. The designed parameters related to neutronics are listed and compared fundamentally. According to our calculation, although both cores have similar average power density, the results show that the 5x6/20 MW design has the maximum unperturbed thermal flux in the D 2 O region about 2.7x10 14 n/cm 2 -sec, and the 5x5/16 MW design has 2.5x10 14 n/cm 2 -sec. The maximum thermal flux in the neighborhood of the longer side of the 5x6 core is about 7% higher than the one in the neighborhood of any side of the 5x5 core. This 'long-side effect' gives the 5x6/20 MW core design an advantage of the utilization of the thermal neutron flux in the D 2 O region. In addition, the 5x5 core is also more sensitive to the reactivity change on account of in-core irradiation test facilities. Therefore, under overall considerations the 5x6/20 MW core design is chosen for further detailed design. (author)

  13. Monitoring of core barrel vibrations in WWER type reactor using out-of-reactor ionization chambers

    International Nuclear Information System (INIS)

    Dach, K.

    1982-01-01

    Vibration of the core barrel is least desirable for safe operation of the PWR reactor. These mechanical vibrations are in correlation with the fluctuations of neutron flux density whose time and frequency analysis serves failure diagnosis. The mathematical model is described of the transfer of mechanical vibrations of the core barrel to neutron noise. Other steps are indicated indispensable for the application of the method of neutron noise analysis for in-service diagnostics of nuclear power plants. (Z.M.)

  14. Integrated neutron/gamma-ray portal monitors for nuclear safeguards

    International Nuclear Information System (INIS)

    Fehlau, P.E.

    1994-01-01

    Radiation monitoring is one nuclear-safeguards measure used to protect against the theft of special nuclear materials (SNM) by pedestrians departing from SNM access areas. The integrated neutron/gamma-ray portal monitor is an ideal radiation monitor for the task when the SNM is plutonium. It achieves high sensitivity for detecting both bare and shielded plutonium by combining two types of radiation detector. One type is a neutron-chamber detector, comprising a large, hollow, neutron moderator that contains a single thermal-neutron proportional counter. The entrance wall of each chamber is thin to admit slow neutrons from plutonium contained in a moderating shield, while the other walls are thick to moderate fast neutrons from bare or lead-shielded plutonium so that they can be detected. The other type of detector is a plastic scintillator that is primarily for detecting gamma rays from small amounts of unshielded plutonium. The two types of detector are easily integrated by making scintillators part of the thick back wall of each neutron chamber or by inserting them into each chamber void. The authors compared the influence of the two methods of integration on detecting neutrons and gamma rays, and they examined the effectiveness of other design factors and the methods for signal detection as well

  15. Rhodium self-powered detector for monitoring neutron fluence, energy production, and isotopic composition of fuel

    International Nuclear Information System (INIS)

    Sokolov, A.P.; Pochivalin, G.P.; Shipovskikh, Yu.M.; Garusov, Yu.V.; Chernikov, O.G.; Shevchenko, V.G.

    1993-01-01

    The use of self-powered detectors (SPDs) with a rhodium emitter customarily involves monitoring of neutron fields in the core of a nuclear reactor. Since current in an SPD is generated primarily because of the neutron flux, which is responsible for the dynamics of particular nuclear transformations, including fission reactions of heavy isotopes, the detector signal can be attributed unambiguously to energy release at the location of the detector. Computation modeling performed with the KOMDPS package of programs of the current formation in a rhodium SPD along with the neutron-physical processes that occur in the reactor core makes it possible to take account of the effect of the principal factors characterizing the operating conditions and the design features of the fuel channel and the detector, reveal quantitative relations between the generated signal and individual physical parameters, and determine the metrological parameters of the detector. The formation and transport of changed particles in the sensitive part of the SPC is calculated by the Monte Carlo method. The emitter activation, neutron transport, and dynamics of the isotopic composition in the fuel channel containing the SPD are determined by solving the kinetic equation in the multigroup representation of the neutron spectrum, using the discrete ordinate method. In this work the authors consider the operation of a rhodium SPD in a bundle of 49 fuel channels of the RBMK-1000 reactor with a fuel enrichment of 2.4% from the time it is inserted into a fresh channel

  16. MCNPX simulations of fast neutron diagnostics for accelerator-driven systems

    Energy Technology Data Exchange (ETDEWEB)

    Habob, Moinul

    2005-12-15

    In accelerator-driven systems, the neutron spectrum will extend all the way up to the incident beam energy, i.e., several hundred MeV or even up to GeV energies. The high neutron energy allows novel diagnostics with a set of measurement techniques that can be used in a sub-critical reactor environment. Such measurements are primarily connected to system safety and validation. This report shows that in-core fast-neutron diagnostics can be employed to monitor changes in the position of incidence of the primary proton beam onto the neutron production target. It has also been shown that fast neutrons can be used to detect temperature-dependent density changes in a liquid lead-bismuth target. Fast neutrons can escape the system via the beam pipe for the incident proton beam. Out-of-core monitoring of these so called back-streaming neutrons could potentially be used to monitor beam changes if the target has a suitable shape. Moreover, diagnostics of back-streaming neutrons might be used for validation of the system design.

  17. MCNPX simulations of fast neutron diagnostics for accelerator-driven systems

    International Nuclear Information System (INIS)

    Habib, Moinul

    2005-12-01

    In accelerator-driven systems, the neutron spectrum will extend all the way up to the incident beam energy, i.e., several hundred MeV or even up to GeV energies. The high neutron energy allows novel diagnostics with a set of measurement techniques that can be used in a sub-critical reactor environment. Such measurements are primarily connected to system safety and validation. This report shows that in-core fast-neutron diagnostics can be employed to monitor changes in the position of incidence of the primary proton beam onto the neutron production target. It has also been shown that fast neutrons can be used to detect temperature-dependent density changes in a liquid lead-bismuth target. Fast neutrons can escape the system via the beam pipe for the incident proton beam. Out-of-core monitoring of these so called back-streaming neutrons could potentially be used to monitor beam changes if the target has a suitable shape. Moreover, diagnostics of back-streaming neutrons might be used for validation of the system design

  18. Subcriticality monitoring method for reactor

    International Nuclear Information System (INIS)

    Ueda, Makoto.

    1991-01-01

    The present invention accurately monitors the reactor subcriticality and ensures the critical safety, irrespective of the presence or absence of artificial neutron sources. That is, when the subcriticality is monitored upon reactivity changing operation which causes reactivity change to the reactor during shutdown, neutron monitors are disposed at a plurality of monitoring positions. Then, neutron counting ratio before and after conducting the reactivity changing operation is determined. The subcriticality of the reactor is monitored by the ratio and the state of scattering of the ratio of neutron counting rate between each of the neutron monitors. With such procedures, signals of the neutron monitors are used, the characteristic that the change of the signals depend on the change of the neutron multiplication of the reactor core can be utilized whether artificial neutron sources (external neutron sources) are disposed or not. Accordingly, the subcriticality can be monitored more reliably. (I.S.)

  19. Feasibility Study of Silver as Emitter of In-core Neutron Detector

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Chi Dong; Lee, Hyun Suk [UNIST, Ulsan (Korea, Republic of); Shin, Ho Cheol; Cha, Kyoon Ho [Korea Hydro and Nuclear Power Corporation, Daejeon (Korea, Republic of); Lee, Deok Jung [UNIST, Ulsan (Korea, Republic of)

    2016-05-15

    The rhodium SPND(rhodium self-powered neutron detectors) provides strong detector signals so that they can be easily detected, but there is an issue the rhodium emitter needs to be replaced frequently because of its fast depletion. As an alternative, the vanadium SPND was designed and evaluated by Lee et al., but it also has an issue the detector signal level is too low. In this work, another material, silver, was introduced as emitter material of in-core detectors because its neutron absorption cross section is bigger than that of vanadium and smaller than rhodium. The feasibility of silver was investigated in comparison with the rhodium and vanadium detectors. The SPND model was designed using a Monte Carlo code MCNP6 and ORIGEN-S in SCALE code package. A silver self-powered neutron detector (SPND) was introduced in this paper, and the feasibility of silver as an emitter material of in-core detectors was investigated. The comparisons with rhodium and vanadium emitters demonstrate that silver has 0.78 years longer lifetime than rhodium and 10 times stronger signal than vanadium. Since a cycle length is generally 1.5 years, silver can be used for three cycles whereas rhodium should be replaced after two cycles.

  20. Modeling delayed neutron monitoring systems for fast breeder reactors

    International Nuclear Information System (INIS)

    Bunch, W.L.; Tang, E.L.

    1983-10-01

    The purpose of the present work was to develop a general expression relating the count rate of a delayed neutron monitoring system to the introduction rate of fission fragments into the sodium coolant of a fast breeder reactor. Most fast breeder reactors include a system for detecting the presence of breached fuel that permits contact between the sodium coolant and the mixed oxide fuel. These systems monitor for the presence of fission fragments in the sodium that emit delayed neutrons. For operational reasons, the goal is to relate the count rate of the delayed neutron monitor to the condition of the breach in order that appropriate action might be taken

  1. Thermal neutron flux measurement using self-powered neutron detector (SPND) at out-core locations of TRIGA PUSPATI Reactor (RTP)

    Science.gov (United States)

    Ali, Nur Syazwani Mohd; Hamzah, Khaidzir; Mohamad Idris, Faridah; Hairie Rabir, Mohamad

    2018-01-01

    The thermal neutron flux measurement has been conducted at the out-core location using self-powered neutron detectors (SPNDs). This work represents the first attempt to study SPNDs as neutron flux sensor for developing the fault detection system (FDS) focusing on neutron flux parameters. The study was conducted to test the reliability of the SPND’s signal by measuring the neutron flux through the interaction between neutrons and emitter materials of the SPNDs. Three SPNDs were used to measure the flux at four different radial locations which located at the fission chamber cylinder, 10cm above graphite reflector, between graphite reflector and tank liner and fuel rack. The measurements were conducted at 750 kW reactor power. The outputs from SPNDs were collected through data acquisition system and were corrected to obtain the actual neutron flux due to delayed responses from SPNDs. The measurements showed that thermal neutron flux between fission chamber location near to the tank liner and fuel rack were between 5.18 × 1011 nv to 8.45 × 109 nv. The average thermal neutron flux showed a good agreement with those from previous studies that has been made using simulation at the same core configuration at the nearest irradiation facilities with detector locations.

  2. Neutronics analysis of the TRIGA Mark II reactor core and its experimental facilities

    International Nuclear Information System (INIS)

    Khan, R.

    2010-01-01

    core into a complete mixed core. To analyze the current core, a good knowledge of burned fuel material composition is essential. Because of the complications of experimental methods for measuring each FE, the ORIGEN2 computer code is selected for burn up and relevant material composition calculation. These calculations are verified by measuring the Cesium isotope (Cs-137) for six spent FE(s). Modifying the confirmed ORIGEN2 model for 104 and 110 (FLIP) FE(s), the burn up calculations of all 83 FE(s) of the current core are completed and applied to the already developed MCNP model. The detailed MCNP model of the burned core is verified by three local consistent experiments performed in June 2009. The criticality experiment confirms the model that the current core achieves its criticality on addition of 78th FE. The five FE(s) from different ring positions are measured to confirm the theoretical results. The percent deviation between MCNP predictions and experimental observations ranges from 3 to 19 %. The radial and axial neutron flux density distribution experiment verifies the MCNP theoretical results in the core. The theoretical and experimental perturbation study in the Central Irradiation Channel (CIR) of the core is performed. The reactivity effect of three small cylindrical samples (void, Cadmium and heavy water) are measured and compared with the MCNP predictions for verification. Applying the current core MCNP model, the void coefficient of reactivity is calculated as 11 cents per %-void. To perform the calculation in the experimental facilities outside the reactor core, the MCNP model is extended to the thermal column, radiographic collimator, four beam tubes and biological shielding. The MCNP results are verified in the thermal column and the beam tube A region. The percent difference between the simulated and experimental neutron diffusion length is 13 %. (author) [de

  3. Fast neutron reactor core research at the C.E.A

    International Nuclear Information System (INIS)

    Chaudat, J.-P.

    1978-05-01

    This report covers all physical studies of fast neutron reactors carried out by the C.E.A., to povide basic data (multi-group cross sections) and computer methods which may be used to calculate nuclear power plant neutron properties with the precision required by the project. The approach adopted to establish the basic data used in all core calculations is described in greated detail: choice of a reference procedure for basic mode calculations (CARNAVAL set), choice of particular experimental programs to reduce uncertainties in connection with the formula set, adjustement of cross sections on integral parameters measured on critical experiments. The development of the formula set is closely connected with the project requirements; hence the set is modified with respect to the core characteristics of the power plant studied. Following an explanation of how the CARNAVAL III and IV formula sets -used for PHENIX and SUPER-PHENIX respectively- were derived, current studies for heterogeneous cores are described [fr

  4. Determination of the neutron fluence in the welding of the 'Core shroud' of the BWR reactor core

    International Nuclear Information System (INIS)

    Lucatero, M.A.; Xolocostli M, J.V.; Gomez T, A.M.; Palacios H, J.C.

    2006-01-01

    With the purpose of defining the inspection frequency, in function of the embrittlement of the materials that compose the welding of the 'Core Shroud' or encircling of the core of a BWR type reactor, is necessary to know the neutron fluence received for this welding. In the work the calculated values of neutron fluence accumulated maxim (E > 1 MeV) during the first 8 operation cycles of the reactor are presented. The calculations were carried out according to the NRC Regulatory Guide 1.190, making use of the DORT code, which solves the transport equation in discreet ordinate in two dimensions (xy, rΘ, and rz). The results in 3D were obtained applying the Synthesis method according to the guide before mentioned. Results are presented for the horizontal welding H3, H4, and H5, showing the corresponding curves to the fluence accumulated to the cycle 8 and a projection for the cycle 14 is presented. (Author)

  5. The design and installation of a core discharge monitor for CANDU-type reactors

    International Nuclear Information System (INIS)

    Halbig, J.K.; Monticone, A.C.; Ksiezak, L.; Smiltnieks, V.

    1990-01-01

    A new type of surveillance systems that monitors neutron and gamma radiation in a reactor containment is being installed at the Ontario Hydro Darlington Nuclear Generating Station A, Unit 2. Unlike video or film surveillance that monitors mechanical motion, this system measures fuel-specific radiation emanating from irradiated fuel as it is pushed from the core of CANDU-type reactors. Proof-of-principle measurements have been carried out at Bruce Nuclear Generating Station A, Unit 3. The system uses (γ,n) threshold detectors and ionization detectors. A microprocessor-based electronics package, GRAND-II (Gamma Ray and Neutron Detector electronics package), provides detector bias, preamplifier power, and signal processing. Firmware in the GRAND-2 controls the surveillance activities, including data acquisition and a level of detector authentication, and it handles authenticated communication with a central data logging computer. Data from the GRAND-II are transferred to an MS-DOS-compatible computer and stored. These data are collected and reviewed for fuel-specific radiation signatures from the primary detector and proper ratios of signals from secondary detectors. 5 figs

  6. Method and apparatus for neutron radiation monitoring

    International Nuclear Information System (INIS)

    Schwarzmann, A.

    1985-01-01

    A self-calibrated neutron radiation monitor includes a flux responsive element comprised of intrinsic silicon neutron detectors and self-calibration resistors in a single structure. As the resistance of the flux responsive element increases to the value of successive calibration resistors, known increments of flux have been encountered

  7. Measurements of neutron fluxes and cadmium ratio at equilibrium core in JRR-3M

    International Nuclear Information System (INIS)

    Ohtomo, Akitoshi; Sasajima, Fumio; Ishida, Takuya; Shigemoto, Masamitsu; Takahashi, Hidetake; Maejima, Takeshi; Sekine, Katsunori.

    1993-08-01

    Construction and characteristics tests of JRR-3M (Modified JRR-3) had been completed on October 1990, and the reactor reached to equilibrium core in July 1991. Measurements of neutron flux and cadmium ratio in Hydraulic irradiation facility (HR) and Pneumatic irradiation facility (PN) at 20 MW reactor power were carried out for the equilibrium core from May to August 1991 and for the latest core in April 1993. The results at the equilibrium core and the latest core are described in this paper. (author)

  8. The Westinghouse BEACON on-line core monitoring system

    International Nuclear Information System (INIS)

    Buechel, Robert J.; Boyd, William A.; Casadei, Alberto L.

    1995-01-01

    BEACON (Best Estimate Analysis of Core Operations - Nuclear), a core monitoring and operational support package developed by Westinghouse, has been installed at many operating PWRs worldwide. The BEACON system is a real-time monitoring system which can be used in plants with both fixed and movable incore detector systems and utilizes an on-line nodal model combined with core instrumentation data to provide continuous core power distribution monitoring. In addition, accurate core-predictive capabilities utilizing a full core nodal model updated according to plant operating history can be made to provide operational support. Core history information is kept and displayed to help operators anticipate core behavior and take pro-active control actions. The BEACON system has been licensed by the U.S. Nuclear Regulatory Commission for direct, continuous monitoring of DNBR and peak linear heat rate. This allows BEACON to be integrated into the plant technical specifications to permit significant relaxation of operating limitations defined by conventional technical specifications. (author). 4 refs, 2 figs, 1 tab

  9. Uncertainty evaluatins of CASMO-3/MASTER system for PWR core neutronics calculations

    International Nuclear Information System (INIS)

    Song, Jae Seung; Kim, Kang Seog; Lee, Kibog; Park, Jin Ha; Zee, Sung Quun

    1996-01-01

    Uncertainties in core neutronic calculations of CASMO-3/MASTER, which is a KAERI developed core nuclear design code system, were evaluated via comparisons with measured data. Comparisons were performed with plant measurement data from one Westinghouse type and one ABB-CE type plant and two Korean standard type plants. The CASMO-3/MASTER capability and levels of accuracy are concluded to be sufficient for the neutronics design including safety related parameters related with reactivity, power distributions, temperature and power coefficients, inverse boron worth and control bank worth

  10. Instability of quark matter core in a compact newborn neutron star ...

    Indian Academy of Sciences (India)

    with moderately strong magnetic field strength, which populates only the electron's Landau levels, then in the β-equilibrium condition, the quark core is energetically much more unstable than the neutron matter of identical physical condition. Keywords. Landau diamagnetism; quark matter; quark star. PACS Nos 26.60.

  11. A benchmark for coupled thermohydraulics system/three-dimensional neutron kinetics core models

    International Nuclear Information System (INIS)

    Kliem, S.

    1999-01-01

    During the last years 3D neutron kinetics core models have been coupled to advanced thermohydraulics system codes. These coupled codes can be used for the analysis of the whole reactor system. Although the stand-alone versions of the 3D neutron kinetics core models and of the thermohydraulics system codes generally have a good verification and validation basis, there is a need for additional validation work. This especially concerns the interaction between the reactor core and the other components of a nuclear power plant (NPP). In the framework of the international 'Atomic Energy Research' (AER) association on VVER Reactor Physics and Reactor Safety, a benchmark for these code systems was defined. (orig.)

  12. Quantitative monitoring of the fluorination process by neutron counting

    International Nuclear Information System (INIS)

    Russo, P.A.; Appert, Q.D.; Biddle, R.S.; Kelley, T.A.; Martinez, M.M.; West, M.H.

    1993-01-01

    Plutonium metal is produced by reducing PuF 4 prepared from PuO 2 by fluorination. Both fluorination and reduction are batch processes at the Los Alamos Plutonium Facility. The conversion of plutonium oxide to fluoride greatly increases the neutron yield, a result of the high cross section for alpha-neutron (α,n) reactions on fluorine targets compared to the (more than 100 times) smaller α,n yield on oxygen targets. Because of the increase, total neutron counting can be used to monitor the conversion process. This monitoring ability can lead to an improved metal product, reduced scrap for recycle, waste reduction, minimized reagent usage, and reduce personnel radiation exposures. A new stirred-bed fluorination process has been developed simultaneously with a recent evaluation of an automated neutron-counting instrument for quantitative process monitoring. Neutrons are counted with polyethylene-moderated 3 He-gas proportional counters. Results include a calibration of the real-time neutron-count-rate indicator for the extent of fluorination using reference values obtained from destructive analysis of samples from the blended fluoroinated batch

  13. Synopsis of moisture monitoring by neutron probe in the unsaturated zone at Area G

    International Nuclear Information System (INIS)

    Vold, E.

    1997-01-01

    Moisture profiles from neutron probe data provide valuable information in site characterization and to supplement ground water monitoring efforts. The neutron probe precision error (reproducibility) is found to be about 0.2 vol% under in situ field conditions where the slope in moisture content with depth is varying slowly. This error is about 2 times larger near moisture spikes (e.g., at the vapor phase notch), due to the sensitivity of the probe response to vertical position errors on the order of 0.5 inches. Calibrations were performed to correct the downhole probe response to the volumetric moisture content determined on core samples. Calibration is sensitive to borehole diameter and casing type, requiring 3 separate calibration relations for the boreholes surveyed here. Power law fits were used for calibration in this study to assure moisture content results greater than zero. Findings in the boreholes reported here confirm the broad features seen previously in moisture profiles at Area G, a near-surface region with large moisture variability, a very dry region at greater depths, and a moisture spike at the vapor phase notch (VPN). This feature is located near the interface between the vitrified and vitrified stratigraphic units and near the base of the mesa. This report describes the in-field calibration methods used for the neutron moisture probe measurements and summarizes preliminary results of the monitoring program in the in-situ monitoring network at Area G. Reported results include three main areas: calibration studies, profiles from each of the vertical boreholes at Area G, and time-dependent variations in a select subset of boreholes. Results are reported here for the vertical borehole network. Results from the horizontal borehole network will be described when available

  14. Neutron monitoring measurements for the CIT [Compact Ignition Tokamak] materials irradiations in the ATR I1 position

    International Nuclear Information System (INIS)

    Rogers, J.W.; Anderl, R.A.

    1989-12-01

    Measurements were performed to help characterize the neutron environments in which the Compact Ignition Tokamak (CIT) materials were irradiated. These materials were irradiated in a lead shield plug assembly at the ATR I1 position. Neutron monitor materials were placed in the capsules in proximity with the CIT specimens. The neutron monitors sensed the neutrons through reactions that have different neutron energy region responses. By measuring the radioactivity of the neutron monitors it was possible to determine the neutron fluence rates (n/cm 2 /sec) and fluences (n/cm 2 ) at the locations of the monitors. It was also possible to determine the axial and radial gradients of the neutron environments near the specimens. This report presents the results obtained from these measurements for both the CIT number-sign 1 (ORNL 64-2) and CIT number-sign 2 (ORNL 64-1) capsules. In general, ASTM methods and procedures were used in all neutron monitoring associated activities. 7 refs., 9 figs., 10 tabs

  15. Beacon-Colss core monitoring system application and benefits

    International Nuclear Information System (INIS)

    Boyd, W.A.; Yoon, T.Y.

    2005-01-01

    Westinghouse and KNFC are creating an upgraded core monitoring system by merging the BEACON system (best estimate analyzer for core operation-nuclear) and COLSS (core operating limit supervisory system) into an integrated product. Although both BEACON and COLSS are core monitoring systems that have been in operation at many plants for a number of years, they each have some features and capabilities that are not in the other. Therefore it has been decided to incorporate portions of COLSS into the beacon system to create an optional level to support core monitoring applications on selected combustion engineering (C-E) designed plants. This optional level in the beacon system will be called BEACON-COLSS and will allow the beacon system to monitor the LCO's and Tech Spec limits at CE plants that currently use COLSS. This paper will present the structure of the new core monitoring system and the benefits it achieves for current COLSS plants, i.e., CE plants in the US and KSNP (Korean standard nuclear power plant). (authors)

  16. Self-Powered Neutron and Gamma Detectors for In-Core Measurements

    International Nuclear Information System (INIS)

    Strindehag, O.

    1971-11-01

    The performance of various types of self-powered neutron and gamma detectors intended for control and power distribution measurements in water cooled reactors is discussed. The self-powered detectors are compared with other types of in-core detectors and attention is paid to such properties as neutron and gamma sensitivity, high-temperature performance, burn-up rate and time of response. Also treated are the advantages and disadvantages of using gamma detector data for power distribution calculations instead of data from neutron detectors. With regard to neutron-sensitive detectors, results from several long-term experiments with vanadium and cobalt detectors are presented. The results include reliability and stability data for these two detector types and the Co build-up in cobalt detectors. Experimental results which reveal the fast response of cobalt detectors are presented, and the use of cobalt detectors in reactor safety systems is discussed. Experience of the design and installation of complete flux probes, electronic units and data processing systems for power reactors is reported. The investigation of gamma-sensitive detectors includes detectors with emitters of lead, zirconium, magnesium and Inconel. Measured gamma sensitivities from calibrations both in a reactor and in a gamma cell are given, and the signal levels of self-powered neutron and gamma detectors when applied to power reactors are compared

  17. Self-Powered Neutron and Gamma Detectors for In-Core Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Strindehag, O

    1971-11-15

    The performance of various types of self-powered neutron and gamma detectors intended for control and power distribution measurements in water cooled reactors is discussed. The self-powered detectors are compared with other types of in-core detectors and attention is paid to such properties as neutron and gamma sensitivity, high-temperature performance, burn-up rate and time of response. Also treated are the advantages and disadvantages of using gamma detector data for power distribution calculations instead of data from neutron detectors. With regard to neutron-sensitive detectors, results from several long-term experiments with vanadium and cobalt detectors are presented. The results include reliability and stability data for these two detector types and the Co build-up in cobalt detectors. Experimental results which reveal the fast response of cobalt detectors are presented, and the use of cobalt detectors in reactor safety systems is discussed. Experience of the design and installation of complete flux probes, electronic units and data processing systems for power reactors is reported. The investigation of gamma-sensitive detectors includes detectors with emitters of lead, zirconium, magnesium and Inconel. Measured gamma sensitivities from calibrations both in a reactor and in a gamma cell are given, and the signal levels of self-powered neutron and gamma detectors when applied to power reactors are compared

  18. Leakage monitoring equipment of fuel element by delayed neutron method

    International Nuclear Information System (INIS)

    Ji Changsong; Zhang Shulan; Zhang Shuheng

    1999-01-01

    Based on monitoring results of delayed neutrons from reactor first circle water, the leakage of reactor fuel elements is monitored. A monitoring equipment consisted of an array of 3 He proportional counter tubes with 75 s delay has been developed. The neutron detection efficiency of 6.1% is obtained

  19. Development of neutron personnel monitoring system based on CR-39 solid state nuclear track detector

    International Nuclear Information System (INIS)

    Massand, O.P.; Kundu, H.K.; Marathe, P.K.; Supe, S.J.

    1990-01-01

    Personnel neutron monitoring aims at providing a method to evaluate the magnitude of the detrimental effects on the personnel exposed to neutrons. Neutron monitoring is done for a small though growing number of personnel working with neutrons in a wide range of situations. Over the years, many solid state nuclear track detectors (SSNTD) have been tried for neutron personnel monitoring. CR-39 SSNTD is a proton sensitive polymer and offers a lot of promise for neutron personnel monitoring due to its high sensitivity and lower energy threshold for neutron detection. This report presents the mechanism of track formation in this polymer, the development of this neutron personnel monitoring system in our laboratory, its various characteristics and its promise as a routine personnel neutron monitor. (author). 1 tab., 7 figs

  20. Neutron monitoring of plutonium at the ZPPR storage vault

    International Nuclear Information System (INIS)

    Caldwell, J.T.; Kuckertz, T.H.; Bieri, J.M.; France, S.W.; Goin, R.W.; Hastings, R.D.; Pratt, J.C.; Shunk, E.R.

    1981-12-01

    We investigated a method for monitoring a typical large storage vault for unauthorized removal of plutonium. The method is based on the assumption that the neutron field in a vault produced by a particular geometric configuration of bulk plutonium remains constant in time and space as long as the configuration is undisturbed. To observe such a neutron field, we installed an array of 25 neutron detectors in the ceiling of a plutonium storage vault at Argonne National Laboratory West. Each neutron detector provided an independent spatial measurement of the vault neutron field. Data collected by each detector were processed to determine whether statistically significant changes had occurred in the neutron field. Continuous observation experiments measured the long-term stability of the system. Removal experiments were performed in which known quantities of plutonium were removed from the vault. Both types of experiments demonstrated that the neutron monitoring system can detect removal or addition of bulk plutonium (11% 240 Pu) whose mass is as small as 0.04% of the total inventory

  1. Design of ex-vessel neutron monitor for ITER

    International Nuclear Information System (INIS)

    Nishitani, Takeo; Yamauchi, Michinori; Kasai, Satoshi; Ebisawa, Katsuyuki; Walker, Chris

    2002-07-01

    A neutron flux monitor has been designed by using 235 U fission chambers to be installed outside the vacuum vessel of ITER. We investigated moderator materials to get flat energy response the responses of 235 U fission chambers. Here we employed graphite and beryllium with a ratio of Be/C=0.25 as moderator, which materials are stable in ITER relevant temperature in a horizontal port. Based on the neutronics calculations, a fission chamber with 200 mg of 235 U is adopted for the neutron flux monitor. Three detectors are mounted in a stainless steel housing with moderation material. Two fission chamber assemblies will be installed in a horizontal port; one is for D-D and calibration operation, and another is for D-T operation. The assembly for the D-D operation and the calibration are installed just outside the port plug in the horizontal port. The assembly for the D-T operation is installed just behind the additional shield in the port. Combining of those assemblies with both pulse counting mode and Campbelling mode in the electronics, a dynamic range of 10 7 can be obtained with 1 ms temporal resolution. Effects of gamma-rays and magnetic fields on the fission chamber are negligible in this arrangement. The neutron flux monitor can meet the required 10% accuracy for a fusion power monitor. (author)

  2. Neutronic characterization of cylindrical core of minor excess reactivity in the nuclear reactor IPEN/MB-01 from the measure of neutron flux distribution and its reactivity ratio

    Energy Technology Data Exchange (ETDEWEB)

    Bitelli, Ulysses d' Utra; Aredes, Vitor O.G.; Mura, Luiz E.C.; Santos, Diogo F. dos; Silva, Alexandre P. da, E-mail: ubitelli@ipen.br, E-mail: vitoraredes@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    When compared to a rectangular parallelepiped configuration the cylindrical configuration of a nuclear reactor core has a better neutron economy because in this configuration the probability of the neutron leakage is smaller, causing an increase in overall reactivity in the system to the same amount of fuel used. In this work we obtained a critical cylindrical configuration with the control rods 89.50% withdraw from the active region of the IPEN/MB-01 core. This is the cylindrical configuration minimum possible excess of reactivity. Thus we obtained a cylindrical configuration with a diameter of only 28 fuel rods with lowest possible excess of reactivity. For this purpose, 112 peripheral fuel rods are removed from standard reactor core (rectangular parallelepiped of 28x28 fuel rods). In this configuration the excesses of reactivity is approximated 279 pcm. From there, we characterize the neutron field by measuring the spatial distribution of the thermal and epithermal neutron flux for the reactor operating power of 83 watts measured by neutron noise analysis technique and 92.08± 0.07 watts measured by activation technique [10]. The values of thermal and epithermal neutron flux in different directions, axial, radial north-south and radial east-west, are obtained in the asymptotic region of the reactor core, away from the disturbances caused by the reflector and control bar, by irradiating thin gold foils infinitely diluted (1% Au - 99% Al) with and without (bare) cadmium cover. In addition to the distribution of neutron flux, the moderator temperature coefficient, the void coefficient, calibration of the control rods were measured. (author)

  3. Accuracy of neutron dose evaluation in the area monitoring for LHD experiments

    CERN Document Server

    Yamanishi, H; Uda, T; Tanahashi, S; Saitou, M; Handa, H

    2000-01-01

    The error in the evaluation of neutron dose during calculation of the neutron field around the large helical device (LHD) in D-D operation is discussed. The expected neutron dose at each monitoring point was derived from the dose conversion factor and neutron fluence data, which was calculated with the radiation transport code DOT-3.5. In contrast, the detected dose at the neutron counter was obtained from the fluence data and the detector response given by calculation with MCNP-4b. The neutron counter used in these calculations consisted of a helium-3 proportional counter with a cylindrical polyethylene moderator. According to the results of the calculations, the ratio of the detected dose to the expected dose was found to lie in the range 1.0-3.0 on the outdoor monitoring points. Since the response of a single neutron counter may lead to inconsistencies in the dose conversion factor, we attempted to minimize these inconsistencies by using a pair of counters with moderators of different thickness. The ratio ...

  4. The Neutron-Gamma Pulse Shape Discrimination Method for Neutron Flux Detection in the ITER

    International Nuclear Information System (INIS)

    Xu Xiufeng; Li Shiping; Cao Hongrui; Yin Zejie; Yuan Guoliang; Yang Qingwei

    2013-01-01

    The neutron flux monitor (NFM), as a significant diagnostic system in the International Thermonuclear Experimental Reactor (ITER), will play an important role in the readings of a series of key parameters in the fusion reaction process. As the core of the main electronic system of the NFM, the neutron-gamma pulse shape discrimination (n-γ PSD) can distinguish the neutron pulse from the gamma pulse and other disturbing pulses according to the thresholds of the rising time and the amplitude pre-installed on the board, the double timing point CFD method is used to get the rising time of the pulse. The n-γ PSD can provide an accurate neutron count. (magnetically confined plasma)

  5. Micro fission chamber for the ITER neutron monitor

    International Nuclear Information System (INIS)

    Yamauchi, Michinori; Nishitani, Takeo; Ochiai, Kentaro; Ebisawa, Katsuyuki

    2004-01-01

    This paper describes the design and the fabrication of a prototype micro-fission chamber and test results under ITER relevant conditions including wide neutron spectrum and intense gamma-rays, and the performance as a ITER power monitor is discussed. A micro-fission chamber with 12 mg UO 2 and a dummy chamber without uranium were designed and fabricated for the in-vessel neutron flux monitoring of ITER. The measurement ability was tested with the FNS facility for 14 MeV neutrons and the 60 Co gamma-ray irradiation facility at JAERI-Takasaki. Employing the Campbelling mode in the electronics, the ITER requirement for the temporal resolution was satisfied. The excellent linearity of the detector output versus the neutron flux was confirmed in the temperature range from 20degC to 250degC. As a result, it was concluded that the developed micro-fission chamber is applicable for ITER. (author)

  6. Burnup Estimation of Rhodium Self-Powered Neutron Detector Emitter in VVER Reactor Core Using Monte Carlo Simulations

    OpenAIRE

    Khrutchinsky, А. А.; Kuten, S. A.; Babichev, L. F.

    2011-01-01

    Estimation of burn-up in a rhodium-103 emitter of self-powered neutron detector in VVER-1000 reactor core has been performed using Monte Carlo simulations within approximation of a constant neutron flux.

  7. Neutronics conceptual design of the innovative research reactor core using uranium molybdenum fuel

    International Nuclear Information System (INIS)

    Tukiran S; Surian Pinem; Tagor MS; Lily S; Jati Susilo

    2012-01-01

    The multipurpose of research reactor utilization make many countries build the new research reactor. Trend of this reactor for this moment is multipurpose reactor type with a compact core to get high neutron flux at the low or medium level of power. The research newest. Reactor in Indonesia right now is already 25 year old. Therefore, it is needed to design a new research reactor, called innovative research reactor (IRR) and then as an alternative to replace the old research reactor. The aim of this research is to get the optimal configuration of equilibrium core with the acceptance criteria are minimum thermal neutron flux is 2.5E14 n/cm 2 s at the power level of 20 MW (minimum), length of cycle of more than 40 days, and the most efficient of using fuel in the core. Neutronics design has been performed for new fuel of U-9Mo-AI with various fuel density and reflector. Design calculation has been performed using WIMSD-5B and BATAN-FUEL computer codes. The calculation result of the conceptual design shows four core configurations namely 5x5, 5x7, 6x5 and 6x6. The optimalization result for equilibrium core of innovative research reactor is the 5x5 configuration with 450 gU fuel loading, berilium reflector, maximum thermal neutron flux at reflector is 3.33E14 n/cm 2 sand length of cycle is 57 days is the most optimal of IRR. (author)

  8. Characterization of a diamond detector to be used as neutron yield monitor during the in-vessel calibration of JET neutron detectors in preparation of the DT experiment

    International Nuclear Information System (INIS)

    Pillon, Mario; Angelone, Maurizio; Batistoni, Paola; Loreti, Stefano; Milocco, Alberto

    2016-01-01

    Highlights: • A diamond detector has been characterized for use as neutron yield monitor of a portable 14 MeV neutron generator. • The system will be used for the 14 MeV calibration of JET neutron detector. • The results and the performances of the monitor are very satisfactory in term of accuracy and reliability. - Abstract: A new Deuterium-Tritium (DT) campaign is planned at JET. An accurate calibration for the 14 MeV neutron yield monitors is necessary. In order to perform the calibration a 14 MeV Neutron Generator with suitable intensity (∼10 8 n/s) will be used. Due to the intensity change during the Neutron Generator lifetime it would be necessary to monitor continuously the neutron emission intensity during the calibration using a compact detector attached to it. A high quality diamond detector has been chosen as one of the monitors. This detector has been fully characterized at the 14 MeV Frascati Neutron Generator facility. The characterization procedure and the resulting 14 MeV neutron response of the detector are described in this paper together with the obtained uncertainties.

  9. Qualification of the monitor Pug-7N like dosimeter for neutrons

    International Nuclear Information System (INIS)

    Benites R, J. L.; Vega C, H. R.; Murillo O, R.; Velazquez F, J. B.

    2011-10-01

    By means of an inter-comparison method, the monitor for neutrons Pug-7N was enabled like dosimeter for neutrons of two magnitudes: the environmental equivalent dose, H*(10), and the H equivalent dose. The monitor Pug-7N has a plastic detector of scintillation Pns-20 that can be used inside or outside of its polyethylene cylindrical moderator. This designed to detect the neutrons presence that is shown in ana logical form by means of a fast count. Although the instrument is useful to detect the neutrons presence its design it does not allow to estimate the dose. With the purpose of enabling it as dosimeter for neutrons, their response was compared with the response of the area monitor for neutrons Bert hold Lb 6411 and Eberline NRD model Asp-1. Under the same irradiation conditions the 3 instruments were exposed to a source of 241 AmBe of 3.7E(9) Bq (100 mCi) of activity whose spectrum and dosimetric magnitudes were determined with a spectrometric system of Bonner spheres with scintillator of 6 Lil(Eu) and the NSDUAZ code. Conversion factors of H*(10)/cpm and H/cpm were obtained for the two options of the monitor detector Pug-7N, with this procedure the monitor Pug-7N besides determining the presence of neutrons, it has been enabled for their use as dosimeter for neutrons. (Author)

  10. Embedded data acquisition system for neutron monitors

    International Nuclear Information System (INIS)

    Población, Ó G; Tejedor, I G; Sánchez, S; Blanco, J J; Gómez-Herrero, R; Medina, J; Steigies, C T

    2014-01-01

    This article presents the design and implementation of a new data acquisition system to be used as replacement for the old ones that have been in use with neutron monitors for the last decades and, which are eventually becoming obsolete. This new system is also intended to be used in new installations, enabling these scientific instruments to use today's communication networks to send data and receive commands from the operators. This system is currently running in two stations: KIEL2, in the Christian-Albrechts-Universität zu Kiel, Kiel, Germany, and CALMA, in the Castilla-La Mancha Neutron Monitor, Guadalajara, Spain

  11. Code of practice for in-core instrumentation for neutron fluence rate (flux) measurements in power reactors

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    This standard applies to in-core (on-line) neutron detectors and instrumentation which is designed for safety, information or control purposes. It also applies to components in so far as these components are contained within the primary envelope of the reactor. The detector types usually used are dc ionization chambers and self-powered neutron detectors

  12. NEUTRONICS ANALYSIS ON MINI TEST FUEL IN THE RSG-GAS CORE

    Directory of Open Access Journals (Sweden)

    Tukiran Surbakti

    2016-03-01

    Full Text Available Abstract NEUTRONICS ANALYSIS ON MINI TEST FUEL IN THE RSG-GAS CORE. Research of UMo fuel for research reactor has been developing  right now. The fuel of  research reactor used is uranium low enrichment with high density. For supporting the development of fuel, an assessment of mini fuel in the RSG-GAS core was performed. The mini fuel are U7Mo-Al and U6Zr-Al with densitis of 7.0gU/cc and 5.2 gU/cc, respectively. The size of both fuel are the same namely 630x70.75x1.30 mm were inserted to the 3 plates of dummy fuel. Before being irradiated in the core, a calculation for safety analysis  from neutronics and thermohydrolics aspects were required. However, in this paper will discuss safety analysis of the U7Mo-Al and U6Zr-Al mini fuels from neutronic point of view.  The calculation was done using WIMSD-5B and Batan-3DIFF code. The result showed that both of the mini fuels could be irradiated in the RSG-GAS core with burn up less than 70 % within 12 cycles of operation without over limiting the safety margin. Power density of U7Mo-Al mini fuel bigger than U6Zr-Al fuel.   Key words: mini fuel, neutronics analysis, reactor core, safety analysis   Abstrak ANALISIS NEUTRONIK ELEMEN BAKAR UJI MINI DI TERAS RSG-GAS. Penelitian tentang bahan bakar UMo untuk reaktor riset terus berkembang saat ini. Bahan bakar reaktor riset yang digunakan adalah uranium pengkayaan rendah namun densitas tinggi.  Untuk mendukung pengembangan bahan bakar dilakukan uji elemen bakar mini di teras reakror RSG-GAS dengan tujuan menentukan jumlah siklus di dalam teras sehingga tercapai fraksi bakar maksimum. Bahan bakar yang diuji adalah U7Mo-Al dengan densitas 7,0 gU/cc dan U6Zr-Al densitas 5,2 gU/cc. Ukuran kedua bahan bakar uji tersebut adalah sama 630x70,75x1,30 mm dimasukkan masing masing kedalam 3 pelat dummy bahan bakar. Sebelum diiradiasi ke dalam teras reaktor maka perlu dilakukan perhitungan keselamatan baik secara neutronik maupun termohidrolik. Dalam makalah ini

  13. Neutronic analysis of the Three Mile Island Unit 2 ex-core detector response

    International Nuclear Information System (INIS)

    Malloy, D.J.; Chang, Y.I.

    1981-10-01

    A neutronic analysis has been made with respect to the ex-core neutron detector response during the TMI-2 incident. A series of transport theory calculations quantified the impact upon the detector count rate of various core and downcomer conditions. In particular, various combinations of coolant void content and spatial distributions were investigated to yield the resulting transmission of the photoneutron source to the detector. The impact of a hypothetical distributed source within the downcomer region was also examined in order to simulate the potential effect of the release of neutron producing fission products into the coolant. These results are then offered as potential explanations for the anomalous behavior of the detector during the period of approx. 20 minutes through approx. 3 hours following the reactor scram

  14. Development of the temperature field at the WWER-440 core outlet monitoring system and application of the data analyses methods

    International Nuclear Information System (INIS)

    Spasova, V.; Georgieva, N.; Haralampieva, Tz.

    2001-01-01

    On-line internal reactor monitoring by 216 thermal couples, located at the reactor core outlet, is carried out during power operation of WWER-440 Units 1 and 2 at Kozloduy NPP. Automatic monitoring of technology process is performed by IB-500MA, which collects and performs initial data processing (discrediting and conversion of analogue signals into digital mode). The paper also presents the results and analyses of power distribution monitoring during the past 21-th and current 22-th fuel cycle at Kozloduy NPP, Unit 1 by using archiving system capacity and related software. The possibility to perform operational assessment and analysis of power distribution in the reactor core in each point of the fuel cycle is checked by comparison of the neutron-physical calculation results with reactor coolant system parameters. Paper shows that the processing and analysis of accumulated significant amount of data in the archive files increases accuracy and reliability of power distribution monitoring in the reactor core in each moment of the fuel cycle of WWER-440 reactors at Kozloduy NPP

  15. Portable system for periodical verification of area monitors for neutrons; Sistema portatil para verificacao periodica de monitores de area para neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Luciane de R.; Leite, Sandro Passos; Lopes, Ricardo Tadeu, E-mail: rluciane@ird.gov.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEN/COPPE/UFRJ), RJ (Brazil). Programa de Energia Nuclear; Patrao, Karla C. de Souza; Fonseca, Evaldo S. da; Pereira, Walsan W., E-mail: karla@ird.gov.b [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. Nacional de Metrologia das Radiacoes Ionizantes (LNMRI). Lab. de Neutrons

    2009-07-01

    The Neutrons Laboratory develops a project viewing the construction of a portable test system for verification of functioning conditions of neutron area monitors. This device will allow to the users the verification of the calibration maintenance of his instruments at the use installations, avoiding the use of an inadequate equipment related to his answer to the neutron beam response

  16. Evaluation of BEACON-COLSS Core Monitoring System Benefits

    International Nuclear Information System (INIS)

    Kim, Joon Sung; Park, Young Ho; Morita, Toshio; Book, Michael A.

    2005-01-01

    In Korean Standard Nuclear Power Plant COLSS (Core Operating Limit Supervisory System) is used to monitor the DNBR Power Operating Limit (DNBRPOL) and Linear Heat Rate POL (KWPFPOL). Westinghouse and KNFC have developed an upgraded core monitoring system by combining the BEACON TM core monitoring system 1 (Best Estimate Analyzer for Core Operation . Nuclear) and COLSS into an integrated product that is called BEACON-COLSS. BEACON-COLSS generates the 3-D power distribution corrected by the in-core detectors measurements. The 3-D core power distribution methodology in BEACON-COLSS is significantly better than the synthesis methodology in COLSS. BEACONCOLSS uses the CETOP-D 2 thermal hydraulic code instead of CETOP-1. CETOP-D is a multi-channel thermal hydraulics code that will provide more accurate DNBR calculations than the DNBR calculators currently used in COLSS

  17. In-core monitor drive mechanism

    International Nuclear Information System (INIS)

    Hattori, Kunimitsu; Ishii, Yoshimi.

    1969-01-01

    Instruments for measuring the neutron flux in a reactor are hung at the upper end of a shuttle tube connected to the upper portion of a perforated tube a plurality of the holes of which are engaged at all times with the teeth of an endless chain. The endless chain is driven by a sprocket integrated with a worm wheel shaft driven by a motor through a flexible shaft. The perforated tube is capable of being smoothly driven vertically into the reactor core without causing any noise. Since the tube is driven through a plurality of the teeth of the endless chain, the dimensions of the sprockets and other associated parts can be reduced to make the entire drive mechanism more compact. (Ohno, Y.)

  18. Performance Test of BF3 Neutron Detection System

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yu Sun; Shin, Ho Cheol [KHNP-CRI, Daejeon (Korea, Republic of); Cho, Jin Bok; Oh, Sae Hyun; Ryou, Seok Jean [USERS, Daejeon (Korea, Republic of)

    2015-10-15

    The neutron detecting system of First-of-a-kind plant such an APR1400 at Shin Kori should have been verified in the condition of low operating temperature and pressure of the primary coolant system before receiving the operation license. Auxiliary Ex-core Neutron Flux Monitoring System (AENFMS) is supposed to be installed using BF3 neutron detector in Shin Kori plant. The performance test of AENFMS was conducted to measure neutron sensitivity, moderation ratio and count rate in the same condition with Ex-core Neutron Flux Monitoring System (ENFMS) of APR1400 to verify its detection characteristics in compliance with the functional requirement. Performance test has been conducted for AENFMS of APR1400 to verify BF3 neutron sensitivity, moderation ration of PE, expecting neutron signal count rate from AENFMS, possible extending cable length from detector to pre-amplifier. As a result of measurement, the neutron sensitivity of 34.246±0.168(95%CI)cps/nv, moderation ratio of 11.343±0.039(95%CI) and AENFMS expecting count rate related to ENFMS of 17.8 times are acceptable in compliance with functional requirement, respectively.

  19. Overview of on-line core monitoring system BEACON

    International Nuclear Information System (INIS)

    Dai Qing; Chen Xiaosong

    2013-01-01

    After more than 20 years of development, key technologies embedded with such system have reached a certain degree of maturity among some foreign countries. However, domestically, there is no comparable system yet. Through in-depth research and analysis on the most widely used core monitoring system in the world, BEACON, it's hope that this will provide guidance on our independent development of the first core monitoring system in China. Excore detectors, core outlet thermocouples and incore movable detectors are used to provide measure data on the status of the core for BEACON. Under the assumption of nodal homogeneity, an effective fast group model is used to solve the diffusion equation, followed by core-wise interpolation by Green's function. Finally, reconstruction of a calculated core is fitted with measured data using the surface spline function. The most significant technological advances are core monitoring during unstable core conditions, the use of nodal expansion method to improve accuracy and the adoption of single point calibration to increase the period of recalibration for the whole core. (authors)

  20. Benchmark for Neutronic Analysis of Sodium-cooled Fast Reactor Cores with Various Fuel Types and Core Sizes

    International Nuclear Information System (INIS)

    Stauff, N.E.; Kim, T.K.; Taiwo, T.A.; Buiron, L.; Rimpault, G.; Brun, E.; Lee, Y.K.; Pataki, I.; Kereszturi, A.; Tota, A.; Parisi, C.; Fridman, E.; Guilliard, N.; Kugo, T.; Sugino, K.; Uematsu, M.M.; Ponomarev, A.; Messaoudi, N.; Lin Tan, R.; Kozlowski, T.; Bernnat, W.; Blanchet, D.; Brun, E.; Buiron, L.; Fridman, E.; Guilliard, N.; Kereszturi, A.; Kim, T.K.; Kozlowski, T.; Kugo, T.; Lee, Y.K.; Lin Tan, R.; Messaoudi, N.; Parisi, C.; Pataki, I.; Ponomarev, A.; Rimpault, G.; Stauff, N.E.; Sugino, K.; Taiwo, T.A.; Tota, A.; Uematsu, M.M.; Monti, S.; Yamaji, A.; Nakahara, Y.; Gulliford, J.

    2016-01-01

    One of the foremost Generation IV International Forum (GIF) objectives is to design nuclear reactor cores that can passively avoid damage of the reactor when control rods fail to scram in response to postulated accident initiators (e.g. inadvertent reactivity insertion or loss of coolant flow). The analysis of such unprotected transients depends primarily on the physical properties of the fuel and the reactivity feedback coefficients of the core. Within the activities of the Working Party on Scientific Issues of Reactor Systems (WPRS), the Sodium Fast Reactor core Feed-back and Transient response (SFR-FT) Task Force was proposed to evaluate core performance characteristics of several Generation IV Sodium-cooled Fast Reactor (SFR) concepts. A set of four numerical benchmark cases was initially developed with different core sizes and fuel types in order to perform neutronic characterisation, evaluation of the feedback coefficients and transient calculations. Two 'large' SFR core designs were proposed by CEA: those generate 3 600 MW(th) and employ oxide and carbide fuel technologies. Two 'medium' SFR core designs proposed by ANL complete the set. These medium SFR cores generate 1 000 MW(th) and employ oxide and metallic fuel technologies. The present report summarises the results obtained by the WPRS for the neutronic characterisation benchmark exercise proposed. The benchmark definition is detailed in Chapter 2. Eleven institutions contributed to this benchmark: Argonne National Laboratory (ANL), Commissariat a l'energie atomique et aux energies alternatives (CEA of Cadarache), Commissariat a l'energie atomique et aux energies alternatives (CEA of Saclay), Centre for Energy Research (CER-EK), Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Helmholtz Zentrum Dresden Rossendorf (HZDR), Institute of Nuclear Technology and Energy Systems (IKE), Japan Atomic Energy Agency (JAEA), Karlsruhe Institute of Technology (KIT

  1. Evaluation of neutronic characteristics of STACY 80-cm-diameter cylindrical core fueled with 6% enriched uranyl nitrate solution

    International Nuclear Information System (INIS)

    Yanagisawa, Hiroshi; Sono, Hiroki

    2003-06-01

    For the examination of neutronic safety design of forthcoming experimental core configurations in the Static Experiment Critical Facility (STACY), neutronic characteristics of 80-cm-diameter cylindrical cores fueled with 6% enriched uranyl nitrate solution have been evaluated by computational analyses. In the analyses, the latest nuclear data library, JENDL-3.3, was used as neutron cross section data. The neutron diffusion and transport calculations were performed using a diffusion code, CITATION, in the SRAC code system and a continuous-energy Monte Carlo code, MVP. Critical level heights of the cores were obtained using such parameters as uranium concentration (up to 500 gU/l), free nitric acid concentration (up to 8 mol/l), and concentration of soluble neutron poisons, gadolinium and boron. It has been confirmed from the evaluation that all critical cores comply with safety criteria required in the STACY operation concerning excess reactivity, reactivity addition rates and shutdown margins by safety rods. (author)

  2. Personal dosimetry and area monitoring for neutrons and radon in workplaces

    International Nuclear Information System (INIS)

    Tommasino, L.

    2001-01-01

    The first successful applications of damage track detectors in radiation protection have been made in the early 1970s in personal dosimetry of neutrons, radon and its progenies. Most of the scientists actively engaged in the solution of the complex problem of personal neutron dosimetry by damage track detectors-SSNTD, have attempted to develop individual radon monitoring for exposure in mines by using the same SSNTDs. In late 1970s and the early 1980s, new radon monitoring devices based on SSNTDs have been developed to measure radon in soil, mainly for applications in uranium prospecting or more generally in earth sciences. Most of the radon monitors, developed since then for completely different applications in mind, have been used later for large scale survey of indoor radon. With the current implementation within Europe of the European Union Directive 96/29, applications of damage track detectors will increase drastically, specially for the assessment of the exposure of the workers to natural sources of radiation. In this case, the early work on personal neutron/radon dosimetry, is highly valuable to tackle these new problems of individual monitoring

  3. Developments and application of neutron noise diagnostics of sodium cooled fast reactors

    International Nuclear Information System (INIS)

    Zylbersztejn, F.

    2013-01-01

    The Sodium cooled Fast Reactor (SFR) is one of the six reactor types selected by the Generation-IV international forum (GIF), and the building of an industrial prototype is planned in France. The safety standard of the future SFR has to be equivalent to the EPR's. The general improvement of the safety of the new reactor goes through the examination of all the potentially harmful scenarios and both the study and monitoring of early signs. The mechanical deformations of the core can have harmful consequences in sodium fast reactors, such as unexpected power variations due to the reactivity increase in case of core compaction, or the excessive deterioration of the mechanical structures. The monitoring of such phenomena and of their potential early signs is then needed. The monitoring of such phenomena can be done with neutron detectors placed inside and outside the tank. This PhD thesis deals with the study of the neutron noise generated by the periodic deformation of the SFR core, restricted to the so-called core compaction or core flowering phenomenon, a deformation consisting in the variation of the inter-assembly sodium width by a radial bending the assemblies (the assemblies in SFR are held by the base). The PhD thesis has been performed within collaboration between CEA (France) and Chalmers Institute of Technology (Sweden). The work realized during the thesis led to the publication of 3 articles as first author and another as second author. This work has embraced the following topics: A state of the art of the monitoring of the core deformation phenomenon by interpretation of the noise measurements in SFR has been done. The PHENIX reactor multi physics measurements database has been scrutinized to provide an interpretation of the neutron noise bringing out mechanical vibration phenomena. An important conclusion was that the lack of theoretical knowledge about the neutron noise induced by the vibration phenomenon and the ill positioning of the neutron detectors

  4. Burnup-dependent core neutronics analysis of plate-type research reactor using deterministic and stochastic methods

    International Nuclear Information System (INIS)

    Liu, Shichang; Wang, Guanbo; Liang, Jingang; Wu, Gaochen; Wang, Kan

    2015-01-01

    Highlights: • DRAGON & DONJON were applied in burnup calculations of plate-type research reactors. • Continuous-energy Monte Carlo burnup calculations by RMC were chosen as references. • Comparisons of keff, isotopic densities and power distribution were performed. • Reasons leading to discrepancies between two different approaches were analyzed. • DRAGON & DONJON is capable of burnup calculations with appropriate treatments. - Abstract: The burnup-dependent core neutronics analysis of the plate-type research reactors such as JRR-3M poses a challenge for traditional neutronics calculational tools and schemes for power reactors, due to the characteristics of complex geometry, highly heterogeneity, large leakage and the particular neutron spectrum of the research reactors. Two different theoretical approaches, the deterministic and the stochastic methods, are used for the burnup-dependent core neutronics analysis of the JRR-3M plate-type research reactor in this paper. For the deterministic method the neutronics codes DRAGON & DONJON are used, while the continuous-energy Monte Carlo code RMC (Reactor Monte Carlo code) is employed for the stochastic one. In the first stage, the homogenizations of few-group cross sections by DRAGON and the full core diffusion calculations by DONJON have been verified by comparing with the detailed Monte Carlo simulations. In the second stage, the burnup-dependent calculations of both assembly level and the full core level were carried out, to examine the capability of the deterministic code system DRAGON & DONJON to reliably simulate the burnup-dependent behavior of research reactors. The results indicate that both RMC and DRAGON & DONJON code system are capable of burnup-dependent neutronics analysis of research reactors, provided that appropriate treatments are applied in both assembly and core levels for the deterministic codes

  5. CORE-COLLAPSE SUPERNOVA EQUATIONS OF STATE BASED ON NEUTRON STAR OBSERVATIONS

    International Nuclear Information System (INIS)

    Steiner, A. W.; Hempel, M.; Fischer, T.

    2013-01-01

    Many of the currently available equations of state for core-collapse supernova simulations give large neutron star radii and do not provide large enough neutron star masses, both of which are inconsistent with some recent neutron star observations. In addition, one of the critical uncertainties in the nucleon-nucleon interaction, the nuclear symmetry energy, is not fully explored by the currently available equations of state. In this article, we construct two new equations of state which match recent neutron star observations and provide more flexibility in studying the dependence on nuclear matter properties. The equations of state are also provided in tabular form, covering a wide range in density, temperature, and asymmetry, suitable for astrophysical simulations. These new equations of state are implemented into our spherically symmetric core-collapse supernova model, which is based on general relativistic radiation hydrodynamics with three-flavor Boltzmann neutrino transport. The results are compared with commonly used equations of state in supernova simulations of 11.2 and 40 M ☉ progenitors. We consider only equations of state which are fitted to nuclear binding energies and other experimental and observational constraints. We find that central densities at bounce are weakly correlated with L and that there is a moderate influence of the symmetry energy on the evolution of the electron fraction. The new models also obey the previously observed correlation between the time to black hole formation and the maximum mass of an s = 4 neutron star

  6. Neutronic design of the RSG-GAS silicide core

    Energy Technology Data Exchange (ETDEWEB)

    Sembiring, T.M.; Kuntoro, I.; Hastowo, H. [Center for Development of Research Reactor Technology National Nuclear Energy Agency BATAN, PUSPIPTEK Serpong Tangerang, 15310 (Indonesia)

    2002-07-01

    The objective of core conversion program of the RSG-GAS multipurpose reactor is to convert the fuel from oxide, U{sub 3}O{sub 8}-Al to silicide, U{sub 3}Si{sub 2}-Al. The aim of the program is to gain longer operation cycle by having, which is technically possible for silicide fuel, a higher density. Upon constraints of the existing reactor system and utilization, an optimal fuel density in amount of 3.55 g U/cc was found. This paper describes the neutronic parameter design of the silicide equilibrium core and the design of its transition cores as well. From reactivity control point of view, a modification of control rod system is also discussed. All calculations are carried out by means of diffusion codes, Batan-EQUIL-2D, Batan-2DIFF and -3DIFF. The silicide core shows that longer operation cycle of 32 full power days can be achieved without decreasing the safety criteria and utilization capabilities. (author)

  7. Neutronics of a mixed-flow gas-core reactor

    International Nuclear Information System (INIS)

    Soran, P.D.; Hansen, G.E.

    1977-11-01

    The study was made to investigate the neutronic feasibility of a mixed-flow gas-core reactor. Three reactor concepts were studied: four- and seven-cell radial reactors and a seven-cell scallop reactor. The reactors were fueled with UF 6 (either U-233 or U-235) and various parameters were varied. A four-cell reactor is not practical nor is the U-235 fueled seven-cell radial reactor; however, the 7-cell U-233 radial and scallop reactors can satisfy all design criteria. The mixed flow gas core reactor is a very attractive reactor concept and warrants further investigation

  8. Determination of the kinetic parameters of the CALIBAN metallic core reactor from stochastic neutron measurements

    Energy Technology Data Exchange (ETDEWEB)

    Casoli, P.; Authier, N.; Chapelle, A. [Commissariat a l' Energie Atomique et Aux Energies Alternatives, CEA, DAM, F-21120 Is sur Tille (France)

    2012-07-01

    Several experimental devices are operated by the Criticality and Neutron Science Research Dept. of the CEA Valduc Laboratory. One of these is the Caliban metallic core reactor. The purpose of this study is to develop and perform experiments allowing to determinate some of fundamental kinetic parameters of the reactor. The prompt neutron decay constant and particularly its value at criticality can be measured with reactor noise techniques such as Rossi-{alpha} and Feynman variance-to-mean methods. Subcritical, critical, and even supercritical experiments were performed. Fission chambers detectors were put nearby the core and measurements were analyzed with the Rossi-{alpha} technique. A new value of the prompt neutron decay constant at criticality was determined, which allows, using the Nelson number method, new evaluations of the effective delayed neutron fraction and the in core neutron lifetime. As an introduction of this paper, some motivations of this work are given in part 1. In part 2, principles of the noise measurements experiments performed at the CEA Valduc Laboratory are reminded. The Caliban reactor is described in part 3. Stochastic neutron measurements analysis techniques used in this study are then presented in part 4. Results of fission chamber experiments are summarized in part 5. Part 6 is devoted to the current work, improvement of the experimental device using He 3 neutron detectors and first results obtained with it. Finally, conclusions and perspectives are given in part 7. (authors)

  9. Influence of core model parameters on the characteristics of neutron beams of the research reactor

    Directory of Open Access Journals (Sweden)

    N. A. Khafizova

    2013-12-01

    Full Text Available IRT MEPhI reactor is equipped with a number of facilities at horizontal experimental channels (HEC. Knowing of parameters influencing spatio-angular distribution of irradiation fields is essential for each application area. The research for neutron capture therapy (NCT facility at HEC of the reactor was made. Calculation methods have been used to estimate how the reactor core parameters influence neutron beam characteristics at the HEC output. The impact of neutron source model in Monte Carlo calculations by MCNP code on the parameters of neutron and secondary photon field at the output of irradiation beam tubes of research reactor is estimated. The study shows that specifying neutron source with fission reaction rate distribution in SDEF option gives almost the same results as criticality calculation considered the most accurate. Our calculations show that changes of the core operational parameters have insignificant influence on characteristics of neutron beams at HEC output.

  10. Current applications of vibration monitoring and neutron noise analysis

    International Nuclear Information System (INIS)

    Damiano, B.; Kryter, R.C.

    1990-02-01

    Monitoring programs using vibration monitoring or neutron noise analysis have demonstrated the ability to detect and, in some cases, diagnose the nature of reactor vessel internals structural degradation. Detection of compromised mechanical integrity of reactor vessel internal components in its early stages allows corrective action to be taken before weakening or damage occurs. In addition to the economic benefits early detection and correction can provide, they can also help maintain plant safety. Information on the condition of reactor vessel internal components gained from a monitoring program supplements in-service inspection results and may be useful in justifying plant license extension. This report, which was prepared under the Nuclear Plant Aging Research Program sponsored by the US Nuclear Regulatory Commission, discusses the application of vibration monitoring and neutron noise analysis for monitoring light-water reactor vessel internals. The report begins by describing the effects of structural integrity loss on internals vibration and how measurable parameters can be used to detect and track the progress of degradation. This is followed by a description and comparison of vibration monitoring and neutron noise analysis, two methods for monitoring the mechanical integrity of reactor vessel internals condition monitoring programs in the United States, Federal Republic of Germany, and France, three countries having substantial commitments to nuclear power. The last section presents guidelines for US utilities wishing to establish reactor internals condition monitoring programs. 20 refs., 5 figs., 4 tabs

  11. Detection of flux perturbations in pebble bed HTGRs by near core instrumentation

    International Nuclear Information System (INIS)

    Neef, R.D.; Basse, W.; Carlson, D.E.; Knob, P.; Schaal, H.; Wilhelm, H.; Stroemich, A.

    1982-06-01

    For pebble bed reactors an incore monitoring system cannot be utilized during normal operation, mainly for two reasons: 1) The necessary instrumentation cannot withstand possible coolant gas temperatures of up to 1150 deg. C. 2) The detector guide structures cannot withstand the continuous downward movement of the fuel elements in the core and would perturb the loading scheme. Therefore a near-core detector system is necessary which can be used to monitor the power distribution and to recognise perturbations in the neutron flux distribution. This helps guarantee that temperature limits in the core (fuel elements, absorber rods) and in the heat removal systems (steam generators) will not be exceeded. For this purpose an instrumentation system of the following kind is planned (and at least for a prototype reactor no part of it should be omitted): 1) Fast fission chambers in the top reflector for measuring the fast neutron flux distribution; 2) Self powered neutron detectors (SPNDs) in the radial reflector for thermal flux mapping; 3) Thermocouples in the bottom reflector for measuring the profile of the outlet gas temperature

  12. An on-line adaptive core monitoring system

    International Nuclear Information System (INIS)

    Verspeek, J.A.; Bruggink, J.C.; Karuza, J.

    1997-01-01

    An on-line core monitoring system has been in operation for three years in the Dodewaard Nuclear Power Plant. The core monitor uses the on-line measured reactor data as an input for a power distribution calculation. The measurements are frequently performed. The system is used for monitoring as well as for predicting purposes. The limiting thermal hydraulic parameters are monitored as well as the pellet-clad interaction limits. The data are added to a history file used for cycle burn-up calculations and trending of parameters. The reactor states are presented through a convenient graphical user interface. (authors)

  13. Status of ITER neutron diagnostic development

    International Nuclear Information System (INIS)

    Sasao, M.; Krasilnikov, A.V.; Kaschuck, Yu.A.; Nishitani, T.; Batistoni, P.; Zaveryaev, V.S.; Popovichev, S.; Jarvis, O.N.; Iguchi, T.; Kaellne, J.; Fiore, C.L.; Roquemore, A.L.; Heidbrink, W.W.; Fisher, R.; Gorini, G.; Donne, A.J.H.; Costley, A.E.; Walker, C.I.

    2005-01-01

    Due to the high neutron yield and the large plasma size many ITER plasma parameters such as fusion power, power density, ion temperature, fast ion energy and their spatial distributions in the plasma core can be well measured by various neutron diagnostics. Neutron diagnostic systems under consideration and development for ITER include: radial and vertical neutron cameras (RNC and VNC), internal and external neutron flux monitors, neutron activation systems and neutron spectrometers. The two-dimensional neutron source strength and spectral measurements can be provided by the combined RNC and VNC. The neutron flux monitors need to meet the ITER requirement of time-resolved measurements of the neutron source strength and can provide the signals necessary for real-time control of the ITER fusion power. Compact and high throughput neutron spectrometers are under development. A concept for the absolute calibration of neutron diagnostic systems is proposed. The development, testing in existing experiments and the engineering integration of all neutron diagnostic systems into ITER are in progress and the main results are presented. (author)

  14. New system of the in core monitoring - PTK SVRK

    International Nuclear Information System (INIS)

    Urban, P.

    2000-01-01

    In this paper author describes new system (PTK SVRK) for in-core monitoring system of the Mochovce nuclear power plant installed instead of the HINDUKUSH in-core monitoring system, which are determined to monitor the core parameters. This system (HINDUKUSH), supplied by the Russian party in scope of the original design, became old during the idle time, and the components, which is it built from, are not produced any more. Thus, its utilisation had to undergo a technical end economic analysis. It resulted in classification to the work complex of the technical specification of safety measures. Its implementation conditioned the commissioning of the power plant nuclear unit. The program and technical system of the in-core monitoring (PTK SVRK) consists of two levels - a 'closed' basic, which fulfils the task of the primal system operation for the Unit operators, and an 'open' top level, which serves as a tool for the additional tasks of a prognosis, monitoring, and analysis of the processes taking place in the nuclear core by the monitoring physicists. The basic level of PTK SVRK has 100% redundancy because of its composition and configuration. It is namely formed by two identical, equivalent, and independent sets. Any of them may be operational or redundant. Every set consists of an apparatus processing the signals coming from the technology or the calculation complex, which converts these signals to physical parameters and controls the physically mathematical model of the monitored equipment. The results are presented to the operational staff as outputs on the workstations in the control room in a form of cartograms, graphs, histograms, tables, etc. The bases of the system calculation model are time-proven programs BIPR7 and PERMAK, which are used also in this power plant. The top level of PTK SVRK has a structure supporting the system openness for its further utilisation. Today it is formed by a server and two workstations. Besides the above-mentioned tasks, the

  15. Influence of fuel assembly loading pattern and fuel burnups upon leakage neutron flux spectra from light water reactor core (Joint research)

    International Nuclear Information System (INIS)

    Kojima, Kensuke; Okumura, Keisuke; Kosako, Kazuaki; Torii, Kazutaka

    2016-01-01

    At the decommissioning of light water reactors (LWRs), it is important to evaluate an amount of radioactivity in the ex-core structures such as a reactor containment vessel, radiation shieldings, and so on. It is thought that the leakage neutron spectra in these radioactivation regions, which strongly affect the induced radioactivity, would be changed by different reactor core configurations such as fuel assembly loading pattern and fuel burnups. This study was intended to evaluate these effects. For this purpose, firstly, partial neutron currents on the core surfaces were calculated for some core configurations. Then, the leakage neutron flux spectra in major radioactivation regions were calculated based on the provided currents. Finally, influence of the core configurations upon the neutron flux spectra was evaluated. As a result, it has been found that the influence is small on the spectrum shapes of neutron fluxes. However, it is necessary to pay attention to the facts that intensities of the leakage neutron fluxes are changed by the configurations and that intensities and spectrum shapes of the leakage neutron fluxes are changed depending on the angular direction around the core. (author)

  16. Core monitoring at the WNP-2 reactor

    International Nuclear Information System (INIS)

    Skeen, D.R.; Torres, R.H.; Burke, W.J.; Jenkins, I.; Jones, S.W.

    1992-01-01

    The WNP-2 reactor is a 3,323-MW(thermal) boiling water reactor (BWR) that is operated by the Washington Public Power Supply System. The WNP-2 reactor began commercial operation in 1984 and is currently in its eighth cycle. The core monitoring system used for the first cycle of operation was supplied by the reactor vendor. Cycles 2 through 6 were monitored with the POWERPLEX Core Monitoring Software System (CMSS) using the XTGBWR simulation code. In 1991, the supply system upgraded the core monitoring system by installing the POWERPLEX 2 CMSS prior to the seventh cycle of operation for WNP-2. The POWERPLEX 2 CMSS was developed by Siemens Power Corporation (SPC) and is based on SPC's advanced state-of-the-art reactor simulator code MICROBURN-B. The improvements in the POWERPLEX 2 system are possible as a result of advances in minicomputer hardware

  17. Wide range neutron monitoring device

    International Nuclear Information System (INIS)

    Okido, Fumiyasu; Arita, Setsuo; Ishii, Kazuhiko; Matsumiya, Shoichi; Furusato, Ken-ichiro; Nishida, Akira.

    1994-01-01

    The present invention has a function of reliably switching measuring values between a pulse method and a Cambel method even if noise level and saturated level are fluctuated. That is, a proportional range judging means always monitors neutron flux measuring values in a start-up region and neutron flux measuring values in an intermediate power region, so that the proportional range is detected depending on whether the difference or a variation coefficient of both of the measured values is constant or not. A switching value determining means determines a switching value by the result of judgement of the proportional range judging means. A selection/output means selects and outputs measuring signals at a neutron flux level in the start-up region or the intermediate power region by the output of the switching value determining means. With such procedures, since the measuring value is switched after confirming that arrival at the proportional range where the difference or a variation coefficient of the measured value between the pulse processing method and the measured value by the Cambel method is constant, an accurate neutron flux level containing neither noise level nor saturated level can be outputted. (I.S.)

  18. Triple GEM gas detectors as real time fast neutron beam monitors for spallation neutron sources

    International Nuclear Information System (INIS)

    Murtas, F; Claps, G; Croci, G; Tardocchi, M; Pietropaolo, A; Cippo, E Perelli; Rebai, M; Gorini, G; Frost, C D; Raspino, D; Rhodes, N J; Schooneveld, E M

    2012-01-01

    A fast neutron beam monitor based on a triple Gas Electron Multiplier (GEM) detector was developed and tested for the ISIS spallation neutron source in U.K. The test on beam was performed at the VESUVIO beam line operating at ISIS. The 2D fast neutron beam footprint was recorded in real time with a spatial resolution of a few millimeters thanks to the patterned detector readout.

  19. Effects of neutron spectrum and external neutron source on neutron multiplication parameters in accelerator-driven system

    International Nuclear Information System (INIS)

    Shahbunder, Hesham; Pyeon, Cheol Ho; Misawa, Tsuyoshi; Lim, Jae-Yong; Shiroya, Seiji

    2010-01-01

    The neutron multiplication parameters: neutron multiplication M, subcritical multiplication factor k s , external source efficiency φ*, play an important role for numerical assessment and reactor power evaluation of an accelerator-driven system (ADS). Those parameters can be evaluated by using the measured reaction rate distribution in the subcritical system. In this study, the experimental verification of this methodology is performed in various ADS cores; with high-energy (100 MeV) proton-tungsten source in hard and soft neutron spectra cores and 14 MeV D-T neutron source in soft spectrum core. The comparison between measured and calculated multiplication parameters reveals a maximum relative difference in the range of 6.6-13.7% that is attributed to the calculation nuclear libraries uncertainty and accuracy for energies higher than 20 MeV and also dependent on the reaction rate distribution position and count rates. The effects of different core neutron spectra and external neutron sources on the neutron multiplication parameters are discussed.

  20. Evaluation of energy response of neutron rem monitor applied to high-energy accelerator facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nakane, Yoshihiro; Harada, Yasunori; Sakamoto, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    2003-03-01

    A neutron rem monitor was newly developed for applying to the high-intensity proton accelerator facility (J-PARC) that is under construction as a joint project between the Japan Atomic Energy Research Institute and the High Energy Accelerator Research Organization. To measure the dose rate accurately for wide energy range of neutrons from thermal to high-energy region, the neutron rem monitor was fabricated by adding a lead breeder layer to a conventional neutron rem monitor. The energy response of the monitor was evaluated by using neutron transport calculations for the energy range from thermal to 150 MeV. For verifying the results, the response was measured at neutron fields for the energy range from thermal to 65 MeV. The comparisons between the energy response and dose conversion coefficients show that the newly developed neutron rem monitor has a good performance in energy response up to 150 MeV, suggesting that the present study offered prospects of a practical fabrication of the rem monitor applicable to the high intensity proton accelerator facility. (author)

  1. Device for controlling neutron flux

    International Nuclear Information System (INIS)

    Hirukawa, Koji.

    1979-01-01

    Purpose: To separately provide a reflux-type control tube and a scramming control rod, and arrange respective control tube groups concentrically from the core to the outside, and add a monitoring material thereto, thereby simplifying control system, flattening and controlling the core power. Constitution: At the central part of four fuel assemblies there are arranged reflux type control tubes filled with a solution of a neutron control substance, and four of the fundamental units are assembled and scramming control rods and provided at the center of these fundamental units in a freely insertable and removable manner, thereby forming a unit. The units of reflux type control tubes filled with the solutions of the neutron control substances having different concentrations are arranged concentrically from the core to the outside. Further, a monitoring substance such as phosphoric acid or the like, displaying similar behaviors as the solution is added in the solution, and the concentration of the solution is continuously measured. (Sekiya, K.)

  2. Experiences in troubleshooting of neutron rem monitor electronics and its subsequent calibration

    International Nuclear Information System (INIS)

    Maithani, Atul; Dash, Amit Kumar; Vijayasekaran, P.; Mathews, Geo; Ajoy, K.C.; Dhanasekaran, A.

    2014-01-01

    This paper deals with the troubleshooting of the signal processing and counting electronics of two no's of Neutron Rem monitors and its subsequent calibration. Electronics servicing with respect to detection of fault in the circuit board, replacement of faulty ICs, circuits (Analog and Digital) tracing and installation of new rechargeable battery pack was done. Electronic calibration using Test pulse generator was carried out for dose rate measurements, amplitude measurements and discriminator level setting. Serial communication settings were checked with both HyperTerminal and software for the monitors. Neutron Source calibration was also carried out for both the monitors. (author)

  3. Neutronic Design of KALIMER-600 Core with Moderator Rods

    International Nuclear Information System (INIS)

    Ser Gi Hong; Sang Ji Kim; Hoon Song; Yeong Il Kim

    2004-01-01

    Recently, the liquid-metal reactor research team of the Korea Atomic Energy Research Institute (KAERI) designed a 600 MWe sodium-cooled, metallic fueled fast reactor meeting the goals of Generation-IV, such as economics and proliferation resistance. In this paper, the core design analysis and its performance are reported. The core is designed to have a conversion ratio slightly larger than unity with no blanket assemblies in order not to produce an excess amount of high grade plutonium and to have no need for external feeds of fissile materials. To mitigate the sodium void reactivity of the fuel-self-sufficient core with no blanket assemblies, several design changes from a reference core are tried; reduction of the active core height, annular type cores with central dummy assemblies, and the use of moderator (BeO or ZrH 2 ) rods. As a result of the analysis, it is found that of the considered designs the use of moderator rods for the softening of the core neutron spectrum is the best choice for reducing the sodium void worth with the smallest changes from the reference fuel and assembly designs. The core analysis shows that the sodium void reactivity is reduced by ∼2$ in comparison with the reference core and the core has a much more negative fuel temperature reactivity feedback in comparison with the reference core. (authors)

  4. Monitoring an electric cable core

    International Nuclear Information System (INIS)

    Bhattacharya, S.; Marris, A.

    1984-01-01

    A method of, and apparatus for, continuously monitoring an advancing core having a continuous covering comprises directing X-ray radiation laterally towards the advancing covered core; continuously forming an X-ray image pattern of the advancing covered core and translating the image pattern into a visible image pattern; continuously transforming the visible pattern into a digital bit pattern; and processing the digital bit pattern using a microprocessor with interfacing electronics to provide an image profile of the advancing covered core and/or to provide analogue and/or digital signals indicative of the overall diameter and eccentricity of the covered core and of the thickness of the covering. (author)

  5. Real-Time Monitoring of Neutron Capture Cross Section in the IPR-R1 TRIGA Research Reactor as a Fuel Temperature Function

    Energy Technology Data Exchange (ETDEWEB)

    Palma, D.A.P. [Comissao Nacional de Energia Nuclear, CNEN, General Severiano Street, 90, 22290-901, Rio de Janeiro (Brazil); Mesquita, A.Z.; Souza, R.M.G.P. [Comissao Nacional de Energia Nuclear, CNEN/CDTN, Av. Presidente Antonio Carlos, 6627, 31270-901, Belo Horizonte (Brazil); Martinez, A.S. [Programa de Engenharia Nuclear, COPPE/UFRJ, Av. Horacio Macedo, 2030, Bloco G, 21941- 914, Rio de Janeiro (Brazil)

    2011-07-01

    Nuclear reactor operators have to monitor the behaviour of different nuclear and design parameters that vary in time to ensure the operating safety of the reactor. In recent years several operating parameters for the IPR-R1 TRIGA research reactor were monitored and indicated in real-time by the data acquisition system developed for the reactor, with all the data being stored in a hard disk in the data acquisition computer, to build in this way a database. The goal of this work is to insert in the set of parameters already collected the neutron capture cross sections for the fuel, from the power and temperature numbers obtained in real-time. The experimental data was obtained by using a fuel element instrumented with temperature sensors, located in the core of the IPR-R1 TRIGA research reactor at the CDTN - Centre for Development of Nuclear. This information is useful for the continuous monitoring of the reaction rate in neutron capture. For that, a new analytical formulation is used for the Doppler broadening function proposed by Palma and Martinez which is free from special functions in its functional form and with easy computing implementation. The results obtained were satisfactory from the standpoint of accuracy in comparison with the numerical reference method and indicate that it is possible to carry out real-time monitoring of the neutron capture cross section in the fuel. (author)

  6. Salient features, response and operation of Lead-Free Gulmarg Neutron Monitor

    International Nuclear Information System (INIS)

    Mufti, S.; Chatterjee, S.; Ishtiaq, P.M.; Darzi, M.A.; Mir, T.A.; Shah, G.N.

    2016-01-01

    Lead-Free Gulmarg Neutron Monitor (LFGNM) provides continuous ground level intensity measurements of atmospheric secondary neutrons produced in interactions of primary cosmic rays with the Earth's constituent atmosphere. We report the LFGNM detector salient features and simulation of its energy response for 10"−"1"1 MeV to 10"4 MeV energy incident neutrons using the FLUKA Monte Carlo package. An empirical calibration of the LFGNM detector carried out with a Pu–Be neutron source for maximising its few MeV neutron counting sensitivity is also presented. As an illustration of its functionality a single representative transient solar modulation event recorded by LFGNM depicting Forbush decrease in integrated neutron data for which the geospace consequences are well known is also presented. Performance of LFGNM under actual observation conditions for effectively responding to transient solar modulation is seen to compare well with other world-wide conventional neutron monitors.

  7. Nuclear characteristic simulation device for reactor core

    International Nuclear Information System (INIS)

    Arakawa, Akio; Kobayashi, Yuji.

    1994-01-01

    In a simulation device for nuclear characteristic of a PWR type reactor, there are provided a one-dimensional reactor core dynamic characteristic model for simulating one-dimensional neutron flux distribution in the axial direction of the reactor core and average reactor power based on each of inputted signals of control rod pattern, a reactor core flow rate, reactor core pressure and reactor core inlet enthalphy, and a three-dimensional reactor core dynamic characteristic mode for simulating three-dimensional power distribution of the reactor core, and a nuclear instrumentation model for calculating read value of the nuclear instrumentation disposed in the reactor based on the average reactor core power and the reactor core three-dimensional power distribution. A one-dimensional neutron flux distribution in the axial direction of the reactor core, a reactor core average power, a reactor core three-dimensional power distribution and a nuclear instrumentation read value are calculated. As a result, the three-dimensional power distribution and the power level are continuously calculated. Further, since the transient change of the three-dimensional neutron flux distribution is calculated accurately on real time, more actual response relative to a power monitoring device of the reactor core and operation performance can be simulated. (N.H.)

  8. TORT/MCNP coupling method for the calculation of neutron flux around a core of BWR

    International Nuclear Information System (INIS)

    Kurosawa, M.

    2005-01-01

    For the analysis of BWR neutronics performance, accurate data are required for neutron flux distribution over the In-Reactor Pressure Vessel equipments taking into account the detailed geometrical arrangement. The TORT code can calculate neutron flux around a core of BWR in a three-dimensional geometry model, but has difficulties in fine geometrical modelling and lacks huge computer resource. On the other hand, the MCNP code enables the calculation of the neutron flux with a detailed geometry model, but requires very long sampling time to give enough number of particles. Therefore, a TORT/MCNP coupling method has been developed to eliminate the two problems mentioned above in each code. In this method, the TORT code calculates angular flux distribution on the core surface and the MCNP code calculates neutron spectrum at the points of interest using the flux distribution. The coupling method will be used as the DOT-DOMINO-MORSE code system. This TORT/MCNP coupling method was applied to calculate the neutron flux at points where induced radioactivity data were measured for 54 Mn and 60 Co and the radioactivity calculations based on the neutron flux obtained from the above method were compared with the measured data. (authors)

  9. TORT/MCNP coupling method for the calculation of neutron flux around a core of BWR.

    Science.gov (United States)

    Kurosawa, Masahiko

    2005-01-01

    For the analysis of BWR neutronics performance, accurate data are required for neutron flux distribution over the In-Reactor Pressure Vessel equipments taking into account the detailed geometrical arrangement. The TORT code can calculate neutron flux around a core of BWR in a three-dimensional geometry model, but has difficulties in fine geometrical modelling and lacks huge computer resource. On the other hand, the MCNP code enables the calculation of the neutron flux with a detailed geometry model, but requires very long sampling time to give enough number of particles. Therefore, a TORT/MCNP coupling method has been developed to eliminate the two problems mentioned above in each code. In this method, the TORT code calculates angular flux distribution on the core surface and the MCNP code calculates neutron spectrum at the points of interest using the flux distribution. The coupling method will be used as the DOT-DOMINO-MORSE code system. This TORT/MCNP coupling method was applied to calculate the neutron flux at points where induced radioactivity data were measured for 54Mn and 60Co and the radioactivity calculations based on the neutron flux obtained from the above method were compared with the measured data.

  10. The neutron beam intensity increase by in-core fuel management enhancement in multipurpose research reactors

    International Nuclear Information System (INIS)

    Martinc, R.; Vukadin, Z.; Konstantinovic, J.

    1986-01-01

    The exploitation characteristics of an existing multipurpose research reactor can be increased not only by great reconstruction, but also, to the considerable extent, by the in-core fuel management sophistication. The optimisation of the in-core fuel management procedure in such reactors is governed (among others) by the identified reactor utilisation goals, i.e. by weighting factors dedicated to different utilisation goals, which are often (regarding the in-core fuel management procedure) highly controversial. In this work the best solution for in-core fuel management is sought, with the highest weighting factor dedicated to the neutron beam usage, rather than sample irradiation in the reactor core. The term in-core fuel management includes: the core configuration, the locations of the fresh fuel inflow zone and spent fuel excite zone, and the fuel transfers between these two zones (author)

  11. Neutronic analysis for core conversion (HEU–LEU of the low power research reactor using the MCNP4C code

    Directory of Open Access Journals (Sweden)

    Aldawahra Saadou

    2015-06-01

    Full Text Available Comparative studies for conversion of the fuel from HEU to LEU in the miniature neutron source reactor (MNSR have been performed using the MCNP4C code. The HEU fuel (UAl4-Al, 90% enriched with Al clad and LEU (UO2 12.6% enriched with zircaloy-4 alloy clad cores have been analyzed in this study. The existing HEU core of MNSR was analyzed to validate the neutronic model of reactor, while the LEU core was studied to prove the possibility of fuel conversion of the existing HEU core. The proposed LEU core contained the same number of fuel pins as the HEU core. All other structure materials and dimensions of HEU and LEU cores were the same except the increase in the radius of control rod material from 0.195 to 0.205 cm and keeping the outer diameter of the control rod unchanged in the LEU core. The effective multiplication factor (keff, excess reactivity (ρex, control rod worth (CRW, shutdown margin (SDM, safety reactivity factor (SRF, delayed neutron fraction (βeff and the neutron fluxes in the irradiation tubes for the existing and the potential LEU fuel were investigated. The results showed that the safety parameters and the neutron fluxes in the irradiation tubes of the LEU fuels were in good agreements with the HEU results. Therefore, the LEU fuel was validated to be a suitable choice for fuel conversion of the MNSR in the future.

  12. Coupled neutronic/thermal-hydraulic analysis of the HPLWR three pass core

    International Nuclear Information System (INIS)

    Monti, Lanfranco; Starflinger, Joerg; Schulenberg, Thomas

    2008-01-01

    The High Performance Light Water Reactor is an innovative Gen-IV reactor cooled and moderated with water at supercritical pressure. The three pass core concept has been proposed to reduce peaking factors, i.e. hot-channel effects, and it further increases the core heterogeneity, which is mainly due to pronounced water density reduction. For this kind of nuclear reactor, the significant feedbacks - which exist between the properties of the components and the power generation rate - can not be neglected and require a coupled Neutronic/Thermal-Hydraulic analysis even for steady state conditions. The main goal of this paper is to present the developed tool for coupled analyses of the HPLWR. Two state-of-the-art codes have been chosen for Thermal-Hydraulic and Neutronic core analyses, namely TRACE and ERANOS, and they have been coupled with in an iterative procedure in which they are run in series until a steady state condition has been reached. In the simplifying assumptions of uniform enrichment distribution, zero burn-up and ignoring the effect of the control rods, the obtained steady state condition will be discussed and a core power map, flow rate redistribution as well as water and fuel temperature variations will be presented. (author)

  13. The calibration of the MAST neutron yield monitors

    International Nuclear Information System (INIS)

    Stammers, Keith; Loughlin, M.J.

    2006-01-01

    Several neutron detectors have been installed on MAST to monitor the temporal production of neutrons during neutral beam injection. This paper describes the detectors, their calibration and applications of the data. The main neutron diagnostic is a guarded fission chamber, with processing electronics that allow data collection in three modes of operation, and covers the whole range of neutron production rate to be expected from current operations and future upgrades. The scalar mode of operation is calibrated with a 252 Cf source inside the vacuum vessel and then MCNP modelling is used to relate this calibration to an extended plasma source. Plasma neutron data are used to extend the calibration to the Campbell and ion-current modes, with final uncertainties of approximately 8% in each case. Corroborative evidence for the accuracy of the calibration, obtained from neutron activation, indicates that the method is satisfactory. The neutron data are used routinely to keep track of the radio-activation of key components of the MAST tokamak

  14. The new Athens center on data processing from the neutron monitor network in real time

    Directory of Open Access Journals (Sweden)

    Mavromichalaki

    2005-11-01

    Full Text Available The ground-based neutron monitors (NMs record galactic and solar relativistic cosmic rays which can play a useful key role in space weather forecasting, as a result of their interaction with interplanetary disturbances. The Earth's-based neutron monitor network has been used in order to produce a real-time prediction of space weather phenomena. Therefore, the Athens Neutron Monitor Data Processing Center (ANMODAP takes advantage of this unique multi-directional device to solve problems concerning the diagnosis and forecasting of space weather. At this moment there has been a multi-sided use of neutron monitors. On the one hand, a preliminary alert for ground level enhancements (GLEs may be provided due to relativistic solar particles and can be registered around 20 to 30 min before the arrival of the main part of lower energy particles responsible for radiation hazard. To make a more reliable prognosis of these events, real time data from channels of lower energy particles and X-ray intensity from the GOES satellite are involved in the analysis. The other possibility is to search in real time for predictors of geomagnetic storms when they occur simultaneously with Forbush effects, using hourly, on-line accessible neutron monitor data from the worldwide network and applying a special method of processing. This chance of prognosis is only being elaborated and considered here as one of the possible uses of the Neutron Monitor Network for forecasting the arrival of interplanetary disturbance to the Earth. The achievements, the processes and the future results, are discussed in this work.

  15. From the crust to the core of neutron stars on a microscopic basis

    Science.gov (United States)

    Baldo, M.; Burgio, G. F.; Centelles, M.; Sharma, B. K.; Viñas, X.

    2014-09-01

    Within a microscopic approach the structure of Neutron Stars is usually studied by modelling the homogeneous nuclear matter of the core by a suitable Equation of State, based on a many-body theory, and the crust by a functional based on a more phenomenological approach. We present the first calculation of Neutron Star overall structure by adopting for the core an Equation of State derived from the Brueckner-Hartree-Fock theory and for the crust, including the pasta phase, an Energy Density Functional based on the same Equation of State, and which is able to describe accurately the binding energy of nuclei throughout the mass table. Comparison with other approaches is discussed. The relevance of the crust Equation of State for the Neutron Star radius is particularly emphasised.

  16. Development of a coupled neutronic/thermal-hydraulic tool with multi-scale capabilities and applications to HPLWR core analysis

    International Nuclear Information System (INIS)

    Monti, Lanfranco; Starflinger, Joerg; Schulenberg, Thomas

    2011-01-01

    Highlights: → Advanced analysis and design techniques for innovative reactors are addressed. → Detailed investigation of a 3 pass core design with a multi-physics-scales tool. → Coupled 40-group neutron transport/equivalent channels TH core analyses methods. → Multi-scale capabilities: from equivalent channels to sub-channel pin-by-pin study. → High fidelity approach: reduction of conservatism involved in core simulations. - Abstract: The High Performance Light Water Reactor (HPLWR) is a thermal spectrum nuclear reactor cooled and moderated with light water operated at supercritical pressure. It is an innovative reactor concept, which requires developing and applying advanced analysis tools as described in the paper. The relevant water density reduction associated with the heat-up, together with the multi-pass core design, results in a pronounced coupling between neutronic and thermal-hydraulic analyses, which takes into account the strong natural influence of the in-core distribution of power generation and water properties. The neutron flux gradients within the multi-pass core, together with the pronounced dependence of water properties on the temperature, require to consider a fine spatial resolution in which the individual fuel pins are resolved to provide precise evaluation of the clad temperature, currently considered as one of the crucial design criteria. These goals have been achieved considering an advanced analysis method based on the usage of existing codes which have been coupled with developed interfaces. Initially neutronic and thermal-hydraulic full core calculations have been iterated until a consistent solution is found to determine the steady state full power condition of the HPLWR core. Results of few group neutronic analyses might be less reliable in case of HPLWR 3-pass core than for conventional LWRs because of considerable changes of the neutron spectrum within the core, hence 40 groups transport theory has been preferred to the

  17. Development of a portable system to test area monitors for neutrons

    International Nuclear Information System (INIS)

    Souza, Luciane de Rezende

    2011-02-01

    The objective is to develop a portable system to test the reliability in terms of calibration of area monitors for neutrons. For the production of this system, thickness and location of the source within the system were simulated using the code of radiation transport MCNP5. The thicknesses were set for a 241 Am-Be source with an activity of 395 mCi, which will be in a polyethylene cylinder which will provide a ambient dose equivalent rate chosen through the points of calibration settings' used by the Laboratory of Neutrons (IRD / CNEN). The results obtained in this study show the feasibility of mounting the portable system as a tool to test the area monitors for neutrons, which will provide the user of neutron area monitors to check the instrument's response in the same field of operation, thus avoiding the use of an inadequate equipment. (author)

  18. Analysis of neutron dose rates on RGTT200K core using MCNP5

    International Nuclear Information System (INIS)

    Suwoto; Zuhair

    2016-01-01

    The conceptual design of RGTT200K (High Temperature Gas-cooled Reactor of 200 MWth Cogeneration) is the non-annular cylindrical reactor core with TRISO kernel coated fuel particles in the form of balls called pebble and cooled by helium gas. The RGTT200K reactor core design adopts high temperature gas cooled reactor (HTGR) technology with inherent passive safety. The RGTT200K spherical fuel called pebble fuel containing thousand of TRISO-coated fuel particles of uranium oxide (UO 2 ) 10 % enriched. TRISO coating comprises four layers, namely: porous carbon buffer layer, inner pyrolytic carbon layer (IPyC, Inner Pyrolytic Carbon), silicon carbide layer (SiC) and a layer of pyrolytic carbon outer portion (OPyC, Outer Pyrolytic Carbon). Modeling and analysis of preliminary calculation of neutron dose rate on normal operating temperature (T kernel =1200K) and accident temperature (T kernel =1800K) of the RGTT200K core were performed using Monte Carlo MCNP5v1.2 code. The continuous energy nuclear data cross-sections was taken from ENDF/B-VII, JENDL-4 and JEFF-3.1 nuclear data files . Double heterogeneity model in TRISO-coated fuel particles kernel and the pebble of RGTT200K core. By utilizing EGS99304 code, the 640 amount of energy group structures (SAND-II neutron group structures) is used in the neutron fluxes and spectrum calculation in RGTT200K reactor. The RGTT200K reactor core is divided into 25 zones (5 zones in radial and 10 zones in axial directions), while the modeling of radiation and biological shielding reactor RGTT200K are used to determine of preliminary neutron dose rate emitted by the neutron source with tally cards are available in the MCNP5v1.2 code. The calculation result analyses of the neutron dose rate distributions are determined using a conversion factor of flux-to-dose taken from International Commission on Radiological Protection, ICRP. The preliminary calculations result show that the neutrons dose rate using ICRP-74 conversion factor for

  19. Fast neutron detection at near-core location of a research reactor with a SiC detector

    Science.gov (United States)

    Wang, Lei; Jarrell, Josh; Xue, Sha; Tan, Chuting; Blue, Thomas; Cao, Lei R.

    2018-04-01

    The measurable charged-particle produced from the fast neutron interactions with the Si and C nucleuses can make a wide bandgap silicon carbide (SiC) sensor intrinsically sensitive to neutrons. The 4H-SiC Schottky detectors have been fabricated and tested at up to 500 °C, presenting only a slightly degraded energy resolution. The response spectrum of the SiC detectors were also obtained by exposing the detectors to external neutron beam irradiation and at a near-core location where gamma-ray field is intense. The fast neutron flux of these two locations are ∼ 4 . 8 × 104cm-2 ṡs-1 and ∼ 2 . 2 × 107cm-2 ṡs-1, respectively. At the external beam location, a Si detector was irradiated side-by-side with SiC detector to disjoin the neutron response from Si atoms. The contribution of gamma ray, neutron scattering, and charged-particles producing reactions in the SiC was discussed. The fast neutron detection efficiencies were determined to be 6 . 43 × 10-4 for the external fast neutron beam irradiation and 6 . 13 × 10-6 for the near-core fast neutron irradiation.

  20. Experimental studying the effects of horizontal experimental channels on the neutron field in the model of the TVR-M research reactor core

    International Nuclear Information System (INIS)

    Shvedov, O.V.; Aitov, G.M.; Balyuk, S.A.

    1989-01-01

    The effect of horizontal channels on the neutron field in the core of the TVR-M heavy-water cooled high-flux research reactor is experimentally studied. The experiments are carried out in a critical assembly using full-scale core model. The data are obtained characterizing soft and rigid effects of horizontal experimental channels on neutron field. The soft effect is connected with the total mass of experimental channels. It is practically uniform by the core azimuth and reveals itself in the decrease of neutron burst in the reflector, and, consequently in the decrease of neutron field distorsion in the external and middle fuel assembly rows. The rigid effect is conditioned by separate experimental channels located close to the core. It brings about local disturbance in the closest fuel assemblies. The data obtained are a part of experimental program on studying basis power distributions in the TVR-M reactor lattices. 2 refs.; 18 figs

  1. Criticality experiment for No.2 core of DF-VI fast neutron criticality facility

    International Nuclear Information System (INIS)

    Yang Lijun; Liu Zhenhua; Yan Fengwen; Luo Zhiwen; Chu Chun; Liang Shuhong

    2007-01-01

    At the completion of the DF-VI fast neutron criticality facility, its core changed, and it was restarted and a series of experiments and measurements were made. According to the data from 29 criticality experiments, the criticality element number and mass were calculated, the control rod reactivity worth were measured by period method and rod compensate method, reactivity worth of safety rod and safety block were measured using reactivity instrument; the reactivity worth of outer elements and radial distribution of elements were measured too. Based on all the measurements mentioned above, safety operation parameters for core 2 in DF-VI fast neutron criticality facility were conformed. (authors)

  2. Physical start up of the Dalat nuclear research reactor with the core configuration having a central neutron trap

    International Nuclear Information System (INIS)

    Pham Duy Hien; Ngo Quang Huy; Vu Hai Long; Tran Khanh Mai

    1994-01-01

    After the reactor has reached physical criticality with the core configuration exempt from central neutron trap on 1 November 1983, the core configuration with a central neutron trap has been arranged in the reactor and the reactor has reached physical criticality with this core configuration at 17h48 on 18 December 1983. The integral worths of different control rods are determined with accuracy. 2 refs., 24 figs., 18 tabs

  3. Characterization of the Annular Core Research Reactor (ACRR Neutron Radiography System Imaging Plane

    Directory of Open Access Journals (Sweden)

    Kaiser Krista

    2016-01-01

    Full Text Available The Annular Core Research Reactor (ACRR at Sandia National Laboratories (SNL is an epithermal pool-type research reactor licensed up to a thermal power of 2.4 MW. The ACRR facility has a neutron radiography facility that is used for imaging a wide range of items including reactor fuel and neutron generators. The ACRR neutron radiography system has four apertures (65:1, 125:1, 250:1, and 500:1 available to experimenters. The neutron flux and spectrum as well as the gamma dose rate were characterized at the imaging plane for the ACRR's neutron radiography system for the 65:1, 125:1 and 250:1 apertures.

  4. Neutron fluence at the reactor pressure vessel wall - a comparison of French and German procedures and strategies in PWRs

    International Nuclear Information System (INIS)

    Tricot, N.; Jendrich, U.

    2003-01-01

    While the neutrons within the core may take part in the chain reaction, those neutrons emitted from the core are basically lost for the energy production. This 'neutron leakage' represents a loss of fuel efficiency and causes neutron embrittlement of the reactor pressure vessel (RPV) wall. The latter raises safety concerns, needs to be monitored closely and may necessitate mitigating measures. There are different strategies to deal with these two undesirable effects: The neutron emission may be reduced to some extent all around the core or just at the 'hot spots' of RPV embrittlement by tailored core loading patterns. A higher absorption rate of neutrons may also be achieved by a larger water gap between the core and the RPV. In this paper the inter-relations between the distribution of neutron flux, core geometry, core loading strategy, RPV embrittlement and its surveillance are discussed at first. Then the different strategies followed by the German and French operators are described. Finally the conclusions will highlight the communalities and differences between these strategies as different approaches to the same problem of safety as well as economy. (authors)

  5. Characterization of the neutronic fields obtained by means of neutron traps inside the nuclear reactor core IPEN/MB-01

    International Nuclear Information System (INIS)

    Mura, Luiz Ernesto Credidio

    2011-01-01

    This paper presents the results of the neutron flux values obtained from the deployment of a Flux Trap of neutrons in the reactor core IPEN/MB-01. We analyzed several configurations of Flux Traps deployed in the reactor core IPEN/MB-01 in order to get elected to Flux Trap configuration more efficient. To characterize the neutron spectrum were irradiated in the center of the Flux Trap activation detectors of different materials (Au, Sc, In, Ti, Ni). The respective gamma spectroscopy of these elements after irradiation with and without cadmium cover, provided the experimental values of the nuclear reaction rates (saturation activity) by the target nuclei and their uncertainties used as input to the code SANDBP who calculated the energy spectrum of neutrons in the center of the 'Flux-Trap' in 50 energy groups, using the input spectra calculated at the irradiation position (center of the 'Flux Trap') by codes for Reactor Physics. The results found an increase in the thermal neutron flux in the center of the Flux Trap configuration 203 for the standard configuration (default) of about 350% without having the need to increase the reactor power. We also made comparisons between the spectra obtained by SANDBP deployed, compared to those calculated by MCNP-4C code and XSDRNPM. The spatial characterization of the thermal neutron flux is made with activation foils in the form of an infinitely dilute bulk alloy of 1% Au and 99% Al in some internal points of the configuration 203 (axially to Flux Trap a nd adjacent radial) and the results showed a significant increase in the magnitude of their values when compared to standard rectangular configuration. (author)

  6. Systematic thermal reduction of neutronization in core-collapse supernovae

    International Nuclear Information System (INIS)

    Fantina, A.F.; Donati, P.; Pizzochero, P.M.

    2009-01-01

    We investigate to what extent the temperature dependence of the nuclear symmetry energy can affect the neutronization of the stellar core prior to neutrino trapping during gravitational collapse. To this end, we implement a one-zone simulation to follow the collapse until β-equilibrium is reached and the lepton fraction remains constant. Since the strength of electron capture on the neutron-rich nuclei associated to the supernova scenario is still an open issue, we keep it as a free parameter. We find that the temperature dependence of the symmetry energy consistently yields a small reduction of deleptonization, which corresponds to a systematic effect on the shock wave energetics: the gain in dissociation energy of the shock has a small yet non-negligible value of about 0.4 foe (1 foe=10 51 erg) and this result is almost independent from the strength of nuclear electron capture. The presence of such a systematic effect and its robustness under changes of the parameters of the one-zone model are significant enough to justify further investigations with detailed numerical simulations of supernova explosions.

  7. Investigation of space-energy effects in the reactivity measurement by neutron noise with ex-core detectors in a reflected LWR

    International Nuclear Information System (INIS)

    Lescano, V.H.; Behringer, K.

    1981-11-01

    Practical application of the zero-crossing correlation method for measuring slightly subcritical reactivities in a swimming pool reactor required the use of detector locations in the reflector zone near to the core boundary. Experimental investigations of neutron-noise cross-power spectra showed significant deviations from the point reactor model at higher frequencies (> 100 Hz). Nevertheless, the use of the point reactor model was found to be an useful approach in the analysis of the zero-crossing correlation method yielding results which agreed well with those obtained from the rod-drop method. The theoretical part of the work is concerned with a space-dependent model calculation in two-group diffusion theory to support the experimental findings. The model calculation can explain the trends observed in the neutron-noise spectra as well as the applicability of the point reactor model to the zero-crossing correlation method. To obtain better insight, the calculations have been extended to neutron-noise spectra when one or both detectors are located in the core zone. In the case of a large core and widely spaced detectors, with at least one detector in the core zone, a sink frequency appears in the spectra. This effect is well-known in coupled-core kinetics. (Auth.)

  8. Development of network communication function for digitalized neutron flux monitoring instrument

    International Nuclear Information System (INIS)

    Li Kai; Zhang Liangju; Chen Xiaojun; Li Baoxiang

    2002-01-01

    It is essential for a digitalized Neutron Flux Monitoring Instrument to communicate with other parts of Instrumentation and Control System in a network environment, and it is fairly different from the case of traditional analogue nuclear instrumentation. How to satisfy all the requirements of different network structure and communication protocol, which might be adopted in different target nuclear power plant, is a key issue in the design and development of a digitalized neutron flux monitoring instrument. The author describes the overall communication scheme, mainly discusses the design idea and the requirements of the communication interfaces and the implementation of the RS-485 interface as an example of the digitalized neutron flux monitoring instrument, which is under development in the institute

  9. One-speed neutron transport in spheres with totally absorbing cores

    International Nuclear Information System (INIS)

    Sjoestrand, N.G.

    1988-01-01

    Stationary and time-dependent transport of neutrons of one speed has been studied in spheres with totally absorbing cores. For stationary, critical reactors the number of secondaries per collision has been calculated numerically for various inner and outer radii. In the time-dependent case, the decay constant has been calculated for spherical shells of different inner radii and thicknesses. For a fixed ratio between shell thickness and inner radius, the curve of the decay constant versus shell thickness crosses the Corngold limit in the same way as the curve for a homogeneous sphere. When the ratio goes to zero the curve approaches that for an infinite slab. The behaviour is discussed in view of a new result from collision theory, viz. that the following condition must be fulfilled for a body at the point where the decay constant curve crosses the Corngold limit: the average exit distance of the neutrons is equal to the mean free path for scattering

  10. A neutron monitor for D-T neutron generator in the PGNAA-based online measurement system

    Science.gov (United States)

    Shan, Qing; Shengnan, Chu; Yongsheng, Ling; Pingkun, Cai; Wenbao, Jia

    2017-06-01

    A new type of neutron detector, which consists of polyethylene, an EJ200 plastic scintillator and fused silica, was proposed and optimized by the GEANT4 Monte Carlo simulation toolkit in our previous studies. The calculation method was also described for calculating the neutron flux in the preset condition. This paper reports the manufacturing of the prototype detector. Experiments are conducted to validate the feasibility of this detector. A D-T neutron generator and a 60Co gamma-ray source are used in the experiments. The designed detector and a He-3 proportional counter are simultaneously used to monitor the yield of the D-T neutron generator. A more universal calculation method is developed to enable the application of this detector to common conditions. The experimental results show that the performance of the designed detector is comparable to that of the He-3 proportional counter. The relative deviations between their normalized counts are less than 5%.

  11. Indigenous development of diamond detectors for monitoring neutrons

    International Nuclear Information System (INIS)

    Singh, Arvind; Amit Kumar; Topkar, Anita; Pithawa, C.K.

    2013-01-01

    High purity synthetic chemically vapor deposited (CVD) diamond has several outstanding characteristics that make it as an important material for detector applications specifically for extreme environmental conditions like high temperature, high radiation, and highly corrosive environments. Diamond detectors are especially considered promising for monitoring fast neutrons produced by the D-T nuclear fusion reactions in next generation fusion facilities such as ITER. When fast neutrons interact with carbon, elastic, inelastic and (n,α) type reactions can occur. These reactions can be employed for the detection of fast neutrons using diamond. We have initiated the development of diamond detectors based on synthetic CVD substrates. In this paper, the first test of a polycrystalline CVD diamond detector with fast neutrons is reported. The test results demonstrate that this detector can be used for monitoring fast neutrons. The diamond detectors have been fabricated using 5 mm x 5 mm, 300 μm polycrystalline diamond substrates. Aluminum metallization has been used on both sides of the detector to provide electrical contacts. The performance of fabricated detectors was first evaluated using current and capacitance measurements. The leakage current was observed to be stable and about a few pAs for voltages up to 300V. The capacitance-voltage characteristics showed a constant capacitance which is as expected. To confirm the response of the detector to charged particles, the pulse height spectrum (PHS) was obtained using 238 Pu- 239 Pu dual α- source. The PHS showed a continuum without any peak due to polycrystalline nature of diamond film. The response of the detector to fast neutrons has been studied using the fast neutron facility at NXF, BARC. The PHS obtained for a neutron yield of 4 x 10 8 n/s is shown. The average counts per second (cps) measured for diamond detector for different neutron yields is shown. The plot shows linearity with coefficient of determination R

  12. Core of a fast neutron nuclear reactor

    International Nuclear Information System (INIS)

    Giacometti, Christian; Mougniot, J.-C.; Ravier, Jean.

    1974-01-01

    The fast neutron nuclear reactor described includes an internal area in fissile material completely enclosed in an area of fertile material forming the outside blanket. The internal fissile area is provided with housings exclusively filled with fertile material forming one or more inside blankets. In this core the internal blankets are shaped like rings vertically separating superimposed rings of fissile material. The blanket of material nearest to the periphery is circumscribed externally by a contour having an indented shape on its straight section so as to increase the contact area between this blanket and the external blanket [fr

  13. SINUPERM N: a new digital neutron flux density monitoring system

    International Nuclear Information System (INIS)

    Flick, H.A.

    1993-01-01

    The new SINUPERM N System is developed for Neutron Monitoring in nuclear power plants. The development was started in 1989 (with the design specification) and will be finished in 1993 (with the qualification). The first built will be the nuclear power plant in Borselle (Netherlands). The design is based on a microprocessor system with a digital signal processor for calculations and signal filtering. The separation between analogue-input signals and digital processing enables for each detector type special input modules and standard output interfaces e.g. field - bus. The wide range of the Neutron Flux Density from 10 -2 cm -2 s -1 up to 10 8 cm -2 s -1 for the out-of-pile instrumentation and up to 10 14 cm -2 s -1 for the in-core-instrumentation will be covered by the SINUPERM N system. The requirements to be met by the SINUPERM N system are the IEEE 323, IEC 987 and the German standard KTA-3503 for safety systems. Other standards for instrumentation and control systems like IEC 801, IEC 1131 and IEC 68 for EMV, climatic and seismic requirements are also included in the hardware type test. The software requirement depends on the IEC 880 standard. (author). 3 figs

  14. Nuclear reactor with a fixed system of neutron poison, which can be burnt up, introduced into the reactor core

    International Nuclear Information System (INIS)

    Mueller, E.; Roegler, H.J.; Wickert, M.

    1985-01-01

    The fixed system consists of neutron poison which can be burnt up, in an uneven distribution, and with adjustable absorber rods for output control, which are driven into the reactor core from the side along the fuel elements. There is an excess of neutron poison which can be burnt up, overall, on the side of the reactor core away from the absorber rods. The reactor core is free of neutron poison which can be burnt up on the side where the absorber rods are driven in, so that the ratio of maximum to mean power density with reference to a possible absorber rod positions is less than for homogeneous distribution of the neutron poison which can be burnt up. (orig./HP) [de

  15. Improved core monitoring for improved plant operations

    International Nuclear Information System (INIS)

    Mueller, N.P.

    1987-01-01

    Westinghouse has recently installed a core on-line surveillance, monitoring and operations systems (COSMOS), which uses only currently available core and plant data to accurately reconstruct the core average axial and radial power distributions. This information is provided to the operator in an immediately usable, human-engineered format and is accumulated for use in application programs that provide improved core performance predictive tools and a data base for improved fuel management. Dynamic on-line real-time axial and radial core monitoring supports a variety of plant operations to provide a favorable cost/benefit ratio for such a system. Benefits include: (1) relaxation or elimination of certain technical specifications to reduce surveillance and reporting requirements and allow higher availability factors, (2) improved information displays, predictive tools, and control strategies to support more efficient core control and reduce effluent production, and (3) expanded burnup data base for improved fuel management. Such systems can be backfit into operating plants without changing the existing instrumentation and control system and can frequently be implemented on existing plant computer capacity

  16. CAP vessel monitoring. Programme, measurement and neutron calculation

    International Nuclear Information System (INIS)

    Farrugia, J.M.; Nimal, J.C.; Totth, B.; Lloret, R.; Perdreau, R.

    1982-03-01

    Starting with the design of the CAP (Prototype Advanced NSSS), a programme for pressure vessel monitoring has been prepared, including dosimetry. The dosimetry programme encompasses activation dosimeters (Cu, Nb, Co) and fission dosimeters ( 237 Np, 238 U) installed either inside the pressure vessel with the monitoring test-samples, or in a counting tube outside the pressure vessel. In the first place, a description of the method for neutronic calculation is given; such calculations use the codes ANISN and MERCURE 4 allowing assessment of the neutron spectrum seen by the detectors and the related reaction coefficient. This is followed by a description of the instrumentation. The initial dosimetry results available after the initial operating cycles concur with calculations [fr

  17. Characteristics of self-powered neutron detectors used in power reactors

    International Nuclear Information System (INIS)

    Todt, William H. Sr.

    1998-01-01

    Self-powered neutron detectors have been used effectively as in-core flux monitors for over twenty-five years in nuclear power reactors worldwide. This paper describes the basic properties of these radiation sensors including their nuclear, electrical and mechanical characteristics. Recommendations are given for the proper choice of the self-powered detector emitter to provide the proper response time and radiation sensitivity desired for use in an effective in-core radiation monitoring system. Examples are shown of specific self-powered detector designs, which are being effectively, used in in-core instrumentation systems for pressurized water, heavy water and graphite moderated light water reactors. Also examples are shown of the mechanical configurations of in-core assemblies of self-powered detectors combined with in-core thermocouples presently used in pressurized water and heavy water reactors worldwide. (author)

  18. Neutron monitor measurements on the German research vessel Polarstern. First results

    Energy Technology Data Exchange (ETDEWEB)

    Heber, B. [Insititut fuer Experimentelle und Angewandte Physik, Christian-Albrechts-Universitaet zu Kiel (Germany); Schwerdt, C.; Walter, M. [Deutsches Elektronen-Synchrotron DESY, D-15738 Zeuthen (Germany); Bernade, G.; Fuchs, R.; Krueger, H.; Moraal, H. [Center for Space Research, North-West University, Potchefstroom 2520 (South Africa)

    2014-07-01

    Cosmic-ray particles provide a unique opportunity to probe the dynamic conditions in the highly variable heliosphere. The longest continuous measurements of galactic cosmic rays come from cosmogenic isotopes and from neutron monitors located at different location on Earth. Understanding the effects of energetic particles in and on the atmosphere and the environment of Earth must address their transport to Earth and their interactions with the Earth's atmosphere, including their filtering by the terrestrial magnetosphere. Since neutron monitors are integral detectors of secondary cosmic rays produced in the atmosphere, a single neutron monitor can only derive the energy spectra of the particles impinging on the Earth during latitudinal surveys. A portable neutron monitor was built at the North-West University, South Africa, and was installed on the German research vessel Polarstern. Such latitude surveys have been done before, but this vessel is better suited for this purpose than previous platforms because it traverses all the locations with geomagnetic cutoff rigidities from <<1 GV to 15 GV at least twice per year. In this contribution we present first results from the measurement campaigns.

  19. Design considerations for neutron activation and neutron source strength monitors for ITER

    International Nuclear Information System (INIS)

    Barnes, C.W.; Jassby, D.L.; LeMunyan, G.; Roquemore, A.L.

    1997-01-01

    The International Thermonuclear Experimental Reactor will require highly accurate measurements of fusion power production in time, space, and energy. Spectrometers in the neutron camera could do it all, but experience has taught us that multiple methods with redundancy and complementary uncertainties are needed. Previously, conceptual designs have been presented for time-integrated neutron activation and time-dependent neutron source strength monitors, both of which will be important parts of the integrated suite of neutron diagnostics for this purpose. The primary goals of the neutron activation system are: to maintain a robust relative measure of fusion energy production with stability and wide dynamic range; to enable an accurate absolute calibration of fusion power using neutronic techniques as successfully demonstrated on JET and TFTR; and to provide a flexible system for materials testing. The greatest difficulty is that the irradiation locations need to be close to plasma with a wide field of view. The routing of the pneumatic system is difficult because of minimum radius of curvature requirements and because of the careful need for containment of the tritium and activated air. The neutron source strength system needs to provide real-time source strength vs. time with ∼1 ms resolution and wide dynamic range in a robust and reliable manner with the capability to be absolutely calibrated by in-situ neutron sources as done on TFTR, JT-60U, and JET. In this paper a more detailed look at the expected neutron flux field around ITER is folded into a more complete design of the fission chamber system

  20. A High Temperature-Tolerant and Radiation-Resistant In-Core Neutron Sensor for Advanced Reactors. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Lei [The Ohio State Univ., Columbus, OH (United States); Miller, Don [The Ohio State Univ., Columbus, OH (United States)

    2015-01-23

    The objectives of this project are to develop a small and reliable gallium nitride (GaN) neutron sensor that is capable of withstanding high neutron fluence and high temperature, isolating gamma background, and operating in a wide dynamic range. The first objective will be the understanding of the fundamental materials properties and electronic response of a GaN semiconductor materials and device in an environment of high temperature and intense neutron field. To achieve such goal, an in-situ study of electronic properties of GaN device such as I-V, leakage current, and charge collection efficiency (CCE) in high temperature using an external neutron beam will be designed and implemented. We will also perform in-core irradiation of GaN up to the highest yet fast neutron fluence and an off-line performance evaluation.

  1. A High Temperature-Tolerant and Radiation-Resistant In-Core Neutron Sensor for Advanced Reactors. Final report

    International Nuclear Information System (INIS)

    Cao, Lei; Miller, Don

    2015-01-01

    The objectives of this project are to develop a small and reliable gallium nitride (GaN) neutron sensor that is capable of withstanding high neutron fluence and high temperature, isolating gamma background, and operating in a wide dynamic range. The first objective will be the understanding of the fundamental materials properties and electronic response of a GaN semiconductor materials and device in an environment of high temperature and intense neutron field. To achieve such goal, an in-situ study of electronic properties of GaN device such as I-V, leakage current, and charge collection efficiency (CCE) in high temperature using an external neutron beam will be designed and implemented. We will also perform in-core irradiation of GaN up to the highest yet fast neutron fluence and an off-line performance evaluation.

  2. Computer based core monitoring system for an operating CANDU reactor

    International Nuclear Information System (INIS)

    Yoon, Moon Young; Kwon, O Hwan; Kim, Kyung Hwa; Yeom, Choong Sub

    2004-01-01

    The research was performed to develop a CANDU-6 Core Monitoring System(CCMS) that enables operators to have efficient core management by monitoring core power distribution, burnup distribution, and the other important core variables and managing the past core history for Wolsong nuclear power plant unit 1. The CCMS uses Reactor Fueling Simulation Program(RFSP, developed by AECL) for continuous core calculation by integrating the algorithm and assumptions validated and uses the information taken from Digital Control Computer(DCC) for the purpose of producing basic input data. The CCMS has two modules; CCMS server program and CCMS client program. The CCMS server program performs automatic and continuous core calculation and manages overall output controlled by DataBase Management System. The CCMS client program enables users to monitor current and past core status in the predefined GUI(Graphic-User Interface) environment. For the purpose of verifying the effectiveness of CCMS, we compared field-test data with the data used for Wolsong unit 1 operation. In the verification the mean percent differences of both cases were the same(0.008%), which showed that the CCMS could monitor core behaviors well

  3. Hanford coring bit temperature monitor development testing results report

    International Nuclear Information System (INIS)

    Rey, D.

    1995-05-01

    Instrumentation which directly monitors the temperature of a coring bit used to retrieve core samples of high level nuclear waste stored in tanks at Hanford was developed at Sandia National Laboratories. Monitoring the temperature of the coring bit is desired to enhance the safety of the coring operations. A unique application of mature technologies was used to accomplish the measurement. This report documents the results of development testing performed at Sandia to assure the instrumentation will withstand the severe environments present in the waste tanks

  4. Results and interpretation of noise measurements using in-core self powered neutron detector strings at Unit 2 of the Paks Nuclear Power Plant

    International Nuclear Information System (INIS)

    Gloeckler, O.; Por, G.; Valko, J.

    1986-11-01

    In-core neutron noise and fuel assembly outlet temperature noise measurements were performed at Unit 2 of Paks Nuclear Power Plant. Characteristics of the reactor and the noise measuring equipment are briefly described. The in-core Rhodium emitter selfpowered neutron detector strings positioned axially above the other show high coherence and linear phase at low frequencies indicating a marked transport effect, not regularly measured in PWRs. The coherence between horizontally placed neutron detectors is small and the phase is zero. A transport effect of different nature is obtained between neutron detectors (in-core and ex-core) and fuel assembly outlet thermocouples. The observed characteristics depend on reactor and fuel assembly power in a way supporting interpretation in terms of coolant density and void content changes and power feedback effects. During routine analysis vibration of 1.1 Hz appeared as a strong peak in the power spectra. The control assembly that was responsible for the observed behaviour could be localized with high certainty. (author)

  5. Monitor units are not predictive of neutron dose for high-energy IMRT

    Directory of Open Access Journals (Sweden)

    Hälg Roger A

    2012-08-01

    Full Text Available Abstract Background Due to the substantial increase in beam-on time of high energy intensity-modulated radiotherapy (>10 MV techniques to deliver the same target dose compared to conventional treatment techniques, an increased dose of scatter radiation, including neutrons, is delivered to the patient. As a consequence, an increase in second malignancies may be expected in the future with the application of intensity-modulated radiotherapy. It is commonly assumed that the neutron dose equivalent scales with the number of monitor units. Methods Measurements of neutron dose equivalent were performed for an open and an intensity-modulated field at four positions: inside and outside of the treatment field at 0.2 cm and 15 cm depth, respectively. Results It was shown that the neutron dose equivalent, which a patient receives during an intensity-modulated radiotherapy treatment, does not scale with the ratio of applied monitor units relative to an open field irradiation. Outside the treatment volume at larger depth 35% less neutron dose equivalent is delivered than expected. Conclusions The predicted increase of second cancer induction rates from intensity-modulated treatment techniques can be overestimated when the neutron dose is simply scaled with monitor units.

  6. Determination of the in-core power and the average core temperature of low power research reactors using gamma dose rate measurements

    International Nuclear Information System (INIS)

    Osei Poku, L.

    2012-01-01

    Most reactors incorporate out-of-core neutron detectors to monitor the reactor power. An accurate relationship between the powers indicated by these detectors and actual core thermal power is required. This relationship is established by calibrating the thermal power. The most common method used in calibrating the thermal power of low power reactors is neutron activation technique. To enhance the principle of multiplicity and diversity of measuring the thermal neutron flux and/or power and temperature difference and/or average core temperature of low power research reactors, an alternative and complimentary method has been developed, in addition to the current method. Thermal neutron flux/Power and temperature difference/average core temperature were correlated with measured gamma dose rate. The thermal neutron flux and power predicted using gamma dose rate measurement were in good agreement with the calibrated/indicated thermal neutron fluxes and powers. The predicted data was also good agreement with thermal neutron fluxes and powers obtained using the activation technique. At an indicated power of 30 kW, the gamma dose rate measured predicted thermal neutron flux of (1* 10 12 ± 0.00255 * 10 12 ) n/cm 2 s and (0.987* 10 12 ± 0.00243 * 10 12 ) which corresponded to powers of (30.06 ± 0.075) kW and (29.6 ± 0.073) for both normal level of the pool water and 40 cm below normal levels respectively. At an indicated power of 15 kW, the gamma dose rate measured predicted thermal neutron flux of (5.07* 10 11 ± 0.025* 10 11 ) n/cm 2 s and (5.12 * 10 11 ±0.024* 10 11 ) n/cm 2 s which corresponded to power of (15.21 ± 0.075) kW and (15.36 ± 0.073) kW for both normal levels of the pool water and 40 cm below normal levels respectively. The power predicted by this work also compared well with power obtained from a three-dimensional neutronic analysis for GHARR-1 core. The predicted power also compares well with calculated power using a correlation equation obtained from

  7. The development of direct core monitoring in Nuclear Electric plc

    International Nuclear Information System (INIS)

    Curtis, R.F.; Jones, S. Reed, J.; Wickham, A.J.

    1996-01-01

    Monitoring of graphite behaviour in Nuclear Electric Magnox and AGR reactors is necessary to support operating safety cases and to ensure that reactor operation is optimized to sustain the necessary core integrity for the economic life of the reactors. The monitoring programme combines studies for pre-characterized ''installed'' samples with studies on samples trepanned from within the cores and also with studies of core and channel geometry using specially designed equipment. Nuclear Electric has two trepanning machines originally designed for Magnox-reactor work which have been used for a substantial programme over many years. They have recently been upgraded to improve sampling speed, safety and versatility - the last being demonstrated by their adaptation for a recently-won contract associated with decommissioning the Windscale piles. Radiological hazards perceived when the AGR trepanning system was designed resulted in very cumbersome equipment. This has worked well but has been inconvenient in operation. The development of a smaller and improved system for deploying the equipment is now reported. Channel dimension monitoring equipment is discussed in detail with examples of data recovered from both Magnox and AGR cores. A resolution of ± 2 of arc (tilt) and ± 0.01 mm change in diameter in attainable. It is also theoretically possible to establish brick stresses by measuring geometry changes which result from trepanning. Current development work on a revolving scanning laser rangefinder which will enable the measurement of diameters to a resolution of 0.001 mm will also be discussed. This paper also discusses non-destructive techniques for crack detection employing ultrasound or resistance networks, the use of special manipulators to deliver inspection and repair equipment and recent developments to install displacement monitors in peripheral regions of the cores, to aid the understanding of the interaction of the restraint system with the core - the region

  8. Study for correction of neutron scattering in the calibration of the albedo individual monitor from the Neutron Laboratory (LN), IRD/CNEN-RJ, Brazil

    International Nuclear Information System (INIS)

    Freitas, B.M.; Silva, A.X. da

    2014-01-01

    The Instituto de Radioprotecao e Dosimetria (IRD) runs a neutron individual monitoring service with albedo type monitor and thermoluminescent detectors (TLD). Moreover the largest number of workers exposed to neutrons in Brazil is exposed to 241 Am-Be fields. Therefore a study of the response of albedo dosemeter due to neutron scattering from 241 Am-Be source is important for a proper calibration. In this work, it has been evaluated the influence of the scattering correction in two distances at the Low Scattering Laboratory of the Neutron Laboratory of the Brazilian National Laboratory (Lab. Nacional de Metrologia Brasileira de Radiacoes Ionizantes) in the calibration of that albedo dosemeter for a 241 Am-Be source. (author)

  9. Light neutron-rich hypernuclei from the importance-truncated no-core shell model

    Directory of Open Access Journals (Sweden)

    Roland Wirth

    2018-04-01

    Full Text Available We explore the systematics of ground-state and excitation energies in singly-strange hypernuclei throughout the helium and lithium isotopic chains — from HeΛ5 to HeΛ11 and from LiΛ7 to LiΛ12 — in the ab initio no-core shell model with importance truncation. All calculations are based on two- and three-baryon interaction from chiral effective field theory and we employ a similarity renormalization group transformation consistently up to the three-baryon level to improve the model-space convergence. While the absolute energies of hypernuclear states show a systematic variation with the regulator cutoff of the hyperon–nucleon interaction, the resulting neutron separation energies are very stable and in good agreement with available data for both nucleonic parents and their daughter hypernuclei. We provide predictions for the neutron separation energies and the spectra of neutron-rich hypernuclei that have not yet been observed experimentally. Furthermore, we find that the neutron drip lines in the helium and lithium isotopic chains are not changed by the addition of a hyperon. Keywords: Hypernuclei, Ab-initio methods, Neutron-rich nuclei, Neutron separation energies, Neutron drip line

  10. Decadal trends in the diurnal variation of galactic cosmic rays observed using neutron monitor data

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Simon [Reading Univ. (United Kingdom). Dept. of Meteorology; Univ. College London, Dorking (United Kingdom). Mullard Space Science Lab.; Owens, Mathew; Lockwood, Mike [Reading Univ. (United Kingdom). Dept. of Meteorology; Owen, Chris [Univ. College London, Dorking (United Kingdom). Mullard Space Science Lab.

    2017-10-01

    The diurnal variation (DV) in galactic cosmic ray (GCR) flux is a widely observed phenomenon in neutron monitor data. The background variation considered primarily in this study is due to the balance between the convection of energetic particles away from the Sun and the inward diffusion of energetic particles along magnetic field lines. However, there are also times of enhanced DV following geomagnetic disturbances caused by coronal mass ejections or corotating interaction regions. In this study we investigate changes in the DV over four solar cycles using ground-based neutron monitors at different magnetic latitudes and longitudes at Earth. We divide all of the hourly neutron monitor data into magnetic polarity cycles to investigate cycle-to-cycle variations in the phase and amplitude of the DV. The results show, in general, a similarity between each of the A<0 cycles and A>0 cycles, but with a phase change between the two. To investigate this further, we split the neutron monitor data by solar magnetic polarity between times when the dominant polarity was either directed outward (positive) or inward (negative) at the northern solar pole. We find that the maxima and minima of the DV changes by, typically, 1-2 h between the two polarity states for all non-polar neutron monitors. This difference between cycles becomes even larger in amplitude and phase with the removal of periods with enhanced DV caused by solar wind transients. The time difference between polarity cycles is found to vary in a 22-year cycle for both the maximum and minimum times of the DV. The times of the maximum and minimum in the DV do not always vary in the same manner between A>0 and A<0 polarity cycles, suggesting a slight change in the anisotropy vector of GCRs arriving at Earth between polarity cycles. Polar neutron monitors show differences in phase between polarity cycles which have asymptotic directions at mid-to-high latitudes. All neutron monitors show changes in the amplitude of the

  11. Portable system for periodical verification of area monitors for neutrons

    International Nuclear Information System (INIS)

    Souza, Luciane de R.; Leite, Sandro Passos; Lopes, Ricardo Tadeu; Patrao, Karla C. de Souza; Fonseca, Evaldo S. da; Pereira, Walsan W.

    2009-01-01

    The Neutrons Laboratory develops a project viewing the construction of a portable test system for verification of functioning conditions of neutron area monitors. This device will allow to the users the verification of the calibration maintenance of his instruments at the use installations, avoiding the use of an inadequate equipment related to his answer to the neutron beam response

  12. Magnetic Field Monitoring in the SNS and LANL Neutron EDM Experiments

    Science.gov (United States)

    Aleksandrova, Alina; SNS nEDM Collaboration; LANL nEDM Collaboration

    2017-09-01

    The SNS neutron EDM experiment requires the ability to precisely control and monitor the magnetic field inside of the fiducial volume. However, it is not always practical (or even possible) to measure the field within the region of interest directly. To remedy this issue, we have designed a field monitoring system that will allow us to reconstruct the field inside of the fiducial volume using noninvasive measurements of the field components at discrete locations external to this volume. A prototype probe array (consisting of 12 single-axis fluxgate magnetometer sensors) was used to monitor the magnetic field within the fiducial volume of an in-house magnetic testing apparatus. In this talk, the design and results of this test will be presented, and the possible implementation of this field monitoring method may have in the room temperature LANL neutron EDM experiment will be discussed. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Award Number DE-SC-0014622.

  13. Design of In-vessel neutron monitor using micro fission chambers for ITER

    International Nuclear Information System (INIS)

    Nishitani, Takeo; Kasai, Satoshi

    2001-10-01

    A neutron monitor using micro fission chambers to be installed inside the vacuum vessel has been designed for compact ITER (ITER-FEAT). We investigated the responses of the micro fission chambers to find the suitable position of micro fission chambers by a neutron Monte Carlo calculation using MCNP version 4b code. It was found that the averaged output of the micro fission chambers behind blankets at upper outboard and lower outboard is insensitive to the changes in the plasma position and the neutron source profile. A set of 235 U micro fission chamber and ''blank'' detector which is a fissile material free detector to identify noise issues such as from γ-rays are installed behind blankets. Employing both pulse counting mode and Campbelling mode in the electronics, the ITER requirement of 10 7 dynamic range with 1 ms temporal resolution can be accomplished. The in-situ calibration has been simulated by MCNP calculation, where a point source of 14 MeV neutrons is moving on the plasma axis. It was found that the direct calibration is possible by using a neutron generator with an intensity of 10 11 n/s. The micro fission chamber system can meet the required 10% accuracy for a fusion power monitor. (author)

  14. A computationally simple model for determining the time dependent spectral neutron flux in a nuclear reactor core

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, E.A. [Department of Mechanical Engineering, University of Texas, Austin, TX (United States); Deinert, M.R. [Theoretical and Applied Mechanics, Cornell University, 219 Kimball Hall, Ithaca, NY 14853 (United States)]. E-mail: mrd6@cornell.edu; Cady, K.B. [Theoretical and Applied Mechanics, Cornell University, 219 Kimball Hall, Ithaca, NY 14853 (United States)

    2006-10-15

    The balance of isotopes in a nuclear reactor core is key to understanding the overall performance of a given fuel cycle. This balance is in turn most strongly affected by the time and energy-dependent neutron flux. While many large and involved computer packages exist for determining this spectrum, a simplified approach amenable to rapid computation is missing from the literature. We present such a model, which accepts as inputs the fuel element/moderator geometry and composition, reactor geometry, fuel residence time and target burnup and we compare it to OECD/NEA benchmarks for homogeneous MOX and UOX LWR cores. Collision probability approximations to the neutron transport equation are used to decouple the spatial and energy variables. The lethargy dependent neutron flux, governed by coupled integral equations for the fuel and moderator/coolant regions is treated by multigroup thermalization methods, and the transport of neutrons through space is modeled by fuel to moderator transport and escape probabilities. Reactivity control is achieved through use of a burnable poison or adjustable control medium. The model calculates the buildup of 24 actinides, as well as fission products, along with the lethargy dependent neutron flux and the results of several simulations are compared with benchmarked standards.

  15. Direct URCA-processes in neutron star quark core with strong magnetic field.

    Directory of Open Access Journals (Sweden)

    Belyaev Vasily

    2017-01-01

    In evaluations, the strength of magnetic field corresponds to the case, where the quarks of medium occupy a lot of Landau levels, while the electrons are in ground Landau level. The analytical dependence of neutrino emissivity on chemical potentials of quarks and electrons, temperature and magnetic field strength is obtained and briefly discussed. The result could be important in application to a massive strongly magnetized neutron star with quark core.

  16. Three-dimensional model of the thermo-hydrodynamic neutron interaction in the core of water reactors (stationary states)

    International Nuclear Information System (INIS)

    Mastrangelo, Victor.

    1977-01-01

    A thermo-hydrodynamic neutron interaction model for permanent working conditions is developed in the case of closed circuits (boiling water reactors) and open circuits (pressurized water reactors). Two numerical convergence acceleration methods are then worked out for the resolution of linear problems by successive iterations. A physical study is devoted to the convergence of the thermo-hydrodynamic neutron interaction process. The model developed is applied to the calculation of the power distribution for the core of a 980 MWe BWR-6 type boiling water power station and to the study of normal and accidental working configurations of the pressurized water core of a 900 MWe PWR-CP1 unit [fr

  17. Status of neutron monitoring meters for radiation protection purpose

    International Nuclear Information System (INIS)

    Li Taosheng

    2003-01-01

    The status of and trends towards the development of neutron monitoring meters, such as dose survey meter, workplace (ambient) spectrometer and individual dosimeters, are discussed in the present paper from the perspectives of workplace and individual dose monitoring. Over the past 4 decades, both neutron dose survey meter and workplace spectrometer have declined to be more reasonable in design of their probes, with more broaden applications. With the development of electronic technology, there is a trend towards being more small-compacted and smart. Although many technical difficulties in the practical measurement, some significant progresses have be made in the development and research of these kinds of meters. (authors)

  18. Breached fuel location in FFTF by delayed neutron monitor triangulation

    International Nuclear Information System (INIS)

    Bunch, W.L.; Tang, E.L.

    1985-10-01

    The Fast Flux Test Facility (FFTF) features a three-loop, sodium-cooled 400 MWt mixed oxide fueled reactor designed for the irradiation testing of fuels and materials for use in liquid metal cooled fast reactors. To establish the ultimate capability of a particular fuel design and thereby generate information that will lead to improvements, many of the fuel irradiations are continued until a loss of cladding integrity (failure) occurs. When the cladding fails, fission gas escapes from the fuel pin and enters the reactor cover gas system. If the cladding failure permits the primary sodium to come in contact with the fuel, recoil fission products can enter the sodium. The presence of recoil fission products in the sodium can be detected by monitoring for the presence of delayed neutrons in the coolant. It is the present philosophy to not operate FFTF when a failure has occurred that permits fission fragments to enter the sodium. Thus, it is important that the identity and location of the fuel assembly that contains the failed cladding be established in order that it might be removed from the core. This report discusses method of location of fuel element when cladding is breached

  19. Measurement of thermal neutron flux spatial distribution in the IEA-R1 reactor core

    International Nuclear Information System (INIS)

    D'Utra Bitelli, U.

    1993-01-01

    This work presents the spatial thermal neutron flux in IEA-R1 reactor obtained by activation foils methods. These measurements were made in 27 fuel elements of the reactor core (165 B configuration). The results are important to compare with theoretical values, power calibration and safety analysis. (author)

  20. Coupled full core neutron transport/CFD simulations of pressurized water reactors

    International Nuclear Information System (INIS)

    Kochunas, B.; Stimpson, S.; Collins, B.; Downar, T.; Brewster, R.; Baglietto, E.; Yan, J.

    2012-01-01

    Recently as part of the CASL project, a capability to perform 3D whole-core coupled neutron transport and computational fluid dynamics (CFD) calculations was demonstrated. This work uses the 2D/1D transport code DeCART and the commercial CFD code STAR-CCM+. It builds on previous CASL work demonstrating coupling for smaller spatial domains. The coupling methodology is described along with the problem simulated and results are presented for fresh hot full power conditions. An additional comparison is made to an equivalent model that uses lower order T/H feedback to assess the importance and cost of high fidelity feedback to the neutronics problem. A simulation of a quarter core Combustion Engineering (CE) PWR core was performed with the coupled codes using a Fixed Point Gauss-Seidel iteration technique. The total approximate calculation requirements are nearly 10,000 CPU hours and 1 TB of memory. The problem took 6 coupled iterations to converge. The CFD coupled model and low order T/H feedback model compared well for global solution parameters, with a difference in the critical boron concentration and average outlet temperature of 14 ppm B and 0.94 deg. C, respectively. Differences in the power distribution were more significant with maximum relative differences in the core-wide pin peaking factor (Fq) of 5.37% and average relative differences in flat flux region power of 11.54%. Future work will focus on analyzing problems more relevant to CASL using models with less approximations. (authors)

  1. Neutron Environment Characterization of the Central Cavity in the Annular Core Research Reactor *

    Directory of Open Access Journals (Sweden)

    Parma Edward J.

    2016-01-01

    Full Text Available Characterization of the neutron environment in the central cavity of the Sandia National Laboratories' Annular Core Research Reactor (ACRR is important in order to provide experimenters with the most accurate spectral information and maintain a high degree of fidelity in performing reactor experiments. Characterization includes both modeling and experimental efforts. Building accurate neutronic models of the ACRR and the central cavity “bucket” environments that can be used by experimenters is important in planning and designing experiments, as well as assessing the experimental results and quantifying uncertainties. Neutron fluence characterizations of two bucket environments, LB44 and PLG, are presented. These two environments are used frequently and represent two extremes in the neutron spectrum. The LB44 bucket is designed to remove the thermal component of the neutron spectrum and significantly attenuate the gamma-ray fluence. The PLG bucket is designed to enhance the thermal component of the neutron spectrum and attenuate the gamma-ray fluence. The neutron characterization for each bucket was performed by irradiating 20 different activation foil types, some of which were cadmium covered, resulting in 37 different reactions at the peak axial flux location in each bucket. The dosimetry results were used in the LSL-M2 spectrum adjustment code with a 640-energy group MCNP-generated trial spectrum, self-shielding correction factors, the SNLRML or IRDFF dosimetry cross-section library, trial spectrum uncertainty, and trial covariance matrix, to generate a least-squares adjusted neutron spectrum, spectrum uncertainty, and covariance matrix. Both environment character-izations are well documented and the environments are available for use by experimenters.

  2. Experience with neutron flux monitoring systems qualified for post-accident monitoring

    International Nuclear Information System (INIS)

    Shugars, H.G.; Miller, J.F.

    1995-01-01

    In this paper we discuss the environmental requirements for excore neutron flux monitors that are qualified for use during and after postulated accidents in Pressurized Water Reactors (PWRs). We emphasize PWRs designed in the United States, which are similar to those used also in parts of Western Europe and Eastern Asia. We then discuss design features of the flux monitoring systems necessary to address the environmental, functional, and regulatory requirements, and the experience with these systems. (author). 9 refs, 2 figs

  3. PWR core design, neutronics evaluation and fuel cycle analysis for thorium-uranium breeding recycle

    International Nuclear Information System (INIS)

    Bi, G.; Liu, C.; Si, S.

    2012-01-01

    This paper was focused on core design, neutronics evaluation and fuel cycle analysis for Thorium-Uranium Breeding Recycle in current PWRs, without any major change to the fuel lattice and the core internals, but substituting the UOX pellet with Thorium-based pellet. The fuel cycle analysis indicates that Thorium-Uranium Breeding Recycle is technically feasible in current PWRs. A 4-loop, 193-assembly PWR core utilizing 17 x 17 fuel assemblies (FAs) was taken as the model core. Two mixed cores were investigated respectively loaded with mixed reactor grade Plutonium-Thorium (PuThOX) FAs and mixed reactor grade 233 U-Thorium (U 3 ThOX) FAs on the basis of reference full Uranium oxide (UOX) equilibrium-cycle core. The UOX/PuThOX mixed core consists of 121 UOX FAs and 72 PuThOX FAs. The reactor grade 233 U extracted from burnt PuThOX fuel was used to fabrication of U 3 ThOX for starting Thorium-. Uranium breeding recycle. In UOX/U 3 ThOX mixed core, the well designed U 3 ThOX FAs with 1.94 w/o fissile uranium (mainly 233 U) were located on the periphery of core as a blanket region. U 3 ThOX FAs remained in-core for 6 cycles with the discharged burnup achieving 28 GWD/tHM. Compared with initially loading, the fissile material inventory in U 3 ThOX fuel has increased by 7% via 1-year cooling after discharge. 157 UOX fuel assemblies were located in the inner of UOX/U 3 ThOX mixed core refueling with 64 FAs at each cycle. The designed UOX/PuThOX and UOX/U 3 ThOX mixed core satisfied related nuclear design criteria. The full core performance analyses have shown that mixed core with PuThOX loading has similar impacts as MOX on several neutronic characteristic parameters, such as reduced differential boron worth, higher critical boron concentration, more negative moderator temperature coefficient, reduced control rod worth, reduced shutdown margin, etc.; while mixed core with U 3 ThOX loading on the periphery of core has no visible impacts on neutronic characteristics compared

  4. Device for measuring neutron-flux distribution density

    International Nuclear Information System (INIS)

    Rozenbljum, N.D.; Mitelman, M.G.; Kononovich, A.A.; Kirsanov, V.S.; Zagadkin, V.A.

    1977-01-01

    An arrangement is described for measuring the distribution of neutron flux density over the height of a nuclear reactor core and which may be used for monitoring energy release or for detecting deviations of neutron flux from an optimal level so that subsequent balance can be achieved. It avoids mutual interference of detectors. Full constructional details are given. (UK)

  5. Long-term performance of the CANDU-type of vanadium self-powered neutron detectors in NRU

    Energy Technology Data Exchange (ETDEWEB)

    Leung, T.C. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)]. E-mail: leungt@aecl.ca

    2007-07-01

    The CANDU-type of in-core vanadium self-powered neutron flux detectors have been installed in NRU to monitor the axial neutron flux distributions adjacent to the loop fuel test sites since 1996. This paper describes how the thermal neutron fluxes were measured at two monitoring sites, and presents a method of correcting the vanadium burn-up effect, which can be up to 2 to 3% per year, depending on the detector locations in the reactor. It also presents the results of measurements from neutron flux detectors that have operated for over eight-years in NRU. There is good agreement between the measured and simulated neutron fluxes, to within {+-} 6.5%, and the long-term performance of the CANDU-type of vanadium neutron flux detectors in NRU is satisfactory. (author)

  6. Monitoring device for the reactor power distribution

    International Nuclear Information System (INIS)

    Uematsu, Hitoshi; Tsuiki, Makoto

    1982-01-01

    Purpose: To enable accurate monitoring for the power distribution in a short time, as well as independent detection for in-core neutron flux detectors in abnormal operation due to failures or like other causes to thereby surely provide reliable substitute values. Constitution: Counted values are inputted from a reactor core present status data detector by a power distribution calculation device to calculate the in-core neutron flux density and the power distribution based on previously stored physical models. While on the other hand, counted value from the in-core neutron detectors and the neutron flux distribution and the power distribution calculated from the power distribution calculation device are inputted from a BCF calculation device to compensate the counting errors incorporated in the counted value from the in-core neutron flux detectors and the calculation errors incorporated in the power distribution calculated in the power distribution calculation device respectively and thereby calculate the power distribution in the reactor core. Further, necessary data are inputted to the power distribution calculation device by an input/output device and the results calculated in the BCF calculation device are displayed. (Aizawa, K.)

  7. Development of an area monitor for neutrons using solid state nuclear track detector; Desenvolvimento de um monitor de area para neutrons utilizando detector solido de tracos nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Zahn, G.S.

    1994-12-31

    An area monitor for neutrons composed of the solid state nuclear track detector (SSNTD) Makrofol DE, together with a (n,{alpha}) converter, in the center of a 25 cm diameter polyethylene sphere, is developed. The optimal electrochemical etching conditions for the detection of thermal neutrons by the Makrofol DE using the BN converter are studied, leading to the choice of 55 min, at 30{sup 0} C, under a 44,2 kV.cm{sup -1} electric field with oscillation frequency of 2,0 khz. The response of this system to thermal neutrons, in the optimal conditions, is of 2,76(10)x 10{sup -3} tr/n. Changing from the BN converter to a 2,73(3)g compressed boric acid tablet this value lowers to 3,88(17)x 10{sup -4} tr/n. The performance of the whole monitor in the detection of fast neutrons is examined using the BN converter and neutrons from a {sup 241} Am Be source, with a response of 4,4(2)x 10{sup 3} tr.mSv{sup -1}.cm{sup -2} and operational limits between 7(3){mu}Sv and 5,6(2)mSv. The result of the monitoring of the control room of the IPEN Cyclotron accelerator are also presented as a final test for the viability of the practical use of the monitor. (author). 34 refs, 15 figs, 6 tabs, 1 app.

  8. Determination of the neutrons energy spectrum in the central thimble of the reactor core TRIGA Mark III

    International Nuclear Information System (INIS)

    Parra M, M. A.; Luis L, M. A.; Raya A, R.; Cruz G, H. S.

    2013-10-01

    This work presents the measurement of the neutrons spectrum in energies in the central thimble of the reactor TRIGA Mark III to a power of 1 MW in stationary state, with the core in the center of the pool. To achieve this objective, several thin sheets were irradiated (one at the time) in the same position of the core. The activation probes were selected in such a way that covered the energy range (1 x 10 -10 to 20 MeV) of the neutrons spectrum in the reactor core, for this purpose thin sheets were used of 197 Au, 58 Ni, 115 In, 24 Mg, 27 Al, 58 Fe, 59 Co and 63 Cu. After the irradiation, the high energy gamma emissions of the activated thin sheets were measured by means of gamma spectrometry, in a counting system of high resolution, with a Hyper pure Germanium detector, obtaining this way the activity induced in the thin sheets whose magnitude is proportional to the intensity of the neutrons flow, this activity together to a theoretical initial spectrum are the main entrance data of the computational code SANDBP (Hungarian version of the code Sand-II) that uses the unfolding method for the calculation of the spectrum. (Author)

  9. On Use of Multi-Chambered Fission Detectors for In-Core, Neutron Spectroscopy

    Science.gov (United States)

    Roberts, Jeremy A.

    2018-01-01

    Presented is a short, computational study on the potential use of multichambered fission detectors for in-core, neutron spectroscopy. Motivated by the development of very small fission chambers at CEA in France and at Kansas State University in the U.S., it was assumed in this preliminary analysis that devices can be made small enough to avoid flux perturbations and that uncertainties related to measurements can be ignored. It was hypothesized that a sufficient number of chambers with unique reactants can act as a real-time, foilactivation experiment. An unfolding scheme based on maximizing (Shannon) entropy was used to produce a flux spectrum from detector signals that requires no prior information. To test the method, integral, detector responses were generated for singleisotope detectors of various Th, U, Np, Pu, Am, and Cs isotopes using a simplified, pressurized-water reactor spectrum and fluxweighted, microscopic, fission cross sections, in the WIMS-69 multigroup format. An unfolded spectrum was found from subsets of these responses that had a maximum entropy while reproducing the responses considered and summing to one (that is, they were normalized). Several nuclide subsets were studied, and, as expected, the results indicate inclusion of more nuclides leads to better spectra but with diminishing improvements, with the best-case spectrum having an average, relative, group-wise error of approximately 51%. Furthermore, spectra found from minimum-norm and Tihkonov-regularization inversion were of lower quality than the maximum entropy solutions. Finally, the addition of thermal-neutron filters (here, Cd and Gd) provided substantial improvement over unshielded responses alone. The results, as a whole, suggest that in-core, neutron spectroscopy is at least marginally feasible.

  10. Stochastic model to monitor mechanical vibrations in pressurized water reactors

    International Nuclear Information System (INIS)

    Shieh, D.J.; Upadhyaya, B.R.

    1984-01-01

    The feasibility of using neutron flux and core-exit temperature signals in PWRs for estimating core coolant flow velocity has been demonstrated using normal operational data from both the LOFT reactor and a commerical PWR. The LOFT analysis further showed that the core coolant velocity can be accurately monitored for various flow rates using the linear phase-frequency relationship in the frequency range 0.1 to 2 Hz. The development of the technique for monitoring core coolant velocity in PWRs provides a valuable alternative for flow measurement. Theoretical studies of core heat transfer in PWRs showed that the fluctuating heat sources have a dominating effect on the core-exit temperature compared to fluctuations of the coolant flow rate and core inlet coolant temperature. In the present analysis a detailed distributed parameter model of a PWR core was developed with the purpose of studying the following aspects of core coolant flow rate measurement: the mechanisms causing linear phase relationship between neutron flux and coolant temperature signals due to various perturbation sources; the effect of axial flux shape on the phase slope (or estimated transit delay time); and the relationship between transit delay time and effective distance of temperature noise propagation to maintain the flow velocity invariant

  11. Tritium contamination and monitoring at Frascati Neutron Generator

    Energy Technology Data Exchange (ETDEWEB)

    Lucci, F.; Sandri, S.; Ianni, A. [ENEA, Frascati (Italy). Dipartimento Ambiente; Vasselli, R. [ANPA, Roma (Italy); Pillon, M.; Bettinali, L. [ENEA, Frascati (Italy). Dipartimento Energia

    1994-11-01

    The Frascati Neutron Generator (FGN) is a specialised 300 keV, 3 mA direct electrostatic deuteron accelerator which produces about 5-10{sup 1}1 14 MeV neutrons per second by D-T reactions on a tritium-titanium fixed target. This paper concerns the tritium contamination control and monitoring aspects after some months of testing and a preliminary period of operation of the plant. The tritium monitoring system is composed of both on-line and off-line devices to control the tritium concentration in the atmosphere measured from different parts of the plant: vacuum exhaust clean up (VECU) system, stack, etc. The on-line devices are three flux monitors, that sample continuosly the air from up to eight different points in the plant. The passive sampling system is designed to select the chemical form of tritium and to collect respectively HTO and HT in two different cartridges filled with an appropriate drying material. The response of the on-line tritium monitor system are exposed and discussed: some measurements performed with atmosphere dehumidifying apparatus of this system are described and the relevant results are analysed.

  12. Tritium contamination and monitoring at Frascati Neutron Generator

    International Nuclear Information System (INIS)

    Lucci, F.; Sandri, S.; Ianni, A.; Pillon, M.; Bettinali, L.

    1994-11-01

    The Frascati Neutron Generator (FGN) is a specialised 300 keV, 3 mA direct electrostatic deuteron accelerator which produces about 5-10 1 1 14 MeV neutrons per second by D-T reactions on a tritium-titanium fixed target. This paper concerns the tritium contamination control and monitoring aspects after some months of testing and a preliminary period of operation of the plant. The tritium monitoring system is composed of both on-line and off-line devices to control the tritium concentration in the atmosphere measured from different parts of the plant: vacuum exhaust clean up (VECU) system, stack, etc. The on-line devices are three flux monitors, that sample continuosly the air from up to eight different points in the plant. The passive sampling system is designed to select the chemical form of tritium and to collect respectively HTO and HT in two different cartridges filled with an appropriate drying material. The response of the on-line tritium monitor system are exposed and discussed: some measurements performed with atmosphere dehumidifying apparatus of this system are described and the relevant results are analysed

  13. Discussion about modeling the effects of neutron flux exposure for nuclear reactor core analysis

    International Nuclear Information System (INIS)

    Vondy, D.R.

    1986-04-01

    Methods used to calculate the effects of exposure to a neutron flux are described. The modeling of the nuclear-reactor core history presents an analysis challenge. The nuclide chain equations must be solved, and some of the methods in use for this are described. Techniques for treating reactor-core histories are discussed and evaluated

  14. Oyster Creek fuel thermal margin during core thermal-hydraulic oscillations

    International Nuclear Information System (INIS)

    Dougher, J.D.

    1990-01-01

    The Oyster Creek nuclear facility, a boiling water reactor (BWR)-2 plant type, has never experienced core thermal-hydraulic instability. Power oscillations, however, have been observed in other BWR cores both domestically and internationally. Two modes of oscillations have been observed, core wide and regional half-core. During core wide oscillations, the neutron flux in the core oscillates in the radial fundamental mode. During regional half-core oscillations, higher order harmonics in the radial plane result in out-of-phase oscillations with the neutron flux in one half of the core oscillating 180 deg out-of-phase with the neutron flux in the other half of the core. General Design Criteria 12 requires either prevention or detection and suppression of power oscillations which could result in violations of fuel design limits. Analyses performed by General Electric have demonstrated that for large-magnitude oscillations the potential exists for violation of the safety limit minimum critical power ratio (MCPR). However, for plants with a flow-biased neutron flux scram automatic mitigation of oscillations may be provided at an oscillation magnitude below that at which the safety limit is challenged. Plant-specific analysis for Oyster Creek demonstrates that the existing average power range monitor (APRM) system will sense and suppress power oscillations prior to violation of any safety limits

  15. Method of monitoring fuel-rod vibrations in a nuclear fuel reactor

    International Nuclear Information System (INIS)

    Kawamura, Makoto; Takai, Katsuaki.

    1985-01-01

    Purpose: To monitor the vibration modes of fuel rods continuously and on real time during operation of a PWR type nuclear reactor. Method: Vibrations of fuel rods during reactor operation are mainly caused by the lateral flow of coolants flowing through the gaps at the joints of reactor core buffle plates into a reactor core and fretting damages may possibly be caused to the fuel rod support portions due to the vibrations. In view of the above, self-powered detectors are disposed at a plurality of axial positions for the respective peripheral fuel assemblies in adjacent with the buffle plates and the detection signals from neutron detectors, that is, the fluctuations in neutrons are subjected to a frequency analysis during the operation period. The neutron detectors are disposed at the periphery of the reactor core, because the fuel assemblies disposed at the peripheral portion directly undergo the lateral flow from the joints of the buffle plates and vibrates most violently. Thus, the vibration situations can be monitored continuously, in a three demensional manner and on real time. (Moriyama, K.)

  16. Development of advanced radiation monitors for pulsed neutron fields

    CERN Document Server

    AUTHOR|(CDS)2081895

    The need of radiation detectors capable of efficiently measuring in pulsed neutron fields is attracting widespread interest since the 60s. The efforts of the scientific community substantially increased in the last decade due to the increasing number of applications in which this radiation field is encountered. This is a major issue especially at particle accelerator facilities, where pulsed neutron fields are present because of beam losses at targets, collimators and beam dumps, and where the correct assessment of the intensity of the neutron fields is fundamental for radiation protection monitoring. LUPIN is a neutron detector that combines an innovative acquisition electronics based on logarithmic amplification of the collected current signal and a special technique used to derive the total number of detected neutron interactions, which has been specifically conceived to work in pulsed neutron fields. Due to its special working principle, it is capable of overcoming the typical saturation issues encountere...

  17. Monitoring of plutonium contaminated solid waste streams. Chapter IV: Passive neutron assay

    International Nuclear Information System (INIS)

    Birkhoff, G.; Bondar, L.

    1978-01-01

    The fundamentals of the passive neutron technique for the non destructive assay of plutonium bearing materials are summarized. A reference monitor for the passive neutron assay of Pu contaminated solids is described in terms of instrumental design principles and performances. The theoretical model of this reference monitor with pertinent nuclear data and functions for the interpretation of experimental data is given

  18. Neutron dosimetry. Environmental monitoring in a BWR type reactor; Dosimetria de neutrones. Monitoreo ambiental en un reactor del tipo BWR

    Energy Technology Data Exchange (ETDEWEB)

    Tavera D, L; Camacho L, M E

    1991-01-15

    The measurements carried out on reactor dosimetry are applied mainly to the study on the effects of the radiation in 108 materials of the reactor; little is on the environmental dosimetry outside of the primary container of BWR reactors. In this work the application of a neutron spectrometer formed by plastic detectors of nuclear traces manufactured in the ININ, for the environmental monitoring in penetrations around the primary container of the unit I of the Laguna Verde central is presented. The neutron monitoring carries out with purposes of radiological protection, during the operational tests of the reactor. (Author)

  19. Characterization of the fast neutron irradiation facility of the Portuguese Research Reactor after core conversion

    International Nuclear Information System (INIS)

    Marques, J.G.; Sousa, M.; Santos, J.P.; Fernandes, A.C.

    2011-01-01

    The fast neutron irradiation facility of the Portuguese Research Reactor was characterized after the reduction in uranium enrichment and rearrangement of the core configuration. In this work we report on the determination of the hardness parameter and the 1 MeV equivalent neutron flux along the facility, in the new irradiation conditions, following ASTM E722 standard.

  20. Investigation of primary cooling water chemistry following the partial meltdown of Pu-Be neutron source in Tehran Research Reactor Core (TRR)

    Energy Technology Data Exchange (ETDEWEB)

    Aghoyeh, Reza Gholizadeh [School of Research and Development of Nuclear Reactors and Accelerators, Nuclear Science and Technology Research Institute (NSTRI), Atomic Energy Organization of Iran (AEOI), P.O. Box: 14155-1339, Tehran (Iran, Islamic Republic of); Khalafi, Hossein, E-mail: hkhalafi@aeoi.org.i [School of Research and Development of Nuclear Reactors and Accelerators, Nuclear Science and Technology Research Institute (NSTRI), Atomic Energy Organization of Iran (AEOI), P.O. Box: 14155-1339, Tehran (Iran, Islamic Republic of)

    2011-03-15

    Research highlights: Effect of Pu-Be neutron source meltdown in core on reactor water chemistry. Water chemistry of primary cooling before, during and after of above incident was compared. Training importance. Management of nuclear incident and accident. - Abstract: Effect of Pu-Be neutron source meltdown in core on reactor water chemistry was main aim of this study. Leaving the neutron source in the core after reactor power exceeds a few hundred Watts was the main reason for its partial meltdown. Water chemistry of primary cooling before, during and after of above incident was compared. Activity of some radio-nuclides such as Ba-140, La-140, I-131, I-132, Te-132 and Xe-135 increased. Other radio-nuclides such as Nd-147, Xe-133, Sr-91, I-133 and I-135 are also detected which were not existed before this incident.

  1. Pilot Operation of Ex-core Neutron Sensors of Divers Shutdown System (DSS) Unit 2 Ignalina NPP

    International Nuclear Information System (INIS)

    Jakshtonis, Z.; Krivoshei, G.

    2006-01-01

    The Ignalina Safety Assessment, which was completed in December 1996, recommended the installation of a diverse shutdown system on the 2nd unit at Ignalina. During the PPR-2004 in the DSS project are created two independent shutdown systems by separating the absorber rods into two independent groups as follows: 1. One system (designated AZ) consists of the existing 24 BAZ rods and 49 AZ/BSM rods that together are used for reliable reactor shutdown (including Control and Protection System (CPS) circuit voiding accident). This system performs the emergency protection function. 2. The other system (designated BSM) comprises the remaining absorber rods and the 49 AZ/BSM rods. Thus 49 AZ/BSM rods are actuated from AZ initiating equipment as well as from BSM initiating equipment. The BSM system performs the normal reactor shutdown function and is able to ensure long-term maintenance of the reactor in the sub-critical state. Along with implementation of DSS was modernized existing Emergency Process Protection System, which was divided into two independent Sets of initiating equipment. The DSS is independent and diverse initiating equipment from the existing 1st Set equipment; with each set having its own independent in-core and ex-core sensors for measurement of neutron flux and process parameters. The 2nd Set of initiating equipment for measuring ex-core neutron flux, was modernized with new design of 4 Ex-Core detectors each have a single low level neutron flux detector and two high range neutron detectors. They are comprising: 1. A fission chamber which operates in pulse mode to cover the low flux levels. 2. A compensated ionisation chamber in current mode to operate at high flux level. This detector is doubled to give a measurement of the axial deviation. Two detectors are enough to produce the axial power deviation. The results of testing and analysis of pilot operation of ex-core neutron sensors of DSS will be shown on the Report. (author)

  2. Study of an integrated electronic monitor for neutron beams

    International Nuclear Information System (INIS)

    Barelaud, B.; Nexon-Mokhtari, F.; Barrau, C.; Decossac, J.L.; Vareille, J.C.; Sarrabayrouse, G.

    1994-01-01

    Many neutron beams monitors in 10 keV - 50 keV range are perturbed by gamma radiation impact. This new monitor uses two silicon (junction) diodes operating coincidence detection, combined with an electronic threshold to eliminate gamma background noise. The results and analyses presented here only concern feasibility studies. (D.L.)

  3. Neutron dosimetry in EDF experimental surveillance programme for VVER-440 nuclear power plants

    International Nuclear Information System (INIS)

    Brumovsky, M.; Erben, O.; Novosad, P.; Zerola, L.; Hogel, J.; Trollat, C.

    2001-01-01

    Fourteen chains containing experimental surveillance material specimens of the VVER 440/213 nuclear power reactor pressure vessels were irradiated in the surveillance channels of the Nuclear Power Plant Dukovany in the Czech Republic. The irradiation periods were one, two or three cycles. The chains contained different number and types of containers, the omitted ones were replaced by chain elements. All of the containers were instrumented with wire neutron fluence detectors, some of the containers in the chain had spectrometric sets of neutron fluence monitors. For the absolute fluence values evaluation it was taken into account time history of the reactor power and local changes of the neutron flux along the reactor core height, correction factors due to the orientation of monitors with respect to the reactor core centre. Unfolding programs SAND-II or BASA-CF were used. The relative axial fluence distribution was obtained from the O-wire measurements. Neutron fluence values above 0.5 MeV energy and above 1.0 MeV energy in the container axis on the axial positions of the sample centres and fluence values in the geometric centre of the samples was calculated making use the exponential attenuation model of the incident neutron beam. Received fast neutron fluence values can be used as reference values to all VVER-440 type 213 nuclear power plant reactors. (author)

  4. Neutron irradiation effects in pressure vessel steels and weldments

    Energy Technology Data Exchange (ETDEWEB)

    Ianko, L [International Atomic Energy Agency, Vienna (Austria). Div. of Nuclear Power; Davies, L M

    1994-12-31

    This paper deals with the effects of neutron irradiation on the steel and welds used for the pressure vessels which house the reactor cores in light water reactors: irradiation effects on mechanical properties and the shift in ductile-brittle transition temperature, importance of the knowledge of the neutron fluence and of the monitoring and surveillance programmes; empirical and mechanistic modelling of irradiation effects and the necessity of data extension to new operational limits; consequences on the manufacturing and structural design of materials and structures; mitigation of irradiation effects by annealing; international activities and programmes in the field of neutron irradiation effects on PV steels and welds. 37 refs., 22 figs.

  5. Monitoring of the temperature reactivity coefficient at the PWR nuclear plant

    International Nuclear Information System (INIS)

    Kostic, Lj.

    1996-01-01

    For monitoring temperature coefficient of reactivity of pressurized water reactor a method based on the correction of fluctuation in signals of i-core neutron detectors and core-exit thermocouples and neural network paradigm is used it is shown that the moderator temperature coefficient of relativity can be predicted with the aid of the back propagation neural network technique by measuring the frequency response function between the in-core neutron flux and the core-exit coolant temperature

  6. Measurements of the neutron energy spectra in the core of IPEN/MB-01 reactor

    International Nuclear Information System (INIS)

    Martins, Fernando Prat Goncalves

    2006-01-01

    This work presents the neutron spectrum measurements in the Reactor IPEN/MB-01 using very thin activation detectors in the metallic form, in reactor core, in moderator region. An articulated device allows that the foils are inserted in the central position of reactor core, ensuring that all the foils are irradiated in the same position. The activation detectors of different materials such Au 197 , Mg 24 , Ti 4 '8, In 115 , Sc 45 and others, were selected to cover a large range of neutron spectrum. After the irradiation, the activation detectors were submitted to a spectrometry gamma by using a system of counting with high purity Germanium, to obtain the saturation activity per target nuclide. The saturation activity is one of the main data of input of unfolding code SANDBP, that through an iterative adjustment, modify the spectrum that better agree with the dataset of code input, composition mainly for measure reaction rate per target nuclide and a initial input spectrum, calculated for Hammer-Technion code, supplying a solution spectrum. (author)

  7. Analysis Of The Effect Of Fuel Enrichment Error On Neutronic Properties Of The RSG-GAS Core

    International Nuclear Information System (INIS)

    Saragih, Tukiran; Pinem, Surian

    2002-01-01

    The analysis of the fuel enrichment error effect on neutronic properties has been carried out. The fuel enrichment could be improperly done because of wrong fabrication. Therefore it is necessary to analyze the fuel enrichment error effect to determine how many percents the fuel enrichment maximum can be accepted in the core. The analysis was done by simulation method The RSG-GAS core was simulated with 5 standard fuels and 1 control element having wrong enrichment when inserted into the core. Fuel enrichment error was then simulated from 20%, 25% and 30% and the simulation was done using WIMSD/4 and Batan-2DIFF codes. The cross section of core material of the RSG-GAS was generated by WIMSD/4 code in 1-D, X-Y geometry and 10 energy neutron group. Two dimensions, diffusion calculation based on finite element method was done by using Batan-2DIFF code. Five fuel elements and one control element changed the enrichment was finally arranged as a new core of the RSG-Gas reactor. The neutronic properties can be seen from eigenvalues (k eff ) as well as from the kinetic properties based on moderator void reactivity coefficient. The calculated results showed that the error are still acceptable by k eff 1,097 even until 25% fuel enrichment but not more than 25,5%

  8. Study of an integrated electronic monitor for neutron beams

    Energy Technology Data Exchange (ETDEWEB)

    Barelaud, B.; Nexon-Mokhtari, F.; Barrau, C.; Decossac, J.L.; Vareille, J.C. [Limoges Univ., 87 (France); Sarrabayrouse, G. [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France). Lab. d`Automatique et d`Analyse des Systemes

    1994-12-31

    Many neutron beams monitors in 10 keV - 50 keV range are perturbed by gamma radiation impact. This new monitor uses two silicon (junction) diodes operating coincidence detection, combined with an electronic threshold to eliminate gamma background noise. The results and analyses presented here only concern feasibility studies. (D.L.). 11 refs.

  9. Fuel management and core design code systems for pressurized water reactor neutronic calculations

    International Nuclear Information System (INIS)

    Ahnert, C.; Arayones, J.M.

    1985-01-01

    A package of connected code systems for the neutronic calculations relevant in fuel management and core design has been developed and applied for validation to the startup tests and first operating cycle of a 900MW (electric) PWR. The package includes the MARIA code system for the modeling of the different types of PWR fuel assemblies, the CARMEN code system for detailed few group diffusion calculations for PWR cores at operating and burnup conditions, and the LOLA code system for core simulation using onegroup nodal theory parameters explicitly calculated from the detailed solutions

  10. In-service crosstalk monitoring for dense space division multiplexed multi-core fiber transmission systems

    DEFF Research Database (Denmark)

    Mizuno, T.; Isoda, A.; Shibahara, K.

    2017-01-01

    We present in-service inter-core crosstalk monitoring for MCF transmission systems. We transmit 54-WDM PDM-16QAM signals over 111.6-km 32-core DSDM transmission line incorporating cladding-pumped 32-core MC-EYDFA, and demonstrate -30 dB crosstalk monitoring without affecting transmission...

  11. The whiteStar development project: Westinghouse's next generation core design simulator and core monitoring software to power the nuclear renaissance

    International Nuclear Information System (INIS)

    Boyd, W. A.; Mayhue, L. T.; Penkrot, V. S.; Zhang, B.

    2009-01-01

    The WhiteStar project has undertaken the development of the next generation core analysis and monitoring system for Westinghouse Electric Company. This on-going project focuses on the development of the ANC core simulator, BEACON core monitoring system and NEXUS nuclear data generation system. This system contains many functional upgrades to the ANC core simulator and BEACON core monitoring products as well as the release of the NEXUS family of codes. The NEXUS family of codes is an automated once-through cross section generation system designed for use in both PWR and BWR applications. ANC is a multi-dimensional nodal code for all nuclear core design calculations at a given condition. ANC predicts core reactivity, assembly power, rod power, detector thimble flux, and other relevant core characteristics. BEACON is an advanced core monitoring and support system which uses existing instrumentation data in conjunction with an analytical methodology for on-line generation and evaluation of 3D core power distributions. This new system is needed to design and monitor the Westinghouse AP1000 PWR. This paper describes provides an overview of the software system, software development methodologies used as well some initial results. (authors)

  12. Analysis of resonance oscillation of the neutron flow in a BWR-core

    International Nuclear Information System (INIS)

    Storm, J.

    1987-09-01

    This is a thesis which has been made within the institution of automatic control in Lund. Two programs, 'Blackie' and 'Test' have been written in Fortran. These two programs are to be used for the evaluation of ASEA-ATOMs resonance test in different nuclear reactors. In these tests the condition of the reactor becomes more and more unstable because the coolant flow decreases at the same time as the power gradually increases. This leads to resonance in the neutron flow. This flow is measured by detectors placed in different parts of the reactor core. 'Blackie' receives and stores the values sampled by the detectors. The same program also carries out a Fourier analysis. Amplitudes and phase angles from the different oscillations are calculated. These results are then used as inputs for 'Test'. 'Test' is a plotting program. It draws the reactor and plots arrows where the detectors are situated. The size and direction of the arrows are measurements of the amplitudes and phase angles of the neutron flow oscillations. From these arrow diagrams you can come to conclusions about the oscillations in the neutron flow and how the affect the reactor. (author)

  13. Neutron irradiation control in the neutron transmutation doping process in HANARO using SPND

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Gi-Doo; Kim, Myong-Seop [Korea Atomic Energy Research Institute, Yuseong, Daejeon, 305-353, (Korea, Republic of)

    2015-07-01

    The neutron irradiation control method by using self-powered neutron detector (SPND) is developed for the neutron transmutation doping (NTD) application in HANARO. An SPND is installed at a fixed position of the upper part of the sleeve in HANARO NTD hole for real-time monitoring of the neutron irradiation. It is confirmed that the SPND is significantly affected by the in-core condition and surroundings of the facility. Furthermore, the SPND signal changes about 15% throughout a whole cycle according to the change of the control rod position. But, it is also confirmed that the variation of the neutron flux on the silicon ingots inside the irradiation can is not so big while moving of the control rod. Accordingly, the relationship between the ratio of the neutron flux to the SPND signal output and the control rod position is established. In this procedure, the neutron flux measurement by using zirconium foil is utilized. The real NTD irradiation experiments are performed using the established relationship. The irradiated neutron fluence can be controlled within ±1.3% of the target one. The mean value of the irradiation/target ratio of the fluence is 0.9992, and the standard deviation is 0.0071. Thus, it is confirmed that the extremely accurate irradiation would be accomplished. This procedure can be useful for the SPND application installed at the fixed position to the field requiring the extremely high accuracy. (authors)

  14. Quantitative monitoring of gas flooding in oil-bearing reservoirs using a pulsed neutron tool

    International Nuclear Information System (INIS)

    Ruhovets, N.; Wyatt, D.F. Jr.

    1991-01-01

    This paper reports on quantitative monitoring of gas flooding in oil bearing reservoirs which is unique in that saturations of three fluids (gas, oil and water) in the effective pore space have to be determined, while in most other applications saturation behind casing is determined only for two fluids: hydrocarbons and water. A new method has been developed to monitor gas flooding of oil reservoirs. The method is based on computing two porosities: true effective (base) porosity determined before gas flooding, and apparent effective (monitor) porosity determined after gas flooding. The base porosity is determined from open and/or cased hole porosity logs run before the flooding. When open hole logs are available, the cased hole porosity logs are calibrated against open hole log. The monitor porosity is determined from one of the cased hole porosity logs, such as a neutron log or count rate ratio curve from a pulsed neutron log run after the gas flooding. The base and monitor porosities provide determination of the hydrogen index of the reservoir fluid after the flooding. This hydrogen index is then used to determine saturation of the flood agent after flooding. Water saturation after flooding can be determined from the equation which relates neutron total cross section (Σm) to volumetric constituent cross sections, using Σm values from a monitor run (after flooding)

  15. Beam monitoring system for intense neutron source

    International Nuclear Information System (INIS)

    Tron, A.M.

    2001-01-01

    Monitoring system realizing novel principle of operation and allowing to register a two-dimensional beam current distribution within entire aperture (100...200 mm) of ion pipe for a time in nanosecond range has been designed and accomplished for beam control of the INR intense neutron source, for preventing thermo-mechanical damage of its first wall. Key unit of the system is monitor of two-dimensional beam current distribution, elements of which are high resistant to heating by the beam and to radiation off the source. The description of the system and monitor are presented. Implementation of the system for the future sources with more high intensities are discussed. (author)

  16. Determination of the energy spectrum of the neutrons in the central thimble of the reactor core TRIGA Mark III

    International Nuclear Information System (INIS)

    Parra M, M. A.

    2014-01-01

    This thesis presents the neutron spectrum measurements inside the core of the TRIGA Mark III reactor at 1 MW power in steady-state, with the bridge placed in the center of the swimming pool, using several metallic threshold foils. The activation detectors are inserted in the Central Thimble of the reactor core, all the foils are irradiated in the same position and irradiation conditions (one by one). The threshold detectors are made of different materials such as: Au 197 , Ni 58 , In 115 , Mg 24 , Al 27 , Fe 58 , Co 59 and Cu 63 , they were selected to cover the full range the energies (10 -10 to 20 MeV) of the neutron spectrum in the reactor core. After the irradiation, the activation detectors were measured by means of spectrometry gamma, using a high resolution counting system with a hyper pure Germanium crystal, in order to obtain the saturation activity per target nuclide. The saturation activity is one of the main input data together with the initial spectrum, for the computational code SANDBP (hungarian version of the code SAND-II), which through an iterative adjustment, gives the calculated spectrum. The different saturation activities are necessary for the unfolding method, used by the computational code SANDBP. This research work is very important, since the knowledge of the energetic and spatial distribution of the neutron flux in the irradiation facilities, allows to characterize properly the irradiation facilities, just like, to estimate with a good precision various physics parameters of the reactor such as: neutron fluxes (thermal, intermediate and fast), neutronic dose, neutron activation analysis (NAA), spectral indices (cadmium ratio), buckling, fuel burnup, safety parameters (reactivity, temperature distribution, peak factors). In addition, the knowledge of the already mentioned parameters can give a best use of reactor, optimizing the irradiations requested by the users for their production process or research projects. (Author)

  17. Characterization of a Neutron Beam Following Reconfiguration of the Neutron Radiography Reactor (NRAD Core and Addition of New Fuel Elements

    Directory of Open Access Journals (Sweden)

    Aaron E. Craft

    2016-02-01

    Full Text Available The neutron radiography reactor (NRAD is a 250 kW Mark-II Training, Research, Isotopes, General Atomics (TRIGA reactor at Idaho National Laboratory, Idaho Falls, ID, USA. The East Radiography Station (ERS is one of two neutron beams at the NRAD used for neutron radiography, which sits beneath a large hot cell and is primarily used for neutron radiography of highly radioactive objects. Additional fuel elements were added to the NRAD core in 2013 to increase the excess reactivity of the reactor, and may have changed some characteristics of the neutron beamline. This report discusses characterization of the neutron beamline following the addition of fuel to the NRAD. This work includes determination of the facility category according to the American Society for Testing and Materials (ASTM standards, and also uses an array of gold foils to determine the neutron beam flux and evaluate the neutron beam profile. The NRAD ERS neutron beam is a Category I neutron radiography facility, the highest possible quality level according to the ASTM. Gold foil activation experiments show that the average neutron flux with length-to-diameter ratio (L/D = 125 is 5.96 × 106 n/cm2/s with a 2σ standard error of 2.90 × 105 n/cm2/s. The neutron beam profile can be considered flat for qualitative neutron radiographic evaluation purposes. However, the neutron beam profile should be taken into account for quantitative evaluation.

  18. System of data collection of muon super-telescope and neutron monitor

    International Nuclear Information System (INIS)

    Klepach, E.; Yanke, V.; Kryakunova, O.; Sarlanis, K.; Souvatsoglou, Zh.; Mavromichalaki, E.

    2005-01-01

    The system of collection of information, integrated with system of selection on concurrences which is easily modified and for collection of the neutron data for the multi directed telescopes and godoscopes is offered. The system of data collection completely is solved at program level on the basis of the super fast processor. Coincidences and decoding of directions of arrival of particles are executed at a program level, and also counters of impulses for necessary number of channels are organized. The system of data collection is executed as the universal external device. Depending on the loaded managing program, this device can be used as: 1) system of telescope data collection, combined with system of selection of double coincidences; or 2) 32-channel system of data collection, for example the neutron monitor; or 3) as the register of the multiple neutrons, generated in the neutron monitor. (author)

  19. Measurement and analysis of neutron flux distribution of STACY heterogeneous core by position sensitive proportional counter. Contract research

    CERN Document Server

    Murazaki, M; Uno, Y

    2003-01-01

    We have measured neutron flux distribution around the core tank of STACY heterogeneous core by position sensitive proportional counter (PSPC) to develop the method to measure reactivity for subcritical systems. The neutron flux distribution data in the position accuracy of +-13 mm have been obtained in the range of uranium concentration of 50g/L to 210g/L both in critical and in subcritical state. The prompt neutron decay constant, alpha, was evaluated from the measurement data of pulsed neutron source experiments. We also calculated distribution of neutron flux and sup 3 He reaction rates at the location of PSPC by using continuous energy Monte Carlo code MCNP. The measurement data was compared with the calculation results. As results of comparison, calculated values agreed generally with measurement data of PSPC with Cd cover in the region above half of solution height, but the difference between calculated value and measurement data was large in the region below half of solution height. On the other hand, ...

  20. Neutron area monitoring at storage bunkers of density/moisture gauges

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Fuste, M.J. [Grup de Fisica de les Radiacions. Universitat Autonoma de Barcelona (UAB), Edifici Cc, E-08193 Bellaterra (Spain); Amgarou, K., E-mail: khalil.amgarou@uab.ca [Grup de Fisica de les Radiacions. Universitat Autonoma de Barcelona (UAB), Edifici Cc, E-08193 Bellaterra (Spain); Garcia-Orellana, J.; Domingo, C. [Grup de Fisica de les Radiacions. Universitat Autonoma de Barcelona (UAB), Edifici Cc, E-08193 Bellaterra (Spain)

    2010-12-15

    Previous studies remarked the need of performing neutron personal dosimetry, together with gamma dosimetry, when using portable density/moisture gauges that are normally equipped with gamma and neutron sources. The convenience of our Poly-Allyl-Diglycol-Carbonate (PADC) based neutron dosimeter to perform long-term routine survey of all workers involved in the transport, maintenance and usage of these gauges was also corroborated in the past. This complete dosimetric control offers the possibility to quantify simultaneously individual neutron and gamma doses of workers operating such devices, especially in the most frequent cleaning and maintenance (shutter lubrication) operations of the gauges or in emergency situations that may lead to radiological risk of the persons involved. Another aspect to be considered, from the radioprotection point of view, is the optimization of the occupational and public exposure in the storage bunkers of the gauges. In this work, three storage bunkers, located at three different factories of the PAYMA Cotas S.A.U company, have been monitored for three months using several units of our PADC based neutron dosimeter. Special care has been taken to study also offices near the bunkers with high occupancy rates and passage zones, such as toilets and access areas. Results for all monitored points inside and around the three storage bunkers are presented. Neutron doses inside the bunkers could be relatively high depending on the specific conditions (geometry configuration, localization and shielding composition) of the considered bunker and the number of portable gauges stored.

  1. Neutron area monitoring at storage bunkers of density/moisture gauges

    International Nuclear Information System (INIS)

    Garcia-Fuste, M.J.; Amgarou, K.; Garcia-Orellana, J.; Domingo, C.

    2010-01-01

    Previous studies remarked the need of performing neutron personal dosimetry, together with gamma dosimetry, when using portable density/moisture gauges that are normally equipped with gamma and neutron sources. The convenience of our Poly-Allyl-Diglycol-Carbonate (PADC) based neutron dosimeter to perform long-term routine survey of all workers involved in the transport, maintenance and usage of these gauges was also corroborated in the past. This complete dosimetric control offers the possibility to quantify simultaneously individual neutron and gamma doses of workers operating such devices, especially in the most frequent cleaning and maintenance (shutter lubrication) operations of the gauges or in emergency situations that may lead to radiological risk of the persons involved. Another aspect to be considered, from the radioprotection point of view, is the optimization of the occupational and public exposure in the storage bunkers of the gauges. In this work, three storage bunkers, located at three different factories of the PAYMA Cotas S.A.U company, have been monitored for three months using several units of our PADC based neutron dosimeter. Special care has been taken to study also offices near the bunkers with high occupancy rates and passage zones, such as toilets and access areas. Results for all monitored points inside and around the three storage bunkers are presented. Neutron doses inside the bunkers could be relatively high depending on the specific conditions (geometry configuration, localization and shielding composition) of the considered bunker and the number of portable gauges stored.

  2. Replacement of core components in the Advanced Test Reactor

    International Nuclear Information System (INIS)

    Durney, J.L.; Croucher, D.W.

    1990-01-01

    The core internals of the Advanced Test Reactor are subjected to very high neutron fluences resulting in significant aging. The most irradiated components have been replaced on several occasions as a result of the neutron damage. The surveillance program to monitor the aging developed the needed criteria to establish replacement schedules and maximize the use of the reactor. The methods to complete the replacements with minimum radiation exposures to workers have been developed using the experience gained from each replacement. The original design of the reactor core and associated components allows replacements to be completed without special equipment. The plant has operated for about 20 years and is expected to continue operation for at least and additional 25 years. Aging evaluations are in progress to address additional replacements that may be needed during this period

  3. Replacement of core components in the Advanced Test Reactor

    International Nuclear Information System (INIS)

    Durney, J.L.; Croucher, D.W.

    1989-01-01

    The core internals of the Advanced Test Reactor are subjected to very high neutron fluences resulting in significant aging. The most irradiated components have been replaced on several occasions as a result of the neutron damage. The surveillance program to monitor the aging developed the needed criteria to establish replacement schedules and maximize the use of the reactor. Methods to complete the replacements with minimum radiation exposures to workers have been developed using the experience gained from each replacement. The original design of the reactor core and associated components allows replacements to be completed without special equipment. The plant has operated for about 20 years and will continue operation for perhaps another 20 years. Aging evaluations are in program to address additional replacements that may be needed during this extended time period. 3 figs

  4. Development of neutron-monitor detectors applicable for energies up to 100 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Tatsuhiko; Endo, Akira; Yamaguchi, Yasuhiro; Kim, Eunjoo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Nakamura, Takashi [Tohoku Univ., Sendai, Miyagi (Japan)

    2003-03-01

    For the purpose of monitoring of neutron doses in high energy accelerator facilities, we have been developing neutron detectors which are applicable for neutron energies up to 100 MeV. The present paper reports characteristics of a phoswitch-type neutron detector which is composed of a liquid organic scintillator and {sup 6}Li+ZnS(Ag) sheets. (author)

  5. Application of AC servo motor on the in-core neutron flux instrumentation system

    International Nuclear Information System (INIS)

    Du Xiaoguang; Wang Mingtao

    2010-01-01

    The application of ac servo motor in the In-Core Neutron Flux Instrumentation System is described. The hardware component of ac servo motor control system is different from the dc motor control system. The effect of two control system on the instrumentation system is compared. The ac servo motor control system can improve the accuracy of the motion control, optimize the speed control and increase the reliability. (authors)

  6. Operation monitoring and protection method for nuclear reactor

    International Nuclear Information System (INIS)

    Tochihara, Hiroshi.

    1995-01-01

    In an operation and monitoring method for a PWR-type reactor by using a tetra-sected neutron detector, axial off set is defined by neutron detector signals with respect to an average of the reactor core, the upper half of the reactor core, and the lower half of the reactor core. A departure from nucleate boiling (DNBR) is represented by standardized signals, and the DNBR is calculated by using the axial off set of the average of the reactor core, the upper half of the reactor core, and the lower half of the reactor core, and they are graphically displayed. In addition, a thermal flow rate-water channel coefficient is also graphically displayed, and the DNBR and the thermal flow rate-water channel coefficient are restricted based on the display, to determine an allowable operation range. As a result, it is possible to provide an operation monitoring and protection method for nuclear reactor capable of reducing labors and frequencies for the change of protection system setting in a case of using a tetra-sected neutron detector disposed at the outside and, at the same time, protecting each of DNR and the highest linear power or the thermal water coefficient channel. (N.H.)

  7. Ultra Wide Band RFID Neutron Tags for Nuclear Materials Monitoring

    International Nuclear Information System (INIS)

    Nekoogar, F.; Dowla, F.; Wang, T.

    2010-01-01

    Recent advancements in the ultra-wide band Radio Frequency Identification (RFID) technology and solid state pillar type neutron detectors have enabled us to move forward in combining both technologies for advanced neutron monitoring. The LLNL RFID tag is totally passive and will operate indefinitely without the need for batteries. The tag is compact, can be directly mounted on metal, and has high performance in dense and cluttered environments. The LLNL coin-sized pillar solid state neutron detector has achieved a thermal neutron detection efficiency of 20% and neutron/gamma discrimination of 1E5. These performance values are comparable to a fieldable 3 He based detector. In this paper we will discuss features about the two technologies and some potential applications for the advanced safeguarding of nuclear materials.

  8. Measurement and calculation of spatial and energetic neutron flux in the IEA-R1 reactor core

    International Nuclear Information System (INIS)

    Bittelli, U.D.

    1988-01-01

    This work presents spatial and energetic flux distribution measured in the IEA-R1 reactor core. The thermal neutron flux was measured by gold activation foils (bare and covered with cadmium) in the fuel element number 108 (reaction: 197 Au(n,γ) 198 Au) at 451W overall reactor power. The fast neutron flux was measured by indium activation foils (reaction: 115 In(n,n') 115m In) in the fuel elements number 94 at 4510W overall reactor power. The neutron energy spectrum was adjusted by SAND II code with the data produced by the irradiation of seven activation detectors in the fuel element number 94 at 4510 W overall reactor power. The following reactions were used: 58 Fe(n,γ) 59 Fe, 232 Th(n,γ) 233 Th, 197 Au(n,γ) 198 Au, 59 Co(n,γ) 60 Co, 54 Fe(n,p) 54 Mn, 24 Mg(n,p) 24 Na, 47 Ti(n,p) 47 Sc, 48 Ti(n,p) 48 Sc and 115 In(n,n') 115m In. The experimental results compared to those obtained by CITATION (spatial distribution flux) and HAMMER (energetic distribution flux) code, showed good agreement. The results presented in this work are a good contribution for a better knowledge of spatial and energetic neutron flux distribution in the IEA-R1 reactor core, besides that the experimental procedure is easily applicable to another situations. (autor) [pt

  9. Excitation of neutron flux waves in reactor core transients

    International Nuclear Information System (INIS)

    Carew, J.F.; Neogy, P.

    1983-01-01

    An analysis of the excitation of neutron flux waves in reactor core transients has been performed. A perturbation theory solution has been developed for the time-dependent thermal diffusion equation in which the absorption cross section undergoes a rapid change, as in a PWR rod ejection accident (REA). In this analysis the unperturbed reactor flux states provide the basis for the spatial representation of the flux solution. Using a simplified space-time representation for the cross section change, the temporal integrations have been carried out and analytic expressions for the modal flux amplitudes determined. The first order modal excitation strength is determined by the spatial overlap between the initial and final flux states, and the cross section perturbation. The flux wave amplitudes are found to be largest for rapid transients involving large reactivity perturbations

  10. Calibration of area monitors for neutrons used in clinical linear accelerators; Calibracao de monitores de area para neutrons usados em aceleradores lineares clinicos

    Energy Technology Data Exchange (ETDEWEB)

    Salgado, Ana Paula; Pereira, Walsan Wagner; Patrao, Karla C. de Souza; Fonseca, Evaldo S. da, E-mail: asalgado@ird.gov.b [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Batista, Delano V.S. [Instituto Nacional do Cancer (INCa), Rio de Janeiro, RJ (Brazil)

    2009-07-01

    This work demonstrates the complexity and the necessary cares for the realization of measurements of neutron fields in rooms for radiotherapy treatment containing clinical accelerators. The acquaintance of the technical characteristics of the monitors and the periodic calibration are actions and fundamental procedures to guarantee traceability and the reliability of measurements

  11. The online simulation of core physics in nuclear power plant

    International Nuclear Information System (INIS)

    Zhao Qiang

    2005-01-01

    The three-dimensional power distribution in core is one of the most important status variables of nuclear reactor. In order to monitor the 3-D in core power distribution timely and accurately, the online simulation system of core physics was designed in the paper. This system combines core physics simulation with the data, which is from the plant and reactor instrumentation. The design of the system consists of the hardware part and the software part. The online simulation system consists of a main simulation computer and a simulation operation station. The online simulation system software includes of the real-time simulation support software, the system communication software, the simulation program and the simulation interface software. Two-group and three-dimensional neutron kinetics model with six groups delayed neutrons was used in the real-time simulation of nuclear reactor core physics. According to the characteristics of the nuclear reactor, the core was divided into many nodes. Resolving the neutron equation, the method of separate variables was used. The input data from the plant and reactor instrumentation system consist of core thermal power, loop temperatures and pressure, control rod positions, boron concentration, core exit thermocouple data, Excore detector signals, in core flux detectors signals. There are two purposes using the data, one is to ensure that the model is as close as the current actual reactor condition, and the other is to calibrate the calculated power distribution. In this paper, the scheme of the online simulation system was introduced. Under the real-time simulation support system, the simulation program is being compiled. Compared with the actual operational data, the elementary simulation results were reasonable and correct. (author)

  12. Neutron pair and proton pair transfer reactions between identical cores in the sulfur region

    International Nuclear Information System (INIS)

    Mermaz, M.C.

    1995-12-01

    Optical model and exact finite range distorted-wave Born approximation analyses were performed on neutron pair exchange between identical cores for 32 S and 34 S nuclei and on proton pair exchange between identical cores for 30 Si and 32 S. The extracted spectroscopic factors were compared with theoretical ones deduced from Hartree-Fock calculations on these pair of nuclei. The enhancement of the experimental cross sections with respect to the theoretical ones strongly suggests evidence for a nuclear Josephson effect. (author). 15 refs., 5 figs., 3 tabs

  13. Characteristics of self-powered neutron detectors used in power reactors

    International Nuclear Information System (INIS)

    Todt, W.H.

    1997-01-01

    Self-Powered Neutron Detectors have been used effectively as in-core flux monitors for over twenty-five years in nuclear power reactors world-wide. The basic properties of these radiation sensors are described including their nuclear, electrical and mechanical characteristics. Recommendations are given for the proper choice of the self-powered detector emitter to provide the proper response time and radiation sensitivity desired for use in an effective in-core radiation monitoring system. Examples are shown of specific self-powered detector designs which are being effectively used in in-core instrumentation systems for pressurised water, heavy water and graphite moderated light water reactors. Examples are also shown of the mechanical configurations of in-core assemblies of self-powered detectors combined with in-core thermocouples presently used in pressurised water and heavy water reactors worldwide. This paper is a summary of a new IEC standard to be issued in 1996 describing the characteristics and test methods of self-powered detectors used in nuclear power reactors. (author)

  14. Neutronic characterization of cylindrical core of minor excess reactivity in the nuclear reactor IPEN/MB-01 from the measure of spatial and energetic distribution of neutron flux distribution; Caracterizacao do nucleo cilindrico de menor excesso de reatividade do reator IPEN/MB-01, pela medida da distribuicao espacial e energetica do fluxo de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Aredes, Vitor Ottoni Garcia

    2014-07-01

    In this work was conducted the mapping of the thermal and epithermal neutrons flux and the energy spectrum of the neutrons in the reactor core IPEN/MB-01 for a cylindrical core configuration with minor excess reactivity, which is 28 x 28 fuel rods arranged in north-south and east-west directions. The calibration of control rods for this configuration determined their excess reactivity. The lower excess reactivity in the core decreased neutron flux disturbance caused by the neutron absorbing rods , given that the nuclear reactor was operated with the rods almost completely removed . Was used the 'Activation Analysis Technique' with the thin foil activation detectors ( infinitely diluted and hyper-pure), of different materials that work in different energy ranges, to calculate the saturation activity, used for determining the neutron flux and in the SANDBP code as input for the calculation of the neutrons energy spectrum. To discriminate thermal and epithermal flux , was used the 'Cadmium RatioTechnique' . The activation detectors were distributed in a total of 140 radial and axial positions in the reactor core and 16 irradiation, with bare and covered with cadmium activation foils. A model of this configuration was simulated by MCNP-5 code to determine the cadmium correction factor and comparison of the results obtained experimentally. The cylindrical configuration desired, with 17% less fuel than the standard rectangular configuration (28 x 26 fuel rods), reached criticality with the control rods approximately 90% removed, which decreased considerably the disturbance in neutron flux. Given the highest power density of the 28 x 28 cylindrical core, the neutron flux increased by over 50% in the central regions of the core compared to the values of the 28 x 26 standard rectangular core. (author)

  15. Neutronic studies of the long life core concept: Part 1, Design and performance of 1000 MWe uranium oxide fueled low power density LMR cores

    International Nuclear Information System (INIS)

    Orechwa, Y.

    1987-04-01

    The parametric behavior of some key neutronic performance parameters for low power density LMR cores fueled with uranium oxide is investigated. The results are compared to reference homogeneous and heterogeneous cores with normal fuel management and Pu fueling. It can be concluded that with respect to minimizing the initial fissile mass and thereby economizing on the inventory costs and carrying charges, the superior neutron economy of the LMR fuel cycle is best exploited through normal fuel management with Pu recycling. In the once-through mode the LMR fuel cycle has disadvantages due to a higher fissile inventory and is not competitive with the LWR fuel cycle

  16. Calibration of ITER Instant Power Neutron Monitors: Recommended Scenario of Experiments at the Reactor

    Science.gov (United States)

    Borisov, A. A.; Deryabina, N. A.; Markovskij, D. V.

    2017-12-01

    Instant power is a key parameter of the ITER. Its monitoring with an accuracy of a few percent is an urgent and challenging aspect of neutron diagnostics. In a series of works published in Problems of Atomic Science and Technology, Series: Thermonuclear Fusion under a common title, the step-by-step neutronics analysis was given to substantiate a calibration technique for the DT and DD modes of the ITER. A Gauss quadrature scheme, optimal for processing "expensive" experiments, is used for numerical integration of 235U and 238U detector responses to the point sources of 14-MeV neutrons. This approach allows controlling the integration accuracy in relation to the number of coordinate mesh points and thus minimizing the number of irradiations at the given uncertainty of the full monitor response. In the previous works, responses of the divertor and blanket monitors to the isotropic point sources of DT and DD neutrons in the plasma profile and to the models of real sources were calculated within the ITER model using the MCNP code. The neutronics analyses have allowed formulating the basic principles of calibration that are optimal for having the maximum accuracy at the minimum duration of in situ experiments at the reactor. In this work, scenarios of the preliminary and basic experimental ITER runs are suggested on the basis of those principles. It is proposed to calibrate the monitors only with DT neutrons and use correction factors to the DT mode calibration for the DD mode. It is reasonable to perform full calibration only with 235U chambers and calibrate 238U chambers by responses of the 235U chambers during reactor operation (cross-calibration). The divertor monitor can be calibrated using both direct measurement of responses at the Gauss positions of a point source and simplified techniques based on the concepts of equivalent ring sources and inverse response distributions, which will considerably reduce the amount of measurements. It is shown that the monitor

  17. Spectrum measurements in the ZENITH plutonium core 7 using a neutron chopper

    Energy Technology Data Exchange (ETDEWEB)

    Barclay, F R; Cameron, I R; Pitcher, H H.W.; Symons, C R [General Reactor Physics Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1964-05-15

    As part of the experimental programme on the first plutonium loading of ZENITH (Core 7) a series of measurements was carried out with the neutron chopper on a beam emerging from the core centre. The general experimental programme on the two ZENITH plutonium cores has been covered elsewhere. Core 7 had a carbon/Pu239 atomic ratio of 2666 and a steel/Pu239 ratio of 76.8, giving an absorption cross-section at 2200 m/sec. of 0.31 barns/carbon atom. The fuel was in the form of 'spikes' of 0.020 in. thick Pu/Al alloy sheathed in 0.020 in. aluminium, the isotopic composition of the plutonium being 97.4% Pu239, 2.55% Pu240 and 0.1% Pu241. The overall layout of the reactor core and reflector is shown in the vertical section through the reactor vessel and the plan view. The core consists of a vertical array of 235 cylindrical graphite sleeves of outer diameter 7.37 cm into each of which a cylindrical graphite box may be loaded. Sunning longitudinally inside the box are six parallel grooves which act as locations for the edges of either the Pu/Al spikes or graphite dummies of the same external dimensions. Each groove accommodates two spikes end-to-end, with a small graphite spacer between to avoid welding together of the spike sheaths when heated. Lateral spacers of graphite or stainless steel fill the five spaces between the six spikes or dummies. The total length of the plutonium-loaded core region is 140 cm, the ends of the element forming graphite reflectors of length 53 cm. In Core 7 each fuel element contained 10 Pu-Al spikes. The fuel elements are arranged in a triangular lattice of pitch 7.62 cm to form the reactor core, of diameter 1.23 m. A radial graphite reflector approximately 1 metre thick surrounds the core and is separated from it by an annular lampblack thermal barrier, contained within graphite tiles, which reduces heat transfer from the core. The reactor can be heated by circulation of nitrogen through a 250 kW heater below the core. The nitrogen flows

  18. Spectrum measurements in the ZENITH plutonium core 7 using a neutron chopper

    International Nuclear Information System (INIS)

    Barclay, F.R.; Cameron, I.R.; Pitcher, H.H.W.; Symons, C.R.

    1964-05-01

    As part of the experimental programme on the first plutonium loading of ZENITH (Core 7) a series of measurements was carried out with the neutron chopper on a beam emerging from the core centre. The general experimental programme on the two ZENITH plutonium cores has been covered elsewhere. Core 7 had a carbon/Pu239 atomic ratio of 2666 and a steel/Pu239 ratio of 76.8, giving an absorption cross-section at 2200 m/sec. of 0.31 barns/carbon atom. The fuel was in the form of 'spikes' of 0.020 in. thick Pu/Al alloy sheathed in 0.020 in. aluminium, the isotopic composition of the plutonium being 97.4% Pu239, 2.55% Pu240 and 0.1% Pu241. The overall layout of the reactor core and reflector is shown in the vertical section through the reactor vessel and the plan view. The core consists of a vertical array of 235 cylindrical graphite sleeves of outer diameter 7.37 cm into each of which a cylindrical graphite box may be loaded. Sunning longitudinally inside the box are six parallel grooves which act as locations for the edges of either the Pu/Al spikes or graphite dummies of the same external dimensions. Each groove accommodates two spikes end-to-end, with a small graphite spacer between to avoid welding together of the spike sheaths when heated. Lateral spacers of graphite or stainless steel fill the five spaces between the six spikes or dummies. The total length of the plutonium-loaded core region is 140 cm, the ends of the element forming graphite reflectors of length 53 cm. In Core 7 each fuel element contained 10 Pu-Al spikes. The fuel elements are arranged in a triangular lattice of pitch 7.62 cm to form the reactor core, of diameter 1.23 m. A radial graphite reflector approximately 1 metre thick surrounds the core and is separated from it by an annular lampblack thermal barrier, contained within graphite tiles, which reduces heat transfer from the core. The reactor can be heated by circulation of nitrogen through a 250 kW heater below the core. The nitrogen flows

  19. Final qualification of an industrial wide range neutron instrumentation in the Osiris MTR reactor

    Energy Technology Data Exchange (ETDEWEB)

    Barbot, L.; Normand, S. [CEA, LIST, Laboratoire Capteur et Architectures Electroniques, F-91191 Gif Sur Yvette (France); Pasdeloup, P. [AREVA TA, Controle Commande and Mesures, F-13762 Les Milles (France); Lescop, B. [CEA, INSTN, UEIN, F-91191 Gif Sur Yvette (France)

    2009-07-01

    This work deals with the final qualification of the IRINA in-core neutron flux measurement system in the MTR Osiris reactor. A specific irradiation device has been set up to validate the last changes in the complete system (electronic, transmitting cable and monitor). Experimental results show the IRINA measurement system meet entirely the in-core reactor conditions requirements: a thermal neutron flux from 10{sup 7} n.cm{sup -2}.s{sup -1} up to 10{sup 14} n.cm{sup -2}.s{sup -1} and a temperature of 300 C degrees during a minimum operating time of 1000 hours. (authors)

  20. Thermal and fast neutron distribution determination in the IPR-R1 reactor core; Levantamento das distribuicoes dos fluxos de neutrons termicos e rapidos no nucleo do reator IPR-R1

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, R R.R.

    1985-06-01

    The work is aimed at obtaining a physical method for neutron flux distribution determination within the reactor core, in order to analyze the project of power increase in the TRIGA IPR-R1 reactor at the Nuclebras Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), located in Belo Horizonte, Minas Gerais, Brazil. The experimental process utilizes the neutron activation technique in impurities of stainless steel welding rods 700 mm long, set in acrylic supports. These rods provide simultaneous information on the thermal and fast neutron fluxes through capture and threshold reactions. The process of detection and counting of activation products utilizes a high resolution Ge (Li) detector and a mechanical scanning device, designed and manufactured at CDTN for burn-up measurements of irradiated fuel elements. Besides its simplicity, the method presents the advantage of substituting high purity imported materials by one easily obtained that also furnishes simultaneous information on the thermal and fast neutron fluxes. Furthermore, values for the absolute thermal neutron flux a long the whole core height are obtained. The procedure consists of the assessment of the thermal neutron flux in a fixed point by means of a conventional detector, and then establishing the correspondence of this measurement with the response of the stainless steel rods. (author). 30 refs, 39 figs, 9 tabs.

  1. Development of an area monitor for neutrons using solid state nuclear track detector

    International Nuclear Information System (INIS)

    Zahn, G.S.

    1994-01-01

    An area monitor for neutrons composed of the solid state nuclear track detector (SSNTD) Makrofol DE, together with a (n,α) converter, in the center of a 25 cm diameter polyethylene sphere, is developed. The optimal electrochemical etching conditions for the detection of thermal neutrons by the Makrofol DE using the BN converter are studied, leading to the choice of 55 min, at 30 0 C, under a 44,2 kV.cm -1 electric field with oscillation frequency of 2,0 khz. The response of this system to thermal neutrons, in the optimal conditions, is of 2,76(10)x 10 -3 tr/n. Changing from the BN converter to a 2,73(3)g compressed boric acid tablet this value lowers to 3,88(17)x 10 -4 tr/n. The performance of the whole monitor in the detection of fast neutrons is examined using the BN converter and neutrons from a 241 Am Be source, with a response of 4,4(2)x 10 3 tr.mSv -1 .cm -2 and operational limits between 7(3)μSv and 5,6(2)mSv. The result of the monitoring of the control room of the IPEN Cyclotron accelerator are also presented as a final test for the viability of the practical use of the monitor. (author). 34 refs, 15 figs, 6 tabs, 1 app

  2. Low level neutron monitoring using high pressure 3He detectors

    International Nuclear Information System (INIS)

    Pszona, S.

    1995-01-01

    Three detectors, two spherical proportional counters and an ionisation chamber, all filled with 3 He to pressures of 160 kPa, 325 kPa and 1 MPa respectively have been experimentally studied with respect to their use for low level neutron monitoring. The ambient dose equivalent responses and the energy resolutions of these detectors have been determined. It is shown that spectral analysis of the signals from these detectors not only gives high sensitivity with regard to ambient dose equivalent but also improves the quality of the measurements. A special instrumentation for low level neutron monitoring is described in which a quality control method has been implemented. (Author)

  3. A beam position monitor using an amorphous magnetic core

    International Nuclear Information System (INIS)

    Kobayashi, Toshiaki; Ueda, Toru; Yoshida, Yoichi; Kozawa, Takahiro; Uesaka, Mitsuru; Miya, Kenzo; Tagawa, Seiichi; Kobayashi, Hitoshi.

    1994-01-01

    A beam position monitor for an electron accelerator has been developed by using an amorphous magnetic core. The position is detected by the difference of leakage inductances of four pickup coils wound on the amorphous magnetic core. The accuracy of the beam position monitor is less than 1 mm for the various electron pulses from nanosecond to microsecond. (author)

  4. GEM-based thermal neutron beam monitors for spallation sources

    International Nuclear Information System (INIS)

    Croci, G.; Claps, G.; Caniello, R.; Cazzaniga, C.; Grosso, G.; Murtas, F.; Tardocchi, M.; Vassallo, E.; Gorini, G.; Horstmann, C.; Kampmann, R.; Nowak, G.; Stoermer, M.

    2013-01-01

    The development of new large area and high flux thermal neutron detectors for future neutron spallation sources, like the European Spallation Source (ESS) is motivated by the problem of 3 He shortage. In the framework of the development of ESS, GEM (Gas Electron Multiplier) is one of the detector technologies that are being explored as thermal neutron sensors. A first prototype of GEM-based thermal neutron beam monitor (bGEM) has been built during 2012. The bGEM is a triple GEM gaseous detector equipped with an aluminum cathode coated by 1μm thick B 4 C layer used to convert thermal neutrons to charged particles through the 10 B(n, 7 Li)α nuclear reaction. This paper describes the results obtained by testing a bGEM detector at the ISIS spallation source on the VESUVIO beamline. Beam profiles (FWHM x =31 mm and FWHM y =36 mm), bGEM thermal neutron counting efficiency (≈1%), detector stability (3.45%) and the time-of-flight spectrum of the beam were successfully measured. This prototype represents the first step towards the development of thermal neutrons detectors with efficiency larger than 50% as alternatives to 3 He-based gaseous detectors

  5. Light neutron-rich hypernuclei from the importance-truncated no-core shell model

    Science.gov (United States)

    Wirth, Roland; Roth, Robert

    2018-04-01

    We explore the systematics of ground-state and excitation energies in singly-strange hypernuclei throughout the helium and lithium isotopic chains - from He5Λ to He11Λ and from Li7Λ to Li12Λ - in the ab initio no-core shell model with importance truncation. All calculations are based on two- and three-baryon interaction from chiral effective field theory and we employ a similarity renormalization group transformation consistently up to the three-baryon level to improve the model-space convergence. While the absolute energies of hypernuclear states show a systematic variation with the regulator cutoff of the hyperon-nucleon interaction, the resulting neutron separation energies are very stable and in good agreement with available data for both nucleonic parents and their daughter hypernuclei. We provide predictions for the neutron separation energies and the spectra of neutron-rich hypernuclei that have not yet been observed experimentally. Furthermore, we find that the neutron drip lines in the helium and lithium isotopic chains are not changed by the addition of a hyperon.

  6. Use of Germanium as comparator and integral monitor of neutron flux in activation analysis

    International Nuclear Information System (INIS)

    Furnari, Juan C.; Cohen, Isaac M.; Arribere, Maria A.; Kestelman, Abraham J.

    1997-01-01

    The possibility of using germanium as monitor of the thermal and epithermal components of the neutron flux, and comparator in parametric activation analysis, is discussed. The advantages and drawbacks associated to the use of this element are commented on, and the comparison with zirconium, in terms of the determination relative error, is performed. The utilisation of germanium as integral flux monitor, including the fast component of the neutron spectrum, is also discussed. Data corresponding to measurements of k 0 factor for the most relevant gamma transitions from Ge-75 and Be-77 are presented, as well as the results of the reference material analysis, employing germanium as flux monitor and comparator in a simultaneous way. (author). 8 refs., 3 figs., 2 tabs

  7. Two and three dimensional core power distribution monitor and display

    International Nuclear Information System (INIS)

    Impink, A.J. Jr.; Grobmyer, L.R.

    1988-01-01

    This patent describes a sensor monitoring system for displaying a profile of fractional deviations in relative coolant enthalpy rise over a defined area comprising at least a part of a core of a nuclear reactor, which system comprises: core exit coolant temperature sensors positioned to monitor at least a portion of the defined area; an inlet temperature sensor outside the core which monitors the temperature of core coolant at an inlet to the reactor means, responsive to the outputs from both the core exit temperature sensors and the inlet temperature sensor, for generating corresponding representative values of actual coolant enthalpy rise and corresponding values of relative enthalpy rise at each location in the defined area at which a core exit coolant temperature sensor is available; means, responsive to the generated values of relative enthalpy rise and to reference values of relative enthalpy rise at corresponding locations in the defined area, for generating values of the fractional deviation of the measured values of relative enthalpy rise from the corresponding values; means for interpolating the generated values of fractional deviation in relative enthalpy rise to provide interpolated values of fractional deviation in relative enthalpy rise at locations in the defined area of the core other than those at which core exit coolant temperature sensors are available; and means for multidimensionally displaying the generated and interpolated values

  8. A comparative neutronic analysis of KALIMER breeder core using Na or Pb-Bi coolant

    International Nuclear Information System (INIS)

    Yoo, J. W.; Kim, S. J.; Kim, Y. I.

    2000-01-01

    A comparative neutronic study has been conducted on KALIMER breeder core according to the replacement of sodium coolant by Pb-Bi coolant. Since the atomic weight of Pb and Bi is about 9 times heavier than that of Na, the energy loss by neutron colliding with Pb-Bi nucleus will be very small. Therefore, the reactor with Pb-Bi coolant will have a harder neutron spectrum than that with Na coolant. Consequently, the breeding ratio and burnup reactivity swing is expected to be enhanced. In addition, when Pb-Bi coolant is voided, a negative coolant void coefficient can be obtained by the net effects of smaller spectrum hardening and large neutron leakage. As a result, the breeding ratio was increased from 1.18 to 1.23 and burnup reactivity swing was reduced from 631 pcm to 150 pcm. When the coolant in the whole region of active core is voided, the coolant void coefficient was found to be -539 and -264 pcm at BOEC and EOEC, respectively. In the local voided case, the smaller coolant void coefficient was obtained than that of Na coolant. Accordingly, the use of Pb-Bi coolant in KALIMER gives an advantage of higher breeding ratio, smaller burnup reactivity swing and negative coolant void coefficient without any significant degradation of nuclear performance

  9. Development and characterization of two-component albedo based neutron individual monitoring system using thermoluminescent detectors

    International Nuclear Information System (INIS)

    Martins, Marcelo Marques

    2008-01-01

    A TLD-albedo based two-component neutron individual monitoring system was developed and characterized in this work. The monitor consists of a black plastic holder, an incident neutron boron loaded shield, a moderator polyethylene body (to increase its response), two pairs of TLD-600 and TLD-700 (one pair to each component) and an adjustable belt. This monitoring system was calibrated in thermal neutron fields and in 70 keV, 144 keV, 565 keV, 1.2 MeV and 5 MeV monoenergetic neutron fields. In addition, it was calibrated in 252C f(D 2 O), 252 Cf, 241 Am-B, 241 Am-Be and 238 Pu-Be source fields. For the latter, the lower detection levels are, respectively, 0.009 mSv, 0.06 mSv, 0.12 mSv, 0.09 mSv and 0.08 mSv. The participation in an international intercomparison sponsored by IAEA with simulated workplace fields validated the system. The monitoring system was successfully characterized in the ISO 21909 standard and in an IRD - the Brazilian Institute for Radioprotection and Dosimetry - technical regulation draft. Nowadays, the neutron individual system is in use by IRD for whole body individual monitoring of five institutions, which comprehend several activities. (author)

  10. Neutronic feasibility of PWR core with mixed oxide fuels in the Republic of Korea

    International Nuclear Information System (INIS)

    Kim, Y.J.; Joo, H.K.; Jung, H.G.; Sohn, D.S.

    1997-01-01

    Neutronic feasibility of a PWR core with mixed oxide (MOX) fuels has been investigated as part of the feasibility study for recycling spent fuels in Korea. A typical 3-loop PWR with 900 MWe capacity is selected as reference plant to develop equilibrium core designs with low-leakage fuel management scheme, while incorporating various MOX loading. The fuel management analyses and limited safety analyses show that, safely stated, MOX recycling with 1/3 reload fraction can be accommodated for both annual and 18 month fuel cycle schemes in Korean PWRs, without major design modifications on the reactor systems. (author). 12 refs, 4 figs, 3 tabs

  11. First evaluation of low frequency noise measurements of in core detector signals in the measuring assembly Rheinsberg

    International Nuclear Information System (INIS)

    Collatz, S.

    1982-01-01

    Reactor noise spectra of in core neutron detectors are measured in the low frequency range (0.03 Hz to 1 Hz) and evaluated. The increase of the effective noise signal value is due to pressure oscillations or oscillations of special steam volume portions. Thus boiling monitoring of reactor cores in PWR type reactors may be possible, if the low frequency noise of the whole set of in core detectors is taken into account

  12. Characterization of thermal neutron fields for calibration of neutron monitors in accordance with great equivalent dose environment H⁎(10)

    International Nuclear Information System (INIS)

    Silva, Larissa P. S. da; Silva, Felipe S.; Fonseca, Evaldo S.; Patrao, Karla C.S.; Pereira, Walsan W.

    2017-01-01

    The Laboratório Brasileiro de Nêutrons do Instituto de Radioproteção e Dosimetria (IRD/CNEN) has developed and built a thermal neutron flux facility to provide neutron fluence for dosimeters (Astuto, 2014). This fluency is obtained by four 16 Ci sources 241 AmBe (α, n) positioned around the channel positioned in the center of the Thermal Flow Unit (UFT). The UFT was built with blocks of paraffin with graphite addition and graphite blocks of high purity to obtain a central field with a homogeneous thermal neutron fluence for calibration purposes with the following measurements: 1.2 x 1.2 x 1.2 m 3 . The objective of this work is to characterize several points, in the thermal energy range, in terms of the equivalent ambient dose quantity H⁎(10) for calibration and irradiation of monitors neutrons

  13. Measurement and analysis of neutron flux distribution of STACY heterogeneous core by position sensitive proportional counter. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Murazaki, Minoru; Uno, Yuichi; Miyoshi, Yoshinori [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    We have measured neutron flux distribution around the core tank of STACY heterogeneous core by position sensitive proportional counter (PSPC) to develop the method to measure reactivity for subcritical systems. The neutron flux distribution data in the position accuracy of {+-}13 mm have been obtained in the range of uranium concentration of 50g/L to 210g/L both in critical and in subcritical state. The prompt neutron decay constant, {alpha}, was evaluated from the measurement data of pulsed neutron source experiments. We also calculated distribution of neutron flux and {sup 3}He reaction rates at the location of PSPC by using continuous energy Monte Carlo code MCNP. The measurement data was compared with the calculation results. As results of comparison, calculated values agreed generally with measurement data of PSPC with Cd cover in the region above half of solution height, but the difference between calculated value and measurement data was large in the region below half of solution height. On the other hand, calculated value agreed well with measurement data of PSPC without Cd cover. (author)

  14. Experimental determination of residual stress by neutron diffraction in a boiling water reactor core shroud

    International Nuclear Information System (INIS)

    Payzant, A.; Spooner, S.; Zhu, Xiaojing; Hubbard, C.R.

    1996-01-01

    Residual strains in a 51 mm (2-inch) thick 304L stainless steel plate have been measured by neutron diffraction and interpreted in terms of residual stress. The plate, measuring (300 mm) in area, was removed from a 6m (20-ft.) diameter unirradiated boiling water reactor core shroud, and included a multiple-pass horizontal weld which joined two of the cylindrical shells which comprise the core shroud. Residual stress mapping was undertaken in the heat affected zone, concentrating on the outside half of the plate thickness. Variations in residual stresses with location appeared consistent with trends expected from finite element calculations, considering that a large fraction of the residual hoop stress was released upon removal of the plate from the core shroud cylinder

  15. Neutronic Analysis and Radiological Safety of RSG-GAS Reactor on 300 Grams Uranium Silicide Core

    International Nuclear Information System (INIS)

    Pande Made Udiyani; Lily Suparlina; Rokhmadi

    2007-01-01

    As starting of usage silicide U 250 g fuel element in the core of RSG-GAS and will be continued with usage of silicide U 300 g fuel element, hence done beforehand neutronic analyse and radiological safety of RSG-GAS. Calculation done by ORIGEN2.1 code to calculate source term, and also by PC-COSYMA code to calculate radiological safety of radioactive dispersion from RSG-GAS. Calculation of radioactive dispersion done at condition of reactor is postulated be happened an accident of LOCA causing one fuel element to melt. Neutronic analysis indicate that silicide U 250 g full core shall to be operated beforehand during 625 MWD before converted to silicide U 300 g core. During operation of transition core with mixture of silicide U 250 g and 300 g, all parameter fulfill criterion of safety Designed Balance core of silicide U 300 g will be reached at the time of fifth full core. Result of calculation indicate that through mixture core of silicide U 250 and 300 g proposed can form silicide U 300 g balance core of reactor RSG-GAS safely. Calculation of radiology safety by deterministic for silicide U 300 g balance core, and accident postulation which is equal to core of silicide U 250 g yield output in the form of radiation activity (radionuclide concentration in the air and deposition on the ground), radiation dose (collective and individual), radiation effect (short- and long-range), which accepted by society in each perceived sector. Result of calculation indicated that dose accepted by society is not pass permitted boundary for public society if happened accident. (author)

  16. Criticality monitoring with digital systems and solid state neutron detectors

    International Nuclear Information System (INIS)

    Willhoite, S.B.

    1984-01-01

    A commercially available system for criticality monitoring combines the well established technology of digital radiation monitoring with state-of-the art detector systems capable of detecting criticality excursions of varying length and intensity with a high degree of confidence. The field microcomputer servicing the detector clusters contains hardware and software to acquire detector information in both the digital count rate and bit sensing modes supported by the criticality detectors. In both cases special criticality logic in the field microcomputer is used to determine the validity of the criticality event. The solid-state neutron detector consists of a 6 LiF wafer coupled to a diffused-junction charged particle detector. Alpha particles resulting from (n,α) interactions within the lithium wafer produce a pulsed signal corresponding to neutron intensity. Special detector circuitry causes the setting of a criticality bit recognizable by the microcomputer should neutron field intensities either exceed a hardware selectable frequency or saturate the detector resulting in a high current condition. These two modes of criticality sensing, in combination with the standard method of comparing an operator selectable alarm setpoint with the detector count rate, results in a criticality system capable of effective operation under the most demanding criticality monitoring conditions

  17. Status of ITER neutron diagnostic development

    Science.gov (United States)

    Krasilnikov, A. V.; Sasao, M.; Kaschuck, Yu. A.; Nishitani, T.; Batistoni, P.; Zaveryaev, V. S.; Popovichev, S.; Iguchi, T.; Jarvis, O. N.; Källne, J.; Fiore, C. L.; Roquemore, A. L.; Heidbrink, W. W.; Fisher, R.; Gorini, G.; Prosvirin, D. V.; Tsutskikh, A. Yu.; Donné, A. J. H.; Costley, A. E.; Walker, C. I.

    2005-12-01

    Due to the high neutron yield and the large plasma size many ITER plasma parameters such as fusion power, power density, ion temperature, fast ion energy and their spatial distributions in the plasma core can be measured well by various neutron diagnostics. Neutron diagnostic systems under consideration and development for ITER include radial and vertical neutron cameras (RNC and VNC), internal and external neutron flux monitors (NFMs), neutron activation systems and neutron spectrometers. The two-dimensional neutron source strength and spectral measurements can be provided by the combined RNC and VNC. The NFMs need to meet the ITER requirement of time-resolved measurements of the neutron source strength and can provide the signals necessary for real-time control of the ITER fusion power. Compact and high throughput neutron spectrometers are under development. A concept for the absolute calibration of neutron diagnostic systems is proposed. The development, testing in existing experiments and the engineering integration of all neutron diagnostic systems into ITER are in progress and the main results are presented.

  18. Status of ITER neutron diagnostic development

    International Nuclear Information System (INIS)

    Krasilnikov, A.V.; Sasao, M.; Kaschuck, Yu.A.; Nishitani, T.; Batistoni, P.; Zaveryaev, V.S.; Popovichev, S.; Iguchi, T.; Jarvis, O.N.; Kaellne, J.; Fiore, C.L.; Roquemore, A.L.; Heidbrink, W.W.; Fisher, R.; Gorini, G.; Prosvirin, D.V.; Tsutskikh, A.Yu.; Donne, A.J.H.; Costley, A.E.; Walker, C.I.

    2005-01-01

    Due to the high neutron yield and the large plasma size many ITER plasma parameters such as fusion power, power density, ion temperature, fast ion energy and their spatial distributions in the plasma core can be measured well by various neutron diagnostics. Neutron diagnostic systems under consideration and development for ITER include radial and vertical neutron cameras (RNC and VNC), internal and external neutron flux monitors (NFMs), neutron activation systems and neutron spectrometers. The two-dimensional neutron source strength and spectral measurements can be provided by the combined RNC and VNC. The NFMs need to meet the ITER requirement of time-resolved measurements of the neutron source strength and can provide the signals necessary for real-time control of the ITER fusion power. Compact and high throughput neutron spectrometers are under development. A concept for the absolute calibration of neutron diagnostic systems is proposed. The development, testing in existing experiments and the engineering integration of all neutron diagnostic systems into ITER are in progress and the main results are presented

  19. Compilation of neutron flux density spectra and reaction rates in different neutron fields

    International Nuclear Information System (INIS)

    Ertek, C.

    1979-07-01

    Upon the recommendation of International Working Group of Reactor Radiation Measurements (IWGRRM), the compilation of neutron flux density spectra and the reaction rates obtained by activation and fission foils in different neutron fields is presented. The neutron fields considered are as follows: 1/E; iron block; LWR core and pressure vessel; LMFBR core and blanket; CTR first wall and blanket; fission spectrum

  20. Quark Deconfinement in Rotating Neutron Stars

    Directory of Open Access Journals (Sweden)

    Richard D. Mellinger

    2017-01-01

    Full Text Available In this paper, we use a three flavor non-local Nambu–Jona-Lasinio (NJL model, an improved effective model of Quantum Chromodynamics (QCD at low energies, to investigate the existence of deconfined quarks in the cores of neutron stars. Particular emphasis is put on the possible existence of quark matter in the cores of rotating neutron stars (pulsars. In contrast to non-rotating neutron stars, whose particle compositions do not change with time (are frozen in, the type and structure of the matter in the cores of rotating neutron stars depends on the spin frequencies of these stars, which opens up a possible new window on the nature of matter deep in the cores of neutron stars. Our study shows that, depending on mass and rotational frequency, up to around 8% of the mass of a massive neutron star may be in the mixed quark-hadron phase, if the phase transition is treated as a Gibbs transition. We also find that the gravitational mass at which quark deconfinement occurs in rotating neutron stars varies quadratically with spin frequency, which can be fitted by a simple formula.

  1. ATR neutron spectral characterization

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, J.W.; Anderl, R.A.

    1995-11-01

    The Advanced Test Reactor (ATR) at INEL provides intense neutron fields for irradiation-effects testing of reactor material samples, for production of radionuclides used in industrial and medical applications, and for scientific research. Characterization of the neutron environments in the irradiation locations of the ATR has been done by means of neutronics calculations and by means of neutron dosimetry based on the use of neutron activation monitors that are placed in the various irradiation locations. The primary purpose of this report is to present the results of an extensive characterization of several ATR irradiation locations based on neutron dosimetry measurements and on least-squares-adjustment analyses that utilize both neutron dosimetry measurements and neutronics calculations. This report builds upon the previous publications, especially the reference 4 paper. Section 2 provides a brief description of the ATR and it tabulates neutron spectral information for typical irradiation locations, as derived from the more historical neutron dosimetry measurements. Relevant details that pertain to the multigroup neutron spectral characterization are covered in section 3. This discussion includes a presentation on the dosimeter irradiation and analyses and a development of the least-squares adjustment methodology, along with a summary of the results of these analyses. Spectrum-averaged cross sections for neutron monitoring and for displacement-damage prediction in Fe, Cr, and Ni are given in section 4. In addition, section4 includes estimates of damage generation rates for these materials in selected ATR irradiation locations. In section 5, the authors present a brief discussion of the most significant conclusions of this work and comment on its relevance to the present ATR core configuration. Finally, detailed numerical and graphical results for the spectrum-characterization analyses in each irradiation location are provided in the Appendix.

  2. Study on development of virtual reactor core laboratory (1). Development of prototype coupled neutronic, thermal-hydraulic and structural analysis system

    International Nuclear Information System (INIS)

    Uto, Nariaki; Sugaya, Toshio; Tsukimori, Kazuyuki; Negishi, Hitoshi; Enuma, Yasuhiro; Sakai, Takaaki

    1999-09-01

    A study on development of virtual reactor core laboratory, which is to conduct numerical experiments representative of complicated physical phenomena in practical reactor core systems on a computational environment, has progressed at Japan Nuclear Cycle Development Institute (JNC). The study aims at systematic evaluation of these phenomena into which nuclear reactions, thermal-hydraulic characteristics, structural responses and fuel behaviors combine, and effective utilization of the obtained comprehension for core design. This report presents a production of a prototype computational system which is required to construct the virtual reactor core laboratory. This system is to evaluate reactor core performance under the coupled neutronic, thermal-hydraulic and structural phenomena, and is composed of two analysis tools connected by a newly developed interface program; 1) an existing space-dependent coupled neutronic and thermal-hydraulic analysis system arranged at JNC and 2) a core deformation analysis code. It acts on a cluster of several DEC/Alpha workstations. A specific library called MPI1 (Message Passing Interface 1) is incorporated as a tool for communicating among the analysis modules consisting of the system. A series of calculations for simulating a sequence of Unprotected Loss Of Heat Sink (ULOHS) coupled with rapid drop of some neutron absorber devices in a prototype fast reactor is tried to investigate how the system works. The obtained results show the core deformation behavior followed by the reactivity change that can be properly evaluated. The results of this report show that the system is expected to be useful for analyzing sensitivity of reactor core performance with respect to uncertainties of various design parameters and establishing a concept of passive safety reactor system, taking into account space distortion of neutron flux distribution during abnormal events as well as reactivity feedback from core deformation. (author)

  3. Practical implications of the ICRP - Publication 26 on the neutron external monitoring

    International Nuclear Information System (INIS)

    Sordi, G.-M.A.A.

    1983-01-01

    The following topics are dealt with: radiation monitoring (monitoring of the work place, individual monitoring, application of models to the interpretation of the monitoring results, monitoring complementary functions); monitoring of the work place for the external neutronic radiation (a project for a monitoring program, interpretation of the results) and confidence quality. (M.A.) [pt

  4. Calculation of neutron die-away times in a large-vehicle portal monitor

    International Nuclear Information System (INIS)

    Lillie, R.A.; Santoro, R.T.; Alsmiller, R.G. Jr.

    1980-05-01

    Monte Carlo methods have been used to calculate neutron die-away times in a large-vehicle portal monitor. These calculations were performed to investigate the adequacy of using neutron die-away time measurements to detect the clandestine movement of shielded nuclear materials. The geometry consisted of a large tunnel lined with He 3 proportional counters. The time behavior of the (n,p) capture reaction in these counters was calculated when the tunnel contained a number of different tractor-trailer load configurations. Neutron die-away times obtained from weighted least squares fits to these data were compared. The change in neutron die-away time due to the replacement of cargo in a fully loaded truck with a spherical shell containing 240 kg of borated polyethylene was calculated to be less than 3%. This result together with the overall behavior of neutron die-away time versus mass inside the tunnel strongly suggested that measurements of this type will not provide a reliable means of detecting shielded nuclear materials in a large vehicle. 5 figures, 4 tables

  5. Study of the triton-burnup process in different JET scenarios using neutron monitor based on CVD diamond

    Energy Technology Data Exchange (ETDEWEB)

    Nemtsev, G., E-mail: g.nemtsev@iterrf.ru; Amosov, V.; Meshchaninov, S.; Rodionov, R. [Institution “Project center ITER,” Moscow (Russian Federation); Popovichev, S. [CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Collaboration: EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)

    2016-11-15

    We present the results of analysis of triton burn-up process using the data from diamond detector. Neutron monitor based on CVD diamond was installed in JET torus hall close to the plasma center. We measure the part of 14 MeV neutrons in scenarios where plasma current varies in a range of 1-3 MA. In this experiment diamond neutron monitor was also able to detect strong gamma bursts produced by runaway electrons arising during the disruptions. We can conclude that CVD diamond detector will contribute to the study of fast particles confinement and help predict the disruption events in future tokamaks.

  6. Higher order polynomial expansion nodal method for hexagonal core neutronics analysis

    International Nuclear Information System (INIS)

    Jin, Young Cho; Chang, Hyo Kim

    1998-01-01

    A higher-order polynomial expansion nodal(PEN) method is newly formulated as a means to improve the accuracy of the conventional PEN method solutions to multi-group diffusion equations in hexagonal core geometry. The new method is applied to solving various hexagonal core neutronics benchmark problems. The computational accuracy of the higher order PEN method is then compared with that of the conventional PEN method, the analytic function expansion nodal (AFEN) method, and the ANC-H method. It is demonstrated that the higher order PEN method improves the accuracy of the conventional PEN method and that it compares very well with the other nodal methods like the AFEN and ANC-H methods in accuracy

  7. Gravitational waves from axisymmetric rotating stellar core collapse to a neutron star in full general relativity

    International Nuclear Information System (INIS)

    Shibata, Masaru; Sekiguchi, Yu-ichirou

    2004-01-01

    Axisymmetric numerical simulations of rotating stellar core collapse to a neutron star are performed in the framework of full general relativity. The so-called Cartoon method, in which the Einstein field equations are solved in Cartesian coordinates and the axisymmetric condition is imposed around the y=0 plane, is adopted. The hydrodynamic equations are solved in cylindrical coordinates (on the y=0 plane in Cartesian coordinates) using a high-resolution shock-capturing scheme with maximum grid size (2500,2500). A parametric equation of state is adopted to model collapsing stellar cores and neutron stars following Dimmelmeier, Font, and Mueller. It is found that the evolution of the central density during the collapse, bounce, and formation of protoneutron stars agrees well with that in the work of Dimmelmeier, Font, and Mueller in which an approximate general relativistic formulation is adopted. This indicates that such an approximation is appropriate for following axisymmetric stellar core collapses and the subsequent formation of protoneutron stars. Gravitational waves are computed using a quadrupole formula. It is found that the waveforms are qualitatively in good agreement with those by Dimmelmeier, Font, and Mueller. However, quantitatively, two waveforms do not agree well. The possible reasons for the disagreement are discussed

  8. Method of measuring neutron spectra in JMTR exclusively used for irradiation and their evaluation

    International Nuclear Information System (INIS)

    Sakurai, Kiyoshi

    1983-01-01

    In the core of the Japan Materials Testing Reactor, about 60 capsules are irradiated. These are the material capsules for irradiating reactor materials, the fuel capsules for irradiating reactor fuel, the RI capsules for producing radioisotopes and so on. In the irradiation experiment using a reactor, the information on the neutron fluence is indispensable, and the neutron fluence in the irradiated specimen part is evaluated with a dosimeter or the nuclear calculation for the core of the JMTR. At the time of irradiating reactor materials, the dosimeter Fe-54 (n,p) Mn-54 is generally used for evaluating the neutron fluence more than 1 MeV. In the case of fuel irradiation, the thermal neutron fluence is evaluated with the dosimeter Co-59 (n,γ) Co-60. It is important to examine in detail neutron spectra by both calculation and experiment in the reactors exclusively used for irradiation such as the JMTR. The neutron irradiation field in the JMTR, neutron spectrum measuring experiment, the neutron flux monitors for standardizing data, the measurement of X-ray and gamma ray, neutron guess spectrum, the compilation of neutron cross section for SAND 2, and the unfolding of neutron spectra are reported. The degree of agreement of the neutron fluence more than 1 MeV by measurement and calculation was +- 10 to 20 %. (Kako, I.)

  9. FBR type reactor core

    International Nuclear Information System (INIS)

    Tamiya, Tadashi; Kawashima, Katsuyuki; Fujimura, Koji; Murakami, Tomoko.

    1995-01-01

    Neutron reflectors are disposed at the periphery of a reactor core fuel region and a blanket region, and a neutron shielding region is disposed at the periphery of them. The neutron reflector has a hollow duct structure having a sealed upper portion, a lower portion opened to cooling water, in which a gas and coolants separately sealed in the inside thereof. A driving pressure of a primary recycling pump is lowered upon reduction of coolant flow rate, then the liquid level of coolants in the neutron reflector is lowered due to imbalance between the driving pressure and a gas pressure, so that coolants having an effect as a reflector are eliminated from the outer circumference of the reactor core. Therefore, the amount of neutrons leaking from the reactor core is increased, and negative reactivity is charged to the reactor core. The negative reactivity of the neutron reflector is made greater than a power compensation reactivity. Since this enables reactor scram by using an inherent performance of the reactor core, the reactor core safety of an LMFBR-type reactor can be improved. (I.N.)

  10. Research program in reactor core diagnostics with neutron noise methods: Stage 3. Final report

    International Nuclear Information System (INIS)

    Pazsit, I.; Garis, N.S.; Karlsson, J.; Racz, A.

    1997-09-01

    Stage 3 of the program has been executed 96-04-12. The long term goal is to develop noise methods for identification and localization of perturbations in reactor cores. The main parts of the program consist of modelling the noise source, calculation of the space- and frequency dependent transfer function, calculation of the neutron noise via a convolution of the transfer function of the system and the noise source, i.e. the perturbation, and finally finding an inversion or unfolding procedure to determine noise source parameters from the neutron noise. Most previous work is based on very simple (analytical) reactor models for the calculation of the transfer function as well as analytical unfolding methods. The purpose of this project is to calculate the transfer function in a more realistic model as well as elaborating powerful inversion methods that do not require analytical transfer functions. The work in stage 3 is described under the following headlines: Further investigation of simplified models for the calculation of the neutron noise; Further investigation of methods based on neural networks; Further investigation of methods for detecting the vibrations and impacting of detectors; Application of static codes for determination of the neutron noise using the adiabatic approximation

  11. Personal neutron monitoring using TLD albedo combined with etched tracks detector

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimura, N.; Momose, T. [Japan Nuclear Cycle Development Institute, Ibarakiken (Japan)

    2002-07-01

    The albedo dosimetry has been carried out in personal neutron monitoring in the MOX fuel plant of JNC Tokai Works, however, it has shortcomings mainly due to the inherently poor energy response. This paper describes our efforts to overcome these difficulties in practical use of albedo dosemeters. The following four subjects are presented: (1) the neutron energy response functions of albedo TLD obtained from the mono-energetic neutron irradiation experiments and the Monte-Carlo calculations, (2) the location- dependent correction factors calculated from the response functions and neutron energy spectra measured in the workplaces, (3) the results of the international personal neutron dosimetry intercomparison program, and (4) the operational comparison program of TLD albedo and etched tracks detector worn by workers engaged in the fabrication process of the MOX fuel plant. Finally, the characteristics of the combination neutron dosemeter using TLD albedo and solid state etched track detector are summarized.

  12. Impact of advanced BWR core physics method on BWR core monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Moon, H; Wells, A [Siemens Power Corporation, Richland (United States)

    2000-07-01

    Siemens Power Corporation recently initiated development of POWERPLEX{sup TM}-III for delivery to the Grand Gulf Nuclear Power Station. The main change introduced in POWERPLEX{sup TM}-III as compared to its predecessor POWERPLEX{sup TM}-II is the incorporation of the advances BWR core simulator MICROBURN-B2. A number of issues were identified and evaluated relating to the implementation of MICROBURN-B2 and its impact on core monitoring. MICROBURN-B2 demands about three to five times more memory and two to three times more computing time than its predecessor MICROBURN-B in POWERPLEX {sup TM}-II. POWERPLEX{sup TM}-III will improve thermal margin prediction accuracy and provide more accurate plant operating conditions to operators than POWERPLEX{sup TM}-II due to its improved accuracy in predicted TIP values and critical k-effective. The most significant advantage of POWERPLEX{sup TM}-III is its capability to monitor a relaxed rod sequence exchange operation. (authors)

  13. Thermal–hydraulic analysis of a candidate design for ITER divertor neutron flux monitor (DNFM)

    International Nuclear Information System (INIS)

    Tanchuk, Victor; Alexandrov, Evgeny; Batyunin, Alexander; Kashchuk, Yuri; Korban, Svetlana; Lyublin, Boris; Obudovsky, Sergey; Senik, Konstantin

    2013-01-01

    The key role in direct measurement of the ITER fusion power is assigned to the neutron diagnostic system for measurement of total neutron flux of the D–D and D–T fusion reaction with the help of a neutron flux monitor located under the divertor dome. High plasma heat loads in this position implies stringent requirements for the detector design and its cooling system to ensure the required temperature operation regime of the neutron detector. The paper describes the neutron flux monitor design developed in close collaboration with IO ITER diagnostic division. Two numerical models (hydraulic and thermal) built up to simulate the water flow in the cooling system and the temperature state of detector components are also presented and discussed. The numerical investigations carried out on the developed models have shown that only good thermal contact between the shell of the detector blocks and water-cooled casing of the monitor (fit, brazing) will provide the required temperature operation regimes of the most temperature-sensitive IFC electrodes. The obtained high temperature of the detector supports makes necessary an auxiliary direct cooling of the supports or their redesign so as to provide their higher thermal conductivity

  14. Thermal–hydraulic analysis of a candidate design for ITER divertor neutron flux monitor (DNFM)

    Energy Technology Data Exchange (ETDEWEB)

    Tanchuk, Victor, E-mail: Victor.Tanchuk@sintez.niiefa.spb.su [Scientific Technical Center SINTEZ, D.V. Efremov Institute, 196641 St. Petersburg (Russian Federation); Alexandrov, Evgeny [Institution “Project Center ITER”, 1, Akademika Kurchatova sq., 123182 Moscow (Russian Federation); Batyunin, Alexander; Kashchuk, Yuri [State Research Center of Russian Federation Troitsk Institute for Innovation and Fusion Research, ul. Pushkovykh, vladenie 12, 142190 Troitsk, Moscow Region (Russian Federation); Korban, Svetlana; Lyublin, Boris [Scientific Technical Center SINTEZ, D.V. Efremov Institute, 196641 St. Petersburg (Russian Federation); Obudovsky, Sergey [State Research Center of Russian Federation Troitsk Institute for Innovation and Fusion Research, ul. Pushkovykh, vladenie 12, 142190 Troitsk, Moscow Region (Russian Federation); Senik, Konstantin [Scientific Technical Center SINTEZ, D.V. Efremov Institute, 196641 St. Petersburg (Russian Federation)

    2013-10-15

    The key role in direct measurement of the ITER fusion power is assigned to the neutron diagnostic system for measurement of total neutron flux of the D–D and D–T fusion reaction with the help of a neutron flux monitor located under the divertor dome. High plasma heat loads in this position implies stringent requirements for the detector design and its cooling system to ensure the required temperature operation regime of the neutron detector. The paper describes the neutron flux monitor design developed in close collaboration with IO ITER diagnostic division. Two numerical models (hydraulic and thermal) built up to simulate the water flow in the cooling system and the temperature state of detector components are also presented and discussed. The numerical investigations carried out on the developed models have shown that only good thermal contact between the shell of the detector blocks and water-cooled casing of the monitor (fit, brazing) will provide the required temperature operation regimes of the most temperature-sensitive IFC electrodes. The obtained high temperature of the detector supports makes necessary an auxiliary direct cooling of the supports or their redesign so as to provide their higher thermal conductivity.

  15. Small angle neutron scattering study of nano sized microstructure in Fe-Cr ODS steels for gen IV in-core applications.

    Science.gov (United States)

    Han, Young-Soo; Mao, Xiadong; Jang, Jinsung

    2013-11-01

    The nano-sized microstructures in Fe-Cr oxide dispersion strengthened steel for Gen IV in-core applications were studied using small angle neutron scattering. The oxide dispersion strengthened steel was manufactured through hot isostatic pressing with various chemical compositions and fabrication conditions. Small angle neutron scattering experiments were performed using a 40 m small angle neutron scattering instrument at HANARO. Nano sized microstructures, namely, yttrium oxides and Cr-oxides were quantitatively analyzed by small angle neutron scattering. The yttrium oxides and Cr-oxides were also observed by transmission electron microscopy. The microstructural analysis results from small angle neutron scattering were compared with those obtained by transmission electron microscopy. The effects of the chemical compositions and fabrication conditions on the microstructure were investigated in relation to the quantitative microstructural analysis results obtained by small angle neutron scattering. The volume fraction of Y-oxide increases after fabrication, and this result is considered to be due to the formation of non-stochiometric Y-Ti-oxides.

  16. SCORPIO-VVER core monitoring and surveillance system with advanced capabilities

    International Nuclear Information System (INIS)

    Molnar, J.; Vocka, R.

    2010-01-01

    In this work authors present 12 years of operation experience of core monitoring and surveillance system with advanced capabilities on nuclear power plants on 6 unit of VVER-440 type of reactors at two different NPPs. The original version of the SCORPIO (Surveillance of reactor CORe by PIcture On-line display) system was developed for the western type of PWR reactors. The first version of the SCORPIO-VVER Core Monitoring System for Dukovany NPP (VVER-440 type of reactor, Czech Republic) was developed in 1998. For SCORPIO-VVER implementation at Bohunice NPP in Slovakia (2001) the system was enhanced with startup module KRITEX.

  17. Qualification and characterization of electronics of the fast neutron Hodoscope detectors using neutrons from CABRI core

    Science.gov (United States)

    Mirotta, S.; Guillot, J.; Chevalier, V.; Biard, B.

    2018-01-01

    The study of Reactivity Initiated Accidents (RIA) is important to determine up to which limits nuclear fuels can withstand such accidents without clad failure. The CABRI International Program (CIP), conducted by IRSN under an OECD/NEA agreement, has been launched to perform representative RIA Integral Effect Tests (IET) on real irradiated fuel rods in prototypical Pressurized Water Reactors (PWR) conditions. For this purpose, the CABRI experimental pulse reactor, operated by CEA in Cadarache, France, has been strongly renovated, and equipped with a pressurized water loop. The behavior of the test rod, located in that loop in the center of the driver core, is followed in real time during the power transients thanks to the hodoscope, a unique online fuel motion monitoring system, and one of the major distinctive features of CABRI. The hodoscope measures the fast neutrons emitted by the tested rod during the power pulse with a complete set of 153 Fission Chambers and 153 Proton Recoil Counters. During the CABRI facility renovation, the electronic chain of these detectors has been upgraded. In this paper, the performance of the new system is presented describing gain calibration methodology in order to get maximal Signal/Noise ratio for amplification modules, threshold tuning methodology for the discrimination modules (old and new ones), and linear detectors response limit versus different reactor powers for the whole electronic chain.

  18. Cosmic Rays and Clouds, 1. Formation of Lead Mesoatoms In Neutron Monitor By Soft Negative Muons and Expected Atmospheric Electric Field Effect In The Cosmic Ray Neutron Component

    Science.gov (United States)

    Dorman, L. I.; Dorman, I. V.

    We extend our model (Dorman and Dorman, 1995) of cosmic ray atmospheric electric field effect on the case of neutron monitor. We take into account that about 0.07 of neu- tron monitor counting rate caused by negative soft muons captured by lead nucleons and formed mesoatoms with generation of several MeV energy neutrons from lead. In this case the neutron monitor or neutron supermonitor works as analyzer which de- tects muons of only one, negative sign. It is very important because the atmospheric electric field effect have opposite signs for positive and negative muons that main part of this effect in the muon telescope or in ionization chamber is compensated and we can observe only small part of total effect of one sign muons. On the basis of our gen- eral theory of cosmic ray meteorological effects with taking into account of negative soft muon acceleration and deceleration in the Earth atmosphere (in dependence of di- rection and intensity of electric field) we discuss the possibility of existing this effect in cosmic ray neutron component and made some rough estimations. REFERENCES: Dorman L.I. and Dorman I.V., 1995. "Cosmic-ray atmospheric electric field effects". Canadian J. of Physics, Vol. 73, pp. 440-443.

  19. Activities of research-reactor-technology project in FNCA from FY2005 to FY2007. Sharing neutronics calculation technique for core management and utilization of research reactors

    International Nuclear Information System (INIS)

    2010-07-01

    RRT project (Research-Reactor-Technology Project) was carried out with the theme of 'sharing neutronics calculation technique for core management and utilization of research reactors' in the framework of FNCA (Forum for Nuclear Cooperation in Asia) from FY2005 to FY2007. The objective of the project was to improve and equalize the level of neutronics calculation technique for the reactor core management among participating countries to assure the safe and stable operation of research reactors and the promotion of the effective utilization. Neutronics calculation codes, namely SRAC code system and MVP code, were adopted as common codes. Participating countries succeeded in applying the common codes to analyzing the core of each domestic research reactor. Some participating countries succeeded in applying the common codes to analyzing for utilization of own research reactors. Activities of RRT project have improved and equalized the level of neutronics calculation technique among participating countries. (author)

  20. Physical parameters and biological effects of the LVR-15 epithermal neutron beam

    International Nuclear Information System (INIS)

    Burian, J.; Marek, M.; Rejchrt, J.; Viererbl, L.; Gambarini, G.; Mares, V.; Vanossi, E.; Judas, L.

    2006-01-01

    Monitoring of the physical and biological properties of the epithermal neutron beam constructed at the multipurpose LVR-15 nuclear reactor for NCT therapy of brain tumors showed that its physical and biological properties are stable in time and independent on an ad hoc reconfiguration of the reactor core before its therapeutic use. Physical parameters were monitored by measurement of the neutron spectrum, neutron profile, fast neutron kerma rate in tissue and photon absorbed dose, the gel dosimetry was used with the group of standard measurement methods. The RBE of the beam, as evaluated by 3 different biological models, including mouse intestine crypt regeneration assay, germinative zones of the immature rat brain and C6 glioma cells in culture, ranged from 1.70 to 1.99. (author)

  1. Possible applications of neutron activation analysis at the RB reactor for the environmental monitoring

    International Nuclear Information System (INIS)

    Nikolic, D.; Pesic, M.; Milosevic, M.; Dasic, N.; Antic, D.; Kostic, Lj.; Ljubenov, V.

    2002-01-01

    This paper presents the possibilities of performing neutron activation analysis in Yugoslavia for the purpose of environmental pollution monitoring. Neutron activation analysis (NAA) is an established method for the determination of trace elements in a broad range of samples. It is non-destructive method used in a routine manner with gamma-ray spectrometry for various applications in biology, environmental toxicology, radiation assessment, mineral exploration, trace elements monitoring regarding human health studies. As a complex, powerful analytical tool, it might give results even when other analytical methods fail. NAA has been performed at the Nuclear Engineering Laboratory (NET), the VINCA Institute of Nuclear Sciences, for various applications in the reactor physics research. The samples are irradiated in the RB research reactor, which is the zero-power, bear, heavy water critical facility utilising three fuel element types. The reactor system is very flexible and allows for different core configurations, resulting in various neutron fields, with energy spectra ranging from thermal to fast (in the coupled fast-thermal system HERBE). There are several vertical and horizontal experimental channels available for sample's irradiation. The achievable thermal neutron flux is approximately 1 0 7 n/(cm 2 s) per 1 W of fission power. We believe the RB reactor could be successfully used for neutron activation analysis of trace elements in the environmental samples, comprising short-lived isotopes. Although the flux level and restricted irradiation time pose a certain limitation to NAA applications at the RB reactor, it can be compensated by the specific methodology advancement. That involves overcoming the main sources of error in the instrumental NAA evaluation methodology which utilises generally valid k 0 , and Q 0 factors. In particular, the computational accuracy of required nuclear parameters (e.g. neutron flux distribution, effective nuclear cross sections) can

  2. Calculation of kinetic parameters of Caliban metallic core experimental reactor from stochastic neutron measurements

    Energy Technology Data Exchange (ETDEWEB)

    Casoli, P.; Authier, N.; Baud, J. [Commissariat a l' energie Atomique, Centre de Valduc, 21120 Is-sur-Tille (France)

    2009-07-01

    Several experimental devices are operated by the Criticality and Neutron Science Research Department of the CEA Valduc Laboratory. One of these is the metallic core reactor Caliban. The knowledge of the fundamental kinetic parameters of the reactor is very useful, indeed necessary, to the operator. The purpose of this study was to develop and perform experiments allowing to determinate some of these parameters. The prompt neutron decay constant and particularly its value at criticality can be measured with reactor noise techniques such as the interval-distribution, the Feynman variance-to-mean, and the Rossi-{alpha} methods. By introducing the Nelson number, the effective delayed neutron fraction and the average neutron lifetime can also be calculated with the Rossi-{alpha} method. Subcritical, critical, and even supercritical experiments were performed. With the Rossi-{alpha} technique, it was found that the prompt neutron decay constant at criticality was (6.02*10{sup 5} {+-} 9%). Experiments also brought out the limitations of the used experimental parameters. (authors)

  3. Marine: a new wide range neutron monitoring system concept

    Energy Technology Data Exchange (ETDEWEB)

    Trama, J.C.; Lescop, B.; Lefevre, J.; Nguyen, T.; Sudres, C. [CEA Saclay, 91 - Gif sur Yvette (France). Dept. d' Electronique et d' Instrumentation Nucleaire; Pasdeloup, P. [Technicatome, 13 - Les Milles (France)

    2001-07-01

    In a Nuclear Power Plant, the developed power is proportional to the emitted neutron flux. The 10 to 11 decades measurement range from source to power generally needs 3 distinct neutron measurement chains to be monitored. A wide range neutron monitoring system may cover this range with only one sensor followed by adequate electronics. In the past this concept has been developed with an analogue technology which was presenting some drawbacks (slow log amplifier, components perenniality). In this paper, we introduce a completely new design, that makes use of a recent technology, including full linear input electronics, and advanced digital signal processing. As far as the sensor is concerned, both a well known commercial fission chamber, or an innovative wide range sensor presenting a high sensitivity may be used. The basic concept is that the single signal is continuously processed by three different electronic stages, each one being dedicated to approximately one third of the full range: pulse, Campbelling and current modes. After amplification, appropriate shaping, this signal is numerically filtered by a Kalman filter algorithm to compute the neutron flux as well as the reactor period. A specifically developed test module allows the surveillance of the sensor and the electronics via stimuli injections and characteristic curves plotting. A computerised simulation of the whole chain is used to validate the signal processing algorithms evolutions. In the paper we will specifically develop the metrological performances of this chain and the general agreement that exists between simulated and measured values. (authors)

  4. Neutron spectrometry with Bonner spheres for area monitoring in particle accelerators

    International Nuclear Information System (INIS)

    Bedogni, R.

    2011-01-01

    Selecting the instruments to determine the operational quantities in the neutron fields produced by particle accelerators involves a combination of aspects, which is peculiar to these environments: the energy distribution of the neutron field, the continuous or pulsed time structure of the beam, the presence of other radiations to which the neutron instruments could have significant response and the large variability in the dose rate, which can be observed when moving from areas near the beam line to free-access areas. The use of spectrometric techniques in support of traditional instruments is highly recommended to improve the accuracy of dosimetric evaluations. The multi-sphere or Bonner Sphere Spectrometer (BSS) is certainly the most used device, due to characteristics such as the wide energy range, large variety of active and passive detectors suited for different workplaces, good photon discrimination and the simple signal management. Disadvantages are the poor energy resolution, weight and need to sequentially irradiate the spheres, leading to usually long measurement sessions. Moreover, complex unfolding analyses are needed to obtain the neutron spectra. This work is an overview of the BSS for area monitoring in particle accelerators. (authors)

  5. Reactor core monitoring device

    International Nuclear Information System (INIS)

    Ishii, Takanobu; Handa, Hiroaki; Hayashi, Katsumi; Narita, Hitoshi; Shimozaki, Takaaki

    1995-01-01

    The device of the present invention reliably and conveniently detects an event of rapid increase of a coolant void coefficient at a portion of a channel by flow channel clogging event in a PWR-type reactor. Namely, upon flow channel clogging event, the coolant void coefficient is increased, an effective density is lowered, and a coolant shielding effect is lowered. Therefore, fast neutron fluxes at the periphery of a pressure tube are increased. The increase of the fast neutron fluxes is detected by a fast neutron flux detector disposed in a guide tube of an existent neutron flux detector. Based on the result, increase of coolant void coefficient can be detected. When an average void coefficient reaches from 30% to 100%, for example, the fast neutron fluxes are increased by about twice at a neutron permeation distance of coolants of about 10cm, thereby enabling to perform effective detection. (I.S.)

  6. A Novel Method To On-Line Monitor Reactor Nuclear Power And In-Core Thermal Environments

    International Nuclear Information System (INIS)

    Liu, Hanying; Miller, Don W.; Li, Dongxu; Radcliff, Thomas D.

    2002-01-01

    For current nuclear power plants, nuclear power can not be directly measured and in-core fuel thermal environments can not be monitored due to the unavailability of an appropriate measurement technology and the inaccessibility of the fuel. If the nuclear deposited power and the in-core thermal conditions (i.e. fuel or coolant temperature and heat transfer coefficient) can be monitored in-situ, then it would play a valuable and critical role in increasing nuclear power, predicting abnormal reactor operation, improving core physical models and reducing core thermal margin so as to implement higher fuel burn-up. Furthermore, the management of core thermal margin and fuel operation may be easier during reactor operation, post-accident or spent fuel storage. On the other hand, for some advanced Generation IV reactors, the sealed and long-lived reactor core design challenges traditional measurement techniques while conventional ex-core detectors and current in-core detectors can not monitor details of the in-core fuel conditions. A method is introduced in this paper that responds to the challenge to measure nuclear power and to monitor the in-core thermal environments, for example, local fuel pin or coolant heat convection coefficient and temperature. In summary, the method, which has been designed for online in-core measurement and surveillance, will be beneficial to advanced plant safety, efficiency and economics by decreasing thermal margin or increasing nuclear power. The method was originally developed for a constant temperature power sensor (CTPS). The CTPS is undergoing design and development for an advanced reactor core to measure in-core nuclear power in measurement mode and to monitor thermal environments in compensation mode. The sensor dynamics was analyzed in compensation mode to determine the environmental temperature and the heat transfer coefficient. Previous research demonstrated that a first order dynamic model is not sufficient to simulate sensor

  7. Neutronic simulation of a research reactor core of (232Th, 235U)O2 fuel using MCNPX2.6 code

    International Nuclear Information System (INIS)

    Feghhi, Seyed Amir Hossein; Rezazadeh, Marzieh; Kadi, Yacine; ); Tenreiro, Claudio; Aref, Morteza; Gholamzadeh, Zohreh

    2013-01-01

    The small reactor design for the remote and less developed areas of the user countries should have simple features in view of the lack of infra-structure and resources. Many researchers consider long core life with no on-site refuelling activity as a primary feature for the small reactor design. Long core life can be achieved by enhancing internal conversion rate of fertile to fissile materials. For that purpose, thorium cycle can he adopted because a high fissile production rate of 233 U converted from 232 Th can be expected in the thermal energy region. A simple nuclear reactor core arranged 19 assemblies in hexagonal structure, using thorium-based fuel and heavy water as coolant and moderator was simulated using MCNPX2.6 code, aiming an optimized critical assembly. Optimized reflector thickness and gap between assemblies were determined to achieve minimum neutron leakage and void reactivity. The result was a more compact core, where assemblies were designed having 19-fuel pins in 1.25 pitch-to-diameter ratio. Optimum reflector thickness of 15 cm resulted in minimal neutron leakage in view of economic limitations. A 0.5 cm gap between assembles achieved more safety and 2.2 % enrichment requirements. The present feasibility study suggests a thermal core of acceptable neutronic parameters to achieve a simple and safe core. (author)

  8. Neutronics methods, models, and applications at the Idaho National Engineering Laboratory for the advanced neutron source reactor three-element core design

    International Nuclear Information System (INIS)

    Wemple, C.A.; Schnitzler, B.G.; Ryskamp, J.M.

    1995-08-01

    A summary of the methods and models used to perform neutronics analyses on the Advanced Neutron Source reactor three-element core design is presented. The applications of the neutral particle Monte Carlo code MCNP are detailed, as well as the expansion of the static role of MCNP to analysis of fuel cycle depletion calculations. Results to date of these applications are presented also. A summary of the calculations not yet performed is also given to provide a open-quotes to-doclose quotes list if the project is resurrected

  9. Theoretical investigation of the neutron noise diagnostics of two-dimensional control rod vibrations in a PWR

    International Nuclear Information System (INIS)

    Pazsit, I.; Analytis, G.T.

    1980-01-01

    In order to develop a method for monitoring control rod vibrations by neutron noise measurements, the noise induced by two-dimensional vibrations of control elements is investigated. The two-dimensional Green's function relating the small stochastic cross-section fluctuations to the neutron noise is determined for a rectangular slab reactor in the modified one-group theory, and subsequently, the neutron response to two-dimensional vibrating noise sources is investigated. Two possible diagnostical applications are considered: (a) the reconstruction of the mechanical trajectory of the vibrating element by neutron noise measurements, and (b) the possibility of locating the vibrating element in the core. (author)

  10. Large-area self-powered neutron-detectors for neutron-flux measurements in HTRs. Status of developmental work

    International Nuclear Information System (INIS)

    Brixy, H.; Hecker, R.; Serpekian, T.; Benninghofen, G.; Serafin, N.; Spillekothen, H.G.

    1982-06-01

    The development is described of the large-area SPN-detector as an out of core power monitoring system. Gadolinium or cobalt was used as the emitter. Response functions of the gadolinium SPN-detector were found with regard to the reactor power, the effect of the gamma field, its short-term behaviour following reactor shutdown and long-term behaviour during reactor operation. It was shown that a detector of 0.1 mm emitter thickness can withstand an integral thermal neutron flux of 2.10 20 nvt almost without efficiency loss thus indicating that the large-area gadolinium SPN-detector is a suitable means for power monitoring in large HTGR's

  11. Moderator temperature coefficient in BWR core

    International Nuclear Information System (INIS)

    Naito, Yoshitaka

    1977-01-01

    Temperature dependences of infinite multiplication factor k sub(infinity) and neutron leakage from the core must be examined for estimation of moderator temperature coefficient. Temperature dependence on k sub(infinity) has been investigated by many researchers, however, the dependence on neutron leakage of a BWR with cruciformed control rods has hardly been done. Because there are difficulties and necessity on calculations of three space dimensional and multi-energy groups neutron distribution in a BWR core. In this study, moderator temperature coefficients of JPDR-II (BWR) core were obtained by calculation with DIFFUSION-ACE, which is newly developed three-dimensional multi-group computer code. The results were compared with experimental data measured from 20 to 275 0 C of the moderator temperature and the good agreement was obtained between calculation and measurement. In order to evaluate neutron leakage from the core, the other two calculations were carried out, adjusting criticality by uniform absorption rate and by material buckling. The former underestimated neutron leakage and the latter overestimated it. Discussion on the results shows that in order to estimate the temperature coefficient of BWR, neutron leakage must be evaluated precisely, therefore the calculation at actual pattern of control rods is necessary. (auth.)

  12. ORR core re-configuration measurements to increase the fast neutron flux in the Magnetic Fusion Energy (MFE) experiments

    International Nuclear Information System (INIS)

    Hobbs, R.W.; Stinnett, R.M.; Sims, T.M.

    1985-06-01

    A study has been made of the relative increases obtainable in the fast neutron flux in the Magnetic Fusion Energy (MFE) experiment positions by reconfiguring the current ORR core. The study was made at the request of the MFE program to examine the percentage increase possible in the current displacement per atom (dpa) rate (assumed proportional to the fast flux). The principle methods investigated to increase the fast flux consisted of reducing the current core size (number of fuel elements) to increase the core average power density and arrangement of the fuel elements in the reduced-size core to tilt the core power distribution towards the MFE positions. The study concluded that fast fluxes in the E-3 core position could be increased by approximately 15 to 20% over current values and in E-5 by approximately 45 to 55%

  13. ARCADIAR - A New Generation of Coupled Neutronics / Core Thermal- Hydraulics Code System at AREVA NP

    International Nuclear Information System (INIS)

    Curca-Tivig, Florin; Merk, Stephan; Pautz, Andreas; Thareau, Sebastien

    2007-01-01

    Anticipating future needs of our customers and willing to concentrate synergies and competences existing in the company for the benefit of our customers, AREVA NP decided in 2002 to develop the next generation of coupled neutronics/ core thermal-hydraulic (TH) code systems for fuel assembly and core design calculations for both, PWR and BWR applications. The global CONVERGENCE project was born: after a feasibility study of one year (2002) and a conceptual phase of another year (2003), development was started at the beginning of 2004. The present paper introduces the CONVERGENCE project, presents the main feature of the new code system ARCADIA R and concludes on customer benefits. ARCADIA R is designed to meet AREVA NP market and customers' requirements worldwide. Besides state-of-the-art physical modeling, numerical performance and industrial functionality, the ARCADIA R system is featuring state-of-the-art software engineering. The new code system will bring a series of benefits for our customers: e.g. improved accuracy for heterogeneous cores (MOX/ UOX, Gd...), better description of nuclide chains, and access to local neutronics/ thermal-hydraulics and possibly thermal-mechanical information (3D pin by pin full core modeling). ARCADIA is a registered trademark of AREVA NP. (authors)

  14. The determination of fast neutron fluence in radiation stability tests of steel samples

    International Nuclear Information System (INIS)

    Hogel, J.; Vespalec, R.

    1979-01-01

    The activation method is described of determining fast neutron fluence. Samples of steel designed for WWER type reactor pressure vessels were irradiated in the CHOUCA-rigs in the core of the WWR-S reactor. The neutron spectrum was measured by the multiple activation foil method and the effective cross sections of fluence monitors were calculated. The fluences obtained from the reactions 54 Fe(n,p) 54 Mn and 63 Cu(n,α) 60 Co are presented and the method is discussed. (author)

  15. Reactivity And Neutron Flux At Silicide Fuel Element In The Core Of RSG-GAS

    International Nuclear Information System (INIS)

    Hamzah, Amir

    2000-01-01

    In order to 4.8 and 5.2 gr U/cm exp 3 loading of U 3 Si 2 --Al fuel plates characterization, he core reactivity change and neutron flux depression had been done. Control rod calibration method was used to reactivity change measurement and neutron flux distribution was measured using foil activation method. Measurement of insertion of A-type of testing fuel element with U-loading above cannot be done due to technical reason, so the measurement using full type silicide fuel element of 2.96 gr U/cm exp 3 loading. The reactivity change measurement result of insertion in A-9 and C-3 is + 2.67 cent. The flux depression at silicide fuel in A-9 is 1.69 times bigger than oxide and in C-3 is 0.68 times lower than oxide

  16. Evaluation of the environmental equivalent dose rate using area monitors for neutrons in clinical linear accelerators; Avaliacao da taxa de equivalente de dose ambiente utilizando monitores de area para neutrons em aceleradores lineares clinicos

    Energy Technology Data Exchange (ETDEWEB)

    Salgado, Ana Paula; Pereira, Walsan Wagner; Patrao, Karla C. de Souza; Fonseca, Evaldo S. da, E-mail: asalgado@ird.gov.b [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Batista, Delano V.S. [Instituto Nacional do Cancer (INCa), Rio de Janeiro, RJ (Brazil)

    2009-07-01

    The Neutron Laboratory of the Radioprotection and Dosimetry Institute - IRD/CNEN, Rio de Janeiro, Brazil, initiated studies on the process of calibration of neutron area monitors and the results of the measurements performed at radiotherapy treatment rooms, containing clinical accelerators

  17. User interface design and system integration aspects of core monitoring systems

    International Nuclear Information System (INIS)

    Berg, O.; Bodal, T.; Hornaes, A.; Porsmyr, J.

    2000-01-01

    The present paper describes our experience with the SCORPIO core monitoring system using generic building blocks for the MMI and system integration. In this context the different layers of the software system are discussed starting with the communication system, interfacing of various modules (e.g. physics codes), administration of several modules and generation of graphical user interfaces for different categories of end-users. A method by which re-use of software components can make the system development and maintenance more efficient is described. Examples are given from different system installation projects. The methodology adopted is considered particularly important in the future, as it is anticipated that core monitoring systems will be expanded with new functions (e.g. information from technical specifications, procedures, noise analysis, etc). Further, efficient coupling of off-line tools for core physics calculations and on-line modules in core monitoring can pave the way for cost savings. (authors)

  18. Self-powered neutron and gamma-ray flux detector

    International Nuclear Information System (INIS)

    Allan, C.J.; Shields, R.B.; Lynch, G.F.; Cuttler, J.M.

    1980-01-01

    A new type of self-powered neutron detector was developed which is sensitive to both the neutron and gamma-ray fluxes. The emitter comprises two parts. The central emitter core is made of materials that generate high-energy electrons on exposure to neutrons. The outer layer acts as a gamma-ray/electron converter, and since it has a higher atomic number and higher back-scattering coefficient than the collector, increases the net outflow or emmission of electrons. The collector, which is around the emitter outer layer, is insulated from the outer layer electrically with dielectric insulation formed from compressed metal-oxide powder. The fraction of electrons given off by the emitter that is reflected back by the collector is less than the fraction of electrons emitted by the collector that is reflected back by the emitter. The thickness of the outer layer needed to achieve this result is very small. A detector of this design responds to external reactor gamma-rays as well as to neutron capture gamma-rays from the collector. The emitter core is either nickel, iron or titanium, or alloys based on these metals. The outer layer is made of platinum, tantalum, osmium, molybdenum or cerium. The detector is particularly useful for monitoring neutron and gamma ray flux intensities in nuclear reactor cores in which the neutron and gamma ray flux intensities are closely proportional, are unltimately related to the fission rate, and are used as measurements of nuclear reactor power. (DN)

  19. Neutron dynamics of fast-spectrum dedicated cores for waste transmutation

    International Nuclear Information System (INIS)

    Massara, S.

    2002-04-01

    Among different scenarios achieving minor actinide transmutation, the possibility of double strata scenarios with critical, fast spectrum, dedicated cores must be checked and quantified. In these cores, the waste fraction has to be at the highest level compatible with safety requirements during normal operation and transient conditions. As reactivity coefficients are poor in such critical cores (low delayed neutron fraction and Doppler feed-back, high coolant void coefficient), their dynamic behaviour during transient conditions must be carefully analysed. Three nitride-fuel configurations have been analysed: two liquid metal-cooled (sodium and lead) and a particle-fuel helium-cooled one. A dynamic code, MAT4 DYN, has been developed during the PhD thesis, allowing the study of loss of flow, reactivity insertion and loss of coolant accidents, and taking into account two fuel geometries (cylindrical and spherical) and two thermal-hydraulics models for the coolant (incompressible for liquid metals and compressible for helium). Dynamics calculations have shown that if the fuel nature is appropriately chosen (letting a sufficient margin during transients), this can counterbalance the bad state of reactivity coefficients for liquid metal-cooled cores, thus proving the interest of this kind of concept. On the other side, the gas-cooled core dynamics is very badly affected by the high value of the helium void coefficient (which is a consequence of the choice of a hard spectrum), this effect being amplified by the very low thermal inertia of particle-fuel design. So, a new kind of concept should be considered for a helium-cooled fast-spectrum dedicated core. (authors)

  20. Transport coefficients in neutron star cores in BHF approach. Comparison of different nucleon potentials

    Science.gov (United States)

    Shternin, P. S.; Baldo, M.; Schulze, H.-J.

    2017-12-01

    Thermal conductivity and shear viscosity of npeµ matter in non-superfluid neutron star cores are considered in the framework of Brueckner-Hartree-Fock many-body theory. We extend our previous work (Shternin et al 2013 PRC 88 065803) by analysing different nucleon-nucleon potentials and different three-body forces. We find that the use of different potentials leads up to one order of magnitude variations in the values of the nucleon contribution to transport coefficients. The nucleon contribution dominates the thermal conductivity, but for all considered models the shear viscosity is dominated by leptons.

  1. The wide range in-core neutron measurement system used in the Windscale AGR concluding experiments

    International Nuclear Information System (INIS)

    Goodings, A.; Budd, J.; Wilson, I.

    1982-06-01

    The Windscale AGR concluding experiments included a comparison of theoretical and experimental power transients and required measurements of neutron flux as a function of position and time within the reactor core. These measurements were specified to cover a working range as wide as possible and had to be made against the in-core gamma background of up to 4 x 10 7 R(hr) - 1 . The detectors were required to operate in special channels cooled by reactor inlet CO 2 and the overall system needed a response time such that it could follow transients with doubling times down to 2s with an accuracy of 2 or 3%. These problems were solved by the use of gas ion fission chambers operating in the current fluctuation or ''Campbelling'' mode. Their neutron to gamma sensitivity ratio was optimised by the use of unusually low filling pressures and they were fitted with special ''trilaminax'' mineral insulated cables to minimise the effects of electrical interference at the 100 kHz channel centre frequency. Ten detectors were built and nine were installed in the reactor, three in each of three special stringers at different radial positions. All were processed and tested for operation at 350 deg. C and their fissile coatings (430 μg cm - 1 of natural uranium) were matched to give individual neutron sensitivities with a population spread better than +- 6% about the mean. The mean absolute sensitivities were determined to about +- 5% against manganese foils in the NESTOR reactor at AEE Winfrith. The detectors were complemented by special signal processing channels which provided current fluctuation sensitivity and appropriate output signals to the experiment data acquisition system. These channels also permitted dc measurement of chamber current for more precise flux determination near reactor full power

  2. On the use of the South-American neutron monitors

    Energy Technology Data Exchange (ETDEWEB)

    Cordaro, E. G. [Santiago de Chile Univ., Santiago de Chile (Chile). Facultad de Ciencias Fisicas y Matematicas, Dept. de Fisica, Lewis Research Center; Storini, M. [Consiglio Nazionale delle Ricerche, Istituto di Fisica dello Spazio Interplanetario, Rome (Italy); Rome Univ. Tre, Rome (Italy). Dipt. di Fisica, Raggi Cosmici

    2001-10-01

    Cosmic ray scientific community deserves special attention to the Chacaltaya site for its over 5 km altitude. In this site, a neutron monitor of the IGY type operated from 1960 to 1969, and the one of the NM-64 type since 1966 (16.31{sup 0}S, 291.85{sup 0}E, height: about 5200 m a.s.l.). It was discussed the relevance of such kind of detector when it is integrated with the other South-American neutron monitors: a) LARC (62.20{sup 0}S, 301.04{sup 0}E, height: 40 m a.s.l., King George Island, Antarctica; operating since 1991); b) Los Cerrillos (33.45{sup 0}S, 289.40{sup 0}E, height: 570 m a. s. l., Santiago, Chile; to be installed in the near future); c) Huancayo (12.03{sup 0}S, 284.67{sup 0}E, height: 3400 m a.s.l., Huancayo, Peru; hoping to recover its acquired data).

  3. Determination of the neutron activation profile of core drill samples by gamma-ray spectrometry.

    Science.gov (United States)

    Gurau, D; Boden, S; Sima, O; Stanga, D

    2018-04-01

    This paper provides guidance for determining the neutron activation profile of core drill samples taken from the biological shield of nuclear reactors using gamma spectrometry measurements. Thus, it provides guidance for selecting a model of the right form to fit data and using least squares methods for model fitting. The activity profiles of two core samples taken from the biological shield of a nuclear reactor were determined. The effective activation depth and the total activity of core samples along with their uncertainties were computed by Monte Carlo simulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Overview of neutronic fuel assembly design and in-core fuel management

    International Nuclear Information System (INIS)

    Porsch, D.; Charlier, A.; Meier, G.; Mougniot, J.C.; Tsuda, K.

    2000-01-01

    The civil and military utilization of nuclear power results in stockpiles of spent fuel and separated plutonium. Recycling of the recovered plutonium in Light Water Reactors (LWR) is currently practiced in Belgium, France, Germany, and Switzerland, in Japan it is in preparation. Modern MOX fuel, with its optimized irradiation and reprocessing behavior, was introduced in 1981. Since then, about 1700 MOX fuel assemblies of different mechanical and neutronic design were irradiated in commercial LWRs and reached fuel assembly averaged exposures of up to 51.000 MWd/t HM. MOX fuel assemblies reloaded in PWR have an average fissile plutonium content of up to 4.8 w/o. For BWR, the average fissile plutonium content in actual reloads is 3.0 w/o. Targets for the MOX fuel assembly design are the compatibility to uranium fuel assemblies with respect to their mechanical fuel rod and fuel assembly design, they should have no impact on the flexibility of the reactor operation, and its reload should be economically feasible. In either cycle independent safety analyses or individually for each designed core it has to be demonstrated that recycling cores meet the same safety criteria as uranium cores. The safety criteria are determined for normal operation and for operational as well as design basis transients. Experience with realized MOX core loadings confirms the reliability of the applied modern design codes. Studies for reloads of advanced MOX assemblies in LWRs demonstrate the feasibility of a future development of the thermal plutonium recycling. New concepts for the utilization of plutonium are under consideration and reveal an attractive potential for further developments on the plutonium exploitation sector. (author)

  5. Monte carlo calculation of energy-dependent response of high-sensitive neutron monitor, HISENS

    International Nuclear Information System (INIS)

    Imanaka, Tetsuji; Ebisawa, Tohru; Kobayashi, Keiji; Koide, Hiroaki; Seo, Takeshi; Kawano, Shinji

    1988-01-01

    A highly sensitive neutron monitor system, HISENS, has been developed to measure leakage neutrons from nuclear facilities. The counter system of HISENS contains a detector bank which consists of ten cylindrical proportional counters filled with 10 atm 3 He gas and a paraffin moderator mounted in an aluminum case. The size of the detector bank is 56 cm high, 66 cm wide and 10 cm thick. It is revealed by a calibration experiment using an 241 Am-Be neutron source that the sensitivity of HISENS is about 2000 times as large as that of a typical commercial rem-counter. Since HISENS is designed to have a high sensitivity in a wide range of neutron energy, the shape of its energy dependent response curve cannot be matched to that of the dose equivalent conversion factor. To estimate dose equivalent values from neutron counts by HISENS, it is necessary to know the energy and angular characteristics of both HISENS and the neutron field. The area of one side of the detector bank is 3700 cm 2 and the detection efficiency in the constant region of the response curve is about 30 %. Thus, the sensitivity of HISENS for this energy range is 740 cps/(n/cm 2 /sec). This value indicates the extremely high sensitivity of HISENS as compared with exsisting highly sensitive neutron monitors. (Nogami, K.)

  6. Nuclear start-up, testing and core management of the Fast Test Reactor (FTR)

    International Nuclear Information System (INIS)

    Bennett, R.A.; Daughtry, J.W.; Harris, R.A.; Jones, D.H.; Nelson, J.V.; Rawlins, J.A.; Rothrock, R.B.; Sevenich, R.A.; Zimmerman, B.D.

    1980-01-01

    Plans for the nuclear start-up, low and high power physics testing, and core management of the Fast Test Reactor (FTR) are described. Owing to the arrangement of the fuel-handling system, which permits continuous instrument lead access to experiments during refuelling, it is most efficient to load the reactor in an asymmetric fashion, filling one-third core sectors at a time. The core neutron level will be monitored during this process using both in-core and ex-core detectors. A variety of physics tests are planned following the core loading. Because of the experimental purpose of the reactor, these tests will include a comprehensive characterization programme involving both active and passive neutron and gamma measurements. Following start-up tests, the FTR will be operated as a fast neutron irradiation facility, to test a wide variety of fast reactor core components and materials. Nuclear analyses will be made prior to each irradiation cycle to confirm that the planned arrangement of standard and experimental components satisfies all safety and operational constraints, and that all experiments are located so as to achieve their desired irradiation environment. (author)

  7. Evaluation of the environmental equivalent dose rate using area monitors for neutrons in clinical linear accelerators

    International Nuclear Information System (INIS)

    Salgado, Ana Paula; Pereira, Walsan Wagner; Patrao, Karla C. de Souza; Fonseca, Evaldo S. da; Batista, Delano V.S.

    2009-01-01

    The Neutron Laboratory of the Radioprotection and Dosimetry Institute - IRD/CNEN, Rio de Janeiro, Brazil, initiated studies on the process of calibration of neutron area monitors and the results of the measurements performed at radiotherapy treatment rooms, containing clinical accelerators

  8. High-spin isomers in 212Rn in the region of triple neutron core-excitations

    Science.gov (United States)

    Dracoulis, G. D.; Lane, G. J.; Byrne, A. P.; Davidson, P. M.; Kibédi, T.; Nieminen, P.; Watanabe, H.; Wilson, A. N.

    2008-04-01

    The level scheme of 212Rn has been extended to spins of ∼ 38 ℏ and excitation energies of about 13 MeV using the 204Hg(13C, 5n)212Rn reaction and γ-ray spectroscopy. Time correlated techniques have been used to obtain sensitivity to weak transitions and channel selectivity. The excitation energy of the 22+ core-excited isomer has been established at 6174 keV. Two isomers with τ = 25 (2) ns and τ = 12 (2) ns are identified at 12211 and 12548 keV, respectively. These are the highest-spin nuclear isomers now known, and are attributed to configurations involving triple neutron core-excitations coupled to the aligned valence protons. Semi-empirical shell-model calculations can account for most states observed, but with significant energy discrepancies for some configurations.

  9. High-spin isomers in 212Rn in the region of triple neutron core-excitations

    International Nuclear Information System (INIS)

    Dracoulis, G.D.; Lane, G.J.; Byrne, A.P.; Davidson, P.M.; Kibedi, T.; Nieminen, P.; Watanabe, H.; Wilson, A.N.

    2008-01-01

    The level scheme of 212 Rn has been extended to spins of ∼38h and excitation energies of about 13 MeV using the 204 Hg( 13 C, 5n) 212 Rn reaction and γ-ray spectroscopy. Time correlated techniques have been used to obtain sensitivity to weak transitions and channel selectivity. The excitation energy of the 22 + core-excited isomer has been established at 6174 keV. Two isomers with τ=25(2) ns and τ=12(2) ns are identified at 12211 and 12548 keV, respectively. These are the highest-spin nuclear isomers now known, and are attributed to configurations involving triple neutron core-excitations coupled to the aligned valence protons. Semi-empirical shell-model calculations can account for most states observed, but with significant energy discrepancies for some configurations

  10. Development of the prediction technology of cable disconnection of in-core neutron detector for the future high-temperature gas cooled reactors

    International Nuclear Information System (INIS)

    Shimazaki, Yosuke; Sawahata, Hiroaki; Kawamoto, Taiki; Suzuki, Hisashi; Shinohara, Masanori; Honda, Yuki; Katsuyama, Kozo; Takada, Shoji; Sawa, Kazuhiro

    2015-01-01

    Maintenance technologies for the reactor system have been developed by using the high-temperature engineering test reactor (HTTR). One of the important purposes of development is to accumulate the experiences and data to satisfy the availability of operation up to 90% by shortening the duration of the periodical maintenance for the future HTGRs by shifting from the time-based maintenance to condition-based maintenance. The technical issue of the maintenance of in-core neutron detector, wide range monitor (WRM), is to predict the malfunction caused by cable disconnection to plan the replacement schedule. This is because that it is difficult to observe directly inside of the WRM in detail. The electrical inspection method was proposed to detect and predict the cable disconnection of the WRM by remote monitoring from outside of the reactor by using the time domain reflectometry and so on. The disconnection position, which was specified by the electrical method, was identified by non-destructive and destructive inspection. The accumulated data is expected to be contributed for advanced maintenance of future HTGRs. (author)

  11. Development of Core Monitoring System for Nuclear Power Plants (I)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.H.; Kim, Y.B.; Park, M.G; Lee, E.K.; Shin, H.C.; Lee, D.J. [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    1997-12-31

    1.Object and Necessity of the Study -The main objectives of this study are (1)conversion of APOLLO version BEACON system to HP-UX version core monitoring system, (2)provision of the technical bases to enhance the in-house capability of developing more advanced core monitoring system. 2.Results of the Study - In this study, the revolutionary core monitoring technologies such as; nodal analysis and isotope depletion calculation method, advanced schemes for power distribution control, and treatment of nuclear databank were established. The verification and validation work has been successfully performed by comparing the results with those of the design code and measurement data. The advanced graphic user interface and plant interface method have been implemented to ensure the future upgrade capability. The Unix shell scripts and system dependent software are also improved to support administrative functions of the system. (author). 14 refs., 112 figs., 52 tabs.

  12. Measurement and evaluation of fast neutron flux of CT and OR5 irradiation hole in HANARO

    International Nuclear Information System (INIS)

    Yang, Seong Woo; Choo, Kee Nam; Lee, Seung-Kyu; Kim, Yong Kyun

    2012-01-01

    The irradiation test has been conducted to evaluate the irradiation performance of many materials by a material capsule at HANARO. Since the fast neutron fluence above 1 MeV is important for the irradiation test of material, it must be measured and evaluated exactly at each irradiation hole. Therefore, a fast neutron flux was measured and evaluated by a 09M-02K capsule irradiated in an OR5 irradiation hole and a 10M-01K capsule irradiated in a CT irradiation hole. Fe, Ni, and Ti wires as the fluence monitor were used for the detection of fast neutron flux. Before the irradiation test, the neutron flux and spectrum was calculated for each irradiation hole using an MCNP code. After the irradiation test, the activity of the fluence monitor was measured by an HPGe detector and the reaction rate was calculated. For the OR5 irradiation hole, the radial difference of the fast neutron flux was observed from a calculated data due to the OR5 irradiation hole being located outside the core. Furthermore, a control absorber rod was withdrawn from the core as the increase of the irradiation time at the same irradiation cycle, so the distribution of neutron flux was changed from the beginning to the end of the cycle. These effects were considered to evaluate the fast neutron flux. Neutron spectrums of the CT and OR5 irradiation hole were adjusted by the measured data. The fluxes of a fast neutron above 1 MeV were compared with calculated and measured value. Although the maximum difference was shown at 18.48%, most of the results showed good agreement. (author)

  13. Feasibility of monitoring the strength of HTGR core support graphite: Part III

    International Nuclear Information System (INIS)

    Morgan, W.C.; Davis, T.J.; Thomas, M.T.

    1983-02-01

    Methods are being developed to monitor, in-situ, the strength changes of graphite core-support components in a High-Temperature Gas-Cooled Reactor (HTGR). The results reported herein pertain to the development of techniques for monitoring the core-support blocks; the PGX graphite used in these studies is the grade used for the core-support blocks of the Fort St. Vrain HTGR, and is coarser-grained than the grades used in our previous investigations. The through-transmission ultrasonic velocity technique, developed for monitoring strength of the core-support posts, is not suitable for use on the core-support blocks. Eddy-current and ultrasonic backscattering techniques have been shown to be capable of measuring the density-depth profile in oxidized PGX and, combined with a correlation of strength versus density, could yield an estimate of the strength-depth profile of in-service HTGR core support blocks. Correlations of strength versus density and other properties, and progress on the development of the eddy-current and ultrasonic backscattering techniques are reported

  14. The minireactor Mirene for neutron-radiography: performances and applications

    International Nuclear Information System (INIS)

    Houelle, M.; Gerberon, J.M.

    1981-05-01

    The MIRENE neutron radiograhy mini-reactor is described. The core contains only one kilogram of enriched uranium in solution form. It works by pulsed operation. The neutron bursts produced are collimated into two beams which pass through the concrete protection around the reactor block. The performance of the reactor and the results achieved since it went into service in 1977 are described. These concern various fields. In the nuclear field: examination of fast neutron reactor fissile pins, monitoring of neutron absorbing screens employed to guarantee the safety-criticality of the transport and storage of the nuclear fuel cycle, observation of irradiated oxide fuel pellets in order to determine the fuel state equation of the fast neutron system, examination of UO 2 and water mixtures for criticality experiments. In the industrial field, Mirene has a vast field of application. Two examples are given: monitoring of electric insulation sealing, visualization of the bonding of two high density metal parts. Finally an original application in agronomy has given very good results: this concerns the on-site follow-up of the root growth of maize plants [fr

  15. Modernization in-core monitoring system, of WWER-1000 reactors (W-320) by fuel assemblies with individual characteristics using

    International Nuclear Information System (INIS)

    Mitin, V. I.; Semchenkov, J. M.; Kalinushkin, A. E.

    2007-01-01

    The present report covers object, conception, engineering solution of construction of modern system of high-powered reactor in-core control, including WWER-1000 (V-320) reactors. It is known that ICMS main task is on-line monitoring distribution of power release field and its functioning independently of design programs to avoid common reason error. It is shown in what way field of power release recovery has been carrying on; rest on the signals of in-core neutron and temperature sensors. On the base of the obtained and refined information there have being automatically generated signals of preventive and emergency protection on local parameters (linear power to the maximum intensive fuel elements, reserve to heat exchange crisis, 'picking factor'). There have represented technology on sensors and processing methods of SPND and TC signals, ICIS composition and structure, program hard ware, system and applied software. Structure, composition and the taken decisions allow combining class 1E and class B and C tasks in accordance with international norms of separation and safety classes' realization. At present ICIS-M is a system, providing implementation of control, safety, information and diagnostic functions, which allow securing actual increase of quality, reliability and safety in operation of nuclear fuel and NPP units. And at the same time it reduces human factor negative influence to core work thermo technical eliability in the operational process (Authors)

  16. Microscopic (n,γ) rates with astrophysical relevance near the N = 50 neutron core

    International Nuclear Information System (INIS)

    Dutta, Saumi; Gangopadhyay, G.; Bhattacharyya, Abhijit

    2016-01-01

    The weak s-process component, that takes place in He core and C-burning shell of massive stars, produces elements in the mass range 56 < A < 90 from iron up to Sr-Y-Mo region. Neutron capture rates are crucial in the study of weak s-process nucleosynthesis via classical or model-based network calculations. The nuclei in the vicinity of shell closures have very small capture cross sections and hence, act as bottlenecks to the reaction chain. The (n,γ) rates of s-only isotopes are crucial to test the validity of local approximation. Precise neutron capture rates have also consequences for s-process branching analysis that can predict various constraints about the astrophysical medium. The neutron capture rates are also important for p-process study. The rates of the (γ, n) reactions can be deduced from (n,γ) rates via detailed balance. The nuclei, for which experimental data do not exist, a good theoretical model can predict the values

  17. Personnel Neutron Monitoring at AB Atomenergi

    International Nuclear Information System (INIS)

    Hagsgaard, S.; Widell, C.O.

    1964-02-01

    The routine personnel monitoring of fast neutrons is carried out by the counting of tracks in a nuclear emulsion. The tracks are counted in a microscope on a projection screen. This is a very tedious job and is only done on irradiated films which are counted over 6 mm 2 . The irradiated films are selected according to the recorded dose on the gamma film. It is often difficult to tell how much the visible tracks have faded during a two-weeks period. Fortunately the fading does not often exceed 20 % for this period. If the dosimeter has been gamma-irradiated, it may be difficult to recognize the proton tracks. If the film is stored for some time before being developed, this gamma fog will to some extent fade away. For large neutron doses a foil activation dosimeter is used. This dosimeter consists of a cadmium-shielded phosphorus foil, a cadmium shielded gold foil and an unshielded gold foil. The phosphorus foil has to be counted shortly after exposure

  18. Personnel Neutron Monitoring at AB Atomenergi

    Energy Technology Data Exchange (ETDEWEB)

    Hagsgaard, S; Widell, C O

    1964-02-15

    The routine personnel monitoring of fast neutrons is carried out by the counting of tracks in a nuclear emulsion. The tracks are counted in a microscope on a projection screen. This is a very tedious job and is only done on irradiated films which are counted over 6 mm{sup 2}. The irradiated films are selected according to the recorded dose on the gamma film. It is often difficult to tell how much the visible tracks have faded during a two-weeks period. Fortunately the fading does not often exceed 20 % for this period. If the dosimeter has been gamma-irradiated, it may be difficult to recognize the proton tracks. If the film is stored for some time before being developed, this gamma fog will to some extent fade away. For large neutron doses a foil activation dosimeter is used. This dosimeter consists of a cadmium-shielded phosphorus foil, a cadmium shielded gold foil and an unshielded gold foil. The phosphorus foil has to be counted shortly after exposure.

  19. Prompt-period measurement of the Annular Core Research Reactor prompt neutron generation time

    International Nuclear Information System (INIS)

    Coats, R.L.; Talley, D.G.; Trowbridge, F.R.

    1994-07-01

    The prompt neutron generation time for the Annular Core Research Reactor was experimentally determined using a prompt-period technique. The resultant value of 25.5 μs agreed well with the analytically determined value of 24 μs. The three different methods of reactivity insertion determination yielded ±5% agreement in the experimental values of the prompt neutron generation time. Discrepancies observed in reactivity insertion values determined by the three methods used (transient rod position, relative delayed critical control rod positions, and relative transient rod and control rod positions) were investigated to a limited extent. Rod-shadowing and low power fuel/coolant heat-up were addressed as possible causes of the discrepancies

  20. Power distribution monitoring and control in 500 MWe PHWR

    International Nuclear Information System (INIS)

    Kumar, A.

    1996-01-01

    The 500 MWe Indian Pressurized Heavy Water Reactor (PHWR) is expected to be commissioned in a few years. It has a relatively large sized core with complex material distribution in comparison to the currently operating 220 MWe PHWRs. The resulting neutronically loosely coupled system demands continuous control of the core power distribution. This paper gives a brief description and analysis of the reactor monitoring and control system proposed for this reactor. (author). 11 refs, 8 figs, 3 tabs

  1. Whole core pin-by-pin coupled neutronic-thermal-hydraulic steady state and transient calculations using COBAYA3 code

    International Nuclear Information System (INIS)

    Jimenez, J.; Herrero, J. J.; Cuervo, D.; Aragones, J. M.

    2010-10-01

    Nowadays coupled 3-dimensional neutron kinetics and thermal-hydraulic core calculations are performed by applying a radial average channel approach using a meshing of one quarter of assembly in the best case. This approach does not take into account the subchannels effects due to the averaging of the physical fields and the loose of heterogeneity in the thermal-hydraulic model. Therefore the models do not have enough resolution to predict those subchannels effects which are important for the fuel design safety margins, because it is in the local scale, where we can search the hottest pellet or the maximum heat flux. The Polytechnic University of Madrid advanced multi-scale neutron-kinetics and thermal-hydraulics methodologies being implemented in COBAYA3 include domain decomposition by alternate core dissections for the local 3-dimensional fine-mesh scale problems (pin cells/subchannels) and an analytical nodal diffusion solver for the coarse mesh scale coupled with the thermal-hydraulic using a model of one channel per assembly or per quarter of assembly. In this work, we address the domain decomposition by the alternate core dissections methodology applied to solve coupled 3-dimensional neutronic-thermal-hydraulic problems at the fine-mesh scale. The neutronic-thermal-hydraulic coupling at the cell-subchannel scale allows the treatment of the effects of the detailed thermal-hydraulic feedbacks on cross-sections, thus resulting in better estimates of the local safety margins at the pin level. (Author)

  2. The influence of spatial effects on the measurement results of reactivity in 'fast disturbances' of core parameters

    International Nuclear Information System (INIS)

    Tsyganov, S.V.; Shishkov, L.K.

    2001-01-01

    The analysis of methods for the determination of reactivity revealed an essential influence of spatial effect on the measurement precision. Using of reverse point kinetic equation for reactivity meter is assumed that the average neutron flux weigh with the importance function is known at every moment of the transient. In fact, reactivity meter represent behaviour of the neutron flux only of the part of the core, so measured value of reactivity can differ from really reactivity. Three-dimensional dynamic model of the core allow to evaluate such difference. It is supposed to evaluate correction factor for the neutron flux measured at the place where ion chamber situated with the three-dimensional model NOSTRA of the WWER core. On the basis of such algorithm we propose to build module allowing the influence of spatial effects on the results of the reactivity meter to be eliminated at real time regime. This code will be incorporated into the core monitoring system 'BLOK' (SCORPIO type) which is being developed for the Kola and Rostov NPP. The report illustrates utilization of such algorithm (Authors)

  3. Determination of the neutron fluence in the welding of the 'Core shroud' of the BWR reactor core; Determinacion de la fluencia neutronica en las soldaduras del 'core shroud' del nucleo de un reactor BWR

    Energy Technology Data Exchange (ETDEWEB)

    Lucatero, M A; Xolocostli M, J V; Gomez T, A M; Palacios H, J C [ININ, 52750 Ocoyoacac, Estado de mexico (Mexico)

    2006-07-01

    With the purpose of defining the inspection frequency, in function of the embrittlement of the materials that compose the welding of the 'Core Shroud' or encircling of the core of a BWR type reactor, is necessary to know the neutron fluence received for this welding. In the work the calculated values of neutron fluence accumulated maxim (E > 1 MeV) during the first 8 operation cycles of the reactor are presented. The calculations were carried out according to the NRC Regulatory Guide 1.190, making use of the DORT code, which solves the transport equation in discreet ordinate in two dimensions (xy, r{theta}, and rz). The results in 3D were obtained applying the Synthesis method according to the guide before mentioned. Results are presented for the horizontal welding H3, H4, and H5, showing the corresponding curves to the fluence accumulated to the cycle 8 and a projection for the cycle 14 is presented. (Author)

  4. Rhodium SPND's Error Reduction using Extended Kalman Filter combined with Time Dependent Neutron Diffusion Equation

    International Nuclear Information System (INIS)

    Lee, Jeong Hun; Park, Tong Kyu; Jeon, Seong Su

    2014-01-01

    The Rhodium SPND is accurate in steady-state conditions but responds slowly to changes in neutron flux. The slow response time of Rhodium SPND precludes its direct use for control and protection purposes specially when nuclear power plant is used for load following. To shorten the response time of Rhodium SPND, there were some acceleration methods but they could not reflect neutron flux distribution in reactor core. On the other hands, some methods for core power distribution monitoring could not consider the slow response time of Rhodium SPND and noise effect. In this paper, time dependent neutron diffusion equation is directly used to estimate reactor power distribution and extended Kalman filter method is used to correct neutron flux with Rhodium SPND's and to shorten the response time of them. Extended Kalman filter is effective tool to reduce measurement error of Rhodium SPND's and even simple FDM to solve time dependent neutron diffusion equation can be an effective measure. This method reduces random errors of detectors and can follow reactor power level without cross-section change. It means monitoring system may not calculate cross-section at every time steps and computing time will be shorten. To minimize delay of Rhodium SPND's conversion function h should be evaluated in next study. Neutron and Rh-103 reaction has several decay chains and half-lives over 40 seconds causing delay of detection. Time dependent neutron diffusion equation will be combined with decay chains. Power level and distribution change corresponding movement of control rod will be tested with more complicated reference code as well as xenon effect. With these efforts, final result is expected to be used as a powerful monitoring tool of nuclear reactor core

  5. Rhodium SPND's Error Reduction using Extended Kalman Filter combined with Time Dependent Neutron Diffusion Equation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Hun; Park, Tong Kyu; Jeon, Seong Su [FNC Technology Co., Ltd., Yongin (Korea, Republic of)

    2014-05-15

    The Rhodium SPND is accurate in steady-state conditions but responds slowly to changes in neutron flux. The slow response time of Rhodium SPND precludes its direct use for control and protection purposes specially when nuclear power plant is used for load following. To shorten the response time of Rhodium SPND, there were some acceleration methods but they could not reflect neutron flux distribution in reactor core. On the other hands, some methods for core power distribution monitoring could not consider the slow response time of Rhodium SPND and noise effect. In this paper, time dependent neutron diffusion equation is directly used to estimate reactor power distribution and extended Kalman filter method is used to correct neutron flux with Rhodium SPND's and to shorten the response time of them. Extended Kalman filter is effective tool to reduce measurement error of Rhodium SPND's and even simple FDM to solve time dependent neutron diffusion equation can be an effective measure. This method reduces random errors of detectors and can follow reactor power level without cross-section change. It means monitoring system may not calculate cross-section at every time steps and computing time will be shorten. To minimize delay of Rhodium SPND's conversion function h should be evaluated in next study. Neutron and Rh-103 reaction has several decay chains and half-lives over 40 seconds causing delay of detection. Time dependent neutron diffusion equation will be combined with decay chains. Power level and distribution change corresponding movement of control rod will be tested with more complicated reference code as well as xenon effect. With these efforts, final result is expected to be used as a powerful monitoring tool of nuclear reactor core.

  6. Spent Nuclear Fuel Cask and Storage Monitoring with {sup 4}He Scintillation Fast Neutron Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Hee jun; Kelley, Ryan P; Jordan, Kelly A [Univ. of Florida, Florida (United States); Lee, Wanno [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Chung, Yong Hyun [Yonsei Univ., Wonju (Korea, Republic of)

    2014-10-15

    With this increasing quantity of spent nuclear fuel being stored at nuclear plants across S. Korea, the demand exists for building a long-term disposal facility. However, the Korean government first requires a detailed plan for the monitoring and certification of spent fuel. Several techniques have been developed and applied for the purpose of spent fuel monitoring, including the digital Cerenkov viewing device (DCVD), spent fuel attribute tester (SFAT), and FORK detector. Conventional gamma measurement methods, however, suffer from a lack of nuclear data and interfering background radiation. To date, the primary method of neutron detection for spent fuel monitoring has been through the use of thermal neutron detectors such as {sup 3}He and BF{sub 3} proportional counters. Unfolding the neutron spectrum becomes extremely complicated. In an attempt to overcome these difficulties, a new fast neutron measurement system is currently being developed at the University of Florida. This system is based on the {sup 4}He scintillation detector invented by Arktis Radiation Detectors Ltd. These detectors are a relatively new technological development and take advantage of the high {sup 4}He cross-section for elastic scattering at fast neutron energies, particularly the resonance around 1 MeV. This novel {sup 4}He scintillation neutron detector is characterized by its low electron density, leading to excellent gamma rejection. This detector also has a fast response time on the order of nanoseconds and most importantly, preserves some neutron energy information since no moderator is required. Additionally, these detectors rely on naturally abundant {sup 4}He as the fill gas. This study proposes a new technique using the neutron spectroscopy features of {sup 4}He scintillation detectors to maintain accountability of spent fuel in storage. This research will support spent fuel safeguards and the detection of fissile material, in order to minimize the risk of nuclear proliferation

  7. BWR core response to fluctuations in coolant flow and pressure, with implications on noise diagnosis and stability monitoring

    International Nuclear Information System (INIS)

    Blomstrand, J.H.; Andersson, S.A.

    1982-01-01

    Reactor dynamic tests, utilizing sinuosidal oscillations in pressure and recirculation flow, have been conducted in operating BWRs in Sweden and Finland. Test data recorded, as well as recordings of process noise, have been analyzed in terms of dynamic core properties. The results obtained show good qualitative agreement with model predictions of BWR core dynamics. Model studies can often support interpretation of dynamic information obtained from operating plants. Comparisons between model studies, dynamic tests and process noise may also provide improved understanding of test results and noise patterns; in this way it can be demonstrated that some neutron flux noise is caused by noise in coolant flow and steam flow. From reactor test data nd noise recordings, core stability parameters have been evaluated by a number of methods. These have been found to provide essentially the same results. The cores investigated were found to be very stable under normal operating conditions. In special operating points, outside the normal operating range, higher decay ratios may occur. The experience indicates that for BWR cores, operated at decay ratios above quarter damping, the stability parameters may be identified from the oscillatory behavior of the autocorrelation in the time domain of the neutron flux noise

  8. Dosimetry techniques of thermal neutrons and {gamma} radiation in reactor cores; Techniques de dosimetrie des neutrons thermiques et du rayonnement {gamma} dans les piles

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, J; Draganic, I; Hering, H [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    Chemical studies under radiation done in the reactor cores require to be followed by dosimetry. When the irradiations are done in the reflector, one can limit to the measure of the {gamma} and the neutron radiation. For the dosimetry of the {gamma} radiation, a dosimeter of ferrous sulfate is convenient until doses of about 10{sup 6} rep. The use of aired oxalic acid solutions permits to reach 10{sup 7} rep. The dosimetry of thermal neutrons has been made with solutions of cobalt sulphate or paper filter impregnated with this salt. The total chemical effect of the {gamma} and of the slow neutrons radiation is obtained with solutions of ferrous sulfate added with lithium sulphate. (M.B.) [French] Les etudes de chimie sous radiation faites dans les piles exigent d'etre suivies par dosimetrie. Lorsque les irradiations sont effectues dans le reflecteur, on peut se limiter a doser le rayonnement {gamma} et les neutrons. Pour la dosimetrie du rayonnement {gamma}, un dosimetre a sulfate ferreux convient jusqu'a des doses d'environ 10{sup 6} rep. L'emploi de solutions aerees d'acide oxalique permet d'atteindre 10{sup 7} rep. La dosimetrie des neutrons thermiques a ete faite avec des solutions de sulfate de cotalt ou du papier filtre impregne de ce sel. L'effet chimique total du rayonnement {gamma} et des neutrons lents est obtenu avec des solutions de sulfate ferreux additionne de sulfate de lithium. (M.B.)

  9. Workplace monitoring of mixed neutron-photon radiation fields and its contribution to external dosimetry

    International Nuclear Information System (INIS)

    Schuhmacher, H.

    2011-01-01

    Workplace monitoring is a common procedure for determining measures for routine radiation protection in a particular working environment. For mixed radiation fields consisting of neutrons and photons, it is of increased importance because it contributes to the improved accuracy of individual monitoring. An example is the determination of field-specific correction factors, which can be applied to the readings of personal dosemeters. This paper explains the general problems associated with individual dosimetry of neutron radiation, and describes the various options for workplace monitoring. These options cover a range from the elaborate field characterisation using transport calculations or spectrometers to the simpler approach using area monitors. Examples are given for workplaces in nuclear industry, at particle accelerators and at flight altitudes. (authors)

  10. Neutronic analysis of a reference LEU core for Pakistan research reactor using oxide fuel

    International Nuclear Information System (INIS)

    Akhtar, K.M.; Qazi, M.K.; Bokhari, I.H.; Khan, L.A.; Pervez, S.

    1988-07-01

    Neutronic analysis of a 10 MW reference core for PARR, having 28 fresh LEU fuel elements arranged in a 6x5 configuration has been carried out using standard computer codes WIMS-D, EXTERMINATOR-II, and CITATION. Total nuclear power peaking of 3.2 has bee found to occur in the fuel plate adjacent to the water filled central flux trap at the depth of 43.8 cm from the top of the active core. Replacement of water in central flux trap with an aluminum block, having a 50 mm diameter water filled irradiation channel changes the flux profiles in fuel, core side flux trap and reflector. The thermal flux in the central flux trap decreases by about 53%. Therefore some of the fuel elements will have to be removed and the new configuration has to be analysed to determine the first operating core. However, after achieving some burn-up and confirmation from thermal hydraulic analysis, the core configuration analysed, will be the final working core. (orig./A.B.)

  11. The determination of neutron energy spectrum in reactor core C1 of reactor VR-1 Sparrow

    Energy Technology Data Exchange (ETDEWEB)

    Vins, M. [Department of Nuclear Reactors, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University, V Holesovickach 2, 180 00 Prague 8 (Czech Republic)], E-mail: vinsmiro@seznam.cz

    2008-07-15

    This contribution overviews neutron spectrum measurement, which was done on training reactor VR-1 Sparrow with a new nuclear fuel. Former nuclear fuel IRT-3M was changed for current nuclear fuel IRT-4M with lower enrichment of 235U (enrichment was reduced from former 36% to 20%) in terms of Reduced Enrichment for Research and Test Reactors (RERTR) Program. Neutron spectrum measurement was obtained by irradiation of activation foils at the end of pipe of rabit system and consecutive deconvolution of obtained saturated activities. Deconvolution was performed by computer iterative code SAND-II with 620 groups' structure. All gamma measurements were performed on Canberra HPGe. Activation foils were chosen according physical and nuclear parameters from the set of certificated foils. The Resulting differential flux at the end of pipe of rabit system agreed well with typical spectrum of light water reactor. Measurement of neutron spectrum has brought better knowledge about new reactor core C1 and improved methodology of activation measurement. (author)

  12. Advanced neutron source reactor conceptual safety analysis report, three-element-core design: Chapter 15, accident analysis

    International Nuclear Information System (INIS)

    Chen, N.C.J.; Wendel, M.W.; Yoder, G.L.; Harrington, R.M.

    1996-02-01

    In order to utilize reduced enrichment fuel, the three-element-core design for the Advanced Neutron Source has been proposed. The proposed core configuration consists of inner, middle, and outer elements, with the middle element offset axially beneath the inner and outer elements, which are axially aligned. The three-element-core RELAP5 model assumes that the reactor hardware is changed only within the core region, so that the loop piping, heat exchangers, and pumps remain as assumed for the two-element-core configuration. To assess the impact of changes in the core region configuration and the thermal-hydraulic steady-state conditions, the safety analysis has been updated. This report gives the safety margins for the loss-of-off-site power and pressure-boundary fault accidents based on the RELAP5 results. AU margins are greater for the three-element-core simulations than those calculated for the two-element core

  13. Two-dimensional DORT discrete ordinates X-Y geometry neutron flux calculations for the Halden Heavy Boiling Water Reactor core configurations

    Energy Technology Data Exchange (ETDEWEB)

    Slater, C.O.

    1990-07-01

    Results are reported for two-dimensional discrete ordinates, X-Y geometry calculations performed for seven Halden Heavy Boiling Water Reactor core configurations. The calculations were performed in support of an effort to reassess the neutron fluence received by the reactor vessel. Nickel foil measurement data indicated considerable underprediction of fluences by the previously used multigroup removal- diffusion method. Therefore, calculations by a more accurate method were deemed appropriate. For each core configuration, data are presented for (1) integral fluxes in the core and near the vessel wall, (2) neutron spectra at selected locations, (3) isoflux contours superimposed on the geometry models, (4) plots of the geometry models, and (5) input for the calculations. The initial calculations were performed with several mesh sizes. Comparisons of the results from these calculations indicated that the uncertainty in the calculated fluxes should be less than 10%. However, three-dimensional effects (such as axial asymmetry in the fuel loading) could contribute to much greater uncertainty in the calculated neutron fluxes. 7 refs., 22 figs., 11 tabs.

  14. Annual report of STACY operation in FY.2000. Experiments on neutron-interacting systems with two slab-shaped core tanks and 10% enriched uranyl nitrate solution. 2. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Onodera, Seiji; Hirose, Hideyuki; Izawa, Kazuhiko [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    2001-09-01

    Criticality experiments on neutron-interacting systems have been performed since FY.1999 at STACY (Static Experiment Critical Facility) in NUCEF (Nuclear Fuel Cycle Safety Engineering Research Facility). In the experiments two slab-shaped core tanks and 10% enriched uranyl nitrate solution were used. The dimension of the core tanks is 35 cm in thickness, 70 cm in width and 150 cm in height. In FY.2000, the reactivity effect of neutron-isolating materials, such as polyethylene and concrete, and neutron absorbers made of hafnium and cadmium, which were placed between those two core tanks, was determined by the experiments. This report summarizes the data on the operation and the fuel management for the 57 experiments conducted in FY.2000. (author)

  15. Neutron spectrometer for DD/DT burning ratio measurement in fusion experimental reactor

    International Nuclear Information System (INIS)

    Asai, Keisuke; Naoi, Norihiro; Iguchi, Tetsuo; Watanabe, Kenichi; Kawarabayashi, Jun; Nishitani, Takeo

    2006-01-01

    The most feasible fuels for a fusion reactor are D (Deuterium) and T (Tritium). DD and/or DT fusion reaction or nuclear burning reaction provides two kinds of neutrons, DD neutron and DT neutron, respectively. DD/DT burning ratio, which can be estimated by DD/DT neutron ratio in the burning plasma, is essential for burn control, alpha particle emission rate monitoring and tritium fuel cycle estimation. Here we propose a new neutron spectrometer for the absolute DD/DT burning ratio measurement. The system consists of a Proton Recoil Telescope (PRT) and a Time-of-Flight (TOF) technique. We have conducted preliminary experiments with a prototype detector and a DT neutron beam (φ20 mm) at the Fusion Neutronics Source, Japan Atomic Energy Agency (JAEA), to assess its basic performance. The detection efficiency obtained by the experiment is consistent with the calculation results in PRT, and sufficient energy resolution for the DD/DT neutron discrimination has been achieved in PRT and TOF. The validity of the Monte Carlo calculation has also been confirmed by comparing the experimental results with the calculation results. The design consideration of this system for use in ITER (International Thermonuclear Experimental Reactor) has shown that this system is capable of monitoring the line-integrated DD/DT burning ratio for the plasma core line of sight with the required measurement accuracy of 20% in the upper 4 decades of the ITER operation (fusion power: 100 kW-700 MW). (author)

  16. Interfacing high-fidelity core neutronics models to whole plant models

    International Nuclear Information System (INIS)

    McEllin, M.

    1999-01-01

    Until recently available computer power dictated that whole-plant models of nuclear power stations have typically employed simple models of the reactor core which can not match the fidelity of safety-qualified 2-group, 3D neutronics models. As a result the treatment of situations involving strong coupling between the core and the rest of the plant has inevitably been somewhat approximate, requiring conservative modelling assumptions, or manual iteration between cases, to bound worse case scenarios. Such techniques not only place heavy demands on the engineers involved, they may also result in potentially unnecessary operational constraints. Hardware is today no longer the limiting factor, but the cost of developing and validating high-quality software is now such that it appears attractive to build new systems with a wider simulation scope by using existing stand-alone codes as sub-components. This is not always as straightforward as it might at first appear. This paper illustrates some of the pitfalls, and discusses more sophisticated and robust strategies. (author)

  17. In-line analytical methods for fuel reprocessing streams : Part IV -Neutron monitoring for plutonium

    International Nuclear Information System (INIS)

    Rao, V.K.; Bhargava, V.K.; Marathe, S.G.; Iyer, R.H.; Ramaniah, M.V.; Srinivasan, N.

    1975-01-01

    A neutron monitoring assembly consisting of a stainless steel housing packed with beryllium oxide chips, a paraffin moderator, a ring of fifteen BF 3 counters and an all stainless steel continuous flow system for circulating plutonium solutions has been fabricated and tested for monitoring plutonium concentrations in flow solutions. The method is based on the detection and measurement of neutron flux produced when alpha particles from plutonium interact with beryllium by the nuclear reactoon 9 4 Be(α,n) 12 6 C. The unit was successfully tested for the estimation of plutonium concentrations upto 10 g/1 in solutions of plutonium and plutonium solutions mixed with uranium and fission products. The unit gave an accuracy of 10-15%. Details of the construction and working of the system are discussed. (author)

  18. Measured thermal and fast neutron fluence rates ATR Cycle 99-A, November 23, 1992--January 23, 1993

    International Nuclear Information System (INIS)

    Murray, R.K.; Rogers, J.W.

    1993-03-01

    This report contains the thermal (2200 m/s) and fast (E>me) neutron fluence rate data for ATR Cycle 99-A which were measured by the Radiation Measurements Laboratory (RML) as requested by the Power ReactorPrograms (ATR Experiments) Radiation Measurements Work Order. This report contains fluence rate values corresponding to the particular elevations (relative to the 80 ft. core elevation) where the measurements were taken. The data in this report consists of (1) a table of the ATR power history and distribution, (2) a hard copy listing of all thermal and fast neutron fluence rates, (3) plots of both the thermal and fast neutron fluence rates, and (4) a magnetic record (3.5 inch diskette) containing a listing of only the fast neutron fluence rates, their assigned elevations and proper header identification of all monitor positions contained herein. The fluence rates reported are for the average power levels given in the table of power history and distribution. All ''H'' holder monitor wires for this cycle are 54 inches long. All ''SR'' holder monitor wires for this cycle are 55 inches long. This length allows measurement of the full core region and makes the first count elevation 24.73 inches above core midplane. Due to the safety rod problems in the west lobe, ''BR'' holders were used in the W-1, 2, 3, and 4 positions. All ''BR'' holder monitor wires for this cycle are 56.25 inches long. The distance from the end of the wires to the first count position was 4.25 inches for all wires counted from this cycle

  19. Neutron flux measurements in PUSPATI Triga Reactor

    International Nuclear Information System (INIS)

    Gui Ah Auu; Mohamad Amin Sharifuldin Salleh; Mohamad Ali Sufi.

    1983-01-01

    Neutron flux measurement in the PUSPATI TRIGA Reactor (PTR) was initiated after its commissioning on 28 June 1982. Initial measured thermal neutron flux at the bottom of the rotary specimen rack (rotating) and in-core pneumatic terminus were 3.81E+11 n/cm 2 sec and 1.10E+12n/cm 2 sec respectively at 100KW. Work to complete the neutron flux data are still going on. The cadmium ratio, thermal and epithermal neutron flux are measured in the reactor core, rotary specimen rack, in-core pneumatic terminus and thermal column. Bare and Cadmium covered gold foils and wires are used for the above measurement. The activities of the irradiated gold foils and wires are determined using Ge(Li) and hyperpure germinium detectors. (author)

  20. Process and equipment for monitoring flux distribution in a nuclear reactor outside the core

    International Nuclear Information System (INIS)

    Graham, K.F.; Gopal, R.

    1977-01-01

    This concerns the monitoring system for axial flux distribution during the whole load operating range lying outside the core of, for example, a PWR. Flux distribution cards can be produced continuously. The core is divided into at least three sections, which are formed by dividing it at right angles to the longitudinal axis, and the flux is measured outside the core using adjacent detectors. Their output signals are calibrated by amplifiers so that the load distribution in the associated sections is reproduced. A summation of the calibrated output signals and the formation of a mean load signal takes place in summing stages. For monitoring, this is compared with a value which corresponds to the maximum permissible load setting. Apart from this the position of the control rods in the core can be taken into account by multiplication of the mean load signals by suitable peak factors. The distribution of monitoring positions or the position of the detectors can be progressive or symmetrical along the axis. (DG) 891 HP [de

  1. Development of a beam current monitor by using an amorphous magnetic core

    International Nuclear Information System (INIS)

    Kobayashi, T.; Ueda, T.; Yoshida, Y.; Miya, K.; Tagawa, S.; Kobayashi, H.

    1993-01-01

    The high performance amorphous magnetic core monitor (ACM) for the measurement of electron beam currents has been developed. This monitor is composed of an amorphous magnetic core, radiation shields, a winding, magnetic absorbers, a ceramic vacuum duct and a SMA connecter. The ACM showed the very fast rise and fall times (< 1 ns), the high sensitivity (5 V/A at 50 Ω load), the good linearity, and good S/N ratio due to the high permeability of the amorphous magnetic core. The monitor works as a primary transformer. The time-response was simulated by an electric circuit analysis code. (orig.)

  2. Neutron flux distribution inside the cylindrical core of minor excess of reactivity in the IPEN/MB-01 reactor and comparison with citation code and MCNP- 5 code

    International Nuclear Information System (INIS)

    Aredes, Vitor Ottoni; Bitelli, Ulysses d'Utra; Mura, Luiz Ernesto C.; Santos, Diogo Feliciano dos; Lima, Ana Cecilia de Souza

    2015-01-01

    This study aims to determine the distribution of thermal neutron flux in the IPEN/MB-01 nuclear reactor core assembled with cylindrical core configuration of minor excess of reactivity with 568 fuel rods (28 fuel rods in diameter). The thermal neutron flux at the positions of irradiation derive from the method of reaction rate using gold foils. The experiment consists in inserting gold activations foils with and without cadmium coverage (cadmium boxes with 0.0502 cm thickness) in several positions throughout the active core. After irradiation, activity induced by nuclear reaction rates over gold foils is assessed by gamma ray spectrometry using a high-purity germanium (HPGe) detector. Experimental results are compared to those derived from calculations performed using a three dimensional CITATION diffusion code and MCNP-5 code and a proper nuclear data library. While calculated neutron flux data shows good agreement with experimental values in regions with little disturbance in the neutron flux, also showing that in the region of the reflectors of neutrons and near the control rods, the diffusion theory is not very precise. The average value of thermal neutron flux obtained experimentally compared to the calculated value by CITATION code and MCNP-5 code respectively show a difference of 1.18% and 0.84% at a nuclear power level of 74.65 ± 3.28 % watts. The average measured value of thermal neutron flux is 4.10 10 8 ± 5.25% n/cm 2 s. (author)

  3. Neutron flux distribution inside the cylindrical core of minor excess of reactivity in the IPEN/MB-01 reactor and comparison with citation code and MCNP- 5 code

    Energy Technology Data Exchange (ETDEWEB)

    Aredes, Vitor Ottoni; Bitelli, Ulysses d' Utra; Mura, Luiz Ernesto C.; Santos, Diogo Feliciano dos; Lima, Ana Cecilia de Souza, E-mail: ubitelli@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    This study aims to determine the distribution of thermal neutron flux in the IPEN/MB-01 nuclear reactor core assembled with cylindrical core configuration of minor excess of reactivity with 568 fuel rods (28 fuel rods in diameter). The thermal neutron flux at the positions of irradiation derive from the method of reaction rate using gold foils. The experiment consists in inserting gold activations foils with and without cadmium coverage (cadmium boxes with 0.0502 cm thickness) in several positions throughout the active core. After irradiation, activity induced by nuclear reaction rates over gold foils is assessed by gamma ray spectrometry using a high-purity germanium (HPGe) detector. Experimental results are compared to those derived from calculations performed using a three dimensional CITATION diffusion code and MCNP-5 code and a proper nuclear data library. While calculated neutron flux data shows good agreement with experimental values in regions with little disturbance in the neutron flux, also showing that in the region of the reflectors of neutrons and near the control rods, the diffusion theory is not very precise. The average value of thermal neutron flux obtained experimentally compared to the calculated value by CITATION code and MCNP-5 code respectively show a difference of 1.18% and 0.84% at a nuclear power level of 74.65 ± 3.28 % watts. The average measured value of thermal neutron flux is 4.10 10{sup 8} ± 5.25% n/cm{sup 2}s. (author)

  4. Core concepts for ''zero-sodium-void-worth core'' in metal fuelled fast reactor

    International Nuclear Information System (INIS)

    Chang, Y.I.; Hill, R.N.; Fujita, E.K.; Wade, D.C.; Kumaoka, Y.; Suzuki, M.; Kawashima, M.; Nakagawa, H.

    1991-01-01

    Core design options to reduce the sodium void worth in metal fueled LMRs are investigated. Two core designs which achieve a zero sodium void worth are analyzed in detail. The first design is a ''pancaked'' and annular core with enhanced transuranic burning capabilities; the high leakage in this design yields a low breeding ratio and small void worth. The second design is an axially multilayered annular core which is fissile self-sufficient; in this design, the upper and lower core regions are neutronically decoupled for reduced void worth while fissile self-sufficiency is achieved using internal axial blankets plus external radial and axial blanket zones. The neutronic performance characteristics of these low void worth designs are assessed here; their passive safety properties are discussed in a companion paper. 16 refs., 2 figs., 3 tabs

  5. Core concepts for 'zero-sodium-void-worth core' in metal fuelled fast reactor

    International Nuclear Information System (INIS)

    Chang, Y.I.; Hill, R.N.; Fujita, E.K.; Wade, D.C.; Kumaoka, Y.; Suzuki, M.; Kawashima, M.; Nakagawa, H.

    1991-01-01

    Core design options to reduce the sodium void worth in metal fuelled LMRs are investigated. Two core designs which achieve a zero sodium void worth are analyzed in detail. The first design is a 'pancaked' and annular core with enhanced transuranic burning capabilities; the high leakage in this design yields a low breeding ratio and small void worth. The second design is an axially multilayered annular core which is fissile self-sufficient; in this design, the upper and lower core regions are neutronically decoupled for reduced void worth while fissile self-sufficiency is achieved using internal axial blankets plus external radial and axial blanket-zones. The neutronic performance characteristics of these low void worth designs are assessed here; their passive safety properties are discussed in a companion paper. (author)

  6. A CR-39 track dosemeter for routine individual neutron monitoring

    International Nuclear Information System (INIS)

    Luszik-Bhadra, M.; Alberts, W.G.; Dietz, E.; Guldbakke, S.; Matzke, M.; d'Errico, F.

    1994-01-01

    A personal neutron dosemeter for routine individual monitoring is proposed. It is based on a CR-39 track detector covered on three separate areas by converters with different boron contents and inserted into a commercial TLD albedo dosemeter capsule. The dose readings from three areas of the electrochemically etched CR-39 detector are combined to yield a dose equivalent response which is almost independent of the incident neutron energy in the range from thermal neutrons up to 20 MeV. In addition, the dose contributions of thermal, intermediate and fast neutrons can be determined separately. Unlike the TLD albedo dosemeter, which in general requires prior in-field calibration and whose use is then restricted to that field, this dosemeter can be used in neutron fields without any knowledge of the spectral distribution with the same calibration factor. The angular dependence of the dosemeter's response has been measured and compared with that of the directional dose equivalent H'(10). The lower limit of detection is 0.15 mSv. It is possible to obtain an independent, second dose reading from the same Cr-39 detector for neutron energies above 100 keV. The dosemeter has also been successfully tested for use in accident dosimetry applying chemical etching and an optical density reading of the CR-39 detector. (author)

  7. Test plan for core sampling drill bit temperature monitor

    International Nuclear Information System (INIS)

    Francis, P.M.

    1994-01-01

    At WHC, one of the functions of the Tank Waste Remediation System division is sampling waste tanks to characterize their contents. The push-mode core sampling truck is currently used to take samples of liquid and sludge. Sampling of tanks containing hard salt cake is to be performed with the rotary-mode core sampling system, consisting of the core sample truck, mobile exhauster unit, and ancillary subsystems. When drilling through the salt cake material, friction and heat can be generated in the drill bit. Based upon tank safety reviews, it has been determined that the drill bit temperature must not exceed 180 C, due to the potential reactivity of tank contents at this temperature. Consequently, a drill bit temperature limit of 150 C was established for operation of the core sample truck to have an adequate margin of safety. Unpredictable factors, such as localized heating, cause this buffer to be so great. The most desirable safeguard against exceeding this threshold is bit temperature monitoring . This document describes the recommended plan for testing the prototype of a drill bit temperature monitor developed for core sampling by Sandia National Labs. The device will be tested at their facilities. This test plan documents the tests that Westinghouse Hanford Company considers necessary for effective testing of the system

  8. A detailed neutronics comparison of the university of Florida training reactor (UFTR) current HEU and proposed LEU cores

    International Nuclear Information System (INIS)

    Dionne, B.; Haghighat, A.; Yi, C.; Smith, R.; Ghita, G.; Manalo, K.; Sjoden, G.; Huh, J.; Baciak, J.; Mock, T.; Wenner, M.; Matos, J.; Stillman, J.

    2006-01-01

    For over 35 years, the UFTR highly-enriched core has been safely operated. As part of the Reduced Enrichment for Research and Test Reactors Program, the core is currently being converted to low-enriched uranium fuel. The analyses presented in this paper were performed to verify that, from a neutronic perspective, a proposed low-enriched core can be operated as safely and as effectively as the highly-enriched core. Detailed Monte Carlo criticality calculations are performed to determine: i) Excess reactivity for different core configurations, ii) Individual integral blade worth and shutdown margin, iii) Reactivity coefficients and kinetic parameters, and iv) Flux profiles and core six-factor formula parameters. (authors)

  9. Self powered neutron detectors

    International Nuclear Information System (INIS)

    Passe, J.; Petitcolas, H.; Verdant, R.

    1975-01-01

    The self-powered neutron detectors (SPND) enable to measure continuously high fluxes of thermal neutrons. They are particularly suitable for power reactor cores because of their robustness. Description of two kinds of SPND's characterized by the electrical current production way is given here: the first SPND's which present a V, Ag or Rh emitter are sensitive enough but they offer a few minute delay time: the second SPND's which are depending on the gamma activation have a short delay time. The emitter is made of Co or Pt. In any case, the signal is linear with reaction rates. Finally, the applications are briefly repeated here: irradiation facility monitor in research reactors, and flux map and space instability control in power reactors [fr

  10. Time-of-flight neutron spectra measurements in Zenith

    Energy Technology Data Exchange (ETDEWEB)

    Barclay, F R; Coates, M S; Diment, K M; Durrani, S A; Gayther, D B; Poole, M J; Reed, D L

    1962-01-15

    Neutron spectra in the second core loading of ZENITH have been measured using a neutron chopper. Spectra at two positions in the reactore core were obtained over a range of temperatures extending to 650 deg C.

  11. Development of in-core measuring method using optical techniques

    International Nuclear Information System (INIS)

    Kakuta, Tsunemi; Shikama, Tatsuo; Narui, Minoru; Sagawa, Tsutomu.

    1994-01-01

    Since applying to more severe radiation environments in nuclear plants, e.g., in-core measuring systems, diagnostics for fusion reactors, radiation related subjects should be considered by more severe radiation and environmental conditions. Owing to this, preliminary studies of heavy neutron irradiation effects on optical fibers are conducted in the core region of fission reactor. Two kinds of SiO 2 core optical fibers, highly pure SiO 2 with OH content core and SiO 2 with fluorine doped core, were irradiated in the core region of Japan Material Testing Reactor (JMTR). Both fibers were irradiated with fast neutron (E>1.0 MeV) fluence of about 1.6x10 19 n/cm 2 and gamma-ray doses of 3.3x10 9 Gy. The optical absorption and the light-emission spectrum were measured in-situ along the irradiation. This paper mainly outlines the fundamental effects of neutron irradiation and discuss the possibility of neutron detection in the core region of reactor. (J.P.N.)

  12. Technical feasibility study for the D-T neutron monitor using activation of the flowing water

    International Nuclear Information System (INIS)

    Uno, Yoshitomo; Kaneko, Junichi; Nishitani, Takeo; Maekawa, Fujio; Tanaka, Teruya; Ikeda, Yujiro; Takeuchi, Hiroshi

    2001-03-01

    The experimental study of technical feasibility for the D-T neutron monitor using activation of the flowing water was performed at FNS/JAERI as the ITER/EDA R and D Task T499. The temporal resolution for pulsed neutrons was measured and dependence of the temporal resolution on flowing velocity was studied. The temporal resolution of 50 ms that is better than 100 ms of the requirement for ITER was achieved. We found that the temporal resolution is determined by a turbulent dispersion of the flow. The experiment for validation of the method determining the absolute D-T neutron flux was carried out by using the stainless steel (SS 316)/Water assembly to simulate the neutron field in the blanket region of ITER. The neutron emission rate measured with the water activation has a good agreement with that with the neutron yield monitor with associated α detector, and this technique shows the accuracy of the absolute neutron flux better than 10%. At the application on ITER-FEAT, the neutron activation with fluid flow has a dynamic range of 50 kW - 500 MW operation with a temporal resolution of 78 ms at the flow velocity of 10 m/s. (author)

  13. Progress and Overview on Neutronics Modelling Development in RTP

    International Nuclear Information System (INIS)

    Mohamad Hairie Rabir; Muhammad Rawi Mohamed Zin; Julia Abdul Karim

    2016-01-01

    Reactor calculation and simulation are significantly important to ensure safety and better utilization of a research reactor. The Malaysian PUSPATI TRIGA Reactor (RTP) achieved initial criticality on June 28, 1982. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes. Since early 90s, neutronics modelling were used as part of its routine in-core fuel management activities. The are several computer codes have been used in RTP since then, based on 1D neutron diffusion, 2D neutron diffusion and 3D Monte Carlo neutron transport method. This paper describes current progress and overview on neutronics modelling development in RTP. Several important parameters were analysed such as k_e_f_f, reactivity, neutron flux, power distribution, B_e_f_f, and fission product build-up for the latest core configuration. The developed core neutronics model was validated by means of comparison with experimental and measurement data. Along with the RTP core model, the calculation procedure also developed to establish better prediction capability of RTP behaviour. (author)

  14. Thermal-hydraulic and neutronic analysis of pressurized water reactor cores

    International Nuclear Information System (INIS)

    Alves, C.H.

    1982-01-01

    A computational code, named CANAL2, was developed for the simulation of the steady-state and transient behaviour of a Pressurized Water Reactor core. The conservation equations for the control volumes are obtained by area-averaging of the two-fluid model conservation equations and reducing them to the drift-flux model formulation. The resulting equations are aproximated by finite differences and solved by a marching-type numerical scheme. The model takes into account the exchange of mass, momentum and energy between adjacent subchannels of a fuel bundle. Turbulent mixing and diversion crossflow are considered. Correlations are provided for several heat trans and flow regimes and selected according to the local conditons. During transients core power can be evaluated by a point-Kinetics model. Fuel and coolant temperatures are feedback to the neutronics. The heat conduction equation is solved in the fuel using the Crank-Nicolson scheme. Temperature-dependent correlations are provided for the fuel and cladding thermal conductivities. Several runs were made with the code CANAL2 using the available experimental and calculated data in the open literature. Results indicate that CANAL2 is a good calculational tool for the thermal-hydraulics of PWR cores. A few refinements will make the code useful for design. (Author) [pt

  15. Core calculations of JMTR

    Energy Technology Data Exchange (ETDEWEB)

    Nagao, Yoshiharu [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    1998-03-01

    In material testing reactors like the JMTR (Japan Material Testing Reactor) of 50 MW in Japan Atomic Energy Research Institute, the neutron flux and neutron energy spectra of irradiated samples show complex distributions. It is necessary to assess the neutron flux and neutron energy spectra of an irradiation field by carrying out the nuclear calculation of the core for every operation cycle. In order to advance core calculation, in the JMTR, the application of MCNP to the assessment of core reactivity and neutron flux and spectra has been investigated. In this study, in order to reduce the time for calculation and variance, the comparison of the results of the calculations by the use of K code and fixed source and the use of Weight Window were investigated. As to the calculation method, the modeling of the total JMTR core, the conditions for calculation and the adopted variance reduction technique are explained. The results of calculation are shown. Significant difference was not observed in the results of neutron flux calculations according to the difference of the modeling of fuel region in the calculations by K code and fixed source. The method of assessing the results of neutron flux calculation is described. (K.I.)

  16. New aspects of the QCD phase transition in proto-neutron stars and core-collapse supernovae

    International Nuclear Information System (INIS)

    Hempel, Matthias; Heinimann, Oliver; Liebendörfer, Matthias; Friedrich-Karl, Thielemann; Yudin, Andrey; Iosilevskiy, Igor

    2017-01-01

    The QCD phase transition from hadronic to deconfined quark matter is found to be a so-called “entropic” phase transition, characterized, e.g., by a negative slope of the phase transition line in the pressure-temperature phase diagram. In a first part of the present proceedings it is discussed that entropic phase transitions lead to unusual thermal properties of the equation of state (EoS). For example one finds a loss of pressure (a “softening”) of the proto-neutron star EoS with increasing entropy. This can lead to a novel, hot third family of compact stars, which exists only in the early proto-neutron star phase. Such a hot third family can trigger explosions of core-collapse supernovae. However, so far this special explosion mechanism was found to be working only for EoSs which are not compatible with the 2 M ⊙ constraint for the neutron star maximum mass. In a second part of the proceeding it is discussed which quark matter parameters could be favorable for this explosion mechanism, and have sufficiently high maximum masses at the same time. (paper)

  17. Ti(r) profiles from the JET neutron profile monitor for ohmic discharges

    Energy Technology Data Exchange (ETDEWEB)

    Esposito, B. (ENEA, Frascati (Italy). Centro Ricerche Energia); Marcus, F.B.; Conroy, S.; Jarvis, O.N.; Loughlin, M.J.; Sadler, G.; Belle, P. van (Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking); Adams, J.M.; Watkins, N. (AEA Industrial Technology, Harwell (United Kingdom))

    1991-01-01

    A study has been made of the neutron emissivity, using the JET neutron profile monitor, obtained for ohmically heated deuterium discharges. Both one-dimensional (1-D) best-fit inversion procedures and 2-D tomography have been used to deduce the radial profile of the neutron emission from the line-integral data. The profiles of ion temperature and ion thermal conductivity are then derived. The scaling of the ion thermal conductivity with plasma current is found to be opposite to that of neoclassical theory. (author) 4 refs., 5 figs.

  18. Calibration of neutrons monitors with moderators and application in the calibration factors of albedo dosemeters

    International Nuclear Information System (INIS)

    Schuch, L.A.

    1978-11-01

    The calibration factors and the reproducibility of an Albedo Dosimeter designed for personal neutron monitoring were determined. These factor were obtained simulating the dosimeter reading and the equivalent dose in the locality by a convenient combination of responses of the Bonner Sphere Spectrometer. The results obtained in the simulation were verified experimentally for different spectra employing the Am-Be, bare 252 Cf source and 253 Cf source with graphite sields of varying thickness. Different standards were used in the procedures necessary for the determination of the calibration factors. An Am-Be neutron source, standardized by the activation of a manganese sulphate bath was used as a primary standard. As a secondary standard, for the measurement of the neutron fluence, a De Pangher Long Counter was used and the scattering effects were determined using the shadow cone method. The other monitors such as the Rem-Counter and the Bonner Sphere Spectrometer were also calibrated with reference to the secondary standard with a view to comparing the results obtained with those furnished by the Albedo Dosimeter. (Author) [pt

  19. The preliminary design of real-time neutron fissile material monitoring system

    International Nuclear Information System (INIS)

    Shi Jun; Ren Zhongguo; Zhang Ming; Zhao Zhiping; Chen Qi

    2013-01-01

    In this paper we present the preliminary design to carry out real-time neutron fissile material monitoring system, The system includes hardware and data acquisition software. For the hardware, it is employed with He3 proportional tubes as neutron detectors, polyethylene as moderator, and, to achieve the remote counting, RM4036 counting modules are connected to the remote computer through the 485 ports. The software with real-time data display and storage, alarm and other functions are developed using Visual Basic 6.0. (authors)

  20. Deformation Monitoring of the Spallation Neutron Source (SNS) Tunnels

    CERN Document Server

    Error, J J; Fazekas, J J; Helus, S A; Maines, J R

    2005-01-01

    The SNS Project is a 1.4 MW accelerator-based neutron source located at Oak Ridge National Laboratory in Oak Ridge, Tennessee. For shielding purposes, a 17 foot berm of native soil has been constructed on top of the accelerator tunnel system. This backfill has caused ongoing settlement of the tunnels. The settlement has been monitored by the SNS Survey and Alignment Group at regular intervals, in order to discover the patterns of deformation, and to determine when the tunnels will be stable enough for precise alignment of beam line components. The latest monitoring results indicate that the settlement rate has significantly decreased. This paper discusses the techniques and instrumentation of the monitoring surveys, and provides an analysis of the results.