WorldWideScience

Sample records for in-channel habitat features

  1. Are restored side channels sustainable aquatic habitat features? Predicting the potential persistence of side channels as aquatic habitats based on their fine sedimentation dynamics

    Science.gov (United States)

    Riquier, Jérémie; Piégay, Hervé; Lamouroux, Nicolas; Vaudor, Lise

    2017-10-01

    The restoration of side channels (also referred to as abandoned channels, former channels, floodplain channels, or side arms) is increasingly implemented to improve the ecological integrity of river-floodplain systems. However, the design of side channel restoration projects remains poorly informed by theory or empirical observations despite the increasing number of projects. Moreover, feedback regarding the hydromorphological adjustment of restored channels is rarely documented, making it difficult to predict channel persistence as aquatic habitats. In this study, we analyze the spatial and temporal patterns of fine sediment deposition (River, France, restored in 1999-2006 by a combination of dredging and/or partial to full reconnection of their extremities and as a by-product of an increase in minimum flow through the bypassed main channels. We develop prediction tools to assess the persistence of restored channels as aquatic habitats, using between five and seven monitoring surveys per channel (spanning 7-15 years after restoration). Observed channel-averaged sedimentation rates ranged from 0 to 40.3 cm·y- 1 and reached 90.3 cm·y- 1 locally. Some channels exhibited a significant decline of sedimentation rates through time, whereas others maintained rather constant rates. Scouring processes (i.e., self-rejuvenation capacity) were occasionally documented in 15 channels. Six of the 16 studied channels appeared to be self-sustaining. The 10 others accumulated more and more fine sediment deposits after restoration. Parametric modeling of sedimentation rates suggested that among these 10 channels, four have long life-durations (i.e., more than a century), three have intermediate life-durations (i.e., likely between three and nine decades), and three others have short life-durations (i.e., likely between two and five decades). Observed channel-averaged sedimentation rates can be predicted from the frequency and magnitude (i.e., maximum shear stress) of upstream

  2. Modelling Fish Habitat Suitability in the Eastern English Channel. Application to community habitat level

    OpenAIRE

    Vaz, Sandrine; Carpentier, Andre; Loots, Christophe; Koubbi, Philippe

    2004-01-01

    Valuable marine habitats and living resources can be found in the Eastern English Channel and in 2003, a Franco-British Interreg IIIA project, ‘Eastern Channel Habitat Atlas for Marine Resource Management’ (CHARM), was initiated to support decision-making for management of essential fish habitats. Fish habitat corresponds to geographic areas within which ranges of environmental factors define the presence of a particular species. Habitat Suitability index (HSI) modelling was used to relate fi...

  3. Evaluation of habitat quality for selected wildlife species associated with back channels.

    Science.gov (United States)

    Anderson, James T.; Zadnik, Andrew K.; Wood, Petra Bohall; Bledsoe, Kerry

    2013-01-01

    The islands and associated back channels on the Ohio River, USA, are believed to provide critical habitat features for several wildlife species. However, few studies have quantitatively evaluated habitat quality in these areas. Our main objective was to evaluate the habitat quality of back and main channel areas for several species using habitat suitability index (HSI) models. To test the effectiveness of these models, we attempted to relate HSI scores and the variables measured for each model with measures of relative abundance for the model species. The mean belted kingfisher (Ceryle alcyon) HSI was greater on the main than back channel. However, the model failed to predict kingfisher abundance. The mean reproduction component of the great blue heron (Ardea herodias) HSI, total common muskrat (Ondatra zibethicus) HSI, winter cover component of the snapping turtle (Chelydra serpentina) HSI, and brood-rearing component of the wood duck (Aix sponsa) HSI were all greater on the back than main channel, and were positively related with the relative abundance of each species. We found that island back channels provide characteristics not found elsewhere on the Ohio River and warrant conservation as important riparian wildlife habitat. The effectiveness of using HSI models to predict species abundance on the river was mixed. Modifications to several of the models are needed to improve their use on the Ohio River and, likely, other large rivers.

  4. Redd site selection and spawning habitat use by fall chinook salmon: The importance of geomorphic features in large rivers

    International Nuclear Information System (INIS)

    Geist, D.R.; Oregon State Univ., Corvallis, OR; Dauble, D.D.

    1998-01-01

    Knowledge of the three-dimensional connectivity between rivers and groundwater within the hyporheic zone can be used to improve the definition of fall chinook salmon (Oncorhynchus tshawytscha) spawning habitat. Information exists on the microhabitat characteristics that define suitable salmon spawning habitat. However, traditional spawning habitat models that use these characteristics to predict available spawning habitat are restricted because they can not account for the heterogeneous nature of rivers. The authors present a conceptual spawning habitat model for fall chinook salmon that describes how geomorphic features of river channels create hydraulic processes, including hyporheic flows, that influence where salmon spawn in unconstrained reaches of large mainstem alluvial rivers. Two case studies based on empirical data from fall chinook salmon spawning areas in the Hanford Reach of the Columbia River are presented to illustrate important aspects of the conceptual model. The authors suggest that traditional habitat models and the conceptual model be combined to predict the limits of suitable fall chinook salmon spawning habitat. This approach can incorporate quantitative measures of river channel morphology, including general descriptors of geomorphic features at different spatial scales, in order to understand the processes influencing redd site selection and spawning habitat use. This information is needed in order to protect existing salmon spawning habitat in large rivers, as well as to recover habitat already lost

  5. Remote-Sensing Hydraulic Characterization of Channel Habitat Units in a Tropical Montane River: Bladen River, Belize

    Directory of Open Access Journals (Sweden)

    Sarah Praskievicz

    2017-12-01

    Full Text Available The physical characteristics of river systems exert significant control on the habitat for aquatic species, including the distribution of in-stream channel habitat units. Most previous studies on channel habitat units have focused on midlatitude rivers, which differ in several substantive ways from tropical rivers. Field delineation of channel habitat units is especially challenging in tropical rivers, many of which are remote and difficult to access. Here, we developed an approach for delineating channel habitat units based on a combination of field measurements, remote sensing, and hydraulic modeling, and applied it to a 4.1-km segment of the Bladen River in southern Belize. We found that the most prevalent channel habitat unit on the study segment was runs, followed by pools and riffles. Average spacing of channel habitat units was up to twice as high on the study segment than the typical values reported for midlatitude rivers, possibly because of high erosion rates in the tropical environment. The approach developed here can be applied to other rivers to build understanding of the controls on and spatial distribution of channel habitat units on tropical rivers and to support river management and conservation goals.

  6. Variable responses of fish assemblages, habitat, and stability to natural-channel-design restoration in Catskill Mountain streams

    Science.gov (United States)

    Baldigo, Barry P.; Ernst, Anne G.; Warren, Dana R.; Miller, Sarah J.

    2010-01-01

    Natural-channel-design (NCD) restorations were recently implemented within large segments of five first- and second-order streams in the Catskill Mountains of New York in an attempt to increase channel stability, reduce bed and bank erosion, and sustain water quality. In conjunction with these efforts, 54 fish and habitat surveys were done from 1999 to 2007 at six restored reaches and five stable control reaches to evaluate the effects of NCD restoration on fish assemblages, habitat, and bank stability. A before–after–control–impact study design and two-factor analysis of variance were used to quantify the net changes in habitat and fish population and community indices at treatment reaches relative to those at unaltered control reaches. The density and biomass of fish communities were often dominated by one or two small prey species and no or few predator species before restoration and by one or more trout (Salmonidae) species after restoration. Significant increases in community richness (30%), diversity (40%), species or biomass equitability (32%), and total biomass (up to 52%) in at least four of the six restored reaches demonstrate that NCD restorations can improve the health and sustainability of fish communities in geomorphically unstable Catskill Mountain streams over the short to marginally long term. Bank stability, stream habitat, and trout habitat suitability indices (HSIs) generally improved significantly at the restored reaches, but key habitat features and trout HSIs did not change or decreased at two of them. Fish communities and trout populations at these two reaches were not positively affected by NCD restorations. Though NCD restorations often had a positive effect on habitat and fish communities, our results show that the initial habitat conditions limit the relative improvements than can be achieved, habitat quality and stability do not necessarily respond in unison, and biotic and abiotic responses cannot always be generalized.

  7. The Importance of Providing Multiple-Channel Sections in Dredging Activities to Improve Fish Habitat Environments

    Directory of Open Access Journals (Sweden)

    Hung-Pin Chiu

    2016-01-01

    Full Text Available After Typhoon Morakot, dredging engineering was conducted while taking the safety of humans and structures into consideration, but partial stream reaches were formed in the multiple-channel sections in Cishan Stream because of anthropogenic and natural influences. This study mainly explores the distribution of each fish species in both the multiple- and single-channel sections in the Cishan Stream. Parts of the environments did not exhibit significant differences according to a one-way ANOVA comparing the multiple- and single-channel sections, but certain areas of the multiple-channel sections had more diverse habitats. Each fish species was widely distributed by non-metric multidimensional scaling in the multiple-channel sections as compared to those in the single-channel sections. In addition, according to the principal component analysis, each fish species has a preferred environment, and all of them have a wide choice of habitat environments in the multiple-channel sections. Finally, the existence of multiple-channel sections could significantly affect the existence of the fish species under consideration in this study. However, no environmental factors were found to have an influence on fish species in the single-channel sections, with the exception of Rhinogobius nantaiensis. The results show that providing multiple-channel sections in dredging activities could improve fish habitat environments.

  8. Habitat features and predictive habitat modeling for the Colorado chipmunk in southern New Mexico

    Science.gov (United States)

    Rivieccio, M.; Thompson, B.C.; Gould, W.R.; Boykin, K.G.

    2003-01-01

    Two subspecies of Colorado chipmunk (state threatened and federal species of concern) occur in southern New Mexico: Tamias quadrivittatus australis in the Organ Mountains and T. q. oscuraensis in the Oscura Mountains. We developed a GIS model of potentially suitable habitat based on vegetation and elevation features, evaluated site classifications of the GIS model, and determined vegetation and terrain features associated with chipmunk occurrence. We compared GIS model classifications with actual vegetation and elevation features measured at 37 sites. At 60 sites we measured 18 habitat variables regarding slope, aspect, tree species, shrub species, and ground cover. We used logistic regression to analyze habitat variables associated with chipmunk presence/absence. All (100%) 37 sample sites (28 predicted suitable, 9 predicted unsuitable) were classified correctly by the GIS model regarding elevation and vegetation. For 28 sites predicted suitable by the GIS model, 18 sites (64%) appeared visually suitable based on habitat variables selected from logistic regression analyses, of which 10 sites (36%) were specifically predicted as suitable habitat via logistic regression. We detected chipmunks at 70% of sites deemed suitable via the logistic regression models. Shrub cover, tree density, plant proximity, presence of logs, and presence of rock outcrop were retained in the logistic model for the Oscura Mountains; litter, shrub cover, and grass cover were retained in the logistic model for the Organ Mountains. Evaluation of predictive models illustrates the need for multi-stage analyses to best judge performance. Microhabitat analyses indicate prospective needs for different management strategies between the subspecies. Sensitivities of each population of the Colorado chipmunk to natural and prescribed fire suggest that partial burnings of areas inhabited by Colorado chipmunks in southern New Mexico may be beneficial. These partial burnings may later help avoid a fire

  9. Effects of natural-channel-design restoration on habitat quality in Catskill Mountain streams, New York

    Science.gov (United States)

    Ernst, Anne G.; Baldigo, Barry P.; Mulvihill, Christiane; Vian, Mark

    2010-01-01

    Stream restoration has received much attention in recent years, yet there has been little effort to evaluate its impacts on physical habitat, stability, and biota. A popular but controversial stream restoration approach is natural channel design (NCD), which cannot be adequately evaluated without a long-term, independent assessment of its effects on stream habitat. Six reaches of five Catskill Mountain streams in southeastern New York were restored during 2000–2003 following NCD techniques to decrease bed and bank degradation, decrease sediment loads, and improve water quality. Habitat surveys were conducted during summer low flows from 2001 to 2007. The effects of the NCD projects on stream condition were assessed via a before–after–control–impact study design to quantify the net changes in stream and bank habitat variables relative to those in unaltered control reaches. Analysis of variance tests of three different measures of bank stability show that on average stream stability increased at treatment sites for 2–5 years after restoration. Mean channel depth, thalweg depth, and the pool–riffle ratio generally increased, whereas mean channel width, percent streambank coverage by trees, and shade decreased. Habitat suitability indices for local salmonid species increased at four of six reaches after restoration. The changes in channel dimensions rendered them generally more characteristic of stabler stream forms in the given valley settings. Although these studies were done relatively soon after project completion, our findings demonstrate that habitat conditions can be improved in degraded Catskill Mountain streams through NCD restoration.

  10. Predicted Habitat Suitability for Leptoseris in the Au'au Channel Region

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This raster denotes predicted habitat suitability for Leptoseris in the Au'au Channel region. Maximum Entropy (MaxEnt) modeling software was used to create this...

  11. Predicted Habitat Suitability for Porites in the Au'au Channel Region

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This raster denotes predicted habitat suitability for Porites in the Au'au Channel region. Maximum Entropy (MaxEnt) modeling software was used to create this...

  12. Microhabitat features influencing habitat use by Florida black bears

    Directory of Open Access Journals (Sweden)

    Dana L. Karelus

    2018-01-01

    Full Text Available Understanding fine-scale habitat needs of species and the factors influencing heterogeneous use of habitat within home range would help identify limiting resources and inform habitat management practices. This information is especially important for large mammals living in fragmented habitats where resources may be scarcer and more patchily distributed than in contiguous habitats. Using bihourly Global Position System (GPS location data collected from 10 individuals during 2011–2014, we investigated microhabitat features of areas within home ranges that received high vs. low intensity of use by Florida black bears (Ursus americanus floridanus in north-central, Florida. We identified areas receiving high and low levels of use by bears based on their utilization distributions estimated with the dynamic Brownian bridge movement model, and performed vegetation sampling at bear locations within high- and low-use areas. Using univariate analyses and generalized linear mixed models, we found that (1 canopy cover, visual obstruction, and hardwood density were important in defining high-use sites; (2 the probability of high use was positively associated with principal components that represented habitat closer to creeks and with high canopy and shrub cover and higher hardwood densities, likely characteristic of forested wetlands; and (3 the probability of high use was, to a lesser extent, associated with principal components that represented habitat with high canopy cover, high pine density, and low visual obstruction and hardwood density; likely representing sand pine and pine plantations. Our results indicate that the high bear-use sites were in forested wetlands, where cover and food resources for bears are likely to occur in higher abundance. Habitat management plans whereby bears are a focal species should aim to increase the availability and quality of forested wetlands. Keywords: Habitat selection, Heterogeneous habitat use, Forest management

  13. Predicted Habitat Suitability for Montipora Corals in the Au'au Channel Region

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This raster denotes predicted habitat suitability for Montipora in the Au'au Channel region. Maximum Entropy (MaxEnt) modeling software was used to create this...

  14. Predicted Habitat Suitability for Leptoseris Corals in the Au'au Channel Region

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This raster denotes predicted habitat suitability for Leptoseris in the Au'au Channel region. Maximum Entropy (MaxEnt) modeling software was used to create this...

  15. Simple measures of channel habitat complexity predict transient hydraulic storage in streams

    Science.gov (United States)

    Stream thalweg depth profiles (along path of greatest channel depth) and woody debris tallies have recently become components of routine field procedures for quantifying physical habitat in national stream monitoring efforts. Mean residual depth, standard deviation of thalweg dep...

  16. History of benthic research in the English Channel: From general patterns of communities to habitat mosaic description

    Science.gov (United States)

    Dauvin, Jean-Claude

    2015-06-01

    Benthic studies in the English Channel (EC), a shallow megatidal and epicontinental sea, began in the 1960s and 1970s with the work of teams led by Norman Holme (UK) and Louis Cabioch (F). During this period, benthic sampling was mainly qualitative, i.e. using a device such as the 'Rallier du Baty' dredge in the case of the French team and a modified anchor dredge in the case of the British team. Studies were focused on acquiring knowledge of the main distributions of benthic communities and species. Surveys on the scale of the whole EC led to the recognition of general features and two main patterns were identified: 1) the role of hydrodynamics on the spatial distribution of sediment, benthic species and communities; 2) the presence of a west-east climatic gradient of faunal impoverishment. Benthic studies in the 1980s-1990s were focused on the beginning of the implementation of long-term survey at a limited number of sites to identify seasonal and multi-annual changes. In the first decade of the 2000s, the implementation of the European Water Framework Directive and the Marine Strategy Framework Directive to define the Ecological Quality Status of marine environments increased the need to acquire better information of the structure and functioning of benthic communities, since benthic species and habitats were recognised as good indicators of human pressure on marine ecosystems. Faced with the increase of human maritime activities, the appearance of invasive species and the need to preserve sensitive marine habitats, benthic studies have been focused on developing a 'toolkit' to help in the decision-making and planning for both sound governance and sustainable management of marine resources and human activities in the English Channel. Multidisciplinary approaches were used to differentiate habitats in a more precise detail. Both indirect (side-scan sonar, ROV) and direct (grab sampling with benthos identification and grain-size analyses) approaches were used and

  17. Habitat use by a freshwater dolphin in the low-water season

    Science.gov (United States)

    Braulik, Gill T.; Reichert, Albert P.; Ehsan, Tahir; Khan, Samiullah; Northridge, Simon P.; Alexander, Jason S.; Garstang, Richard

    2012-01-01

    1. Many river dolphin populations are most vulnerable during the low-water season when habitat is limited. Indus River dolphin habitat selection in the dry season was investigated using Generalized Linear Models of dolphin distribution and abundance in relation to physical features of river geomorphology and channel geometry in cross-section. 2. Dolphins selected locations in the river with significantly greater mean depth, maximum depth, cross-sectional area, and hydraulic radius, and significantly narrower river width and a lower degree of braiding than areas where dolphins were absent. They were also recorded with higher frequency at river constrictions and at confluences. 3. Channel cross-sectional area was the most important factor affecting dolphin presence and abundance, with the area of water below 1 m in depth exerting the greatest influence. Indus dolphins avoided channels with small cross-sectional area (2), presumably owing to the risk of entrapment and reduced foraging opportunities. 4. Channel geometry had a greater ability to explain dolphin distribution than river geomorphology; however, both analyses indicated similar types of habitat selection. The dolphin–habitat relationships identified in the river geomorphology analysis were scale-dependent, indicating that dolphin distribution is driven by the occurrence of discrete small-scale features, such as confluences and constrictions, as well as by broader-scale habitat complexes. 5. There are numerous plans to impound or extract more water from the Indus River system. If low-water season flows are allowed to decrease further, the amount of deeper habitat will decline, there may be insufficient patches of suitable habitat to support the dolphin population through the low-water season, and dolphins may become isolated within deeper river sections, unable or unwilling to traverse through shallows between favourable patches of habitat.

  18. Engineered channel controls limiting spawning habitat rehabilitation success on regulated gravel-bed rivers

    Science.gov (United States)

    Brown, Rocko A.; Pasternack, Gregory B.

    2008-05-01

    In efforts to rehabilitate regulated rivers for ecological benefits, the flow regime has been one of the primary focal points of management strategies. However, channel engineering can impact channel geometry such that hydraulic and geomorphic responses to flow reregulation do not yield the sought for benefits. To illustrate and assess the impacts of structural channel controls and flow reregulation on channel processes and fish habitat quality in multiple life stages, a highly detailed digital elevation model was collected and analyzed for a river reach right below a dam using a suite of hydrologic, hydraulic, geomorphic, and ecological methods. Results showed that, despite flow reregulation to produce a scaled-down natural hydrograph, anthropogenic boundary controls have severely altered geomorphic processes associated with geomorphic self-sustainability and instream habitat availability in the case study. Given the similarity of this stream to many others, we concluded that the potential utility of natural flow regime reinstatement in regulated gravel-bed rivers is conditional on concomitant channel rehabilitation.

  19. Predicted Habitat Suitability for All Mesophotic Corals in the Au'au Channel Region

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This raster denotes predicted habitat suitability for all mesophotic corals in the Au'au Channel region. Maximum Entropy (MaxEnt) modeling software was used to...

  20. Habitat features and distribution of Salamandra salamandra in underground springs

    Directory of Open Access Journals (Sweden)

    Raoul Manenti

    2009-12-01

    Full Text Available Subterranean habitats are among the less known terrestrial habitats, but can reveal an unexpected biodiversity, and can play an underestimated role for amphibians. The fire salamander Salamandra salamandra is sometimes found in underground environments, but the factors affecting its distribution in subterranean spaces remain substantially unexplored. We repeatedly surveyed some hypogeous springs, such as draining galleries and “bottini” in NW Italy, in order to evaluate the relationship between environmental features and distribution of S. salamandra in these underground springs. We performed visual encounter surveys to assess the occurrence of larvae, juveniles or adults in springs. We also recorded four habitat variables: easy of access, isolation, macrobenthos richness and forest cover of the surrounding landscape. We used generalized linear models to evaluate the relationships between habitat features and occurrence of larvae. We observed larvae of S. salamandra in 13 out of 22 springs; their presence was associated to springs with high easy of access and with relatively rich macrobenthos communities. In underground springs, larval development apparently required longer time than in nearby epigeous streams. Nevertheless, S. salamandra can attain metamorphosis in this environment. The occurrence of S. salamandra in underground environments was not accidental, but repeated in the time and interesting from an ecological point of view, confirming the high plasticity of the species.

  1. Dynamic habitat corridors for marine predators; intensive use of a coastal channel by harbour seals is modulated by tidal currents.

    Science.gov (United States)

    Hastie, Gordon D; Russell, Deborah J F; Benjamins, Steven; Moss, Simon; Wilson, Ben; Thompson, Dave

    2016-01-01

    Previous studies have found that predators utilise habitat corridors to ambush prey moving through them. In the marine environment, coastal channels effectively act as habitat corridors for prey movements, and sightings of predators in such areas suggest that they may target these for foraging. Unlike terrestrial systems where the underlying habitat structure is generally static, corridors in marine systems are in episodic flux due to water movements created by tidal processes. Although these hydrographic features can be highly complex, there is generally a predictable underlying cyclic tidal pattern to their structure. For marine predators that must find prey that is often patchy and widely distributed, the underlying temporal predictability in potential foraging opportunities in marine corridors may be important drivers in their use. Here, we used data from land-based sightings and 19 harbour seals ( Phoca vitulina ) tagged with high-resolution GPS telemetry to investigate the spatial and temporal distribution patterns of seals in a narrow tidal channel. These seals showed a striking pattern in their distribution; all seals spent a high proportion of their time around the narrowest point of the channel. There was also a distinctive tidal pattern in the use of the channel; sightings of seals in the water peaked during the flood tide and were at a minimum during the ebb tide. This pattern is likely to be related to prey availability and/or foraging efficiency driven by the underlying tidal pattern in the water movements through the channel. To maximise foraging efficiency, predators often make use of narrow constrictions in habitat to intercept prey using these corridors for movement. In the marine environment, narrow channels may act as corridors, and sightings of predators suggest that they may target these for foraging. Despite this, there is little information on how individual predators use such areas. Here, we investigate how individual harbour seals use a

  2. Contrasted structuring effects of mesoscale features on the seabird community in the Mozambique Channel

    Science.gov (United States)

    Jaquemet, S.; Ternon, J. F.; Kaehler, S.; Thiebot, J. B.; Dyer, B.; Bemanaja, E.; Marteau, C.; Le Corre, M.

    2014-02-01

    of mescoscale features in structuring the tropical seabird community in the Mozambique Channel, in addition to segregating tropical and non-tropical species. The mechanisms underlying the segregation of tropical seabirds seem to partially differ from that of other tropical regions, and this may be a consequence of the strong local mesoscale activity, affecting prey size and availability schemes. Beyond characterising the foraging habitats of the seabird community of the Mozambique Channel, this study highlights the importance of this region as a hot spot for seabirds; especially the southern part, where several endangered sub-Antarctic species over-winter.

  3. Use of glacier river-fed estuary channels by juvenile coho salmon: transitional or rearing habitats?

    Science.gov (United States)

    Hoem Neher, Tammy D.; Rosenberger, Amanda E.; Zimmerman, Christian E.; Walker, Coowe M.; Baird, Steven J.

    2014-01-01

    Estuaries are among the most productive ecosystems in the world and provide important rearing environments for a variety of fish species. Though generally considered important transitional habitats for smolting salmon, little is known about the role that estuaries serve for rearing and the environmental conditions important for salmon. We illustrate how juvenile coho salmonOncorhynchus kisutch use a glacial river-fed estuary based on examination of spatial and seasonal variability in patterns of abundance, fish size, age structure, condition, and local habitat use. Fish abundance was greater in deeper channels with cooler and less variable temperatures, and these habitats were consistently occupied throughout the season. Variability in channel depth and water temperature was negatively associated with fish abundance. Fish size was negatively related to site distance from the upper extent of the tidal influence, while fish condition did not relate to channel location within the estuary ecotone. Our work demonstrates the potential this glacially-fed estuary serves as both transitional and rearing habitat for juvenile coho salmon during smolt emigration to the ocean, and patterns of fish distribution within the estuary correspond to environmental conditions.

  4. Baseline Channel Geometry and Aquatic Habitat Data for Selected Streams in the Matanuska-Susitna Valley, Alaska

    Science.gov (United States)

    Curran, Janet H.; Rice, William J.

    2009-01-01

    Small streams in the rapidly developing Matanuska-Susitna Valley in south-central Alaska are known to support anadromous and resident fish but little is known about their hydrologic and riparian conditions, or their sensitivity to the rapid development of the area or climate variability. To help address this need, channel geometry and aquatic habitat data were collected in 2005 as a baseline of stream conditions for selected streams. Three streams were selected as representative of various stream types, and one drainage network, the Big Lake drainage basin, was selected for a systematic assessment. Streams in the Big Lake basin were drawn in a Geographic Information System (GIS), and 55 reaches along 16 miles of Meadow Creek and its primary tributary Little Meadow Creek were identified from orthoimagery and field observations on the basis of distinctive physical and habitat parameters, most commonly gradient, substrate, and vegetation. Data-collection methods for sites at the three representative reaches and the 55 systematically studied reaches consisted of a field survey of channel and flood-plain geometry and collection of 14 habitat attributes using published protocols or slight modifications. Width/depth and entrenchment ratios along the Meadow-Little Meadow Creek corridor were large and highly variable upstream of Parks Highway and lower and more consistent downstream of Parks Highway. Channel width was strongly correlated with distance, increasing downstream in a log-linear relation. Runs formed the most common habitat type, and instream vegetation dominated the habitat cover types, which collectively covered 53 percent of the channel. Gravel suitable for spawning covered isolated areas along Meadow Creek and about 29 percent of Little Meadow Creek. Broad wetlands were common along both streams. For a comprehensive assessment of small streams in the Mat-Su Valley, critical additional data needs include hydrologic, geologic and geomorphic, and biologic data

  5. Simultaneous Channel and Feature Selection of Fused EEG Features Based on Sparse Group Lasso

    Directory of Open Access Journals (Sweden)

    Jin-Jia Wang

    2015-01-01

    Full Text Available Feature extraction and classification of EEG signals are core parts of brain computer interfaces (BCIs. Due to the high dimension of the EEG feature vector, an effective feature selection algorithm has become an integral part of research studies. In this paper, we present a new method based on a wrapped Sparse Group Lasso for channel and feature selection of fused EEG signals. The high-dimensional fused features are firstly obtained, which include the power spectrum, time-domain statistics, AR model, and the wavelet coefficient features extracted from the preprocessed EEG signals. The wrapped channel and feature selection method is then applied, which uses the logistical regression model with Sparse Group Lasso penalized function. The model is fitted on the training data, and parameter estimation is obtained by modified blockwise coordinate descent and coordinate gradient descent method. The best parameters and feature subset are selected by using a 10-fold cross-validation. Finally, the test data is classified using the trained model. Compared with existing channel and feature selection methods, results show that the proposed method is more suitable, more stable, and faster for high-dimensional feature fusion. It can simultaneously achieve channel and feature selection with a lower error rate. The test accuracy on the data used from international BCI Competition IV reached 84.72%.

  6. Concurrent assessment of fish and habitat in warmwater streams in Wyoming

    Science.gov (United States)

    Quist, M.C.; Hubert, W.A.; Rahel, F.J.

    2006-01-01

    Fisheries research and management in North America have focused largely on sport fishes, but native non-game fishes have attracted increased attention due to their declines. The Warmwater Stream Assessment (WSA) was developed to evaluate simultaneously both fish and habitat in Wyoming streams by a process that includes three major components: (1) stream-reach selection and accumulation of existing information, (2) fish and habitat sampling and (3) summarisation and evaluation of fish and habitat information. Fish are sampled by electric fishing or seining and habitat is measured at reach and channel-unit (i.e. pool, run, riffle, side channel, or backwater) scales. Fish and habitat data are subsequently summarised using a data-matrix approach. Hierarchical decision trees are used to assess critical habitat requirements for each fish species expected or found in the reach. Combined measurements of available habitat and the ecology of individual species contribute to the evaluation of the observed fish assemblage. The WSA incorporates knowledge of the fish assemblage and habitat features to enable inferences of factors likely influencing both the fish assemblage and their habitat. The WSA was developed for warmwater streams in Wyoming, but its philosophy, process and conceptual basis may be applied to environmental assessments in other geographical areas. ?? 2006 Blackwell Publishing Ltd.

  7. River Discharge and Local Scale Habitat Influence LIFE Score Macroinvertebrate LIFE Scores

    DEFF Research Database (Denmark)

    Dunbar, Michael J.; Pedersen, Morten Lauge; Cadman, Dan

    2010-01-01

    Midlands of the U.K., we describe how local-scale habitat features (indexed through River Habitat Survey or Danish Habitat Quality Survey) and changing river flow (discharge) influence the response of a macroinvertebrate community index. The approach has broad applicability in developing regional flow...... Invertebrate index for Flow Evaluation (LIFE), an average of abundance-weighted flow groups which indicate the microhabitat preferences of each taxon for higher velocities and clean gravel/cobble substrata or slow/still velocities and finer substrata. 3. For the Danish fauna, the LIFE score responded to three...... of the channel (negative). In both cases, LIFE responded negatively to features associated with historical channel modification. We suggest that there are several mechanisms for these relationships, including the narrower tolerances of taxa preferring high velocity habitat; these taxa are also continually...

  8. Channel unit use by Smallmouth Bass: Do land-use constraints or quantity of habitat matter?

    Science.gov (United States)

    Brewer, Shannon K.

    2013-01-01

    I examined how land use influenced the distribution of Smallmouth Bass Micropterus dolomieu in channel units (discrete morphological features—e.g., pools) of streams in the Midwestern USA. Stream segments (n = 36), from four clusters of different soil and runoff conditions, were identified that had the highest percent of forest (n = 12), pasture (n = 12), and urban land use (n = 12) within each cluster. Channel units within each stream were delineated and independently sampled once using multiple gears in summer 2006. Data were analyzed using a generalized linear mixed model procedure with a binomial distribution and odds ratio statistics. Land use and channel unit were strong predictors of age-0, age-1, and age->1 Smallmouth Bass presence. Each age-class was more likely to be present in streams within watersheds dominated by forest land use than in those with pasture or urban land uses. The interaction between land use and channel unit was not significant in any of the models, indicating channel unit use by Smallmouth Bass did not depend on watershed land use. Each of the three age-classes was more likely to use pools than other channel units. However, streams with high densities of Smallmouth Bass age >1 had lower proportions of pools suggesting a variety of channel units is important even though habitat needs exist at the channel-unit scale. Management may benefit from future research addressing the significance of channel-unit quality as a possible mechanism for how land use impacts Smallmouth Bass populations. Further, management efforts aimed at improving stream habitat would likely be more beneficial if focused at the stream segment or landscape scale, where a variety of quality habitats might be supported.

  9. DISTRIBUTION OF AQUATIC OFF-CHANNEL HABITATS AND ASSOCIATED RIPARIAN VEGETATION, WILLAMETTE RIVER, OREGON, USA

    Science.gov (United States)

    The extent of aquatic off-channel habitats such as secondary and side channels, sloughs, and alcoves, have been reduced more than 50% since the 1850s along the upper main stem of the Willamette River, Oregon, USA. Concurrently, the hydrogeomorphic potential, and associated flood...

  10. Spatial patterns in gravel habitats and communities in the central and eastern English Channel

    Science.gov (United States)

    Coggan, Roger; Barrio Froján, Christopher R. S.; Diesing, Markus; Aldridge, John

    2012-10-01

    The distribution of sediment type and benthic communities in the central and eastern English Channel is shown to be polarised around a distinctive local hydrodynamic feature. The seabed in the region includes an extensive area of gravel substrate which is both an important habitat for benthic marine fauna and a valuable source of material for the marine aggregate industry. Effective management of the area is predicated on an understanding of whether it represents a single homogeneous unit, or several different units that may need to be managed in different ways. The aim of this study was to provide information that would inform such management decisions. Spatial patterns in gravel habitats and communities were studied by investigating the physical environment through modelled and empirical data, and the distribution of infauna and epifauna along an east-west trending transect. A common spatial pattern was observed in both physical and biological parameters, but rather than indicating a simple longitudinal gradient, there was a distinct polarisation around a central feature, a bedload parting (BLP) zone situated between the Isle of Wight and Cotentin peninsula. Sediments and communities at the eastern and western ends of the transect were more similar to each other than to those in the middle. The strong hydrodynamic regime in the BLP area controls sediment distribution, transporting finer material, mainly sand, away from the mid transect area. The pattern in sand content of the substrate mirrors the magnitude of the potential bedload transport, which is complex in this region due to the interplay between the M2 and M4 tidal constituents and produced a series of erosional and depositional zones. The structure of benthic communities reflected the local substrate and hydrodynamic conditions, with sponges observed among the stable substrates and stronger currents that characterised the mid transect area, while infauna became more diverse towards the ends of the

  11. Selection of nest-site habitat by interior least terns in relation to sandbar construction

    Science.gov (United States)

    Sherfy, Mark H.; Stucker, Jennifer H.; Buhl, Deborah A.

    2012-01-01

    Federally endangered interior least terns (Sternula antillarum) nest on bare or sparsely vegetated sandbars on midcontinent river systems. Loss of nesting habitat has been implicated as a cause of population declines, and managing these habitats is a major initiative in population recovery. One such initiative involves construction of mid-channel sandbars on the Missouri River, where natural sandbar habitat has declined in quantity and quality since the late 1990s. We evaluated nest-site habitat selection by least terns on constructed and natural sandbars by comparing vegetation, substrate, and debris variables at nest sites (n = 798) and random points (n = 1,113) in bare or sparsely vegetated habitats. Our logistic regression models revealed that a broader suite of habitat features was important in nest-site selection on constructed than on natural sandbars. Odds ratios for habitat variables indicated that avoidance of habitat features was the dominant nest-site selection process on both sandbar types, with nesting terns being attracted to nest-site habitat features (gravel and debris) and avoiding vegetation only on constructed sandbars, and avoiding silt and leaf litter on both sandbar types. Despite the seemingly uniform nature of these habitats, our results suggest that a complex suite of habitat features influences nest-site choice by least terns. However, nest-site selection in this social, colonially nesting species may be influenced by other factors, including spatial arrangement of bare sand habitat, proximity to other least terns, and prior habitat occupancy by piping plovers (Charadrius melodus). We found that nest-site selection was sensitive to subtle variation in habitat features, suggesting that rigor in maintaining habitat condition will be necessary in managing sandbars for the benefit of least terns. Further, management strategies that reduce habitat features that are avoided by least terns may be the most beneficial to nesting least terns.

  12. A concept for extraction of habitat features from laser scanning and hypersprectral imaging for evaluation of Natura 2000 sites - the ChangeHabitats2 project approach

    Science.gov (United States)

    Székely, B.; Kania, A.; Pfeifer, N.; Heilmeier, H.; Tamás, J.; Szöllősi, N.; Mücke, W.

    2012-04-01

    The goal of the ChangeHabitats2 project is the development of cost- and time-efficient habitat assessment strategies by employing effective field work techniques supported by modern airborne remote sensing methods, i.e. hyperspectral imagery and laser scanning (LiDAR). An essential task of the project is the design of a novel field work technique that on the one hand fulfills the reporting requirements of the Flora-Fauna-Habitat (FFH-) directive and on the other hand serves as a reference for the aerial data analysis. Correlations between parameters derived from remotely sensed data and terrestrial field measurements shall be exploited in order to create half- or fully-automated methods for the extraction of relevant Natura2000 habitat parameters. As a result of these efforts a comprehensive conceptual model has been developed for extraction and integration of Natura 2000 relevant geospatial data. This scheme is an attempt to integrate various activities within ChangeHabitats2 project defining pathways of development, as well as encompassing existing data processing chains, theoretical approaches and field work. The conceptual model includes definition of processing levels (similar to those existing in remote sensing), whereas these levels cover the range from the raw data to the extracted habitat feature. For instance, the amount of dead wood (standing or lying on the surface) is an important evaluation criterion for the habitat. The tree trunks lying on the ground surface typically can be extracted from the LiDAR point cloud, and the amount of wood can be estimated accordingly. The final result will be considered as a habitat feature derived from laser scanning data. Furthermore, we are also interested not only in the determination of the specific habitat feature, but also in the detection of its variations (especially in deterioration). In this approach the variation of this important habitat feature is considered to be a differential habitat feature, that can

  13. Headwater Stream Management Dichotomies: Local Amphibian Habitat vs. Downstream Fish Habitat

    Science.gov (United States)

    Jackson, C. R.

    2002-12-01

    , specifically the role of woody debris in habitat formation, documented for larger streams do not apply to headwater streams. Relatively small wood (diameters between 10 and 40 cm), inorganic material, and organic debris (diameters less than 10 cm) were major step-forming agents while big woody debris pieces (> 40 cm dia.) created less than 10% of steps. Streams in virgin and managed stands did not differ in relative importance of very large woody debris. Due to low fluvial power, pool habitat was rare. These streams featured mostly step-riffle morphology, not step-pool, indicating insufficient flow for pool-scour. Stream power and unit stream power were dominant channel shaping factors.

  14. The waterfall paradox: How knickpoints disconnect hillslope and channel processes, isolating salmonid populations in ideal habitats

    Science.gov (United States)

    May, Christine; Roering, Joshua J.; Snow, Kyle; Griswold, Kitty; Gresswell, Robert E.

    2017-01-01

    Waterfalls create barriers to fish migration, yet hundreds of isolated salmonid populations exist above barriers and have persisted for thousands of years in steep mountainous terrain. Ecological theory indicates that small isolated populations in disturbance-prone landscapes are at greatest risk of extirpation because immigration and recolonization are not possible. On the contrary, many above-barrier populations are currently thriving while their downstream counterparts are dwindling. This quandary led us to explore geomorphic knickpoints as a mechanism for disconnecting hillslope and channel processes by limiting channel incision and decreasing the pace of base-level lowering. Using LiDAR from the Oregon Coast Range, we found gentler channel gradients, wider valleys, lower gradient hillslopes, and less shallow landslide potential in an above-barrier catchment compared to a neighboring catchment devoid of persistent knickpoints. Based on this unique geomorphic template, above-barrier channel networks are less prone to debris flows and other episodic sediment fluxes. These above-barrier catchments also have greater resiliency to flooding, owing to wider valleys with greater floodplain connectivity. Habitat preference models further indicate that salmonid habitat is present in greater quantity and quality in these above-barrier networks. Therefore the paradox of the persistence of small isolated fish populations may be facilitated by a geomorphic mechanism that both limits their connectivity to larger fish populations yet dampens the effect of disturbance by decreasing connections between hillslope and channel processes above geomorphic knickpoints.

  15. Predicting seasonal variations in coastal seabird habitats in the English Channel and the Bay of Biscay

    Science.gov (United States)

    Virgili, A.; Lambert, C.; Pettex, E.; Dorémus, G.; Van Canneyt, O.; Ridoux, V.

    2017-07-01

    Seabirds, like all animals, have to live in suitable habitats to fulfil their energetic needs for both somatic and reproductive growth and maintenance. Apart from migration trips, all coastal seabirds are linked to the coast, because they need to return daily to land for resting or breeding. Their use of marine habitats strongly depends on their biology, but also on environmental conditions, and can be described using habitat models. This study aimed to: (1) identify the processes that mostly influence seabird distributions along the coasts of the English Channel and the Bay of Biscay; (2) determine seasonal variations of these processes, (3) provide prediction maps that describe the species distributions. We collected data of coastal seabird sightings from aerial surveys carried out in the English Channel and the eastern North Atlantic in the winter 2011-2012 and summer 2012. We classified seabirds into morphological groups and described their habitats using physiographic and oceanographic variables in Generalised Additive Models (GAMs). Finally, we produced maps of predicted distributions by season for each group. The distributions of coastal seabirds were essentially determined by the distance to the nearest coast, with a weaker influence of oceanographic variables. The nature of the substrate, sand or rock, combined with the timing of reproduction, also contributed to determine seasonal at-sea distributions for some species. The highest densities were predicted near the coast, particularly in bays and estuaries for strictly coastal species with possible variations depending on the season. From this study, we were able to predict the seasonal distribution of the studied species according to varying environmental parameters that changed over time, allowing us to understand better their behaviour and ecology.

  16. Riverine habitat dynamics

    Science.gov (United States)

    Jacobson, R.B.

    2013-01-01

    The physical habitat template is a fundamental influence on riverine ecosystem structure and function. Habitat dynamics refers to the variation in habitat through space and time as the result of varying discharge and varying geomorphology. Habitat dynamics can be assessed at spatial scales ranging from the grain (the smallest resolution at which an organism relates to its environment) to the extent (the broadest resolution inclusive of all space occupied during its life cycle). In addition to a potentially broad range of spatial scales, assessments of habitat dynamics may include dynamics of both occupied and nonoccupied habitat patches because of process interactions among patches. Temporal aspects of riverine habitat dynamics can be categorized into hydrodynamics and morphodynamics. Hydrodynamics refers to habitat variation that results from changes in discharge in the absence of significant change of channel morphology and at generally low sediment-transport rates. Hydrodynamic assessments are useful in cases of relatively high flow exceedance (percent of time a flow is equaled or exceeded) or high critical shear stress, conditions that are applicable in many studies of instream flows. Morphodynamics refers to habitat variation resulting from changes to substrate conditions or channel/floodplain morphology. Morphodynamic assessments are necessary when channel and floodplain boundary conditions have been significantly changed, generally by relatively rare flood events or in rivers with low critical shear stress. Morphodynamic habitat variation can be particularly important as disturbance mechanisms that mediate population growth or for providing conditions needed for reproduction, such as channel-migration events that erode cutbanks and provide new pointbar surfaces for germination of riparian trees. Understanding of habitat dynamics is increasing in importance as societal goals shift toward restoration of riverine ecosystems. Effective investment in restoration

  17. Enhancement and creation of secondary channel habitat: Review of project performance across a range of project types and settings

    Science.gov (United States)

    Epstein, J.; Lind, P.

    2017-12-01

    Secondary channels provide critical off-channel habitat for key life stages of aquatic species. In many systems, interruption of natural processes via anthropogenic influences have reduced the quantity of secondary channel habitat and have impaired the processes that help form and maintain them. Creation and enhancement of secondary channels is therefore a key component of stream rehabilitation, particularly in the Pacific Northwest where the focus has been on enhancement of habitat for ESA-listed salmonids. Secondary channel enhancement varies widely in scope, scale, and approach depending on species requirements, hydrology/hydraulics, geomorphologic setting, sediment dynamics, and human constraints. This presentation will review case studies from numerous secondary channel projects constructed over the last 20 years by different entities and in different settings. Lessons learned will be discussed that help to understand project performance and inform future project design. A variety of secondary channel project types will be reviewed, including mainstem flow splits, year-round flow through, seasonally activated, backwater alcove, natural groundwater-fed, and engineered groundwater-fed (i.e. groundwater collection galleries). Projects will be discussed that span a range of project construction intensities, such as full excavation of side channels, select excavation to increase flow, or utilizing mainstem structures to activate channels. Different configurations for connecting to the main channel, and their relative performance, will also be presented. A variety of connection types will be discussed including stabilized channel entrance, free-formed entrance, using bar apex jams to split flows, using `bleeder' jams to limit secondary channel flow, and obstructing the main channel to divert flows into secondary channels. The performance and longevity of projects will be discussed, particularly with respect to the response to sediment mobilizing events. Lessons

  18. A Place to Call Home: A Synthesis of Delta Smelt Habitat in the Upper San Francisco Estuary

    Directory of Open Access Journals (Sweden)

    Ted Sommer

    2013-06-01

    Full Text Available We used a combination of published literature and field survey data to synthesize the available information about habitat use by delta smelt Hypomesus transpacificus, a declining native species in the San Francisco Estuary. Delta smelt habitat ranges from San Pablo and Suisun bays to their freshwater tributaries, including the Sacramento and San Joaquin rivers. In recent years, substantial numbers of delta smelt have colonized habitat in Liberty Island, a north Delta area that flooded in 1997. The species has a more upstream distribution during spawning as opposed to juvenile rearing periods. Post-larvae and juveniles tend to have a more downstream distribution during wetter years. Delta smelt are most common in low-salinity habitat (<6 psu with high turbidities (>12 NTU and moderate temperatures (7 °C to 25 °C. They do not appear to have strong substrate preferences, but sandy shoals are important for spawning in other osmerids. The evidence to date suggests that they generally require at least some tidal flow in their habitats. Delta smelt also occur in a wide range of channel sizes, although they seem to be rarer in small channels (<15 m wide. Nonetheless, there is some evidence that open water adjacent to habitats with long water-residence times (e.g. tidal marsh, shoal, low-order channels may be favorable. Other desirable features of delta smelt habitat include high calanoid copepod densities and low levels of submerged aquatic vegetation (SAV and the toxic algae Microcystis. Although enough is known to plan for large-scale pilot habitat projects, these efforts are vulnerable to several factors, most notably climate change, which will change salinity regimes and increase the occurrence of lethal temperatures. We recommend restoration of multiple geographical regions and habitats coupled with extensive monitoring and adaptive management. An overall emphasis on ecosystem processes rather than specific habitat features is also likely to be

  19. Four-Channel Biosignal Analysis and Feature Extraction for Automatic Emotion Recognition

    Science.gov (United States)

    Kim, Jonghwa; André, Elisabeth

    This paper investigates the potential of physiological signals as a reliable channel for automatic recognition of user's emotial state. For the emotion recognition, little attention has been paid so far to physiological signals compared to audio-visual emotion channels such as facial expression or speech. All essential stages of automatic recognition system using biosignals are discussed, from recording physiological dataset up to feature-based multiclass classification. Four-channel biosensors are used to measure electromyogram, electrocardiogram, skin conductivity and respiration changes. A wide range of physiological features from various analysis domains, including time/frequency, entropy, geometric analysis, subband spectra, multiscale entropy, etc., is proposed in order to search the best emotion-relevant features and to correlate them with emotional states. The best features extracted are specified in detail and their effectiveness is proven by emotion recognition results.

  20. Resource pulses in desert river habitats: productivity-biodiversity hotspots, or mirages?

    Science.gov (United States)

    Free, Carissa L; Baxter, Greg S; Dickman, Christopher R; Leung, Luke K P

    2013-01-01

    Resource pulses in the world's hot deserts are driven largely by rainfall and are highly variable in both time and space. However, run-on areas and drainage lines in arid regions receive more water more often than adjacent habitats, and frequently sustain relatively high levels of primary productivity. These landscape features therefore may support higher biotic diversity than other habitats, and potentially act as refuges for desert vertebrates and other biota during droughts. We used the ephemeral Field River in the Simpson Desert, central Australia, as a case study to quantify how resources and habitat characteristics vary spatially and temporally along the riparian corridor. Levels of moisture and nutrients were greater in the clay-dominated soils of the riverine corridor than in the surrounding sand dunes, as were cover values of trees, annual grasses, other annual plants and litter; these resources and habitat features were also greater near the main catchment area than in the distal reaches where the river channel runs out into extensive dune fields. These observations confirm that the riverine corridor is more productive than the surrounding desert, and support the idea that it may act as a refuge or as a channel for the ingress of peri-desert species. However, the work also demonstrates that species diversity of invertebrates and plants is not higher within the river corridor; rather, it is driven by rainfall and the accompanying increase in annual plants following a rain event. Further research is required to identify the biota that depend upon these resource pulses.

  1. Resource Pulses in Desert River Habitats: Productivity-Biodiversity Hotspots, or Mirages?

    Science.gov (United States)

    Free, Carissa L.; Baxter, Greg S.; Dickman, Christopher R.; Leung, Luke K. P.

    2013-01-01

    Resource pulses in the world's hot deserts are driven largely by rainfall and are highly variable in both time and space. However, run-on areas and drainage lines in arid regions receive more water more often than adjacent habitats, and frequently sustain relatively high levels of primary productivity. These landscape features therefore may support higher biotic diversity than other habitats, and potentially act as refuges for desert vertebrates and other biota during droughts. We used the ephemeral Field River in the Simpson Desert, central Australia, as a case study to quantify how resources and habitat characteristics vary spatially and temporally along the riparian corridor. Levels of moisture and nutrients were greater in the clay-dominated soils of the riverine corridor than in the surrounding sand dunes, as were cover values of trees, annual grasses, other annual plants and litter; these resources and habitat features were also greater near the main catchment area than in the distal reaches where the river channel runs out into extensive dune fields. These observations confirm that the riverine corridor is more productive than the surrounding desert, and support the idea that it may act as a refuge or as a channel for the ingress of peri-desert species. However, the work also demonstrates that species diversity of invertebrates and plants is not higher within the river corridor; rather, it is driven by rainfall and the accompanying increase in annual plants following a rain event. Further research is required to identify the biota that depend upon these resource pulses. PMID:24124446

  2. The influence of fine-scale habitat features on regional variation in population performance of alpine White-tailed Ptarmigan

    Science.gov (United States)

    Fedy, B.; Martin, K.

    2011-01-01

    It is often assumed (explicitly or implicitly) that animals select habitat features to maximize fitness. However, there is often a mismatch between preferred habitats and indices of individual and population measures of performance. We examined the influence of fine-scale habitat selection on the overall population performance of the White-tailed Ptarmigan (Lagopus leucura), an alpine specialist, in two subdivided populations whose habitat patches are configured differently. The central region of Vancouver Island, Canada, has more continuous and larger habitat patches than the southern region. In 2003 and 2004, using paired logistic regression between used (n = 176) and available (n = 324) sites, we identified food availability, distance to standing water, and predator cover as preferred habitat components . We then quantified variation in population performance in the two regions in terms of sex ratio, age structure (n = 182 adults and yearlings), and reproductive success (n = 98 females) on the basis of 8 years of data (1995-1999, 2002-2004). Region strongly influenced females' breeding success, which, unsuccessful hens included, was consistently higher in the central region (n = 77 females) of the island than in the south (n = 21 females, P = 0.01). The central region also had a much higher proportion of successful hens (87%) than did the south (55%, P < 0.001). In light of our findings, we suggest that population performance is influenced by a combination of fine-scale habitat features and coarse-scale habitat configuration. ?? The Cooper Ornithological Society 2011.

  3. Voltage-Gated Sodium Channels: Evolutionary History and Distinctive Sequence Features.

    Science.gov (United States)

    Kasimova, M A; Granata, D; Carnevale, V

    2016-01-01

    Voltage-gated sodium channels (Nav) are responsible for the rising phase of the action potential. Their role in electrical signal transmission is so relevant that their emergence is believed to be one of the crucial factors enabling development of nervous system. The presence of voltage-gated sodium-selective channels in bacteria (BacNav) has raised questions concerning the evolutionary history of the ones in animals. Here we review some of the milestones in the field of Nav phylogenetic analysis and discuss some of the most important sequence features that distinguish these channels from voltage-gated potassium channels and transient receptor potential channels. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. A Fast, Open EEG Classification Framework Based on Feature Compression and Channel Ranking

    Directory of Open Access Journals (Sweden)

    Jiuqi Han

    2018-04-01

    Full Text Available Superior feature extraction, channel selection and classification methods are essential for designing electroencephalography (EEG classification frameworks. However, the performance of most frameworks is limited by their improper channel selection methods and too specifical design, leading to high computational complexity, non-convergent procedure and narrow expansibility. In this paper, to remedy these drawbacks, we propose a fast, open EEG classification framework centralized by EEG feature compression, low-dimensional representation, and convergent iterative channel ranking. First, to reduce the complexity, we use data clustering to compress the EEG features channel-wise, packing the high-dimensional EEG signal, and endowing them with numerical signatures. Second, to provide easy access to alternative superior methods, we structurally represent each EEG trial in a feature vector with its corresponding numerical signature. Thus, the recorded signals of many trials shrink to a low-dimensional structural matrix compatible with most pattern recognition methods. Third, a series of effective iterative feature selection approaches with theoretical convergence is introduced to rank the EEG channels and remove redundant ones, further accelerating the EEG classification process and ensuring its stability. Finally, a classical linear discriminant analysis (LDA model is employed to classify a single EEG trial with selected channels. Experimental results on two real world brain-computer interface (BCI competition datasets demonstrate the promising performance of the proposed framework over state-of-the-art methods.

  5. The Use of Aerial RGB Imagery and LIDAR in Comparing Ecological Habitats and Geomorphic Features on a Natural versus Man-Made Barrier Island

    Directory of Open Access Journals (Sweden)

    Carlton P. Anderson

    2016-07-01

    Full Text Available The Mississippi (MS barrier island chain along the northern Gulf of Mexico coastline is subject to rapid changes in habitat, geomorphology and elevation by natural and anthropogenic disturbances. The purpose of this study was to compare habitat type coverage with respective elevation, geomorphic features and short-term change between the naturally-formed East Ship Island and the man-made Sand Island. Ground surveys, multi-year remotely-sensed data, habitat classifications and digital elevation models were used to quantify short-term habitat and geomorphic change, as well as to examine the relationships between habitat types and micro-elevation. Habitat types and species composition were the same on both islands with the exception of the algal flat existing on the lower elevated spits of East Ship. Both islands displayed common patterns of vegetation succession and ranges of existence in elevation. Additionally, both islands showed similar geomorphic features, such as fore and back dunes and ponds. Storm impacts had the most profound effects on vegetation and geomorphic features throughout the study period. Although vastly different in age, these two islands show remarkable commonalities among the traits investigated. In comparison to East Ship, Sand Island exhibits key characteristics of a natural barrier island in terms of its vegetated habitats, geomorphic features and response to storm impacts, although it was established anthropogenically only decades ago.

  6. Evaluation of Superficial and Dimensional Quality Features in Metallic Micro-Channels Manufactured by Micro-End-Milling

    Directory of Open Access Journals (Sweden)

    Claudio Giardini

    2013-04-01

    Full Text Available Miniaturization encourages the development of new manufacturing processes capable of fabricating features, like micro-channels, in order to use them for different applications, such as in fuel cells, heat exchangers, microfluidic devices and micro-electromechanical systems (MEMS. Many studies have been conducted on heat and fluid transfer in micro-channels, and they appeared significantly deviated from conventional theory, due to measurement errors and fabrication methods. The present research, in order to deal with this opportunity, is focused on a set of experiments in the micro-milling of channels made of aluminum, titanium alloys and stainless steel, varying parameters, such as spindle speed, depth of cut per pass (ap, channel depth (d, feed per tooth (fz and coolant application. The experimental results were analyzed in terms of dimensional error, channel profile shape deviation from rectangular and surface quality (burr and roughness. The micro-milling process was capable of offering quality features required on the micro-channeled devices. Critical phenomena, like run-out, ploughing, minimum chip thickness and tool wear, were encountered as an explanation for the deviations in shape and for the surface quality of the micro-channels. The application of coolant and a low depth of cut per pass were significant to obtain better superficial quality features and a smaller dimensional error. In conclusion, the integration of superficial and geometrical features on the study of the quality of micro-channeled devices made of different metallic materials contributes to the understanding of the impact of calibrated cutting conditions in MEMS applications.

  7. Detecting the impact of bank and channel modification on invertebrate communities in Mediterranean temporary streams (Sardinia, SW Italy).

    Science.gov (United States)

    Buffagni, Andrea; Tenchini, Roberta; Cazzola, Marcello; Erba, Stefania; Balestrini, Raffaella; Belfiore, Carlo; Pagnotta, Romano

    2016-09-15

    We hypothesized that reach-scale, bank and channel modification would impact benthic communities in temporary rivers of Sardinia, when pollution and water abstraction are not relevant. A range of variables were considered, which include both artificial structures/alterations and natural features observed in a stream reach. Multivariate regression trees (MRT) were used to assess the effects of the explanatory variables on invertebrate assemblages and five groups, characterized by different habitat modification and/or features, were recognized. Four node variables determined the splits in the MRT analysis: channel reinforcement, tree-related bank and channel habitats, channel modification and bank modification. Continuity of trees in the river corridor diverged among MRT groups and significant differences among groups include presence of alders, extent of channel shading and substrate diversity. Also, the percentage of in-stream organic substrates, in particular CPOM/Xylal, showed highly significant differences among groups. For practical applications, thresholds for the extent of channel reinforcement (40%) and modification (10%) and for bank alteration (≈30%) were provided, that can be used to guide the implementation of restoration measures. In moderately altered river reaches, a significant extent of tree-related habitats (≈5%) can noticeably mitigate the effects of morphological alteration on aquatic invertebrates. The outcomes highlight the importance of riparian zone management as an opportune, achievable prospect in the restoration of Mediterranean temporary streams. The impact of bank and channel modification on ecological status (sensu WFD) was investigated and the tested benthic metrics, especially those based on abundance data, showed legible differences among MRT groups. Finally, bank and channel modification appears to be a potential threat for the conservation of a few Sardo-Corsican endemic species. The introduction of management criteria that

  8. Influence of Partial Dam Removal on Change of Channel Morphology and Physical Habitats: A Case Study of Yu-Sheng River

    Science.gov (United States)

    Hao Weng, Chung; Yeh, Chao Hsien

    2017-04-01

    The rivers in Taiwan have the characteristic of large slope gradient and fast flow velocity caused by rugged terrain. And Taiwan often aces many typhoons which will bring large rainfall in the summer. In early Taiwan, river management was more focus on flood control, flood protection and disaster reduction. In recent years, the rise of ecological conservation awareness for the precious fish species brings spotlight on the Taiwan salmon (Oncorhynchus masou formosanus) which lives in the river section of this study. In order to make sure ecological corridor continuing, dam removal is the frequently discussed measure in recent years and its impact on environmental is also highly concerned. Since the dam removal may causes severe changes to the river channel, the action of dam removal needs careful evaluation. As one of the endangered species, Taiwan salmon is considered a national treasure of Taiwan and it was originally an offshore migration of the Pacific salmon. After the ice age and geographical isolation, it becomes as an unique subspecies of Taiwan and evolved into landlocked salmon. Now the Taiwan salmon habitats only exists in few upstream creeks and the total number of wild Taiwan salmon in 2015 was about 4,300. In order to expand the connectivity of the fish habitats in Chi-Jia-Wan creek basin, several dam removal projects had completed with good results. Therefore, this paper focuses on the dam removal of Yu-Sheng creek dam. In this paper, a digital elevation model (DEM) of about 1 kilometer channel of the Yu-Sheng creek dam is obtained by unmanned aerial vehicle (UAV). Using CCHE2D model, the simulation of dam removal will reveal the impact on channel morphology. After model parameter identification and verification, this study simulated the scenarios of three historical typhoon events with recurrence interval of two years, fifteen years, and three decades under four different patterns of dam removal to identify the the head erosion, flow pattern, and

  9. Fisheries Enhancement in the Fish Creek Basin; Evaluation of In-Channel and Off-Channel Projects, 1984 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Everest, Fred H.; Sedell, James R. (Oregon State University, Pacific Northwest Forest and Range Experiment Station, Corvallis, OR); Wolfe, John (Mount Hood National Forest, Clackamas River Ranger District, Estacada, OR)

    1985-07-01

    This S-year project which began in 1983 is designed to construct and evaluate habitat improvements in the Fish Creek basin by personnel of the Estacada Ranger District, Ht. Hood National Forest, and the Pacific Northwest Forest and Range Experiment Station. The work is jointly funded by BPA and USDA-Forest Service. The evaluation has focused on activities designed to improve spawning and rearing habitat for chinook and coho salmon and steelhead trout. Specific habitat improvements being evaluated include: boulder berms, an off-channel pond, a side-channel, addition of large woody debris to stream edge habitats, and hardwood plantings to improve riparian vegetation. The initial phases of habitat work have proceeded cautiously in concert with the evaluation so that knowledge gained could be immediately applied to future proposed habitat work. The evaluation has been conducted at the basin level, rather than reach or site level, and has focused intensely on identification of factors limiting production of salmonids in Fish Creek, as well as physical and biological changes resulting from habitat improvement. Identification of limiting factors has proven to be difficult and requires several years of all-season investigation. Results of this work to date indicate that spawning habitat is not limiting production of steelhead or coho in the basin. Coho habitat is presently underseeded because of inadequate escapement. Key summer habitats for coho, age 0 and age 1+ steelhead are beaver ponds, side channels, and pools, respectively. Key winter habitats appear to be groundwater-fed side channels and boulder-rubble stream margins with 30+ cm depth and low velocity water. Additional work is needed to determine whether summer habitat or winter habitat is limiting steelhead and coho production. Chinook use of the basin appears to be related to the timing of fall freshets that control migratory access into the system. Instream habitat improvements show varying degrees of promise

  10. Bathymetric and Velocimetric Survey and Assessment of Habitat for Pallid Sturgeon on the Mississippi River in the Vicinity of the Proposed Interstate 70 Bridge at St. Louis, Missouri

    Science.gov (United States)

    Huizinga, Richard J.; Elliott, Caroline M.; Jacobson, Robert B.

    2010-01-01

    A bathymetric and velocimetry survey was conducted on the Mississippi River in the vicinity of a proposed new bridge for Interstate 70 at St. Louis, Missouri. A multibeam echo sounder mapping system and an acoustic Doppler current profiler were used to obtain channel-bed elevations and vertically averaged and near-bed velocities for a 3,545-foot (1,080-meter) long reach of the Mississippi River approximately 1,935 feet (590 meters) wide from the Illinois to Missouri banks. Data from the 2009 survey were used to determine the conditions of the benthic habitat in the vicinity of the proposed Interstate 70 bridge. The channel-bed elevations ranged from approximately 346 feet (105.46 meters) to 370 feet (112.78 meters) above the North American Vertical Datum of 1988 in a majority of the channel except for the channel banks. Large dune features up to 12.5 feet (3.81 meters) high were present in the middle of the channel, and numerous smaller dunes and many ripples as smaller features were superimposed on the larger dunes. However, it is uncertain if the large dune features present in mid-channel are long-term features or an artifact of the seasonal flooding on the Mississippi River. A substantial scour depression was present on the right descending bank (Missouri side) near the downstream end of the study area, as well as other smaller scour holes near the instream barge mooring structures on the Missouri bank. The vertically averaged velocities acquired with the acoustic Doppler current profiler ranged from approximately 2 feet per second (0.61 meters per second) along the channel margins to approximately 7.0 feet per second (2.13 meters per second) in the main channel, with an average velocity of 5.5 feet per second (1.68 meters per second) in mid-channel. The orientation of the vertically averaged velocity vectors showed flow crossing from the Illinois bank to the Missouri bank from upstream to downstream in the study area, which was confirmed by the orientation of

  11. Comparison of Different Features and Classifiers for Driver Fatigue Detection Based on a Single EEG Channel

    Directory of Open Access Journals (Sweden)

    Jianfeng Hu

    2017-01-01

    Full Text Available Driver fatigue has become an important factor to traffic accidents worldwide, and effective detection of driver fatigue has major significance for public health. The purpose method employs entropy measures for feature extraction from a single electroencephalogram (EEG channel. Four types of entropies measures, sample entropy (SE, fuzzy entropy (FE, approximate entropy (AE, and spectral entropy (PE, were deployed for the analysis of original EEG signal and compared by ten state-of-the-art classifiers. Results indicate that optimal performance of single channel is achieved using a combination of channel CP4, feature FE, and classifier Random Forest (RF. The highest accuracy can be up to 96.6%, which has been able to meet the needs of real applications. The best combination of channel + features + classifier is subject-specific. In this work, the accuracy of FE as the feature is far greater than the Acc of other features. The accuracy using classifier RF is the best, while that of classifier SVM with linear kernel is the worst. The impact of channel selection on the Acc is larger. The performance of various channels is very different.

  12. Wildlife habitats in managed rangelands—the Great Basin of southeastern Oregon: manmade habitats.

    Science.gov (United States)

    Chris Maser; Jack Ward Thomas; Ira David Luman; Ralph. Anderson

    1979-01-01

    Manmade structures on rangelands provide specialized habitats for some species. These habitats and how they function as specialized habitat features are examined in this publication. The relationships of the wildlife of the Great Basin to such structures are detailed.

  13. Spatial Scaling of Environmental Variables Improves Species-Habitat Models of Fishes in a Small, Sand-Bed Lowland River.

    Directory of Open Access Journals (Sweden)

    Johannes Radinger

    Full Text Available Habitat suitability and the distinct mobility of species depict fundamental keys for explaining and understanding the distribution of river fishes. In recent years, comprehensive data on river hydromorphology has been mapped at spatial scales down to 100 m, potentially serving high resolution species-habitat models, e.g., for fish. However, the relative importance of specific hydromorphological and in-stream habitat variables and their spatial scales of influence is poorly understood. Applying boosted regression trees, we developed species-habitat models for 13 fish species in a sand-bed lowland river based on river morphological and in-stream habitat data. First, we calculated mean values for the predictor variables in five distance classes (from the sampling site up to 4000 m up- and downstream to identify the spatial scale that best predicts the presence of fish species. Second, we compared the suitability of measured variables and assessment scores related to natural reference conditions. Third, we identified variables which best explained the presence of fish species. The mean model quality (AUC = 0.78, area under the receiver operating characteristic curve significantly increased when information on the habitat conditions up- and downstream of a sampling site (maximum AUC at 2500 m distance class, +0.049 and topological variables (e.g., stream order were included (AUC = +0.014. Both measured and assessed variables were similarly well suited to predict species' presence. Stream order variables and measured cross section features (e.g., width, depth, velocity were best-suited predictors. In addition, measured channel-bed characteristics (e.g., substrate types and assessed longitudinal channel features (e.g., naturalness of river planform were also good predictors. These findings demonstrate (i the applicability of high resolution river morphological and instream-habitat data (measured and assessed variables to predict fish presence, (ii the

  14. Channel Morphology and Bed Sediment Characteristics Before and After Habitat Enhancement Activities in the Uridil Property, Platte River, Nebraska, Water Years 2005-2008

    Science.gov (United States)

    Kinzel, Paul J.

    2009-01-01

    Fluvial geomorphic data were collected by the United States Geological Survey from July 2005 to June 2008 (a time period within water years 2005 to 2008) to monitor the effects of habitat enhancement activities conducted in the Platte River Whooping Crane Maintenance Trust's Uridil Property, located along the Platte River, Nebraska. The activities involved the removal of vegetation and sand from the tops of high permanent islands and the placement of the sand into the active river channel. This strategy was intended to enhance habitat for migratory water birds by lowering the elevations of the high islands, thereby eliminating a visual obstruction for roosting birds. It was also thought that the bare sand on the lowered island surfaces could serve as potential habitat for nesting water birds. Lastly, the project supplied a local source of sediment to the river to test the hypothesis that this material could contribute to the formation of lower sandbars and potential nesting sites downstream. Topographic surveys on the islands and along river transects were used to quantify the volume of removed sand and track the storage and movement of the introduced sand downstream. Sediment samples were also collected to map the spatial distribution of river bed sediment sizes before and after the management activities. While the project lowered the elevation of high islands, observations of the sand addition indicated the relatively fine-grained sand that was placed in the active river channel was rapidly transported by the flowing water. Topographic measurements made 3 months after the sand addition along transects in the area of sediment addition showed net aggradation over measurements made in 2005. In the year following the sand addition, 2007, elevated river flows from local rain events generally were accompanied by net degradation along transects within the area of sediment addition. In the spring of 2008, a large magnitude flow event of approximately 360 cubic meters per

  15. Changes in habitat availability for outmigrating juvenile salmon (Oncorhychus spp.) following estuary restoration

    Science.gov (United States)

    Ellings, Christopher S.; Davis, Melanie; Grossman, Eric E.; Hodgson, Sayre; Turner, Kelley L.; Woo PR, Isa; Nakai, Glynnis; Takekawa, Jean E.; Takekawa, John Y.

    2016-01-01

    The restoration of the Nisqually River Delta (Washington, U.S.A.) represents one of the largest efforts toward reestablishing the ecosystem function and resilience of modified habitat in the Puget Sound, particularly for anadromous salmonid species. The opportunity for outmigrating salmon to access and benefit from the expansion of available tidal habitat can be quantified by several physical attributes, which are related to the ecological and physiological responses of juvenile salmon. We monitored a variety of physical parameters to measure changes in opportunity potential from historic, pre-restoration, and post-restoration habitat conditions at several sites across the delta. These parameters included channel morphology, water quality, tidal elevation, and landscape connectivity. We conducted fish catch surveys across the delta to determine if salmon was utilizing restored estuary habitat. Overall major channel area increased 42% and major channel length increased 131% from pre- to post-restoration conditions. Furthermore, the results of our tidal inundation model indicated that major channels were accessible up to 75% of the time, as opposed to 30% pre-restoration. Outmigrating salmon utilized this newly accessible habitat as quickly as 1 year post-restoration. The presence of salmon in restored tidal channels confirmed rapid post-restoration increases in opportunity potential on the delta despite habitat quality differences between restored and reference sites.

  16. Relation of urbanization to stream habitat and geomorphic characteristics in nine metropolitan areas of the United States

    Science.gov (United States)

    Fitzpatrick, Faith A.; Peppler, Marie C.

    2010-01-01

    The relation of urbanization to stream habitat and geomorphic characteristics was examined collectively and individually for nine metropolitan areas of the United States?Portland, Oregon; Salt Lake City, Utah; Denver, Colorado; Dallas?Forth Worth, Texas; Milwaukee?Green Bay, Wisconsin; Birmingham, Alabama; Atlanta, Georgia; Raleigh, North Carolina; and Boston, Massachusetts. The study was part of a larger study conducted by the U.S. Geological Survey from 1999 to 2004 to examine the effects of urbanization on the physical, chemical, and biological components of stream ecosystems. The objectives of the current study were to determine how stream habitat and geomorphic characteristics relate to different aspects of urbanization across a variety of diverse environmental settings and spatial scales. A space-for-time rural-to-urban land-cover gradient approach was used. Reach-scale habitat data and geomorphic characteristic data were collected once during low flow and included indicators of potential habitat degradation such as measures of channel geometry and hydraulics, streambed substrate, low-flow reach volume (an estimate of base-flow conditions), habitat complexity, and riparian/bank conditions. Hydrologic metrics included in the analyses were those expected to be altered by increases in impervious surfaces, such as high-flow frequency and duration, flashiness, and low-flow duration. Other natural and human features, such as reach-scale channel engineering, geologic setting, and slope, were quantified to identify their possible confounding influences on habitat relations with watershed-scale urbanization indicators. Habitat and geomorphic characteristics were compared to several watershed-scale indicators of urbanization, natural landscape characteristics, and hydrologic metrics by use of correlation analyses and stepwise linear regression. Habitat and geomorphic characteristics were related to percentages of impervious surfaces only in some metropolitan areas and

  17. Global screening for Critical Habitat in the terrestrial realm.

    Science.gov (United States)

    Brauneder, Kerstin M; Montes, Chloe; Blyth, Simon; Bennun, Leon; Butchart, Stuart H M; Hoffmann, Michael; Burgess, Neil D; Cuttelod, Annabelle; Jones, Matt I; Kapos, Val; Pilgrim, John; Tolley, Melissa J; Underwood, Emma C; Weatherdon, Lauren V; Brooks, Sharon E

    2018-01-01

    Critical Habitat has become an increasingly important concept used by the finance sector and businesses to identify areas of high biodiversity value. The International Finance Corporation (IFC) defines Critical Habitat in their highly influential Performance Standard 6 (PS6), requiring projects in Critical Habitat to achieve a net gain of biodiversity. Here we present a global screening layer of Critical Habitat in the terrestrial realm, derived from global spatial datasets covering the distributions of 12 biodiversity features aligned with guidance provided by the IFC. Each biodiversity feature is categorised as 'likely' or 'potential' Critical Habitat based on: 1. Alignment between the biodiversity feature and the IFC Critical Habitat definition; and 2. Suitability of the spatial resolution for indicating a feature's presence on the ground. Following the initial screening process, Critical Habitat must then be assessed in-situ by a qualified assessor. This analysis indicates that a total of 10% and 5% of the global terrestrial environment can be considered as likely and potential Critical Habitat, respectively, while the remaining 85% did not overlap with any of the biodiversity features assessed and was classified as 'unknown'. Likely Critical Habitat was determined principally by the occurrence of Key Biodiversity Areas and Protected Areas. Potential Critical Habitat was predominantly characterised by data representing highly threatened and unique ecosystems such as ever-wet tropical forests and tropical dry forests. The areas we identified as likely or potential Critical Habitat are based on the best available global-scale data for the terrestrial realm that is aligned with IFC's Critical Habitat definition. Our results can help businesses screen potential development sites at the early project stage based on a range of biodiversity features. However, the study also demonstrates several important data gaps and highlights the need to incorporate new and

  18. Evaluating the provenance of fine sediment in degraded Freshwater Pearl Mussel habitats.

    Science.gov (United States)

    Blake, Will; Haley, Steve; Goddard, Rupert; Stone, Peter; Broadhead, Kat

    2015-04-01

    Freshwater Pearl Mussels (FWPM), Margaritifera margaritifera, are among the most critically threatened freshwater bivalves worldwide. In addition to their important roles in particle processing, nutrient release, and sediment mixing, they also serve as an ideal target species for evaluation of aquatic ecosystem functioning especially in the context of their symbiotic relationship with Atlantic salmon Salmo salar and brown or sea trout Salmo trutta. Poor water quality, particularly eutrophication, and siltation are considered major contributory factors in the decline of the species hence management of diffuse water pollution from agriculture (DWPA) is a key priority in catchments that host FWPM habitats. Against this background, this study adopted a combined monitoring, surveying and sediment fingerprinting approach to determine the principal sources of fine sediment impacting FWPM habitats in the River Clun, a Special area of Conservation (SAC) for FWPMs in central western UK. Potential sediment production hotspot areas in the ca 200 km2 catchment area upstream of FWPM habitats were initially evaluated using the SCIMAP risk mapping tool. Suspended sediment monitoring was undertaken on the main stem channel where FWPM habitats are located and wet weather catchment walkover surveys undertaken along the upstream river and stream network. Within this monitoring framework, sediment fingerprinting was undertaken at two levels. The first level aimed to link primary catchment sources (cultivated and uncultivated soil, channel bank erosion, and material transported via roads and tracks) to suspended sediment output from each main tributary upstream of the FWPM beds. The second level linked silt in the FWMP beds to the main tributaries, as integrated source end-members, with the inclusion of main channel bank erosion, a notable feature of walkover surveys as an additional source. Geochemical fingerprints, determined by XRF spectroscopy, were dominated by conservative mineral

  19. Diet composition of age-0 fishes in created habitats of the Lower Missouri River

    Science.gov (United States)

    Starks, Trevor A.; Long, James M.

    2017-01-01

    Channelization of the Missouri River has greatly reduced the availability of shallow water habitats used by many larval and juvenile fishes and contributed to imperilment of floodplain-dependent biota. Creation of small side channels, or chutes, is being used to restore shallow water habitat and reverse negative environmental effects associated with channelization. In the summer of 2012, the U.S. Army Corps of Engineers collected early life stages of fishes from constructed chutes and nearby unrestored shallow habitats at six sites on the Missouri River between Rulo, Nebraska and St. Louis, Missouri. We compared the diets of two abundant species of fishes to test the hypothesis that created shallow chutes provided better foraging habitat for early life stages than nearby unrestored shallow habitats. Graphical analysis of feeding patterns of freshwater drum indicated specialization on chironomid larvae, which were consumed in greater numbers in unrestored mainstem reaches compared to chutes. Hiodon spp. were more generalist feeders with no differences in prey use between habitat types. Significantly greater numbers of individuals with empty stomachs were observed in chute shallow-water habitats, indicating poor foraging habitat. For these two species, constructed chute shallow-water habitat does not appear to provide the hypothesized benefits of higher quality foraging habitat.

  20. Spatiotemporal patterns and habitat associations of smallmouth bass (Micropterus dolomieu) invading salmon-rearing habitat

    Science.gov (United States)

    Lawrence, David J.; Olden, Julian D.; Torgersen, Christian E.

    2012-01-01

    km (2009 and 2010, respectively) as stream temperatures seasonally warmed, but subyearling Chinook salmon were also found farther upstream during this time.4. Our multiscale analysis suggests that bass were selecting habitat based on antecedent thermal history at a broad scale, and if satisfactory temperature conditions were met, mesoscale habitat features (i.e. channel-unit type and depth) played an additional role in determining bass abundance. The upstream extent of bass in the late summer corresponded to a high-gradient geomorphic discontinuity in the NFJDR, which probably hindered further upstream movements of bass. The habitat determinants and upstream extent of bass were largely consistent across years, despite marked differences in the magnitude and timing of spring peak flows prior to bass spawning.5. The overriding influence of water temperature on smallmouth bass distribution suggests that managers may be able limit future upstream range expansions of bass into salmon-rearing habitat by concentrating on restoration activities that mitigate climate- or land-use-related stream warming. These management activities could be prioritised to capitalise on survival bottlenecks in the life history of bass and spatially focused on landscape knick points such as high-gradient discontinuities to discourage further upstream movements of bass.

  1. Habitat Features and Strategies for the Sustainable Development in the Alentejo Region

    Directory of Open Access Journals (Sweden)

    Rui Manuel de Sousa Fragoso

    2015-03-01

    Full Text Available The unfavoured Portuguese regions have a level of life and economic growth rates lower than favoured regions, and the mean of European Union and hence have less entrepreneurial activities. The adoption of strategies of sustainable development driven by entrepreneurship phenomena could be a viable solution. Thus, the likely relationships between entrepreneurship and regional features were described, and sources of entrepreneurship opportunities for strategies based on the own regional resources and competitive advantages were identified. The paper concludes that, for the Alentejo region, some habitat variables should be reinforced for promoting entrepreneurship and sustainable development, and the main opportunities are related to the economic activities that belong to the regional productive profile of specialization.

  2. Sampling uncharted waters: Examining rearing habitat of larval Longfin Smelt (Spirinchus thaleichthys) in the upper San Francisco Estuary

    Science.gov (United States)

    Grimaldo, Lenny; Feyrer, Frederick; Burns, Jillian; Maniscalco, Donna

    2017-01-01

    The southern-most reproducing Longfin Smelt population occurs in the San Francisco Estuary, California, USA. Long-term monitoring of estuarine habitat for this species has generally only considered deep channels, with little known of the role shallow waters play in supporting their early life stage. To address the need for focused research on shallow-water habitat, a targeted study of Longfin Smelt larvae in littoral habitat was conducted to identify potential rearing habitats during 2013 and 2014. Our study objectives were to (1) determine if larval densities vary between littoral habitats (tidal slough vs. open-water shoal), (2) determine how larval densities in littoral habitats vary with physicochemical and biological attributes, (3) determine if larval densities vary between littoral habitats and long-term monitoring channel collections, and (4) determine what factors predict larval rearing distributions from the long-term monitoring channel collections. Larval densities did not vary between littoral habitats but they did vary between years. Water temperature, salinity, and chlorophyll a were found important in predicting larval densities in littoral habitats. Larval densities do not vary between littoral and channel surveys; however, the analysis based on channel data suggests that Longfin Smelt are hatching and rearing in a much broader region and under higher salinities (∼2–12 psu) than previously recognized. Results of this study indicate that conservation efforts should consider how freshwater flow, habitat, climate, and food webs interact as mechanisms that influence Longfin Smelt recruitment in estuarine environments.

  3. Stream network geomorphology mediates predicted vulnerability of anadromous fish habitat to hydrologic change in southeast Alaska.

    Science.gov (United States)

    Sloat, Matthew R; Reeves, Gordon H; Christiansen, Kelly R

    2017-02-01

    In rivers supporting Pacific salmon in southeast Alaska, USA, regional trends toward a warmer, wetter climate are predicted to increase mid- and late-21st-century mean annual flood size by 17% and 28%, respectively. Increased flood size could alter stream habitats used by Pacific salmon for reproduction, with negative consequences for the substantial economic, cultural, and ecosystem services these fish provide. We combined field measurements and model simulations to estimate the potential influence of future flood disturbance on geomorphic processes controlling the quality and extent of coho, chum, and pink salmon spawning habitat in over 800 southeast Alaska watersheds. Spawning habitat responses varied widely across watersheds and among salmon species. Little variation among watersheds in potential spawning habitat change was explained by predicted increases in mean annual flood size. Watershed response diversity was mediated primarily by topographic controls on stream channel confinement, reach-scale geomorphic associations with spawning habitat preferences, and complexity in the pace and mode of geomorphic channel responses to altered flood size. Potential spawning habitat loss was highest for coho salmon, which spawn over a wide range of geomorphic settings, including steeper, confined stream reaches that are more susceptible to streambed scour during high flows. We estimated that 9-10% and 13-16% of the spawning habitat for coho salmon could be lost by the 2040s and 2080s, respectively, with losses occurring primarily in confined, higher-gradient streams that provide only moderate-quality habitat. Estimated effects were lower for pink and chum salmon, which primarily spawn in unconfined floodplain streams. Our results illustrate the importance of accounting for valley and reach-scale geomorphic features in watershed assessments of climate vulnerability, especially in topographically complex regions. Failure to consider the geomorphic context of stream

  4. Saving Salmon Through Advances in Fluvial Remote Sensing: Applying the Optimal Band Ratio Analysis (OBRA) for Bathymetric Mapping of Over 250 km of River Channel and Habitat Classification

    Science.gov (United States)

    Richardson, R.; Legleiter, C. J.; Harrison, L.

    2015-12-01

    Salmonids are threatened with extinction across the world from the fragmentation of riverine ecosystems from dams and diversions. In California, efforts to expand the range of spawnable habitat for native salmon by transporting fish around reservoirs is a potentially species saving idea. But, strong scientific evidence of the amount of high quality habitat is required to make these difficult management decisions. Remote sensing has long been used in fluvial settings to identify physical parameters that drive the quality of aquatic habitat; however, the true strength of remote sensing to cover large spatial extents has not been applied with the resolution that is relevant to salmonids. This project utilizes hyperspectral data of over 250 km of the Tuolumne and Merced Rivers to extract depth and bed slope from the wetted channel and NIR LiDAR for the surrounding topography. The Optimal Band Ratio Analysis (OBRA) has proven as an effective tool to create bathymetric maps of river channels in ideal settings with clear water, high amounts of bottom reflectance, and less than 3 meters deep over short distances. Results from this study show that OBRA can be applied over larger riverscapes at high resolutions (0.5 m). The depth and bed slope estimations are used to classify habitat units that are crucial to quantifying the quality and amount of habitat in these river that once produced large populations of native salmonids. As more managers look to expand habitat for these threatened species the tools developed here will be cost effective over the large extents that salmon migrate to spawn.

  5. An approach to effectiveness monitoring of floodplain channel aquatic habitat: channel condition assessment.

    Science.gov (United States)

    Richard D. Woodsmith; James R. Noel; Michael L. Dilger

    2005-01-01

    The condition of aquatic habitat and the health of species dependent on that habitat are issues of significant concern to land management agencies, other organizations, and the public at large in southeastern Alaska, as well as along much of the Pacific coastal region of North America. We develop and test a set of effectiveness monitoring procedures for measuring...

  6. Effects of Water Diversion from Yangtze River to Lake Taihu on the Phytoplankton Habitat of the Wangyu River Channel

    Directory of Open Access Journals (Sweden)

    Jiangyu Dai

    2018-06-01

    Full Text Available To reveal the effects of water diversion from the Yangtze River to Lake Taihu on the phytoplankton habitat of the main water transfer channel of the Wangyu River, we investigated the water’s physicochemical parameters and phytoplankton communities during the water diversion and non-diversion periods over the winters between 2014–2016, respectively. During the water diversion periods in the winter of 2014 and 2015, the nutrients and organic pollutant contents of the Wangyu River channel were significantly lower than those during the non-diversion period in 2016. Moreover, the phytoplankton diversities and relative proportions of Bacillariophyta during the diversion periods evidently increased during the water diversion periods in winter. The increase in the water turbidity content, the decrease in the contents of the permanganate index, and the total phosphorus explained only 21.4% of the variations in the phytoplankton communities between the diversion and non-diversion periods in winter, which revealed significant contributions of the allochthonous species from the Yangtze River and tributaries of the Wangyu River to phytoplankton communities in the Wangyu River. The increasing gradient in the contents of nutrients and organic pollutants from the Yangtze River to Lake Taihu indicated the potential allochthonous pollutant inputs along with the Wangyu River. Further controlling the pollutants from the tributaries of the Wangyu River is critical in order to improve the phytoplankton habitats in river channels and Lake Taihu.

  7. Do beaver dams reduce habitat connectivity and salmon productivity in expansive river floodplains?

    Science.gov (United States)

    Malison, Rachel L; Kuzishchin, Kirill V; Stanford, Jack A

    2016-01-01

    Beaver have expanded in their native habitats throughout the northern hemisphere in recent decades following reductions in trapping and reintroduction efforts. Beaver have the potential to strongly influence salmon populations in the side channels of large alluvial rivers by building dams that create pond complexes. Pond habitat may improve salmon productivity or the presence of dams may reduce productivity if dams limit habitat connectivity and inhibit fish passage. Our intent in this paper is to contrast the habitat use and production of juvenile salmon on expansive floodplains of two geomorphically similar salmon rivers: the Kol River in Kamchatka, Russia (no beavers) and the Kwethluk River in Alaska (abundant beavers), and thereby provide a case study on how beavers may influence salmonids in large floodplain rivers. We examined important rearing habitats in each floodplain, including springbrooks, beaver ponds, beaver-influenced springbrooks, and shallow shorelines of the river channel. Juvenile coho salmon dominated fish assemblages in all habitats in both rivers but other species were present. Salmon density was similar in all habitat types in the Kol, but in the Kwethluk coho and Chinook densities were 3-12× lower in mid- and late-successional beaver ponds than in springbrook and main channel habitats. In the Kol, coho condition (length: weight ratios) was similar among habitats, but Chinook condition was highest in orthofluvial springbrooks. In the Kwethluk, Chinook condition was similar among habitats, but coho condition was lowest in main channel versus other habitats (0.89 vs. 0.99-1.10). Densities of juvenile salmon were extremely low in beaver ponds located behind numerous dams in the orthofluvial zone of the Kwethluk River floodplain, whereas juvenile salmon were abundant in habitats throughout the entire floodplain in the Kol River. If beavers were not present on the Kwethluk, floodplain habitats would be fully interconnected and theoretically

  8. Habitat assessment of non-wadeable rivers in Michigan.

    Science.gov (United States)

    Wilhelm, Jennifer G O; Allan, J David; Wessell, Kelly J; Merritt, Richard W; Cummins, Kenneth W

    2005-10-01

    Habitat evaluation of wadeable streams based on accepted protocols provides a rapid and widely used adjunct to biological assessment. However, little effort has been devoted to habitat evaluation in non-wadeable rivers, where it is likely that protocols will differ and field logistics will be more challenging. We developed and tested a non-wadeable habitat index (NWHI) for rivers of Michigan, where non-wadeable rivers were defined as those of order >or=5, drainage area >or=1600 km2, mainstem lengths >or=100 km, and mean annual discharge >or=15 m3/s. This identified 22 candidate rivers that ranged in length from 103 to 825 km and in drainage area from 1620 to 16,860 km2. We measured 171 individual habitat variables over 2-km reaches at 35 locations on 14 rivers during 2000-2002, where mean wetted width was found to range from 32 to 185 m and mean thalweg depth from 0.8 to 8.3 m. We used correlation and principal components analysis to reduce the number of variables, and examined the spatial pattern of retained variables to exclude any that appeared to reflect spatial location rather than reach condition, resulting in 12 variables to be considered in the habitat index. The proposed NWHI included seven variables: riparian width, large woody debris, aquatic vegetation, bottom deposition, bank stability, thalweg substrate, and off-channel habitat. These variables were included because of their statistical association with independently derived measures of human disturbance in the riparian zone and the catchment, and because they are considered important in other habitat protocols or to the ecology of large rivers. Five variables were excluded because they were primarily related to river size rather than anthropogenic disturbance. This index correlated strongly with indices of disturbance based on the riparian (adjusted R2 = 0.62) and the catchment (adjusted R2 = 0.50), and distinguished the 35 river reaches into the categories of poor (2), fair (19), good (13), and

  9. Feature study of hysterical blindness EEG based on FastICA with combined-channel information.

    Science.gov (United States)

    Qin, Xuying; Wang, Wei; Hu, Lintao; Wang, Xu; Yuan, Xiaojie

    2015-01-01

    An appropriate feature study of hysteria electroencephalograms (EEG) would provide new insights into neural mechanisms of the disease, and also make improvements in patient diagnosis and management. The objective of this paper is to provide an explanation for what causes a particular visual loss, by associating the features of hysterical blindness EEG with brain function. An idea for the novel feature extraction for hysterical blindness EEG, utilizing combined-channel information, was applied in this paper. After channels had been combined, the sliding-window-FastICA was applied to process the combined normal EEG and hysteria EEG, respectively. Kurtosis features were calculated from the processed signals. As the comparison feature, the power spectral density of normal and hysteria EEG were computed. According to the feature analysis results, a region of brain dysfunction was located at the occipital lobe, O1 and O2. Furthermore, new abnormality was found at the parietal lobe, C3, C4, P3, and P4, that provided us with a new perspective for understanding hysterical blindness. Indicated by the kurtosis results which were consistent with brain function and the clinical diagnosis, our method was found to be a useful tool to capture features in hysterical blindness EEG.

  10. Assessment of chevron dikes for the enhancement of physical-aquatic habitat within the Middle Mississippi River, USA

    Science.gov (United States)

    Remo, Jonathan W. F.; Khanal, Anish; Pinter, Nicholas

    2013-09-01

    Blunt-nosed chevron dikes, a new invention now being widely constructed on the Middle Mississippi River (MMR), have been justified as a tool for enhancing physical-aquatic habitat. Chevron dikes were initially designed to concentrate flow, induce channel scour, and thus facilitate river navigation. More recently, these structures have been justified, in part, for promoting habitat heterogeneity. The ability of chevrons to create and diversify physical-aquatic habitat, however, has not been empirically evaluated. To assess the ability of chevrons to create and diversify physical-aquatic habitat, we compiled hydrologic and geospatial data for three channel reference conditions along a 2.0 km (∼140 ha) reach of the MMR where three chevrons were constructed in late 2007. We used the hydrologic and hydraulic data to construct detailed 2-D hydrodynamic models for three reference condition: historic (circa 1890), pre-chevron, and post-chevron channel conditions. These models documented changes in depths and flow dynamics for a wide range of in-channel discharges. Depth-velocity habitat classes were used to assess change in physical-aquatic habitat patches and spatial statistical tools in order to evaluate the reach-scale habitat patch diversity. Comparisons of pre- and post-chevron conditions revealed increases in deep to very deep (>3.0 m) areas of slow moving (3.0 m], low velocity [<0.6 m/s]). Chevron construction also created some (0.8-3.8 ha) shallow-water habitat (0-1.5 m depth with a 0-0.6 m/s velocity) for flows ⩽2.0 × MAF and contributed to an 8-35% increase in physical-aquatic-habitat diversity compared to pre-chevron channel conditions. However, modeling of the historic reference condition (less engineered channel, circa 1890) revealed that the historical physical-aquatic-habitat mosaic consisted of a wider and shallower channel with: 45-390% more shallow-water habitat (2.4-11.0 ha) and 22-83% more physical-aquatic-habitat diversity, but little over

  11. Predicted channel types - Potential for Habitat Improvement in the Columbia River Basin

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Basin-wide analysis of potential to improve tributary habitats in the Columbia River basin through restoration of habitat-forming processes. Identification of...

  12. Spawning Habitat Studies of Hanford Reach Fall Chinook Salmon (Oncorhynchus tshawytscha), Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Geist, David R.; Arntzen, Evan V.; Chien, Yi-Ju (Pacific Northwest National Laboratory)

    2009-03-02

    agricultural and industrial development. In some cases, the riverbed is armored such that it is more difficult for spawners to move, while in other cases the intrusion of fine sediment into spawning gravels has reduced water flow to sensitive eggs and young fry. Recovery of fall Chinook salmon populations may involve habitat restoration through such actions as dam removal and reservoir drawdown. In addition, habitat protection will be accomplished through set-asides of existing high-quality habitat. A key component to evaluating these actions is quantifying the salmon spawning habitat potential of a given river reach so that realistic recovery goals for salmon abundance can be developed. Quantifying salmon spawning habitat potential requires an understanding of the spawning behavior of Chinook salmon, as well as an understanding of the physical habitat where these fish spawn. Increasingly, fish biologists are recognizing that assessing the physical habitat of riverine systems where salmon spawn goes beyond measuring microhabitat like water depth, velocity, and substrate size. Geomorphic features of the river measured over a range of spatial scales set up the physical template upon which the microhabitat develops, and successful assessments of spawning habitat potential incorporate these geomorphic features. We had three primary objectives for this study. The first objective was to determine the relationship between physical habitats at different spatial scales and fall Chinook salmon spawning locations. The second objective was to estimate the fall Chinook salmon redd capacity for the Reach. The third objective was to suggest a protocol for determining preferable spawning reaches of fall Chinook salmon. To ensure that we collected physical data within habitat that was representative of the full range of potential spawning habitat, the study area was stratified based on geomorphic features of the river using a two-dimensional river channel index that classified the river cross

  13. The impact of engineered log jams on bed morphology, flow characteristics and habitat diversity under low flow

    Science.gov (United States)

    Ockelford, A.; Crabbe, E.; Crowe Curran, J.; Parsons, D. R.; Shugar, D. H.; Burr, A.; Kennedy, K.; Coe, T.

    2017-12-01

    Wood jams are an important and ubiquitous feature of many river channels with their number, placement and spatial configuration determining their influence on channel morphology and flow characteristics. Further, engineered log jams are increasingly being constructed to develop, restore or maintain habitat diversity for key indicator specie such as salmon. However, questions remain as to the inter relationships between the logjams, the channel morphology, the flow characteristics and the habitat diversity under low flow conditions. Four engineered and one natural logjam were analyzed over a 3km reach of the South Fork Nooksack River, North Cascades National Park, USA during the summer low flow period. Non-intrusive three-dimensional topographic surveys of the river bed morphology surrounding the logjams was collected using a shallow water multibeam system. This was combined with terrestrial laser scans of the structure of the log jams above the waterline. Co-located high resolution flow velocity data was collected using an Acoustic Doppler Current Profiler. Discussion concentrates on providing a quantitative understanding of the effect of logjams on reach scale morphodynamics under low flow conditions. Multivariate statistical analysis of flow and topographic data in combination with log jam morphology allow the influences of the logjam on habitat suitability for key indicator species to be quantified. Results will be framed in terms of the effectiveness of the different logjam configurations on generating and promoting habitat diversity such as to aid future design and implementation.

  14. Estimating changes in riparian and channel features along the Trinity River downstream of Lewiston Dam, California, 1980 to 2011

    Science.gov (United States)

    Curtis, Jennifer A.

    2015-01-01

    Dam construction, flow diversion, and legacy landuse effects reduced the transport capacity, sediment supply, channel complexity and floodplain-connectivity along the Trinity River, CA below Lewiston Dam. This study documents the geomorphic evolution of the Trinity River Restoration Program’s intensively managed 65-km long restoration reach from 1980 to 2011. The nature and extent of riparian and channel changes were assessed using a series of geomorphic feature maps constructed from ortho-rectified photography acquired at low flow conditions in 1980, 1997, 2001, 2006, 2009, and 2011. Since 1980 there has been a general conversion of riparian to channel features and expansion of the active channel area. The primary mechanism for expansion of the active channel was bank erosion from 1980 to 1997 and channel widening was well distributed longitudinally throughout the study reach. Subsequent net bar accretion from 1997 to 2001, followed by slightly higher net bar scour from 2001 to 2006, occurred primarily in the central and lower reaches of the study area. In comparison, post-2006 bank and bar changes were spatially-limited to reaches with sufficient local transport capacity or sediment supply supported by gravel augmentation, mechanical channel rehabilitation, and tributary contributions to flow and sediment supply. A series of tributary floods in 1997, 1998 and 2006 were the primary factors leading to documented increases in channel complexity and floodplain connectivity. During the post-2006 period managed flow releases, in the absence of large magnitude tributary flooding, combined with gravel augmentation and mechanical restoration caused localized increases in sediment supply and transport capacity leading to smaller but measurable increases in channel complexity and floodplain connectivity primarily in the upper river below Lewiston Dam.

  15. Spatial patterns of aquatic habitat richness in the Upper Mississippi River floodplain, USA

    Science.gov (United States)

    De Jager, Nathan R.; Rohweder, Jason J.

    2012-01-01

    Interactions among hydrology and geomorphology create shifting mosaics of aquatic habitat patches in large river floodplains (e.g., main and side channels, floodplain lakes, and shallow backwater areas) and the connectivity among these habitat patches underpins high levels of biotic diversity and productivity. However, the diversity and connectivity among the habitats of most floodplain rivers have been negatively impacted by hydrologic and structural modifications that support commercial navigation and control flooding. We therefore tested the hypothesis that the rate of increase in patch richness (# of types) with increasing scale reflects anthropogenic modifications to habitat diversity and connectivity in a large floodplain river, the Upper Mississippi River (UMR). To do this, we calculated the number of aquatic habitat patch types within neighborhoods surrounding each of the ≈19 million 5-m aquatic pixels of the UMR for multiple neighborhood sizes (1–100 ha). For all of the 87 river-reach focal areas we examined, changes in habitat richness (R) with increasing neighborhood length (L, # pixels) were characterized by a fractal-like power function R = Lz (R2 > 0.92 (P z) measures the rate of increase in habitat richness with neighborhood size and is related to a fractal dimension. Variation in z reflected fundamental changes to spatial patterns of aquatic habitat richness in this river system. With only a few exceptions, z exceeded the river-wide average of 0.18 in focal areas where side channels, contiguous floodplain lakes, and contiguous shallow-water areas exceeded 5%, 5%, and 10% of the floodplain respectively. In contrast, z was always less than 0.18 for focal areas where impounded water exceeded 40% of floodplain area. Our results suggest that rehabilitation efforts that target areas with <5% of the floodplain in side channels, <5% in floodplain lakes, and/or <10% in shallow-water areas could improve habitat diversity across multiple scales in the UMR.

  16. Ice processes affect habitat use and movements of adult cutthroat trout and brook trout in a Wyoming foothills stream

    Science.gov (United States)

    Lindstrom, J.W.; Hubert, W.A.

    2004-01-01

    Habitat use and movements of 25 adult cutthroat trout Oncorhynchus clarkii and 25 adult brook trout Salvelinus fontinalis from fall through winter 2002-2003 were assessed by means of radiotelemetry in a 7-km reach of a Rocky Mountains foothills stream. Temporal dynamics of winter habitat conditions were evaluated by regularly measuring the features of 30 pools and 5 beaver Castor canadensis ponds in the study reach. Groundwater inputs at three locations raised mean daily water temperatures in the stream channel during winter to 0.2-0.6??C and kept at least 250 m of the downstream channel free of ice, but the lack of surface ice further downstream led to the occurrence of frazil ice and anchor ice in pools and unstable habitat conditions for trout. Pools in segments that were not affected by groundwater inputs and beaver ponds tended to be stable and snow accumulated on the surface ice. Pools throughout the study reach tended to become more stable as snow accumulated. Both cutthroat trout and brook trout selected beaver ponds as winter progressed but tended to use lateral scour pools in proportion to their availability. Tagged fish not in beaver ponds selected lateral scour pools that were deeper than average and stable during winter. Movement frequencies by tagged fish decreased from fall through winter, but some individuals of both species moved during winter. Ice processes affected both the habitat use and movement patterns of cutthroat trout and brook trout in this foothills stream.

  17. SCW Pressure-Channel Nuclear Reactor Some Design Features

    Science.gov (United States)

    Pioro, Igor L.; Khan, Mosin; Hopps, Victory; Jacobs, Chris; Patkunam, Ruban; Gopaul, Sandeep; Bakan, Kurtulus

    Concepts of nuclear reactors cooled with water at supercritical pressures were studied as early as the 1950s and 1960s in the USA and Russia. After a 30-year break, the idea of developing nuclear reactors cooled with SuperCritical Water (SCW) became attractive again as the ultimate development path for water cooling. The main objectives of using SCW in nuclear reactors are: 1) to increase the thermal efficiency of modern Nuclear Power Plants (NPPs) from 30-35% to about 45-48%, and 2) to decrease capital and operational costs and hence decrease electrical energy costs (˜1000 US/kW or even less). SCW NPPs will have much higher operating parameters compared to modern NPPs (pressure about 25 MPa and outlet temperature up to 625°C), and a simplified flow circuit, in which steam generators, steam dryers, steam separators, etc., can be eliminated. Also, higher SCW temperatures allow direct thermo-chemical production of hydrogen at low cost, due to increased reaction rates. Pressure-tube or pressure-channel SCW nuclear reactor concepts are being developed in Canada and Russia for some time. Some design features of the Canadian concept related to fuel channels are discussed in this paper. The main conclusion is that the development of SCW pressure-tube nuclear reactors is feasible and significant benefits can be expected over other thermal-energy systems.

  18. Habitat selection in a rocky landscape: experimentally decoupling the influence of retreat site attributes from that of landscape features.

    Directory of Open Access Journals (Sweden)

    Benjamin M Croak

    Full Text Available Organisms selecting retreat sites may evaluate not only the quality of the specific shelter, but also the proximity of that site to resources in the surrounding area. Distinguishing between habitat selection at these two spatial scales is complicated by co-variation among microhabitat factors (i.e., the attributes of individual retreat sites often correlate with their proximity to landscape features. Disentangling this co-variation may facilitate the restoration or conservation of threatened systems. To experimentally examine the role of landscape attributes in determining retreat-site quality for saxicolous ectotherms, we deployed 198 identical artificial rocks in open (sun-exposed sites on sandstone outcrops in southeastern Australia, and recorded faunal usage of those retreat sites over the next 29 months. Several landscape-scale attributes were associated with occupancy of experimental rocks, but different features were important for different species. For example, endangered broad-headed snakes (Hoplocephalus bungaroides preferred retreat sites close to cliff edges, flat rock spiders (Hemicloea major preferred small outcrops, and velvet geckos (Oedura lesueurii preferred rocks close to the cliff edge with higher-than-average sun exposure. Standardized retreat sites can provide robust experimental data on the effects of landscape-scale attributes on retreat site selection, revealing interspecific divergences among sympatric taxa that use similar habitats.

  19. New England wildlife: management forested habitats

    Science.gov (United States)

    Richard M. DeGraaf; Mariko Yamasaki; William B. Leak; John W. Lanier

    1992-01-01

    Presents silvicultural treatments for six major cover-type groups in New England to produce stand conditions that provide habitat opportunities for a wide range of wildlife species. Includes matrices for species occurrence and utilization by forested and nonforested habitats, habitat breadth and size class, and structural habitat features for the 338 wildlife species...

  20. SCW Pressure-Channel Nuclear Reactors: Some Design Features and Concepts

    International Nuclear Information System (INIS)

    Duffey, R.B.; Pioro, I.L.; Gabaraev, B.A.; Kuznetsov, Yu. N.

    2006-01-01

    Concepts of nuclear reactors cooled with water at supercritical pressures were studied as early as the 1950's and 1960's in the USA and Russia. After a 30-year break, the idea of developing nuclear reactors cooled with supercritical water (SCW) became attractive again as the ultimate development path for water-cooling. The main objectives of using SCW in nuclear reactors are 1) to increase the thermal efficiency of modern nuclear power plants (NPPs) from 33 -- 35% to about 40 -- 45%, and 2) to decrease capital and operational costs and hence decrease electrical energy costs (∼$ 1000 US/kW). SCW NPPs will have much higher operating parameters compared to modern NPPs (pressure about 25 MPa and outlet temperature up to 625 deg. C), and a simplified flow circuit, in which steam generators, steam dryers, steam separators, etc., can be eliminated. Also, higher SCW temperatures allow direct thermo-chemical production of hydrogen at low cost, due to increased reaction rates. Pressure-channel SCW nuclear reactor concepts are being developed in Canada and Russia. Design features related to both channels and fuel bundles are discussed in this paper. Also, Russian experience with operating supercritical steam heaters at NPP is presented. The main conclusion is that development of SCW pressure-channel nuclear reactors is feasible and significant benefits can be expected over other thermal energy systems. (authors)

  1. Habitat, food, and small mammal community structure in Namaqualand

    Directory of Open Access Journals (Sweden)

    M. van Deventer

    2006-12-01

    Full Text Available The effect of habitat differences and food availability on small mammal (rodent and elephant shrew species richness, diversity, density and biomass was investigated in Namaqualand, South Africa. Species richness in the three habitats sampled, namely Upland Succulent Karoo, Dry Riverine Shrub and North-western Mountain Renosterveld was low, with only 2–4 species per habitat. Rodents trapped were predominantly Gerbillurus paeba and Aethomys namaquensis, with fewer Mus minutoides and Petromyscus sp. The only non-rodent was the elephant shrew Elephantulus edwardii. Ten habitat features, the percentage of total plant cover, tree cover, shrub cover, grass cover, plant litter, total basal cover, sand, gravel or rock cover, and the dominant plant height were recorded at 30 randomly chosen points on five sampling grids in each habitat. Small mammal density and biomass was significantly correlated with food availability (green foliage cover, seeds, and relative density and biomass of insects. Species richness and diversity of small mammals were significantly correlated with shrub cover. Numbers and biomass of specific species correlated significantly with different habitat features in each case.

  2. Nearshore circulation and water-column properties in the Skagit River Delta, northern Puget Sound, Washington: juvenile Chinook Salmon habitat availability in the Swinomish Channel

    Science.gov (United States)

    Grossman, Eric E.; Stevens, Andrew W.; Gelfenbaum, Guy; Curran, Christopher

    2007-01-01

    Time-series and spatial measurements of nearshore hydrodynamic processes and water properties were made in the Swinomish Channel to quantify the net direction and rates of surface water transport that influence habitat for juvenile Chinook salmon along their primary migratory corridor between the Skagit River and Padilla Bay in northern Puget Sound, Washington. During the spring outmigration of Skagit River Chinook between March and June 2007, currents measured with fixed acoustic doppler current profilers (ADCP) at the south and north end of the Swinomish Channel and with roving ADCP revealed that the currents are highly asymmetric with a dominant flow to the north (toward Padilla Bay). Maximum surface current velocities reached 1.5 m/s and were generally uniform across the channel near McGlinn Island Causeway. Transport times for surface water to travel the 11 km from the southern end of Swinomish Channel at McGlinn Island to Padilla Bay ranged from 2.1 hours to 5.5 days. The mean travel time was ~1 day, while 17 percent of the time, transport of water and passive particles occurred within 3.75 hours. Surface water in the Swinomish Channel during this time was generally very saline 20-27 psu, except south of the Rainbow Bridge in the town of La Conner where it ranged 0-15 psu depending on tide and Skagit River discharge. This salinity regime restricts suitable low salinity (

  3. Spatial patterns and GIS habitat modelling of Solea solea, Pleuronectes flesus and Limanda limanda fish larvae in the eastern English Channel during the spring

    Directory of Open Access Journals (Sweden)

    Philippe Koubbi

    2006-10-01

    Full Text Available The spring distribution of larval fish stages of flatfishes in the Dover Strait (eastern English Channel was studied in 1995 and 1999. Fish larvae were identified and sorted according to developmental stages in order to study their ontogenic distribution. The French coastal waters are characterised by an unstable tide-dependent front, which influences larval dispersion. In spring, the French coastal waters have a high phytoplanktonic production. They have higher temperatures, lower salinities and differences in current intensity compared with the central English Channel waters. Generalised Additive Models (GAM combined with Geographic Information Systems (GIS were used to model the potential habitats of life stages considering data from three major surveys in this area. The models were developed by coupling presence-absence models with non-null abundance models. The potential habitat of larval stages was then mapped using a geostatistical method (kriging. This revealed different species strategies in which young stages were abundant in central waters and older ones were distributed mainly along the French and Belgian coasts. It is concluded that the central English waters are important for young stages after hatching and that coastal waters are essential nurseries for future juveniles. The models of three flatfish species having similar life cycle strategies are presented here: Limanda limanda, Platichthys flesus and Solea solea.

  4. Multi-feature classifiers for burst detection in single EEG channels from preterm infants

    Science.gov (United States)

    Navarro, X.; Porée, F.; Kuchenbuch, M.; Chavez, M.; Beuchée, Alain; Carrault, G.

    2017-08-01

    Objective. The study of electroencephalographic (EEG) bursts in preterm infants provides valuable information about maturation or prognostication after perinatal asphyxia. Over the last two decades, a number of works proposed algorithms to automatically detect EEG bursts in preterm infants, but they were designed for populations under 35 weeks of post menstrual age (PMA). However, as the brain activity evolves rapidly during postnatal life, these solutions might be under-performing with increasing PMA. In this work we focused on preterm infants reaching term ages (PMA  ⩾36 weeks) using multi-feature classification on a single EEG channel. Approach. Five EEG burst detectors relying on different machine learning approaches were compared: logistic regression (LR), linear discriminant analysis (LDA), k-nearest neighbors (kNN), support vector machines (SVM) and thresholding (Th). Classifiers were trained by visually labeled EEG recordings from 14 very preterm infants (born after 28 weeks of gestation) with 36-41 weeks PMA. Main results. The most performing classifiers reached about 95% accuracy (kNN, SVM and LR) whereas Th obtained 84%. Compared to human-automatic agreements, LR provided the highest scores (Cohen’s kappa  =  0.71) using only three EEG features. Applying this classifier in an unlabeled database of 21 infants  ⩾36 weeks PMA, we found that long EEG bursts and short inter-burst periods are characteristic of infants with the highest PMA and weights. Significance. In view of these results, LR-based burst detection could be a suitable tool to study maturation in monitoring or portable devices using a single EEG channel.

  5. Understanding Existing Salmonid Habitat Availability and Connectivity to Improve River Management

    Science.gov (United States)

    Duffin, J.; Yager, E.; Tonina, D.; Benjankar, R. M.

    2017-12-01

    In the Pacific Northwest river restoration is common for salmon conservation. Mangers need methods to help target restoration to problem areas in rivers to create habitat that meets a species' needs. Hydraulic models and habitat suitability curves provide basic information on habitat availability and overall quality, but these analyses need to be expanded to address habitat quality based on the accessibility of habitats required for multiple life stages. Scientists are starting to use connectivity measurements to understand the longitudinal proximity of habitat patches, which can be used to address the habitat variability of a reach. By evaluating the availability and quality of habitat and calculating the connectivity between complementary habitats, such as spawning and rearing habitats, we aim to identify areas that should be targeted for restoration. To meet these goals, we assessed Chinook salmon habitat on the Lemhi River in Idaho. The depth and velocity outputs from a 2D hydraulic model are used in conjunction with locally created habitat suitability curves to evaluate the availability and quality of habitat for multiple Chinook salmon life stages. To assess the variability of the habitat, connectivity between habitat patches necessary for different life stages is calculated with a proximity index. A spatial representation of existing habitat quality and connectivity between complimentary habitats can be linked to river morphology by the evaluation of local geomorphic characteristics, including sinuosity and channel units. The understanding of the current habitat availability for multiple life stage needs, the connectivity between these habitat patches, and their relationship with channel morphology can help managers better identify restoration needs and direct their limited resources.

  6. On the Sediment Dynamics in a Tidally Energetic Channel: The Inner Sound, Northern Scotland

    Directory of Open Access Journals (Sweden)

    Jason McIlvenny

    2016-04-01

    Full Text Available Sediment banks within a fast-flowing tidal channel, the Inner Sound in the Pentland Firth, were mapped using multi-frequency side-scan sonar. This novel technique provides a new tool for seabed sediment and benthic habitat mapping. The sonar data are supplemented by sediment grab and ROV videos. The combined data provide detailed maps of persistent sand and shell banks present in the Sound despite the high energy environment. Acoustic Doppler Current Profiler (ADCP data and numerical model predictions were used to understand the hydrodynamics of the system. By combining the hydrodynamics and sediment distribution data, we explain the sediment dynamics in the area. Sediment particle shape and density, coupled with persistent features of the hydrodynamics, are the key factors in the distribution of sediment within the channel. Implications for tidal energy development planned for the Sound are discussed.

  7. Habitat use by 0+ cyprinid fish in the River Great Ouse, East Anglia

    OpenAIRE

    Garner, Paul

    1997-01-01

    This study was designed to examine the habitat use of several species of 0+ cyprinid in the regulated River Great Ouse and to determine the reasons for specific habitat use. In general, all fish species were found associated with the marginal zone, with little diel variation. Use of shallow habitats in the presence of macrophytes correlated well with the distribution of zooplankton in the river channel, the preferred food source of 0+ cyprinids. During the early to late larval phase, all spec...

  8. Using broad landscape level features to predict redd densities of steelhead trout (Oncorhynchus mykiss) and Chinook Salmon (Oncorhynchus tshawytscha) in the Methow River watershed, Washington

    Science.gov (United States)

    Romine, Jason G.; Perry, Russell W.; Connolly, Patrick J.

    2013-01-01

    We used broad-scale landscape feature variables to model redd densities of spring Chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) in the Methow River watershed. Redd densities were estimated from redd counts conducted from 2005 to 2007 and 2009 for steelhead trout and 2005 to 2009 for spring Chinook salmon. These densities were modeled using generalized linear mixed models. Variables examined included primary and secondary geology type, habitat type, flow type, sinuosity, and slope of stream channel. In addition, we included spring effect and hatchery effect variables to account for high densities of redds near known springs and hatchery outflows. Variables were associated with National Hydrography Database reach designations for modeling redd densities within each reach. Reaches were assigned a dominant habitat type, geology, mean slope, and sinuosity. The best fit model for spring Chinook salmon included sinuosity, critical slope, habitat type, flow type, and hatchery effect. Flow type, slope, and habitat type variables accounted for most of the variation in the data. The best fit model for steelhead trout included year, habitat type, flow type, hatchery effect, and spring effect. The spring effect, flow type, and hatchery effect variables explained most of the variation in the data. Our models illustrate how broad-scale landscape features may be used to predict spawning habitat over large areas where fine-scale data may be lacking.

  9. Impact of SLA assimilation in the Sicily Channel Regional Model: model skills and mesoscale features

    Directory of Open Access Journals (Sweden)

    A. Olita

    2012-07-01

    Full Text Available The impact of the assimilation of MyOcean sea level anomalies along-track data on the analyses of the Sicily Channel Regional Model was studied. The numerical model has a resolution of 1/32° degrees and is capable to reproduce mesoscale and sub-mesoscale features. The impact of the SLA assimilation is studied by comparing a simulation (SIM, which does not assimilate data with an analysis (AN assimilating SLA along-track multi-mission data produced in the framework of MyOcean project. The quality of the analysis was evaluated by computing RMSE of the misfits between analysis background and observations (sea level before assimilation. A qualitative evaluation of the ability of the analyses to reproduce mesoscale structures is accomplished by comparing model results with ocean colour and SST satellite data, able to detect such features on the ocean surface. CTD profiles allowed to evaluate the impact of the SLA assimilation along the water column. We found a significant improvement for AN solution in terms of SLA RMSE with respect to SIM (the averaged RMSE of AN SLA misfits over 2 years is about 0.5 cm smaller than SIM. Comparison with CTD data shows a questionable improvement produced by the assimilation process in terms of vertical features: AN is better in temperature while for salinity it gets worse than SIM at the surface. This suggests that a better a-priori description of the vertical error covariances would be desirable. The qualitative comparison of simulation and analyses with synoptic satellite independent data proves that SLA assimilation allows to correctly reproduce some dynamical features (above all the circulation in the Ionian portion of the domain and mesoscale structures otherwise misplaced or neglected by SIM. Such mesoscale changes also infer that the eddy momentum fluxes (i.e. Reynolds stresses show major changes in the Ionian area. Changes in Reynolds stresses reflect a different pumping of eastward momentum from the eddy to

  10. ATP-sensitive K(+-channels in muscle cells: features and physiological role

    Directory of Open Access Journals (Sweden)

    O. B. Vadzyuk

    2014-08-01

    Full Text Available ATP-sensitive K+-channels of plasma membranes belong to the inward rectifier potassium channels type. They are involved in coupling of electrical activity of muscle cell with its metabolic­ state. These channels are heterooctameric and consist of two types of subunits: four poreforming (Kir 6.х and four regulatory (SUR, sulfonylurea receptor. The Kir subunits contain highly selective K+ filter and provide for high-velocity K+ currents. The SUR subunits contain binding sites for activators and blockers and have metabolic sensor, which enables channel activation under conditions of metabolic stress. ATP blocks K+ currents through the ATP-sensitive K+-channels in the most types of muscle cells. However, functional activity of these channels does not depend on absolute concentration of ATP but on the АТР/ADP ratio and presence of Mg2+. Physiologically active substances, such as phosphatidylinositol bisphosphate and fatty acid esters can regulate the activity of these structures in muscle cells. Activation of these channels under ischemic conditions underlies their cytoprotective action, which results in prevention of Ca2+ overload in cytosol. In contrast to ATP-sensitive K+-channels of plasma membranes, the data regarding the structure and function of ATP-sensitive K+-channels of mitochondrial membrane are contradictory. Pore-forming subunits of this channel have not been firmly identified yet. ATP-sensitive K+ transport through the mitochondrial­ membrane is easily tested by different methods, which are briefly reviewed in this paper. Interaction of mitoKATP with physiological and pharmacological ligands is discussed as well.

  11. Ranging, Activity and Habitat Use by Tigers in the Mangrove Forests of the Sundarban.

    Directory of Open Access Journals (Sweden)

    Dipanjan Naha

    Full Text Available The Sundarban of India and Bangladesh (about 6000 km² are the only mangrove forests inhabited by a sizeable population of tigers. The adjoining area also supports one of the highest human densities and experiences severe human-tiger conflicts. We used GPS-Satellite and VHF radio-collars on 6 (3 males and 3 female tigers to study their ranging patterns and habitat preference. The average home range (95% Fixed Kernel for resident females was 56.4 (SE 5.69 and for males it was 110 (SE 49 km². Tigers crossed an average of 5 water channels > 30 meters per day with a mean width of 54 meters, whereas channels larger than 400 meters were rarely crossed. Tigers spent over 58% of their time within Phoenix habitat but compositional analysis showed a habitat preference of the order Avicennia-Sonneratia > Phoenix > Ceriops > Barren > Water. Average daily distance moved was 4.6 km (range 0.1-23. Activity of tigers peaked between 05:00 hours and 10:00 hours showing some overlap with human activity. Territory boundaries were demarcated by large channels which tigers intensively patrolled. Extra caution should be taken while fishing or honey collection during early morning in Avicennia-Sonneratia and Phoenix habitat types along wide channels to reduce human-tiger conflict. Considering home-range core areas as exclusive, tiger density was estimated at 4.6 (SE range 3.6 to 6.7 tigers/100 km2 giving a total population of 76 (SE range 59-110 tigers in the Indian Sundarban. Reluctance of tigers to cross wide water channels combined with increasing commercial boat traffic and sea level rise due to climate change pose a real threat of fragmenting the Sundarban tiger population.

  12. Ice Penetrating Radar Reveals Spatially Variable Features in Basal Channel under the Nansen Ice Shelf, Terra Nova Bay, Antarctica

    Science.gov (United States)

    Wray, P. L.; Dow, C. F.; Mueller, D.; Lee, W. S.; Lindzey, L.; Greenbaum, J. S.; Blankenship, D. D.

    2017-12-01

    The stability of Antarctic ice shelves is of great concern as their current thinning and future collapse will contribute to sea-level rise via the acceleration of grounded tributary glaciers into the ocean. The study of the sub-ice-shelf environment is essential for understanding ice-ocean interaction, where warming ocean temperatures have already begun to threaten the long-term viability of Antarctic ice shelves. Obtaining direct measurements of the sub-ice-shelf cavity remains challenging. Here, we demonstrate that ground-based geophysical methods can deliver high resolution monitoring and mapping of the spatial and temporal changes in features, melt rates, and ice mass transport of this environment. In November 2016, 84 km of ground-based, low frequency, Ice Penetrating Radar (IPR) surveys were completed on three sites over the Nansen Ice Shelf in Terra Nova Bay, Antarctica. The surveys examined an ocean-sourced basal channel incised into the bottom of the shelf, originally detected from a large surface depression. Results reveal high resolution features of a several kilometre-wide, 100 m high channel, with 40 m high sub-channels, zones of significant marine ice accumulation, and basal crevasses penetrating large fractions of the ice shelf thickness. Data from multiple airborne geophysical surveys were compared to the November 2016 IPR data to calculate mass change both spatially and temporally. Many of the smaller scale features we detected are not represented through hydrostatic equilibrium as calculated from ice thicknesses, due to bridging stresses, and as such can not be detected with satellite based remote sensing methods. Our in-field geophysical methods produced high-resolution information of these features, which underscores the need for similar surveys over vulnerable ice shelves to better understand ice-ocean processes.

  13. Nitrogen and organic carbon cycling processes in tidal marshes and shallow estuarine habitats

    Science.gov (United States)

    Bergamaschi, B. A.; Downing, B. D.; Pellerin, B. A.; Kraus, T. E. C.; Fleck, J.; Fujii, R.

    2016-02-01

    Tidal wetlands and shallow water habitats can be sites of high aquatic productivity, and they have the potential of exchanging this newly produced organic carbon with adjacent deeper habitats. Indeed, export of organic carbon from wetlands and shallow water habitats to pelagic food webs is one of the primary ecosystem functions targeted in tidal wetland restorations. Alternatively, wetlands and shallow water habitats can function as retention areas for nutrients due to the nutrient demand of emergent macrophytes and denitrification in anoxic zones. They can also remove phytoplankton and non-algal particles from the aquatic food webs because the shallower waters can result in higher rates of benthic grazing and higher settling due to lower water velocities. We conducted studies in wetland and channel sites in the San Francisco estuary (USA) to investigate the dynamics of nutrients and carbon production at a variety of temporal scales. We collected continuous time series of nutrients, oxygen, chlorophyll and pH in conjunction with continuous acoustic measurement of water velocity and discharge to provide mass controls and used simple biogeochemical models to assess rates. We found a high degree of temporal variability in individual systems, corresponding to, for example, changes in nutrient supply, water level, light level, wind, wind direction, and other physical factors. There was also large variability among the different systems, probably due to differences in flows and geomorphic features. We compare the aquatic productivity of theses environments and speculate as to the formative elements of each. Our findings demonstrate the complex interaction between physical, chemical, and biological factors that determine the type of production and degree of export from tidal wetlands and shallow water habitats, suggesting that a clearer picture of these processes is important for guiding future large scale restoration efforts.

  14. Critical Habitat :: NOAA Fisheries

    Science.gov (United States)

    occupied by the species at the time of listing, if they contain physical or biological features essential essential for conservation. Critical Habitat Maps NOTE: The critical habitat maps provided here are for Data Leatherback Turtle (U.S. West Coast) » Biological Report » Economic Report 2012 77 FR 4170 Go to

  15. Behavioural cues surpass habitat factors in explaining prebreeding resource selection by a migratory diving duck

    Science.gov (United States)

    O'Neil, Shawn T.; Warren, Jeffrey M.; Takekawa, John Y.; De La Cruz, Susan E. W.; Cutting, Kyle A.; Parker, Michael W.; Yee, Julie L.

    2014-01-01

    Prebreeding habitat selection in birds can often be explained in part by habitat characteristics. However, females may also select habitats on the basis of fidelity to areas of previous reproductive success or use by conspecifics. The relative influences of sociobehavioural attributes versus habitat characteristics in habitat selection has been primarily investigated in songbirds, while less is known about how these factors affect habitat selection processes in migratory waterfowl. Animal resource selection models often exhibit much unexplained variation; spatial patterns driven by social and behavioural characteristics may account for some of this. We radiomarked female lesser scaup, Aythya affinis, in the southwestern extent of their breeding range to explore hypotheses regarding relative roles of habitat quality, site fidelity and conspecific density in prebreeding habitat selection. We used linear mixed-effects models to relate intensity of use within female home ranges to habitat features, distance to areas of reproductive success during the previous breeding season and conspecific density. Home range habitats included shallow water (≤118 cm), moderate to high densities of flooded emergent vegetation/open water edge and open water areas with submerged aquatic vegetation. Compared with habitat features, conspecific female density and proximity to successful nesting habitats from the previous breeding season had greater influences on habitat use within home ranges. Fidelity and conspecific attraction are behavioural characteristics in some waterfowl species that may exert a greater influence than habitat features in influencing prebreeding space use and habitat selection within home ranges, particularly where quality habitat is abundant. These processes may be of critical importance to a better understanding of habitat selection in breeding birds.

  16. Improvement of fish habitat in a Norwegian river channelization scheme

    International Nuclear Information System (INIS)

    Brittain, J.E.; Brabrand, A.; Saltveit, S.J.; Heggenes, J.

    1993-01-01

    Techniques for reducing adverse effects of river and lake regulation are being developed and tested within the framework of the Norwegian Biotope Adjustment Programme. The programme is illustrated by studies of a river flowing through the wetland area, Lesjaleirene, which has been drained and channelized to provide additional agricultural land. The channelized river has a homogeneous sand substrate. Experimental placement of rocks and stones increased brown trout densities, especially in areas in contact with the river banks. The new areas of rocks and stones provide cover for fish as well as a greater variation in depth and flow conditions. (Author)

  17. Distribution and habitat associations of billfish and swordfish larvae across mesoscale features in the Gulf of Mexico.

    Science.gov (United States)

    Rooker, Jay R; Simms, Jeff R; Wells, R J David; Holt, Scott A; Holt, G Joan; Graves, John E; Furey, Nathan B

    2012-01-01

    Ichthyoplankton surveys were conducted in surface waters of the northern Gulf of Mexico (NGoM) over a three-year period (2006-2008) to determine the relative value of this region as early life habitat of sailfish (Istiophorus platypterus), blue marlin (Makaira nigricans), white marlin (Kajikia albida), and swordfish (Xiphias gladius). Sailfish were the dominant billfish collected in summer surveys, and larvae were present at 37.5% of the stations sampled. Blue marlin and white marlin larvae were present at 25.0% and 4.6% of the stations sampled, respectively, while swordfish occurred at 17.2% of the stations. Areas of peak production were detected and maximum density estimates for sailfish (22.09 larvae 1000 m(-2)) were significantly higher than the three other species: blue marlin (9.62 larvae 1000 m(-2)), white marlin (5.44 larvae 1000 m(-2)), and swordfish (4.67 larvae 1000 m(-2)). The distribution and abundance of billfish and swordfish larvae varied spatially and temporally, and several environmental variables (sea surface temperature, salinity, sea surface height, distance to the Loop Current, current velocity, water depth, and Sargassum biomass) were deemed to be influential variables in generalized additive models (GAMs). Mesoscale features in the NGoM affected the distribution and abundance of billfish and swordfish larvae, with densities typically higher in frontal zones or areas proximal to the Loop Current. Habitat suitability of all four species was strongly linked to physicochemical attributes of the water masses they inhabited, and observed abundance was higher in slope waters with lower sea surface temperature and higher salinity. Our results highlight the value of the NGoM as early life habitat of billfishes and swordfish, and represent valuable baseline data for evaluating anthropogenic effects (i.e., Deepwater Horizon oil spill) on the Atlantic billfish and swordfish populations.

  18. Distribution and habitat associations of billfish and swordfish larvae across mesoscale features in the Gulf of Mexico.

    Directory of Open Access Journals (Sweden)

    Jay R Rooker

    Full Text Available Ichthyoplankton surveys were conducted in surface waters of the northern Gulf of Mexico (NGoM over a three-year period (2006-2008 to determine the relative value of this region as early life habitat of sailfish (Istiophorus platypterus, blue marlin (Makaira nigricans, white marlin (Kajikia albida, and swordfish (Xiphias gladius. Sailfish were the dominant billfish collected in summer surveys, and larvae were present at 37.5% of the stations sampled. Blue marlin and white marlin larvae were present at 25.0% and 4.6% of the stations sampled, respectively, while swordfish occurred at 17.2% of the stations. Areas of peak production were detected and maximum density estimates for sailfish (22.09 larvae 1000 m(-2 were significantly higher than the three other species: blue marlin (9.62 larvae 1000 m(-2, white marlin (5.44 larvae 1000 m(-2, and swordfish (4.67 larvae 1000 m(-2. The distribution and abundance of billfish and swordfish larvae varied spatially and temporally, and several environmental variables (sea surface temperature, salinity, sea surface height, distance to the Loop Current, current velocity, water depth, and Sargassum biomass were deemed to be influential variables in generalized additive models (GAMs. Mesoscale features in the NGoM affected the distribution and abundance of billfish and swordfish larvae, with densities typically higher in frontal zones or areas proximal to the Loop Current. Habitat suitability of all four species was strongly linked to physicochemical attributes of the water masses they inhabited, and observed abundance was higher in slope waters with lower sea surface temperature and higher salinity. Our results highlight the value of the NGoM as early life habitat of billfishes and swordfish, and represent valuable baseline data for evaluating anthropogenic effects (i.e., Deepwater Horizon oil spill on the Atlantic billfish and swordfish populations.

  19. Umatilla River Subbasin Fish Habitat Improvement Program, 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    St. Hilaire, Danny R. (Oregon Department of Fish and Wildlife, Pendleton, OR)

    2006-02-01

    This annual report is in fulfillment of contractual obligations with Bonneville Power Administration (BPA), which is the funding source for the Oregon Department of Fish and Wildlife's (ODFW), Umatilla River Subbasin Fish Habitat Improvement Program (Program). The Program works cooperatively with private landowners to develop long-term restoration, under which, passive and active Habitat Improvement Projects are conducted. Historically, projects have included livestock exclusion fencing (passive restoration) to protect riparian habitats, along with the installation of instream structures (active restoration) to address erosion and improve fish habitat. In recent years, the focus of active restoration has shifted to bioengineering treatments and, more recently, to channel re-design and reconstruction aimed at improving fish habitat, by restoring stable channel function. This report provides a summary of Program activities for the 2004 calendar year (January 1 through December 31, 2004), within each of the four main project phases, including: (1) Implementation--Pre-Work, (2) Implementation--On Site Development, (3) Operation and Maintenance, and (4) Monitoring and Evaluation. This report also summarizes Program Administrative, Interagency Coordination, and Public Education activities.

  20. Habitat partitioning, habits and convergence among coastal nektonic fish species from the São Sebastião Channel, southeastern Brazil

    Directory of Open Access Journals (Sweden)

    Fernando Zaniolo Gibran

    Full Text Available Based on a fish survey and preliminary underwater observations, 17 "morphotypes" were identified that characterize the morphological diversity found within 27 nektonic fish species sampled at São Sebastião Channel. Such "morphotypes" were studied using an ecomorphological approach, with the intention to investigate similarities and differences in shape and habits. Underwater field observations were also performed, to verify if the lifestyle of these species, such as vertical occupation of the water column and the habitat use, are in accordance with their distribution in the morphospace. The results, complemented with data from scientific literature on the taxonomy and phylogenies of these species, allowed discussing some of the typical cases of convergent and divergent evolution. Some of the ecomorphological clusters had no phylogenetic support although this is probably due to the environmental conditions in which theirs members have evolved. The body shape and fins positions of a fish clearly influence its ecological performance and habitat use, corroborating the ecomorphological hypothesis on the intimate link between phenotype and ecology.

  1. Secondary Channel Bifurcation Geometry: A Multi-dimensional Problem

    Science.gov (United States)

    Gaeuman, D.; Stewart, R. L.

    2017-12-01

    The construction of secondary channels (or side channels) is a popular strategy for increasing aquatic habitat complexity in managed rivers. Such channels, however, frequently experience aggradation that prevents surface water from entering the side channels near their bifurcation points during periods of relatively low discharge. This failure to maintain an uninterrupted surface water connection with the main channel can reduce the habitat value of side channels for fish species that prefer lotic conditions. Various factors have been proposed as potential controls on the fate of side channels, including water surface slope differences between the main and secondary channels, the presence of main channel secondary circulation, transverse bed slopes, and bifurcation angle. A quantitative assessment of more than 50 natural and constructed secondary channels in the Trinity River of northern California indicates that bifurcations can assume a variety of configurations that are formed by different processes and whose longevity is governed by different sets of factors. Moreover, factors such as bifurcation angle and water surface slope vary with discharge level and are continuously distributed in space, such that they must be viewed as a multi-dimensional field rather than a single-valued attribute that can be assigned to a particular bifurcation.

  2. Lower Klickitat Riparian and In-channel Habitat Restoration Project, Annual Report 2001-2002.

    Energy Technology Data Exchange (ETDEWEB)

    Conley, Will

    2003-10-01

    This project focuses on the lower Klickitat River and its tributaries that provide or affect salmonid habitat. The overall goal is to restore watershed health to aid recovery of salmonid stocks in the Klickitat subbasin. An emphasis is placed on restoration and protection of watersheds supporting anadromous fish production, particularly steelhead (Oncorhyncus mykiss) which are listed as 'Threatened' within the Mid-Columbia ESU. Restoration activities are aimed at restoring stream processes by removing or mitigating watershed perturbances and improving habitat conditions and water quality. In addition to steelhead, habitat improvements benefit Chinook (O. tshawytscha) and coho (O. kisutch) salmon, resident rainbow trout, and enhance habitat for many terrestrial and amphibian wildlife species. Protection activities compliment restoration efforts within the subbasin by securing refugia and preventing degradation. Since 90% of the project area is in private ownership, maximum effectiveness will be accomplished via cooperation with state, federal, tribal, and private entities. The project addresses goals and objectives presented in the Klickitat Subbasin Summary and the 1994 NWPPC Fish and Wildlife Program. Feedback from the 2000 Provincial Review process indicated a need for better information management to aid development of geographic priorities. Thus, an emphasis has been placed on database development and a review of existing information prior to pursuing more extensive implementation. Planning and design was initiated on several restoration projects. These priorities will be refined in future reports as the additional data is collected and analyzed. Tasks listed are for the April 1, 2001 to August 31, 2002 contract cycle, for which work was delayed during the summer of 2001 because the contract was not finalized until mid-August 2001. Accomplishments are provided for the September 1, 2001 to August 31, 2002 reporting period. During this reporting period

  3. Mapping the seabed and habitats in National Marine Sanctuaries - Examples from the East, Gulf and West Coasts

    Science.gov (United States)

    Valentine, Page C.; Cochrane, Guy R.; Scanlon, Kathryn M.

    2003-01-01

    The National Marine Sanctuary System requires seabed and habitat maps to serve as a basis for managing sanctuary resources and for conducting research. NOAA, the agency that manages the sanctuaries, and the USGS have conducted mapping projects in three sanctuaries (Stellwagen Bank NMS, Flower Garden Banks NMS, and Channel Islands NMS) with an emphasis on collaboration of geologists and biologists from the two agencies and from academic institutions. Mapping of seabed habitats is a developing field that requires the integration of geologic and biologic studies and the use of swath imaging techniques such as multibeam and sidescan sonar. Major products of swath mapping are shaded-relief topographic imagery which shows seabed features in great detail, and backscatter imagery which provides an indication of the types of materials that constitute the seabed. Sea floor images provide an excellent basis for conducting the groundtruthing studies (using video, photo, and sampling techniques) that are required to collect the data necessary for making meaningful interpretative maps of the seabed. The compilation of interpretive maps showing seabed environments and habitats also requires the development of a sea floor classification system that will be a basis for comparing, managing, and researching characteristic areas of the seabed. Seabed maps of the sanctuaries are proving useful for management and research decisions that address commercial and recreational fishing, habitat disturbance, engineering projects, tourism, and cultural resources.

  4. Umatilla River Subbasin Fish Habitat Improvement Program, 2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    St. Hilaire, Danny R. (Oregon Department of Fish and Wildlife, Pendleton, OR)

    2006-05-01

    This annual report is in fulfillment of contractual obligations with Bonneville Power Administration (BPA), which is the funding source for the Oregon Department of Fish and Wildlife's (ODFW), Umatilla River Subbasin Fish Habitat Improvement Program (Program). The Program works cooperatively with private landowners to develop long-term restoration agreements, under which, passive and active Habitat Improvement Projects are conducted. Historically, projects have included livestock exclusion fencing (passive restoration) to protect riparian habitats, along with the installation of instream structures (active restoration) to address erosion and improve fish habitat conditions. In recent years, the focus of active restoration has shifted to bioengineering treatments and, more recently, to channel re-design and re-construction aimed at improving fish habitat, through the restoration of stable channel function. This report provides a summary of Program activities for the 2005 calendar year (January 1 through December 31, 2005), within each of the four main project phases, including: (1) Implementation--Pre-Work, (2) Implementation--On Site Development, (3) Operation and Maintenance (O&M), and (4) Monitoring and Evaluation (M&E). This report also summarizes activities associated with Program Administration, Interagency Coordination, and Public Education.

  5. Modeling the Effects of Connecting Side Channels to the Long Tom River, Oregon

    Science.gov (United States)

    Appleby, C.; McDowell, P. F.

    2015-12-01

    The lower Long Tom River is a heavily managed, highly modified stream in the southwestern Willamette Valley with many opportunities for habitat improvements and river restoration. In the 1940s and 1950s, the US Army Corps of Engineers dramatically altered this river system by constructing the Fern Ridge Dam and three, large drop structures, converting the River from a highly sinuous channel to a straight, channelized stream that is interrupted by these grade control structures, and removed the majority of the riparian vegetation. As a result, juvenile spring Chinook salmon are no longer found in the Watershed and the local population of coastal cutthroat trout face limited aquatic habitat. When the river was channelized, long sections of the historical channel were left abandoned on the floodplain. Reconnecting these historical channels as side channels may improve the quality and quantity of aquatic habitat and could allow fish passage around current barriers. However, such construction may also lead to undesirable threats to infrastructure and farmland. This study uses multiple HEC-RAS models to determine the impact of reconnecting two historical channels to the lower Long Tom River by quantifying the change in area of flood inundation and identifying infrastructure in jeapordy given current and post-restoration conditions for 1.5, 5, 10, and 25-year flood discharges. Bathymetric data from ADCP and RTK-GPS surveys has been combined with LiDAR-derived topographic data to create continuous elevation models. Several types of side channel connections are modeled in order to determine which type of connection will result in both the greatest quantity of accessible habitat and the fewest threats to public and private property. In the future, this study will also consider the change in the quantity of physical salmonid habitat and map the areas prone to sedimentation and erosion using CEASAR and PHABSIM tools.

  6. Quantifying structural physical habitat attributes using LIDAR and hyperspectral imagery - PRK

    Science.gov (United States)

    Structural physical habitat attributes include indices of stream size, channel gradient, substrate size, habitat complexity, and riparian vegetation cover and structure. The Environmental Monitoring and Assessment Program (EMAP) is designed to assess the status and trends of ecol...

  7. Effects of timber harvest on aquatic vertebrates and habitat in the North Fork Caspar Creek

    Science.gov (United States)

    Rodney J. Nakamoto

    1998-01-01

    I examined the relationships between timber harvest, creek habitat, and vertebrate populations in the North and South forks of Caspar Creek. Habitat inventories suggested pool availability increased after the onset of timber harvest activities. Increased large woody debris in the channel was associated with an increase in the frequency of blowdown in the riparian...

  8. Two-dimensional hydrodynamic modeling to quantify effects of peak-flow management on channel morphology and salmon-spawning habitat in the Cedar River, Washington

    Science.gov (United States)

    Czuba, Christiana; Czuba, Jonathan A.; Gendaszek, Andrew S.; Magirl, Christopher S.

    2010-01-01

    The Cedar River in Washington State originates on the western slope of the Cascade Range and provides the City of Seattle with most of its drinking water, while also supporting a productive salmon habitat. Water-resource managers require detailed information on how best to manage high-flow releases from Chester Morse Lake, a large reservoir on the Cedar River, during periods of heavy precipitation to minimize flooding, while mitigating negative effects on fish populations. Instream flow-management practices include provisions for adaptive management to promote and maintain healthy aquatic habitat in the river system. The current study is designed to understand the linkages between peak flow characteristics, geomorphic processes, riverine habitat, and biological responses. Specifically, two-dimensional hydrodynamic modeling is used to simulate and quantify the effects of the peak-flow magnitude, duration, and frequency on the channel morphology and salmon-spawning habitat. Two study reaches, representative of the typical geomorphic and ecologic characteristics of the Cedar River, were selected for the modeling. Detailed bathymetric data, collected with a real-time kinematic global positioning system and an acoustic Doppler current profiler, were combined with a LiDAR-derived digital elevation model in the overbank area to develop a computational mesh. The model is used to simulate water velocity, benthic shear stress, flood inundation, and morphologic changes in the gravel-bedded river under the current and alternative flood-release strategies. Simulations of morphologic change and salmon-redd scour by floods of differing magnitude and duration enable water-resource managers to incorporate model simulation results into adaptive management of peak flows in the Cedar River. PDF version of a presentation on hydrodynamic modelling in the Cedar River in Washington state. Presented at the American Geophysical Union Fall Meeting 2010.

  9. Habitat associations of three crayfish endemic to the Ouachita Mountain Ecoregion

    Science.gov (United States)

    Dyer, Joseph J.; Brewer, Shannon K.

    2018-01-01

    Many crayfish are of conservation concern because of their use of unique habitats and often narrow ranges. In this study, we determined fine-scale habitat use by 3 crayfishes that are endemic to the Ouachita Mountains, in Oklahoma and Arkansas. We sampled Faxonius menae (Mena Crayfish), F. leptogonopodus (Little River Creek Crayfish), and Fallicambarus tenuis (Ouachita Mountain Crayfish) from wet and dry erosional channel units of 29 reaches within the Little River catchment. We compared channel-unit and microhabitat selection for each species. Crayfish of all species and life stages selected erosional channel units more often than depositional units, even though these sites were often dry. Accordingly, crayfish at all life stages typically selected the shallowest available microhabitats. Adult crayfish of all species and juvenile Little River Creek Crayfish selected patches of coarse substrate, and all crayfish tended to use the lowest amount of bedrock available. In general, we showed that these endemic crayfish used erosional channel units of streams, even when the channel units were dry. Conservation efforts that protect erosional channel units and mitigate actions that cause channel downcutting to bedrock would benefit these crayfish, particularly during harsh, summer drying periods.

  10. How Well Can We Predict Salmonid Spawning Habitat with LiDAR?

    Science.gov (United States)

    Pfeiffer, A.; Finnegan, N. J.; Hayes, S.

    2013-12-01

    Suitable salmonid spawning habitat is, to a great extent, determined by physical, landscape driven characteristics such as channel morphology and grain size. Identifying reaches with high-quality spawning habitat is essential to restoration efforts in areas where salmonid species are endangered or threatened. While both predictions of suitable habitat and observations of utilized habitat are common in the literature, they are rarely combined. Here we exploit a unique combination of high-resolution LiDAR data and seven years of 387 individually surveyed Coho and Steelhead redds in Scott Creek, a 77 km2 un-glaciated coastal California drainage in the Santa Cruz Mountains, to both make and test predictions of spawning habitat. Using a threshold channel assumption, we predict grain size throughout Scott Creek via a shear stress model that incorporates channel width, instead of height, using Manning's equation (Snyder et al., 2013). Slope and drainage area are computed from a LiDAR-derived DEM, and channel width is calculated via hydraulic modeling. Our results for median grain size predictions closely match median grain sizes (D50) measured in the field, with the majority of sites having predicted D50's within a factor of two of the observed values, especially for reaches with D50 > 0.02m. This success suggests that the threshold model used to predict grain size is appropriate for un-glaciated alluvial channel systems. However, it appears that grain size alone is not a strong predictor of salmon spawning. Reaches with a high (>0.1m) average predicted D50 do have lower redd densities, as expected based on spawning gravel sizes in the literature. However, reaches with lower (<0.1m) predicted D50 have a wide range of redd densities, suggesting that reach-average grain size alone cannot explain spawning site selection in the finer-grained reaches of Scott Creek. We turn to analysis of bedform morphology in order to explain the variation in redd density in the low

  11. Preservation of meandering river channels in uniformly aggrading channel belts

    NARCIS (Netherlands)

    Lageweg, W.I. van de; Schuurman, F.; Cohen, K.M.; Dijk, W.M. van; Shimizu, Y.; Kleinhans, M.G.

    2016-01-01

    Channel belt deposits from meandering river systems commonly display an internal architecture of stacked depositional features with scoured basal contacts due to channel and bedform migration across a range of scales. Recognition and correct interpretation of these bounding surfaces is essential to

  12. Clinical features of neuromuscular disorders in patients with N-type voltage-gated calcium channel antibodies

    Directory of Open Access Journals (Sweden)

    Andreas Totzeck

    2016-09-01

    Full Text Available Neuromuscular junction disorders affect the pre- or postsynaptic nerve to muscle transmission due to autoimmune antibodies. Members of the group like myasthenia gravis and Lambert-Eaton syndrome have pathophysiologically distinct characteristics. However, in practice, distinction may be difficult. We present a series of three patients with a myasthenic syndrome, dropped-head syndrome, bulbar and respiratory muscle weakness and positive testing for anti-N-type voltage-gated calcium channel antibodies. In two cases anti-acetylcholin receptor antibodies were elevated, anti-P/Q-type voltage-gated calcium channel antibodies were negative. All patients initially responded to pyridostigmine with a non-response in the course of the disease. While one patient recovered well after treatment with intravenous immunoglobulins, 3,4-diaminopyridine, steroids and later on immunosuppression with mycophenolate mofetil, a second died after restriction of treatment due to unfavorable cancer diagnosis, the third patient declined treatment. Although new antibodies causing neuromuscular disorders were discovered, clinical distinction has not yet been made. Our patients showed features of pre- and postsynaptic myasthenic syndrome as well as severe dropped-head syndrome and bulbar and axial muscle weakness, but only anti-N-type voltage-gated calcium channel antibodies were positive. When administered, one patient benefited from 3,4-diaminopyridine. We suggest that this overlap-syndrome should be considered especially in patients with assumed seronegative myasthenia gravis and lack of improvement under standard therapy.

  13. Sage-grouse habitat selection during winter in Alberta

    Science.gov (United States)

    Carpenter, Jennifer L.; Aldridge, Cameron L.; Boyce, Mark S.

    2010-01-01

    Greater sage-grouse (Centrocercus urophasianus) are dependent on sagebrush (Artemisia spp.) for food and shelter during winter, yet few studies have assessed winter habitat selection, particularly at scales applicable to conservation planning. Small changes to availability of winter habitats have caused drastic reductions in some sage-grouse populations. We modeled winter habitat selection by sage-grouse in Alberta, Canada, by using a resource selection function. Our purpose was to 1) generate a robust winter habitat-selection model for Alberta sage-grouse; 2) spatially depict habitat suitability in a Geographic Information System to identify areas with a high probability of selection and thus, conservation importance; and 3) assess the relative influence of human development, including oil and gas wells, in landscape models of winter habitat selection. Terrain and vegetation characteristics, sagebrush cover, anthropogenic landscape features, and energy development were important in top Akaike's Information Criterionselected models. During winter, sage-grouse selected dense sagebrush cover and homogenous less rugged areas, and avoided energy development and 2-track truck trails. Sage-grouse avoidance of energy development highlights the need for comprehensive management strategies that maintain suitable habitats across all seasons. ?? 2010 The Wildlife Society.

  14. 75 FR 59899 - Endangered and Threatened Wildlife and Plants: Proposed Rulemaking To Designate Critical Habitat...

    Science.gov (United States)

    2010-09-28

    ... designation, including supporting information on black abalone biology, distribution, and habitat use, and the..., habitat, biology, and threats to habitat for black abalone. In preparing this rule, we reviewed and..., and sedimentary) that contain channels with macro- and micro-crevices or large boulders (greater than...

  15. Habitat-dependent olfactory discrimination in three-spined sticklebacks (Gasterosteus aculeatus).

    Science.gov (United States)

    Hiermes, Meike; Mehlis, Marion; Rick, Ingolf P; Bakker, Theo C M

    2015-07-01

    The ability to recognize conspecifics is indispensible for differential treatment of particular individuals in social contexts like grouping behavior. The advantages of grouping are multifarious, and there exist numerous additional benefits of joining aggregations of conspecifics. Recognition is based on different signals and transmitted via multiple channels, among others the olfactory channel. The sensory system or the combination of sensory modalities used in recognition processes is highly dependent on the availability and effectiveness of modalities, which are a function of the environmental conditions. Using F1-generations of six three-spined stickleback (Gasterosteus aculeatus) populations from two habitat types (tea-stained and clear-water lakes) from the Outer Hebrides, Scotland, we investigated whether individuals are able to recognize members of their own population solely based on olfactory cues and whether the habitat type an individual originated from had an influence on its recognition abilities. When given the choice (own vs. foreign population) sticklebacks from tea-stained lakes significantly preferred the odor of their own population, whereas fish from clear-water habitats did not show any preference. Moreover, fish from the two habitat types differed significantly in their recognition abilities, indicating that olfactory communication is better developed when visual signaling is disturbed. Thus, the observed odor preferences appear to be the consequence of different selective constraints and adaptations as a result of the differences in environmental conditions that have acted on the parental generations. These adaptations are likely genetically based as the differences are present in the F1-generation that had been reared under identical laboratory conditions.

  16. Movement reveals scale dependence in habitat selection of a large ungulate

    Science.gov (United States)

    Northrup, Joseph; Anderson, Charles R.; Hooten, Mevin B.; Wittemyer, George

    2016-01-01

    Ecological processes operate across temporal and spatial scales. Anthropogenic disturbances impact these processes, but examinations of scale dependence in impacts are infrequent. Such examinations can provide important insight to wildlife–human interactions and guide management efforts to reduce impacts. We assessed spatiotemporal scale dependence in habitat selection of mule deer (Odocoileus hemionus) in the Piceance Basin of Colorado, USA, an area of ongoing natural gas development. We employed a newly developed animal movement method to assess habitat selection across scales defined using animal-centric spatiotemporal definitions ranging from the local (defined from five hour movements) to the broad (defined from weekly movements). We extended our analysis to examine variation in scale dependence between night and day and assess functional responses in habitat selection patterns relative to the density of anthropogenic features. Mule deer displayed scale invariance in the direction of their response to energy development features, avoiding well pads and the areas closest to roads at all scales, though with increasing strength of avoidance at coarser scales. Deer displayed scale-dependent responses to most other habitat features, including land cover type and habitat edges. Selection differed between night and day at the finest scales, but homogenized as scale increased. Deer displayed functional responses to development, with deer inhabiting the least developed ranges more strongly avoiding development relative to those with more development in their ranges. Energy development was a primary driver of habitat selection patterns in mule deer, structuring their behaviors across all scales examined. Stronger avoidance at coarser scales suggests that deer behaviorally mediated their interaction with development, but only to a degree. At higher development densities than seen in this area, such mediation may not be possible and thus maintenance of sufficient

  17. Natural Propagation and Habitat Improvement, Volume 1, Oregon, 1985 Annual and Final Reports.

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, Ken

    1986-10-01

    The Hot Springs Fork of the Collawash River is a major sub-drainage in the Clackamas River drainage. Emphasis species for natural production are spring chinook, coho salmon, and winter steelhead. Increased natural production appears limited by a lack of quality rearing habitat. Habitat complexity over approximately 70% of accessible area to anadromous fish has been reduced over the last 40 years by numerous factors. Natural passage barriers limit anadromous fish access to over 7 miles of high quality habitat. In the first year of a multi-year effort to improve fish habitat in the Hot Springs Fork drainage, passage enhancement on two tributaries and channel rehabilitation on one of those tributaries was completed. Three waterfalls on Nohorn Creek were evaluated and passage improved on the uppermost waterfall to provide steelhead full access to 2.4 miles of good quality habitat. The work was completed in October 1985 and involved blasting three jump pools and two holding pools into the waterfall. On Pansy Creek, four potential passage barriers were evaluated and passage improvement work conducted on two logjams and one waterfall. Minor modifications were made to a waterfall to increase flow into a side channel which allows passage around the waterfall. Channel rehabilitation efforts on Pansy Creek (RM 0.0 to 0.3) to increase low flow pool rearing habitat and spawning habitat including blasting five pools into areas of bedrock substrate and using a track-mounted backhoe to construct instream structures. On site materials were used to construct three log sills, three boulder berms, a boulder flow deflector, and five log and boulder structures. Also, an alcove was excavated to provide overwinter rearing habitat. Pre-project monitoring consisting of physical and biological data collection was completed in the project area.

  18. Revised Methods for Characterizing Stream Habitat in the National Water-Quality Assessment Program

    Science.gov (United States)

    Fitzpatrick, Faith A.; Waite, Ian R.; D'Arconte, Patricia J.; Meador, Michael R.; Maupin, Molly A.; Gurtz, Martin E.

    1998-01-01

    Stream habitat is characterized in the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program as part of an integrated physical, chemical, and biological assessment of the Nation's water quality. The goal of stream habitat characterization is to relate habitat to other physical, chemical, and biological factors that describe water-quality conditions. To accomplish this goal, environmental settings are described at sites selected for water-quality assessment. In addition, spatial and temporal patterns in habitat are examined at local, regional, and national scales. This habitat protocol contains updated methods for evaluating habitat in NAWQA Study Units. Revisions are based on lessons learned after 6 years of applying the original NAWQA habitat protocol to NAWQA Study Unit ecological surveys. Similar to the original protocol, these revised methods for evaluating stream habitat are based on a spatially hierarchical framework that incorporates habitat data at basin, segment, reach, and microhabitat scales. This framework provides a basis for national consistency in collection techniques while allowing flexibility in habitat assessment within individual Study Units. Procedures are described for collecting habitat data at basin and segment scales; these procedures include use of geographic information system data bases, topographic maps, and aerial photographs. Data collected at the reach scale include channel, bank, and riparian characteristics.

  19. Urbanization effects on stream habitat characteristics in Boston, Massachusetts; Birmingham, Alabama; and Salt Lake City, Utah

    Science.gov (United States)

    Short, T.M.; Giddings, E.M.P.; Zappia, H.; Coles, J.F.

    2005-01-01

    Relations between stream habitat and urban land-use intensity were examined in 90 stream reaches located in or near the metropolitan areas of Salt Lake City, Utah (SLC); Birmingham, Alabama (BIR); and Boston, Massachusetts (BOS). Urban intensity was based on a multi-metric index (urban intensity index or UII) that included measures of land cover, socioeconomic organization, and urban infrastructure. Twenty-eight physical variables describing channel morphology, hydraulic properties, and streambed conditions were examined. None of the habitat variables was significantly correlated with urbanization intensity in all three study areas. Urbanization effects on stream habitat were less apparent for streams in SLC and BIR, owing to the strong influence of basin slope (SLC) and drought conditions (BIR) on local flow regimes. Streamflow in the BOS study area was not unduly influenced by similar conditions of climate and physiography, and habitat conditions in these streams were more responsive to urbanization. Urbanization in BOS contributed to higher discharge, channel deepening, and increased loading of fine-grained particles to stream channels. The modifying influence of basin slope and climate on hydrology of streams in SLC and BIR limited our ability to effectively compare habitat responses among different urban settings and identify common responses that might be of interest to restoration or water management programs. Successful application of land-use models such as the UII to compare urbanization effects on stream habitat in different environmental settings must account for inherent differences in natural and anthropogenic factors affecting stream hydrology and geomorphology. The challenge to future management of urban development is to further quantify these differences by building upon existing models, and ultimately develop a broader understanding of urbanization effects on aquatic ecosystems. ?? 2005 by the American Fisheries Society.

  20. Influence of mesoscale features on micronekton and large pelagic fish communities in the Mozambique Channel

    Science.gov (United States)

    Potier, Michel; Bach, Pascal; Ménard, Frédéric; Marsac, Francis

    2014-02-01

    We investigated the diversity and distribution of two communities, micronekton organisms and large predatory fishes, sampled in mesoscale features of the Mozambique Channel from 2003 to 2009, by combining mid-water trawls, stomach contents of fish predators and instrumented longline fishing surveys. The highest species richness for assemblages was found in divergences and fronts rather than in the core of eddies. Despite an unbalanced scheme, diversity indices did not differ significantly between cyclonic and anticyclonic eddies, divergences and fronts. We found that eddies and associated physical cues did not substantially affect the distribution of micronektonic species which are mainly driven by the diel vertical migration pattern. Top predators exhibited a more complex response. Swordfish (Xiphias gladius) associated better with mesoscale features than tunas, with a clear preference for divergences which is consistent with the diel vertical migrations and occurrence of its main prey, the flying squids Sthenoteuthis oualaniensis (Ommastrephidae). On the other hand, the probability of presence of yellowfin tuna was not tied to any specific eddy structure. However, the highest values of positive yellowfin CPUEs were associated with low horizontal gradients of sea-level anomalies. We also showed a non-linear response of positive yellowfin CPUEs with respect to the depth of the minimal oxygen content. The larger the distance between the hooks and the minimal oxygen layer, towards the surface or at greater depths, the higher the CPUE, highlighting that yellowfin congregated in well-oxygenated waters. Micronekton sampled by mid-water trawls and stomach contents exhibited different species composition. The highly mobile organisms were not caught by trawling whereas they remain accessible to predators. The combination of stomach contents and mid-water trawls undoubtedly improved our understanding of the micronekton assemblage distribution. Our results provide some

  1. Stopover habitats of spring migrating surf scoters in southeast Alaska

    Science.gov (United States)

    Lok, E.K.; Esler, Daniel; Takekawa, John Y.; De La Cruz, S.W.; Sean, Boyd W.; Nysewander, D.R.; Evenson, J.R.; Ward, D.H.

    2011-01-01

    Habitat conditions and nutrient reserve levels during spring migration have been suggested as important factors affecting population declines in waterfowl, emphasizing the need to identify key sites used during spring and understand habitat features and resource availability at stopover sites. We used satellite telemetry to identify stopover sites used by surf scoters migrating through southeast Alaska during spring. We then contrasted habitat features of these sites to those of random sites to determine habitat attributes corresponding to use by migrating scoters. We identified 14 stopover sites based on use by satellite tagged surf scoters from several wintering sites. We identified Lynn Canal as a particularly important stopover site for surf scoters originating throughout the Pacific winter range; approximately half of tagged coastally migrating surf scoters used this site, many for extended periods. Stopover sites were farther from the mainland coast and closer to herring spawn sites than random sites, whereas physical shoreline habitat attributes were generally poor predictors of site use. The geography and resource availability within southeast Alaska provides unique and potentially critical stopover habitat for spring migrating surf scoters. Our work identifies specific sites and habitat resources that deserve conservation and management consideration. Aggregations of birds are vulnerable to human activity impacts such as contaminant spills and resource management decisions. This information is of value to agencies and organizations responsible for emergency response planning, herring fisheries management, and bird and ecosystem conservation. Copyright ?? 2011 The Wildlife Society.

  2. Confederated Tribes Umatilla Indian Reservation (CTUIR) Umatilla Anadromous Fisheries Habitat Project : A Columbia River Basin Fish Habitat Project : Annual Report Fiscal Year 2007.

    Energy Technology Data Exchange (ETDEWEB)

    Hoverson, Eric D.; Amonette, Alexandra

    2008-12-02

    The Umatilla Anadromous Fisheries Habitat Project (UAFHP) is an ongoing effort to protect, enhance, and restore riparian and instream habitat for the natural production of anadromous salmonids in the Umatilla River Basin, Northeast Oregon. Flow quantity, water temperature, passage, and lack of in-stream channel complexity have been identified as the key limiting factors in the basin. During the 2007 Fiscal Year (FY) reporting period (February 1, 2007-January 31, 2008) primary project activities focused on improving instream and riparian habitat complexity, migrational passage, and restoring natural channel morphology and floodplain function. Eight fisheries habitat enhancement projects were implemented on Meacham Creek, Camp Creek, Greasewood Creek, Birch Creek, West Birch Creek, and the Umatilla River. Specific restoration actions included: (1) rectifying five fish passage barriers on four creeks, (2) planting 1,275 saplings and seeding 130 pounds of native grasses, (3) constructing two miles of riparian fencing for livestock exclusion, (4) coordinating activities related to the installation of two off-channel, solar-powered watering areas for livestock, and (5) developing eight water gap access sites to reduce impacts from livestock. Baseline and ongoing monitoring and evaluation activities were also completed on major project areas such as conducting photo point monitoring strategies activities at the Meacham Creek Large Wood Implementation Project site (FY2006) and at all existing easements and planned project sites. Fish surveys and aquatic habitat inventories were conducted at project sites prior to implementation. Monitoring plans will continue throughout the life of each project to oversee progression and inspire timely managerial actions. Twenty-seven conservation easements were maintained with 23 landowners. Permitting applications for planned project activities and biological opinions were written and approved. Project activities were based on a variety

  3. Evaluation of a stream channel-type system for southeast Alaska.

    Science.gov (United States)

    M.D. Bryant; P.E. Porter; S.J. Paustian

    1991-01-01

    Nine channel types within a hierarchical channel-type classification system (CTCS) were surveyed to determine relations between salmonid densities and species distribution, and channel type. Two other habitat classification systems and the amount of large woody debris also were compared to species distribution and salmonid densities, and to stream channel types....

  4. Systematic review of the influence of foraging habitat on red-cockaded woodpecker reproductive success.

    Energy Technology Data Exchange (ETDEWEB)

    Garabedian, James E. [North Carolina State University

    2014-04-01

    Relationships between foraging habitat and reproductive success provide compelling evidence of the contribution of specific vegetative features to foraging habitat quality, a potentially limiting factor for many animal populations. For example, foraging habitat quality likely will gain importance in the recovery of the threatened red-cockaded woodpecker Picoides borealis (RCW) in the USA as immediate nesting constraints are mitigated. Several researchers have characterized resource selection by foraging RCWs, but emerging research linking reproductive success (e.g. clutch size, nestling and fledgling production, and group size) and foraging habitat features has yet to be synthesized. Therefore, we reviewed peer-refereed scientific literature and technical resources (e.g. books, symposia proceedings, and technical reports) that examined RCW foraging ecology, foraging habitat, or demography to evaluate evidence for effects of the key foraging habitat features described in the species’ recovery plan on group reproductive success. Fitness-based habitat models suggest foraging habitat with low to intermediate pine Pinus spp. densities, presence of large and old pines, minimal midstory development, and herbaceous groundcover support more productive RCW groups. However, the relationships between some foraging habitat features and RCW reproductive success are not well supported by empirical data. In addition, few regression models account for > 30% of variation in reproductive success, and unstandardized multiple and simple linear regression coefficient estimates typically range from -0.100 to 0.100, suggesting ancillary variables and perhaps indirect mechanisms influence reproductive success. These findings suggest additional research is needed to address uncertainty in relationships between foraging habitat features and RCW reproductive success and in the mechanisms underlying those relationships.

  5. Physical habitat simulation system reference manual: version II

    Science.gov (United States)

    Milhous, Robert T.; Updike, Marlys A.; Schneider, Diane M.

    1989-01-01

    There are four major components of a stream system that determine the productivity of the fishery (Karr and Dudley 1978). These are: (1) flow regime, (2) physical habitat structure (channel form, substrate distribution, and riparian vegetation), (3) water quality (including temperature), and (4) energy inputs from the watershed (sediments, nutrients, and organic matter). The complex interaction of these components determines the primary production, secondary production, and fish population of the stream reach. The basic components and interactions needed to simulate fish populations as a function of management alternatives are illustrated in Figure I.1. The assessment process utilizes a hierarchical and modular approach combined with computer simulation techniques. The modular components represent the "building blocks" for the simulation. The quality of the physical habitat is a function of flow and, therefore, varies in quality and quantity over the range of the flow regime. The conceptual framework of the Incremental Methodology and guidelines for its application are described in "A Guide to Stream Habitat Analysis Using the Instream Flow Incremental Methodology" (Bovee 1982). Simulation of physical habitat is accomplished using the physical structure of the stream and streamflow. The modification of physical habitat by temperature and water quality is analyzed separately from physical habitat simulation. Temperature in a stream varies with the seasons, local meteorological conditions, stream network configuration, and the flow regime; thus, the temperature influences on habitat must be analysed on a stream system basis. Water quality under natural conditions is strongly influenced by climate and the geological materials, with the result that there is considerable natural variation in water quality. When we add the activities of man, the possible range of water quality possibilities becomes rather large. Consequently, water quality must also be analysed on a

  6. Multiple channel space lattice focusing and features of its use in applied RF linac

    International Nuclear Information System (INIS)

    Kushin, V.; Plotnikov, S.; Zarubin, A.; Bondarev, B.; Durkin, A.

    2000-01-01

    Nowadays the use of multiple channel accelerator systems is well known with some hundred channels helps us to increase total beam intensity proportional to the number of channels while the divergence of the total beam is roughly equal to the divergence of single channel. The accelerator structure for multiple beam linac must provide both transversal and longitudinal stability for every small beam taking into account Coulomb interactions of all the micro beams. The most convenient for accelerator structures with 100 and more beams are the systems that use RF focusing such as RFQ, APF and DTL with rectangular profiles. The common disadvantage of all those systems is connected with decreasing of focusing forces of RF field with particle velocity increase. Our analysis shows that the disadvantage may be overcome in structures with rectangular profiles. For this purpose some additional thin (3-5 mm) focusing electrodes called space lattices (SL) must be arranged within accelerator gaps. The distance between these electrodes is chosen roughly equal to the thickness of additional electrodes. The number of the electrodes must be increased with length of accelerator gaps and may be equal n=1,2...6 and even more. The arrangement of n thin electrodes in accelerator gaps helps us to reach qualitative change of accelerator structure parameters. Firstly, they make n times amplification of the sign-alternate component of RF focusing field without appreciable influence to phasing action of accelerating field. Secondly, introducing of additional electrodes that divide the gap on n small accelerator gaps provides beams shielding from each other within the region of beam acceleration in RF fields between drift tubes. The analysis shows that if n=4-6, it is possible to reach transversal stability of all particles independently of their input phases in RF field. On the other hand, the analysis shows that adiabatic change of synchronous phase at the input stage of acceleration helps us

  7. Spark Channels

    Energy Technology Data Exchange (ETDEWEB)

    Haydon, S. C. [Department of Physics, University of New England, Armidale, NSW (Australia)

    1968-04-15

    A brief summary is given of the principal methods used for initiating spark channels and the various highly time-resolved techniques developed recently for studies with nanosecond resolution. The importance of the percentage overvoltage in determining the early history and subsequent development of the various phases of the growth of the spark channel is discussed. An account is then given of the recent photographic, oscillographic and spectroscopic investigations of spark channels initiated by co-axial cable discharges of spark gaps at low [{approx} 1%] overvoltages. The phenomena observed in the development of the immediate post-breakdown phase, the diffuse glow structure, the growth of the luminous filament and the final formation of the spark channel in hydrogen are described. A brief account is also given of the salient features emerging from corresponding studies of highly overvolted spark gaps in which the spark channel develops from single avalanche conditions. The essential differences between the two types of channel formation are summarized and possible explanations of the general features are indicated. (author)

  8. Fish Habitat and Fish Populations in a Southern Appalachian Watershed before and after Hurricane Hugo

    Science.gov (United States)

    C. Andrew Dolloff; Patricia A. Flebbe; Michael D. Owen

    1994-01-01

    Habitat features and relative abundance of all fish species were estimated in 8.4 km of a small mountain stream system before and 11 months after Hurricane Hugo crossed the southern Appalachians in September 1989. There was no change in the total amount (area) of each habitat type but the total number of habitat units decreased and average size and depth of habitat...

  9. The role of beaver in shaping steelhead trout (Oncorhynchus mykiss) habitat complexity and thermal refugia in a central Oregon stream

    Science.gov (United States)

    Consolati, F.; Wheaton, J. M.; Neilson, B. T.; Bouwes, N.; Pollock, M. M.

    2012-12-01

    The incised and degraded habitat of Bridge Creek, tributary to the John Day River in central Oregon, is thought to be limiting the local population of ESA-listed steelhead trout (Oncorhynchus mykiss). Restoration efforts for this watershed are aimed to improve their habitat through reconnecting the channel with portions of its former floodplain (now terraces) to increase stream habitat complexity and the extent of riparian vegetation. This is being done via the installation of over a hundred beaver dam support (BDS) structures that are designed to either mimic beaver dams or support existing beaver dams. The overall objective of this study is to determine if the BDS structures have had an effect on stream channel habitat complexity and thermal refugia in selected sections of Bridge Creek. Analysis of stream temperature data in restoration treatment and control areas will show the effects of beaver dams on stream temperature. Analysis of aerial imagery and high resolution topographic data will exhibit how the number and types of geomorphic units have changed after the construction of beaver dams. Combined, the results of this research are aimed to increase our understanding of how beaver dams impact fish habitat and stream temperature.

  10. Varying rotation lengths in northern production forests: Implications for habitats provided by retention and production trees.

    Science.gov (United States)

    Felton, Adam; Sonesson, Johan; Nilsson, Urban; Lämås, Tomas; Lundmark, Tomas; Nordin, Annika; Ranius, Thomas; Roberge, Jean-Michel

    2017-04-01

    Because of the limited spatial extent and comprehensiveness of protected areas, an increasing emphasis is being placed on conserving habitats which promote biodiversity within production forest. For this reason, alternative silvicultural programs need to be evaluated with respect to their implications for forest biodiversity, especially if these programs are likely to be adopted. Here we simulated the effect of varied rotation length and associated thinning regimes on habitat availability in Scots pine and Norway spruce production forests, with high and low productivity. Shorter rotation lengths reduced the contribution made by production trees (trees grown for industrial use) to the availability of key habitat features, while concurrently increasing the contribution from retention trees. The contribution of production trees to habitat features was larger for high productivity sites, than for low productivity sites. We conclude that shortened rotation lengths result in losses of the availability of habitat features that are key for biodiversity conservation and that increased retention practices may only partially compensate for this. Ensuring that conservation efforts better reflect the inherent variation in stand rotation lengths would help improve the maintenance of key forest habitats in production forests.

  11. Information needs for habitat protection: Marbled murrelet habitat identification. Restoration project 93051b. Exxon Valdez oil spill restoration project final report

    Energy Technology Data Exchange (ETDEWEB)

    Kuletz, K.J.; Marks, D.K.; Naslund, N.L.; Goodson, N.G.; Cody, M.B.

    1994-12-01

    To define murrelet nesting habitat in southcentral Alaska, we surveyed inland activity of murrelets and measured habitat features between 1991 and 1993, in Prince William Sound, Kenai Fjords National Park and Afognak Island, Alaska (N=262 sites). Using all study areas, we developed statistical models that explain variation in murrelet activity levels and predict the occurrence of behaviors indicative of nesting, based on temporal, geographic, topographic, weather and habitat variables. The multiple regression analyses explained 52 percent of the variation in murrelet activity level. Stepwise logistic regression was used to identify variables that could predict the occurrence of nesting behaviors. The best model included survey method (from a boat, shore or inland), location relative to the head of a bay, tree diameter and number of potential nesting platforms on trees. Overall, the features indicative of murrelet nesting habitat included low elevation locations near the heads of bays, with extensive forest cover of large old-growth trees.

  12. Seasonal changes in habitat availability and the distribution and abundance of salmonids along a stream gradient from headwaters to mouth in coastal Oregon

    Science.gov (United States)

    Gordon H. Reeves; Jack D. Sleeper; Dirk W. Lang

    2011-01-01

    Visual estimation techniques were used to quantify seasonal habitat characteristics, habitat use, and longitudinal distribution of juvenile steelhead Oncorhynchus mykiss, coastal cutthroat trout O. clarkii clarkii and coho salmon O. kisutch in a coastal Oregon basin. At the channel unit scale, fish...

  13. Evaluating methods to establish habitat suitability criteria: A case study in the upper Delaware River Basin, USA

    Science.gov (United States)

    Galbraith, Heather S.; Blakeslee, Carrie J.; Cole, Jeffrey C.; Talbert, Colin; Maloney, Kelly O.

    2016-01-01

    Defining habitat suitability criteria (HSC) of aquatic biota can be a key component to environmental flow science. HSC can be developed through numerous methods; however, few studies have evaluated the consistency of HSC developed by different methodologies. We directly compared HSC for depth and velocity developed by the Delphi method (expert opinion) and by two primary literature meta-analyses (literature-derived range and interquartile range) to assess whether these independent methods produce analogous criteria for multiple species (rainbow trout, brown trout, American shad, and shallow fast guild) and life stages. We further evaluated how these two independently developed HSC affect calculations of habitat availability under three alternative reservoir management scenarios in the upper Delaware River at a mesohabitat (main channel, stream margins, and flood plain), reach, and basin scale. In general, literature-derived HSC fell within the range of the Delphi HSC, with highest congruence for velocity habitat. Habitat area predicted using the Delphi HSC fell between the habitat area predicted using two literature-derived HSC, both at the basin and the site scale. Predicted habitat increased in shallow regions (stream margins and flood plain) using literature-derived HSC while Delphi-derived HSC predicted increased channel habitat. HSC generally favoured the same reservoir management scenario; however, no favoured reservoir management scenario was the most common outcome when applying the literature range HSC. The differences found in this study lend insight into how different methodologies can shape HSC and their consequences for predicted habitat and water management decisions. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  14. Influence of local habitat features on disease avoidance by Caribbean spiny lobsters in a casita-enhanced bay.

    Science.gov (United States)

    Briones-Fourzán, Patricia; Candia-Zulbarán, Rebeca I; Negrete-Soto, Fernando; Barradas-Ortiz, Cecilia; Huchin-Mian, Juan P; Lozano-Álvarez, Enrique

    2012-08-27

    In Bahía de la Ascensión, Mexico, 'casitas' (large artificial shelters) are extensively used to harvest Caribbean spiny lobsters Panulirus argus. After the discovery of a pathogenic virus, Panulirus argus virus 1 (PaV1), in these lobsters, laboratory experiments revealed that PaV1 could be transmitted by contact and through water, and that lobsters avoided shelters harboring diseased conspecifics. To examine these issues in the context of casitas, which typically harbor multiple lobsters of all sizes, we examined the distribution and aggregation patterns of lobsters in the absence/presence of diseased conspecifics (i.e. visibly infected with PaV1) in 531 casitas distributed over 3 bay zones, 1 poorly vegetated ('Vigía Chico', average depth: 1.5 m) and 2 more extensively vegetated ('Punta Allen': 2.5 m; 'Los Cayos': 2.4 m). All zones had relatively high indices of predation risk. Using several statistical approaches, we found that distribution parameters of lobsters were generally not affected by the presence of diseased conspecifics in casitas. Interestingly, however, in the shallower and less vegetated zone (Vigía Chico), individual casitas harbored more lobsters and lobsters were actually more crowded in casitas containing diseased conspecifics, yet disease prevalence was the lowest in lobsters of all sizes. These results suggest that (1) investment in disease avoidance by lobsters is partially modulated by local habitat features, (2) contact transmission rates of PaV1 may be lower in nature than in the laboratory, and (3) water-borne transmission rates may be lower in shallow, poorly vegetated habitats more exposed to solar ultraviolet radiation, which can damage viral particles.

  15. Application of ELJ to create and maintain side channels in a dynamic gravel bed river

    Science.gov (United States)

    Crabbe, E.; Crowe Curran, J.; Ockelford, A.

    2017-12-01

    Braided and anastomosing rivers create and maintain a large amount of side channel habitat. Unfortunately, many rivers that were once multi-channel rivers have been constrained to single thread channels as a consequence of land use changes that occurred in the 19th and 20th centuries or earlier. An increasingly common management goal today is the re-creation of self-maintaining side and tributary habitat through as natural means as possible. This work examines the geomorphic history of one such channel and the success of recent rehabilitation efforts. Our case study comes from the South Fork Nooksack River in the Cascades Range in Washington State. The Nooksack River is a gravel and sand bed channel with a snowmelt dominated hydrograph. Engineered log jams (ELJ) have been employed to direct flow into side and chute channels with the larger goals of increasing overall channel complexity and salmon spawning opportunities. ELJs have been constructed on the channel since the 2000s, and the ELJs in the study reaches range in age up to 10 years. The size and design of individual jams within the reach vary, enabling a comparison between jam types. ELJs are evaluated for their ability to maintain gravel bar locations and open tributary channels through the snowmelt season over the reach scale. Additional goals of trapping wood onto the jams and existing bars, stabilizing channel banks, and allowing for the growth of bar vegetation are also examined.

  16. Effects of recent volcanic eruptions on aquatic habitat in the Drift River, Alaska, USA: Implications at other Cook Inlet region volcanoes

    Science.gov (United States)

    Dorava, J.M.; Milner, A.M.

    1999-01-01

    Numerous drainages supporting productive salmon habitat are surrounded by active volcanoes on the west side of Cook Inlet in south-central Alaska. Eruptions have caused massive quantities of flowing water and sediment to enter the river channels emanating from glaciers and snowfields on these volcanoes. Extensive damage to riparian and aquatic habitat has commonly resulted, and benthic macroinvertebrate and salmonid communities can be affected. Because of the economic importance of Alaska's fisheries, detrimental effects on salmonid habitat can have significant economic implications. The Drift River drains glaciers on the northern and eastern flanks of Redoubt Volcano: During and following eruptions in 1989-1990, severe physical disturbances to the habitat features of the river adversely affected the fishery. Frequent eruptions at other Cook Inlet region volcanoes exemplify the potential effects of volcanic activity on Alaska's important commercial, sport, and subsistence fisheries. Few studies have documented the recovery of aquatic habitat following volcanic eruptions. The eruptions of Redoubt Volcano in 1989-1990 offered an opportunity to examine the recovery of the macroinvertebrate community. Macroinvertebrate community composition and structure in the Drift River were similar in both undisturbed and recently disturbed sites. Additionally, macroinvertebrate samples from sites in nearby undisturbed streams were highly similar to those from some Drift River sites. This similarity and the agreement between the Drift River macroinvertebrate community composition and that predicted by a qualitative model of typical macroinvertebrate communities in glacier-fed rivers indicate that the Drift River macroinvertebrate community is recovering five years after the disturbances associated with the most recent eruptions of Redoubt Volcano.

  17. Regional Curves of Bankfull Channel Geometry for Non-Urban Streams in the Piedmont Physiographic Province, Virginia

    Science.gov (United States)

    Lotspeich, R. Russell

    2009-01-01

    Natural-channel design involves constructing a stream channel with the dimensions, slope, and plan-view pattern that would be expected to transport water and sediment and yet maintain habitat and aesthetics consistent with unimpaired stream segments, or reaches. Regression relations for bankfull stream characteristics based on drainage area, referred to as 'regional curves,' are used in natural stream channel design to verify field determinations of bankfull discharge and stream channel characteristics. One-variable, ordinary least-squares regressions relating bankfull discharge, bankfull cross-sectional area, bankfull width, bankfull mean depth, and bankfull slope to drainage area were developed on the basis of data collected at 17 streamflow-gaging stations in rural areas with less than 20 percent urban land cover within the basin area (non-urban areas) of the Piedmont Physiographic Province in Virginia. These regional curves can be used to estimate the bankfull discharge and bankfull channel geometry when the drainage area of a watershed is known. Data collected included bankfull cross-sectional geometry, flood-plain geometry, and longitudinal profile data. In addition, particle-size distributions of streambed material were determined, and data on basin characteristics were compiled for each reach. Field data were analyzed to determine bankfull cross-sectional area, bankfull width, bankfull mean depth, bankfull discharge, bankfull channel slope, and D50 and D84 particle sizes at each site. The bankfull geometry from the 17 sites surveyed during this study represents the average of two riffle cross sections for each site. Regional curves developed for the 17 sites had coefficient of determination (R2) values of 0.950 for bankfull cross-sectional area, 0.913 for bankfull width, 0.915 for bankfull mean depth, 0.949 for bankfull discharge, and 0.497 for bankfull channel slope. The regional curves represent conditions for streams with defined channels and bankfull

  18. CTUIR Umatilla Anadromous Fisheries Habitat Project : A Columbia River Basin Fish Habitat Project 2008 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hoverson, Eric D.; Amonette, Alexandra

    2009-02-09

    The Umatilla Anadromous Fisheries Habitat Project (UAFHP) is an ongoing effort to protect, enhance, and restore riparian and instream habitat for the natural production of anadromous salmonids in the Umatilla River Basin, Northeast Oregon. Flow quantity, water temperature, passage, and lack of in-stream channel complexity have been identified as the key limiting factors in the basin. During the 2008 Fiscal Year (FY) reporting period (February 1, 2008-January 31, 2009) primary project activities focused on improving instream and riparian habitat complexity, migrational passage, and restoring natural channel morphology and floodplain function. Eight primary fisheries habitat enhancement projects were implemented on Meacham Creek, Birch Creek, West Birch Creek, McKay Creek, West Fork Spring Hollow, and the Umatilla River. Specific restoration actions included: (1) rectifying one fish passage barrier on West Birch Creek; (2) participating in six projects planting 10,000 trees and seeding 3225 pounds of native grasses; (3) donating 1000 ft of fencing and 1208 fence posts and associated hardware for 3.6 miles of livestock exclusion fencing projects in riparian areas of West Birch and Meacham Creek, and for tree screens to protect against beaver damage on West Fork Spring Hollow Creek; (4) using biological control (insects) to reduce noxious weeds on three treatment areas covering five acres on Meacham Creek; (5) planning activities for a levee setback project on Meacham Creek. We participated in additional secondary projects as opportunities arose. Baseline and ongoing monitoring and evaluation activities were also completed on major project areas such as conducting photo point monitoring strategies activities at the Meacham Creek Large Wood Implementation Project site (FY2006) and at additional easements and planned project sites. Fish surveys and aquatic habitat inventories were conducted at project sites prior to implementation. Proper selection and implementation of

  19. Between a rock and a hard place: habitat selection in female-calf humpback whale (Megaptera novaeangliae Pairs on the Hawaiian breeding grounds.

    Directory of Open Access Journals (Sweden)

    Rachel Cartwright

    Full Text Available The Au'au Channel between the islands of Maui and Lanai, Hawaii comprises critical breeding habitat for humpback whales (Megaptera novaeangliae of the Central North Pacific stock. However, like many regions where marine mega-fauna gather, these waters are also the focus of a flourishing local eco-tourism and whale watching industry. Our aim was to establish current trends in habitat preference in female-calf humpback whale pairs within this region, focusing specifically on the busy, eastern portions of the channel. We used an equally-spaced zigzag transect survey design, compiled our results in a GIS model to identify spatial trends and calculated Neu's Indices to quantify levels of habitat use. Our study revealed that while mysticete female-calf pairs on breeding grounds typically favor shallow, inshore waters, female-calf pairs in the Au'au Channel avoided shallow waters (<20 m and regions within 2 km of the shoreline. Preferred regions for female-calf pairs comprised water depths between 40-60 m, regions of rugged bottom topography and regions that lay between 4 and 6 km from a small boat harbor (Lahaina Harbor that fell within the study area. In contrast to other humpback whale breeding grounds, there was only minimal evidence of typical patterns of stratification or segregation according to group composition. A review of habitat use by maternal females across Hawaiian waters indicates that maternal habitat choice varies between localities within the Hawaiian Islands, suggesting that maternal females alter their use of habitat according to locally varying pressures. This ability to respond to varying environments may be the key that allows wildlife species to persist in regions where human activity and critical habitat overlap.

  20. Cl- channels in apoptosis

    DEFF Research Database (Denmark)

    Wanitchakool, Podchanart; Ousingsawat, Jiraporn; Sirianant, Lalida

    2016-01-01

    A remarkable feature of apoptosis is the initial massive cell shrinkage, which requires opening of ion channels to allow release of K(+), Cl(-), and organic osmolytes to drive osmotic water movement and cell shrinkage. This article focuses on the role of the Cl(-) channels LRRC8, TMEM16/anoctamin......, and cystic fibrosis transmembrane conductance regulator (CFTR) in cellular apoptosis. LRRC8A-E has been identified as a volume-regulated anion channel expressed in many cell types. It was shown to be required for regulatory and apoptotic volume decrease (RVD, AVD) in cultured cell lines. Its presence also......(-) channels or as regulators of other apoptotic Cl(-) channels, such as LRRC8. CFTR has been known for its proapoptotic effects for some time, and this effect may be based on glutathione release from the cell and increase in cytosolic reactive oxygen species (ROS). Although we find that CFTR is activated...

  1. RESEARCH: Effects of Recent Volcanic Eruptions on Aquatic Habitat in the Drift River, Alaska, USA: Implications at Other Cook Inlet Region Volcanoes.

    Science.gov (United States)

    DORAVA; MILNER

    1999-02-01

    / Numerous drainages supporting productive salmon habitat are surrounded by active volcanoes on the west side of Cook Inlet in south-central Alaska. Eruptions have caused massive quantities of flowing water and sediment to enter the river channels emanating from glaciers and snowfields on these volcanoes. Extensive damage to riparian and aquatic habitat has commonly resulted, and benthic macroinvertebrate and salmonid communities can be affected. Because of the economic importance of Alaska's fisheries, detrimental effects on salmonid habitat can have significant economic implications. The Drift River drains glaciers on the northern and eastern flanks of Redoubt Volcano. During and following eruptions in 1989-1990, severe physical disturbances to the habitat features of the river adversely affected the fishery. Frequent eruptions at other Cook Inlet region volcanoes exemplify the potential effects of volcanic activity on Alaska's important commercial, sport, and subsistence fisheries. Few studies have documented the recovery of aquatic habitat following volcanic eruptions. The eruptions of Redoubt Volcano in 1989-1990 offered an opportunity to examine the recovery of the macroinvertebrate community. Macroinvertebrate community composition and structure in the Drift River were similar in both undisturbed and recently disturbed sites. Additionally, macroinvertebrate samples from sites in nearby undisturbed streams were highly similar to those from some Drift River sites. This similarity and the agreement between the Drift River macroinvertebrate community composition and that predicted by a qualitative model of typical macroinvertebrate communities in glacier-fed rivers indicate that the Drift River macroinvertebrate community is recovering five years after the disturbances associated with the most recent eruptions of Redoubt Volcano. KEY WORDS: Aquatic habitat; Volcanoes; Lahars; Lahar-runout flows; Macroinvertebrates; Community structure; Community composition

  2. Salmon River Habitat Enhancement, 1989 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, Mike

    1989-04-01

    This project was funded by the Bonneville Power Administration (BPA). The annual report contains three individual subproject papers detailing tribal fisheries work completed during the summer and fall of 1989. Subproject 1 contains summaries of evaluation/monitoring efforts associated with the Bear Valley Creek, Idaho enhancement project. Subproject 2 contains an evaluation of the Yankee Fork of the Salmon River habitat enhancement project. This report has been sub-divided into two parts: Part 1; stream evaluation and Part 2; pond series evaluation. Subproject 3 concerns the East Fork of the Salmon River, Idaho. This report summarizes the evaluation of the project to date including the 1989 pre-construction evaluation conducted within the East Fork drainage. Dredge mining has degraded spawning and rearing habitat for chinook salmon and steelhead trout in the Yankee Fork drainage of the Salmon River and in Bear Valley Creek. Mining, agricultural, and grazing practices degraded habitat in the East Fork of the Salmon River. Biological monitoring of the success of habitat enhancement for Bear Valley Creek and Yankee Fork are presented in this report. Physical and biological inventories prior to habitat enhancement in East Fork were also conducted. Four series of off-channel ponds of the Yankee Fork are shown to provide effective rearing habitat for chinook salmon. 45 refs., 49 figs., 24 tabs.

  3. Effect of habitat improvement on Atlantic salmon in the regulated river Suldalslaagen

    International Nuclear Information System (INIS)

    Raastad, J.E.; Lillehammer, A.; Lillehammer, L.; Eie, J.A.

    1993-01-01

    The River Suldaalslagen, which holds a population of large Atlantic salmon, has been regulated twice for hydropower production. The first regulation occurred in 1968 and the second in 1980. Present problems include the reduced density of benthic fauna, the reduced growth rate of young salmon, the low survival of 0 + fish and the increased time required for smoltification. A programme of habitat restoration includes building a rearing channel system where water flow and the substrate can be controlled. The salmon fry are stocked in the rearing channel and in an adjacent tributary stream. The effects on macrobenthos of introduced dead organic material were also studied. Improvement of physical habitat increased the density of benthic animals, and the survival of 1 + salmon was about 30%. Experiments that included adding 115 g wheat/m 2 resulted in a threefold increase in benthic fauna compared with a control area. The largest increase in numbers was Chironomidae in August-September, when benthic Crustacea also showed a significant increase. An increase in macrobenthos is expected to increase the growth and survival of young salmon fry. (Author)

  4. Modeling the morphogenesis of brine channels in sea ice.

    Science.gov (United States)

    Kutschan, B; Morawetz, K; Gemming, S

    2010-03-01

    Brine channels are formed in sea ice under certain constraints and represent a habitat of different microorganisms. The complex system depends on a number of various quantities as salinity, density, pH value, or temperature. Each quantity governs the process of brine channel formation. There exists a strong link between bulk salinity and the presence of brine drainage channels in growing ice with respect to both the horizontal and vertical planes. We develop a suitable phenomenological model for the formation of brine channels both referring to the Ginzburg-Landau theory of phase transitions as well as to the chemical basis of morphogenesis according to Turing. It is possible to conclude from the critical wave number on the size of the structure and the critical parameters. The theoretically deduced transition rates have the same magnitude as the experimental values. The model creates channels of similar size as observed experimentally. An extension of the model toward channels with different sizes is possible. The microstructure of ice determines the albedo feedback and plays therefore an important role for large-scale global circulation models.

  5. Arroyo Management Plan (Alameda County): A Plan for Implementing Access and Restoring Riparian Habitats

    Science.gov (United States)

    Kent E. Watson; Jim Horner; Louise Mozingo

    1989-01-01

    Innovative techniques for restoring riparian habitats are of little value without a community endorsed plan for their implementation. A flood control district commissioned the Arroyo Management Plan in order to determine how it might provide public access and improve habitat along its current and future channels in a fast-growing area of Northern California. The Plan,...

  6. Hydraulic, geomorphic, and trout habitat conditions of the Lake Fork of the Gunnison River in Hinsdale County, Lake City, Colorado, Water Years 2010-2011

    Science.gov (United States)

    Williams, Cory A.; Richards, Rodney J.; Schaffrath, Keelin R.

    2015-01-01

    Channel rehabilitation, or reconfiguration, to mitigate a variety of riverine problems has become a common practice in the western United States. However, additional work to monitor and assess the channel response to, and the effectiveness of, these modifications over longer periods of time (decadal or longer) is still needed. The Lake Fork of the Gunnison River has been an area of active channel modification to accommodate the needs of the Lake City community since the 1950s. The Lake Fork Valley Conservancy District began a planning process to assess restoration options for a reach of the Lake Fork in Lake City to enhance hydraulic and ecologic characteristics of the reach. Geomorphic channel form is affected by land-use changes within the basin and geologic controls within the reach. The historic channel was defined as a dynamic, braided channel with an active flood plain. This can result in a natural tendency for the channel to braid. A braided channel can affect channel stability of reconfigured reaches when a single-thread meandering channel is imposed on the stream. The U.S. Geological Survey, in cooperation with the Colorado Water Conservation Board and Colorado River Water Conservation District, began a study in 2010 to quantify existing hydraulic and habitat conditions for a reach of the Lake Fork of the Gunnison River in Lake City, Colorado. The purpose of this report is to quantify existing Lake Fork hydraulic and habitat conditions and establish a baseline against which post-reconfiguration conditions can be compared. This report (1) quantifies the existing hydraulic and geomorphic conditions in a 1.1-kilometer section of the Lake Fork at Lake City that has been proposed as a location for future channel-rehabilitation efforts, (2) characterizes the habitat suitability of the reach for two trout species based on physical conditions within the stream, and (3) characterizes the current riparian canopy density.

  7. Anthropogenic areas as incidental substitutes for original habitat.

    Science.gov (United States)

    Martínez-Abraín, Alejandro; Jiménez, Juan

    2016-06-01

    One speaks of ecological substitutes when an introduced species performs, to some extent, the ecosystem function of an extirpated native species. We suggest that a similar case exists for habitats. Species evolve within ecosystems, but habitats can be destroyed or modified by natural and human-made causes. Sometimes habitat alteration forces animals to move to or remain in a suboptimal habitat type. In that case, the habitat is considered a refuge, and the species is called a refugee. Typically refugee species have lower population growth rates than in their original habitats. Human action may lead to the unintended generation of artificial or semiartificial habitat types that functionally resemble the essential features of the original habitat and thus allow a population growth rate of the same magnitude or higher than in the original habitat. We call such areas substitution habitats and define them as human-made habitats within the focal species range that by chance are partial substitutes for the species' original habitat. We call species occupying a substitution habitat adopted species. These are 2 new terms in conservation biology. Examples of substitution habitats are dams for European otters, wheat and rice fields for many steppeland and aquatic birds, and urban areas for storks, falcons, and swifts. Although substitution habitats can bring about increased resilience against the agents of global change, the conservation of original habitat types remains a conservation priority. © 2016 Society for Conservation Biology.

  8. Toward a Rapid Synthesis of Field and Desktop Data for Classifying Streams in the Pacific Northwest: Guiding the Sampling and Management of Salmonid Habitat

    Science.gov (United States)

    Kasprak, A.; Wheaton, J. M.; Bouwes, N.; Weber, N. P.; Trahan, N. C.; Jordan, C. E.

    2012-12-01

    River managers often seek to understand habitat availability and quality for riverine organisms within the physical template provided by their landscape. Yet the large amount of natural heterogeneity in landscapes gives rise to stream systems which are highly variable over small spatial scales, potentially complicating site selection for surveying aquatic habitat while simultaneously making a simple, wide-reaching management strategy elusive. This is particularly true in the rugged John Day River Basin of northern Oregon, where efforts as part of the Columbia Habitat Monitoring Program to conduct site-based surveys of physical habitat for endangered steelhead salmon (Oncorhynchus mykiss) are underway. As a complete understanding of the type and distribution of habitat available to these fish would require visits to all streams in the basin (impractical due to its large size), here we develop an approach for classifying channel types which combines remote desktop GIS analyses with rapid field-based stream and landscape surveys. At the core of this method, we build off of the River Styles Framework, an open-ended and process-based approach for classifying streams and informing management decisions. This framework is combined with on-the-ground fluvial audits, which aim to quickly and continuously map sediment dynamics and channel behavior along selected channels. Validation of this classification method is completed by on-the-ground stream surveys using a digital iPad platform and by rapid small aircraft overflights to confirm or refine predictions. We further compare this method with existing channel classification approaches for the region (e.g. Beechie, Montgomery and Buffington). The results of this study will help guide both the refinement of site stratification and selection for salmonid habitat monitoring within the basin, and will be vital in designing and prioritizing restoration and management strategies tailored to the distribution of river styles found

  9. Wildlife use of back channels associated with islands on the Ohio River

    Science.gov (United States)

    Zadnik, A.K.; Anderson, James T.; Wood, P.B.; Bledsoe, K.

    2009-01-01

    The back channels of islands on the Ohio River are assumed to provide habitat critical for several wildlife species. However, quantitative information on the wildlife value of back channels is needed by natural resource managers for the conservation of these forested islands and embayments in the face of increasing shoreline development and recreational boating. We compared the relative abundance of waterbirds, turtles, anurans, and riparian furbearing mammals during 2001 and 2002 in back and main channels of the Ohio River in West Virginia. Wood ducks (Aix sponsa), snapping turtles (Chelydra serpentina), beavers (Castor canadensis), and muskrats (Ondatra zibethicus) were more abundant in back than main channels. Spring peepers (Pseudacris crucifer) and American toads (Bufo americanus) occurred more frequently on back than main channels. These results provide quantitative evidence that back channels are important for several wildlife species. The narrowness of the back channels, the protection they provide from the main current of the river, and their ability to support vegetated shorelines and woody debris, are characteristics that appear to benefit these species. As a conservation measure for important riparian wildlife habitat, we suggest limiting building of piers and development of the shoreline in back channel areas. ?? 2009, The Society of Wetland Scientists.

  10. Landscape determinants and remote sensing of anopheline mosquito larval habitats in the western Kenya highlands.

    Science.gov (United States)

    Mushinzimana, Emmanuel; Munga, Stephen; Minakawa, Noboru; Li, Li; Feng, Chen-Chieng; Bian, Ling; Kitron, Uriel; Schmidt, Cindy; Beck, Louisa; Zhou, Guofa; Githeko, Andrew K; Yan, Guiyun

    2006-02-16

    In the past two decades the east African highlands have experienced several major malaria epidemics. Currently there is a renewed interest in exploring the possibility of anopheline larval control through environmental management or larvicide as an additional means of reducing malaria transmission in Africa. This study examined the landscape determinants of anopheline mosquito larval habitats and usefulness of remote sensing in identifying these habitats in western Kenya highlands. Panchromatic aerial photos, Ikonos and Landsat Thematic Mapper 7 satellite images were acquired for a study area in Kakamega, western Kenya. Supervised classification of land-use and land-cover and visual identification of aquatic habitats were conducted. Ground survey of all aquatic habitats was conducted in the dry and rainy seasons in 2003. All habitats positive for anopheline larvae were identified. The retrieved data from the remote sensors were compared to the ground results on aquatic habitats and land-use. The probability of finding aquatic habitats and habitats with Anopheles larvae were modelled based on the digital elevation model and land-use types. The misclassification rate of land-cover types was 10.8% based on Ikonos imagery, 22.6% for panchromatic aerial photos and 39.2% for Landsat TM 7 imagery. The Ikonos image identified 40.6% of aquatic habitats, aerial photos identified 10.6%, and Landsate TM 7 image identified 0%. Computer models based on topographic features and land-cover information obtained from the Ikonos image yielded a misclassification rate of 20.3-22.7% for aquatic habitats, and 18.1-25.1% for anopheline-positive larval habitats. One-metre spatial resolution Ikonos images combined with computer modelling based on topographic land-cover features are useful tools for identification of anopheline larval habitats, and they can be used to assist to malaria vector control in western Kenya highlands.

  11. Complementary habitat use by wild bees in agro-natural landscapes.

    Science.gov (United States)

    Mandelik, Yael; Winfree, Rachael; Neeson, Thomas; Kremen, Claire

    2012-07-01

    Human activity causes abrupt changes in resource availability across the landscape. In order to persist in human-altered landscapes organisms need to shift their habitat use accordingly. Little is known about the mechanisms by which whole communities persist in human-altered landscapes, including the role of complementary habitat use. We define complementary habitat use as the use of different habitats at different times by the same group of species during the course of their activity period. We hypothesize that complementary habitat use is a mechanism through which native bee species persist in human-altered landscapes. To test this idea, we studied wild bee communities in agro-natural landscapes and explored their community-level patterns of habitat and resource use over space and time. The study was conducted in six agro-natural landscapes in the eastern United States, each containing three main bee habitat types (natural habitat, agricultural fields, and old fields). Each of the three habitats exhibited a unique seasonal pattern in amount, diversity, and composition of floral resources, and together they created phenological complementarity in foraging resources for bees. Individual bee species as well as the bee community responded to these spatiotemporal patterns in floral availability and exhibited a parallel pattern of complementary habitat use. The majority of wild bee species, including all the main crop visitors, used fallow areas within crops early in the season, shifted to crops in mid-season, and used old-field habitats later in the season. The natural-forest habitat supported very limited number of bees, mostly visitors of non-crop plants. Old fields are thus an important feature in these arable landscapes for maintaining crop pollination services. Our study provides a detailed examination of how shifts in habitat and resource use may enable bees to persist in highly dynamic agro-natural landscapes, and points to the need for a broad cross-habitat

  12. Spawning and nursery habitats of neotropical fish species in the tributaries of a regulated river

    Science.gov (United States)

    Makrakis, Maristela Cavicchioli; da Silva, Patrícia S.; Makrakis, Sergio; de Lima, Ariane F.; de Assumpção, Lucileine; de Paula, Salete; Miranda, Leandro E.; Dias, João Henrique Pinheiro

    2012-01-01

    This chapter provides information on ontogenetic patterns of neotropical fish species distribution in tributaries (Verde, Pardo, Anhanduí, and Aguapeí rivers) of the Porto Primavera Reservoir, in the heavily dammed Paraná River, Brazil, identifying key spawning and nursery habitats. Samplings were conducted monthly in the main channel of rivers and in marginal lagoons from October through March during three consecutive spawning seasons in 2007-2010. Most species spawn in December especially in Verde River. Main river channels are spawning habitats and marginal lagoons are nursery areas for most fish, mainly for migratory species. The tributaries have high diversity of larvae species: a total of 56 taxa representing 21 families, dominated by Characidae. Sedentary species without parental care are more abundant (45.7%), and many long-distance migratory fish species are present (17.4%). Migrators included Prochilodus lineatus, Rhaphiodon vulpinus, Hemisorubim platyrhynchos, Pimelodus maculatus, Pseudoplatystoma corruscans, Sorubim lima, two threatened migratory species: Salminus brasiliensis and Zungaro jahu, and one endangered migratory species: Brycon orbignyanus. Most of these migratory species are vital to commercial and recreational fishing, and their stocks have decreased drastically in the last decades, attributed to habitat alteration, especially impoundments. The fish ladder at Porto Primavera Dam appears to be playing an important role in re-establishing longitudinal connectivity among critical habitats, allowing ascent to migratory fish species, and thus access to upstream reaches and tributaries. Establishment of Permanent Conservation Units in tributaries can help preserve habitats identified as essential spawning and nursery areas, and can be key to the maintenance and conservation of the fish species in the Paraná River basin.

  13. Sedimentary Facies Mapping Based on Tidal Channel Network and Topographic Features

    Science.gov (United States)

    Ryu, J. H.; Lee, Y. K.; Kim, K.; Kim, B.

    2015-12-01

    Tidal flats on the west coast of Korea suffer intensive changes in their surface sedimentary facies as a result of the influence of natural and artificial changes. Spatial relationships between surface sedimentary facies distribution and benthic environments were estimated for the open-type Ganghwa tidal flat and semi closed-type Hwangdo tidal flat, Korea. In this study, we standardized the surface sedimentary facies and tidal channel index of the channel density, distance, thickness and order. To extract tidal channel information, we used remotely sensed data, such as those from the Korea Multi-Purpose Satellite (KOMPSAT)-2, KOMPSAT-3, and aerial photographs. Surface sedimentary facies maps were generated based on field data using an interpolation method.The tidal channels in each sediment facies had relatively constant meandering patterns, but the density and complexity were distinguishable. The second fractal dimension was 1.7-1.8 in the mud flat, about 1.4 in the mixed flat, and about 1.3 in the sand flat. The channel density was 0.03-0.06 m/m2 in the mud flat and less than 0.02 m/m2 in the mixed and sand flat areas of the two test areas. Low values of the tidal channel index, which indicated a simple pattern of tidal channel distribution, were identified at areas having low elevation and coarse-grained sediments. By contrast, high values of the tidal channel index, which indicated a dendritic pattern of tidal channel distribution, were identified at areas having high elevation and fine-grained sediments. Surface sediment classification based on remotely sensed data must circumspectly consider an effective critical grain size, water content, local topography, and intertidal structures.

  14. Habitat loss and gain: Influence on habitat attractiveness for estuarine fish communities

    Science.gov (United States)

    Amorim, Eva; Ramos, Sandra; Elliott, Michael; Franco, Anita; Bordalo, Adriano A.

    2017-10-01

    Habitat structure and complexity influence the structuring and functioning of fish communities. Habitat changes are one of the main pressures affecting estuarine systems worldwide, yet the degree and rate of change and its impact on fish communities is still poorly understood. In order to quantify historical modifications in habitat structure, an ecohydrological classification system using physiotopes, i.e. units with homogenous abiotic characteristics, was developed for the lower Lima estuary (NW Portugal). Field data, aerial imagery, historical maps and interpolation methods were used to map input variables, including bathymetry, substratum (hard/soft), sediment composition, hydrodynamics (current velocity) and vegetation coverage. Physiotopes were then mapped for the years of 1933 and 2013 and the areas lost and gained over the 80 years were quantified. The implications of changes for the benthic and demersal fish communities using the lower estuary were estimated using the attractiveness to those communities of each physiotope, while considering the main estuarine habitat functions for fish, namely spawning, nursery, feeding and refuge areas and migratory routes. The lower estuary was highly affected due to urbanisation and development and, following a port/harbour expansion, its boundary moved seaward causing an increase in total area. Modifications led to the loss of most of its sandy and saltmarsh intertidal physiotopes, which were replaced by deeper subtidal physiotopes. The most attractive physiotopes for fish (defined as the way in which they supported the fish ecological features) decreased in area while less attractive ones increased, producing an overall lower attractiveness of the studied area in 2013 compared to 1933. The implications of habitat alterations for the fish using the estuary include potential changes in the nursery carrying capacity and the functioning of the fish community. The study also highlighted the poor knowledge of the impacts of

  15. Extracting time-frequency feature of single-channel vastus medialis EMG signals for knee exercise pattern recognition.

    Directory of Open Access Journals (Sweden)

    Yi Zhang

    Full Text Available The EMG signal indicates the electrophysiological response to daily living of activities, particularly to lower-limb knee exercises. Literature reports have shown numerous benefits of the Wavelet analysis in EMG feature extraction for pattern recognition. However, its application to typical knee exercises when using only a single EMG channel is limited. In this study, three types of knee exercises, i.e., flexion of the leg up (standing, hip extension from a sitting position (sitting and gait (walking are investigated from 14 healthy untrained subjects, while EMG signals from the muscle group of vastus medialis and the goniometer on the knee joint of the detected leg are synchronously monitored and recorded. Four types of lower-limb motions including standing, sitting, stance phase of walking, and swing phase of walking, are segmented. The Wavelet Transform (WT based Singular Value Decomposition (SVD approach is proposed for the classification of four lower-limb motions using a single-channel EMG signal from the muscle group of vastus medialis. Based on lower-limb motions from all subjects, the combination of five-level wavelet decomposition and SVD is used to comprise the feature vector. The Support Vector Machine (SVM is then configured to build a multiple-subject classifier for which the subject independent accuracy will be given across all subjects for the classification of four types of lower-limb motions. In order to effectively indicate the classification performance, EMG features from time-domain (e.g., Mean Absolute Value (MAV, Root-Mean-Square (RMS, integrated EMG (iEMG, Zero Crossing (ZC and frequency-domain (e.g., Mean Frequency (MNF and Median Frequency (MDF are also used to classify lower-limb motions. The five-fold cross validation is performed and it repeats fifty times in order to acquire the robust subject independent accuracy. Results show that the proposed WT-based SVD approach has the classification accuracy of 91.85%±0

  16. Combined effects of local habitat, anthropogenic stress, and dispersal on stream ecosystems: a mesocosm experiment.

    Science.gov (United States)

    Turunen, Jarno; Louhi, Pauliina; Mykrä, Heikki; Aroviita, Jukka; Putkonen, Emmi; Huusko, Ari; Muotka, Timo

    2018-06-06

    The effects of anthropogenic stressors on community structure and ecosystem functioning can be strongly influenced by local habitat structure and dispersal from source communities. Catchment land uses increase the input of fine sediments into stream channels, clogging the interstitial spaces of benthic habitats. Aquatic macrophytes enhance habitat heterogeneity and mediate important ecosystem functions, being thus a key component of habitat structure in many streams. Therefore, the recovery of macrophytes following in-stream habitat modification may be prerequisite for successful stream restoration. Restoration success is also affected by dispersal of organisms from the source community, with potentially strongest responses in relatively isolated headwater sites that receive limited amount of dispersing individuals. We used a factorial design in a set of stream mesocosms to study the independent and combined effects of an anthropogenic stressor (sand sedimentation), local habitat (macrophytes, i.e. moss transplants) and enhanced dispersal (two levels: high vs. low) on organic matter retention, algal accrual rate, leaf decomposition and macroinvertebrate community structure. Overall, all responses were simple additive effects with no interactions between treatments. Sand reduced algal accumulation, total invertebrate density and density of a few individual taxa. Mosses reduced algal accrual rate and algae-grazing invertebrates, but enhanced organic matter retention and detritus- and filter-feeders. Mosses also reduced macroinvertebrate diversity by increasing the dominance by a few taxa. Mosses also reduced leaf-mass loss, possibly because the organic matter retained by mosses provided an additional food source for leaf-shredding invertebrates and thus reduced shredder aggregation into leaf packs. The effect of mosses on macroinvertebrate communities and ecosystem functioning was distinct irrespective of the level of dispersal, suggesting strong environmental

  17. [Features of calcium crystals and calcium components in 54 plant species in salinized habitats of Tianjin].

    Science.gov (United States)

    Xu, Jing-Jing; Ci, Hua-Cong; He, Xing-Dong; Xue, Ping-Ping; Zhao, Xue-Lai; Guo, Jian-Tan; Gao, Yu-Bao

    2012-05-01

    Plant calcium (Ca) is composed of dissociated Ca2+ and easily soluble, slightly soluble, and hard soluble combined Ca salts. The hard soluble Ca salts can often engender Ca crystals. To understand the Ca status in different growth form plants in salinized habitats, 54 plant species were sampled from the salinized habitats in Tianjin, with the Ca crystals examined by microscope and the Ca components determined by sequential fractionation procedure. More Ca crystals were found in 38 of the 54 plant species. In 37 of the 38 plant species, drusy and prismatic Ca oxalate crystals dominated, whereas the cystolith of Ca carbonate crystal only appeared in the leaves of Ficus carica of Moraceae. The statistics according to growth form suggested that deciduous arbors and shrubs had more Ca oxalate crystal, liana had lesser Ca oxalate crystal, and herbs and evergreen arbors had no Ca oxalate crystal. From arbor, shrub, liana to herb, the concentration of HCl-soluble Ca decreased gradually, while that of water soluble Ca was in adverse. The concentration of water soluble Ca in herbs was significantly higher than that in arbors and shrubs. This study showed that in salinized habitats, plant Ca crystals and Ca components differed with plant growth form, and the Ca oxalate in deciduous arbors and shrubs played an important role in withstanding salt stress.

  18. Umatilla River Basin Anadromous Fish Habitat Enhancement Project : 1995 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, R.Todd

    1996-05-01

    During the 1995 - 96 project period, four new habitat enhancement projects were implemented under the Umatilla River Basin Anadromous Fish Habitat Enhancement Project by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) in the upper Umatilla River Basin. A total of 38,644 feet of high tensile smooth wire fencing was constructed along 3.6 miles of riparian corridor in the Meacham Creek, Wildhorse Creek, Greasewood Creek, West Fork of Greasewood Creek and Mission Creek watersheds. Additional enhancements on Wildhorse Creek and the lower Greasewood Creek System included: (1) installation of 0.43 miles of smooth wire between river mile (RM) 10.25 and RM 10.5 Wildhorse Creek (fence posts and structures had been previously placed on this property during the 1994 - 95 project period), (2) construction of 46 sediment retention structures in stream channels and maintenance to 18 existing sediment retention structures between RM 9.5 and RM 10.25 Wildhorse Creek, and (3) revegetation of stream corridor areas and adjacent terraces with 500 pounds of native grass seed or close species equivalents and 5,000 native riparian shrub/tree species to assist in floodplain recovery, stream channel stability and filtering of sediments during high flow periods. U.S. Fish and Wildlife Service (USFWS), Bureau of Indian Affairs (BIA) and Environmental Protection Agency (EPA) funds were cost shared with Bonneville Power Administration (BPA) funds, provided under this project, to accomplish habitat enhancements. Water quality monitoring continued and was expanded for temperature and turbidity throughout the upper Umatilla River Watershed. Physical habitat surveys were conducted on the lower 13 river miles of Wildhorse Creek and within the Greasewood Creek Project Area to characterize habitat quality and to quantify various habitat types by area.

  19. Effect of habitat improvement on Atlantic salmon in the regulated river Suldalslaagen

    Energy Technology Data Exchange (ETDEWEB)

    Raastad, J.E.; Lillehammer, A.; Lillehammer, L. (Oslo Univ. (Norway). Zoological Museum); Kaasa, H. (Statkraft, Hoevik (Norway)); Eie, J.A. (Norwegian Water Resources and Energy Administration, Oslo (Norway))

    1993-05-01

    The River Suldaalslagen, which holds a population of large Atlantic salmon, has been regulated twice for hydropower production. The first regulation occurred in 1968 and the second in 1980. Present problems include the reduced density of benthic fauna, the reduced growth rate of young salmon, the low survival of 0[sup +] fish and the increased time required for smoltification. A programme of habitat restoration includes building a rearing channel system where water flow and the substrate can be controlled. The salmon fry are stocked in the rearing channel and in an adjacent tributary stream. The effects on macrobenthos of introduced dead organic material were also studied. Improvement of physical habitat increased the density of benthic animals, and the survival of 1[sup +] salmon was about 30%. Experiments that included adding 115 g wheat/m[sup 2] resulted in a threefold increase in benthic fauna compared with a control area. The largest increase in numbers was Chironomidae in August-September, when benthic Crustacea also showed a significant increase. An increase in macrobenthos is expected to increase the growth and survival of young salmon fry. (Author)

  20. Channel Selection and Feature Projection for Cognitive Load Estimation Using Ambulatory EEG

    Directory of Open Access Journals (Sweden)

    Tian Lan

    2007-01-01

    Full Text Available We present an ambulatory cognitive state classification system to assess the subject's mental load based on EEG measurements. The ambulatory cognitive state estimator is utilized in the context of a real-time augmented cognition (AugCog system that aims to enhance the cognitive performance of a human user through computer-mediated assistance based on assessments of cognitive states using physiological signals including, but not limited to, EEG. This paper focuses particularly on the offline channel selection and feature projection phases of the design and aims to present mutual-information-based techniques that use a simple sample estimator for this quantity. Analyses conducted on data collected from 3 subjects performing 2 tasks (n-back/Larson at 2 difficulty levels (low/high demonstrate that the proposed mutual-information-based dimensionality reduction scheme can achieve up to 94% cognitive load estimation accuracy.

  1. Skipjack Tuna Availability for Purse Seine Fisheries Is Driven by Suitable Feeding Habitat Dynamics in the Atlantic and Indian Oceans

    Directory of Open Access Journals (Sweden)

    Jean-Noël Druon

    2017-10-01

    Full Text Available An Ecological Niche model was developed for skipjack tuna (Katsuwonus pelamis, SKJ in the Eastern Central Atlantic Ocean (AO and Western Indian Ocean (IO using an extensive set of presence data collected by the European purse seine fleet (1998–2014. Chlorophyll-a fronts were used as proxy for food availability while mixed layer depth, sea surface temperature, dissolved oxygen, salinity, current intensity, and height anomaly variables were selected to describe SKJ's abiotic environmental preferences. The resultant ecological niche included both mesoscale eddy-type productive features that displayed latitudinal range in the IO to large scale upwelling systems that shrink and swell seasonally in the AO. Overall, 83% of all free swimming school sets (FSC and 75% of drifting fish aggregating device sets (dFAD that contained SKJ occurred within 25 km of favorable feeding habitat. In the AO, 34% of dFAD sets were made more than 100 km away from this habitat, mostly in the surface chlorophyll-a poor environment of the Guinea Current. These distant sets represent 10% of dFAD sets in the IO and 8% of all FSC sets. Our results suggest that the Mozambique Channel in the IO, with its simultaneously favorable feeding and spawning conditions, may seasonally offer a better SKJ nursery habitat than the Guinea Current which shows a substantially poorer feeding capacity. With the exception of this latter area, our results also suggest that fishing accessibility will be higher in months where the size of the favorable feeding habitats are reduced, likely because this reduction drives a geographical contraction in SKJ populations. The observed relationship between the annual size of favorable feeding habitat and both annual catch rates and total catches in the IO is consistent with the near-full exploitation of this stock that has occurred since the 2000s. Moreover, it suggests that annual habitat size could be used as an indicator of growth capacity for this

  2. River-corridor habitat dynamics, Lower Missouri River

    Science.gov (United States)

    Jacobson, Robert B.

    2010-01-01

    Intensive management of the Missouri River for navigation, flood control, and power generation has resulted in substantial physical changes to the river corridor. Historically, the Missouri River was characterized by a shifting, multithread channel and abundant unvegetated sandbars. The shifting channel provided a wide variety of hydraulic environments and large areas of connected and unconnected off-channel water bodies.Beginning in the early 1800s and continuing to the present, the channel of the Lower Missouri River (downstream from Sioux City, Iowa) has been trained into a fast, deep, single-thread channel to stabilize banks and maintain commercial navigation. Wing dikes now concentrate the flow, and revetments and levees keep the channel in place and disconnect it from the flood plain. In addition, reservoir regulation of the Missouri River upstream of Yankton, South Dakota, has substantially changed the annual hydrograph, sediment loads, temperature regime, and nutrient budgets.While changes to the Missouri River have resulted in broad social and economic benefits, they have also been associated with loss of river-corridor habitats and diminished populations of native fish and wildlife species. Today, Missouri River stakeholders are seeking ways to restore some natural ecosystem benefits of the Lower Missouri River without compromising traditional economic uses of the river and flood plain.

  3. Eder Acquisition 2007 Habitat Evaluation Procedures Report.

    Energy Technology Data Exchange (ETDEWEB)

    Ashley, Paul R.

    2008-01-01

    A habitat evaluation procedures (HEP) analysis was conducted on the Eder acquisition in July 2007 to determine how many protection habitat units to credit Bonneville Power Administration (BPA) for providing funds to acquire the project site as partial mitigation for habitat losses associated with construction of Grand Coulee and Chief Joseph Dams. Baseline HEP surveys generated 3,857.64 habitat units or 1.16 HUs per acre. HEP surveys also served to document general habitat conditions. Survey results indicated that the herbaceous plant community lacked forbs species, which may be due to both livestock grazing and the late timing of the surveys. Moreover, the herbaceous plant community lacked structure based on lower than expected visual obstruction readings (VOR); likely a direct result of livestock impacts. In addition, introduced herbaceous vegetation including cultivated pasture grasses, e.g. crested wheatgrass and/or invader species such as cheatgrass and mustard, were present on most areas surveyed. The shrub element within the shrubsteppe cover type was generally a mosaic of moderate to dense shrubby areas interspersed with open grassland communities while the 'steppe' component was almost entirely devoid of shrubs. Riparian shrub and forest areas were somewhat stressed by livestock. Moreover, shrub and tree communities along the lower reaches of Nine Mile Creek suffered from lack of water due to the previous landowners 'piping' water out of the stream channel.

  4. Apparent foraging success reflects habitat quality in an irruptive species, the Black-backed Woodpecker

    Science.gov (United States)

    Christopher T. Rota; Mark A. Rumble; Chad P. Lehman; Dylan C. Kesler; Joshua J. Millspaugh

    2015-01-01

    Dramatic fluctuations in food resources are a key feature of many habitats, and many species have evolved a movement strategy to exploit food resources that are unpredictable in space and time. The availability of food resources may be a particularly strong determinant of habitat quality for irruptive bird species. We studied the apparent foraging success of Black-...

  5. Effects of habitat features on size-biased predation on salmon by bears.

    Science.gov (United States)

    Andersson, Luke C; Reynolds, John D

    2017-05-01

    Predators can drive trait divergence among populations of prey by imposing differential selection on prey traits. Habitat characteristics can mediate predator selectivity by providing refuge for prey. We quantified the effects of stream characteristics on biases in the sizes of spawning salmon caught by bears (Ursus arctos and U. americanus) on the central coast of British Columbia, Canada by measuring size-biased predation on spawning chum (Oncorhynchus keta) and pink (O. gorbuscha) salmon in 12 streams with varying habitat characteristics. We tested the hypotheses that bears would catch larger than average salmon (size-biased predation) and that this bias toward larger fish would be higher in streams that provide less protection to spawning salmon from predation (e.g., less pools, wood, undercut banks). We then we tested for how such size biases in turn translate into differences among populations in the sizes of the fish. Bears caught larger-than-average salmon as the spawning season progressed and as predicted, this was most pronounced in streams with fewer refugia for the fish (i.e., wood and undercut banks). Salmon were marginally smaller in streams with more pronounced size-biased predation but this predictor was less reliable than physical characteristics of streams, with larger fish in wider, deeper streams. These results support the hypothesis that selective forces imposed by predators can be mediated by habitat characteristics, with potential consequences for physical traits of prey.

  6. Monitor and Protect Wigwam River Bull Trout for Koocanusa Reservoir; Skookumchuck Creek Juvenile Bull Trout and Fish Habitat Monitoring Program, Annual Report 2002.

    Energy Technology Data Exchange (ETDEWEB)

    Cope, R.

    2003-06-01

    channel with a well-developed floodplain. The presence of an undisturbed riparian ecosystem dominated by mature, coniferous forest, combined with a high percentage of coarse particles in the stream bank, result in stable stream banks with low sediment supply. The results of the habitat assessment concur with the stable stream channel type and channel disturbance features noted were infrequent and minor in nature. Detailed summaries of channel profile, pattern, dimension and materials are provided in Appendices. It was recommended that a fourth index site representing tributary spawning and rearing habitat be established in lower Sandown Creek and included for baseline data collection in year two.

  7. Allegheny woodrat (Neotoma magister) use of rock drainage channels on reclaimed mines in southern West Virginia

    Science.gov (United States)

    Chamblin, H.D.; Wood, P.B.; Edwards, J.W.

    2004-01-01

    Allegheny woodrats (Neotoma magister) currently receive protected status throughout their range due to population declines. Threats associated with habitat fragmentation (e.g., introduced predators, disease, loss of connectivity among subpopulations and habitat loss) may explain why Allegheny woodrats are no longer found in many areas where they existed just 25 y ago. In southern West Virginia, surface coal mining is a major cause of forest fragmentation. Furthermore, mountaintop mining, the prevalent method in the region, results in a loss of rock outcrops and cliffs within forested areas, typical habitat of the Allegheny woodrat To determine the extent that Allegheny woodrats make use of reclaimed mine land, particularly rock drainages built during reclamation, we sampled 24 drainage channels on reclaimed surface mines in southern West Virginia, collected habitat data at each site and used logistic regression to identify habitat variables related to Allegheny woodrat presence. During 187 trap nights, 13 adult, 2 subadult and 8 juvenile Allegheny woodrats were captured at 13 of the 24 sites. Percent of rock as a groundcover and density of stems >15 cm diameter-at-breast-height (DBH) were related to Allegheny woodrat presence and were significantly greater at sites where Allegheny woodrats were present than absent. Sites where Allegheny woodrats were present differed substantially from other described habitats in West Virginia, though they may simulate boulder piles that occur naturally. Our findings suggest the need for additional research to examine the dynamics between Allegheny woodrat populations inhabiting rock outcrops in forests adjacent to mines and populations inhabiting constructed drainage channels on reclaimed mines. However, if Allegheny woodrats can use human-created habitat, our results will be useful to surface mine reclamation and to other mitigation efforts where rocky habitats are lost or disturbed.

  8. Fauna and habitat types driven by turbidity currents in the lobe complex of the Congo deep-sea fan

    Science.gov (United States)

    Sen, Arunima; Dennielou, Bernard; Tourolle, Julie; Arnaubec, Aurélien; Rabouille, Christophe; Olu, Karine

    2017-08-01

    This study characterizes the habitats and megafaunal community of the Congo distal lobe complex driven by turbidity currents through the use of remotely operated vehicle (ROV) still imagery transects covering distances in the order of kilometers. In this sedimentary, abyssal area about 5000 m deep and 750 km offshore from western Africa, large quantities of deposited organic material supplied by the Congo River canyon and channel support aggregations of large sized foraminifers (Bathysiphon sp.) and vesicomyid clams (Christineconcha regab, Abyssogena southwardae) often associated with methane cold seeps, as well as opportunistic deep-sea scavengers. Additionally, bacterial mats, assumed to be formed by large sulfur-oxidizing filamentous bacteria (Beggiatoa type), and black patches of presumably reduced sediment were seen which are, together with sulfur-oxidizing symbiont- bearing vesicomyids, indicators of sulfide-rich sediments. Habitat and faunal distribution were analyzed in relation to the microtopography obtained with the ROV multibeam echosounder, at three sites from the entrance of the lobe complex where the channel is still deep, to the main, flatter area of turbidite deposition. Specific characteristics of the system influence animal distributions: both the forams and the vesicomyid clams tended to avoid the channels characterized by high-speed currents, and are therefore preferentially located along channel flanks affected by sliding, and on levees formed by channel overspill. Foram fields are found in flat areas and form large fields, whereas the vesicomyids have a patchy distribution and appear to show a preference for regions of local topographical relief such as slide scars or collapsed blocks of sediments, which likely facilitate sulfide exhumation. The colonization of sulfide rich sediments by vesicomyids is limited, but nonetheless was seen to occur in the main deposition area where they have to cope with very high sedimentation rates (up to 20 cm

  9. Riparian landscapes: Linking geodiversity with habitat and biodiversity

    Science.gov (United States)

    Chmieleski, Jana; Danzeisen, Laura

    2017-04-01

    Keywords: Oder valley, biodiversity, geodiversity River landscapes of all scales originally showed a high diversity of structures and habitats at a small spatial entity, such as the stream beds, terrasses, sand and gravel banks. This variety, with a lot of different elements, patches and patterns, represents not only a variety of geoelements or geomorhological features but also a large biodiversity, both of habitats and species. Riparian landscapes are both, a natural as well as a geoheritage, often even a cultural heritage (sustainabe land use practices). Embankments, utilization for agriculture, constructions for navigation, management measures lead to a strong loss of these structures. This impacts the value of the landscape as well ecosystem functions, not only the biodiversity and the geodiversity but also the recreation function or the aesthetic values. A case study from the National Park Lower Oder Valley in the Northeastern part of Germany, wich is also part of a Geopark („Eiszeitland am Oderrand") presents the connections of the diversity of geomorphological features with biodiversity and shows the loss of features (loss of values) due to intensive utilisation by using GIS-analysis and landscape-metrics. The Northern part of the Oder valley (National Park, transnational protection area of Germany and Poland) have been modified by man since centuries but even so remained in near-natural state that allows semi-(natural) stream dynamics. While the Oder's reparian zone is marked by the stream itself, by its bayous, reed beds, periodically flooded wet meadows and by its natural riparian forest the mineral morainic plateaus are marked by semi-natural forests and dry grasslands. Two areas of different degradation states, a) near-natural and wilderness area and b) grassland area will be compared in order to identify: quantity and extent of features, relation of measure and coverage, connectivity with other features, quantity and types of habitats (with

  10. Geomorphic and habitat response to a large-dam removal in a Mediterranean river

    Science.gov (United States)

    Harrison, L.; East, A. E.; Smith, D. P.; Bond, R.; Logan, J. B.; Nicol, C.; Williams, T.; Boughton, D. A.; Chow, K.

    2017-12-01

    The presence of large dams has fundamentally altered physical and biological processes in riverine ecosystems, and dam removal is becoming more common as a river restoration strategy. We used a before-after-control-impact study design to investigate the geomorphic and habitat response to removal of 32-m-high San Clemente Dam on the Carmel River, CA. The project represents the first major dam removal in a Mediterranean river and is also unique among large dam removals in that most reservoir sediment was sequestered in place. We found that in the first year post-removal, a sediment pulse migrated 3.5 km downstream, filling pools and the interstitial pore spaces of gravels with sand. These sedimentary and topographic changes initially reduced the overall quality of steelhead (O. mykiss) spawning and rearing habitat in impacted reaches. Over the second winter after dam removal, a sequence of high flows flushed large volumes of sand from pools and mobilized the river bed throughout much of the active channel. The floods substantially altered fluvial evolution in the upper part of the reservoir, promoting new avulsion and the subsequent delivery of gravel and large wood to below dam reaches. These geomorphic processes increased the availability of spawning-sized gravel and enhanced channel complexity in reaches within several km of the former dam, which should improve habitat for multiple life stages of steelhead. Results indicate that when most reservoir sediment remains impounded, high flows become more important drivers of geomorphic and habitat change than dam removal alone. In such cases, the rates at which biophysical processes are reestablished will depend largely on post-dam removal flow sequencing and the upstream supply of sediment and large wood.

  11. Temporal and Spatial Scales Matter: Circannual Habitat Selection by Bird Communities in Vineyards.

    Directory of Open Access Journals (Sweden)

    Claire Guyot

    Full Text Available Vineyards are likely to be regionally important for wildlife, but we lack biodiversity studies in this agroecosystem which is undergoing a rapid management revolution. As vine cultivation is restricted to arid and warm climatic regions, biodiversity-friendly management would promote species typical of southern biomes. Vineyards are often intensively cultivated, mostly surrounded by few natural features and offering a fairly mineral appearance with little ground vegetation cover. Ground vegetation cover and composition may further strongly vary with respect to season, influencing patterns of habitat selection by ecological communities. We investigated season-specific bird-habitat associations to highlight the importance of semi-natural habitat features and vineyard ground vegetation cover throughout the year. Given that avian habitat selection varies according to taxa, guilds and spatial scale, we modelled bird-habitat associations in all months at two spatial scales using mixed effects regression models. At the landscape scale, birds were recorded along 10 1-km long transects in Southwestern Switzerland (February 2014 -January 2015. At the field scale, we compared the characteristics of visited and unvisited vineyard fields (hereafter called parcels. Bird abundance in vineyards tripled in winter compared to summer. Vineyards surrounded by a greater amount of hedges and small woods harboured higher bird abundance, species richness and diversity, especially during the winter season. Regarding ground vegetation, birds showed a season-specific habitat selection pattern, notably a marked preference for ground-vegetated parcels in winter and for intermediate vegetation cover in spring and summer. These season-specific preferences might be related to species-specific life histories: more insectivorous, ground-foraging species occur during the breeding season whereas granivores predominate in winter. These results highlight the importance of

  12. Habitat typing versus advanced vegetation classification in western forests

    Science.gov (United States)

    Tony Kusbach; John Shaw; James Long; Helga Van Miegroet

    2012-01-01

    Major habitat and community types in northern Utah were compared with plant alliances and associations that were derived from fidelity- and diagnostic-species classification concepts. Each of these classification approaches was associated with important environmental factors. Within a 20,000-ha watershed, 103 forest ecosystems were described by physiographic features,...

  13. Grande Ronde Basin Fish Habitat Enhancement Project : 2007 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    McGowan, Vance R.; Morton, Winston H.

    2008-12-30

    On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an intergovernmental contract to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the contract, and in 1996 the Wallowa River subbasin was added. The primary goal of 'The Grande Ronde Basin Fish Habitat Enhancement Project' is to create, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing opportunities for natural fish production within the basin. This project provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife and partners is on private lands and therefore requires that considerable time be spent developing rapport with landowners to gain acceptance of, and continued cooperation with this program throughout 10-15 year lease periods. Both passive and active restoration treatment techniques are used. Passive regeneration of habitat, using riparian exclosure fencing and alternate water sources are the primary method to restore degraded streams when restoration can be achieved primarily through changes in management. Active restoration techniques using plantings, bioengineering, site-specific instream structures, or whole stream channel alterations are utilized when streams are more severely degraded and not likely to recover in a reasonable timeframe. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state, federal, and tribal agencies, and

  14. Computer simulations of channel meandering and the formation of point bars: Linking channel dynamics to the preserved stratigraphy

    Science.gov (United States)

    Sun, T.; Covault, J. A.; Pyrcz, M.; Sullivan, M.

    2012-12-01

    Meandering rivers are probably one of the most recognizable geomorphic features on earth. As they meander across alluvial and delta plains, channels migrate laterally and develop point bars, splays, levees and other geomorphic and sedimentary features that compose substantial portions of the fill within many sedimentary basins. These basins can include hydrocarbon producing fields. Therefore, a good understanding of the processes of meandering channels and their associated deposits is critical for exploiting these reservoirs in the subsurface. In the past couple of decades, significant progress has been made in our understanding of the morphodynamics of channel meandering. Basic fluid dynamics and sediment transport (Ikeda and Parker, 1981; Howard, 1992) has shown that many characteristic features of meandering rivers, such as the meandering wavelength, growth rate and downstream migration rate, can be predicted quantitatively. As a result, a number of variations and improvement of the theory have emerged (e.g., Blondeaux and Seminara, 1985; Parker and Andrews, 1985, 1986; and Sun et al., 2001a, b).The main improvements include the recognition of so called "bar-bend" interactions, where the development of bars on the channel bed and their interactions with the channel bend is recognized as a primary cause for meandering channels to develop greater complexity than the classic goose-neck meander bend shapes, such as compound bend. Recently, Sun and others have shown that the spatial patterns of width variations in meandering channels can be explained by an extrinsic periodic flow variations coupled with the intrinsic bend instability dynamics. In contrast to the significant improvement of our understanding of channel meandering, little work has been done to link the geomorphic features of meandering channels to the geometry and heterogeneity of the deposits they form and ultimately preserves. A computer simulation model based on the work of Sun and others (1996, 2001

  15. Wind energy's subtle effect - habitat fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Pruett, Jay

    2011-07-01

    Full text: New wind energy production facilities are being built to accommodate demands for more, renewable, emission-free energy. This development is most often in windy, remote parts of the United States, so new transmission infrastructure capacity is also needed for shipment of energy from prairies, hilltops and shorelines to distant population centres. Well known environmental effects from wind energy development have included direct mortality to birds and bats. However, there is a more subtle effect also at play. 'Habitat fragmentation' is an impact caused by the siting and presence of infrastructure features on wildlife species. Instead of direct mortality, there is behavioural avoidance of such features because of activity, noise and even simply the presence of vertical structures that are different from the original nature of the habitat. This fragmentation threatens to make some of the last remaining habitat for declining species, especially grassland birds, unusable by them. Prairie grouse such as prairie chickens and sage grouse appear to be particularly susceptible to habitat fragmentation due to the presence of vertical structures. Other species such as the grasshopper sparrow have also been shown to avoid such features. It is believed that these species have evolved to avoid any vertical structure because it can serve as a perch for bird-eating raptors, including eagles, hawks, falcons and owls. Certain life cycle stages, such as nesting and chick rearing, appear to be most vulnerable to these fragmentation influences. Some of the research contributing to concern over habitat fragmentation, along with the mechanism of such fragmentation, will be presented. Solutions will also be offered for the siting of wind energy facilities and transmission lines to avoid this negative environmental impact. (Author)

  16. The use of edge habitats by commuting and foraging bats

    NARCIS (Netherlands)

    Verboom, B.

    1998-01-01

    Travelling routes and foraging areas of many bat species are mainly along edge habitats, such as treelines, hedgerows, forest edges, and canal banks. This thesis deals with the effects of density, configuration, and structural features of edge habitats on the occurrence of bats. Four

  17. Habitat predictors of genetic diversity for two sympatric wetland-breeding amphibian species.

    Science.gov (United States)

    McKee, Anna M; Maerz, John C; Smith, Lora L; Glenn, Travis C

    2017-08-01

    Population genetic diversity is widely accepted as important to the conservation and management of wildlife. However, habitat features may differentially affect evolutionary processes that facilitate population genetic diversity among sympatric species. We measured genetic diversity for two pond-breeding amphibian species (Dwarf salamanders, Eurycea quadridigitata ; and Southern Leopard frogs, Lithobates sphenocephalus ) to understand how habitat characteristics and spatial scale affect genetic diversity across a landscape. Samples were collected from wetlands on a longleaf pine reserve in Georgia. We genotyped microsatellite loci for both species to assess population structures and determine which habitat features were most closely associated with observed heterozygosity and rarefied allelic richness. Both species exhibited significant population genetic structure; however, structure in Southern Leopard frogs was driven primarily by one outlier site. Dwarf salamander allelic richness was greater at sites with less surrounding road area within 0.5 km and more wetland area within 1.0 and 2.5 km, and heterozygosity was greater at sites with more wetland area within 0.5 km. In contrast, neither measure of Southern Leopard frog genetic diversity was associated with any habitat features at any scale we evaluated. Genetic diversity in the Dwarf salamander was strongly associated with land cover variables up to 2.5 km away from breeding wetlands, and/or results suggest that minimizing roads in wetland buffers may be beneficial to the maintenance of population genetic diversity. This study suggests that patterns of genetic differentiation and genetic diversity have associations with different habitat features across different spatial scales for two syntopic pond-breeding amphibian species.

  18. Individual variation in habitat use in two stream fish assemblages

    Directory of Open Access Journals (Sweden)

    Luisa Resende Manna

    2015-12-01

    Full Text Available The habitat use is an individual choice that is influenced by physical conditions such as substrate type, food resources availability and adequate depth. However, habitat use is often measured only through interspecific variability because intraspecific variability is supposed to be low. Here, the differences in habitat use by two stream fish assemblages in two different environments (Brazilian rainforest and semiarid were investigated at both interspecific and intraspecific levels. We performed 55 hours of underwater observation in a 200 meters long stretch in each stream and quantified the following habitat descriptors: (i water velocity, (ii distance from the stream bank, (iii substratum, (iv water column depth, (v aquatic cover, and (vi canopy percentage. To compare intra and interspecific variability we summarized the multivariate habitat use databases using Principal Components Analysis (PCA on Euclidean distance. An Analysis of Similarity (ANOSIM was performed to test the differences in habitat use by the two assemblages. Besides, in each fish community we did an Analysis of Variance (ANOVA to test within vs between species variability for individual position on each PCA axes. To go further than these univariate tests, the differences among the species and assemblages were tested with Permutational Multivariate Analysis of Variance (PERMANOVA. The habitat use between assemblages was significantly different (ANOSIM – R=0.14; p<0.001. PERMANOVA revealed significant differences among species in both assemblages (Rainforest - F=7.25; p<0.001; semiarid - F=4.84; p<0.001. Lower F values in the semiarid assemblage revealed a higher level of intraspecific variability for this assemblage. Our findings showed high intra and interspecific variability in both stream fish assemblages and highlight the importance of measuring individual’s differences for this feature of fish biodiversity. Additionally, the versatility described for tropical

  19. A spatial model of white sturgeon rearing habitat in the lower Columbia River, USA

    Science.gov (United States)

    Hatten, J.R.; Parsley, M.J.

    2009-01-01

    Concerns over the potential effects of in-water placement of dredged materials prompted us to develop a GIS-based model that characterizes in a spatially explicit manner white sturgeon Acipenser transmontanus rearing habitat in the lower Columbia River, USA. The spatial model was developed using water depth, riverbed slope and roughness, fish positions collected in 2002, and Mahalanobis distance (D2). We created a habitat suitability map by identifying a Mahalanobis distance under which >50% of white sturgeon locations occurred in 2002 (i.e., high-probability habitat). White sturgeon preferred relatively moderate to high water depths, and low to moderate riverbed slope and roughness values. The eigenvectors indicated that riverbed slope and roughness were slightly more important than water depth, but all three variables were important. We estimated the impacts that fill might have on sturgeon habitat by simulating the addition of fill to the thalweg, in 3-m increments, and recomputing Mahalanobis distances. Channel filling simulations revealed that up to 9 m of fill would have little impact on high-probability habitat, but 12 and 15 m of fill resulted in habitat declines of ???12% and ???45%, respectively. This is the first spatially explicit predictive model of white sturgeon rearing habitat in the lower Columbia River, and the first to quantitatively predict the impacts of dredging operations on sturgeon habitat. Future research should consider whether water velocity improves the accuracy and specificity of the model, and to assess its applicability to other areas in the Columbia River.

  20. Systematic review of the influence of foraging habitat on red-cockaded woodpecker reproductive success

    Science.gov (United States)

    James E. Garabedian; Christopher E. Moorman; M. Nils Peterson; John C. Kilgo

    2014-01-01

    Relationships between foraging habitat and reproductive success provide compelling evidence of the contribution of specific vegetative features to foraging habitat quality, a potentially limiting factor for many animal populations. For example, foraging habitat quality likely will gain importance in the recovery of the threatened red-cockaded woodpecker Picoides...

  1. Calcium channel blocker overdose

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002580.htm Calcium-channel blocker overdose To use the sharing features on this page, please enable JavaScript. Calcium-channel blockers are a type of medicine used ...

  2. Patterns in tropical seagrass photosynthesis in relation to light, depth and habitat

    Science.gov (United States)

    Campbell, Stuart J.; McKenzie, Len J.; Kerville, Simon P.; Bité, Juanita S.

    2007-07-01

    Seagrass meadows across north-eastern Australia, survive a range of environmental conditions in coastal bays, reefs, estuarine and deepwater habitats through adaptation of a range of structural, morphological and physiological features. The aim of this study was to investigate the influence of spatial features (habitat type, site and depth) and photon flux on the photosynthetic performance of 11 tropical seagrass species. Pulse amplitude modulated (PAM) fluorometry was used to generate rapid light curves from which measures of maximal electron transport rate (ETR max), photosynthetic efficiency ( α), saturating irradiance ( Ek) and effective quantum yield (Δ F/ Fm') were derived. The amount of light absorbed by leaves (absorption factor) was also determined for each population. In intertidal habitats many seagrass species exhibited typical sun-type responses with a close coupling of both ETR max and Ek with photon flux. Photosynthetic performance ranged from minima in Thalassodendron ciliatum to maxima in Syringodium isoetifolium. The absence of a coupling between photosynthetic performance and photon flux in subtidal populations was most likely due to highly variable light climates and possible light attenuation, and hence the photo-biology of estuarine and deepwater seagrasses exhibited photosynthetic responses indicative of light limitation. In contrast seagrass species from shallow reef and coastal habitats for the most part exhibited light saturation characteristics. Of all the variables examined ETR max, Ek and Δ F/ Fm' were most responsive to changing light climates and provide reliable physiological indicators of real-time photosynthetic performance of tropical seagrasses under different light conditions.

  3. Combining Methods to Describe Important Marine Habitats for Top Predators: Application to Identify Biological Hotspots in Tropical Waters.

    Science.gov (United States)

    Thiers, Laurie; Louzao, Maite; Ridoux, Vincent; Le Corre, Matthieu; Jaquemet, Sébastien; Weimerskirch, Henri

    2014-01-01

    In tropical waters resources are usually scarce and patchy, and predatory species generally show specific adaptations for foraging. Tropical seabirds often forage in association with sub-surface predators that create feeding opportunities by bringing prey close to the surface, and the birds often aggregate in large multispecific flocks. Here we hypothesize that frigatebirds, a tropical seabird adapted to foraging with low energetic costs, could be a good predictor of the distribution of their associated predatory species, including other seabirds (e.g. boobies, terns) and subsurface predators (e.g., dolphins, tunas). To test this hypothesis, we compared distribution patterns of marine predators in the Mozambique Channel based on a long-term dataset of both vessel- and aerial surveys, as well as tracking data of frigatebirds. By developing species distribution models (SDMs), we identified key marine areas for tropical predators in relation to contemporaneous oceanographic features to investigate multi-species spatial overlap areas and identify predator hotspots in the Mozambique Channel. SDMs reasonably matched observed patterns and both static (e.g. bathymetry) and dynamic (e.g. Chlorophyll a concentration and sea surface temperature) factors were important explaining predator distribution patterns. We found that the distribution of frigatebirds included the distributions of the associated species. The central part of the channel appeared to be the best habitat for the four groups of species considered in this study (frigatebirds, brown terns, boobies and sub-surface predators).

  4. Combining Methods to Describe Important Marine Habitats for Top Predators: Application to Identify Biological Hotspots in Tropical Waters.

    Directory of Open Access Journals (Sweden)

    Laurie Thiers

    Full Text Available In tropical waters resources are usually scarce and patchy, and predatory species generally show specific adaptations for foraging. Tropical seabirds often forage in association with sub-surface predators that create feeding opportunities by bringing prey close to the surface, and the birds often aggregate in large multispecific flocks. Here we hypothesize that frigatebirds, a tropical seabird adapted to foraging with low energetic costs, could be a good predictor of the distribution of their associated predatory species, including other seabirds (e.g. boobies, terns and subsurface predators (e.g., dolphins, tunas. To test this hypothesis, we compared distribution patterns of marine predators in the Mozambique Channel based on a long-term dataset of both vessel- and aerial surveys, as well as tracking data of frigatebirds. By developing species distribution models (SDMs, we identified key marine areas for tropical predators in relation to contemporaneous oceanographic features to investigate multi-species spatial overlap areas and identify predator hotspots in the Mozambique Channel. SDMs reasonably matched observed patterns and both static (e.g. bathymetry and dynamic (e.g. Chlorophyll a concentration and sea surface temperature factors were important explaining predator distribution patterns. We found that the distribution of frigatebirds included the distributions of the associated species. The central part of the channel appeared to be the best habitat for the four groups of species considered in this study (frigatebirds, brown terns, boobies and sub-surface predators.

  5. Use of navigation channels by Lake Sturgeon: Does channelization increase vulnerability of fish to ship strikes?

    Directory of Open Access Journals (Sweden)

    Darryl W Hondorp

    Full Text Available Channelization for navigation and flood control has altered the hydrology and bathymetry of many large rivers with unknown consequences for fish species that undergo riverine migrations. In this study, we investigated whether altered flow distributions and bathymetry associated with channelization attracted migrating Lake Sturgeon (Acipenser fulvescens into commercial navigation channels, potentially increasing their exposure to ship strikes. To address this question, we quantified and compared Lake Sturgeon selection for navigation channels vs. alternative pathways in two multi-channel rivers differentially affected by channelization, but free of barriers to sturgeon movement. Acoustic telemetry was used to quantify Lake Sturgeon movements. Under the assumption that Lake Sturgeon navigate by following primary flow paths, acoustic-tagged Lake Sturgeon in the more-channelized lower Detroit River were expected to choose navigation channels over alternative pathways and to exhibit greater selection for navigation channels than conspecifics in the less-channelized lower St. Clair River. Consistent with these predictions, acoustic-tagged Lake Sturgeon in the more-channelized lower Detroit River selected the higher-flow and deeper navigation channels over alternative migration pathways, whereas in the less-channelized lower St. Clair River, individuals primarily used pathways alternative to navigation channels. Lake Sturgeon selection for navigation channels as migratory pathways also was significantly higher in the more-channelized lower Detroit River than in the less-channelized lower St. Clair River. We speculated that use of navigation channels over alternative pathways would increase the spatial overlap of commercial vessels and migrating Lake Sturgeon, potentially enhancing their vulnerability to ship strikes. Results of our study thus demonstrated an association between channelization and the path use of migrating Lake Sturgeon that could prove

  6. Influence of seasonality and gestation on habitat selection by northern Mexican gartersnakes (Thamnophis eques megalops.

    Directory of Open Access Journals (Sweden)

    Tiffany A Sprague

    Full Text Available Species conservation requires a thorough understanding of habitat requirements. The northern Mexican gartersnake (Thamnophis eques megalops was listed as threatened under the U.S. Endangered Species Act in 2014. Natural resource managers are interested in understanding the ecology of this subspecies to guide management decisions and to determine what features are necessary for habitat creation and restoration. Our objective was to identify habitat selection of northern Mexican gartersnakes in a highly managed, constructed wetland hatchery. We deployed transmitters on 42 individual gartersnakes and documented use of habitat types and selection of specific habitat features. Habitat selection was similar between males and females and varied seasonally. During the active season (March-October, gartersnakes primarily selected wetland edge habitat with abundant cover. Gestating females selected similar locations but with less dense cover. During the inactive season (November-February, gartersnakes selected upland habitats, including rocky slopes with abundant vegetation. These results of this study can help inform management of the subspecies, particularly in human-influenced habitats. Conservation of this subspecies should incorporate a landscape-level approach that includes abundant wetland edge habitat with a mosaic of dense cover for protection and sparsely vegetated areas for basking connected to terrestrial uplands for overwintering.

  7. Bull trout (Salvelinus confluentus) movement in relation to water temperature, season, and habitat features in Arrowrock Reservoir, Idaho, 2012

    Science.gov (United States)

    Maret, Terry R.; Schultz, Justin E.

    2013-01-01

    Acoustic telemetry was used to determine spring to summer (April–August) movement and habitat use of bull trout (Salvelinus confluentus) in Arrowrock Reservoir (hereafter “Arrowrock”), a highly regulated reservoir in the Boise River Basin of southwestern Idaho. Water management practices annually use about 86 percent of the reservoir water volume to satisfy downstream water demands. These practices might be limiting bull trout habitat and movement patterns. Bull trout are among the more thermally sensitive coldwater species in North America, and the species is listed as threatened throughout the contiguous United States under the Endangered Species Act. Biweekly water-temperature and dissolved-oxygen profiles were collected by the Bureau of Reclamation at three locations in Arrowrock to characterize habitat conditions for bull trout. Continuous streamflow and water temperature also were measured immediately upstream of the reservoir on the Middle and South Fork Boise Rivers, which influence habitat conditions in the riverine zones of the reservoir. In spring 2012, 18 bull trout ranging in total length from 306 to 630 millimeters were fitted with acoustic transmitters equipped with temperature and depth sensors. Mobile boat tracking and fixed receivers were used to detect released fish. Fish were tagged from March 28 to April 20 and were tracked through most of August. Most bull trout movements were detected in the Middle Fork Boise River arm of the reservoir. Fifteen individual fish were detected at least once after release. Water surface temperature at each fish detection location ranged from 6.0 to 16.2 degrees Celsius (°C) (mean=10.1°C), whereas bull trout body temperatures were colder, ranging from 4.4 to 11.6°C (mean=7.3°C). Bull trout were detected over deep-water habitat, ranging from 8.0 to 42.6 meters (m) (mean=18.1 m). Actual fish depths were shallower than total water depth, ranging from 0.0 to 24.5 m (mean=6.7 m). The last bull trout was

  8. Relating Yellow Rail (Coturnicops noveboracensis) occupancy to habitat and landscape features in the context of fire

    Science.gov (United States)

    Austin, Jane E.; Buhl, Deborah A.

    2013-01-01

    The Yellow Rail (Coturnicops noveboracensis) is a focal species of concern associated with shallowly flooded emergent wetlands, most commonly sedge (Carex spp.) meadows. Their populations are believed to be limited by loss or degradation of wetland habitat due to drainage, altered hydrology, and fire suppression, factors that have often resulted in encroachment of shrubs into sedge meadows and change in vegetative cover. Nocturnal call-playback surveys for Yellow Rails were conducted over 3 years at Seney National Wildlife Refuge in the Upper Peninsula of Michigan. Effects of habitat structure and landscape variables on the probability of use by Yellow Rails were assessed at two scales, representing a range of home range sizes, using generalized linear mixed models. At the 163-m (8-ha) scale, year with quadratic models of maximum and mean water depths best explained the data. At the 300-m (28-ha) scale, the best model contained year and time since last fire (≤ 1, 2–5, and > 10 years). The probability of use by Yellow Rails was 0.285 ± 0.132 (SE) for points burned 2-5 years ago, 0.253 ± 0.097 for points burned ≤ 1 year ago, and 0.028 ± 0.019 for points burned > 10 years ago. Habitat differences relative to fire history and comparisons between sites with and without Yellow Rails indicated that Yellow Rails used areas with the deepest litter and highest ground cover, and relatively low shrub cover and heights, as well as landscapes having greater sedge-grass cover and less lowland woody or upland cover types. Burning every 2-5 years appears to provide the litter, ground-level cover, and woody conditions attractive to Yellow Rails. Managers seeking to restore and sustain these wetland systems would benefit from further investigations into how flooding and fire create habitat conditions attractive to breeding Yellow Rails

  9. An Adaptive Modeling Technique for Instream Fish Habitat Preference of Japanese Medaka (Oryzias Latipes)

    OpenAIRE

    Fukuda, Shinji; Hiramatsu, Kazuaki; Mori, Makito; Shikasyo, Shiomi

    2005-01-01

    It is widely known that habitat selections of riverine fish differ within and between rivers. In our past study, the preference intensity of Japanese Medaka (Oryzias latipes) to three environmental factors of water depth, current velocity and cover ratio was quantified on laboratory open-channel experiments for developing a general habitat preference model. A simplified fuzzy reasoning method was introduced in consideration of essential vagueness of fish behaviors. The fuzzy preference inten...

  10. Identifying Pelagic Habitat Hotspots of Neon Flying Squid in the Temperate Waters of the Central North Pacific.

    Science.gov (United States)

    Alabia, Irene D; Saitoh, Sei-Ichi; Mugo, Robinson; Igarashi, Hiromichi; Ishikawa, Yoichi; Usui, Norihisa; Kamachi, Masafumi; Awaji, Toshiyuki; Seito, Masaki

    2015-01-01

    We identified the pelagic habitat hotspots of the neon flying squid (Ommastrephes bartramii) in the central North Pacific from May to July and characterized the spatial patterns of squid aggregations in relation to oceanographic features such as mesoscale oceanic eddies and the Transition Zone Chlorophyll-a Front (TZCF). The data used for the habitat model construction and analyses were squid fishery information, remotely-sensed and numerical model-derived environmental data from May to July 1999-2010. Squid habitat hotspots were deduced from the monthly Maximum Entropy (MaxEnt) models and were identified as regions of persistent high suitable habitat across the 12-year period. The distribution of predicted squid habitat hotspots in central North Pacific revealed interesting spatial and temporal patterns likely linked with the presence and dynamics of oceanographic features in squid's putative foraging grounds from late spring to summer. From May to June, the inferred patches of squid habitat hotspots developed within the Kuroshio-Oyashio transition zone (KOTZ; 37-40°N) and further expanded north towards the subarctic frontal zone (SAFZ; 40-44°N) in July. The squid habitat hotspots within the KOTZ and areas west of the dateline (160°W-180°) were likely influenced and associated with the highly dynamic and transient oceanic eddies and could possibly account for lower squid suitable habitat persistence obtained from these regions. However, predicted squid habitat hotspots located in regions east of the dateline (180°-160°W) from June to July, showed predominantly higher squid habitat persistence presumably due to their proximity to the mean position of the seasonally-shifting TZCF and consequent utilization of the highly productive waters of the SAFZ.

  11. 76 FR 64995 - Endangered and Threatened Wildlife and Plants; Designation of Revised Critical Habitat for the...

    Science.gov (United States)

    2011-10-19

    ... do not possess stream channels or tributaries that provide a considerable amount of water throughout... sedimentation of coastal lagoons and riparian habitats, removal of vegetative cover, increased ambient water... channels. As a result, several of the locations occupied by tidewater goby do not contain natural sandbars...

  12. Hydraulic modelling of the spatial and temporal variability in Atlantic salmon parr habitat availability in an upland stream.

    Science.gov (United States)

    Fabris, Luca; Malcolm, Iain Archibald; Buddendorf, Willem Bastiaan; Millidine, Karen Jane; Tetzlaff, Doerthe; Soulsby, Chris

    2017-12-01

    We show how spatial variability in channel bed morphology affects the hydraulic characteristics of river reaches available to Atlantic salmon parr (Salmo salar) under different flow conditions in an upland stream. The study stream, the Girnock Burn, is a long-term monitoring site in the Scottish Highlands. Six site characterised by different bed geometry and morphology were investigated. Detailed site bathymetries were collected and combined with discharge time series in a 2D hydraulic model to obtain spatially distributed depth-averaged velocities under different flow conditions. Available habitat (AH) was estimated for each site. Stream discharge was used according to the critical displacement velocity (CDV) approach. CDV defines a velocity threshold above which salmon parr are not able to hold station and effective feeding opportunities or habitat utilization are reduced, depending on fish size and water temperature. An average value of the relative available habitat () for the most significant period for parr growth - April to May - was used for inter-site comparison and to analyse temporal variations over 40years. Results show that some sites are more able than others to maintain zones where salmon parr can forage unimpeded by high flow velocities under both wet and dry conditions. With lower flow velocities, dry years offer higher values of than wet years. Even though can change considerably across the sites as stream flow changes, the directions of change are consistent. Relative available habitat (RAH) shows a strong relationship with discharge per unit width, whilst channel slope and bed roughness either do not have relevant impact or compensate each other. The results show that significant parr habitat was available at all sites across all flows during this critical growth period, suggesting that hydrological variability is not a factor limiting growth in the Girnock. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  13. Experimental analysis of flowrates distribution features in double-loop reactor channels

    International Nuclear Information System (INIS)

    Avdeev, E.F.; Chusov, I.A.

    2013-01-01

    Experimental data on the flowrate distribution in working channels dummies of a research reactor model with double-loop configuration are presented in the paper. The procedures of experiments and received experimental data processing are provided in details [ru

  14. Analysis of in situ water velocity distributions in the lowland river floodplain covered by grassland and reed marsh habitats - a case study of the bypass channel of Warta River (Western Poland

    Directory of Open Access Journals (Sweden)

    Laks Ireneusz

    2017-12-01

    Full Text Available The analysis of in situ measurements of velocity distribution in the floodplain of the lowland river has been carried out. The survey area was located on a bypass channel of the Warta River (West of Poland which is filled with water only in case of flood waves. The floodplain is covered by grassland and reed marsh habitats. The velocity measurements were performed with an acoustic Doppler current profiler (ADCP in a cross-section with a bed reinforced with concrete slabs. The measured velocities have reflected the differentiated impact of various vegetation types on the loss of water flow energy. The statistical analyses have proven a relationship between the local velocities and the type of plant communities.

  15. Habitat-related specialization of lateral-line system morphology in a habitat-generalist and a habitat-specialist New Zealand eleotrid.

    Science.gov (United States)

    Vanderpham, J P; Nakagawa, S; Senior, A M; Closs, G P

    2016-04-01

    An investigation of intraspecific habitat-related patterns of variation in oculoscapular lateral-line superficial neuromasts (SN) identified a decrease in the ratio of total SNs to pores, and a trend towards decreased asymmetry in SNs in the habitat-generalist common bully Gobiomorphus cotidianus from fluvial habitats compared to lacustrine habitats, suggesting habitat-related phenotypic variability. A greater ratio of pores to SNs, as well as less variation in the total number and asymmetry of SNs observed in the fluvial habitat-specialist redfin bully Gobiomorphus huttoni may provide further evidence of variations in the oculoscapular lateral-line morphology of fluvial habitat G. cotidianus individuals serving as adaptations to more turbulent environments. © 2016 The Fisheries Society of the British Isles.

  16. Evaluation of Macroinvertebrate Communities and Habitat for Selected Stream Reaches at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    L.J. Henne; K.J. Buckley

    2005-08-12

    This is the second aquatic biological monitoring report generated by Los Alamos National Laboratory's (LANL's) Water Quality and Hydrology Group. The study has been conducted to generate impact-based assessments of habitat and water quality for LANL waterways. The monitoring program was designed to allow for the detection of spatial and temporal trends in water and habitat quality through ongoing, biannual monitoring of habitat characteristics and benthic aquatic macroinvertebrate communities at six key sites in Los Alamos, Sandia, Water, Pajarito, and Starmer's Gulch Canyons. Data were collected on aquatic habitat characteristics, channel substrate, and macroinvertebrate communities during 2001 and 2002. Aquatic habitat scores were stable between 2001 and 2002 at all locations except Starmer's Gulch and Pajarito Canyon, which had lower scores in 2002 due to low flow conditions. Channel substrate changes were most evident at the upper Los Alamos and Pajarito study reaches. The macroinvertebrate Stream Condition Index (SCI) indicated moderate to severe impairment at upper Los Alamos Canyon, slight to moderate impairment at upper Sandia Canyon, and little or no impairment at lower Sandia Canyon, Starmer's Gulch, and Pajarito Canyon. Habitat, substrate, and macroinvertebrate data from the site in upper Los Alamos Canyon indicated severe impacts from the Cerro Grande Fire of 2000. Impairment in the macroinvertebrate community at upper Sandia Canyon was probably due to effluent-dominated flow at that site. The minimal impairment SCI scores for the lower Sandia site indicated that water quality improved with distance downstream from the outfall at upper Sandia Canyon.

  17. Venusian channels and valleys - Distribution and volcanological implications

    Science.gov (United States)

    Komatsu, Goro; Baker, Victor R.; Gulick, Virginia C.; Parker, Timothy J.

    1993-01-01

    An updated map is presented which shows the distribution of more than 200 channels and valleys on Venus. A large number of channels are concentrated in equatorial regions characterized by highlands, rift and fracture zones, an associated volcanic features. Many channels associated with flow deposits are similar to typical terrestrial lava drainage channels. They are associated with a wide range of volcanic edifices. More than half of the sinuous rilles are associated with coronae, coronalike features, or arachnoids. Corona volcanism driven by mantle plume events may explain this association. Many valley network are observed in highlands and in association with coronae, coronalike features, or arachnoids. This indicates that highlands and coronae provided fractures and flow-viscosity lavas, both of which seem to be required for network formation by lava sapping processes. Canali-type channels have a unique distribution limited to some plains regions.

  18. Aquatic Habitat Studies on the Lower Mississippi River, River Mile 480 to 530. Report 6. Larval Fish Studies-Pilot Report.

    Science.gov (United States)

    1981-04-01

    larval fish were collected: unidentified clupeids, unidentified cyprinids, Carpiodes spp., Menidia audens , Lepomis spp., unidentified centrarchids, and...bars, was rare in both abandoned channels and oxbow lakes. 69. Menidia audens and Morone spp. were common in the abandoned channel habitat and rare in

  19. Physical stream habitat dynamics in Lower Bear Creek, northern Arkansas

    Science.gov (United States)

    Reuter, Joanna M.; Jacobson, Robert B.; Elliott, Caroline M.

    2003-01-01

    We evaluated the roles of geomorphic and hydrologic dynamics in determining physical stream habitat in Bear Creek, a stream with a 239 km2 drainage basin in the Ozark Plateaus (Ozarks) in northern Arkansas. During a relatively wet 12-month monitoring period, the geomorphology of Bear Creek was altered by a series of floods, including at least four floods with peak discharges exceeding a 1-year recurrence interval and another flood with an estimated 2- to 4-year recurrence interval. These floods resulted in a net erosion of sediment from the study reach at Crane Bottom at rates far in excess of other sites previously studied in the Ozarks. The riffle-pool framework of the study reach at Crane Bottom was not substantially altered by these floods, but volumes of habitat in riffles and pools changed. The 2- to 4-year flood scoured gravel from pools and deposited it in riffles, increasing the diversity of available stream habitat. In contract, the smaller floods eroded gravel from the riffles and deposited it in pools, possibly flushing fine sediment from the substrate but also decreasing habitat diversity. Channel geometry measured at the beginning of the study was use to develop a two-dimensional, finite-element hydraulic model at assess how habitat varies with hydrologic dynamics. Distributions of depth and velocity simulated over the range of discharges observed during the study (0.1 to 556 cubic meters per second, cms) were classified into habitat units based on limiting depths and Froude number criteria. The results indicate that the areas of habitats are especially sensitive to change to low to medium flows. Races (areas of swift, relatively deep water downstream from riffles) disappear completely at the lowest flows, and riffles (areas of swift, relatively shallow water) contract substantially in area. Pools also contract in area during low flow, but deep scours associated with bedrock outcrops sustain some pool area even at the lowest modeled flows. Modeled

  20. Coho Salmon Habitat in a Changing Environment-Green Valley Creek, Graton, California

    Science.gov (United States)

    O'Connor, M. D.; Kobor, J. S.; Sherwood, M. N.

    2013-12-01

    induced a cycle of channel incision in upper GVC, deepening and widening channels. The headward extent of incision is identified, and upstream remnant valley surfaces remain undissected. Remnant valleys preserve a substantial alluvial aquifer that may be another source of summer stream flow. Sedimentation has occurred downstream, caused or compounded by the dense growth of riparian vegetation on the lower floodplain which we believe has significantly altered the base level of the valley. The evidence of rapid ongoing environmental change is significant, and could affect coho salmon both positively and negatively. Our research using spatially-distributed, physically-based hydrologic and hydraulic models incorporating the interaction of surface water with ground water (MIKE FLOOD and MIKE SHE) seeks to identify controlling factors and predict the trajectory of environmental change. LiDAR topographic data have enabled modeling floodplain flows in two-dimensions and is used to evaluate over-winter habitat for coho in the floodplain. As we learn more about current and future habitat conditions we will be investigating whether on-going environmental change represents a reversion to prior conditions or a shift to new conditions that may or may not prove favorable to native fish populations in the long term.

  1. Invasion by nonnative brook trout in Panther Creek, Idaho: Roles of local habitat quality, biotic resistance, and connectivity to source habitats

    Science.gov (United States)

    Benjamin, Joseph R.; Dunham, Jason B.; Dare, M.R.

    2007-01-01

    Theoretical models and empirical evidence suggest that the invasion of nonnative species in freshwaters is facilitated through the interaction of three factors: habitat quality, biotic resistance, and connectivity. We measured variables that represented each factor to determine which were associated with the occurrence of nonnative brook trout Salvelinus fontinalis in Panther Creek, a tributary to the Salmon River, Idaho. Habitat variables included measures of summer and winter temperature, instream cover, and channel size. The abundance of native rainbow trout Oncorhynchus mykiss within sampled sites was used as a measure of biotic resistance. We also considered the connectivity of sample sites to unconfined valley bottoms, which were considered habitats that may serve as sources for the spread of established populations of brook trout. We analyzed the occurrence of small (<150‐mm [fork length]) and large (≥150‐mm) brook trout separately, assuming that the former represents an established invasion while accounting for the higher potential mobility of the latter. The occurrence of small brook trout was strongly associated with the proximity of sites to large, unconstrained valley bottoms, providing evidence that such habitats may serve as sources for the spread of brook trout invasion. Within sites, winter degree‐days and maximum summer temperature were positively associated with the occurrence of small brook trout. The occurrence of large brook trout was not related to any of the variables considered, perhaps due to the difficulty of linking site‐specific habitat factors to larger and more mobile individuals. The abundance of rainbow trout was not conclusively associated with the occurrence of either small or large brook trout, providing little support for the role of biotic resistance. Overall, our results suggest that source connectivity and local habitat characteristics, but not biotic resistance, influence the establishment and spread of

  2. Asotin Creek instream habitat alteration projects : habitat evaluation, adult and juvenile habitat utilization and water temperature monitoring : 2001 progress report

    International Nuclear Information System (INIS)

    Bumgarner, Joseph D.

    2002-01-01

    Asotin Creek originates from a network of deeply incised streams on the slopes of the Blue Mountains of southeastern Washington. The watershed drains an area of 322 square miles that provides a mean annual flow of 74 cfs. The geomorphology of the watershed exerts a strong influence on biologic conditions for fish within the stream. Historic and contemporary land-use practices have had a profound impact on the kind, abundance, and distribution of anadromous salmonids in the watershed. Fish habitat in Asotin Creek and other local streams has been affected by agricultural development, grazing, tilling practices, logging, recreational activities and implementation of flood control structures (Neilson 1950). The Asotin Creek Model Watershed Master Plan was completed in 1994. The plan was developed by a landowner steering committee for the Asotin County Conservation District (ACCD), with technical support from various Federal, State and local entities. Actions identified within the plan to improve the Asotin Creek ecosystem fall into four main categories: (1) Stream and Riparian, (2) Forestland, (3) Rangeland, and (4) Cropland. Specific actions to be carried out within the stream and in the riparian area to improve fish habitat were: (1) create more pools, (2) increase the amount of large organic debris (LOD), (3) increase the riparian buffer zone through tree planting, and (4) increase fencing to limit livestock access. All of these actions, in combination with other activities identified in the Plan, are intended to stabilize the river channel, reduce sediment input, increase the amount of available fish habitat (adult and juvenile) and protect private property. Evaluation work described within this report was to document the success or failure of the program regarding the first two items listed (increasing pools and LOD). Beginning in 1996, the ACCD, with cooperation from local landowners and funding from Bonneville Power Administration began constructing instream

  3. Hierarchical faunal filters: An approach to assessing effects of habitat and nonnative species on native fishes

    Science.gov (United States)

    Quist, M.C.; Rahel, F.J.; Hubert, W.A.

    2005-01-01

    Understanding factors related to the occurrence of species across multiple spatial and temporal scales is critical to the conservation and management of native fishes, especially for those species at the edge of their natural distribution. We used the concept of hierarchical faunal filters to provide a framework for investigating the influence of habitat characteristics and normative piscivores on the occurrence of 10 native fishes in streams of the North Platte River watershed in Wyoming. Three faunal filters were developed for each species: (i) large-scale biogeographic, (ii) local abiotic, and (iii) biotic. The large-scale biogeographic filter, composed of elevation and stream-size thresholds, was used to determine the boundaries within which each species might be expected to occur. Then, a local abiotic filter (i.e., habitat associations), developed using binary logistic-regression analysis, estimated the probability of occurrence of each species from features such as maximum depth, substrate composition, submergent aquatic vegetation, woody debris, and channel morphology (e.g., amount of pool habitat). Lastly, a biotic faunal filter was developed using binary logistic regression to estimate the probability of occurrence of each species relative to the abundance of nonnative piscivores in a reach. Conceptualising fish assemblages within a framework of hierarchical faunal filters is simple and logical, helps direct conservation and management activities, and provides important information on the ecology of fishes in the western Great Plains of North America. ?? Blackwell Munksgaard, 2004.

  4. THE APPLICATION OF SUPPORT VECTOR MACHINE (SVM USING CIELAB COLOR MODEL, COLOR INTENSITY AND COLOR CONSTANCY AS FEATURES FOR ORTHO IMAGE CLASSIFICATION OF BENTHIC HABITATS IN HINATUAN, SURIGAO DEL SUR, PHILIPPINES

    Directory of Open Access Journals (Sweden)

    J. E. Cubillas

    2016-06-01

    Full Text Available This study demonstrates the application of CIELAB, Color intensity, and One Dimensional Scalar Constancy as features for image recognition and classifying benthic habitats in an image with the coastal areas of Hinatuan, Surigao Del Sur, Philippines as the study area. The study area is composed of four datasets, namely: (a Blk66L005, (b Blk66L021, (c Blk66L024, and (d Blk66L0114. SVM optimization was performed in Matlab® software with the help of Parallel Computing Toolbox to hasten the SVM computing speed. The image used for collecting samples for SVM procedure was Blk66L0114 in which a total of 134,516 sample objects of mangrove, possible coral existence with rocks, sand, sea, fish pens and sea grasses were collected and processed. The collected samples were then used as training sets for the supervised learning algorithm and for the creation of class definitions. The learned hyper-planes separating one class from another in the multi-dimensional feature space can be thought of as a super feature which will then be used in developing the C (classifier rule set in eCognition® software. The classification results of the sampling site yielded an accuracy of 98.85% which confirms the reliability of remote sensing techniques and analysis employed to orthophotos like the CIELAB, Color Intensity and One dimensional scalar constancy and the use of SVM classification algorithm in classifying benthic habitats.

  5. Enhancing and restoring habitat for the desert tortoise

    Science.gov (United States)

    Abella, Scott R.; Berry, Kristin H.

    2016-01-01

    Habitat has changed unfavorably during the past 150 y for the desert tortoise Gopherus agassizii, a federally threatened species with declining populations in the Mojave Desert and western Sonoran Desert. To support recovery efforts, we synthesized published information on relationships of desert tortoises with three habitat features (cover sites, forage, and soil) and candidate management practices for improving these features for tortoises. In addition to their role in soil health and facilitating recruitment of annual forage plants, shrubs are used by desert tortoises for cover and as sites for burrows. Outplanting greenhouse-grown seedlings, protected from herbivory, has successfully restored (>50% survival) a variety of shrubs on disturbed desert soils. Additionally, salvaging and reapplying topsoil using effective techniques is among the more ecologically beneficial ways to initiate plant recovery after severe disturbance. Through differences in biochemical composition and digestibility, some plant species provide better-quality forage than others. Desert tortoises selectively forage on particular annual and herbaceous perennial species (e.g., legumes), and forage selection shifts during the year as different plants grow or mature. Nonnative grasses provide low-quality forage and contribute fuel to spreading wildfires, which damage or kill shrubs that tortoises use for cover. Maintaining a diverse “menu” of native annual forbs and decreasing nonnative grasses are priorities for restoring most desert tortoise habitats. Reducing herbivory by nonnative animals, carefully timing herbicide applications, and strategically augmenting annual forage plants via seeding show promise for improving tortoise forage quality. Roads, another disturbance, negatively affect habitat in numerous ways (e.g., compacting soil, altering hydrology). Techniques such as recontouring road berms to reestablish drainage patterns, vertical mulching (“planting” dead plant material

  6. The effect of inundation frequency on ground beetle communities in a channelized mountain stream

    Science.gov (United States)

    Skalski, T.; Kedzior, R.; Radecki-Pawlik, A.

    2012-04-01

    Under natural conditions, river channels and floodplains are shaped by flow and sediment regime and are one of the most dynamic ecosystems. At present, European river floodplains are among the most endangered landscapes due to human modifications to river systems, including channel regulation and floodplain urbanization, and land use changes in the catchments. Situated in a transition zone between terrestrial and aquatic environments, exposed riverine sediments (ERS) play a key role in the functioning of riverine ecosystems. This study aimed to verify whether the bare granular substrate is the only factor responsible for sustaining the biota associated with ERS or the inundation frequency also plays a role, modifying the potential of particular species to colonize these habitats. Ground beetles (Col. Carabidae) were selected as the investigated group of organisms and the study was carried out in Porębianka, a Polish Carpathian stream flowing through both unconstrained channel sections and sections with varied channelization schemes (rapid hydraulic structures, concrete revetments or rip-rap of various age). In each of the distinguished channel types, four replicates of 10 pitfall traps were established in three rows varying in distance to the mean water level (at three different benches). Almost 7000 individuals belonging to 102 species were collected on 60 plots. Forward selection of redundancy analysis revealed four factors significantly describing the variation in ground beetle species data: bank modification, potential bankfull discharge, frequency of inundation and plant height. Most of the biggest species were ordered at the positive site of first axis having the highest values of periods between floods. Total biomass of ground beetles and mean biomass of individuals differed significantly between sites of various frequency of inundation, whereas the variation in abundance and species richness of ground beetles was independent of the river dynamics. The body

  7. Deep Learning for Distribution Channels' Management

    Directory of Open Access Journals (Sweden)

    Sabina-Cristiana NECULA

    2017-01-01

    Full Text Available This paper presents an experiment of using deep learning models for distribution channel management. We present an approach that combines self-organizing maps with artificial neural network with multiple hidden layers in order to identify the potential sales that might be addressed for channel distribution change/ management. Our study aims to highlight the evolution of techniques from simple features/learners to more complex learners and feature engineering or sampling techniques. This paper will allow researchers to choose best suited techniques and features to prepare their churn prediction models.

  8. Habitat features influencing jaguar Panthera onca (Carnivora: Felidae occupancy in Tortuguero National Park, Costa Rica

    Directory of Open Access Journals (Sweden)

    Stephanny Arroyo-Arce

    2014-12-01

    Full Text Available Habitat characteristics and human activities are known to play a major role in the occupancy of jaguars Panthera onca across their range, however the key variables influencing jaguar distribution in Tortuguero National Park, Costa Rica, have yet to be identified. This study evaluated jaguar occupancy in Tortuguero National Park and the surrounding area. Jaguar detection/non-detection data was collected using digital camera traps distributed within the boundaries of the protected area. Local community members were also interviewed to determine jaguar occurrence in the Park’s buffer zone. Occupancy models were then applied to identify the habitat characteristics that may better explain jaguar distribution across the study area. From June 2012 to June 2013, a total of 4 339 camera trap days were used to identify 18 individual jaguars inside the protected area; 17 of these jaguars were exclusively detected within the coastal habitat, whilst the remaining individual was detected solely within the interior of the Park. Interviewees reported 61 occasions of jaguar presence inside the buffer zone, between 1995 and 2013, with 80% of these described by the communities of Lomas de Sierpe, Barra de Parismina and La Aurora. These communities also reported the highest levels of livestock predation by jaguars (85% of attacks. In the study area, jaguar occurrence was positively correlated with the seasonal presence of nesting green turtles Chelonia mydas, and negatively correlated with distance to the Park boundary. Our findings suggested that the current occupancy of the jaguar in the study area may be a response to: 1 the vast availability of prey (marine turtles on Tortuguero beach, 2 the decline of its primary prey species as a result of illegal hunting inside the Park, and 3 the increase in anthropogenic pressures in the Park boundaries. Rev. Biol. Trop. 62 (4: 1449-1458. Epub 2014 December 01.

  9. Anthropogenic Habitats Facilitate Dispersal of an Early Successional Obligate: Implications for Restoration of an Endangered Ecosystem.

    Directory of Open Access Journals (Sweden)

    Katrina E Amaral

    Full Text Available Landscape modification and habitat fragmentation disrupt the connectivity of natural landscapes, with major consequences for biodiversity. Species that require patchily distributed habitats, such as those that specialize on early successional ecosystems, must disperse through a landscape matrix with unsuitable habitat types. We evaluated landscape effects on dispersal of an early successional obligate, the New England cottontail (Sylvilagus transitionalis. Using a landscape genetics approach, we identified barriers and facilitators of gene flow and connectivity corridors for a population of cottontails in the northeastern United States. We modeled dispersal in relation to landscape structure and composition and tested hypotheses about the influence of habitat fragmentation on gene flow. Anthropogenic and natural shrubland habitats facilitated gene flow, while the remainder of the matrix, particularly development and forest, impeded gene flow. The relative influence of matrix habitats differed between study areas in relation to a fragmentation gradient. Barrier features had higher explanatory power in the more fragmented site, while facilitating features were important in the less fragmented site. Landscape models that included a simultaneous barrier and facilitating effect of roads had higher explanatory power than models that considered either effect separately, supporting the hypothesis that roads act as both barriers and facilitators at all spatial scales. The inclusion of LiDAR-identified shrubland habitat improved the fit of our facilitator models. Corridor analyses using circuit and least cost path approaches revealed the importance of anthropogenic, linear features for restoring connectivity between the study areas. In fragmented landscapes, human-modified habitats may enhance functional connectivity by providing suitable dispersal conduits for early successional specialists.

  10. Hibernal habitat selection by Wood Frogs (Lithobates sylvaticus) in a northern New England montane landscape

    Science.gov (United States)

    Groff, Luke A.; Calhoun, Aram J.K.; Loftin, Cynthia S.

    2016-01-01

    Poikilothermic species, such as amphibians, endure harsh winter conditions via freeze-tolerance or freeze-avoidance strategies. Freeze-tolerance requires a suite of complex, physiological mechanisms (e.g., cryoprotectant synthesis); however, behavioral strategies (e.g., hibernal habitat selection) may be used to regulate hibernaculum temperatures and promote overwintering survival. We investigated the hibernal ecology of the freeze-tolerant Wood Frog (Lithobates sylvaticus) in north-central Maine. Our objectives were to characterize the species hibernaculum microclimate (temperature, relative humidity), evaluate hibernal habitat selection, and describe the spatial arrangement of breeding, post-breeding, and hibernal habitats. We monitored 15 frogs during two winters (2011/12: N = 10; 2012/13: N = 5), measured hibernal habitat features at micro (2 m) and macro (10 m) spatial scales, and recorded microclimate hourly in three strata (hibernaculum, leaf litter, ambient air). We compared these data to that of 57 random locations with logistic regression models, Akaike Information Criterion, and Kolmogorov–Smirnov tests. Hibernaculum microclimate was significantly different and less variable than leaf litter, ambient air, and random location microclimate. Model averaging indicated that canopy cover (−), leaf litter depth (+), and number of logs and stumps (+; microhabitat only) were important predictors of Wood Frog hibernal habitat. These habitat features likely act to insulate hibernating frogs from extreme and variable air temperatures. For example, decreased canopy cover facilitates increased snowpack depth and earlier snowpack accumulation and melt. Altered winter temperature and precipitation patterns attributable to climate change may reduce snowpack insulation, facilitate greater temperature variation in the underlying hibernacula, and potentially compromise Wood Frog winter survival.

  11. Ontogenetic differentiation of swimming performance and behaviour in relation to habitat availability in the endangered North Sea houting (Coregonus oxyrinchus)

    DEFF Research Database (Denmark)

    Poulsen, Søren Brandt; Jensen, Lasse Fast; Schulz, Carsten

    2012-01-01

    with slow-flowing water near river banks and river beds could function as nursery habitats. Stream channel experiments showed that cover providing shade caused delayed dispersal in both larvae and juveniles, but the larvae dispersed later and spent less time under cover than the juveniles, a finding...

  12. Wildfire may increase habitat quality for spring Chinook salmon in the Wenatchee River subbasin, WA, USA

    Science.gov (United States)

    Flitcroft, Rebecca L; Falke, Jeffrey A.; Reeves, Gordon H.; Hessburg, Paul F.; McNyset, Kris M.; Benda, Lee E.

    2016-01-01

    Pacific Northwest salmonids are adapted to natural disturbance regimes that create dynamic habitat patterns over space and through time. However, human land use, particularly long-term fire suppression, has altered the intensity and frequency of wildfire in forested upland and riparian areas. To examine the potential impacts of wildfire on aquatic systems, we developed stream-reach-scale models of freshwater habitat for three life stages (adult, egg/fry, and juvenile) of spring Chinook salmon (Oncorhynchus tshawytscha) in the Wenatchee River subbasin, Washington. We used variables representing pre- and post-fire habitat conditions and employed novel techniques to capture changes in in-stream fine sediment, wood, and water temperature. Watershed-scale comparisons of high-quality habitat for each life stage of spring Chinook salmon habitat suggested that there are smaller quantities of high-quality juvenile overwinter habitat as compared to habitat for other life stages. We found that wildfire has the potential to increase quality of adult and overwintering juvenile habitat through increased delivery of wood, while decreasing the quality of egg and fry habitat due to the introduction of fine sediments. Model results showed the largest effect of fire on habitat quality associated with the juvenile life stage, resulting in increases in high-quality habitat in all watersheds. Due to the limited availability of pre-fire high-quality juvenile habitat, and increased habitat quality for this life stage post-fire, occurrence of characteristic wildfires would likely create a positive effect on spring Chinook salmon habitat in the Wenatchee River subbasin. We also compared pre- and post-fire model results of freshwater habitat for each life stage, and for the geometric mean of habitat quality across all life stages, using current compared to the historic distribution of spring Chinook salmon. We found that spring Chinook salmon are currently distributed in stream channels in

  13. Assessment of River Habitat Quality in the Hai River Basin, Northern China

    Directory of Open Access Journals (Sweden)

    Yuekui Ding

    2015-09-01

    Full Text Available We applied a river habitat quality (RHQ assessment method to the Hai River Basin (HRB; an important economic centre in China; to obtain baseline information for water quality improvement; river rehabilitation; and watershed management. The results of the assessment showed that the river habitat in the HRB is seriously degraded. Specifically; 42.41% of the sites; accounting for a river length of 3.31 × 104 km; were designated poor and bad. Habitat in the plain areas is seriously deteriorated; and nearly 50% of the sites; accounting for a river length of 1.65 × 104 km; had either poor or bad habitats. River habitat degradation was attributable to the limited width of the riparian zone (≤5 m; lower coverage of riparian vegetation (≤40%; artificial land use patterns (public and industrial land; frequent occurrence of farming on the river banks and high volumes of solid waste (nearly 10 m3; single flow channels; and rare aquatic plants (≤1 category. At the regional scale; intensive artificial land use types caused by urbanization had a significant impact on the RHQ in the HRB. RHQ was significantly and negatively correlated with farmland (r = 1.000; p < 0.01 and urban land (r = 0.998; p < 0.05; and was significantly and positively correlated with grassland and woodland (r = 1.000; p < 0.01. Intensive artificial land use; created through urbanization processes; has led to a loss of the riparian zone and its native vegetation; and has disrupted the lateral connectivity of the rivers. The degradation of the already essentially black rivers is exacerbated by poor longitudinal connectivity (index of connectivity is 2.08–16.56; caused by reservoirs and sluices. For river habitat rehabilitation to be successful; land use patterns need to be changed and reservoirs and sluices will have to be regulated.

  14. Predicting the aquatic stage sustainability of a restored backwater channel combining in-situ and airborne remotely sensed bathymetric models.

    Science.gov (United States)

    Jérôme, Lejot; Jérémie, Riquier; Hervé, Piégay

    2014-05-01

    As other large river floodplain worldwide, the floodplain of the Rhône has been deeply altered by human activities and infrastructures over the last centuries both in term of structure and functioning. An ambitious restoration plan of selected by-passed reaches has been implemented since 1999, in order to improve their ecological conditions. One of the main action aimed to increase the aquatic areas in floodplain channels (i.e. secondary channels, backwaters, …). In practice, fine and/or coarse alluvium were dredged, either locally or over the entire cut-off channel length. Sometimes the upstream or downstream alluvial plugs were also removed to reconnect the restored feature to the main channel. Such operation aims to restore forms and associated habitats of biotic communities, which are no more created or maintained by the river itself. In this context, assessing the sustainability of such restoration actions is a major issue. In this study, we focus on 1 of the 24 floodplain channels which have been restored along the Rhône River since 1999, the Malourdie channel (Chautagne reach, France). A monitoring of the geomorphologic evolution of the channel has been conducted during a decade to assess the aquatic stage sustainability of this former fully isolated channel, which has been restored as a backwater in 2004. Two main types of measures were performed: (a) water depth and fine sediment thickness were surveyed with an auger every 10 m along the channel centerline in average every year and a half allowing to establish an exponential decay model of terrestrialization rates through time; (b) three airborne campaigns (2006, 2007, 2012) by Ultra Aerial Vehicle (UAV) provided images from which bathymetry were inferred in combination with observed field measures. Coupling field and airborne models allows us to simulate different states of terrestrialization at the scale of the whole restore feature (e.g. 2020/2030/2050). Raw results indicate that terrestrialization

  15. A scientific basis for restoring fish spawning habitat in the St. Clair and Detroit Rivers of the Laurentian Great Lakes

    Science.gov (United States)

    Manny, Bruce A.; Roseman, Edward F.; Kennedy, Gregory W.; Boase, James C.; Craig, Jaquelyn; Bennion, David H.; Read, Jennifer; Vaccaro, Lynn; Chiotti, Justin A.; Drouin, Richard; Ellison, Roseanne

    2015-01-01

    Loss of functional habitat in riverine systems is a global fisheries issue. Few studies, however, describe the decision-making approach taken to abate loss of fish spawning habitat. Numerous habitat restoration efforts are underway and documentation of successful restoration techniques for spawning habitat of desirable fish species in large rivers connecting the Laurentian Great Lakes are reported here. In 2003, to compensate for the loss of fish spawning habitat in the St. Clair and Detroit Rivers that connect the Great Lakes Huron and Erie, an international partnership of state, federal, and academic scientists began restoring fish spawning habitat in both of these rivers. Using an adaptive management approach, we created 1,100 m2 of productive fish spawning habitat near Belle Isle in the Detroit River in 2004; 3,300 m2 of fish spawning habitat near Fighting Island in the Detroit River in 2008; and 4,000 m2 of fish spawning habitat in the Middle Channel of the St. Clair River in 2012. Here, we describe the adaptive-feedback management approach that we used to guide our decision making during all phases of spawning habitat restoration, including problem identification, team building, hypothesis development, strategy development, prioritization of physical and biological imperatives, project implementation, habitat construction, monitoring of fish use of the constructed spawning habitats, and communication of research results. Numerous scientific and economic lessons learned from 10 years of planning, building, and assessing fish use of these three fish spawning habitat restoration projects are summarized in this article.

  16. Grande Ronde Basin Fish Habitat Enhancement Project, Annual Report 2002-2003.

    Energy Technology Data Exchange (ETDEWEB)

    McGowan, Vance

    2003-08-01

    On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an agreement to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In July of 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the intergovernmental contract, and on March 1, 1996 the Wallowa River subbasin was added. The primary goal of 'The Grande Ronde Basin Fish Habitat Enhancement Project' is to create, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing opportunities for natural fish production within the basin. This project provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife is on private lands and therefore requires that considerable time be spent developing rapport with landowners to gain acceptance of, and continued cooperation with this program throughout 10-15 year lease periods. This project calls for passive regeneration of habitat, using riparian exclosure fencing as the primary method to restore degraded streams to a normative condition. Active remediation techniques using plantings, off-site water developments, site-specific instream structures, or whole channel alterations are also utilized where applicable. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state, federal, and tribal agencies, and local watershed councils. Work undertaken during 2002 included: (1) Implementing 1 new fencing project in the Wallowa subbasin that will protect an additional 0.95 miles of stream

  17. A multi-gene phylogeny of Cephalopoda supports convergent morphological evolution in association with multiple habitat shifts in the marine environment

    Directory of Open Access Journals (Sweden)

    Lindgren Annie R

    2012-07-01

    Full Text Available Abstract Background The marine environment is comprised of numerous divergent organisms living under similar selective pressures, often resulting in the evolution of convergent structures such as the fusiform body shape of pelagic squids, fishes, and some marine mammals. However, little is known about the frequency of, and circumstances leading to, convergent evolution in the open ocean. Here, we present a comparative study of the molluscan class Cephalopoda, a marine group known to occupy habitats from the intertidal to the deep sea. Several lineages bear features that may coincide with a benthic or pelagic existence, making this a valuable group for testing hypotheses of correlated evolution. To test for convergence and correlation, we generate the most taxonomically comprehensive multi-gene phylogeny of cephalopods to date. We then create a character matrix of habitat type and morphological characters, which we use to infer ancestral character states and test for correlation between habitat and morphology. Results Our study utilizes a taxonomically well-sampled phylogeny to show convergent evolution in all six morphological characters we analyzed. Three of these characters also correlate with habitat. The presence of an autogenic photophore (those relying upon autonomous enzymatic light reactions is correlated with a pelagic habitat, while the cornea and accessory nidamental gland correlate with a benthic lifestyle. Here, we present the first statistical tests for correlation between convergent traits and habitat in cephalopods to better understand the evolutionary history of characters that are adaptive in benthic or pelagic environments, respectively. Discussion Our study supports the hypothesis that habitat has influenced convergent evolution in the marine environment: benthic organisms tend to exhibit similar characteristics that confer protection from invasion by other benthic taxa, while pelagic organisms possess features that

  18. Rainbow trout movement behavior and habitat occupancy are influenced by sex and Pacific salmon presence in an Alaska river system

    Science.gov (United States)

    Fraley, Kevin M.; Falke, Jeffrey A.; McPhee, Megan V.; Prakash, Anupma

    2018-01-01

    We used spatially continuous field-measured and remotely-sensed aquatic habitat characteristics paired with weekly ground-based telemetry tracking and snorkel surveys to describe movements and habitat occupancy of adult rainbow trout (N = 82) in a runoff-fed, salmon-influenced southcentral Alaska river system. We found that during the ice-free feeding season (June through September) rainbow trout occurrence was associated more with fine-scale (channel unit) characteristics relative to coarse-scale (stream reach) variables. The presence of Pacific salmon (which provide an important seasonal food subsidy), and habitat size were particularly useful predictors. Weekly movement distance differed between pre- and post- spawning salmon arrival, but did not vary by sex. Habitat quality, season, and the arrival of spawning salmon influenced the likelihood of rainbow trout movement, and fish moved farther to seek out higher quality habitats. Because rainbow trout respond to habitat factors at multiple scales and seek out salmon-derived subsidies, it will be important to take a multiscale approach in protecting trout and salmon populations and managing the associated fisheries.

  19. Estuarine conservation and restoration: the Somme and the Seine case studies (English Channel, France).

    Science.gov (United States)

    Ducrotoy, Jean-Paul; Dauvin, Jean-Claude

    2008-01-01

    Megatidal estuaries such as the Seine and the Somme (North-Western France) are rather well delimited and human impacts on them are well understood. Since the middle of the 19th Century, there has been a slow but irreversible degradation of the state of these English Channel estuaries. However, current conservation and restoration strategies tend to freeze habitats in a particular state, their status being defined, most often, through a patrimonial or utilitarian approach. Connectedness between biotopes (sensu habitat+community) has a tendency to be neglected, especially with regard to main ecological gradients, i.e., salinity. In this paper, evaluation methodologies are proposed with the intention of assessing changes to ecosystem functions, under anthropogenic disturbance, controlled or otherwise. The Seine (a heavily industrialised ecosystem) is compared to the Somme (considered here for its pseudo-natural features) in order to discriminate between oceanic processes (siltation and plugging of estuaries) and anthropogenic influences. Preservation and restoration of habitats rely on a robust scientific methodology. The multi-scale approach adopted in the projects presented here relies on sensitive socio-ecological assessment procedures, tools for evaluating ecological quality, and well-built monitoring programmes based upon pertinent indicators. Such managerial tools were used to refine strategies and make them compatible with the sustainable co-development of resources in a European context. This paper demonstrates how scientists were able to acquire and apply knowledge in the field of rehabilitation and restoration. Jointly with managers and policy-makers, they have brought scientific information and socio-economics together in order to answer questions about the restoration of sites or habitats and to anticipate future propositions in the spirit of Integrated Coastal Zone Management (ICZM).

  20. Caribou nursery site habitat characteristics in two northern Ontario parks

    Directory of Open Access Journals (Sweden)

    Natasha L. Carr

    2007-04-01

    Full Text Available To prevent further range recession, habitat features essential to the life-history requisites of woodland caribou (Rangifer tarandus caribou such as calving and nursery sites need to be protected for the persistence of the species. Woodland caribou may minimize predation risk during calving by either spacing out or spacing away from predators in the forest to calve on islands, wetlands, or shorelines. Our objective was to determine the characteristics of shoreline habitats used as calving and nursery sites by female woodland caribou in northern Ontario. Detailed vegetation and other site characteristics were measured at nursery sites used by cow-calf pairs in Wabakimi and Woodland Caribou Provincial Parks for comparison with shoreline sites that were not used by caribou within each park. Differences in habitat variables selected by female caribou in the two study areas reflect broad ecoregional differences in vegetation and topography. In Wabakimi Provincial Park, understorey tree density and ground detection distance played key roles in distinguishing nursery sites from sites that were not used. In Woodland Caribou Provincial Park, groundcover vegetation and shrub density were important in the selection of nursery sites by female caribou. Generally, female caribou in both parks selected nursery sites with greater slope, lower shrub density but thicker groundcover vegetation, including greater lichen abundance, and higher densities of mature trees than shoreline sites that were not used. The identification of these important features for caribou nursery sites provides a basis for improving their protection in future management policies and legislation.

  1. Single channel blind source separation based on ICA feature extraction

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A new technique is proposed to solve the blind source separation (BSS) given only a single channel observation. The basis functions and the density of the coefficients of source signals learned by ICA are used as the prior knowledge. Based on the learned prior information the learning rules of single channel BSS are presented by maximizing the joint log likelihood of the mixed sources to obtain source signals from single observation,in which the posterior density of the given measurements is maximized. The experimental results exhibit a successful separation performance for mixtures of speech and music signals.

  2. Lower Columbia River and Estuary Habitat Monitoring Study, 2011 - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Borde, Amy B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kaufmann, Ronald M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cullinan, Valerie I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zimmerman, Shon A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Thom, Ronald M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wright, Cynthia L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2012-03-01

    The Ecosystem Monitoring Program is a collaborative effort between the Lower Columbia River Estuary Partnership (LCREP), University of Washington, Wetland Ecosystem Team (UW), US Geological Survey, Water Science Center (USGS), National Oceanic and Atmospheric Administration, National Marine Fisheries Service (NOAA-Fisheries, hereafter NOAA), and Pacific Northwest National Laboratory, Marine Sciences Laboratory (PNNL). The goal of the program is to conduct emergent wetland monitoring aimed at characterizing salmonid habitats in the lower Columbia River and estuary (LCRE) from the mouth of the estuary to Bonneville Dam (Figure 1). This is an ecosystem based monitoring program focused on evaluating status and trends in habitat and reducing uncertainties regarding these ecosystems to ultimately improve the survival of juvenile salmonids through the LCRE. This project comprehensively assesses habitat, fish, food web, and abiotic conditions in the lower river, focusing on shallow water and vegetated habitats used by juvenile salmonids for feeding, rearing and refugia. The information is intended to be used to guide management actions associated with species recovery, particularly that of threatened and endangered salmonids. PNNL’s role in this multi-year study is to monitor the habitat structure (e.g., vegetation, topography, channel morphology, and sediment type) as well as hydrologic patterns.

  3. Grande Ronde Basin Fish Habitat Enhancement Project : 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    McGowan, Vance R.; Powell, Russ M.; Stennfeld, Scott P.

    2001-04-01

    On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an agreement to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In July of 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the intergovernmental contract, and on March 1, 1996 the Wallowa River subbasin was added. The primary goal of ''The Grande Ronde Basin Fish Habitat Enhancement Project'' is to access, create, improve, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing opportunities for natural fish production within the basin. This project provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife is on private lands and therefore requires that considerable time be spent developing rapport with landowners to gain acceptance of, and continued cooperation with this program throughout 10-15 year lease periods. This project calls for passive regeneration of habitat, using riparian enclosure fencing as the primary method to restore degraded streams to a normative condition. Active remediation techniques using plantings, off-site water developments, site-specific instream structures, or whole channel alterations are also utilized where applicable. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state, federal, and tribal agencies, and local watershed councils. Work undertaken during 2000 included: (1) Implementing 2 new projects in the Grande Ronde drainage, and retrofitting one old

  4. Life history and habitat preference in the Darling hardyhead, Craterocephalus amniculus (Teleostei, Atherinidae) in the northern Murray-Darling Basin, Australia

    DEFF Research Database (Denmark)

    Moy, Karl G.; Wilson, G. Glenn; Ellison, Tanya L.

    2018-01-01

    and spatial variation in diet, and habitat selection in this species across multiple sites and years in the upper Macintyre River, northern New South Wales. Preserved specimens from a separate study were used to obtain information on diet and size structure. Size structures suggested a single annual spawning...... most of the diet while over half the gut contents at the downstream site was unidentified detritus. Preference was shown for pool habitats with a sand or cobble substrate, increased channel depth and width and distance from the bank, and reduced flow velocity. Overhanging exotic riparian vegetation...

  5. Redd Site Selection and Spawning Habitat Use by Fall Chinook Salmon, Hanford Reach, Columbia River : Final Report 1995 - 1998.

    Energy Technology Data Exchange (ETDEWEB)

    Geist, David R.

    1999-05-01

    This report summarizes results of research activities conducted from 1995 through 1998 on identifying the spawning habitat requirements of fall chinook salmon (Oncorhynchus tshawytscha) in the Hanford Reach of the Columbia River. The project investigated whether traditional spawning habitat models could be improved in order to make better predictions of available habitat for fall chinook salmon in the Snake River. Results suggest models could be improved if they used spawning area-specific, rather than river-specific, spawning characteristics; incorporated hyporheic discharge measurements; and gave further consideration to the geomorphic features that are present in the unconstrained segments of large alluvial rivers. Ultimately the recovery of endangered fall chinook salmon will depend on how well we are able to recreate the characteristics once common in alluvial floodplains of large rivers. The results from this research can be used to better define the relationship between these physical habitat characteristics and fall chinook salmon spawning site selection, and provide more efficient use of limited recovery resources. This report is divided into four chapters which were presented in the author's doctoral dissertation which he completed through the Department of Fisheries and Wildlife at Oregon State University. Each of the chapters has been published in peer reviewed journals or is currently under review. Chapter one is a conceptual spawning habitat model that describes how geomorphic features of river channels create hydraulic processes, including hyporheic flows, that influence where salmon spawn in unconstrained reaches of large mainstem alluvial rivers. Chapter two describes the comparison of the physical factors associated with fall chinook salmon redd clusters located at two sites within the Reach. Spatial point pattern analysis of redds showed that redd clusters averaged approximately 10 hectares in area and their locations were consistent from

  6. Identification of landscape features influencing gene flow: How useful are habitat selection models?

    Science.gov (United States)

    Gretchen H. Roffler; Michael K. Schwartz; Kristine Pilgrim; Sandra L. Talbot; George K. Sage; Layne G. Adams; Gordon Luikart

    2016-01-01

    Understanding how dispersal patterns are influenced by landscape heterogeneity is critical for modeling species connectivity. Resource selection function (RSF) models are increasingly used in landscape genetics approaches. However, because the ecological factors that drive habitat selection may be different from those influencing dispersal and gene flow, it is...

  7. Abiotic controls of emergent macrophyte density in a bedrock channel - The Cahaba River, AL (USA)

    Science.gov (United States)

    Vaughn, Ryan S.; Davis, Lisa

    2015-10-01

    Research examining bedrock channels is growing. Despite this, biotic-abiotic interactions remain a topic mostly addressed in alluvial systems. This research identified hydrogeomorphic factors operating at the patch-scale (100-102 m) in bedrock shoals of the Cahaba River (AL) that help determine the distribution of the emergent aquatic macrophyte, Justicia americana. Macrophyte patch density (number of stems/m2) and percent bedrock void surface area (rock surface area/m2 occupied by joints, fractures, and potholes) were measured (n = 24 within two bedrock shoals) using stem counts and underwater photography, respectively. One-dimensional hydrologic modeling (HEC-RAS 4.1.0) was completed for a section within a shoal to examine velocity and channel depth as controlling variables for macrophyte patch density. Results from binary logistic regression analysis identified depth and velocity as good predictors of the presence or absence of Justicia americana within shoal structures (depth p = 0.001, velocity p = 0.007), which is a similar finding to previous research conducted in alluvial systems. Correlation analysis between bedrock surface void area and stem density demonstrated a statistically significant positive correlation (r = 0.665, p = 0.01), elucidating a link between abiotic-biotic processes that may well be unique to bedrock channels. These results suggest that the amount of void space present in bedrock surfaces, in addition to localized depth and velocity, helps control macrophyte patch density in bedrock shoal complexes. The utility of geomorphology in explaining patch-scale habitat heterogeneity in this study highlights geomorphology's potential to help understand macrophyte habitat heterogeneity at the reach scale, while also demonstrating its promise for mapping and understanding habitat heterogeneity at the system scale.

  8. Vacant habitats in the Universe.

    Science.gov (United States)

    Cockell, Charles S

    2011-02-01

    The search for life on other planets usually makes the assumption that where there is a habitat, it will contain life. On the present-day Earth, uninhabited habitats (or vacant habitats) are rare, but might occur, for example, in subsurface oils or impact craters that have been thermally sterilized in the past. Beyond Earth, vacant habitats might similarly exist on inhabited planets or on uninhabited planets, for example on a habitable planet where life never originated. The hypothesis that vacant habitats are abundant in the Universe is testable by studying other planets. In this review, I discuss how the study of vacant habitats might ultimately inform an understanding of how life has influenced geochemical conditions on Earth. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Gauging resource exploitation by juvenile Chinook salmon (Oncorhynchus tshawytscha) in restoring estuarine habitat

    Science.gov (United States)

    Davis, Melanie; Ellings, Christopher S.; Woo, Isa; Hodgson, Sayre; Larsen, Kimberly A.; Nakai, Glynnis

    2018-01-01

    In the context of delta restoration and its impact on salmonid rearing, success is best evaluated based on whether out-migrating juvenile salmon can access and benefit from suitable estuarine habitat. Here, we integrated 3 years of post-restoration monitoring data including habitat availability, invertebrate prey biomass, and juvenile Chinook salmon (Oncorhynchus tshawytscha) physiological condition to determine whether individuals profited from the addition of 364 ha of delta habitat in South Puget Sound, Washington, United States. Productivity in the restored mudflat was comparable to reference sites 3 years after dike removal, surpassing a mean total of 6 million kJ energy from invertebrate prey. This resulted from the development of a complex network of tidal channels and a resurgence in dipteran biomass that was unique to the restoration area. Consequently, a notable shift in invertebrate consumption occurred between 2010 and 2011, whereby individuals switched from eating primarily amphipods to dipteran flies; however, dietary similarity to the surrounding habitat did not change from year to year, suggesting that this shift was a result of a change in the surrounding prey communities. Growth rates did not differ between restored and reference sites, but catch weight was positively correlated with prey biomass, where greater prey productivity appeared to offset potential density-dependent effects. These results demonstrate how the realized function of restoring estuarine habitat is functionally dependent. High prey productivity in areas with greater connectivity may support healthy juvenile salmon that are more likely to reach the critical size class for offshore survival.

  10. Using urban forest assessment tools to model bird habitat potential

    Science.gov (United States)

    Lerman, Susannah B.; Nislow, Keith H.; Nowak, David J.; DeStefano, Stephen; King, David I.; Jones-Farrand, D. Todd

    2014-01-01

    The alteration of forest cover and the replacement of native vegetation with buildings, roads, exotic vegetation, and other urban features pose one of the greatest threats to global biodiversity. As more land becomes slated for urban development, identifying effective urban forest wildlife management tools becomes paramount to ensure the urban forest provides habitat to sustain bird and other wildlife populations. The primary goal of this study was to integrate wildlife suitability indices to an existing national urban forest assessment tool, i-Tree. We quantified available habitat characteristics of urban forests for ten northeastern U.S. cities, and summarized bird habitat relationships from the literature in terms of variables that were represented in the i-Tree datasets. With these data, we generated habitat suitability equations for nine bird species representing a range of life history traits and conservation status that predicts the habitat suitability based on i-Tree data. We applied these equations to the urban forest datasets to calculate the overall habitat suitability for each city and the habitat suitability for different types of land-use (e.g., residential, commercial, parkland) for each bird species. The proposed habitat models will help guide wildlife managers, urban planners, and landscape designers who require specific information such as desirable habitat conditions within an urban management project to help improve the suitability of urban forests for birds.

  11. Demersal fish assemblages on seamounts and other rugged features in the northeastern Caribbean

    Science.gov (United States)

    Quattrini, Andrea M.; Demopoulos, Amanda W. J.; Singer, Randal; Roa-Varon, Adela; Chaytor, Jason D.

    2017-05-01

    Recent investigations of demersal fish communities in deepwater (>50 m) habitats have considerably increased our knowledge of the factors that influence the assemblage structure of fishes across mesophotic to deep-sea depths. While different habitat types influence deepwater fish distribution, whether different types of rugged seafloor features provide functionally equivalent habitat for fishes is poorly understood. In the northeastern Caribbean, different types of rugged features (e.g., seamounts, banks, canyons) punctuate insular margins, and thus create a remarkable setting in which to compare demersal fish communities across various features. Concurrently, several water masses are vertically layered in the water column, creating strong stratification layers corresponding to specific abiotic conditions. In this study, we examined differences among fish assemblages across different features (e.g., seamount, canyon, bank/ridge) and water masses at depths ranging from 98 to 4060 m in the northeastern Caribbean. We conducted 26 remotely operated vehicle dives across 18 sites, identifying 156 species of which 42% of had not been previously recorded from particular depths or localities in the region. While rarefaction curves indicated fewer species at seamounts than at other features in the NE Caribbean, assemblage structure was similar among the different types of features. Thus, similar to seamount studies in other regions, seamounts in the Anegada Passage do not harbor distinct communities from other types of rugged features. Species assemblages, however, differed among depths, with zonation generally corresponding to water mass boundaries in the region. High species turnover occurred at depths <1200 m, and may be driven by changes in water mass characteristics including temperature (4.8-24.4 °C) and dissolved oxygen (2.2-9.5 mg per l). Our study suggests the importance of water masses in influencing community structure of benthic fauna, while considerably adding

  12. Modeling the Effect of Geomorphic Change Triggered by Large Wood Addition on Salmon Habitat in a Forested Coastal Watershed

    Science.gov (United States)

    Bair, R.; Segura, C.; Lorion, C.

    2015-12-01

    Large wood (LW) additions are often part of fish habitat restorations in the PNW where historic forest clear-cutting limited natural wood recruitment. These efforts' relative successes are rarely reported in terms of ecological significance to different life stages of fish. Understanding the effectiveness of LW additions will contribute to successfully managing forest land. In this study we quantify the geomorphic change of a restoration project involving LW additions to three alluvial reaches in Mill Creek, OR. The reaches are 110-130m in plane-bed morphology and drain 2-16km2. We quantify the change in available habitat to different life stages of coho salmon in terms of velocity (v), shear stress (t), flow depth, and grain size distributions (GSD) considering existing thresholds in the literature for acceptable habitat. Flow conditions before and after LW additions are assessed using a 2D hydrodynamic model (FaSTMECH). Model inputs include detailed channel topography, discharge, and surface GSD. The spatial-temporal variability of sediment transport was also quantified based the modeled t distributions and the GSD to document changes in the overall geomorphic regime. Initial modeling results for pre wood conditions show mean t and v values ranging between 0 and 26N/m2 and between 0 and 2.4m/s, respectively for up to bankfull flow (Qbf). The distributions of both t and v become progressively wider and peak at higher values as flow increases with the notable exception at Qbf for which the area of low velocity increases noticeably. The spatial distributions of velocity results indicates that the extent of suitable habitat for adult coho decreased by 18% between flows 30 and 55% of BF. However the area of suitable habitat increased by 15% between 0.55Qbf and Qbf as the flow spreads from the channel into the floodplain. We expect the LW will enhance floodplain connectivity and thus available habitat by creating additional areas of low v during winter flows.

  13. Use of the RHS method in Golijska Moravica river basin

    Directory of Open Access Journals (Sweden)

    Milanović Ana

    2006-01-01

    Full Text Available River Habitat Survey (RHS is terrain method developed in UK in 1994. for determination of physical character of rivers and river basin. This method is applied for the first time in Golijska Moravica river basin. Two indices which broadly describe the diversity of river habitat and landscape features (Habitat Quality Assessment (HQA and extent and severity of artificial modification to the channel (Habitat Modification Class (HMC has been developed for reporting purposes. These are based on simple scoring systems which have been agreed by technical experts.

  14. Flow in a triangular open channel with hydraulic jump | Eyo | Journal ...

    African Journals Online (AJOL)

    Mathematical model for dredging a triangular open channel with hydraulic jump is developed using the method of successive approximation. Applying the model to a numerical example new parameters of the new (excavated) channel are determined and compared with those of the original channel. Another feature of the ...

  15. Voltage-dependent gating in a "voltage sensor-less" ion channel.

    Directory of Open Access Journals (Sweden)

    Harley T Kurata

    2010-02-01

    Full Text Available The voltage sensitivity of voltage-gated cation channels is primarily attributed to conformational changes of a four transmembrane segment voltage-sensing domain, conserved across many levels of biological complexity. We have identified a remarkable point mutation that confers significant voltage dependence to Kir6.2, a ligand-gated channel that lacks any canonical voltage-sensing domain. Similar to voltage-dependent Kv channels, the Kir6.2[L157E] mutant exhibits time-dependent activation upon membrane depolarization, resulting in an outwardly rectifying current-voltage relationship. This voltage dependence is convergent with the intrinsic ligand-dependent gating mechanisms of Kir6.2, since increasing the membrane PIP2 content saturates Po and eliminates voltage dependence, whereas voltage activation is more dramatic when channel Po is reduced by application of ATP or poly-lysine. These experiments thus demonstrate an inherent voltage dependence of gating in a "ligand-gated" K+ channel, and thereby provide a new view of voltage-dependent gating mechanisms in ion channels. Most interestingly, the voltage- and ligand-dependent gating of Kir6.2[L157E] is highly sensitive to intracellular [K+], indicating an interaction between ion permeation and gating. While these two key features of channel function are classically dealt with separately, the results provide a framework for understanding their interaction, which is likely to be a general, if latent, feature of the superfamily of cation channels.

  16. Interfacing models of wildlife habitat and human development to predict the future distribution of puma habitat

    Science.gov (United States)

    Burdett, Christopher L.; Crooks, Kevin R.; Theobald, David M.; Wilson, Kenneth R.; Boydston, Erin E.; Lyren, Lisa A.; Fisher, Robert N.; Vickers, T. Winston; Morrison, Scott A.; Boyce, Walter M.

    2010-01-01

    The impact of human land uses on ecological systems typically differ relative to how extensively natural conditions are modified. Exurban development is intermediate-intensity residential development that often occurs in natural landscapes. Most species-habitat models do not evaluate the effects of such intermediate levels of human development and even fewer predict how future development patterns might affect the amount and configuration of habitat. We addressed these deficiencies by interfacing a habitat model with a spatially-explicit housing-density model to study the effect of human land uses on the habitat of pumas (Puma concolor) in southern California. We studied the response of pumas to natural and anthropogenic features within their home ranges and how mortality risk varied across a gradient of human development. We also used our housing-density model to estimate past and future housing densities and model the distribution of puma habitat in 1970, 2000, and 2030. The natural landscape for pumas in our study area consisted of riparian areas, oak woodlands, and open, conifer forests embedded in a chaparral matrix. Pumas rarely incorporated suburban or urban development into their home ranges, which is consistent with the hypothesis that the behavioral decisions of individuals can be collectively manifested as population-limiting factors at broader spatial scales. Pumas incorporated rural and exurban development into their home ranges, apparently perceiving these areas as modified, rather than non-habitat. Overall, pumas used exurban areas less than expected and showed a neutral response to rural areas. However, individual pumas that selected for or showed a neutral response to exurban areas had a higher risk of mortality than pumas that selected against exurban habitat. Exurban areas are likely hotspots for puma-human conflict in southern California. Approximately 10% of our study area will transform from exurban, rural, or undeveloped areas to suburban or

  17. Habitat Evaluation Procedures (HEP) Report; Burlington Bottoms, Technical Report 1993-2003.

    Energy Technology Data Exchange (ETDEWEB)

    Beilke, Susan

    1993-08-01

    Burlington Bottoms, consisting of approximately 417 acres of riparian and wetland habitat, was purchased by the Bonneville Power Administration in November 1991. The site is located approximately 1/2 mile north of the Sauvie Island Bridge (T2N R1W Sections 20, 21), and is bound on the east side by Multnomah Channel and on the west side by the Burlington Northern Railroad right-of-way and U.S. Highway 30 (Figures 1 and 2). Wildlife habitat values resulting from the purchase of this site will contribute toward the goal of mitigating for habitat lost as outlined in the Columbia and Willamette River Basin's Fish and Wildlife Program and Amendments. Under this Program, mitigation goals were developed as a result of the loss of wildlife habitat due to the development and operation of Federal hydro-electric facilities in the Columbia and Willamette River Basins. In 1993, an interdisciplinary team was formed to develop and implement quantitative Habitat Evaluation Procedures (HEP) to document the value of various habitats at Burlington Bottoms. Results of the HEP will be used to: (1) determine the current status and habitat enhancement potential of the site consistent with wildlife mitigation goals and objectives; and (2) develop a management plan for the area. HEP participants included; Charlie Craig, BPA; Pat Wright, Larry Rasmussen, and Ron Garst, U. S. Fish and Wildlife Service; John Christy, The Nature Conservancy; and Doug Cottam, Sue Beilke, and Brad Rawls, Oregon Department of Fish and Wildlife.

  18. Long-term vegetation monitoring for different habitats in floodplains

    Directory of Open Access Journals (Sweden)

    LANG Petra

    2014-03-01

    Full Text Available A floodplain-restoration project along the Danube between Neuburg and Ingolstadt (Germany aims to bring back water and sediment dynamic to the floodplain. The accompanied long-term monitoring has to document the changes in biodiversity related to this new dynamics. Considerations on and results of the vegetation monitoring concept are documented in this paper. In a habitat rich ecosystem like a floodplain different habitats (alluvial forest, semi-aquatic/aquatic sites have different demands on the sampling methods. Therefore, different monitoring designs (preferential, random, systematic, stratified random and transect sampling are discussed and tested for their use in different habitat types of the floodplain. A stratified random sampling is chosen for the alluvial forest stands, as it guarantees an equal distribution of the monitoring plots along the main driving factors, i.e. influence of water. The parameters distance to barrage, ecological flooding, height above thalweg and distance to the new floodplain river are used for stratifying and the plots are placed randomly into these strata, resulting in 117 permanent plots. Due to small changes at the semi-aquatic/aquatic sites a transect sampling was chosen. Further, a rough stratification (channel bed, river bank adjacent floodplain was implemented, which was only possible after the start of the restoration project. To capture the small-scale changes due to the restoration measures on the vegetation, 99 additional plots completed the transect sampling. We conclude that hetereogenous study areas need different monitoring approaches, but, later on, a joint analysis must be possible.

  19. Burlington Bottoms wildlife mitigation site : five-year habitat management plan, 2001-2005

    International Nuclear Information System (INIS)

    Beilke, Susan G.

    2001-01-01

    Historically the lower Columbia and Willamette River Basins were ecologically rich in both the habitat types and the species diversity they supported. This was due in part to the pattern of floods and periodic inundation of bottomlands that occurred, which was an important factor in creating and maintaining a complex system of wetland, meadow, and riparian habitats. This landscape has been greatly altered in the past 150 years, primarily due to human development and agricultural activities including cattle grazing, logging and the building of hydroelectric facilities for hydropower, navigation, flood control and irrigation in the Columbia and Willamette River Basins. The Burlington Bottoms (BB) wetlands contains some of the last remaining bottomlands in the area, supporting a diverse array of native plant and wildlife species. Located approximately twelve miles northwest of Portland and situated between the Tualatin Mountains to the west and Multnomah Channel and Sauvie Island to the east, the current habitats are remnant of what was once common throughout the region. In order to preserve and enhance this important site, a five-year habitat management plan has been written that proposes a set of actions that will carry out the goals and objectives developed for the site, which includes protecting, maintaining and enhancing wildlife habitat for perpetuity

  20. Stratification of habitats for identifying habitat selection by Merriam's turkeys

    Science.gov (United States)

    Mark A. Rumble; Stanley H. Anderson

    1992-01-01

    Habitat selection patterns of Merriam’s Turkeys were compared in hierarchical analyses of three levels of habitat stratification. Habitat descriptions in first-level analyses were based on dominant species of vegetation. Habitat descriptions in second-level analyses were based on dominant species of vegetation and overstory canopy cover. Habitat descriptions in third-...

  1. Crims Island-Restoration and monitoring of juvenile salmon rearing habitat in the Columbia River Estuary, Oregon, 2004-10

    Science.gov (United States)

    Haskell, Craig A.; Tiffan, Kenneth F.

    2011-01-01

    Under the 2004 Biological Opinion for operation of the Federal Columbia River Power System released by the National Marine Fisheries Service, the U.S. Army Corps of Engineers (USACE), the Bonneville Power Administration (BPA), and the Bureau of Reclamation (Reclamation) were directed to restore more than 4,047 hectares (10,000 acres) of tidal marsh in the Columbia River estuary by 2010. Restoration of Crims Island near Longview, Washington, restored 38.1 hectares of marsh and swamp in the tidal freshwater portion of the lower Columbia River. The goal of the restoration was to improve habitat for juveniles of Endangered Species Act (ESA)-listed salmon stocks and ESA-listed Columbian white-tailed deer. The U.S. Geological Survey (USGS) monitored and evaluated the fisheries and aquatic resources at Crims Island in 2004 prior to restoration (pre-restoration), which began in August 2004, and then post-restoration from 2006 to 2009. This report summarizes pre- and post-restoration monitoring data used by the USGS to evaluate project success. We evaluated project success by examining the interaction between juvenile salmon and a suite of broader ecological measures including sediments, plants, and invertebrates and their response to large-scale habitat alteration. The restoration action at Crims Island from August 2004 to September 2005 was to excavate a 0.6-meter layer of soil and dig channels in the interior of the island to remove reed canary grass and increase habitat area and tidal exchange. The excavation created 34.4 hectares of tidal emergent marsh where none previously existed and 3.7 hectares of intertidal and subtidal channels. Cattle that had grazed the island for more than 50 years were relocated. Soil excavated from the site was deposited in upland areas next to the tidal marsh to establish an upland forest. Excavation deepened and widened an existing T-shaped channel to increase tidal flow to the interior of the island. The western arm of the existing 'T-channel

  2. Mechanism of voltage-gated channel formation in lipid membranes.

    Science.gov (United States)

    Guidelli, Rolando; Becucci, Lucia

    2016-04-01

    Although several molecular models for voltage-gated ion channels in lipid membranes have been proposed, a detailed mechanism accounting for the salient features of experimental data is lacking. A general treatment accounting for peptide dipole orientation in the electric field and their nucleation and growth kinetics with ion channel formation is provided. This is the first treatment that explains all the main features of the experimental current-voltage curves of peptides forming voltage-gated channels available in the literature. It predicts a regime of weakly voltage-dependent conductance, followed by one of strong voltage-dependent conductance at higher voltages. It also predicts values of the parameters expressing the exponential dependence of conductance upon voltage and peptide bulk concentration for both regimes, in good agreement with those reported in the literature. Most importantly, the only two adjustable parameters involved in the kinetics of nucleation and growth of ion channels can be varied over broad ranges without affecting the above predictions to a significant extent. Thus, the fitting of experimental current-voltage curves stems naturally from the treatment and depends only slightly upon the choice of the kinetic parameters. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Taxonomic and numeric structure of Chironomidae (Diptera in different habitats of a Neotropical floodplain

    Directory of Open Access Journals (Sweden)

    Cristina Márcia de Menezes Butakka

    2014-09-01

    Full Text Available We characterized the local benthic Chironomidae by analyzing the numerical density, biomass, diversity index of Shannon-Wiener and dominance of larvae in the main channel of the Ivinhema River, in a secondary channel, in five lakes connected to the main channel and in five lakes without connection. Of the 68 taxa identified, Aedokritus sp., Tanytarsus sp., Chironomus strenzkei Fittkau, 1968 and Procladius sp.1 were found in all sampling sites and were considered morphospecies with greater of greatest ecological plasticity. Chironomus strenzkei Fittkau, 1968, contributed with the greatest biomass in the central region of lakes without connection, whereas Aedokritus sp. dominated in the littoral of lakes. The greater values of diversity indices in the littoral region of channels were due to the greater water flow and to the higher food availability in these areas. The dominance indices, by contrast, were greater on the central region of these environments. The littoral region has exclusive characteristics, representing habitats that could play important controlling in the numerical density and index diversity on the ecosystem, whereas that the biomass of benthic invertebrates in the central region in some biotopes would have different spatial probably according organisms drift.

  4. Assessment of habitat conditions using Self-Organizing Feature Maps for reintroduction/introduction of Aldrovanda vesiculosa L. in Poland

    Directory of Open Access Journals (Sweden)

    Piotr Kosiba

    2011-07-01

    Full Text Available The study objects were Aldrovanda vesiculosa L., an endangered species and fifty five water sites in Poland. The aim of the present work was to test the Self-Organizing Feature Map in order to examine and predict water properties and type of trophicity for restoration of the rare plant. Descriptive statistical parameters have been calculated, analysis of variance and cluster analysis were carried out and SOFM model has been constructed for analysed sites. The results of SOFM model and cluster analysis were compared. The study revealed that the ordination of individuals and groups of neurons in topological map of sites are similar in relation to dendrogram of cluster analysis, but not identical. The constructed SOFM model is related with significantly different contents of chemical water properties and type of trophicity. It appeared that sites with A. vesiculosa are predominantly distrophic and eutrophic waters shifted to distrophicity. The elevated model showed the sites with chemical properties favourable for restoration the species. Determined was the range of ecological tolerance of the species in relation to habitat conditions as stenotopic or relatively stenotopic in respect of the earlier accepted eutrophic status. The SOFM appeared to be a useful technique for ordination of ecological data and provides a novel framework for the discovery and forecasting of ecosystem properties constituting a validation of the SOFM method in this type of studies.

  5. Beyond habitat structure: Landscape heterogeneity explains the monito del monte (Dromiciops gliroides) occurrence and behavior at habitats dominated by exotic trees.

    Science.gov (United States)

    Salazar, Daniela A; Fontúrbel, Francisco E

    2016-09-01

    Habitat structure determines species occurrence and behavior. However, human activities are altering natural habitat structure, potentially hampering native species due to the loss of nesting cavities, shelter or movement pathways. The South American temperate rainforest is experiencing an accelerated loss and degradation, compromising the persistence of many native species, and particularly of the monito del monte (Dromiciops gliroides Thomas, 1894), an arboreal marsupial that plays a key role as seed disperser. Aiming to compare 2 contrasting habitats (a native forest and a transformed habitat composed of abandoned Eucalyptus plantations and native understory vegetation), we assessed D. gliroides' occurrence using camera traps and measured several structural features (e.g. shrub and bamboo cover, deadwood presence, moss abundance) at 100 camera locations. Complementarily, we used radio telemetry to assess its spatial ecology, aiming to depict a more complete scenario. Moss abundance was the only significant variable explaining D. gliroides occurrence between habitats, and no structural variable explained its occurrence at the transformed habitat. There were no differences in home range, core area or inter-individual overlapping. In the transformed habitats, tracked individuals used native and Eucalyptus-associated vegetation types according to their abundance. Diurnal locations (and, hence, nesting sites) were located exclusively in native vegetation. The landscape heterogeneity resulting from the vicinity of native and Eucalyptus-associated vegetation likely explains D. gliroides occurrence better than the habitat structure itself, as it may be use Eucalyptus-associated vegetation for feeding purposes but depend on native vegetation for nesting. © 2016 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  6. Lighting Automation Flying an Earthlike Habitat

    Science.gov (United States)

    Clark, Toni A.; Kolomenski, Andrei

    2017-01-01

    Currently, spacecraft lighting systems are not demonstrating innovations in automation due to perceived costs in designing circuitry for the communication and automation of lights. The majority of spacecraft lighting systems employ lamps or zone specific manual switches and dimmers. This type of 'hardwired' solution does not easily convert to automation. With advances in solid state lighting, the potential to enhance a spacecraft habitat is lost if the communication and automation problem is not tackled. If we are to build long duration environments, which provide earth-like habitats, minimize crew time, and optimize spacecraft power reserves, innovation in lighting automation is a must. This project researched the use of the DMX512 communication protocol originally developed for high channel count lighting systems. DMX512 is an internationally governed, industry-accepted, lighting communication protocol with wide industry support. The lighting industry markets a wealth of hardware and software that utilizes DMX512, and there may be incentive to space certify the system. Our goal in this research is to enable the development of automated spacecraft habitats for long duration missions. To transform how spacecraft lighting environments are automated, our project conducted a variety of tests to determine a potential scope of capability. We investigated utilization and application of an industry accepted lighting control protocol, DMX512 by showcasing how the lighting system could help conserve power, assist with lighting countermeasures, and utilize spatial body tracking. We hope evaluation and the demonstrations we built will inspire other NASA engineers, architects and researchers to consider employing DMX512 "smart lighting" capabilities into their system architecture. By using DMX512 we will prove the 'wheel' does not need to be reinvented in terms of smart lighting and future spacecraft can use a standard lighting protocol to produce an effective, optimized and

  7. Lighting Automation - Flying an Earthlike Habitat

    Science.gov (United States)

    Clark, Tori A. (Principal Investigator); Kolomenski, Andrei

    2017-01-01

    Currently, spacecraft lighting systems are not demonstrating innovations in automation due to perceived costs in designing circuitry for the communication and automation of lights. The majority of spacecraft lighting systems employ lamps or zone specific manual switches and dimmers. This type of 'hardwired' solution does not easily convert to automation. With advances in solid state lighting, the potential to enhance a spacecraft habitat is lost if the communication and automation problem is not tackled. If we are to build long duration environments, which provide earth-like habitats, minimize crew time, and optimize spacecraft power reserves, innovation in lighting automation is a must. This project researched the use of the DMX512 communication protocol originally developed for high channel count lighting systems. DMX512 is an internationally governed, industry-accepted, lighting communication protocol with wide industry support. The lighting industry markets a wealth of hardware and software that utilizes DMX512, and there may be incentive to space certify the system. Our goal in this research is to enable the development of automated spacecraft habitats for long duration missions. To transform how spacecraft lighting environments are automated, our project conducted a variety of tests to determine a potential scope of capability. We investigated utilization and application of an industry accepted lighting control protocol, DMX512 by showcasing how the lighting system could help conserve power, assist with lighting countermeasures, and utilize spatial body tracking. We hope evaluation and the demonstrations we built will inspire other NASA engineers, architects and researchers to consider employing DMX512 "smart lighting" capabilities into their system architecture. By using DMX512 we will prove the 'wheel' does not need to be reinvented in terms of smart lighting and future spacecraft can use a standard lighting protocol to produce an effective, optimized and

  8. Satellite-based remote sensing of running water habitats at large riverscape scales: Tools to analyze habitat heterogeneity for river ecosystem management

    Science.gov (United States)

    Hugue, F.; Lapointe, M.; Eaton, B. C.; Lepoutre, A.

    2016-01-01

    We illustrate an approach to quantify patterns in hydraulic habitat composition and local heterogeneity applicable at low cost over very large river extents, with selectable reach window scales. Ongoing developments in remote sensing and geographical information science massively improve efficiencies in analyzing earth surface features. With the development of new satellite sensors and drone platforms and with the lowered cost of high resolution multispectral imagery, fluvial geomorphology is experiencing a revolution in mapping streams at high resolution. Exploiting the power of aerial or satellite imagery is particularly useful in a riverscape research framework (Fausch et al., 2002), where high resolution sampling of fluvial features and very large coverage extents are needed. This study presents a satellite remote sensing method that requires very limited field calibration data to estimate over various scales ranging from 1 m to many tens or river kilometers (i) spatial composition metrics for key hydraulic mesohabitat types and (ii) reach-scale wetted habitat heterogeneity indices such as the hydromorphological index of diversity (HMID). When the purpose is hydraulic habitat characterization applied over long river networks, the proposed method (although less accurate) is much less computationally expensive and less data demanding than two dimensional computational fluid dynamics (CFD). Here, we illustrate the tools based on a Worldview 2 satellite image of the Kiamika River, near Mont Laurier, Quebec, Canada, specifically over a 17-km river reach below the Kiamika dam. In the first step, a high resolution water depth (D) map is produced from a spectral band ratio (calculated from the multispectral image), calibrated with limited field measurements. Next, based only on known river discharge and estimated cross section depths at time of image capture, empirical-based pseudo-2D hydraulic rules are used to rapidly generate a two-dimensional map of flow velocity

  9. Automatic detection and classification of artifacts in single-channel EEG

    DEFF Research Database (Denmark)

    Olund, Thomas; Duun-Henriksen, Jonas; Kjaer, Troels W.

    2014-01-01

    Ambulatory EEG monitoring can provide medical doctors important diagnostic information, without hospitalizing the patient. These recordings are however more exposed to noise and artifacts compared to clinically recorded EEG. An automatic artifact detection and classification algorithm for single......-channel EEG is proposed to help identifying these artifacts. Features are extracted from the EEG signal and wavelet subbands. Subsequently a selection algorithm is applied in order to identify the best discriminating features. A non-linear support vector machine is used to discriminate among different...... artifact classes using the selected features. Single-channel (Fp1-F7) EEG recordings are obtained from experiments with 12 healthy subjects performing artifact inducing movements. The dataset was used to construct and validate the model. Both subject-specific and generic implementation, are investigated...

  10. Water channel reactor fuels and fuel channels: Design, performance, research and development. Proceedings of a technical committee meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    The International Working Group on Water Reactor Fuel Performance and Technology (IWGFPT) recommended holding a Technical Committee Meeting on Water Channel Reactor Fuel including into this category fuels and pressure tubes/fuel channels for Atucha-I and II, BWR, CANDU, FUGEN and RBMK reactors. The IWGFPT considered that even if the characteristics of Atucha, CANDUs, BWRs, FUGEN and RBMKs differ considerably, there are also common features. These features include materials aspects, as well as core, fuel assembly and fuel rod design, and some safety issues. There is also some similarity in fuel power history and operating conditions (Atucha-I and II, FUGEN and RBMK). Experts from 11 countries participated at the meeting and presented papers on technology, performance, safety and design, and materials aspects of fuels and pressure tubes/fuel channels for the above types of water channel reactors. Refs, figs, tabs.

  11. Water channel reactor fuels and fuel channels: Design, performance, research and development. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1998-01-01

    The International Working Group on Water Reactor Fuel Performance and Technology (IWGFPT) recommended holding a Technical Committee Meeting on Water Channel Reactor Fuel including into this category fuels and pressure tubes/fuel channels for Atucha-I and II, BWR, CANDU, FUGEN and RBMK reactors. The IWGFPT considered that even if the characteristics of Atucha, CANDUs, BWRs, FUGEN and RBMKs differ considerably, there are also common features. These features include materials aspects, as well as core, fuel assembly and fuel rod design, and some safety issues. There is also some similarity in fuel power history and operating conditions (Atucha-I and II, FUGEN and RBMK). Experts from 11 countries participated at the meeting and presented papers on technology, performance, safety and design, and materials aspects of fuels and pressure tubes/fuel channels for the above types of water channel reactors

  12. Habitat use by a large population of Pinna nobilis in shallow waters

    Directory of Open Access Journals (Sweden)

    Patricia Prado

    2014-12-01

    Full Text Available We investigated the habitat use and size structure of the fan mussel, Pinna nobilis L. in the Alfacs Bay (Ebro Delta, Spain, NW Mediterranean. Shore-parallel transects were conducted to assess the abundance, size, and orientation of individuals and to record habitat features along the Banya Sandspit, at depths of 20 to 130 cm. Results showed two distinctive areas in terms of population density, marked by the end of local salt pan dikes that we named Good Habitat (GH and Bad Habitat (BH. To extrapolate these results to the full area of BH and GH, perpendicular transects were conducted to determine the local bathymetry. Then, the underestimation of individuals due to the effects of distance, depth and seagrass cover (Distance 6 computer package was added to raw abundances to obtain a corrected population of 90303 individuals (12085 in the BH and 782018 in the GH, the largest so far reported at such low depths. Most recorded individuals were adults (40 to 60 cm shell length, with no occurrence of sizes < 20 cm, and with a strong association with Cymodocea nodosa seagrass beds. Given the shallow distribution of the population, the absence of small sizes during the study period, and the presence of human activities that may damage P. nobilis and its habitat, the development of a management plan appears imperative for the conservation of the species.

  13. Channel Islands, Kelp Forest Monitoring, Size and Frequency, Natural Habitat, 1985-2007

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has measurements of the size of selected animal species at selected locations in the Channel Islands National Park. Sampling is conducted annually...

  14. A Fast Channel Switching Method in EPON System for IPTV Service

    Science.gov (United States)

    Nie, Yaling; Yoshiuchi, Hideya

    This paper presents a fast channel switching method in Ethernet Passive Optical Network (EPON) system for IPTV service. Fast channel switching is one of the important features of successful IPTV systems. Users surely prefer IPTV systems with small channel switching time rather than a longer one. Thus a channel switching control module and a channel/permission list in EPON system’s ONU or OLT is designed. When EPON system receives channel switching message from IPTV end user, the channel switching control module will catch the message and search the channel list and permission list maintained in EPON system, then got the matching parameter of EPON for the new channel. The new channel’s data transmission will be enabled by directly updating the optical filter of the ONU that end user connected. By using this method in EPON system, it provides a solution for dealing with channel switching delays in IPTV service.

  15. Characteristics and Dynamics of a Large Sub-Tidal Sand Wave Field—Habitat for Pacific Sand Lance (Ammodytes personatus, Salish Sea, Washington, USA

    Directory of Open Access Journals (Sweden)

    H. Gary Greene

    2017-10-01

    Full Text Available Deep-water sand wave fields in the San Juan Archipelago of the Salish Sea and Pacific Northwest Washington, USA, have been found to harbor Pacific sand lance (PSL, Ammodytes personatus, a critical forage fish of the region. Little is known of the dynamics of these sand waves and the stability of the PSL sub-tidal habitats. Therefore, we have undertaken an initial investigation to determine the dynamic conditions of a well-known PSL habitat in the San Juan Channel within the Archipelago using bottom sediment sampling, an acoustical doppler current profiling (ADCP system, and multi-beam echo sounder (MBES bathymetry. Our study indicates that the San Juan Channel sand wave field maintained its shape and bedforms geometry throughout the years it has been studied. Based on bed phase diagrams for channelized bedforms, the sand waves appear to be in a dynamic equilibrium condition. Sea level rise may change the current regime within the Archipelago and may alter some of the deep-water or sub-tidal PSL habitats mapped there. Our findings have global significance in that these dynamic bedforms that harbor PSL and sand-eels elsewhere along the west coast of North America and in the North Sea may also be in a marginally dynamic equilibrium condition and may be prone to alteration by sea level rise, indicating an urgency in locating and investigating these habitats in order to sustain the forage fish.

  16. Modulation of Tidal Channel Signatures on SAR Images Over Gyeonggi Bay in Relation to Environmental Factors

    Directory of Open Access Journals (Sweden)

    Tae-Sung Kim

    2018-04-01

    Full Text Available In this study, variations of radar backscatter features of the tidal channel in Gyeonggi Bay in the Eastern Yellow Sea were investigated using spaceborne synthetic aperture radar (SAR images. Consistent quasi-linear bright features appeared on the SAR images. Examining the detailed local bathymetry chart, we found that the features were co-located with the major axis of the tidal channel in the region. It was also shown that modulation of the radar backscatter features changed according to the environmental conditions at the time of imaging. For the statistical analysis, the bathymetric features over the tidal channel were extracted by an objective method. In terms of shape, the extracted features had higher variability in width than in length. The analysis of the variation in intensity with the coinciding bathymetric distribution confirmed that the quasi-linear bright features on the SAR images are fundamentally imprinted due to the surface current convergence and divergence caused by the bathymetry-induced tidal current variation. Furthermore, the contribution of environmental factors to the intensity modulation was quantitatively analyzed. A comparison of the variation in normalized radar cross section (NRCS with tidal current showed a positive correlation only with the perpendicular component of tidal current (r= 0.47. This implies that the modulation in intensity of the tidal channel signatures is mainly affected by the interaction with cross-current flow. On the other hand, the modulation of the NRCS over the tidal channel tended to be degraded as wind speed increased (r= −0.65. Considering the environmental circumstances in the study area, it can be inferred that the imaging capability of SAR for the detection of tidal channel signatures mainly relies on wind speed.

  17. Processes Leading to Beaded Channels Formation in Central Yakutia

    Science.gov (United States)

    Tarbeeva, A. M.; Lebedeva, L.; Efremov, V. S.; Krylenko, I. V.; Surkov, V. V.

    2017-12-01

    Beaded channels, consisting of deepened and widened pools and connecting narrow runs, are common fluvial forms in permafrost regions. Recent studies have shown that beaded channels are very important for connecting alluvial rivers with headwater lakes allowing fish passage and foraging habitats, as well as regulating river runoff. Beaded channels are known as typical thermokarst landforms; however, there is no evidence of their origin and formative processes. Geomorphological analyzes of beaded channels have been completed in several permafrost regions including field observations of Shestakovka River in Central Yakutia. The study aims to recognize the modern exogenic processes and formative mechanisms of beaded river channels. We show that beaded channel of Shestakovka River form in the perennially frozen sand with low ice content, leading us to hypothesize that thermokarst is not the main process of formation. Due to the significant volume of water, the pools don't freeze over entirely during winters, even under harsh climatic conditions. As a result, lenses of pressurized water remain under surface ice underlain by perennially thawed sediments. The presence of thawed sediments under the pools and frozen sediments under the runs leads to uneven thermoerosion of the riverbed during floods, providing the beaded form of the channel. In addition, freezing of pools during winter leads to pressure increasing under ice cover and formation of ice mounds, which crack several times during winter leading to disturbance of riverbanks. Many 1st to 3rd order streams have a specific transitional meandering-to-beaded form resembling the shape of unconfined meandering rivers, but consisting of pools and runs. However, such channels exhibit no evidences of present-day erosion of concave banks and sediment accumulation at the convex banks as typically being observed in normally meandering rivers. Such forms of channels indicates that their formation occurred by the greater channel

  18. Hedgerows Have a Barrier Effect and Channel Pollinator Movement in the Agricultural Landscape

    Directory of Open Access Journals (Sweden)

    Klaus Felix

    2015-01-01

    Full Text Available Agricultural intensification and the subsequent fragmentation of semi-natural habitats severely restrict pollinator and pollen movement threatening both pollinator and plant species. Linear landscape elements such as hedgerows are planted for agricultural and conservation purposes to increase the resource availability and habitat connectivity supporting populations of beneficial organisms such as pollinators. However, hedgerows may have unexpected effects on plant and pollinator persistence by not just channeling pollinators and pollen along, but also restricting movement across the strip of habitat. Here, we tested how hedgerows influence pollinator movement and pollen flow. We used fluorescent dye particles as pollen analogues to track pollinator movement between potted cornflowers Centaurea cyanus along and across a hedgerow separating two meadows. The deposition of fluorescent dye was significantly higher along the hedgerow than across the hedgerow and into the meadow, despite comparable pollinator abundances. The differences in pollen transfer suggest that hedgerows can affect pollinator and pollen dispersal by channeling their movement and acting as a permeable barrier. We conclude that hedgerows in agricultural landscapes can increase the connectivity between otherwise isolated plant and pollinator populations (corridor function, but can have additional, and so far unknown barrier effects on pollination services. Functioning as a barrier, linear landscape elements can impede pollinator movement and dispersal, even for highly mobile species such as bees. These results should be considered in future management plans aiming to enhance the persistence of threatened pollinator and plant populations by restoring functional connectivity and to ensure sufficient crop pollination in the agricultural landscape.

  19. Electrostatic tuning of permeation and selectivity in aquaporin water channels

    DEFF Research Database (Denmark)

    Jensen, Mogens O Stibius; Tajkhorshid, E.; Schulten, K.

    2003-01-01

    Water permeation and electrostatic interactions between water and channel are investigated in the Escherichia coli glycerol uptake facilitator GlpF, a member of the aquaporin water channel family, by molecular dynamics simulations. A tetrameric model of the channel embedded in a 16:0/ 18:1c9...... with the protein electrostatic fields enforce a bipolar water configuration inside the channel with dipole inversion at the NPA motifs. At the NPA motifs water-protein electrostatic interactions facilitate this inversion. Furthermore, water-water electrostatic interactions are in all regions inside the channel...... stronger than water-protein interactions, except near a conserved, positively charged Arg residue. We find that variations of the protein electrostatic field through the channel, owing to preserved structural features, completely explain the bipolar orientation of water. This orientation persists despite...

  20. Study of gas-water flow in horizontal rectangular channels

    Science.gov (United States)

    Chinnov, E. A.; Ron'shin, F. V.; Kabov, O. A.

    2015-09-01

    The two-phase flow in the narrow short horizontal rectangular channels 1 millimeter in height was studied experimentally. The features of formation of the two-phase flow were studied in detail. It is shown that with an increase in the channel width, the region of the churn and bubble regimes increases, compressing the area of the jet flow. The areas of the annular and stratified flow patterns vary insignificantly.

  1. Protocols for Monitoring Habitat Restoration Projects in the Lower Columbia River and Estuary

    Energy Technology Data Exchange (ETDEWEB)

    Roegner, G. Curtis; Diefenderfer, Heida L.; Borde, Amy B.; Thom, Ronald M.; Dawley, Earl M.; Whiting, Allan H.; Zimmerman, Shon A.; Johnson, Gary E.

    2008-04-25

    Protocols for monitoring salmon habitat restoration projects are essential for the U.S. Army Corps of Engineers' environmental efforts in the Columbia River estuary. This manual provides state-of-the science data collection and analysis methods for landscape features, water quality, and fish species composition, among others.

  2. Mosquito (Diptera: Culicidae) grouping based on larval habitat characteristics in high mountain ecosystems of Antioquia, Colombia.

    Science.gov (United States)

    Rosero-García, Doris; Rúa-Uribe, Guillermo; Correa, Margarita M; Conn, Jan E; Uribe-Soto, Sandra

    2018-06-01

    Information about mosquito ecology in the high mountain ecosystems of the Neotropical region is sparse. In general, few genera and species have been reported in these ecosystems and there is no information available on habitats and the mosquitoes occupying them. In the present study, specimens collected from NW Colombia in HME were grouped using larval habitat data via an Operational Taxonomic Unit (OTU) determination. A total of 719 mosquitoes was analyzed belonging to 44 OTUs. The analysis considered habitat features and clustered the specimens into six groups from A-F. Five of these included species from different genera, suggesting common habitat requirements. Group E with four genera, seven subgenera, and six species occupied the highest areas (above 3,000 m), whereas three groups (B, D, F) were detected at lower altitudes (1,960-2,002 m). Bromeliads were the most common larval habitat, with 47% (335/719) of the specimens; five genera, six subgenera, and eight species were identified and classified into 66% (29/44) of the OTUs. This work showed some similarities to the habitat requirements and provides a grouping system that constitutes an important baseline for the classification of mosquito fauna from high mountain ecosystems according to altitude and larval habitat. © 2018 The Society for Vector Ecology.

  3. Assessing the Consequences of a Channel Switch

    OpenAIRE

    Xinlei (Jack) Chen; George John; Om Narasimhan

    2008-01-01

    Switching marketing channels is an expensive and sticky decision. While a number of theories suggest efficiency and strategic differences between channels, there is virtually no work on combining these ideas into an empirically workable methodology to assess the impact of a channel switch. In this study, we undertake to close this gap with an empirical study of the sports drink market, featuring competing producers and heterogeneous channels. We estimate demand and cost parameters for a numbe...

  4. Should I stay or should I go? A habitat-dependent dispersal kernel improves prediction of movement.

    Directory of Open Access Journals (Sweden)

    Fabrice Vinatier

    Full Text Available The analysis of animal movement within different landscapes may increase our understanding of how landscape features affect the perceptual range of animals. Perceptual range is linked to movement probability of an animal via a dispersal kernel, the latter being generally considered as spatially invariant but could be spatially affected. We hypothesize that spatial plasticity of an animal's dispersal kernel could greatly modify its distribution in time and space. After radio tracking the movements of walking insects (Cosmopolites sordidus in banana plantations, we considered the movements of individuals as states of a Markov chain whose transition probabilities depended on the habitat characteristics of current and target locations. Combining a likelihood procedure and pattern-oriented modelling, we tested the hypothesis that dispersal kernel depended on habitat features. Our results were consistent with the concept that animal dispersal kernel depends on habitat features. Recognizing the plasticity of animal movement probabilities will provide insight into landscape-level ecological processes.

  5. Should I stay or should I go? A habitat-dependent dispersal kernel improves prediction of movement.

    Science.gov (United States)

    Vinatier, Fabrice; Lescourret, Françoise; Duyck, Pierre-François; Martin, Olivier; Senoussi, Rachid; Tixier, Philippe

    2011-01-01

    The analysis of animal movement within different landscapes may increase our understanding of how landscape features affect the perceptual range of animals. Perceptual range is linked to movement probability of an animal via a dispersal kernel, the latter being generally considered as spatially invariant but could be spatially affected. We hypothesize that spatial plasticity of an animal's dispersal kernel could greatly modify its distribution in time and space. After radio tracking the movements of walking insects (Cosmopolites sordidus) in banana plantations, we considered the movements of individuals as states of a Markov chain whose transition probabilities depended on the habitat characteristics of current and target locations. Combining a likelihood procedure and pattern-oriented modelling, we tested the hypothesis that dispersal kernel depended on habitat features. Our results were consistent with the concept that animal dispersal kernel depends on habitat features. Recognizing the plasticity of animal movement probabilities will provide insight into landscape-level ecological processes.

  6. Prey distribution, physical habitat features, and guild traits interact to produce contrasting shorebird assemblages among foraging patches.

    Directory of Open Access Journals (Sweden)

    Beth M VanDusen

    Full Text Available Worldwide declines in shorebird populations, driven largely by habitat loss and degradation, motivate environmental managers to preserve and restore the critical coastal habitats on which these birds depend. Effective habitat management requires an understanding of the factors that determine habitat use and value to shorebirds, extending from individuals to the entire community. While investigating the factors that influenced shorebird foraging distributions among neighboring intertidal sand flats, we built upon species-level understandings of individual-based, small-scale foraging decisions to develop more comprehensive guild- and community-level insights. We found that densities and community composition of foraging shorebirds varied substantially among elevations within some tidal flats and among five flats despite their proximity (all located within a 400-m stretch of natural, unmodified inlet shoreline. Non-dimensional multivariate analyses revealed that the changing composition of the shorebird community among flats and tidal elevations correlated significantly (ρ(s = 0.56 with the spatial structure of the benthic invertebrate prey community. Sediment grain-sizes affected shorebird community spatial patterns indirectly by influencing benthic macroinvertebrate community compositions. Furthermore, combining sediment and macroinvertebrate information produced a 27% increase in correlation (ρ(s = 0.71 with shorebird assemblage patterns over the correlation of the bird community with the macroinvertebrate community alone. Beyond its indirect effects acting through prey distributions, granulometry of the flats influenced shorebird foraging directly by modifying prey availability. Our study highlights the importance of habitat heterogeneity, showing that no single patch type was ideal for the entire shorebird community. Generally, shorebird density and diversity were greatest at lower elevations on flats when they became exposed; these

  7. Defining critical habitats of threatened and endemic reef fishes with a multivariate approach.

    Science.gov (United States)

    Purcell, Steven W; Clarke, K Robert; Rushworth, Kelvin; Dalton, Steven J

    2014-12-01

    Understanding critical habitats of threatened and endemic animals is essential for mitigating extinction risks, developing recovery plans, and siting reserves, but assessment methods are generally lacking. We evaluated critical habitats of 8 threatened or endemic fish species on coral and rocky reefs of subtropical eastern Australia, by measuring physical and substratum-type variables of habitats at fish sightings. We used nonmetric and metric multidimensional scaling (nMDS, mMDS), Analysis of similarities (ANOSIM), similarity percentages analysis (SIMPER), permutational analysis of multivariate dispersions (PERMDISP), and other multivariate tools to distinguish critical habitats. Niche breadth was widest for 2 endemic wrasses, and reef inclination was important for several species, often found in relatively deep microhabitats. Critical habitats of mainland reef species included small caves or habitat-forming hosts such as gorgonian corals and black coral trees. Hard corals appeared important for reef fishes at Lord Howe Island, and red algae for mainland reef fishes. A wide range of habitat variables are required to assess critical habitats owing to varied affinities of species to different habitat features. We advocate assessments of critical habitats matched to the spatial scale used by the animals and a combination of multivariate methods. Our multivariate approach furnishes a general template for assessing the critical habitats of species, understanding how these vary among species, and determining differences in the degree of habitat specificity. © 2014 Society for Conservation Biology.

  8. Study ω and φ photoproduction in the nucleon isotopic channels

    International Nuclear Information System (INIS)

    Zhao, Q.

    2002-01-01

    We present results for the photoproduction of ω and φ meson in the nucleon isotopic channels. A recently developed quark model with an effective Lagrangian is employed to account for the non-diffractive s- and u-channel processes; the diffractive feature arising from the natural parity exchange is accounted for by the t-channel pomeron exchange, while the unnatural parity exchange is accounted for by the t-channel pion exchange. In the ω production, the isotopic effects could provide more information concerning the search of 'missing resonances', while in the φ production, the isotopic effects could highlight non-diffractive resonance excitation mechanisms at large angles. (author)

  9. TU-CD-BRB-12: Radiogenomics of MRI-Guided Prostate Cancer Biopsy Habitats

    Energy Technology Data Exchange (ETDEWEB)

    Stoyanova, R; Lynne, C; Abraham, S; Patel, M; Jorda, M; Kryvenko, O; Ishkanian, A; Abramowitz, M; Pollack, A [University of Miami, Miami, FL (United States); Tachar, M; Erho, N; Buerki, C; Lam, L; Davicioni, E [GenomeDx Biosciences Inc., Vancouver, British Columbia (Canada)

    2015-06-15

    Purpose: Diagnostic prostate biopsies are subject to sampling bias. We hypothesize that quantitative imaging with multiparametric (MP)-MRI can more accurately direct targeted biopsies to index lesions associated with highest risk clinical and genomic features. Methods: Regionally distinct prostate habitats were delineated on MP-MRI (T2-weighted, perfusion and diffusion imaging). Directed biopsies were performed on 17 habitats from 6 patients using MRI-ultrasound fusion. Biopsy location was characterized with 52 radiographic features. Transcriptome-wide analysis of 1.4 million RNA probes was performed on RNA from each habitat. Genomics features with insignificant expression values (<0.25) and interquartile range <0.5 were filtered, leaving total of 212 genes. Correlation between imaging features, genes and a 22 feature genomic classifier (GC), developed as a prognostic assay for metastasis after radical prostatectomy was investigated. Results: High quality genomic data was derived from 17 (100%) biopsies. Using the 212 ‘unbiased’ genes, the samples clustered by patient origin in unsupervised analysis. When only prostate cancer related genomic features were used, hierarchical clustering revealed samples clustered by needle-biopsy Gleason score (GS). Similarly, principal component analysis of the imaging features, found the primary source of variance segregated the samples into high (≥7) and low (6) GS. Pearson’s correlation analysis of genes with significant expression showed two main patterns of gene expression clustering prostate peripheral and transitional zone MRI features. Two-way hierarchical clustering of GC with radiomics features resulted in the expected groupings of high and low expressed genes in this metastasis signature. Conclusions: MP-MRI-targeted diagnostic biopsies can potentially improve risk stratification by directing pathological and genomic analysis to clinically significant index lesions. As determinant lesions are more reliably

  10. Can rice field channels contribute to biodiversity conservation in Southern Brazilian wetlands?

    Science.gov (United States)

    Maltchik, Leonardo; Rolon, Ana Silvia; Stenert, Cristina; Machado, Iberê Farina; Rocha, Odete

    2011-12-01

    Conservation of species in agroecosystems has attracted attention. Irrigation channels can improve habitats and offer conditions for freshwater species conservation. Two questions from biodiversity conservation point of view are: 1) Can the irrigated channels maintain a rich diversity of macrophytes, macroinvertebrates and amphibians over the cultivation cycle? 2) Do richness, abundance and composition of aquatic species change over the rice cultivation cycle? For this, a set of four rice field channels was randomly selected in Southern Brazilian wetlands. In each channel, six sample collection events were carried out over the rice cultivation cycle (June 2005 to June 2006). A total of 160 taxa were identified in irrigated channels, including 59 macrophyte species, 91 taxa of macroinvertebrate and 10 amphibian species. The richness and abundance of macrophytes, macroinvertebrates and amphibians did not change significantly over the rice cultivation cycle. However, the species composition of these groups in the irrigation channels varied between uncultivated and cultivated periods. Our results showed that the species diversity found in the irrigation channels, together with the permanence of water enables these man-made aquatic networks to function as important systems that can contribute to the conservation of biodiversity in regions where the wetlands were converted into rice fields. The conservation of the species in agriculture, such as rice field channels, may be an important alternative for biodiversity conservation in Southern Brazil, where more than 90% of wetland systems have already been lost and the remaining ones are still at high risk due to the expansion of rice production.

  11. Does resolution of flow field observation influence apparent habitat use and energy expenditure in juvenile coho salmon?

    Science.gov (United States)

    Tullos, D. D.; Walter, C.; Dunham, J.

    2016-12-01

    This study investigated how the resolution of observation influences interpretation of how fish, juvenile Coho Salmon (Oncorhynchus kisutch), exploit the hydraulic environment in streams. Our objectives were to evaluate how spatial resolution of the flow field observation influenced: 1) the velocities considered to be representative of habitat units; 2) patterns of use of the hydraulic environment by fish; and 3) estimates of energy expenditure. We addressed these objectives using observations within a 1:1 scale physical model of a full-channel log jam in an outdoor experimental stream. Velocities were measured with Acoustic Doppler Velocimetry at a 10 cm grid spacing, whereas fish locations and tailbeat frequencies were documented over time using underwater videogrammetry. Results highlighted that resolution of observation did impact perceived habitat use and energy expenditure, as did the location of measurement within habitat units and the use of averaging to summarize velocities within a habitat unit. In this experiment, the range of velocities and energy expenditure estimates increased with coarsening resolution, reducing the likelihood of measuring the velocities locally experienced by fish. In addition, the coarser resolutions contributed to fish appearing to select velocities that were higher than what was measured at finer resolutions. These findings indicate the need for careful attention to and communication of resolution of observation in investigating the hydraulic environment and in determining the habitat needs and bioenergetics of aquatic biota.

  12. Secondary flow in sharp open-channel bends

    NARCIS (Netherlands)

    Blanckaert, K.; De Vriend, H.J.

    2004-01-01

    Secondary currents are a characteristic feature of flow in open-channel bends. Besides the classical helical motion (centre-region cell), a weaker and smaller counter-rotating circulation cell (outer-bank cell) is often observed near the outer bank, which is believed to play an important role in

  13. Umatilla River Basin Anadromous Fish Habitat Enhancement Project : 1993 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, R. Todd

    1993-04-01

    The Umatilla Basin Anadromous Fish Habitat Enhancement Project is funded under the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program Measure 704 (d) (1) 34.02 and targets the improvement of water quality and restoration of riparian areas, holding, spawning and rearing habitats of steelhead, spring and fall chinook and coho salmon. The project focused on implementing instream and riparian habitat improvements on private lands on the Umatilla Indian Reservation (hereafter referred to as Reservation) from April 1, 1988 to March 31, 1992. These efforts resulted in enhancement of the lower 1/4 mile of Boston Canyon Creek, the lower 4 river miles of Meacham Creek and 3.2 river miles of the Umatilla River (downstream of the Meacham Creek confluence upstream to the Reservation East Boundary). In 1993, the project shifted emphasis to a comprehensive watershed approach consistent with other basin efforts and began to identify upland and riparian watershed-wide causative factors impacting fisheries habitat and natural fisheries production capabilities throughout the Umatilla River Watershed. Maintenance of existing habitat improvement projects was included under this comprehensive approach. Maintenance of existing gravel traps, instream and bank stabilization structures was required within project areas during the reporting period due to spring flooding damage and high bedload movement. Maintenance activities were completed between river mile (RM) 0.0 and RM 0.25 Boston Canyon Creek, between RM 0.0 and RM 4 Meacham Creek and between RM 78.5 and RM 79 Umatilla River. Habitat enhancement areas were seeded with native grass, legume, shrub and wildflower mixes and planted with willow cuttings to assist in floodplain recovery, stream channel stability and filtering of sediments during high flow periods. Water quality monitoring continued for temperature and turbidity throughout the upper Umatilla River Watershed. Survey of cross sections and

  14. Habitat Use Database - Groundfish Essential Fish Habitat (EFH) Habitat Use Database (HUD)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Habitat Use Database (HUD) was specifically designed to address the need for habitat-use analyses in support of groundfish EFH, HAPCs, and fishing and nonfishing...

  15. Differential Habitat Use or Intraguild Interactions: What Structures a Carnivore Community?

    Directory of Open Access Journals (Sweden)

    Matthew E Gompper

    Full Text Available Differential habitat use and intraguild competition are both thought to be important drivers of animal population sizes and distributions. Habitat associations for individual species are well-established, and interactions between particular pairs of species have been highlighted in many focal studies. However, community-wide assessments of the relative strengths of these two factors have not been conducted. We built multi-scale habitat occupancy models for five carnivore taxa of New York's Adirondack landscape and assessed the relative performance of these models against ones in which co-occurrences of potentially competing carnivore species were also incorporated. Distribution models based on habitat performed well for all species. Black bear (Ursus americanus and fisher (Martes pennanti distribution was similar in that occupancy of both species was negatively associated with paved roads. However, black bears were also associated with larger forest fragments and fishers with smaller forest fragments. No models with habitat features were more supported than the null habitat model for raccoons (Procyon lotor. Martens (Martes americana were most associated with increased terrain ruggedness and elevation. Weasel (Mustela spp. occupancy increased with the cover of deciduous forest. For most species dyads habitat-only models were more supported than those models with potential competitors incorporated. The exception to this finding was for the smallest carnivore taxa (marten and weasel where habitat plus coyote abundance models typically performed better than habitat-only models. Assessing this carnivore community as whole, we conclude that differential habitat use is more important than species interactions in maintaining the distribution and structure of this carnivore guild.

  16. The Mobility and Dispersal of Augmented Gravel in Upland Channels: a Knowledge-limited Practise in Supply-limited Channels

    Science.gov (United States)

    Downs, P. W.; Gilvear, D. J.

    2017-12-01

    Most river restoration research has been directed at rivers in the highly populated alluvial lowlands: significantly less is known about effectively rehabilitating upland channels, in part because the dynamics of sediment transfer are less well understood. Upland gravel augmentation is thus both a somewhat unproven method for rehabilitating degraded aquatic habitats in sediment-poor reaches, but also a natural experiment in better understanding sediment dynamics in steep, hydraulically-complex river channels. Monitoring on the River Avon in SW England since Water Year (WY) 2015 uses seismic impact plates, RFID-tagged particles and detailed channel bed mapping to establish the mobility rates of augmented particles, their dispersal distances and settling locations relative to flows received. Particles are highly, and equally, mobile: in WY2015, 17 sub-bankfull flows moved at least 60% of augmented particles with volumetric movement non-linearly correlated to flow energy but not to particle size. Waning rates of transport over the year suggest supply limitations. This relationship breaks down early in WY2017 where a two-year flow event moved 40% of the particles in just two months - confounding factors may include particle mass differences and particle supplies from upstream. Median particle travel distances correlate well to energy applied and suggest a long-tailed fan of dispersal with supplemental controls including channel curvature, boulder presence and stream power. Locally, particles are deposited preferentially around boulders and in sheltered river margins but also perched in clusters above the low-flow channel. High tracer mobility makes median transport distances highly dependent on the survey length - in WY2017 some particles travelled 300 m in a 3-month period that included the two-year flood event. Further, in WY2017 median transport distance as a function of volumetric transport suggested significant transport beyond the target reach. The observed

  17. Characterization and Monitoring Data for Evaluating Constructed Emergent Sandbar Habitat in the Missouri River Mainstem

    Energy Technology Data Exchange (ETDEWEB)

    Duberstein, Corey A.; Downs, Janelle L.

    2008-11-06

    Emergent sandbar habitat (ESH) in the Missouri River Mainstem System is a critical habitat element for several federally listed bird species: the endangered interior least tern (Sterna antillarum) and the threatened Northern Great Plains piping plover (Charadrius melodus). The Army Corps of Engineers (Corps) provides the primary operational management of the Missouri River and is responsible under the Endangered Species Act (ESA) to take actions within its authorities to conserve listed species. To comply with the 2000 USFWS BiOp and the 2003 amended USFWS BiOp, the Corps has created habitats below Gavins Point Dam using mechanical means. Initial monitoring indicates that constructed sandbars provide suitable habitat features for nesting and foraging least terns and piping plovers. Terns and plovers are using constructed sandbars and successfully reproducing at or above levels stipulated in the BiOp. However, whether such positive impacts will persist cannot yet be adequately assessed at this time.

  18. Robust Automatic Modulation Classification Technique for Fading Channels via Deep Neural Network

    Directory of Open Access Journals (Sweden)

    Jung Hwan Lee

    2017-08-01

    Full Text Available In this paper, we propose a deep neural network (DNN-based automatic modulation classification (AMC for digital communications. While conventional AMC techniques perform well for additive white Gaussian noise (AWGN channels, classification accuracy degrades for fading channels where the amplitude and phase of channel gain change in time. The key contributions of this paper are in two phases. First, we analyze the effectiveness of a variety of statistical features for AMC task in fading channels. We reveal that the features that are shown to be effective for fading channels are different from those known to be good for AWGN channels. Second, we introduce a new enhanced AMC technique based on DNN method. We use the extensive and diverse set of statistical features found in our study for the DNN-based classifier. The fully connected feedforward network with four hidden layers are trained to classify the modulation class for several fading scenarios. Numerical evaluation shows that the proposed technique offers significant performance gain over the existing AMC methods in fading channels.

  19. Mechanisms Affecting Population Density in Fragmented Habitat

    Directory of Open Access Journals (Sweden)

    Lutz Tischendorf

    2005-06-01

    Full Text Available We conducted a factorial simulation experiment to analyze the relative importance of movement pattern, boundary-crossing probability, and mortality in habitat and matrix on population density, and its dependency on habitat fragmentation, as well as inter-patch distance. We also examined how the initial response of a species to a fragmentation event may affect our observations of population density in post-fragmentation experiments. We found that the boundary-crossing probability from habitat to matrix, which partly determines the emigration rate, is the most important determinant for population density within habitat patches. The probability of crossing a boundary from matrix to habitat had a weaker, but positive, effect on population density. Movement behavior in habitat had a stronger effect on population density than movement behavior in matrix. Habitat fragmentation and inter-patch distance may have a positive or negative effect on population density. The direction of both effects depends on two factors. First, when the boundary-crossing probability from habitat to matrix is high, population density may decline with increasing habitat fragmentation. Conversely, for species with a high matrix-to-habitat boundary-crossing probability, population density may increase with increasing habitat fragmentation. Second, the initial distribution of individuals across the landscape: we found that habitat fragmentation and inter-patch distance were positively correlated with population density when individuals were distributed across matrix and habitat at the beginning of our simulation experiments. The direction of these relationships changed to negative when individuals were initially distributed across habitat only. Our findings imply that the speed of the initial response of organisms to habitat fragmentation events may determine the direction of observed relationships between habitat fragmentation and population density. The time scale of post

  20. Channel Power in Multi-Channel Environments

    NARCIS (Netherlands)

    M.G. Dekimpe (Marnik); B. Skiera (Bernd)

    2004-01-01

    textabstractIn the literature, little attention has been paid to instances where companies add an Internet channel to their direct channel portfolio. However, actively managing multiple sales channels requires knowing the customers’ channel preferences and the resulting channel power. Two key

  1. Occupancy of the Invasive Feral Cat Varies with Habitat Complexity.

    Directory of Open Access Journals (Sweden)

    Rosemary Hohnen

    Full Text Available The domestic cat (Felis catus is an invasive exotic in many locations around the world and is thought to be a key factor driving recent mammal declines across northern Australia. Many mammal species native to this region now persist only in areas with high topographic complexity, provided by features such as gorges or escarpments. Do mammals persist in these habitats because cats occupy them less, or despite high cat occupancy? We show that occupancy of feral cats was lower in mammal-rich habitats of high topographic complexity. These results support the idea that predation pressure by feral cats is a factor contributing to the collapse of mammal communities across northern Australia. Managing impacts of feral cats is a global conservation challenge. Conservation actions such as choosing sites for small mammal reintroductions may be more successful if variation in cat occupancy with landscape features is taken into account.

  2. Water Transport and Removal in PEMFC Gas Flow Channel with Various Water Droplet Locations and Channel Surface Wettability

    Directory of Open Access Journals (Sweden)

    Yanzhou Qin

    2018-04-01

    Full Text Available Water transport and removal in the proton exchange membrane fuel cell (PEMFC is critically important to fuel cell performance, stability, and durability. Water emerging locations on the membrane-electrode assembly (MEA surface and the channel surface wettability significantly influence the water transport and removal in PEMFC. In most simulations of water transport and removal in the PEMFC flow channel, liquid water is usually introduced at the center of the MEA surface, which is fortuitous, since water droplet can emerge randomly on the MEA surface in PEMFC. In addition, the commonly used no-slip wall boundary condition greatly confines the water sliding features on hydrophobic MEA/channel surfaces, degrading the simulation accuracy. In this study, water droplet is introduced with various locations along the channel width direction on the MEA surface, and water transport and removal is investigated numerically using an improved model incorporating the sliding flow property by using the shear wall boundary condition. It is found that the water droplet can be driven to the channel sidewall by aerodynamics when the initial water location deviates from the MEA center to a certain amount, forming the water corner flow in the flow channel. The channel surface wettability on the water transport is also studied and is shown to have a significant impact on the water corner flow in the flow channel.

  3. Surface Habitat Systems

    Science.gov (United States)

    Kennedy, Kriss J.

    2009-01-01

    The Surface Habitat Systems (SHS) Focused Investment Group (FIG) is part of the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) effort to provide a focused direction and funding to the various projects that are working on human surface habitat designs and technologies for the planetary exploration missions. The overall SHS-FIG effort focuses on directing and guiding those projects that: 1) develop and demonstrate new surface habitat system concepts, innovations, and technologies to support human exploration missions, 2) improve environmental systems that interact with human habitats, 3) handle and emplace human surface habitats, and 4) focus on supporting humans living and working in habitats on planetary surfaces. The activity areas of the SHS FIG described herein are focused on the surface habitat project near-term objectives as described in this document. The SHS-FIG effort focuses on mitigating surface habitat risks (as identified by the Lunar Surface Systems Project Office (LSSPO) Surface Habitat Element Team; and concentrates on developing surface habitat technologies as identified in the FY08 gap analysis. The surface habitat gap assessment will be updated annually as the surface architecture and surface habitat definition continues to mature. These technologies are mapped to the SHS-FIG Strategic Development Roadmap. The Roadmap will bring to light the areas where additional innovative efforts are needed to support the development of habitat concepts and designs and the development of new technologies to support of the LSSPO Habitation Element development plan. Three specific areas of development that address Lunar Architecture Team (LAT)-2 and Constellation Architecture Team (CxAT) Lunar habitat design issues or risks will be focused on by the SHS-FIG. The SHS-FIG will establish four areas of development that will help the projects prepare in their planning for surface habitat systems development. Those development areas are

  4. Functional modifications of acid-sensing ion channels by ligand-gated chloride channels.

    Directory of Open Access Journals (Sweden)

    Xuanmao Chen

    Full Text Available Together, acid-sensing ion channels (ASICs and epithelial sodium channels (ENaC constitute the majority of voltage-independent sodium channels in mammals. ENaC is regulated by a chloride channel, the cystic fibrosis transmembrane conductance regulator (CFTR. Here we show that ASICs were reversibly inhibited by activation of GABA(A receptors in murine hippocampal neurons. This inhibition of ASICs required opening of the chloride channels but occurred with both outward and inward GABA(A receptor-mediated currents. Moreover, activation of the GABA(A receptors modified the pharmacological features and kinetic properties of the ASIC currents, including the time course of activation, desensitization and deactivation. Modification of ASICs by open GABA(A receptors was also observed in both nucleated patches and outside-out patches excised from hippocampal neurons. Interestingly, ASICs and GABA(A receptors interacted to regulate synaptic plasticity in CA1 hippocampal slices. The activation of glycine receptors, which are similar to GABA(A receptors, also modified ASICs in spinal neurons. We conclude that GABA(A receptors and glycine receptors modify ASICs in neurons through mechanisms that require the opening of chloride channels.

  5. Long-term habitat changes in a protected area: Implications for herpetofauna habitat management and restoration.

    Directory of Open Access Journals (Sweden)

    Chantel E Markle

    Full Text Available Point Pelee National Park, located at the southern-most tip of Canada's mainland, historically supported a large number of herpetofauna species; however, despite nearly a century of protection, six snake and five amphibian species have disappeared, and remaining species-at-risk populations are thought to be in decline. We hypothesized that long-term changes in availability and distribution of critical habitat types may have contributed to the disappearance of herpetofauna. To track habitat changes we used aerial image data spanning 85 years (1931-2015 and manually digitized and classified image data using a standardized framework. Change-detection analyses were used to evaluate the relative importance of proportionate loss and fragmentation of 17 habitat types. Marsh habitat diversity and aquatic connectivity has declined since 1931. The marsh matrix transitioned from a graminoid and forb shallow marsh interspersed with water to a cattail dominated marsh, altering critical breeding, foraging, and overwintering habitat. Reduced diversity of marsh habitats appears to be linked to the expansion of invasive Phragmites australis, which invaded prior to 2000. Loss of open habitats such as savanna and meadow has reduced availability of high quality thermoregulation habitat for reptiles. Restoration of the northwestern region and tip of Point Pelee National Park to a mixed landscape of shallow wetlands (cattail, graminoid, forb, open water and eradication of dense Phragmites stands should improve habitat diversity. Our results suggest that long-term landscape changes resulting from habitat succession and invasive species can negatively affect habitat suitability for herpetofauna and protection of land alone does not necessarily equate to protection of sensitive herpetofauna.

  6. Long-term habitat changes in a protected area: Implications for herpetofauna habitat management and restoration.

    Science.gov (United States)

    Markle, Chantel E; Chow-Fraser, Gillian; Chow-Fraser, Patricia

    2018-01-01

    Point Pelee National Park, located at the southern-most tip of Canada's mainland, historically supported a large number of herpetofauna species; however, despite nearly a century of protection, six snake and five amphibian species have disappeared, and remaining species-at-risk populations are thought to be in decline. We hypothesized that long-term changes in availability and distribution of critical habitat types may have contributed to the disappearance of herpetofauna. To track habitat changes we used aerial image data spanning 85 years (1931-2015) and manually digitized and classified image data using a standardized framework. Change-detection analyses were used to evaluate the relative importance of proportionate loss and fragmentation of 17 habitat types. Marsh habitat diversity and aquatic connectivity has declined since 1931. The marsh matrix transitioned from a graminoid and forb shallow marsh interspersed with water to a cattail dominated marsh, altering critical breeding, foraging, and overwintering habitat. Reduced diversity of marsh habitats appears to be linked to the expansion of invasive Phragmites australis, which invaded prior to 2000. Loss of open habitats such as savanna and meadow has reduced availability of high quality thermoregulation habitat for reptiles. Restoration of the northwestern region and tip of Point Pelee National Park to a mixed landscape of shallow wetlands (cattail, graminoid, forb, open water) and eradication of dense Phragmites stands should improve habitat diversity. Our results suggest that long-term landscape changes resulting from habitat succession and invasive species can negatively affect habitat suitability for herpetofauna and protection of land alone does not necessarily equate to protection of sensitive herpetofauna.

  7. Channeling and Radiation of Electrons in Silicon Single Crystals and Si1−xGex Crystalline Undulators

    DEFF Research Database (Denmark)

    Backe, H.; Krambrich, D.; Lauth, W.

    2013-01-01

    The phenomenon of channeling and the basic features of channeling radiation emission are introduced in a pedestrian way. Both, radiation spectra as well as dechanneling length measurements at electron beam energies between 195 and 855 MeV feature quantum state phenomena for the (110) planar...

  8. Winter habitat use of harbour seals (Phoca vitulina fitted with Fastloc™GPS/GSM tags in two tidal bays in France

    Directory of Open Access Journals (Sweden)

    Cécile Vincent

    2010-09-01

    Full Text Available Winter movements and habitat use of harbour seals (Phoca vitulina were investigated in two tidal bays in France, at the southern limit of their species range in the Northeast Atlantic. We fitted 15 seals with Fastloc™GPS/GSMtags in the Baie du Mont-Saint-Michel (BMSM and the Baie des Veys (BDV. Tags relayed 20.6±7.1 GPS locations per seal-day, 81% of all dives performed by the seals and 87% of haulouts, during an average tracking duration of 108±56 days. One seal travelled 380 km away from the BMSM but the other seals remained stationary, with 95% and 55% of at-sea locations ≤ 5 km from the haulout sites in BMSM and BDV respectively. Home range sizes were 137 and 161 km² in BMSM and BDV, and core areas’ sizes, 35 and 22 km² respectively. The seals remained very coastally in both sites with 93% and 71% of at-sea locations located in the intertidal zone of BMSM and BDV respectively. Accordingly, dives were shallow with 63% and 61% of dive maximum depths <4 m and 94% and 88% <10 m (in BMSM and BDV respectively. Preferred foraging areas were located in tidal channels in BMSM, sometimes in the vicinity of rocks or mussel farms. In BDV one seal made foraging trips 10-15 km offshore but all other seals repeatedly used coastal areas, often foraging around mussel farms, shipwrecks or intertidal rocks in tidal currents. We suggest that the importance of the tides combined with local features of the topography allow seals to predict prey availability, driving their foraging strategies towards a number of specific coastal areas. These results further illustrate the behavioural plasticity of the species according to habitat and environmental conditions. Fastloc™ GPS/GSM telemetry is particularly well adapted for the study of seals’ habitat use at a fine geographical and temporal scale, as long as they occasionally come close to shore within GSM coverage.

  9. Habitat loss as the main cause of the slow recovery of fish faunas of regulated large rivers in Europe: The transversal floodplain gradient

    NARCIS (Netherlands)

    Aarts, B.G.W.; Van den Brink, F.W.B.; Nienhuis, P.H.

    2004-01-01

    In large European rivers the chemical water quality has improved markedly in recent decades, yet the recovery of the fish fauna is not proceeding accordingly. Important causes are the loss of habitats in the main river channels and their floodplains, and the diminished hydrological connectivity

  10. Linear Regression on Sparse Features for Single-Channel Speech Separation

    DEFF Research Database (Denmark)

    Schmidt, Mikkel N.; Olsson, Rasmus Kongsgaard

    2007-01-01

    In this work we address the problem of separating multiple speakers from a single microphone recording. We formulate a linear regression model for estimating each speaker based on features derived from the mixture. The employed feature representation is a sparse, non-negative encoding of the speech...... mixture in terms of pre-learned speaker-dependent dictionaries. Previous work has shown that this feature representation by itself provides some degree of separation. We show that the performance is significantly improved when regression analysis is performed on the sparse, non-negative features, both...

  11. How Do Landscape Structure, Management and Habitat Quality Drive the Colonization of Habitat Patches by the Dryad Butterfly (Lepidoptera: Satyrinae) in Fragmented Grassland?

    Science.gov (United States)

    Kalarus, Konrad; Nowicki, Piotr

    2015-01-01

    Most studies dealing with species distribution patterns on fragmented landscapes focus on the characteristics of habitat patches that influence local occurrence and abundance, but they tend to neglect the question of what drives colonization of previously unoccupied patches. In a study of the dryad butterfly, we combined classical approaches derived from metapopulation theory and landscape ecology to investigate the factors driving colonization from a recent refugium. In three consecutive transect surveys, we recorded the presence and numbers of imagos in 27 patches of xerothermic grassland and 26 patches of wet meadow. Among the predictors affecting the occurrence and abundance of the dryad, we considered environmental variables reflecting (i) habitat patch quality (e.g., goldenrod cover, shrub density, vegetation height); (ii) factors associated with habitat spatial structure (patch size, patch isolation and fragmentation); and (iii) features of patch surroundings (100-m buffers around patches) that potentially pose barriers or provide corridors. Patch colonization by the dryad was strongly limited by the distance from the species refugium in the region; there was a slight positive effect of shrub density in this respect. Butterfly abundance increased in smaller and more fragmented habitat patches; it was negatively impacted by invasive goldenrod cover, and positively influenced by the density of watercourses in patch surroundings. Nectar plant availability was positively related to species abundance in xerothermic grassland, while in wet meadow the effect was the reverse. We conclude that dryad colonization of our study area is very recent, since the most important factor limiting colonization was distance from the refugium, while the habitat quality of target patches had less relevance. In order to preserve the species, conservation managers should focus on enhancing the quality of large patches and should also direct their efforts on smaller and more

  12. How Do Landscape Structure, Management and Habitat Quality Drive the Colonization of Habitat Patches by the Dryad Butterfly (Lepidoptera: Satyrinae in Fragmented Grassland?

    Directory of Open Access Journals (Sweden)

    Konrad Kalarus

    Full Text Available Most studies dealing with species distribution patterns on fragmented landscapes focus on the characteristics of habitat patches that influence local occurrence and abundance, but they tend to neglect the question of what drives colonization of previously unoccupied patches. In a study of the dryad butterfly, we combined classical approaches derived from metapopulation theory and landscape ecology to investigate the factors driving colonization from a recent refugium. In three consecutive transect surveys, we recorded the presence and numbers of imagos in 27 patches of xerothermic grassland and 26 patches of wet meadow. Among the predictors affecting the occurrence and abundance of the dryad, we considered environmental variables reflecting (i habitat patch quality (e.g., goldenrod cover, shrub density, vegetation height; (ii factors associated with habitat spatial structure (patch size, patch isolation and fragmentation; and (iii features of patch surroundings (100-m buffers around patches that potentially pose barriers or provide corridors. Patch colonization by the dryad was strongly limited by the distance from the species refugium in the region; there was a slight positive effect of shrub density in this respect. Butterfly abundance increased in smaller and more fragmented habitat patches; it was negatively impacted by invasive goldenrod cover, and positively influenced by the density of watercourses in patch surroundings. Nectar plant availability was positively related to species abundance in xerothermic grassland, while in wet meadow the effect was the reverse. We conclude that dryad colonization of our study area is very recent, since the most important factor limiting colonization was distance from the refugium, while the habitat quality of target patches had less relevance. In order to preserve the species, conservation managers should focus on enhancing the quality of large patches and should also direct their efforts on smaller and

  13. Movement, demographics, and occupancy dynamics of a federally-threatened salamander: evaluating the adequacy of critical habitat

    Directory of Open Access Journals (Sweden)

    Nathan F. Bendik

    2016-03-01

    Full Text Available Critical habitat for many species is often limited to occupied localities. For rare and cryptic species, or those lacking sufficient data, occupied habitats may go unrecognized, potentially hindering species recovery. Proposed critical habitat for the aquatic Jollyville Plateau salamander (Eurycea tonkawae and two sister species were delineated based on the assumption that surface habitat is restricted to springs and excludes intervening stream reaches. To test this assumption, we performed two studies to understand aspects of individual, population, and metapopulation ecology of E. tonkawae. First, we examined movement and population demographics using capture-recapture along a spring-influenced stream reach. We then extended our investigation of stream habitat use with a study of occupancy and habitat dynamics in multiple headwater streams. Indications of extensive stream channel use based on capture-recapture results included frequent movements of >15 m, and high juvenile abundance downstream of the spring. Initial occupancy of E. tonkawae was associated with shallow depths, maidenhair fern presence and low temperature variation (indicative of groundwater influence, although many occupied sites were far from known springs. Additionally, previously dry sites were three times more likely to be colonized than wet sites. Our results indicate extensive use of stream habitats, including intermittent ones, by E. tonkawae. These areas may be important for maintaining population connectivity or even as primary habitat patches. Restricting critical habitat to occupied sites will result in a mismatch with actual habitat use, particularly when assumptions of habitat use are untested, thus limiting the potential for recovery.

  14. Contrasts in short- and long-term responses of Mediterranean reptile species to fire and habitat structure.

    Science.gov (United States)

    Santos, Xavier; Badiane, Arnaud; Matos, Cátia

    2016-01-01

    Changes in habitat structure constitute a major factor explaining responses of reptiles to fire. However, few studies have examined habitat factors that covary with fire-history variables to explain reptile responses. We hypothesise that more complex habitats should support richer reptile communities, and that species-specific relative abundance should be related to particular habitat features. From spring 2012-2014, twenty-five transects were surveyed in the Albera Region (north-east Iberia). The vegetation structure was measured and the extent of habitat types in a 1000-m buffer around each transect calculated. Reptile-community metrics (species richness and reptile abundance) were related to fire history, vegetation structure, and habitat types, using generalized additive models. These metrics correlated with habitat-structure variables but not with fire history. The number of species increased with more complex habitats but decreased with pine-plantation abundance in the 1000-m buffer. We found contrasting responses among reptiles in terms of time since fire and those responses differed according to vegetation variables and habitat types. An unplanned fire in August 2012 provided the opportunity to compare reptile abundance values between pre-fire and the short term (1-2 years) after the fire. Most species exhibited a negative short-term response to the 2012 fire except Tarentola mauritanica, a gecko that inhabits large rocks, as opposed to other ground-dwelling species. In the reptiles studied, contrasting responses to time since fire are consistent with the habitat-accommodation model of succession. These differences are linked to specific microhabitat preferences and suggest that functional traits can be used to predict species-specific responses to fire.

  15. Novel Two-Step Classifier for Torsades de Pointes Risk Stratification from Direct Features

    Directory of Open Access Journals (Sweden)

    Jaimit Parikh

    2017-11-01

    Full Text Available While pre-clinical Torsades de Pointes (TdP risk classifiers had initially been based on drug-induced block of hERG potassium channels, it is now well established that improved risk prediction can be achieved by considering block of non-hERG ion channels. The current multi-channel TdP classifiers can be categorized into two classes. First, the classifiers that take as input the values of drug-induced block of ion channels (direct features. Second, the classifiers that are built on features extracted from output of the drug-induced multi-channel blockage simulations in the in-silico models (derived features. The classifiers built on derived features have thus far not consistently provided increased prediction accuracies, and hence casts doubt on the value of such approaches given the cost of including biophysical detail. Here, we propose a new two-step method for TdP risk classification, referred to as Multi-Channel Blockage at Early After Depolarization (MCB@EAD. In the first step, we classified the compound that produced insufficient hERG block as non-torsadogenic. In the second step, the role of non-hERG channels to modulate TdP risk are considered by constructing classifiers based on direct or derived features at critical hERG block concentrations that generates EADs in the computational cardiac cell models. MCB@EAD provides comparable or superior TdP risk classification of the drugs from the direct features in tests against published methods. TdP risk for the drugs highly correlated to the propensity to generate EADs in the model. However, the derived features of the biophysical models did not improve the predictive capability for TdP risk assessment.

  16. Dinoflagelados em diversos habitats e hidroperíodos na zona costeira do sul do Brasil Dinoflagellates in different habitats and hydroperiods on the coast of southern Brazil

    Directory of Open Access Journals (Sweden)

    Luciana de Souza Cardoso

    2007-06-01

    Full Text Available Informações sobre a riqueza, densidade, diversidade e distribuição de dinoflagelados em habitats aquáticos (lagoas abertas e fechadas, canais, açudes e áreas úmidas, em relação aos períodos de águas altas e baixas, são apresentadas. O estudo baseou-se em amostragens realizadas em 23 pontos, localizados nas margens leste (área da Lagoa do Casamento e oeste (área do Butiazal de Tapes da laguna dos Patos, no ano de 2003. Foram identificados 11 táxons, cuja distribuição teve maior homogeneidade no período de águas altas. Durinskia baltica (Levander Carty & Cox foi o único táxon cuja distribuição não se alterou pelo hidroperíodo. Peridinium gatunense Nygaard foi uma espécie indicadora de águas altas e P. umbonatum Stein foi indicadora de habitats associados à área do Butiazal de Tapes. Esta área mostrou ter mais alta diversidade de Dinophyceae em relação à área da Lagoa do Casamento, independente do hidroperíodo, refletindo a maior diversidade e especificidade de habitats aquáticos. O tipo de habitat influenciou significativamente (pData on richness, density, diversity and distribution of dinoflagellates in aquatic habitats (open and closed lagoons, channels, reservoirs and wetlands during high and low water periods are presented. The study was based on 23 point samples, located on the eastern (Lagoa do Casamento area and western (Butiazal de Tapes area shores of Laguna dos Patos, in 2003. Eleven taxa were identified; taxon distribution was more homogeneous during the high-water period. Durinskia baltica (Levander Carty & Cox was the only taxon whose distribution was the same for both hydroperiods. Peridinium gatunense Nygaard was a high-water indicator species and P. umbonatum Stein was an indicator of habitats associated with the Butiazal de Tapes area. This area had higher Dinophyceae diversity than the Lagoa do Casamento area, regardless of hydroperiod, due to the higher diversity and specificity of aquatic

  17. Deep-sea seabed habitats: Do they support distinct mega-epifaunal communities that have different vulnerabilities to anthropogenic disturbance?

    Science.gov (United States)

    Bowden, David A.; Rowden, Ashley A.; Leduc, Daniel; Beaumont, Jennifer; Clark, Malcolm R.

    2016-01-01

    Growing economic interest in seabed resources in the deep-sea highlights the need for information about the spatial distribution and vulnerability to disturbance of benthic habitats and fauna. Categorisation of seabed habitats for management is often based on topographic features such as canyons and seamounts that can be distinguished using regional bathymetry ('mega-habitats'). This is practical but because such habitats are contiguous with others, there is potential for overlap in the communities associated with them. Because concepts of habitat and community vulnerability are based on the traits of individual taxa, the nature and extent of differences between communities have implications for strategies to manage the environmental effects of resource use. Using towed video camera transects, we surveyed mega-epifaunal communities of three topographically-defined habitats (canyon, seamount or knoll, and continental slope) and two physico-chemically defined meso-scale habitats (cold seep and hydrothermal vent) in two regions off New Zealand to assess whether each supports a distinct type of community. Cold seep and hydrothermal vent communities were strongly distinct from those in other habitats. Across the other habitats, however, distinctions between communities were often weak and were not consistent between regions. Dissimilarities among communities across all habitats were stronger and the density of filter-feeding taxa was higher in the Bay of Plenty than on the Hikurangi Margin, whereas densities of predatory and scavenging taxa were higher on the Hikurangi Margin. Substratum diversity at small spatial scales (the general utility of topographically-defined mega-habitats in environmental management, (2) fine-scale survey of individual features is necessary to identify the locations, characteristics, and extents of ecologically important or vulnerable seabed communities, and (3) evaluation of habitat vulnerability to future events should be in the context of

  18. Integrating Interdisciplinary Studies Across a Range of Spatiotemporal Scales for the Design of Effective Flood Mitigation and Habitat Restoration Strategies, Green Valley Creek, California

    Science.gov (United States)

    Kobor, J. S.; O'Connor, M. D.; Sherwood, M. N.

    2014-12-01

    Green Valley Creek provides some of the most critical habitat for endangered coho salmon in the Russian River Watershed. Extensive changes in land-use over the past century have resulted in a dynamic system characterized by ongoing incision in the upper watershed and deposition and increased flood risk in the lower watershed. Effective management requires a watershed-scale understanding of the underlying controls on sediment erosion and transport as well as site-specific studies to understand local habitat conditions and flood dynamics. Here we combine an evaluation of historical changes in watershed conditions with a regional sediment source assessment and detailed numerical hydraulic and sediment transport models to find a sustainable solution to a chronic flooding problem at the Green Valley Road bridge crossing. Ongoing bank erosion in the upper watershed has been identified as the primary source of coarse sediment being deposited in the rapidly aggrading flood-prone reach upstream of the bridge. Efforts at bank stabilization are part of the overall strategy, however elevated sediment loads can be expected to continue in the near-term. The cessation of historical vegetation removal and maintenance dredging has resulted in a substantial increase in channel roughness as riparian cover has expanded. A positive feedback loop has been developed whereby increased vegetation roughness reduces sediment transport capacity, inducing additional deposition, and providing fresh sediment for continued vegetation recruitment. Our analysis revealed that traditional engineering approaches are ineffective. Dredging is not viable owning to the habitat impacts and short timeframes over which the dredged channel would be maintained. Roadway elevation results in a strong backwater effect increasing flood risk upstream. Initial efforts at designing a bypass channel also proved ineffective due to backwater effects below the bridge. The only viable solution involved reducing the

  19. Dam Breach Release of Non-Cohesive Sediments: Channel Response and Recovery Rates

    Science.gov (United States)

    Collins, M. J.; Boardman, G.; Banks, W.; Andrews, M.; Conlon, M.; Dillow, J. J. A.; Gellis, A.; Lowe, S.; McClain, S.; Miller, A. J.; Snyder, N. P.; Wilcock, P. R.

    2014-12-01

    Dam removals featuring unchecked releases of non-cohesive sediments are excellent opportunities to learn more about stream channel response to abrupt increases in bed material supply that can occur deliberately or by natural processes like landslides and volcanic eruptions. Understanding channel response to sediment pulses, including response rates, is essential because human uses of river channels and floodplains are impacted by these events as are aquatic habitats. We had the opportunity to study a dam removal site at the Simkins Dam in Maryland, USA, that shares many important geophysical attributes of another well-studied dam removal in the humid northeast United States [Merrimack Village Dam, New Hampshire; Pearson et al., 2011]. The watershed sizes are the same order of magnitude (102 km2), and at both sites relatively low head dams were removed (~ 3-4 m) and ~60,000 m3 of dominantly sand-sized sediments discharged to low-gradient reaches immediately downstream. Analyzing four years of repeat morphometry and bed sediment grain size surveys at the Simkins site on the Patapsco River, as well as continuous discharge and suspended sediment gaging data, we clearly document a two-phase response in the upstream reach as described by Pearson et al. [2011] for their New Hampshire site and noted at other dam removals [e.g., Major et al., 2012]. In the early phase, approximately 50% of the impounded sediment mass was eroded rapidly over a period of about three months when flows were very modest (Figure 1). After incision to base level and channel widening in the former impoundment, a second phase began when further erosion depended on floods large enough to access impounded sediments more distant from the newly-formed channel. We also found important differences in the upstream responses at the Maryland and New Hampshire sites that appear to be related to valley type (non-glaciated versus glaciated, respectively). Response variances immediately downstream between the

  20. An approach of habitat degradation assessment for characterization on coastal habitat conservation tendency.

    Science.gov (United States)

    Zhou, Xi-Yin; Lei, Kun; Meng, Wei

    2017-09-01

    Coastal zones are population and economy highly intensity regions all over the world, and coastal habitat supports the sustainable development of human society. The accurate assessment of coastal habitat degradation is the essential prerequisite for coastal zone protection. In this study, an integrated framework of coastal habitat degradation assessment including landuse classification, habitat classifying and zoning, evaluation criterion of coastal habitat degradation and coastal habitat degradation index has been established for better regional coastal habitat assessment. Through establishment of detailed three-class landuse classification, the fine landscape change is revealed, the evaluation criterion of coastal habitat degradation through internal comparison based on the results of habitat classifying and zoning could indicate the levels of habitat degradation and distinguish the intensity of human disturbances in different habitat subareas under the same habitat classification. Finally, the results of coastal habitat degradation assessment could be achieved through coastal habitat degradation index (CHI). A case study of the framework is carried out in the Circum-Bohai-Sea-Coast, China, and the main results show the following: (1) The accuracy of all land use classes are above 90%, which indicates a satisfactory accuracy for the classification map. (2) The Circum-Bohai-Sea-Coast is divided into 3 kinds of habitats and 5 subareas. (3) In the five subareas of the Circum-Bohai-Sea-Coast, the levels of coastal habitat degradation own significant difference. The whole Circum-Bohai-Sea-Coast generally is in a worse state according to area weighting of each habitat subarea. This assessment framework of coastal habitat degradation would characterize the landuse change trend, realize better coastal habitat degradation assessment, reveal the habitat conservation tendency and distinguish intensity of human disturbances. Furthermore, it would support for accurate coastal

  1. 1998 BPA habitat projects completed within the Asotin Creek Watershed, WA; Ridge-Top to Ridge-Top Habitat Projects; 1998 BPA Completion Report - November 1999

    International Nuclear Information System (INIS)

    Johnson, Bradley J.

    2000-01-01

    The Asotin Creek Model Watershed Program (ACMWP) is the primary entity coordinating habitat projects on both private and public lands within the Asotin Creek watershed. The Asotin Creek watershed covers approximately 325 square miles in the Blue Mountains of southeastern Washington. Snake River spring chinook salmon, summer steelhead and bull trout, which are listed under the Endangered Species Act (ESA), are present in the watershed. The ACMWP began coordinating habitat projects in 1995. Approximately two hundred forty-six projects have been implemented through the ACMWP as of 1998. Fifty-nine of these projects were funded in part through Bonneville Power Administration's 1998 Columbia Basin Fish and Wildlife Program. These projects used a variety of methods to enhance and protect watershed conditions. In-stream work for fish habitat included construction of hard structures (e.g. vortex rock weirs), meander reconstruction, placement of large woody debris (LWD) and whole trees and improvements to off-channel rearing habitat; one hundred thirty-nine pools were created with these structures. Three miles of stream benefited from riparian improvements such as fencing, vegetative plantings, and noxious weed control. Two alternative water developments were completed, providing off-stream-watering sources for livestock. 20,500 ft of upland terrace construction, seven sediment basin construction, one hundred eighty-seven acres of grass seeding, eight hundred fifty acres of direct seeding and eighteen sediment basin cleanouts were implemented to reduce sediment production and delivery to streams in the watershed

  2. Effects of the “Run-of-River” Hydro Scheme on Macroinvertebrate Communities and Habitat Conditions in a Mountain River of Northeastern China

    Directory of Open Access Journals (Sweden)

    Haoran Wang

    2016-01-01

    Full Text Available The main objective of this study was to quantify the impacts of the run of river (ROR scheme on the instream habitat and macroinvertebrate community. We sampled the macroinvertebrate assemblages and collected the habitat variables above and below an ROR hydropower plant: Aotou plant in the Hailang River, China. The effects of the ROR scheme on habitat conditions were examined using regulation-related variables, most of which, particularly the hydrological variables and substrate composition, presented spatial variations along the downstream direction, contributing to heterogeneous conditions between reaches. The macroinvertebrate richness, the density and the diversity metrics showed significant decreases in the “depleted” reach compared with the upper and lower reaches. Approximately 75% of reach-averaged densities and 50% of taxa richness suffered decreases in the “depleted” reach compared with the upper reach. Furthermore, functional feeding groups also showed distinct site differences along the channel. The relative abundance of both collector-gatherers and the scrapers reduced considerably at the “depleted” sites, particularly at the site immediately downstream of the weir. The total variance in the the functional feeding group (FFG data explained by Canonical correlation analysis (CCA was more than 81.4% and the high-loadings factors were depth, flow velocity, DO and substrate composition. We demonstrated that flow diversion at the 75% level and an in-channel barrier, due to the ROR scheme, are likely to lead to poor habitat conditions and decrease both the abundance and the diversity of macroinvertebrates in reaches influenced by water diversion.

  3. Habitat segregation in fish assemblages

    OpenAIRE

    Ibbotson, A.T.

    1990-01-01

    The segregation of habitats of fish assemblages found in the chalk streams and rivers within the Wessex, South West and Southern Water Authority boundaries in southern England have been examined. Habitat segregation is the most frequent type of resource partitioning in natural communities. The habitat of individual fish species will be defined in order to determine the following: (1) the requirements of each species in terms of depth, current velocity, substrate, cover etc.; (2) identify the ...

  4. High resolution multibeam and hydrodynamic datasets of tidal channels and inlets of the Venice Lagoon

    Science.gov (United States)

    Madricardo, Fantina; Foglini, Federica; Kruss, Aleksandra; Ferrarin, Christian; Pizzeghello, Nicola Marco; Murri, Chiara; Rossi, Monica; Bajo, Marco; Bellafiore, Debora; Campiani, Elisabetta; Fogarin, Stefano; Grande, Valentina; Janowski, Lukasz; Keppel, Erica; Leidi, Elisa; Lorenzetti, Giuliano; Maicu, Francesco; Maselli, Vittorio; Mercorella, Alessandra; Montereale Gavazzi, Giacomo; Minuzzo, Tiziano; Pellegrini, Claudio; Petrizzo, Antonio; Prampolini, Mariacristina; Remia, Alessandro; Rizzetto, Federica; Rovere, Marzia; Sarretta, Alessandro; Sigovini, Marco; Sinapi, Luigi; Umgiesser, Georg; Trincardi, Fabio

    2017-09-01

    Tidal channels are crucial for the functioning of wetlands, though their morphological properties, which are relevant for seafloor habitats and flow, have been understudied so far. Here, we release a dataset composed of Digital Terrain Models (DTMs) extracted from a total of 2,500 linear kilometres of high-resolution multibeam echosounder (MBES) data collected in 2013 covering the entire network of tidal channels and inlets of the Venice Lagoon, Italy. The dataset comprises also the backscatter (BS) data, which reflect the acoustic properties of the seafloor, and the tidal current fields simulated by means of a high-resolution three-dimensional unstructured hydrodynamic model. The DTMs and the current fields help define how morphological and benthic properties of tidal channels are affected by the action of currents. These data are of potential broad interest not only to geomorphologists, oceanographers and ecologists studying the morphology, hydrodynamics, sediment transport and benthic habitats of tidal environments, but also to coastal engineers and stakeholders for cost-effective monitoring and sustainable management of this peculiar shallow coastal system.

  5. Shape, colour plasticity, and habitat use indicate morph-specific camouflage strategies in a marine shrimp.

    Science.gov (United States)

    Duarte, Rafael C; Stevens, Martin; Flores, Augusto A V

    2016-10-18

    Colour and shape polymorphisms are important features of many species and may allow individuals to exploit a wider array of habitats, including through behavioural differences among morphs. In addition, differences among individuals in behaviour and morphology may reflect different strategies, for example utilising different approaches to camouflage. Hippolyte obliquimanus is a small shrimp species inhabiting different shallow-water vegetated habitats. Populations comprise two main morphs: homogeneous shrimp of variable colour (H) and transparent individuals with coloured stripes (ST). These morphs follow different distribution patterns between their main algal habitats; the brown weed Sargassum furcatum and the pink-red weed Galaxaura marginata. In this study, we first investigated morph-specific colour change and habitat selection, as mechanisms underlying camouflage and spatial distribution patterns in nature. Then, we examined habitat fidelity, mobility, and morphological traits, further indicating patterns of habitat use. H shrimp are capable of changing colour in just a few days towards their algal background, achieving better concealment in the more marginal, and less preferred, red weed habitat. Furthermore, laboratory trials showed that habitat fidelity is higher for H shrimp, whereas swimming activity is higher for the ST morph, aligned to morphological evidence indicating these two morphs comprise a more benthic (H) and a more pelagic (ST) life-style, respectively. Results suggest that H shrimp utilise a camouflage strategy specialised to a limited number of backgrounds at any one time, whereas ST individuals comprise a phenotype with more generalist camouflage (transparency) linked to a more generalist background utilisation. The coexistence within a population of distinct morphotypes with apparently alternative strategies of habitat use and camouflage may reflect differential responses to substantial seasonal changes in macroalgal cover. Our findings

  6. Habitat quality influences population distribution, individual space use and functional responses in habitat selection by a large herbivore.

    Science.gov (United States)

    Bjørneraas, Kari; Herfindal, Ivar; Solberg, Erling Johan; Sæther, Bernt-Erik; van Moorter, Bram; Rolandsen, Christer Moe

    2012-01-01

    Identifying factors shaping variation in resource selection is central for our understanding of the behaviour and distribution of animals. We examined summer habitat selection and space use by 108 Global Positioning System (GPS)-collared moose in Norway in relation to sex, reproductive status, habitat quality, and availability. Moose selected habitat types based on a combination of forage quality and availability of suitable habitat types. Selection of protective cover was strongest for reproducing females, likely reflecting the need to protect young. Males showed strong selection for habitat types with high quality forage, possibly due to higher energy requirements. Selection for preferred habitat types providing food and cover was a positive function of their availability within home ranges (i.e. not proportional use) indicating functional response in habitat selection. This relationship was not found for unproductive habitat types. Moreover, home ranges with high cover of unproductive habitat types were larger, and smaller home ranges contained higher proportions of the most preferred habitat type. The distribution of moose within the study area was partly related to the distribution of different habitat types. Our study shows how distribution and availability of habitat types providing cover and high-quality food shape ungulate habitat selection and space use.

  7. 0.8-GeV/c kaon channel for LAMPF II

    International Nuclear Information System (INIS)

    Lobb, D.E.

    1986-07-01

    The design for a 0.8-GeV/c charged-kaon channel suitable for LAMPF II features a two-dipole extraction system in the primary proton-beam line, a section to define the phase-space acceptance of the channel, a separator section before a mass slit, and a quadrupole triplet to transmit the kaon beam to an experimental target. A novel feature of this channel is a shaped slit to remove the tail of the pion-beam spot that would be adjacent to the kaon-beam spot at the mass slit

  8. Bi-channel Sensor Fusion for Automatic Sign Language Recognition

    DEFF Research Database (Denmark)

    Kim, Jonghwa; Wagner, Johannes; Rehm, Matthias

    2008-01-01

    In this paper, we investigate the mutual-complementary functionality of accelerometer (ACC) and electromyogram (EMG) for recognizing seven word-level sign vocabularies in German sign language (GSL). Results are discussed for the single channels and for feature-level fusion for the bichannel senso......-independent condition, where subjective differences do not allow for high recognition rates. Finally we discuss a problem of feature-level fusion caused by high disparity between accuracies of each single channel classification....

  9. Sedgeunkedunk Stream channel geometry from 2007-08-15 to 2016-03-30 (NCEI Accession 0152486)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — We are collecting stream channel geometry and bed sediment grain size distribution data at Sedgeunkedunk stream to evaluate physical habitat changes associated with...

  10. Does resolution of flow field observation influence apparent habitat use and energy expenditure in juvenile coho salmon?

    Science.gov (United States)

    Tullos, Desiree D.; Walter, Cara; Dunham, Jason B.

    2016-01-01

    This study investigated how the resolution of observation influences interpretation of how fish, juvenile Coho Salmon (Oncorhynchus kisutch), exploit the hydraulic environment in streams. Our objectives were to evaluate how spatial resolution of the flow field observation influenced: (1) the velocities considered to be representative of habitat units; (2) patterns of use of the hydraulic environment by fish; and (3) estimates of energy expenditure. We addressed these objectives using observations within a 1:1 scale physical model of a full-channel log jam in an outdoor experimental stream. Velocities were measured with Acoustic Doppler Velocimetry at a 10 cm grid spacing, whereas fish locations and tailbeat frequencies were documented over time using underwater videogrammetry. Results highlighted that resolution of observation did impact perceived habitat use and energy expenditure, as did the location of measurement within habitat units and the use of averaging to summarize velocities within a habitat unit. In this experiment, the range of velocities and energy expenditure estimates increased with coarsening resolution (grid spacing from 10 to 100 cm), reducing the likelihood of measuring the velocities locally experienced by fish. In addition, the coarser resolutions contributed to fish appearing to select velocities that were higher than what was measured at finer resolutions. These findings indicate the need for careful attention to and communication of resolution of observation in investigating the hydraulic environment and in determining the habitat needs and bioenergetics of aquatic biota.

  11. Blanding’s Turtle (Emydoidea blandingii Potential Habitat Mapping Using Aerial Orthophotographic Imagery and Object Based Classification

    Directory of Open Access Journals (Sweden)

    Douglas J. King

    2012-01-01

    Full Text Available Blanding’s turtle (Emydoidea blandingii is a threatened species under Canada’s Species at Risk Act. In southern Québec, field based inventories are ongoing to determine its abundance and potential habitat. The goal of this research was to develop means for mapping of potential habitat based on primary habitat attributes that can be detected with high-resolution remotely sensed imagery. Using existing spring leaf-off 20 cm resolution aerial orthophotos of a portion of Gatineau Park where some Blanding’s turtle observations had been made, habitat attributes were mapped at two scales: (1 whole wetlands; (2 within wetland habitat features of open water, vegetation (used for camouflage and thermoregulation, and logs (used for spring sun-basking. The processing steps involved initial pixel-based classification to eliminate most areas of non-wetland, followed by object-based segmentations and classifications using a customized rule sequence to refine the wetland map and to map the within wetland habitat features. Variables used as inputs to the classifications were derived from the orthophotos and included image brightness, texture, and segmented object shape and area. Independent validation using field data and visual interpretation showed classification accuracy for all habitat attributes to be generally over 90% with a minimum of 81.5% for the producer’s accuracy of logs. The maps for each attribute were combined to produce a habitat suitability map for Blanding’s turtle. Of the 115 existing turtle observations, 92.3% were closest to a wetland of the two highest suitability classes. High-resolution imagery combined with object-based classification and habitat suitability mapping methods such as those presented provide a much more spatially explicit representation of detailed habitat attributes than can be obtained through field work alone. They can complement field efforts to document and track turtle activities and can contribute to

  12. Effects of Concrete Channels on Stream Biogeochemistry, Maryland Coastal Plain

    Science.gov (United States)

    Prestegaard, K. L.; Gilbert, L.; Phemister, K.

    2005-05-01

    much larger urban river channels further downstream. These downstream redox zonations, microbial habitats, and pH characteristics observed in channelized tributaries are very different from non-urban watersheds in the Maryland Coastal Plain, which have pH values less than 7 and do not have the prominent redox zonations and associated microbial habitats. These downstream changes in redox chemistry and pH in urban stream channels have implications for the transport and retention of heavy metals in urban streams.

  13. Mosquito Vector Diversity across Habitats in Central Thailand Endemic for Dengue and Other Arthropod-Borne Diseases

    Science.gov (United States)

    Thongsripong, Panpim; Green, Amy; Kittayapong, Pattamaporn; Kapan, Durrell; Wilcox, Bruce; Bennett, Shannon

    2013-01-01

    Recent years have seen the greatest ecological disturbances of our times, with global human expansion, species and habitat loss, climate change, and the emergence of new and previously-known infectious diseases. Biodiversity loss affects infectious disease risk by disrupting normal relationships between hosts and pathogens. Mosquito-borne pathogens respond to changing dynamics on multiple transmission levels and appear to increase in disturbed systems, yet current knowledge of mosquito diversity and the relative abundance of vectors as a function of habitat change is limited. We characterize mosquito communities across habitats with differing levels of anthropogenic ecological disturbance in central Thailand. During the 2008 rainy season, adult mosquito collections from 24 sites, representing 6 habitat types ranging from forest to urban, yielded 62,126 intact female mosquitoes (83,325 total mosquitoes) that were assigned to 109 taxa. Female mosquito abundance was highest in rice fields and lowest in forests. Diversity indices and rarefied species richness estimates indicate the mosquito fauna was more diverse in rural and less diverse in rice field habitats, while extrapolated estimates of true richness (Chao1 and ACE) indicated higher diversity in the forest and fragmented forest habitats and lower diversity in the urban. Culex sp. (Vishnui subgroup) was the most common taxon found overall and the most frequent in fragmented forest, rice field, rural, and suburban habitats. The distributions of species of medical importance differed significantly across habitat types and were always lowest in the intact, forest habitat. The relative abundance of key vector species, Aedes aegypti and Culex quinquefasciatus, was negatively correlated with diversity, suggesting that direct species interactions and/or habitat-mediated factors differentially affecting invasive disease vectors may be important mechanisms linking biodiversity loss to human health. Our results are an

  14. Monetary Channels in Brazil through the Lens of a Semi-Structural Model

    OpenAIRE

    André Minella; Nelson F. Souza-Sobrinho

    2009-01-01

    We develop and estimate a medium-size, semi-structural model for Brazil's economy during the inflation targeting period. The model captures key features of the economy, and allows us to investigate the transmission mechanisms of monetary policy. We decompose the monetary channels into household interest rate, firm interest rate, and exchange rate channels. We find that the household interest rate channel plays the most important role in explaining output dynamics after a monetary policy shock...

  15. Channel uranium-graphite reactor mounting

    International Nuclear Information System (INIS)

    Polushkin, K.K.; Kuznetsov, A.G.; Zheleznyakov, B.N.

    1981-01-01

    According to theoretical principles of general engineering technology the engineering experience of construction-mounting works at the NPP with channel uranium-graphite reactors is systematized. Main parameters and structural features of the 1000 MW channel uranium-graphite reactors are considered. The succession of mounting operations, premounting equipment and pipelines preparation and mounting works technique are described. The most efficient methods of fitting, welding and machining of reactor elements are recommended. Main problems of technical control service are discussed. A typical netted diagram of main equipment of channel uranium-graphite reactors mounting is given

  16. Identification of new deep sea sinuous channels in the eastern Arabian Sea.

    Science.gov (United States)

    Mishra, Ravi; Pandey, D K; Ramesh, Prerna; Clift, Peter D

    2016-01-01

    Deep sea channel systems are recognized in most submarine fans worldwide as well as in the geological record. The Indus Fan is the second largest modern submarine fan, having a well-developed active canyon and deep sea channel system. Previous studies from the upper Indus Fan have reported several active channel systems. In the present study, deep sea channel systems were identified within the middle Indus Fan using high resolution multibeam bathymetric data. Prominent morphological features within the survey block include the Raman Seamount and Laxmi Ridge. The origin of the newly discovered channels in the middle fan has been inferred using medium resolution satellite bathymetry data. Interpretation of new data shows that the highly sinuous deep sea channel systems also extend to the east of Laxmi Ridge, as well as to the west of Laxmi Ridge, as previously reported. A decrease in sinuosity southward can be attributed to the morphological constraints imposed by the elevated features. These findings have significance in determining the pathways for active sediment transport systems, as well as their source characterization. The geometry suggests a series of punctuated avulsion events leading to the present array of disconnected channels. Such channels have affected the Laxmi Basin since the Pliocene and are responsible for reworking older fan sediments, resulting in loss of the original erosional signature supplied from the river mouth. This implies that distal fan sediments have experienced significant signal shredding and may not represent the erosion and weathering conditions within the onshore basin at the time of sedimentation.

  17. Estuarine Habitats for Juvenile Salmon in the Tidally-Influenced Lower Columbia River and Estuary : Reporting Period September 15, 2008 through May 31, 2009.

    Energy Technology Data Exchange (ETDEWEB)

    Baptista, António M. [Oregon Health & Science University, Science and Technology Center for Coastal Margin Observation and Prediction

    2009-08-02

    This work focuses on the numerical modeling of Columbia River estuarine circulation and associated modeling-supported analyses conducted as an integral part of a multi-disciplinary and multi-institutional effort led by NOAA's Northwest Fisheries Science Center. The overall effort is aimed at: (1) retrospective analyses to reconstruct historic bathymetric features and assess effects of climate and river flow on the extent and distribution of shallow water, wetland and tidal-floodplain habitats; (2) computer simulations using a 3-dimensional numerical model to evaluate the sensitivity of salmon rearing opportunities to various historical modifications affecting the estuary (including channel changes, flow regulation, and diking of tidal wetlands and floodplains); (3) observational studies of present and historic food web sources supporting selected life histories of juvenile salmon as determined by stable isotope, microchemistry, and parasitology techniques; and (4) experimental studies in Grays River in collaboration with Columbia River Estuary Study Taskforce (CREST) and the Columbia Land Trust (CLT) to assess effects of multiple tidal wetland restoration projects on various life histories of juvenile salmon and to compare responses to observed habitat-use patterns in the mainstem estuary. From the above observations, experiments, and additional modeling simulations, the effort will also (5) examine effects of alternative flow-management and habitat-restoration scenarios on habitat opportunity and the estuary's productive capacity for juvenile salmon. The underlying modeling system is part of the SATURN1coastal-margin observatory [1]. SATURN relies on 3D numerical models [2, 3] to systematically simulate and understand baroclinic circulation in the Columbia River estuary-plume-shelf system [4-7] (Fig. 1). Multi-year simulation databases of circulation are produced as an integral part of SATURN, and have multiple applications in understanding estuary

  18. Multi-channel Kondo necklace

    International Nuclear Information System (INIS)

    Fazekas, P.; Kee Haeyoung.

    1993-06-01

    A multi-channel generalization of Doniach's Kondo necklace model is formulated, and its phase diagram studied in the mean-field approximation. Our intention is to introduce the possible simplest model which displays some of the features expected from the overscreened Kondo lattice. The N conduction electron channels are represented by N sets of pseudospins τ J , j = 1 1,..., N which are all antiferromagnetically coupled to a periodic array of modul S = 1/2 spins. Exploiting permutation symmetry in the channel index j allows us to write down the self-consistency equation for general N. For N > 2, we find that the critical temperature is rising with increasing Kondo interaction; we interpret this effect by pointing out that the Kondo coupling creates the composite pseudospin objects which undergo an ordering transition. The relevance of our findings to the underlying fermionic multi-channel problem is discussed. (author). 33 refs, 1 fig

  19. On specific features of neutron spatial-energy distribution formation in a complex cell of a channel water reactor

    International Nuclear Information System (INIS)

    Yurova, L.N.; Naumov, V.I.; Belousov, N.I.

    1979-01-01

    Presented are the results of calculations of spatial-energy neutron distribution formation specific features in the cells with great amount and heterogeneous distribution of water. Considered is the two-region cylindrical cell with the central zone of 4 cm radius, consisting of moderators of different types. The calculation results show, that in the absence of absorption with the energy decrease flattening of neutron flux density by the cell takes place. Here in the case of hydrogen bearing moderator in the central zone the effect of the flux initial perturbation covers the essentially wider energy range, than in the case of hydrogenless moderator. Perturbation effect strongly depends on the composition of the peripheric zone (graphite, heavy water) and the size of the cell. The energy range, which is covered by the perturbation in the case of a hydrogen-bearing moderator in the central zone, is comparable with resonance energy range for uranium-238. A conclusion is made on the limited possibilities of the ''flat flux'' approximation for analyzing the resonance absorption in heterogeneous reactors with essential content of water in the channels

  20. The elusive character of discontinuous deep-water channels: New insights from Lucia Chica channel system, offshore California

    Science.gov (United States)

    Maier, K.L.; Fildani, A.; Paull, C.K.; Graham, S.A.; McHargue, T.R.; Caress, D.W.; McGann, M.

    2011-01-01

    New high-resolution autonomous underwater vehicle (AUV) seafloor images, with 1 m lateral resolution and 0.3 m vertical resolution, reveal unexpected seafloor rugosity and low-relief (thalwegs were interpreted originally from lower-resolution images, but newly acquired AUV data indicate that a single sinuous channel fed a series of discontinuous lower-relief channels. These discontinuous channels were created by at least four avulsion events. Channel relief, defined as the height from the thalweg to the levee crest, controls avulsions and overall stratigraphic architecture of the depositional area. Flowstripped turbidity currents separated into and reactivated multiple channels to create a distributary pattern and developed discontinuous trains of cyclic scours and megaflutes, which may be erosional precursors to continuous channels. The diverse features now imaged in the Lucia Chica channel system (offshore California) are likely common in modern and ancient systems with similar overall morphologies, but have not been previously mapped with lower-resolution detection methods in any of these systems. ?? 2011 Geological Society of America.

  1. Microplastic contamination in brown shrimp (Crangon crangon, Linnaeus 1758) from coastal waters of the Southern North Sea and Channel area

    NARCIS (Netherlands)

    Devriese, L.I.; van der Meulen, M.D.; Maes, T.; Bekaert, K.; Paul-Pont, I.; Frère, L.; Robbens, J.; Vethaak, A.D.

    2015-01-01

    This study assessed the capability of Crangon crangon (L.), an ecologically and commercially important crustacean, of consuming plastics as an opportunistic feeder. We therefore determined the microplastic content of shrimp in shallow water habitats of the Channel area and Southern part of the North

  2. Using Video to Communicate Scientific Findings -- Habitat Connections in Urban Streams

    Science.gov (United States)

    Harned, D. A.; Moorman, M.; Fitzpatrick, F. A.; McMahon, G.

    2011-12-01

    The U.S Geological Survey (USGS) National Water-Quality Assessment Program (NAWQA) provides information about (1) water-quality conditions and how those conditions vary locally, regionally, and nationally, (2) water-quality trends, and (3) factors that affect those conditions. As part of the NAWQA Program, the Effects of Urbanization on Stream Ecosystems (EUSE) study examined the vulnerability and resilience of streams to urbanization. Completion of the EUSE study has resulted in over 20 scientific publications. Video podcasts are being used in addition to these publications to communicate the relevance of these scientific findings to more general audiences such as resource managers, educational groups, public officials, and the general public. An example of one of the podcasts is a film examining effects of urbanization on stream habitat. "Habitat Connections in Urban Streams" explores how urbanization changes some of the physical features that provide in-stream habitat and examines examples of stream restoration projects designed to improve stream form and function. The "connections" theme is emphasized, including the connection of in-stream habitats from the headwaters to the stream mouth; connections between stream habitat and the surrounding floodplains, wetlands and basin; and connections between streams and people-- resource managers, public officials, scientists, and the general public. Examples of innovative stream restoration projects in Baltimore Maryland; Milwaukee, Wisconsin; and Portland Oregon are shown with interviews of managers, engineers, scientists, and others describing the projects. The film is combined with a website with links to extended film versions of the stream-restoration project interviews. The website and films are an example of USGS efforts aimed at improving science communication to a general audience. The film is available for access from the EUSE website: http://water.usgs.gov/nawqa/urban/html/podcasts.html. Additional films are

  3. Automated identification of stream-channel geomorphic features from high‑resolution digital elevation models in West Tennessee watersheds

    Science.gov (United States)

    Cartwright, Jennifer M.; Diehl, Timothy H.

    2017-01-17

    High-resolution digital elevation models (DEMs) derived from light detection and ranging (lidar) enable investigations of stream-channel geomorphology with much greater precision than previously possible. The U.S. Geological Survey has developed the DEM Geomorphology Toolbox, containing seven tools to automate the identification of sites of geomorphic instability that may represent sediment sources and sinks in stream-channel networks. These tools can be used to modify input DEMs on the basis of known locations of stormwater infrastructure, derive flow networks at user-specified resolutions, and identify possible sites of geomorphic instability including steep banks, abrupt changes in channel slope, or areas of rough terrain. Field verification of tool outputs identified several tool limitations but also demonstrated their overall usefulness in highlighting likely sediment sources and sinks within channel networks. In particular, spatial clusters of outputs from multiple tools can be used to prioritize field efforts to assess and restore eroding stream reaches.

  4. Seasonal Change in Nearshore and Channel Morphology at Packery Channel, A New Inlet Serving Corpus Christi, Texas

    Science.gov (United States)

    2011-01-01

    position defined by limiting features such as the dune toe or seawall. Individual transects are spaced at 1 to 30 m apart. These surveys usually require...associated nominal depths (MSL) are: 1) a wading survey conducted from the landward limiting feature, such as dune or seawall, to offshore depth of...Hall Pier. The surge forced water up to the dune line adjacent to the channel. The water was funneled toward and into the inlet, introducing sand from

  5. Spatial Diversity in Composition and Structure of Nekton in Ngenep Spring and its Channels, Karangploso - Malang

    Directory of Open Access Journals (Sweden)

    Lia Hapsari

    2014-04-01

    Full Text Available Water springs and its channel degradation due to anthropogenic pollution may alter the community structure of aquatic organisms. Water spring degradation tehrefore affect the quality of water as tourism resources. This study aims to investigate the changes in community structure of nekton  and determine the relationships between water quality characteristics to the diversity of nekton.  The field survey was set up in Ngenep spring and its channels. Results showed that nekton species found in Ngenep spring and its channels consists of 4 classes, 4 orders, 6 families, and 7 species with total 627 nekton samples. It is comprises of fishes, shrimp, frogs and waterstriders. Nekton diversity index (H’ in the spring and irrigation channel were in moderate level (1in settlement channel was low (0,67. Evenness values of nekton ranged 0,24 – 0,53, whereas dominancy index of nekton ranged 0,41 – 0,74. Evenness value in settlement channel was very low (0, 24 with high dominancy index (0, 74; it indicates that nekton species were spread not evenly in the channel, it dominated by fish Rasbora sp. (highest IVI, 184,95. There were spatial variations of  physico-chemical water qualitiy parameters in Ngenep springs and its channels (temperature, stream velocity, turbidity, conductivity, pH, DO, BOD and TOM which affected to nekton diversity and community structure. Clustering analyses and PCA result shows correlation pattern between nekton distribution with physico-chemical water quality parameters. However, physico-chemical water quality parameters in Ngenep springs and its channel were still optimum as nekton habitat (PP No. 82/ 2001. Keywords: Community structure, Nekton, Spatial diversity, Spring, Water channel

  6. Global habitat suitability for framework-forming cold-water corals.

    Directory of Open Access Journals (Sweden)

    Andrew J Davies

    Full Text Available Predictive habitat models are increasingly being used by conservationists, researchers and governmental bodies to identify vulnerable ecosystems and species' distributions in areas that have not been sampled. However, in the deep sea, several limitations have restricted the widespread utilisation of this approach. These range from issues with the accuracy of species presences, the lack of reliable absence data and the limited spatial resolution of environmental factors known or thought to control deep-sea species' distributions. To address these problems, global habitat suitability models have been generated for five species of framework-forming scleractinian corals by taking the best available data and using a novel approach to generate high resolution maps of seafloor conditions. High-resolution global bathymetry was used to resample gridded data from sources such as World Ocean Atlas to produce continuous 30-arc second (∼1 km(2 global grids for environmental, chemical and physical data of the world's oceans. The increased area and resolution of the environmental variables resulted in a greater number of coral presence records being incorporated into habitat models and higher accuracy of model predictions. The most important factors in determining cold-water coral habitat suitability were depth, temperature, aragonite saturation state and salinity. Model outputs indicated the majority of suitable coral habitat is likely to occur on the continental shelves and slopes of the Atlantic, South Pacific and Indian Oceans. The North Pacific has very little suitable scleractinian coral habitat. Numerous small scale features (i.e., seamounts, which have not been sampled or identified as having a high probability of supporting cold-water coral habitat were identified in all ocean basins. Field validation of newly identified areas is needed to determine the accuracy of model results, assess the utility of modelling efforts to identify vulnerable marine

  7. The Missing Link: the Role of Floodplain Tie Channels in Connecting Off River Water Bodies to Lowland Rivers

    Science.gov (United States)

    Rowland, J. C.; Dietrich, W. E.; Day, G.

    2005-05-01

    times in tie channel progradation rates. In a few instances Fly River tie channels have become filled with sediment following the increase in sediment loading. The precise role of tie channels in the ecology of lowland river systems has yet to be quantified, but given their critical role in connecting rivers with floodplain habitats it is likely they provide an important source of refuge, breeding habitat, and biomass production for many aquatic organisms. As restoration efforts increasingly focus on the improving or reestablishing connectivity between lowland rivers and their floodplains, consideration should be given as to whether tie channels are an important missing component of such systems.

  8. Investigating the Performance of One- and Two-dimensional Flood Models in a Channelized River Network: A Case Study of the Obion River System

    Science.gov (United States)

    Kalyanapu, A. J.; Dullo, T. T.; Thornton, J. C.; Auld, L. A.

    2015-12-01

    Obion River, is located in the northwestern Tennessee region, and discharges into the Mississippi River. In the past, the river system was largely channelized for agricultural purposes that resulted in increased erosion, loss of wildlife habitat and downstream flood risks. These impacts are now being slowly reversed mainly due to wetland restoration. The river system is characterized by a large network of "loops" around the main channels that hold water either from excess flows or due to flow diversions. Without data on each individual channel, levee, canal, or pond it is not known where the water flows from or to. In some segments along the river, the natural channel has been altered and rerouted by the farmers for their irrigation purposes. Satellite imagery can aid in identifying these features, but its spatial coverage is temporally sparse. All the alterations that have been done to the watershed make it difficult to develop hydraulic models, which could predict flooding and droughts. This is especially true when building one-dimensional (1D) hydraulic models compared to two-dimensional (2D) models, as the former cannot adequately simulate lateral flows in the floodplain and in complex terrains. The objective of this study therefore is to study the performance of 1D and 2D flood models in this complex river system, evaluate the limitations of 1D models and highlight the advantages of 2D models. The study presents the application of HEC-RAS and HEC-2D models developed by the Hydrologic Engineering Center (HEC), a division of the US Army Corps of Engineers. The broader impacts of this study is the development of best practices for developing flood models in channelized river systems and in agricultural watersheds.

  9. Thresholds of Detection and Identification of Halite Nodule Habitats in the Atacama Desert Using Remote Imaging

    Science.gov (United States)

    Phillips, M. S.; Moersch, J. E.; Cabrol, N. A.; Davila, A. F.

    2018-01-01

    The guiding theme of Mars exploration is shifting from global and regional habitability assessment to biosignature detection. To locate features likely to contain biosignatures, it is useful to focus on the reliable identification of specific habitats with high biosignature preservation potential. Proposed chloride deposits on Mars may represent evaporitic environments conducive to the preservation of biosignatures. Analogous chloride- bearing, salt-encrusted playas (salars) are a habitat for life in the driest parts of the Atacama Desert, and are also environments with a taphonomic window. The specific geologic features that harbor and preserve microorganisms in Atacama salars are sub- meter to meter scale salt protuberances, or halite nodules. This study focuses on the ability to recognize and map halite nodules using images acquired from an unmanned aerial vehicle (UAV) at spatial resolutions ranging from mm/pixel to that of the highest resolution orbital images available for Mars.

  10. Rainwater Wildlife Area Habitat Evaluation Procedures Report; A Columbia Basin Wildlife Mitigation Project.

    Energy Technology Data Exchange (ETDEWEB)

    Childs, Allen B.

    2004-01-01

    vegetation species, allowance of normative processes such as fire occurrence, and facilitating development of natural stable stream channels and associated floodplains. Implementation of habitat enhancement and restoration activities could generate an additional 1,850 habitat units in 10 years. Baseline and estimated future habitat units total 7,035.3 for the Rainwater Wildlife Area. Habitat protection, enhancement and restoration will require long-term commitments from managers to increase probabilities of success and meet the goals and objectives of the Northwest Power Planning Council's Fish and Wildlife Mitigation Program.

  11. Automatic bad channel detection in intracranial electroencephalographic recordings using ensemble machine learning.

    Science.gov (United States)

    Tuyisenge, Viateur; Trebaul, Lena; Bhattacharjee, Manik; Chanteloup-Forêt, Blandine; Saubat-Guigui, Carole; Mîndruţă, Ioana; Rheims, Sylvain; Maillard, Louis; Kahane, Philippe; Taussig, Delphine; David, Olivier

    2018-03-01

    Intracranial electroencephalographic (iEEG) recordings contain "bad channels", which show non-neuronal signals. Here, we developed a new method that automatically detects iEEG bad channels using machine learning of seven signal features. The features quantified signals' variance, spatial-temporal correlation and nonlinear properties. Because the number of bad channels is usually much lower than the number of good channels, we implemented an ensemble bagging classifier known to be optimal in terms of stability and predictive accuracy for datasets with imbalanced class distributions. This method was applied on stereo-electroencephalographic (SEEG) signals recording during low frequency stimulations performed in 206 patients from 5 clinical centers. We found that the classification accuracy was extremely good: It increased with the number of subjects used to train the classifier and reached a plateau at 99.77% for 110 subjects. The classification performance was thus not impacted by the multicentric nature of data. The proposed method to automatically detect bad channels demonstrated convincing results and can be envisaged to be used on larger datasets for automatic quality control of iEEG data. This is the first method proposed to classify bad channels in iEEG and should allow to improve the data selection when reviewing iEEG signals. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  12. Flow and sediment transport across oblique channels

    DEFF Research Database (Denmark)

    Hjelmager Jensen, Jacob; Madsen, Erik Østergaard; Fredsøe, Jørgen

    1998-01-01

    A 3D numerical investigation of flow across channels aligned obliquely to the main flow direction has been conducted. The applied numerical model solves the Reynolds-averaged Navier-Stokes equations using the k-ε model for turbulence closure on a curvilinear grid. Three momentum equations...... are solved, but the computational domain is 2D due to a uniformity along the channel alignment. Two important flow features arise when the flow crosses the channel: (i) the flow will be refracted in the direction of the channel alignment. This may be described by a depth-averaged model. (ii) due to shear...

  13. Identifying western yellow-billed cuckoo breeding habitat with a dual modelling approach

    Science.gov (United States)

    Johnson, Matthew J.; Hatten, James R.; Holmes, Jennifer A.; Shafroth, Patrick B.

    2017-01-01

    The western population of the yellow-billed cuckoo (Coccyzus americanus) was recently listed as threatened under the federal Endangered Species Act. Yellow-billed cuckoo conservation efforts require the identification of features and area requirements associated with high quality, riparian forest habitat at spatial scales that range from nest microhabitat to landscape, as well as lower-suitability areas that can be enhanced or restored. Spatially explicit models inform conservation efforts by increasing ecological understanding of a target species, especially at landscape scales. Previous yellow-billed cuckoo modelling efforts derived plant-community maps from aerial photography, an expensive and oftentimes inconsistent approach. Satellite models can remotely map vegetation features (e.g., vegetation density, heterogeneity in vegetation density or structure) across large areas with near perfect repeatability, but they usually cannot identify plant communities. We used aerial photos and satellite imagery, and a hierarchical spatial scale approach, to identify yellow-billed cuckoo breeding habitat along the Lower Colorado River and its tributaries. Aerial-photo and satellite models identified several key features associated with yellow-billed cuckoo breeding locations: (1) a 4.5 ha core area of dense cottonwood-willow vegetation, (2) a large native, heterogeneously dense forest (72 ha) around the core area, and (3) moderately rough topography. The odds of yellow-billed cuckoo occurrence decreased rapidly as the amount of tamarisk cover increased or when cottonwood-willow vegetation was limited. We achieved model accuracies of 75–80% in the project area the following year after updating the imagery and location data. The two model types had very similar probability maps, largely predicting the same areas as high quality habitat. While each model provided unique information, a dual-modelling approach provided a more complete picture of yellow-billed cuckoo habitat

  14. 2008 High-Flow Experiment at Glen Canyon Dam-Morphologic Response of Eddy-Deposited Sandbars and Associated Aquatic Backwater Habitats along the Colorado River in Grand Canyon National Park

    Science.gov (United States)

    Grams, Paul E.; Schmidt, John C.; Andersen, Matthew E.

    2010-01-01

    The March 2008 high-flow experiment (HFE) at Glen Canyon Dam resulted in sandbar deposition and sandbar reshaping such that the area and volume of associated backwater aquatic habitat in Grand Canyon National Park was greater following the HFE. Analysis of backwater habitat area and volume for 116 locations at 86 study sites, comparing one month before and one month after the HFE, shows that total habitat area increased by 30 percent to as much as a factor of 3 and that volume increased by 80 percent to as much as a factor of 15. These changes resulted from an increase in the area and elevation of sandbars, which isolate backwaters from the main channel, and the scour of eddy return-current channels along the bank where the habitat occurs. Because of this greater relief on the sandbars, backwaters were present across a broader range of flows following the HFE than before the experiment. Reworking of sandbars during diurnal fluctuating flow operations in the first 6 months following the HFE caused sandbar erosion and a reduction of backwater size and abundance to conditions that were 5 to 14 percent greater than existed before the HFE. In the months following the HFE, erosion of sandbars and deposition in eddy return-current channels caused reductions of backwater area and volume. However, sandbar relief was still greater in October 2008 such that backwaters were present across a broader range of discharges than in February 2008. Topographic analyses of the sandbar and backwater morphologic data collected in this study demonstrate that steady flows are associated with a greater amount of continuously available backwater habitat than fluctuating flows, which result in a greater amount of intermittently available habitat. With the exception of the period immediately following the HFE, backwater habitat in 2008 was greater for steady flows associated with dam operations of relatively lower monthly volume (about 227 m3/s) than steady flows associated with dam operations

  15. The new secondary channel control system at TRIUMF

    International Nuclear Information System (INIS)

    Keitel, R.; Bishop, D.; Dale, D.; England, N.; Harrison, D.

    1990-01-01

    The control of the secondary channels at TRIUMF has been decentralized. Each channel is now controlled through a single CAMAC crate from an IBM PC in the experimental counting room. Intelligent motor controllers were developed to replace the ageing slit control system. Advanced features of the control software package TICS, such as computer optimization of channel parameters and high-voltage conditioning of the dc separators, are described. (orig.)

  16. Umatilla River Basin Anadromous Fish Habitat Enhancement Project : 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, R. Todd; Sexton, Amy D.

    2003-02-01

    development of a 105-foot well for off-stream livestock watering at approximately River Mile 12.0 Wildhorse Creek and construction of an engineered stream ford at approximately River Mile 3.0 Mission Creek. A total of $277,848 in financial cost share assistance was provided by the Confederated Tribes of the Umatilla Indian Reservation, U.S. Bureau of Indian Affairs, U.S. Environmental Protection Agency, U.S. Department of Agriculture, National Oceanic and Atmospheric Administration, U.S. Workforce Investment Act, Oregon Watershed Enhancement Board, Umatilla County and Pheasants Forever for planning efforts and habitat enhancements. Monitoring continued to quantify baseline conditions and the effects of habitat enhancements in the upper basin. Daily stream temperatures were collected from June through September at 22 sites. Suspended sediment samples were obtained at three gage stations to arrive at daily sediment load estimates. Photographs were taken at 96 existing and three newly established photo points to document habitat recovery and pre-project conditions. Transects were measured at three stream channel cross sections to assist with engineering and design and to obtain baseline data regarding channel morphology. Biological inventories were conducted at River Mile 3.0 Mission Creek to determine pre-project fish utilization above and below the passage barrier. Post-project inventories were also conducted at River Mile 85.0 of the Umatilla River at a project site completed in 1999. Umatilla Subbasin Watershed Assessment efforts were continued under a subcontract with Eco-Pacific. This watershed assessment document and working databases will be completed in fiscal year 2002 and made available to assist project personnel with sub-watershed prioritization of habitat needs. Water Works Consulting, Duck Creek Associates and Ed Salminen Consulting were subcontracted for watershed assessment and restoration planning in the Meacham Creek Subwatershed. A document detailing current

  17. Habitat Evaluation Procedures (HEP) Report : Rainwater Wildlife Area, 1998-2001 Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Childs, Allen

    2004-01-01

    vegetation species, allowance of normative processes such as fire occurrence, and facilitating development of natural stable stream channels and associated floodplains. Implementation of habitat enhancement and restoration activities could generate an additional 1,850 habitat units in 10 years. Baseline and estimated future habitat units total 7,035.3 for the Rainwater Wildlife Area. Habitat protection, enhancement and restoration will require long-term commitments from managers to increase probabilities of success and meet the goals and objectives of the Northwest Power Planning Council's Fish and Wildlife Mitigation Program. Longer-term benefits of protection and enhancement activities include increases in native species diversity and plant community resiliency in all cover types. Watershed conditions, including floodplain/riparian, and instream habitat quality should improve as well providing multiple benefits for terrestrial and aquatic resources. While such benefits are not necessarily recognized by HEP models and reflected in the number of habitat units generated, they are consistent with the NPPC Fish and Wildlife Program.

  18. Linking occurrence and fitness to persistence: Habitat-based approach for endangered Greater Sage-Grouse

    Science.gov (United States)

    Aldridge, Cameron L.; Boyce, Mark S.

    2007-01-01

    Detailed empirical models predicting both species occurrence and fitness across a landscape are necessary to understand processes related to population persistence. Failure to consider both occurrence and fitness may result in incorrect assessments of habitat importance leading to inappropriate management strategies. We took a two-stage approach to identifying critical nesting and brood-rearing habitat for the endangered Greater Sage-Grouse (Centrocercus urophasianus) in Alberta at a landscape scale. First, we used logistic regression to develop spatial models predicting the relative probability of use (occurrence) for Sage-Grouse nests and broods. Secondly, we used Cox proportional hazards survival models to identify the most risky habitats across the landscape. We combined these two approaches to identify Sage-Grouse habitats that pose minimal risk of failure (source habitats) and attractive sink habitats that pose increased risk (ecological traps). Our models showed that Sage-Grouse select for heterogeneous patches of moderate sagebrush cover (quadratic relationship) and avoid anthropogenic edge habitat for nesting. Nests were more successful in heterogeneous habitats, but nest success was independent of anthropogenic features. Similarly, broods selected heterogeneous high-productivity habitats with sagebrush while avoiding human developments, cultivated cropland, and high densities of oil wells. Chick mortalities tended to occur in proximity to oil and gas developments and along riparian habitats. For nests and broods, respectively, approximately 10% and 5% of the study area was considered source habitat, whereas 19% and 15% of habitat was attractive sink habitat. Limited source habitats appear to be the main reason for poor nest success (39%) and low chick survival (12%). Our habitat models identify areas of protection priority and areas that require immediate management attention to enhance recruitment to secure the viability of this population. This novel

  19. Age, distribution, and significance within a sediment budget, of in-channel depositional surfaces in the Normanby River, Queensland, Australia

    Science.gov (United States)

    Pietsch, T. J.; Brooks, A. P.; Spencer, J.; Olley, J. M.; Borombovits, D.

    2015-06-01

    We present the results of investigations into alluvial deposition in the catchment of the Normanby River, which flows into Princess Charlotte Bay (PCB) in the northern part of the Great Barrier Reef Lagoon. Our focus is on the fine fraction (bank attached bars or inset or inner floodplains, these more or less flat-lying surfaces within the macro-channel have hitherto received little attention in sediment budgeting models. We use high resolution LiDAR based mapping combined with optical dating of exposures cut into these in-channel deposits to compare their aggradation rates with those found in other depositional zones in the catchment, namely the floodplain and coastal plain. In total 59 single grain OSL dates were produced across 21 stratigraphic profiles at 14 sites distributed though the 24 226 km2 catchment. In-channel storage in these inset features is a significant component of the contemporary fine sediment budget (i.e. recent decades/last century), annually equivalent to more than 50% of the volume entering the channel network from hillslopes and subsoil sources. Therefore, at the very least, in-channel storage of fine material needs to be incorporated into sediment budgeting exercises. Furthermore, deposition within the channel has occurred in multiple locations coincident in time with accelerated sediment production following European settlement. Generally, this has occurred on a subset of the features we have examined here, namely linear bench features low in the channel. This suggests that accelerated aggradation on in-channel depositional surfaces has been in part a response to accelerated erosion within the catchment. The entire contribution of ~ 370 kilotonnes per annum of fine sediment estimated to have been produced by alluvial gully erosion over the last ~ 100 years can be accounted for by that stored as in-channel alluvium. These features therefore can play an important role in mitigating the impact on the receiving water of accelerated erosion.

  20. Multi-channel Kondo necklace

    Energy Technology Data Exchange (ETDEWEB)

    Fazekas, P; Haeyoung, Kee

    1993-06-01

    A multi-channel generalization of Doniach`s Kondo necklace model is formulated, and its phase diagram studied in the mean-field approximation. Our intention is to introduce the possible simplest model which displays some of the features expected from the overscreened Kondo lattice. The N conduction electron channels are represented by N sets of pseudospins {tau}{sub J}, j = 1 1,..., N which are all antiferromagnetically coupled to a periodic array of modul S = 1/2 spins. Exploiting permutation symmetry in the channel index j allows us to write down the self-consistency equation for general N. For N > 2, we find that the critical temperature is rising with increasing Kondo interaction; we interpret this effect by pointing out that the Kondo coupling creates the composite pseudospin objects which undergo an ordering transition. The relevance of our findings to the underlying fermionic multi-channel problem is discussed. (author). 33 refs, 1 fig.

  1. Habitat Heterogeneity Variably Influences Habitat Selection by Wild Herbivores in a Semi-Arid Tropical Savanna Ecosystem.

    Directory of Open Access Journals (Sweden)

    Victor K Muposhi

    Full Text Available An understanding of the habitat selection patterns by wild herbivores is critical for adaptive management, particularly towards ecosystem management and wildlife conservation in semi arid savanna ecosystems. We tested the following predictions: (i surface water availability, habitat quality and human presence have a strong influence on the spatial distribution of wild herbivores in the dry season, (ii habitat suitability for large herbivores would be higher compared to medium-sized herbivores in the dry season, and (iii spatial extent of suitable habitats for wild herbivores will be different between years, i.e., 2006 and 2010, in Matetsi Safari Area, Zimbabwe. MaxEnt modeling was done to determine the habitat suitability of large herbivores and medium-sized herbivores. MaxEnt modeling of habitat suitability for large herbivores using the environmental variables was successful for the selected species in 2006 and 2010, except for elephant (Loxodonta africana for the year 2010. Overall, large herbivores probability of occurrence was mostly influenced by distance from rivers. Distance from roads influenced much of the variability in the probability of occurrence of medium-sized herbivores. The overall predicted area for large and medium-sized herbivores was not different. Large herbivores may not necessarily utilize larger habitat patches over medium-sized herbivores due to the habitat homogenizing effect of water provisioning. Effect of surface water availability, proximity to riverine ecosystems and roads on habitat suitability of large and medium-sized herbivores in the dry season was highly variable thus could change from one year to another. We recommend adaptive management initiatives aimed at ensuring dynamic water supply in protected areas through temporal closure and or opening of water points to promote heterogeneity of wildlife habitats.

  2. Book Review :The Essential Guide to Rocky Mountain Mushrooms by Habitat

    Science.gov (United States)

    A mushroom guide book, 'The Essential Guide to Rocky Mountain Mushrooms by Habitat' by Cathy L. Cripps, Vera S. Evenson, and Michael Kou (University of Illinois Press, 260 pages), is reviewed in non-technical fashion from the standpoints of format, comprehensiveness, and clarity. Postive features (...

  3. Managing heart rot in live trees for wildlife habitat in young-growth forests of coastal Alaska

    Science.gov (United States)

    Paul E. Hennon; Robin L. Mulvey

    2014-01-01

    Stem decays of living trees, known also as heart rots, are essential elements of wildlife habitat, especially for cavity-nesting birds and mammals. Stem decays are common features of old-growth forests of coastal Alaska, but are generally absent in young, managed forests. We offer several strategies for maintaining or restoring fungal stem decay in these managed...

  4. Sediment Dynamics Affecting the Threatened Santa Ana Sucker in the Highly-modified Santa Ana River and Inset Channel, Southern California, USA

    Science.gov (United States)

    Minear, J. T.; Wright, S. A.

    2015-12-01

    In this study, we investigate the sediment dynamics of the low-flow channel of the Santa Ana River that is formed by wastewater discharges and contains some of the last remaining habitat of the Santa Ana Sucker (Catostomus santaanae). The Santa Ana River is a highly-modified river draining the San Bernardino Mountains and Inland Empire metropolitan area east of Los Angeles. Home to over 4 million people, the watershed provides habitat for the federally-threatened Santa Ana Sucker, which presently reside within the mainstem Santa Ana River in a reach supported by year-round constant discharges from water treatment plants. The nearly constant low-flow wastewater discharges and infrequent runoff events create a small, approximately 8 m wide, inset channel within the approximately 300 m wide mainstem channel that is typically dry except for large flood flows. The sediment dynamics within the inset channel are characterized by constantly evolving bed substrate and sediment transport rates, and occasional channel avulsions. The sediment dynamics have large influence on the Sucker, which rely on coarse-substrate (gravel and cobble) for their food production. In WY 2013 through the present, we investigated the sediment dynamics of the inset channel using repeat bathymetric and substrate surveys, bedload sampling, and discharge measurements. We found two distinct phases of the inset channel behavior: 1. 'Reset' flows, where sediment-laden mainstem discharges from upstream runoff events result in sand deposition in the inset channel or avulse the inset channel onto previously dry riverbed; and 2. 'Winnowing' flows, whereby the sand within the inset channel is removed by clear-water low flows from the wastewater treatment plant discharges. Thus, in contrast to many regulated rivers where high flows are required to flush fine sediments from the bed (for example, downstream from dams), in the Santa Ana River the low flows from wastewater treatment plants serve as the flushing

  5. Landscape-scale Habitat Templates and Life Histories of Endangered and Invasive Fish Species in Large Rivers of the Mid-Continent USA (Invited)

    Science.gov (United States)

    Jacobson, R. B.; Braaten, P. J.; Chapman, D.; DeLonay, A. J.

    2013-12-01

    Many fish species migrate through river systems to complete their life cycles, occupying specific habitats during specific life stages. Regional geomorphology sets a template for their habitat-use patterns and ontogenetic development. In large rivers of the Mid-continent USA, understanding of relations of fish life histories to landscape-scale habitat templates informs recovery of endangered species and prevention of spread of invasive species. The endangered pallid sturgeon has evolved in the Missouri-Mississippi river system over 150 Ma. Its present-day distribution probably results from extensive drainage re-arrangements during the Pleistocene, followed by contemporary fragmentation. The reproductive and early life-stage needs of pallid sturgeon encompass hundreds of km, as adults migrate upstream to spawn and free embryos and larvae disperse downstream. Spawning requires coarse, hard substrate for incubation of adhesive eggs but adult pallid sturgeon are found predominately over sand, indicating that coarse substrate is a critical but transient habitat need. Once hatched, free-embryos initiate 9-17 days of downstream dispersal that distributes them over several hundreds of km. Lotic conditions at the dispersal terminus are required for survival. Persistent recruitment failure has been attributed to dams and channelization, which have fragmented migration and dispersal corridors, altered flow regimes, and diminished rearing habitats. Key elements of the natural history of this species remain poorly understood because adults are rare and difficult to observe, while the earliest life stages are nearly undetectable. Recent understanding has been accelerated using telemetry and hydroacoustics, but such assessments occur in altered systems and may not be indicative of natural behaviors. Restoration activities attempt - within considerable uncertainty -- to restore elements of the habitat template where they are needed. In comparison, invasive Asian carps have been

  6. A comparative study on genetic effects of artificial and natural habitat fragmentation on Loropetalum chinense (Hamamelidaceae) in Southeast China.

    Science.gov (United States)

    Yuan, N; Comes, H P; Cao, Y N; Guo, R; Zhang, Y H; Qiu, Y X

    2015-06-01

    Elucidating the demographic and landscape features that determine the genetic effects of habitat fragmentation has become fundamental to research in conservation and evolutionary biology. Land-bridge islands provide ideal study areas for investigating the genetic effects of habitat fragmentation at different temporal and spatial scales. In this context, we compared patterns of nuclear microsatellite variation between insular populations of a shrub of evergreen broad-leaved forest, Loropetalum chinense, from the artificially created Thousand-Island Lake (TIL) and the Holocene-dated Zhoushan Archipelago of Southeast China. Populations from the TIL region harboured higher levels of genetic diversity than those from the Zhoushan Archipelago, but these differences were not significant. There was no correlation between genetic diversity and most island features, excepting a negative effect of mainland-island distance on allelic richness and expected heterozygosity in the Zhoushan Archipelago. In general, levels of gene flow among island populations were moderate to high, and tests of alternative models of population history strongly favoured a gene flow-drift model over a pure drift model in each region. In sum, our results showed no obvious genetic effects of habitat fragmentation due to recent (artificial) or past (natural) island formation. Rather, they highlight the importance of gene flow (most likely via seed) in maintaining genetic variation and preventing inter-population differentiation in the face of habitat 'insularization' at different temporal and spatial scales.

  7. Habitat association and conservation implications of endangered Francois' langur (Trachypithecus francoisi.

    Directory of Open Access Journals (Sweden)

    Yajie Zeng

    Full Text Available Francois' langur (Trachypithecus francoisi is an endangered primate and endemic to the limestone forests of the tropical and subtropical zone of northern Vietnam and South-west China with a population of about 2,000 individuals. Conservation efforts are hampered by limited knowledge of habitat preference in its main distribution area. We surveyed the distribution of Francois' langur and modeled the relationship between the probability of use and habitat features in Mayanghe National Nature Reserve, Guizhou, China. The main objectives of this study were to provide quantitative information on habitat preference, estimating the availability of suitable habitat, and providing management guidelines for the effective conservation of this species. By comparing 92 used locations with habitat available in the reserve, we found that Francois' langur was mainly distributed along valleys and proportionally, used bamboo forests and mixed conifer-broadleaf forests more than their availability, whereas they tended to avoid shrubby areas and coniferous forests. The langur tended to occur at sites with lower elevation, steeper slope, higher tree canopy density, and a close distance to roads and water. The habitat occupancy probability was best modeled by vegetation type, vegetation coverage, elevation, slope degree, distances to nearest water, paved road, and farmland edge. The suitable habitat in this reserve concentrated in valleys and accounted for about 25% of the total reserve area. Our results showed that Francois' langur was not only restricted at the landscapes level at the regions with karst topography, limestone cliffs, and caves, but it also showed habitat preference at the local scale. Therefore, the protection and restoration of the langur preferred habitats such as mixed conifer-broadleaf forests are important and urgent for the conservation of this declining species.

  8. Features for detecting smoke in laparoscopic videos

    Directory of Open Access Journals (Sweden)

    Jalal Nour Aldeen

    2017-09-01

    Full Text Available Video-based smoke detection in laparoscopic surgery has different potential applications, such as the automatic addressing of surgical events associated with the electrocauterization task and the development of automatic smoke removal. In the literature, video-based smoke detection has been studied widely for fire surveillance systems. Nevertheless, the proposed methods are insufficient for smoke detection in laparoscopic videos because they often depend on assumptions which rarely hold in laparoscopic surgery such as static camera. In this paper, ten visual features based on motion, texture and colour of smoke are proposed and evaluated for smoke detection in laparoscopic videos. These features are RGB channels, energy-based feature, texture features based on gray level co-occurrence matrix (GLCM, HSV colour space feature, features based on the detection of moving regions using optical flow and the smoke colour in HSV colour space. These features were tested on four laparoscopic cholecystectomy videos. Experimental observations show that each feature can provide valuable information in performing the smoke detection task. However, each feature has weaknesses to detect the presence of smoke in some cases. By combining all proposed features smoke with high and even low density can be identified robustly and the classification accuracy increases significantly.

  9. An Efficient VLSI Architecture for Multi-Channel Spike Sorting Using a Generalized Hebbian Algorithm

    Directory of Open Access Journals (Sweden)

    Ying-Lun Chen

    2015-08-01

    Full Text Available A novel VLSI architecture for multi-channel online spike sorting is presented in this paper. In the architecture, the spike detection is based on nonlinear energy operator (NEO, and the feature extraction is carried out by the generalized Hebbian algorithm (GHA. To lower the power consumption and area costs of the circuits, all of the channels share the same core for spike detection and feature extraction operations. Each channel has dedicated buffers for storing the detected spikes and the principal components of that channel. The proposed circuit also contains a clock gating system supplying the clock to only the buffers of channels currently using the computation core to further reduce the power consumption. The architecture has been implemented by an application-specific integrated circuit (ASIC with 90-nm technology. Comparisons to the existing works show that the proposed architecture has lower power consumption and hardware area costs for real-time multi-channel spike detection and feature extraction.

  10. An Efficient VLSI Architecture for Multi-Channel Spike Sorting Using a Generalized Hebbian Algorithm.

    Science.gov (United States)

    Chen, Ying-Lun; Hwang, Wen-Jyi; Ke, Chi-En

    2015-08-13

    A novel VLSI architecture for multi-channel online spike sorting is presented in this paper. In the architecture, the spike detection is based on nonlinear energy operator (NEO), and the feature extraction is carried out by the generalized Hebbian algorithm (GHA). To lower the power consumption and area costs of the circuits, all of the channels share the same core for spike detection and feature extraction operations. Each channel has dedicated buffers for storing the detected spikes and the principal components of that channel. The proposed circuit also contains a clock gating system supplying the clock to only the buffers of channels currently using the computation core to further reduce the power consumption. The architecture has been implemented by an application-specific integrated circuit (ASIC) with 90-nm technology. Comparisons to the existing works show that the proposed architecture has lower power consumption and hardware area costs for real-time multi-channel spike detection and feature extraction.

  11. An Efficient VLSI Architecture for Multi-Channel Spike Sorting Using a Generalized Hebbian Algorithm

    Science.gov (United States)

    Chen, Ying-Lun; Hwang, Wen-Jyi; Ke, Chi-En

    2015-01-01

    A novel VLSI architecture for multi-channel online spike sorting is presented in this paper. In the architecture, the spike detection is based on nonlinear energy operator (NEO), and the feature extraction is carried out by the generalized Hebbian algorithm (GHA). To lower the power consumption and area costs of the circuits, all of the channels share the same core for spike detection and feature extraction operations. Each channel has dedicated buffers for storing the detected spikes and the principal components of that channel. The proposed circuit also contains a clock gating system supplying the clock to only the buffers of channels currently using the computation core to further reduce the power consumption. The architecture has been implemented by an application-specific integrated circuit (ASIC) with 90-nm technology. Comparisons to the existing works show that the proposed architecture has lower power consumption and hardware area costs for real-time multi-channel spike detection and feature extraction. PMID:26287193

  12. Habitat Projects Completed within the Asotin Creek Watershed, 1999 Completion Report.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Bradley J.

    2000-01-01

    The Asotin Creek Model Watershed Program (ACMWP) is the primary entity coordinating habitat projects on both private and public lands within the Asotin Creek watershed. The Asotin Creek watershed covers approximately 325 square miles in the Blue Mountains of southeastern Washington in WRIA 35. According to WDFW's Priority WRIA's by At-Risk Stock Significance Map, it is the highest priority in southeastern WA. Snake River spring chinook salmon, summer steelhead and bull trout, which are listed under the Endangered Species Act (ESA), are present in the watershed. The ACMWP began coordinating habitat projects in 1995. Approximately two hundred seventy-six projects have been implemented through the ACMWP as of 1999. Twenty of these projects were funded in part through Bonneville Power Administration's 1999 Columbia Basin Fish and Wildlife Program. These projects used a variety of methods to enhance and protect watershed conditions. In-stream work for fish habitat included construction of hard structures (e.g. vortex rock weirs), meander reconstruction, placement of large woody debris (LWD) and whole trees and improvements to off-channel rearing habitat; thirty-eight were created with these structures. Three miles of stream benefited from riparian improvements such as vegetative plantings (17,000 trees and shrubs) and noxious weed control. Two sediment basin constructions, 67 acres of grass seeding, and seven hundred forty-five acres of minimum till were implemented to reduce sediment production and delivery to streams in the watershed.

  13. Larkin Mill Dam channel geometry from 2008-06-09 to 2010-06-16 (NCEI Accession 0152472)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — We are collecting stream channel geometry and bed sediment grain size distribution data at the Parker River to evaluate physical habitat changes associated with the...

  14. Modeling of Iranian Cheetah Habitat using Ecological Niche Factor Analysis (Case Study: Dare Anjir Wildlife Refuge

    Directory of Open Access Journals (Sweden)

    N. Zamani

    2016-03-01

    Full Text Available Evaluation of habitat sustainability indexes is essential in wildlife management and conservation of rare species. Suitable habitats are required in wildlife managements and conservation also, they increase reproduction and survival rate of species. In this study in order to mapping habitat sustainability and recognizing habitat requirements of Iranian Cheetah (Acinonyx jubatus venaticus, field data from Dare Anjir  wildlife refuge were collected since autumn 2009 until summer 2011. Ecological Niche Factor Analysis approach has been used to develop habitat suitability model. In this method primary maps of  habitat variables including elevation, slope, aspect, vegetation cover, distance from water sources and environmental monitoring stations have been produced by Idrisi and Biomapper software and imported in Biomapper. The output scores obtained from the analysis showed that Iranian cheetah tends to mountain areas where has more topographical features for camouflage in order to hunting, and northern aspects which have more humidity, denser vegetation cover and more preys . Our result showed that the Iranian cheetah has medium niche width and prefer marginal habitats.

  15. Range estimates and habitat use of invasive Silver Carp (Hypophthalmichthys molitrix): Evidence of sedentary and mobile individuals

    Science.gov (United States)

    Prechtel, Austin R.; Coulter, Alison A.; Etchison, Luke; Jackson, P. Ryan; Goforth, Reuben R.

    2018-01-01

    Unregulated rivers provide unobstructed corridors for the dispersal of both native and invasive species. We sought to evaluate range size and habitat use of an invasive species (Silver Carp, Hypophthalmichthys molitrix) in an unimpounded river reach (Wabash River, IN), to provide insights into the dispersal of invasive species and their potential overlap with native species. We hypothesized that range size would increase with fish length, be similar among sexes, and vary annually while habitats used would be deeper, warmer, lower velocity, and of finer substrate. Silver Carp habitat use supported our hypotheses but range size did not vary with sex or length. 75% home range varied annually, suggesting that core areas occupied by individuals may change relative to climate-based factors (e.g., water levels), whereas broader estimates of range size remained constant across years. Ranges were often centered on landscape features such as tributaries and backwaters. Results of this study indicate habitat and landscape features as potential areas where Silver Carp impacts on native ecosystems may be the greatest. Observed distribution of range sizes indicates the presence of sedentary and mobile individuals within the population. Mobile individuals may be of particular importance as they drive the spread of the invasive species into new habitats.

  16. A review of channel selection algorithms for EEG signal processing

    Science.gov (United States)

    Alotaiby, Turky; El-Samie, Fathi E. Abd; Alshebeili, Saleh A.; Ahmad, Ishtiaq

    2015-12-01

    Digital processing of electroencephalography (EEG) signals has now been popularly used in a wide variety of applications such as seizure detection/prediction, motor imagery classification, mental task classification, emotion classification, sleep state classification, and drug effects diagnosis. With the large number of EEG channels acquired, it has become apparent that efficient channel selection algorithms are needed with varying importance from one application to another. The main purpose of the channel selection process is threefold: (i) to reduce the computational complexity of any processing task performed on EEG signals by selecting the relevant channels and hence extracting the features of major importance, (ii) to reduce the amount of overfitting that may arise due to the utilization of unnecessary channels, for the purpose of improving the performance, and (iii) to reduce the setup time in some applications. Signal processing tools such as time-domain analysis, power spectral estimation, and wavelet transform have been used for feature extraction and hence for channel selection in most of channel selection algorithms. In addition, different evaluation approaches such as filtering, wrapper, embedded, hybrid, and human-based techniques have been widely used for the evaluation of the selected subset of channels. In this paper, we survey the recent developments in the field of EEG channel selection methods along with their applications and classify these methods according to the evaluation approach.

  17. Multiple spectral channels in branchiopods. I. Vision in dim light and neural correlates.

    Science.gov (United States)

    Lessios, Nicolas; Rutowski, Ronald L; Cohen, Jonathan H; Sayre, Marcel E; Strausfeld, Nicholas J

    2018-05-22

    Animals that have true color vision possess several spectral classes of photoreceptors. Pancrustaceans (Hexapoda+Crustacea) that integrate spectral information about their reconstructed visual world do so from photoreceptor terminals supplying their second optic neuropils, with subsequent participation of the third (lobula) and deeper centers (optic foci). Here, we describe experiments and correlative neural arrangements underlying convergent visual pathways in two species of branchiopod crustaceans that have to cope with a broad range of spectral ambience and illuminance in ephemeral pools, yet possess just two optic neuropils, the lamina and the optic tectum. Electroretinographic recordings and multimodel inference based on modeled spectral absorptance were used to identify the most likely number of spectral photoreceptor classes in their compound eyes. Recordings from the retina provide support for four color channels. Neuroanatomical observations resolve arrangements in their laminas that suggest signal summation at low light intensities, incorporating chromatic channels. Neuroanatomical observations demonstrate that spatial summation in the lamina of the two species are mediated by quite different mechanisms, both of which allow signals from several ommatidia to be pooled at single lamina monopolar cells. We propose that such summation provides sufficient signal for vision at intensities equivalent to those experienced by insects in terrestrial habitats under dim starlight. Our findings suggest that despite the absence of optic lobe neuropils necessary for spectral discrimination utilized by true color vision, four spectral photoreceptor classes have been maintained in Branchiopoda for vision at very low light intensities at variable ambient wavelengths that typify conditions in ephemeral freshwater habitats. © 2018. Published by The Company of Biologists Ltd.

  18. Fish assemblages associated with natural and anthropogenically-modified habitats in a marine embayment: comparison of baited videos and opera-house traps.

    Directory of Open Access Journals (Sweden)

    Corey B Wakefield

    Full Text Available Marine embayments and estuaries play an important role in the ecology and life history of many fish species. Cockburn Sound is one of a relative paucity of marine embayments on the west coast of Australia. Its sheltered waters and close proximity to a capital city have resulted in anthropogenic intrusion and extensive seascape modification. This study aimed to compare the sampling efficiencies of baited videos and fish traps in determining the relative abundance and diversity of temperate demersal fish species associated with naturally occurring (seagrass, limestone outcrops and soft sediment and modified (rockwall and dredge channel habitats in Cockburn Sound. Baited videos sampled a greater range of species in higher total and mean abundances than fish traps. This larger amount of data collected by baited videos allowed for greater discrimination of fish assemblages between habitats. The markedly higher diversity and abundances of fish associated with seagrass and limestone outcrops, and the fact that these habitats are very limited within Cockburn Sound, suggests they play an important role in the fish ecology of this embayment. Fish assemblages associated with modified habitats comprised a subset of species in lower abundances when compared to natural habitats with similar physical characteristics. This suggests modified habitats may not have provided the necessary resource requirements (e.g. shelter and/or diet for some species, resulting in alterations to the natural trophic structure and interspecific interactions. Baited videos provided a more efficient and non-extractive method for comparing fish assemblages and habitat associations of smaller bodied species and juveniles in a turbid environment.

  19. Channel coincidence counter: version 1

    International Nuclear Information System (INIS)

    Krick, M.S.; Menlove, H.O.

    1980-06-01

    A thermal neutron coincidence counter has been designed for the assay of fast critical assembly fuel drawers and plutonium-bearing fuel rods. The principal feature of the detector is a 7-cm by 7-cm by 97-cm detector channel, which provides a uniform neutron detection efficiency of 16% along the central 40 cm of the channel. The electronics system is identical to that used for the High-Level Neutron Coincidence Counter

  20. Exploring the Application of Optical Remote Sensing as a Method to Estimate the Depth of Backwater Nursery Habitats of the Colorado Pikeminnow

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Yuki [Argonne National Lab. (ANL), Argonne, IL (United States); LaGory, Kirk E. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-02-01

    Low-velocity channel-margin habitats serve as important nursery habitats for the endangered Colorado pikeminnow (Ptychocheilus lucius) in the middle Green River between Jensen and Ouray, Utah. These habitats, known as backwaters, are associated with emergent sand bars, and are shaped and reformed annually by peak flows. A recent synthesis of information on backwater characteristics and the factors that influence inter-annual variability in those backwaters (Grippo et al. 2015) evaluated detailed survey information collected annually since 2003 on a relatively small sample of backwaters, as well as reach-wide evaluations of backwater surface area from aerial and satellite imagery. An approach is needed to bridge the gap between these detailed surveys, which estimate surface area, volume, and depth, and the reach-wide assessment of surface area to enable an assessment of the amount of habitat that meets the minimum depth requirements for suitable habitat.

  1. Burlington Bottoms Wildlife Mitigation Site : Five-Year Habitat Management Plan, 2001-2005, 2000-2001 Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Beilke, Susan G.

    2001-09-01

    Historically the lower Columbia and Willamette River Basins were ecologically rich in both the habitat types and the species diversity they supported. This was due in part to the pattern of floods and periodic inundation of bottomlands that occurred, which was an important factor in creating and maintaining a complex system of wetland, meadow, and riparian habitats. This landscape has been greatly altered in the past 150 years, primarily due to human development and agricultural activities including cattle grazing, logging and the building of hydroelectric facilities for hydropower, navigation, flood control and irrigation in the Columbia and Willamette River Basins. The Burlington Bottoms (BB) wetlands contains some of the last remaining bottomlands in the area, supporting a diverse array of native plant and wildlife species. Located approximately twelve miles northwest of Portland and situated between the Tualatin Mountains to the west and Multnomah Channel and Sauvie Island to the east, the current habitats are remnant of what was once common throughout the region. In order to preserve and enhance this important site, a five-year habitat management plan has been written that proposes a set of actions that will carry out the goals and objectives developed for the site, which includes protecting, maintaining and enhancing wildlife habitat for perpetuity.

  2. Food technology in space habitats

    Science.gov (United States)

    Karel, M.

    1979-01-01

    The research required to develop a system that will provide for acceptable, nutritious, and safe diets for man during extended space missions is discussed. The development of a food technology system for space habitats capable of converting raw materials produced in the space habitats into acceptable food is examined.

  3. Features in Microfluidic Paper-Based Devices Made by Laser Cutting: How Small Can They Be?

    Directory of Open Access Journals (Sweden)

    Md. Almostasim Mahmud

    2018-05-01

    Full Text Available In this paper, we determine the smallest feature size that enables fluid flow in microfluidic paper-based analytical devices (µPADs fabricated by laser cutting. The smallest feature sizes fabricated from five commercially available paper types: Whatman filter paper grade 50 (FP-50, Whatman 3MM Chr chromatography paper (3MM Chr, Whatman 1 Chr chromatography paper (1 Chr, Whatman regenerated cellulose membrane 55 (RC-55 and Amershan Protran 0.45 nitrocellulose membrane (NC, were 139 ± 8 µm, 130 ± 11 µm, 103 ± 12 µm, 45 ± 6 µm, and 24 ± 3 µm, respectively, as determined experimentally by successful fluid flow. We found that the fiber width of the paper correlates with the smallest feature size that has the capacity for fluid flow. We also investigated the flow speed of Allura red dye solution through small-scale channels fabricated from different paper types. We found that the flow speed is significantly slower through microscale features and confirmed the similar trends that were reported previously for millimeter-scale channels, namely that wider channels enable quicker flow speed.

  4. Diversity, occurrence and feeding traits of caddisfly larvae as indicators for ecological integrity of river-floodplain habitats along a connectivity gradient

    NARCIS (Netherlands)

    Van den Brink, F.W.B.; Van der Velde, G.; Wijnhoven, S.

    2013-01-01

    In order to assess ecological values of Lower Rhine and Meuse floodplain habitats we studied the spatial and seasonal variation in diversity, species assemblages and feeding traits of caddisfly larvae in water bodies over the lateral connectivity gradient: eupotamon: main and secondary channels:

  5. Maja Valles, Mars: A Multi-Source Fluvio-Volcanic Outflow Channel System

    Science.gov (United States)

    Keske, A.; Christensen, P. R.

    2017-12-01

    The resemblance of martian outflow channels to the channeled scablands of the Pacific Northwest has led to general consensus that they were eroded by large-scale flooding. However, the observation that many of these channels are coated in lava issuing from the same source as the water source has motivated the alternative hypothesis that the channels were carved by fluid, turbulent lava. Maja Valles is a circum-Chryse outflow channel whose origin was placed in the late Hesperian by Baker and Kochel (1979), with more recent studies of crater density variations suggesting that its formation history involved multiple resurfacing events (Chapman et al., 2003). In this study, we have found that while Maja Valles indeed host a suite of standard fluvial landforms, its northern portion is thinly coated with lava that has buried much of the older channel landforms and overprinted them with effusive flow features, such as polygons and bathtub rings. Adjacent to crater pedestals and streamlined islands are patches of dark, relatively pristine material pooled in local topographic lows that we have interpreted as ponds of lava remaining from one or more fluid lava flows that flooded the channel system and subsequently drained, leaving marks of the local lava high stand. Despite the presence of fluvial landforms throughout the valles, lava flow features exist in the northern reaches of the system alone, 500-1200 km from the channels' source. The flows can instead be traced to a collection of vents in Lunae Plaum, west of the valles. In previously studied fluvio-volcanic outflow systems, such as Athabasca Valles, the sources of the volcanic activity and fluvial activity have been indistinguishable. In contrast, Maja Valles features numerous fluvio-volcanic landforms bearing similarity to those identified in other channel systems, yet the source of its lava flows is distinct from the source of its channels. Furthermore, in the absence of any channels between the source of the lava

  6. Mapping, classification, and spatial variation of hardbottom habitats in the northeastern Gulf of Mexico

    Science.gov (United States)

    Kingon, Kelly

    and the biota did not strictly follow gradients or boundaries in substrate or geoform (physical feature or landform), even though these features are often used to classify habitats and biotopes. The percent cover of rock was a significant geomorphology variable for red algae and hard coral coverage while geoforms were related to the heights of sponges and brown algae. Seascape metrics also had significant effects on the sessile biota particularly related to patch edges, heterogeneity, core areas, nearest neighbor distances, and the percent cover of hardbottom. Despite the fact that sessile organisms do not move much, if at all following their planktonic larval stage, the surrounding seascape contributes to the patterns we see in their distribution, coverage, and heights. The third chapter focuses on applying a new classification standard to the benthic habitats in the nearshore northeastern Gulf of Mexico. The United States Geological Survey (USGS) has a standardized system for classifying terrestrial and aquatic habitats found across the U.S. which has been in place for almost 40 years. This classification standard does not include marine and most coastal habitats. Therefore, marine researchers developed a number of classification systems for coastal and marine habitats relevant to their local or regional studies in U.S. waters. A national standardized method for classifying marine and coastal habitats was not adopted until recently. The Coastal and Marine Ecological Classification Standard (CMECS) developed by the Federal Geographic Data Committee was approved last year and is intended to fill the gap in U.S. marine habitat classification standards. Since the classification standard is in its infancy, it has not been applied in many geographic areas. My third chapter is the first study to apply the CMECS to the benthic habitats in the nearshore northeastern Gulf of Mexico off the coast of northwest Florida. Hardbottom and sand habitats are characteristic of this

  7. Structural Responses of a Stream Community to a Channel Relocation Using a Natural Channel Design Approach

    Science.gov (United States)

    Jack, J.; Word, D.; Daniel, W.; Pritchard, S.; Parola, A.; Vesely, B.

    2005-05-01

    Streams have been heavily impacted by historical and contemporary management practices. Restorations are seen as a way to enhance stream ecosystem integrity, but there are few restoration sites where pre- and post-restoration data are available to assess "success." In 2003, a channelized reach of Wilson Creek (Kentucky, USA) was relocated using a natural channel design approach. We compared the structural and functional responses of the stream pre- and post restoration/relocation at sites within Wilson and two reference streams. Despite the construction disturbance, water chemistry parameters such as nitrate and turbidity were nearly identical at sampling stations above and below the relocation for 2003-2004. Macroinvertebrate colonization of the relocation sites was rapid, with communities dominated by Cheumatopsyche, Perlesta and Baetis. Assessments of CPOM transport indicated that the new stream channel is more retentive of leaf and woody debris material than the pre-restoration Wilson sites or unrestored reference stream sites. The restoration of suitable habitat and the presence of "source populations" for colonization may compensate for even large-scale (but short-term) construction disturbance. More research is needed to assess the balance between the disturbance impacts of restoration installation and the long term benefits of stream ecological improvement.

  8. The relative influence of road characteristics and habitat on adjacent lizard populations in arid shrublands

    Science.gov (United States)

    Hubbard, Kaylan A.; Chalfoun, Anna D.; Gerow, Kenneth G.

    2016-01-01

    As road networks continue to expand globally, indirect impacts to adjacent wildlife populations remain largely unknown. Simultaneously, reptile populations are declining worldwide and anthropogenic habitat loss and fragmentation are frequently cited causes. We evaluated the relative influence of three different road characteristics (surface treatment, width, and traffic volume) and habitat features on adjacent populations of Northern Sagebrush Lizards (Sceloporus graciosus graciosus), Plateau Fence Lizards (S. tristichus), and Greater Short-Horned Lizards (Phrynosoma hernandesi) in mixed arid shrubland habitats in southwest Wyoming. Neither odds of lizard presence nor relative abundance was significantly related to any of the assessed road characteristics, although there was a trend for higher Sceloporus spp. abundance adjacent to paved roads. Sceloporus spp. relative abundance did not vary systematically with distance to the nearest road. Rather, both Sceloporus spp. and Greater Short-Horned Lizards were associated strongly with particular habitat characteristics adjacent to roads. Sceloporus spp. presence and relative abundance increased with rock cover, relative abundance was associated positively with shrub cover, and presence was associated negatively with grass cover. Greater Short-Horned Lizard presence increased with bare ground and decreased marginally with shrub cover. Our results suggest that habitat attributes are stronger correlates of lizard presence and relative abundance than individual characteristics of adjacent roads, at least in our system. Therefore, an effective conservation approach for these species may be to consider the landscape through which new roads and their associated development would occur, and the impact that placement could have on fragment size and key habitat elements.

  9. The Effects of Vegetative Type, Edges, Fire History, Rainfall and Management in Fire-Maintained Habitat

    Science.gov (United States)

    Breininger, David R.; Foster, Tammy E.; Carter, Geoffrey M.; Duncan, Brean W.; Stolen, Eric D.; Lyon, James E.

    2018-01-01

    The combined effects of fire history, climate, and landscape features (e.g., edges) on habitat specialists need greater focus in fire ecology studies, which usually only emphasize characteristics of the most recent fire. Florida scrub-jays are an imperiled, territorial species that prefer medium (1.2-1.7 m) shrub heights, which are dynamic because of frequent fires. We measured short, medium, and tall habitat quality states annually within 10 ha grid cells (that represented potential territories) because fires and vegetative recovery cause annual variation in habitat quality. We used multistate models and model selection to test competing hypotheses about how transition probabilities vary between states as functions of environmental covariates. Covariates included vegetative type, edges (e.g., roads, forests), precipitation, openings (gaps between shrubs), mechanical cutting, and fire characteristics. Fire characteristics not only included an annual presence/absence of fire covariate, but also fire history covariates: time since the previous fire, the longest fire-free interval, and the number of repeated fires. Statistical models with support included many covariates for each transition probability, often including fire history, interactions and nonlinear relationships. Tall territories resulted from 28 years of fire suppression and habitat fragmentation that reduced the spread of fires across landscapes. Despite 35 years of habitat restoration and prescribed fires, half the territories remained tall suggesting a regime shift to a less desirable habitat condition. Edges reduced the effectiveness of fires in setting degraded scrub and flatwoods into earlier successional states making mechanical cutting an important tool to compliment frequent prescribed fires.

  10. Habitat mapping using hyperspectral images in the vicinity of Hekla volcano in Iceland

    Science.gov (United States)

    Vilmundardóttir, Olga K.; Sigurmundsson, Friðþór S.; Pedersen, Gro B. M.; Falco, Nicola; Rustowicz, Rose; Gísladóttir, Guðrún; Benediktsson, Jón A.

    2016-04-01

    formed in 2000, 1991, 1980-81, 1970, 1947, 1913, 1878, 1845, 1766-68, 1693, 1554, 1389-90, 1300, and 1206, representing surfaces of age 15-809 years. Results showed that vegetation cover established rather quickly on the lavas where mosses and lichens already created a full cover after 24 years. The cover remained stable and mosses were the dominant plant group for centuries, unless where tephra fall had occurred or where eolian deposition prevailed. The colonization of vascular plants on the lava was slow except at sites of eolian deposition and tephra fall. Dwarf shrubs and shrubs were rare or even absent on the lavas formed during the last century but their cover increased with increasing age of the lava fields. The older lava fields featured a variety of vegetation classes, indicating different rates and pathways of succession depending on altitude, proximity to eolian sources, land use and other factors. The many similarities yet big contrasts in the habitats featured within the Hekla region pose a challenge for creating a habitat map of the area, testing the potency of the hyperspectral data and classification techniques to the fullest.

  11. Micro-channel plates and vacuum detectors

    Energy Technology Data Exchange (ETDEWEB)

    Gys, T., E-mail: Thierry.Gys@cern.ch

    2015-07-01

    A micro-channel plate is an array of miniature electron multipliers that are each acting as a continuous dynode chain. The compact channel structure results in high spatial and time resolutions and robustness to magnetic fields. Micro-channel plates have been originally developed for night vision applications and integrated as an amplification element in image intensifiers. These devices show single-photon sensitivity with very low noise and have been used as such for scintillating fiber tracker readout in high-energy physics experiments. Given their very short transit time spread, micro-channel plate photomultiplier tubes are also being used in time-of-flight and particle identification detectors. The present paper will cover the history of the micro-channel plate development, basic features, and some of their applications. Emphasis will be put on various new manufacturing processes that have been developed over the last few years, and that result in a significant improvement in terms of efficiency, noise, and lifetime performance.

  12. Vortex-slip transitions in superconducting a-NbGe mesoscopic channels

    Science.gov (United States)

    Kokubo, N.; Sorop, T. G.; Besseling, R.; Kes, P. H.

    2006-06-01

    Intriguing and novel physical aspects related to the vortex flow dynamics have been recently observed in mesoscopic channel devices of a-NbGe with NbN channel edges. In this work we have systematically studied the flow properties of vortices confined in such mesoscopic channels as a function of the magnetic field history, using dc-transport and mode-locking (ML) measurements. As opposed to the field-down situation, in the field-up case a kink anomaly in the dc I-V curves is detected. The mode-locking measurements reveal that this anomaly is, in fact, a flow induced vortex slip transition: by increasing the external drive (either dc or ac) a sudden change occurs from n to n+2 moving vortex rows in the channel. The observed features can be explained in terms of an interplay between field focusing due to screening currents and a change in the predominant pinning mechanism.

  13. Testing projected wild bee distributions in agricultural habitats: predictive power depends on species traits and habitat type.

    Science.gov (United States)

    Marshall, Leon; Carvalheiro, Luísa G; Aguirre-Gutiérrez, Jesús; Bos, Merijn; de Groot, G Arjen; Kleijn, David; Potts, Simon G; Reemer, Menno; Roberts, Stuart; Scheper, Jeroen; Biesmeijer, Jacobus C

    2015-10-01

    Species distribution models (SDM) are increasingly used to understand the factors that regulate variation in biodiversity patterns and to help plan conservation strategies. However, these models are rarely validated with independently collected data and it is unclear whether SDM performance is maintained across distinct habitats and for species with different functional traits. Highly mobile species, such as bees, can be particularly challenging to model. Here, we use independent sets of occurrence data collected systematically in several agricultural habitats to test how the predictive performance of SDMs for wild bee species depends on species traits, habitat type, and sampling technique. We used a species distribution modeling approach parametrized for the Netherlands, with presence records from 1990 to 2010 for 193 Dutch wild bees. For each species, we built a Maxent model based on 13 climate and landscape variables. We tested the predictive performance of the SDMs with independent datasets collected from orchards and arable fields across the Netherlands from 2010 to 2013, using transect surveys or pan traps. Model predictive performance depended on species traits and habitat type. Occurrence of bee species specialized in habitat and diet was better predicted than generalist bees. Predictions of habitat suitability were also more precise for habitats that are temporally more stable (orchards) than for habitats that suffer regular alterations (arable), particularly for small, solitary bees. As a conservation tool, SDMs are best suited to modeling rarer, specialist species than more generalist and will work best in long-term stable habitats. The variability of complex, short-term habitats is difficult to capture in such models and historical land use generally has low thematic resolution. To improve SDMs' usefulness, models require explanatory variables and collection data that include detailed landscape characteristics, for example, variability of crops and

  14. Effects of Changes in Lugu Lake Water Quality on Schizothorax Yunnansis Ecological Habitat Based on HABITAT Model

    Science.gov (United States)

    Huang, Wei; Mynnet, Arthur

    Schizothorax Yunnansis is an unique fish species only existing in Lugu Lake, which is located in the southwestern China. The simulation and research on Schizothorax Yunnansis habitat environment have a vital significance to protect this rare fish. With the development of the tourism industry, there bring more pressure on the environmental protection. The living environment of Schizothorax Yunnansis is destroyed seriously because the water quality is suffering the sustaining pollution of domestic sewage from the peripheral villages. This paper analyzes the relationship between water quality change and Schizothorax Yunnansis ecological habitat and evalutes Schizothorax Yunnansis's ecological habitat impact based on HABITAT model. The results show that when the TP concentration in Lugu Lake does not exceed Schizothorax Yunnansis's survival threshold, Schizothorax Yunnansis can get more nutrients and the suitable habitat area for itself is increased. Conversely, it can lead to TP toxicity in the Schizothorax Yunnansis and even death. Therefore, unsuitable habitat area for Schizothorax Yunnansis is increased. It can be seen from the results that HABITAT model can assist in ecological impact assessment studies by translating results of hydrological, water quality models into effects on the natural environment and human society.

  15. Alien Plant Species in the Agricultural Habitats of Ukraine: Diversity and Risk Assessment

    Directory of Open Access Journals (Sweden)

    Burda Raisa

    2018-03-01

    Full Text Available This paper is the first critical review of the diversity of the Ukrainian adventive flora, which has spread in agricultural habitats in the 21st century. The author’s annotated checklist contains the data on 740 species, subspecies and hybrids from 362 genera and 79 families of non-native weeds. The floristic comparative method was used, and the information was generalised into some categories of five characteristic features: climamorphotype (life form, time and method of introduction, level of naturalisation, and distribution into 22 classes of three habitat types according to European Nature Information System (EUNIS. Two assessments of the ecological risk of alien plants were first conducted in Ukraine according to the European methods: the risk of overcoming natural migration barriers and the risk of their impact on the environment. The exposed impact of invasive alien plants on ecosystems has a convertible character; the obtained information confirms a high level of phytobiotic contamination of agricultural habitats in Ukraine. It is necessary to implement European and national documents regarding the legislative and regulative policy on invasive alien species as one of the threats to biotic diversity.

  16. Seasonal variation in coastal marine habitat use by the European shag: Insights from fine scale habitat selection modeling and diet

    Science.gov (United States)

    Michelot, Candice; Pinaud, David; Fortin, Matthieu; Maes, Philippe; Callard, Benjamin; Leicher, Marine; Barbraud, Christophe

    2017-07-01

    Studies of habitat selection by higher trophic level species are necessary for using top predator species as indicators of ecosystem functioning. However, contrary to terrestrial ecosystems, few habitat selection studies have been conducted at a fine scale for coastal marine top predator species, and fewer have coupled diet data with habitat selection modeling to highlight a link between prey selection and habitat use. The aim of this study was to characterize spatially and oceanographically, at a fine scale, the habitats used by the European Shag Phalacrocorax aristotelis in the Special Protection Area (SPA) of Houat-Hœdic in the Mor Braz Bay during its foraging activity. Habitat selection models were built using in situ observation data of foraging shags (transect sampling) and spatially explicit environmental data to characterize marine benthic habitats. Observations were first adjusted for detectability biases and shag abundance was subsequently spatialized. The influence of habitat variables on shag abundance was tested using Generalized Linear Models (GLMs). Diet data were finally confronted to habitat selection models. Results showed that European shags breeding in the Mor Braz Bay changed foraging habitats according to the season and to the different environmental and energetic constraints. The proportion of the main preys also varied seasonally. Rocky and coarse sand habitats were clearly preferred compared to fine or muddy sand habitats. Shags appeared to be more selective in their foraging habitats during the breeding period and the rearing of chicks, using essentially rocky areas close to the colony and consuming preferentially fish from the Labridae family and three other fish families in lower proportions. During the post-breeding period shags used a broader range of habitats and mainly consumed Gadidae. Thus, European shags seem to adjust their feeding strategy to minimize energetic costs, to avoid intra-specific competition and to maximize access

  17. Trapping Triatominae in Silvatic Habitats

    Directory of Open Access Journals (Sweden)

    Noireau François

    2002-01-01

    Full Text Available Large-scale trials of a trapping system designed to collect silvatic Triatominae are reported. Live-baited adhesive traps were tested in various ecosystems and different triatomine habitats (arboreal and terrestrial. The trials were always successful, with a rate of positive habitats generally over 20% and reaching 48.4% for palm trees of the Amazon basin. Eleven species of Triatominae belonging to the three genera of public health importance (Triatoma, Rhodnius and Panstrongylus were captured. This trapping system provides an effective way to detect the presence of triatomines in terrestrial and arboreal silvatic habitats and represents a promising tool for ecological studies. Various lines of research are contemplated to improve the performance of this trapping system.

  18. Binary gabor statistical features for palmprint template protection

    NARCIS (Netherlands)

    Mu, Meiru; Ruan, Qiuqi; Shao, X.; Spreeuwers, Lieuwe Jan; Veldhuis, Raymond N.J.

    2012-01-01

    The biometric template protection system requires a highquality biometric channel and a well-designed error correction code (ECC). Due to the intra-class variations of biometric data, an efficient fixed-length binary feature extractor is required to provide a high-quality biometric channel so that

  19. Flow Management to Control Excessive Growth of Macrophytes - An Assessment Based on Habitat Suitability Modeling.

    Science.gov (United States)

    Ochs, Konstantin; Rivaes, Rui P; Ferreira, Teresa; Egger, Gregory

    2018-01-01

    Mediterranean rivers in intensive agricultural watersheds usually display outgrowths of macrophytes - notably alien species - due to a combination of high concentrations of nutrients in the water runoff and low flows resulting from water abstraction for irrigation. Standard mechanical and chemical control is used to mitigate the problems associated with excessive growth of plant biomass: mainly less drainage capacity and higher flood risk. However, such control measures are cost and labor-intensive and do not present long-term efficiency. Although the high sensitivity of aquatic vegetation to instream hydraulic conditions is well known, management approaches based on flow management remain relatively unexplored. The aim of our study was therefore to apply physical habitat simulation techniques promoted by the Instream Flow Incremental Method (IFIM) to aquatic macrophytes - the first time it has been applied in this context - in order to model shifts in habitat suitability under different flow scenarios in the Sorraia river in central Portugal. We used this approach to test whether the risk of invasion and channel encroachment by nuisance species can be controlled by setting minimum annual flows. We used 960 randomly distributed survey points to analyze the habitat suitability for the most important aquatic species (including the invasive Brazilian milfoil Myriophyllum aquaticum , Sparganium erectum , and Potamogeton crispus ) in regard to the physical parameters 'flow velocity,' 'water depth,' and 'substrate size'. We chose the lowest discharge period of the year in order to assess the hydraulic conditions while disturbances were at a low-point, thus allowing aquatic vegetation establishment and subsistence. We then used the two-dimensional hydraulic River2D software to model the potential habitat availability for different flow conditions based on the site-specific habitat suitability index for each physical parameter and species. Our results show that the growth

  20. On limits of Wireless Communications in a Fading Environment: a General Parameterization Quantifying Performance in Fading Channel

    Directory of Open Access Journals (Sweden)

    Amit Grover

    2014-08-01

    Full Text Available The reliable services along with high throughput can be achieved by using wireless communication systems. These systems also provides a wide coverage because of their features, no doubt MIMO Communication System [1] is one among them. Features provided by these systems ensure the improved system coverage and increased data transmission rate by considering multiple numbers of transmitter and receiver antennas. In this article, the concept of equalization has been considered and finally the performance of the MIMO Systems in Rician flat fading [5] channel is compared with the Rayleigh flat fading channel. It has also been observed that the performance of these Systems in Rician Flat Fading Channel is the best as compare to the Rayleigh Flat Fading Channel [10]. It has been concluded that the successive interference methods provide better performance as compare to others, but their complexity is high. Simulation results shows that ML provides the better performance in comparison to other equalizers but Sphere decoder provides the best performance.

  1. Plant life form based habitat monitoring in a European landscape framework for early warning of changes in land cover and biodiversity

    DEFF Research Database (Denmark)

    Brandt, Jesper; Olsen, Martin; Bloch-Petersen, Margit

    and habitat composition and quality. The focus on essential features of the habitat that can be expressed easily and quantitatively for identification and mapping of small but significant changes at a landscape level has resulted in the reintroduction of Raunkiaers plant life form concept from 1907...... of agricultural land use, general land cover and tree and shrub cover of small biotopes), it has not been difficult to integrate the BioHab framework in the SBMP-monitoring system, thus permitting the monitoring system to deliver an additional important European perspective with only very limited extra resources...

  2. Near-Term Effects of Repeated-Thinning with Riparian Buffers on Headwater Stream Vertebrates and Habitats in Oregon, USA

    Directory of Open Access Journals (Sweden)

    Deanna H. Olson

    2014-11-01

    Full Text Available We examined the effects of a second-thinning harvest with alternative riparian buffer management approaches on headwater stream habitats and associated vertebrates in western Oregon, USA. Our analyses showed that stream reaches were generally distinguished primarily by average width and depth, along with the percentage of the dry reach length, and secondarily, by the volume of down wood. In the first year post-harvest, we observed no effects of buffer treatment on stream habitat attributes after moderate levels of thinning. One of two “thin-through” riparian treatments showed stronger trends for enlarged stream channels, likely due to harvest disturbances. The effects of buffer treatments on salamanders varied among species and with habitat structure. Densities of Plethodon dunni and Rhyacotriton species increased post-harvest in the moderate-density thinning with no-entry buffers in wider streams with more pools and narrower streams with more down wood, respectively. However, Rhyacotriton densities decreased along streams with the narrowest buffer, 6 m, and P. dunni and Dicamptodon tenebrosus densities decreased in thin-through buffers. Our study supports the use of a 15-m or wider buffer to retain sensitive headwater stream amphibians.

  3. Partitioning mechanisms of predator interference in different habitats.

    Science.gov (United States)

    Griffen, Blaine D; Byers, James E

    2006-01-01

    Prey are often consumed by multiple predator species. Predation rates on shared prey species measured in isolation often do not combine additively due to interference or facilitation among the predator species. Furthermore, the strength of predator interactions and resulting prey mortality may change with habitat type. We experimentally examined predation on amphipods in rock and algal habitats by two species of intertidal crabs, Hemigrapsus sanguineus (top predators) and Carcinus maenas (intermediate predators). Algae provided a safer habitat for amphipods when they were exposed to only a single predator species. When both predator species were present, mortality of amphipods was less than additive in both habitats. However, amphipod mortality was reduced more in rock than algal habitat because intermediate predators were less protected in rock habitat and were increasingly targeted by omnivorous top predators. We found that prey mortality in general was reduced by (1) altered foraging behavior of intermediate predators in the presence of top predators, (2) top predators switching to foraging on intermediate predators rather than shared prey, and (3) density reduction of intermediate predators. The relative importance of these three mechanisms was the same in both habitats; however, the magnitude of each was greater in rock habitat. Our study demonstrates that the strength of specific mechanisms of interference between top and intermediate predators can be quantified but cautions that these results may be habitat specific.

  4. Sedimentary processes of the lower Monterey Fan channel and channel-mouth lobe

    Science.gov (United States)

    Klaucke, I.; Masson, D.G.; Kenyon, Neil H.; Gardner, J.V.

    2004-01-01

    The distribution of deposits, sediment transport pathways and processes on the lower Monterey Fan channel and channel-mouth lobe (CML) are studied through the integration of GLORIA and TOBI sidescan sonar data with 7-kHz subbottom profiler records and sediment cores for ground-truthing. The lower Monterey channel is characterised by an up to 30-m-deep channel with poorly developed levees and alternating muddy and silty muddy overbank deposits. The channel is discontinuous, disappearing where gradients are less than about 1:350. Ground-truthing of the large CML shows that the entire CML is characterised by widespread deposits of generally fine sand, with coarser sand at the base of turbidites. Sand is particularly concentrated in finger-like areas of low-backscatter intensity and is interpreted as the result of non-turbulent sediment-gravity flows depositing metres thick massive, fine sand. TOBI sidescan sonar data reveal recent erosional features in the form of scours, secondary channels, large flow slides, and trains of blocks at the distal end of the CML. Erosion is probably related to increasing gradient as the CML approaches Murray Fracture zone and to differential loading of sandy submarine fan deposits onto pelagic clays. Reworking of older flow slides by sediment transport processes on the lobe produces trains of blocks that are several metres in diameter and aligned parallel to the flow direction. ?? 2004 Elsevier B.V. All rights reserved.

  5. Evaluating habitat associations of a fish assemblage at multiple spatial scales in a minimally disturbed stream using low-cost remote sensing

    Science.gov (United States)

    Cheek, Brandon D.; Grabowski, Timothy B.; Bean, Preston T.; Groeschel, Jillian R.; Magnelia, Stephan J.

    2016-01-01

    Habitat heterogeneity at multiple scales is a major factor affecting fish assemblage structure. However, assessments that examine these relationships at multiple scales concurrently are lacking. The lack of assessments at these scales is a critical gap in understanding as conservation and restoration efforts typically work at these levels.A combination of low-cost side-scan sonar surveys, aerial imagery using an unmanned aerial vehicle, and fish collections were used to evaluate the relationship between physicochemical and landscape variables at various spatial scales (e.g. micro-mesohabitat, mesohabitat, channel unit, stream reach) and stream–fish assemblage structure and habitat associations in the South Llano River, a spring-fed second-order stream on the Edwards Plateau in central Texas during 2012–2013.Low-cost side-scan sonar surveys have not typically been used to generate data for riverscape assessments of assemblage structure, thus the secondary objective was to assess the efficacy of this approach.The finest spatial scale (micro-mesohabitat) and the intermediate scale (channel unit) had the greatest explanatory power for variation in fish assemblage structure.Many of the fish endemic to the Edwards Plateau showed similar associations with physicochemical and landscape variables suggesting that conservation and restoration actions targeting a single endemic species may provide benefits to a large proportion of the endemic species in this system.Low-cost side-scan sonar proved to be a cost-effective means of acquiring information on the habitat availability of the entire river length and allowed the assessment of how a full suite of riverscape-level variables influenced local fish assemblage structure.

  6. A Volcanic Origin for Sinuous and Branching Channels on Mars: Evidence from Hawaiian Analogs

    Science.gov (United States)

    Bleacher, Jacob E.; deWet, Andrew; Garry, W. Brent; Zimbelman, James R.

    2012-01-01

    Observations of sinuous and branching channels on planets have long driven a debate about their origin, fluvial or volcanic processes. In some cases planetary conditions rule out fluvial activity (e.g. the Moon, Venus, Mercury). However, the geology of Mars leads to suggestions that liquid water existed on the surface in the past. As a result, some sinuous and branching channels on Mars are cited as evidence of fluvial erosion. Evidence for a fluvial history often focuses on channel morphologies that are unique from a typical lava channel, for instance, a lack of detectable flow margins and levees, islands and terraces. Although these features are typical, they are not necessarily diagnostic of a fluvial system. We conducted field studies in Hawaii to characterize similar features in lava flows to better define which characteristics might be diagnostic of fluvial or volcanic processes. Our martian example is a channel system that originates in the Ascraeus Mons SW rift zone from a fissure. The channel extends for approx.300 km to the SE/E. The proximal channel displays multiple branches, islands, terraces, and has no detectable levees or margins. We conducted field work on the 1859 and 1907 Mauna Loa flows, and the Pohue Bay flow. The 51-km-long 1859 Flow originates from a fissure and is an example of a paired a a and pahoehoe lava flow. We collected DGPS data across a 500 m long island. Here, the channel diverted around a pre-existing obstruction in the channel, building vertical walls up to 9 m in height above the current channel floor. The complicated emplacement history along this channel section, including an initial a a stage partially covered by pahoehoe overflows, resulted in an appearance of terraced channel walls, no levees and diffuse flow margins. The 1907 Mauna Loa flow extends > 20 km from the SW rift zone. The distal flow formed an a a channel. However the proximal flow field comprises a sheet that experienced drainage and sagging of the crust

  7. Food and habitat resource partitioning between three estuarine fish species on the Swedish west coast

    Science.gov (United States)

    Thorman, Staffan

    1983-12-01

    In 1978 the food and habitat resource partitioning of three small and common fish species, viz. Pomatoschistus microps (Krøyer), Gasterosteus aculeatus (L.) and Pungitius pungitius (L.) were studied in river Broälven estuary on the Swedish west coast (58°22'N, 11°29'E). The area was divided into three habitats, based on environmental features. In July, September, and October stomach contents and size distribution of each species present were analysed. In July there was high food and habitat overlap between the species. Interference interactions probably occurred between some size classes of P. microps and the other two species. P. pungitius was exposed to both intra- and interspecific interactions. In September the food and habitat overlaps between G. aculeatus and P. pungitius were high, while both had low food and habitat overlaps in relation to P. microps. Interactions between G. aculeatus and P. pungitius were probably influenced by more severe abiotic conditions in one habitat, which caused lower abundances there, and higher abundances in the other two habitats. In October no interactions were observed. These results indicate that competition for food at least temporarily determines the species distribution in a temperate estuary, and that estuarine fish populations are sometimes food limited.

  8. The Habitat Connection.

    Science.gov (United States)

    Naturescope, 1987

    1987-01-01

    Consists of activities which address the causes of habitat destruction and the effects of habitat loss on animals and plants. Identifies habitat loss as the major reason for the endangerment and extinction of plant and animal species. (ML)

  9. Microfluidic mixing in a Y-junction open channel

    Directory of Open Access Journals (Sweden)

    Jue Nee Tan

    2012-09-01

    Full Text Available In the laminar regimes typical of microfluidic systems’, mixing is governed by molecular diffusion; however this process is slow in nature. Consequently, passive or active methods are usually sought for effective mixing. In this work, open fluidic channels will be investigated; these channels are bounded on all but one face by an air/fluid interface. Firstly, it will be shown that flow in open channels can merge at a Y-junction in a stable manner; hence two fluids can be brought into contact with each other. Secondly, the mixing of these two fluids will be studied. At high flow rates (>300 μl/min mixing occurs at the junction without need for additional intervention, this mixing is far swifter than can be expected from molecular diffusion. At lower flow rates, intervention is required. A major motivation for open fluidic channels is the ability to interact with the surrounding air environment; this feature is used to effect the desired mixing. It is shown that by blowing an air jet across the junction, shear stresses at the air/fluid interface causes a flow profile within the fluid inductive to rapid mixing of the fluids.

  10. Habitats and Species Covered by the EEC Habitats Directive

    DEFF Research Database (Denmark)

    Pihl, S.; Søgaard, B.; Ejrnæs, R.

    of Conservation (SAC's), Natura 2000. The designations are based upon the presence of 60 of the natural habitat types listed in Annex I of the Directive and approx. 44 of the species listed in Annex II which occur within the territory of Denmark and for the conservation of which the Community has a special...... and the Danish county authorities have initiated a co-operative programme to provide and compile the data necessary to assess the conservation status of the natural habitat types and species concerned. The purpose of this report is to present the conservation status of the habitats and species in Denmark...

  11. Subject-based feature extraction by using fisher WPD-CSP in brain-computer interfaces.

    Science.gov (United States)

    Yang, Banghua; Li, Huarong; Wang, Qian; Zhang, Yunyuan

    2016-06-01

    Feature extraction of electroencephalogram (EEG) plays a vital role in brain-computer interfaces (BCIs). In recent years, common spatial pattern (CSP) has been proven to be an effective feature extraction method. However, the traditional CSP has disadvantages of requiring a lot of input channels and the lack of frequency information. In order to remedy the defects of CSP, wavelet packet decomposition (WPD) and CSP are combined to extract effective features. But WPD-CSP method considers less about extracting specific features that are fitted for the specific subject. So a subject-based feature extraction method using fisher WPD-CSP is proposed in this paper. The idea of proposed method is to adapt fisher WPD-CSP to each subject separately. It mainly includes the following six steps: (1) original EEG signals from all channels are decomposed into a series of sub-bands using WPD; (2) average power values of obtained sub-bands are computed; (3) the specified sub-bands with larger values of fisher distance according to average power are selected for that particular subject; (4) each selected sub-band is reconstructed to be regarded as a new EEG channel; (5) all new EEG channels are used as input of the CSP and a six-dimensional feature vector is obtained by the CSP. The subject-based feature extraction model is so formed; (6) the probabilistic neural network (PNN) is used as the classifier and the classification accuracy is obtained. Data from six subjects are processed by the subject-based fisher WPD-CSP, the non-subject-based fisher WPD-CSP and WPD-CSP, respectively. Compared with non-subject-based fisher WPD-CSP and WPD-CSP, the results show that the proposed method yields better performance (sensitivity: 88.7±0.9%, and specificity: 91±1%) and the classification accuracy from subject-based fisher WPD-CSP is increased by 6-12% and 14%, respectively. The proposed subject-based fisher WPD-CSP method can not only remedy disadvantages of CSP by WPD but also discriminate

  12. 78 FR 33282 - Endangered and Threatened Wildlife and Plants; Revision of Critical Habitat for Salt Creek Tiger...

    Science.gov (United States)

    2013-06-04

    ... negative impacts associated with sediment transport and freshwater dilution of salinity. Without adjacent... indefinitely (Harvey et al. 2007, p. 750). Subsurface geology, geomorphic features (including manmade features... management such as research, census, law enforcement, habitat acquisition and maintenance, propagation, live...

  13. Identifying Critical Habitat for Australian Freshwater Turtles in a Large Regulated Floodplain: Implications for Environmental Water Management

    Science.gov (United States)

    Ocock, J. F.; Bino, G.; Wassens, S.; Spencer, J.; Thomas, R. F.; Kingsford, R. T.

    2018-03-01

    Freshwater turtles face many threats, including habitat loss and river regulation reducing occupancy and contributing to population decline. Limited knowledge of hydrological conditions required to maintain viable turtle populations in large floodplain wetlands hinders effective adaptive management of environmental water in regulated rivers. We surveyed three turtle species over 4 years across the Lower Murrumbidgee River floodplain, a large wetland complex with a long history of water resource development. Using site and floodplain metrics and generalized linear models, within a Bayesian Model Averaging framework, we quantified the main drivers affecting turtle abundance. We also used a hierarchical modeling approach, requiring large sample sizes, quantifying possible environmental effects while accounting for detection probabilities of the eastern long-necked turtle ( Chelodina longicollis). The three species varied in their responses to hydrological conditions and connectivity to the main river channel. Broad-shelled turtles ( Chelodina expansa) and Macquarie River turtles ( Emydura macquarii macquarii) had restricted distributions, centered on frequently inundated wetlands close to the river, whereas the eastern long-necked turtles were more widely distributed, indicating an ability to exploit variable habitats. We conclude that turtle communities would benefit from long-term management strategies that maintain a spatiotemporal mosaic of hydrological conditions. More specifically, we identified characteristics of refuge habitats and stress the importance of maintaining their integrity during dry periods. Neighboring habitats can be targeted during increased water availability years to enhance feeding and dispersal opportunities for freshwater turtles.

  14. A test of the substitution-habitat hypothesis in amphibians.

    Science.gov (United States)

    Martínez-Abraín, Alejandro; Galán, Pedro

    2017-12-08

    Most examples that support the substitution-habitat hypothesis (human-made habitats act as substitutes of original habitat) deal with birds and mammals. We tested this hypothesis in 14 amphibians by using percentage occupancy as a proxy of habitat quality (i.e., higher occupancy percentages indicate higher quality). We classified water body types as original habitat (no or little human influence) depending on anatomical, behavioral, or physiological adaptations of each amphibian species. Ten species had relatively high probabilities (0.16-0.28) of occurrence in original habitat, moderate probability of occurrence in substitution habitats (0.11-0.14), and low probability of occurrence in refuge habitats (0.05-0.08). Thus, the substitution-habitat hypothesis only partially applies to amphibians because the low occupancy of refuges could be due to the negligible human persecution of this group (indicating good conservation status). However, low occupancy of refuges could also be due to low tolerance of refuge conditions, which could have led to selective extinction or colonization problems due to poor dispersal capabilities. That original habitats had the highest probabilities of occupancy suggests amphibians have a good conservation status in the region. They also appeared highly adaptable to anthropogenic substitution habitats. © 2017 Society for Conservation Biology.

  15. Mourning Dove nesting habitat and nest success in Central Missouri

    Science.gov (United States)

    Drobney, R.D.; Schulz, J.H.; Sheriff, S.L.; Fuemmeler, W.J.

    1998-01-01

    Previous Mourning Dove (Zenaida macroura) nesting studies conducted in areas containing a mixture of edge and continuous habitats have focused on edge habitats. Consequently, little is known about the potential contribution of continuous habitats to dove production. In this study we evaluated the relative importance of these two extensive habitat types by monitoring the habitat use and nest success of 59 radio-marked doves during 1990-1991 in central Missouri. Of 83 nests initiated by our marked sample, most (81.9%) were located in edge habitats. Although continuous habitats were selected less as nest sites, the proportion of successful nests did not differ significantly from that in edge habitats. Our data indicate that continuous habitats should not be considered marginal nesting habitat. If the intensity of use and nest success that we observed are representative regionally or nationally, continuous habitats could contribute substantially to annual Mourning Dove production because of the high availability of these habitats throughout much of the Mourning Dove breeding range.

  16. Using urban forest assessment tools to model bird habitat potential

    Science.gov (United States)

    Susannah B. Lerman; Keith H. Nislow; David J. Nowak; Stephen DeStefano; David I. King; D. Todd. Jones-Farrand

    2014-01-01

    The alteration of forest cover and the replacement of native vegetation with buildings, roads, exotic vegetation, and other urban features pose one of the greatest threats to global biodiversity. As more land becomes slated for urban development, identifying effective urban forest wildlife management tools becomes paramount to ensure the urban forest provides habitat...

  17. Two-dimensional physical habitat modeling of effects of habitat structures on urban stream restoration

    Directory of Open Access Journals (Sweden)

    Dongkyun Im

    2011-12-01

    Full Text Available River corridors, even if highly modified or degraded, still provide important habitats for numerous biological species, and carry high aesthetic and economic values. One of the keys to urban stream restoration is recovery and maintenance of ecological flows sufficient to sustain aquatic ecosystems. In this study, the Hongje Stream in the Seoul metropolitan area of Korea was selected for evaluating a physically-based habitat with and without habitat structures. The potential value of the aquatic habitat was evaluated by a weighted usable area (WUA using River2D, a two-dimensional hydraulic model. The habitat suitability for Zacco platypus in the Hongje Stream was simulated with and without habitat structures. The computed WUA values for the boulder, spur dike, and riffle increased by about 2%, 7%, and 131%, respectively, after their construction. Also, the three habitat structures, especially the riffle, can contribute to increasing hydraulic heterogeneity and enhancing habitat diversity.

  18. Dimensional feature weighting utilizing multiple kernel learning for single-channel talker location discrimination using the acoustic transfer function.

    Science.gov (United States)

    Takashima, Ryoichi; Takiguchi, Tetsuya; Ariki, Yasuo

    2013-02-01

    This paper presents a method for discriminating the location of the sound source (talker) using only a single microphone. In a previous work, the single-channel approach for discriminating the location of the sound source was discussed, where the acoustic transfer function from a user's position is estimated by using a hidden Markov model of clean speech in the cepstral domain. In this paper, each cepstral dimension of the acoustic transfer function is newly weighted, in order to obtain the cepstral dimensions having information that is useful for classifying the user's position. Then, this paper proposes a feature-weighting method for the cepstral parameter using multiple kernel learning, defining the base kernels for each cepstral dimension of the acoustic transfer function. The user's position is trained and classified by support vector machine. The effectiveness of this method has been confirmed by sound source (talker) localization experiments performed in different room environments.

  19. Habitat specialization in tropical continental shelf demersal fish assemblages.

    Directory of Open Access Journals (Sweden)

    Ben M Fitzpatrick

    Full Text Available The implications of shallow water impacts such as fishing and climate change on fish assemblages are generally considered in isolation from the distribution and abundance of these fish assemblages in adjacent deeper waters. We investigate the abundance and length of demersal fish assemblages across a section of tropical continental shelf at Ningaloo Reef, Western Australia, to identify fish and fish habitat relationships across steep gradients in depth and in different benthic habitat types. The assemblage composition of demersal fish were assessed from baited remote underwater stereo-video samples (n = 304 collected from 16 depth and habitat combinations. Samples were collected across a depth range poorly represented in the literature from the fringing reef lagoon (1-10 m depth, down the fore reef slope to the reef base (10-30 m depth then across the adjacent continental shelf (30-110 m depth. Multivariate analyses showed that there were distinctive fish assemblages and different sized fish were associated with each habitat/depth category. Species richness, MaxN and diversity declined with depth, while average length and trophic level increased. The assemblage structure, diversity, size and trophic structure of demersal fishes changes from shallow inshore habitats to deeper water habitats. More habitat specialists (unique species per habitat/depth category were associated with the reef slope and reef base than other habitats, but offshore sponge-dominated habitats and inshore coral-dominated reef also supported unique species. This suggests that marine protected areas in shallow coral-dominated reef habitats may not adequately protect those species whose depth distribution extends beyond shallow habitats, or other significant elements of demersal fish biodiversity. The ontogenetic habitat partitioning which is characteristic of many species, suggests that to maintain entire species life histories it is necessary to protect corridors of

  20. Origins of Sinuous and Braided Channels on Ascraeus Mons, Mars - A Keck Geology Consortium Undergraduate Research Project

    Science.gov (United States)

    de Wet, A. P.; Bleacher, J. E.; Garry, W. B.

    2012-01-01

    Water has clearly played an important part in the geological evolution of Mars. There are many features on Mars that were almost certainly formed by fluvial processes -- for example, the channels Kasei Valles and Ares Vallis in the Chryse Planitia area of Mars are almost certainly fluvial features. On the other hand, there are many channel features that are much more difficult to interpret -- and have been variously attributed to volcanic and fluvial processes. Clearly unraveling the details of the role of water on Mars is extremely important, especially in the context of the search of extinct or extant life. In this project we built on our recent work in determining the origin of one channel on the southwest rift apron of Ascraeus Mons. This project, funded by the Keck Geology Consortium and involving 4 undergraduate geology majors took advantage of the recently available datasets to map and analyze similar features on Ascraeus Mons and some other areas of Mars. A clearer understanding of how these particular channel features formed might lead to the development of better criteria to distinguish how other Martian channel features formed. Ultimately this might provide us with a better understanding of the role of volcanic and fluvial processes in the geological evolution of Mars.

  1. The influence of log jam development on channel morphology in an intermediate sized coastal stream, Carnation Creek, B.C.

    Science.gov (United States)

    Luzi, D. S.; Sidle, R. C.; Hogan, D. L.

    2006-12-01

    Large wood (LW) is an important functional and structural component of forest stream ecosystems, regulating sediment storage and transport, consequently determining channel morphology, and as an important foundation for aquatic habitat. LW occurs as either individual pieces or in accumulations (log jams). Where individual pieces of LW affect the stream at a small scale, several bankfull widths, jams influence the stream on a much larger scale. The spatial extent of jam related effects on channel morphology vary, dependent upon the life stage of the jam. Temporal changes in jams have received relatively little attention in the literature. The development stage of a jam is associated with upstream channel aggradation and downstream degradation; this process reverses during a jam's deterioration phase. Carnation Creek, an 11 km2 watershed located on the west coast of Vancouver Island, provided a rare opportunity to examine both the spatial and temporal impacts of log jams on channel morphology. An understanding of these relationships will be developed through the analysis of changes in channel variables, such as channel dimensions, pattern, hydraulic characteristics, and morphology. These characteristics will be extracted from annual cross sectional surveys taken during 1971 - 1998.

  2. Towards a resource-based habitat approach for spatial modelling of vector-borne disease risks.

    Science.gov (United States)

    Hartemink, Nienke; Vanwambeke, Sophie O; Purse, Bethan V; Gilbert, Marius; Van Dyck, Hans

    2015-11-01

    Given the veterinary and public health impact of vector-borne diseases, there is a clear need to assess the suitability of landscapes for the emergence and spread of these diseases. Current approaches for predicting disease risks neglect key features of the landscape as components of the functional habitat of vectors or hosts, and hence of the pathogen. Empirical-statistical methods do not explicitly incorporate biological mechanisms, whereas current mechanistic models are rarely spatially explicit; both methods ignore the way animals use the landscape (i.e. movement ecology). We argue that applying a functional concept for habitat, i.e. the resource-based habitat concept (RBHC), can solve these issues. The RBHC offers a framework to identify systematically the different ecological resources that are necessary for the completion of the transmission cycle and to relate these resources to (combinations of) landscape features and other environmental factors. The potential of the RBHC as a framework for identifying suitable habitats for vector-borne pathogens is explored and illustrated with the case of bluetongue virus, a midge-transmitted virus affecting ruminants. The concept facilitates the study of functional habitats of the interacting species (vectors as well as hosts) and provides new insight into spatial and temporal variation in transmission opportunities and exposure that ultimately determine disease risks. It may help to identify knowledge gaps and control options arising from changes in the spatial configuration of key resources across the landscape. The RBHC framework may act as a bridge between existing mechanistic and statistical modelling approaches. © 2014 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.

  3. Habitat Restoration as a Key Conservation Lever for Woodland Caribou: A review of restoration programs and key learnings from Alberta

    Directory of Open Access Journals (Sweden)

    Paula Bentham

    2015-12-01

    Full Text Available The Recovery Strategy for the Woodland Caribou (Rangifer tarandus caribou, Boreal Population in Canada (EC, 2012, identifies coordinated actions to reclaim woodland caribou habitat as a key step to meeting current and future caribou population objectives. Actions include restoring industrial landscape features such as roads, seismic lines, pipelines, cut-lines, and cleared areas in an effort to reduce landscape fragmentation and the changes in caribou population dynamics associated with changing predator-prey dynamics in highly fragmented landscapes. Reliance on habitat restoration as a recovery action within the federal recovery strategy is high, considering all Alberta populations have less than 65% undisturbed habitat, which is identified in the recovery strategy as a threshold providing a 60% chance that a local population will be self-sustaining. Alberta’s Provincial Woodland Caribou Policy also identifies habitat restoration as a critical component of long-term caribou habitat management. We review and discuss the history of caribou habitat restoration programs in Alberta and present outcomes and highlights of a caribou habitat restoration workshop attended by over 80 representatives from oil and gas, forestry, provincial and federal regulators, academia and consulting who have worked on restoration programs. Restoration initiatives in Alberta began in 2001 and have generally focused on construction methods, revegetation treatments, access control programs, and limiting plant species favourable to alternate prey. Specific treatments include tree planting initiatives, coarse woody debris management along linear features, and efforts for multi-company and multi-stakeholder coordinated habitat restoration on caribou range. Lessons learned from these programs have been incorporated into large scale habitat restoration projects near Grande Prairie, Cold Lake, and Fort McMurray. A key outcome of our review is the opportunity to provide a

  4. Voltage gating of mechanosensitive PIEZO channels.

    Science.gov (United States)

    Moroni, Mirko; Servin-Vences, M Rocio; Fleischer, Raluca; Sánchez-Carranza, Oscar; Lewin, Gary R

    2018-03-15

    Mechanosensitive PIEZO ion channels are evolutionarily conserved proteins whose presence is critical for normal physiology in multicellular organisms. Here we show that, in addition to mechanical stimuli, PIEZO channels are also powerfully modulated by voltage and can even switch to a purely voltage-gated mode. Mutations that cause human diseases, such as xerocytosis, profoundly shift voltage sensitivity of PIEZO1 channels toward the resting membrane potential and strongly promote voltage gating. Voltage modulation may be explained by the presence of an inactivation gate in the pore, the opening of which is promoted by outward permeation. Older invertebrate (fly) and vertebrate (fish) PIEZO proteins are also voltage sensitive, but voltage gating is a much more prominent feature of these older channels. We propose that the voltage sensitivity of PIEZO channels is a deep property co-opted to add a regulatory mechanism for PIEZO activation in widely different cellular contexts.

  5. Managing Environmental Flows for Impounded Rivers in Semi-Arid Regions- A Habitat Suitability Index (HSI) Approach for the Assessment of River Habitat for Salmonid Populations

    Science.gov (United States)

    Pai, H.; Sivakumaran, K.; Villamizar, S. R.; Flanagan, J.; Guo, Q.; Harmon, T. C.

    2013-12-01

    Balancing ecosystem health in water-scarce, agriculturally dominated river basins remains a challenge. In dry water years, maintaining conditions for restored and sustained indigenous fish populations (a frequently used indicator for ecosystem health) is particularly challenging. Competing human demands include urban and agricultural water supplies, hydropower, and flood control. In many semi-arid regions, increasing drought intensity and frequency under future climate scenarios will combine with population increases to water scarcity. The goal of this work is to better understand how reservoir releases affect fish habitat and overall river aquatic ecosystem quality. Models integrating a diverse array of physical and biological processes and system state are used to forecast the river ecosystem response to changing drivers. We propose a distributed parameter-based Habitat Suitability Index (HSI) approach for assessing fish habitat quality. Our river ecosystem HSI maps are based on a combination of the following: (1) In situ data describing stream flow and water quality conditions; (2) Spatial observations, including surveyed cross-sections, aerial imagery and digital elevation maps (DEM) of the river and its riparian corridor; and (3) Simulated spatially distributed water depths, flow velocities, and temperatures estimated from 1D and 2D river flow and temperature models (HEC-RAS and CE-QUAL-W2, respectively). With respect to (2), image processing schemes are used to classify and map key habitat features, namely riparian edge and shallow underwater vegetation. HSI maps can be modified temporally to address specific life cycle requirements of indicator fish species. Results are presented for several reaches associated with the San Joaquin River Restoration Project, focusing on several components of the Chinook salmon life cycle. HSI maps and interpretations are presented in the context of a range of prescribed reservoir release hydrographs linked to California water

  6. Pattern Classification Using an Olfactory Model with PCA Feature Selection in Electronic Noses: Study and Application

    Directory of Open Access Journals (Sweden)

    Junbao Zheng

    2012-03-01

    Full Text Available Biologically-inspired models and algorithms are considered as promising sensor array signal processing methods for electronic noses. Feature selection is one of the most important issues for developing robust pattern recognition models in machine learning. This paper describes an investigation into the classification performance of a bionic olfactory model with the increase of the dimensions of input feature vector (outer factor as well as its parallel channels (inner factor. The principal component analysis technique was applied for feature selection and dimension reduction. Two data sets of three classes of wine derived from different cultivars and five classes of green tea derived from five different provinces of China were used for experiments. In the former case the results showed that the average correct classification rate increased as more principal components were put in to feature vector. In the latter case the results showed that sufficient parallel channels should be reserved in the model to avoid pattern space crowding. We concluded that 6~8 channels of the model with principal component feature vector values of at least 90% cumulative variance is adequate for a classification task of 3~5 pattern classes considering the trade-off between time consumption and classification rate.

  7. The areal extent of brown shrimp habitat suitability in Mobile Bay, Alabama, USA: Targeting vegetated habitat restoration

    Science.gov (United States)

    Smith, L.M.; Nestlerode, J.A.; Harwell, L.C.; Bourgeois, P.

    2010-01-01

    The availability of wetlands and shallow water habitats significantly influences Gulf of Mexico (GOM) penaeid shrimp fishery productivity. However, the GOM region has the highest rate of wetland loss in the USA. Protection and management of these vital GOM habitats are critical to sustainable shrimp fisheries. Brown shrimp (Farfantepenaeus aztecus) are a major component of GOM fisheries. We present an approach for estimating the areal extent of suitable habitat for post-larval and juvenile brown shrimp in Mobile Bay, Alabama, using an existing habitat suitability index model for the northern GOM calculated from probabilistic survey of water quality and sediment data, land cover data, and submerged aquatic vegetation coverages. This estuarine scale approach is intended to support targeted protection and restoration of these habitats. These analyses indicate that approximately 60% of the area of Mobile Bay is categorized as suitable to near optimal for post-larval and juvenile shrimp and 38% of the area is marginally to minimally suitable. We identify potential units within Mobile Bay for targeted restoration to improve habitat suitability. ?? 2010 Springer Science+Business Media B.V.

  8. A Tool for the Automated Design and Evaluation of Habitat Interior Layouts

    Science.gov (United States)

    Simon, Matthew A.; Wilhite, Alan W.

    2013-01-01

    The objective of space habitat design is to minimize mass and system size while providing adequate space for all necessary equipment and a functional layout that supports crew health and productivity. Unfortunately, development and evaluation of interior layouts is often ignored during conceptual design because of the subjectivity and long times required using current evaluation methods (e.g., human-in-the-loop mockup tests and in-depth CAD evaluations). Early, more objective assessment could prevent expensive design changes that may increase vehicle mass and compromise functionality. This paper describes a new interior design evaluation method to enable early, structured consideration of habitat interior layouts. This interior layout evaluation method features a comprehensive list of quantifiable habitat layout evaluation criteria, automatic methods to measure these criteria from a geometry model, and application of systems engineering tools and numerical methods to construct a multi-objective value function measuring the overall habitat layout performance. In addition to a detailed description of this method, a C++/OpenGL software tool which has been developed to implement this method is also discussed. This tool leverages geometry modeling coupled with collision detection techniques to identify favorable layouts subject to multiple constraints and objectives (e.g., minimize mass, maximize contiguous habitable volume, maximize task performance, and minimize crew safety risks). Finally, a few habitat layout evaluation examples are described to demonstrate the effectiveness of this method and tool to influence habitat design.

  9. Prisoners in their habitat? Generalist dispersal by habitat specialists: a case study in southern water vole (Arvicola sapidus.

    Directory of Open Access Journals (Sweden)

    Alejandro Centeno-Cuadros

    Full Text Available Habitat specialists inhabiting scarce and scattered habitat patches pose interesting questions related to dispersal such as how specialized terrestrial mammals do to colonize distant patches crossing hostile matrices. We assess dispersal patterns of the southern water vole (Arvicola sapidus, a habitat specialist whose habitat patches are distributed through less than 2% of the study area (overall 600 km² and whose populations form a dynamic metapopulational network. We predict that individuals will require a high ability to move through the inhospitable matrix in order to avoid genetic and demographic isolations. Genotypes (N = 142 for 10 microsatellites and sequences of the whole mitochondrial Control Region (N = 47 from seven localities revealed a weak but significant genetic structure partially explained by geographic distance. None of the landscape models had a significant effect on genetic structure over that of the Euclidean distance alone and no evidence for efficient barriers to dispersal was found. Contemporary gene flow was not severely limited for A. sapidus as shown by high migration rates estimates (>10% between non-neighbouring areas. Sex-biased dispersal tests did not support differences in dispersal rates, as shown by similar average axial parent-offspring distances, in close agreement with capture-mark-recapture estimates. As predicted, our results do not support any preferences of the species for specific landscape attributes on their dispersal pathways. Here, we combine field and molecular data to illustrate how a habitat specialist mammal might disperse like a habitat generalist, acquiring specific long-distance dispersal strategies as an adaptation to patchy, naturally fragmented, heterogeneous and unstable habitats.

  10. Cover of tall trees best predicts California spotted owl habitat

    Science.gov (United States)

    Malcolm P. North; Jonathan T. Kane; Van R. Kane; Gregory P. Asner; William Berigan; Derek J. Churchill; Scott Conway; R.J. Gutiérrez; Sean Jeronimo; John Keane; Alexander Koltunov; Tina Mark; Monika Moskal; Thomas Munton; Zachary Peery; Carlos Ramirez; Rahel Sollmann; Angela White; Sheila Whitmore

    2017-01-01

    Restoration of western dry forests in the USA often focuses on reducing fuel loads. In the range of the spotted owl, these treatments may reduce canopy cover and tree density, which could reduce preferred habitat conditions for the owl and other sensitive species. In particular, high canopy cover (≥70%) has been widely reported to be an important feature of spotted owl...

  11. Models of regional habitat quality and connectivity for pumas (Puma concolor) in the southwestern United States.

    Science.gov (United States)

    Dickson, Brett G; Roemer, Gary W; McRae, Brad H; Rundall, Jill M

    2013-01-01

    The impact of landscape changes on the quality and connectivity of habitats for multiple wildlife species is of global conservation concern. In the southwestern United States, pumas (Puma concolor) are a well distributed and wide-ranging large carnivore that are sensitive to loss of habitat and to the disruption of pathways that connect their populations. We used an expert-based approach to define and derive variables hypothesized to influence the quality, location, and permeability of habitat for pumas within an area encompassing the entire states of Arizona and New Mexico. Survey results indicated that the presence of woodland and forest cover types, rugged terrain, and canyon bottom and ridgeline topography were expected to be important predictors of both high quality habitat and heightened permeability. As road density, distance to water, or human population density increased, the quality and permeability of habitats were predicted to decline. Using these results, we identified 67 high quality patches across the study area, and applied concepts from electronic circuit theory to estimate regional patterns of connectivity among these patches. Maps of current flow among individual pairs of patches highlighted possible pinch points along two major interstate highways. Current flow summed across all pairs of patches highlighted areas important for keeping the entire network connected, regardless of patch size. Cumulative current flow was highest in Arizona north of the Colorado River and around Grand Canyon National Park, and in the Sky Islands region owing to the many small habitat patches present. Our outputs present a first approximation of habitat quality and connectivity for dispersing pumas in the southwestern United States. Map results can be used to help target finer-scaled analyses in support of planning efforts concerned with the maintenance of puma metapopulation structure, as well as the protection of landscape features that facilitate the dispersal

  12. Models of regional habitat quality and connectivity for pumas (Puma concolor in the southwestern United States.

    Directory of Open Access Journals (Sweden)

    Brett G Dickson

    Full Text Available The impact of landscape changes on the quality and connectivity of habitats for multiple wildlife species is of global conservation concern. In the southwestern United States, pumas (Puma concolor are a well distributed and wide-ranging large carnivore that are sensitive to loss of habitat and to the disruption of pathways that connect their populations. We used an expert-based approach to define and derive variables hypothesized to influence the quality, location, and permeability of habitat for pumas within an area encompassing the entire states of Arizona and New Mexico. Survey results indicated that the presence of woodland and forest cover types, rugged terrain, and canyon bottom and ridgeline topography were expected to be important predictors of both high quality habitat and heightened permeability. As road density, distance to water, or human population density increased, the quality and permeability of habitats were predicted to decline. Using these results, we identified 67 high quality patches across the study area, and applied concepts from electronic circuit theory to estimate regional patterns of connectivity among these patches. Maps of current flow among individual pairs of patches highlighted possible pinch points along two major interstate highways. Current flow summed across all pairs of patches highlighted areas important for keeping the entire network connected, regardless of patch size. Cumulative current flow was highest in Arizona north of the Colorado River and around Grand Canyon National Park, and in the Sky Islands region owing to the many small habitat patches present. Our outputs present a first approximation of habitat quality and connectivity for dispersing pumas in the southwestern United States. Map results can be used to help target finer-scaled analyses in support of planning efforts concerned with the maintenance of puma metapopulation structure, as well as the protection of landscape features that facilitate

  13. Hand Motion Classification Using a Multi-Channel Surface Electromyography Sensor

    Directory of Open Access Journals (Sweden)

    Dong Sun

    2012-01-01

    Full Text Available The human hand has multiple degrees of freedom (DOF for achieving high-dexterity motions. Identifying and replicating human hand motions are necessary to perform precise and delicate operations in many applications, such as haptic applications. Surface electromyography (sEMG sensors are a low-cost method for identifying hand motions, in addition to the conventional methods that use data gloves and vision detection. The identification of multiple hand motions is challenging because the error rate typically increases significantly with the addition of more hand motions. Thus, the current study proposes two new methods for feature extraction to solve the problem above. The first method is the extraction of the energy ratio features in the time-domain, which are robust and invariant to motion forces and speeds for the same gesture. The second method is the extraction of the concordance correlation features that describe the relationship between every two channels of the multi-channel sEMG sensor system. The concordance correlation features of a multi-channel sEMG sensor system were shown to provide a vast amount of useful information for identification. Furthermore, a new cascaded-structure classifier is also proposed, in which 11 types of hand gestures can be identified accurately using the newly defined features. Experimental results show that the success rate for the identification of the 11 gestures is significantly high.

  14. Hand motion classification using a multi-channel surface electromyography sensor.

    Science.gov (United States)

    Tang, Xueyan; Liu, Yunhui; Lv, Congyi; Sun, Dong

    2012-01-01

    The human hand has multiple degrees of freedom (DOF) for achieving high-dexterity motions. Identifying and replicating human hand motions are necessary to perform precise and delicate operations in many applications, such as haptic applications. Surface electromyography (sEMG) sensors are a low-cost method for identifying hand motions, in addition to the conventional methods that use data gloves and vision detection. The identification of multiple hand motions is challenging because the error rate typically increases significantly with the addition of more hand motions. Thus, the current study proposes two new methods for feature extraction to solve the problem above. The first method is the extraction of the energy ratio features in the time-domain, which are robust and invariant to motion forces and speeds for the same gesture. The second method is the extraction of the concordance correlation features that describe the relationship between every two channels of the multi-channel sEMG sensor system. The concordance correlation features of a multi-channel sEMG sensor system were shown to provide a vast amount of useful information for identification. Furthermore, a new cascaded-structure classifier is also proposed, in which 11 types of hand gestures can be identified accurately using the newly defined features. Experimental results show that the success rate for the identification of the 11 gestures is significantly high.

  15. Flow Management to Control Excessive Growth of Macrophytes – An Assessment Based on Habitat Suitability Modeling

    Science.gov (United States)

    Ochs, Konstantin; Rivaes, Rui P.; Ferreira, Teresa; Egger, Gregory

    2018-01-01

    Mediterranean rivers in intensive agricultural watersheds usually display outgrowths of macrophytes – notably alien species – due to a combination of high concentrations of nutrients in the water runoff and low flows resulting from water abstraction for irrigation. Standard mechanical and chemical control is used to mitigate the problems associated with excessive growth of plant biomass: mainly less drainage capacity and higher flood risk. However, such control measures are cost and labor-intensive and do not present long-term efficiency. Although the high sensitivity of aquatic vegetation to instream hydraulic conditions is well known, management approaches based on flow management remain relatively unexplored. The aim of our study was therefore to apply physical habitat simulation techniques promoted by the Instream Flow Incremental Method (IFIM) to aquatic macrophytes – the first time it has been applied in this context – in order to model shifts in habitat suitability under different flow scenarios in the Sorraia river in central Portugal. We used this approach to test whether the risk of invasion and channel encroachment by nuisance species can be controlled by setting minimum annual flows. We used 960 randomly distributed survey points to analyze the habitat suitability for the most important aquatic species (including the invasive Brazilian milfoil Myriophyllum aquaticum, Sparganium erectum, and Potamogeton crispus) in regard to the physical parameters ‘flow velocity,’ ‘water depth,’ and ‘substrate size’. We chose the lowest discharge period of the year in order to assess the hydraulic conditions while disturbances were at a low-point, thus allowing aquatic vegetation establishment and subsistence. We then used the two-dimensional hydraulic River2D software to model the potential habitat availability for different flow conditions based on the site-specific habitat suitability index for each physical parameter and species. Our results show

  16. NESTING HABITAT OF THE ‘CUPISO’ Podocnemis sextuberculata (TESTUDINES: PODOCNEMIDIDAE IN EREPECU LAKE (PARÁ-BRAZIL

    Directory of Open Access Journals (Sweden)

    Ana Lucia Bermúdez Romero

    2015-05-01

    Full Text Available The objective of this study was to identify and describe the nesting habitat of Podocnemis sextuberculata at Erepecu Lake, Trombetas River Biological Reserve, (REBIO-Trombetas; Pará-Brazil. Initially, the main features of the beaches that potentially determine the habitat selection by cupiso for nesting were described. The nests observed on the beaches were recorded, marked and fenced as protection from natural predators. Information regarding date and location was analyzed with simple linear regression for each nest in order to determine relationships between beach features and number of nests. The results showed a positive co-relationship between number of nests and area. Nest site selection by P. sextuberculata in the beaches of the Erepecu Lake could depend on trade-off scenarios among natural threats and a suitable nesting habitat. We also suggest that, due to the high annual hydrologic oscillations on the beaches, it is possible that the driving factor for habitat selection would be the risks that the species is exposed to at the time of the search for a nesting site, rather than seeking a particular habitat type.    RESUMEN El objetivo del estudio fue identificar y explicar la influencia del hábitat sobre los nidos de la tortuga “cupiso” (Podocnemis sextuberculata Cornalia, 1849, en el lago Erepecu ubicado en la Reserva Biológica del Río Trombetas (REBIO-Trombetas; Pará-Brasil. Inicialmente se describieron las principales características de las playas escogidas, los nidos encontrados fueron marcados y cercados para su protección contra la depredación natural. A través de regresiones lineales simples se determinó que el número de nidos por playa se correlacionó significativamente con el “área” de las playas.  Los resultados muestran que la selección del lugar de nidificación en las playas del lago Erepecu por P. sextuberculata, podría depender en unos escenarios de compensación entre las amenazas naturales y un

  17. When small changes matter: the role of cross-scale interactions between habitat and ecological connectivity in recovery.

    Science.gov (United States)

    Thrush, Simon F; Hewitt, Judi E; Lohrer, Andrew M; Chiaroni, Luca D

    2013-01-01

    Interaction between the diversity of local communities and the degree of connectivity between them has the potential to influence local recovery rates and thus profoundly affect community dynamics in the face of the cumulative impacts that occur across regions. Although such complex interactions have been modeled, field experiments in natural ecosystems to investigate the importance of interactions between local and regional processes are rare, especially so in coastal marine seafloor habitats subjected to many types of disturbance. We conducted a defaunation experiment at eight subtidal sites, incorporating manipulation of habitat structure, to test the relative importance of local habitat features and colonist supply in influencing macrobenthic community recovery rate. Our sites varied in community composition, habitat characteristics, and hydrodynamic conditions, and we conducted the experiment in two phases, exposing defaunated plots to colonists during periods of either high or low larval colonist supply. In both phases of the experiment, five months after disturbance, we were able to develop models that explained a large proportion of variation in community recovery rate between sites. Our results emphasize that the connectivity to the regional species pool influences recovery rate, and although local habitat effects were important, the strength of these effects was affected by broader-scale site characteristics and connectivity. Empirical evidence that cross-scale interactions are important in disturbance-recovery dynamics emphasizes the complex dynamics underlying seafloor community responses to cumulative disturbance.

  18. Examination of High Resolution Channel Topography to Determine Suitable Metrics to Characterize Morphological Complexity

    Science.gov (United States)

    Stewart, R. L.; Gaeuman, D.

    2015-12-01

    Complex bed morphology is deemed necessary to restore salmonid habitats, yet quantifiable metrics that capture channel complexity have remained elusive. This work utilizes high resolution topographic data from the 40 miles of the Trinity River of northern California to determine a suitable metric for characterizing morphological complexity at the reach scale. The study area is segregated into reaches defined by individual riffle pool units or aggregates of several consecutive units. Potential measures of complexity include rugosity and depth statistics such as standard deviation and interquartile range, yet previous research has shown these metrics are scale dependent and subject to sampling density-based bias. The effect of sampling density on the present analysis has been reduced by underrepresenting the high resolution topographic data as a 3'x 3' raster so that all areas are equally sampled. Standard rugosity, defined as the three-dimensional surface area divided by projected area, has been shown to be dependent on average depth. We therefore define R*, a empirically depth-corrected rugosity metric in which rugosity is corrected using an empirical relationship based on linear regression between the standard rugosity metric and average depth. By removing the dependence on depth using a regression based on the study reach, R* provides a measure reach scale complexity relative to the entire study area. The interquartile range of depths is also depth-dependent, so we defined a non-dimensional metric (IQR*) as the interquartile range dividing by median depth. These are calculated to develop rankings of channel complexity which, are found to closely agree with perceived channel complexity observed in the field. Current efforts combine these measures of morphological complexity with salmonid habitat suitability to evaluate the effects of channel complexity on the various life stages of salmonids. Future work will investigate the downstream sequencing of channel

  19. WHITE-CLAWED CRAYFISH IN MUDDY HABITATS: MONITORING THE POPULATION IN THE RIVER IVEL, BEDFORDSHIRE, UK

    Directory of Open Access Journals (Sweden)

    PEAY S.

    2006-01-01

    Full Text Available White-clawed crayfish Austropotamobius pallipes are usually associated with stony substrates, tree roots, or refuges in submerged banks. The River Ivel has the last known population of white-clawed crayfish in Bedfordshire. Prior to 2005, much of the bed comprised uniform silt, plus leaf-litter. Stands of reedmace Typha latifolia and other emergent vegetation were localised in less shaded areas. Initial survey results suggested a population at low abundance. A low-cost monitoring strategy was started in 2001 and continued three times a year to 2005, using engineering bricks, which offer artificial refuges. Crayfish are counted when bricks are lifted periodically. De-silting of c. 430 m river was carried out in February 2005, to improve habitat and to maintain the flood capacity in the channel upstream of a mill weir. Additional bricks were deployed a few weeks in advance of de-silting, then bricks and crayfish were lifted prior to dredging and were returned the next day. Starting upstream, soft, wet mud was dredged out, placed on the bank and searched manually for crayfish. Banks, tree roots and shallow margins were left undisturbed. In all, 4,142 crayfish were found in dredgings from a 430 m length of the mid channel. Crayfish were strongly associated with emergent vegetation, but many were present below the surface of the silt. Crayfish released in the dredged channel immediately burrowed into the silt retained on the channel margins. Monitoring after dredging showed no change in abundance in the main area with in-bank refuges and lots of bricks, but there was an increase in occupancy of bricks in an area where most crayfish had been in emergent vegetation.

  20. Habits and Habitats of Fishes in the Upper Mississippi River

    Science.gov (United States)

    Norwick, R.; Janvrin, J.; Zigler, S.; Kratt, R.

    2011-01-01

    The Upper Mississippi River consists of 26 navigation pools that provide abundant habitat for a host of natural resources, such as fish, migratory waterfowl, non-game birds, deer, beaver, muskrats, snakes, reptiles, frogs, toads, salamanders, and many others. Of all the many different types of animals that depend on the river, fish are the most diverse with over 140 different species. The sport fishery is very diverse with at least 25 species commonly harvested. Fish species, such as walleyes, largemouth bass, bluegills, and crappies are favorites of sport anglers. Others such as common carp, buffalos, and channel catfish, are harvested by commercial anglers and end up on the tables of families all over the country. Still other fishes are important because they provide food for sport or commercial species. The fishery resources in these waters contribute millions of dollars to the economy annually. Overall, the estimate impact of anglers and other recreational users exceeds $1.2 billion on the Upper Mississippi River. The fisheries in the various reaches of the river of often are adversely affected by pollution, urbanization, non-native fishes, navigation, recreational boating, fishing, dredging, and siltation. However, state and federal agencies expend considerable effort and resources to manage fisheries and restore river habitats. This pamphlet was prepared to help you better understand what fishery resources exist, what the requirements of each pecies are, and how man-induced changes that are roposed or might occur could affect them.

  1. Channel systems and lobe construction in the Mississippi Fan

    Science.gov (United States)

    Garrison, L. E.; Kenyon, Neil H.; Bouma, A.H.

    1982-01-01

    Morphological features on the Mississippi Fan in the eastern Gulf of Mexico were mapped using GLORIA II, a long-range side-scan sonar system. Prominent is a sinuous channel flanked by well-developed levees and occasional crevasse splays. The channel follows the axis and thickest part of the youngest fan lobe; seismic-reflection profiles offer evidence that its course has remained essentially constant throughout lobe development. Local modification and possible erosion of levees by currents indicates a present state of inactivity. Superficial sliding has affected part of the fan lobe, but does not appear to have been a factor in lobe construction. ?? 1982 A. M. Dowden, Inc.

  2. Distribution and Habitat Associations of California Black Rail (Laterallus jamaicensis cortuniculus in the Sacramento–San Joaquin Delta

    Directory of Open Access Journals (Sweden)

    Danika C. Tsao

    2015-12-01

    Full Text Available doi: http://dx.doi.org/10.15447/sfews.2015v13iss4art4Past studies documenting the distribution and status of state “Threatened" California black rail (Laterallus jamaicensis coturniculus; hereafter black rail have largely omitted the Sacramento—San Joaquin Delta (hereafter Delta. During March to May of 2009–2011, we conducted call–playback surveys to assess the status of the species within a wide range of wetland habitats of the central Delta region. We detected black rails at 21 of 107 discrete wetland sites, primarily on in-channel islands with dense cover. To better understand the habitat and land cover characteristics, we developed a model of habitat suitability from these occurrence data and a fine-scale vegetation and land use dataset using MaxEnt. We also evaluated differences in the size of wetlands at sites where black rails were detected versus where they were not. Through surveys and quantitative modeling, we found black rail presence differed from other regions within California and Arizona, in that it was positively associated with tall (1 to 5 m emergent vegetation interspersed with riparian shrubs. Specific plants correlated with black rail presence included emergent wetland (Bolboschoenus acutus, B. californicus, B. acutus, Typha angustifolia, T. latifolia, Phragmites australis and riparian (Salix exigua, S. lasiolepis, Rosa californica, Rubus discolor, Cornus sericea species. Median patch size was significantly larger and perimeter-to-area ratios were significantly lower at wetland sites where black rails were found. These results provide a preliminary characterization of black rail habitat in the Delta region and highlight the need for better understanding of this listed species’ population size and habitat use in the region, in light of anticipated climate change effects and proposed large-scale restoration in the Delta.

  3. Data Collection and Simulation of Ecological Habitat and Recreational Habitat in the Shenandoah River, Virginia

    Science.gov (United States)

    Krstolic, Jennifer L.

    2015-01-01

    This report presents updates to methods, describes additional data collected, documents modeling results, and discusses implications from an updated habitat-flow model that can be used to predict ecological habitat for fish and recreational habitat for canoeing on the main stem Shenandoah River in Virginia. Given a 76-percent increase in population predictions for 2040 over 1995 records, increased water-withdrawal scenarios were evaluated to determine the effects on habitat and recreation in the Shenandoah River. Projected water demands for 2040 vary by watershed: the North Fork Shenandoah River shows a 55.9-percent increase, the South Fork Shenandoah River shows a 46.5-percent increase, and the main stem Shenandoah River shows a 52-percent increase; most localities are projected to approach the total permitted surface-water and groundwater withdrawals values by 2040, and a few localities are projected to exceed these values.

  4. Formation of brine channels in sea ice.

    Science.gov (United States)

    Morawetz, Klaus; Thoms, Silke; Kutschan, Bernd

    2017-03-01

    Liquid salty micro-channels (brine) between growing ice platelets in sea ice are an important habitat for CO 2 -binding microalgaea with great impact on polar ecosystems. The structure formation of ice platelets is microscopically described and a phase field model is developed. The pattern formation during solidification of the two-dimensional interstitial liquid is considered by two coupled order parameters, the tetrahedricity as structure of ice and the salinity. The coupling and time evolution of these order parameters are described by a consistent set of three model parameters. They determine the velocity of the freezing process and the structure formation, the phase diagram, the super-cooling and super-heating region, and the specific heat. The model is used to calculate the short-time frozen micro-structures. The obtained morphological structure is compared with the vertical brine pore space obtained from X-ray computed tomography.

  5. Ecology of Juvenile Salmonids in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2007 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Sobocinski, Kathryn; Johnson, Gary; Sather, Nichole [Pacific Northwest National Laboratory

    2008-03-17

    ) Determine fish community characteristics, including species composition, abundance, and temporal and spatial distributions. (1c) Estimate the stock of origin for the yearling and subyearling Chinook salmon captured at the sampling sites using genetic analysis. (1d) Statistically assess the relationship between salmonid abundance and habitat parameters, including ancillary variables such as temperature and river stage. (2) Acoustic Telemetry Monitoring-Assess feasibility of applying Juvenile Salmon Acoustic Telemetry System (JSATS) technology to determine migration characteristics from upriver of Bonneville Dam through the study area (vicinity of the Sandy River delta/Washougal River confluence). (2a) Determine species composition, release locations, and distributions of JSATS-tagged fish. (2b) Estimate run timing, residence times, and migration pathways for these fish. Additionally, both objectives serve the purpose of baseline research for a potential tidal rechannelization project on the Sandy River. The U.S. Forest Service, in partnership with the Bonneville Power Administration and the U.S. Army Corps of Engineers, is currently pursuing reconnection of the east (relict) Sandy River channel with the current channel to improve fish and wildlife habitat in the Sandy River delta. Our study design and the location of sampling sites in this reach provide baseline data to evaluate the potential restoration.

  6. European red list of habitats. Part 1: Marine habitats

    NARCIS (Netherlands)

    Gubbay, S.; Sanders, N.; Haynes, T.; Janssen, J.A.M.; Rodwell, J.R.; Nieto, A.; Garcia Criado, M.; Beal, S.; Borg, J.

    2016-01-01

    The European Red List of Habitats provides an overview of the risk
    of collapse (degree of endangerment) of marine, terrestrial and
    freshwater habitats in the European Union (EU28) and adjacent
    regions (EU28+), based on a consistent set of categories and
    criteria, and detailed data

  7. Mapping polar bear maternal denning habitat in the National Petroleum Reserve -- Alaska with an IfSAR digital terrain model

    Science.gov (United States)

    Durner, George M.; Simac, Kristin S.; Amstrup, Steven C.

    2013-01-01

    The National Petroleum Reserve–Alaska (NPR-A) in northeastern Alaska provides winter maternal denning habitat for polar bears (Ursus maritimus) and also has high potential for recoverable hydrocarbons. Denning polar bears exposed to human activities may abandon their dens before their young are able to survive the severity of Arctic winter weather. To ensure that wintertime petroleum activities do not threaten polar bears, managers need to know the distribution of landscape features in which maternal dens are likely to occur. Here, we present a map of potential denning habitat within the NPR-A. We used a fine-grain digital elevation model derived from Interferometric Synthetic Aperture Radar (IfSAR) to generate a map of putative denning habitat. We then tested the map’s ability to identify polar bear denning habitat on the landscape. Our final map correctly identified 82% of denning habitat estimated to be within the NPR-A. Mapped denning habitat comprised 19.7 km2 (0.1% of the study area) and was widely dispersed. Though mapping denning habitat with IfSAR data was as effective as mapping with the photogrammetric methods used for other regions of the Alaskan Arctic coastal plain, the use of GIS to analyze IfSAR data allowed greater objectivity and flexibility with less manual labor. Analytical advantages and performance equivalent to that of manual cartographic methods suggest that the use of IfSAR data to identify polar bear maternal denning habitat is a better management tool in the NPR-A and wherever such data may be available.

  8. Biological Membrane Ion Channels Dynamics, Structure, and Applications

    CERN Document Server

    Chung, Shin-Ho; Krishnamurthy, Vikram

    2007-01-01

    Ion channels are biological nanotubes that are formed by membrane proteins. Because ion channels regulate all electrical activities in living cells, understanding their mechanisms at a molecular level is a fundamental problem in biology. This book deals with recent breakthroughs in ion-channel research that have been brought about by the combined effort of experimental biophysicists and computational physicists, who together are beginning to unravel the story of these exquisitely designed biomolecules. With chapters by leading experts, the book is aimed at researchers in nanodevices and biosensors, as well as advanced undergraduate and graduate students in biology and the physical sciences. Key Features Presents the latest information on the molecular mechanisms of ion permeation through membrane ion channels Uses schematic diagrams to illustrate important concepts in biophysics Written by leading researchers in the area of ion channel investigations

  9. Habitat connectivity and fragmented nuthatch populations in agricultural landscapes

    OpenAIRE

    Langevelde, van, F.

    1999-01-01

    In agricultural landscapes, the habitat of many species is subject to fragmentation. When the habitat of a species is fragmented and the distances between patches of habitat are large relative to the movement distances of the species, it can be expected that the degree of habitat connectivity affects processes at population and individual level. In this thesis, I report on a study of effects of habitat fragmentation and opportunities to mitigate these effects by planning ecological n...

  10. Habitat connectivity and fragmented nuthatch populations in agricultural landscapes

    NARCIS (Netherlands)

    Langevelde, van F.

    1999-01-01

    In agricultural landscapes, the habitat of many species is subject to fragmentation. When the habitat of a species is fragmented and the distances between patches of habitat are large relative to the movement distances of the species, it can be expected that the degree of habitat

  11. Anomalous DIBL Effect in Fully Depleted SOI MOSFETs Using Nanoscale Gate-Recessed Channel Process

    Directory of Open Access Journals (Sweden)

    Avi Karsenty

    2015-01-01

    Full Text Available Nanoscale Gate-Recessed Channel (GRC Fully Depleted- (FD- SOI MOSFET device with a silicon channel thickness (tSi as low as 2.2 nm was first tested at room temperature for functionality check and then tested at low temperature (77 K for I-V characterizations. In spite of its FD-SOI nanoscale thickness and long channel feature, the device has surprisingly exhibited a Drain-Induced Barrier Lowering (DIBL effect at RT. However, this effect was suppressed at 77 K. If the apparition of such anomalous effect can be explained by a parasitic short channel transistor located at the edges of the channel, its suppression is explained by the decrease of the potential barrier between the drain and the channel when lowering the temperature.

  12. EU habitats of interest: an insight into Atlantic and Mediterranean beach and foredunes

    NARCIS (Netherlands)

    Feola, S.; Carranza, M.L.; Schaminee, J.H.J.; Acosta, A.T.R.; Janssen, J.A.M.

    2011-01-01

    Abstract We compared the Atlantic and Mediterranean beach and foredune habitats of European interest, focusing on floristic, structural and ecological features. We selected two representative sites of Atlantic (The Netherlands) and Mediterranean (Italy) coastal dunes. From a georeferenced vegetation

  13. Two-Dimensional (2-D) Acoustic Fish Tracking at River Mile 85, Sacramento River, California

    Science.gov (United States)

    2013-06-01

    on fish become known (USACE 2004). Levee repair and constructed habitat features included (1) protection of the toe and upper slopes of the bank...be recovered rather than being lost due to sediment dunes , large woody material floating downstream, and vandalism. The RM 85 site was a relatively...into the river channel. The addition of this material narrowed the channel and created a scour feature along the toe of the repair site. VPS array

  14. Activity, habitat use, feeding behavior, and diet of four sympatric species of Serranidae (Actinopterygii: Perciformes in southeastern Brazil

    Directory of Open Access Journals (Sweden)

    Fernando Zaniolo Gibran

    Full Text Available Diplectrum formosum (the sand perch, Diplectrum radiale (the aquavina, Epinephelus marginatus (the dusky grouper and Mycteroperca acutirostris (the comb grouper are four sympatric serranid of remarkable ecological and commercial importance. This study investigated the feeding of these four species in the São Sebastião Channel, São Paulo State (southeastern Brazil, comparing their diet, habitat utilization and morphological features related to foraging. These four serranids are opportunistic visual predators that use a total of nine different tactics to capture their preys, feed mostly on crustaceans during the day and twilight, and keep stationary and quiescent at night. The ecomorphological study was conducted to test its predictive value to infer lifestyles. It was verified that such analysis should be used carefully and must be complemented by field observations. Although morphologically and behaviorally very similar, D. formosum and D. radiale showed different preferences to the substratum type used by large individuals, which are exclusively sit-and-wait predators. On the other hand, E. marginatus displayed more sedentary habits than M. acutirostris, the most versatile predator from the studied species. The studied species of Diplectrum and E. marginatus can be regarded as benthic serranids, while M. acutirostris could be viewed as a nektobenthic species.

  15. Physical habitat predictors of Manayunkia speciosa distribution in the Klamath River and implications for management of Ceratomyxa shasta, a parasite with a complex life cycle

    Science.gov (United States)

    Jordan, M. S.; Alexander, J. D.; Grant, G. E.; Bartholomew, J. L.

    2011-12-01

    Management strategies for parasites with complex life cycles may target not the parasite itself, but one of the alternate hosts. One approach is to decrease habitat for the alternate host, and in river systems flow manipulations may be employed. Two-dimensional hydraulic models can be powerful tools for predicting the relationship between flow alterations and changes in physical habit, however they require a rigorous definition of physical habitat for the organism of interest. We present habitat characterization data for the case of the alternate host of a salmonid parasite and introduce how it will be used in conjunction with a 2-dimensional hydraulic model. Ceratomyxa shasta is a myxozoan parasite of salmonids that requires a freshwater polychaete Manayunkia speciosa to complete its life cycle. Manayunkia speciosa is a small (3mm) benthic filter-feeding worm that attaches itself perpendicularly to substrate through construction of a flexible tube. In the Klamath River, CA/OR, C. shasta causes significant juvenile salmon mortality, imposing social and economic losses on commercial, sport and tribal fisheries. An interest in manipulating habitat for the polychaete host to decrease the abundance of C. shasta has therefore developed. Unfortunately, there are limited data on the habitat requirements of M. speciosa or the influence of streamflow regime and hydraulics on population dynamics and infection prevalence. This work aims to address these data needs by identifying physical habitat variables that influence the distribution of M. speciosa and determining the relationship between those variables, M. speciosa population density, and C. shasta infection prevalence. Biological samples were collected from nine sites representing three river features (runs, pools, and eddies) within the Klamath River during the summer and fall of 2010 and 2011. Environmental data including depth, velocity, and substrate, were collected at each polychaete sampling location. We tested

  16. Functional diversity of potassium channel voltage-sensing domains.

    Science.gov (United States)

    Islas, León D

    2016-01-01

    Voltage-gated potassium channels or Kv's are membrane proteins with fundamental physiological roles. They are composed of 2 main functional protein domains, the pore domain, which regulates ion permeation, and the voltage-sensing domain, which is in charge of sensing voltage and undergoing a conformational change that is later transduced into pore opening. The voltage-sensing domain or VSD is a highly conserved structural motif found in all voltage-gated ion channels and can also exist as an independent feature, giving rise to voltage sensitive enzymes and also sustaining proton fluxes in proton-permeable channels. In spite of the structural conservation of VSDs in potassium channels, there are several differences in the details of VSD function found across variants of Kvs. These differences are mainly reflected in variations in the electrostatic energy needed to open different potassium channels. In turn, the differences in detailed VSD functioning among voltage-gated potassium channels might have physiological consequences that have not been explored and which might reflect evolutionary adaptations to the different roles played by Kv channels in cell physiology.

  17. Exploration of the Canyon-Incised Continental Margin of the Northeastern United States Reveals Dynamic Habitats and Diverse Communities.

    Directory of Open Access Journals (Sweden)

    Andrea M Quattrini

    Full Text Available The continental margin off the northeastern United States (NEUS contains numerous, topographically complex features that increase habitat heterogeneity across the region. However, the majority of these rugged features have never been surveyed, particularly using direct observations. During summer 2013, 31 Remotely-Operated Vehicle (ROV dives were conducted from 494 to 3271 m depth across a variety of seafloor features to document communities and to infer geological processes that produced such features. The ROV surveyed six broad-scale habitat features, consisting of shelf-breaching canyons, slope-sourced canyons, inter-canyon areas, open-slope/landslide-scar areas, hydrocarbon seeps, and Mytilus Seamount. Four previously unknown chemosynthetic communities dominated by Bathymodiolus mussels were documented. Seafloor methane hydrate was observed at two seep sites. Multivariate analyses indicated that depth and broad-scale habitat significantly influenced megafaunal coral (58 taxa, demersal fish (69 taxa, and decapod crustacean (34 taxa assemblages. Species richness of fishes and crustaceans significantly declined with depth, while there was no relationship between coral richness and depth. Turnover in assemblage structure occurred on the middle to lower slope at the approximate boundaries of water masses found previously in the region. Coral species richness was also an important variable explaining variation in fish and crustacean assemblages. Coral diversity may serve as an indicator of habitat suitability and variation in available niche diversity for these taxonomic groups. Our surveys added 24 putative coral species and three fishes to the known regional fauna, including the black coral Telopathes magna, the octocoral Metallogorgia melanotrichos and the fishes Gaidropsarus argentatus, Guttigadus latifrons, and Lepidion guentheri. Marine litter was observed on 81% of the dives, with at least 12 coral colonies entangled in debris. While

  18. Root proliferation in decaying roots and old root channels: A nutrient conservation mechanism in oligotrophic mangrove forests?

    Science.gov (United States)

    McKee, K.L.

    2001-01-01

    1. In oligotrophic habitats, proliferation of roots in nutrient-rich microsites may contribute to overall nutrient conservation by plants. Peat-based soils on mangrove islands in Belize are characterized by the presence of decaying roots and numerous old root channels (0.1-3.5 cm diameter) that become filled with living and highly branched roots of Rhizophora mangle and Avicennia germinans. The objectives of this study were to quantify the proliferation of roots in these microsites and to determine what causes this response. 2. Channels formed by the refractory remains of mangrove roots accounted for only 1-2% of total soil volume, but the proportion of roots found within channels varied from 9 to 24% of total live mass. Successive generations of roots growing inside increasingly smaller root channels were also found. 3. When artificial channels constructed of PVC pipe were buried in the peat for 2 years, those filled with nutrient-rich organic matter had six times more roots than empty or sand-filled channels, indicating a response to greater nutrient availability rather than to greater space or less impedance to root growth. 4. Root proliferation inside decaying roots may improve recovery of nutrients released from decomposing tissues before they can be leached or immobilized in this intertidal environment. Greatest root proliferation in channels occurred in interior forest zones characterized by greater soil waterlogging, which suggests that this may be a strategy for nutrient capture that minimizes oxygen losses from the whole root system. 5. Improved efficiency of nutrient acquisition at the individual plant level has implications for nutrient economy at the ecosystem level and may explain, in part, how mangroves persist and grow in nutrient-poor environments.

  19. Remotely sensed indicators of habitat heterogeneity and biological diversity: A preliminary report

    Science.gov (United States)

    Imhoff, Marc; Sisk, Thomas; Milne, Anthony; Morgan, Garth; Orr, Tony

    1995-01-01

    The relationship between habitat area, spatial dynamics of the landscape, and species diversity is an important theme in population and conservation biology. Of particular interest is how populations of various species are affected by increasing habitat edges due to fragmentation. Over the last decade, assumptions regarding the effects of habitat edges on biodiversity have fluctuated wildly, from the belief that they have a positive effect to the belief that they have a clearly negative effect. This change in viewpoint has been brought about by an increasing recognition of the importance of geographic scale and a reinterpretation of natural history observations. In this preliminary report from an ongoing project, we explore the use of remote sensing technology and geographic information systems to further our understanding of how species diversity and population density are affected by habitat heterogeneity and landscape composition. A primary feature of this study is the investigation of SAR for making more rigorous investigations of habitat structure by exploiting the interaction between radar backscatter and vegetation structure and biomass. A major emphasis will be on the use of SAR data to define relative structural types based on measures of structural consolidation using the vegetation surface area to volume ratio (SA/V). Past research has shown that SAR may be sensitive to this form of structural expression which may affect biodiversity.

  20. A NEW HABITAT CLASSIFICATION AND MANUAL FOR STANDARDIZED HABITAT MAPPING

    Directory of Open Access Journals (Sweden)

    A. KUN

    2007-01-01

    Full Text Available Today the documentation of natural heritage with scientific methods but for conservation practice – like mapping of actual vegetation – becomes more and more important. For this purpose mapping guides containing only the names and descriptions of vegetation types are not sufficient. Instead, new, mapping-oriented vegetation classification systems and handbooks are needed. There are different standardised systems fitted to the characteristics of a region already published and used successfully for surveying large territories. However, detailed documentation of the aims and steps of their elaboration is still missing. Here we present a habitat-classification method developed specifically for mapping and the steps of its development. Habitat categories and descriptions reflect site conditions, physiognomy and species composition as well. However, for species composition much lower role was given deliberately than in the phytosociological systems. Recognition and mapping of vegetation types in the field is highly supported by a definition, list of subtypes and list of ‘types not belonging to this habitat category’. Our system is two-dimensional: the first dimension is habitat type, the other is naturalness based habitat quality. The development of the system was conducted in two steps, over 200 mappers already tested it over 7000 field days in different projects.

  1. Helium-air counter flow in rectangular channels

    International Nuclear Information System (INIS)

    Fumizawa, Motoo; Tanaka, Gaku; Zhao, Hong; Hishida, Makoto; Shiina, Yasuaki

    2004-01-01

    This paper deals with numerical analysis of helium-air counter flow in a rectangular channel with an aspect ratio of 10. The channel has a cross sectional area of 5-50 mm and a length of 200 mm. The inclination angle was varied from 0 to 90 degree. The velocity profiles and concentration profiles were analyzed with a computer program [FLUENT]. Following main features of the counter flow are discussed based on the calculated results. (1) Time required for establishing a quasi-steady state counter flow. (2) The relationship between the inclination angle and the flow patterns of the counter flow. (3) The developing process of velocity profiles and concentration profiles. (4) The relationship between the inclination angle of the channel and the velocity profiles of upward flow and the downward flow. (5) The relationship between the concentration profile and the inclination angle. (6) The relationship between the net in-flow rate and the inclination angle. We compared the computed velocity profile and the net in-flow rate with experimental data. A good agreement was obtained between the calculation results and the experimental results. (author)

  2. Summer habitat use by Columbia River redband trout in the Kootenai River drainage, Montana

    Science.gov (United States)

    Muhlfeld, Clint C.; Bennett, David H.

    2001-01-01

    The reported decline in the abundance, distribution, and genetic diversity of Columbia River redband trout Oncorhynchus mykiss gairdneri (a rainbow trout subspecies) has prompted fisheries managers to investigate their habitat requirements, identify critical habitat, and develop effective conservation and recovery programs. We analyzed the microhabitat, mesohabitat, and macrohabitat use and distribution of Columbia River redband trout by means of snorkel surveys in two watersheds in the Kootenai River drainage, Montana and Idaho, during the summers of 1997 and 1998. Juvenile (36–125 mm total length, TL) and adult (>=126 mm TL) fish preferred deep microhabitats (>=0.4 m) with low to moderate velocities (thalweg. Conversely, age-0 (<=35 mm) fish selected slow water (<=0.1 m/s) and shallow depths (<=0.2 m) located in lateral areas of the channel. Age-0, juvenile, and adult fish strongly selected pool mesohabitats and avoided riffles; juveniles and adults generally used runs in proportion to their availability. At the macrohabitat scale, density of Columbia River redband trout (35 mm) was positively related to the abundance of pools and negatively related to stream gradient. The pool: riffle ratio, gradient, and stream size combined accounted for 80% of the variation in density among 23 stream reaches in five streams. Our results demonstrate that low-gradient, medium-elevation reaches with an abundance of complex pools are critical areas for the production of Columbia River redband trout. These data will be useful in assessing the impacts of land-use practices on the remaining populations and may assist with habitat restoration or enhancement efforts.

  3. Reef fishes of Saba Bank, Netherlands Antilles: assemblage structure across a gradient of habitat types.

    Directory of Open Access Journals (Sweden)

    Wes Toller

    Full Text Available Saba Bank is a 2,200 km(2 submerged carbonate platform in the northeastern Caribbean Sea off Saba Island, Netherlands Antilles. The presence of reef-like geomorphic features and significant shelf edge coral development on Saba Bank have led to the conclusion that it is an actively growing, though wholly submerged, coral reef atoll. However, little information exists on the composition of benthic communities or associated reef fish assemblages of Saba Bank. We selected a 40 km(2 area of the bank for an exploratory study. Habitat and reef fish assemblages were investigated in five shallow-water benthic habitat types that form a gradient from Saba Bank shelf edge to lagoon. Significant coral cover was restricted to fore reef habitat (average cover 11.5% and outer reef flat habitat (2.4% and declined to near zero in habitats of the central lagoon zone. Macroalgae dominated benthic cover in all habitats (average cover: 32.5--48.1% but dominant algal genera differed among habitats. A total of 97 fish species were recorded. The composition of Saba Bank fish assemblages differed among habitat types. Highest fish density and diversity occurred in the outer reef flat, fore reef and inner reef flat habitats. Biomass estimates for commercially valued species in the reef zone (fore reef and reef flat habitats ranged between 52 and 83 g/m(2. The composition of Saba Bank fish assemblages reflects the absence of important nursery habitats, as well as the effects of past fishing. The relatively high abundance of large predatory fish (i.e. groupers and sharks, which is generally considered an indicator of good ecosystem health for tropical reef systems, shows that an intact trophic network is still present on Saba Bank.

  4. Movements and Habitat Use of an Endangered Snake, Hoplocephalus bungaroides (Elapidae): Implications for Conservation

    Science.gov (United States)

    Croak, Benjamin M.; Crowther, Mathew S.; Webb, Jonathan K.; Shine, Richard

    2013-01-01

    A detailed understanding of how extensively animals move through the landscape, and the habitat features upon which they rely, can identify conservation priorities and thus inform management planning. For many endangered species, information on habitat use either is sparse, or is based upon studies from a small part of the species’ range. The broad-headed snake (Hoplocephalus bungaroides) is restricted to a specialized habitat (sandstone outcrops and nearby forests) within a small geographic range in south-eastern Australia. Previous research on this endangered taxon was done at a single site in the extreme south of the species’ geographic range. We captured and radio-tracked 9 adult broad-headed snakes at sites in the northern part of the species’ distribution, to evaluate the generality of results from prior studies, and to identify critical habitat components for this northern population. Snakes spent most of winter beneath sun-warmed rocks then shifted to tree hollows in summer. Thermal regimes within retreat-sites support the hypothesis that this shift is thermally driven. Intervals between successive displacements were longer than in the southern snakes but dispersal distances per move and home ranges were similar. Our snakes showed non-random preferences both in terms of macrohabitat (e.g., avoidance of some vegetation types) and microhabitat (e.g., frequent use of hollow-bearing trees). Despite many consistencies, the ecology of this species differs enough between southern and northern extremes of its range that managers need to incorporate information on local features to most effectively conserve this threatened reptile. PMID:23613912

  5. Movements and habitat use of an endangered snake, Hoplocephalus bungaroides (Elapidae: implications for conservation.

    Directory of Open Access Journals (Sweden)

    Benjamin M Croak

    Full Text Available A detailed understanding of how extensively animals move through the landscape, and the habitat features upon which they rely, can identify conservation priorities and thus inform management planning. For many endangered species, information on habitat use either is sparse, or is based upon studies from a small part of the species' range. The broad-headed snake (Hoplocephalus bungaroides is restricted to a specialized habitat (sandstone outcrops and nearby forests within a small geographic range in south-eastern Australia. Previous research on this endangered taxon was done at a single site in the extreme south of the species' geographic range. We captured and radio-tracked 9 adult broad-headed snakes at sites in the northern part of the species' distribution, to evaluate the generality of results from prior studies, and to identify critical habitat components for this northern population. Snakes spent most of winter beneath sun-warmed rocks then shifted to tree hollows in summer. Thermal regimes within retreat-sites support the hypothesis that this shift is thermally driven. Intervals between successive displacements were longer than in the southern snakes but dispersal distances per move and home ranges were similar. Our snakes showed non-random preferences both in terms of macrohabitat (e.g., avoidance of some vegetation types and microhabitat (e.g., frequent use of hollow-bearing trees. Despite many consistencies, the ecology of this species differs enough between southern and northern extremes of its range that managers need to incorporate information on local features to most effectively conserve this threatened reptile.

  6. Fluvial Channel Networks as Analogs for the Ridge-Forming Unit, Sinus Meridiani, Mars

    Science.gov (United States)

    Wilkinson, M. J.; du Bois, J. B.

    2010-01-01

    Fluvial models have been generally discounted as analogs for the younger layered rock units of Sinus Meridiani. A fluvial model based on the large fluvial fan provides a possibly close analog for various features of the sinuous ridges of the etched, ridge-forming unit (RFU) in particular. The close spacing of the RFU ridges, their apparently chaotic orientations, and their organization in dense networks all appear unlike classical stream channel patterns. However, drainage patterns on large fluvial fans low-angle, fluvial aggradational features, 100s of km long, documented worldwide by us provide parallels. Some large fan characteristics resemble those of classical floodplains, but many differences have been demonstrated. One major distinction relevant to the RFU is that channel landscapes of large fans can dominate large areas (1.2 million km2 in one S. American study area). We compare channel morphologies on large fans in the southern Sahara Desert with ridge patterns in Sinus Meridiani (fig 1). Stream channels are the dominant landform on large terrestrial fans: they may equate to the ubiquitous, sinuous, elongated ridges of the RFU that cover areas region wide. Networks of convergent/divergent and crossing channels may equate to similar features in the ridge networks. Downslope divergence is absent in channels of terrestrial upland erosional landscapes (fig. 1, left), whereas it is common to both large fans (fig. 1, center) and RFU ridge patterns (fig 1, right downslope defined as the regional NW slope of Sinus Meridiani). RFU ridge orientation, judged from those areas apparently devoid of impact crater control, is broadly parallel with the regional slope (arrow, fig. 1, right), as is mean orientation of major channels on large fans (arrow, fig. 1, center). High densities per unit area characterize fan channels and martian ridges reaching an order of magnitude higher than those in uplands just upstream of the terrestrial study areas fig. 1. In concert with

  7. Bird assemblage patterns in relation to anthropogenic habitat ...

    African Journals Online (AJOL)

    Using habitat stratification, birds were surveyed along transects in tidal and supralittoral sub-habitats using DISTANCE sampling protocol, and along the river by encounter rates to determine abundance and species richness. Indices of human activity as well as habitat structure parameters including ground cover, plant ...

  8. Convergent evolution, habitat shifts and variable diversification rates in the ovenbird-woodcreeper family (Furnariidae).

    Science.gov (United States)

    Irestedt, Martin; Fjeldså, Jon; Dalén, Love; Ericson, Per G P

    2009-11-21

    The Neotropical ovenbird-woodcreeper family (Furnariidae) is an avian group characterized by exceptionally diverse ecomorphological adaptations. For instance, members of the family are known to construct nests of a remarkable variety. This offers a unique opportunity to examine whether changes in nest design, accompanied by expansions into new habitats, facilitates diversification. We present a multi-gene phylogeny and age estimates for the ovenbird-woodcreeper family and use these results to estimate the degree of convergent evolution in both phenotype and habitat utilisation. Furthermore, we discuss whether variation in species richness among ovenbird clades could be explained by differences in clade-specific diversification rates, and whether these rates differ among lineages with different nesting habits. In addition, the systematic positions of some enigmatic ovenbird taxa and the postulated monophyly of some species-rich genera are evaluated. The phylogenetic results reveal new examples of convergent evolution and show that ovenbirds have independently colonized open habitats at least six times. The calculated age estimates suggest that the ovenbird-woodcreeper family started to diverge at ca 33 Mya, and that the timing of habitat shifts into open environments may be correlated with the aridification of South America during the last 15 My. The results also show that observed large differences in species richness among clades can be explained by a substantial variation in net diversification rates. The synallaxines, which generally are adapted to dry habitats and build exposed vegetative nests, had the highest diversification rate of all major furnariid clades. Several key features may have played an important role for the radiation and evolution of convergent phenotypes in the ovenbird-woodcreeper family. Our results suggest that changes in nest building strategy and adaptation to novel habitats may have played an important role in a diversification that

  9. Calcium channel-dependent molecular maturation of photoreceptor synapses.

    Directory of Open Access Journals (Sweden)

    Nawal Zabouri

    Full Text Available Several studies have shown the importance of calcium channels in the development and/or maturation of synapses. The Ca(V1.4(α(1F knockout mouse is a unique model to study the role of calcium channels in photoreceptor synapse formation. It features abnormal ribbon synapses and aberrant cone morphology. We investigated the expression and targeting of several key elements of ribbon synapses and analyzed the cone morphology in the Ca(V1.4(α(1F knockout retina. Our data demonstrate that most abnormalities occur after eye opening. Indeed, scaffolding proteins such as Bassoon and RIM2 are properly targeted at first, but their expression and localization are not maintained in adulthood. This indicates that either calcium or the Ca(V1.4 channel, or both are necessary for the maintenance of their normal expression and distribution in photoreceptors. Other proteins, such as Veli3 and PSD-95, also display abnormal expression in rods prior to eye opening. Conversely, vesicle related proteins appear normal. Our data demonstrate that the Ca(V1.4 channel is important for maintaining scaffolding proteins in the ribbon synapse but less vital for proteins related to vesicular release. This study also confirms that in adult retinae, cones show developmental features such as sprouting and synaptogenesis. Overall we present evidence that in the absence of the Ca(V1.4 channel, photoreceptor synapses remain immature and are unable to stabilize.

  10. Calcium channel-dependent molecular maturation of photoreceptor synapses.

    Science.gov (United States)

    Zabouri, Nawal; Haverkamp, Silke

    2013-01-01

    Several studies have shown the importance of calcium channels in the development and/or maturation of synapses. The Ca(V)1.4(α(1F)) knockout mouse is a unique model to study the role of calcium channels in photoreceptor synapse formation. It features abnormal ribbon synapses and aberrant cone morphology. We investigated the expression and targeting of several key elements of ribbon synapses and analyzed the cone morphology in the Ca(V)1.4(α(1F)) knockout retina. Our data demonstrate that most abnormalities occur after eye opening. Indeed, scaffolding proteins such as Bassoon and RIM2 are properly targeted at first, but their expression and localization are not maintained in adulthood. This indicates that either calcium or the Ca(V)1.4 channel, or both are necessary for the maintenance of their normal expression and distribution in photoreceptors. Other proteins, such as Veli3 and PSD-95, also display abnormal expression in rods prior to eye opening. Conversely, vesicle related proteins appear normal. Our data demonstrate that the Ca(V)1.4 channel is important for maintaining scaffolding proteins in the ribbon synapse but less vital for proteins related to vesicular release. This study also confirms that in adult retinae, cones show developmental features such as sprouting and synaptogenesis. Overall we present evidence that in the absence of the Ca(V)1.4 channel, photoreceptor synapses remain immature and are unable to stabilize.

  11. Watershed Evaluation and Habitat Response to Recent Storms : Annual Report for 1999.

    Energy Technology Data Exchange (ETDEWEB)

    Rhodes, Jonathan J.; Huntington, Charles W.

    2000-02-01

    evaluated and the methods used to evaluate them. Watershed responses and attributes evaluated include mass failures, historic soil loss, the integration of roads with the drainage network, estimated flood recurrence intervals, and headwater channel morphology. Habitat attributes evaluated include large woody debris, pool frequency and depth, substrate conditions, and bank stability. Multiple analyses of habitat data in the Tucannon and Wenaha subbasins remain to be completed due to difficulties stemming from data characteristics that indicated that some of the pre-existing data may have be of questionable accuracy. Diagnostic attributes of the questionable data included a change in monitoring protocols during the pre- to post-flood analysis period, physically implausible temporal trends in some habitat attributes at some sites, and conflicting results for the same attribute at the same locations from different data sources. Since unreliable data can lead to spurious results, criteria were developed to screen the data for analysis, as described in this report. It is anticipated that while the data screening will prevent spurious results, it will also truncate some of the planned analysis in the Tucannon and Wenaha systems.

  12. Watershed evaluation and habitat response to recent storms; annual report for 1999

    International Nuclear Information System (INIS)

    Rhodes, Jonathan J.; Huntington, Charles W.

    2000-01-01

    evaluated and the methods used to evaluate them. Watershed responses and attributes evaluated include mass failures, historic soil loss, the integration of roads with the drainage network, estimated flood recurrence intervals, and headwater channel morphology. Habitat attributes evaluated include large woody debris, pool frequency and depth, substrate conditions, and bank stability. Multiple analyses of habitat data in the Tucannon and Wenaha subbasins remain to be completed due to difficulties stemming from data characteristics that indicated that some of the pre-existing data may have be of questionable accuracy. Diagnostic attributes of the questionable data included a change in monitoring protocols during the pre- to post-flood analysis period, physically implausible temporal trends in some habitat attributes at some sites, and conflicting results for the same attribute at the same locations from different data sources. Since unreliable data can lead to spurious results, criteria were developed to screen the data for analysis, as described in this report. It is anticipated that while the data screening will prevent spurious results, it will also truncate some of the planned analysis in the Tucannon and Wenaha systems

  13. In-pile behavior of controlled beta-quenched fuel channels

    Energy Technology Data Exchange (ETDEWEB)

    Moeckel, Andreas; Pflaum, Wolfgang; Cremer, Ingo [AREVA NP GmbH, Erlangen (Germany); Zbib, Ali A. [AREVA NP Inc., Richland, WA (United States)

    2011-07-01

    Dimensional stability during in-reactor service is the major requirement that is put on fuel channels to provide good moderation and power distribution, and to guarantee unrestricted movement of the control blades during operation. High corrosion resistance and low hydrogen pick-up are required as well. The latter are usually not considered to be life limiting, but may contribute to channel deformation since increased oxide layers due to shadow corrosion on the control blade sides of a channel result in differential oxide thickness and differential volume expansion due to hydride formation. This would be in addition to the well known effects of irradiation induced channel deformation, especially channel growth and bow. In order to meet the trend toward increased fuel assembly discharge burnup levels and the industry wide need for improved dimensional stability of fuel channels, AREVA NP has developed the Controlled Beta-Quenching of fuel channels. The process combines the positive effect of randomization of the crystallographic texture by beta-quenching with the optimization of the microstructure for good corrosion resistance by providing intermetallic phase particles in the optimum size range. The Controlled Beta-Quenching is a continuous heat treatment operation. Its key features are the two-step induction heating to uniformly reach the target temperature, the tight control of the quench rate by cooling the fuel channel from the outer surface using a controlled argon mass flow for quenching, and the protection of the inner surface from oxidation by providing an argon atmosphere. Due to the utilization of argon, the surfaces of the channels remain metal bright after beta-quenching. All in all, the Controlled Beta-Quenching provides an overall 'clean' and environment friendly operation without the need of additional surface conditioning. The first set of beta-quenched fuel channels, exhibiting these optimized material properties, were inserted in the core

  14. Reservoir architecture patterns of sandy gravel braided distributary channel

    Directory of Open Access Journals (Sweden)

    Senlin Yin

    2016-06-01

    Full Text Available The purpose of this study was to discuss shape, scale and superimposed types of sandy gravel bodies in sandy-gravel braided distributary channel. Lithofacies analysis, hierarchy bounding surface analysis and subsurface dense well pattern combining with outcrops method were used to examine reservoir architecture patterns of sandy gravel braided distributary channel based on cores, well logging, and outcrops data, and the reservoir architecture patterns of sandy gravel braided distributary channels in different grades have been established. The study shows: (1 The main reservoir architecture elements for sandy gravel braided channel delta are distributary channel and overbank sand, while reservoir flow barrier elements are interchannel and lacustrine mudstone. (2 The compound sand bodies in the sandy gravel braided delta distributary channel take on three shapes: sheet-like distributary channel sand body, interweave strip distributary channel sand body, single strip distributary channel sand body. (3 Identification marks of single distributary channel include: elevation of sand body top, lateral overlaying, “thick-thin-thick” feature of sand bodies, interchannel mudstone and overbank sand between distributary channels and the differences in well log curve shape of sand bodies. (4 Nine lithofacies types were distinguished in distributary channel unit interior, different channel units have different lithofacies association sequence.

  15. Quantum Channeling Effects for 1 MeV Positrons

    International Nuclear Information System (INIS)

    Haakenaasen, R.; Vestergaard Hau, L.; Golovchenko, J.A.; Palathingal, J.C.; Peng, J.P.; Asoka-Kumar, P.; Lynn, K.G.

    1995-01-01

    A high resolution angular study of positrons transmitted through a thin single crystal of Si clearly reveals a detailed fine structure due to strong quantum channeling effects. The beam transmitted in the forward direction displays many features associated with dynamical diffraction effects and long coherence lengths. Calculations are presented showing that in flight annihilation of channeled positrons can serve as a solid state probe of electron and spin densities in thin crystals

  16. Characterization of habitat and biological communities at fixed sites in the Great Salt Lake basins, Utah, Idaho, and Wyoming, water years 1999-2001

    Science.gov (United States)

    Albano, Christine M.; Giddings, Elise M.P.

    2007-01-01

    Habitat and biological communities were sampled at 10 sites in the Great Salt Lake Basins as part of the U.S. Geological Survey National Water-Quality Assessment program to assess the occurrence and distribution of biological organisms in relation to environmental conditions. Sites were distributed among the Bear River, Weber River, and Utah Lake/Jordan River basins and were selected to represent stream conditions in different land-use settings that are prominent within the basins, including agriculture, rangeland, urban, and forested.High-gradient streams had more diverse habitat conditions with larger substrates and more dynamic flow characteristics and were typically lower in discharge than low-gradient streams, which had a higher degree of siltation and lacked variability in geomorphic channel characteristics, which may account for differences in habitat. Habitat scores were higher at high-gradient sites with high percentages of forested land use within their basins. Sources and causes of stream habitat impairment included effects from channel modifications, siltation, and riparian land use. Effects of hydrologic modifications were evident at many sites.Algal sites where colder temperatures, less nutrient enrichment, and forest and rangeland uses dominated the basins contained communities that were more sensitive to organic pollution, siltation, dissolved oxygen, and salinity than sites that were warmer, had higher degrees of nutrient enrichment, and were affected by agriculture and urban land uses. Sites that had high inputs of solar radiation and generally were associated with agricultural land use supported the greatest number of algal species.Invertebrate samples collected from sites where riffles were the richest-targeted habitat differed in species composition and pollution tolerance from those collected at sites that did not have riffle habitat (nonriffle sites), where samples were collected in depositional areas, woody snags, or macrophyte beds

  17. Habitat Ecology Visual Surveys of Demersal Fishes and Habitats off California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Since 1992, the Habitat Ecology team has been conducting fishery independent, visual surveys of demersal fishes and associated habitats in deep water (20 to 900...

  18. Habitat factors influencing the distribution of Cymbopogon validus in ...

    African Journals Online (AJOL)

    Habitat factors influencing the distribution of Cymbopogon validus in Mkambati Game Reserve, Transkei. ... disturbance; game reserve; grassland; grasslands; habitat conditions; habitat factors; mkambati game ... AJOL African Journals Online.

  19. Deformational Features and Microstructure Evolution of Copper Fabricated by a Single Pass of the Elliptical Cross-Section Spiral Equal-Channel Extrusion (ECSEE) Process

    Science.gov (United States)

    Wang, Chengpeng; Li, Fuguo; Liu, Juncheng

    2018-04-01

    The objectives of this work are to study the deformational feature, textures, microstructures, and dislocation configurations of ultrafine-grained copper processed by the process of elliptical cross-section spiral equal-channel extrusion (ECSEE). The deformation patterns of simple shear and pure shear in the ECSEE process were evaluated with the analytical method of geometric strain. The influence of the main technical parameters of ECSEE die on the effective strain distribution on the surface of ECSEE-fabricated samples was examined by the finite element simulation. The high friction factor could improve the effective strain accumulation of material deformation. Moreover, the pure copper sample fabricated by ECSEE ion shows a strong rotated cube shear texture. The refining mechanism of the dislocation deformation is dominant in copper processed by a single pass of ECSEE. The inhomogeneity of the micro-hardness distribution on the longitudinal section of the ECSEE-fabricated sample is consistent with the strain and microstructure distribution features.

  20. River channel morphology and hydraulics properties due to introduction of plant basket hydraulic structures for river channel management

    Science.gov (United States)

    Kałuża, Tomasz; Radecki-Pawlik, Artur; Plesiński, Karol; Walczak, Natalia; Szoszkiewicz, Krzysztof; Radecki-Pawlik, Bartosz

    2016-04-01

    In the present time integrated water management is directly connected with management and direct works in river channels themselves which are taking into account morphological processes in rivers and improve flow conditions. Our work focused on the hydraulic and hydrodynamic consequences upon the introduction of the concept of the improvement of the hydromorphological conditions of the Flinta River in a given reach following river channel management concept. Based on a comprehensive study of the hydromorphological state of the river, four sections were selected where restoration measures can efficiently improve river habitat conditions in the river. For each section a set of technical and biological measures were proposed and implemented in practice. One of the proposed solutions was to construct plant basket hydraulic structures (PBHS) within the river channel, which are essentially plant barriers working as sediment traps, changing river channel morphology and are in line with concepts of Water Framework Directive. These relatively small structures work as crested weirs and unquestionably change the channel morphology. Along our work we show the results of three-year long (2013-2015) systematic measurements that provided information on the morphological consequences of introducing such structures into a river channel. Our main conclusions are as follows: 1. Plant basket hydraulic structures cause changes in hydrodynamic conditions and result in sediment accumulation and the formation of river backwaters upstream and downstream the obstacle; 2. The introduced plant basket hydraulic structures cause plant debris accumulation which influences the hydrodynamic flow conditions; 3. The installation of plant basket hydraulic structures on the river bed changes flow pattern as well as flow hydrodynamic conditions causing river braiding process; 4. The erosion rate below the plant basket hydraulic structures is due to the hydraulic work conditions of the PBHS and its

  1. Effects of Grazing Management and Cattle on Aquatic Habitat Use by the Anuran Pseudopaludicola mystacalis in Agro-Savannah Landscapes.

    Directory of Open Access Journals (Sweden)

    Rodolfo M Pelinson

    Full Text Available Because of their strong dependence on the environment, the spatial distribution of pond-breeding amphibians can be greatly influenced by anthropogenic habitat alteration. In some agricultural landscapes in Brazil, the anuran Pseudopaludicola mystacalis appears to be highly influenced by land use. Because adult males and tadpoles of this species are usually found in marshy areas with cattle hoof prints, we hypothesized that P. mystacalis preferentially occupies aquatic habitats with marshy areas that are trampled by cattle. To test our hypothesis, we assessed whether the occurrence of P. mystacalis is associated with the presence of cattle and trampled marshy areas, and which environmental features best explain the spatial distribution and abundance of P. mystacalis. To do so, we sampled 38 aquatic habitats in an area intensely used for livestock in southeastern Brazil. We found that the presence of cattle and trampled marshy areas in aquatic habitats are positively associated to P. mystacalis occurrence. Additionally, the abundance of calling males is better predicted by variables of landscape and local habitat structure. Specifically, the size of trampled marshy areas and the proportion of herbaceous vegetation within the aquatic habitat are positively associated with abundance, while distance to nearest aquatic habitat are negatively associated with abundance of calling males. All three of these variables can be directly or indirectly linked to the presence of cattle or grazing management. Therefore, this work shows evidence that Pseudopaludicola mystacalis is positively influenced by grazing management with cattle, and draws attention to other unknown potential consequences of different land use to fresh water diversity.

  2. A three-dimensional model for analyzing the effects of salmon redds on hyporheic exchange and egg pocket habitat

    Science.gov (United States)

    Daniele Tonina; John M. Buffington

    2009-01-01

    A three-dimensional fluid dynamics model is developed to capture the spatial complexity of the effects of salmon redds on channel hydraulics, hyporheic exchange, and egg pocket habitat. We use the model to partition the relative influences of redd topography versus altered hydraulic conductivity (winnowing of fines during spawning) on egg pocket conditions for a...

  3. Long-Term Structural Solution for the Mouth of Colorado River Navigation Channel, Texas

    National Research Council Canada - National Science Library

    Kraus, Nicholas C; Lin, Lihwa; Smith, Ernest R; Heilman, Daniel J; Thomas, Robert C

    2008-01-01

    ... in support of a reliable shallow-draft channel at the Mouth of the Colorado River (MCR), Texas. The site has experienced excessive sediment shoaling that has denied full project features to navigation channel users...

  4. Laboratory Experiments on Meandering Meltwater Channels

    Science.gov (United States)

    Fernandez, R.; Berens, J.; Parker, G.; Stark, C. P.

    2017-12-01

    Meandering channels of all scales and flowing over a wide variety of media have common planform patterns. Although the analogy in planform suggests there is a common underlying framework, the constitutive relations driving planform evolution through vertical incision/deposition and lateral migration differ from medium to medium. The driving processes in alluvial and mixed bedrock-alluvial meandering channels have been studied substantially over the last decades. However, this is not the case for meandering channels in other media such as ice or soluble rock. Here we present results from experiments conducted at the Ven Te Chow Hydrosystems Laboratory of the University of Illinois at Urbana-Champaign on meltwater meandering channels. A rivulet is carved into an ice block and water is allowed to flow at a constant discharge. Planform evolution is analyzed with time lapse imaging and complemented with rubber molds of the channel once the experiment is over. These molds give us the full 3D structure of the meandering, including incisional overhang. Vertical incision rates are measured throughout the run by taking elevations along the channel, and these measurements are complemented with analysis from the molds. We show examples of meandering of intense amplitude with deep overhangs. Features resembling scroll bars document cyclically punctuated melting. We report on lateral migration rates, incision rates, sinuosity, channel depths, channel widths, reach averaged velocities, bend wavelengths and amplitudes and compare them to values reported in the literature for alluvial rivers.

  5. Karakteristik Habitat Perkembangbiakan Vektor Filariasis di Kecamatan Kodi Balaghar Kabupaten Sumba Barat Daya

    Directory of Open Access Journals (Sweden)

    Mefi Mariana Tallan

    2016-12-01

    Full Text Available Abstract. Subdistrict scores balaghar is on filariasis endemic areas in the shouthwest district Sumba. Filariasis (elephantiasis is a chronic infectious disease caused by the filarial worm that attacks the lymph channels and lymph (lymphatic system that can cause acuteor chronic clinical symptoms and is transmitted by mosquitoes Mansonia, Anopheles, Culex, Amigeres. The purpose researchis to describe the characteristics of the environment and behavior to the incidence on filariasis in District Kodi Balaghar South western Sumba. This research is descriptive study with cross sectional approach that describes the spread of filariasis. Kodi was conducted in Southwest Sumba Regency Balaghar for eight months from April to November 2014. Foundas apotential habitat forlas mosquito breeding habitats where dominant is a puddle of water, springs, drains and small stream swith temperatures ranging from21-350C, from 0,22 to 795luxillumination, range pH between7,2 to 7,7, 0-0.1‰ salinity with elevation ranging from 25-117m/asl. Where is thespecies found in the breeding habitat on is An.vagus, An.barbirostris, An.annularis, Cx.vishnui, Cx.bitaeniorhynchus, Cx.quinquefasciatus, Ar. Kuchingensis.Keywords:Filariasis, Environment, Breeding habitatsAbstrak. Kecamatan Kodi Balaghar merupakan salah satu daerah endemis filariasis di Kabupaten Sumba Barat Daya. Filariasis (penyakit kaki gajah adalah penyakit menular menahun yang disebabkan oleh cacing filaria Wuchereria brancofti, Brugia malayidan B. timori yang menyerang saluran dan kelenjar getah bening (sistem limfatik yang dapat menyebabkan gejala klinis akut atau kronis dan ditularkan oleh nyamuk Mansonia, Anopheles, Culex, Amigeres. Penelitian ini bertujuan untuk mengetahui gambaran karakteristik lingkungan fisik dan biologi di Kecamatan Kodi Balaghar Kabupaten Sumba Barat Daya. Penelitian ini merupakan penelitian deskriptif dengan pendekatan cross sectional yaitu menggambarkan karakteristik lingkungan fisik

  6. Risk of Agricultural Practices and Habitat Change to Farmland Birds

    Directory of Open Access Journals (Sweden)

    David Anthony. Kirk

    2011-06-01

    Full Text Available Many common bird species have declined as a result of agricultural intensification and this could be mitigated by organic farming. We paired sites for habitat and geographical location on organic and nonorganic farms in Ontario, Canada to test a priori predictions of effects on birds overall, 9 guilds and 22 species in relation to candidate models for farming practices (13 variables, local habitat features (12 variables, or habitat features that influence susceptibility to predation. We found that: (1 Overall bird abundance, but not richness, was significantly (p < 0.05 higher on organic sites (mean 43.1 individuals per site than nonorganic sites (35.8 individuals per site. Significantly more species of birds were observed for five guilds, including primary grassland birds, on organic vs. nonorganic sites. No guild had higher richness or abundance on nonorganic farms; (2 Farming practice models were the best (Î"AIC < 4 for abundance of birds overall, primary grassland bird richness, sallier aerial insectivore richness and abundance, and abundance of ground nesters; (3 Habitat models were the best for overall richness, Neotropical migrant abundance, richness and abundance of Ontario-USA-Mexico (short-distance migrants and resident richness; (4 Predation models were the best for richness of secondary grassland birds and ground feeders; (5 A combination of variables from the model types were best for richness or abundance overall, 13 of 18 guilds (richness and abundance and 16 of 22 species analyzed. Five of 10 farming practice variables (including herbicide use, organic farm type and 9 of 13 habitat variables (including hedgerow length, proportion of hay were significant in best models. Risk modeling indicated that herbicide use could decrease primary grassland birds by one species (35% decline from 3.4 to 2.3 species per site. Organic farming could benefit species of conservation concern by 49% (an increase from 7.6 to 11.4 grassland birds. An

  7. Presence and absence of bats across habitat scales in the Upper Coastal Plain of South Carolina.

    Energy Technology Data Exchange (ETDEWEB)

    Ford, W.Mark; Menzel, Jennifer M.; Menzel, Michael A.: Edwards, John W.; Kilgo, John C.

    2006-10-01

    Abstract During 2001, we used active acoustical sampling (Anabat II) to survey foraging habitat relationships of bats on the Savannah River Site (SRS) in the upper Coastal Plain of South Carolina. Using an a priori information-theoretic approach, we conducted logistic regression analysis to examine presence of individual bat species relative to a suite of microhabitat, stand, and landscape-level features such as forest structural metrics, forest type, proximity to riparian zones and Carolina bay wetlands, insect abundance, and weather. There was considerable empirical support to suggest that the majority of the activity of bats across most of the 6 species occurred at smaller, stand-level habitat scales that combine measures of habitat clutter (e.g., declining forest canopy cover and basal area), proximity to riparian zones, and insect abundance. Accordingly, we hypothesized that most foraging habitat relationships were more local than landscape across this relatively large area for generalist species of bats. The southeastern myotis (Myotis austroriparius) was the partial exception, as its presence was linked to proximity of Carolina bays (best approximating model) and bottomland hardwood communities (other models with empirical support). Efforts at SRS to promote open longleaf pine (Pinus palustris) and loblolly pine (P. taeda) savanna conditions and to actively restore degraded Carolina bay wetlands will be beneficial to bats. Accordingly, our results should provide managers better insight for crafting guidelines for bat habitat conservation that could be linked to widely accepted land management and environmental restoration practices for the region.

  8. Juvenile-adult habitat shift in permian fossil reptiles and amphibians.

    Science.gov (United States)

    Bakker, R T

    1982-07-02

    Among extant large reptiles, juveniles often occupy different habitats from those of adults or subadults and thus avoid competition with and predation from the older animals; small juveniles often choose cryptic habitats because they are vulnerable to a wide variety of predators. Evidence from fossil humeri and femora of Early Permian reptiles collected from sediments of several distinct habitats indicate that similar shifts in habitat occurred. Juvenile Dimetrodon seem to have favored cryptic habitats around swamp and swampy lake margins; adults favored open habitats on the floodplains. Similar patterns of habitat shift seem to be present in the reptile Ophiacodon and the amphibian Eryops and may have been common in fossil tetrapods of the Permian-Triassic.

  9. Genesis and sedimentary record of blind channel and islands of the anabranching river: An evolution model

    Science.gov (United States)

    Leli, Isabel T.; Stevaux, José C.; Assine, Mário L.

    2018-02-01

    Blind channel (BC) is a fluvial feature formed by attachment of a lateral sand bar to an island or riverbank. It consists of a 10- to 20-m wide and hundreds to thousands meters long channel, parallel to the island or bank, closed at its upstream end by accretion to the island. It is an important feature in anabranching rivers that plays an important role in both the island formation and river ecology. This paper discusses the formation processes, functioning, evolution, and the sedimentary record of a blind channel, related landforms, and its context on island development in the Upper Paraná River. The evolution of this morphologic feature involves (1) formation of a lateral or attachment bar beside an island with the development of a channel in between; (2) vertical accretion of mud deposits during the flood and vegetal development on the bar; (3) the upstream channel closure that generates the blind channel; and (4) annexation of the blind channel to the island. A blind channel is semilotic to lentic, that is not totally integrated to the dynamics of the main active channel and that acts as a nursery for fingerlings and macrophytes. The sedimentary facies succession of BCs are relatively simple and characterized by cross-stratified sand covered by organic muddy sediments. Based on facies analysis of 12 cores, we identified a succession of environments that contribute to the formation of islands: channel bar, blind channel, pond, and swamp. Blind channel formation and its related bar-island attachment are relevant processes associated with the growing of large island evolution in some anabranching rivers.

  10. Wave exposure as a predictor of benthic habitat distribution on high energy temperate reefs

    Directory of Open Access Journals (Sweden)

    Alex eRattray

    2015-02-01

    Full Text Available The new found ability to measure physical attributes of the marine environment at high resolution across broad spatial scales has driven the rapid evolution of benthic habitat mapping as a field in its own right. Improvement of the resolution and ecological validity of seafloor habitat distribution models has, for the most part, paralleled developments in new generations of acoustic survey tools such as multibeam echosounders. While sonar methods have been well demonstrated to provide useful proxies of the relatively static geophysical patterns that reflect distribution of benthic species and assemblages, the spatially and temporally variable influence of hydrodynamic energy on habitat distribution have been less well studied. Here we investigate the role of wave exposure on patterns of distribution of near-shore benthic habitats. A high resolution spectral wave model was developed for a 624 km2 site along Cape Otway, a major coastal feature of western Victoria, Australia. Comparison of habitat classifications implemented using the Random Forests algorithm established that significantly more accurate estimations of habitat distribution were obtained by including a fine-scale numerical wave model, extended to the seabed using linear wave theory, than by using depth and seafloor morphology information alone. Variable importance measures and map interpretation indicated that the spatial variation in wave induced bottom orbital velocity was most influential in discriminating habitat the classes containing canopy forming kelp Ecklonia radiata, a foundation kelp species that affects biodiversity and ecological functioning on shallow reefs across temperate Australasia. We demonstrate that hydrodynamic models reflecting key environmental drivers on wave exposed coastlines are important in accurately defining distributions of benthic habitats.

  11. Chamaedorea: diverse species in diverse habitats

    Directory of Open Access Journals (Sweden)

    1992-01-01

    Full Text Available DIVERSES ESPÈCES DANS DIVERS HABITATS. Des espèces extraordinairement diverses se trouvant dans des habitats également divers caractérisent Chamaedorea, un genre qui compte environ 90 espèces dioïques limitées aux sous-bois des forêts néo-tropicales constamment dans la pluie et les nuages du Mexique à la Bolivie et à l’Équateur. Une vaste gamme de formes biologiques, de tiges, de feuilles, d’inflorescences, de fleurs, et de fruits reflète la diversité des espèces. Bien que le genre soit plus riche en espèces dans les forêts denses et humides situées entre 800-1,500 mètres d’altitude, quelques espèces exceptionnelles se trouvent dans des forêts moins denses et/ou occasionnellement sèches, sur des substances dures ou dans d’autres habitats inhabituels. DIVERSAS ESPECIES EN DIVERSOS HÁBITATS. Especies notablemente diversas presentes en habitats igualmente diversos caracterizan a Chamaedorea, un genero de aproximadamente 90 especies dioicas limitadas al sotobosque de los bosques lluviosos y nubosos neotropicales desde Mexico hasta Bolivia y Ecuador. Una amplia gama de formas biológicas, tallos, hojas, inflorescencias, flores, y frutos refleja la diversidad de las especies. Aunque el género es más rico en especies en los bosques densos y húmedos de 800-1,500 metros de altura, unas pocas especies excepcionales ocurren en bosques abiertos o ocasionalmente secos, en substrato severo o en otros habitats extraordinarios. Remarkably diverse species occurring in equally diverse habitats characterize Chamaedorea, a genus of about 90, dioecious species restricted to the understory of neotropical rain and cloud forests from Mexico to Bolivia and Ecuador. A vast array of habits, stems, leaves, inflorescences, flowers, and fruits reflect the diversity of species. Although the genus is most species-rich in dense, moist or wet, diverse forests from 800-1,500 meters elevation, a few exceptional species occur in open and/or seasonally

  12. A comparison of photograph-interpreted and IfSAR-derived maps of polar bear denning habitat for the 1002 Area of the Arctic National Wildlife Refuge, Alaska

    Science.gov (United States)

    Durner, George M.; Atwood, Todd C.

    2018-05-11

    Polar bears (Ursus maritimus) in Alaska use the Arctic National Wildlife Refuge (ANWR) for maternal denning. Pregnant bears den in snow banks for more than 3 months in winter during which they give birth to and nurture young. Denning is one of the most vulnerable times in polar bear life history as the family group cannot simply walk away from a disturbance without jeopardizing survival of newly born cubs. The ANWR includes the “1002 Area”, a region recently opened for oil and gas exploration by the U.S. Department of the Interior (DOI). As a part of its mission, the DOI “… protects and manages the Nation's natural resources …” and is therefore responsible for conserving polar bears and encouraging development of energy potential. Because future industrial activities could overlap habitats used by denning polar bears, identifying these habitats can inform the decisions of resource managers tasked to develop resources and protect polar bears. To help inform these efforts, we qualitatively compared the distribution of denning habitat identified by two different methods: previously published habitat from manual interpretation of aerial photographs, and habitat derived by computer interrogation of interferometric synthetic aperture radar (IfSAR) digital terrain models (DTM). Because photograph-interpreted methods depicted denning habitat as a line and IfSAR-derived methods depicted habitat as a polygon, we assessed agreement between the two methods with distance measurements. We found that 77.5 percent of IfSAR-derived denning habitat (79.6 km2 ; 1.2 percent of the 6,837.0 km2 1002 Area) was within 600 m of photograph-interpreted habitat (3,026.9 km), including 53.9 percent within 200 m. This distribution differed from that of randomly distributed points, as only 49.4 percent of these occurred within 600 m of photograph-interpreted habitat, including 18.3 percent within 200 m. Both methods appear to identify the major physiographic features that polar bears

  13. An integrated analysis of micro- and macro-habitat features as a tool to detect weather-driven constraints: A case study with cavity nesters.

    Directory of Open Access Journals (Sweden)

    D Campobello

    Full Text Available The effects of climate change on animal populations may be shaped by habitat characteristics at both micro- and macro-habitat level, however, empirical studies integrating these two scales of observation are lacking. As analyses of the effects of climate change commonly rely on data from a much larger scale than the microhabitat level organisms are affected at, this mismatch risks hampering progress in developing understanding of the details of the ecological and evolutionary responses of organisms and, ultimately, effective actions to preserve their populations. Cavity nesters, often with a conservation status of concern, are an ideal model because the cavity is a microenvironment potentially different from the macroenvironment but nonetheless inevitably interacting with it. The lesser kestrel (Falco naumanni is a cavity nester which was until recently classified by as Vulnerable species. Since 2004, for nine years, we collected detailed biotic and abiotic data at both micro- and macro-scales of observation in a kestrel population breeding in the Gela Plain (Italy, a Mediterranean area where high temperatures may reach lethal values for the nest content. We show that macroclimatic features needed to be integrated with both abiotic and biotic factors recorded at a microscale before reliably predicting nest temperatures. Among the nest types used by lesser kestrels, we detected a preferential occupation of the cooler nest types, roof tiles, by early breeders whereas, paradoxically, late breeders nesting with hotter temperatures occupied the overheated nest holes. Not consistent with such a suggested nest selection, the coolest nest type did not host a higher reproductive success than the overheated nests. We discussed our findings in the light of cavity temperatures and nest types deployed within conservation actions assessed by integrating selected factors at different observation scales.

  14. An integrated analysis of micro- and macro-habitat features as a tool to detect weather-driven constraints: A case study with cavity nesters.

    Science.gov (United States)

    Campobello, D; Lindström, J; Di Maggio, R; Sarà, M

    2017-01-01

    The effects of climate change on animal populations may be shaped by habitat characteristics at both micro- and macro-habitat level, however, empirical studies integrating these two scales of observation are lacking. As analyses of the effects of climate change commonly rely on data from a much larger scale than the microhabitat level organisms are affected at, this mismatch risks hampering progress in developing understanding of the details of the ecological and evolutionary responses of organisms and, ultimately, effective actions to preserve their populations. Cavity nesters, often with a conservation status of concern, are an ideal model because the cavity is a microenvironment potentially different from the macroenvironment but nonetheless inevitably interacting with it. The lesser kestrel (Falco naumanni) is a cavity nester which was until recently classified by as Vulnerable species. Since 2004, for nine years, we collected detailed biotic and abiotic data at both micro- and macro-scales of observation in a kestrel population breeding in the Gela Plain (Italy), a Mediterranean area where high temperatures may reach lethal values for the nest content. We show that macroclimatic features needed to be integrated with both abiotic and biotic factors recorded at a microscale before reliably predicting nest temperatures. Among the nest types used by lesser kestrels, we detected a preferential occupation of the cooler nest types, roof tiles, by early breeders whereas, paradoxically, late breeders nesting with hotter temperatures occupied the overheated nest holes. Not consistent with such a suggested nest selection, the coolest nest type did not host a higher reproductive success than the overheated nests. We discussed our findings in the light of cavity temperatures and nest types deployed within conservation actions assessed by integrating selected factors at different observation scales.

  15. Slopes To Prevent Trapping of Bubbles in Microfluidic Channels

    Science.gov (United States)

    Greer, Harold E.; Lee, Michael C.; Smith, J. Anthony; Willis, Peter A.

    2010-01-01

    The idea of designing a microfluidic channel to slope upward along the direction of flow of the liquid in the channel has been conceived to help prevent trapping of gas bubbles in the channel. In the original application that gave rise to this idea, the microfluidic channels are parts of micro-capillary electrophoresis (microCE) devices undergoing development for use on Mars in detecting compounds indicative of life. It is necessary to prevent trapping of gas bubbles in these devices because uninterrupted liquid pathways are essential for sustaining the electrical conduction and flows that are essential for CE. The idea is also applicable to microfluidic devices that may be developed for similar terrestrial microCE biotechnological applications or other terrestrial applications in which trapping of bubbles in microfluidic channels cannot be tolerated. A typical microCE device in the original application includes, among other things, multiple layers of borosilicate float glass wafers. Microfluidic channels are formed in the wafers, typically by use of wet chemical etching. The figure presents a simplified cross section of part of such a device in which the CE channel is formed in the lowermost wafer (denoted the channel wafer) and, according to the present innovation, slopes upward into a via hole in another wafer (denoted the manifold wafer) lying immediately above the channel wafer. Another feature of the present innovation is that the via hole in the manifold wafer is made to taper to a wider opening at the top to further reduce the tendency to trap bubbles. At the time of reporting the information for this article, an effort to identify an optimum technique for forming the slope and the taper was in progress. Of the techniques considered thus far, the one considered to be most promising is precision milling by use of femtosecond laser pulses. Other similar techniques that may work equally well are precision milling using a focused ion beam, or a small diamond

  16. Simulation of planar channeling-radiation spectra of relativistic electrons and positrons channeled in a diamond-structure or tungsten single crystal (classical approach)

    International Nuclear Information System (INIS)

    Azadegan, B.; Wagner, W.

    2015-01-01

    We present a Mathematica package for simulation of spectral-angular distributions and energy spectra of planar channeling radiation of relativistic electrons and positrons channeled along major crystallographic planes of a diamond-structure or tungsten single crystal. The program is based on the classical theory of channeling radiation which has been successfully applied to study planar channeling of light charged particles at energies higher than 100 MeV. Continuous potentials for different planes of diamond, Si, Ge and W single crystals are calculated using the Doyle–Turner approximation to the atomic scattering factor and taking thermal vibrations of the crystal atoms into account. Numerical methods are applied to solve the classical one-dimensional equation of motion. The code is designed to calculate the trajectories, velocities and accelerations of electrons (positrons) channeled by the planar continuous potential. In the framework of classical electrodynamics, these data allow realistic simulations of spectral-angular distributions and energy spectra of planar channeling radiation. Since the generated output is quantitative, the results of calculation may be useful, e.g., for setup configuration and crystal alignment in channeling experiments, for the study of the dependence of channeling radiation on the input parameters of particle beams with respect to the crystal orientation, but also for the simulation of positron production by means of pair creation what is mandatory for the design of efficient positron sources necessary in high-energy and collider physics. Although the classical theory of channeling is well established for long time, there is no adequate library program for simulation of channeling radiation up to now, which is commonly available, sufficiently simple and effective to employ and, therefore, of benefit as for special investigations as for a quick overview of basic features of this type of radiation

  17. A Novel Feature Optimization for Wearable Human-Computer Interfaces Using Surface Electromyography Sensors

    Directory of Open Access Journals (Sweden)

    Han Sun

    2018-03-01

    Full Text Available The novel human-computer interface (HCI using bioelectrical signals as input is a valuable tool to improve the lives of people with disabilities. In this paper, surface electromyography (sEMG signals induced by four classes of wrist movements were acquired from four sites on the lower arm with our designed system. Forty-two features were extracted from the time, frequency and time-frequency domains. Optimal channels were determined from single-channel classification performance rank. The optimal-feature selection was according to a modified entropy criteria (EC and Fisher discrimination (FD criteria. The feature selection results were evaluated by four different classifiers, and compared with other conventional feature subsets. In online tests, the wearable system acquired real-time sEMG signals. The selected features and trained classifier model were used to control a telecar through four different paradigms in a designed environment with simple obstacles. Performance was evaluated based on travel time (TT and recognition rate (RR. The results of hardware evaluation verified the feasibility of our acquisition systems, and ensured signal quality. Single-channel analysis results indicated that the channel located on the extensor carpi ulnaris (ECU performed best with mean classification accuracy of 97.45% for all movement’s pairs. Channels placed on ECU and the extensor carpi radialis (ECR were selected according to the accuracy rank. Experimental results showed that the proposed FD method was better than other feature selection methods and single-type features. The combination of FD and random forest (RF performed best in offline analysis, with 96.77% multi-class RR. Online results illustrated that the state-machine paradigm with a 125 ms window had the highest maneuverability and was closest to real-life control. Subjects could accomplish online sessions by three sEMG-based paradigms, with average times of 46.02, 49.06 and 48.08 s

  18. Froude Number is the Single Most Important Hydraulic Parameter for Salmonid Spawning Habitat.

    Science.gov (United States)

    Gillies, E.; Moir, H. J.

    2015-12-01

    Many gravel-bed rivers exhibit historic straightening or embanking, reducing river complexity and the available habitat for key species such as salmon. A defensible method for predicting salmonid spawning habitat is an important tool for anyone engaged in assessing a river restoration. Most empirical methods to predict spawning habitat use lookup tables of depth, velocity and substrate. However, natural site selection is different: salmon must pick a location where they can successfully build a redd, and where eggs have a sufficient survival rate. Also, using dimensional variables, such as depth and velocity, is problematic: spawning occurs in rivers of differing size, depth and velocity range. Non-dimensional variables have proven useful in other branches of fluid dynamics, and instream habitat is no different. Empirical river data has a high correlation between observed salmon redds and Froude number, without insight into why. Here we present a physics based model of spawning and bedform evolution, which shows that Froude number is indeed a rational choice for characterizing the bedform, substrate, and flow necessary for spawning. It is familiar for Froude to characterize surface waves, but Froude also characterizes longitudinal bedform in a mobile bed river. We postulate that these bedforms and their hydraulics perform two roles in salmonid spawning: allowing transport of clasts during redd building, and oxygenating eggs. We present an example of this Froude number and substrate based habitat characterization on a Scottish river for which we have detailed topography at several stages during river restoration and subsequent evolution of natural processes. We show changes to the channel Froude regime as a result of natural process and validate habitat predictions against redds observed during 2014 and 2015 spawning seasons, also relating this data to the Froude regime in other, nearby, rivers. We discuss the use of the Froude spectrum in providing an indicator of

  19. Grizzly bear habitat selection is scale dependent.

    Science.gov (United States)

    Ciarniello, Lana M; Boyce, Mark S; Seip, Dale R; Heard, Douglas C

    2007-07-01

    The purpose of our study is to show how ecologists' interpretation of habitat selection by grizzly bears (Ursus arctos) is altered by the scale of observation and also how management questions would be best addressed using predetermined scales of analysis. Using resource selection functions (RSF) we examined how variation in the spatial extent of availability affected our interpretation of habitat selection by grizzly bears inhabiting mountain and plateau landscapes. We estimated separate models for females and males using three spatial extents: within the study area, within the home range, and within predetermined movement buffers. We employed two methods for evaluating the effects of scale on our RSF designs. First, we chose a priori six candidate models, estimated at each scale, and ranked them using Akaike Information Criteria. Using this method, results changed among scales for males but not for females. For female bears, models that included the full suite of covariates predicted habitat use best at each scale. For male bears that resided in the mountains, models based on forest successional stages ranked highest at the study-wide and home range extents, whereas models containing covariates based on terrain features ranked highest at the buffer extent. For male bears on the plateau, each scale estimated a different highest-ranked model. Second, we examined differences among model coefficients across the three scales for one candidate model. We found that both the magnitude and direction of coefficients were dependent upon the scale examined; results varied between landscapes, scales, and sexes. Greenness, reflecting lush green vegetation, was a strong predictor of the presence of female bears in both landscapes and males that resided in the mountains. Male bears on the plateau were the only animals to select areas that exposed them to a high risk of mortality by humans. Our results show that grizzly bear habitat selection is scale dependent. Further, the

  20. Linking habitat structure to life history strategy: Insights from a Mediterranean killifish

    Science.gov (United States)

    Cavraro, Francesco; Daouti, Irini; Leonardos, Ioannis; Torricelli, Patrizia; Malavasi, Stefano

    2014-01-01

    Modern theories of life history evolution deal with finding links between environmental factors, demographic structure of animal populations and the optimal life history strategy. Small-sized teleost fish, occurring in fragmented populations under contrasting environments, have been widely used as study models to investigate these issues. In the present study, the Mediterranean killifish Aphanius fasciatus was used to investigate the relationships between some habitat features and life history strategy. We selected four sites in the Venice lagoon inhabited by this species, exhibiting different combinations of two factors: overall adult mortality, related to intertidal water coverage and a consequent higher level of predator exposure, and the level of sediment organic matter, as indicator of habitat trophic richness. Results showed that these were the two most important factors influencing demography and life history traits in the four sites. Fish from salt marshes with high predator pressure were smaller and produced a higher number of eggs, whereas bigger fish and a lower reproductive investment were found in the two closed, not tidally influenced habitats. Habitat richness was positively related with population density, but negatively related with growth rate. In particular the synergy between high resources and low predation level was found to be important in shaping peculiar life history traits. Results were discussed in the light of the interactions between selective demographic forces acting differentially on age/size classes, such as predation, and habitat trophic richness that may represent an important energetic constraint on life history traits. The importance to link habitat productivity and morphology to demographic factors for a better understanding of the evolution of life history strategy under contrasting environments was finally suggested.

  1. Impact assessment of ionising radiation on wildlife: meeting the requirements of the EU birds and habitat directives

    International Nuclear Information System (INIS)

    Copplestone, D.; Wood, M.D.; Bielby, S.; Jones, S.R.; Vives, J.; Beresford, N.A.; Zinger, I.

    2004-01-01

    In the UK, research funded by the Environment Agency/English Nature has provided a tool for calculating doses received by biota in coastal, freshwater and terrestrial ecosystems. The approach uses the reference organism concept where the organism of interest (feature organism) is equated to a particular reference organism (based on its physical geometry and ecology). The exposure of the reference organism, and consequently the feature organism, to different radionuclides and dose rates can be assessed using a spreadsheet-based mathematical tool. This assessment tool was developed in 2001 and provided an internationally recognised starting point from which more refined assessment tools could develop. As the need for conducting specific assessments under the UK Habitat Regulations became apparent, it was recognised that some targeted refinement of the assessment tool was required. One of the major problems with the tool related to a lack of species-specific data and a lack of information on certain radionuclides appearing in discharges that may be impacting on sites/species to be protected. A second research and development project was therefore undertaken to reduce the uncertainties associated with the assessment tool by collating additional species-specific data, developing a mathematical system for ensuring that the most appropriate reference organism was selected and extending the range of radionuclides included in the assessment. This specific expansion to the assessment tool was directed towards ensuring that species at Natura 2000 sites (Special Protection Areas (SPAs) and Special Areas of Conservation (SACs)) were adequately protected. The species targeted (feature species) for this assessment were species protected under the EC Habitats Directive and those that are characteristic of habitats protected under the Directive. The paper will show how typical dimensions of each feature species are collated and each feature species mathematically aligned with the

  2. Geographic Layers as Landscape Drivers for the Marco Polo Argali Habitat in the Southeastern Pamir Mountains of Tajikistan

    Directory of Open Access Journals (Sweden)

    Eric Ariel L. Salas

    2015-10-01

    Full Text Available We described in this report the essential geographic layers used as landscape drivers for the Marco Polo Argali habitat in the eastern Tajik Pamirs. Using remote sensing techniques and geographic information systems (GIS, individual layers were generated in order to acquire more information on argali patterns and habitat suitability and to make the dataset available online. We introduced an improved object-based image analysis in our mapping of the vegetation cover by utilizing spectral, topographic, and texture variables. We exhausted every Landsat image band and texture feature combination to select the best pairing of band-texture components. For vegetation class alone, the producer’s accuracy was 90.8% and the user’s accuracy was 91.6%.

  3. Habitat use and seasonal activity of insectivorous bats (Mammalia: Chiroptera in the grasslands of southern Brazil

    Directory of Open Access Journals (Sweden)

    Marília A. S. Barros

    2014-04-01

    Full Text Available In temperate zones, insectivorous bats use some types of habitat more frequently than others, and are more active in the warmest periods of the year. We assessed the spatial and seasonal activity patterns of bats in open areas of the southernmost region of Brazil. We tested the hypothesis that bat activity differs among habitat types, among seasons, and is influenced by weather variables. We monitored four 1,500-m transects monthly, from April 2009 to March 2010. Transects corresponded to the five habitat types that predominate in the region. In each sampling session, we detected and counted bat passes with an ultrasound detector (Pettersson D230 and measured climatic variables at the transects. We recorded 1,183 bat passes, and observed the highest activity at the edge of a eucalyptus stand (0.64 bat passes/min and along an irrigation channel (0.54 bat passes/min. The second highest activity values (0.31 and 0.20 bat passes/min, respectively were obtained at the edge of a riparian forest and at the margin of a wetland. The grasslands were used significantly less (0.05 bat passes/min. Bat activity was significantly lower in the winter (0.21 bat passes/min and showed similar values in the autumn (0.33 bat passes/min, spring (0.26 bat passes/min, and summer (0.29 bat passes/min. Bat activity was correlated with temperature, but it was not correlated with wind speed and relative humidity of the air. Our data suggest that, in the study area, insectivorous bats are active throughout the year, and use mostly forest and watercourses areas. These habitat types should be considered prioritary for the conservation of bats in the southernmost region of Brazil.

  4. Pollen and gene flow in fragmented habitats

    NARCIS (Netherlands)

    Kwak, Manja M.; Velterop, Odilia; van Andel, Jelte

    . Habitat fragmentation affects both plants and pollinators. Habitat fragmentation leads to changes in species richness, population number and size, density, and shape, thus to changes in the spatial arrangement of flowers. These changes influence the amount of food for flower-visiting insects and

  5. On the domestic fuel channel for BWR

    International Nuclear Information System (INIS)

    Fukada, Hiroshi

    1979-01-01

    Kobe Steel Ltd. started the domestic manufacture of fuel channel boxes for BWRs in 1967, and entered the actual production stage four years after that. Since 1976, the mass production system was adopted with the increase of the demand. The requirements about the surface contamination and the dimensional accuracy over whole length are very strict in the fuel channel boxes, moreover, special consideration must be given so as to prevent the deformation in use. The unique working methods such as electron beam welding, high temperature press forming and so on are employed in Kobe Steel Ltd. to satisfy such strict requirements, therefore the quality of the produced fuel channel boxes is superior to imported ones. At present, the fuel channel boxes domestically made by Kobe Steel Ltd. are used for almost all BWRs in Japan. The functions of fuel channel boxes are to flow boiling coolant uniformly upward, to guide control rods, and to increase the rigidity of fuel assembly. The fuel channel boxes are the square tubes of zircaloy 4 of 134.06 mm inside width, 2.03 mm thickness, and 4118 or 4239 mm length. The progress of the development and the features of the fuel channel boxes and the manufacturing processes are described. Zircaloy plates are formed into channels, and two channels are electron beam-welded after the edge preparation, to make a box. Ultrasonic examination and stress relief treatment are applied, and clips and spacers are welded. (Kako, I.)

  6. Calcium homeostasis modulator (CALHM) ion channels.

    Science.gov (United States)

    Ma, Zhongming; Tanis, Jessica E; Taruno, Akiyuki; Foskett, J Kevin

    2016-03-01

    Calcium homeostasis modulator 1 (CALHM1), formerly known as FAM26C, was recently identified as a physiologically important plasma membrane ion channel. CALHM1 and its Caenorhabditis elegans homolog, CLHM-1, are regulated by membrane voltage and extracellular Ca(2+) concentration ([Ca(2+)]o). In the presence of physiological [Ca(2+)]o (∼1.5 mM), CALHM1 and CLHM-1 are closed at resting membrane potentials but can be opened by strong depolarizations. Reducing [Ca(2+)]o increases channel open probability, enabling channel activation at negative membrane potentials. Together, voltage and Ca(2+) o allosterically regulate CALHM channel gating. Through convergent evolution, CALHM has structural features that are reminiscent of connexins and pannexins/innexins/LRRC8 (volume-regulated anion channel (VRAC)) gene families, including four transmembrane helices with cytoplasmic amino and carboxyl termini. A CALHM1 channel is a hexamer of CALHM1 monomers with a functional pore diameter of ∼14 Å. CALHM channels discriminate poorly among cations and anions, with signaling molecules including Ca(2+) and ATP able to permeate through its pore. CALHM1 is expressed in the brain where it plays an important role in cortical neuron excitability induced by low [Ca(2+)]o and in type II taste bud cells in the tongue that sense sweet, bitter, and umami tastes where it functions as an essential ATP release channel to mediate nonsynaptic neurotransmitter release. CLHM-1 is expressed in C. elegans sensory neurons and body wall muscles, and its genetic deletion causes locomotion defects. Thus, CALHM is a voltage- and Ca(2+) o-gated ion channel, permeable to large cations and anions, that plays important roles in physiology.

  7. Elk migration patterns and human activity influence wolf habitat use in the Greater Yellowstone Ecosystem.

    Science.gov (United States)

    Nelson, Abigail A; Kauffman, Matthew J; Middleton, Arthur D; Jimenez, Michael D; McWhirter, Douglas E; Barber, Jarrett; Gerow, Kenneth

    2012-12-01

    Identifying the ecological dynamics underlying human-wildlife conflicts is important for the management and conservation of wildlife populations. In landscapes still occupied by large carnivores, many ungulate prey species migrate seasonally, yet little empirical research has explored the relationship between carnivore distribution and ungulate migration strategy. In this study, we evaluate the influence of elk (Cervus elaphus) distribution and other landscape features on wolf (Canis lupus) habitat use in an area of chronic wolf-livestock conflict in the Greater Yellowstone Ecosystem, USA. Using three years of fine-scale wolf (n = 14) and elk (n = 81) movement data, we compared the seasonal habitat use of wolves in an area dominated by migratory elk with that of wolves in an adjacent area dominated by resident elk. Most migratory elk vacate the associated winter wolf territories each summer via a 40-60 km migration, whereas resident elk remain accessible to wolves year-round. We used a generalized linear model to compare the relative probability of wolf use as a function of GIS-based habitat covariates in the migratory and resident elk areas. Although wolves in both areas used elk-rich habitat all year, elk density in summer had a weaker influence on the habitat use of wolves in the migratory elk area than the resident elk area. Wolves employed a number of alternative strategies to cope with the departure of migratory elk. Wolves in the two areas also differed in their disposition toward roads. In winter, wolves in the migratory elk area used habitat close to roads, while wolves in the resident elk area avoided roads. In summer, wolves in the migratory elk area were indifferent to roads, while wolves in resident elk areas strongly avoided roads, presumably due to the location of dens and summering elk combined with different traffic levels. Study results can help wildlife managers to anticipate the movements and establishment of wolf packs as they expand into areas

  8. Elk migration patterns and human activity influence wolf habitat use in the Greater Yellowstone Ecosystem

    Science.gov (United States)

    Nelson, Abigail; Kauffman, Matthew J.; Middleton, Arthur D.; Jimenez, Mike; McWhirter, Douglas; Barber, Jarrett; Gerow, Ken

    2012-01-01

    Identifying the ecological dynamics underlying human–wildlife conflicts is important for the management and conservation of wildlife populations. In landscapes still occupied by large carnivores, many ungulate prey species migrate seasonally, yet little empirical research has explored the relationship between carnivore distribution and ungulate migration strategy. In this study, we evaluate the influence of elk (Cervus elaphus) distribution and other landscape features on wolf (Canis lupus) habitat use in an area of chronic wolf–livestock conflict in the Greater Yellowstone Ecosystem, USA. Using three years of fine-scale wolf (n = 14) and elk (n = 81) movement data, we compared the seasonal habitat use of wolves in an area dominated by migratory elk with that of wolves in an adjacent area dominated by resident elk. Most migratory elk vacate the associated winter wolf territories each summer via a 40–60 km migration, whereas resident elk remain accessible to wolves year-round. We used a generalized linear model to compare the relative probability of wolf use as a function of GIS-based habitat covariates in the migratory and resident elk areas. Although wolves in both areas used elk-rich habitat all year, elk density in summer had a weaker influence on the habitat use of wolves in the migratory elk area than the resident elk area. Wolves employed a number of alternative strategies to cope with the departure of migratory elk. Wolves in the two areas also differed in their disposition toward roads. In winter, wolves in the migratory elk area used habitat close to roads, while wolves in the resident elk area avoided roads. In summer, wolves in the migratory elk area were indifferent to roads, while wolves in resident elk areas strongly avoided roads, presumably due to the location of dens and summering elk combined with different traffic levels. Study results can help wildlife managers to anticipate the movements and establishment of wolf packs as they expand into

  9. Current practices in the identification of critical habitat for threatened species.

    Science.gov (United States)

    Camaclang, Abbey E; Maron, Martine; Martin, Tara G; Possingham, Hugh P

    2015-04-01

    The term critical habitat is used to describe the subset of habitat that is essential to the survival and recovery of species. Some countries legally require that critical habitat of listed threatened and endangered species be identified and protected. However, there is little evidence to suggest that the identification of critical habitat has had much impact on species recovery. We hypothesized that this may be due at least partly to a mismatch between the intent of critical habitat identification, which is to protect sufficient habitat for species persistence and recovery, and its practice. We used content analysis to systematically review critical habitat documents from the United States, Canada, and Australia. In particular, we identified the major trends in type of information used to identify critical habitat and in occupancy of habitat identified as critical. Information about population viability was used to identify critical habitat for only 1% of the species reviewed, and for most species, designated critical habitat did not include unoccupied habitat. Without reference to population viability, it is difficult to determine how much of a species' occupied and unoccupied habitat will be required for persistence. We therefore conclude that the identification of critical habitat remains inconsistent with the goal of protecting sufficient habitat to support persistence and recovery of the species. Ensuring that critical habitat identification aligns more closely with its intent will improve the accuracy of the designations and may therefore help improve the benefits to species recovery when combined with adequate implementation and enforcement of legal protections. © 2014 Society for Conservation Biology.

  10. Anopheline larval habitats seasonality and species distribution: a prerequisite for effective targeted larval habitats control programmes.

    Directory of Open Access Journals (Sweden)

    Eliningaya J Kweka

    Full Text Available Larval control is of paramount importance in the reduction of malaria vector abundance and subsequent disease transmission reduction. Understanding larval habitat succession and its ecology in different land use managements and cropping systems can give an insight for effective larval source management practices. This study investigated larval habitat succession and ecological parameters which influence larval abundance in malaria epidemic prone areas of western Kenya.A total of 51 aquatic habitats positive for anopheline larvae were surveyed and visited once a week for a period of 85 weeks in succession. Habitats were selected and identified. Mosquito larval species, physico-chemical parameters, habitat size, grass cover, crop cycle and distance to nearest house were recorded. Polymerase chain reaction revealed that An. gambiae s.l was the most dominant vector species comprised of An.gambiae s.s (77.60% and An.arabiensis (18.34%, the remaining 4.06% had no amplification by polymerase chain reaction. Physico-chemical parameters and habitat size significantly influenced abundance of An. gambiae s.s (P = 0.024 and An. arabiensis (P = 0.002 larvae. Further, larval species abundance was influenced by crop cycle (P≤0.001, grass cover (P≤0.001, while distance to nearest houses significantly influenced the abundance of mosquito species larvae (r = 0.920;P≤0.001. The number of predator species influenced mosquito larval abundance in different habitat types. Crop weeding significantly influenced with the abundance of An.gambiae s.l (P≤0.001 when preceded with fertilizer application. Significantly higher anopheline larval abundance was recorded in habitats in pasture compared to farmland (P = 0.002. When habitat stability and habitat types were considered, hoof print were the most productive followed by disused goldmines.These findings suggest that implementation of effective larval control programme should be targeted with larval

  11. Long-pore Electrostatics in Inward-rectifier Potassium Channels

    Science.gov (United States)

    Robertson, Janice L.; Palmer, Lawrence G.; Roux, Benoît

    2008-01-01

    Inward-rectifier potassium (Kir) channels differ from the canonical K+ channel structure in that they possess a long extended pore (∼85 Å) for ion conduction that reaches deeply into the cytoplasm. This unique structural feature is presumably involved in regulating functional properties specific to Kir channels, such as conductance, rectification block, and ligand-dependent gating. To elucidate the underpinnings of these functional roles, we examine the electrostatics of an ion along this extended pore. Homology models are constructed based on the open-state model of KirBac1.1 for four mammalian Kir channels: Kir1.1/ROMK, Kir2.1/IRK, Kir3.1/GIRK, and Kir6.2/KATP. By solving the Poisson-Boltzmann equation, the electrostatic free energy of a K+ ion is determined along each pore, revealing that mammalian Kir channels provide a favorable environment for cations and suggesting the existence of high-density regions in the cytoplasmic domain and cavity. The contribution from the reaction field (the self-energy arising from the dielectric polarization induced by the ion's charge in the complex geometry of the pore) is unfavorable inside the long pore. However, this is well compensated by the electrostatic interaction with the static field arising from the protein charges and shielded by the dielectric surrounding. Decomposition of the static field provides a list of residues that display remarkable correspondence with existing mutagenesis data identifying amino acids that affect conduction and rectification. Many of these residues demonstrate interactions with the ion over long distances, up to 40 Å, suggesting that mutations potentially affect ion or blocker energetics over the entire pore. These results provide a foundation for understanding ion interactions in Kir channels and extend to the study of ion permeation, block, and gating in long, cation-specific pores. PMID:19001143

  12. GIS habitat analysis for lesser prairie-chickens in southeastern New Mexico

    Directory of Open Access Journals (Sweden)

    Neville Paul

    2006-12-01

    Full Text Available Abstract Background We conducted Geographic Information System (GIS habitat analyses for lesser prairie-chicken (LPCH, Tympanuchus pallidicinctus conservation planning. The 876,799 ha study area included most of the occupied habitat for the LPCH in New Mexico. The objectives were to identify and quantify: 1. suitable LPCH habitat in New Mexico, 2. conversion of native habitats, 3. potential for habitat restoration, and 4. unsuitable habitat available for oil and gas activities. Results We found 16% of suitable habitat (6% of the study area distributed in 13 patches of at least 3,200 ha and 11% of suitable habitat (4% of the study area distributed in four patches over 7,238 ha. The area converted from native vegetation types comprised 17% of the study area. Ninety-five percent of agricultural conversion occurred on private lands in the northeastern corner of the study area. Most known herbicide-related conversions (82% occurred in rangelands in the western part of the study area, on lands managed primarily by the US Bureau of Land Management (BLM. We identified 88,190 ha (10% of the study area of habitats with reasonable restoration potential. Sixty-two percent of the primary population area (PPA contained occupied, suitable, or potentially suitable habitat, leaving 38% that could be considered for oil and gas development. Conclusion Although suitable LPCH habitat appears at first glance to be abundant in southeastern New Mexico, only a fraction of apparently suitable vegetation types constitute quality habitat. However, we identified habitat patches that could be restored through mesquite control or shin-oak reintroduction. The analysis also identified areas of unsuitable habitat with low restoration potential that could be targeted for oil and gas exploration, in lieu of occupied, high-quality habitats. Used in combination with GIS analysis and current LPCH population data, the habitat map represents a powerful conservation and management tool.

  13. GIS habitat analysis for lesser prairie-chickens in southeastern New Mexico.

    Science.gov (United States)

    Johnson, Kristine; Neville, Teri B; Neville, Paul

    2006-12-04

    We conducted Geographic Information System (GIS) habitat analyses for lesser prairie-chicken (LPCH, Tympanuchus pallidicinctus) conservation planning. The 876,799 ha study area included most of the occupied habitat for the LPCH in New Mexico. The objectives were to identify and quantify: 1. suitable LPCH habitat in New Mexico, 2. conversion of native habitats, 3. potential for habitat restoration, and 4. unsuitable habitat available for oil and gas activities. We found 16% of suitable habitat (6% of the study area) distributed in 13 patches of at least 3,200 ha and 11% of suitable habitat (4% of the study area) distributed in four patches over 7,238 ha. The area converted from native vegetation types comprised 17% of the study area. Ninety-five percent of agricultural conversion occurred on private lands in the northeastern corner of the study area. Most known herbicide-related conversions (82%) occurred in rangelands in the western part of the study area, on lands managed primarily by the US Bureau of Land Management (BLM). We identified 88,190 ha (10% of the study area) of habitats with reasonable restoration potential. Sixty-two percent of the primary population area (PPA) contained occupied, suitable, or potentially suitable habitat, leaving 38% that could be considered for oil and gas development. Although suitable LPCH habitat appears at first glance to be abundant in southeastern New Mexico, only a fraction of apparently suitable vegetation types constitute quality habitat. However, we identified habitat patches that could be restored through mesquite control or shin-oak reintroduction. The analysis also identified areas of unsuitable habitat with low restoration potential that could be targeted for oil and gas exploration, in lieu of occupied, high-quality habitats. Used in combination with GIS analysis and current LPCH population data, the habitat map represents a powerful conservation and management tool.

  14. Mechanisms of Gain Control by Voltage-Gated Channels in Intrinsically-Firing Neurons

    Science.gov (United States)

    Patel, Ameera X.; Burdakov, Denis

    2015-01-01

    Gain modulation is a key feature of neural information processing, but underlying mechanisms remain unclear. In single neurons, gain can be measured as the slope of the current-frequency (input-output) relationship over any given range of inputs. While much work has focused on the control of basal firing rates and spike rate adaptation, gain control has been relatively unstudied. Of the limited studies on gain control, some have examined the roles of synaptic noise and passive somatic currents, but the roles of voltage-gated channels present ubiquitously in neurons have been less explored. Here, we systematically examined the relationship between gain and voltage-gated ion channels in a conductance-based, tonically-active, model neuron. Changes in expression (conductance density) of voltage-gated channels increased (Ca2+ channel), reduced (K+ channels), or produced little effect (h-type channel) on gain. We found that the gain-controlling ability of channels increased exponentially with the steepness of their activation within the dynamic voltage window (voltage range associated with firing). For depolarization-activated channels, this produced a greater channel current per action potential at higher firing rates. This allowed these channels to modulate gain by contributing to firing preferentially at states of higher excitation. A finer analysis of the current-voltage relationship during tonic firing identified narrow voltage windows at which the gain-modulating channels exerted their effects. As a proof of concept, we show that h-type channels can be tuned to modulate gain by changing the steepness of their activation within the dynamic voltage window. These results show how the impact of an ion channel on gain can be predicted from the relationship between channel kinetics and the membrane potential during firing. This is potentially relevant to understanding input-output scaling in a wide class of neurons found throughout the brain and other nervous systems

  15. Analyzing locomotion synthesis with feature-based motion graphs.

    Science.gov (United States)

    Mahmudi, Mentar; Kallmann, Marcelo

    2013-05-01

    We propose feature-based motion graphs for realistic locomotion synthesis among obstacles. Among several advantages, feature-based motion graphs achieve improved results in search queries, eliminate the need of postprocessing for foot skating removal, and reduce the computational requirements in comparison to traditional motion graphs. Our contributions are threefold. First, we show that choosing transitions based on relevant features significantly reduces graph construction time and leads to improved search performances. Second, we employ a fast channel search method that confines the motion graph search to a free channel with guaranteed clearance among obstacles, achieving faster and improved results that avoid expensive collision checking. Lastly, we present a motion deformation model based on Inverse Kinematics applied over the transitions of a solution branch. Each transition is assigned a continuous deformation range that does not exceed the original transition cost threshold specified by the user for the graph construction. The obtained deformation improves the reachability of the feature-based motion graph and in turn also reduces the time spent during search. The results obtained by the proposed methods are evaluated and quantified, and they demonstrate significant improvements in comparison to traditional motion graph techniques.

  16. Quantifying functional connectivity: The role of breeding habitat, abundance, and landscape features on range-wide gene flow in sage-grouse

    Science.gov (United States)

    Jeffrey R. Row; Kevin E. Doherty; Todd B. Cross; Michael K. Schwartz; Sara Oyler-McCance; Dave E. Naugle; Steven T. Knick; Bradley C. Fedy

    2018-01-01

    Functional connectivity, quantified using landscape genetics, can inform conservation through the identification of factors linking genetic structure to landscape mechanisms. We used breeding habitat metrics, landscape attributes and indices of grouse abundance, to compare fit between structural connectivity and genetic differentiation within five long‐established Sage...

  17. Habitat associations of migrating and overwintering grassland birds in Southern Texas

    Science.gov (United States)

    Igl, Lawrence D.; Ballard, Bart M.

    1999-01-01

    We report on the habitat associations of 21 species of grassland birds overwintering in or migrating through southern Texas, during 1991-1992 and 1992-1993. Ninety percent of our grassland bird observations were made during winter and spring, and only 10% occurred during fall. Grassland species made up a high proportion of the total bird densities in grassland and shrub-grassland habitats, but much lower proportions in the habitats with more woody vegetation. Fewer grassland species were observed in grassland and woodland than in brushland, parkland, and shrub-grassland habitats. Grassland birds generally were found in higher densities in habitats that had woody canopy coverage of < 30%; densities of grassland birds were highest in shrub-grassland habitat and lowest in woodland habitat. Species that are grassland specialists on their breeding grounds tended to be more habitat specific during the nonbreeding season compared to shrub-grassland specialists, which were more general in their nonbreeding-habitat usage. Nonetheless, our data demonstrate that grassland birds occur in a variety of habitats during the nonbreeding season and seem to occupy a broader range of habitats than previously described.

  18. Habitat specialization through germination cueing: a comparative study of herbs from forests and open habitats.

    Science.gov (United States)

    Ten Brink, Dirk-Jan; Hendriksma, Harmen Pieter; Bruun, Hans Henrik

    2013-02-01

    This study examined the adaptive association between seed germination ecology and specialization to either forest or open habitats across a range of evolutionary lineages of seed plants, in order to test the hypotheses that (1) species' specialization to open vs. shaded habitats is consistently accompanied by specialization in their regeneration niche; and (2) species are thereby adapted to utilize different windows of opportunity in time (season) and space (habitat). Seed germination response to temperature, light and stratification was tested for 17 congeneric pairs, each consisting of one forest species and one open-habitat species. A factorial design was used with temperature levels and diurnal temperature variation (10 °C constant, 15-5 °C fluctuating, 20 °C constant, 25-15 °C fluctuating), and two light levels (light and darkness) and a cold stratification treatment. The congeneric species pair design took phylogenetic dependence into account. Species from open habitats germinated better at high temperatures, whereas forest species performed equally well at low and high temperatures. Forest species tended to germinate only after a period of cold stratification that could break dormancy, while species from open habitats generally germinated without cold stratification. The empirically derived germination strategies correspond quite well with establishment opportunities for forest and open-habitat plant species in nature. Annual changes in temperature and light regime in temperate forest delimit windows of opportunity for germination and establishment. Germination strategies of forest plants are adaptations to utilize such narrow windows in time. Conversely, lack of fit between germination ecology and environment may explain why species of open habitats generally fail to establish in forests. Germination strategy should be considered an important mechanism for habitat specialization in temperate herbs to forest habitats. The findings strongly suggest that

  19. Levels of metals and semimetals in sedimentary cores in Bertioga Channel, Brazil

    Science.gov (United States)

    Sartoretto, J. R.; Salaroli, A.; Figueira, R. C.

    2013-05-01

    The Baixada Santista is one of the most exploited and populated regions of São Paulo state. During the last decades, due to intense industrialization the Baixada Santista has passed through a strong process of environmental degradation. Metals in sediments are persistent, present toxicity in varied concentrations and may be deposited reaching biota habitats. In this context, high concentrations of metals represent environmental concern to costal management. Bertioga Channel is part of this complex system and is known mainly by a wide adjacent mangrove area. The channel is 25 km long, connecting the upstream region of Santos estuary to the adjacent ocean through an inlet located at the city of Bertioga. Urban development generates the concern of potential waste influx from surrounding streams, generating deposits and contaminating surface sediments along the channel, which may lead to adjacent coastal issues. The objective of this study was to characterize the concentration of the following metals at Bertioga Channel sediments: Al, As, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Sc, V and Zn. Five sediment cores were sampled along the channel and analyzed. Determination of metals concentration was based on methods SW 846 US EPA 3050B and EPA 7471. High As concentrations were observed at all cores, with considerable concentration similarity between the first and second sampling points. Analytical results showed that cores Bertioga 4 and Bertioga 5 have accumulated high quantity of metals and semimetals, mainly As, Cd and Cr. Normalization of concentration values showed low contamination at the cores. Nevertheless, As and Hg values indicated moderate to significant contamination at a few sampling points. Despite of the low probability of contamination demonstrated by the normalized values, increasing at the sediment surface of Enrichment Factor (ER), Pollution Load Index (PLI) and Sediment Pollution Index (SPI) parameters were observed. Results indicate that industrialization

  20. Food Web Response to Habitat Restoration in Various Coastal Wetland Ecosystems

    Science.gov (United States)

    James, W. R.; Nelson, J. A.

    2017-12-01

    Coastal wetland habitats provide important ecosystem services, including supporting coastal food webs. These habitats are being lost rapidly. To combat the effects of these losses, millions of dollars have been invested to restore these habitats. However, the relationship between restoring habitat and restoring ecosystem functioning is poorly understood. Analyzing energy flow through food web comparisons between restored and natural habitats can give insights into ecosystem functioning. Using published stable isotope values from organisms in restored and natural habitats, we assessed the food web response of habitat restoration in salt marsh, mangrove, sea grass, and algal bed ecosystems. We ran Bayesian mixing models to quantify resource use by consumers and generated habitat specific niche hypervolumes for each ecosystem to assess food web differences between restored and natural habitats. Salt marsh, mangrove, and sea grass ecosystems displayed functional differences between restored and natural habitats. Salt marsh and mangrove food webs varied in the amount of each resource used, while the sea grass food web displayed more variation between individual organisms. The algal bed food web showed little variation between restored and natural habitats.