WorldWideScience

Sample records for impurity concentration sn

  1. Anomalous temperature behavior of Sn impurities

    Haskel, D.; Shechter, H.; Stern, E.A.; Newville, M.; Yacoby, Y.

    1993-01-01

    Sn impurities in Pb and Ag hosts have been investigated by Moessbauer effect and in Pb by x-ray-absorption fine-structure (XAFS) studies. The Sn atoms are dissolved up to at least 2 at. % in Pb and up to at least 8 at. % in Ag for the temperature ranges investigated. The concentration limit for Sn-Sn interactions is 1 at. % for Pb and 2 at. % for Ag as determined experimentally by lowering the Sn concentration until no appreciable change occurs in the Moessbauer effect. XAFS measurements verify that the Sn impurities in Pb are dissolved and predominantly at substitutional sites. For both hosts the temperature dependence of the spectral intensities of isolated Sn impurities below a temperature T 0 is as expected for vibrating about a lattice site. Above T 0 the Moessbauer spectral intensity exhibits a greatly increased rate of drop-off with temperature without appreciable broadening. This drop-off is too steep to be explained by ordinary anharmonic effects and can be explained by a liquidlike rapid hopping of the Sn, localized about a lattice site. Higher-entropy-density regions of radii somewhat more than an atomic spacing surround such impurities, and can act as nucleation sites for three-dimensional melting

  2. FP-LAPW Calculations of the EFG at Cd Impurities in Rutile SnO2

    Errico, L. A.; Fabricius, G.; Renteria, M.

    2001-01-01

    We report an ab initio study of the electric-field gradient (EFG) at Cd impurities located at the cation site in the semiconductor SnO 2 (rutile phase). The study was performed with the WIEN97 implementation of the FP-LAPW method. In order to simulate the diluted Cd-impurity in the SnO 2 host and to calculate the electronic structure of the system we used a 72-atoms super-cell, studying the relaxation introduced by the impurity in the lattice. The free-relaxation process performed shows that the relaxations of the oxygen nearest-neighbors of the impurity are not isotropic. Our prediction for the EFG tensor are compared with experimental results and point-charge model predictions

  3. Impurity concentration limits and activation in fusion reactor structural materials

    Zucchetti, M.

    1991-01-01

    This paper examines waste management problems related to impurity activation in first-wall, shield, and magnet materials for fusion reactors. Definitions of low activity based on hands-on recycling, remote recycling, and shallow land burial waste management criteria are discussed. Estimates of the impurity concentration in low-activation materials (elementally substituted stainless steels and vanadium alloys) are reported. Impurity activation in first-wall materials turns out to be critical after a comparison of impurity concentration limits and estimated levels. Activation of magnet materials is then considered: Long-term activity is not a concern, while short-term activity is. In both cases, impurity activation is negligible. Magnet materials, and all other less flux-exposed materials, have no practical limitation on impurities in terms of induced radioactivity

  4. Effect of impurities in niobium on the growth of superconducting Nb/sub 3//Sn. [Al, Cu, Ge, Si, Sn, Zr impurities

    Sekizawa, T

    1974-01-01

    In order to examine the possibility of reducing the heat treatment temperature in the manufacturing process of the superconducting intermetallic compounds wire or ribbon by the metallurgical bond method, tin cored specimens of niobium including a small amount of impurity (Al, Cu, Ge, Si, Sn and Zr) have been prepared, and the critical currents measured as a function of the heat treatment temperature and time. Experimental results are summarized as follows. (1) The effect of the impurity added into niobium is to stabilize the dislocation network cell structure in niobium, caused by the cold working, up to the forming temperature of Nb/sub 3/Sn. The stabilized dislocation network structure is considered to serve as diffusion pipes of the tin atom. As this diffusion (microscopic) is predominant over bulk diffusion (macroscopic), the cored specimen made of niobium including impurities has lower forming temperature of Nb/sub 3/Sn compared with the specimen made of pure niobium. (2) The critical current vs. heat treatment temperature characteristics show that the critical current peaks at 900/sup 0/C in the case of niobium including Si, while at 950/sup 0/C in the case of pure niobium. 6 references.

  5. Role of Sn impurity on electronic topological transitions in 122 Fe-based superconductors

    Ghosh, Haranath, E-mail: hng@rrcat.gov.in [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094 (India); Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Sen, Smritijit [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094 (India); Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India)

    2016-08-25

    We show that only a few percentage of Sn doping at the Ba site on BaFe{sub 2}As{sub 2}, can cause electronic topological transition, namely, the Lifshitz transition. A hole like d{sub xy} band of Fe undergoes electron like transition due to 4% Sn doping. Lifshitz transition is found in BaFe{sub 2}As{sub 2} system around all the high symmetry points. Our detailed first principles simulation predicts absence of any Lifshitz transition in other 122 family compounds like SrFe{sub 2}As{sub 2}, CaFe{sub 2}As{sub 2} in agreement with experimental observations. This work bears practical significance due to the facts that a few percentage of Sn impurity is in-built in tin-flux grown single crystals method of synthesizing 122 materials and inter-relationship among the Lifshitz transition, magnetism and superconductivity. - Highlights: • Electronic topological transition due to Sn contamination in BaFe{sub 2}As{sub 2}. • Hole like Fe-d{sub xy} band converts into electron like in 3% Sn contaminated BaFe{sub 2}As{sub 2}. • Electron like Fe-d{sub xz}, d{sub yz} bands moves above Fermi Level at X,Y points. • No Lifshitz transition found in Sn-contaminated Sr-122, Ca-122 systems.

  6. Impurity contamination effects on the interaction of Li and Sn Films on W (poly)

    Fasoranti, Oluseyi; Koel, Bruce

    2016-10-01

    Plasma-solid interactions under fusion divertor conditions lead to continuous material erosion and may result in performance degradation of the plasma-facing components. Liquid metals such as Li and Sn may help to circumvent this issue due to their ability for self-recovery and heat-flux management. This has driven interest in understanding plasma-liquid metal interactions. We have shown in our lab that surface science experiments can examine discrete aspects of plasma-surface interactions by enabling clean and controlled deposition of metal films. We will review our recent results on the thermal stability of ultrathin Li and Sn films on a polycrystalline W surface using surface diagnostic methods such as Temperature Programmed Desorption, Auger Electron Spectroscopy, and Ion Scattering Spectroscopy. These studies examine Li-W and Sn-W interfaces and investigate the impact of impurities. We will discuss relevant issues such as the differences in oxygen uptake between solid and liquid lithium films and the effects of post-oxidation, as well as pre-adsorbed surface oxygen and carbon, on the thermal stability of these films. We plan to present additional studies of deuterium ion uptake and retention on Li and Sn films. Support was provided through U.S. Department of Energy, Office of Science/Fusion Energy Sciences under Award Number DE-SC0012890.

  7. FP-LAPW Calculations of the EFG at Cd Impurities in Rutile SnO{sub 2}

    Errico, L. A.; Fabricius, G.; Renteria, M. [Universidad Nacional de La Plata, Instituto de Fisica La Plata (IFLP-CONICET) - Departamento de Fisica, Facultad de Ciencias Exactas (Argentina)

    2001-11-15

    We report an ab initio study of the electric-field gradient (EFG) at Cd impurities located at the cation site in the semiconductor SnO{sub 2}(rutile phase). The study was performed with the WIEN97 implementation of the FP-LAPW method. In order to simulate the diluted Cd-impurity in the SnO{sub 2} host and to calculate the electronic structure of the system we used a 72-atoms super-cell, studying the relaxation introduced by the impurity in the lattice. The free-relaxation process performed shows that the relaxations of the oxygen nearest-neighbors of the impurity are not isotropic. Our prediction for the EFG tensor are compared with experimental results and point-charge model predictions.

  8. Fabrication and sulfurization of Cu{sub 2}SnS{sub 3} thin films with tuning the concentration of Cu-Sn-S precursor ink

    Wang, Chi-Jie [Institute of Microelectronics & Department of Electrical Engineering, National Cheng Kung University, Taiwan (China); Shei, Shih-Chang, E-mail: scshei@mail.nutn.edu.tw [Department of Electrical Engineering, Nation University of Tainan, Taiwan (China); Chang, Shih-Chang [Department of Electrical Engineering, Nation University of Tainan, Taiwan (China); Chang, Shoou-Jinn [Institute of Microelectronics & Department of Electrical Engineering, National Cheng Kung University, Taiwan (China)

    2016-12-01

    Highlights: • Tuning the relative reaction rate of component phases proved to be beneficial in controlling the reaction process. • Low-concentration samples display closely packed Cu{sub 2}SnS{sub 3} grains with a flat morphology. • Optical band-gap energy measured at 1.346 eV suitable for thin-film solar cell applications. - Abstract: In this study, Cu-Sn-S nanoinks were synthesized by combining chelating polyetheramine to Cu, Sn, S powders of various concentrations. X-ray diffraction patterns indicate that nanoinks synthesized at low concentrations are composed almost entirely of binary phases SnS and Cu{sub 2}S. Synthesizing nanoinks at higher concentrations decreased the quantity of binary phase and led to the appearance of ternary phase Cu{sub 4}SnS{sub 4}. Following sulfurization, single phase Cu{sub 2}SnS{sub 3} (CTS) thin film was obtained from nanoinks of low concentration; however, impurities, such as Cu{sub 2}S were detected in the thin film obtained from nanoinks of high concentration. This can be attributed to the fact that lower concentrations reduce the reactivity of all the elements. As a result, the SnS phase reacted more readily and more rapidly, resulting in the early formation of a stoichiometric CTS thin film during sulfurization. Under these reaction conditions, Cu{sub 2}S and SnS transform into CTS and thereby prevent the formation of unwanted phases of Cu{sub 2}S and Cu{sub 4}SnS{sub 4}. Raman spectra revealed that second phase Cu{sub 2}S phase remained in the high-concentration samples, due to an increase in reactivity due to the participation of a greater proportion of the copper in the reaction. The surface microstructure of low-concentration samples display closely packed Cu{sub 2}SnS{sub 3} grains with a flat morphology and an atomic composition ratio of Cu:Sn:S = 34.69:15.90:49.41, which is close to stoichiometric. Hall measurement revealed that low-concentration sample has superior electrical properties; i.e., a hole

  9. First principles investigation of interaction between impurity atom (Si, Ge, Sn) and carbon atom in diamond-like carbon system

    Li, Xiaowei; Wang, Aiying; Lee, Kwang-Ryeol

    2012-01-01

    The interaction between impurity atom (Si, Ge, and Sn) and carbon atom in diamond-like carbon (DLC) system was investigated by the first principles simulation method based on the density functional theory. The tetrahedral configuration was selected as the calculation model for simplicity. When the bond angle varied in a range of 90°–130° from the equivalent state of 109.471°, the distortion energy and the electronic structures including charge density of the highest occupied molecular orbital (HOMO) and partial density of state (PDOS) in the different systems were calculated. The results showed that the addition of Si, Ge and Sn atom into amorphous carbon matrix significantly decreased the distortion energy of the system as the bond angles deviated from the equilibrium one. Further studies of the HOMO and PDOS indicated that the weak covalent bond between Si(Ge, Sn) and C atoms was formed with the decreased strength and directionality, which were influenced by the electronegative difference. These results implied that the electron transfer behavior at the junction of carbon nano-devices could be tailored by the impurity element, and the compressive stress in DLC films could be reduced by the incorporation of Si, Ge and Sn because of the formation of weaker covalent bonds. - Highlights: ►Distortion energy after bond angle distortion was decreased comparing with C-C unit. ►The weak covalent bond was formed between impurity atoms and corner carbon atoms. ►Observed electron transfer behavior affected the strength and directionality of bond. ►Reduction of strength and directionality of bond contributed to small energy change.

  10. Long-range ferromagnetic order induced by a donor impurity band exchange in SnO{sub 2}:Er{sup 3+} nanoparticles

    Aragón, F. H.; Coaquira, J. A. H. [Núcleo de Física Aplicada, Institute of Physics, University of Brasília, Brasília DF 70910-900 (Brazil); Chitta, V. A. [Instituto de Física, Universidade de São Paulo, São Paulo, SP 05508-000 (Brazil); Hidalgo, P. [Faculdade Gama-FGA, Sector Central Gama, Universidade de Brasília, Brasília, DF72405-610 (Brazil); Brito, H. F. [Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-000 (Brazil)

    2013-11-28

    In this work, the structural and magnetic properties of Er-doped SnO{sub 2} (SnO{sub 2}:Er) nanoparticles are reported. The SnO{sub 2}:Er nanoparticles have been synthesized by a polymer precursor method with Er content from 1.0% to 10.0%. X-ray diffraction results indicate the formation of only the rutile-type structure in all samples. The estimated mean crystallite size shows a decrease from ∼10 to ∼4 nm when the Er content is increased from 1.0% to 10.0%. The particle size values have been corroborated by transmission electron microscopy technique. The thermal dependence of the magnetization is consistent with the 3+ oxidation state of erbium ions for all samples. A strong paramagnetic-like behavior coexisting with a ferromagnetic phase has been determined for samples with Er content below 5.0%. Above this concentration, only a paramagnetic behavior has been determined. Isothermal magnetization curves are consistent with the occurrence of long-range ferromagnetic order mediated by donor electrons forming bound magnetic polarons which overlap to produce a spin-split impurity band.

  11. Changes of electronic structure of SnTe due to high concentration of Sn vacancies

    Masek, J.; Nuzhnyj, D.N.

    1997-01-01

    Non-stoichiometric Sn 1-y Te is a strongly degenerated n-type semiconductor. This is important for understanding unusual features of magnetic behaviour of Sn 1-x Gd x Te where the relative positions of the Fermi energy and the atomic d-level of Gd govern the exchange coupling.The influence of the Sn vacancies on the band structure cannot be neglect if their concentration reaches a few atomic percent. We address this problem by using a tight-binding coherent potential approach and show that although the character of the bands remains unchanged, they are modified so that ε d can come out above the heavy-hole band. (author)

  12. Influence of negative substrate bias voltage on the impurity concentrations in Zr films

    Lim, J.-W.; Bae, J.W.; Mimura, K.; Isshiki, M.

    2006-01-01

    Zr films were deposited on Si(1 0 0) substrates without a substrate bias voltage and with substrate bias voltages of -50 V and -100 V using a non-mass separated ion beam deposition system. Secondary ion mass spectrometry and glow discharge mass spectrometry were used to determine the impurity concentrations in a Zr target and Zr films. It was found that the total amount of impurities in the Zr film deposited at the substrate bias voltage of -50 V was much lower than that in the Zr film deposited without the substrate bias voltage. It means that applying a negative bias voltage to the substrate can suppress the increase in impurities of Zr films. Furthermore, it was confirmed that dominant impurity elements such as C, N and O have a considerable effect on the purity of Zr films and these impurities can be remarkably reduced by applying the negative substrate bias voltage

  13. Temperature varying photoconductivity of GeSn alloys grown by chemical vapor deposition with Sn concentrations from 4% to 11%

    Hart, John; Adam, Thomas; Kim, Yihwan; Huang, Yi-Chiau; Reznicek, Alexander; Hazbun, Ramsey; Gupta, Jay; Kolodzey, James

    2016-03-01

    Pseudomorphic GeSn layers with Sn atomic percentages between 4.5% and 11.3% were grown by chemical vapor deposition using digermane and SnCl4 precursors on Ge virtual substrates grown on Si. The layers were characterized by x-ray diffraction rocking curves and reciprocal space maps. Photoconductive devices were fabricated, and the dark current was found to increase with Sn concentration. The responsivity of the photoconductors was measured at a wavelength of 1.55 μm using calibrated laser illumination at room temperature and a maximum value of 2.7 mA/W was measured for a 4.5% Sn device. Moreover, the responsivity for higher Sn concentration was found to increase with decreasing temperature. Spectral photoconductivity was measured using Fourier transform infrared spectroscopy. The photoconductive absorption edge continually increased in wavelength with increasing tin percentage, out to approximately 2.4 μm for an 11.3% Sn device. The direct band gap was extracted using Tauc plots and was fit to a bandgap model accounting for layer strain and Sn concentration. This direct bandgap was attributed to absorption from the heavy-hole band to the conduction band. Higher energy absorption was also observed, which was thought to be likely from absorption in the light-hole band. The band gaps for these alloys were plotted as a function of temperature. These experiments show the promise of GeSn alloys for CMOS compatible short wave infrared detectors.

  14. Radiated Power and Impurity Concentrations in the EXTRAP-T2R Reversed-Field Pinch

    Corre, Y.; Rachlew, E.; Cecconello, M.; Gravestijn, R. M.; Hedqvist, A.; Pégourié, B.; Schunke, B.; Stancalie, V.

    2005-01-01

    A numerical and experimental study of the impurity concentration and radiation in the EXTRAP-T2R device is reported. The experimental setup consists of an 8-chord bolometer system providing the plasma radiated power and a vacuum-ultraviolet spectrometer providing information on the plasma impurity content. The plasma emissivity profile as measured by the bolometric system is peaked in the plasma centre. A one dimensional Onion Skin Collisional-Radiative model (OSCR) has been developed to compute the density and radiation distributions of the main impurities. The observed centrally peaked emissivity profile can be reproduced by OSCR simulations only if finite particle confinement time and charge-exchange processes between plasma impurities and neutral hydrogen are taken into account. The neutral hydrogen density profile is computed with a recycling code. Simulations show that recycling on metal first wall such as in EXTRAP-T2R (stainless steel vacuum vessel and molybdenum limiters) is compatible with a rather high neutral hydrogen density in the plasma centre. Assuming an impurity concentration of 10% for oxygen and 3% for carbon compared with the electron density, the OSCR calculation including lines and continuum emission reproduces about 60% of the total radiated power with a similarly centrally peaked emissivity profile. The centrally peaked emissivity profile is due to low ionisation stages and strongly radiating species in the plasma core, mainly O4+ (Be-like) and C3+ Li-like.

  15. Radiated Power and Impurity Concentrations in the EXTRAP-T2R Reversed-Field Pinch

    Corre, Y.; Rachlew, E.; Gravestijn, R.M.; Hedqvist, A.; Stancalie, V.

    2005-01-01

    A numerical and experimental study of the impurity concentration and radiation in the EXTRAP-T2R device is reported. The experimental setup consists of an 8-chord bolometer system providing the plasma radiated power and a vacuum ultraviolet spectrometer providing information on the plasma impurity content. The plasma emissivity profile as measured by the bolometric system is peaked in the plasma centre. A one dimensional Onion Skin Collisional-Radiative model (OSCR) has been developed to compute the density and radiation distributions of the main impurities. The observed centrally peaked emissivity profile can be reproduced by OSCR simulations only if finite particle confinement time and charge-exchange processes between plasma impurities and neutral hydrogen are taken into account. The neutral hydrogen density profile is computed with a recycling code. Simulations show that recycling on metal first wall such as in EXTRAP-T2R (stainless steel vacuum vessel and molybdenum limiters) is compatible with a rather high neutral hydrogen density in the plasma centre. Assuming an impurity concentration of 10% for oxygen and 3% for carbon compared with the electron density, the OSCR calculation including lines and continuum emission reproduces about 60% of the total radiated power with a similarly centrally peaked emissivity profile. The centrally peaked emissivity profile is due to low ionisation stages and strongly radiating species in the plasma core, mainly O 4+ (Be-like) and C 3+ (Li-like)

  16. The assessment of the impurities concentration into CANDU steam generator crevices

    Lucan, D.; Fulger, M.; Florea, S.; Jinescu, Ghe.; Woinaroschy, Al.

    2001-01-01

    Crevice corrosion involves a number of simultaneous and interacting operations, including mass transfer processes, production of metal ions within the crevice and hydrolysis reactions, resulting in a very aggressive solution from the point of view of corrosion. These intermediary corrosion processes are in a complex interdependence and they imply a number of important parameters, including both the crevice gap and depth. The major goal of this paper was development of a mathematical model for the calculation of the concentrations of impurities (Na + , Cl - , Fe 2+ ) into crevices and experimental research related to this process. There were identified the important experimental parameters that require further experimental research. This model considers all the processes that interfere in the impurities concentration mechanism achieved into the crevice but it also makes some assumptions for the easy solving of mathematical equations. Because the measurement of the impurities concentration into the steam generator and/or deposition in the crevices solutions is not achievable, one cannot estimate the corrosion intensity inside these locations. The mathematical model presented in this paper may predict the impurities concentration in the crevices. Based on the results obtained in the study of corrosion one can appreciate the corrosion intensity in the materials with crevices or conceive an experimental program, which could lead to results. The predictive quality of the model may contribute to the choice of new design solutions, development of new alloys and criteria of material selection. (authors)

  17. Modeling of the interfacial separation work in relation to impurity concentration in adjoining materials

    Alekseev, Ilia M.; Makhviladze, Tariel M.; Minushev, Airat Kh.; Sarychev, Mikhail E.

    2010-02-01

    On the basis of the general thermodynamic approach developed in a model describing the influence of point defects on the separation work at an interface of solid materials is developed. The kinetic equations describing the defect exchange between the interface and the material bulks are formulated. The model have been applied to the case when joined materials contain such point defects as impurity atoms (interstitial and substitutional), concretized the main characteristic parameters required for a numerical modeling as well as clarified their domains of variability. The results of the numerical modeling concerning the dependences on impurity concentrations and the temperature dependences are obtained and analyzed. Particularly, the effects of interfacial strengthening and adhesion incompatibility predicted analytically for the case of impurity atoms are verified and analyzed.

  18. Hyperfine and ion beam interaction studies of Sn, Te, I and Sm impurities in silicon

    Kemerink, G.J.

    1981-01-01

    In this thesis the author reports investigations on ion implanted and oven or laser annealed silicon using Moessbauer spectroscopy, Rutherford backscattering (RBS) and channeling, time differential perturbed angular correlation and the Hall-effect. Chapter 1 gives an introduction to this field of research. Chapter 2 deals with an outline of the experimental methods used throughout this work. In chapter 3 results are presented from RBS and channeling experiments on Te-implanted Si. Chapters 4 and 5 concern the results from a study of dopant dependent effects in laser annealed TeSi using 119 Sn, 125 Te and 129 I-Moessbauer spectroscopy. Chapter 6 gives the results from a study of as-implanted and oven annealed TeSi using 129 I-time differential perturbed angular correlation and 129 I-Moessbauer spectroscopy. Chapter 7 describes the results from RBS and channeling experiments on oven and laser annealed ISi. Chapter 8 deals with Hall-effect measurements on TeSi and ISi. Chapter 9 finally covers the investigations of 153 Sm-implanted diamond, Si, Ge and α-Sn using channeling and 153 Eu-Moessbauer spectroscopy. (Auth.)

  19. Temperature varying photoconductivity of GeSn alloys grown by chemical vapor deposition with Sn concentrations from 4% to 11%

    Hart, John; Hazbun, Ramsey; Gupta, Jay; Kolodzey, James [Department of Electrical Engineering, University of Delaware, 140 Evans Hall, Newark, Delaware 19716 (United States); Adam, Thomas [College of Nanoscale Science and Engineering, SUNY, Albany, New York 12203 (United States); Kim, Yihwan; Huang, Yi-Chiau [Applied Materials, Sunnyvale, California 94085 (United States); Reznicek, Alexander [IBM Research at Albany Nanotech, Albany, New York 12203 (United States)

    2016-03-07

    Pseudomorphic GeSn layers with Sn atomic percentages between 4.5% and 11.3% were grown by chemical vapor deposition using digermane and SnCl{sub 4} precursors on Ge virtual substrates grown on Si. The layers were characterized by x-ray diffraction rocking curves and reciprocal space maps. Photoconductive devices were fabricated, and the dark current was found to increase with Sn concentration. The responsivity of the photoconductors was measured at a wavelength of 1.55 μm using calibrated laser illumination at room temperature and a maximum value of 2.7 mA/W was measured for a 4.5% Sn device. Moreover, the responsivity for higher Sn concentration was found to increase with decreasing temperature. Spectral photoconductivity was measured using Fourier transform infrared spectroscopy. The photoconductive absorption edge continually increased in wavelength with increasing tin percentage, out to approximately 2.4 μm for an 11.3% Sn device. The direct band gap was extracted using Tauc plots and was fit to a bandgap model accounting for layer strain and Sn concentration. This direct bandgap was attributed to absorption from the heavy-hole band to the conduction band. Higher energy absorption was also observed, which was thought to be likely from absorption in the light-hole band. The band gaps for these alloys were plotted as a function of temperature. These experiments show the promise of GeSn alloys for CMOS compatible short wave infrared detectors.

  20. Temperature varying photoconductivity of GeSn alloys grown by chemical vapor deposition with Sn concentrations from 4% to 11%

    Hart, John; Hazbun, Ramsey; Gupta, Jay; Kolodzey, James; Adam, Thomas; Kim, Yihwan; Huang, Yi-Chiau; Reznicek, Alexander

    2016-01-01

    Pseudomorphic GeSn layers with Sn atomic percentages between 4.5% and 11.3% were grown by chemical vapor deposition using digermane and SnCl 4 precursors on Ge virtual substrates grown on Si. The layers were characterized by x-ray diffraction rocking curves and reciprocal space maps. Photoconductive devices were fabricated, and the dark current was found to increase with Sn concentration. The responsivity of the photoconductors was measured at a wavelength of 1.55 μm using calibrated laser illumination at room temperature and a maximum value of 2.7 mA/W was measured for a 4.5% Sn device. Moreover, the responsivity for higher Sn concentration was found to increase with decreasing temperature. Spectral photoconductivity was measured using Fourier transform infrared spectroscopy. The photoconductive absorption edge continually increased in wavelength with increasing tin percentage, out to approximately 2.4 μm for an 11.3% Sn device. The direct band gap was extracted using Tauc plots and was fit to a bandgap model accounting for layer strain and Sn concentration. This direct bandgap was attributed to absorption from the heavy-hole band to the conduction band. Higher energy absorption was also observed, which was thought to be likely from absorption in the light-hole band. The band gaps for these alloys were plotted as a function of temperature. These experiments show the promise of GeSn alloys for CMOS compatible short wave infrared detectors.

  1. The role of Co impurities and oxygen vacancies in the ferromagnetism of Co-doped SnO2: GGA and GGA+U studies

    Wang Hongxia; Yan Yu; Mohammed, Y. Sh.; Du Xiaobo; Li Kai; Jin Hanmin

    2009-01-01

    The electronic structure and ferromagnetic stability of Co-doped SnO 2 are studied using the first-principle density functional method within the generalized gradient approximation (GGA) and GGA+U schemes. The addition of effective U Co transforms the ground state of Co-doped SnO 2 to insulating from half-metallic and the coupling between the nearest neighbor Co spins to weak antimagnetic from strong ferromagnetic. GGA+U Co calculations show that the pure substitutional Co defects in SnO 2 cannot induce the ferromagnetism. Oxygen vacancies tend to locate near Co atoms. Their presence increases the magnetic moment of Co and induces the ferromagnetic coupling between two Co spins with large Co-Co distance. The calculated density of state and spin density distribution calculated by GGA+U Co show that the long-range ferromagnetic coupling between two Co spins is mediated by spin-split impurity band induced by oxygen vacancies. More charge transfer from impurity to Co-3d states and larger spin split of Co-3d and impurity states induced by the addition of U Co enhance the ferromagnetic stability of the system with oxygen vacancies. By applying a Coulomb U O on O 2 s orbital, the band gap is corrected for all calculations and the conclusions derived from GGA+U Co calculations are not changed by the correction of band gap.

  2. Fast neutron-induced changes in net impurity concentration of high-resistivity silicon

    Tsveybak, I.; Bugg, W.; Harvey, J.A.; Walter, J.

    1992-01-01

    Resistivity changes produced by 1 MeV neutron irradiation at room temperature have been measured in float-zone grown n and p-type silicon with initial resistivities ranging from 1.8 to 100 kΩcm. Observed changes are discussed in terms of net electrically active impurity concentration. A model is presented which postulates escape of Si self-interstitials and vacancies from damage clusters and their subsequent interaction with impurities and other pre-existing defects in the lattice. These interactions lead to transfer of B and P from electrically active substitutional configurations into electrically inactive positions (B i , Pi i , and E-center), resulting in changes of net electrically active impurity concentration. The changes in spatial distribution of resistivity are discussed, and the experimental data are fit by theoretical curves. Differences in the behavior of n-type and p-type material are explained on the basis of a faster removal of substitutional P and a more nonuniform spatial distribution of the original P concentration

  3. A Calibration to Predict Concentrations of Impurities in Plutonium Oxide by Prompt Gamma Analysis

    Narlesky, J.E.; Kelly, E.J.; Foster, L.A.

    2005-01-01

    Prompt gamma (PG) analysis has been used to identify the presence of certain impurities in plutonium oxide, which has been stored in 3013 containers. A regression analysis was used to evaluate the trends between the count rates obtained from PG analysis and the concentration of the impurities in plutonium oxide samples measured by analytical chemistry techniques. The results of the analysis were used to obtain calibration curves, which may be used to predict the concentration of Al, Be, Cl, F, Mg, and Na in the 3013 containers. The scatter observed in the data resulted from several factors including sample geometry, error in sampling for chemical assay, statistical counting error, and intimacy of mixing of impurities and plutonium. Standards prepared by mixing plutonium oxide with CaF 2 , NaCl, and KCl show that intimacy mixing and sampling error have the largest influence on the results. Although these factors are difficult to control, the calibrations are expected to yield semiquantitative results that are sufficient for the purpose of ordering or ranking

  4. Beneficiation of titanium concentrate (anatase) by HCl/H2O2 leaching of impurities

    Trindade, R.B.E.; Teixeira, L.A.C.

    1988-01-01

    The HCl/H 2 O 2 leaching of impurities from a Brazilian anatase (TiO 2 ) concentrate has been investigated by factorial experimentations. The effects of the following variables were investigated: temperature (50-90 0 C), redox potential (with and without oxidizing agent-H 2 O 2 ) and HCl concentration (4-18,5%). The conclusions were based on the analyses of Fe, Ca, P, Al, Si, Th,Ce, La, U and Ti in the beneficiated concentrates. The final results recommended the following optimum operational conditions, in a four stage countercurrent leaching: in the 4 th reactor (discharge of beneficiated concentrate): HCl fed at 18.5%, T=75 0 C, and addition of H 2 O 2 at a potential (eH) of 850 mV; in the first three reactors: T=90 0 C; with no oxidizing agent. (author) [pt

  5. Systematic study of hyperfine fields in Rh2 Y Z type Heusler alloys with 119 Sn impurity using Moessbauer spectroscopy

    Ramos, S.M.M.

    1985-01-01

    The magnetic hyperfine fields in the Heusler alloys Rh 2 Mn .98 Ge Sn 02 , Rh 2 Mn Ge .98 Sn .02 , Rh 2 Mn Pb .98 Sn .02 and Rh 2 Mn Sn has been studied by 119 Sn Moessbauer spectroscopy at 293 K, 77 K, 4.2 K and 293 K with applied external magnetic field. The results show that when one compare the magnetic hyperfine fields systematic with the Heusler alloys X 2 Mn Z (X = Co, Ni, Cu, Pd, and Z = s p metal), this systematic is similar to the Co alloys, although can not explained by the currents models for the Heusler alloys. (author)

  6. The effects of impurity composition and concentration in reactor structure material on neutron activation inventory in pressurized water reactor

    Cha, Gil Yong; Kim, Soon Young [RADCORE, Daejeon (Korea, Republic of); Lee, Jae Min [TUV Rheinland Korea, Seoul (Korea, Republic of); Kim, Yong Soo [Hanyang University, Seoul (Korea, Republic of)

    2016-06-15

    The neutron activation inventories in reactor vessel and its internals, and bio-shield of a PWR nuclear power plant were calculated to evaluate the effect of impurity elements contained in the structural materials on the activation inventory. Carbon steel is, in this work, used as the reactor vessel material, stainless steel as the reactor vessel internals, and ordinary concrete as the bio-shield. For stainless steel and carbon steel, one kind of impurity concentration was employed, and for ordinary concrete five kinds were employed in this study using MCNP5 and FISPACT for the calculation of neutron flux and activation inventory, respectively. As the results, specific activities for the cases with impurity elements were calculated to be more than twice than those for the cases without impurity elements in stainless and carbon steel. Especially, the specific activity for the concrete material with impurity elements was calculated to be 30 times higher than that without impurity. Neutron induced reactions and activation inventories in each material were also investigated, and it is noted that major radioactive nuclide in steel material is Co-60 from cobalt impurity element, and, in concrete material, Co-60 and Eu-152 from cobalt and europium impurity elements, respectively. The results of this study can be used for nuclear decommissioning plan during activation inventory assessment and regulation, and it is expected to be used as a reference in the design phase of nuclear power plant, considering the decommissioning of nuclear power plants or nuclear facilities.

  7. Impurity identifications, concentrations and particle fluxes from spectral measurements of the EXTRAP T2R plasma

    Menmuir, S.; Kuldkepp, M.; Rachlew, E.

    2006-10-01

    An absolute intensity calibrated 0.5 m spectrometer with optical multi-channel analyser detector was used to observe the visible-UV radiation from the plasma in the EXTRAP T2R reversed field pinch experiment. Spectral lines were identified indicating the presence of oxygen, chromium, iron and molybdenum impurities in the hydrogen plasma. Certain regions of interest were examined in more detail and at different times in the plasma discharge. Impurity concentration calculations were made using the absolute intensities of lines of OIV and OV measured at 1-2 ms into the discharge generating estimates of the order of 0.2% of ne in the central region rising to 0.7% of ne at greater radii for OIV and 0.3% rising to 0.6% for OV. Edge electron temperatures of 0.5-5 eV at electron densities of 5-10×1011 cm-3 were calculated from the measured relative intensities of hydrogen Balmer lines. The absolute intensities of hydrogen lines and of multiplets of neutral chromium and molybdenum were used to determine particle fluxes (at 4-5 ms into the plasma) of the order 1×1016, 7×1013 and 3×1013 particles cm-2 s-1, respectively.

  8. Analytical model of impurity concentration during steam generation in permeable porous structures

    Polonskii, V.S.; Orlov, A.V.

    1993-01-01

    A model is proposed to describe the mass transfer of impurities during steam generation on a surface covered by porous deposits of corrosion products. The model is based on replacement of the actual structure of the deposits by a system of cylindrical fluid and vapor channels in which the flow of vapor and a liquid film is described by the Navier-Stokes equations. The driving force in the process is assumed to be the difference in the Laplacian pressures due to surface tension on the front and back sides of elongated vapor bubbles. Calculations performed for the operating conditions of the drums of the steam generators of nuclear power plants with water-moderated water-cooled reactors show that the mass transfer rate is extremely low in the gaps in cold drums and that the concentration of aggressive impurities deep within these channels may reach two or more orders of magnitude-thus leading to rapid corrosion. Almost complete vaporization occurs in the capillary channels of hot drums with deposits, which probably precludes corrosion in the channel depths. However, corrosion damage remains a possibility at the entrance to the channels (on the side of the second loop)

  9. Effect of heat treatment and impurity concentration on some mechanical properties V-15Cr-5Ti alloy

    Loomis, B.A.; Kestel, B.J.; Diercks, D.R.

    1986-03-01

    The effects of heat treatment and O, N, C, Si, and S impurity level on the yield strength, ductility, and fracture mode for specimens from four different heats of the V-15Cr-5Ti alloy are presented. The heat treatments for the alloy consisted of annealing as-rolled material for one hour at either 950, 1050, 1125, or 1200 0 C. The total oxygen, nitrogen, and carbon impurity concentration ranged from 400 to 1200 wppm. The Si concentration ranged from 300 to 1050 wppm, and the S concentration ranged from 440 to 1100 wppm. The yield strength and ductility for the alloy, regardless of impurity concentration, exhibited minimum and maximum values, respectively, for the 1125 0 C anneal. The primary mode of failure for the tensile specimens was transgranular fracture

  10. The influence of impurity concentration and magnetic fields on the superconducting transition of high-purity titanium

    Peruzzi, A.; Gottardi, E.; Peroni, I.; Ponti, G.; Ventura, G

    1999-08-01

    The influence of impurity concentration c and applied magnetic field H on the superconducting transition of high-purity commercial titanium samples was investigated. The superconductive transition temperature T{sub C} was found to be very sensitive to the impurity concentration (dT{sub C}/dc {approx} -0.6 mK/w.ppm) and to the applied magnetic field (dT{sub C}/dH {approx} -1.1 mK/G). A linear dependence of T{sub C} decrease on impurity concentration, as theoretically predicted by various authors, was observed. In the purest sample, a linear decrease of T{sub C} on the applied magnetic field was found. The run-to-run and sample-to-sample reproducibility of the transition of the same sample was evaluated, and its suitability as a thermometric reference point below 1 K was discussed.

  11. Concentration dependence of fluorine impurity spin-lattice relaxation rate in bone mineral

    Code, R.F.; Armstrong, R.L.; Cheng, P.-T.

    1992-01-01

    The concentration dependence of the fluoride ion spin-lattice relaxation rate has been observed by nuclear magnetic resonance experiments on samples of defatted and dried bone. The 19 F spin-lattice relaxation rates increased linearly with bone fluoride concentration. Different results were obtained from trabecular than from cortical bone. For the same macroscopic fluoride content per gram of bone calcium, relaxation rate is significantly faster in cortical bone. Relaxation rates in cortical bone samples prepared from rats and dogs were apparently controlled by the same species-independent processes. For samples from beagle dogs, bulk fluoride concentrations measured by neutron activation analysis were 3.1±0.3 times greater in trabecular bone than in corresponding cortical bone. The beagle spin-lattice relaxation data suggest that microscopic fluoride concentrations in bone mineral were 1.8±0.4 times greater in trabecular bone than in cortical bone. It is concluded that accumulation of fluoride impurities in bone mineral is non-uniform. (author)

  12. Impurity concentration behaviors in a boiling tubesheet crevice Part II. Packed crevice

    Bahn, Chi Bum; Oh, Si Hyoung; Park, Byung Gi; Hwang, Il Soon; Rhee, In Hyoung; Kim, Uh Chul; Na, Jung Won

    2003-01-01

    The impurity concentration behavior of a boiling crevice packed with magnetite particles was investigated with thermocouples and electrodes for the measurement of temperature and electrochemical corrosion potential (ECP), respectively, in order to understand chemical change in a pressurized water reactor (PWR) steam generator (SG) crevice. A secondary solution composed of 50 ppm Na and 200 ppb hydrogen was supplied at a flow rate of about 4 l/h. Sodium hydroxide (NaOH) concentration process in the crevice and the resultant boiling point elevation behavior were characterized with temperature and ECP data. The temperature in the packed crevice was about 2-3 deg. C higher than that for the open crevice. In the same conditions, the magnetite-packed crevice showed a greater amount of boiling point elevation with a longer time to reach a steady state compared with the case of an open crevice. It was found that the bottom region of the crevice was initially filled with steam, and then the concentrated liquid region initially located at the middle of crevice expanded to both the crevice bottom and the upper region. To analytically estimate the wetted length, a closed form model was introduced. The model results estimated the initial wetted length shorter as compared with the measurement results. Measured ECP results of packed crevice showed similar behaviors as compared with calculated results by using Nernst equation. ECP results reasonably coincided with the boiling point elevation estimated from the temperature data except one unusual case

  13. A calibration to predict the concentrations of impurities in plutonium oxide by prompt gamma analysis: Revision 1

    Narlesky, Joshua E.; Foster, Lynn A.; Kelly, Elizabeth J.; Murray, Roy E. IV

    2009-01-01

    Over 5,500 containers of excess plutonium-bearing materials have been packaged for long-term storage following the requirements of DOE-STD- 3013. Knowledge of the chemical impurities in the packaged materials is important because certain impurities, such as chloride salts, affect the behavior of the material in storage leading to gas generation and corrosion when sufficient moisture also is present. In most cases, the packaged materials are not well characterized, and information about the chemical impurities is limited to knowledge of the material's processing history. The alpha-particle activity from the plutonium and americium isotopes provides a method of nondestructive self-interrogation to identify certain light elements through the characteristic, prompt gamma rays that are emitted from alpha-particle-induced reactions with these elements. Gamma-ray spectra are obtained for each 3013 container using a highresolution, coaxial high-purity germanium detector. These gamma-ray spectra are scanned from 800 to 5,000 keV for characteristic, prompt gamma rays from the detectable elements, which include lithium, beryllium, boron, nitrogen, oxygen, fluorine, sodium, magnesium, aluminum, silicon, phosphorus, chlorine, and potassium. The lower limits of detection for these elements in a plutonium-oxide matrix increase with atomic number and range from 100 or 200 ppm for the lightest elements such as lithium and beryllium, to 19,000 ppm for potassium. The peak areas from the characteristic, prompt gamma rays can be used to estimate the concentration of the light-element impurities detected in the material on a semiquantitative basis. The use of prompt gamma analysis to assess impurity concentrations avoids the expense and the risks generally associated with performing chemical analysis on radioactive materials. The analyzed containers are grouped by impurity content, which helps to identify high-risk containers for surveillance and in sorting materials before packaging.

  14. Electrical resistivity of liquid iron with high concentration of light element impurities

    Wagle, F.; Steinle-Neumann, G.

    2017-12-01

    The Earth's outer core mainly consists of liquid iron, enriched with several weight percent of lighter elements, such as silicon, oxygen, sulfur or carbon. Electrical resistivities of alloys of this type determine the stability of the geodynamo. Both computational and experimental results show that resistivites of Fe-based alloys deviate significantly from values of pure Fe. Using optical conductivity values computed with the Kubo-Greenwood formalism for DFT-based molecular dynamics results, we analyze the high-P and T behavior of resitivities for Fe-alloys containing various concentrations of sulfur, oxygen and silicon. As the electron mean free path length in amorphous and liquid material becomes comparable to interatomic distances at high P and T, electron scattering is expected to be dominated by the short-range order, rather than T-dependent vibrational contributions, and we describe such correlations in our results. In analogy to macroscopic porous media, we further show that resistivity of a liquid metal-nonmetal alloy is determined to first order by the resistivity of the metallic matrix and the volume fraction of non-metallic impurities.

  15. Effect of doping of OH- and CN- on the liberation of I2 molecules in KI by gamma-irradiation, impurity concentration effect

    Shirke, A.K.; Pode, R.B.; Deshmukh, B.T.

    1996-01-01

    Photodecomposition of pure and doped KI powder (KI:KOH; KI:KCN; Impurity concentration, 100, 300, 500, 700 and 1000 ppm) to produce free I 2 molecules during gamma irradiation is studied with the help of absorption and IR measurements. Large number of I 2 molecules are formed in pure KI as compared to the doped samples. Hydroxide impurity increases the rate of liberation of I 2 molecules whereas the cyanide impurity decreases the rate of liberation of I 2 molecules. (Author)

  16. Effect of annealing and impurity concentration on the TL characteristics of nanocrystalline Mn-doped CaF2

    Sahare, P.D.; Singh, Manveer; Kumar, Pratik

    2015-01-01

    Nanocrystalline samples of Mn-doped CaF 2 were synthesized by chemical coprecipitation method. The impurity concentration was varied in the range of 0.5–4.0 mol%. The structure of the synthesized material was confirmed using powder XRD analysis. TEM images of the nanoparticles show their size occurring mostly in the range of 35–40 nm, with clusters of some impurity phases formed on annealing of the material at higher temperatures. Detailed studies on TL showed that the structures of glow curves depend on Mn concentrations and annealing temperatures. Optimization of the concentration and annealing temperature showed that the sample (doped with 3.0 mol% and annealed at 673 K) has almost a single dosimetric glow peak appearing at around 492 K. EPR and PL spectra were further studied to understand the reasons for changes in the glow curve structures. All detailed studies on TL, PL and EPR showed that the changes in glow curve structures are caused not only by the stress connected with the difference in ionic radii of host Ca 2+ and the guest impurity Mn 3+ /Mn 2+ , but are also governed by other reasons, like diffusion of atmospheric oxygen and formation of impurity aggregates, such as, MnO 2 , Mn 3 O 4 , etc. This is true not only for nanocrystalline CaF 2 :Mn but could also be so for the bulk CaF 2 :Mn (TLD-400) and would thus help in understanding complex glow curve structure, high fading and the loss of reusability on annealing beyond 673 K. - Highlights: • Nanocrystalline material CaF 2 :Mn is prepared by simple coprecipitation method. • The material is studied by XRD, TEM, ESR, TL and PL techniques. • High impurity concentrations give rise to clusters causing material instability. • Changes in ESR and PL and glow curve structures are studied and explained. • Better characteristics than the bulk make the nanophosphor useful for dosimetry

  17. Analysis of Sulfidation Routes for Processing Weathered Ilmenite Concentrates Containing Impurities

    Ahmad, Sazzad; Rhamdhani, M. Akbar; Pownceby, Mark I.; Bruckard, Warren J.

    Rutile is the preferred feedstock for producing high-grade TiO2 pigment but due to decreasing resources, alternative materials such as ilmenite is now used to produce a synthetic rutile (SR) feedstock. This requires removal of impurities (e.g. Fe, Mg, Mn) which, for a primary ilmenite is straightforward process. Processing of weathered ilmenite however, is complex, especially when chrome-bearing impurities are present since minor chromium downgrades the SR market value as it imparts color to the final TiO2 pigment, Chrome-bearing spinels are a problem in weathered ilmenites from the Murray Basin, Australia as their physical and chemical properties overlap with ilmenite making separation difficult. In this paper, different sulfidation process routes for weathered ilmenites are analyzed for their applicability to Murray Basin deposits as a mean of remove chrome spinel impurities. Thermodynamic and experimental studies indicated that selective sulfidation of chrome-bearing spinel can be achieved under controlled pO2 and pS2 processing conditions thereby making them amenable to separation.

  18. Carrier concentration dependence of structural disorder in thermoelectric Sn1−xTe

    Mattia Sist

    2016-09-01

    Full Text Available SnTe is a promising thermoelectric and topological insulator material. Here, the presumably simple rock salt crystal structure of SnTe is studied comprehensively by means of high-resolution synchrotron single-crystal and powder X-ray diffraction from 20 to 800 K. Two samples with different carrier concentrations (sample A = high, sample B = low have remarkably different atomic displacement parameters, especially at low temperatures. Both samples contain significant numbers of cation vacancies (1–2% and ordering of Sn vacancies possibly occurs on warming, as corroborated by the appearance of multiple phases and strain above 400 K. The possible presence of disorder and anharmonicity is investigated in view of the low thermal conductivity of SnTe. Refinement of anharmonic Gram–Charlier parameters reveals marginal anharmonicity for sample A, whereas sample B exhibits anharmonic effects even at low temperature. For both samples, no indications are found of a low-temperature rhombohedral phase. Maximum entropy method (MEM calculations are carried out, including nuclear-weighted X-ray MEM calculations (NXMEM. The atomic electron densities are spherical for sample A, whereas for sample B the Te electron density is elongated along the 〈100〉 direction, with the maximum being displaced from the lattice position at higher temperatures. Overall, the crystal structure of SnTe is found to be defective and sample-dependent, and therefore theoretical calculations of perfect rock salt structures are not expected to predict the properties of real materials.

  19. Different valence Sn doping - A simple way to detect oxygen concentration variation of ZnO quantum dots synthesized under ultrasonic irradiation.

    Yang, Weimin; Zhang, Bing; Zhang, Qitu; Wang, Lixi; Song, Bo; Wu, Fan; Wong, C P

    2017-09-01

    An ultrasonic method is employed to synthesize the Sn doped Zn 0.95 Sn 0.05 O quantum dots with green light emission. Sn 2+ and Sn 4+ ions are used to create different optical defects inside Zn 0.95 Sn 0.05 O quantum dots and the changing trend of oxygen concentration under different ultrasonic irradiation power are investigated. The photoluminescence spectra are employed to characterize the optical defects of Zn 0.95 Sn 0.05 O quantum dots. The UV-vis spectra are used to study the band gap of Zn 0.95 Sn 0.05 O quantum dots, which is influenced by their sizes. The results indicate that ultrasonic power would influence the size of Zn 0.95 Sn 0.05 O quantum dots as well as the type and quantity of defects in ZnO quantum dots. Changing trends in size of Sn 2+ and Sn 4+ doped Zn 0.95 Sn 0.05 O quantum dots are quite similar with each other, while the changing trends in optical defects types and concentration of Sn 2+ and Sn 4+ doped Zn 0.95 Sn 0.05 O quantum dots are different. The difference of the optical defects concentration changing between Sn 2+ doped Zn 0.95 Sn 0.05 O quantum dots (V O defects) and Sn 4+ doped Zn 0.95 Sn 0.05 O quantum dots (O Zn and O i defects) shows that the formation process of ZnO under ultrasonic irradiation wiped oxygen out. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Capillary zone electrophoresis-tandem mass spectrometry detects low concentration host cell impurities in monoclonal antibodies

    Zhu, Guijie; Sun, Liangliang; Heidbrink-Thompson, Jennifer; Kuntumalla, Srilatha; Lin, Hung-yu; Larkin, Christopher J.; McGivney, James B.; Dovichi, Norman J.

    2016-01-01

    We have evaluated capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry (CZE-ESI-MS/MS) for detection of trace amounts of host cell protein impurities in recombinant therapeutics. Compared to previously published procedures, we have optimized the buffer pH used in the formation of a pH junction to increase injection volume. We also prepared a five-point calibration curve by spiking twelve standard proteins into a solution of a human monoclonal antibody. A custom CZE-MS/MS system was used to analyze the tryptic digest of this mixture without depletion of the antibody. CZE generated a ~70 min separation window (~90 min total analysis duration) and ~300 peak capacity. We also analyzed the sample using ultra-performance liquid chromatography (UPLC)-MS/MS. CZE-MS/MS generated ~five times higher base peak intensity and more peptide identifications for low-level spiked proteins. Both methods detected all proteins spiked at the ~100 ppm level with respect to the antibody. PMID:26530276

  1. Distribution of impurity states and charge transport in Zr{sub 0.25}Hf{sub 0.75}Ni{sub 1+x}Sn{sub 1−y}Sb{sub y} nanocomposites

    Liu, Yuanfeng; Makongo, Julien P.A. [Laboratory for Emerging Energy and Electronic Materials, Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Page, Alexander [Department of Physics, University of Michigan, Ann Arbor, MI 48109 (United States); Sahoo, Pranati [Laboratory for Emerging Energy and Electronic Materials, Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Uher, Ctirad [Department of Physics, University of Michigan, Ann Arbor, MI 48109 (United States); Stokes, Kevin [The Advanced Materials Research Institute, Department of Physics, University of New Orleans, New Orleans, LA 70148 (United States); Poudeu, Pierre F.P., E-mail: ppoudeup@umich.edu [Laboratory for Emerging Energy and Electronic Materials, Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109 (United States)

    2016-02-15

    Energy filtering of charge carriers in a semiconducting matrix using atomically coherent nanostructures can lead to a significant improvement of the thermoelectric figure of merit of the resulting composite. In this work, several half-Heusler/full-Heusler (HH/FH) nanocomposites with general compositions Zr{sub 0.25}Hf{sub 0.75}Ni{sub 1+x}Sn{sub 1−y}Sb{sub y} (0≤x≤0.15 and y=0.005, 0.01 and 0.025) were synthesized in order to investigate the behavior of extrinsic carriers at the HH/FH interfaces. Electronic transport data showed that energy filtering of carriers at the HH/FH interfaces in Zr{sub 0.25}Hf{sub 0.75}Ni{sub 1+x}Sn{sub 1−y}Sb{sub y} samples strongly depends on the doping level (y value) as well as the energy levels occupied by impurity states in the samples. For example, it was found that carrier filtering at HH/FH interfaces is negligible in Zr{sub 0.25}Hf{sub 0.75}Ni{sub 1+x}Sn{sub 1−y}Sb{sub y} (y=0.01 and 0.025) composites where donor states originating from Sb dopant dominate electronic conduction. However, we observed a drastic decrease in the effective carrier density upon introduction of HH/FH interfaces for the mechanically alloyed Zr{sub 0.25}Hf{sub 0.75}Ni{sub 1+x}Sn{sub 0.995}Sb{sub 0.005} samples where donor states from unintentional Fe impurities contribute the largest fraction of conduction electrons. This work demonstrates the ability to synergistically integrate the concepts of doping and energy filtering through nanostructuring for the optimization of electronic transport in semiconductors. - Graphical abstract: Electronic transport in semiconducting half-Heusler (HH) matrices containing full-Heusler (FH) nanoinclusions strongly depends on the energy distribution of impurity states within the HH matrix with respect to the magnitude of the potential energy barrier at the HH/FH interfaces. - Highlights: • Coherent nanostructures enhanced thermoelectric behavior of half-Heusler alloys. • Nanostructures act as energy filter of

  2. The deconvolution of sputter-etching surface concentration measurements to determine impurity depth profiles

    Carter, G.; Katardjiev, I.V.; Nobes, M.J.

    1989-01-01

    The quasi-linear partial differential continuity equations that describe the evolution of the depth profiles and surface concentrations of marker atoms in kinematically equivalent systems undergoing sputtering, ion collection and atomic mixing are solved using the method of characteristics. It is shown how atomic mixing probabilities can be deduced from measurements of ion collection depth profiles with increasing ion fluence, and how this information can be used to predict surface concentration evolution. Even with this information, however, it is shown that it is not possible to deconvolute directly the surface concentration measurements to provide initial depth profiles, except when only ion collection and sputtering from the surface layer alone occur. It is demonstrated further that optimal recovery of initial concentration depth profiles could be ensured if the concentration-measuring analytical probe preferentially sampled depths near and at the maximum depth of bombardment-induced perturbations. (author)

  3. INAA of Zn and impurity elements in Zn ores and concentrates

    Op de Beeck, J.; De Norre, L.; Hoste, J.

    1985-01-01

    The present work concerns the analysis of zinc ores and concentrates. In the first place a procedure for the routine determination of fluorine in Zinc sulfide ores has been developed, based on activation with the fast neutrons of the isotope source. In the second place a procedure for the routine determination of Cadmium in Zinc ores has been developed and finally the routine determination of Zinc itself is at present being completed

  4. Phase transition of DNA-linked gold nanoparticles: Creation of a high concentration of atomic hydrogen in impurity-helium solids

    Kiselev, S.I.; Khmelenko, V.V.; Bernard, E.P.; Lee, C.Y.; Lee, D.M.

    2003-01-01

    The exchange tunneling reactions D+H 2 →HD+H and D+HD→D 2 +H were used to generate high concentrations of atomic hydrogen in impurity-helium solids. The dependence of atom concentration on the content of hydrogen in the injected gas mixture gave a maximum concentration of 7.5x10 17 cm -3 hydrogen atoms for an initial gas ratio H 2 :D 2 :He=1:4:100

  5. Redistribution of dopant and impurity concentrations during the formation of uniform WSi2 films by RTP

    Siegal, M.P.; Santiago, J.J.

    1988-01-01

    Secondary ion mass spectroscopy has been used to study the effects of rapid thermal processing on the formation of tetragonal tungsten disilicide thin films on Si(100), p-type 5 Ω . cm wafers. The substrates were chemically etched, followed by an RF sputter deposition of 710A W metal. The samples were then fast radiatively processed in an RTP system for time intervals ranging from 15 to 45 seconds at high temperature (--1100 0 C) under high vacuum. The redistribution of the boron dopant concentration profile is described in this paper

  6. A Calibration to Predict the Concentrations of Impurities in Plutonium Oxide by Prompt Gamma Analysis Revision 2

    Narlesky, Joshua Edward [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kelly, Elizabeth J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-09-10

    This report documents the new PG calibration regression equation. These calibration equations incorporate new data that have become available since revision 1 of “A Calibration to Predict the Concentrations of Impurities in Plutonium Oxide by Prompt Gamma Analysis” was issued [3] The calibration equations are based on a weighted least squares (WLS) approach for the regression. The WLS method gives each data point its proper amount of influence over the parameter estimates. This gives two big advantages, more precise parameter estimates and better and more defensible estimates of uncertainties. The WLS approach makes sense both statistically and experimentally because the variances increase with concentration, and there are physical reasons that the higher measurements are less reliable and should be less influential. The new magnesium calibration includes a correction for sodium and separate calibration equation for items with and without chlorine. These additional calibration equations allow for better predictions and smaller uncertainties for sodium in materials with and without chlorine. Chlorine and sodium have separate equations for RICH materials. Again, these equations give better predictions and smaller uncertainties chlorine and sodium for RICH materials.

  7. States of an on-axis two-hydrogenic-impurity complex in concentric double quantum rings

    R-Fulla, M.; Marín, J.H.; Suaza, Y.A.; Duque, C.A.; Mora-Ramos, M.E.

    2014-01-01

    The energy structure of an on-axis two-donor system (D 2 0 ) confined in GaAs concentric double quantum rings under the presence of magnetic field and hydrostatic pressure was analyzed. Based on structural data for the double quantum ring morphology, a rigorous adiabatic procedure was implemented to separate the electrons' rapid in-plane motions from the slow rotational ones. A one-dimensional equation with an effective angular-dependent potential, which describes the two-electron rotations around the common symmetry axis of quantum rings was obtained. It was shown that D 2 0 complex characteristic features are strongly dependent on the quantum ring geometrical parameters. Besides, by changing the hydrostatic pressure and magnetic field strengths, it is possible to tune the D 2 0 energy structure. Our results are comparable to those previously reported for a single and negative ionized donor in a spherical quantum dot after a selective setting of the geometrical parameters of the structure. - Highlights: • We report the eigenenergies of a D 2 0 complex in concentric double quantum rings. • Our model is versatile enough to analyze the dissociation process D 2 0 →D 0 +D + +e − . • We compare the D 0 eigenenergies in horn toroidal and spherical shaped quantum dots. • We show the effects of hydrostatic pressure and magnetic field on the D 2 0 spectrum. • The use of hydrostatic pressure provides higher thermal stability to the D 2 0 complex

  8. Structural, optical, Induced ferromagnetism and anti-ferromagnetism in SnO2 nanoparticles by varying cobalt concentration

    Ali, Atif; Sarfraz, A.K.; Ali, Kashif; Mumtaz, A.

    2015-01-01

    The SnO 2 nanoparticles were prepared with different cobalt concentrations (0.0%, 0.5%, 1%, 3% and 4%) by chemical co-precipitation method. The NH 4 OH was used as precipitating agent; the pH value, reaction time and reaction temperature were optimized during synthesis. The x-ray diffraction (XRD) pattern reveals the formation of single phase tetragonal structure of undoped and cobalt doped SnO 2 nanoparticles which lies in the range of 19–22 nm calculated by De-Bye Scherrer's formula. The optical properties were studied by measuring the reflectance spectroscopy which shows that band gap energy decreases with increase in cobalt concentration. The magnetic characterization was performed by Quantum Design Physical property measurement system (PPMS). Interestingly magnetic measurements show that ferromagnetism in a Co doped SnO 2 becomes visible for x=0.5% and diminishes with further increasing of cobalt concentration. - Highlights: • SnO 2 nanoparticles were prepared with different cobalt concentrations (0.0 % 0.5%, 1%, 3% and 4%) by the chemical co-precipitation method. • Structure was confirmed through x-ray diffraction (XRD) analysis. • The optical properties were studied by measuring the reflectance spectroscopy. • The magnetic characterization was performed

  9. Origin assessment of uranium ore concentrates based on their rare-earth elemental impurity pattern

    Varga, Z.; Wallenius, M.; Mayer, K. [Commission of the European Communities, Karlsruhe (Germany). European Inst. for Transuranium Elements

    2010-07-01

    The rare-earth element pattern was used as an additional tool for the identification and origin assessment of uranium ore concentrates (yellow cakes) for nuclear forensic purposes. By this means, the source of an unknown material can be straightforwardly verified by comparing the pattern with that of a known or declared sample. In contrast to other indicators used for nuclear forensic studies, the provenance of the material can also be assessed in several cases even if no comparison sample is available due to the characteristic pattern. The milling process was found not to change the pattern and no significant elemental fractionation occurs between the rare-earth elements, thus the pattern in the yellow cakes corresponds to that found in the uranium ore. (orig.)

  10. States of an on-axis two-hydrogenic-impurity complex in concentric double quantum rings

    R-Fulla, M., E-mail: marlonfulla@yahoo.com [Escuela de Física, Universidad Nacional de Colombia, A.A. 3840, Medellín (Colombia); Institución Universitaria Pascual Bravo, A.A. 6564, Medellín (Colombia); Marín, J.H.; Suaza, Y.A. [Escuela de Física, Universidad Nacional de Colombia, A.A. 3840, Medellín (Colombia); Duque, C.A. [Grupo de Materia Condensada-U de A, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, calle 70 No. 52-21, Medellín (Colombia); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico)

    2014-06-13

    The energy structure of an on-axis two-donor system (D{sub 2}{sup 0}) confined in GaAs concentric double quantum rings under the presence of magnetic field and hydrostatic pressure was analyzed. Based on structural data for the double quantum ring morphology, a rigorous adiabatic procedure was implemented to separate the electrons' rapid in-plane motions from the slow rotational ones. A one-dimensional equation with an effective angular-dependent potential, which describes the two-electron rotations around the common symmetry axis of quantum rings was obtained. It was shown that D{sub 2}{sup 0} complex characteristic features are strongly dependent on the quantum ring geometrical parameters. Besides, by changing the hydrostatic pressure and magnetic field strengths, it is possible to tune the D{sub 2}{sup 0} energy structure. Our results are comparable to those previously reported for a single and negative ionized donor in a spherical quantum dot after a selective setting of the geometrical parameters of the structure. - Highlights: • We report the eigenenergies of a D{sub 2}{sup 0} complex in concentric double quantum rings. • Our model is versatile enough to analyze the dissociation process D{sub 2}{sup 0}→D{sup 0}+D{sup +}+e{sup −}. • We compare the D{sup 0} eigenenergies in horn toroidal and spherical shaped quantum dots. • We show the effects of hydrostatic pressure and magnetic field on the D{sub 2}{sup 0} spectrum. • The use of hydrostatic pressure provides higher thermal stability to the D{sub 2}{sup 0} complex.

  11. External electric field effect on the binding energy of a hydrogenic donor impurity in InGaAsP/InP concentric double quantum rings

    Hu, Min; Wang, Hailong; Gong, Qian; Wang, Shumin

    2018-04-01

    Within the framework of effective-mass envelope-function theory, the ground state binding energy of a hydrogenic donor impurity is calculated in the InGaAsP/InP concentric double quantum rings (CDQRs) using the plane wave method. The effects of geometry, impurity position, external electric field and alloy composition on binding energy are considered. It is shown that the peak value of the binding energy appears in two rings with large gap as the donor impurity moves along the radial direction. The binding energy reaches the peak value at the center of ring height when the donor impurity moves along the axial direction. The binding energy shows nonlinear variation with the increase of ring height. With the external electric field applied along the z-axis, the binding energy of the donor impurity located at zi ≥ 0 decreases while that located at zi < 0 increases. In addition, the binding energy decreases with increasing Ga composition, but increases with the increasing As composition.

  12. An empirical method for determination of elemental components of radiated powers and impurity concentrations from VUV and XUV spectral features in tokamak plasmas

    Lawson, K.; Peacock, N.; Gianella, R.

    1998-12-01

    The derivation of elemental components of radiated powers and impurity concentrations in bulk tokamak plasmas is complex, often requiring a full description of the impurity transport. A novel, empirical method, the Line Intensity Normalization Technique (LINT) has been developed on the JET (Joint European Torus) tokamak to provide routine information about the impurity content of the plasma and elemental components of radiated power (P rad ). The technique employs a few VUV and XUV resonance line intensities to represent the intrinsic impurity elements in the plasma. From a data base comprising these spectral features, the total bolometric measurement of the radiated power and the Z eff measured by visible spectroscopy, separate elemental components of P rad and Z eff are derived. The method, which converts local spectroscopic signals into global plasma parameters, has the advantage of simplicity, allowing large numbers of pulses to be processed, and, in many operational modes of JET, is found to be both reliable and accurate. It relies on normalizing the line intensities to the absolute calibration of the bolometers and visible spectrometers, using coefficients independent of density and temperature. Accuracies of the order of ± 15% can be achieved for the elemental P rad components of the most significant impurities and the impurity concentrations can be determined to within ±30%. Trace elements can be monitored, although with reduced accuracy. The present paper deals with limiter discharges, which have been the main application to date. As a check on the technique and to demonstrate the value of the LINT results, they have been applied to the transport modelling of intrinsic impurities carried out with the SANCO transport code, which uses atomic data from ADAS. The simulations provide independent confirmation of the concentrations empirically derived using the LINT technique. For this analysis, the simple case of the L-mode regime is considered, the chosen

  13. Magnetic phase change in Mn-doped ZnSnAs2 thin films depending on Mn concentration

    Uchitomi, Naotaka; Hidaka, Shiro; Saito, Shin; Asubar, Joel T.; Toyota, Hideyuki

    2018-04-01

    The relationship between Mn concentration and Curie temperature (TC) is studied for Mn-doped ZnSnAs2 ferromagnetic semiconductors, epitaxially grown on InP substrates by molecular beam epitaxy. In the ferromagnetic phase, Mn distributions in a (Zn,Mn,Sn)As2 thin film with 7.2 cation percent (cat. %) Mn are investigated using three-dimensional atom probe tomography. The results indicate an inhomogeneous distribution which spreads to a relatively high Mn concentration of 9.0 at. % (at. %). In the paramagnetic phase, it is found that the paramagnetic to ferromagnetic transition takes place sharply with a TC of 334 K when the Mn doping concentration increases to about 4 cat. % Mn, which corresponds to a magnetic percolation threshold for ferromagnetism in (Zn,Mn,Sn)As2. An effective Curie temperature ⟨TC⟩ is considered to bridge the Curie temperatures obtained experimentally to those calculated theoretically in inhomogeneous magnetic semiconductors. The behavior of magnetism in Mn-doped ZnSnAs2 can be explained by three different phases within the present framework.

  14. Quantitative spectrographic analysis of impurities in antimonium

    Brito, J. de; Gomes, R.P.

    1978-01-01

    An emission spectrographic method is describe for the determination of Ag, Al, As, Be, Bi, Cd, Cr, Cu, Ga, Ni, Pb, Sn, Si, and Zn in high purity antimony metal. The metal sample ia dissolved in nitric acid(1:1) and converted tp oxide by calcination at 900 0 C for one hour. The oxide so obtained is mixed with graphite, which is used as a spectroscopic buffer, and excited by a direct current arc. Many parameters are studied optimum conditions are selected for the determination of the impurities mentioned. The spectrum is photographed in the second order of a 15.000 lines per inch grating and the most sensitive lines for the elements are selected. The impurities are determined in the concentration range of 1 - 0,01% with a precision of approximately 10% [pt

  15. Effect of Low Concentration Sn Doping on Optical Properties of CdS Films Grown by CBD Technique

    Mohd Sabri Mohd Ghazali

    2011-09-01

    Full Text Available Thin and transparent films of doped cadmium sulfide (CdS were obtained on commercial glass substrates by Chemical Bath Deposition (CBD technique. The films were doped with low concentration of Sn, and annealed in air at 300 °C for 45 min. The morphological characterization of the films with different amounts of dopant was made using SEM and EDAX analysis. Optical properties of the films were evaluated by measuring transmittance using the UV-vis spectrophotometer. A comparison of the results revealed that lower concentration of Sn doping improves transmittance of CdS films and makes them suitable for application as window layer of CdTe/CIGS solar cells.

  16. Synthesis and characterization of Sn doped TiO{sub 2} photocatalysts: Effect of Sn concentration on the textural properties and on the photocatalytic degradation of 2,4-dichlorophenoxyacetic acid

    Rangel-Vázquez, I.; Del Angel, G.; Bertin, V. [Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael, Atlixco No 1865, México 09340 D.F. (Mexico); González, F. [Departamento de Ingeniería de Procesos e Hidráulica, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael, Atlixco No 1865, México 09340 D.F. (Mexico); Vázquez-Zavala, A.; Arrieta, A. [Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael, Atlixco No 1865, México 09340 D.F. (Mexico); Padilla, J.M. [Universidad Tecnológica del Centro de Veracruz, Área de Tecnología, Av. Universidad Carretera Federal Cuitláhuac-La Tinaja No. 350, Cuitláhuac, Veracruz 94910 (Mexico); Barrera, A. [Universidad de Guadalajara, Centro Universitario de la Ciénega, Av. Universidad, Número 1115, Col. Linda Vista, Apdo. Postal 106, Ocotlán Jal. (Mexico); Ramos-Ramirez, E. [Departamento de Química, División de Ciencias Naturales y Exactas, Campus Guanajuato de la Universidad de Guanajuato Noria Alta S/N, Col. Noria Alta, Guanajuato, Gto. C.P. 36050 (Mexico)

    2015-09-15

    Abstract: TiO{sub 2} and Sn-doped TiO{sub 2} materials were prepared by sol–gel method using titanium and tin alkoxides at different Sn concentration (0.1 mol%, 0.5 mol%, 1 mol%, 3 mol% and 5 mol%). Samples were characterized by thermo gravimetric analyzer with differential scanning calorimeter (TGA–DSC), X-ray Rietveld refinement, N{sub 2} adsorption (BET), transmission electron microscopy (TEM), UV–vis spectroscopies technology and Raman spectroscopy. Only anatase phase was observed in pure TiO{sub 2}, whereas anatase and brookite were obtained in Sn-doped TiO{sub 2} samples. Sn dopant acts as a promoter in phase transformation of TiO{sub 2}. The Rietveld refinements method was used to determine the relative weight of anatase and brookite, and crystallite size as a function of Sn concentration after calcination of samples at 673 K. It was also demonstrated the incorporation of Sn{sup 4+} into the anatase TiO{sub 2} structure. Sn{sup 4+} inhibits the growth of TiO{sub 2} crystallite size, which leads to an increase of the specific surface area of TiO{sub 2}. From XRD analysis, the solid solution limit of Sn{sup 4+} into TiO{sub 2} is 5 mol% Sn. The photocatalytic activity on Sn{sup 4+} doped TiO{sub 2} was determined for the 2,4-dichlorophenoxyacetic acid reaction. The maximum in activity was attributed to the coexistence of anatase and brookite phases in the appropriate ratio and crystallite size.

  17. Trace impurity analyzer

    Schneider, W.J.; Edwards, D. Jr.

    1979-01-01

    The desirability for long-term reliability of large scale helium refrigerator systems used on superconducting accelerator magnets has necessitated detection of impurities to levels of a few ppM. An analyzer that measures trace impurity levels of condensable contaminants in concentrations of less than a ppM in 15 atm of He is described. The instrument makes use of the desorption temperature at an indicated pressure of the various impurities to determine the type of contaminant. The pressure rise at that temperature yields a measure of the contaminant level of the impurity. A LN 2 cryogenic charcoal trap is also employed to measure air impurities (nitrogen and oxygen) to obtain the full range of contaminant possibilities. The results of this detector which will be in use on the research and development helium refrigerator of the ISABELLE First-Cell is described

  18. Effect of temperature and ionic impurities at very low concentrations on stress corrosion cracking of type 304 stainless steel

    Ruther, W.E.; Soppet, W.K.; Kassner, T.F.

    1984-11-01

    The relative effect of approx. 12 anion species, in conjunction with hydrogen and sodium cations, on the stress-corrosion-cracking (SCC) behavior of lightly sensitized Type 304 stainless steel was investigated in constant-extension-rate-tensile (CERT) tests at 289/sup 0/C in water with 0.2 ppM dissolved oxygen at total conductivity values of less than or equal to 1 ..mu..S/cm. The results show that the sulfur species, either in acid or sodium form, produce the highest degree of IGSCC relative to other anions. The effect of temperature on the SCC behavior of the material was investigated in CERT tests over the range 110 to 320/sup 0/C in high-purity water and in water containing 0.1 and 1.0 ppM sulfate as H/sub 2/SO/sub 4/ at a dissolved oxygen concentration of 0.2 ppM. The CERT parameters were correlated with impurity concentration (i.e., conductivity) and the electrochemical potential of platinum and Type 304 stainless steel electrodes in the high-temperature environments. Maximum IGSCC occurred at temperatures between approx. 200 and 250/sup 0/C in high-purity water, and the addition of sulfate increased the average crack growth rates and the temperature range over which maximum susceptibility occurred. A distinct transition from intergranular to transgranular and ultimately to a ductile failure mode was observed as the temperature increased from approx. 270 to 320/sup 0/C in high-purity water. This transition was attributed to a decrease in the open-circuit corrosion potential of the steel below a critical value of approx. 0 mV(SHE) at the higher temperature. A large decrease in the crack growth rates of fracture-mechanics-type specimens of the steel was also found when the temperature was increased from 289 to 320/sup 0/C in high-purity water with 0.2 ppM dissolved oxygen. 26 references, 8 figures, 6 tables.

  19. Effect of temperature and ionic impurities at very low concentrations on stress corrosion cracking of type 304 stainless steel

    Ruther, W.E.; Soppet, W.K.; Kassner, T.F.

    1984-11-01

    The relative effect of approx. 12 anion species, in conjunction with hydrogen and sodium cations, on the stress-corrosion-cracking (SCC) behavior of lightly sensitized Type 304 stainless steel was investigated in constant-extension-rate-tensile (CERT) tests at 289 0 C in water with 0.2 ppM dissolved oxygen at total conductivity values of less than or equal to 1 μS/cm. The results show that the sulfur species, either in acid or sodium form, produce the highest degree of IGSCC relative to other anions. The effect of temperature on the SCC behavior of the material was investigated in CERT tests over the range 110 to 320 0 C in high-purity water and in water containing 0.1 and 1.0 ppM sulfate as H 2 SO 4 at a dissolved oxygen concentration of 0.2 ppM. The CERT parameters were correlated with impurity concentration (i.e., conductivity) and the electrochemical potential of platinum and Type 304 stainless steel electrodes in the high-temperature environments. Maximum IGSCC occurred at temperatures between approx. 200 and 250 0 C in high-purity water, and the addition of sulfate increased the average crack growth rates and the temperature range over which maximum susceptibility occurred. A distinct transition from intergranular to transgranular and ultimately to a ductile failure mode was observed as the temperature increased from approx. 270 to 320 0 C in high-purity water. This transition was attributed to a decrease in the open-circuit corrosion potential of the steel below a critical value of approx. 0 mV(SHE) at the higher temperature. A large decrease in the crack growth rates of fracture-mechanics-type specimens of the steel was also found when the temperature was increased from 289 to 320 0 C in high-purity water with 0.2 ppM dissolved oxygen. 26 references, 8 figures, 6 tables

  20. Photo-electrochemical solar cells with a SnO/sub 2/-liquid junction sensitized with highly concentrated dyes

    Shimura, Michiko; Shakushiro, Kiyoaki; Shimura, Yukio

    1986-09-01

    The sensitization of a SnO/sub 2/-liquid junction cell with highly concentrated dyes was investigated. The dyes used were Crystal Violet, Methyl Violet B, Malachite Green, Pararosaniline, and Rhodamine B. Anomalous or positive photovoltages were obtained in the system when Fe(CN)/sub 6//sup 3 -/ was added. The performance of the photovoltaic cells showed an open-circuit photovoltage, Vsub(oc), of 175 mV, a short-circuit photocurrent, Isub(sc), of 12 ..mu..A, and a fill factor of 0.42. The action spectra resembled the absorption spectra of the aggregated dyes. A D-D mechanism is introduced to explain the anomaly of the photovoltage of the SnO/sub 2/ electrode sensitized with the dyes. This behaviour is relevant to the practical usage of such photo-electrochemical cells and merits further investigation.

  1. Some particularities of impurity center structure in concentrated solid solutions MeF2-GdF3, where Me-Ca2+, Sr2+ and Ba2+

    Karelin, V.V.; Orlov, Yu.N.; Bozhevol'nov, V.E.; Ivanov, L.N.

    1981-01-01

    The monocrystalline CaF 2 -GdF 3 , SrF 2 -GdF 3 and BaF 2 -GdF 3 systems are studied using the methods of EPR, photo-, radio-, cathode- and thermoluminescence. It is shown that the structure of fluorite solid solutions changes considerably with the growth of the rare earth component concentration. At that, in the systems investigated at least three concentration regions can be singled out: (up to 1%; from 1 to 15%, and > 15% GdF 3 ) which are characterized by their certain selection of impurity centres [ru

  2. Superconductivity, carrier concentration, and the ionic model of Sn/sub 4/P/sub 3/ and Sn/sub 4/As/sub 3/

    Van Maaren, M H

    1969-06-01

    Superconductivity is reported for Sn/sub 4/P/sub 2.65/ at T/sub c/ 1.2/sup 0/K. Hall constant and reflectivity measurements indicate a mixed type of conduction for Sn/sub 4/P/sub 2.65/ and Sn/sub 3.80/ As/sub 3/. The ionic model of Geller and Hull is not applicable.

  3. On the tin impurity in the thermoelectric compound ZnSb: Charge-carrier generation and compensation

    Prokofieva, L. V., E-mail: lprokofieva496@gmail.com; Konstantinov, P. P.; Shabaldin, A. A. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation)

    2016-06-15

    The technique for measuring the Hall coefficient and electrical conductivity in the thermal cycling mode is used to study the effect of the Sn impurity on the microstructure and properties of pressed ZnSb samples. Tin was introduced as an excess component (0.1 and 0.2 at %) and as a substitutional impurity for Zn and Sb atoms in a concentration of (2–2.5) at % The temperature dependences of the parameters of lightly doped samples are fundamentally like similar curves for ZnSb with 0.1 at % of Cu. The highest Hall concentration, 1.4 × 10{sup 19} cm{sup –3} at 300 K, is obtained upon the introduction of 0.1 at % of Sn; the dimensionless thermoelectric figure of merit attains its maximum value of 0.85 at 660 K. The experimental data are discussed under the assumption of two doping mechanisms, which are effective in different temperature ranges, with zinc vacancies playing the decisive role of acceptor centers. In two ZnSb samples with SnSb and ZnSn additives, the charge-carrier compensation effect is observed; this effect depends on temperature and markedly changes with doping type. As in p-type A{sup IV}–B{sup VI} materials with a low Sn content, hole compensation can be attributed to atomic recharging Sn{sup 2+} → Sn{sup 4+}. Types of compensating complexes are considered.

  4. Donor impurity-related linear and nonlinear optical absorption coefficients in GaAs/Ga{sub 1−x}Al{sub x}As concentric double quantum rings: Effects of geometry, hydrostatic pressure, and aluminum concentration

    Baghramyan, H.M.; Barseghyan, M.G.; Kirakosyan, A.A. [Department of Solid State Physics, Yerevan State University, Al. Manookian 1, 0025 Yerevan (Armenia); Restrepo, R.L. [Física Teórica y Aplicada, Escuela de Ingeniería de Antioquia, AA 7516, Medellín (Colombia); Grupo de Materia Condensada-UdeA, Instituto de Física, Facultadde Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21,Medellín (Colombia); Mora-Ramos, M.E. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultadde Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21,Medellín (Colombia); Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Duque, C.A., E-mail: cduque@fisica.udea.edu.co [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultadde Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21,Medellín (Colombia)

    2014-01-15

    The linear and nonlinear optical absorption associated with the transition between 1s and 2s states corresponding to the electron-donor-impurity complex in GaAs/Ga{sub 1−x}Al{sub x}As three-dimensional concentric double quantum rings are investigated. Taking into account the combined effects of hydrostatic pressure and the variation of the aluminum concentration, the energies of the ground and first excited s-like states of a donor impurity in such a system have been calculated using the effective mass approximation and a variational method. The energies of these states and the corresponding threshold energy of the optical transitions are examined as functions of hydrostatic pressure, aluminum concentration, radial impurity position, as well as the geometrical dimensions of the structure. The dependencies of the linear, nonlinear and total optical absorption coefficients as functions of the incident photon energy are investigated for different values of those mentioned parameters. It is found that the influences mentioned above lead to either redshifts or blueshifts of the resonant peaks of the optical absorption spectrum. It is particularly discussed the unusual property exhibited by the third-order nonlinear of becoming positive for photon energies below the resonant transition one. It is shown that this phenomenon is associated with the particular features of the system under study, which determine the values of the electric dipole moment matrix elements. -- Highlights: • Intra-band optical absorption associated to impurity states in double quantum rings. • Combined effects of hydrostatic pressure and aluminum concentration are studied. • The influences mentioned above lead to shifts of resonant peaks. • It is discussed an unusual property exhibited by the third-order nonlinear absorption.

  5. Donor impurity-related linear and nonlinear optical absorption coefficients in GaAs/Ga1−xAlxAs concentric double quantum rings: Effects of geometry, hydrostatic pressure, and aluminum concentration

    Baghramyan, H.M.; Barseghyan, M.G.; Kirakosyan, A.A.; Restrepo, R.L.; Mora-Ramos, M.E.; Duque, C.A.

    2014-01-01

    The linear and nonlinear optical absorption associated with the transition between 1s and 2s states corresponding to the electron-donor-impurity complex in GaAs/Ga 1−x Al x As three-dimensional concentric double quantum rings are investigated. Taking into account the combined effects of hydrostatic pressure and the variation of the aluminum concentration, the energies of the ground and first excited s-like states of a donor impurity in such a system have been calculated using the effective mass approximation and a variational method. The energies of these states and the corresponding threshold energy of the optical transitions are examined as functions of hydrostatic pressure, aluminum concentration, radial impurity position, as well as the geometrical dimensions of the structure. The dependencies of the linear, nonlinear and total optical absorption coefficients as functions of the incident photon energy are investigated for different values of those mentioned parameters. It is found that the influences mentioned above lead to either redshifts or blueshifts of the resonant peaks of the optical absorption spectrum. It is particularly discussed the unusual property exhibited by the third-order nonlinear of becoming positive for photon energies below the resonant transition one. It is shown that this phenomenon is associated with the particular features of the system under study, which determine the values of the electric dipole moment matrix elements. -- Highlights: • Intra-band optical absorption associated to impurity states in double quantum rings. • Combined effects of hydrostatic pressure and aluminum concentration are studied. • The influences mentioned above lead to shifts of resonant peaks. • It is discussed an unusual property exhibited by the third-order nonlinear absorption

  6. Performance and selectivity of PtxSn/C electro-catalysts for ethanol oxidation prepared by reduction with different formic acid concentrations

    Zignani, Sabrina C.; Baglio, Vincenzo; Linares, José J.; Monforte, Giuseppe; Gonzalez, Ernesto R.; Aricò, Antonino S.

    2012-01-01

    Carbon supported Pt–Sn catalysts were prepared by reduction of Pt and Sn precursors with formic acid and characterized in terms of structure, morphology and surface properties. The electrocatalytic activity for ethanol oxidation was studied in a direct ethanol fuel cell (DEFC) at 70 °C and 90 °C. Electrochemical and physico-chemical data indicated that a proper balance of Pt and Sn species in the near surface region was necessary to maximize the reaction rate. The best atomic surface composition, in terms of electrochemical performance, was Pt:Sn 65:35 corresponding to a bulk composition 75:25 namely Pt 3 Sn 1 /C. The reaction products of ethanol electro-oxidation in single cell and their distribution as a function of the nature of catalyst were determined. Essentially, acetaldehyde and acetic acid were detected as the main reaction products; whereas, a lower content of CO 2 was formed. The selectivity toward acetic acid vs. acetaldehyde increased with the increase of the Sn content and decreased by decreasing the concentration of the reducing agent used in the catalyst preparation. According to the recent literature, these results have been interpreted on the basis of ethanol adsorption characteristics and ligand effects occurring for Sn-rich electrocatalysts.

  7. Non-stoichiometry and properties of SnTe left angle Cd right angle semiconducting phase of variable composition

    Rogacheva, E.I.; Nashchekina, O.N.

    2006-01-01

    It was established that the dependences of microhardness, hole concentration, electrical conductivity, and the Seebeck coefficient on composition in the Sn 0.984 Te-Cd and Sn 0.984 Te-CdTe solid solutions based on non-stoichiometric tin telluride exhibit non-monotonic behavior. The effects connected with the interaction between intrinsic and impurity defects and with critical phenomena accompanying a transition to the impurity continuum were isolated. The results obtained in this work represent another evidence for our proposition about the universal character of critical phenomena accompanying the transition from an impurity discontinuum to an impurity continuum in solid solutions. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  8. A facile and low cost synthesis of earth abundant element Cu{sub 2}ZnSnS{sub 4} (CZTS) nanocrystals: Effect of Cu concentrations

    Shin, Seung Wook; Han, Jun Hee [Department of Materials Science and Engineering, KAIST, 335 Gwahangno, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Park, Chan Yeong; Kim, Sae-Rok; Park, Yeon Chan; Agawane, G.L. [Photonics Technology Research Institute, Department of Materials Science and Engineering, Chonnam National University, 300 Yongbong-Dong, Buk-Gu, Gwangju 500-757 (Korea, Republic of); Moholkar, A.V. [Electrochemical Mat. Lab, Department of Physics, Shivaji University, Kolhapur 416-004 (India); Yun, Jae Ho [Photovoltaic Research Group, Korea Institute of Energy Research, 71-2 Jang-Dong, Yuseong-Gu, Daejeon 305-343 (Korea, Republic of); Jeong, Chae Hwan [Solar City Center, Development of Advanced Components and Materials Korea Institute of Industrial Technology, Gwangju 500-480 (Korea, Republic of); Lee, Jeong Yong, E-mail: j.y.lee@kaist.ac.kr [Department of Materials Science and Engineering, KAIST, 335 Gwahangno, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Kim, Jin Hyeok, E-mail: jinhyeok@chonnam.ac.kr [Photonics Technology Research Institute, Department of Materials Science and Engineering, Chonnam National University, 300 Yongbong-Dong, Buk-Gu, Gwangju 500-757 (Korea, Republic of)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Cu{sub 2}ZnSnS{sub 4} (CZTS) nanocrystals (NCs) were prepared by sulfurization of microwave assisted precursor without toxic chemicals. Black-Right-Pointing-Pointer Effect of Cu concentration on the properties of CZTS NCs was investigated using various analysis methods. Black-Right-Pointing-Pointer The properties of CZTS NCs was strongly related to the Cu concentrations. - Abstract: Cu{sub 2}ZnSnS{sub 4} (CZTS) nanocrystals (NCs) were synthesized by sulfurization of microwave assisted precursor powders without toxic chemicals. The effects of different Cu concentration from 0.01 to 0.025 M on the structural, morphological, compositional, chemical and optical properties of CZTS NCs were investigated. X-ray diffraction patterns, X-ray photoelectron spectroscopy and transmission electron microscopy results showed that the precursor powder contains several broad peaks that could not be assigned to CZTS, ZnS, Cu{sub 2-x}S, Sn{sub 2}S{sub 3} and Cu{sub 2}SnS{sub 3}. However, the sulfurized NCs showed both kesterite CZTS and Cu- and Sn-based secondary phases except for that formed at Cu concentration of 0.02 M. Inductively coupled plasma (ICP) results showed that the presence of Cu in the sulfurized CZTS NCs increased with increasing Cu concentration from 16.57 to 32.94 at.% while Zn and Sn in the sulfurized CZTS NCs decreased with increasing Cu concentration. UV-Vis spectroscopy results showed that the absorption coefficient of the sulfurized NCs was over 10{sup 4} cm{sup -1} in the visible region and band gap energy of the sulfurized CZTS NCs decreased from 1.65 to 1.28 eV with increasing Cu concentration.

  9. Determination of elemental impurities and U and O isotopic compositions with a view to identify the geographical and industrial origins of uranium ore concentrates

    Salaun, A.; Hubert, A.; Pointurier, F.; Aupiais, J.; Pili, E.; Richon, P.; Fauré, A.; Diallo, S.

    2012-12-01

    First events of illicit trafficking of nuclear and radiological materials occurred 50 years ago. Nuclear forensics expertise are aiming at determining the use of seized material, its industrial history and provenance (geographical area, place of production or processing), at assisting in the identification and dismantling of illicit trafficking networks. This information is also valuable in the context of inspections of declared facilities to verify the consistency of operator's declaration. Several characteristics can be used to determine the origin of uranium ore concentrates such as trace elemental impurity patterns (Keegan et al., 2008 ; Varga et al., 2010a, 2010b) or uranium, oxygen and lead isotopic compositions (Tamborini et al., 2002a, 2002b ; Wallenius et al., 2006; Varga et al., 2009). We developed analytical procedures for measuring the isotopic compositions of uranium (234U/238U and 235U/238U) and oxygen (18O/16O) and levels of elemental impurities (e.g. REE, Th) from very small amounts of uranium ore concentrates (or yellow cakes). Micrometer particles and few milligrams of material are used for oxygen isotope measurements and REE determination, respectively. Reference materials were analyzed by mass spectrometry (TIMS, SF-ICP-MS and SIMS) to validate testing protocols. Finally, materials of unknown origin were analyzed to highlight significant differences and determine whether these differences allow identifying the origin of these ore concentrates. References: Keegan, E., et al. (2008). Applied Geochemistry 23, 765-777. Tamborini, G., et al. (2002a). Analytical Chemistry 74, 6098-6101. Tamborini, G., et al. (2002b). Microchimica Acta 139, 185-188. Varga, Z., et al. (2009). Analytical Chemistry 81, 8327-8334. Varga, Z., et al. (2010a). Talanta 80, 1744-1749. Varga, Z., et al. (2010b). Radiochimica Acta 98, 771-778 Wallenius, M., et al. (2006). Forensic Science International 156, 55-62.

  10. Sensitivity enhancement by chromatographic peak concentration with ultra-high performance liquid chromatography-nuclear magnetic resonance spectroscopy for minor impurity analysis.

    Tokunaga, Takashi; Akagi, Ken-Ichi; Okamoto, Masahiko

    2017-07-28

    High performance liquid chromatography can be coupled with nuclear magnetic resonance (NMR) spectroscopy to give a powerful analytical method known as liquid chromatography-nuclear magnetic resonance (LC-NMR) spectroscopy, which can be used to determine the chemical structures of the components of complex mixtures. However, intrinsic limitations in the sensitivity of NMR spectroscopy have restricted the scope of this procedure, and resolving these limitations remains a critical problem for analysis. In this study, we coupled ultra-high performance liquid chromatography (UHPLC) with NMR to give a simple and versatile analytical method with higher sensitivity than conventional LC-NMR. UHPLC separation enabled the concentration of individual peaks to give a volume similar to that of the NMR flow cell, thereby maximizing the sensitivity to the theoretical upper limit. The UHPLC concentration of compound peaks present at typical impurity levels (5.0-13.1 nmol) in a mixture led to at most three-fold increase in the signal-to-noise ratio compared with LC-NMR. Furthermore, we demonstrated the use of UHPLC-NMR for obtaining structural information of a minor impurity in a reaction mixture in actual laboratory-scale development of a synthetic process. Using UHPLC-NMR, the experimental run times for chromatography and NMR were greatly reduced compared with LC-NMR. UHPLC-NMR successfully overcomes the difficulties associated with analyses of minor components in a complex mixture by LC-NMR, which are problematic even when an ultra-high field magnet and cryogenic probe are used. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Donor-impurity related photoionization cross section in GaAs/Ga{sub 1−x}Al{sub x}As concentric double quantum rings: Effects of geometry and hydrostatic pressure

    Baghramyan, H.M. [Department of Solid State Physics, Yerevan State University, Alex Manoogian 1, 0025 Yerevan (Armenia); Barseghyan, M.G., E-mail: mbarsegh@ysu.am [Department of Solid State Physics, Yerevan State University, Alex Manoogian 1, 0025 Yerevan (Armenia); Kirakosyan, A.A. [Department of Solid State Physics, Yerevan State University, Alex Manoogian 1, 0025 Yerevan (Armenia); Laroze, D. [Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica (Chile); Duque, C.A. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia)

    2014-09-15

    The donor-impurity related photoionization cross section in GaAs/Ga{sub 1−x}Al{sub x}As three-dimensional concentric double quantum rings is investigated. The photoionization cross section dependence on the incident photon energy is studied considering the effects of hydrostatic pressure, variations of aluminum concentration, geometries of the structure, and impurity position. The interpretation of the dipole matrix element, which reflects the photoionization probability, is also given. We have found that these parameters can lead to both redshift and blueshift of the photoionization spectrum and also influence the cross section peak value.

  12. Microscopic characterization of pretransition oxide formed on Zr–Nb–Sn alloy under various Zn and dissolved hydrogen concentrations

    Sungyu Kim

    2018-04-01

    Full Text Available Microstructure of oxide formed on Zr–Nb–Sn tube sample was intensively examined by scanning transmission electron microscopy after exposure to simulated primary water chemistry conditions of various concentrations of Zn (0 or 30 ppb and dissolved hydrogen (H2 (30 or 50 cc/kg for various durations without applying desirable heat flux. Microstructural analysis indicated that there was no noticeable change in the microstructure of the oxide corresponding to water chemistry changes within the test duration of 100 days (pretransition stage and no significant difference in the overall thickness of the oxide layer. Equiaxed grains with nano-size pores along the grain boundaries and microcracks were dominant near the water/oxide interface, regardless of water chemistry conditions. As the metal/oxide interface was approached, the number of pores tended to decrease. However, there was no significant effect of H2 concentration between 30 cc/kg and 50 cc/kg on the corrosion of the oxide after free immersion in water at 360°C. The adsorption of Zn on the cladding surface was observed by X-ray photoelectron spectroscopy and detected as ZnO on the outer oxide surface. From the perspective of OH− ion diffusion and porosity formation, the absence of noticeable effects was discussed further. Keywords: Dissolved Hydrogen Effect, Porosity, Pretransition Oxide, Transmission Electron Microscopy (TEM, Zirconium Alloys

  13. Peculiarities of the determination of shallow impurity concentrations in semiconductors from the analysis of exciton luminescence spectra

    Glinchuk, K D

    2002-01-01

    An analysis was made of the applicability limits of the method for the determination of the content of shallow acceptors and donors in semiconductors from the ratio of the low-temperature (T = 1.8-4.2 K) luminescence intensities of exciton bands, in particular, induces by radiative annihilation of excitons bound to acceptors (donors) and free excitons. It is shown that correct data about the concentrations of shallow acceptors and donors as well as data on changes in their content as a result of various treatments may be obtained if the occupancy of the defects in question by holes and electrons does not depend on the excitation intensity or external treatments. A way to check the fulfillment of criteria for the method application is suggested. An example is given is given of the method application for determination of thermally stimulated changes in the concentration of shallow acceptors and donors in gallium arsenide

  14. BaSi2 formation mechanism in thermally evaporated films and its application to reducing oxygen impurity concentration

    Hara, Kosuke O.; Yamamoto, Chiaya; Yamanaka, Junji; Arimoto, Keisuke; Nakagawa, Kiyokazu; Usami, Noritaka

    2018-04-01

    Thermal evaporation is a simple and rapid method to fabricate semiconducting BaSi2 films. In this study, to elucidate the BaSi2 formation mechanism, the microstructure of a BaSi2 epitaxial film fabricated by thermal evaporation has been investigated by transmission electron microscopy. The BaSi2 film is found to consist of three layers with different microstructural characteristics, which is well explained by assuming two stages of film deposition. In the first stage, BaSi2 forms through the diffusion of Ba atoms from the deposited Ba-rich film to the Si substrate while in the second stage, the mutual diffusion of Ba and Si atoms in the film leads to BaSi2 formation. On the basis of the BaSi2 formation mechanism, two issues are addressed. One is the as-yet unclarified reason for epitaxial growth. It is found important to quickly form BaSi2 in the first stage for the epitaxial growth of upper layers. The other issue is the high oxygen concentration in BaSi2 films around the BaSi2-Si interface. Two routes of oxygen incorporation, i.e., oxidation of the Si substrate surface and initially deposited Ba-rich layer by the residual gas, are identified. On the basis of this knowledge, oxygen concentration is decreased by reducing the holding time of the substrate at high temperatures and by premelting of the source. In addition, X-ray diffraction results show that the decrease in oxygen concentration can lead to an increased proportion of a-axis-oriented grains.

  15. Evaluation of surface energy state distribution and bulk defect concentration in DSSC photoanodes based on Sn, Fe, and Cu doped TiO{sub 2}

    Ako, Rajour Tanyi [Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, BE1410, Negara (Brunei Darussalam); Ekanayake, Piyaisiri, E-mail: piyasiri.ekanayake@ubd.edu.bn [Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, BE1410, Negara (Brunei Darussalam); Young, David James [Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, BE1410, Negara (Brunei Darussalam); Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research -A*STAR, 3 Research Link, 117602 (Singapore); Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Locked Bag 4, Maroochydore DC, Queensland, 4558 (Australia); Hobley, Jonathan [Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, BE1410, Negara (Brunei Darussalam); Chellappan, Vijila [Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research - A*STAR, 3 Research Link, 117602 (Singapore); Tan, Ai Ling [Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, BE1410, Negara (Brunei Darussalam); Gorelik, Sergey; Subramanian, Gomathy Sandhya [Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research - A*STAR, 3 Research Link, 117602 (Singapore); Lim, Chee Ming [Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, BE1410, Negara (Brunei Darussalam)

    2015-10-01

    Graphical abstract: - Highlights: • The structural, optical and optoelectronic properties of 1 mol.% Fe, Sn and Cu doped TiO{sub 2} have been compared. • Transient lifetimes for pure TiO{sub 2} and Sn doped TiO{sub 2} were considerably shorter than Fe and Cu doped TiO{sub 2}. • A good correlation between the bulk defects and transient decay for the doped TiO{sub 2} powders was observed. • Photon to current conversion efficiency of DSSC based on the metal doped TiO{sub 2} were in order Sn-TiO{sub 2} > Cu-TiO{sub 2} > Pure >> Fe-TiO{sub 2}. • DSSC based on Fe doped photoanodes is limited by a high concentration of surface free holes observed at 433 nm. - Abstract: Electron transfer dynamics in the oxide layers of the working electrodes in both dye-sensitized solar cells and photocatalysts greatly influences their performance. A proper understanding of the distribution of surface and bulk energy states on/in these oxide layers can provide insights into the associated electron transfer processes. Metal ions like Iron (Fe), Copper (Cu) and Tin (Sn) doped onto TiO{sub 2} have shown enhanced photoactivity in these processes. In this work, the structural, optical and transient properties of Fe, Cu and Sn doped TiO{sub 2} nanocrystalline powders have been investigated and compared using EDX, Raman spectroscopy, X-ray Photoelectron spectroscopy (XPS), and Transient Absorption spectroscopy (TAS). Surface free energy states distributions were probed using Electrochemical Impedance spectroscopy (EIS) on Dye Sensitized Solar Cells (DSSC) based on the doped TiO{sub 2} photoanodes. Raman and XPS Ti2p{sub 3/2} peak shifts and broadening showed that the concentration of defects were in the order: Cu doped TiO{sub 2} > Fe doped TiO{sub 2} > Sn doped TiO{sub 2} > pure TiO{sub 2}. Nanosecond laser flash photolysis of Fe and Cu doped TiO{sub 2} indicated slower transient decay kinetics than that of Sn doped TiO{sub 2} or pure TiO{sub 2}. A broad absorption peak and fast

  16. Comparison of Sn-doped and nonstoichiometric vertical-Bridgman-grown crystals of the topological insulator Bi{sub 2}Te{sub 2}Se

    Kushwaha, S. K., E-mail: kushwaha@princeton.edu; Gibson, Q. D.; Cava, R. J. [Department of Chemistry, Princeton University, Princeton, New Jersey 08544 (United States); Xiong, J.; Ong, N. P. [Department of Physics, Princeton University, Princeton, New Jersey 08544 (United States); Pletikosic, I. [Department of Physics, Princeton University, Princeton, New Jersey 08544 (United States); Condensed Matter Physics and Materials Science Department, Brookhaven National Lab, Upton, New York 11973 (United States); Weber, A. P. [National Synchrotron Light Source, Brookhaven National Lab, Upton, New York 11973 (United States); Fedorov, A. V. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Valla, T. [Condensed Matter Physics and Materials Science Department, Brookhaven National Lab, Upton, New York 11973 (United States)

    2014-04-14

    A comparative study of the properties of topological insulator Bi{sub 2}Te{sub 2}Se (BTS) crystals grown by the vertical Bridgeman method is described. Two defect mechanisms that create acceptor impurities to compensate for the native n-type carriers are compared: Bi excess, and light Sn doping. Both methods yield low carrier concentrations and an n-p crossover over the length of the grown crystal boules, but lower carrier concentrations and higher resistivities are obtained for the Sn-doped crystals, which reach carrier concentrations as low as 8 × 10{sup 14} cm{sup −3}. Further, the temperature dependent resistivities for the Sn-doped crystals display strongly activated behavior at high temperatures, with a characteristic energy of half the bulk band gap. The (001) cleaved Sn-doped BTS crystals display high quality Shubnikov de Haas (SdH) quantum oscillations due to the topological surface state electrons. Angle resolved photoelectron spectroscopy (ARPES) characterization shows that the Fermi energy (E{sub F}) for the Sn-doped crystals falls cleanly in the surface states with no interference from the bulk bands, which the Dirac point for the surface states lies approximately 60 meV below the top of the bulk valence band maximum, and allows for a determination of the bulk and surface state carrier concentrations as a function of Energy near E{sub F}. Electronic structure calculations that compare Bi excess and Sn dopants in BTS demonstrate that Sn acts as a special impurity, with a localized impurity band that acts as a charge buffer occurring inside the bulk band gap. We propose that the special resonant level character of Sn in BTS gives rise to the exceptionally low carrier concentrations and activated resistivities observed.

  17. Comparison of Sn-doped and nonstoichiometric vertical-Bridgman-grown crystals of the topological insulator Bi2Te2Se

    Kushwaha, S. K.; Gibson, Q. D.; Cava, R. J.; Xiong, J.; Ong, N. P.; Pletikosic, I.; Weber, A. P.; Fedorov, A. V.; Valla, T.

    2014-01-01

    A comparative study of the properties of topological insulator Bi 2 Te 2 Se (BTS) crystals grown by the vertical Bridgeman method is described. Two defect mechanisms that create acceptor impurities to compensate for the native n-type carriers are compared: Bi excess, and light Sn doping. Both methods yield low carrier concentrations and an n-p crossover over the length of the grown crystal boules, but lower carrier concentrations and higher resistivities are obtained for the Sn-doped crystals, which reach carrier concentrations as low as 8 × 10 14  cm −3 . Further, the temperature dependent resistivities for the Sn-doped crystals display strongly activated behavior at high temperatures, with a characteristic energy of half the bulk band gap. The (001) cleaved Sn-doped BTS crystals display high quality Shubnikov de Haas (SdH) quantum oscillations due to the topological surface state electrons. Angle resolved photoelectron spectroscopy (ARPES) characterization shows that the Fermi energy (E F ) for the Sn-doped crystals falls cleanly in the surface states with no interference from the bulk bands, which the Dirac point for the surface states lies approximately 60 meV below the top of the bulk valence band maximum, and allows for a determination of the bulk and surface state carrier concentrations as a function of Energy near E F . Electronic structure calculations that compare Bi excess and Sn dopants in BTS demonstrate that Sn acts as a special impurity, with a localized impurity band that acts as a charge buffer occurring inside the bulk band gap. We propose that the special resonant level character of Sn in BTS gives rise to the exceptionally low carrier concentrations and activated resistivities observed

  18. A method for the separation of sodium and iron from plutonium and other impurities in concentrated plutonium solution and their subsequent measurement

    Mair, M.A.; Brown, M.L.

    1988-06-01

    Sodium and iron are separated from plutonium and other impurities by solvent extraction. Sodium is determined by flame photometry and iron by spectrophotometric measurement of the orthophenanthroline complex. (author)

  19. Towards a liquid Argon TPC without evacuation filling of a 6$m^3$ vessel with argon gas from air to ppm impurities concentration through flushing

    Curioni, A; Gendotti, A; Knecht, L; Lussi, D; Marchionni, A; Natterer, G; Resnati, F; Rubbia, A; Coleman, J; Lewis, M; Mavrokoridis, K; McCormick, K; Touramanis, C

    2010-01-01

    In this paper we present a successful experimental test of filling a volume of 6 $m^3$ with argon gas, starting from normal ambient air and reducing the impurities content down to few parts per million (ppm) oxygen equivalent. This level of contamination was directly monitored measuring the slow component of the scintillation light of the Ar gas, which is sensitive to $all$ sources of impurities affecting directly the argon scintillation.

  20. Void growth suppression by dislocation impurity atmospheres

    Weertman, J.; Green, W.V.

    1976-01-01

    A detailed calculation is given of the effect of an impurity atmosphere on void growth under irradiation damage conditions. Norris has proposed that such an atmosphere can suppress void growth. The hydrostatic stress field of a dislocation that is surrounded by an impurity atmosphere was found and used to calculate the change in the effective radius of a dislocation line as a sink for interstitials and vacancies. The calculation of the impurity concentration in a Cottrell cloud takes into account the change in hydrostatic pressure produced by the presence of the cloud itself. It is found that void growth is eliminated whenever dislocations are surrounded by a condensed atmosphere of either oversized substitutional impurity atoms or interstitial impurity atoms. A condensed atmosphere will form whenever the average impurity concentration is larger than a critical concentration

  1. Low Z impurity transport in tokamaks

    Hawryluk, R.J.; Suckewer, S.; Hirshman, S.P.

    1978-10-01

    Low Z impurity transport in tokamaks was simulated with a one-dimensional impurity transport model including both neoclassical and anomalous transport. The neoclassical fluxes are due to collisions between the background plasma and impurity ions as well as collisions between the various ionization states. The evaluation of the neoclassical fluxes takes into account the different collisionality regimes of the background plasma and the impurity ions. A limiter scrapeoff model is used to define the boundary conditions for the impurity ions in the plasma periphery. In order to account for the spectroscopic measurements of power radiated by the lower ionization states, fluxes due to anomalous transport are included. The sensitivity of the results to uncertainties in rate coefficients and plasma parameters in the periphery are investigated. The implications of the transport model for spectroscopic evaluation of impurity concentrations, impurity fluxes, and radiated power from line emission measurements are discussed

  2. Magnetic exchange interactions in Mn doped ZnSnAs{sub 2} chalcopyrite

    Bouhani-Benziane, H.; Sahnoun, O. [Laboratoire de Physique Quantique de la Matière et Modélisation Mathématique (LPQ3M), University of Mascara (Algeria); Sahnoun, M., E-mail: sahnoun_cum@yahoo.fr [Laboratoire de Physique Quantique de la Matière et Modélisation Mathématique (LPQ3M), University of Mascara (Algeria); Department of Chemistry, University of Fribourg (Switzerland); Driz, M. [Laboratoire de Sciences des Matériaux (LSM), University of Sidi Bel Abbes (Algeria); Daul, C. [Department of Chemistry, University of Fribourg (Switzerland)

    2015-12-15

    Accurate ab initio full-potential augmented plane wave (FP-LAPW) electronic calculations within generalized gradient approximation have been performed for Mn doped ZnSnAs{sub 2} chalcopyrites, focusing on their electronic and magnetic properties as a function of the geometry related to low Mn-impurity concentration and the spin magnetic alignment (i.e., ferromagnetic vs antiferromagnetic). As expected, Mn is found to be a source of holes and localized magnetic moments of about 4 µ{sub B} per Mn atom are calculated which are sufficiently large. The defect calculations are firstly performed by replacing a single cation (namely Zn and Sn) with a single Mn atom in the pure chalcopyrite ZnSnAs{sub 2} supercell, and their corresponding formation energies show that the substitution of a Sn atom (rather than Zn) by Mn is strongly favored. Thereafter, a comparison of total energy differences between ferromagnetic (FM) and antiferromagnetic (AFM) are given. Surprisingly, the exchange interaction between a Mn pairs is found to oscillate with the distance between them. Consequently, the AFM alignment is energetically favored in Mn-doped ZnSnAs{sub 2} compounds, except for low impurity concentration associated with lower distances between neighboring Mn impurities, in this case the stabilization of FM increases. Moreover, the ferromagnetic alignment in the Mn-doped ZnSnAs{sub 2} systems behaves half-metallic; the valence band for majority spin orientation is partially filled while there is a gap in the density of states for the minority spin orientation. This semiconducting gap of ~1 eV opened up in the minority channel and is due to the large bonding–antibonding splitting from the p–d hybridization. Our findings suggest that the Mn-doped ZnSnAs{sub 2} chalcopyrites could be a different class of ferromagnetic semiconductors. - Highlights: • ab initio calculations were performed on Mn doped ZnSnAs{sub 2} chalcopyrite. • Substitution of a Sn atom (rather than Zn) by Mn

  3. Structural and dielectric studies of Ce doped BaSnO3 perovskite nanostructures

    Angel, S. Lilly; Deepa, K.; Rajamanickam, N.; Jayakumar, K.; Ramachandran, K.

    2018-04-01

    Undoped and Cerium (Ce) doped BaSnO3(BSO) nanostructures were synthesized by co-precipitation method. The cubic structure and perovskite phase were confirmed by X-ray diffraction (XRD). The crystallite size of BSO is 41nm and when Ce ion concentration is increased, the crystallite sizesdecreased. The nanocube, nanocuboids and nanorods are observed from SEM analysis. The purity of the undoped and doped samples are confirmed by EDS spectrum. For larger defects, wide band gap was obtained from UV-Vis and PL spectrum. The dielectric constants are increased at low frequencies when Ce impurities are introduced in the BSO matrix at Sn site.

  4. Enhanced separation efficiency of photoinduced charges for antimony-doped tin oxide (Sb-SnO{sub 2})/TiO{sub 2} heterojunction semiconductors with varied Sb doping concentration

    Zhang, Zhen-Long [School of Physics and Electronics, Henan University, Kaifeng 475004 (China); Ma, Wen-Hai [School of Physical Education, Henan University, Kaifeng 475004 (China); Mao, Yan-Li, E-mail: ylmao1@163.com [School of Physics and Electronics, Henan University, Kaifeng 475004 (China); Institute for Computational Materials Science, Henan University, Kaifeng 475004 (China)

    2014-09-07

    In this paper, antimony-doped tin oxide (Sb-SnO{sub 2}) nanoparticles were synthesized with varied Sb doping concentration, and the Sb-SnO{sub 2}/TiO{sub 2} heterojunction semiconductors were prepared with Sb-SnO{sub 2} and TiO{sub 2}. The separation efficiency of photoinduced charges was characterized with surface photovoltage (SPV) technique. Compared with Sb-SnO{sub 2} and TiO{sub 2}, Sb-SnO{sub 2}/TiO{sub 2} presents an enhanced separation efficiency of photoinduced charges, and the SPV enhancements were estimated to be 1.40, 1.43, and 1.99 for Sb-SnO{sub 2}/TiO{sub 2} composed of Sb-SnO{sub 2} with the Sb doping concentration of 5%, 10%, and 15%, respectively. To understand the enhancement, the band structure of Sb-SnO{sub 2} and TiO{sub 2} in the heterojunction semiconductor was determined, and the conduction band offsets (CBO) between Sb-SnO{sub 2} and TiO{sub 2} were estimated to be 0.56, 0.64, and 0.98 eV for Sb-SnO{sub 2}/TiO{sub 2} composed of Sb-SnO{sub 2} with the Sb doping concentration of 5%, 10%, and 15%, respectively. These results indicate that the separation efficiency enhancement is resulting from the energy level matching, and the increase of enhancement is due to the rising of CBO.

  5. Impurity diffusion in transition-metal oxides

    Peterson, N.L.

    1982-06-01

    Intrinsic tracer impurity diffusion measurements in ceramic oxides have been primarily confined to CoO, NiO, and Fe 3 O 4 . Tracer impurity diffusion in these materials and TiO 2 , together with measurements of the effect of impurities on tracer diffusion (Co in NiO and Cr in CoO), are reviewed and discussed in terms of impurity-defect interactions and mechanisms of diffusion. Divalent impurities in divalent solvents seem to have a weak interaction with vacancies whereas trivalent impurities in divalent solvents strongly influence the vacancy concentrations and significantly reduce solvent jump frequencies near a trivalent impurity. Impurities with small ionic radii diffuse more slowly with a larger activation energy than impurities with larger ionic radii for all systems considered in this review. Cobalt ions (a moderate size impurity) diffuse rapidly along the open channels parallel to the c-axis in TiO 2 whereas chromium ions (a smaller-sized impurity) do not. 60 references, 11 figures

  6. Anion exchange chromatography of 99mTc(Sn)-EHDP complexes: determination of the charge of the components and influence of pH and ligand concentration

    Huigen, Y.M.; Diender, M.; Gelsema, W.J.; De Ligny, C.L.

    1991-01-01

    The components of a 99m Tc(Sn)-EHDP complex mixture were separated by means of normal pressure and high-pressure anion exchange chromatography. Precautions were taken to prevent the dissociation of the complexes during chromatography. The charges of the components were determined according to the methods of Wilson and Pinkerton (1985) and Russell and Bischoff (1985). The values of the charges obtained with the two methods are not in agreement. Russell and Bischoff's method, in which a reference ion is used, must be preferred. However, even with this method the accuracy of the data obtained is probably limited, due to the difficulty of making corrections for activity coefficients of highly-charge ions at the rather high electrolyte concentrations that must be used in the ion exchange method. So, we think that it is only warranted to conclude that the mean charge of the components of 99m Tc(Sn)-EHDP is about -6 at pH 7, and that the charges of the individual components are in the range of -4 to -9. The influence of pH and ligand concentration in the reaction mixture was determined with high pressure anion exchange chromatography. It was found that a decrease in the pH of the reaction mixture favours the production of complexes with a long retention time, which leads to a slightly higher mean charge. The ligand concentration of the reaction mixture scarcely influenced the relative concentrations of the components. (author)

  7. Moessbauer Studies of Implanted Impurities in Solids

    2002-01-01

    Moessbauer studies were performed on implanted radioactive impurities in semiconductors and metals. Radioactive isotopes (from the ISOLDE facility) decaying to a Moessbauer isotope were utilized to investigate electronic and vibrational properties of impurities and impurity-defect structures. This information is inferred from the measured impurity hyperfine interactions and Debye-Waller factor. In semiconductors isoelectronic, shallow and deep level impurities have been implanted. Complex impurity defects have been produced by the implantation process (correlated damage) or by recoil effects from the nuclear decay in both semiconductors and metals. Annealing mechanisms of the defects have been studied. \\\\ \\\\ In silicon amorphised implanted layers have been recrystallized epitaxially by rapid-thermal-annealing techniques yielding highly supersaturated, electrically-active donor concentrations. Their dissolution and migration mechanisms have been investigated in detail. The electronic configuration of Sb donors...

  8. Measuring and controlling method for organic impurities

    Aizawa, Motohiro; Igarashi, Hiroo

    1995-01-01

    The present invention concerns measurement and control for organic impurities contained in ultrapurified water for use in a nuclear power plant. A specimen containing organic impurities leached out of anionic exchange resins and cationic exchange resins is introduced to an organic material decomposing section to decompose organic impurities into organic carbon and other decomposed products. Sulfate ions, nitrate ions, nitrite ions and carbon dioxide are produced by the decomposition of the organic impurities. As a next step, carbon dioxide in the decomposed products is separated by deaerating with a nitrogen gas or an argon gas and then a TOC concentration is measured by a non-dispersion-type infrared spectrometer. Further, a specimen from which carbon dioxide was separated is introduced to a column filled with ion exchange resins and, after concentrating inorganic ion impurities, the inorganic ion impurities are identified by using a measuring theory of an ion chromatographic method of eluting and separating inorganic ion impurities and detecting them based on the change of electroconductivity depending on the kinds of the inorganic ion impurities. Organic impurities can be measured and controlled, to improve the reliability of water quality control. (N.H.)

  9. Report on intercomparison exercise SR-74 determination of impurities in U3O8

    Doubek, N.; Deron, S.

    1987-06-01

    The report presents results of a laboratory intercomparison of the determination of impurities in U 3 O 8 sample organized by the IAEA. Seven laboratories of six countries, sent their results regarding 31 elements. The evaluation was based on 121 laboratory means. The majority of the results were obtained by emission spectroscopy and by flame atomic absorption techniques. As a result of this intercomparison, recommended certification values can be assigned for the concentration of Cr, Cu and Mg. Information values can be provided for an additional twelve elements (Al, B, Co, Fe, Mn, Mo, Ni, P, Pb, Sn, V, and Zn)

  10. Impurity doping processes in silicon

    Wang, FFY

    1981-01-01

    This book introduces to non-experts several important processes of impurity doping in silicon and goes on to discuss the methods of determination of the concentration of dopants in silicon. The conventional method used is the discussion process, but, since it has been sufficiently covered in many texts, this work describes the double-diffusion method.

  11. Electronic and magnetic properties of SnS2 monolayer doped with non-magnetic elements

    Xiao, Wen-Zhi; Xiao, Gang; Rong, Qing-Yan; Wang, Ling-Ling

    2018-05-01

    We performed a systematic study of the electronic structures and magnetic properties of SnS2 monolayer doped with non-magnetic elements in groups IA, IIA and IIIA based on the first-principles methods. The doped systems exhibit half-metallic and metallic natures depending on the doping elements. The formation of magnetic moment is attributable to the cooperative effect of the Hund's rule coupling and hole concentration. The spin polarization can be stabilized and enhanced through confining the delocalized impurity states by biaxial tensile strain in hole-doped SnS2 monolayer. Both the double-exchange and p-p exchange mechanisms are simultaneously responsible for the ferromagnetic ground state in those hole-doped materials. Our results demonstrate that spin polarization can be induced and controlled in SnS2 monolayers by non-magnetic doping and tensile strain.

  12. Cu{sub 2}ZnSnS{sub 4} nanoflakes prepared by one step microwave irradiation technique: Effect of Cu concentration

    Kandare, S. P.; Dhole, S. D.; Bhoraskar, V. N.; Dahiwale, S. S., E-mail: ssd@physics.unipune.ac.in [Department of Physic, Savitribai Phule Pune University, Pune, 411007 (India)

    2016-05-23

    Cu{sub 2}ZnSnS{sub 4} (CZTS) nanoflakes were synthesized in one step by microwave irradiation method. Controlling the secondary phases in Copper Zinc Tin Sulfide (CZTS) material is critical, but it is necessary to control secondary phases in order to achieve the high efficiency solar cells made from CZTS. In the recent years, CZTS has shown its growing importance in thin film photovoltaic application because of its favorable optical and electrical properties. In this work, a systematic study has been carried out by properly controlling the copper concentration to get the pure phase of CZTS. X-ray diffraction shows the CZTS kesterite structure. Optical band gap estimated from UV-Visible spectroscopy was around 1.37eV. Systematic Raman study reveals the suppression of Cu{sub 2}S peak with variation in copper concentration which otherwise was not clear from XRD and UV-visible data.

  13. SN Refsdal

    Kelly, P. L.; Brammer, G.; Selsing, J.

    2016-01-01

    (SNe), and we find strong evidence for a broad H-alpha P-Cygni profile in the HST grism spectrum at the redshift (z = 1.49) of the spiral host galaxy. SNe IIn, powered by circumstellar interaction, could provide a good match to the light curve of SN Refsdal, but the spectrum of a SN IIn would not show...... in the rest frame, provide additional evidence that supports the SN 1987A-like classification. In comparison with other examples of SN 1987A-like SNe, SN Refsdal has a blue B-V color and a high luminosity for the assumed range of potential magnifications. If SN Refsdal can be modeled as a scaled version of SN...

  14. Concentration of sup(99m)Tc-Sn-N-pyridoxyl-5-methyltryptophan, a biliary agent, in distant metastases of hepatomas

    Hasegawa, Y; Nakano, S; Ibuka, K; Hashizume, T; Sasaki, Y; Imaoka, S; Ishiguro, S; Tanaka, S; Kasugai, H; Okano, Y

    1985-03-01

    During the last 2 years, eight patients with hepatocellular carcinoma who were suspected of having distant metastases have been studied to determine whether a new biliary agent, sup(99m)Tc-Sn-N-pyridoxyl-5-methyl-tryptophan (sup(99m)Tc-PMT), is taken up by extrahepatic tumors. In all eight patients, scintigrams showed a clearly increased uptake of sup(99m)Tc-PMT radioactivity by the extrahepatic tumors. In contrast, an increased uptake by the tumors of gallium citrate Ga 67 was only detected in four of the seven patients examined. The results obtained in this study suggest that sup(99m)Tc-PMT is useful both for characterizing the nature of extrahepatic tumors in patients with hepatoma and for detecting the metastases.

  15. EUV impurity study of the Alcator tokamak

    Terry, J.L.; Chen, K.I.; Moos, H.W.; Marmar, E.S.

    1978-01-01

    The intensity of resonance line radiation from oxygen, nitrogen, carbon and molybdenum impurities has been measured in the high-field (80kG), high-density (6x10 14 cm -3 ) discharges of the Alcator Tokamak, using a 0.4-m normal-incidence monochromator (300-1300A) with its line of sight fixed along a major radius. Total light-impurity concentrations of a few tenths of a percent have been estimated by using both a simple model and a computer code which included Pfirsch-Schlueter impurity diffusion. The resulting values of Zsub(eff), including the contributions due to both the light impurities and molybdenum, were close to one. The power lost through the impurity line radiation from the lower ionization states accounted for approximately 10% of the total Ohmic input power at high densities. (author)

  16. Effects of tin concentrations on structural characteristics and electrooptical properties of tin-doped indium oxide films prepared by RF magnetron sputtering

    Yi, Choong-Hoon; Yasui, Itaru; Shigesato, Yuzo

    1995-01-01

    Structural characteristics and electrooptical properties of Sn-doped In 2 O 3 (ITO) films were investigated in terms of Sn concentrations from 5.34 to 8.99 (Sn/In at.%) with changing oxygen partial pressure and substrate temperature during deposition, in spite of using an ITO target with the same Sn concentration (7.50 SnO 2 wt%, 7.17 Sn/In at.%). The resistivity of the films deposited at 200 and 300degC had a clear tendency to decrease with decrease of the total Sn content. Sn atoms incorporated in the ITO films were classified into two types, i.e., electrically active substitutional Sn atoms contributing to carrier density and electrically nonactive impurities forming nonreducible tin-oxide complexes, which were revealed by precise lattice constant measurement. The change in the Sn concentration was found to be associated with the preferred orientation of the crystal grains, which was dominated by the deposition conditions and should reflect the crystal growth processes. (author)

  17. Effects of tin concentrations on structural characteristics and electrooptical properties of tin-doped indium oxide films prepared by RF magnetron sputtering

    Yi, Choong-Hoon; Yasui, Itaru; Shigesato, Yuzo [Tokyo Univ. (Japan). Inst. of Industrial Science

    1995-02-01

    Structural characteristics and electrooptical properties of Sn-doped In{sub 2}O{sub 3} (ITO) films were investigated in terms of Sn concentrations from 5.34 to 8.99 (Sn/In at.%) with changing oxygen partial pressure and substrate temperature during deposition, in spite of using an ITO target with the same Sn concentration (7.50 SnO{sub 2} wt%, 7.17 Sn/In at.%). The resistivity of the films deposited at 200 and 300degC had a clear tendency to decrease with decrease of the total Sn content. Sn atoms incorporated in the ITO films were classified into two types, i.e., electrically active substitutional Sn atoms contributing to carrier density and electrically nonactive impurities forming nonreducible tin-oxide complexes, which were revealed by precise lattice constant measurement. The change in the Sn concentration was found to be associated with the preferred orientation of the crystal grains, which was dominated by the deposition conditions and should reflect the crystal growth processes. (author).

  18. Integrable quantum impurity models

    Eckle, H.P.

    1998-01-01

    By modifying some of the local L operators of the algebraic form of the Bethe Ansatz inhomogeneous one dimensional quantum lattice models can be constructed. This fact has recently attracted new attention, the inhomogeneities being interpreted as local impurities. The Hamiltonians of the so constructed one-dimensional quantum models have a nearest neighbour structure except in the vicinity of the local impurities which involve three-site interactions. The pertinent feature of these models is the absence of backscattering at the impurities: the impurities are transparent. (Copyright (1998) World Scientific Publishing Co. Pte. Ltd)

  19. Sodium sampling and impurities determination

    Docekal, J.; Kovar, C.; Stuchlik, S.

    1980-01-01

    Samples may be obtained from tubes in-built in the sodium facility and further processed or they are taken into crucibles, stored and processed later. Another sampling method is a method involving vacuum distillation of sodium, thus concentrating impurities. Oxygen is determined by malgamation, distillation or vanadium balance methods. Hydrogen is determined by the metal diaphragm extraction, direct extraction or amalgamation methods. Carbon is determined using dry techniques involving burning a sodium sample at 1100 degC or using wet techniques by dissolving the sample with an acid. Trace amounts of metal impurities are determined after dissolving sodium in ethanol. The trace metals are concentrated and sodium excess is removed. (M.S.)

  20. Low-Z impurities in PLT

    Hinnov, E.; Suckewer, S.; Bol, K.; Hawryluk, R.; Hosea, J.; Meservey, E.

    1977-11-01

    Low-Z impurities concentrations (oxygen and carbon) have been measured in different discharges in PLT. The contribution to Z/sub eff/, influx rates and radiation losses by oxygen and carbon were obtained. An inverse correlation was found between the low-Z impurity density (and also the edge ion temperature) and the high-Z impurity (tungsten) density. A one-dimensional computer transport model has been used to calculate the spatial profiles of different oxygen and carbon ionization states. This model predicts that fully stripped oxygen and carbon ions should exist near the plasma periphery

  1. Glycolic acid physical properties and impurities assessment

    Lambert, D. P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pickenheim, B. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hay, M. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); BIBLER, N. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-08-09

    This document has been revised to add analytical data for fresh, 1 year old, and 4 year old glycolic acid as recommended in Revision 2 of this document. This was needed to understand the concentration of formaldehyde and methoxyacetic acid, impurities present in the glycolic acid used in Savannah River National Laboratory (SRNL) experiments. Based on this information, the concentration of these impurities did not change during storage. These impurities were in the glycolic acid used in the testing included in this report and in subsequent testing using DuPont (now called Chemours) supplied Technical Grade 70 wt% glycolic acid. However, these impurities were not reported in the first two versions of this report. The Defense Waste Processing Facility (DWPF) is planning to implement a nitric-glycolic acid flowsheets to increase attainment to meet closure commitment dates during Sludge Batch 9. In fiscal year 2009, SRNL was requested to determine the physical properties of formic and glycolic acid blends.

  2. Effect of different concentrations of dl-isoleucine, dl-valine, and dl-alanine on growth and sporulation in Fusarium oxysporum f. udum (Butl.) Sn. et H.

    Prasad, M; Chaudhary, S K

    1977-01-01

    D1-alanine and dl-valine, when added as an extra nitrogen for fortifying the already present inorganic nitrogen source, actually acted as growth retardant for F. oxysporum f. udum (Butl.) Sn. et H. Sporulation of microconidia was indifferently affected by these two amino acids. DI-valine stimulated microconidial formation in young cultures only. In both young and old cultures the lowest concentration of dl-valine depressed macronidial sporulation. In old cultures the lowest concentration of valine stimulated chlamydospore differentiation rapidly, higher concentrations being less effective. D1-alanine, as an additional nitrogen source, depressed both macro- and microconidal sporulation. It did not even invigorate chlamydospore formation. D1-isoleucine, on the other hand, belongs to the category of growth promoters and profuse and stimulative sporulators of macro- and microconidia. This pathogen needs very specific and preferential doses of the three amino acids, if these are used as a booster in addition to the already present nitrogen source. The response, both in terms of mycelial growth and sporulation of the three spore forms, was also conditioned by the age of the culture.

  3. Numerical analysis of impurity separation from waste salt by investigating the change of concentration at the interface during zone refining process

    Choi, Ho-Gil; Shim, Moonsoo; Lee, Jong-Hyeon; Yi, Kyung-Woo

    2017-09-01

    The waste salt treatment process is required for the reuse of purified salts, and for the disposal of the fission products contained in waste salt during pyroprocessing. As an alternative to existing fission product separation methods, the horizontal zone refining process is used in this study for the purification of waste salt. In order to evaluate the purification ability of the process, three-dimensional simulation is conducted, considering heat transfer, melt flow, and mass transfer. Impurity distributions and decontamination factors are calculated as a function of the heater traverse rate, by applying a subroutine and the equilibrium segregation coefficient derived from the effective segregation coefficients. For multipass cases, 1d solutions and the effective segregation coefficient obtained from three-dimensional simulation are used. In the present study, the topic is not dealing with crystal growth, but the numerical technique used is nearly the same since the zone refining technique was just introduced in the treatment of waste salt from nuclear power industry because of its merit of simplicity and refining ability. So this study can show a new application of single crystal growth techniques to other fields, by taking advantage of the zone refining multipass possibility. The final goal is to achieve the same high degree of decontamination in the waste salt as in zone freezing (or reverse Bridgman) method.

  4. Improved lithium cyclability and storage in mesoporous SnO2 electronically wired with very low concentrations (≤1 %) of reduced graphene oxide.

    Shiva, Konda; Rajendra, H B; Subrahmanyam, K S; Bhattacharyya, Aninda J; Rao, C N R

    2012-04-10

    On the wire: Mesoporous tin dioxide (SnO(2)) wired with very low amounts (≤1 %) of reduced graphene oxide (rGO) exhibits a remarkable improvement in lithium-ion battery performance over bare mesoporous or solid nanoparticles of SnO(2). Reversible lithium intercalation into SnO(2)/SnO over several cycles was demonstrated in addition to conventional reversible lithium storage by an alloying reaction. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Low Z impurity transport in tokamaks. [Neoclassical transport theory

    Hawryluk, R.J.; Suckewer, S.; Hirshman, S.P.

    1978-10-01

    Low Z impurity transport in tokamaks was simulated with a one-dimensional impurity transport model including both neoclassical and anomalous transport. The neoclassical fluxes are due to collisions between the background plasma and impurity ions as well as collisions between the various ionization states. The evaluation of the neoclassical fluxes takes into account the different collisionality regimes of the background plasma and the impurity ions. A limiter scrapeoff model is used to define the boundary conditions for the impurity ions in the plasma periphery. In order to account for the spectroscopic measurements of power radiated by the lower ionization states, fluxes due to anomalous transport are included. The sensitivity of the results to uncertainties in rate coefficients and plasma parameters in the periphery are investigated. The implications of the transport model for spectroscopic evaluation of impurity concentrations, impurity fluxes, and radiated power from line emission measurements are discussed.

  6. The origin of metal impurities in DIVA

    Ohasa, Kazumi; Sengoku, Seio; Maeda, Hikosuke; Ohtsuka, Hideo; Yamamoto, Shin

    1978-10-01

    The origin of metal impurities in DIVA (JFT-2a Tokamak) has been studied experimentally. Three processes of metal impurity release from the first wall were identified; i.e. ion sputtering, evaporation, and arcing. Among of these, ion sputtering is the predominant process in the quiet phase of the discharge, which is characterized by no spikes in the loop voltage and no localized heat flux concentrations on the first wall. ''Cones'' formation due to the sputtering is observed on the gold protection plate (guard limiter) exposed to about 10,000 discharges by scanning electron micrograph. In the SEM photographs, the spacial distribution of cones on the shell surface due to the ion sputtering coincides with the spacial distribution of intensity of Au-I line radiation. Gold is the dominant metal impurity in DIVA. The honeycomb structure can decrease release of the metal impurity. (author)

  7. Variational method for magnetic impurities in metals: impurity pairs

    Oles, A M [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany, F.R.); Chao, K A [Linkoeping Univ. (Sweden). Dept. of Physics and Measurement Technology

    1980-01-01

    Applying a variational method to the generalized Wolff model, we have investigated the effect of impurity-impurity interaction on the formation of local moments in the ground state. The direct coupling between the impurities is found to be more important than the interaction between the impurities and the host conduction electrons, as far as the formation of local moments is concerned. Under certain conditions we also observe different valences on different impurities.

  8. Effect of impurities and processing on silicon solar cells. Volume 1: Characterization methods for impurities in silicon and impurity effects data base

    Hopkins, R. H.; Davis, J. R.; Rohatgi, A.; Campbell, R. B.; Blais, P. D.; Rai-Choudhury, P.; Stapleton, R. E.; Mollenkopf, H. C.; Mccormick, J. R.

    1980-01-01

    Two major topics are treated: methods to measure and evaluate impurity effects in silicon and comprehensive tabulations of data derived during the study. Discussions of deep level spectroscopy, detailed dark I-V measurements, recombination lifetime determination, scanned laser photo-response, conventional solar cell I-V techniques, and descriptions of silicon chemical analysis are presented and discussed. The tabulated data include lists of impurity segregation coefficients, ingot impurity analyses and estimated concentrations, typical deep level impurity spectra, photoconductive and open circuit decay lifetimes for individual metal-doped ingots, and a complete tabulation of the cell I-V characteristics of nearly 200 ingots.

  9. Exploring d{sup 0} magnetism in doped SnO{sub 2}–a first principles DFT study

    Chakraborty, Brahmananda, E-mail: brahma@barc.gov.in; Ramaniah, Lavanya M.

    2015-07-01

    In search of d{sup 0} magnetism, the magnetic behavior of SnO{sub 2} with cation substitution from group1A (Li, Na, K) and group 2A (Be, Mg, Ca) elements has been systematically studied using Density Functional Theory (DFT). While an impurity from group 1A elements switches on ferromagnetism at a lower concentration itself, sufficient hole density is required for a group 2A impurity to create a spontaneous spin polarized ground state, a finding that has not been reported in earlier investigations. Our DFT results predict for the first time that impurities from group 2A (Mg, Ca) in SnO{sub 2} can promote room temperature ferromagnetism. Further, the emergence of ferromagnetism due to doping from group 1A elements, which injects three holes per defect, has been mapped successfully onto a modified Hubbard model from the literature. Doping of a single Na atom in the supercell (concentration 6.25 at%) makes the system ferromagnetic, with a magnetic moment close to 3.0 μ{sub B} per defect, and a Curie temperature of 815 K, obtained in the mean field approximation. This agrees closely with a model prediction of 750 K. Finally, the triggering of ferromagnetism by an impurity atom from group 2A, which adds two holes per defect in the system, implies that the prescription of three holes per defect given in the literature is not a necessary criterion for hole induced ferromagnetism. Rather, the analysis of the density of states and ferromagnetic coupling indicate that the system needs a critical hole concentration to activate ferromagnetism, by pushing the Fermi level inside the valence band in order to satisfy the Stoner criterion. - Graphical abstract: Spin density (Δρ=ρ↑−ρ↓) shown in yellow color mainly concentrated on the first shell O atoms around the impurity (a)Li, (b)Na, (c) K for isovalue 0.2e (d) K for isovalue 0.1. - Highlights: • Systematic study of d{sup 0} magnetism in SnO{sub 2} doped with group 1A (Li, Na, K) and group 2A (Be, Mg, Ca).

  10. Localization of the antimony impurity atoms in the PbTe lattice determined by the Moessbauer emission spectroscopy

    Masterov, V.F.; Nasredinov, F.S.; Nemov, S.A.; Seregin, P.P.; Troitskaya, N.N.; Bondarevskij, S.I.

    1997-01-01

    The 119 Sb ( 119m Sn) emission Moessbauer spectroscopy has shown that a localization of the antimony impurity atoms in the PbTe lattice is affected by the conductivity type of the host material, the antimony atoms occupied mainly anion and cation sites in n-type and p-type samples, respectively. The 119 Sn impurity in the anion sublattice of PbTe formed an decay. Its charge state was shown to be independent of the Fermi level position

  11. Achieving improved ohmic confinement via impurity injection

    Bessenrodt-Weberpals, M.; Soeldner, F.X.

    1991-01-01

    Improved Ohmic Confinement (IOC) was obtained in ASDEX after a modification of the divertors that allowed a larger (deuterium and impurity) backflow from the divertor chamber. The quality of IOC depended crucially on the wall conditions, i.e. IOC was best for uncovered stainless steels walls and vanished with boronization. Furthermore, IOC was found only in deuterium discharges. These circumstances led to the idea that IOC correlates with the content of light impurities in the plasma. To substantiate this working hypothesis, we present observations in deuterium discharges with boronized wall conditions into which various impurities have been injected with the aim to induce IOC conditions. Firstly, the plasma behaviour in typical IOC discharges is characterized. Secondly, injection experiments with the low-Z impurities nitrogen and neon as well as with the high-Z impurities argon and krypton are discussed. Then, we concentrate on optimized neon puffing that yields the best confinement results which are similar to IOC conditions. Finally, these results are compared with eperiments in other tokamaks and some conclusions are drawn about the effects of the impurity puffing on both, the central and the edge plasma behaviour. (orig.)

  12. On impurities transport in a tokamak

    Rozhanskij, V.A.

    1980-01-01

    Transport of impurity ions is analitically analized in the case when main plasma is in plateau or banana regimes but impurity ions - in the Pfirsch-Schlutter mode. It is shown that in the large region of parameters the impUrity transport represents a drift in a p oloidal electric field, averaged from magnetic surface with provision for disturbance of concentration on it. Therefore, transport velocity does not depend on Z value and impurity type, as well as collision frequency both in the plateau and banana regimes. A value of flows is determined by the value of poloidal rotation velocity. At the rotation velocity corresponding to the electric field directed from the centre to periphery impurities are thrown out of a discharge, in the reverse case the flow is directed inside. Refusal from the assumption that Zsub(eff) > approximately 2, does not considerably change the results of work. The approach developed in the process of work can be applied to the case when impurity ions are in the plateau or banana modes

  13. Impurity production and transport at limiters

    Matthews, G.F.

    1989-01-01

    This paper concentrates on the description and evaluation of experiments on the DITE tokamak. These are designed to characterise the processes involved in the production and transport of neutral and ionised impurities near carbon limiters. The need for good diagnostics in the scrape-off layer is highlighted. Langmuir probes are used to provide input data for models of impurity production at limiters. Observations of the radial profiles of carbon and oxygen impurities are compared with the code predictions. Changeover experiments involving hydrogen and helium plasmas are used as a means for investigating the role of the atomic physics and chemistry. The impurity control limiter (ICL) experiment is described which shows how geometry plays an important role in determining the spatial distributions of the neutral and ionised carbon. New diagnostics are required to study the flux and charge state distribution of impurities in the boundary. Preliminary results from an in-situ plasma ion mass-spectrometer are presented. The role of oxygen and the importance of evaluating the wall sources of impurity are emphasised. (orig.)

  14. Phase diagram of the ternary Zr-Ti-Sn system

    Arias, D.; Gonzalez Camus, M.

    1987-01-01

    It is well known that Ti stabilizes the high temperature cubic phase of Zr and that Sn stabilizes the low temperature hexagonal phase of Zr. The effect of Sn on the Zr-Ti diagram has been studied in the present paper. Using high purity metals, nine different alloys have been prepared, with 4-32 at % Ti, 0.7-2.2 at % Sn and Zr till 100%. Resistivity and optical and SEM metallography techniques have been employed. Effect of some impurities have been analyzed. The results are discussed and different isothermic sections of the ternary Zr-Ti-Sn diagram are presented. (Author) [es

  15. Impurity gettering in semiconductors

    Sopori, Bhushan L.

    1995-01-01

    A process for impurity gettering in a semiconductor substrate or device such as a silicon substrate or device. The process comprises hydrogenating the substrate or device at the back side thereof with sufficient intensity and for a time period sufficient to produce a damaged back side. Thereafter, the substrate or device is illuminated with electromagnetic radiation at an intensity and for a time period sufficient to cause the impurities to diffuse to the back side and alloy with a metal there present to form a contact and capture the impurities. The impurity gettering process also can function to simultaneously passivate defects within the substrate or device, with the defects likewise diffusing to the back side for simultaneous passivation. Simultaneously, substantially all hydrogen-induced damage on the back side of the substrate or device is likewise annihilated. Also taught is an alternate process comprising thermal treatment after hydrogenation of the substrate or device at a temperature of from about 500.degree. C. to about 700.degree. C. for a time period sufficient to cause the impurities to diffuse to the damaged back side thereof for subsequent capture by an alloying metal.

  16. Impurity control in TFTR

    Cecchi, J.L.

    1980-06-01

    The control of impurities in TFTR will be a particularly difficult problem due to the large energy and particle fluxes expected in the device. As part of the TFTR Flexibility Modification (TEM) project, a program has been implemented to address this problem. Transport code simulations are used to infer an impurity limit criterion as a function of the impurity atomic number. The configurational designs of the limiters and associated protective plates are discussed along with the consideration of thermal and mechanical loads due to normal plasma operation, neutral beams, and plasma disruptions. A summary is given of the materials-related research, which has been a collaborative effort involving groups at Argonne National Laboratory, Sandia Laboratories, and Princeton Plasma Physics Laboratory. Conceptual designs are shown for getterng systems capable of regenerating absorbed tritium. Research on this topic by groups at the previously mentioned laboratories and SAES Research Laboratory is reviewed

  17. Fractal growth in impurity-controlled solidification in lipid monolayers

    Fogedby, Hans C.; Sørensen, Erik Schwartz; Mouritsen, Ole G.

    1987-01-01

    A simple two-dimensional microscopic model is proposed to describe solidifcation processes in systems with impurities which are miscible only in the fluid phase. Computer simulation of the model shows that the resulting solids are fractal over a wide range of impurity concentrations and impurity...... diffusional constants. A fractal-forming mechanism is suggested for impurity-controlled solidification which is consistent with recent experimental observations of fractal growth of solid phospholipid domains in monolayers. The Journal of Chemical Physics is copyrighted by The American Institute of Physics....

  18. Collective impurity effects in the Heisenberg triangular antiferromagnet

    Maryasin, V S; Zhitomirsky, M E

    2015-01-01

    We theoretically investigate the Heisenberg antiferromagnet on a triangular lattice doped with nonmagnetic impurities. Two nontrivial effects resulting from collective impurity behavior are predicted. The first one is related to presence of uncompensated magnetic moments localized near vacancies as revealed by the low-temperature Curie tail in the magnetic susceptibility. These moments exhibit an anomalous growth with the impurity concentration, which we attribute to the clustering mechanism. In an external magnetic field, impurities lead to an even more peculiar phenomenon lifting the classical ground-state degeneracy in favor of the conical state. We analytically demonstrate that vacancies spontaneously generate a positive biquadratic exchange, which is responsible for the above degeneracy lifting

  19. Incorporation, diffusion and segregation of impurities in polycrystalline silicon

    Deville, J.P.; Soltani, M.L. (Universite Louis Pasteur, 67 - Strasbourg (France)); Quesada, J. (Laboratoire de Metallurgie-Chimie des Materiaux, E.N.S.A.I.S., 67 - Strasbourg (France))

    1982-01-01

    We studied by means of X-Ray photoelectron Spectroscopy the nature, distribution and, when possible, the chemical bond of impurities at the surface of polycrystalline silicon samples grown on a carbon ribbon. Besides main impurities (carbon and oxygen), always present at concentrations around their limit of solubility in silicon, metal impurities have been found: their nature varies from one sample to another. Their spatial distribution is not random: some are strictly confined at the surface (sodium), whereas others are in the superficial oxidized layer (calcium, magnesium) or localized at the oxide-bulk silicon interface (iron). Metal impurities are coming from the carbon ribbon and are incorporated to silicon during the growth process. It is not yet possible to give a model of diffusion processes of impurities since they are too numerous and interact one with the other. However oxygen seems to play a leading role in the spatial distribution of metal impurities.

  20. Impurity binding energy for δ-doped quantum well structures

    Administrator

    Calculations are made for the case of not so big impurity concentrations, when impurity bands are not .... Blom et al (2003), but our data correspond qualitatively to Bastard's .... 0113U000612 and by Ukrainian Ministry of Education and Science ...

  1. Instability of homogeneous distribution of charged substitutional impurity in semiconductors

    Vasilevskij, M.I.; Ershov, S.N.; Panteleev, V.A.

    1985-01-01

    A mechanism is suggested of instability of uniform impurity distribution in a semiconductor. The mechanism is associated with the vacancy wind effect and deflection from local neutrality in case of impurity concentration fluctuation occurrence. It is shown that the mechanism can be realized by irradiation of silicon doped with group-3 and group 5 elements

  2. Helium impurities in a PNP-primary coolant circuit

    Reif, M.

    1981-01-01

    The concentration of impurities to be expected have been defined in consideration of recent findings concerning the rates of infiltration and formation and the reaction mechanisms of the impurity components in the circuit. The data obtained correspond with the requirements on the metallic high-temperature components as well as with the requirements of limited graphite corrosion. (DG) [de

  3. Preparation of Cu2Sn3S7 Thin-Film Using a Three-Step Bake-Sulfurization-Sintering Process and Film Characterization

    Tai-Hsiang Lui

    2015-01-01

    Full Text Available Cu2Sn3S7 (CTS can be used as the light absorbing layer for thin-film solar cells due to its good optical properties. In this research, the powder, baking, sulfur, and sintering (PBSS process was used instead of vacuum sputtering or electrochemical preparation to form CTS. During sintering, Cu and Sn powders mixed in stoichiometric ratio were coated to form the thin-film precursor. It was sulfurized in a sulfur atmosphere to form CTS. The CTS film metallurgy mechanism was investigated. After sintering at 500°C, the thin film formed the Cu2Sn3S7 phase and no impurity phase, improving its energy band gap. The interface of CTS film is continuous and the formation of intermetallic compound layer can increase the carrier concentration and mobility. Therefore, PBSS process prepared CTS can potentially be used as a solar cell absorption layer.

  4. Dynamical impurity problems

    Emery, V.J.; Kivelson, S.A.

    1993-01-01

    In the past few years there has been a resurgence of interest in dynamical impurity problems, as a result of developments in the theory of correlated electron systems. The general dynamical impurity problem is a set of conduction electrons interacting with an impurity which has internal degrees of freedom. The simplest and earliest example, the Kondo problem, has attracted interest since the mid-sixties not only because of its physical importance but also as an example of a model displaying logarithmic divergences order by order in perturbation theory. It provided one of the earliest applications of the renormalization group method, which is designed to deal with just such a situation. As we shall see, the antiferromagnetic Kondo model is controlled by a strong-coupling fixed point, and the essence of the renormalization group solution is to carry out the global renormalization numerically starting from the original (weak-coupling) Hamiltonian. In these lectures, we shall describe an alternative route in which we identify an exactly solvable model which renormalizes to the same fixed point as the original dynamical impurity problem. This approach is akin to determining the critical behavior at a second order phase transition point by solving any model in a given universality class

  5. Dynamical impurity problems

    Emery, V.J. [Brookhaven National Lab., Upton, NY (United States); Kivelson, S.A. [California Univ., Los Angeles, CA (United States). Dept. of Physics

    1993-12-31

    In the past few years there has been a resurgence of interest in dynamical impurity problems, as a result of developments in the theory of correlated electron systems. The general dynamical impurity problem is a set of conduction electrons interacting with an impurity which has internal degrees of freedom. The simplest and earliest example, the Kondo problem, has attracted interest since the mid-sixties not only because of its physical importance but also as an example of a model displaying logarithmic divergences order by order in perturbation theory. It provided one of the earliest applications of the renormalization group method, which is designed to deal with just such a situation. As we shall see, the antiferromagnetic Kondo model is controlled by a strong-coupling fixed point, and the essence of the renormalization group solution is to carry out the global renormalization numerically starting from the original (weak-coupling) Hamiltonian. In these lectures, we shall describe an alternative route in which we identify an exactly solvable model which renormalizes to the same fixed point as the original dynamical impurity problem. This approach is akin to determining the critical behavior at a second order phase transition point by solving any model in a given universality class.

  6. Study by nuclear techniques of the impurity-defect interaction in implanted metals

    Thome, Lionel.

    1978-01-01

    The properties of out equilibrium alloys formed by impurity implantation are strongly influenced by radiation damage created during implantation. This work presents a study, via hyperfine interaction and lattice location experiments, of the impurity-defect interaction in ion implanted metals. When the impurity and defect concentrations in the implanted layer are small, i.e. when impurities are uniformly recoil implanted in the whole crystal volume following a nuclear reaction (Aq In experiments), the impurity interacts with its own damage cascade. In this case, a vacancy is found to be trapped by a fraction of impurities during an athermal process. The value of this fraction does not seem to depend critically on impurity and host. When the impurity and defect concentrations are such that defect cascades interact, i.e. when impurities are implanted with an isotope separator (Fe Yb experiments), the observed impurity-vacancy (or vacancy cluster) interactions depend then strongly on the nature of impurity and host. An empirical relation, which indicates the importance of elastic effects, has been found between the proportion of impurities interacting with defects and the difference between impurity and host atom radii. At implantation temperature such that vacancies are mobile, the impurity-defect interaction depends essentially on vacancy migration. A model based on chemical kinetics has been developed to account for the variation with temperature of measured quantities [fr

  7. Spectrochemical analysis of impurities in nickel and in nickel oxide

    Goldbart, Z.; Lorber, A.; Harel, A.

    1981-11-01

    Various spectrochemical methods are described for the quantitative determination of 23 impurities in metallic nickel and in nickel oxide. The average limit of detection is from 1 to 5 ppm and the dynamic range lies over 2.5 orders of magnitude. The elements that were determined are: Al,B,Ba,Bi,Ca,Cd,Co,Cu,Fe,Ga,Ge,In,Mg,Mn,Mo,Nb,Si,Sn,Sr,Ti,Cr,V. (author)

  8. Thermoelectric performance of co-doped SnTe with resonant levels

    Zhou, Min; Han, Yemao; Li, Laifeng, E-mail: laifengli@mail.ipc.ac.cn, E-mail: wangheng83@gmail.com [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Gibbs, Zachary M. [Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd. Pasadena, California 91125 (United States); Wang, Heng, E-mail: laifengli@mail.ipc.ac.cn, E-mail: wangheng83@gmail.com [Materials Science, California Institute of Technology, 1200 California Blvd., Pasadena, California 91125 (United States); Snyder, G. Jeffrey [Materials Science, California Institute of Technology, 1200 California Blvd., Pasadena, California 91125 (United States); TMO University, Saint Petersburg 197101 (Russian Federation)

    2016-07-25

    Some group III elements such as Indium are known to produce the resonant impurity states in IV-VI compounds. The discovery of these impurity states has opened up new ways for engineering the thermoelectric properties of IV-VI compounds. In this work, resonant states in SnTe were studied by co-doping with both resonant (In) and extrinsic (Ag, I) dopants. A characteristic nonlinear relationship was observed between the Hall carrier concentration (n{sub H}) and extrinsic dopant concentration (N{sub I}, N{sub Ag}) in the stabilization region, where a linear increase of dopant concentration does not lead to linear response in the measured n{sub H}. Upon substituting extrinsic dopants beyond a certain amount, the n{sub H} changed proportionally with additional dopants (Ag, I) (the doping region). The Seebeck coefficients are enhanced as the resonant impurity is introduced, whereas the use of extrinsic doping only induces minor changes. Modest zT enhancements are observed at lower temperatures, which lead to an increase in the average zT values over a broad range of temperatures (300–773 K). The improved average zT obtained through co-doping indicates the promise of fine carrier density control in maximizing the favorable effect of resonant levels for thermoelectric materials.

  9. Interaction between impurities in Ag dilute alloys

    Krolas, K.; Wodniecka, B.; Wodniecki, P.; Uniwersytet Jagiellonski, Krakow

    1977-01-01

    Time dependent perturbed angular correlation measurements of gamma radiation in 111 Cd after 111 In decay were performed in AgPd and AgPt alloys. The concentration of Pd or Pt atoms being the nearest neighbours to the probe atoms is much higher than that one deduced from random impurity distribution. This effect results from the attractive interaction between the In probe atoms and Pt or Pd impurity atoms in silver host lattice. The binding energy of InPd and InPt complexes was measured as 135 +- 9 meV and 171 +- 9 meV, respectively. (author)

  10. TDPAC study of Cd-doped SnO

    Munoz, E. L., E-mail: munoz@fisica.unlp.edu.ar [Universidad Nacional de La Plata, Departamento de Fisica-IFLP (CCT-La Plata, CONICET-UNLP), Facultad de Ciencias Exactas (Argentina); Carbonari, A. W. [Instituto de Pesquisas Energeticas y Nucleares-IPEN-CNEN/SP (Brazil); Errico, L. A. [Universidad Nacional de La Plata, Departamento de Fisica-IFLP (CCT-La Plata, CONICET-UNLP), Facultad de Ciencias Exactas (Argentina); Bibiloni, A. G. [Universidad Nacional de La Plata, Departamento de Fisica, Facultad de Ciencias Exactas (Argentina); Petrilli, H. M. [Universidade de Sao Paulo, Instituto de Fisica (Brazil); Renteria, M. [Universidad Nacional de La Plata, Departamento de Fisica-IFLP (CCT-La Plata, CONICET-UNLP), Facultad de Ciencias Exactas (Argentina)

    2007-07-15

    The combination of hyperfine techniques and ab initio calculations has been shown to be a powerful tool to unravel structural and electronic characterizations of impurities in solids. A recent example has been the study of Cd-doped SnO, where ab initio calculations questioned previous TDPAC assignments of the electric-field gradient (EFG) in {sup 111}In-implanted Sn-O thin films. Here we present new TDPAC experiments at {sup 111}In-diffused polycrystalline SnO. A reversible temperature dependence of the EFG was observed in the range 295-900 K. The TDPAC results were compared with theoretical calculations performed with the full-potential linearized augmented plane wave (FP-LAPW) method, in the framework of the density functional theory. Through the comparison with the theoretical results, we infer that different electronic surroundings around Cd impurities can coexist in the SnO sample.

  11. TDPAC study of Cd-doped SnO

    Munoz, E. L.; Carbonari, A. W.; Errico, L. A.; Bibiloni, A. G.; Petrilli, H. M.; Renteria, M.

    2007-01-01

    The combination of hyperfine techniques and ab initio calculations has been shown to be a powerful tool to unravel structural and electronic characterizations of impurities in solids. A recent example has been the study of Cd-doped SnO, where ab initio calculations questioned previous TDPAC assignments of the electric-field gradient (EFG) in 111 In-implanted Sn-O thin films. Here we present new TDPAC experiments at 111 In-diffused polycrystalline SnO. A reversible temperature dependence of the EFG was observed in the range 295-900 K. The TDPAC results were compared with theoretical calculations performed with the full-potential linearized augmented plane wave (FP-LAPW) method, in the framework of the density functional theory. Through the comparison with the theoretical results, we infer that different electronic surroundings around Cd impurities can coexist in the SnO sample.

  12. Effect of impurity radiation on tokamak equilibrium

    Rebut, P.H.; Green, B.J.

    1977-01-01

    The energy loss from a tokamak plasma due to the radiation from impurities is of great importance in the overall energy balance. Taking the temperature dependence of this loss for two impurities characteristic of those present in existing tokamak plasmas, the condition for radial power balance is derived. For the impurities considered (oxygen and iron) it is found that the radiation losses are concentrated in a thin outer layer of the plasma and the equilibrium condition places an upper limit on the plasma paraticle number density in this region. This limiting density scales with mean current density in the same manner as is experimentally observed for the peak number density of tokamak plasmas. The stability of such equilibria is also discussed. (author)

  13. EUV impurity study of the Alcator tokamak

    Terry, J.L.; Chen, K.I.; Moos, H.W.; Marmar, E.S.

    1977-06-01

    The intensity of resonance line radiation from oxygen, nitrogen, carbon and molybdenum impurities has been measured in the high field (80 kG), high density (6 x 10 14 cm -3 ) discharges of the Alcator tokamak, using a 0.4 m normal incidence monochromator (300 to 1300 A) with its line of sight fixed along a major radius. The total light impurity concentrations were 2 x 10 -3 , 7 x 10 -4 , and 3 x 10 -3 at central electron densities of 4.5 x 10 13 cm -3 (burnout), 4.0 x 10 13 (low density plateau) and 6.0 x 10 14 (high density plateau). Both a simple model and a computer code which included Pfirsch-Schluter impurity diffusion were used to estimate oxygen influxes of 1.6 x 10 13 cm -2 sec -1 and 1.5 x 10 14 cm -2 sec -1 at the plasma edge in the low and high density emission plateaus. The resulting values of Z/sub eff/, including the contributions due to both the light impurities and molybdenum, were close to one. The power lost through the impurity line radiation accounted for approximately equal to 7 percent of the total ohmic input power at high densities

  14. Impurity solitons with quadratic nonlinearities

    Clausen, Carl A. Balslev; Torres, Juan P-; Torner, Lluis

    1998-01-01

    We fmd families of solitary waves mediated by parametric mixing in quadratic nonlinear media that are localized at point-defect impurities. Solitons localized at attractive impurities are found to be dynamically stable. It is shown that localization at the impurity modifies strongly the soliton...

  15. Quenching of orbital momentum by crystalline fields in a multichannel Kondo impurity

    Schlottmann, P.; Lee, K.

    1995-01-01

    We consider an impurity of spin S interacting via an isotropic spin exchange with conduction electrons of spin 1/2. The conduction electrons can be in n different orbital channels. We assume that crystalline fields split the orbital degrees of freedom into two multiplets, the one with lower energy consisting of n * orbitals and the one of higher energy of n-n * orbitals. The exchange coupling is the same for all channels. We derive the thermodynamic Bethe ansatz equations for this model and discuss the ground-state properties of the impurity as a function of the spin S and the magnetic field. The solution of the ground-state Bethe ansatz equations is obtained numerically. Three situations have to be distinguished when the magnetic field is small compared to the Kondo temperature: (i) If S=n/2 or S=n * /2 the conduction electrons exactly compensate the impurity spin into a singlet ground state, (ii) if S>n/2 the impurity is undercompensated, i.e., only partially compensated leaving an effective spin S-n/2 at low temperatures, and (iii) in all other cases the impurity spin is overcompensated giving rise to critical behavior. The quenching of the orbits by the crystalline field dramatically affects the cases S * /2

  16. Structural, dielectric and magnetic properties of SnO{sub 2}-CuFe{sub 2}O{sub 4} nanocomposites

    Ali, Kashif [Department of Physics, International Islamic University, Islamabad (Pakistan); Iqbal, Javed, E-mail: javed.saggu@qau.edu.pk [Laboratory of Nanoscience and Technology (LNT), Department of Physics, Qaid-i-Azam University, Islamabad (Pakistan); Jan, Tariq [Department of Physics, University of Lahore, Sargodha Campus, Sargodha (Pakistan); Wan, Dongyun [School of Materials Science and Engineering, Shanghai University, Shanghai 200444 (China); Ahmad, Naeem [Department of Physics, International Islamic University, Islamabad (Pakistan); Ahamd, Ishaq [Experimental Physics Labs, National Center for Physics, Islamabad (Pakistan); Ilyas, Syed Zafar [Department of Physics, Allama Iqbal Open University, Islamabad (Pakistan)

    2017-04-15

    The nanocomposites of (SnO{sub 2}){sub x}(CuFe{sub 2}O{sub 4}){sub (1−x)} (where x=0–100 wt%) have been successfully synthesized via two steps chemical method. XRD pattern has revealed the formation of inverse spinal phases with tetragonal crystal structure without any impurity phases for CuFe{sub 2}O{sub 4} sample. The thermodynamic solubility limit of SnO{sub 2} in CuFe{sub 2}O{sub 4} matrix has been found to be 30 wt% and above this percentage crystal phases related to SnO{sub 2} started to appear. The average particle size and shape of CuFe{sub 2}O{sub 4} nanoparticles have been strongly influenced by addition of SnO{sub 2} as depicted by TEM results. FTIR results have confirmed the existence of cation vibration bands at tetrahedral and octahedral sites along with Sn-O vibration band at higher concentrations, which also validates the formation of nanocomposites. Furthermore, the dielectric constant, tangent loss and conductivity of CuFe{sub 2}O{sub 4} nanoparticles have been found to increase up to 30 wt% addition of SnO{sub 2} and then decreases with further increase which is attributed to variations in resistivity and space charge carriers. Magnetic measurements have shown that saturation magnetization decreases from 35.68 emu/gm to 10.26 emu/gm with the addition of SnO{sub 2} content. - Highlights: • SnO{sub 2}-CuFe{sub 2}O{sub 4} nanocomposites with varying SnO{sub 2} concentrations were synthesized. • The thermodynamic solubility limit for SnO{sub 2} into CuFe{sub 2}O{sub 4} matrix by employing current method was found to be ≤30 wt%. • At higher concentrations, structural phases related to SnO{sub 2} started to appear. • FTIR results corroborated well with the XRD results. • It has been observed that the addition of SnO{sub 2} significantly influence the morphology, dielectric and magnetic properties of CuFe{sub 2}O{sub 4} nanoparticles.

  17. In vitro genotoxicity of piperacillin impurity-A

    SERVER

    2007-09-19

    Sep 19, 2007 ... The manufacturing and storage of the piperacillin produce different impurities of various concentrations, which may influence the efficacy and safety of the drug. Since no report of ..... Guidance for Industry, Food and Drug ...

  18. Nuclear relaxation in semiconductors doped with magnetic impurities

    Mel'nichuk, S.V.; Tovstyuk, N.K.

    1984-01-01

    The temperature and concentration dependences are investigated of the nuclear spin-lattice relaxation time with account of spin diffusion for degenerated and non-degenerated semicon- ductors doped with magnetic impurities. In case of the non-degenerated semiconductor the time is shown to grow with temperature, while in case of degenerated semiconductor it is practically independent of temperature. The impurity concentration growth results in decreasing the spin-lattice relaxation time

  19. Separation coefficients of liquid-vapor in systems formed by yttrium chloride with some impurities

    Volkov, V.T.; Nikiforova, T.V.; Nisel'son, L.A.; Telegin, G.F.

    1990-01-01

    Using equilibrium Rayleigh distillation in the 800-950 deg C temperature range, separation coefficients of liquid-vapor for systems, formed by yttrium chloride with Co, Cr, Ni, Mn, Fe, Cu, Na, K, Mg, Ca, Li impurities are determined. The impurity concentration lies within 0.02-0.4 mass. % limits of each impurity, and total impurity concentration does not exceed 1 mass. %. The tested impurities, except for calcium, are more volatile than the base, yttrium trichloride. In most systems negative deviation from the Raoult's law is observed

  20. The role of Tin Oxide Concentration on The X-ray Diffraction, Morphology and Optical Properties of In2O3:SnO2 Thin Films

    Hasan, Bushra A.; Abdallah, Rusul M.

    2018-05-01

    Alloys were performed from In2O3 doped SnO2 with different doping ratio by quenching from the melt technique. Pulsed Laser Deposition PLD was used to deposit thin films of different doping ratio In2O3 : SnO2 (0, 1, 3, 5, 7 and 9 % wt.) on glass substrate at ambient temperature under vacuum of 10-3 bar thickness of ∼100nm. The structural type,grain size and morphology of the prepared alloys compounds and thin films were examined using X-ray diffraction and atomic force microscopy. The results showed that all alloys have polycrystalline structures and the peaks belonged to the preferred plane for crystal growth were identical with the ITO (Indium – Tin –Oxide) standard cards also another peaks were observed belonged to SnO2 phase. The structures of thin films was also polycrystalline, and the predominate peaks are identical with standard cards ITO. On the other side the prepared thin films declared decrease a reduction of degree of crystallinity with the increase of doping ratio. Atomic Force Microscopy AFM measurements showed the average grain size and average surface roughness exhibit to change in systematic manner with the increase of doping ratio with tin oxide. The optical measurements show that the In2O3:SnO2 thin films have a direct energy gap Eg opt in the first stage decreases with the increase of doping ratio and then get to increase with further increase of doping ration, whereas reverse to that the optical constants such as refractive index (n), extinction coefficient (k) and dielectric constant (εr, εi) have a regular increase with the doping ratio by tin oxide and then decreases.

  1. Interactions of impurities with a moving grain boundary

    Bauer, C L [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA)

    1975-01-01

    Most theories developed to explain interaction of impurities with a moving grain boundary involve a uniform excess impurity concentration distributed along a planar grain boundary. As boundary velocity increases, the excess impurities exert a net drag force on the boundary until a level is reached whereat the drag force no longer can balance the driving force and breakaway of the boundary from these impurities occurs. In this investigation, assumptions of a uniform lateral impurity profile and a planar grain boundary shape are relaxed by allowing both forward and lateral diffusion of impurities in the vicinity of a grain boundary. It is found that the two usual regions (drag of impurities by, and breakaway of a planar grain boundary) are separated by an extensive region wherein a uniform lateral impurity profile and a planar grain boundary shape are unstable. It is suspected that, in this unstable region, grain boundaries assume a spectrum of more complex morphologies and that elucidation of these morphologies can provide the first definitive description of the breakaway process and insight to more complex phenomena such as solid-solution strengthening, grain growth and secondary recrystallization.

  2. Impurities in uranium process solutions

    Boydell, D.W.

    1980-01-01

    Several uranium purification circuits are presented in tabular form together with the average major impurity levels associated with each. The more common unit operations in these circuits, namely strong- and weak-base ion-exchange, solvent extraction and the precipitation of impurities are then discussed individually. Particular attention is paid to the effect and removal of impurities in each of these four unit operations. (author)

  3. Capture of impurity atoms by defects and the distribution of the complexes under ion bormbardment of growing films

    Radzhabov, T.D.; Iskanderova, Z.A.; Arutyunova, E.O.; Samigulin, K.R.

    1982-01-01

    Theoretical study of capture of impurity gas atoms with defects during ion introduction of the impurity in the process of film growth with simultaneous diffusion has been carried out. Concentration profiles of forned impurity-defect complexes have been calculated analytically and numerically by means of a computer in film depth and in a substrate; basic peculiarities of impurity component formation captured with defects in a wide range of changing basic experimental parameters have been revealed. Effect of impurity capture with defects on amount and distribution of total concentration of impurity atoms and intensity of complete absorption of bombarding ions in films have been analyzed. Shown is a possibility for producing films with a high concentration level and almost uniform distribution of the impurity-defect complexes for real, achievable an experiment, values of process parameters as well as a possibility for increasing complete absorption of gaseous impurity wiht concentration growth of capture defects-traps

  4. Impurity sources in TEXTOR

    Pospieszczyk, A; Bay, H L; Bogen, P; Hartwig, H; Hintz, E; Koenen, L; Ross, G G; Rusbueldt, D; Samm, U; Schweer, B

    1987-02-01

    The deuterium, oxygen and carbon fluxes from the main limiter and the deuterium fluxes from the wall are measured in TEXTOR for an 'all carbon' surrounding as a function of central density n/sub e/, of applied ICRH-power and of different wall conditions (carbonization). For this purpose, emission spectroscopy both with filter systems and spectrometers has been used. It is found that a major release mechanism for light impurities is via the formation of molecules. Oxygen seems to enter the discharge from the liner via O-D containing molecules, whereas the limiter acts as the main carbon source by the release of hydro-carbons as indicated by the observed CD-band spectra. Both oxygen and carbon fluxes are reduced by about a factor of two after a fresh carbonization. Above a certain critical density the plasma detaches from the limiter and forms a stable discharge with a radiation cooled boundary layer and with a major fraction of particles now reaching the wall instead of the limiter. The critical density rises with decreasing impurity fluxes or with increasing heating powers.

  5. Impurity sources in TEXTOR

    Pospieszczyk, A.; Bay, H.L.; Bogen, P.; Hartwig, H.; Hintz, E.; Koenen, L.; Ross, G.G.; Rusbueldt, D.; Samm, U.; Schweer, B.

    1987-01-01

    The deuterium, oxygen and carbon fluxes from the main limiter and the deuterium fluxes from the wall are measured in TEXTOR for an 'all carbon' surrounding as a function of central density n e , of applied ICRH-power and of different wall conditions (carbonization). For this purpose, emission spectroscopy both with filter systems and spectrometers has been used. It is found that a major release mechanism for light impurities is via the formation of molecules. Oxygen seems to enter the discharge from the liner via O-D containing molecules, whereas the limiter acts as the main carbon source by the release of hydro-carbons as indicated by the observed CD-band spectra. Both oxygen and carbon fluxes are reduced by about a factor of two after a fresh carbonization. Above a certain critical density the plasma detaches from the limiter and forms a stable discharge with a radiation cooled boundary layer and with a major fraction of particles now reaching the wall instead of the limiter. The critical density rises with decreasing impurity fluxes or with increasing heating powers. (orig.)

  6. Impurity states in two - and three-dimensional disordered systems

    Silva, A.F. da; Fabbri, M.

    1984-01-01

    We investigate the microscopic structure of the impurity states in two-and three-dimensional (2D and 3d) disordered systems. A cluster model is outlined for the donor impurity density of states (DIDS) of doped semiconductors. It is shown that the impurity states are very sensitive to a change in the dimensionality of the system, i.e from 3D to 2D system. It is found that all eigenstates become localized in 2D disordered system for a large range of concentration. (Author) [pt

  7. Spectroscopical studies of impurities in the belt pinch HECTOR

    Singethan, J.

    1981-04-01

    In this paper UV-line-intensity measurements of impurities are presented, which have been performed in the belt-pinch HECTOR. From the line-intensities impurity concentrations and information on the radiation losses is be obtained. At temperatures below 100 eV, the energy loss due to line emission of oxygen and carbon impurities is one of the most important electron energy loss mechanisms. Thus the measurement and calculation of the radiation losses is of particular relevance. Furthermore the electron temperature time dependence can be obtained by comparing the line intensity time dependence with the solution of the respective rate equations. (orig./HT) [de

  8. The impact of impurities on long-term PEMFC performance

    Garzon, Fernando H [Los Alamos National Laboratory; Lopes, Thiago [Los Alamos National Laboratory; Rockward, Tommy [Los Alamos National Laboratory; Mukundan, Rangachary [Los Alamos National Laboratory; Sansinena, Jose - Maria [Los Alamos National Laboratory; Kienitz, Brian [LLNL

    2009-06-23

    Electrochemical experimentation and modeling indicates that impurities degrade fuel cell performance by a variety of mechanisms. Electrokinetics may be inhibited by catalytic site poisoning from sulfur compounds and CO and by decreased local proton activity and mobility caused by the presence of foreign salt cations or ammonia. Cation impurity profiles vary with current density, valence and may change local conductivity and water concentrations in the ionomer. Nitrogen oxides and ammonia species may be electrochemically active under fuel cell operating conditions. The primary impurity removal mechanisms are electrooxidation and water fluxes through the fuel cell.

  9. Negative compressibility observed in graphene containing resonant impurities

    Chen, X. L.; Wang, L.; Li, W.; Wang, Y.; He, Y. H.; Wu, Z. F.; Han, Y.; Zhang, M. W.; Xiong, W.; Wang, N.

    2013-01-01

    We observed negative compressibility in monolayer graphene containing resonant impurities under different magnetic fields. Hydrogenous impurities were introduced into graphene by electron beam (e-beam) irradiation. Resonant states located in the energy region of ±0.04 eV around the charge neutrality point were probed in e-beam-irradiated graphene capacitors. Theoretical results based on tight-binding and Lifshitz models agreed well with experimental observations of graphene containing a low concentration of resonant impurities. The interaction between resonant states and Landau levels was detected by varying the applied magnetic field. The interaction mechanisms and enhancement of the negative compressibility in disordered graphene are discussed.

  10. Isotope effect of impurity diffusion of cadmium in silver

    Rockosch, H.J.; Herzig, C.

    1984-01-01

    The isotope effect of impurity diffusion of cadmium in silver single crystals was measured with the radioisotopes 115 Cd/ 109 Cd by gamma spectrometry. As a mean value E = 0.37 at T = 1060 K was obtained. The correlation factor f /SUB Cd/ = 0.41 is in disagreement with previous results of other investigators due to their unfavourable experimental approach. The present value of f /SUB Cd/ , however, is consistent with those of In and Sn in Ag. A comparison with the corresponding correlation factors in the copper solvent reveals a distinct influence of lattice perturbations because of the different atomic volumes of the solvents. Since the size effect is neglected in the electrostatic diffusion model, the agreement with this model is only qualitative. The frequency ratios for vacancy jumps were calculated. The free binding enthalpy of the vacancy-impurity complex was estimated to be Δg /SUB Cd/ = -0.064 eV. This value is smaller than those for In and Sn in Ag and complies with the relative diffusivities of these impurities in Ag

  11. Physical behaviors of impure atoms during relaxation of impure NiAl-based alloy grain boundary

    Zheng Liping; Jiang Bingyao; Liu Xianghuai; Li Douxing

    2003-01-01

    The Monte Carlo simulation with the energetics described by the embedded atom method has been employed to mainly study physical behaviors of boron atoms during relaxation of the Ni 3 Al-x at.% B grain boundary. During relaxation of impure Ni 3 Al grain boundaries, authors suggest that for different types of impure atoms (Mg, B, Cr and Zr atoms etc.), as the segregating species, they have the different behaviors, but as the inducing species, they have the same behaviors, i.e. they all induce Ni atoms to substitute Al atoms. Calculations show that at the equilibrium, when x(the B bulk concentration) increases from 0.1 to 0.9, the peak concentration of B increases, correspondently, the peak concentration of Ni maximizes but the valley concentration of Al minimizes, at x=0.5. The calculations also show the approximate saturation of Ni at the grain boundary at x=0.5

  12. Comparative investigation on cation-cation (Al-Sn) and cation-anion (Al-F) co-doping in RF sputtered ZnO thin films: Mechanistic insight

    Mallick, Arindam; Basak, Durga, E-mail: sspdb@iacs.res.in

    2017-07-15

    Highlights: • Comparative study on Al, Al-Sn and Al-F doped ZnO films has been carried out. • High transparent Al-F co-doped film shows three times enhanced carrier density. • Al-F co-doped film shows larger carrier relaxation time. • Al-Sn co-doped films shows carrier transport dominated by impurity scattering. • Al-F co-doped ZnO film can be applied as transparent electrode. - Abstract: Herein, we report a comparative mechanistic study on cation-cation (Al-Sn) and cation-anion (Al-F) co-doped nanocrystalline ZnO thin films grown on glass substrate by RF sputtering technique. Through detailed analyses of crystal structure, surface morphology, microstructure, UV-VIS-NIR transmission-reflection and electrical transport property, the inherent characteristics of the co-doped films were revealed and compared. All the nanocrystalline films retain the hexagonal wurtzite structure of ZnO and show transparency above 90% in the visible and NIR region. As opposed to expectation, Al-Sn (ATZO) co-doped film show no enhanced carrier concentration consistent with the probable formation of SnO{sub 2} clusters supported by the X-ray photoelectron spectroscopy study. Most interestingly, it has been found that Al-F (AFZO) co-doped film shows three times enhanced carrier concentration as compared to Al doped and Al-Sn co-doped films attaining a value of ∼9 × 10{sup 20} cm{sup −3} due to the respective cation and anion substitution. The carrier relaxation time increases in AFZO while it decreases significantly for ATZO film consistent with the concurrence of the impurity scattering in the latter.

  13. Neo-classical impurity transport

    Stringer, T.E.

    The neo-classical theory for impurity transport in a toroidal plasma is outlined, and the results discussed. A general account is given of the impurity behaviour and its dependence on collisionality. The underlying physics is described with special attention to the role of the poloidal rotation

  14. Impurity study experiment proposal

    1975-05-01

    ISX is a modest tokamak which emphasizes the production of a predictable test plasma, experimental flexibility, ease of assembly and disassembly, and good diagnostic access. Its plasma models the outer cooler layers in EPR like plasmas. In addition, provisions will be made for long discharge times which may be necessary to observe some impurity effects. These machine characteristics will enable one to study the collisional transport of impurities in the plasma, perform systematic studies of wall and limiter materials and geometries, study methods of cleaning the walls, and develop and test new diagnostic techniques. ISX will employ water-cooled copper coils to produce a maximum toroidal magnetic field of 20 kG at the plasma axis, which is 77 cm from the major axis. The plasma minor radius will be about 15 cm, and the maximum plasma current will be 100 kA which will be induced by an iron core transformer with a capability of up to 0.9 volt-sec for long discharges. An aspect ratio of five and the modest magnetic field permit a design with ample space for thick wall structures such as honeycomb walls. The ''picture frame'' toroidal field coil provides additional space, while removable coil top sections allow easy replacement of the vacuum chamber. The 72-turn toroidal field coil is grouped into 24 sections for increased access. Absence of a conducting shell and placement of the vertical field and transformer primary coils away from the plasma allow easy viewing of the plasma and good diagnostic access. (U.S.)

  15. Behaviour of carbon-bearing impurity suspensions in sodium loops

    Kozlov, F A; Zagorulko, Yu I; Alexseev, V V [Institute of Physics and Power Engineering, Obninsk (USSR)

    1980-05-01

    The experimental estimation results of the carbon-bearing impurity particle sizes in sodium by the sedimentometric analysis methods are presented. The techniques and results of the mass transfer calculations between the sodium flows contained the carbon-bearing impurity disperse phase, and the channel walls, the carbon particles solution kinetics and the soluble carbon near-wall concentration in channel with allowance for the flow-wall mass transfer processes, are given. (author)

  16. Behaviour of carbon-bearing impurity suspensions in sodium loops

    Kozlov, F.A.; Zagorulko, Yu.I.; Alexseev, V.V.

    1980-01-01

    The experimental estimation results of the carbon-bearing impurity particle sizes in sodium by the sedimentometric analysis methods are presented. The techniques and results of the mass transfer calculations between the sodium flows contained the carbon-bearing impurity disperse phase, and the channel walls, the carbon particles solution kinetics and the soluble carbon near-wall concentration in channel with allowance for the flow-wall mass transfer processes, are given. (author)

  17. Impurity effects on ionic-liquid-based supercapacitors

    Liu, Kun; Lian, Cheng; Henderson, Douglas; Wu, Jianzhong

    2016-01-01

    Small amounts of an impurity may affect the key properties of an ionic liquid and such effects can be dramatically amplified when the electrolyte is under confinement. Here the classical density functional theory is employed to investigate the impurity effects on the microscopic structure and the performance of ionic-liquid-based electrical double-layer capacitors, also known as supercapacitors. Using a primitive model for ionic species, we study the effects of an impurity on the double layer structure and the integral capacitance of a room temperature ionic liquid in model electrode pores and find that an impurity strongly binding to the surface of a porous electrode can significantly alter the electric double layer structure and dampen the oscillatory dependence of the capacitance with the pore size of the electrode. Meanwhile, a strong affinity of the impurity with the ionic species affects the dependence of the integral capacitance on the pore size. Up to 30% increase in the integral capacitance can be achieved even at a very low impurity bulk concentration. As a result, by comparing with an ionic liquid mixture containing modified ionic species, we find that the cooperative effect of the bounded impurities is mainly responsible for the significant enhancement of the supercapacitor performance.

  18. Impurity effects on ionic-liquid-based supercapacitors

    Liu, Kun; Lian, Cheng; Henderson, Douglas; Wu, Jianzhong

    2017-02-01

    Small amounts of an impurity may affect the key properties of an ionic liquid and such effects can be dramatically amplified when the electrolyte is under confinement. Here the classical density functional theory is employed to investigate the impurity effects on the microscopic structure and the performance of ionic-liquid-based electrical double-layer capacitors, also known as supercapacitors. Using a primitive model for ionic species, we study the effects of an impurity on the double layer structure and the integral capacitance of a room temperature ionic liquid in model electrode pores and find that an impurity strongly binding to the surface of a porous electrode can significantly alter the electric double layer structure and dampen the oscillatory dependence of the capacitance with the pore size of the electrode. Meanwhile, a strong affinity of the impurity with the ionic species affects the dependence of the integral capacitance on the pore size. Up to 30% increase in the integral capacitance can be achieved even at a very low impurity bulk concentration. By comparing with an ionic liquid mixture containing modified ionic species, we find that the cooperative effect of the bounded impurities is mainly responsible for the significant enhancement of the supercapacitor performance.

  19. Impurity transport in internal transport barrier discharges on JET

    Dux, R.

    2002-01-01

    In JET plasmas with internal transport barrier (ITB) the behaviour of metallic and low-Z impurities (C, Ne) was investigated. In ITB discharges with reversed shear, the metallic impurities accumulate in cases with too strong peaking of the density profile, while the concentration of low-Z elements C and Ne is only mildly peaked. The accumulation might be so strong, that the central radiation approximately equals the central heating power followed by a radiative collapse of the transport barrier. The radial location with strong impurity gradients (convective barrier) was identified to be situated inside (not at!) the heat flux barrier. Calculations of neo-classical transport were performed for these discharges, including impurity-impurity collisions. It was found, that the observed Z-dependence of the impurity peaking and the location of the impurity 'barrier' can be explained with neo-classical transport. ITB discharges with monotonic shear show less inward convection and seem to be advantageous with respect to plasma purity. (author)

  20. Defect-impurity interactions in irradiated germanium

    Cleland, J.W.; James, F.J.; Westbrook, R.D.

    1975-07-01

    Results of experiments are used to formulate a better model for the structures of lattice defects and defect-impurity complexes in irradiated n-type Ge. Single crystals were grown by the Czochralski process from P, As, or Sb-doped melts, and less than or equal to 10 15 to greater than or equal to 10 17 oxygen cm -3 was added to the furnace chamber after approximately 1 / 3 of the crystal had been solidified. Hall coefficient and resistivity measurements (at 77 0 K) were used to determine the initial donor concentration due to the dopant and clustered oxygen, and infrared absorption measurements (at 11.7 μ) were used to determine the dissociated oxygen concentration. Certain impurity and defect-impurity interactions were then investigated that occurred as a consequence of selected annealing, quenching, Li diffusion, and irradiation experiments at approximately 300 0 K with 60 Co photons, 1.5 to 2.0 MeV electrons, or thermal energy neutrons. Particular attention was given to determining the electrical role of the irradiation produced interstitial and vacancy, and to look for any evidence from electrical and optical measurements of vacancy--oxygen, lithium--oxygen, and lithium--vacancy interactions. (U.S.)

  1. Impurity Correction Techniques Applied to Existing Doping Measurements of Impurities in Zinc

    Pearce, J. V.; Sun, J. P.; Zhang, J. T.; Deng, X. L.

    2017-01-01

    Impurities represent the most significant source of uncertainty in most metal fixed points used for the realization of the International Temperature Scale of 1990 (ITS-90). There are a number of different methods for quantifying the effect of impurities on the freezing temperature of ITS-90 fixed points, many of which rely on an accurate knowledge of the liquidus slope in the limit of low concentration. A key method of determining the liquidus slope is to measure the freezing temperature of a fixed-point material as it is progressively doped with a known amount of impurity. Recently, a series of measurements of the freezing and melting temperature of `slim' Zn fixed-point cells doped with Ag, Fe, Ni, and Pb were presented. Here, additional measurements of the Zn-X system are presented using Ga as a dopant, and the data (Zn-Ag, Zn-Fe, Zn-Ni, Zn-Pb, and Zn-Ga) have been re-analyzed to demonstrate the use of a fitting method based on Scheil solidification which is applied to both melting and freezing curves. In addition, the utility of the Sum of Individual Estimates method is explored with these systems in the context of a recently enhanced database of liquidus slopes of impurities in Zn in the limit of low concentration.

  2. Spectrographic determination of trace impurities in reactor grade aluminium

    Chandola, L.C.; Machado, I.J.

    1975-01-01

    A spectrographic method enabling the determination of 21 trace impurities in aluminium oxide is described. The technique involves mixing the sample with graphite buffer in the ratio 1:1, loading it in a graphite electrode and arcing it for 30 sec. in a dc arc to 10 A current against a pointed graphite cathode. The spectra are photographed on Ilford N.30 emulsion employing a large quartz spectrograph. The aluminium line at 2669.2 A 0 serves as the internal standard. The impurities determined are Ag, B, Bi, Cd, Co, Cr, Cu, Fe, Ga, In, Mg, Mo, Ni, Pb, Sb, Si, Sn, Ti, V and Zn. The sensitivity varies from 5 to 100 ppm and the precision from +- 5 to +- 22% for different elements. A method for converting aluminium metal to aluminium oxide is described. It is found that boron is not lost during this conversion. (author)

  3. First-principles calculations of impurity diffusion coefficients in dilute Mg alloys using the 8-frequency model

    Ganeshan, S.; Hector, L.G.; Liu, Z.-K.

    2011-01-01

    Research highlights: → Implemented the eight frequency model for impurity diffusion in hexagonal metals. → Model inputs were energetics/vibrational properties from first princples. → Predicted diffusion coefficients for Al, Ca, Zn and Sn impurity diffusion in Mg. → Successful prediction of partial correlation factors and jump frequencies. → Good agreement between calculated and experimental results. - Abstract: Diffusion in dilute Mg-X alloys, where X denotes Al, Zn, Sn and Ca impurities, was investigated with first-principles density functional theory in the local density approximation. Impurity diffusion coefficients were computed as a function of temperature using the 8-frequency model which provided the relevant impurity and solvent (Mg) jump frequencies and correlation factors. Minimum energy pathways for impurity diffusion and associated saddle point structures were computed with the climbing image nudged elastic band method. Vibrational properties were obtained with the supercell (direct) method for lattice dynamics. Calculated diffusion coefficients were compared with available experimental data. For diffusion between basal planes, we find D Mg-Ca > D Mg-Zn > D Mg-Sn > D Mg-Al, where D is the diffusion coefficient. For diffusion within a basal plane, the same trend holds except that D Mg-Zn overlaps with D Mg-Al at high temperatures and D Mg-Sn at low temperatures. These trends were explored with charge density contours in selected planes of each Mg-X alloy, the variation of the activation energy for diffusion with the atomic radius of each impurity and the electronic density of states. The theoretical methodology developed herein can be applied to impurity diffusion in other hexagonal materials.

  4. Conduction-type control of SnSx films prepared by the sol–gel method for different sulfur contents

    Huang, Chung-Cheng; Lin, Yow-Jon; Chuang, Cheng-Yu; Liu, Chia-Jyi; Yang, Yao-Wei

    2013-01-01

    Highlights: ► The effect of S content on the electrical property of the SnS x film was examined. ► For S-rich films, the probability of having formed Sn vacancies (V Sn ) should be high. ► Transformation from V Sn to V Sn 2- is accompanied by lattice relaxation. ► Transformation from Sn 2+ to Sn 4+ is an offset to lattice relaxation. ► A link between the conduction type and defects was established. -- Abstract: The effect of S content on the electrical property of the sol–gel SnS x films was examined. The observed conduction-type changes are related to the different ratios between the concentrations of Sn 4+ and Sn 2+ . The experimental identification confirms that n-type conversion is due to an increase in the atomic concentration ratio of Sn 4+ /(Sn 4+ + Sn 2+ ) in the S-rich film. The probability of having formed Sn vacancies (V Sn ) should be high under S-rich growth conditions. Transformation from V Sn to V Sn 2- is accompanied by lattice relaxation. Therefore, transformation from Sn 2+ to Sn 4+ is an offset to lattice relaxation under S-rich growth conditions, increasing the electron density and producing n-type conversion. A suitable sulfur concentration is an important issue for tuning conduction type of SnS x

  5. Impurities that cause difficulty in stripping actinides from commercial tetraalkylcarbamoylmethylphosphonates

    Bahner, C.T.; Shoun, R.R.; McDowell, W.J.

    1977-09-01

    Dihexyl[(diethylcarbamoyl)methyl]phosphonate (DHDECMP) in diethylbenzene extracts actinides well from 6 M nitric acid solution, but commercially available DHDECMP contains impurities which interfere with stripping the actinides from the organic extract. DHDECMP purified by molecular distillation does not contain these impurities, but the pot residue contains increased concentrations of them. Heating the purified DHDECMP causes the formation of products which interfere with stripping in the same way, suggesting that high temperatures employed in the manufacture of DHDECMP may produce the offending impurities. These impurities can be separated from the heat-decomposed material or the pot residues by dilution with a large volume of hexanes (causing part of the impurities to separate as a second liquid phase) followed by equilibration of the hexane solution with dilute alkali. After the treatment with hexane and dilute alkali, the DHDECMP is readily recovered and functions well in the actinide extraction process. Dibutyl[(dibutylcarbamoyl)methyl]-phosphonate (DBDBCMP) and di(2-ethylhexyl)[(diethylcarbamoyl)-methyl]phosphonate (DEHDECMP) are purified less effectively by these methods. Similar separation methods using diethylbenzene or CCl 4 as solvent do not remove impurities as completely as the hexane process. Impurities can also be removed from a benzene solution of the DHDECMP pot residue by passing it through a column packed with silica gel or diethylaminoethyl cellulose. These impurities have been separated into fractions for analytical examination by use of various solvents and by column chromatography. Hexyl hydrogen [(diethylcarbamoyl)methyl]-phosphonate has been identified tentatively as a principal objectionable impurity. Dihexyl phosphoric acid and possibly dihexylphosphonate have been identified in other fractions

  6. Mobile impurities in ferromagnetic liquids

    Kantian, Adrian; Schollwoeck, Ulrich; Giamarchi, Thierry

    2011-03-01

    Recent work has shown that mobile impurities in one dimensional interacting systems may exhibit behaviour that differs strongly from that predicted by standard Tomonaga-Luttinger liquid theory, with the appearance of power-law divergences in the spectral function signifying sublinear diffusion of the impurity. Using time-dependent matrix product states, we investigate a range of cases of mobile impurities in systems beyond the analytically accessible examples to assess the existence of a new universality class of low-energy physics in one-dimensional systems. Correspondence: Adrian.Kantian@unige.ch This work was supported in part by the Swiss SNF under MaNEP and division II.

  7. Spectrographic determination of impurities in enriched uranium solutions

    Capdevila, C.; Roca, M.

    1980-01-01

    A spectrographic procedure for the determination of trace amounts of Al, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, K, L i , Hg, Mn, Mo, Na, Nb, Ni, P, Pb, Ru, Sb, Sn, Sr, Ti, V, Zn, and Zr in enriched uranyl nitrate solutions from the reprocessing of spent nuclear fuels is described. After removal of uranium by either TBP or TNOA solvent extraction, the aqueous phase Is analysed by the graphite spark technique. TBP is adequate for all impurities, excepting boron and phosphorus; both of these elements can sat is factory be determined by using TNOA after the addition of mannitol to avoid boron losses. (Author) 4 refs

  8. Change in the electrical conductivity of SnO2 crystal from n-type to p-type conductivity

    Villamagua, Luis; Stashans, Arvids; Lee, Po-Ming; Liu, Yen-Shuo; Liu, Cheng-Yi; Carini, Manuela

    2015-01-01

    Highlights: • Switch from n-type to p-type conductivity in SnO 2 has been studied. • Computational DFT + U method where used. • X-ray diffraction and X-ray photoelectron spectroscopy where used. • Al- and N-codoped SnO 2 compound shows stable p-type conductivity. • Low resistivity (3.657 × 10 −1 Ω cm) has been obtained. • High carrier concentration (4.858 × 10 19 cm −3 ) has been obtained. - Abstract: The long-sought fully transparent technology will not come true if the n region of the p–n junction does not get as well developed as its p counterpart. Both experimental and theoretical efforts have to be used to study and discover phenomena occurring at the microscopic level in SnO 2 systems. In the present paper, using the DFT + U approach as a main tool and the Vienna ab initio Simulation Package (VASP) we reproduce both intrinsic n-type as well as p-type conductivity in concordance to results observed in real samples of SnO 2 material. Initially, an oxygen vacancy (1.56 mol% concentration) combined with a tin-interstitial (1.56 mol% concentration) scheme was used to achieve the n-type electrical conductivity. Later, to attain the p-type conductivity, crystal already possessing n-type conductivity, was codoped with nitrogen (1.56 mol% concentration) and aluminium (12.48 mol% concentration) impurities. Detailed explanation of structural changes endured by the geometry of the crystal as well as the changes in its electrical properties has been obtained. Our experimental data to a very good extent matches with the results found in the DFT + U modelling

  9. Effects of impurities on radiation damage in InP

    Yamaguchi, M.; Ando, K.

    1986-01-01

    Strong impurity effects upon introduction and annealing behavior of radiation-induced defects in InP irradiated with 1-MeV electrons have been found. The main defect center of 0.37-eV hole trap H4 in p-InP, which must be due to a point defect, is annealed even at room temperature. Its annealing rate is found to be proportional to the 2/3 power of the preirradiation carrier concentration in InP. Moreover, the density of the hole trap H5 (E/sub v/+0.52 eV) in p-InP, which must be due to a point defect--impurity complex, increases with increase in the InP carrier concentration. These results suggest that the radiation-induced defects in InP must recover through long-range diffusion mediated by impurity atoms. A model is proposed in which point defects diffuse to sinks through impurities so as to disappear or bind impurities so as to form point defect--impurity complexes. In addition to the long-range diffusion mechanism, the possibility of charge-state effects responsible for the thermal annealing of radiation-induced defects in InP is also discussed

  10. Electrical and optical properties of SnEuTe and SnSrTe films

    Ishida, Akihiro; Tsuchiya, Takuro; Yamada, Tomohiro; Cao, Daoshe; Takaoka, Sadao; Rahim, Mohamed; Felder, Ferdinand; Zogg, Hans

    2010-06-01

    The SnTe, Sn1-xEuxTe and Sn1-xSrxTe (x<0.06) films were prepared by hot wall epitaxy. The ternary alloy films prepared in cation rich condition had hole concentration around 1×1019 cm-3 with high mobility exceeding 2000 cm2/V s at room temperature. Optical transmission spectra were also measured in the temperature range from 100 to 400 K and compared with theoretical calculations. Optical transmission spectra of the SnTe were simulated successfully assuming bumped band edge structures. A band inversion model was proposed for the Sn1-xEuxTe and Sn1-xSrxTe systems, and the optical transmission spectra were also simulated successfully assuming the band inversion model.

  11. Impurity Deionization Effects on Surface Recombination DC Current-Voltage Characteristics in MOS Transistors

    Chen Zuhui; Jie Binbin; Sah Chihtang

    2010-01-01

    Impurity deionization on the direct-current current-voltage characteristics from electron-hole recombination (R-DCIV) at SiO 2 /Si interface traps in MOS transistors is analyzed using the steady-state Shockley-Read-Hall recombination kinetics and the Fermi distributions for electrons and holes. Insignificant distortion is observed over 90% of the bell-shaped R-DCIV curves centered at their peaks when impurity deionization is excluded in the theory. This is due to negligible impurity deionization because of the much lower electron and hole concentrations at the interface than the impurity concentration in the 90% range. (invited papers)

  12. The effects of impurities on the properties of OFP copper specified for the copper iron canister

    Bowyer, W.H.

    1999-09-01

    A brief literature study has addressed the effects of impurities on OF copper to which 50 ppm of phosphorus has been added. This copper is the candidate material for the corrosion resistant coating to be applied to the container under development by SKB for the disposal of high level nuclear waste. The levels of impurities expected in this grade of copper and the final use have controlled the focus of the work. It is concluded that the impurities of greatest importance in the context of the proposed application are sulphur, phosphorus, bismuth and lead. The addition of 50 ppm of phosphorus should ensure very low oxygen content in the copper such that, As, Ni, Mn, Cr, Fe, Sn, Zn, Si, Al, Sb and Cd present as impurities all remain in solution in the copper at all temperatures of interest. In this state they will exert no material effect on the fitness for purpose of the material. Sulphur is expected to be present in amounts exceeding the solubility limit such that it will occur as grain boundary films or particles. Such segregation can cause embrittlement and it will be more serious as grain size increases. There is no evidence to support the assertion that the phosphorus addition modifies the segregation behaviour of sulphur. There is evidence that sulphur will combine with V, Zr, or Ti, even when they are present at extremely low levels, but there is no indication of the likely effects of these combinations on the segregation behaviour or embrittling effects. There is clear evidence that when creep failure occurs by intergranular cracking, sulphur causes the creep strain to fracture to be reduced to less than 1%. The amount of sulphur required for this is very low (i.e. less than the amount permitted in the specification) and dependant on grain size. The transition from transgranular to intergranular failure in creep is influenced by temperature, stress, grain size, and composition. The addition of phosphorus increases the temperature at which the transition occurs

  13. The effects of impurities on the properties of OFP copper specified for the copper iron canister

    Bowyer, W.H. [Meadow End Farm, Farnham (United Kingdom)

    1999-09-01

    A brief literature study has addressed the effects of impurities on OF copper to which 50 ppm of phosphorus has been added. This copper is the candidate material for the corrosion resistant coating to be applied to the container under development by SKB for the disposal of high level nuclear waste. The levels of impurities expected in this grade of copper and the final use have controlled the focus of the work. It is concluded that the impurities of greatest importance in the context of the proposed application are sulphur, phosphorus, bismuth and lead. The addition of 50 ppm of phosphorus should ensure very low oxygen content in the copper such that, As, Ni, Mn, Cr, Fe, Sn, Zn, Si, Al, Sb and Cd present as impurities all remain in solution in the copper at all temperatures of interest. In this state they will exert no material effect on the fitness for purpose of the material. Sulphur is expected to be present in amounts exceeding the solubility limit such that it will occur as grain boundary films or particles. Such segregation can cause embrittlement and it will be more serious as grain size increases. There is no evidence to support the assertion that the phosphorus addition modifies the segregation behaviour of sulphur. There is evidence that sulphur will combine with V, Zr, or Ti, even when they are present at extremely low levels, but there is no indication of the likely effects of these combinations on the segregation behaviour or embrittling effects. There is clear evidence that when creep failure occurs by intergranular cracking, sulphur causes the creep strain to fracture to be reduced to less than 1%. The amount of sulphur required for this is very low (i.e. less than the amount permitted in the specification) and dependant on grain size. The transition from transgranular to intergranular failure in creep is influenced by temperature, stress, grain size, and composition. The addition of phosphorus increases the temperature at which the transition occurs

  14. Spectroscopic study of sources and control of impurities in TMX-U. Revision 1

    Yu, T.L.; Allen, S.L.; Moos, H.W.

    1984-11-01

    Two absolutely calibrated euv instruments have been used to study the impurity characteristics in the Tandem Mirror Experiment-Upgrade (TMX-U). One instrument is a spectrograph that measures the time histories of several impurity emission lines in a single plasma shot. The other instrument is a monochromator that measures time-resolved radial profiles of a particular impurity emission line. The common intrinsic impurities found in TMX-U are C, N, O, and Ti. It has been shown that a large fraction of oxygen and nitrogen in the plasma is associated with the neutral beams. The plasma wall is the main source of carbon. In general, the concentration of each of the impurities is low (<1%), and the power radiated by them is less than 10 kW, which is a small portion of the total input power to the plasma. The concentrations of the impurities can be reduced substantially by glow discharge cleaning and titanium gettering

  15. Impurity flux collection at the plasma edge of the tokamak MT-1

    Hildebrandt, D.; Bakos, J.S.; Petravich, G.

    1989-09-01

    Fluxes of intrinsic and injected impurities and background plasma ions were collected using a bidirectional probe at the plasma edge of the tokamak MT-1. The directional and radial dependences of injected impurities and plasma ions were very similar indicating a strong coupling of the impurity transport to the dynamics of the background plasma. The measured intrinsic concentration of about 10 -4 for Mo at the plasma edge is derived. (author) 17 refs.; 5 figs

  16. Impurity penetration through the stochastic layer near the separatrix in tokamaks

    Morozov, D.K.; Herrera, J.J.E.; Rantsev-Kartinov, V.A.

    1995-01-01

    It is shown that a stochastic layer produced by ripple perturbations near the separatrix in tokamaks, leads to anomalous plasma flow out of the bulk plasma along perturbed field lines, which brings out impurities. This suggests that the stochastic layer may play a cleaning role. There is an opposite process of anomalous impurity diffusion into the plasma. The balance of these two processes defines the impurity concentration in the bulk plasma. copyright 1995 American Institute of Physics

  17. Impurities block the alpha to omega martensitic transformation in titanium.

    Hennig, Richard G; Trinkle, Dallas R; Bouchet, Johann; Srinivasan, Srivilliputhur G; Albers, Robert C; Wilkins, John W

    2005-02-01

    Impurities control phase stability and phase transformations in natural and man-made materials, from shape-memory alloys to steel to planetary cores. Experiments and empirical databases are still central to tuning the impurity effects. What is missing is a broad theoretical underpinning. Consider, for example, the titanium martensitic transformations: diffusionless structural transformations proceeding near the speed of sound. Pure titanium transforms from ductile alpha to brittle omega at 9 GPa, creating serious technological problems for beta-stabilized titanium alloys. Impurities in the titanium alloys A-70 and Ti-6Al-4V (wt%) suppress the transformation up to at least 35 GPa, increasing their technological utility as lightweight materials in aerospace applications. These and other empirical discoveries in technological materials call for broad theoretical understanding. Impurities pose two theoretical challenges: the effect on the relative phase stability, and the energy barrier of the transformation. Ab initio methods calculate both changes due to impurities. We show that interstitial oxygen, nitrogen and carbon retard the transformation whereas substitutional aluminium and vanadium influence the transformation by changing the d-electron concentration. The resulting microscopic picture explains the suppression of the transformation in commercial A-70 and Ti-6Al-4V alloys. In general, the effect of impurities on relative energies and energy barriers is central to understanding structural phase transformations.

  18. Influence of impurities on silicide contact formation

    Kazdaev, Kh.R.; Meermanov, G.B.; Kazdaev, R.Kh.

    2002-01-01

    Research objectives of this work are to investigate the influence of light impurities implantation on peculiarities of the silicides formation in molybdenum monocrystal implanted by silicon, and in molybdenum films sputtered on silicon substrate at subsequent annealing. Implantation of the molybdenum samples was performed with silicon ions (90 keV, 5x10 17 cm -2 ). Phase identification was performed by X ray analysis with photographic method of registration. Analysis of the results has shown the formation of the molybdenum silicide Mo 3 Si at 900 deg. C. To find out the influence of impurities present in the atmosphere (C,N,O) on investigated processes we have applied combined implantation. At first, molybdenum was implanted with ions of the basic component (silicon) and then -- with impurities ions. Acceleration energies (40keV for C, 45 keV for N and 50 keV for O) were chosen to obtain the same distribution profiles for basic and impurities ions. Ion doses were 5x10 17 cm -2 for Si-ions and 5x10 16 cm -2 - for impurities. The most important results are reported here. The first, for all three kinds of impurities the decreased formation temperatures of the phase Mo 3 Si were observed; in the case of C and N it was ∼100 deg. and in the case of nitrogen - ∼200 deg. Further, simultaneously with the Mo 3 Si phase, the appearance of the rich-metal phase Mo 5 Si 3 was registered (not observed in the samples without additional implantation). In case of Mo/Si-structure, the implantation of the impurities (N,O) was performed to create the peak concentration (∼4at/%) located in the middle of the molybdenum film (∼ 150nm) deposited on silicon substrate. Investigation carried out on unimplanted samples showed the formation of the silicide molybdenum MoSi 2 , observed after annealing at temperatures 900/1000 deg. C, higher than values 500-600 deg. C reported in other works. It is discovered that electrical conductivity of Mo 5 Si 3 -films synthesized after impurities

  19. Gas chromatographic determination of impurities of inorganic compounds

    Drugov, Yu.S.

    1985-01-01

    Methods of concentration, separation, detection in gas chromatographic determination of impurities of inorganic compounds including low-boiling gases, reactive gases, organometallic compounds, free metals, anions, etc. are reviewed. Methods of reaction gas chromatography for determining reactive gases, water, anions, metal chelates are considered in detail as well as methods of reaction-sorption concentration and reaction gas extraction. The application of gas chromatograpny ior anaiysis of water and atmosphere contamination, for determination of impurities in highly pure solid substances and gases is described

  20. Modeling of soluble impurities distribution in the steam generator secondary water

    Matal, O.; Simo, T. [Energovyzkum s.r.o., Brno (Switzerland); Kucak, L.; Urban, F. [Slovak Technical Univ., Bratislava (Slovakia)

    1997-12-31

    A model was developed to compute concentration of impurities in the WWER 440 steam generator (SG) secondary water along the tube bundle. Calculated values were verified by concentration values obtained from secondary water sample chemical analysis. (orig.). 2 refs.

  1. Modeling of soluble impurities distribution in the steam generator secondary water

    Matal, O.; Simo, T.; Kucak, L.; Urban, F.

    1997-01-01

    A model was developed to compute concentration of impurities in the WWER 440 steam generator (SG) secondary water along the tube bundle. Calculated values were verified by concentration values obtained from secondary water sample chemical analysis. (orig.)

  2. Modeling of soluble impurities distribution in the steam generator secondary water

    Matal, O; Simo, T [Energovyzkum s.r.o., Brno (Switzerland); Kucak, L; Urban, F [Slovak Technical Univ., Bratislava (Slovakia)

    1998-12-31

    A model was developed to compute concentration of impurities in the WWER 440 steam generator (SG) secondary water along the tube bundle. Calculated values were verified by concentration values obtained from secondary water sample chemical analysis. (orig.). 2 refs.

  3. Internal friction behavior of liquid Bi-Sn alloys

    Wu Aiqing; Guo Lijun; Liu Changsong; Jia Erguang; Zhu Zhengang

    2005-01-01

    Pure Bi and Sn and four Bi-Sn alloys distributed on the entire concentration range were selected for internal-friction investigation over a wide temperature range. There exist two peaks in the plots of internal friction versus temperature for liquid Sn, Bi-Sn60 and Bi-Sn90 alloys, one peak being located at about 480 - bar Cand another at about 830 - bar C. Only a single internal-friction peak at about 830 - bar C occurs in liquid Bi-Sn43 (eutectic composition). No internal-friction peak appears in liquid Bi-Sn20 alloy and pure Bi. The height of the internal-friction peaks depends on the content of Sn. The present finding suggests that Sn-rich Bi-Sn alloys may inherit the internal-friction behaviors of pure Sn, whereas Bi-rich Bi-Sn alloy seems to be like pure Bi. The position of the internal-friction peaks is frequency dependent, which resembles the internal-friction feature in structure transition in solids

  4. Internal friction behavior of liquid Bi-Sn alloys

    Wu Aiqing [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China); Guo Lijun [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China); Liu Changsong [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China); Jia Erguang [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China); Zhu Zhengang [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China)]. E-mail: zgzhu@issp.ac.cn

    2005-12-01

    Pure Bi and Sn and four Bi-Sn alloys distributed on the entire concentration range were selected for internal-friction investigation over a wide temperature range. There exist two peaks in the plots of internal friction versus temperature for liquid Sn, Bi-Sn60 and Bi-Sn90 alloys, one peak being located at about 480{sup -}bar Cand another at about 830{sup -}bar C. Only a single internal-friction peak at about 830{sup -}bar C occurs in liquid Bi-Sn43 (eutectic composition). No internal-friction peak appears in liquid Bi-Sn20 alloy and pure Bi. The height of the internal-friction peaks depends on the content of Sn. The present finding suggests that Sn-rich Bi-Sn alloys may inherit the internal-friction behaviors of pure Sn, whereas Bi-rich Bi-Sn alloy seems to be like pure Bi. The position of the internal-friction peaks is frequency dependent, which resembles the internal-friction feature in structure transition in solids.

  5. Spectrophotometric determination of zinc in impure solutions

    Rodriguez Hernandez, B.; Reyes Tamaral, A.

    1972-01-01

    A dithizone colorimetric method is described for determining zinc concentrations of 0.001 to 5 g/l in aqueous solutions from Rio Tinto Mines, containing copper, iron and other impurities. Citrate, cyanide and bis-2hydroxyethyl)-dithiocarbamate are added to the aqueous sample of masking several metals, and zinc is extracted at pH 5 with a solution of dithizone in carbon tetrachloride. Excess of dithizone is removed with sodium sulphide, and optical density of zinc dithionate in organic solution is measured at 5.35 nm. Calibration curves obey Beer's law up to 0.5 micro Zn/ml. (Author) 5 refs

  6. Features of accumulation of radiation defects in metal with impurity

    Iskakov, B.M.

    2002-01-01

    The processes of accumulation and annealing of radiation defects in solids are being studied for the last fifty years quite intensively. Many regularities of these processes are fixed, but there are more unsolved problems. The computer simulation is one of the effective tools in finding the mechanisms of accumulation and annealing of radiation defects in solids. The numerical solution of the system of the differential equations by means of computers describing kinetics of accumulation of radiation point defects in metals with impurity, has allowed to receive a number of new outcomes. It was revealed, that a determinative factor influential in concentration of point defects (vacancies and interstitial atoms), formed during an exposure of metal, is the correlation a speed of Frenkel twins recombination, the capture of defects by impurity atoms and absorption of defects by other drainage, for example by dislocations. If the speed of capture of interstitial atoms by impurity atoms for two - three order is lower than the recombination speed of Frenkel twins and on two - three order exceeds the speed of capture of vacancies by impurity atoms, the concentration of interstitial atoms within the first seconds of an exposure passes through a maximum, then quickly decreases in some times and after that starts slowly to grow. The change of concentration of interstitial atoms in an initial period of an exposure does not influence on the change of a vacancy concentration. Within the whole period of an exposure, during which the concentration of interstitial atoms achieves a maximum and then is reduced, the vacancy concentration is steadily enlarged. However subsequent sluggish rise of concentration of interstitial atoms during an exposure is followed by the decrease of the vacancy concentration. The most remarkable feature of the kinetics of accumulation of interstitial atoms in metals with impurity is the presence of two extremum on curve dependence of interstitial atoms on a

  7. Impurity bubbles in a BEC

    Timmermans, Eddy; Blinova, Alina; Boshier, Malcolm

    2013-05-01

    Polarons (particles that interact with the self-consistent deformation of the host medium that contains them) self-localize when strongly coupled. Dilute Bose-Einstein condensates (BECs) doped with neutral distinguishable atoms (impurities) and armed with a Feshbach-tuned impurity-boson interaction provide a unique laboratory to study self-localized polarons. In nature, self-localized polarons come in two flavors that exhibit qualitatively different behavior: In lattice systems, the deformation is slight and the particle is accompanied by a cloud of collective excitations as in the case of the Landau-Pekar polarons of electrons in a dielectric lattice. In natural fluids and gases, the strongly coupled particle radically alters the medium, e.g. by expelling the host medium as in the case of the electron bubbles in superfluid helium. We show that BEC-impurities can self-localize in a bubble, as well as in a Landau-Pekar polaron state. The BEC-impurity system is fully characterized by only two dimensionless coupling constants. In the corresponding phase diagram the bubble and Landau-Pekar polaron limits correspond to large islands separated by a cross-over region. The same BEC-impurity species can be adiabatically Feshbach steered from the Landau-Pekar to the bubble regime. This work was funded by the Los Alamos LDRD program.

  8. Control Strategy for Small Molecule Impurities in Antibody-Drug Conjugates.

    Gong, Hai H; Ihle, Nathan; Jones, Michael T; Kelly, Kathleen; Kott, Laila; Raglione, Thomas; Whitlock, Scott; Zhang, Qunying; Zheng, Jie

    2018-04-01

    Antibody-drug conjugates (ADCs) are an emerging class of biopharmaceuticals. As such, there are no specific guidelines addressing impurity limits and qualification requirements. The current ICH guidelines on impurities, Q3A (Impurities in New Drug Substances), Q3B (Impurities in New Drug Products), and Q6B (Specifications: Test Procedures and Acceptance Criteria for Biotechnological/Biological Products) do not adequately address how to assess small molecule impurities in ADCs. The International Consortium for Innovation and Quality in Pharmaceutical Development (IQ) formed an impurities working group (IWG) to discuss this issue. This white paper presents a strategy for evaluating the impact of small molecule impurities in ADCs. This strategy suggests a science-based approach that can be applied to the design of control systems for ADC therapeutics. The key principles that form the basis for this strategy include the significant difference in molecular weights between small molecule impurities and the ADC, the conjugation potential of the small molecule impurities, and the typical dosing concentrations and dosing schedule. The result is that exposure to small impurities in ADCs is so low as to often pose little or no significant safety risk.

  9. Polymer-SnO2 composite membranes

    Nørgaard, Casper Frydendal; Skou, Eivind Morten

    . This work utilizes the latter approach and makes use of particles of tin dioxide (SnO2). Polymer-SnO2 composite membranes were successfully prepared using an ion-exchange method. SnO2 was incorporated into membranes by ion-exchange in solutions of SnCl2 ∙ 2 H2O in methanol, followed by oxidation to SnO2...... in air. The content of SnO2 proved controllable by adjusting the concentration of the ion-exchange solution. The prepared nanocomposite membranes were characterized by powder XRD, 119Sn MAS NMR, electrochemical impedance spectroscopy, water uptake and tensile stress-strain measurements. For Nafion 117...

  10. Divertor experiment for impurity control in DIVA

    Nagami, Masayuki

    1979-04-01

    Divertor actions of controlling the impurities and the transport of impurity ions in the plasma have been investigated in the DIVA device. Following are the results: (1) The radial transport of impurity ions is not described only by neoclassical theory, but it is strongly influenced by anomalous process. Radial diffusion of impurity ions across the whole minor radius is well described by a neoclassical diffusion superposed by the anomalous diffusion for protons. Due to this anomalous process, which spreads the radial density profile of impurity ions, 80 to 90% of the impurity flux in the plasma outer edge is shielded even in a nondiverted discharge. (2) The divertor reduces the impurity flux entering the main plasma by a factor of 2 to 4. The impurity ions shielded by the scrape-off plasma are rapidly guided into the burial chamber with a poloidal excursion time roughly equal to that of the scrape-off plasma. (3) The divertor reduces the impurity ion flux onto the main vacuum chamber by guiding the impurity ions diffusing from the main plasma into the burial chamber, thereby reducing the plasma-wall interaction caused by diffusing impurity ions at the main vacuum chamber. The impurity ions produced in the burial chamber may flow back to the main plasma through the scrape-off layer. However, roughly only 0.3% of the impurity flux into the scrape-off plasma in the burial chamber penetrates into the main plasma due to the impurity backflow. (4) A slight cooling of the scrape-off plasma with light-impurity injection effectively reduces the metal impurity production at the first wall by reducing the potential difference between the plasma and the wall, thereby reducing the accumulation of the metal impurity in the discharge. Radiation cooling by low-Z impurities in the plasma outer edge, which may become an important feature in future large tokamaks both with and without divertor, is numerically evaluated for carbon, oxygen and neon. (author)

  11. Influence of impurities on the surface morphology of the TIBr crystal semiconductor

    Santos, Robinson A. dos; Silva, Julio B. Rodrigues da; Martins, Joao F.T.; Ferraz, Caue de M.; Costa, Fabio E. da; Mesquita, Carlos H. de; Hamada, Margarida M.; Gennari, Roseli F.

    2013-01-01

    The impurity effect in the surface morphology quality of TlBr crystals was evaluated, aiming a future application of these crystals as room temperature radiation semiconductor detectors. The crystals were purified and grown by the Repeated Bridgman technique. Systematic measurements were carried out for determining the stoichiometry, structure orientation, surface morphology and impurity of the crystal. A significant difference in the crystals impurity concentration was observed for almost all impurities, compared to those found in the raw material. The crystals wafer grown twice showed a surface roughness and grains which may be due to the presence of impurities on the surface, while those obtained with crystals grown three times presented a more uniform surface: even though, a smaller roughness was still observed. It was demonstrated that the impurities affect strongly the surface morphology quality of crystals. (author)

  12. Impurity transport calculations for the limiter shadow region of a tokamak

    Claassen, H.A.; Repp, H.

    1981-01-01

    Impurity transport calculations are presented for the scrape-off layer of a tokamak with a poloidal ring limiter. The theory is based on the drift-kinetic equations for the impurity ions in their different ionization states. It is developed in the limit of low impurity concentrations under due consideration of electron impact ionization, Coulomb collisions with hydrogen ions streaming onto a neutralizing surface, a convection along the magnetic field, and a radial drift. The background plasma and the impurity sources at the walls enter the theory as input parameters. Numerical results are given for the radial profiles of density, temperature, particle flux, and energy flux of wall-released impurity ions as well as for the screening efficiency of the scrape-off layer neglecting impurity re-emission from the limiter. (author)

  13. Computers in the investigation of the impurity content of high-purity materials

    Makarov, Yu.B.; Yan'kov, S.V.

    1987-01-01

    The efficiency of the concept of data banks for the accumulation and processing of information is now generally acknowledged. In scientific investigations not only bibliographic but also factual data banks are becoming more and more prevalent. In this article, the authors consider the possibilities of providing a data bank on high-purity materials for the study of impurity contents. Also in this paper, the authors distinguish the following groups of problems that arise in the study of impurity composition and presents examples of their proposed solutions to these problems: the analysis of error and the determination of the most probably value of impurity concentration; the estimation of average properties of impurity composition with respect to groups of impurities and samples, and the forecast of the complete impurity composition

  14. Study on the morphology of Pb-Sn eutectics

    Ambrozio Filho, F.; Gentile, E.F.

    1976-01-01

    The influence of factors such as rate of growth of the solid phase, thermal gradient in the liquid and presence of impurities on the solidification of eutectic structures is studied. To emphasize certain aspects of the basic concept, the technique of unidirectional cooling was used in a specially constructed apparatus. Micrographs of the structure obtained with the eutectic Pb-Sn alloy are shown and a purely qualitative analysis of the factors described is given [pt

  15. Effects of quenched impurities on surface diffusion, spreading, and ordering of O/W(110)

    Nikunen, P.; Vattulainen, Ilpo Tapio; Ala-Nissila, T.

    2002-01-01

    We study how quenched impurities affect the surface diffusion and ordering of strongly interacting adsorbate atoms on surfaces. To this end, we carry out Monte Carlo simulations for a lattice-gas model of O/W(110), including small concentrations of immobile impurities which block their adsorption...

  16. Monte-Carlo Impurity transport simulations in the edge of the DIII-D tokamak using the MCI code

    Evans, T.E.; Mahdavi, M.A.; Sager, G.T.; West, W.P.; Fenstermacher, M.E.; Meyer, W.H.; Porter, G.D.

    1995-07-01

    A Monte-Carlo Impurity (MCI) transport code is used to follow trace impurities through multiple ionization states in realistic 2-D tokamak geometries. The MCI code is used to study impurity transport along the open magnetic field lines of the Scrape-off Layer (SOL) and to understand how impurities get into the core from the SOL. An MCI study concentrating on the entrainment of carbon impurities ions by deuterium background plasma into the DIII-D divertor is discussed. MCI simulation results are compared to experimental DIII-D carbon measurements

  17. Monte-Carlo Impurity transport simulations in the edge of the DIII-D tokamak using the MCI code

    Evans, T.E.; Sager, G.T.; Mahdavi, M.A.; Porter, G.D.; Fenstermacher, M.E.; Meyer, W.H.

    1995-01-01

    A Monte-Carlo Impurity (MCI) transport code is used to follow trace impurities through multiple ionization states in realistic 2-D tokamak geometries. The MCI code is used to study impurity transport along the open magnetic field lines of the Scrape-off Layer (SOL) and to understand how impurities get into the core from the SOL. An MCI study concentrating on the entrainment of carbon impurities ions by deuterium background plasma into the DII-D divertor is discussed. MCI simulation results are compared to experimental DII-D carbon measurements. 2 refs

  18. Tokamak impurity-control techniques

    Schmidt, J.A.

    1980-01-01

    A brief review is given of the impurity-control functions in tokamaks, their relative merits and disadvantages and some prominent edge-interaction-control techniques, and there is a discussion of a new proposal, the particle scraper, and its potential advantages. (author)

  19. Nonmagnetic impurities in magnetic superconductors

    Mineev, V.P.

    1989-01-01

    The magnetization and magnetic field arising around the nonmagnetic impurity in magnetic superconductor with triplet pairing are found. The relationship of these results with the data of recent (gm)sR experiments in heavy fermionic superconductor U 1 - x Th x Be 13 is presented

  20. Complexity of Quantum Impurity Problems

    Bravyi, Sergey; Gosset, David

    2017-12-01

    We give a quasi-polynomial time classical algorithm for estimating the ground state energy and for computing low energy states of quantum impurity models. Such models describe a bath of free fermions coupled to a small interacting subsystem called an impurity. The full system consists of n fermionic modes and has a Hamiltonian {H=H_0+H_{imp}}, where H 0 is quadratic in creation-annihilation operators and H imp is an arbitrary Hamiltonian acting on a subset of O(1) modes. We show that the ground energy of H can be approximated with an additive error {2^{-b}} in time {n^3 \\exp{[O(b^3)]}}. Our algorithm also finds a low energy state that achieves this approximation. The low energy state is represented as a superposition of {\\exp{[O(b^3)]}} fermionic Gaussian states. To arrive at this result we prove several theorems concerning exact ground states of impurity models. In particular, we show that eigenvalues of the ground state covariance matrix decay exponentially with the exponent depending very mildly on the spectral gap of H 0. A key ingredient of our proof is Zolotarev's rational approximation to the {√{x}} function. We anticipate that our algorithms may be used in hybrid quantum-classical simulations of strongly correlated materials based on dynamical mean field theory. We implemented a simplified practical version of our algorithm and benchmarked it using the single impurity Anderson model.

  1. Contribution to the spectrographic determination of impurities in uranium by the carrier distillation method

    Capdevila, C.

    1967-01-01

    The carrier distillation method for the determination of impurities in uranium has been modified in order to get a greater sensitivity. Electrodes 9.5 mm. diam. with a crater 7 mm. diam. and 10 mm. deep have been used, being the weigh of charge 300 mg.. The elements considered were: Al, As, B, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, P, Pb, Si, Sn, Ti and V, over the range 0.01 to 30 ppm. (Author) 13 refs

  2. Breatherlike impurity modes in discrete nonlinear lattices

    Hennig, D.; Rasmussen, Kim; Tsironis, G. P.

    1995-01-01

    We investigate the properties of a disordered generalized discrete nonlinear Schrodinger equation, containing both diagonal and nondiagonal nonlinear terms. The equation models a Linear host lattice doped with nonlinear impurities. We find different types of impurity states that form itinerant...

  3. Light impurity production in tokamaks

    Philipps, V.; Vietzke, E.; Erdweg, M.

    1989-01-01

    A review is given of the different erosion processes of carbon materials with special emphasis on conditions relevant to plasma surface interactions. New results on the chemical erosion and radiation enhanced sublimation of boron-carbon layers are presented. The chemical hydrocarbon formation produced by the interaction of the TEXTOR scrape-off plasma with a carbon target has been investigated up to temperatures of 1500K using a Sniffer probe. The chemical interaction of the plasma with the carbon walls in TEXTOR is also analysed by measuring the hydrocarbon and CO and CO 2 partial pressures built up on the surrounding walls during the discharges. The recycling of oxygen impurities in an all carbon surrounding occurs predominantly in the form of CO and Co 2 molecules and the analysis of both neutral pressures during the discharges has been used as an additional diagnostic for the oxygen impurity situation in TEXTOR. These data are discussed in view of spectroscopic measurements on the influx of carbon and oxygen atoms from the walls and impurity line radiation. CD-band spectroscopy in addition is employed to identify the hydrocarbon chemical carbon erosion. Our present understanding of the oxygen impurity recycling and the oxygen sources are described. Particle induced release of CO molecules from the entire first wall is believed to be the dominant influx process of oxygen in the SOL of plasmas with carbon facing materials. The influence of coating the TEXTOR first wall with a boron-carbon film (B/C ≅1) on the light impurity behaviour is shown. (author)

  4. Change in the electrical conductivity of SnO{sub 2} crystal from n-type to p-type conductivity

    Villamagua, Luis, E-mail: luis.villamagua@tyndall.ie [Grupo de Fisicoquímica de Materiales, Universidad Técnica Particular de Loja, Apartado 11-01-608, Loja (Ecuador); Dipartimento di Ingegneria per l’Ambiente e il Territorio e Ingegneria Chimica, Università della Calabria, 87036 Rende (CS) (Italy); Stashans, Arvids [Grupo de Fisicoquímica de Materiales, Universidad Técnica Particular de Loja, Apartado 11-01-608, Loja (Ecuador); Lee, Po-Ming; Liu, Yen-Shuo; Liu, Cheng-Yi [Department of Chemical and Materials Engineering, National Central University, Jhong-Li, Taiwan (China); Carini, Manuela [Dipartimento di Ingegneria per l’Ambiente e il Territorio e Ingegneria Chimica, Università della Calabria, 87036 Rende (CS) (Italy)

    2015-05-01

    Highlights: • Switch from n-type to p-type conductivity in SnO{sub 2} has been studied. • Computational DFT + U method where used. • X-ray diffraction and X-ray photoelectron spectroscopy where used. • Al- and N-codoped SnO{sub 2} compound shows stable p-type conductivity. • Low resistivity (3.657 × 10{sup −1} Ω cm) has been obtained. • High carrier concentration (4.858 × 10{sup 19} cm{sup −3}) has been obtained. - Abstract: The long-sought fully transparent technology will not come true if the n region of the p–n junction does not get as well developed as its p counterpart. Both experimental and theoretical efforts have to be used to study and discover phenomena occurring at the microscopic level in SnO{sub 2} systems. In the present paper, using the DFT + U approach as a main tool and the Vienna ab initio Simulation Package (VASP) we reproduce both intrinsic n-type as well as p-type conductivity in concordance to results observed in real samples of SnO{sub 2} material. Initially, an oxygen vacancy (1.56 mol% concentration) combined with a tin-interstitial (1.56 mol% concentration) scheme was used to achieve the n-type electrical conductivity. Later, to attain the p-type conductivity, crystal already possessing n-type conductivity, was codoped with nitrogen (1.56 mol% concentration) and aluminium (12.48 mol% concentration) impurities. Detailed explanation of structural changes endured by the geometry of the crystal as well as the changes in its electrical properties has been obtained. Our experimental data to a very good extent matches with the results found in the DFT + U modelling.

  5. Impurity energy level in the Haldane gap

    Wang Wei; Lu Yu

    1995-11-01

    An impurity bond J' in a periodic 1D antiferromagnetic spin 1 chain with exchange J is considered. Using the numerical density matrix renormalization group method, we find an impurity energy level in the Haldane gap, corresponding to a bound state near the impurity bond. When J' J. The impurity level appears only when the deviation dev = (J'- J)/J' is greater than B c , which is close to 0.3 in our calculation. (author). 15 refs, 4 figs

  6. Power balance and characterization of impurities in the Maryland Spheromak

    Cote, C.

    1993-01-01

    The Maryland Spheromak is a medium size magnetically confined plasma of toroidal shape. Low T e and higher n e than expected contribute to produce a radiation dominated short-lived spheromak configuration. A pyroelectric radiation detector and a VUV spectrometer have been used for space and time-resolved measurements of radiated power and impurity line emission. Results from the bolometry and VUV spectroscopy diagnostics have been combined to give the absolute concentrations of the major impurity species together with the electron temperature. The large amount of oxygen and nitrogen ions in the plasma very early in the discharge is seen to be directly responsible for the abnormally high electron density. The dominant power loss mechanisms are found to be radiation (from impurity line emission) and electron convection to the end walls during the formation phase of the spheromak configuration, and radiation only during the decay phase

  7. Impurity effects on the magnetic ordering in chromium

    Fishman, R.S.

    1992-05-01

    It is well-known that impurities profoundly alter the magnetic properties of chromium. While vanadium impurities suppress the Neel temperature T N , manganese impurities enhanced T N substantially. As evidenced by neutron scattering experiments, doping with as little as 0.2% vanadium changes the transition from weakly first order to second order. Young and Sokoloff explained that the first-order transition in pure chromium is caused by a charge-density wave which is the second harmonic of the spin-density wave. By examining the subtle balance between the spin-density and charge- density wave terms in the mean-field free energy, we find that the first-order transition is destroyed when the vanadium concentration exceeds about 0.15%, in agreement with experiments

  8. Power balance and characterization of impurities in the Maryland Spheromak

    Cote, Claude [Univ. of Maryland, College Park, MD (United States)

    1993-01-01

    The Maryland Spheromak is a medium size magnetically confined plasma of toroidal shape. Low Te and higher ne than expected contribute to produce a radiation dominated short-lived spheromak configuration. A pyroelectric radiation detector and a VUV spectrometer have been used for space and time-resolved measurements of radiated power and impurity line emission. Results from the bolometry and VUV spectroscopy diagnostics have been combined to give the absolute concentrations of the major impurity species together with the electron temperature. The large amount of oxygen and nitrogen ions in the plasma very early in the discharge is seen to be directly responsible for the abnormally high electron density. The dominant power loss mechanisms are found to be radiation (from impurity line emission) and electron convection to the end walls during the formation phase of the spheromak configuration, and radiation only during the decay phase.

  9. Interplay of light and heavy impurities in a fusion plasma

    Gaja, Mustafa [IPP, Garching (Germany); Tokar, Mikhail [IEK4, Juelich FZ, Juelich (Germany)

    2016-07-01

    Radiation from impurities eroded from the walls can lead to a broad spectrum of spectacular phenomena in fusion devices An example of such events are breathing oscillations observed in the large helical device (LHD), in long pulse discharges with a stainless steel divertor. They were characterized with oscillations of a period of a second in various plasma parameters. By optimizing magnetic geometry this operation mode, leading to a deteriorate plasma performance, can be avoided. Nonetheless it is of interest and practical importance to understand and firmly predict conditions for breathing phenomenon, in particular, in view of similar impurity environment in W-7 X stellarator. A qualitative explanation for breathing oscillations proposed earlier presumes that they arise due to non-linear synergetic interplay of diverse physical processes. A one-dimensional non-stationary model, describing the generation and transport of main, impurity particles and heat by including the radiation of high-Z (Fe) and low-Z (C and O) impurities is elaborated here. The calculations predict the appearance of oscillations in the relevant range of plasma parameters, reproduce well experimentally observed amplitudes and period of oscillations. It demonstrates that the smaller the fraction of the plasma interaction with a stainless steel surface, the higher the light impurity concentration needed to excite the breathing oscillations. This shows a way to avoid oscillations in future experiments.

  10. Innovative sludge pretreatment technology for impurity separation using micromesh.

    Mei, Xiaojie; Han, Xiaomeng; Zang, Lili; Wu, Zhichao

    2018-05-23

    In order to reduce the impacts on sludge treatment facilities caused by impurities such as fibers, hairs, plastic debris, and coarse sand, an innovative primary sludge pretreatment technology, sludge impurity separator (SIS), was proposed in this study. Non-woven micromesh with pore size of 0.40 mm was used to remove the impurities from primary sludge. Results of lab-scale tests showed that impurity concentration, aeration intensity, and channel gap were the key operation parameters, of which the optimized values were below 25 g/L, 0.8 m 3 /(m 2  min), and 2.5 cm, respectively. In the full-scale SIS with treatment capacity of 300 m 3 /day, over 88% of impurities could be removed from influent and the cleaning cycle of micromesh was more than 16 days. Economic analysis revealed that the average energy consumption was 1.06 kWh/m 3 treated sludge and operation cost was 0.6 yuan/m 3 treated sludge.

  11. Quantitative determination of mineral coal impurities from Brazil through optical emission spectrography technique

    Clain, Almir Faria

    1982-01-01

    The aim of the present research was to develop a spectrographic technique to determine the highest possible number of the chemical elements micro-constituents of Brazilian mineral coals. The experimental technique developed corresponds to the so called total-burning procedure. Coal samples were calcined to ashes at 400°C and then totally burned in graphite electrodes by a DC arc. The spectrographic measurements were made in a Jarrell-Ash emission spectrograph, Ebert mounting type, model Mark IV. An inert atmosphere chamber (for a gaseous mixture 20% 0 2 and 80% air) and a seven step rotating sector were used as main accessories. The analytical curves for the different elements, were obtained using synthetic standards in the concentration range of 10 to 1.000 ppm, and the standards as well as the coal ashes were diluted with spectrographically pure graphite in 1:1 ratio. Seventeen coal samples from different shells and strata of Morungava and Charqueadas mines - Rio Grande do Sul State - were analyzed to test the proposed technique, being possible to determine the following elements: B, Be, Bi, Cd, Co, Cr, Cu, Ga,Pb, Ge, Mn, Mo, Ni, Sn, Sb, V, Y, Zn and Zr. The coefficient of variation was 14% in average for all the elements and the sensitivity was so that the majority of the impurities present in the coals were analyzed. (author)

  12. A model of magnetic impurities within the Josephson junction of a phase qubit

    Erickson, R P; Pappas, D P [National Institute of Standards and Technology, Boulder, CO 80305 (United States)

    2010-02-15

    We consider a superconducting phase qubit consisting of a monocrystalline sapphire Josephson junction with its symmetry axis perpendicular to the junction interfaces. Via the London gauge, we present a theoretical model of Fe{sup 3+} magnetic impurities within the junction that describes the effect of a low concentration of such impurities on the operation of the qubit. Specifically, we derive an interaction Hamiltonian expressed in terms of angular momentum states of magnetic impurities and low-lying oscillator states of a current-biased phase qubit. We discuss the coupling between the qubit and impurities within the model near resonance. When the junction is biased at an optimal point for acting as a phase qubit, with a phase difference of {pi}/2 and impurity concentration no greater than 0.05%, we find only a slight decrease in the Q factor of less than 0.01%.

  13. Controlling Thermodynamic Properties of Ferromagnetic Group-IV Graphene-Like Nanosheets by Dilute Charged Impurity

    Yarmohammadi, Mohsen; Mirabbaszadeh, Kavoos

    2017-05-01

    Using the Kane-Mele Hamiltonian, Dirac theory and self-consistent Born approximation, we investigate the effect of dilute charged impurity on the electronic heat capacity and magnetic susceptibility of two-dimensional ferromagnetic honeycomb structure of group-IV elements including silicene, germanene and stanene within the Green’s function approach. We also find these quantities in the presence of applied external electric field. Our results show that the silicene (stanene) has the maximum (minimum) heat capacity and magnetic susceptibility at uniform electric fields. From the behavior of theses quantities, the band gap has been changed with impurity concentration, impurity scattering strength and electric field. The analysis on the impurity-dependent magnetic susceptibility curves shows a phase transition from ferromagnetic to paramagnetic and antiferromagnetic phases. Interestingly, electronic heat capacity increases (decreases) with impurity concentration in silicene (germanene and stanene) structure.

  14. Interactions of structural defects with metallic impurities in multicrystalline silicon

    McHugo, S.A.; Thompson, A.C.; Hieslmair, H.

    1997-01-01

    Multicrystalline silicon is one of the most promising materials for terrestrial solar cells. It is critical to getter impurities from the material as well as inhibit contamination during growth and processing. Standard processing steps such as, phosphorus in-diffusion for p-n junction formation and aluminum sintering for backside ohmic contact fabrication, intrinsically possess gettering capabilities. These processes have been shown to improve L n values in regions of multicrystalline silicon with low structural defect densities but not in highly dislocated regions. Recent Deep Level Transient Spectroscopy (DLTS) results indirectly reveal higher concentrations of iron in highly dislocated regions while further work suggests that the release of impurities from structural defects, such as dislocations, is the rate limiting step for gettering in multicrystalline silicon. The work presented here directly demonstrates the relationship between metal impurities, structural defects and solar cell performance in multicrystalline silicon. Edge-defined Film-fed Growth (EFG) multicrystalline silicon in the as-grown state and after full solar cell processing was used in this study. Standard solar cell processing steps were carried out at ASE Americas Inc. Metal impurity concentrations and distributions were determined by use of the x-ray fluorescence microprobe (beamline 10.3.1) at the Advanced Light Source, Lawrence Berkeley National Laboratory. The sample was at atmosphere so only elements with Z greater than silicon could be detected, which includes all metal impurities of interest. Structural defect densities were determined by preferential etching and surface analysis using a Scanning Electron Microscope (SEM) in secondary electron mode. Mapped areas were exactly relocated between the XRF and SEM to allow for direct comparison of impurity and structural defect distributions

  15. Observation of impurity accumulation and concurrent impurity influx in PBX

    Sesnic, S.S.; Fonck, R.J.; Ida, K.; Couture, P.; Kaita, R.; Kaye, S.; Kugel, H.; LeBlanc, B.; Okabayashi, M.; Paul, S.; Powell, E.T.; Reusch, M.; Takahashi, H.; Gammel, G.; Morris, W.

    1987-01-01

    Impurity studies in L- and H-mode discharges in PBX have shown that both types of discharges can evolve into either an impurity accumulative or nonaccumulative case. In a typical accumulative discharge, Z eff peaks in the center to values of about 5. The central metallic densities can be high, n met /n e ≅ 0.01, resulting in central radiated power densities in excess of 1 W/cm 3 , consistent with bolometric estimates. The radial profiles of metals obtained independently from the line radiation in the soft X-ray and the VUV regions are very peaked. Concurrent with the peaking, an increase in the impurity influx coming from the edge of the plasma is observed. At the beginning of the accumulation phase the inward particle flux for titanium has values of 6x10 10 and 10x10 10 particles/cm 2 s at minor radii of 6 and 17 cm. At the end of the accumulation phase, this particle flux is strongly increased to values of 3x10 12 and 1x10 12 particles/cm 2 s. This increased flux is mainly due to influx from the edge of the plasma and to a lesser extent due to increased convective transport. Using the measured particle flux, an estimate of the diffusion coefficient D and the convective velocity v is obtained. (orig.)

  16. Modeling of the Microchemistry for Diffusion of Selected Impurities in Uranium

    Kirkpatrick, J. R.; Bullock, J.S. IV

    2001-01-01

    Unalloyed metallic uranium used in some work done at Y-12 contains small quantities of impurities, the three most significant of which are carbon, iron, and silicon. During metallurgical processing, as the metal cools from a molten condition towards room temperature, the metallic matrix solution becomes supersaturated in each of the impurities whose concentration exceeds the solubility limit. Many impurity atoms form compounds with uranium that precipitate out of the solution, thus creating and growing inclusions. The objective of the present work is to study the distribution of impurity atoms about some of the inclusions, with a view toward examining the effect of the interaction between inclusions on the impurity atom distribution. The method used is time-dependent mass diffusion from the supersaturated solution to the surfaces of the inclusions. Micrographs of metal samples suggest that the inclusions form in successive stages. After each inclusion forms, it begins to draw impurity atoms from its immediate vicinity, thus altering the amounts and distributions of impurity atoms available for formation and growth of later inclusions. In the present work, a one-dimensional spherical approximation was used to simulate inclusions and their regions of influence. A first set of calculations was run to simulate the distribution of impurity atoms about the largest inclusions. Then, a second set of calculations was run to see how the loss of impurity atoms to the largest inclusions might affect the distribution of impurity atoms around the next stage of inclusions. Plots are shown for the estimated distributions of impurity atoms in the region of influence about the inclusions for the three impurities studied. The authors believe that these distributions are qualitatively correct. However, there is enough uncertainty about precisely when inclusions nucleate and begin to grow that one should not put too much reliance on the quantitative results. This work does provide a

  17. Peculiarities of component interaction in {Gd, Er}-V-Sn Ternary systems at 870 K and crystal structure of RV6Sn6 stannides

    Romaka, L.; Stadnyk, Yu.; Romaka, V.V.; Demchenko, P.; Stadnyshyn, M.; Konyk, M.

    2011-01-01

    Highlights: → {Gd, Er}-V-Sn ternary systems at 870 K are characterized by formation of stannides with general compositions RV 6 Sn 6 . → Isostructural RV 6 Sn 6 compounds were also found with Y, Dy, Ho, Tm, and Lu. → The crystal structure of RV 6 Sn 6 compounds was determined by powder diffraction method. → Structural analysis showed that RV 6 Sn 6 compounds (R = Gd, Dy-Tm, Lu) are disordered; YV 6 Sn 6 is characterized by structure ordering. - Abstract: The phase equilibria in the Gd-V-Sn and Er-V-Sn ternary systems were studied at 870 K by means of X-ray and metallographic analyses in the whole concentration range. Both Gd-V-Sn and Er-V-Sn systems are characterized by formation of one ternary compound at investigated temperature, with stoichiometry RV 6 Sn 6 (SmMn 6 Sn 6 -type, space group P6/mmm, a = 0.55322(3) nm, c = 0.91949(7) nm for Gd, a = 0.55191(2) nm, c = 0.91869(8) nm for Er). Solubility of the third component in the binary compounds was not observed. Compounds with the SmMn 6 Sn 6 -type were also found with Dy, Ho, Tm, and Lu, while YV 6 Sn 6 compound crystallizes in HfFe 6 Ge 6 structure type. All investigated compounds are the first ternary stannides with rare earth elements and vanadium.

  18. PbSnTe injection lasers

    Oron, M.

    1982-03-01

    Carrier confined homostructure PbSnTe lasers were developed and investigated. In this laser structure good electrical and optical confinement can be achieved by a suitable carrier concentration profile. The advantage of these lasers over PbSnTe heterostructure lasers is the perfect lattice matching between the various layers of the structure. The desired carrier concentration profile was achieved by the growth of several epitaxial layers by the LPE method on a suitable substrate. The performance of these lasers was compared with that of previous homostructure and double heterostructure lasers. (H.K.)

  19. Study of Sn100-xMnx amorphous system by 119Sn Moessbauer spectroscopy

    Drago, V.

    1986-01-01

    Thin films of Sn 100-x Mn x amorphous alloys with large range of concentrations were procedure by vapor condensation technique on substrates at temperatures near to liquid helium. The magnetic and paramagnetic hyperfine spectra, and the ordering temperatures were measured by 119 Sn Moessbauer effect. The electrical resistivity was used for characterizing the amorphous state. All the measurements were done 'in situ'. A magnetic phase diagram is proposed. (M.C.K.) [pt

  20. Phonon scattering by isotopic impurities

    Dacol, D.K.

    1974-06-01

    The effects upon vibrations of a perfect crystal lattice due to the replacement of some of its atoms by isotopes of these atoms are studied. The approach consists in considering the isotopic impurities as scattering centres for the quanta of the elastic waves the objective is to obtain the scattering amplitudes. These amplitudes are obtained through a canonical transformation method which was introduced by Chevalier and Rideau in the study of the Wentzel's model in quantum field theory

  1. BWR water chemistry impurity studies

    Ljungberg, L.G.; Korhonen, S.; Renstroem, K.; Hofling, C.G.; Rebensdorff, B.

    1990-03-01

    Laboratory studies were made on the effect of water impurities on environmental cracking in simulated BWR water of stainless steel, low alloy steel and nickel-base alloys. Constant elongation rate tensile (CERT) tests were run in simulated normal water chemistry (NWC), hydrogen water chemistry (HWC), or start-up environment. Sulfate, chloride and copper with chloride added to the water at levels of a fraction of a ppM were found to be extremely deleterious to all kinds of materials except Type 316 NG. Other detrimental impurities were fluoride, silica and some organic acids, although acetic acid was beneficial. Nitrate and carbon dioxide were fairly inoccuous. Corrosion fatigue and constant load tests on compact tension specimens were run in simulated normal BWR water chemistry (NWC) or hydrogen water chemistry (HWC), without impurities or with added sulfate or carbon dioxide. For sensitized Type 304 SS in NWC, 0.1 ppM sulfate increased crack propagation rates in constant load tests by up to a factor of 100, and in fatigue tests up to a factor of 10. Also, cracking in Type 316 nuclear grade SS and Alloy 600 was enhanced, but to a smaller degree. Carbon dioxide was less detrimental than sulfate. 3 figs., 4 tabs

  2. GeSn growth kinetics in reduced pressure chemical vapor deposition from Ge2H6 and SnCl4

    Aubin, J.; Hartmann, J. M.

    2018-01-01

    We have investigated the low temperature epitaxy of high Sn content GeSn alloys in a 200 mm industrial Reduced Pressure - Chemical Vapor Deposition tool from Applied Materials. Gaseous digermane (Ge2H6) and liquid tin tetrachloride (SnCl4) were used as the Ge and Sn precursors, respectively. The impact of temperature (in the 300-350 °C range), Ge2H6 and SnCl4 mass-flows on the GeSn growth kinetics at 100 Torr has been thoroughly explored. Be it at 300 °C or 325 °C, a linear GeSn growth rate increase together with a sub-linear Sn concentration increase occurred as the SnCl4 mass-flow increased, irrespective of the Ge2H6 mass flow (fixed or varying). The Sn atoms seemed to catalyze H desorption from the surface, resulting in higher GeSn growth rates for high SnCl4 mass-flows (in the 4-21 nm min-1 range). The evolution of the Sn content x with the F (SnCl4) 2 ·/F (Ge2H6) mass-flow ratio was fitted by x2/(1 - x) = n ·F (SnCl4) 2 ·/F (Ge2H6), with n = 0.25 (325 °C) and 0.60 (300 °C). We have otherwise studied the impact of temperature, in the 300-350 °C range, on the GeSn growth kinetics. The GeSn growth rate exponentially increased with the temperature, from 15 up to 32 nm min-1. The associated activation energy was low, i.e. Ea = 10 kcal mol-1. Meanwhile, the Sn content decreased linearly as the growth temperature increased, from 15% at 300 °C down to 6% at 350 °C.

  3. Damping of elastic waves in crystals with impurities

    Lemanov, V.V.; Petrov, A.V.; Akhmedzhanov, F.R.; Nasyrov, A.N.

    1979-01-01

    Elastic wave damping and thermal conductivity of NaCl-NaBr and Y 3 AL 5 O 12 crystals with Er impurity has been examined. The experimental results on a decrease in elastic wave damping in such crystals are analyzed in the framework of the Ahiezer damping theory. The measurements were made in the frequency range of 300-1500 MHz in propagation of longitudinal and transverse elastic waves along the [100] and [110] directions. At 10 % concentration of erbium impurity the transverse wave damping decreases by a factor of three, and for longitudinal waves by a factor of two in NaBr:Cl crystals, and by approximately 10 and 30 % for NaBr:Cl and Y 3 Al 5 O 12 :Er crystals, respectively. In Y 3 Al 5 O 12 crystals, unlike NaCl-NaBr crystals, no noticeable anisotropy of damping is observed. The transVerse wave damping in impurity crystals has been shown to increase significantly with decreasing temperature and increasing the impurity concentration

  4. Structural properties and hyperfine characterization of Sn-substituted goethites

    Larralde, A.L. [INQUIMAE, Departamento de Quimica Inorganica, Analitica y Quimica Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina); Ramos, C.P. [Departamento de Fisica de la Materia Condensada, GIyA - CAC - CNEA, Av. Gral. Paz 1499 (1650), San Martin, Bs. As. (Argentina); Arcondo, B. [Departamento de Fisica, Facultad de Ingenieria, Universidad de Buenos Aires, Av. Paseo Colon 850 (C1063ACV), Bs. As. (Argentina); Tufo, A.E. [INQUIMAE, Departamento de Quimica Inorganica, Analitica y Quimica Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina); Saragovi, C. [Departamento de Fisica de la Materia Condensada, GIyA - CAC - CNEA, Av. Gral. Paz 1499 (1650), San Martin, Bs. As. (Argentina); Sileo, E.E., E-mail: sileo@qi.fcen.uba.ar [INQUIMAE, Departamento de Quimica Inorganica, Analitica y Quimica Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina)

    2012-04-16

    Highlights: Black-Right-Pointing-Pointer Pure and tin-doped goethites were synthesized from Sn(II) solutions at ambient pressure and 70 Degree-Sign C. Black-Right-Pointing-Pointer The Rietveld refinement of PXRD data indicated that Sn partially substituted the Fe(III) ions. Black-Right-Pointing-Pointer The substitution provoked unit cell expansion, and a distortion of the coordination polyhedron. Black-Right-Pointing-Pointer {sup 119}Sn Moessbauer spectroscopy revealed that Sn(II) is incorporated as Sn(IV). Black-Right-Pointing-Pointer {sup 57}Fe Moessbauer spectroscopy showed a lower magnetic coupling as tin concentration increased. - Abstract: Tin-doped goethites obtained by a simple method at ambient pressure and 70 Degree-Sign C were characterized by inductively coupled plasma atomic emission spectrometry, scanning electron microscopy, Rietveld refinement of powder X-ray diffraction data, and {sup 57}Fe and {sup 119}Sn Moessbauer spectroscopy. The particles size and the length to width ratios decreased with tin-doping. Sn partially substituted the Fe(III) ions provoking unit cell expansion and increasing the crystallinity of the particles with enlarged domains that grow in the perpendicular and parallel directions to the anisotropic broadening (1 1 1) axis. Intermetallic E, E Prime and DC distances also change although the variations are not monotonous, indicating different variations in the coordination polyhedron. In general, the Sn-substituted samples present larger intermetallic distances than pure goethite, and the greatest change is shown in the E Prime distance which coincides with the c-parameter. {sup 119}Sn Moessbauer spectroscopy revealed that Sn(II) is incorporated as Sn(IV) in the samples. On the other hand, Fe(II) presence was not detected by {sup 57}Fe Moessbauer spectroscopy, suggesting the existence of vacancies in the Sn-doped samples. A lower magnetic coupling is also evidenced from the average magnetic hyperfine field values obtained as tin

  5. Change in detector properties caused by electronegative impurities

    Deptuch, M.; Kowalski, T.Z.; Mindur, B.

    2006-01-01

    Detector properties (energy resolution, gas gain, drift-time measurements) depend quite critically on the concentration of impurities. The most frequent impurities in the working gas are water vapour and oxygen. Systematic measurements of the detector properties as a function of both H 2 O vapour and O 2 concentration have been made. Ar/CO 2 (80/20) and Ar/CO 2 /CF 4 (70/10/20) have been selected as the working gases. The first mixture is commonly used, the second one is very promising due to its fastness. The concentration of H 2 O vapour and O 2 was varied from 0% to 1.9% and 3%, respectively

  6. Alloy Design and Property Evaluation of Ti-Mo-Nb-Sn Alloy for ...

    Ti-Mo alloy containing Nb and Sn were arc melted and composition analyzed by EDX. The XRD analysis indicates that the crystal structure and mechanical properties are sensitive to Sn concentration. A combination of Sn and Nb elements in synergy hindered formation athermal w phase and significantly enhanced b phase ...

  7. Fabrication of high crystalline SnS and SnS2 thin films, and their switching device characteristics

    Choi, Hyeongsu; Lee, Jeongsu; Shin, Seokyoon; Lee, Juhyun; Lee, Seungjin; Park, Hyunwoo; Kwon, Sejin; Lee, Namgue; Bang, Minwook; Lee, Seung-Beck; Jeon, Hyeongtag

    2018-05-01

    Representative tin sulfide compounds, tin monosulfide (SnS) and tin disulfide (SnS2) are strong candidates for future nanoelectronic devices, based on non-toxicity, low cost, unique structures and optoelectronic properties. However, it is insufficient for synthesizing of tin sulfide thin films using vapor phase deposition method which is capable of fabricating reproducible device and securing high quality films, and their device characteristics. In this study, we obtained highly crystalline SnS thin films by atomic layer deposition and obtained highly crystalline SnS2 thin films by phase transition of the SnS thin films. The SnS thin film was transformed into SnS2 thin film by annealing at 450 °C for 1 h in H2S atmosphere. This phase transition was confirmed by x-ray diffractometer and x-ray photoelectron spectroscopy, and we studied the cause of the phase transition. We then compared the film characteristics of these two tin sulfide thin films and their switching device characteristics. SnS and SnS2 thin films had optical bandgaps of 1.35 and 2.70 eV, and absorption coefficients of about 105 and 104 cm‑1 in the visible region, respectively. In addition, SnS and SnS2 thin films exhibited p-type and n-type semiconductor characteristics. In the images of high resolution-transmission electron microscopy, SnS and SnS2 directly showed a highly crystalline orthorhombic and hexagonal layered structure. The field effect transistors of SnS and SnS2 thin films exhibited on–off drain current ratios of 8.8 and 2.1 × 103 and mobilities of 0.21 and 0.014 cm2 V‑1 s‑1, respectively. This difference in switching device characteristics mainly depends on the carrier concentration because it contributes to off-state conductance and mobility. The major carrier concentrations of the SnS and SnS2 thin films were 6.0 × 1016 and 8.7 × 1013 cm‑3, respectively, in this experiment.

  8. Behavior of Sn atoms in GeSn thin films during thermal annealing: Ex-situ and in-situ observations

    Takase, Ryohei; Ishimaru, Manabu; Uchida, Noriyuki; Maeda, Tatsuro; Sato, Kazuhisa; Lieten, Ruben R.; Locquet, Jean-Pierre

    2016-12-01

    Thermally induced crystallization processes for amorphous GeSn thin films with Sn concentrations beyond the solubility limit of the bulk crystal Ge-Sn binary system have been examined by X-ray photoelectron spectroscopy, grazing incidence X-ray diffraction, and (scanning) transmission electron microscopy. We paid special attention to the behavior of Sn before and after recrystallization. In the as-deposited specimens, Sn atoms were homogeneously distributed in an amorphous matrix. Prior to crystallization, an amorphous-to-amorphous phase transformation associated with the rearrangement of Sn atoms was observed during heat treatment; this transformation is reversible with respect to temperature. Remarkable recrystallization occurred at temperatures above 400 °C, and Sn atoms were ejected from the crystallized GeSn matrix. The segregation of Sn became more pronounced with increasing annealing temperature, and the ejected Sn existed as a liquid phase. It was found that the molten Sn remains as a supercooled liquid below the eutectic temperature of the Ge-Sn binary system during the cooling process, and finally, β-Sn precipitates were formed at ambient temperature.

  9. Effect of light impurities on the early stage of swelling in austenitic stainless steel

    Igata, N.

    1998-01-01

    The objective of this study is to analyse the early stage of swelling and clarify the role of light impurities (nitrogen) in swelling of austenitic stainless steel. Recent results show that light impurities affect the swelling of 316 stainless steel under HVEM irradiation up to 10 dpa. At low concentration of light impurities the radiation swelling increases then decreases through the maximum as the concentration of light impurities increases. In the present paper the theoretical model is presented for the explanation of this effect. The model is based on the two factors: the influence of absorbed impurities on the voids caused by the production of an additional gas pressure in voids for their stabilization and the effect of impurities segregated around the surface of voids by the lowering of surface tension. These two affects are taken into account in the calculations of the critical size and the growth rate of cavities. The theoretical predictions on the radiation swelling rate dependent on the impurity concentration and temperature coincided with the experimental results on 316 stainless steel irradiated by HVEM. (orig.)

  10. Ternary semiconductors NiZrSn and CoZrBi with half-Heusler structure: A first-principles study

    Fiedler, Gregor; Kratzer, Peter

    2016-08-01

    The ternary semiconductors NiZrSn and CoZrBi with C 1b crystal structure are introduced by calculating their basic structural, electronic, and phononic properties using density functional theory. Both the gradient-corrected PBE functional and the hybrid functional HSE06 are employed. While NiZrSn is found to be a small-band-gap semiconductor (Eg=0.46 eV in PBE and 0.60 eV in HSE06), CoZrBi has a band gap of 1.01 eV in PBE (1.34 eV in HSE06). Moreover, effective masses and deformation potentials are reported. In both materials A B C , the intrinsic point defects introduced by species A (Ni or Co) are calculated. The Co-induced defects in CoZrBi are found to have a higher formation energy compared to Ni-induced defects in NiZrSn. The interstitial Ni atom (Nii) as well as the VNiNii complex introduce defect states in the band gap, whereas the Ni vacancy (VNi) only reduces the size of the band gap. While Nii is electrically active and may act as a donor, the other two types of defects may compensate extrinsic doping. In CoZrBi, only the VCoCoi complex introduces a defect state in the band gap. Motivated by the reported use of NiZrSn for thermoelectric applications, the Seebeck coefficient of both materials, both in the p -type and the n -type regimes, is calculated. We find that CoZrBi displays a rather large thermopower of up to 500 μ V /K when p doped, whereas NiZrSn possesses its maximum thermopower in the n -type regime. The reported difficulties in achieving p -type doping in NiZrSn could be rationalized by the unintended formation of Nii2 + in conjunction with extrinsic acceptors, resulting in their compensation. Moreover, it is found that all types of defects considered, when present in concentrations as large as 3%, tend to reduce the thermopower compared to ideal bulk crystals at T =600 K. For NiZrSn, the calculated thermodynamic data suggest that additional Ni impurities could be removed by annealing, leading to precipitation of a metallic Ni2ZrSn phase.

  11. Multielemental segregation analysis of the thallium bromide impurities purified by repeated Bridgman technique

    Santos, Robinson A. dos; Hamada, Margarida M.; Costa, Fabio E. da; Gennari, Roseli F.; Martins, Joao F.T.; Marcondes, Renata M.; Mesquita, Carlos H. de

    2011-01-01

    TlBr crystals were purified and grown by the repeated Bridgman method from two commercial TlBr salts and characterized to be used as radiation detectors. To evaluate the purification efficiency, measurements of the impurity concentration were made after each growth, analyzing the trace impurities by inductively coupled plasma mass spectroscopy (ICP-MS). A significant decrease of the impurity concentration resulting from the purification number was observed. To evaluate the crystal as a radiation semiconductor detector, measurements of its resistivity and gamma-ray spectroscopy were carried out. The radiation response depended on the crystal purity. The repeated Bridgman technique improved the TlBr crystal quality used as a radiation detector. A compartmental model was proposed to fit the impurity concentration as a function of the repetition number of the Bridgman growth. (author)

  12. Influence of the impurity-defect and impurity-impurity interactions on the crystalline silicon solar cells conversion efficiency; Influence des interactions impurete-defaut et impurete-impurete sur le rendement de conversion des cellules photovoltaiques au silicium cristallin

    Dubois, S

    2007-05-15

    This study aims at understanding the influence of the impurity - defect interaction on the silicon solar cell performances. We studied first the case of single-crystalline silicon. We combined numerical simulations and experimental data providing new knowledge concerning metal impurities in silicon, to quantify the evolution of the conversion efficiency with the impurity concentration. Mainly due to the gettering effects, iron appears to be quite well tolerated. It is not the case for gold, diffusing too slowly. Hydrogenation effects were limited. We transposed then this study toward multi-crystalline silicon. Iron seems rather well tolerated, due to the gettering effects but also due to the efficiency of the hydrogenation. When slow diffusers are present, multi crystalline silicon is sensitive to thermal degradation. n-type silicon could solve this problem, this material being less sensitive to metal impurities. (author)

  13. Whisker and Hillock formation on Sn, Sn-Cu and Sn-Pb electrodeposits

    Boettinger, W.J.; Johnson, C.E.; Bendersky, L.A.; Moon, K.-W.; Williams, M.E.; Stafford, G.R.

    2005-01-01

    High purity bright Sn, Sn-Cu and Sn-Pb layers, 3, 7 and 16 μm thick were electrodeposited on phosphor bronze cantilever beams in a rotating disk apparatus. Beam deflection measurements within 15 min of plating proved that all electrodeposits had in-plane compressive stress. In several days, the surfaces of the Sn-Cu deposits, which have the highest compressive stress, develop 50 μm contorted hillocks and 200 μm whiskers, pure Sn deposits develop 20 μm compact conical hillocks, and Sn-Pb deposits, which have the lowest compressive stress, remain unchanged. The differences between the initial compressive stresses for each alloy and pure Sn is due to the rapid precipitation of Cu 6 Sn 5 or Pb particles, respectively, within supersaturated Sn grains produced by electrodeposition. Over longer time, analysis of beam deflection measurements indicates that the compressive stress is augmented by the formation of Cu 6 Sn 5 on the bronze/Sn interface, while creep of the electrodeposit tends to decrease the compressive stress. Uniform creep occurs for Sn-Pb because it has an equi-axed grain structure. Localized creep in the form of hillocks and whiskers occurs for Sn and Sn-Cu because both have columnar structures. Compact hillocks form for the Sn deposits because the columnar grain boundaries are mobile. Contorted hillocks and whiskers form for the Sn-Cu deposits because the columnar grain boundary motion is impeded

  14. Identification and control of unspecified impurity in trimetazidine dihydrochloride tablet formulation

    Jefri; Puspitasari, A. D.; Talpaneni, J. S. R.; Tjandrawinata, R. R.

    2018-04-01

    Trimetazidine dihydrochloride is an anti-ischemic metabolic agent which is used as drug for angina pectoris treatment. The drug substance monograph is available in European Pharmacopoeia and British Pharmacopoeia, while the drug product monograph is not available in any of the pharmacopoeias. During development of trimetazidine dihydrochloride tablet formulation, we found increase of an unspecified impurity during preliminary stability study. The unspecified impurity was identified by high performance liquid chromatography coupled with mass spectrometry (LC-MS) and the molecular weight obtained was matching with the molecular weight of N-formyl trimetazidine (m/z 295). Further experiments were performed to confirm the suspected result by injecting the impurity standard and spiking formic acid into the drug substance. The retention time of N-formyl trimetazidine was similar to the unspecified impurity in drug product. Even spiking of formic acid into drug substance showed that the suspected impurity increased with increasing concentration of formic acid. The proposed mechanism of impurity formation is via amidation of piperazine moiety of trimetazidine by formic acid which present as residual solvent in tablet binder used in the formulation. Subsequently, the impurity in our product was controlled by choosing the primary packaging which could minimize the formation of impurity.

  15. Impurity control in toroidal devices

    1990-01-01

    This summary report on the Technical Committee Meeting organized by the IAEA and held in Naka-Gun, Japan, 13-15 February 1989, provides an overview of the results presented. Of the twenty-three papers presented, sixteen were devoted to tokamak experiments. These presented data of plasma behavior in the scrape-off layer and divertor regions, as well as effects of impurities on the core plasma; these are summarized here. Other papers summarized deal with plasma-wall interactions, including wall material behavior. Still others deal with theoretical work on physics modelling in the edge region. Refs, figs and tabs

  16. Study of the corrosion behavior and the corrosion films formed on the surfaces of Mg–xSn alloys in 3.5 wt.% NaCl solution

    Wang, Jingfeng; Li, Yang; Huang, Song; Zhou, Xiaoen

    2014-01-01

    Highlights: • Corrosion of four cast Mg–xSn alloys in 3.5 wt.% NaCl solution was investigated. • Both Mg(OH) 2 /SnO 2 corrosion product film and Mg(OH) 2 /MgSnO 3 clusters formed on Mg–1.5Sn. • Compact Mg(OH) 2 /MgSnO 3 film suppressed the cathodic effect of the impurity inclusions. • Mg–xSn (x = 0.5, 1.0, 2.0 wt.%) alloys only formed loose Mg(OH) 2 /SnO 2 corrosion product film. - Abstract: The corrosion behavior and the corrosion films formed on the surfaces of Mg–xSn (x = 0.5, 1.0, 1.5, and 2.0 wt.%) alloys in 3.5 wt.% NaCl solution were investigated by immersion tests, electrochemical measurements, corrosion morphology observations, and X-ray diffraction analysis. Immersion tests and electrochemical measurements illustrated that the best corrosion resistance was reported for the Mg–1.5Sn alloy. Both Mg(OH) 2 /SnO 2 corrosion product film and Mg(OH) 2 /MgSnO 3 clusters formed on Mg–1.5Sn alloy surface. Mg(OH) 2 /MgSnO 3 clusters were compact and suppressed the cathodic effect of the impurity inclusions greatly. The Mg–xSn (x = 0.5, 1.0, and 2.0 wt.%) alloys only formed loose Mg(OH) 2 /SnO 2 corrosion product film during the corrosion process

  17. Impurity-induced moments in underdoped cuprates

    Khaliullin, G.; Kilian, R.; Krivenko, S.; Fulde, P.

    1997-01-01

    We examine the effect of a nonmagnetic impurity in a two-dimensional spin liquid in the spin-gap phase, employing a drone-fermion representation of spin-1/2 operators. The properties of the local moment induced in the vicinity of the impurity are investigated and an expression for the nuclear-magnetic-resonance Knight shift is derived, which we compare with experimental results. Introducing a second impurity into the spin liquid an antiferromagnetic interaction between the moments is found when the two impurities are located on different sublattices. The presence of many impurities leads to a screening of this interaction as is shown by means of a coherent-potential approximation. Further, the Kondo screening of an impurity-induced local spin by charge carriers is discussed. copyright 1997 The American Physical Society

  18. Graphene plasmons: Impurities and nonlocal effects

    Viola, Giovanni; Wenger, Tobias; Kinaret, Jari; Fogelström, Mikael

    2018-02-01

    This work analyzes how impurities and vacancies on the surface of a graphene sample affect its optical conductivity and plasmon excitations. The disorder is analyzed in the self-consistent Green's function formulation and nonlocal effects are fully taken into account. It is shown that impurities modify the linear spectrum and give rise to an impurity band whose position and width depend on the two parameters of our model, the density and the strength of impurities. The presence of the impurity band strongly influences the electromagnetic response and the plasmon losses. Furthermore, we discuss how the impurity-band position can be obtained experimentally from the plasmon dispersion relation and discuss this in the context of sensing.

  19. Influence of powder and dispersant concentrations on the kinetics of SnO2 deposition by electrophoresis Estudo sobre a influência das concentrações de sólido e de um dispersante sobre a cinética de deposição por eletroforese do SnO2

    D. Gouvêa

    1999-06-01

    Full Text Available Separation methods and their technologies have been developed according to technological necessities. Ceramic membrane is a new method which presents valuable advantages such as mechanical and abrasion resistance, low chemical reactivity, high working temperatures (over 1000°C and pressures (over 30 atm. Among different methods of membrane forming, electrophoretic deposition on a graphite electrode results in great length / diameter ratio creating systems with a large filtering surface in small volumes. In the present study SnO2 has been chosen because it grains and pores grow without densification. The influence of dispersant concentration, pH and time of deposition on the deposited mass is also analyzed. The deposited mass decreases with higher dispersant concentrations due to the increase in the dispersion viscosity.Os métodos de separação e suas respectivas tecnologias têm sido desenvolvidos de acordo com as necessidades de cada setor. A filtragem utilizando membranas cerâmicas constitui uma técnica recente apresenta vantagens como: resistência mecânica e à abrasão, baixa reatividade química, altas temperaturas de trabalho (acima de 1000 °C e sob altas pressões (acima de 30 atm. Dentre as diversas formas de conformação de materiais cerâmicos, a eletrodeposição a partir de uma dispersão permite a preparação de materiais com a maior relação comprimento/diâmetro e desta forma possibilita a preparação de sistemas com grande área de filtragem em pequenos volumes. O óxido de estanho foi o material utilizado devido a característica não densificante de sua sinterização. O crescimento de grãos e poros sem densificação facilita o controle da microestrutura. Será verificada a influência da concentração de dispersante, pH, da tensão e tempo de eletrodeposição na massa depositada nos eletrodos. A massa depositada diminui com a concentração de dispersante - poli(acrilato de amônio devido à diminuição do

  20. Impurity study of TMX using ultraviolet spectroscopy

    Allen, S.L.; Strand, O.T.; Moos, H.W.; Fortner, R.J.; Nash, T.J.; Dietrich, D.D.

    1981-01-01

    An extreme ultraviolet (EUV) study of the emissions from intrinsic and injected impurities in TMX is presented. Two survey spectrographs were used to determine that the major impurities present were oxygen, nitrogen, carbon, and titanium. Three absolutely-calibrated monochromators were used to measure the time histories and radial profiles of these impurity emissions in the central cell and each plug. Two of these instruments were capable of obtaining radial profiles as a function of time in a single shot

  1. Method for detecting trace impurities in gases

    Freund, S.M.; Maier, W.B. II; Holland, R.F.; Beattie, W.H.

    A technique for considerably improving the sensitivity and specificity of infrared spectrometry as applied to quantitative determination of trace impurities in various carrier or solvent gases is presented. A gas to be examined for impurities is liquefied and infrared absorption spectra of the liquid are obtained. Spectral simplification and number densities of impurities in the optical path are substantially higher than are obtainable in similar gas-phase analyses. Carbon dioxide impurity (approx. 2 ppM) present in commercial Xe and ppM levels of Freon 12 and vinyl chloride added to liquefied air are used to illustrate the method.

  2. Occurrence and Characterization Microstructure of Iron Impurities in Halloysite.

    Liu, Rong; Yan, Chunjie; Wang, Hongquan; Xiao, Guoqi; Tu, Dong

    2015-09-01

    The quality of the clays and over all halloysite are mostly associated with minor amounts of ferruginous impurities content, since this element gives an undesirable reddish color to the halloysite mineral. Hence, finding out the modes of occurrence of iron in halloysite is of prime importance in the value addition and optimum utilization of halloysite. In order to analyze the occurrence of iron impurities in halloysite, Transmission Electron Microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were combined with wet chemical analysis methods to study the low-grade halloysite. The results indicated that the mineral phases of iron impurities in the concentrates are mainly composed of amounts of magnetite, goethite and hematite. Two types of occurrences for iron impurities have been found. One is single crystalline mineral consist in the halloysite, which contains three different phases of Goethite FeO(OH) (44.75%), Magnetite Fe3O4 (27.43%) and Hematite Fe2O3 (31.96%). The other is amorphous Fe-Al-Si glial materials. This study is of significance in the theoretical research on the halloysite mineralogy and in the developmental practice of halloysite in coal measures.

  3. Behavior of arsenic impurity at antimony electric precipitation

    Kim, G.N.; Rakhmanov, A.

    2001-01-01

    In the paper the arsenic impurity electrochemical behavior and it purification from antimony by electric precipitation out of fluoride solutions was studied. For this the arsenic sample with mass 0.003-0.006 g has been irradiated at the WWR-SM nuclear reactor during 3-5 hour in the thermal neutron flux 10 13 n/cm 2 s, after 24 h keeping the sample has being dissolved in the concentrated nitric acid, and then it has been evaporated several times with distillation water addition up to wet precipitation state. It is shown, that arsenic impurity behavior character in the antimony electric precipitation out to fluoride electrolyte depends on the electrolyte content, electrolysis conditions, arsenic valency state in arsenic impurity existence in the five-valency state its joint electric reduction with antimony is practically not observing. In the case the arsenic being in three-valency state, it joint electric reduction with antimony is taking place. In this time the electrolytic antimony contents arsenic impurities less in dozen time than initial material

  4. Impurity Effects in Electroplated-Copper Solder Joints

    Hsuan Lee

    2018-05-01

    Full Text Available Copper (Cu electroplating is a mature technology, and has been extensively applied in microelectronic industry. With the development of advanced microelectronic packaging, Cu electroplating encounters new challenges for atomic deposition on a non-planar substrate and to deliver good throwing power and uniform deposit properties in a high-aspect-ratio trench. The use of organic additives plays an important role in modulating the atomic deposition to achieve successful metallic coverage and filling, which strongly relies on the adsorptive and chemical interactions among additives on the surface of growing film. However, the adsorptive characteristic of organic additives inevitably results in an incorporation of additive-derived impurities in the electroplated Cu film. The incorporation of high-level impurities originating from the use of polyethylene glycol (PEG and chlorine ions significantly affects the microstructural evolution of the electroplated Cu film, and the electroplated-Cu solder joints, leading to the formation of undesired voids at the joint interface. However, the addition of bis(3-sulfopropyl disulfide (SPS with a critical concentration suppresses the impurity incorporation and the void formation. In this article, relevant studies were reviewed, and the focus was placed on the effects of additive formula and plating parameters on the impurity incorporation in the electroplated Cu film, and the void formation in the solder joints.

  5. Impurity effects of hydrogen isotope retention on boronized wall in LHD

    Oya, Yasuhisa; Okuno, Kenji; Ashikawa, Naoko; Nishimura, Kiyohiko; Sagara, Akio

    2010-11-01

    The impurity effect on hydrogen isotopes retention in the boron film deposited in LHD was evaluated by means of XPS and TDS. It was found that the impurity concentrations in boron film were increased after H-H main plasma exposure in LHD. The ratio of hydrogen retention trapped by impurity to total hydrogen retention during H-H main plasma exposure was reached to 70%, although that of deuterium retention by impurity in D 2 + implanted LHD-boron film was about 35%. In addition, the dynamic chemical sputtering of hydrogen isotopes with impurity as the form of water and / or hydrocarbons was occurred by energetic hydrogen isotopes irradiation. It was expected that the enhancement of impurity concentration during plasma exposure in LHD would induce the dynamic formation of volatile molecules and their re-emission to plasma. These facts would prevent stable plasma operation in LHD, concluding that the dynamic impurity behavior in boron film during plasma exposure is one of key issues for the steady-state plasma operation in LHD. (author)

  6. The impurity transport in HT-6B tokamak

    Huang Rong; Xie Jikang; Li Linzhong; He Yexi; Wang Shuya; Deng Chuanbao; Li Guoxiang; Qiu Lijian

    1992-06-01

    The quasi-stationary profiles of the impurity ionization stages in HT-6B tokamak were determined by monitoring the VUV (vacuum ultraviolet) and visible line emissions from impurities. An impurity transport code was set up. The impurity transport coefficients and other parameters of impurities in that device were simulated and determined. From the measurement of impurity emission profiles and simulation analysis, it is concluded that the impurity confinement is improved and the impurity recycling is reduced by the slow magnetic compression. Some characteristics of impurity transport in that device are also discussed

  7. Radiation-stimulated yield of an impurity into interstitial sites in crystals KBr-Li and KCl-Li

    Bekeshev, A.Z.; Shunkeev, K.Sh.; Vasil'chenko, E.A.; Dauletbekova, A.K.; Ehlango, A.A.

    1996-01-01

    KCl and KBr crystals are taken as examples to show that the presence of Li impurity at X-radiation at temperatures above 200 K stimulates the creation of both impurity Hal 3 - (Li)-centers (V 4A -centers) and Hal 3 - centers (V 2 -centers). Increase of impurity concentration and X-radiation temperature (up to 300 K) results to increase of impurity stimulated creation of inherent Hal 3 - centers by more, than one order, as compared to pure crystals. Initial temperature of interstitial ion mobility was evaluated (about 140 K). 16 refs., 5 figs

  8. Impurity states in two-and three-dimensional disordered systems

    Silva, A.F. da; Fabbri, M.

    1984-04-01

    The microscopic structure of the impurity states in two-and three-dimensional (2D and 3D) disordered systems is investigated. A cluster model is outlined for the donor impurity density of states (DIDS) of doped semiconductors. It is shown that the impurity states are very sensitive to a change in the dimensionality of the system, i.e., from 3D to 2D system. It is found that all eigenstates become localized in 2D disordered system for a large range of concentration. (Author) [pt

  9. Silicon materials task of the Low Cost Solar Array Project: Effect of impurities and processing on silicon solar cells

    Hopkins, R. H.; Davis, J. R.; Rohatgi, A.; Hanes, M. H.; Rai-Choudhury, P.; Mollenkopf, H. C.

    1982-01-01

    The effects of impurities and processing on the characteristics of silicon and terrestrial silicon solar cells were defined in order to develop cost benefit relationships for the use of cheaper, less pure solar grades of silicon. The amount of concentrations of commonly encountered impurities that can be tolerated in typical p or n base solar cells was established, then a preliminary analytical model from which the cell performance could be projected depending on the kinds and amounts of contaminants in the silicon base material was developed. The impurity data base was expanded to include construction materials, and the impurity performace model was refined to account for additional effects such as base resistivity, grain boundary interactions, thermal processing, synergic behavior, and nonuniform impurity distributions. A preliminary assessment of long term (aging) behavior of impurities was also undertaken.

  10. Trace impurities analysis determined by neutron activation in the PbI 2 crystal semiconductor

    Hamada, M. M.; Oliveira, I. B.; Armelin, M. J.; Mesquita, C. H.

    2003-06-01

    In this work, a methodology for impurity analysis of PbI 2 was studied to investigate the effectiveness of the purification. Commercial salts were purified by the multi passes zone refining and grown by the Bridgman method. To evaluate the purification efficiency, samples from the bottom, middle and upper sections of the ZR ingot were analyzed after 200, 300 and 500 purification passes, by measurements of the impurity concentrations, using the neutron activation analysis (NAA) technique. There was a significant reduction of the impurities according to the purification numbers. The reduction efficiency was different for each element, namely: Au>Mn>Co˜Ag>K˜Br. The impurity concentration of the crystals grown after 200, 300 and 500 passes and the PbI 2 starting material were analyzed by NAA and plasma optical emission spectroscopy.

  11. Impurity effects on electrical conductivity of doped bilayer graphene in the presence of a bias voltage

    Lotfi, E; Rezania, H; Arghavaninia, B; Yarmohammadi, M

    2016-01-01

    We address the electrical conductivity of bilayer graphene as a function of temperature, impurity concentration, and scattering strength in the presence of a finite bias voltage at finite doping, beginning with a description of the tight-binding model using the linear response theory and Green’s function approach. Our results show a linear behavior at high doping for the case of high bias voltage. The effects of electron doping on the electrical conductivity have been studied via changing the electronic chemical potential. We also discuss and analyze how the bias voltage affects the temperature behavior of the electrical conductivity. Finally, we study the behavior of the electrical conductivity as a function of the impurity concentration and scattering strength for different bias voltages and chemical potentials respectively. The electrical conductivity is found to be monotonically decreasing with impurity scattering strength due to the increased scattering among electrons at higher impurity scattering strength. (paper)

  12. SN 2009E

    Pastorello...[], A.; Pumo, M.L.; Navasardyan, H.

    2012-01-01

    . In this paper we investigate the properties of SN 2009E, which exploded in a relatively nearby spiral galaxy (NGC 4141) and that is probably the faintest 1987A-like supernova discovered so far. We also attempt to characterize this subgroup of core-collapse supernovae with the help of the literature and present...... observations which started about 2 months after the supernova explosion, highlight significant differences between SN 2009E and the prototypical SN 1987A. Modelling the data of SN 2009E allows us to constrain the explosion parameters and the properties of the progenitor star, and compare the inferred estimates...... 2009E ejected about 0.04 M⊙ of 56Ni, which is the smallest 56Ni mass in our sample of 1987A-like events. Modelling the observations with a radiation hydrodynamics code, we infer for SN 2009E a kinetic plus thermal energy of about 0.6 foe, an initial radius of ~7 × 1012 cm and an ejected mass of ~19 M...

  13. Polarographic determination of Sn (II) and total Sn in PYRO and MDP radiopharmaceutical kits

    Sebastian, Maria V.A.; Lugon, Marcelo Di M.V.; Silva, Jose L. da; Fukumori, Neuza T.O.; Pereira, Nilda P.S. de; Silva, Constancia P.G. da; Matsuda, Margareth M.N.

    2007-01-01

    A sensitive, alternative method to atom absorption spectrometry, fluorimetry or potentiometry for the evaluation of tin(II) ions (0.1- 10 mg) and total tin in radiopharmaceutical kits was investigated. Differential pulse polarography was chosen. The supporting electrolyte was H 2 SO 4 3 mol L -1 and HCl 3 mol L -1 solution. The potential was swept from -250 to -800 mV vs Ag/AgCl/saturated KCl, using a dropping mercury electrode with 1 s drop time, 50 mV s -1 scan rate, -50 mV pulse amplitude, 40 ms pulse time and 10 mV step amplitude. Pure nitrogen was used to deaerate the polarographic cell solution for 5 min, before and after each sample introduction. Oxidation of Sn(II) was made in the same sample vial by adding H 2 O 2 (hydrogen peroxide) 10 mol L -1 , at 37 deg C, in order to quantify the total Sn. The calibration curve for Sn(II) and Sn(IV) was obtained in the concentration range of 0-10 ppm from a 1000 ppm standard solution. The detection limit of Sn(II) is 0.5 ppm and for Sn(IV) is 0.6 ppm. Differential pulse polarography was performed in the pyrophosphate (PYRO) and methylenediphosphonic acid (MDP) radiopharmaceutical kits, containing 2 mg and 1 mg of SnCl 2 .2H 2 O per vial, respectively. The described method for determination of stannous ion (Sn(II)), is selective, reproducible and adequate to be used in the quality control of lyophilized reagents and it shall be performed for other cold kits produced at IPEN. (author)

  14. Impurity effects in the electrothermal instability

    Tomimura, A.; Azevedo, M.T. de

    1982-01-01

    A 'impure' plasma model is proposed based on the homogeneous hydrogen plasma used in the theory formulated by Tomimura and Haines to explain the electrothermal instable mode growth with the wave vector perpendicular to the applied magnetic field. The impurities are introduced implicitly in the transport coefficients of the two-fluid model through a effective charge number Z sub(eff). (Author) [pt

  15. Depolarization of diffusing spins by paramagnetic impurities

    Schillaci, M.E.; Hutson, R.L.; Heffner, R.H.; Leon, M.; Dodds, S.A.; Estle, T.L.

    1981-01-01

    We study the depolarization of diffusing spins (muons) interacting with dilute paramagnetic impurities in a solid using a simple computational model which properly treats the muon motion and preserves correct muon-impurity distances. Long-range (dipolar) and nearest-neighbor (contact) interactions are treated together. Diffusion parameters are deduced and model comparisons made for AuGd (300 ppm). (orig.)

  16. Effect of indium and antimony doping in SnS single crystals

    Chaki, Sunil H., E-mail: sunilchaki@yahoo.co.in; Chaudhary, Mahesh D.; Deshpande, M.P.

    2015-03-15

    Highlights: • Single crystals growth of pure SnS, indium doped SnS and antimony doped SnS by direct vapour transport (DVT) technique. • Doping of In and Sb occurred in SnS single crystals by cation replacement. • The replacement mechanism ascertained by EDAX, XRD and substantiated by Raman spectra analysis. • Dopants concentration affects the optical energy bandgap. • Doping influences electrical transport properties. - Abstract: Single crystals of pure SnS, indium (In) doped SnS and antimony (Sb) doped SnS were grown by direct vapour transport (DVT) technique. Two doping concentrations of 5% and 15% each were employed for both In and Sb dopants. Thus in total five samples were studied viz., pure SnS (S1), 5% In doped SnS (S2), 15% In doped SnS (S3), 5% Sb doped SnS (S4) and 15% Sb doped SnS (S5). The grown single crystal samples were characterized by evaluating their surface microstructure, stoichiometric composition, crystal structure, Raman spectroscopy, optical and electrical transport properties using appropriate techniques. The d.c. electrical resistivity and thermoelectric power variations with temperature showed semiconducting and p-type nature of the as-grown single crystal samples. The room temperature Hall Effect measurements further substantiated the semiconducting and p-type nature of the as-grown single crystal samples. The obtained results are deliberated in detail.

  17. Elimination device for metal impurities

    Yanagisawa, Ko.

    1982-01-01

    Purpose: To enable reuse of adsorbing materials by eliminating Fe 3 O 4 films reduced with adsorbing performance by way of electrolytic polishing and then forming fresh membranes using high temperature steams. Constitution: An elimination device is provided to a coolant clean-up system of a reactor for eliminating impurities such as cobalt. The elimination device comprises adsorbing materials made of stainless steel tips or the likes having Fe 3 O 4 films. The adsorbing materials are regenerated by applying an electric current between grid-like cathode plates and anode plates to leach out the Fe 3 O 4 films, washing out the electrolytic solution by cleaning water and then applying steams at high temperature onto the adsorbing materials to thereby form fresh Fe 3 O 4 films again thereon. The regeneration of the adsorbing materials enables to eliminate Co 60 and the like in the primary coolant efficiently. (Moriyama, K.)

  18. Formation of the gaseous phase of impurity elements from coal combustion at a thermal power plant

    Kizil'shtein, L.Ya.; Levchenko, S.V.; Peretyakt'ko, A.G.

    1991-01-01

    Data are reported on the distribution of impurity elements in their principal carriers: organic matter, iron sulfides, and clays. Tests with high-temperature combustion of coals and argillites indicate that elements associated with clay minerals largely remain in ash and slag. They do not pass to the gas phase - a factor to be considered in assessment of environmental impact from thermal power plants and specification of toxic concentration levels of impurity elements in coal

  19. Impurity decoration of native vacancies in Ga and N sublattices of gallium nitride

    Hautakangas, Sami

    2005-01-01

    The effects of impurity atoms as well as various growth methods to the formation of vacancy type defects in gallium nitride (GaN) have been studied by positron annihilation spectroscopy. It is shown that vacancy defects are formed in Ga or N sublattices depending on the doping of the material. Vacancies are decorated with impurity atoms leading to the compensation of the free carriers of the samples. In addition, the vacancy clusters are found to be present in significant concentrations in n-...

  20. The influence of optical parameters on impurity determinations by IR spectroscopy

    Lombard, O.J.

    1985-01-01

    The important role of impurities in semiconductor materials is the subject of continuous research. The concentration of interstitial oxygen impurities in silicon are determined with the aid of infrared spectroscopy. The maximum absorption coefficient of the oxygen absorption peak, centered at 9,06 μm, is determined and the impurity concentration is then calculated using a calibration factor. This procedure was evaluated, paying particular attention to those optical parameters which may influence these impurity determinations. A thorough discussion of the theoretical and experimental aspects of infrared spectroscopy in general is followed by an overview of previous experimental work. This lead to some theoretical analysis regarding the influence of the index of refraction, the index of absorption and multiple reflections in the silicon wafer on impurity determinations. This lead to specific experimental investigations. The influence of the surface morphology of samples on impurity determinations was studied by determining the reflectance of silicon surfaces. It was established that the surface reflectance plays a role and that it must be taken into consideration for accurate impurity concentration determinations. The most accurate values for the absorption coefficient due to oxygen in silicon are calculated. This requires that the surface of the silicon wafers must be highly polished for the formula to be valid. Acceptable values for the absorption coefficient of damaged surfaces are obtained if the uncorrected formula is used. Experimental results may deviate as much as 32% from the real impurity concentration if the wrong formula is used to calculate the absorption coefficient of oxygen in silicon at 9,06 μm

  1. Donor impurity self-compensation by neutral complexes in bismuth doped lead telluride

    Ravich, Yu.I.; Nemov, S.A.; Proshin, V.I.

    1994-01-01

    Self-compensation is calculated of impurity doping action in semiconductors of the A 4 B 6 type by neutral complexes, consisting of a vacancy and two impurity atoms. Complexes entropy is estimated and the thermodynamic potential is minimized in the concentration of single two-charge vacancies and complexes. Calculation results are compared with experimental data, obtained when lead telluride doping by bismuth. Account for complex formation improves agreement theory with experiment. 4 refs., 1 fig

  2. Device for removing impurities from liquid metals

    Naito, Kesahiro; Yokota, Norikatsu; Shimoyashiki, Shigehiro; Takahashi, Kazuo; Ishida, Tomio.

    1984-01-01

    Purpose: To attain highly reliable and efficient impurity removal by forming temperature distribution the impurity removing device thereby providing the function of corrosion product trap, nuclear fission product trap and cold trap under the conditions suitable to the impurity removing materials. Constitution: The impurity removing device comprises a container containing impurity removing fillers. The fillers comprise material for removing corrosion products, material for removing nuclear fission products and material for removing depositions from liquid sodium. The positions for the respective materials are determined such that the materials are placed under the temperature conditions easy to attain their function depending on the temperature distribution formed in the removing device, whereby appropriate temperature condition is set to each of the materials. (Yoshino, Y.)

  3. Decay properties of nuclei in the neighbourhood of 100Sn

    Straub, Katrin

    2011-01-01

    This thesis concentrates on nuclear properties of very neutron deficient nuclei near the proton dripline in the neighbourhood of doubly-magic 100 Sn. In an experiment performed in March 2008 at the GSI in Darmstadt, the exotic nuclei were produced in a projectile fragmentation reaction using a 124 Xe primary beam with an energy of 100 AMeV impinging on a 4000 Beryllium target, separated and identified in the FRS and eventually stopped for decay spectroscopy in a complex implantation detector developed at the institute E12. The Germanium array RISING was employed for the measurement of prompt and delayed gamma radiation. Production cross sections and half lives were determined along the proton dripline. The isotopes 99 Sn, 97 In and 95 Cd were identified for the first time. additional nuclei studied in this thesis are 103 Sn, 96 Cd as well as the two tin isotopes 101 Sn and 102 Sn. (orig.)

  4. Uranium analysis. Impurities determination by spark mass spectrometry

    Anon.

    Determination of impurities in uranium, suitable for atomic content greater than 10 -8 , particularly adapted for a low content. The method is quantitative for metallic impurities and qualitative for non metallic impurities [fr

  5. Moessbauer spectroscopy of isotope separator implanted sup(119m)Sn in FCC metals

    Larsen, A.N.; Weyer, G.

    1979-01-01

    Radioactive sup(119m)Sn has been implanted in FCC metals by means of an isotope separator. Moessbauer spectra have been measured for the 24 keV transition of 119 Sn. Large substitutional fractions are found in all cases. A correlation for substitutional lattice sites between the measured isomer shifts of the impurity atoms and the force constants of the host lattices is discussed. Debye-Waller factors determined for substitutional Sn in the host lattices are found to be smaller than values calculated by a simple mass-defect model. For some host metals indications of an influence of radiation damage on the spectra are observed. Defect sites are assigned to Sn in aluminium and lead. Qualitative conclusions on the structures of these defects are drawn from the determined Moessbauer parameters. (author)

  6. Impurity effect of iron(III) on the growth of potassium sulfate crystal in aqueous solution

    Kubota, Noriaki; Katagiri, Ken-ichi; Yokota, Masaaki; Sato, Akira; Yashiro, Hitoshi; Itai, Kazuyoshi

    1999-01-01

    Growth rates of the {1 1 0} faces of a potassium sulfate crystal were measured in a flow cell in the presence of traces of impurity Fe(III) (up to 2 ppm) over the range of pH=2.5-6.0. The growth rate was significantly suppressed by the impurity. The effect became stronger as the impurity concentration was increased and at pH5 it finally disappeared completely. The concentration and supersaturation effects on the impurity action were reasonably explained with a model proposed by Kubota and Mullin [J. Crystal Growth, 152 (1995) 203]. The surface coverage of the active sites by Fe(III) is estimated to increase linearly on increasing its concentration in solution in the range examined by growth experiments. The impurity effectiveness factor is confirmed to increase inversely proportional to the supersaturation as predicted by the model. Apart from the discussion based on the model, the pH effect on the impurity action is qualitatively explained by assuming that the first hydrolysis product of aqua Fe(III) complex compound, [Fe(H 2O) 5(OH)] 2+, is both growth suppression and adsorption active, but the second hydrolysis product, [Fe(H 2O) 4(OH) 2] +, is only adsorption active.

  7. Crystal growth and structure, electrical, and optical characterization of the semiconductor Cu2SnSe3

    Marcano, G.; Rincon, C.; Chalbaud, L. M. de; Bracho, D. B.; Perez, G. Sanchez

    2001-01-01

    X-ray powder diffraction by p-type Cu 2 SnSe 3 , prepared by the vertical Bridgman--Stockbarger technique, shows that this material crystallizes in a monoclinic structure, space group Cc, with unit cell parameters a=6.5936(1)Aa, b=12.1593(4)Aa, c=6.6084(3)Aa, and β=108.56(2) o . The temperature variation of the hole concentration p obtained from the Hall effect and electrical resistivity measurements from about 160 to 300 K, is explained as due to the thermal activation of an acceptor level with an ionization energy of 0.067 eV, whereas below 100 K, the conduction in the impurity band dominates the electrical transport process. From the analysis of the p vs T data, the density-of-states effective mass of the holes is estimated to be nearly of the same magnitude as the free electron mass. In the valence band, the temperature variation of the hole mobility is analyzed by taking into account the scattering of charge carriers by ionized and neutral impurities, and acoustic phonons. In the impurity band, the mobility is explained as due to the thermally activated hopping transport. From the analysis of the optical absorption spectra at room temperature, the fundamental energy gap was determined to be 0.843 eV. The photoconductivity spectra show the presence of a narrow band gap whose main peak is observed at 0.771 eV. This band is attributed to a free-to-bound transition from the defect acceptor level to the conduction band. The origin of this acceptor state, consistent with the chemical composition of the samples and screening effects, is tentatively attributed to selenium interstitials. copyright 2001 American Institute of Physics

  8. Crystal growth and structure, electrical, and optical characterization of the semiconductor Cu{sub 2}SnSe{sub 3}

    Marcano, G.; Rincon, C.; de Chalbaud, L. M.; Bracho, D. B.; Perez, G. Sanchez

    2001-08-15

    X-ray powder diffraction by p-type Cu{sub 2}SnSe{sub 3}, prepared by the vertical Bridgman--Stockbarger technique, shows that this material crystallizes in a monoclinic structure, space group Cc, with unit cell parameters a=6.5936(1)Aa, b=12.1593(4)Aa, c=6.6084(3)Aa, and {beta}=108.56(2){sup o}. The temperature variation of the hole concentration p obtained from the Hall effect and electrical resistivity measurements from about 160 to 300 K, is explained as due to the thermal activation of an acceptor level with an ionization energy of 0.067 eV, whereas below 100 K, the conduction in the impurity band dominates the electrical transport process. From the analysis of the p vs T data, the density-of-states effective mass of the holes is estimated to be nearly of the same magnitude as the free electron mass. In the valence band, the temperature variation of the hole mobility is analyzed by taking into account the scattering of charge carriers by ionized and neutral impurities, and acoustic phonons. In the impurity band, the mobility is explained as due to the thermally activated hopping transport. From the analysis of the optical absorption spectra at room temperature, the fundamental energy gap was determined to be 0.843 eV. The photoconductivity spectra show the presence of a narrow band gap whose main peak is observed at 0.771 eV. This band is attributed to a free-to-bound transition from the defect acceptor level to the conduction band. The origin of this acceptor state, consistent with the chemical composition of the samples and screening effects, is tentatively attributed to selenium interstitials. {copyright} 2001 American Institute of Physics.

  9. Influence of impurities on the fuel retention in fusion reactors

    Reinhart, Michael

    2015-01-01

    The topic of this thesis is the influence of plasma impurities on the hydrogen retention in metals, in the scope of plasma-wall-interaction research for fusion reactors. This is addressed experimentally and by modelling. The mechanisms of the hydrogen retention are influenced by various parameters like the wall temperature, ion energy, flux and fluence as well as the plasma composition. The plasma composition is a relevant factor for hydrogen retention in fusion reactors, as their plasma will also contain impurities like helium or seeded impurities like argon. The experiments treated in this thesis were performed in the linear plasma generator PSI-2 at Forschungszentrum Juelich, and are divided in 3 parts: The first experiments cover the plasma diagnostics, most importantly the measurement of the impurity ion concentration in the plasma by optical emission spectroscopy. This is a requirement for the later experiments with mixed plasmas. Diagnostics like Langmuir probe measurements are not applicable for this task because they do not distinguish different ionic species. The results also show that the impurity ion concentrations cannot be simply concluded from the neutral gas input to the plasma source, because the relation between the neutral gas concentration and impurity ion concentration is not linear. The second and main part of the experiments covers the exposure of tungsten samples to deuterium plasmas. In the experiments, the impurity ion type and concentration is variated, to verify the general influence of helium and argon on the deuterium retention in tungsten samples exposed at low temperatures. It shows that helium impurities reduce the amount of retained deuterium by a factor of 3, while argon impurities slightly increase the total retention, compared to exposures to a pure deuterium plasma. Cross-sections of the exposed tungsten surfaces via TEM-imaging reveal a 12-15 nm deep helium nanobubble layer at the surface of the sample, while for the cases of

  10. Influence of impurities on the fuel retention in fusion reactors

    Reinhart, Michael

    2015-07-01

    The topic of this thesis is the influence of plasma impurities on the hydrogen retention in metals, in the scope of plasma-wall-interaction research for fusion reactors. This is addressed experimentally and by modelling. The mechanisms of the hydrogen retention are influenced by various parameters like the wall temperature, ion energy, flux and fluence as well as the plasma composition. The plasma composition is a relevant factor for hydrogen retention in fusion reactors, as their plasma will also contain impurities like helium or seeded impurities like argon. The experiments treated in this thesis were performed in the linear plasma generator PSI-2 at Forschungszentrum Juelich, and are divided in 3 parts: The first experiments cover the plasma diagnostics, most importantly the measurement of the impurity ion concentration in the plasma by optical emission spectroscopy. This is a requirement for the later experiments with mixed plasmas. Diagnostics like Langmuir probe measurements are not applicable for this task because they do not distinguish different ionic species. The results also show that the impurity ion concentrations cannot be simply concluded from the neutral gas input to the plasma source, because the relation between the neutral gas concentration and impurity ion concentration is not linear. The second and main part of the experiments covers the exposure of tungsten samples to deuterium plasmas. In the experiments, the impurity ion type and concentration is variated, to verify the general influence of helium and argon on the deuterium retention in tungsten samples exposed at low temperatures. It shows that helium impurities reduce the amount of retained deuterium by a factor of 3, while argon impurities slightly increase the total retention, compared to exposures to a pure deuterium plasma. Cross-sections of the exposed tungsten surfaces via TEM-imaging reveal a 12-15 nm deep helium nanobubble layer at the surface of the sample, while for the cases of

  11. Experimental study of impurity production in the Tokapole II tokamak

    Brickhouse, N.S.

    1984-01-01

    The release mechanism for low-Z impurities in Tokapole II has been characterized through impurity doping and isotopic exchange experiments. The desorption mechanism responsible for the low-Z impurity concentrations during the rise phase of the plasma current depends on the mass of the plasma ions. Doping with small amounts of any gas studied (H 2 , D 2 , He, N 2 , O 2 , Ne, Ar, Kr, and Xe) increases the early-time radiation of O, C, and N. For exotic gas doping this increase is linear with the dopant concentration, and proportional to the mass of the dopant, as expected for a momentum transfer process. Isotopic exchange experiments confirm the mass-dependence of oxygen production. A time-dependent coronal model is compared with the vacuum ultraviolet spectroscopic signals of the ionizing oxygen. The quantity sigma/tau (desorption cross section divided by particle confinement time) is determined to be 4 x 10 13 cm 2 /msec. The oxygen influx has a large peak early in the start-up

  12. The role of metallic impurities in oxide semiconductors: first-principles calculations and PAC experiments

    Errico, L.A.; Fabricius, G.; Renteria, M. [Departamento de Fisica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CC 67, 1900 La Plata (Argentina)

    2004-08-01

    We report an ab-initio comparative study of the electric-field-gradient tensor (EFG) and structural relaxations introduced by acceptor (Cd) and donor (Ta) impurities when they replace cations in a series of binary oxides: TiO{sub 2}, SnO{sub 2}, and In{sub 2}O{sub 3}. Calculations were performed with the Full-Potential Linearized-Augmented Plane Waves method that allows us to treat the electronic structure and the atomic relaxations in a fully self-consistent way. We considered different charge states for each impurity and studied the dependence on these charge states of the electronic properties and the structural relaxations. Our results are compared with available data coming from PAC experiments and previous calculations, allowing us to obtain a new insight on the role that metal impurities play in oxide semiconductors. It is clear from our results that simple models can not describe the measured EFGs at impurities in oxides even approximately. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Impurity studies and discharge cleaning in Doublet III

    Marcus, F.B.

    1979-10-01

    The goal of present and next generation tokamak experiments is to produce high-density, high-purity plasmas during high-power, extended-duration discharges. Plasma discharges with Z/sub eff/ values near unity and low concentrations of medium and high-Z metallic impurities have been obtained in Doublet III using a combination of low-power hydrogen discharge cleaning, gas puffing, precise plasma shape and position control, and high-Z limiters. Analysis of the first wall surface and residual gas impurities confirmed that clean conditions have been achieved. The high-Z limiters showed very limited amounts of melting or arcing. The progress of the wall cleaning process was monitored by three diagnostic techniques: Auger electron spectroscopy of metallic samples at the vessel wall, residual gas analysis, and the resistivity of full power discharges

  14. Evaluation of hydrogen and oxygen impurity levels on silicon surfaces

    Kenny, M J; Wielunski, L S; Netterfield, R P; Martin, P J; Leistner, A [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lindfield, NSW (Australia). Div. of Applied Physics

    1997-12-31

    This paper reports on surface analytical techniques used to quantify surface concentrations of impurities such as oxygen and hydrogen. The following analytical techniques were used: Rutherford and Backscattering, elastic recoil detection, time-of-flight SIMS, spectroscopic ellipsometry, x-ray photoelectron spectroscopy. The results have shown a spread in thickness of oxide layer, ranging from unmeasurable to 1.6 nm. The data must be considered as preliminary at this stage, but give some insight into the suitability of the techniques and a general idea of the significance of impurities at the monolayer level. These measurements have been carried out on a small number of silicon surfaces both semiconductor grade <111> crystalline material and silicon which has been used in sphere fabrication. 5 refs., 1 fig.

  15. Evaluation of hydrogen and oxygen impurity levels on silicon surfaces

    Kenny, M.J.; Wielunski, L.S.; Netterfield, R.P.; Martin, P.J.; Leistner, A. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lindfield, NSW (Australia). Div. of Applied Physics

    1996-12-31

    This paper reports on surface analytical techniques used to quantify surface concentrations of impurities such as oxygen and hydrogen. The following analytical techniques were used: Rutherford and Backscattering, elastic recoil detection, time-of-flight SIMS, spectroscopic ellipsometry, x-ray photoelectron spectroscopy. The results have shown a spread in thickness of oxide layer, ranging from unmeasurable to 1.6 nm. The data must be considered as preliminary at this stage, but give some insight into the suitability of the techniques and a general idea of the significance of impurities at the monolayer level. These measurements have been carried out on a small number of silicon surfaces both semiconductor grade <111> crystalline material and silicon which has been used in sphere fabrication. 5 refs., 1 fig.

  16. Impurity studies and discharge cleaning in Doublet III

    Marcus, F.B.

    1979-10-01

    The goal of present and next generation tokamak experiments is to produce high-density, high-purity plasmas during high-power, extended-duration discharges. Plasma discharges with Z/sub eff/ values near unity and low concentrations of medium and high-Z metallic impurities have been obtained in Doublet III using a combination of low-power hydrogen discharge cleaning, gas puffing, precise plasma shape and position control, and high-Z limiters. Analysis of the first wall surface and residual gas impurities confirmed that clean conditions have been achieved. The high-Z limiters showed very limited amounts of melting or arcing. The progress of the wall cleaning process was monitored by three diagnostic techniques: Auger electron spectroscopy of metallic samples at the vessel wall, residual gas analysis, and the resistivity of full power discharges.

  17. The development of 126Sn separation procedure by means of TBP resin

    Andris, Boris; Bena, Jozef

    2016-01-01

    Separation possibilities of 126 Sn with a new extraction-chromatographic material TBP Resin were studied. Suitable conditions for tin separation were determined in hydrochloric acid medium. 126 Sn was concentrated on TBP resin from 6 mol L -1 HCl and was eluted with 0.1 mol L -1 HCl. A purification step to remove 137 Cs with AMP-PAN column was necessary to obtain sufficiently purified samples which were directly measured with gamma spectrometry for 126 Sn activity. Separation of 126 Sn from a raw sludge sample was done according to proposed procedure, 126 Sn was detected and its activity was determined. (author)

  18. Influence of iron impurities on defected graphene

    Faccio, Ricardo; Pardo, Helena [Centro NanoMat, Cryssmat-Lab, DETEMA, Polo Tecnológico de Pando, Facultad de Química, Universidad de la República, Cno. Saravia s/n, CP 91000 Pando (Uruguay); Centro Interdisciplinario en Nanotecnología, Química y Física de Materiales, Espacio Interdisciplinario, Universidad de la República, Montevideo (Uruguay); Araújo-Moreira, Fernando M. [Materials and Devices Group, Department of Physics, Universidade Federal de São Carlos, SP 13565-905 (Brazil); Mombrú, Alvaro W., E-mail: amombru@fq.edu.uy [Centro NanoMat, Cryssmat-Lab, DETEMA, Polo Tecnológico de Pando, Facultad de Química, Universidad de la República, Cno. Saravia s/n, CP 91000 Pando (Uruguay); Centro Interdisciplinario en Nanotecnología, Química y Física de Materiales, Espacio Interdisciplinario, Universidad de la República, Montevideo (Uruguay)

    2015-03-01

    Highlights: • The interaction among a multivacancy graphene system and iron impurities is studied. • The studied iron impurities were single atom and tetrahedral and octahedral clusters. • DFT calculations using the VASP code were performed. • The embedding of Fe affects the structure and electronic behavior in the graphene. • Half metal or semimetal behavior can be obtained, depending on the Fe impurities. - Abstract: The aim of this work is to study the interaction of selected iron cluster impurities and a multivacancy graphene system, in terms of the structural distortion that the impurities cause as well as their magnetic response. While originally, the interaction has been limited to vacancies and isolated metallic atoms, in this case, we consider small iron clusters. This study was undertaken using Density Functional Theory (DFT) calculations. The influence of the iron impurities in the electronic structure of the vacant graphene system is discussed. The main conclusion of this work is that the presence of iron impurities acts lowering the magnetic signal due to the occurrence of spin pairing between carbon and iron, instead of enhancing the possible intrinsic carbon magnetism.

  19. Impurity Induced Phase Competition and Supersolidity

    Karmakar, Madhuparna; Ganesh, R.

    2017-12-01

    Several material families show competition between superconductivity and other orders. When such competition is driven by doping, it invariably involves spatial inhomogeneities which can seed competing orders. We study impurity-induced charge order in the attractive Hubbard model, a prototypical model for competition between superconductivity and charge density wave order. We show that a single impurity induces a charge-ordered texture over a length scale set by the energy cost of the competing phase. Our results are consistent with a strong-coupling field theory proposed earlier in which superconducting and charge order parameters form components of an SO(3) vector field. To discuss the effects of multiple impurities, we focus on two cases: correlated and random distributions. In the correlated case, the CDW puddles around each impurity overlap coherently leading to a "supersolid" phase with coexisting pairing and charge order. In contrast, a random distribution of impurities does not lead to coherent CDW formation. We argue that the energy lowering from coherent ordering can have a feedback effect, driving correlations between impurities. This can be understood as arising from an RKKY-like interaction, mediated by impurity textures. We discuss implications for charge order in the cuprates and doped CDW materials such as NbSe2.

  20. Influence of iron impurities on defected graphene

    Faccio, Ricardo; Pardo, Helena; Araújo-Moreira, Fernando M.; Mombrú, Alvaro W.

    2015-01-01

    Highlights: • The interaction among a multivacancy graphene system and iron impurities is studied. • The studied iron impurities were single atom and tetrahedral and octahedral clusters. • DFT calculations using the VASP code were performed. • The embedding of Fe affects the structure and electronic behavior in the graphene. • Half metal or semimetal behavior can be obtained, depending on the Fe impurities. - Abstract: The aim of this work is to study the interaction of selected iron cluster impurities and a multivacancy graphene system, in terms of the structural distortion that the impurities cause as well as their magnetic response. While originally, the interaction has been limited to vacancies and isolated metallic atoms, in this case, we consider small iron clusters. This study was undertaken using Density Functional Theory (DFT) calculations. The influence of the iron impurities in the electronic structure of the vacant graphene system is discussed. The main conclusion of this work is that the presence of iron impurities acts lowering the magnetic signal due to the occurrence of spin pairing between carbon and iron, instead of enhancing the possible intrinsic carbon magnetism

  1. SN 2012fr

    Contreras, Carlos; Phillips, M. M.; Burns, Christopher R.

    2018-01-01

    We present detailed ultraviolet, optical, and near-infrared light curves of the Type Ia supernova (SN) 2012fr, which exploded in the Fornax cluster member NGC 1365. These precise high-cadence light curves provide a dense coverage of the flux evolution from -12 to +140 days with respect to the epo...

  2. Comparison of the electrochemical performance of mesoscopic Cu2Sb, SnSb and Sn/SnSb alloy powders

    Zhang Ge; Huang Kelong; Liu Suqin; Zhang Wei; Gong Benli

    2006-01-01

    Cu 2 Sb, SnSb and Sn/SnSb mesoscopic alloy powders were prepared by chemical reduction, respectively. The crystal structures and particle morphology of Cu 2 Sb, SnSb and Sn/SnSb were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM). The electrochemical performances of the Cu 2 Sb, SnSb and Sn/SnSb electrodes were investigated by galvanostatic charge and discharge cycling and electrochemical impedance spectroscopy (EIS). The results showed the first charge and discharge capacities of SnSb and Sn/SnSb were higher than Cu 2 Sb, but after 15 cycles, the charge capacity fading rates of Cu 2 Sb, Sn/SnSb and Sn/SnSb were 26.16%, 55.33% and 47.39%, respectively. Cu 2 Sb had a better cycle performance, and Sn/SnSb multiphase alloy was prior to pure SnSb due to the existence of excessive Sn in Sn/SnSb system

  3. Impurities in radioactive solutions for gamma spectroscopy

    Delgado, J.U.

    1990-01-01

    The absolute and relative methods for radioactive sources calibration, like 4 Πβ-γ and 4Πγ ionization chamber respectively, allows to reach 0,1% of exactiness in activity measurement, but cannot distinguish radioactive impurities that interfere in the activity. Then, one of the problems associated to a quality control of calibrated sources furnished to users is the identification and quantification of the impurities. In this work, a routine technical procedure, using the facilities of gamma spectrometry method that allows to identify and to determine the impurities relative contribution to the source main radionuclide activity, is described. (author) [pt

  4. Simulated impurity transport in LHD from MIST

    Rice, J.E. [National Inst. for Fusion Science, Toki, Gifu (Japan)

    1998-05-01

    The impurity transport code MIST and atomic physics package LINES are used to calculate the time evolution of charge state density profiles, individual line emissivity profiles and total radiated power profiles for impurities in LHD plasmas. Three model LHD plasmas are considered; a high density, low temperature case, a low density, high temperature case and the initial LHD start-up plasma (500 kW ECH), using impurity transport coefficient profiles from Heliotron E. The elements oxygen, neon, scandium, iron, nickel and molybdenum are considered, both injected and in steady state. (author)

  5. Dopant-site-dependent scattering by dislocations in epitaxial films of perovskite semiconductor BaSnO{sub 3}

    Kim, Useong; Park, Chulkwon; Kim, Rokyeon; Mun, Hyo Sik; Kim, Hoon Min; Kim, Namwook; Yu, Jaejun; Char, Kookrin, E-mail: kchar@phya.snu.ac.kr [Center for Strongly Correlated Materials Research, Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of); Ha, Taewoo; Kim, Jae Hoon [Department of Physics, Yonsei University, Seoul 120-749 (Korea, Republic of); Kim, Hyung Joon; Kim, Tai Hoon; Kim, Kee Hoon [Center for Novel States of Complex Materials Research, Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of)

    2014-05-01

    We studied the conduction mechanism in Sb-doped BaSnO{sub 3} epitaxial films, and compared its behavior with that of the mechanism of its counterpart, La-doped BaSnO{sub 3}. We found that the electron mobility in BaSnO{sub 3} films was reduced by almost 7 times when the dopant was changed from La to Sb, despite little change in the effective mass of the carriers. This indicates that the scattering rate of conduction electrons in the BaSnO{sub 3} system is strongly affected by the site at which the dopants are located. More importantly, we found that electron scattering by threading dislocations also depends critically on the dopant site. We propose that the large enhancement of scattering by the threading dislocations in Sb-doped BaSnO{sub 3} films is caused by the combination effect of the change in the distribution of Sb impurities in the films, the formation of the Sb impurity clusters near the threading dislocations, and the conduction electron clustering near the Sb impurities.

  6. Dopant-site-dependent scattering by dislocations in epitaxial films of perovskite semiconductor BaSnO3

    Useong Kim

    2014-05-01

    Full Text Available We studied the conduction mechanism in Sb-doped BaSnO3 epitaxial films, and compared its behavior with that of the mechanism of its counterpart, La-doped BaSnO3. We found that the electron mobility in BaSnO3 films was reduced by almost 7 times when the dopant was changed from La to Sb, despite little change in the effective mass of the carriers. This indicates that the scattering rate of conduction electrons in the BaSnO3 system is strongly affected by the site at which the dopants are located. More importantly, we found that electron scattering by threading dislocations also depends critically on the dopant site. We propose that the large enhancement of scattering by the threading dislocations in Sb-doped BaSnO3 films is caused by the combination effect of the change in the distribution of Sb impurities in the films, the formation of the Sb impurity clusters near the threading dislocations, and the conduction electron clustering near the Sb impurities.

  7. Binding energy of impurity states in an inverse parabolic quantum well under magnetic field

    Kasapoglu, E.; Sari, H.; Soekmen, I.

    2007-01-01

    We have investigated the effects of the magnetic field which is directed perpendicular to the well on the binding energy of the hydrogenic impurities in an inverse parabolic quantum well (IPQW) with different widths as well as different Al concentrations at the well center. The Al concentration at the barriers was always x max =0.3. The calculations were performed within the effective mass approximation, using a variational method. We observe that IPQW structure turns into parabolic quantum well with the inversion effect of the magnetic field and donor impurity binding energy in IPQW strongly depends on the magnetic field, Al concentration at the well center and well dimensions

  8. Impurities of oxygen in silicon

    Gomes, V.M.S.

    1985-01-01

    The electronic structure of oxygen complex defects in silicon, using molecular cluster model with saturation by watson sphere into the formalism of Xα multiple scattering method is studied. A systematic study of the simulation of perfect silicon crystal and an analysis of the increasing of atom number in the clusters are done to choose the suitable cluster for the calculations. The divacancy in three charge states (Si:V 2 + , Si:V 2 0 , Si:V 2 - ), of the oxygen pair (Si:O 2 ) and the oxygen-vacancy pair (Si:O.V) neighbours in the silicon lattice, is studied. Distortions for the symmetry were included in the Si:V 2 + and Si:O 2 systems. The behavior of defect levels related to the cluster size of Si:V 2 0 and Si:O 2 systems, the insulated oxygen impurity of silicon in interstitial position (Si:O i ), and the complexes involving four oxygen atoms are analysed. (M.C.K.) [pt

  9. Analysis of impurity effect on Silicide fuels of the RSG-GAS core

    Tukiran-Surbakti

    2003-01-01

    Simulation of impurity effect on silicide fuel of the RSG-GAS core has been done. The aim of this research is to know impurity effect of the U-234 and U-236 isotopes in the silicide fuels on the core criticality. The silicide fuels of 250 g U loading and 19.75 of enrichment is used in this simulation. Cross section constant of fuels and non-structure material of core are generated by WIMSD/4 computer code, meanwhile impurity concentration was arranged from 0.01% to 2%. From the result of analysis can be concluded that the isotopes impurity in the fuels could make trouble in the core and the core can not be operated at critical after a half of its cycle length (350 MW D)

  10. Impurity photovoltaic effect in silicon solar cell doped with sulphur: A numerical simulation

    Azzouzi, Ghania; Chegaar, Mohamed

    2011-01-01

    The impurity photovoltaic effect (IPV) has mostly been studied in various semiconductors such as silicon, silicon carbide and GaAs in order to increase infrared absorption and hence cell efficiency. In this work, sulphur is used as the IPV effect impurity incorporated in silicon solar cells. For our simulation we use the numerical device simulator (SCAPS). We calculate the solar cell performances (short circuit current density J sc , open circuit voltage V oc , conversion efficiency η and quantum efficiency QE). We study the influence of light trapping and certain impurity parameters like impurity concentration and position in the gap on the solar cell performances. Simulation results for IPV effect on silicon doped with sulphur show an improvement of the short circuit current and the efficiency for sulphur energy levels located far from the middle of the band gap especially at E c -E t =0.18 eV.

  11. Multiple x-ray diffraction applied to the study of crystal impurities

    Cardoso, L.P.

    1983-06-01

    The x-ray multiple diffraction technique is used in the study of impurities concentration and localization in the crystal lattice, implemented with the fundamental observation that the impurities cannot be distributed with the same spatial group symmetry of the crystal. This fact could introduce scattered intensity in the crystal reciprocal lattice forbidden nodes. This effect was effectively observed in multiple diffraction diagrams, where a reinforcement of the scattered intensity in the pure crystal is produced, when choosing conveniently the involved reflections. The reflectivity theory was developed in the kinematic case, which take into account the scattering by the impurities atoms, and the analysis showed that, in the first approximation, the impurities can influence both in the allowed and forbidden positions for the pure crystal. (L.C.J.A.)

  12. Density profiles and particle fluxes of heavy impurities in the limiter shadow region of a tokamak

    Claassen, H.A.; Repp, H.

    1980-01-01

    For the case of low impurity concentration, transport calculations have been performed for heavy impurities, in the scrape-off layer plasma of a tokamak with a poloidal ring limiter. The theory is based on the drift-kinetic equations for the various ionization states of the impurity ions taking due consideration of the convection and collision processes. The background plasma and the impurity sources from the torus wall and the limiter surface enter the theory as input parameters. The theory is developed for the first two orders of the drift approximation. Numerical results are given to zero order drift approximation for the radial profiles of density and particle fluxes parallel to the magnetic field. (orig.)

  13. Thermal conductivity of a quantum spin-1/2 antiferromagnetic chain with magnetic impurities

    Zviagin, A.A.

    2008-01-01

    We present an exact theory that describes how magnetic impurities change the behavior of the thermal conductivity for the integrable Heisenberg antiferromagnetic quantum spin-1/2 chain. Single magnetic impurities and a large concentration of impurities with similar values of the couplings to the host chain (a weak disorder) do not change the linear-in-temperature low-T behavior of the thermal conductivity: Only the slope of that behavior becomes smaller, compared to the homogeneous case. The strong disorder in the distribution of the impurity-host couplings produces more rapid temperature growth of the thermal conductivity, compared to the linear-in-T dependence of the homogeneous chain and the chain with weak disorder. Recent experiments on the thermal conductivity in inhomogeneous quasi-one-dimensional quantum spin systems manifest qualitative agreement with our results

  14. Simulation of Industrial Wastewater Treatment from the Suspended Impurities into the Flooded Waste Mining Workings

    Bondareva, L.; Zakharov, Yu; Goudov, A.

    2017-04-01

    The paper is dedicated to the mathematical model of slurry wastewater treatment and disposal in a flooded mine working. The goal of the research is to develop and analyze the mathematical model of suspended impurities flow and distribution. Impurity sedimentation model is under consideration. Due to the sediment compaction problem solution domain can be modified. The model allows making a forecast whether volley emission is possible. Numerical simulation results for “Kolchuginskaya” coal mine presented. Impurity concentration diagrams in outflow corresponding to the real full-scale data obtained. Safely operation time mine workings like a wastewater treatment facility are estimated. The carried out calculations demonstrate that the method of industrial wastewater treatment in flooded waste mine workings can be put into practice but it is very important to observe all the processes going on to avoid volley emission of accumulated impurities.

  15. Effect of a Nitrogen Impurity on the Fundamental Raman Band of Diamond Single Crystals

    Gusakov, G. A.; Samtsov, M. P.; Voropay, E. S.

    2018-05-01

    The effect of nitrogen defects in natural and synthetic diamond single crystals on the position and half-width of the fundamental Raman band was investigated. Samples containing the main types of nitrogen lattice defects at impurity contents of 1-1500 ppm were studied. The parameters of the Stokes and anti-Stokes components in Raman spectra of crystals situated in a cell with distilled water to minimize the influence of heating by the exciting laser radiation were analyzed to determine the effect of a nitrogen impurity in the diamond crystal lattice. It was shown that an increase of impurity atoms in the crystals in the studied concentration range resulted in broadening of the Raman band from 1.61 to 2.85 cm-1 and shifting of the maximum to lower frequency from 1332.65 to 1332.3 cm-1. The observed effect was directly proportional to the impurity concentration and depended on the form of the impurity incorporated into the diamond lattice. It was found that the changes in the position and half-width of the fundamental Raman band for diamond were consistent with the magnitude of crystal lattice distortions due to the presence of impurity defects and obeyed the Gruneisen law.

  16. Enhanced B doping in CVD-grown GeSn:B using B δ-doping layers

    Kohen, David; Vohra, Anurag; Loo, Roger; Vandervorst, Wilfried; Bhargava, Nupur; Margetis, Joe; Tolle, John

    2018-02-01

    Highly doped GeSn material is interesting for both electronic and optical applications. GeSn:B is a candidate for source-drain material in future Ge pMOS device because Sn adds compressive strain with respect to pure Ge, and therefore can boost the Ge channel performances. A high B concentration is required to obtain low contact resistivity between the source-drain material and the metal contact. To achieve high performance, it is therefore highly desirable to maximize both the Sn content and the B concentration. However, it has been shown than CVD-grown GeSn:B shows a trade-off between the Sn incorporation and the B concentration (increasing B doping reduces Sn incorporation). Furthermore, the highest B concentration of CVD-grown GeSn:B process reported in the literature has been limited to below 1 × 1020 cm-3. Here, we demonstrate a CVD process where B δ-doping layers are inserted in the GeSn layer. We studied the influence of the thickness between each δ-doping layers and the δ-doping layers process conditions on the crystalline quality and the doping density of the GeSn:B layers. For the same Sn content, the δ-doping process results in a 4-times higher B doping than the co-flow process. In addition, a B doping concentration of 2 × 1021 cm-3 with an active concentration of 5 × 1020 cm-3 is achieved.

  17. Numerical studies of impurities in fusion plasmas

    Hulse, R.A.

    1982-09-01

    The coupled partial differential equations used to describe the behavior of impurity ions in magnetically confined controlled fusion plasmas require numerical solution for cases of practical interest. Computer codes developed for impurity modeling at the Princeton Plasma Physics Laboratory are used as examples of the types of codes employed for this purpose. These codes solve for the impurity ionization state densities and associated radiation rates using atomic physics appropriate for these low-density, high-temperature plasmas. The simpler codes solve local equations in zero spatial dimensions while more complex cases require codes which explicitly include transport of the impurity ions simultaneously with the atomic processes of ionization and recombination. Typical applications are discussed and computational results are presented for selected cases of interest

  18. Hydrogenic impurity in double quantum dots

    Wang, X.F.

    2007-01-01

    The ground state binding energy and the average interparticle distances for a hydrogenic impurity in double quantum dots with Gaussian confinement potential are studied by the variational method. The probability density of the electron is calculated, too. The dependence of the binding energy on the impurity position is investigated for GaAs quantum dots. The result shows that the binding energy has a minimum as a function of the distance between the two quantum dots when the impurity is located at the center of one quantum dot or at the center of the edge of one quantum dot. When the impurity is located at the center of the two dots, the binding energy decreases monotonically

  19. Models for impurity effects in tokamaks

    Hogan, J.T.

    1980-03-01

    Models for impurity effects in tokamaks are described with an emphasis on the relationship between attainment of high β and impurity problems. We briefly describe the status of attempts to employ neutral beam heating to achieve high β in tokamaks and propose a qualitative model for the mechanism by which heavy metal impurities may be produced in the startup phase of the discharge. We then describe paradoxes in impurity diffusion theory and discuss possible resolutions in terms of the effects of large-scale islands and sawtooth oscillations. Finally, we examine the prospects for the Zakharov-Shafranov catastrophe (long time scale disintegration of FCT equilibria) in the context of present and near-term experimental capability

  20. Impurity induced resistivity upturns in underdoped cuprates

    Das, Nabyendu, E-mail: nabyendudas@gmail.com; Singh, Navinder

    2016-01-28

    Impurity induced low temperature upturns in both the ab-plane and the c-axis dc-resistivities of cuprates in the pseudogap state have been observed in experiments. We provide an explanation of this phenomenon by incorporating impurity scattering of the charge carriers within a phenomenological model proposed by Yang, Rice and Zhang. The scattering between charge carriers and the impurity atom is considered within the lowest order Born approximation. Resistivity is calculated within Kubo formula using the impurity renormalized spectral functions. Using physical parameters for cuprates, we describe qualitative features of the upturn phenomena and its doping evolution that coincides with the experimental findings. We stress that this effect is largely due to the strong electronic correlations.

  1. Impurity induced resistivity upturns in underdoped cuprates

    Das, Nabyendu; Singh, Navinder

    2016-01-01

    Impurity induced low temperature upturns in both the ab-plane and the c-axis dc-resistivities of cuprates in the pseudogap state have been observed in experiments. We provide an explanation of this phenomenon by incorporating impurity scattering of the charge carriers within a phenomenological model proposed by Yang, Rice and Zhang. The scattering between charge carriers and the impurity atom is considered within the lowest order Born approximation. Resistivity is calculated within Kubo formula using the impurity renormalized spectral functions. Using physical parameters for cuprates, we describe qualitative features of the upturn phenomena and its doping evolution that coincides with the experimental findings. We stress that this effect is largely due to the strong electronic correlations.

  2. Isotope effects of trapped electron modes in the presence of impurities in tokamak plasmas

    Shen, Yong; Dong, J. Q.; Sun, A. P.; Qu, H. P.; Lu, G. M.; He, Z. X.; He, H. D.; Wang, L. F.

    2016-04-01

    The trapped electron modes (TEMs) are numerically investigated in toroidal magnetized hydrogen, deuterium and tritium plasmas, taking into account the effects of impurity ions such as carbon, oxygen, helium, tungsten and others with positive and negative density gradients with the rigorous integral eigenmode equation. The effects of impurity ions on TEMs are investigated in detail. It is shown that impurity ions have substantially-destabilizing (stabilizing) effects on TEMs in isotope plasmas for {{L}ez}\\equiv {{L}ne}/{{L}nz}>0 (TEM turbulences in hydrogenic isotope plasmas with and without impurities are performed. The relations between the maximum growth rate of the TEMs with respect to the poloidal wave number and the ion mass number are given in the presence of the impurity ions. The results demonstrate that the maximum growth rates scale as {γ\\max}\\propto Mi-0.5 in pure hydrogenic plasmas. The scale depends on the sign of its density gradient and charge number when there is a second species of (impurity) ions. When impurity ions have density profiles peaking inwardly (i.e. {{L}ez}\\equiv {{L}ne}/{{L}nz}>0 ), the scaling also depends on ITG parameter {ηi} . The maximum growth rates scale as {γ\\max}\\propto M\\text{eff}-0.5 for the case without ITG ({ηi}=0 ) or the ITG parameter is positive ({ηi}>0 ) but the impurity ion charge number is low (Z≤slant 5.0 ). However, when {ηi}>0 and the impurity ion charge number is moderate (Z=6.0-8.0 ), the scaling law is found as {γ\\max}\\propto M\\text{eff}-1.0 . Here, Z is impurity ion charge number, and the effective mass number, {{M}\\text{eff}}=≤ft(1-{{f}z}\\right){{M}i}+{{f}z}{{M}z} , with {{M}i} and {{M}Z} being the mass numbers of the hydrogenic and impurity ions, respectively, and {{f}z}=Z{{n}0z}/{{n}0e} being the charge concentration of impurity ions. In addition, with regard to the case of {{L}ez}<0 , the maximum growth rate scaling is {γ\\max}\\propto Mi-0.5 . The possible relations of the results

  3. Effects of helium impurities on superalloys

    Selle, J.E.

    1977-07-01

    A review of the literature on the effects of helium impurities on superalloys at elevated temperatures was undertaken. The actual effects of these impurities vary depending on the alloy, composition of the gas atmosphere, and temperature. In general, exposure in helium produces significant but not catastrophic changes in the structure and properties of the alloys. The effects of these treatments on the structure, creep, fatigue, and mechanical properties of the various alloys are reviewed and discussed. Suggestions for future work are presented

  4. Study of neutron-deficient Sn isotopes

    Auger, G.

    1982-05-01

    The formation of neutron deficient nuclei by heavy ion reactions is investigated. The experimental technique is presented, and the results obtained concerning Sn et In isotopes reported: first excited states of 106 Sn, high spin states in 107 Sn and 107 In; Yrast levels of 106 Sn, 107 Sn, 108 Sn; study of neutron deficient Sn and In isotopes formed by the desintegration of the compound nucleus 112 Xe. All these results are discussed [fr

  5. Characterization of impurities in biogas before and after upgrading to vehicle fuel

    Arrhenius, Karine; Johansson, Ulrika [SP Technical Research Institute of Sweden, Boraas (Sweden)

    2012-01-15

    Biogases produced by digesting organic wastes, residual sludge from waste water treatment, energy crops,byproducts from industry or in landfills contain impurities which can be harmful for components that will be in contact with the biogas during its utilization. In this project, the impurities present in biogases have been mapped out depending upon which feedstock is digested. P-cymene och D-limonene, two terpenes, have been found to be characteristics for biogases produced from the digestion of waste including household wastes while an 'oil' fraction containing alkanes with 9 to 13 carbon atoms is characteristic for biogases produced at waste water treatment plants. Ketones and sulfur compounds are found in biogases produced from the digestion of food industry wastes or energy crops. It was not possible to characterize impurities in biogases produced in farm plants digesting manure because not enough samples were analyzed from these plants. In order to understand the relation between the feedstock and the impurities present in the biogas, an extensive study on feedstock characterization must be conducted. One question to be answered is if these impurities only originate from the volatilization from the feedstock and in this case, why only these specific compounds are found at significant concentrations. In this study we have also studied how effective purification/upgrading techniques are to remove impurities that have been identified in biogases. En general comment is that the upgraded gas still contains a part of the characteristic impurities which have been identified for each feedstock at different levels of concentration depending on which technique has been used. The results show that activated carbon filters are more or less effective. Some of them can remove more than 90 % of the impurities while others remove less that 10 %. Results show also that the amine scrubber have very moderate effects on the impurities composition. In that case, the

  6. NMR investigation of boron impurities in refined metallurgical grade silicon

    Grafe, Hans-Joachim; Loeser, Wolfgang; Schmitz, Steffen; Sakaliyska, Miroslava [Leibniz Institute for Solid State and Materials Research (IFW), Dresden (Germany); Wurmehl, Sabine [Leibniz Institute for Solid State and Materials Research (IFW), Dresden (Germany); Institute for Solid State Physics, Technische Universitaet Dresden (Germany); Eisert, Stefan; Reichenbach, Birk; Mueller, Tim [Adensis GmbH, Dresden (Germany); Acker, Joerg; Rietig, Anja; Ducke, Jana [Department of Chemistry, Faculty for Natural Sciences, Brandenburg Technical University Cottbus-Senftenberg, Senftenberg (Germany)

    2015-09-15

    The nuclear magnetic resonance (NMR) method was applied for tracking boron impurities in the refining process of metallurgical grade (MG) silicon. From the NMR signal of the {sup 11}B isotope at an operating temperature 4.2 K, the boron concentration can be estimated down to the order of 1-10 wppm B. After melting and resolidification of MG-Si alloyed with Ca and Ti, a major fraction of B impurities remains in the Si solid solution as inferred from the characteristic NMR frequency. The alloying element Ti does not form substantial fractions of TiB{sub 2}. Acid leaching of crushed powders of MG-Si alloyed with Ca and Ti can diminish the initial impurity content of B suggesting its accumulation in the grain boundary phases. NMR signals of TiB{sub 2} at 4.2 K and room temperature (RT), and of poly-Si with different B doping at 4.2 K. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Phonon-impurity relaxation and acoustic wave absorption in yttrium-aluminium garnet crystals with impurities

    Ivanov, S.N.; Kotelyanskij, I.M.; Medved', V.V.

    1983-01-01

    The experimental results of investigations of the influence of substitution impurities in the yttrium-aluminium garnet lattice on absorption of high-frequency acoustic waves are presented. It is shown that the phonon-impurity relaxation processses affect at most the wave absorption and have resonance character when the acoustic wave interacts with the thermal phonon group in the vicinity of the perturbed part of the phonon spectrum caused by the impurity. The differences of time values between inelastic and elastic thermal phonons relaxations determined from the data on longitudinal and shear waves in pure and impurity garnet crystals are discussed

  8. Sn surface-enriched Pt-Sn bimetallic nanoparticles as a selective and stable catalyst for propane dehydrogenation

    Zhu, Haibo

    2014-12-01

    A new one pot, surfactant-free, synthetic route based on the surface organometallic chemistry (SOMC) concept has been developed for the synthesis of Sn surface-enriched Pt-Sn nanoparticles. Bu3SnH selectively reacts with [Pt]-H formed in situ at the surface of Pt nanoparticles, Pt NPs, obtained by reduction of K2PtCl4 by LiB(C2H5)3H. Chemical analysis, 1H MAS and 13C CP/MAS solid-state NMR as well as two-dimensional double-quantum (DQ) and triple-quantum (TQ) experiments show that organo-tin moieties Sn(n-C4H9) are chemically linked to the surface of Pt NPs to produce, in fine, after removal of most of the n-butyl fragment, bimetallic Pt-Sn nanoparticles. The Sn(n-CH2CH2CH2CH3) groups remaining at the surface are believed to stabilize the as-synthesized Pt-Sn NPs, enabling the bimetallic NPs to be well dispersed in THF. Additionally, the Pt-Sn nanoparticles can be supported on MgAl2O4 during the synthesis of the nanoparticles. Some of the Pt-Sn/MgAl2O4 catalyst thus prepared exhibits high activity in PROX of CO and an extremely high selectivity and stability in propane dehydrogenation to propylene. The enhanced activity in propane dehydrogenation is associated with the high concentration of inactive Sn at the surface of Pt nanoparticles which ”isolates” the active Pt atoms. This conclusion is confirmed by XRD, NMR, TEM, and XPS analysis.

  9. Mechanisms of impurity diffusion in rutile

    Peterson, N.L.; Sasaki, J.

    1984-01-01

    Tracer diffusion of 46 Sc, 51 Cr, 54 Mn, 59 Fe, 60 Co, 63 Ni, and 95 Zr, was measured as functions of crystal orientation, temperature, and oxygen partial pressure in rutile single crystals using the radioactive tracer sectioning technique. Compared to cation self-diffusion, divalent impurities (e.g., Co and Ni) diffuse extremely rapidly in TiO 2 and exhibit a large anisotropy in the diffusion behavior; divalent-impurity diffusion parallel to the c-axis is much larger than it is perpendicular to the c-axis. The diffusion of trivalent impurity ions (Sc and Cr) and tetravalent impurity ions (Zr) is similar to cation self-diffusion, as a function of temperature and of oxygen partial pressure. The divalent impurity ions Co and Ni apparently diffuse as interstitial ions along open channels parallel to the c-axis. The results suggest that Sc, Cr, and Zr ions diffuse by an interstitialcy mechanism involving the simultaneous and cooperative migration of tetravalent interstitial titanium ions and the tracer-impurity ions. Iron ions diffused both as divalent and as trivalent ions. 8 figures

  10. Excitation light source dependence of emission in Sn2+-Ce3+ codoped ZnO-P2O5 glasses

    Masai, Hirokazu; Hino, Yusuke; Yanagida, Takayuki; Fujimoto, Yutaka; Fukuda, Kentaro; Yoko, Toshinobu

    2013-01-01

    Correlation between excitation light source and the emission property of Sn^{2+}-Ce^{3+} co-doped zinc phosphate glasses is examined. Although photoluminescence (PL) peaks of both Sn^{2+}and Ce^{3+} shifted with increasing amount of Ce^{3+}, there was little energy resonance between Sn^{2+} and Ce^{3+} emission centers. On the other hand, radioluminescence (RL) spectra excited by X-ray was independent of the Ce concentration, indicating that emission was mainly observed from Sn^{2+} emission ...

  11. Determination of Impurities of Atrazine by HPLP-MS

    Canping, Pan [Department of Applied Chemistry, China Agricultural University Beijing (China)

    2009-07-15

    The determination of the main impurities of the herbicide atrazine by GC/FID, GC/MS and LC/MS is described. The most relevant technical impurities were synthesized and characterized by IR and UV spectroscopy as well. The impurity profiles of different technical grade formulated products were tested and the typical impurities identified. (author)

  12. Local chemistry of Al and P impurities in silica

    Lægsgaard, Jesper; Stokbro, Kurt

    2000-01-01

    The local structure around Al and P impurities in silica is investigated using density-functional theory. Two distinct cases are considered: impurities substituting for a Si atom in alpha quartz, and impurities implanted in a stoichiometric alpha-quartz crystal. Both impurity elements are found t...

  13. Effective Kα x-ray excitation rates for plasma impurity measurements

    Hill, K.W.; Bitter, M.; von Goeler, S.; Hiroe, S.; Hulse, R.; Ramsey, A.T.; Sesnic, S.; Shimada, M.; Stratton, B.C.

    1986-06-01

    Metal impurity concentrations are measured by the Pulse-Height-Analyzer (PHA) diagnostic from Kα x-ray peak intensities by use of an averaged excitation rate . Low-Z impurity concentrations are inferred from the continuum enhancement (relative to a pure plasma) minus the enhancement due to metals. Since the PHA does not resolve lines from different charge states, is a weighted sum of rates; coronal equilibrium is usually assumed. The used earlier omitted the intercombination and forbidden lines from the dominant helium-like state. The result was an overestimate of metals and an underestimate of low-Z impurities in cases where metals were significant. Improved values of using recent calculations for H-, He-, and Li-like Fe range from 10 to 50% larger than the earlier rates and yield metal concentrations in better agreement with those from VUV spectroscopy

  14. Role of impurity dynamics in resistivity-gradient-driven turbulence and tokamak edge plasma phenomena

    Hahm, T.S.; Diamond, P.H.; Terry, P.W.; Garcia, L.; Carreras, B.A.

    1986-03-01

    The role of impurity dynamics in resistivity gradient driven turbulence is investigated in the context of modeling tokamak edge plasma phenomena. The effects of impurity concentration fluctuations and gradients on the linear behavior of rippling instabilities and on the nonlinear evolution and saturation of resistivity gradient driven turbulence are studied both analytically and computationally. At saturation, fluctuation levels and particle and thermal diffusivities are calculated. In particular, the mean-square turbulent radial velocity is given by 2 > = (E 0 L/sub s/B/sub z/) 2 (L/sub/eta/ -1 + L/sub z -1 ) 2 . Thus, edged peaked impurity concentrations tend to enhance the turbulence, while axially peaked concentrations tend to quench it. The theoretical predictions are in semi-quantitative agreement with experimental results from the TEXT, Caltech, and Tosca tokamaks. Finally, a theory of the density clamp observed during CO-NBI on the ISX-B tokamak is proposed

  15. SN 1987A. Theory

    Schaeffer, R.

    1987-03-01

    SN 1987A was unique in many aspects. The most striking, undoubtedly, is its low luminosity, nearly two orders of magnitude below the expectations based on supernovae currently observed in external galaxies. The rise time of the optical emission, usually a few days, was for SN 1987A, of the order of a few hours. Also its surface temperature is surprisingly low, 5000K. The neutrino burst has been detected. It was observed twice, with a time difference of 5 hours, the second burst occurring within 3 hours of the onset of the optical signal. In this talk, I will discuss how these strange events fit with the theoretical models of supernova explosions, how they differ in some cases, and try to evaluate the degree of certainty -or uncertainty- of our present knowledge on how these extremely powerful star explosions occur

  16. The impurity transport in HT-6M tokamak

    Xu Wei; Wan Baonian; Xie Jikang

    2003-01-01

    The space-time profile of impurities has been measured with a multichannel visible spectroscopic detect system and UV rotation-mirror system in the HT-6M tokamak. An ideal impurity transport code has been used to simulate impurities (carbon and oxygen) behaviour during the OHM discharge. The profiles of impurities diffusion and convection coefficient, impurities ion densities in different ionized state, loss power density and effective charge number have been derived. The impurity behaviour during low-hybrid current drive has also been analyzed, the results show that the confinement of particles, impurities and energy has been improved, and emission power and effective charge number have been reduced

  17. SN 2006oz

    Leloudas, Georgios; Chatzopoulos, E.; Dilday, B.

    2012-01-01

    to contribute to a better understanding of these objects by studying SN 2006oz, a newly-recognized member of this class. Methods. We present multi-color light curves of SN 2006oz from the SDSS-II SN Survey that cover its rise time, as well as an optical spectrum that shows that the explosion occurred at z ~ 0.......376. We fitted black-body functions to estimate the temperature and radius evolution of the photosphere and used the parametrized code SYNOW to model the spectrum. We constructed a bolometric light curve and compared it with explosion models. In addition, we conducted a deep search for the host galaxy...... to a recombination wave in a circumstellar medium (CSM) and discuss whether this is a common property of all similar explosions. The subsequent rise can be equally well described by input from a magnetar or by ejecta-CSM interaction, but the models are not well constrained owing to the lack of post...

  18. Effect of impurity modes with quasilocal and local frequencies on the superconducting transition temperature

    Zhernov, A.P.; Malov, Yu.A.; Panova, G.Kh.

    1975-01-01

    An anisotropic irregular semiconductor is under consideration. It is believed that the effective parameter of the interaction-lambda-which determines electron coupling is less or about 0.5. The Eliashberg integral equation system is solved for T→Tsub(c). A simple analytic expression is obtained for Tsub(c). The character of a varying critical temperature in superconductors with impurity atoms is analyzed in detail. The dependence of the critical temperature on parameters describing the phonon spectrum of an impurity system is investigated. The existence of impurity modes with quasilocal and local frequencies in the phonon spectra can lead both to relatively small and to rather noticeable variations in Tsub(c). The first case is typical of the situation when an impurity atom is practically an isotopic defect. If an impurity atom is very heavy (Msub(I) 1 0 ) or strongly (γ 1 >>γ 0 ) coupled with matrix atoms. A sharp decrease in the effective force constant γ 1 for an impurity atom results in the growth of delta Tsub(c): delta Tsub(c) approximately cγ0/γ 1 (lambda - μsup((0)). On the contrary a rise in the γ 1 value requires a negative correction to Tsub(c), and delta Tsub(c) approximately c/(lambda - μsup((0)), where c - an impurity concentration, μ - matrix element of the Coulomb screened interaction averaged over the Fermi surface and multiplied for the density of normal electron states on the Fermi level. Comparison with experimental data is made. A qualitative description of the Tsub(c) change due to the impurity presence is given for a set of solutions. There is a satisfactory quantitative agreement between calculated and experimental values of delta Tsub(c)

  19. Coupling of ion temperature gradient and trapped electron modes in the presence of impurities in tokamak plasmas

    Du, Huarong; Wang, Zheng-Xiong; Dong, J. Q.; Liu, S. F.

    2014-05-01

    The coupling of ion temperature gradient (ITG or ηi) mode and trapped electron mode (TEM) in the presence of impurity ions is numerically investigated in toroidal collisionless plasmas, using the gyrokinetic integral eigenmode equation. A framework for excitations of the ITG modes and TEMs with respect to their driving sources is formulated first, and then the roles of impurity ions played in are analyzed comprehensively. In particular, the characteristics of the ITG and TEM instabilities in the presence of impurity ions are emphasized for both strong and weak coupling (hybrid and coexistent) cases. It is found that the impurity ions with inwardly (outwardly) peaked density profiles have stabilizing (destabilizing) effects on the hybrid (namely the TE-ITG) modes in consistence with previous works. A new finding of this work is that the impurity ions have stabilizing effects on TEMs in small ηi (ηi≤1) regime regardless of peaking directions of their density profiles whereas the impurity ions with density gradient Lez=Lne/Lnz>1 (LezTEMs in large ηi (ηi≥1) regime. In addition, the dependences of the growth rate, real frequency, eigenmode structure, and wave spectrum on charge concentration, charge number, and mass of impurity ions are analyzed in detail. The necessity for taking impurity ion effects on the features of turbulence into account in future transport experimental data analyses is also discussed.

  20. Study of sub band gap absorption of Sn doped CdSe thin films

    Kaur, Jagdish; Rani, Mamta; Tripathi, S. K.

    2014-01-01

    The nanocrystalline thin films of Sn doped CdSe at different dopants concentration are prepared by thermal evaporation technique on glass substrate at room temperature. The effect of Sn doping on the optical properties of CdSe has been studied. A decrease in band gap value is observed with increase in Sn concentration. Constant photocurrent method (CPM) is used to study the absorption coefficient in the sub band gap region. Urbach energy has been obtained from CPM spectra which are found to increase with amount of Sn dopants. The refractive index data calculated from transmittance is used for the identification of oscillator strength and oscillator energy using single oscillator model which is found to be 7.7 and 2.12 eV, 6.7 and 2.5 eV for CdSe:Sn 1% and CdSe:Sn 5% respectively

  1. Study of sub band gap absorption of Sn doped CdSe thin films

    Kaur, Jagdish; Rani, Mamta [Department of Physics, Panjab University, Chandigarh- 160014 (India); Tripathi, S. K., E-mail: surya@pu.ac.in [Centre of Advanced Study in Physics, Panjab University, Chandigarh- 160014 (India)

    2014-04-24

    The nanocrystalline thin films of Sn doped CdSe at different dopants concentration are prepared by thermal evaporation technique on glass substrate at room temperature. The effect of Sn doping on the optical properties of CdSe has been studied. A decrease in band gap value is observed with increase in Sn concentration. Constant photocurrent method (CPM) is used to study the absorption coefficient in the sub band gap region. Urbach energy has been obtained from CPM spectra which are found to increase with amount of Sn dopants. The refractive index data calculated from transmittance is used for the identification of oscillator strength and oscillator energy using single oscillator model which is found to be 7.7 and 2.12 eV, 6.7 and 2.5 eV for CdSe:Sn 1% and CdSe:Sn 5% respectively.

  2. Impurity transport of high performance discharges in JET

    Lauro-Taroni, L; Alper, B; Giannella, R; Marcus, F; Smeulders, P; Von Hellermann, M [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Lawson, K [UKAEA Culham Lab., Abingdon (United Kingdom); Mattioli, M [Association Euratom-CEA, Centre d` Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee

    1994-07-01

    Experimental data show that in the Pellet Enhanced Performance (PEP) H-mode discharges, the light impurities are dominant and accumulate. Furthermore, strong fuel depletion may occur in the plasma centre with n{sub D}/n{sub e} falling to about 0.3 in some cases. On the other hand, in Hot-Ion discharges hollow profiles are measured for C: it is present in lower concentrations and has little effect on fuel dilution. The different behaviour of carbon in the two cases is in agreement with neoclassical predictions for the convection in the plasma core. 6 refs., 6 figs.

  3. Determination of impurities in zirconium by emission spectrograph method

    Simbolon, S.; Masduki, B.; Aryadi

    2000-01-01

    Analysis of B, Cd, Si and Cr elements in zirconium oxide was carried out. Zirconium oxide was made by precipitating zirconium solution with oxalic acid and calcination was at temperature 900 oC for four hours. Silver chloride compound as much as 10% was used as a distillation carrier and 7 step filtration was used to reduce the impurities element spectra having high density. It was found that B concentration is between 3.80 and 7.44 ppm, Cd less then 0.5 ppm, Si between 74.38-150.33 ppm and Cr between 19.90-45.76 ppm. (author)

  4. Impurity transport of high performance discharges in JET

    Lauro-Taroni, L.; Alper, B.; Giannella, R.; Marcus, F.; Smeulders, P.; Von Hellermann, M.; Mattioli, M.

    1994-01-01

    Experimental data show that in the Pellet Enhanced Performance (PEP) H-mode discharges, the light impurities are dominant and accumulate. Furthermore, strong fuel depletion may occur in the plasma centre with n D /n e falling to about 0.3 in some cases. On the other hand, in Hot-Ion discharges hollow profiles are measured for C: it is present in lower concentrations and has little effect on fuel dilution. The different behaviour of carbon in the two cases is in agreement with neoclassical predictions for the convection in the plasma core. 6 refs., 6 figs

  5. Spectroscopic investigation of heavy impurity behaviour during ICRH with the JET ITER-like wall

    Czarnecka, A. [Institute of Plasma Physics and Laser Microfusion, Association EURATOM-IPPLM, Hery 23 Str., 01-497 Warsaw (Poland); Bobkov, V.; Maggi, C.; Pütterich, T. [Max-Planck-Institut für Plasmaphysik, EURATOM-Association, D-85748 Garching (Germany); Coffey, I. H. [Department of Physics, Queen' s University, Belfast, BT7 1NN, Northern Ireland (United Kingdom); Colas, L. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Jacquet, P.; Lawson, K. D. [Euratom/CCFE Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Lerche, E.; Van Eester, D. [Association EURATOM - Belgian State, ERM-KMS, TEC Partner (Belgium); Mayoral, M.-L. [Euratom/CCFE Association, Culham Science Centre, Abingdon, OX14 3DB, UK and EFDA Close Support Unit, Garching (Germany); Collaboration: JET-EFDA Contributors

    2014-02-12

    Magnetically confined plasmas, such as those produced in the tokamak JET, contain measurable amounts of impurity ions produced during plasma-wall interactions (PWI) from the plasma-facing components and recessed wall areas. The impurities, including high- and mid-Z elements such as tungsten (W) from first wall tiles and nickel (Ni) from Inconel structure material, need to be controlled within tolerable limits, to ensure they do not significantly affect the performance of the plasma. This contribution focuses on documenting W and Ni impurity behavior during Ion Cyclotron Resonance Heating (ICRH) operation with the new ITER-Like Wall (ILW). Ni- and W-concentration were derived from VUV spectroscopy and the impact of applied power level, relative phasing of the antenna straps, plasma separatrix - antenna strap distance, IC resonance position, edge density and different plasma configuration, on the impurity release during ICRH are presented. For the same ICRH power the Ni and W concentration was lower with dipole phasing than in the case of −π/2 phasing. The Ni concentration was found to increase with ICRH power and for the same NBI power level, ICRH-heated plasmas were characterized by two times higher Ni impurity content. Both W and Ni concentrations increased strongly with decreasing edge density which is equivalent to higher edge electron temperatures and more energetic ions responsible for the sputtering. In either case higher levels were found in ICRH than in NBI heated discharges. When the central plasma temperature was similar, ICRH on-axis heating resulted in higher core Ni impurity concentration in comparison to off-axis ICRH in L-mode. It was also found that the main core radiation during ICRH came from W.

  6. THE EFFICIENCY OF IMPURITIES EXTRACTION DURING THE PROCESS OF ETHANOL EPURATION

    S. Yu. Nikitina

    2015-01-01

    Full Text Available The static model of the hydroselection column that describes the concentration variation of the main components was proposed. The purpose of this work is an optimization of the shared mixture input-position and evaluation of efficiency of the digestion and the impurity compound concentration during the epuration process. To this end, the author developed a static model of epuration columns, which allows to reveal the dependence of the degree of digestion and the degree of concentration of the main impurities in the column of the number of plates in each of these parts. It’s proved that with the increasing of theoretical plates number in the concentration part of the column the concentration effect tends to the limit value. The effects of the head impurities digestion increase indefinitely with the growth of exhausting part. The proportion of the output from the condenser impurities depends more from the digestion effect than from the condensation effect. The effect of alcohol cleaning from the fusel oil components depends strongly from the ratio of the number of plates in the digestion and concentration parts (the optimal ratio for isopropanol, isoamyl, butanol is 1.5, for the propanol, isobutanol is 0.45.

  7. Impurity-generated non-Abelions

    Simion, G.; Kazakov, A.; Rokhinson, L. P.; Wojtowicz, T.; Lyanda-Geller, Y. B.

    2018-06-01

    Two classes of topological superconductors and Majorana modes in condensed matter systems are known to date: one in which disorder induced by impurities strongly suppresses topological superconducting gap and is detrimental to Majorana modes, and another where Majorana fermions are protected by a disorder-robust topological superconductor gap. Observation and control of Majorana fermions and other non-Abelions often requires a symmetry of an underlying system leading to a gap in the single-particle or quasiparticle spectra. In semiconductor structures, impurities that provide charge carriers introduce states into the gap and enable conductance and proximity-induced superconductivity via the in-gap states. Thus a third class of topological superconductivity and Majorana modes emerges, in which topological superconductivity and Majorana fermions appear exclusively when impurities generate in-gap states. We show that impurity-enabled topological superconductivity is realized in a quantum Hall ferromagnet, when a helical domain wall is coupled to an s -wave superconductor. As an example of emergence of topological superconductivity in quantum Hall ferromagnets, we consider the integer quantum Hall effect in Mn-doped CdTe quantum wells. Recent experiments on transport through the quantum Hall ferromagnet domain wall in this system indicated a vital role of impurities in the conductance, but left unresolved the question whether impurities preclude generation of Majorana fermions and other non-Abelions in such systems in general. Here, solving a general quantum-mechanical problem of impurity bound states in a system of spin-orbit coupled Landau levels, we demonstrate that impurity-induced Majorana modes emerge at boundaries between topological and conventional superconducting states generated in a domain wall due to proximity to an s superconductor. We consider both short-range disorder and a smooth random potential. The phase diagram of the system is defined by

  8. Impurity seeding in ASDEX upgrade tokamak modeled by COREDIV code

    Galazka, K.; Ivanova-Stanik, I.; Czarnecka, A.; Zagoerski, R. [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Bernert, M.; Kallenbach, A. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Collaboration: ASDEX Upgrade Team

    2016-08-15

    The self-consistent COREDIV code is used to simulate discharges in a tokamak plasma, especially the influence of impurities during nitrogen and argon seeding on the key plasma parameters. The calculations are performed with and without taking into account the W prompt redeposition in the divertor area and are compared to the experimental results acquired on ASDEX Upgrade tokamak (shots 29254 and 29257). For both impurities the modeling shows a better agreement with the experiment in the case without prompt redeposition. It is attributed to higher average tungsten concentration, which on the other hand seriously exceeds the experimental value. By turning the prompt redeposition process on, the W concentration is lowered, what, in turn, results in underestimation of the radiative power losses. By analyzing the influence of the transport coefficients on the radiative power loss and average W concentration it is concluded that the way to compromise the opposing tendencies is to include the edge-localized mode flushing mechanism into the code, which dominates the experimental particle and energy balance. Also performing the calculations with both anomalous and neoclassical diffusion transport mechanisms included is suggested. (copyright 2016 The Authors. Contributions to Plasma Physics published by Wiley-VCH Verlag GmbH and Co. KGaA Weinheim. This)

  9. On neoclassical impurity transport in stellarator geometry

    García-Regaña, J M; Kleiber, R; Beidler, C D; Turkin, Y; Maaßberg, H; Helander, P

    2013-01-01

    The impurity dynamics in stellarators has become an issue of moderate concern due to the inherent tendency of the impurities to accumulate in the core when the neoclassical ambipolar radial electric field points radially inwards (ion root regime). This accumulation can lead to collapse of the plasma due to radiative losses, and thus limit high performance plasma discharges in non-axisymmetric devices. A quantitative description of the neoclassical impurity transport is complicated by the breakdown of the assumption of small E × B drift and trapping due to the electrostatic potential variation on a flux surface Φ-tilde compared with those due to the magnetic field gradient. This work examines the impact of this potential variation on neoclassical impurity transport in the Large Helical Device heliotron. It shows that the neoclassical impurity transport can be strongly affected by Φ-tilde . The central numerical tool used is the δf particle in cell Monte Carlo code EUTERPE. The Φ-tilde used in the calculations is provided by the neoclassical code GSRAKE. The possibility of obtaining a more general Φ-tilde self-consistently with EUTERPE is also addressed and a preliminary calculation is presented. (paper)

  10. Magnetoresistance and phase composition of La-Sn-Mn-O systems

    Li, Z.W.; Morrish, A.H.; Jiang, Jianzhong

    1999-01-01

    The transport properties of the manganites La1 - xSnxMnO3 + delta with x = 0.1-0.5 and of Fe-doped samples have been comprehensively studied using magnetoresistance measurements, Fe-57 and Sn-119 Mossbauer spectroscopy, and x-ray diffraction. At the Sn concentration x = 0.5, La0.5Sn0.5MnO3 + delta...

  11. Numerical renormalization group calculation of impurity internal energy and specific heat of quantum impurity models

    Merker, L.; Costi, T. A.

    2012-08-01

    We introduce a method to obtain the specific heat of quantum impurity models via a direct calculation of the impurity internal energy requiring only the evaluation of local quantities within a single numerical renormalization group (NRG) calculation for the total system. For the Anderson impurity model we show that the impurity internal energy can be expressed as a sum of purely local static correlation functions and a term that involves also the impurity Green function. The temperature dependence of the latter can be neglected in many cases, thereby allowing the impurity specific heat Cimp to be calculated accurately from local static correlation functions; specifically via Cimp=(∂Eionic)/(∂T)+(1)/(2)(∂Ehyb)/(∂T), where Eionic and Ehyb are the energies of the (embedded) impurity and the hybridization energy, respectively. The term involving the Green function can also be evaluated in cases where its temperature dependence is non-negligible, adding an extra term to Cimp. For the nondegenerate Anderson impurity model, we show by comparison with exact Bethe ansatz calculations that the results recover accurately both the Kondo induced peak in the specific heat at low temperatures as well as the high-temperature peak due to the resonant level. The approach applies to multiorbital and multichannel Anderson impurity models with arbitrary local Coulomb interactions. An application to the Ohmic two-state system and the anisotropic Kondo model is also given, with comparisons to Bethe ansatz calculations. The approach could also be of interest within other impurity solvers, for example, within quantum Monte Carlo techniques.

  12. Preparation of Nafion 117™-SnO2 Composite Membranes using an Ion-Exchange Method

    Nørgaard, Casper Frydendal; Nielsen, Ulla Gro; Skou, Eivind Morten

    2012-01-01

    Nafion 117™-SnO2 composite membranes were prepared by in-situ particle formation using an ion-exchange method. SnO2 was incorporated into Nafion 117ä membranes by ion-exchange in solutions of SnCl2 ∙2 H2O in methanol, followed by oxidation to SnO2 in air. By adjustment of the concentration of SnCl2...... ∙ 2 H2O used in the ion-exchange step, compositions ranging from 2 to 8 wt% SnO2 with SnO2 homogeneously distributed as nanoparticles were obtained. The prepared nanocomposite membranes were characterized by powder XRD, 119Sn MAS NMR spectroscopy, electrochemical impedance spectroscopy, water uptake...

  13. Fuel clean-up: poisoning of palladium-silver membranes by gaseous impurities

    Chabot, J.; Lecomte, J.; Grumet, C.; Sannier, J.

    1988-01-01

    The feasibility of a permeation process using a palladium-silver alloy membrane, to separate deuterium and tritium from fusion reactor gaseous wastes needs demonstration owing to poisoning effects of impurities. A parametric investigation of the poisoning by the most important expected gaseous impurities (C0, C0 2 and CH 4 ) is carried out with the loop PALLAS, in function of membrane temperature (100 to 450 0 C), H 2 pressure (0.3 to 14 kPa) and impurity concentration (0.2 to 9.5 vol. %). The poisoning effect of C0 is a concern for the process while C0 2 and CH 4 appear to have no practical effect on the permeation rate. Depending on C0 concentration optimal operating temperatures of the membrane should lie between 250 and 375 0 C limits

  14. Mg{sub 2}Sn heterostructures on Si(111) substrate

    Dózsa, L., E-mail: dozsa@mfa.kfki.hu [Institute of Technical Physics and Materials Science, Centre for Energy Research, Hungarian Academy of Sciences, 1525 Budapest Pf, 49 (Hungary); Galkin, N.G. [Institute of Automation and Control Processes of FEB RAS, 5 Radio St., Vladivostok 690041 (Russian Federation); Far Eastern Federal University, 8 Sukhanova St., Vladivostok 690950 (Russian Federation); Pécz, B.; Osváth, Z.; Zolnai, Zs. [Institute of Technical Physics and Materials Science, Centre for Energy Research, Hungarian Academy of Sciences, 1525 Budapest Pf, 49 (Hungary); Németh, A. [Wigner Research Centre for Physics, Institute for Particle and Nuclear Physics, 1525 Budapest, P.O.B. 49 (Hungary); Galkin, K.N.; Chernev, I.M. [Institute of Automation and Control Processes of FEB RAS, 5 Radio St., Vladivostok 690041 (Russian Federation); Dotsenko, S.A. [Institute of Automation and Control Processes of FEB RAS, 5 Radio St., Vladivostok 690041 (Russian Federation); Far Eastern Federal University, 8 Sukhanova St., Vladivostok 690950 (Russian Federation)

    2017-05-31

    Highlights: • Investigations show that the nanostructures have significant changes during the applied regular experimental investigations. • It is especially true for transmittance electron microscopy, where the investigated layers have to be thinned near to the nanostructure size. • The time order of the applied experimental investigation has a dominant effect on the experimetal results. - Abstract: Thin un-doped and Al doped polycrystalline Mg-stannide films consisting mainly of Mg{sub 2}Sn semiconductor phase have been grown by deposition of Sn-Mg multilayers on Si(111) p-type wafers at room temperature and annealing at 150 °C. Rutherford backscattering measurement spectroscopy (RBS) were used to determine the amount of Mg and Sn in the structures. Raman spectroscopy has shown the layers contain Mg{sub 2}Sn phase. Cross sectional transmission electron microscopy (XTEM) measurements have identified Mg{sub 2}Sn nanocrystallites in hexagonal and cubic phases without epitaxial orientation with respect to the Si(111) substrate. Significant oxygen concentration was found in the layer both by RBS and TEM. The electrical measurements have shown laterally homogeneous conductivity in the grown layer. The undoped Mg{sub 2}Sn layers show increasing resistivity with increasing temperature indicating the scattering process dominates the resistance of the layers, i.e. large concentration of point defects was generated in the layer during the growth process. The Al doped layer shows increase of the resistance at low temperature caused by freeze out of free carriers in the Al doped Mg{sub 2}Sn layer. The measurements indicate the necessity of protective layer grown over the Mg{sub 2}Sn layers, and a short time delay between sample preparation and cross sectionalTEM analysis, since the unprotected layer is degraded by the interaction with the ambient.

  15. EUV Spectra of High Z Impurities from Large Helical Device and Atomic Data

    Kato, T.; Suzuki, C.; Funaba, H.; Sato, K.; Murakami, I.; Kato, D.; Sakaue, H.; O’Sullivan, G.; Harte, C.; White, J.; D’Arcy, R.; Tanuma, H.; Nakamura, N.

    2017-01-01

    The results of experiments on high Z impurity injection in the Large Helical Device at the National Institute for Fusion Science are described. Spectra from Xe, Sn and W ions were recorded in the extreme ultraviolet spectral region. Two different situations were observed in the case of Xe and Sn, depending on whether or not the plasma underwent radiative collapse. If the plasma was stable, the spectrum consisted of a number of strong lines and in both cases the strongest contribution was from 4p - 4d transitions of Cu-like ions. If the plasma underwent radiative collapse in each case it was dominated by an intense unresolved transition array with some strong lines overlapping it resulting from 4p 6 4d m - 4p 5 4d m+1 + 4p 6 4d m-1 4f transitions. For tungsten, radiative collapse was not observed though the spectrum here was dominated by the same array which lies between 4.5 and 7 nm with some additional contribution at the same wavelength from 4d 10 4f m - 4d 9 4f m+1 and 4d 10 4f m - 4d 10 4f m-1 5d transitions in lower stages also. From observation and comparison with other sources, it is shown that the spectra are dominated by resonance transitions to the ground state of the emitting ions, in marked contrast to results from charge exchange spectra that had been recorded to assist with ion stage separation. In the case of tungsten, no sharp lines are seen though the profile of the unresolved array structure changes with plasma temperature and the origin of these changes can be traced to differences in the populations of contributing ions. New assignments for lines of Xe XVIII, Sn XIX and Sn XVII of 4p - 4d transitions are listed in Tables. Strong lines of W, Xe and Sn ions in EUV range are also tabulated. (author)

  16. Identification and characterization of potential impurities of donepezil.

    Krishna Reddy, K V S R; Moses Babu, J; Kumar, P Anil; Chandrashekar, E R R; Mathad, Vijayavitthal T; Eswaraiah, S; Reddy, M Satyanarayana; Vyas, K

    2004-09-03

    Five unknown impurities ranging from 0.05 to 0.2% in donepezil were detected by a simple isocratic reversed-phase high performance liquid chromatography (HPLC). These impurities were isolated from crude sample of donepezil using isocratic reversed-phase preparative high performance liquid chromatography. Based on the spectral data (IR, NMR and MS), the structures of these impurities were characterised as 5,6-dimethoxy-2-(4-pyridylmethyl)-1-indanone (impurity I), 4-(5,6-dimethoxy-2,3-dihydro-1H-2-indenylmethyl) piperidine (impurity II), 2-(1-benzyl-4-piperdylmethyl)-5,6-dimethoxy-1-indanol (impurity III) 1-benzyl-4(5,6-dimethoxy-2,3-dihydro-1H-2-indenylmethyl) piperidine (impurity IV) and 1,1-dibenzyl-4(5,6-dimethoxy-1-oxo-2,3-dihydro-2H-2-indenylmethyl)hexahydropyridinium bromide (impurity V). The synthesis of these impurities and their formation was discussed.

  17. Spectroscopic impurity survey in Wendelstein 7-X

    Buttenschoen, Birger; Burhenn, Rainer; Thomsen, Henning [Max-Planck-Institut fuer Plasmaphysik, Greifswald (Germany); Biel, Wolfgang; Assmann, Jochen; Hollfeld, Klaus-Peter [Forschungszentrum Juelich GmbH, Juelich (Germany); Collaboration: the Wendelstein 7-X Team

    2016-07-01

    The High Efficiency eXtreme ultraviolet Overview Spectrometer (HEXOS) has been developed specifically for impurity identification and survey purposes on the Wendelstein 7-X stellarator. This spectrometer system, consisting of four individual spectrometers, covers the wavelength range between λ=2.5 nm and λ=160 nm, observing the intense resonance lines of relevant Mg-, Na-, Be- and Li-like impurity ions as well as the high-Z W/Ta quasi-continua. During the first operation phase of W7-X, commissioning of HEXOS was finished by providing an in-situ wavelength calibration. The permanently acquired spectra are evaluated to monitor the overall impurity content in the plasma, and serve as an indicator for unintended plasma-wall contact possibly leading to machine damage. HEXOS results from the first operation phase of W7-X are presented and discussed with respect to future scientific exploitation of the available data.

  18. Impurity production and acceleration in CTIX

    Buchenauer, D. [Sandia National Laboratories, MS-9161, P.O. Box 969, Livermore, CA 94550 (United States)], E-mail: dabuche@sandia.gov; Clift, W.M. [Sandia National Laboratories, MS-9161, P.O. Box 969, Livermore, CA 94550 (United States); Klauser, R.; Horton, R.D. [CTIX Group, University of California at Davis, Davis, CA 95616 (United States); Howard, S.J. [General Fusion Inc., Burnaby, BC V5A 3H4 (Canada); Brockington, S.J. [HyperV Technologies Corp., Chantilly, VA 20151 (United States); Evans, R.W.; Hwang, D.Q. [CTIX Group, University of California at Davis, Davis, CA 95616 (United States)

    2009-06-15

    The Compact Toroid Injection Experiment (CTIX) produces a high density, high velocity hydrogen plasma that maintains its configuration in free space on a MHD resistive time scale. In order to study the production and acceleration of impurities in the injector, several sets of silicon collector probes were exposed to spheromak-like CT's exiting the accelerator. Elemental analysis by Auger Electron Spectroscopy indicated the presence of O, Al, Fe, and Cu in films up to 200 A thickness (1000 CT interactions). Using a smaller number of CT interactions (10-20), implantation of Fe and Cu was measured by Auger depth profiling. The amount of impurities was found to increase with accelerating voltage and number of CT interactions while use of a solenoidal field reduced the amount. Comparison of the implanted Fe and Cu with TRIM simulations indicated that the impurities were traveling more slowly than the hydrogen CT.

  19. Impurity dependence of superconductivity in niobium

    Laa, C.

    1984-04-01

    Jump temperatures, the critical fields Hsubc and Hsubc 2 and specific heats were measured on niobium samples where the impurity content was systematically varied by loading with nitrogen. Quantities could thus be extrapolated to lattice perfection and absolute purity. Comparisons with theories were made and some parameters extracted. Agreement was found with Gorkov theory for small impurities. A new value of the Ginsburg-Landau parameter Ko was determined to be just above 1/sqrt2 which proves that niobium is an elementary Type II semiconductor. By comparisons with the BCS and the CLAC theory the values of the mean Fermi velocity, the London penetration depth, the BCS coherence length and the impurity parameter were extracted. (G.Q.)

  20. Magnetic impurity coupled to interacting conduction electrons

    Schork, T.

    1996-01-01

    We consider a magnetic impurity which interacts by hybridization with a system of weakly correlated electrons and determine the energy of the ground state by means of a 1/N f expansion. The correlations among the conduction electrons are described by a Hubbard Hamiltonian and are treated to the lowest order in the interaction strength. We find that their effect on the Kondo temperature, T K , in the Kondo limit is twofold: first, the position of the impurity level is shifted due to the reduction of charge fluctuations, which reduces T K . Secondly, the bare Kondo exchange coupling is enhanced as spin fluctuations are enlarged. In total, T K increases. Both corrections require intermediate states beyond the standard Varma-Yafet ansatz. This shows that the Hubbard interaction does not just provide quasiparticles, which hybridize with the impurity, but also renormalizes the Kondo coupling. copyright 1996 The American Physical Society

  1. Strong quantum scarring by local impurities

    Luukko, Perttu J. J.; Drury, Byron; Klales, Anna; Kaplan, Lev; Heller, Eric J.; Räsänen, Esa

    2016-11-01

    We discover and characterise strong quantum scars, or quantum eigenstates resembling classical periodic orbits, in two-dimensional quantum wells perturbed by local impurities. These scars are not explained by ordinary scar theory, which would require the existence of short, moderately unstable periodic orbits in the perturbed system. Instead, they are supported by classical resonances in the unperturbed system and the resulting quantum near-degeneracy. Even in the case of a large number of randomly scattered impurities, the scars prefer distinct orientations that extremise the overlap with the impurities. We demonstrate that these preferred orientations can be used for highly efficient transport of quantum wave packets across the perturbed potential landscape. Assisted by the scars, wave-packet recurrences are significantly stronger than in the unperturbed system. Together with the controllability of the preferred orientations, this property may be very useful for quantum transport applications.

  2. Impurity and particle control for INTOR

    Post, D.

    1985-02-01

    The INTOR impurity control system studies have been focused on the development of an impurity control system which would be able to provide the necessary heat removal and He pumping while satisfying the requirements for (1) minimum plasma contamination by impurities, (2) reasonable component lifetime (approx. 1 year), and (3) minimum size and cost. The major systems examined were poloidal divertors and pumped limiters. The poloidal divertor was chosen as the reference option since it offered the possibility of low sputtering rates due to the formation of a cool, dense plasma near the collector plates. Estimates of the sputtering rates associated with pumped limiters indicated that they would be too high for a reasonable system. Development of an engineering design concept was done for both the poloidal divertor and the pumped limiter

  3. Impurity-induced states in superconducting heterostructures

    Liu, Dong E.; Rossi, Enrico; Lutchyn, Roman M.

    2018-04-01

    Heterostructures allow the realization of electronic states that are difficult to obtain in isolated uniform systems. Exemplary is the case of quasi-one-dimensional heterostructures formed by a superconductor and a semiconductor with spin-orbit coupling in which Majorana zero-energy modes can be realized. We study the effect of a single impurity on the energy spectrum of superconducting heterostructures. We find that the coupling between the superconductor and the semiconductor can strongly affect the impurity-induced states and may induce additional subgap bound states that are not present in isolated uniform superconductors. For the case of quasi-one-dimensional superconductor/semiconductor heterostructures we obtain the conditions for which the low-energy impurity-induced bound states appear.

  4. The enhancement of thermoelectric power and scattering of carriers in Bi{sub 2{minus}x}Sn{sub x}Te{sub 3} single crystals

    Kulbachinskii, V A; Negishi, H; Sasaki, M; Giman, Y; Inoue, M

    1997-07-01

    Thermoelectric power, electrical resistivity, and Hall effect of p-type Bi{sub 2{minus}x}Sn{sub x}Te{sub 3} (0 < x < 0.03) singlecrystals have been measured in the temperature range 4.2--300K. By doping of Sn atoms into the host Bi{sub 2}Te{sub 3} lattice, the enhancement in the thermoelectric power is observed in the intermediate temperature range 30--150K for x {le} 0,0075. The activation type behavior of Hall coefficient and resistivity are found which corresponds to the Sn-induced impurity band located above the second lower valence band.

  5. Phase Equilibria in the Bi-In-Sn-Zn System. Thermal Analysis vs. Calculations

    Dębski A.

    2017-12-01

    Full Text Available With the use of the differential thermal analysis (DTA, studies of the phase transitions were conducted for 90 of alloys from the quaternary Bi-In-Sn-Zn system and for the constant ratio of Bi:In and Bi:Sn. The studies were conducted for the alloys prepared from the purity metals (Bi, In, Sn, Zn = 99.999 mas. % by way of melting in a graphite crucible in a glove-box filled with Ar, in which the impurities level was less than 0.1 ppm. After melting and thorough mixing, the liquid alloys were poured out into a graphite test mold. The phase transition temperature data obtained from the DTA investigations were next confronted with those determined from the calculations based on the binary and ternary optimized thermodynamic parameters available in the literature. It was found that the experimental and the calculated phase transition temperatures were in good agreement.

  6. Isomer shifts and chemical bonding in crystalline Sn(II) and Sn(IV) compounds

    Terra, J.; Guenzburger, D.

    1991-01-01

    First-principles self-consistent Local Density calculations of the electronic structure of clusters representing Sn(II) (SnO, SnF 2 , SnS, SnSe) and Sn(IV) (SnO 2 , SnF 4 ) crystalline compounds were performed. Values of the electron density at the Sn nucleus were obtained and related to measured values of the Moessbauer Isomer Shifts reported in the literature. The nuclear parameter of 119 Sn derived was ΔR/R=(1.58±0.14)x10 -4 . The chemical bonding in the solids was analysed and related to the electron densities obtained. (author)

  7. Impurity content of reduced-activation ferritic steels and a vanadium alloy

    Klueh, R.L.; Grossbeck, M.L.; Bloom, E.E.

    1997-01-01

    Inductively coupled plasma mass spectrometry was used to analyze a reduced-activation ferritic/martensitic steel and a vanadium alloy for low-level impurities that would compromise the reduced-activation characteristics of these materials. The ferritic steel was from the 5-ton IEA heat of modified F82H, and the vanadium alloy was from a 500-kg heat of V-4Cr-4Ti. To compare techniques for analysis of low concentrations of impurities, the vanadium alloy was also examined by glow discharge mass spectrometry. Two other reduced-activation steels and two commercial ferritic steels were also analyzed to determine the difference in the level of the detrimental impurities in the IEA heat and steels for which no extra effort was made to restrict some of the tramp impurities. Silver, cobalt, molybdenum, and niobium proved to be the tramp impurities of most importance. The levels observed in these two materials produced with present technology exceeded the limits for low activation for either shallow land burial or recycling. The chemical analyses provide a benchmark for the improvement in production technology required to achieve reduced activation; they also provide a set of concentrations for calculating decay characteristics for reduced-activation materials. The results indicate the progress that has been made and give an indication of what must still be done before the reduced-activation criteria can be achieved

  8. Numerical simulation of the impurity photovoltaic effect in silicon solar cells doped with thallium

    Zhao Baoxing; Zhou Jicheng; Chen Yongmin

    2010-01-01

    Many attempts have been made to increase the efficiency of solar cells by introducing a deep impurity level in the semiconductor band gap. Since Tl may be the most suitable impurity for crystalline Si solar cells, the impurity photovoltaic (IPV) effect in silicon solar cell doped with thallium as impurity was investigated by the numerical solar cell simulator SCAPS. Results show that the IPV effect of thallium extends the spectral sensitivity in the sub-band gap range from 1000 to about 1400 nm. When the Tl concentration (N t ) is lower than the base doping density (N D ), the short-circuit current density and efficiency increase with increasing N t . But they decrease rapidly as the impurity density exceeds the shallow base doping density (N t >N D ). The optimum Tl concentration is about equal to the base doping density. For the Si solar cells with high internal reflection coefficients, the IPV effect becomes appreciable (ΔJ sc ∼9 mA/cm 2 and Δη∼2%).

  9. Plasma impurity-control studies in CTX

    Barnes, C.W.; Henins, I.; Hoida, H.W.; Jarboe, T.R.; Linford, R.K.; Marshall, J.; Sherwood, A.R.; Tuszewski, M.

    1981-01-01

    In the past, magnetized coaxial gun generated Compact Toroids (CTs) have exhibited magnetic field and density lifetimes of about 250 to 350 μs and electron temperatures of about 10 eV. In recent experiments, after hydrogen discharge cleaning the gun and flux conserver surfaces, the lifetimes have been extended to 550 μs. This improvement in lifetime, together with spectroscopic and bolometric measurements, are consistent with the interpretation that the CT plasma losses are impurity dominated and that discharge cleaning is reducing the impurities. Details of these measurements are described as well as successful experiments which led to a more open flux conserver

  10. Correlations between locked modes and impurity influxes

    Fishpool, G M [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Lawson, K D [UKAEA Culham Lab., Abingdon (United Kingdom)

    1994-07-01

    An analysis of pulses that were disturbed by medium Z impurity influxes (Cl, Cr, Fe and Ni) recorded during the 91/92 JET operations, has demonstrated that such influxes can result in MHD modes which subsequently ``lock``. A correlation is found between the power radiated by the influx and the time difference between the start of the influx and the beginning of the locked mode. The growth in the amplitude of the locked mode itself can lead to further impurity influxes. A correlation is noted between intense influxes (superior to 10 MW) and the mode ``unlocking``. (authors). 4 refs., 4 figs.

  11. The electronic structure of impurities in semiconductors

    Nylandsted larsen, A; Svane, A

    2002-01-01

    The electronic structure of isolated substitutional or interstitial impurities in group IV, IV-IV, and III-V compound semiconductors will be studied. Mössbauer spectroscopy will be used to investigate the incorporation of the implanted isotopes on the proper lattice sites. The data can be directly compared to theoretical calculations using the LMTO scheme. Deep level transient spectroscopy will be used to identify the band gap levels introduced by metallic impurities, mainly in Si~and~Si$ _{x}$Ge$_{1-x}$. \\\\ \\\\

  12. Plasma impurity-control studies in CTX

    Barnes, C.W.; Henins, I.; Hoida, H.W.; Jarboe, T.R.; Linford, R.K.; Marshall, J.; Sherwood, A.R.; Tuszewski, M.

    1981-01-01

    In the past, magnetized coaxial gun generated Compact Toroids (CTs) have exhibited magnetic field and density lifetimes of about 250 to 350 ..mu..s and electron temperatures of about 10 eV. In recent experiments, after hydrogen discharge cleaning the gun and flux conserver surfaces, the lifetimes have been extended to 550 ..mu..s. This improvement in lifetime, together with spectroscopic and bolometric measurements, are consistent with the interpretation that the CT plasma losses are impurity dominated and that discharge cleaning is reducing the impurities. Details of these measurements are described as well as successful experiments which led to a more open flux conserver.

  13. Impurity studies in the advanced toroidal facility

    Isler, R.C.; Horton, L.D.; Crume, E.C.; Howe, H.C.; Voronov, G.S.

    1989-01-01

    Impurities have played an important role in the initial stages of operation of the Advanced Toroidal Facility. Cleanup practices have been adequate enough that plasmas heated by ECH only can be operated in a quasi-steady state; however, neutral beam injected plasmas always collapse to a low temperature. It is not clear whether impurity radiation is actually responsible for initiating the collapse, but at the time the stored energy reaches a maximum, there are indications of poloidal asymmetries in radiation from low ionization stages, such as observed in marfes, which could play a dominant role in the plasma evolution. 3 refs., 5 figs

  14. Structural, optical and dielectric properties of Sn0.97Ce0.03O2 nanostructures

    Ahmed, Ateeq; Siddique, M. Naseem; Ali, Tinku; Tripathi, P.

    2018-05-01

    In present work, 3% cerium doped SnO2 (Sn0.97Ce0.03O2) nanoparticles (NPs) have been synthesized by sol-gel method. The prepared sample has been characterized by using various techniques such as XRD, UV-visible absorption spectroscopy and LCR meter measurements. Structural Rietveld refinement of XRD data reveals that (Sn0.97Ce0.03O2) sample has a pure single phase tetragonal structure with space group (P42/mnm) without creating any impurity phase such as cerium oxide. UV-visible spectroscopy determines band gap value 3.47 eV for (Sn0.97Ce0.03O2) NPs using Tauc's relation. Dielectric constant and loss decreased with increase in frequency while ac conductivity was found to increase with increase in frequency. The observed dielectric results has been explained in the light of Maxwell-Wagner model.

  15. Synthesis and electrochemical characteristics of Sn-Sb-Ni alloy composite anode for Li-ion rechargeable batteries

    Guo Hong; Zhao Hailei; Jia Xidi; Qiu Weihua; Cui Fenge

    2007-01-01

    Micro-scaled Sn-Sb-Ni alloy composite was synthesized from oxides of Sn, Sb and Ni via carbothermal reduction. The phase composition and electrochemical properties of the Sn-Sb-Ni alloy composite anode material were studied. The prepared alloy composite electrode exhibits a high specific capacity and a good cycling stability. The lithiation capacity was 530 mAh g -1 in the first cycle and maintained at 370-380 mAh g -1 in the following cycles. The good electrochemical performance may be attributed to its relatively large particle size and multi-phase characteristics. The former reason leads to the lower surface impurity and thus the lower initial capacity loss, while the latter results in a stepwise lithiation/delithiation behavior and a smooth volume change of electrode in cycles. The Sn-Sb-Ni alloy composite material shows a good candidate anode material for the rechargeable lithium ion batteries

  16. Influence of impurities on the crystallization of dextrose monohydrate

    Markande, Abhay; Nezzal, Amale; Fitzpatrick, John; Aerts, Luc; Redl, Andreas

    2012-08-01

    The effects of impurities on dextrose monohydrate crystallization were investigated. Crystal nucleation and growth kinetics in the presence of impurities were studied using an in-line focused beam reflectance monitoring (FBRM) technique and an in-line process refractometer. Experimental data were obtained from runs carried out at different impurity levels between 4 and 11 wt% in the high dextrose equivalent (DE) syrup. It was found that impurities have no significant influence on the solubility of dextrose in water. However, impurities have a clear influence on the nucleation and growth kinetics of dextrose monohydrate crystallization. Nucleation and growth rate were favored by low levels of impurities in the syrup.

  17. Fluid and gyrokinetic simulations of impurity transport at JET

    Nordman, H; Skyman, A; Strand, P

    2011-01-01

    Impurity transport coefficients due to ion-temperature-gradient (ITG) mode and trapped-electron mode turbulence are calculated using profile data from dedicated impurity injection experiments at JET. Results obtained with a multi-fluid model are compared with quasi-linear and nonlinear gyrokinetic...... simulation results obtained with the code GENE. The sign of the impurity convective velocity (pinch) and its various contributions are discussed. The dependence of the impurity transport coefficients and impurity peaking factor −∇nZ/nZ on plasma parameters such as impurity charge number Z, ion logarithmic...

  18. Impurity transport in internal transport barrier discharges on JET

    Dux, R.; Giroud, C.; Zastrow, K.-D.

    2004-01-01

    Impurity behaviour in JET internal transport barrier (ITB) discharges with reversed shear has been investigated. Metallic impurities accumulate in cases with too strong peaking of the main ion density profile. The accumulation is due to inwardly directed drift velocities inside the ITB radius. The strength of the impurity peaking increases with the impurity charge and is low for the low-Z elements C and Ne. Transport calculations show that the observed behaviour is consistent with dominant neoclassical impurity transport inside the ITB. In some cases, MHD events in the core flatten the radial profile of the metallic impurity. (author)

  19. Observations of long impurity confinement times in the ISX tokamak

    Burrell, K H; Wong, S K; Muller, III, C H; Hacker, M P [General Atomic Co., San Diego, CA (USA); Ketterer, H E; Isler, R C; Lazarus, E A [Oak Ridge National Lab., TN (USA)

    1981-08-01

    The transport of small amounts of silicon and aluminium injected into plasmas in the Impurity Study Experiment (ISX) tokamak is studied. By monitoring the time behaviour of ultra-violet spectral lines emitted by various charge states of those impurities and comparing this behaviour to the predictions of a multi-species impurity transport code, it is found that both impurity penetration times and impurity containment times are consistent with neoclassical predictions. The observed impurity containment times, which are greater than three times the energy containment time, are consistent with the inward convection predicted by neoclassical theory.

  20. Theoretical Study of Radiation from a Broad Range of Impurity Ions for Magnetic Fusion Diagnostics

    Safronova, Alla [Univ. of Nevada, Reno, NV (United States)

    2014-03-14

    Spectroscopy of radiation emitted by impurities plays an important role in the study of magnetically confined fusion plasmas. The measurements of these impurities are crucial for the control of the general machine conditions, for the monitoring of the impurity levels, and for the detection of various possible fault conditions. Low-Z impurities, typically present in concentrations of 1%, are lithium, beryllium, boron, carbon, and oxygen. Some of the common medium-Z impurities are metals such as iron, nickel, and copper, and high-Z impurities, such as tungsten, are present in smaller concentrations of 0.1% or less. Despite the relatively small concentration numbers, the aforementioned impurities might make a substantial contribution to radiated power, and also influence both plasma conditions and instruments. A detailed theoretical study of line radiation from impurities that covers a very broad spectral range from less than 1 Å to more than 1000 Å has been accomplished and the results were applied to the LLNL Electron Beam Ion Trap (EBIT) and the Sustained Spheromak Physics Experiment (SSPX) and to the National Spherical Torus Experiment (NSTX) at Princeton. Though low- and medium-Z impurities were also studied, the main emphasis was made on the comprehensive theoretical study of radiation from tungsten using different state-of-the-art atomic structure codes such as Relativistic Many-Body Perturbation Theory (RMBPT). The important component of this research was a comparison of the results from the RMBPT code with other codes such as the Multiconfigurational Hartree–Fock developed by Cowan (COWAN code) and the Multiconfiguration Relativistic Hebrew University Lawrence Atomic Code (HULLAC code), and estimation of accuracy of calculations. We also have studied dielectronic recombination, an important recombination process for fusion plasma, for variety of highly and low charged tungsten ions using COWAN and HULLAC codes. Accurate DR rate coefficients are needed for

  1. Phase controlled solvothermal synthesis of Cu_2ZnSnS_4, Cu_2ZnSn(S,Se)_4 and Cu_2ZnSnSe_4 Nanocrystals: The effect of Se and S sources on phase purity

    Pal, Mou; Mathews, N.R.; Paraguay-Delgado, F.; Mathew, X.

    2015-01-01

    In this study, we have reported the synthesis of Cu_2ZnSnSe_4 (CZTSe), Cu_2ZnSnS_4 (CZTS) and Cu_2ZnSn(S,Se)_4 (CZTSSe) nanocrystals with tunable band gap and composition obtained by solvothermal method. The crystalline structure, composition, morphology and optical properties of the nanoparticles were characterized by X-ray diffraction (XRD), Raman scattering, energy dispersive X-ray spectroscopy, transmission electron microscopy and diffuse reflectance (DR) spectroscopy. While the XRD patterns of CZTS and CZTSe nanoparticles prepared with elemental S/Se powder revealed the presence of phase pure nanoparticles, the CZTSSe nanoparticles obtained using a mixture of S and Se, were found to contain many secondary phases under the same synthesis protocol. Formation of impurity phases in CZTSSe sample, can be avoided by using a mixture of 1-dodecanethiol (DT; CH_3(CH_2)_1_1SH)/oleylamine (OLA) instead of S powder and following the same experimental procedure. The incorporation of S in CZTSe nanocrystals prepared in presence of DDT/OLA mixture was confirmed through structural and optical characterizations. The optical properties of the quaternary chalcogenide nanocrystals were found to vary with the chemical composition of the material. - Highlights: • Solvothermal synthesis of CZTS, CZTSSe and CZTSe nanocrystals and discussion on possible formation mechanism. • Use of dodecanethiol/oleylamine mixture to synthesize phase-pure CZTSSe nanocrystals. • Formation of impurity phases can be controlled with proper S and Se sources.

  2. G3.5 PAMAM dendrimers enhance transepithelial transport of SN38 while minimizing gastrointestinal toxicity.

    Goldberg, Deborah S; Vijayalakshmi, Nirmalkumar; Swaan, Peter W; Ghandehari, Hamidreza

    2011-03-30

    Poly(amido amine) (PAMAM) dendrimers have shown promise in oral drug delivery. Conjugation of SN38 to PAMAM dendrimers has the potential to improve its oral absorption while minimizing gastrointestinal toxicity. In this work we evaluated G3.5 PAMAM dendrimer-SN38 conjugates with ester-linked glycine and β-alanine spacers for their suitability in oral therapy of hepatic colorectal cancer metastases. G3.5-βAlanine-SN38 was mostly stable while G3.5-Glycine-SN38 showed 10%, 20%, and 56% SN38 release in simulated gastric, intestinal and liver environments for up to 6, 24 and 48 hours, respectively. Short-term treatment of Caco-2 cells with G3.5-SN38 conjugates did not reduce cell viability, while comparable concentrations of SN38 caused significant cytotoxicity. G3.5-Glycine-SN38 and G3.5-βAlanine-SN38 showed IC₅₀ values of 0.60 and 3.59 μM, respectively, in HT-29 cells treated for 48 h, indicating the efficacy of the drug delivery system in colorectal cancer cells with longer incubation time. Both conjugates increased SN38 transepithelial transport compared to the free drug. Transport of G3.5-Glycine-SN38 was highly concentration-dependent whereas transport of G3.5-βAlanine-SN38 was concentration-independent, highlighting the influence of drug loading and spacer chemistry on transport mechanism. Together these results show that PAMAM dendrimers have the potential to improve the oral bioavailability of potent anti-cancer drugs. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Determination of impurities in beryl by neutron activation analysis

    Swain, K.K.; Dalvi, Aditi A.; Ajith, Nicy

    2015-01-01

    Beryl is a chemically complex and highly compositionally variable gem-forming mineral found in a variety of locations worldwide. Pure beryl is colorless, but the presence of impurities imparts colors such as green, blue, yellow, red, and white. It is one of the most important gem minerals and the gems are named by their color. The impurities in beryl can be determined using various analytical techniques. Neutron activation analysis (NAA) is a sensitive technique for multielement analysis of geological samples. Four beryl samples, collected from Nayakund Mehandi Block, Parseoni, Maharashtra, were received from Geological Survey of India (GSI), Pune. Powdered samples (50-100 mg) along with comparators (IAEA Soil-7) were packed in aluminum foils, sealed in an aluminum container and irradiated for 7 days in tray rod facility of Dhruva reactor, BARC, Mumbai. After irradiation, samples were brought to laboratory. Samples were opened, transferred into polyethylene packets and weighed. Gamma activity measurements were carried out using 45% HPGe detector coupled to 8 k multi channel analyzer. For the determination of manganese, which produces relatively shorter lived activation product ( 56 Mn: T 1/2 = 2.56 h), samples were sealed in polyethylene pouches and irradiated in graphite reflector position of Critical facility reactor, BARC, Mumbai. Relative method of NAA was used for concentration calculations. IAEA reference material (RM), SL -1 (lake sediment) was analyzed for quality control. Percentage errors on the measured concentrations of the elements are within ± 8% with respect to the recommended/information values

  4. Removal of nitrite impurity from nitrate labeled with nitrogen-15

    Malone, J.P.; Stevens, R.J.

    1998-01-01

    Potassium nitrate labeled with 15 N is often used as a tracer in studies of N dynamics in soil and water systems. Typically, 0.8% NO 2 - impurity has been found in the batches of K 15 NO 3 enriched to 99 atom % excess 15 N that were purchased by our laboratory. Nitrite is an intermediate in several N cycling processes so its addition when adding NO 3 - could produce misleading results. We have developed a safe, simple, and inexpensive method to remove NO 2 - impurity from any NO 3 - solution in a water matrix. The principle is the oxidation of NO2- to NO 3 - by UV light in the presence of a heterogenous TiO 2 catalyst. A NO 2 - concentration of 0.2 mM in 100 mL of 0.2 M NO 3 - solution could be oxidized in 12 min using 0.5 g L -1 TiO 2 in a specially constructed photoreactor with a 75-W UV facial tanning lamp. For the routine removal of NO 2 - , use of the same TiO 2 concentration in a standard beaker worked equally well when the irradiation time was extended to 2.5 h. After irradiation, the TiO2 is easily and totally removed from the solution by membrane filtration. (author)

  5. Metallic superconductors. 3. Na3Sn and V3Ga wires (Part one)

    Tachikawa, Kyoji

    2010-01-01

    Nowadays Nb 3 Sn wires are being widely used as one of the key materials in advanced science and technology, with various applications such as NMR, fusion and cryogen-free superconducting magnets. In this article, at first microstructures and fundamental aspects as well as the effect of additional elements in Nb 3 Sn are outlined. Intrinsic superconducting performances, e.g. T c and B c2 , are quite sensitive to the stoichiometry of the Sn concentration. A small amount of Ti and Ta doping is much effective for the increase of B c2 in Nb 3 Sn. The effect of Cu on the enhancement of Nb 3 Sn synthesis has yielded a significant breakthrough for the industrial production of the wires. At present the bronze process and internal Sn process are the twin major fabrication techniques of Nb 3 Sn wires. The recent status of both processes is reviewed in this article. Pronounced progress has been achieved in the performance of Nb 3 Sn wires fabricated through both techniques. Although just half a century has passed since the first fabrication of Nb 3 Sn wire, further progress in Nb 3 Sn technology may be expected like the proverb saying 'Fresh water still comes out from an old spring'. (author)

  6. Investigation of correlations in some chemical impurities and isotope ratios for nuclear forensic purposes

    Wallenius, M.; Mayer, K.; Nicholl, A.; Horta, J.

    2002-01-01

    geographic location. Furthermore, we performed measurements of impurities and the n( 18 O)/n( 16 O) ratio in a set of uranium dioxide pellet samples (from different production batches) that had been produced in the same facility. This 'horizontal' comparison (same facility and same material type) aims at providing information on the consistency of data obtained and on the variation in the level and the relative abundance of some impurities. A better understanding of the propagation of chemical impurities from the base material to the final product and the correlation between the relative concentrations of individual impurities is important in the definition of characteristic impurities for nuclear forensic purposes. (author)

  7. The influence of impurities on the discharge behaviour in SPICA

    Meer, A.F.G. van der.

    1981-10-01

    Discharges in the screw pinch SPICA can be produced in a small range of filling pressures and bias field values. The experimentally observed lower limit of 6 mtorr for the filling pressure is explained by the onset of MHD instabilities and by imperfect implosion at low values of the filling pressure at high values of the bias field. In the accessible parameter regime, discharges can be produced with densities of the order of 5x10 21 m -3 and temperatures between 30 and 80 eV, which show gross stability for 200 μs, albeit not reproducible. In this density and temperature range discharges can easily become dominated by energy losses due to impurity radiation. An investigation of the temperature decay and the impurity concentration shows that, in spite of the quartz liner, this is not the case under normal operating conditions and that the energy containment time is of the order of 200 μs. The temperature decay rate, measured by means of Thomson scattering, is only 0.15 eV/μs, whereas from the intensity ratio of the 15.0 nm 2s 2 S - 3p 2 p 0 and the 103.2 nm 2s 2 S - 2p 2 P 0 OVI emission lines a decay rate of 0.3 eV/μs is derived. From absolute intensity measurements an oxygen concentration is derived. Besides oxygen, also silicon and nitrogen are present in the discharge. The nitrogen concentration that follows from absolute intensity measurements is in fair agreement with estimates based on an analysis of the background gas. The silicon concentration has not been measured directly, but it is estimated to be less than half the oxygen concentration since the wall material is quartz (SiO 2 ) and part of the oxygen originates from the background gas, mainly as a constituent of water vapour

  8. Peculiarities of defect formation in InP single crystals doped with donor (S, Ge) and acceptor (Zn) impurities

    Mikryukova, E.V.; Morozov, A.N.; Berkova, A.V.; Nashel'skij, A.Ya.; Yakobson, S.V.

    1988-01-01

    Peculiarities of dislocation and microdefect formation in InP monocrystals doped with donor (S,Ge) and acceptor (Zn) impurities are investigated by the metallography. Dependence of dislocation density on the concentration of alloying impurity is established. Microdefects leading to the appearance of 5 different types of etch figures are shown to be observed in doped InP monocrystals. The mechanism of microdefect formation is suggested

  9. 51Cr diffusion in Zr-Sn alloys

    Nicolai, L.I.; Migoni, R.L.; Hojvat de Tendler, Ruth

    1982-01-01

    The 51 Cr volume diffusion in Zr-Sn alloys is measured in polycrystals with big grains by the thin-film method. The Sn content in the alloys ranges from 0.39% at to 6.66 % at. In the beta-phase the analysed temperature range is 982 deg C-1240 deg C. The Sn dehances the 51 Cr diffusion in beta-Zr, the effect being small but well defined. Assuming the formation of Sn-Cr dimers, the linear dehancement coefficient b and the parameters for the variation of b with temperature were calculated. The parameters Q and D o were calculated for the more diluted alloys and, upon application of the Zener theory for D o , a negative contribution to the activation entropy is found. Three experiments at different temperatures were performed in the alpha-phase. 51 Cr diffuses very fast in alpha-Zr-Sn. No definite correlation is found between the 51 Cr diffusivity and the increasing Sn concentration, probably due to the anisotropy of the alfa-phase. (M.E.L.) [es

  10. Microscopic models of impurities in silicon

    Assali, L.V.C.

    1985-01-01

    The study of electronic structure of insulated and complex puntual impurities in silicon responsible by the appearing of deep energy levels in the forbiden band of semiconductor, is presented. The molecular cluster model with the treatment of surface orbitals by Watson sphere within the formalism of Xα multiple scattering method, was used. The electronic structures of three clusters representative of perfect silicon crystal, which were used for the impurity studies, are presented. The method was applied to analyse insulated impurities of substitutional and interstitial hydrogen (Si:H and Si:H i ), subtitutional and interstitial iron in neutral and positive charge states (Si:Fe 0 , + , Si:Fe 0 , + ) and substitutional gold in three charge states(Si,Au - , 0 , + ). The thetraedic interstitial defect of silicon (Si:Si i ) was also studied. The complex impurities: neighbour iron pair in the lattice (Si:Fe 2 ), substitutional gold-interstitial iron pair (Si:Au s Fe) and substitutional boron-interstitial hydrogen pair (Si:B s H i ), were analysed. (M.C.K.) [pt

  11. Energy bands and gaps near an impurity

    Mihóková, Eva; Schulman, L. S.

    2016-01-01

    Roč. 380, č. 41 (2016), s. 3430-3433 ISSN 0375-9601 R&D Projects: GA ČR GA13-09876S Institutional support: RVO:68378271 Keywords : crystal structure * impurity * modeling * energy bands Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.772, year: 2016

  12. Detection of mineral impurities in diatomite ores

    Guatame Garcia, L.A.; Buxton, M.W.N.; Fiore, Saverio

    2017-01-01

    Diatomaceous Earth (DE) is commonly used in the industry for the manufacturing of filters, where diatomite is preferred due to its low chemical reactivity and high porosity. Diatomite deposits with major amounts of mineral impurities, such as carbonates, present a problem in the production DE. In

  13. Synthesis and Identification of Selected Impurities

    Zhiqiang, Zhou [Department of Applied Chemistry, China Agricultural University, Beijing (China)

    2009-07-15

    Non-active substances undesired, but often unavoidable compounds accompanying target active ingredients in various pesticide formulations have been synthesized for supporting product registration and evaluation of the total toxicological and physicochemical properties of formulated products. The synthesis and structural characterization of various impurities of pesticide active ingredients are described and illustrated by IR, NMR, GC and GC/MS data. (author)

  14. Removal of iron from impure graphites

    Growcock, F.B.; Heiser, J.

    1979-01-01

    Iron-impregnated and ash-rich graphites have been purified by leaching with gaseous I 2 at 900 0 C. With addition of H 2 , the rate of removal of impurity iron can be markedly increased and becomes comparable to that obtained with Cl 2 . I 2 has an advantage in that it can also volatilize Ca and perhaps Ba and Sr

  15. Laser-induced fluorescence of metal-atom impurities in a neutral beam

    Burrell, C.F.; Pyle, R.V.; Sabetimani, Z.; Schlachter, A.S.

    1984-10-01

    The need to limit impurities in fusion devices to low levels is well known. We have investigated, by the technique of laser-induced fluorescence, the concentration of heavy-metal atoms in a neutral beam caused by their evaporation from the hot filaments in a conventional high-current multifilament hydrogen-ion source

  16. The influence of impurities on the recovery of radiation defects in niobium

    Petzold, J.

    1986-01-01

    Pure niobium and doped niobium are irradiated with electrons (3 MeV) at a temperature of 7-8 K. During annealing the influence of the different impurities and of their doping concentration on the recovery of the electric conductivity are investigated. (BHO)

  17. Interface between Sn-Sb-Cu solder and copper substrate

    Sebo, P., E-mail: Pavel.Sebo@savba.sk [Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Racianska 75, 831 02 Bratislava 3 (Slovakia); Svec, P. [Institute of Physics, Slovak Academy of Sciences, Dubravska cesta 9, 845 11 Bratislava 45 (Slovakia); Faculty of Materials Science and Technology, Slovak University of Technology, J. Bottu 25, 917 24 Trnava (Slovakia); Janickovic, D.; Illekova, E. [Institute of Physics, Slovak Academy of Sciences, Dubravska cesta 9, 845 11 Bratislava 45 (Slovakia); Plevachuk, Yu. [Ivan Franko National University, Department of Metal Physics, 79005 Lviv (Ukraine)

    2011-07-15

    Highlights: {yields} New lead-free solder materials based on Sn-Sb-Cu were designed and prepared. {yields} Melting and solidification temperatures of the solders have been determined. {yields} Cu-substrate/solder interaction has been analyzed and quantified. {yields} Phases formed at the solder-substrate interface have been identified. {yields} Composition and soldering atmospheres were correlated with joint strength. - Abstract: Influence of antimony and copper in Sn-Sb-Cu solder on the melting and solidification temperatures and on the microstructure of the interface between the solder and copper substrate after wetting the substrate at 623 K for 1800 s were studied. Microstructure of the interface between the solder and copper substrates in Cu-solder-Cu joints prepared at the same temperature for 1800 s was observed and shear strength of the joints was measured. Influence of the atmosphere - air with the flux and deoxidising N{sub 2} + 10H{sub 2} gas - was taken into account. Thermal stability and microstructure were studied by differential scanning calorimetry (DSC), light microscopy, scanning electron microscopy (SEM) with energy-dispersive spectrometry (EDS) and X-ray diffraction (XRD). Melting and solidification temperatures of the solders were determined. An interfacial transition zone was formed by diffusion reaction between solid copper and liquid solder. At the interface Cu{sub 3}Sn and Cu{sub 6}Sn{sub 5} phases arise. Cu{sub 3}Sn is adjacent to the Cu substrate and its thickness decreases with increasing the amount of copper in solder. Scallop Cu{sub 6}Sn{sub 5} phase is formed also inside the solder drop. The solid solution Sn(Sb) and SbSn phase compose the interior of the solder drop. Shear strength of the joints measured by push-off method decreases with increasing Sb concentration. Copper in the solder shows even bigger negative effect on the strength.

  18. Influences of the quantity of Mg2Sn phase on the corrosion behavior of Mg-7Sn magnesium alloy

    Liu Xianbin; Shan Dayong; Song Yingwei; Chen Rongshi; Han Enhou

    2011-01-01

    The influence of the quantity of the Mg 2 Sn phase on the corrosion behavior of different solution temperature treated Mg-7Sn magnesium alloy has been investigated by electrochemical measurements, scanning electron microscope (SEM) observation, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analysis. With the increase of solution temperature, the quantity of Mg 2 Sn phase decreased and the tin concentration of matrix increased. The dissolved tin in Mg matrix took part in the film formation and the constituent of film was magnesium oxide and stannic oxide. The corrosion mode and corrosion rate were associated with the quantity of Mg 2 Sn phases and tin concentration of the matrix. If most of tin was present as Mg 2 Sn, the corrosion mode was pitting corrosion and it accelerated the corrosion rate. If most of tin was dissolved in matrix, the corrosion mode was filiform corrosion and it decreased the corrosion rate. The experiment evidences demonstrated that the corrosion resistance can be improved by increasing the tin concentration of matrix and the lowest corrosion rate was observed for sample solution treated at 540 o C.

  19. Homogeneous (Cu, Ni)6Sn5 intermetallic compound joints rapidly formed in asymmetrical Ni/Sn/Cu system using ultrasound-induced transient liquid phase soldering process.

    Li, Z L; Dong, H J; Song, X G; Zhao, H Y; Tian, H; Liu, J H; Feng, J C; Yan, J C

    2018-04-01

    Homogeneous (Cu, Ni) 6 Sn 5 intermetallic compound (IMC) joints were rapidly formed in asymmetrical Ni/Sn/Cu system by an ultrasound-induced transient liquid phase (TLP) soldering process. In the traditional TLP soldering process, the intermetallic joints formed in Ni/Sn/Cu system consisted of major (Cu, Ni) 6 Sn 5 and minor Cu 3 Sn IMCs, and the grain morphology of (Cu, Ni) 6 Sn 5 IMCs subsequently exhibited fine rounded, needlelike and coarse rounded shapes from the Ni side to the Cu side, which was highly in accordance with the Ni concentration gradient across the joints. However, in the ultrasound-induced TLP soldering process, the intermetallic joints formed in Ni/Sn/Cu system only consisted of the (Cu, Ni) 6 Sn 5 IMCs which exhibited an uniform grain morphology of rounded shape with a remarkably narrowed Ni concentration gradient. The ultrasound-induced homogeneous intermetallic joints exhibited higher shear strength (61.6 MPa) than the traditional heterogeneous intermetallic joints (49.8 MPa). Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Summary of IAEA technical committee meeting on impurity control

    Itoh, Kimitaka.

    1989-03-01

    Presentations given in the IAEA technical committee meeting on impurity control (held in JAERI from 13 to 15 February, 1989) are summarized, putting the emphasis on the physics modelling of the plasma related to the impurity production and confinement. (author)

  1. Process and system for removing impurities from a gas

    Henningsen, Gunnar; Knowlton, Teddy Merrill; Findlay, John George; Schlather, Jerry Neal; Turk, Brian S

    2014-04-15

    A fluidized reactor system for removing impurities from a gas and an associated process are provided. The system includes a fluidized absorber for contacting a feed gas with a sorbent stream to reduce the impurity content of the feed gas; a fluidized solids regenerator for contacting an impurity loaded sorbent stream with a regeneration gas to reduce the impurity content of the sorbent stream; a first non-mechanical gas seal forming solids transfer device adapted to receive an impurity loaded sorbent stream from the absorber and transport the impurity loaded sorbent stream to the regenerator at a controllable flow rate in response to an aeration gas; and a second non-mechanical gas seal forming solids transfer device adapted to receive a sorbent stream of reduced impurity content from the regenerator and transfer the sorbent stream of reduced impurity content to the absorber without changing the flow rate of the sorbent stream.

  2. Zirconium analysis. Impurities determination by spark mass specrometry

    Anon.

    Determination of impurities in zirconium, suitable for atomic content greater than 10 -8 but particularly adapted for low contents. The method is quantitative only if a reference sample is available (metallic impurities) [fr

  3. Oxygen control systems and impurity purification in LBE: Learning from DEMETRA project

    Brissonneau, L., E-mail: laurent.brissonneau@cea.fr [CEA/DEN, Cadarache, DTN/STPA/LIPC, F-13108 Saint-Paul-lez-Durance (France); Beauchamp, F.; Morier, O. [CEA/DEN, Cadarache, DTN/STPA/LIPC, F-13108 Saint-Paul-lez-Durance (France); Schroer, C.; Konys, J. [Karlsruher Institut fuer Technologie (KIT), Institut fuer Materialforschung III, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Kobzova, A.; Di Gabriele, F. [NRI, UJV Husinec-Rez 130, Rez 25068 (Czech Republic); Courouau, J.-L. [CEA/DEN, Saclay, DPC/SCCME/LECNA, F-919191 Gif-sur-Yvette (France)

    2011-08-31

    Operating a system using Lead-Bismuth Eutectic (LBE) requires a control of the dissolved oxygen concentration to avoid corrosion of structural materials and oxide build-up in the coolant. Reliable devices are therefore needed to monitor and adjust the oxygen concentration and to remove impurities during operation. In this article, we describe the learning gained from experiments run in the framework of the DEMETRA project (IP-EUROTRANS 6th FP contract) on the oxygen supply in LBE and on impurity filtration and management in different European facilities. An oxygen control device should supply oxygen in LBE at sufficient rate to compensate loss by surface oxidation, otherwise local dissolution of oxide layers might lead to the loss of steel protection against dissolution. Oxygen can be supplied by gas phase H{sub 2}O or O{sub 2}, or by solid phase, PbO dissolution. Each of these systems has substantial advantages and drawbacks. Considerations are given on devices for large scale facilities. The management of impurities (lead oxides and corrosion products) is also a crucial issue as their presence in the liquid phase or in the aerosols is likely to impair the facility, instrumentation and mechanical devices. To avoid impurity build-up on the long-term, purification of LBE is required to keep the impurity inventory low by trapping oxide and metallic impurities in specific filter units. On the basis of impurities characterisation and experimental results gained through filtration tests in different loops, this paper gives a description of the state-of-art knowledge of LBE purification with different filter media. It is now understood that the nature and behaviour of impurities formed in LBE will change according to the operating modes as well as the method to propose to remove impurities. This experience can be used to validate the basis filtration process, define the operating procedures and evaluate perspectives for the design of purification units for long

  4. The effect of ICRF antenna phasing on metal impurities in TFTR

    Stevens, J.E.; Bush, C.; Colestock, P.L.; Oak Ridge National Lab., TN; AN Ukrainskoj SSR, Kharkov

    1989-07-01

    ICRF power levels of up to 2.8 MW were achieved during the 1988 experimental run on TFTR. Metal impurity concentrations (Ti, Cr, Fe, Ni) and Z eff were monitored during ICRF heating by x-ray pulse height analysis and uv spectroscopy. Antenna phasing was the key variable affecting ICRF performance. No increase in metallic impurities was observed for P rf approx lt 2.8 MW with the antenna straps 0-Π, while a measurable increase in titanium (Faraday screen material) was observed for P rf approx gt 1.0 MW with 0-0 phasing. 18 refs., 8 figs

  5. Instrumental neutron-activation determination of impurities in lead and titanium compounds

    Popova, I L

    1980-01-01

    Instrumental neutron-activation analysis was used to determine 22 impurities in lead and titanium compounds (e.g. PbO, Pb/NO3/2, and TiO2) used as raw materials for ferroelectrics. Five elements (Al, V, Mn, Sc, and Se) were determined by short-lived isotopes and 17 elements were determined by long-lived isotopes. The detection limits were 7 x 10 to the -3rd to 2 x 10 to the -8th %. A substantial difference in concentrations of certain impurity elements has been found in different series of lead and titanium oxides of similar purity.

  6. Report on intercomparison exercise SR-54. Determination of impurities in U3O8

    Doubek, N.; Bagliano, G.; Deron, S.

    1984-04-01

    The report presents results of a laboratory intercomparison of impurities in U 3 O 8 sample organized by the IAEA's Analytical Quality Control Service. Twelve laboratories in 11 countries sent their results. The framework of the intercomparison was therefore conceived mainly as a ''mean'' to laboratories dealing with analysis of impurities in uranium samples to check the reliability of their results. The evaluation was based on 97 laboratory means obtained with emission spectroscopy, atomic absorption techniques and neutron activation analysis. The concentration of three elements could be certified as a result of this intercomparison; informational values could be established for an additional six elements

  7. Application of uranium impurity data for material characterization in nuclear safeguards

    Penkin, M.V.; Boulyga, S.F.; Fischer, D.M.

    2016-01-01

    Samples of materials involved in the conversion of uranium into nuclear-grade products are collected to support the verification of States' declarations and to look for indications of possible undeclared materials and activities. Samples are analysed by several laboratories to determine concentrations of about sixty impurities; the data consistency is addressed through the unified reporting requirements, the use of common reference materials, and via inter-laboratory comparisons. The impurity analysis results, along with other essential parameters, are interpreted to judge sample conformity to the relevant specifications, to evaluate the facility design information, to assess material provenance and intended use. (author)

  8. Gas Sensing Properties of Ordered Mesoporous SnO2

    Michael Tiemann

    2006-04-01

    Full Text Available We report on the synthesis and CO gas-sensing properties of mesoporoustin(IV oxides (SnO2. For the synthesis cetyltrimethylammonium bromide (CTABr wasused as a structure-directing agent; the resulting SnO2 powders were applied as films tocommercially available sensor substrates by drop coating. Nitrogen physisorption showsspecific surface areas up to 160 m2·g-1 and mean pore diameters of about 4 nm, as verifiedby TEM. The film conductance was measured in dependence on the CO concentration inhumid synthetic air at a constant temperature of 300 °C. The sensors show a high sensitivityat low CO concentrations and turn out to be largely insensitive towards changes in therelative humidity. We compare the materials with commercially available SnO2-basedsensors.

  9. The effect of resonant magnetic perturbations on the impurity transport in TEXTOR-DED plasmas

    Greiche, Albert Josef

    2009-01-01

    Thermonuclear fusion provides a new mechanism for the generation of electrical power which has the perspective to serve humanity for several millions of years. One possibility to implement fusion on earth is to magnetically confine hot deuterium tritium plasmas in so called tokamaks. The fusion reactions take place in the hot plasma core. Each of the fusion reactions between deuterium and tritium yields 17.6 MeV which can be used in the process of generating electrical power. Impurities contaminate the plasma which then is cooled down and diluted. This leads to a reduction of the fusion reactions and in consequence the energy yield. The transport behaviour of the impurities in the plasma is not fully understood up to now. Nevertheless, experiments have shown that the application of resonant magnetic perturbations (RMP) can control the impurity content in the plasma. The dynamic ergodic divertor (DED) on the tokamak Textor is able to induce static and dynamic RMPs. During the application of RMPs transient impurity transport experiments with argon have been performed and the time evolution of the impurity concentrations have been monitored. The line emission intensity of the impurities in the plasma is measured in the vacuum ultraviolet (VUV) and in the soft X-ray (SXR) with the absolutely calibrated VUV spectrometer Hexos and SXR PIN diodes, respectively. The analysis of the transient impurity transport experiments is performed with the help of the transport code Strahl. The impurity flows in Strahl are described by a combination of a diffusive and a convective flow. In the computing process the code solves the coupled set of continuity equations of each of the ionization stages of an impurity. With this method the time evolution of the impurity ion densities and the line emission intensities of the ionization stages can be computed. The adaption to the experimental measurements is performed with the help of the diffusion coefficient and the drift velocity which

  10. Quasi-regular impurity distribution driven by charge-density wave

    Baldea, I.; Badescu, M.

    1991-09-01

    The displacive motion of the impurity distribution immersed into the one-dimensional system has recently been studied in detail as one kind of quasi-regularity driven by CDW. As a further investigation of this problem we develop here a microscopical model for a different kind of quasi-regular impurity distribution driven by CDW, consisting of the modulation in the probability of occupied sites. The dependence on impurity concentration and temperature of relevant CDW quantities is obtained. Data reported in the quasi-1D materials NbSe 3 and Ta 2 NiSe 7 (particularly, thermal hysteresis effects at CDW transition) are interpreted in the framework of the present model. Possible similarities to other physical systems are also suggested. (author). 38 refs, 7 figs

  11. Impurities and evaluation of induced activity of CVI SiCf/SiC composites

    Noda, Tetsuji; Fujita, Mitsutane; Araki, Hiroshi; Kohyama, Akira

    2000-01-01

    Impurity of SiC f /SiC composites prepared by CVI was analyzed by neutron activation analysis and glow discharge mass spectrometry. The evaluation of the induced activity of the composites based on the chemical compositions was made using a simulation calculation for fusion reactor blanket. Impurities of 35 elements were detected in the composites. However, the total concentration of metallic impurities was below 20 mass ppm. The analyses of induced activity of the composites show that the dose rate decreases by about six orders of magnitude in a day after the shutdown. It is recommended that the purification of SiC composites, especially reduction of Fe and Ni contents, is necessary to reduce the activity to satisfy the limit of remote handling recycling after several 10 years cooling of fusion reactors

  12. Impurities and evaluation of induced activity of SiCf/SiC composites

    Noda, Tetsuji; Araki, Hiroshi; Ito, Shinji; Fujita, Mitsutane; Maki, Koichi

    1997-01-01

    Impurity of SiC f /SiC composites prepared by CVI was analyzed by neutron activation analysis and glow discharge mass spectrometry. The evaluation of the induced activity of the composites based on the chemical compositions was made using a simulation calculation for fusion reactor blanket. Impurities of 35 elements were detected in the composites. However the total concentration of metallic impurities was below 20 mass ppm. The analyses of induced activity of the composites show that the dose rate decreases by about 5 orders of magnitude in a day after the shutdown. It is recommended that the purification of SiC fibers is necessary to reduce the activity by 10 9 after several ten years cooling of fusion reactors. (author)

  13. Impurities-Si interstitials interaction in Si doped with B or Ga during ion irradiation

    Romano, L; Piro, A M; Grimaldi, M G; Rimini, E

    2005-01-01

    Substitutional impurities (B, Ga) in Si experienced an off-lattice displacement during ion-irradiation using a H + or He + beam at room temperature in random incidence. Samples were prepared by solid phase epitaxy (SPE) of pre-amorphized Si subsequently implanted with B and Ga at a concentration of about 1 x10 20 at.cm -3 confined in a 300 nm thick surface region. The lattice location of impurities was performed by a channelling technique along different axes ( , ) using the 11 B(p,α) 8 Be reaction and standard RBS for B and Ga, respectively. The normalized channelling yield χ of the impurity signal increases with the ion fluence, indicating a progressive off-lattice displacement of the dopant during irradiation in random incidence, until it saturates at χ F I ) generated by the impinging beam in the doped region

  14. Monte Carlo method for magnetic impurities in metals

    Hirsch, J. E.; Fye, R. M.

    1986-01-01

    The paper discusses a Monte Carlo algorithm to study properties of dilute magnetic alloys; the method can treat a small number of magnetic impurities interacting wiith the conduction electrons in a metal. Results for the susceptibility of a single Anderson impurity in the symmetric case show the expected universal behavior at low temperatures. Some results for two Anderson impurities are also discussed.

  15. Effect of iodine impurity on relaxation of photoexcited silver chloride

    Vostrikova, Yu. V.; Klyuev, V. G.

    2008-01-01

    The time and temperature dependences of relaxation of excited AgCl and AgCl:I crystals is studied by the method of photostimulated flash of luminescence. The presence of iodine impurity in silver chloride gives rise to hole recombination (luminescence) centers and hole traps in the band gap. It is shown that the main contribution to the decrease in the concentration of electrons localized at deep traps is made by the recombination of electrons with holes released thermally from shallow localization levels (iodine-related centers). Estimation of activation energy for the relaxation process showed that these energies for the AgCl and AgCl:I samples under study are the same within the experimental error and are equal to E rel1 = 0.01 ± 0.0005 eV for the initial stage of relaxation and E rel2 = 0.09 ± 0.005 eV for the final state. This fact indicates that the majority of hole traps involved in the relaxation process in AgCl are related to iodine impurity. In the course of thermal relaxation in AgCl, relocalization of nonequilibrium charge carriers from shallow levels to deep levels is observed. The depth of the corresponding trap is E arl = 0.174 ± 0.03 eV.

  16. TEM study of impurity segregations in beryllium pebbles

    Klimenkov, M., E-mail: michael.klimenkov@kit.edu [Institute for Applied Materials – Applied Materials Physics, Karlsruhe Institute of Technology, Hermann-von-Helmholz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Chakin, V.; Moeslang, A. [Institute for Applied Materials – Applied Materials Physics, Karlsruhe Institute of Technology, Hermann-von-Helmholz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Rolli, R. [Institute for Applied Materials – Materials and Biomechanics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2014-12-15

    Beryllium is planned to be used as a neutron multiplier in the Helium-cooled Pebble Bed European concept of a breeding blanket of demonstration power reactor DEMO. In order to evaluate the irradiation performance, individual pebbles and constrained pebble beds were neutron-irradiated at temperatures typical of fusion blankets. Beryllium pebbles 1 mm in diameter produced by the rotating electrode method were subjected to a TEM study before and after irradiation at High Flux Reactor, Petten, Netherlands at 861 K. The grain size varied in a wide range from sub-micron size up to several tens of micrometers, which indicated formation bimodal grain size distribution. Based on the application of combined electron energy loss spectroscopy and energy dispersive X-ray spectroscopy methods, we suggest that impurity precipitates play an important role in controlling the mechanical properties of beryllium. The impurity elements were present in beryllium at a sub-percent concentration form beryllide particles of a complex (Fe/Al/Mn/Cr)B composition. These particles are often ordered along dislocations lines, forming several micron-long chains. It can be suggested that fracture surfaces often extended along these chains in irradiated material.

  17. Spectrographic determination of impurities in enriched uranium solutions; Determinacion espectrografica de impurezas en soluciones de uranio enriquecido

    Capdevila, C; Roca, M

    1980-07-01

    A spectrographic procedure for the determination of trace amounts of Al, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, K, L i , Hg, Mn, Mo, Na, Nb, Ni, P, Pb, Ru, Sb, Sn, Sr, Ti, V, Zn, and Zr in enriched uranyl nitrate solutions from the reprocessing of spent nuclear fuels is described. After removal of uranium by either TBP or TNOA solvent extraction, the aqueous phase Is analysed by the graphite spark technique. TBP is adequate for all impurities, excepting boron and phosphorus; both of these elements can sat is factory be determined by using TNOA after the addition of mannitol to avoid boron losses. (Author) 4 refs.

  18. Study of GeSn Alloy for Low Cost Monolithic Mid Infrared Quantum Well Sensor

    Prakash PAREEK

    2017-02-01

    Full Text Available This paper focuses on theoretical study of Tin incorporated group IV alloys particularly GeSn and design of quantum well sensor for mid infrared sensing applications. Initially, the physics behind the selection of material for midinfrared sensor is explained. The importance of controlling strain in GeSn alloy is also explained. The physical background and motivation for incorporation of Tin(Sn in Germanium is briefly narrated. Eigen energy states for different Sn concentrations are obtained for strain compensated quantum well in G valley conduction band (GCB, heavy hole (HH band and light hole (LH band by solving coupled Schrödinger and Poisson equations simultaneously. Sn concentration dependent absorption spectra for HH- GCB transition reveals that significant absorption observed in mid infrared range (3-5 µm. So, Ge1-x Snx quantum well can be used for mid infrared sensing applications.

  19. Refining of Cd and Zn from interstitial impurities using distillation with a ZrFe getter filter

    Scherban’ A. P.

    2013-10-01

    Full Text Available Behavior of interstitial impurities in Cd and Zn is analysed in terms of thermodynamics. The authors consider reduction reactions of cadmium, zinc and carbon oxides, as well as zinc nitride with the getter material from the Zr-Fe alloy, depending on temperature and vacuum. Optimum initial temperature and vacuum conditions for the processes of deep refining of Cd and Zn from interstitial impurities has been developed. It has been shown experimentally that the proposed refining method provides a more effective cleaning of cadmium and zinc from the interstitial impurities than the distillation without a filter: the impurity content is reduced more than tenfold compared to the concentration in the input metal.

  20. Multiscaling Dynamics of Impurity Transport in Drift-Wave Turbulence

    Futatani, S.; Benkadda, S.; Nakamura, Y.; Kondo, K.

    2008-01-01

    Intermittency effects and the associated multiscaling spectrum of exponents are investigated for impurities advection in tokamak edge plasmas. The two-dimensional Hasagawa-Wakatani model of resistive drift-wave turbulence is used as a paradigm to describe edge tokamak turbulence. Impurities are considered as a passive scalar advected by the plasma turbulent flow. The use of the extended self-similarity technique shows that the structure function relative scaling exponent of impurity density and vorticity follows the She-Leveque model. This confirms the intermittent character of the impurities advection in the turbulent plasma flow and suggests that impurities are advected by vorticity filaments

  1. Local order dependent impurity levels in alloy semiconductors

    Silva, C.E.T.G. da; Ecole Normale Superieure, 75 - Paris

    1981-01-01

    We develop a one band/may sites model for an isoelectronic impurity in a semiconductor alloy. The cluster-Bethe-lattice approximation is used to study the dependence of the impurity energy level upon the short range order (SRO) of the alloy. The Kikuchi parametrization is used to describe the latter. We take into account diagonal disorder only, with possible off-diagonal relaxation around the impurity site. All the inequivalent clusters of the impurity site and its first nearest neighbours are considered, thus including the important short range alloy potential fluctuations. Results are presented for the local density of impurity states, for different degrees of SRO in the alloy. (Author) [pt

  2. Time-reversal breaking and spin transport induced by magnetic impurities in a 2D topological insulator

    Derakhshan, V; Ketabi, S A; Moghaddam, A G

    2016-01-01

    We employed the formalism of bond currents, expressed in terms of non-equilibrium Green’s function to obtain the local currents and transport features of zigzag silicene ribbon in the presence of magnetic impurity. When only intrinsic and Rashba spin–orbit interactions are present, silicene behaves as a two-dimensional topological insulator with gapless edge states. But in the presence of finite intrinsic spin–orbit interaction, the edge states start to penetrate into the bulk of the sample by increasing Rashba interaction strength. The exchange interaction induced by local impurities breaks the time-reversal symmetry of the gapless edge states and influences the topological properties strongly. Subsequently, the singularity of partial Berry curvature disappears and the silicene nanoribbon becomes a trivial insulator. On the other hand, when the concentration of the magnetic impurities is low, the edge currents are not affected significantly. In this case, when the exchange field lies in the x – y plane, the spin mixing around magnetic impurity is more profound rather than the case in which the exchange field is directed along the z -axis. Nevertheless, when the exchange field of magnetic impurities is placed in the x – y plane, a spin-polarized conductance is observed. The resulting conductance polarization can be tuned by the concentration of the impurities and even completely polarized spin transport is achievable. (paper)

  3. The role of impurities on the process of growing potassium hydrogen phthalate crystals from solution; A quantitative approach

    Hottenhuis, M. H. J.; Lucasius, C. B.

    1988-09-01

    Quantitative information about the influence of impurities on the crystal growth process of potassium hydrogen phthalate from its aqueous solution was obtained at two levels: microscopic and macroscopic. At the microscopic level, detailed in situ observations of spiral steps at the (010) face were performed. The velocity of these steps was measured, as well in a "clean" as in a contaminated solution, where the influence of a number of different impurities was investigated. This resulted in a measure of effectiveness of step retardation for each of these impurities. From the same microscopic observations it was observed how these effectiveness factors were influenced by the supersaturation σ, the saturation temperature Ts of the solution and the concentration cimp of the impurity that w as used. At the macroscopic level, ICP (inductively coupled plasma) measurements were carried out in order to determine the distribution coefficient of the same impurities. In these measurements again the influence of the impurity concentration and the supersaturation on the distribution coefficient kD was determined.

  4. PBDD/F impurities in some commercial deca-BDE

    Ren Man; Peng Ping'an; Cai Ying; Chen Deyi; Zhou Lin; Chen Pei; Hu Jianfang

    2011-01-01

    The study presented the concentrations and distributions of polybrominated dibenzo-p-dioxins and polybrominated dibenzofurans (PBDD/Fs) as impurities in some commercial decabromodiphenyl ether (DBDE) mixtures that were produced by several manufacturers. The total concentrations of 12 2,3,7,8-substituted tetra- to octa-BDD/F congeners were found to be in the range of 3.4-13.6 (mean 7.8) μg/g, averagely accounting for 99% of total PBDD/Fs. OBDF was the prevailing congener, followed by 1,2,3,4,6,7,8-HpBDF. In addition, OBDD and 1,2,3,4,7,8-HxBDF were also obviously detectable. The total concentrations of PBDD/Fs varied both between the manufacturers and between the lots. On the basis of the global demand for the commercial DBDE in 2001, the annual potential emissions of PBDD/Fs were calculated coarsely to be 0.43 (range: 0.21-0.78) tons. The major dioxin congeners, OBDF and 1,2,3,4,6,7,8-HpBDF, presenting in DBDE, were estimated to be formed from BDE-209, BDE-206, and/or BDE-207 via an intra-molecular elimination of Br 2 /HBr. - Highlights: → A new analytical method for separating trace PBDD/F impurities from DBDE. → Original data of tetra- to octa-BDD/Fs in commercial DBDE. → OBDF and 1,2,3,4,6,7,8-HpBDF are the major dioxin congeners. → OBDF and 1,2,3,4,6,7,8-HpBDF are formed from BDE-209, BDE-206, and/or BDE-207. → Commercial DBDE is an important source for PBDD/Fs. - PBDD/Fs can be formed as contaminants in the commercial DBDE production.

  5. Impurity effect in the quantum Nernst effect

    Shirasaki, Ryoen; Nakamura, Hiroaki; Hatano, Naomichi

    2005-11-01

    We theoretically study the Nernst effect and the Seebeck effect in a two-dimensional electron ga in a strong magnetic field and a temperature gradient under adiabatic condition. We recently predicted for a pure system in the quantum Hall regime that the Nernst coefficients strongly suppressed and the thermal conductance is quantized due to quantum ballistic transport. Taking account of impurities, we here compute the Nernst coefficient and the Seebeck coefficient when the chemical potential coincides with a Landau level. We adopt the self-consistent Born approximation and consider the linear transport equations of the thermal electric transport induced by the temperature gradient. The thermal conductance and the Nernst coefficient are slightly modified from the pure case and the Seebeck coefficient newly appears because of the impurity scattering of electrons in the bulk states. (author)

  6. Kinetic neoclassical calculations of impurity radiation profiles

    D.P. Stotler

    2017-08-01

    Full Text Available Modifications of the drift-kinetic transport code XGC0 to include the transport, ionization, and recombination of individual charge states, as well as the associated radiation, are described. The code is first applied to a simulation of an NSTX H-mode discharge with carbon impurity to demonstrate the approach to coronal equilibrium. The effects of neoclassical phenomena on the radiated power profile are examined sequentially through the activation of individual physics modules in the code. Orbit squeezing and the neoclassical inward pinch result in increased radiation for temperatures above a few hundred eV and changes to the ratios of charge state emissions at a given electron temperature. Analogous simulations with a neon impurity yield qualitatively similar results.

  7. Impurities enhance caking in lactose powder

    Carpin, M.; Bertelsen, H.; Dalberg, A.

    2017-01-01

    Caking of lactose and other dry ingredients is a common problem in the dairy and food industries. The lactose production process includes different purification steps, depending on the type of lactose produced. The aim of this study was therefore to investigate how the remaining impurities (i.......e. non-lactose components) affect the caking tendency of the final powder. The results from a combination of different methods, including dynamic vapor sorption, characterization of the physicochemical composition and assessment of caking with a ring shear tester, suggested humidity caking. Larger...... amounts of impurities in the lactose powder resulted in enhanced moisture sorption and greater caking tendency. These findings emphasize the importance of controlling the washing and purification steps throughout the production process in order to limit caking in the final product...

  8. Synthesis and superconductivity of In-doped SnTe nanostructures

    Piranavan Kumaravadivel

    2017-07-01

    Full Text Available InxSn1−xTe is a time-reversal invariant candidate 3D topological superconductor derived from doping the topological crystalline insulator SnTe with indium. The ability to synthesize low-dimensional nanostructures of indium-doped SnTe is key for realizing the promise they hold in future spintronic and quantum information processing applications. But hitherto only bulk synthesized crystals and nanoplates have been used to study the superconducting properties. Here for the first time we synthesize InxSn1−xTe nanostructures including nanowires and nanoribbons, which show superconducting transitions. In some of the lower dimensional morphologies, we observe signs of more than one superconducting transition and the absence of complete superconductivity. We propose that material inhomogeneity, such as indium inhomogeneity and possible impurities from the metal catalyst, is amplified in the transport characteristics of the smaller nanostructures and is responsible for this mixed behavior. Our work represents the first demonstration of InxSn1−xTe nanowires with the onset of superconductivity, and points to the need for improving the material quality for future applications.

  9. Electron exchange between tin impurity U{sup –} centers in PbS{sub z}Se{sub 1–z} alloys

    Marchenko, A. V. [Alexander Herzen State Pedagogical University of Russia (Russian Federation); Terukov, E. I. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Seregin, P. P., E-mail: ppseregin@mail.ru; Rasnjuk, A. N.; Kiselev, V. S. [Alexander Herzen State Pedagogical University of Russia (Russian Federation)

    2016-07-15

    Using emission {sup 119mm}Sn({sup 119m}Sn) and {sup 119}Sb({sup 119m}Sn) Mössbauer spectroscopy, it is shown that impurity tin atoms in PbS{sub z}Se{sub 1–z} alloys substitute lead atoms and are two-electron donors with negative correlation energy (U{sup –} centers). It is found that the energy levels related to impurity tin atoms are in the lower half of the band gap at z ≥ 0.5 against the background of allowed valence-band states at z ≤ 0.4. The electron exchange between neutral and doubly ionized tin U{sup –} centers in partially compensated Pb{sub 0.99}Sn{sub 0.005}Na{sub 0.005}S{sub z}Se{sub 1–z} alloys is studied. The activation energy of this process decreases from 0.111(5) eV for a composition with z = 1 to 0.049(5) eV for compositions with c ≤ 0. For all z, the exchange is implemented via the simultaneous transfer of two electrons using delocalized valence-band states.

  10. INTOR impurity control and first wall system

    Abdou, M.A.

    1983-04-01

    The highlights of the recent INTOR effort on examining the key issues of the impurity control/first wall system are summarized. The emphasis of the work was an integrated study of the edge-region physics, plasma-wall interaction, materials, engineering and magnetic considerations associated with the poloidal divertor and pump limiter. The development of limiter and divertor collector plate designs with an acceptable lifetime was a major part of the work

  11. Detection of mineral impurities in diatomite ores

    Guatame Garcia, L.A.; Buxton, M.W.N.; Fiore, Saverio

    2017-01-01

    Diatomaceous Earth (DE) is commonly used in the industry for the manufacturing of filters, where diatomite is preferred due to its low chemical reactivity and high porosity. Diatomite deposits with major amounts of mineral impurities, such as carbonates, present a problem in the production DE. In this study, samples from a diatomite deposit with known presence of carbonate were analysed. With the aim of estimating the carbonate content, the samples were analysed with infrared (IR) spectroscop...

  12. Divertor impurity injection using high voltage arcs for impurity transport studies on the Mega Amp Spherical Tokamak

    Leggate, H. J.; Turner, M. M.; Lisgo, S. W.; Harrison, J. R.; Elmore, S.; Allan, S. Y.; Gaffka, R. C.; Stephen, R. C.

    2014-01-01

    The operation of next-generation fusion reactors will be significantly affected by impurity transport in the scrape-off layer (SOL). Current modelling efforts are restricted by a lack of detailed data on impurity transport in the SOL. In order to address this, a carbon injector has been designed and installed on the Mega Amp Spherical Tokamak (MAST). The injector creates short lived carbon plumes originating at the MAST divertor lasting less than 50 μs. High voltage capacitor banks are used to create a discharge across concentric carbon electrodes located in a probe mounted on the Divertor Science Facility in the MAST lower divertor. This results in a very short plume duration allowing observation of the evolution of the plume and precise localisation of the plume relative to the X-point on MAST. The emission from the carbon plume was imaged using fast visible cameras filtered in order to isolate the carbon II and carbon III emission lines centered around 514 nm and 465 nm

  13. Reduced graphene oxide decorated with Fe doped SnO{sub 2} nanoparticles for humidity sensor

    Toloman, D. [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj-Napoca (Romania); Popa, A., E-mail: popa@itim-cj.ro [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj-Napoca (Romania); Stan, M.; Socaci, C.; Biris, A.R. [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj-Napoca (Romania); Katona, G. [Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos Street, 400028 Cluj-Napoca (Romania); Tudorache, F. [Interdisciplinary Research Department – Field Science & RAMTECH, Al. I. Cuza University, 11 Carol I Blvd., 7000506 Iasi (Romania); Petrila, I. [Interdisciplinary Research Department – Field Science & RAMTECH, Al. I. Cuza University, 11 Carol I Blvd., 7000506 Iasi (Romania); Faculty of Automatic Control and Computer Engineering, Gheorghe Asachi Technical University, 27 Dimitrie Mangeron Street, 700050 Iasi (Romania); Iacomi, F. [Faculty of Physics, Al. I. Cuza University, 11 Carol I Blvd., 7000506 Iasi (Romania)

    2017-04-30

    Highlights: • Reduced graphene oxide decorated with Fe doped SnO{sub 2} nanoparticles were synthesized. • The decoration of rGO layers with SnO{sub 2}:Fe nanoparticles was highlited by TEM. • The reduction of graphene oxide was evidenced using XRD and FT-IR. • Sensitivity tests for relative humidity (RH) were carried out. • The composite sensor exhibited enhanced sensing response as compared with Fe:SnO{sub 2}. - Abstract: Reduced graphene oxide (rGO) decorated with Fe doped SnO{sub 2} nanoparticles were fabricated via the electrostatic interaction between positively charged modified Fe-doped SnO{sub 2} oxide and negatively charged graphene oxide (GO) in the presence of poly(allylamine) hydrochloride (PAH). The decoration of rGO layers with SnO{sub 2}:Fe nanoparticles was highlited by TEM microsopy. For composite sample the diffraction patterns coincide well with those of SnO{sub 2}:Fe nanoparticles. The reduction of graphene oxide was evidenced using XRD and FT-IR spectroscopy. The formation of SnO{sub 2}:Fe-PAH-graphene composites was confirmed by FT-IR, Raman and EPR spectroscopy. Sensitivity tests for relative humidity (RH) measurements were carried out at five different concentrations of humid air at room temperature. The prepared composite sensor exhibited a higher sensing response as compared with Fe:SnO{sub 2} nanoparticles.

  14. Evaluation of sup(99m)Tc-Sn-colloid on liver scintigram

    Matsuyuki, Y; Kanao, K; Honda, M; Ishihara, S [Sumitomo Hospital, Osaka (Japan)

    1975-04-01

    sup(99m)Tc-Sn-colloid injectable solution and Sn-colloid preparation set were used for nuclear medical examination of the liver and their efficiency was discussed. Both sup(99m)Tc-Sn-colloid injectable solution and Sn-colloid preparation set showed the same kinetics in vivo, and the sup(99m)Tc-Sn-colloid rapidly disappeared from the serum and concentrated to the liver and spleen. Comparing /sup 198/Au-colloid, sup(99m)Tc-Sn-colloid could be increased the administration dose, and provided easy examination within short time period, easy observation from multiple directions, and improvement of resolution by scinticamera. Imaging of the spleen with sup(99m)Tc-Sn-colloid was slightly superior to that with sup(99m)Tc-sulfur-colloid. sup(99m)Tc-Sn-colloid injectable solution which required no procedure of labeling was evaluated as the most safe and easy technique. Side effects were not recognized. As the results, already made preparation, such as sup(99m)Tc-Sn-colloid injectable solution, which provided easy preparation with less absorbed dose of the tissue and high resolution would be frequently required.

  15. Evaluation of sup(99m)Tc-Sn-colloid on liver scintigram

    Matsuyuki, Yoshihiko; Kanao, Keisuke; Honda, Minoru; Ishihara, Shizumori

    1975-01-01

    sup(99m)Tc-Sn-colloid injectable solution and Sn-colloid preparation set were used for nuclear medical examination of the liver and their efficiency was discussed. Both sup(99m)Tc-Sn-colloid injectable solution and Sn-colloid preparation set showed the same kinetics in vivo, and the sup(99m)Tc-Sn-colloid rapidly disappeared from the serum and concentrated to the liver and spleen. Comparing 198 Au-colloid, sup(99m)Tc-Sn-colloid could be increased the administration dose, and provided easy examination within short time period, easy observation from multiple directions, and improvement of resolution by scinticamera. Imaging of the spleen with sup(99m)Tc-Sn-colloid was slightly superior to that with sup(99m)Tc-sulfur-colloid. sup(99m)Tc-Sn-colloid injectable solution which required no procedure of labeling was evaluated as the most safe and easy technique. Side effects were not recognized. As the results, already made preparation, such as sup(99m)Tc-Sn-colloid injectable solution, which provided easy preparation with less absorbed dose of the tissue and high resolution would be frequently required. (Mukohata, S.)

  16. Impurity bound states in mesoscopic topological superconducting loops

    Jin, Yan-Yan; Zha, Guo-Qiao; Zhou, Shi-Ping

    2018-06-01

    We study numerically the effect induced by magnetic impurities in topological s-wave superconducting loops with spin-orbit interaction based on spin-generalized Bogoliubov-de Gennes equations. In the case of a single magnetic impurity, it is found that the midgap bound states can cross the Fermi level at an appropriate impurity strength and the circulating spin current jumps at the crossing point. The evolution of the zero-energy mode can be effectively tuned by the located site of a single magnetic impurity. For the effect of many magnetic impurities, two independent midway or edge impurities cannot lead to the overlap of zero modes. The multiple zero-energy modes can be effectively realized by embedding a single Josephson junction with impurity scattering into the system, and the spin current displays oscillatory feature with increasing the layer thickness.

  17. Neutron activation determination of impurities in molybdenum

    Usmanova, M.M.; Mukhamedshina, N.M.; Obraztsova, T.V.; Saidakhmedov, K.Kh.

    1984-01-01

    Instrumental neutron-activation techniques of impurity element determination in molybdenum and MoO 3 (solid and powdered samples) have been developed. When determining impurities of Na, K, Mn, Cu, W, Re molybdenum has been irradiated by thermal neutrons in reactor for 20 min, the sample mass constituted 200-300 mg, sample cooling time after irradiation - 2.5-3.5 h. It is shown that in the process of Cr, Fe, Co, Zn determination the samples should be irradiated with thermal neutrons, and in the process of Sb, Ta and Ni determination - with resonance and fast neutrons. Simultaneous determination of the elements during irradiation with neutrons with reactor spectrum is possible. When determining P and S the samples are irradiated with thermal and epithermal neutrons and β-activity of samples and comparison samples are measured using β-spectrometer with anthracene crystal. The techniques developed permit to determine impurities in Mo with a relative standard deviation 0.07-0.15 and lower boundaries of contents determined - 10 -4 - 10 -7 %

  18. Evaluation of determinative methods for sodium impurities

    Molinari, Marcelo; Guido, Osvaldo; Botbol, Jose; Ares, Osvaldo

    1988-01-01

    Sodium, universally accepted as heat transfer fluid in fast breeder reactors, requires a special technology for every operation involved in any applicable methodology, due to its well known chemical reactivity. The purpose of this work is: a) to study the sources and effects of chemical species which, as traces, accompany sodium used in the nuclear field; b) to classify, taking into account, the present requirements and resources of the National Atomic Energy Commission (CNEA), the procedures found in the literature for determination of the most important impurities which exist in experimental liquid sodium systems and c) to describe the principles of the methods and to evaluate them in order to make a selection. It was concluded the convenience to develop, as a first stage, laboratory procedures to determine carbon, oxygen, hydrogen and non-volatile impurities, which besides serving present needs, will be referential for direct methods with undeferred response. The latter are needed in liquid sodium experimental loops and require, primarily, more complex and extended development. Additionally, a description is made of experimental work performed up-to-now in this laboratory, consisting of a transfer device for sodium sampling and a sodium distillation device, adapted from a previous design, with associated vacuum and inert gas systems. It is intended as a separative technique for indirect determination of oxygen and non-volatile impurities. (Author) [es

  19. Metal impurities profile in a 450kg multi-crystalline silicon ingot by Cold Neutron Prompt Gamma-ray Activation Analysis

    Baek, Hani; Sun, Gwang Min; Kim, Ji seok; Oh, Mok; Chung, Yong Sam; Moon, Jong Hwa; Kim, Sun Ha; Baek, Sung Yeol; Tuan, Hoang Sy Minh

    2014-01-01

    Metal impurities are harmful to multi-crystalline silicon solar cells. They reduce solar cell conversion efficiencies through increased carrier recombination. They are present as isolated point-like impurities or precipitates. This work is to study the concentration profiles of some metal impurities of the directionally solidified 450kg multi-crystalline silicon ingot grown for solar cell production. The concentration of such impurities are generally below 10 15 cm -3 , and as such cannot be detected by physical techniques such as secondary-ion-mass spectroscopy(SIMS). So, we have tried to apply Cold Neutron - Prompt Gamma ray Activation Analysis(CN-PGAA) at the HANARO reactor research. The impurity concentrations of Au, Mn, Pt, Mo of a photovoltaic grade multi-crystalline silicon ingot appear by segregation from the liquid to the solid phase in the central region of the ingot during the crystallization. In the impurities concentration of the bottom region is higher than middle region due to the solid state diffusion. Towards the top region the segregation impurities diffused, during cooling process

  20. Structural, optical and thermal characterization of PVC/SnO2 nanocomposites

    Taha, T. A.; Ismail, Z.; Elhawary, M. M.

    2018-04-01

    The structural, optical, and thermal properties of PVC/SnO2 nanocomposites were investigated. XRD patterns were used to explore the structures of these prepared samples. Optical UV-Vis measurements were analyzed to calculate the spectroscopic optical constants of the prepared PVC/SnO2 nanocomposites. Both direct and indirect optical band gaps decreased with increasing SnO2 content. The refractive index, high frequency dielectric constant, plasma frequency, and optical conductivity values increased with SnO2. The single oscillator energy increased from 5.64 to 10.97 eV and the dispersion energy increased from 6.35 to 19.80 eV with the addition of SnO2. The other optical parameters such as optical moments, single oscillator strength, volume energy loss, and surface energy loss were calculated for different SnO2 concentrations. Raman spectra of the PVC/SnO2 nanocomposite films revealed the characteristic vibrational modes of PVC and surface phonon modes of SnO2. The thermal stability of PVC/SnO2 nanocomposite films was studied using DTA and thermogravimetric analysis. The glass transition ( T g) values abruptly changed from 46 °C for PVC to an average value of 59 °C for the polymer films doped with 2.0, 4.0, and 6.0 wt% SnO2. The weight loss decreased as the SnO2 concentration increased in the temperature range of 350-500 °C, corresponding to enhanced thermal stability.

  1. On the Structural Characterization of a Series of Novel Ni-Nb-Sn Refractory Alloy Glasses

    Tokarz, Michelle

    2004-01-01

    Recently refractory alloy glasses of varying Ni, Nb and Sn concentrations were prepared and studied via several characterization method including x-ray diffraction via standard lab arid synchrotron...

  2. Synthesis, characterization and photoluminescence properties of Dy3+ -doped nano-crystalline SnO2.

    Pillai, SK

    2010-04-15

    Full Text Available the crystallite size. The experimental result on photoluminescence characteristics originating from Dy3+-doping in nanocrystalline SnO2 reveals the dependence of the luminescent intensity on dopant concentration....

  3. Effect of Impurities on the Triple Point of Water: Experiments with Doped Cells at Different Liquid Fractions

    Dobre, M.; Peruzzi, A.; Kalemci, M.; Van Geel, J.; Maeck, M.; Uytun, A.

    2018-05-01

    Recent international comparisons showed that there is still room for improvement in triple point of water (TPW) realization uncertainty. Large groups of cells manufactured, maintained and measured in similar conditions still show a spread in the realized TPW temperature that is larger than the best measurement uncertainties (25 µK). One cause is the time-dependent concentration of dissolved impurities in water. The origin of such impurities is the glass/quartz envelope dissolution during a cell lifetime. The effect is a difference in the triple point temperature proportional to the impurities concentration. In order to measure this temperature difference and to investigate the effect of different types of impurities, we manufactured doped cells with different concentrations of silicon (Si), boron (B), sodium (Na) and potassium (K), the glass main chemical components. To identify any influence of the filling process, two completely independent manufacturing procedures were followed in two different laboratories, both national metrology institutes (VSL, Netherlands and UME, Turkey). Cells glass and filling water were also different while the doping materials were identical. Measuring the temperature difference as a function of the liquid fraction is a method to obtain information about impurities concentrations in TPW. Only cells doped with 1 µmol·mol-1 B, Na and K proved to be suitable for measurements at different liquid fractions. We present here the results with related uncertainties and discuss the critical points in this experimental approach.

  4. Growth of intermetallics between Sn/Ni/Cu, Sn/Ag/Cu and Sn/Cu layered structures

    Horváth, Barbara; Illés, Balázs; Shinohara, Tadashi

    2014-01-01

    Intermetallic growth mechanisms and rates are investigated in Sn/Ni/Cu, Sn/Ag/Cu and Sn/Cu layer systems. An 8–10 μm thick Sn surface finish layer was electroplated onto a Cu substrate with a 1.5–2 μm thick Ni or Ag barrier layer. In order to induce intermetallic layer growth, the samples were aged in elevated temperatures: 50 °C and 125 °C. Intermetallic layer growth was checked by focused ion beam–scanning ion microscope. The microstructures and chemical compositions of the intermetallic layers were observed with a transmission electron microscope. It has been found that Ni barrier layers can effectively block the development of Cu 6 Sn 5 intermetallics. The intermetallic growth characteristics in the Sn/Cu and Sn/Ni/Cu systems are very similar. The intermetallic layer grows towards the Sn layer and forms a discrete layer. Differences were observed only in the growth gradients and surface roughness of the intermetallic layer which may explain the different tin whiskering properties. It was observed that the intermetallic layer growth mechanisms are completely different in the Ag barrier layers compared to the Ni layers. In the case of Sn/Ag/Cu systems, the Sn and Cu diffused through the Ag layer, formed Cu 6 Sn 5 intermetallics mainly at the Sn/Ag interface and consumed the Ag barrier layer. - Highlights: • Intermetallic growth was characterised in Sn/Ni/Cu, Sn/Ag/Cu and Sn/Cu layer systems. • Intermetallic growth rates and roughness are similar in the Sn/Cu and Sn/Ni/Cu systems. • Sn/Ni/Cu system contains the following intermetallic layer structure Sn–Ni3Sn4–Ni3Sn2–Ni3Sn–Ni. • In the case of Sn/Ag/Cu systems the Sn and Cu diffusion consumes the Ag barrier layer. • When Cu reaches the Sn/Ag interface a large amount of Cu 6 Sn 5 forms above the Ag layer

  5. Stability and magnetic properties of SnSe monolayer doped by transition metal atom (Mn, Fe, and Co): a first-principles study

    Tang, Chao; Li, Qinwen; Zhang, Chunxiao; He, Chaoyu; Li, Jin; Ouyang, Tao; Li, Hongxing; Zhong, Jianxin

    2018-06-01

    Two dimensional (2D) tin selenium (SnSe) is an intriguing material with desired thermal and electric properties in nanoelectronics. In this paper, we carry on a density functional theory study on the stability and dilute magnetism of the 3d TM (Mn, Fe, and Co) doped 2D SnSe. Both the adsorption and substitution are in consideration here. We find that all the defects are electrically active and the cation substitutional doping (TM@Sn) is energetically favorable. The TM@Sn prefers to act as accepters and exhibits high-spin state with nonzero magnetic moment. The magnetic moment is mainly contributed by the spin-polarized charge density of the TM impurities. The magnetism is determined by the arrangement of the TM-3d orbitals, which is the result of the crystal field splitting and spin exchange splitting under specific symmetry. The magnetic and electronic properties of the TM@Sn are effectively modulated by external electric field (Eext) and charge doping. The Eext shifts the TM impurities relative to the SnSe host and then modifies the crystal field splitting. In particular, the magnetic moment is sensitive to the Eext in the Fe@Sn because the Eext induces distinct structure transformation. Based on the formation energy, doping electrons is a viable way to modulate the magnetic moment of TM@Sn. Doping electrons shift the 3d states towards low energy level, which induces the occupation of more 3d states and then the reduction of magnetism. These results render SnSe monolayer a promising 2D material for applications in future spintronics.

  6. Ex situ n+ doping of GeSn alloys via non-equilibrium processing

    Prucnal, S.; Berencén, Y.; Wang, M.; Rebohle, L.; Böttger, R.; Fischer, I. A.; Augel, L.; Oehme, M.; Schulze, J.; Voelskow, M.; Helm, M.; Skorupa, W.; Zhou, S.

    2018-06-01

    Full integration of Ge-based alloys like GeSn with complementary-metal-oxide-semiconductor technology would require the fabrication of p- and n-type doped regions for both planar and tri-dimensional device architectures which is challenging using in situ doping techniques. In this work, we report on the influence of ex situ doping on the structural, electrical and optical properties of GeSn alloys. n-type doping is realized by P implantation into GeSn alloy layers grown by molecular beam epitaxy (MBE) followed by flash lamp annealing. We show that effective carrier concentration of up to 1 × 1019 cm‑3 can be achieved without affecting the Sn distribution. Sn segregation at the surface accompanied with an Sn diffusion towards the crystalline/amorphous GeSn interface is found at P fluences higher than 3 × 1015 cm‑2 and electron concentration of about 4 × 1019 cm‑3. The optical and structural properties of ion-implanted GeSn layers are comparable with the in situ doped MBE grown layers.

  7. The behaviour of impurities in a steady-state DT gas-blanket reactor

    Markvoort, J.A.

    1975-11-01

    A four-fluid model of a cylindrical steady-state DT gas-blanket reactor is analysed. The four fluids are electrons, deuterium-tritium, helium and a high -Z impurity. The behaviour of the plasma is described by the multifluid MHD-equations which are numerically solved with the aid of a Runge Kutta method. Whether impurities tend to concentrate on the axis is found to depend on how, in the collision term, the Nernst effect is taken into account. In order to show the influence of the Nernst terms arising from electron-ion collisions and the Nernst terms due to ion-ion collisions separately, the thermal force is dealt with in two ways. In model A, only the contribution from electron-ion collisions was considered. The computer calculations show that the impurities have their maximum concentration on the axis. A theoretical analysis explains this result. In model B, which is more realistic, these ion-ion collisions are included. The computer calculations as well as the theoretical analysis show that the influence of the thermoforce due to ion-ion collisions on the density profiles dominates over the force due to electron collisions, and lead to a minimum in the impurity density on the axis. As in model A, the analytical analysis yields relationships between the various density profiles and the temperature profile

  8. Impurity-induced anisotropic semiconductor-semimetal transition in monolayer biased black phosphorus

    Bui, D. H.; Yarmohammadi, Mohsen

    2018-07-01

    Taking into account the electron-impurity interaction within the continuum approximation of tight-binding model, the Born approximation, and the Green's function method, the main features of anisotropic electronic phase transition are investigated in monolayer biased black phosphorus (BP). To this end, we concentrated on the disordered electronic density of states (DOS), which gives useful information for electro-optical devices. Increasing the impurity concentration in both unbiased and biased impurity-infected single-layer BP, in addition to the decrease of the band gap, independent of the direction, leads to the midgap states and an extra Van Hove singularity inside and outside of the band gap, respectively. Furthermore, strong impurity scattering potentials lead to a semiconductor-semimetal transition and one more Van Hove singularity in x-direction of unbiased BP and surprisingly, this transition does not occur in biased BP. We found that there is no phase transition in y-direction. Since real applications require structures with modulated band gaps, we have studied the influence of different bias voltages on the disordered DOS in both directions, resulting in the increase of the band gap.

  9. Impurity effects in silicon for high efficiency solar cells

    Hopkins, R. H.; Rohatgi, A.

    1986-01-01

    Model analyses indicate that sophisticated solar cell designs including, e.g., back surface fields, optical reflectors, surface passivation, and double layer antireflective coatings can produce devices with conversion efficiencies above 20 percent (AM1). To realize this potential, the quality of the silicon from which the cells are made must be improved; and these excellent electrical properties must be maintained during device processing. As the cell efficiency rises, the sensitivity to trace contaminants also increases. For example, the threshold Ti impurity concentration at which cell performance degrades is more than an order of magnitude lower for an 18-percent cell. Similar behavior occurs for numerous other metal species which introduce deep level traps that stimulate the recombination of photogenerated carriers in silicon. Purification via crystal growth in conjunction with gettering steps to preserve the large diffusion length of the as-grown material can lead to the production of devices with efficiencies aboved 18 percent, as has been verified experimentally.

  10. Sublattice asymmetry of impurity doping in graphene: A review

    James A. Lawlor

    2014-08-01

    Full Text Available In this review we highlight recent theoretical and experimental work on sublattice asymmetric doping of impurities in graphene, with a focus on substitutional nitrogen dopants. It is well known that one current limitation of graphene in regards to its use in electronics is that in its ordinary state it exhibits no band gap. By doping one of its two sublattices preferentially it is possible to not only open such a gap, which can furthermore be tuned through control of the dopant concentration, but in theory produce quasi-ballistic transport of electrons in the undoped sublattice, both important qualities for any graphene device to be used competetively in future technology. We outline current experimental techniques for synthesis of such graphene monolayers and detail theoretical efforts to explain the mechanisms responsible for the effect, before suggesting future research directions in this nascent field.

  11. Estimation of metallic impurities in uranium by carrier distillation method

    Page, A.G.; Godbole, S.V.; Deshkar, S.B.; Joshi, B.D.

    1976-01-01

    An emission spectrographic method has been standardised for the estimation of twenty-two metallic impurities in uranium using carrier-distillation technique. Silver chloride with a concentration of 5% has been used as the carrier and palladium and gallium are used as internal standards. Precision and accuracy determinations of the synthetic samples indicate 6-15% deviation for most of the elements. Using the method described here, five uranium reference samples received from C.E.A.-France were analysed. The detection limits obtained for Cd, Co and W are lower than those reported in the literature while limits for the remaining elements are comparable to the values reported. The method is suitable for the chemical quality control analysis of uranium used for the Fast Breeder Test Reactor (FBTR) fuel. (author)

  12. Influence of complex impurity centres on radiation damage in wide-gap metal oxides

    Lushchik, A., E-mail: aleksandr.lushchik@ut.ee [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); Lushchik, Ch. [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); Popov, A.I. [Institute of Solid State Physics, University of Latvia, Kengaraga 8, Riga LV-1063 (Latvia); Schwartz, K. [GSI Helmholtzzentrum für Schwerionenforschung (GSI), Planckstr. 1, 64291 Darmstadt (Germany); Shablonin, E.; Vasil’chenko, E. [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia)

    2016-05-01

    Different mechanisms of radiation damage of wide-gap metal oxides as well as a dual influence of impurity ions on the efficiency of radiation damage have been considered on the example of binary ionic MgO and complex ionic–covalent Lu{sub 3}Al{sub 5}O{sub 12} single crystals. Particular emphasis has been placed on irradiation with ∼2 GeV heavy ions ({sup 197}Au, {sup 209}Bi, {sup 238}U, fluence of 10{sup 12} ions/cm{sup 2}) providing extremely high density of electronic excitations within ion tracks. Besides knock-out mechanism for Frenkel pair formation, the additional mechanism through the collapse of mobile discrete breathers at certain lattice places (e.g., complex impurity centres) leads to the creation of complex defects that involve a large number of host atoms. The experimental manifestations of the radiation creation of intrinsic and impurity antisite defects (Lu|{sub Al} or Ce|{sub Al} – a heavy ion in a wrong cation site) have been detected in LuAG and LuAG:Ce{sup 3+} single crystals. Light doping of LuAG causes a small enhancement of radiation resistance, while pair impurity centres (for instance, Ce|{sub Lu}–Ce|{sub Al} or Cr{sup 3+}–Cr{sup 3+} in MgO) are formed with a rise of impurity concentration. These complex impurity centres as well as radiation-induced intrinsic antisite defects (Lu|{sub Al} strongly interacting with Lu in a regular site) tentatively serve as the places for breathers collapse, thus decreasing the material resistance against dense irradiation.

  13. Atomic absorption determination of iron and copper impurities in rare earth compounds

    Zelyukova, Yu.V.; Kravchenko, J.B.; Kucher, A.A.

    1978-01-01

    An extraction atomic absorption method for the determination of copper and iron impurities in rare earth compounds has been developed. The extraction separation of determined elements as hydroxy quinolinates with isobuthyl alcohol was used. It increased the sensitivity of these element determination and excluded the effect of the analysed sample. Cu, Te, Zn, Bi, Sn, In, Ga, Tl and the some other elements can be determined at pH 2.0-3.0 but rare earths are remained in an aqueous phase. The condition of the flame combustion does not change during the introduction of isobutyl extract but the sensitivity of the determination of the elements increased 2-3 times. The limit of Fe determination is 0.01 mg/ml and the limit of Cu determination is 0.014 mg/ml

  14. Determination of impurities in magnesium and aluminium by X-ray fluorescence spectrometry

    Roca, M.; Diaz-Guerra, J.P.

    1979-01-01

    The determination of traces of Al, Cr, Cu, Fe, Mn, Ni, Pb, Si and of Bi, Cr, Cu, Fe, Ga, Mg, Mn, Ni, Pb, Si, Sn, Ti, V and Zn in samples of magnesium and aluminium, respectively, by means of X-ray fluorescence spectrometry, are studied. An automatic sequential spectrometer with an on-line computer for the treatment of data has been employed. The most suitable measurement parameters have been chosen for each element in order to achieve detection limits to a few p.p.m. For magnesium in the form of drillings the analyses are performed with satisfactory results for most impurities by pressing the samples into briquettes and employing metallic discs as standards. Correction methods for the spectral interferences of Ti on V, and V on Cr have been applied. (author)

  15. Stress effects on multifilamentary Nb3Sn wire

    Bartlett, R.J.; Taylor, R.D.; Thompson, J.D.

    1979-01-01

    Critical current I/sub c/ measurements were obtained on highly stabilized mf Nb 3 Sn wires as a function of heat treatment, stress, temperature, and applied magnetic field. The ratio of the area of the copper to bronze core-niobium tube is about 8, and the filaments are concentrated in the inner 30% of the wire cross section. Values of I/sub c/ and T/sub c/ were determined for samples subjected to a wide range of heat treatments. Diffusion reaction times and temperatures in the ranges 16 to 128 hr and 700 to 750 0 C provided a number of mf Nb 3 Sn wires having similar I/sub c/ characteristics. To some extent the residual compressive loading on the Nb 3 Sn wires varied with the particular heat treatment. This loading arises primarily from the differential contraction of the remaining bronze and the Nb 3 Sn layer when cooled from the reaction temperature to the operating temperature. It was found that, by controlled bending or stretching of the wires, whereby some of the strain in the Nb 3 Sn is relieved, the I/sub c/ at 14 K is increased by as much as 30% and the critical temperature is increased by up to 1 K

  16. Physical properties of antiferromagnetic Mn doped ZnO samples: Role of impurity phase

    Neogi, S. K.; Karmakar, R.; Misra, A. K.; Banerjee, A.; Das, D.; Bandyopadhyay, S.

    2013-11-01

    Structural, morphological, optical, and magnetic properties of nanocrystalline Zn1-xMnxO samples (x=0.01, 0.02, 0.04, 0.06, 0.08 and 0.10) prepared by the sol-gel route are studied by X-ray diffraction (XRD), Scanning electron microscopy (SEM), UV-visible absorption spectroscopy, Superconducting quantum interference device (SQUID) magnetometry and positron annihilation lifetime spectroscopy (PALS). XRD confirms formation of wurzite structure in all the Mn-substituted samples. A systematic increase in lattice constants and decrease in grain size have been observed with increase in manganese doping concentration up to 6 at% in the ZnO structure. An impurity phase (ZnMnO3) has been detected when percentage of Mn concentration is 6 at% or higher. The optical band gap of the Mn-substituted ZnO samples decrease with increase in doping concentration of manganese whereas the width of the localized states increases. The antiferromagnetic exchange interaction is strong in the samples for 2 and 4 at% of Mn doping but it reduces when the doping level increases from 6 at% and further. Positron life time components τ1 and τ2 are found to decrease when concentration of the dopant exceeds 6 at%. The changes in magnetic properties as well as positron annihilation parameters at higher manganese concentration have been assigned as due to the formation of impurity phase. Single phase structure has been observed up to 6 at% of Mn doping. Impurity phase has been developed above 6 at% of Mn doping. Antiferromagnetic and paramagnetic interactions are present in the samples. Defect parameters show sharp fall as Mn concentration above 6 at%. The magnetic and defect properties are modified by the formation of impurity phase.

  17. Physical properties of antiferromagnetic Mn doped ZnO samples: Role of impurity phase

    Neogi, S.K.; Karmakar, R.; Misra, A.K.; Banerjee, A.; Das, D.; Bandyopadhyay, S.

    2013-01-01

    Structural, morphological, optical, and magnetic properties of nanocrystalline Zn 1−x Mn x O samples (x=0.01, 0.02, 0.04, 0.06, 0.08 and 0.10) prepared by the sol–gel route are studied by X-ray diffraction (XRD), Scanning electron microscopy (SEM), UV–visible absorption spectroscopy, Superconducting quantum interference device (SQUID) magnetometry and positron annihilation lifetime spectroscopy (PALS). XRD confirms formation of wurzite structure in all the Mn-substituted samples. A systematic increase in lattice constants and decrease in grain size have been observed with increase in manganese doping concentration up to 6 at% in the ZnO structure. An impurity phase (ZnMnO 3 ) has been detected when percentage of Mn concentration is 6 at% or higher. The optical band gap of the Mn-substituted ZnO samples decrease with increase in doping concentration of manganese whereas the width of the localized states increases. The antiferromagnetic exchange interaction is strong in the samples for 2 and 4 at% of Mn doping but it reduces when the doping level increases from 6 at% and further. Positron life time components τ 1 and τ 2 are found to decrease when concentration of the dopant exceeds 6 at%. The changes in magnetic properties as well as positron annihilation parameters at higher manganese concentration have been assigned as due to the formation of impurity phase. - highlights: • Single phase structure has been observed up to 6 at% of Mn doping. • Impurity phase has been developed above 6 at% of Mn doping. • Antiferromagnetic and paramagnetic interactions are present in the samples. • Defect parameters show sharp fall as Mn concentration above 6 at%. • The magnetic and defect properties are modified by the formation of impurity phase

  18. Physical properties of antiferromagnetic Mn doped ZnO samples: Role of impurity phase

    Neogi, S.K.; Karmakar, R. [Department of Physics, University of Calcutta, 92 A.P.C. Road, Kolkata 700009 (India); Misra, A.K. [UGC DAE Consortium for Scientific Research, Salt Lake, Kolkata 700064 (India); Banerjee, A. [Department of Physics, University of Calcutta, 92 A.P.C. Road, Kolkata 700009 (India); CRNN, University of Calcutta, JD 2, Sector III, Salt Lake, Kolkata 700098 (India); Das, D. [UGC DAE Consortium for Scientific Research, Salt Lake, Kolkata 700064 (India); Bandyopadhyay, S., E-mail: sbaphy@caluniv.ac.in [Department of Physics, University of Calcutta, 92 A.P.C. Road, Kolkata 700009 (India); CRNN, University of Calcutta, JD 2, Sector III, Salt Lake, Kolkata 700098 (India)

    2013-11-15

    Structural, morphological, optical, and magnetic properties of nanocrystalline Zn{sub 1−x}Mn{sub x}O samples (x=0.01, 0.02, 0.04, 0.06, 0.08 and 0.10) prepared by the sol–gel route are studied by X-ray diffraction (XRD), Scanning electron microscopy (SEM), UV–visible absorption spectroscopy, Superconducting quantum interference device (SQUID) magnetometry and positron annihilation lifetime spectroscopy (PALS). XRD confirms formation of wurzite structure in all the Mn-substituted samples. A systematic increase in lattice constants and decrease in grain size have been observed with increase in manganese doping concentration up to 6 at% in the ZnO structure. An impurity phase (ZnMnO{sub 3}) has been detected when percentage of Mn concentration is 6 at% or higher. The optical band gap of the Mn-substituted ZnO samples decrease with increase in doping concentration of manganese whereas the width of the localized states increases. The antiferromagnetic exchange interaction is strong in the samples for 2 and 4 at% of Mn doping but it reduces when the doping level increases from 6 at% and further. Positron life time components τ{sub 1} and τ{sub 2} are found to decrease when concentration of the dopant exceeds 6 at%. The changes in magnetic properties as well as positron annihilation parameters at higher manganese concentration have been assigned as due to the formation of impurity phase. - highlights: • Single phase structure has been observed up to 6 at% of Mn doping. • Impurity phase has been developed above 6 at% of Mn doping. • Antiferromagnetic and paramagnetic interactions are present in the samples. • Defect parameters show sharp fall as Mn concentration above 6 at%. • The magnetic and defect properties are modified by the formation of impurity phase.

  19. PROTEUS-SN User Manual

    Shemon, Emily R. [Argonne National Lab. (ANL), Argonne, IL (United States); Smith, Micheal A. [Argonne National Lab. (ANL), Argonne, IL (United States); Lee, Changho [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-02-16

    PROTEUS-SN is a three-dimensional, highly scalable, high-fidelity neutron transport code developed at Argonne National Laboratory. The code is applicable to all spectrum reactor transport calculations, particularly those in which a high degree of fidelity is needed either to represent spatial detail or to resolve solution gradients. PROTEUS-SN solves the second order formulation of the transport equation using the continuous Galerkin finite element method in space, the discrete ordinates approximation in angle, and the multigroup approximation in energy. PROTEUS-SN’s parallel methodology permits the efficient decomposition of the problem by both space and angle, permitting large problems to run efficiently on hundreds of thousands of cores. PROTEUS-SN can also be used in serial or on smaller compute clusters (10’s to 100’s of cores) for smaller homogenized problems, although it is generally more computationally expensive than traditional homogenized methodology codes. PROTEUS-SN has been used to model partially homogenized systems, where regions of interest are represented explicitly and other regions are homogenized to reduce the problem size and required computational resources. PROTEUS-SN solves forward and adjoint eigenvalue problems and permits both neutron upscattering and downscattering. An adiabatic kinetics option has recently been included for performing simple time-dependent calculations in addition to standard steady state calculations. PROTEUS-SN handles void and reflective boundary conditions. Multigroup cross sections can be generated externally using the MC2-3 fast reactor multigroup cross section generation code or internally using the cross section application programming interface (API) which can treat the subgroup or resonance table libraries. PROTEUS-SN is written in Fortran 90 and also includes C preprocessor definitions. The code links against the PETSc, METIS, HDF5, and MPICH libraries. It optionally links against the MOAB library and

  20. Peculiarities of component interaction in {l_brace}Gd, Er{r_brace}-V-Sn Ternary systems at 870 K and crystal structure of RV{sub 6}Sn{sub 6} stannides

    Romaka, L., E-mail: romakal@franko.lviv.ua [Inorganic Chemistry Department, Ivan Franko Lviv National University, Kyryla and Mefodiya str. 6, 79005 Lviv (Ukraine); Stadnyk, Yu. [Inorganic Chemistry Department, Ivan Franko Lviv National University, Kyryla and Mefodiya str. 6, 79005 Lviv (Ukraine); Romaka, V.V. [Department of Materials Engineering and Applied Physics, Lviv Polytechnic National University, Ustyyanovycha Str. 5, 79013 Lviv (Ukraine); Demchenko, P.; Stadnyshyn, M.; Konyk, M. [Inorganic Chemistry Department, Ivan Franko Lviv National University, Kyryla and Mefodiya str. 6, 79005 Lviv (Ukraine)

    2011-09-08

    Highlights: > {l_brace}Gd, Er{r_brace}-V-Sn ternary systems at 870 K are characterized by formation of stannides with general compositions RV{sub 6}Sn{sub 6}. > Isostructural RV{sub 6}Sn{sub 6} compounds were also found with Y, Dy, Ho, Tm, and Lu. > The crystal structure of RV{sub 6}Sn{sub 6} compounds was determined by powder diffraction method. > Structural analysis showed that RV{sub 6}Sn{sub 6} compounds (R = Gd, Dy-Tm, Lu) are disordered; YV{sub 6}Sn{sub 6} is characterized by structure ordering. - Abstract: The phase equilibria in the Gd-V-Sn and Er-V-Sn ternary systems were studied at 870 K by means of X-ray and metallographic analyses in the whole concentration range. Both Gd-V-Sn and Er-V-Sn systems are characterized by formation of one ternary compound at investigated temperature, with stoichiometry RV{sub 6}Sn{sub 6} (SmMn{sub 6}Sn{sub 6}-type, space group P6/mmm, a = 0.55322(3) nm, c = 0.91949(7) nm for Gd, a = 0.55191(2) nm, c = 0.91869(8) nm for Er). Solubility of the third component in the binary compounds was not observed. Compounds with the SmMn{sub 6}Sn{sub 6}-type were also found with Dy, Ho, Tm, and Lu, while YV{sub 6}Sn{sub 6} compound crystallizes in HfFe{sub 6}Ge{sub 6} structure type. All investigated compounds are the first ternary stannides with rare earth elements and vanadium.

  1. Spectroscopic ellipsometry characterization of ZnO:Sn thin films with various Sn composition deposited by remote-plasma reactive sputtering

    Janicek, Petr; Niang, Kham M.; Mistrik, Jan; Palka, Karel; Flewitt, Andrew J.

    2017-11-01

    ZnO:Sn thin films were deposited onto thermally oxidized silicon substrates using a remote plasma reactive sputtering. Their optical constants (refractive index n and extinction coefficient k) were determined from ellipsometric data recorded over a wide spectral range (0.05-6 eV). Parametrization of ZnO:Sn complex dielectric permittivity consists of a parameterized semiconductor oscillator function describing the short wavelength absorption edge, a Drude oscillator describing free carrier absorption in near-infrared part of spectra and a Lorentz oscillator describing the long wavelength absorption edge and intra-band absorption in the ultra-violet part of the spectra. Using a Mott-Davis model, the increase in local disorder with increasing Sn doping is quantified from the short wavelength absorption edge onset. Using the Wemple-DiDomenico single oscillator model for the transparent part of the optical constants spectra, an increase in the centroid distance of the valence and conduction bands with increasing Sn doping is shown and only slight increase in intensity of the inter-band optical transition due to Sn doping occurs. The Drude model applied in the near-infrared part of the spectra revealed the free carrier concentration and mobility of ZnO:Sn. Results show that the range of transparency of prepared ZnO:Sn layers is not dramatically affected by Sn doping whereas electrical conductivity could be controlled by Sn doping. Refractive index in the transparent part is comparable with amorphous Indium Gallium Zinc Oxide allowing utilization of prepared ZnO:Sn layers as an indium-free alternative.

  2. Studies on the structural and electrical properties of F-doped SnO{sub 2} film prepared by APCVD

    Yang Jingkai; Liu Wenchang; Dong Lizhong; Li Yuanxun; Li Chuan [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Zhao Hongli, E-mail: zhaohongli@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China)

    2011-10-01

    Fluorine-doped tin oxide films (SnO{sub 2}:F, FTO) were deposited by atmosphere pressure chemical vapor deposition (APCVD) on Na-Ca-Si glass coated with a diffusion barrier layer of SiO{sub x}C{sub y}. The effects of post-heating time at 700 deg. C on the structural and electrical properties of SnO{sub 2}:F films were investigated. The results showed that SnO{sub 2}:F films were polycrystalline with tetragonal SnO{sub 2} structure, SnO phase was present in SnO{sub 2} film, and abnormal grain growth was observed. The element distribution in the film depth was measured with X-ray photoelectron spectroscopy (XPS) and revealed that when the heating time increased from 202 s to 262 s, the oxygen content in the surface increased from 78.63% to 83.38%. The resistivity increased from 3.13 x 10{sup -4} for as-deposited films to 4.73 x 10{sup -4} {Omega} cm when post-heated for 262 s. Hall mobility is limited by the ionized impurity scattering rather than the grain boundary scattering.

  3. Determination of impurity elements in steel by spark source mass spectrometry using powdered salts

    Saito, Morimasa; Sudo, Emiko

    1975-01-01

    Determination of impurity elements in steel by speak source mass spectrometry using powdered salts sample electrode was studied. The instrument used in this study was an AEI MS-7 mass spectrograph and the ion detector was Ilford Q2 photograph. Sample, (0.5--1) gram, was dissolved in hydrochloric acid (1 : 1) or nitric acid (1 : 1) together with yttrium of 1 microgram as the internal standard and then the solution was evaporated to dryness without baking. The salt residues were dried at 70 0 C for 30 minutes under vacuum. They were mixed with an equal amount of graphite powder for 5 minutes in a mixer mill, and then pressed into electrodes. When the relative sensitivity coefficient (Fe=1) was determined by using NBS 460 series standard samples, the results obtained by the proposed method for elements of Mo, Sn, Cu, Cr, Co, Ni, Mn, V, P, Si, and B were in good agreement with those obtained by the conventional method using solid sample electrodes (the solid method) and the precision of this method for 11 elements mentioned above was about 10% better than those of the solid method. However, both the accuracy and precision for elements of Nb, Ti, S and W were not good. This method was applied to the determination of impurities in NBS stainless steel and others. The relative standard deviations were within 20%. (auth.)

  4. SnO2/PPy Screen-Printed Multilayer CO2 Gas Sensor

    S.A. WAGHULEY

    2007-05-01

    Full Text Available Tin dioxide (SnO2 plays a dominant role in solid state gas sensors and exhibit sensitivity towards oxidizing and reducing gases by a variation of its electrical properties. The electrical conducting polymer-polypyrrole (PPy has high anisotropy of electrical conduction and used as a gas sensor. SnO2/PPy multilayer, pure SnO2, pure PPy sensors were prepared by screen-printing method on Al2O3 layer followed by glass substrate. The sensors were used for different concentration (ppm of CO2 gas investigation at room temperature (303 K. The sensitivity of SnO2/PPy multilayer sensor was found to be higher, compared with pure SnO2 and pure PPy sensors. The multilayer sensor exhibited improved stability. The response and recovery time of multilayer sensor were found to be ~2 min and ~10 min respectively.

  5. Influence of stresses on superconducting properties of Nb3Sn conductors

    Suenaga, M.; Luhman, T.S.; Sampson, W.B.; Onishi, T.; Klamut, C.J.

    1978-01-01

    This investigation of the degradation in the superconducting properties of Nb 3 Sn conductors when subjected to mechanical strain can be divided into the following areas: (I) monofilamentary Nb 3 Sn wires, (II) multifilamentary Nb 3 Sn conductors and wires, (III) effects of additives to Nb 3 Sn, (IV) mechanisms for degradation, and (V) construction of test facilities. Efforts to the present time have been concentrated in the investigation of T/sub c/, J/sub c/, and H/sub c2/ variations in monofilamentary wires. The most important finding in this study is that a Nb 3 Sn composite wire can sustain an effective mechanical strain well beyond ''1%'' if a proper ratio of the matrix to the Nb core has been chosen

  6. Numerical calculation of impurity charge state distributions

    Crume, E.C.; Arnurius, D.E.

    1977-09-01

    The numerical calculation of impurity charge state distributions using the computer program IMPDYN is discussed. The time-dependent corona atomic physics model used in the calculations is reviewed, and general and specific treatments of electron impact ionization and recombination are referenced. The complete program and two examples relating to tokamak plasmas are given on a microfiche so that a user may verify that his version of the program is working properly. In the discussion of the examples, the corona steady-state approximation is shown to have significant defects when the plasma environment, particularly the electron temperature, is changing rapidly

  7. Impurity effects in superconducting UPt3

    Aronson, M.C.; Vorenkamp, T.; Koziol, Z.; de Visser, A.; Bakker, K.; Franse, J.J.M.; Smith, J.L.

    1991-01-01

    Superconducting UPt 3 is characterized by a novel and complex magnetic field-temperature phase diagram, with two superconducting transitions at T c1 and T c2 in zero field. We have studied the effects of Pd and Y impurities on the zero field superconducting properties of UPt 3 . Resistance measurements show that both dopants increase the residual resistivity and decrease the spin fluctuation temperature in the normal state. T c1 is depressed by both dopants, but more effectively by Pd. |T c1 - T c2 | is essentially unaffected by Y doping, but increases dramatically with Pd doping

  8. Classical impurities associated to high rank algebras

    Doikou, Anastasia, E-mail: A.Doikou@hw.ac.uk [Department of Mathematics, Heriot–Watt University, EH14 4AS, Edinburgh (United Kingdom); Department of Computer Engineering and Informatics, University of Patras, Patras GR-26500 (Greece)

    2014-07-15

    Classical integrable impurities associated with high rank (gl{sub N}) algebras are investigated. A particular prototype, i.e. the vector non-linear Schrödinger (NLS) model, is chosen as an example. A systematic construction of local integrals of motion as well as the time components of the corresponding Lax pairs is presented based on the underlying classical algebra. Suitable gluing conditions compatible with integrability are also extracted. The defect contribution is also examined in the case where non-trivial integrable conditions are implemented. It turns out that the integrable boundaries may drastically alter the bulk behavior, and in particular the defect contribution.

  9. Enhanced ionized impurity scattering in nanowires

    Oh, Jung Hyun; Lee, Seok-Hee; Shin, Mincheol

    2013-06-01

    The electronic resistivity in silicon nanowires is investigated by taking into account scattering as well as the donor deactivation from the dielectric mismatch. The effects of poorly screened dopant atoms from the dielectric mismatch and variable carrier density in nanowires are found to play a crucial role in determining the nanowire resistivity. Using Green's function method within the self-consistent Born approximation, it is shown that donor deactivation and ionized impurity scattering combined with the charged interface traps successfully to explain the increase in the resistivity of Si nanowires while reducing the radius, measured by Björk et al. [Nature Nanotech. 4, 103 (2009)].

  10. Impurity pellet injection experiments at TFTR

    Marmar, E.S.

    1991-01-01

    Impurity (Li and C) pellet experiments, which began at TFTR in 1989, and are expected to continue at least through 1991, have continued to produce new and significant results. The most significant of these are: (1) improvements in TFTR supershots after wall-conditioning by Li pellet injection; (2) accurate measurements of the pitch angle profiles of the internal magnetic field using the polarization angles of line emission from Li + in the pellet ablation cloud; and (3) initial measurements of pitch angle profiles using the tilt of the LI + emission region of the ablation cloud which is stretched out along the field lines

  11. Classical impurities associated to high rank algebras

    Doikou, Anastasia

    2014-01-01

    Classical integrable impurities associated with high rank (gl N ) algebras are investigated. A particular prototype, i.e. the vector non-linear Schrödinger (NLS) model, is chosen as an example. A systematic construction of local integrals of motion as well as the time components of the corresponding Lax pairs is presented based on the underlying classical algebra. Suitable gluing conditions compatible with integrability are also extracted. The defect contribution is also examined in the case where non-trivial integrable conditions are implemented. It turns out that the integrable boundaries may drastically alter the bulk behavior, and in particular the defect contribution

  12. Impurity screening of scrape-off plasma in a tokamak

    Kishimoto, Hiroshi; Tani, Keiji; Nakamura, Hiroo

    1981-11-01

    Impurity screening effect of a scrape-off layer has been studied in a tokamak, based on a simple model of wall-released impurity behavior. Wall-sputtered impurities are stopped effectively by the scrape-off plasma for a medium-Z or high-Z wall system while major part of impurities enters the main plasma in a low-Z wall system. The screening becomes inefficient with increase of scrape-off plasma temperature. Successive multiplication of recycling impurities in the scrape-off layer is large for a high-Z wall and is enhanced by a rise of scrape-off plasma temperature. The stability of plasma-wall interaction is determined by a multiplication factor of recycling impurities. (author)

  13. Transitions and excitations in a superfluid stream passing small impurities

    Pinsker, Florian

    2014-05-08

    We analyze asymptotically and numerically the motion around a single impurity and a network of impurities inserted in a two-dimensional superfluid. The criticality for the breakdown of superfluidity is shown to occur when it becomes energetically favorable to create a doublet—the limiting case between a vortex pair and a rarefaction pulse on the surface of the impurity. Depending on the characteristics of the potential representing the impurity, different excitation scenarios are shown to exist for a single impurity as well as for a lattice of impurities. Depending on the lattice characteristics it is shown that several regimes are possible: dissipationless flow, excitations emitted by the lattice boundary, excitations created in the bulk, and the formation of large-scale structures.

  14. Transitions and excitations in a superfluid stream passing small impurities

    Pinsker, Florian; Berloff, Natalia G.

    2014-01-01

    We analyze asymptotically and numerically the motion around a single impurity and a network of impurities inserted in a two-dimensional superfluid. The criticality for the breakdown of superfluidity is shown to occur when it becomes energetically favorable to create a doublet—the limiting case between a vortex pair and a rarefaction pulse on the surface of the impurity. Depending on the characteristics of the potential representing the impurity, different excitation scenarios are shown to exist for a single impurity as well as for a lattice of impurities. Depending on the lattice characteristics it is shown that several regimes are possible: dissipationless flow, excitations emitted by the lattice boundary, excitations created in the bulk, and the formation of large-scale structures.

  15. Magnetic states of single impurity in disordered environment

    G.W. Ponedilok

    2013-01-01

    Full Text Available The charged and magnetic states of isolated impurities dissolved in amorphous metallic alloy are investigated. The Hamiltonian of the system under study is the generalization of Anderson impurity model. Namely, the processes of elastic and non-elastic scattering of conductive electrons on the ions of a metal and on a charged impurity are included. The configuration averaged one-particle Green's functions are obtained within Hartree-Fock approximation. A system of self-consistent equations is given for calculation of an electronic spectrum, the charged and the spin-polarized impurity states. Qualitative analysis of the effect of the metallic host structural disorder on the observed values is performed. Additional shift and broadening of virtual impurity level is caused by a structural disorder of impurity environment.

  16. ACCELERATING COLUMN FOR SEPARATION OF ETHANOL FROM FACTIONS OF INTERMEDIATE AND HEAD IMPURITIES

    G. V. Agafonov

    2015-01-01

    Full Text Available Summary. Nowadays purification of ethanol from the head and intermediate impurities is done with the selection of fractions of fusel alcohol and fusel oil from the distillation column and head and intermediate fractions impurities from condenser Epuration column operating accord-ing to the hydro-selection method. Due to this the fraction contains at least 13% ethyl alcohol, resulting in a reduced yield of the final product. Distillation of these fractions in the known acceleration columns requires increased consumption of heating steam for 6-8 kg / dal and increasing installation metal content. In this paper we investigate the process of distillation fraction from the condenser of Epura-tion column, fusel alcohol from the distillation column and subfusel liquid layer from the decanter, which is fed on a plate of supply of new accelerating column (AC, which operates on Epuration technology with the supply of hydro-selection water on the top plate and has in its composition concentration, boiling and stripping parts, a dephlagmator, a condenser, a boiler. Material balance equations of the column were obtained and ethyl alcohol concentration on its plates were determined by them. Having converted the material balance equations, we determined the dependences for the impurities ratio being drawn from the accelerating column with the Luther flows and ethyl alcohol fraction. Then we received the equation for determining the proportion of impurities taken from the column condenser with fraction. These calculations proved that the studied impurities are almost completely selected with this faction, ethyl alcohol content of it being 0.14% of the hourly output.

  17. Quantitative determination of salbutamol sulfate impurities using achiral supercritical fluid chromatography.

    Dispas, Amandine; Desfontaine, Vincent; Andri, Bertyl; Lebrun, Pierre; Kotoni, Dorina; Clarke, Adrian; Guillarme, Davy; Hubert, Philippe

    2017-02-05

    In the last years, supercritical fluid chromatography has largely been acknowledged as a singular and performing technique in the field of separation sciences. Recent studies highlighted the interest of SFC for the quality control of pharmaceuticals, especially in the case of the determination of the active pharmaceutical ingredient (API). Nevertheless, quality control requires also the determination of impurities. The objectives of the present work were to (i) demonstrate the interest of SFC as a reference technique for the determination of impurities in salbutamol sulfate API and (ii) to propose an alternative to a reference HPLC method from the European Pharmacopeia (EP) involving ion-pairing reagent. Firstly, a screening was carried out to select the most adequate and selective stationary phase. Secondly, in the context of robust optimization strategy, the method was developed using design space methodology. The separation of salbutamol sulfate and related impurities was achieved in 7min, which is seven times faster than the LC-UV method proposed by European Pharmacopeia (total run time of 50min). Finally, full validation using accuracy profile approach was successfully achieved for the determination of impurities B, D, F and G in salbutamol sulfate raw material. The validated dosing range covered 50 to 150% of the targeted concentration (corresponding to 0.3% concentration level), LODs close to 0.5μg/mL were estimated. The SFC method proposed in this study could be presented as a suitable fast alternative to EP LC method for the quantitative determination of salbutamol impurities. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Sn whiskers removed by energy photo flashing

    Jiang, N.; Yang, M.; Novak, J.; Igor, P.; Osterman, M.

    2012-01-01

    Highlights: ► Sn whiskers were sintered by intense light flashing (Photosintering). ► Photosintering can effectively eliminate Sn whiskers. ► Photosintering would not damage electronic devices. ► Photosintering is a very promising approach to improve Sn-based electronic surface termination. - Abstract: Sn whiskers have been known to be the major issue resulting in electronic circuit shorts. In this study, we present a novel energy photo flashing approach (photosintering) to shorten and eliminate Sn whiskers. It has been found that photosintering is very effective to modify and remove Sn whiskers; only a sub-millisecond duration photosintering can amazingly get rid of over 90 vol.% of Sn whiskers. Moreover, this photosintering approach has also been proved to cause no damages to electronic devices, suggesting it is a potentially promising way to improve Sn-based electronic surface termination.

  19. La5Zn2Sn

    Igor Oshchapovsky

    2011-11-01

    Full Text Available A single crystal of pentalanthanum dizinc stannide, La5Zn2Sn, was obtained from the elements in a resistance furnace. It belongs to the Mo5SiB2 structure type, which is a ternary ordered variant of the Cr5B3 structure type. The space is filled by bicapped tetragonal antiprisms from lanthanum atoms around tin atoms sharing their vertices. Zinc atoms fill voids between these bicapped tetragonal antiprisms. All four atoms in the asymmetric unit reside on special positions with the following site symmetries: La1 (..m; La2 (4/m..; Zn (m.2m; Sn (422.

  20. Ordered CoSn-type ternary phases in Co3Sn3-xGex

    Allred, Jared M.; Jia, Shuang; Bremholm, Martin

    2012-01-01

    . By taking advantage of the chemical differences between the two crystallographically inequivalent Sn sites in the structure, we observe ordered ternary phases, nominally Co3SnGe2 and Co3Sn2Ge. The electron count and unit cell configuration remain unchanged from CoSn; these observations thus help to clarify...

  1. Impurity injection into tokamak plasmas by erosion probes

    Hildebrandt, D.; Bakos, J.S.; Buerger, G.; Paszti, F.; Petravich, G.

    1987-08-01

    Exposing special erosion probes into the edge plasma of MT-1 the impurities Li and Ti were released and contaminated the plasma. By the use of collector probes the torodial transport of these impurities were investigated. The results indicate a preferential impurity flow into codirection of the plasma current. However, the asymmetric component of this flow is much larger than expected from the toroidal drift correlated to the plasma current. (author)

  2. Radiation-chemical disinfection of dissolved impurities and environmental protection

    Petrukhin, N.V.; Putilov, A.V.

    1986-01-01

    Radiation-chemical neutralization of dissolved toxic impurities formed in the production processes of different materials, while modern plants being in use, is considered. For the first time the processes of deep industrial waste detoxication and due to this peculiarities of practically thorough neutralization of dissolved toxic impurities are considered. Attention is paid to devices and economic factors of neutralization of dissolved toxic impurities. The role of radiation-chemical detoxication for environment protection is considered

  3. Effect of suprathermal electrons on the impurity ionization state

    Ochando, M A; Medina, F; Zurro, B; McCarthy, K J; Pedrosa, M A; Baciero, A; Rapisarda, D; Carmona, J M; Jimenez, D

    2006-01-01

    The effect of electron cyclotron resonance heating induced suprathermal electron tails on the ionization of iron impurities in magnetically confined plasmas is investigated. The behaviour of plasma emissivity immediately after injection provides evidence of a spatially localized 'shift' towards higher charge states of the impurity. Bearing in mind that the non-inductive plasma heating methods generate long lasting non-Maxwellian distribution functions, possible implications on the deduced impurity transport coefficients, when fast electrons are present, are discussed

  4. Dynamics of impurities in the scrape-off layer

    Stangeby, P.C.; Commission of the European Communities, Abingdon

    1988-01-01

    Impurity modelling of the Scrape-Off Layer, SOL, is reviewed. Simple analytic models are sometimes adequate for relating central impurity levels to edge plasma conditions and for explaining the patterns of net erosion/deposition found on limiters. More sophisticated approaches, which are also necessary, are categorized and reviewed. A plea is made for the acquisition of a more comprehensive data base of edge plasma properties since reliable impurity modelling appears to be dependent on more extensive use of experimental input. (author)

  5. Interactions of Ultracold Impurity Particles with Bose-Einstein Condensates

    2015-06-23

    AFRL-OSR-VA-TR-2015-0141 INTERACTIONS OF ULTRACOLD IMPURITY PARTICLES WITH BOSE- EINSTEIN CONDENSATES Georg Raithel UNIVERSITY OF MICHIGAN Final...SUBTITLE Interactions of ultracold impurity particles with Bose- Einstein Condensates 5a. CONTRACT NUMBER FA9550-10-1-0453 5b. GRANT NUMBER 5c...Interactions of ultracold impurity particles with Bose- Einstein Condensates Contract/Grant #: FA9550-10-1-0453 Reporting Period: 8/15/2010 to 2/14

  6. Fabrication of textured SnO2 transparent conductive films using self-assembled Sn nanospheres

    Fukumoto, Michitaka; Nakao, Shoichiro; Hirose, Yasushi; Hasegawa, Tetsuya

    2018-06-01

    We present a novel method to fabricate textured surfaces on transparent conductive SnO2 films by processing substrates through a bottom-up technique with potential for industrially scalable production. The substrate processing consists of three steps: deposition of precursor Sn films on glass substrates, formation of a self-assembled Sn nanosphere layer with reductive annealing, and conversion of Sn to SnO2 by oxidative annealing. Ta-doped SnO2 films conformally deposited on the self-assembled nanospherical SnO2 templates exhibited attractive optical and electrical properties, namely, enhanced haze values and low sheet resistances, for applications as transparent electrodes in photovoltaics.

  7. Detection of DNA hybridization based on SnO2 nanomaterial enhanced fluorescence

    Gu Cuiping; Huang Jiarui; Ni Ning; Li Minqiang; Liu Jinhuai

    2008-01-01

    In this paper, enhanced fluorescence emissions were firstly investigated based on SnO 2 nanomaterial, and its application in the detection of DNA hybridization was also demonstrated. The microarray of SnO 2 nanomaterial was fabricated by the vapour phase transport method catalyzed by patterned Au nanoparticles on a silicon substrate. A probe DNA was immobilized on the substrate with patterned SnO 2 nanomaterial, respectively, by covalent and non-covalent linking schemes. When a fluorophore labelled target DNA was hybridized with a probe DNA on the substrate, fluorescence emissions were only observed on the surface of SnO 2 nanomaterial, which indicated the property of enhancing fluorescence signals from the SnO 2 nanomaterial. By comparing the different fluorescence images from covalent and non-covalent linking schemes, the covalent method was confirmed to be more effective for immobilizing a probe DNA. With the combined use of SnO 2 nanomaterial and the covalent linking scheme, the target DNA could be detected at a very low concentration of 10 fM. And the stability of SnO 2 nanomaterial under the experimental conditions was also compared with silicon nanowires. The findings strongly suggested that SnO 2 nanomaterial could be extensively applied in detections of biological samples with enhancing fluorescence property and high stability

  8. Impurity investigations in the boundary layer of the DITE tokamak

    McCracken, G.M.; Partridge, J.W.; Erents, S.K.; Sofield, C.J.; Ferguson, S.M.

    1982-01-01

    The results obtained in the present investigation show large fluctuations both during discharges and from one discharge to the next. The radial density gradient of impurities in the boundary is not large. It is clear that the density and in particular dn/dt can have a strong effect on the impurity level. However there are apparently a number of other factors causing changes in impurity level which have not been well controlled in the present experiments. Possibilities include flaking from the walls, and changes in the level of the light impurities, oxygen and carbon, in the discharges. (orig./RW)

  9. Impurities and conductivity in a D-wave superconductor

    Balatsky, A.V.

    1994-01-01

    Impurity scattering in the unitary limit produces low energy quasiparticles with anisotropic spectrum in a two-dimensional d-wave superconductor. The authors describe a new quasi-one-dimensional limit of the quasiparticle scattering, which might occur in a superconductor with short coherence length and with finite impurity potential range. The dc conductivity in a d-wave superconductor is predicted to be proportional to the normal state scattering rate and is impurity-dependent. They show that quasi-one-dimensional regime might occur in high-T c superconductors with Zn impurities at low temperatures T approx-lt 10 K

  10. The screening of charged impurities in bilayer graphene

    Zhang Wenjing; Li, Lain-Jong

    2010-01-01

    Positively charged impurities were introduced into a bilayer graphene (BLG) transistor by n-doping with dimethylformamide. Subsequent exposure of the BLG device to moisture resulted in a positive shift of the Dirac point and an increase of hole mobility, suggesting that moisture could reduce the scattering strength of the existing charged impurities. In other words, moisture screened off the 'effective density' of charged impurities. At the early stage of moisture screening the scattering of hole carriers is dominated by long-range Coulomb scatter, but an alternative scattering mechanism should also be taken into consideration when the effective density of impurities is further lowered on moisture exposure.

  11. On impurity handling in high performance stellarator/heliotron plasmas

    Burhenn, R.; Feng, Y.; Ida, K.

    2008-10-01

    The Large Helical Device (LHD) and Wendelstein 7-X (W7-X, under construction) are experiments specially designed to demonstrate long pulse (quasi steady-state) operation, which is an intrinsic property of Stellarators and Heliotrons. Significant progress was made in establishment of high performance plasmas. A crucial point is the increasing impurity confinement towards high density as observed at several machines (TJ-II, W7-AS, LHD) which can lead to impurity accumulation and early pulse termination by radiation collapse at high density. In addition, theoretical predictions for non-axisymmetric configurations prognosticate the absence of impurity screening by ion temperature gradients in standard ion root plasmas. Nevertheless, scenarios were found where impurity accumulation was successfully avoided in LHD and/or W7-AS by the onset of drag forces in the high density and low temperature scrape-off-layer, the generation of magnetic islands at the plasma boundary and to a certain degree also by ELMs, flushing out impurities and reducing the net-impurity influx into the core. Additionally, a reduction of impurity core confinement was observed in the W7-AS High Density H-mode (HDH) regime and by application of sufficient ECRH heating power. The exploration of such purification mechanisms is a demanding task for successful steady-state operation. The impurity transport at the plasma edge/SOL was identified to play a major role for the global impurity behaviour in addition to the core confinement. (author)

  12. Impurity and trace tritium transport in tokamak edge turbulence

    Naulin, V.

    2005-01-01

    The turbulent transport of impurity or minority species, as for example tritium, is investigated in drift-Alfven edge turbulence. The full effects of perpendicular and parallel convection are kept for the impurity species. The impurity density develops a granular structure with steep gradients...... and locally exceeds its initial values due to the compressibility of the flow. An approximate decomposition of the impurity flux into a diffusive part and an effective convective part (characterized by a pinch velocity) is performed and a net inward pinch effect is recovered. The pinch velocity is explained...

  13. Scaling laws for trace impurity confinement: a variational approach

    Thyagaraja, A.; Haas, F.A.

    1990-01-01

    A variational approach is outlined for the deduction of impurity confinement scaling laws. Given the forms of the diffusive and convective components to the impurity particle flux, we present a variational principle for the impurity confinement time in terms of the diffusion time scale and the convection parameter, which is a non-dimensional measure of the size of the convective flux relative to the diffusive flux. These results are very general and apply irrespective of whether the transport fluxes are of theoretical or empirical origin. The impurity confinement time scales exponentially with the convection parameter in cases of practical interest. (orig.)

  14. Impurities in Tc-99m radiopharmaceutical solution obtained from Mo-100 in cyclotron.

    Tymiński, Zbigniew; Saganowski, Paweł; Kołakowska, Ewa; Listkowska, Anna; Ziemek, Tomasz; Cacko, Daniel; Dziel, Tomasz

    2018-04-01

    The gamma emitting impurities in 99m Tc solution obtained from enriched molybdenum 100 Mo metallic target after its irradiation in a cyclotron were measured using a high-purity germanium (HPGe) detector. The radioactivity range of tested samples of 99m Tc was rather low, in the range from 0.34 to 2.39 MBq, thus creating a challenge to investigate the standard measurement HPGe system for impurity detection and quantification. In the process of 99m Tc separation from irradiated target the AnaLig® Tc-02 resin, Dionex H + and Alumina A columns were used. Fractions of eluates from various steps of separation process were taken and measured for radionuclidic purity. The overall measurement sensitivity of gamma emitters in terms of minimum detectable activity (MDA) was found at the level of 14-70Bq with emission lines in range of 36 - 1836keV resulting in impurity content range of 6.7 × 10 -4 to 3.4 × 10 -3 % for 93 Tc, 93m Tc, 94 Tc, 94m Tc, 95 Tc, 95m Tc, 96 Tc 96 Nb, 97 Nb, 99 Mo contaminants and 9.4 × 10 -3 % for 97m Tc. The usefulness of the chosen measurement conditions and the method applied to testing the potential contaminators was proved by reaching satisfactory results of MDAs less than the criteria of impurity concentration of all nuclides specified in the European Pharmacopoeia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Dynamics of impurity modes and electron–phonon interaction in Heavy Fermion (HF) systems

    Shadangi, N.; Sahoo, J.; Mohanty, S.; Nayak, P.

    2014-01-01

    A theoretical explanation is provided to understand the effect of small concentration of impurities characterized by change in mass and nearest neighbor force constants on the phonon spectrum as well as on the electron–phonon interaction in some Heavy Fermion (HF) systems in the normal state within theoretical framework of the Periodic Anderson Model (PAM). Three different mechanisms of the electron–phonon interactions, namely, the usual interaction between the phonons with the electrons in the f-bands, electrons arising from that of hybridization term of PAM and the local electron–phonon coupling at the impurity sites are considered. Coherent Potential Approximation (CPA) is used to evaluate the configuration averaged self–energy and the total Green function. For simplicity of calculation the CPA self–energy is evaluated in Average t -matrix Approximation (ATA). The analytical analysis is carried out for finite T in the long wavelength limit. The influence of impurity mass parameter λ and other system parameters such as d, the position of f-level, the effective coupling strength g on the calculated re-normalized phonon frequency and the excitation spectrum through the spectral function is studied. The numerical analysis of the results does show the influence of impurities as evident from different plots in this paper.

  16. Study of impurity effects on CFETR steady-state scenario by self-consistent integrated modeling

    Shi, Nan; Chan, Vincent S.; Jian, Xiang; Li, Guoqiang; Chen, Jiale; Gao, Xiang; Shi, Shengyu; Kong, Defeng; Liu, Xiaoju; Mao, Shifeng; Xu, Guoliang

    2017-12-01

    Impurity effects on fusion performance of China fusion engineering test reactor (CFETR) due to extrinsic seeding are investigated. An integrated 1.5D modeling workflow evolves plasma equilibrium and all transport channels to steady state. The one modeling framework for integrated tasks framework is used to couple the transport solver, MHD equilibrium solver, and source and sink calculations. A self-consistent impurity profile constructed using a steady-state background plasma, which satisfies quasi-neutrality and true steady state, is presented for the first time. Studies are performed based on an optimized fully non-inductive scenario with varying concentrations of Argon (Ar) seeding. It is found that fusion performance improves before dropping off with increasing {{Z}\\text{eff}} , while the confinement remains at high level. Further analysis of transport for these plasmas shows that low-k ion temperature gradient modes dominate the turbulence. The decrease in linear growth rate and resultant fluxes of all channels with increasing {{Z}\\text{eff}} can be traced to impurity profile change by transport. The improvement in confinement levels off at higher {{Z}\\text{eff}} . Over the regime of study there is a competition between the suppressed transport and increasing radiation that leads to a peak in the fusion performance at {{Z}\\text{eff}} (~2.78 for CFETR). Extrinsic impurity seeding to control divertor heat load will need to be optimized around this value for best fusion performance.

  17. Probe measurements for impurity transport in the scrape-off layer of JIPP T-II

    Mohri, M.; Satake, T.; Hashiba, H.; Yamashina, T.; Amemiya, S.

    1982-05-01

    Impurity transport processes in the scrape-off layer of the JIPP T-II device have been studied by a probe method. A cubical silicon probe was inserted and exposed to 20 identical tokamak discharges in the scrape-off region. Deposited impurities were analyzed with use of AES, RBS and PIXE equipments. The main metallic impurities were molybdenum and iron whose deposition behavior was almost the same on any side of the probe, and their fluxes were observed to be 1.2 x 10 13 /cm 2 .discharge on the electron drift side and 5.2 x 10 13 /cm 2 .discharge on the ion drift side, respectively at the distance of 18.3 cm from the center line of the plasma. The mean transport energy of the impurities striking the probe surface was estimated from the depth concentration profile applying the LSS theory for iron as 90 eV on the electron drift side and 250 eV on the ion drift side, respectively. The e-folding length of the scrape-off plasma density was measured by the radial distribution of a deposited tantalum amount to be 0.64 cm on the electron drift side and 1.73 cm on the ion drift side, respectively. (author)

  18. Effect of titanium impurities on helium bubble growth in nickel

    Amarendra, G.; Viswanathan, B.; Rajaraman, R.; Srinivasan, S.; Gopinathan, K.P.

    1992-01-01

    Positron lifetime measurements in He-implanted Ni and Ni-Ti alloys containing dilute concentrations of Ti, during isochronal annealing, are reported. In the initial annealing stage of Ni-Ti alloys, only a single lifetime ranging from 160 to 180 ps is observed, in contrast with the two lifetimes seen in pure Ni. This indicates saturation positron trapping at helium-bound Ti-vacancy complexes, formed in high concentrations. Lattice statics calculations of the He binding energy at various defect complexes in Ni-containing Ti give credence to the above interpretation. Above 800K, two lifetimes are resolved in Ni-Ti alloys, where the longer lifetime τ 2 increases with a sharp reduction in its intensity. This is indicative of He bubble growth. The bubble radius r B and bubble concentration C B are obtained from an analysis of positron lifetime parameters. These results indicate that, for a given annealing temperature, r B is smaller by a factor of two and C B higher by nearly an order of magnitude in Ni-Ti than the corresponding values in pure Ni. This is explained as due to significant retardation of bubble growth on the addition of Ti to Ni, where the Ti impurities cause an impediment to bubble migration and coalescence. (author)

  19. Particle fueling and impurity control in PDX

    Fonck, R.J.; Bell, M.; Bol, K.

    1984-12-01

    Fueling requirements and impurity levels in neutral-beam-heated discharges in the PDX tokamak have been compared for plasmas formed with conventional graphite rail limiters, a particle scoop limiter, and an open or closed poloidal divertor. Gas flows necessary to obtain a given density are highest for diverted discharges and lowest for the scoop limiter. Hydrogen pellet injection provides an efficient alternate fueling technique, and a multiple pellet injector has produced high density discharges for an absorbed neutral beam power of up to 600 kW, above which higher speeds or more massive pellets are required for penetration to the plasma core. Power balance studies indicate that 30 to 40% of the total input power is radiated while approx. 15% is absorbed by the limiting surface, except in the open divertor case, where 60% flows to the neutralizer plate. In all operating configurations, Z/sub eff/ usually rises at the onset of neutral beam injection. Both open divertor plasmas and those formed on a well conditioned water-cooled limiter have Z/sub eff/ less than or equal to 2 at the end of neutral injection. A definitive comparison of divertors and limiters for impurity control purposes requires longer beam pulses or higher power levels than available on present machines

  20. Impure Researches, or Literature, Marketing and Aesthesis

    King, Andrew

    2015-12-01

    Full Text Available “Impure researches” are those that mix methodologies and types of data, and in particular reminds readers that reading is an impure bodily as well as mental experience. The article argues that if we neglect how our perception of the material format of a text affects our understanding, we stand to risk being blind to how a text comprises the ever increasing sum of the history of its sensuous presentation and perception. It takes as a case study the publication history of Ouida’s most popular short story, «A Dog of Flanders» (1871. The story has uniformly been defined as a children’s story from the late twentieth century onwards, yet this labelling is a result of marketing decisions that arose in the 1890s which affected the material format the story appeared in and thereafter the interpretative choices of critics and readers in general. By polluting both literary and book history through my own corporeal encounters with various material forms of this text, I am seeking to exemplify, in an iterable, practical way, claims by feminist and queer critics whose «return to the body» risks at times appearing immaterial and generic.

  1. Effect of impurities in the electrothermic instability

    Azevedo, M.T. de.

    1982-04-01

    It is proposed a model for a ''impure'' plasma based on the homogenous hydrogen plasma used in the theory formulated by Tomimura and Haines to explain the increasing of instable electrothermal modes with wave vector perpendicular to the applyed magnetic field. The impurities are implicity introduced in the transport coeficients of the model of two fluids through the effective charge number Z eff as suggested by Duechs et al., Furth etc... The results obtained are: (i) the greatest increasing ratio for the absolute mode (non-convective) decreases with the increasing of Z eff going to zero for a given value of these parameter which is denominated Z crit ; (ii) the wavelenght associated with that greatest ratio of increasing decreases with the increasing of Z eff ; (iii) Z crit x T eo /T io curves, where T eo and T io are the electronic and ionic temperatures of equilibri um show that, for each value of T eo (used as a parameter) there is a limiting value Z crit from which the plasma is stable, independently of the temperature ratio. The correlation of these results with that of a difuse pinch model, which shows the tendency in assume in the stationary state a filamental current structure is inconclusive with respect to the Z eff dependence. (M.W.O.) [pt

  2. Impurity pellet injection experiments at TFTR

    Marmar, E.S.

    1992-01-01

    Impurity (Li and C) pellet injection experiments on TFTR have produced a number of new and significant results. (1) We observe reproducible improvements of TFTR supershots after wall-conditioning by Li pellet injection ('lithiumization'). (2) We have made accurate measurements of the pitch angle profiles of the internal magnetic field using two novel techniques. The first measures the internal field pitch from the polarization angles of Li + line emission from the pellet ablation cloud, while the second measures the pitch angle profiles by observing the tilt of the cigar-shaped Li + emission region of the ablation cloud. (3) Extensive measurements of impurity pellet penetration into plasmas with central temperatures ranging from ∼0.3 to ∼7 keV have been made and compared with available theoretical models. Other aspects of pellet cloud physics have been investigated. (4) Using pellets as a well defined perturbation has allowed study of transport phenomena. In the case of small pellet perturbations, the characteristics of the background plasmas are probed, while with large pellets, pellet induced effects are clearly observed. These main results are discussed in more detail in this paper

  3. Impurity Role In Mechanically Induced Defects

    Howell, R.H.; Asoka-Kumar, P.; Hartley, J.; Sterne, P.

    2000-01-01

    An improved understanding of dislocation dynamics and interactions is an outstanding problem in the multi scale modeling of materials properties, and is the current focus of major theoretical efforts world wide. We have developed experimental and theoretical tools that will enable us to measure and calculate quantities defined by the defect structure. Unique to the measurements is a new spectroscopy that determines the detailed elemental composition at the defect site. The measurements are based on positron annihilation spectroscopy performed with a 3 MeV positron beam [1]. Positron annihilation spectroscopy is highly sensitive to dislocations and associated defects and can provide unique elements of the defect size and structure. Performing this spectroscopy with a highly penetrating positron beam enables flexibility in sample handling. Experiments on fatigued and stressed samples have been done and in situ measurement capabilities have been developed. We have recently performed significant upgrades to the accelerator operation and novel new experiments have been performed [2-4] To relate the spectrographic results and the detailed structure of a defect requires detailed calculations. Measurements are coupled with calculated results based on a description of positions of atoms at the defect. This gives an atomistic view of dislocations and associated defects including impurity interactions. Our ability to probe impurity interactions is a unique contribution to defect understanding not easily addressed by other atomistic spectroscopies

  4. Digital autoradiography technique for studying of spatial Impurity distributions Delara

    Khamrayeva, S.

    2001-01-01

    In this report, the possibilities of the digital image processing for autoradiographic investigations of impurity distributions in the different objects (crystals, biology, geology et al) are shown. Activation autoradiography based on the secondary beta-irradiation is the method spread widely for investigations of the spatial distribution of chemical elements in the different objects. The analysis of autoradiography features is connected with the elucidation of optical density distribution of photoemulsion by means of photometry. The photoemulsion is used as detector of secondary beta irradiation. For different technological and nature materials to have elemental shifts the fine structure of chemical element distribution is often interested. But photometry makes it difficult to study the inhomogeneous chemical elements with the little gradient of concentration (near 20%). Therefore, the suppression of the background and betterment of linear solvability are the main problems of autoradiographic analysis. Application of the fast-acting digital computers and the technical means of signals treatment are allowed to spread the possibilities and the resolution of activation autoradiography. Mechanism of creation of autoradiographic features is described. The treatment of autoradiograms was conducted with the help of the dialogue system having matrix in 512 x 512 elements. For the interpretation of the experimental data clustering analysis methodology was used. Classification of the zones on the minimum of the square mistake was conducted according to the data of histograms of the optical densities of the studying autoradiograms. It was proposed algorithm for digital treatment for reconstruction of autoradiographic features. At a minimal contrast the resolution of the method has been enhanced on the degree by adaptation of methods of digital image processing (DIP) to suppress background activity. Results of the digital autoradiographic investigations of spatial impurity

  5. Impurities determination in uranium eluates by total reflection X-ray fluorescence

    Vazquez, Cristina; Bellavigna, Horacio J.; Eppis, Maria R.; Ramella, Jose L.

    1999-01-01

    The chemical control of impurities in nuclear materials is indispensable in order to assure an efficient operation of the reactors. The maximum concentration admitted depends of the elements and in most cases are in the parts per billion range. Conventional analytical methods require a pre-concentration treatment of the sample and a previous separation of the matrix (uranium). This paper investigates the use of the total reflection X-ray fluorescence as an alternative methodology for the determination of impurities in nuclear materials, namely K, Ca, Ti, Cr, Mn, Fe, Ni, Cu and As. The detection limits obtained were in the range of 0.1 to 20 ng/ml for a 1000 seconds counting time. (author)

  6. Measurements of impurity migration in graphite at high temperatures using a proton microprobe

    Shroy, R.E.; Soo, P.; Sastre, C.A.; Schweiter, D.G.; Kraner, H.W.; Jones, K.W.

    1978-01-01

    The migration of fission products and other impurities through the graphite core of a High Temperature Gas Cooled Reactor is of prime importance in studies of reactor safety. Work in this area is being carried out in which graphite specimens are heated to temperatures up to 3800 0 C to induce migration of trace elements whose local concentrations are then measured with a proton microprobe. This instrument is a powerful device for such work because of its ability to determine concentrations at a part per million (ppm) level in a circular area as small as 10 μm while operating in an air environment. Studies show that Si, Ca, Cl, and Fe impurities in graphite migrate from hotter to cooler regions. Also Si, S, Cl, Ca, Fe, Mn, and Cr are observed to escape from the graphite and be deposited on cooler surfaces

  7. {sup 119}Sn Mössbauer studies on ferromagnetic and photocatalytic Sn–TiO{sub 2} nanocrystals

    Ganeshraja, Ayyakannu Sundaram [Dalian Institute of Chemical Physics, Chinese Academy of Science, Mössbauer Effect Data Center (China); Nomura, Kiyoshi [Tokyo University of Science, Photocatalysis International Research Center (Japan); Wang, Junhu, E-mail: wangjh@dicp.ac.cn [Dalian Institute of Chemical Physics, Chinese Academy of Science, Mössbauer Effect Data Center (China)

    2016-12-15

    Diluted Sn doped TiO{sub 2} nanocrystals (Sn/Ti ratio: x ≤ 1.37 %) were synthesized by a simple hydrothermal method using pure reagents without any surfactant and dispersant material. The XRD of these samples showed an anatase phase, anatase and rutile mixed phases, and a rutile phase of TiO{sub 2} and SnO{sub 2} with the increase of Sn dopant concentrations. {sup 119}Sn Mössbauer spectra gave the broad peaks, which were decomposed into doublets and sextets because almost all these samples showed magnetic hysteresis even at room temperature. The titanium oxides doped with x ≤ 0.12 % showed the relatively large magnetic hysteresis and high photocatalytic activity. Mössbauer spectra of samples doped with x > 0.3 % were analyzed by one doublet and two sextets although the samples showed weak ferromagnetism. Three kinds of Sn species may be distinguished as Sn {sup 4+} substituted TiO{sub 2} and two different magnetic arrangements of Sn doped TiO{sub 2}: one with more oxygen defects and other at the interface of TiO{sub 2} and precipitated SnO{sub 2} containing Ti atoms. The correlation between various amounts of Sn sites and photocatalytic activity and/ or magnetic property was discussed.

  8. Effect of phase interaction on catalytic CO oxidation over the SnO_2/Al_2O_3 model catalyst

    Chai, Shujing; Bai, Xueqin; Li, Jing; Liu, Cheng; Ding, Tong; Tian, Ye; Liu, Chang; Xian, Hui; Mi, Wenbo; Li, Xingang

    2017-01-01

    Highlights: • Activity for CO oxidation is greatly enhanced by interaction between SnO_2 and Al_2O_3. • Interaction between SnO_2 and Al_2O_3 phases can generate oxygen vacancies. • Oxygen vacancies play an import role for catalytic CO oxidation. • Sn"4"+ cations are the effective sites for catalytic CO oxidation. • Langmuir-Hinshelwood model is preferred for catalytic CO oxidation. - Abstract: We investigated the catalytic CO oxidation over the SnO_2/Al_2O_3 model catalysts. Our results show that interaction between the Al_2O_3 and SnO_2 phases results in the significantly improved catalytic activity because of the formation of the oxygen vacancies. The oxygen storage capacity of the SnO_2/Al_2O_3 catalyst prepared by the physically mixed method is nearly two times higher than that of the SnO_2, which probably results from the change of electron concentration on the interface of the SnO_2 and Al_2O_3 phases. Introducing water vapor to the feeding gas would a little decrease the activity of the catalysts, but the reaction rate could completely recover after removal of water vapor. The kinetics results suggest that the surface Sn"4"+ cations are effective CO adsorptive sites, and the surface adsorbed oxygen plays an important role upon CO oxidation. The reaction pathways upon the SnO_2-based catalysts for CO oxidation follow the Langmuir-Hinshelwood model.

  9. Development and manufacturing of bronze-processed Ta-added Nb3Sn wires for the ITER

    Kikuchi, Kenichi; Seidou, Masahiro; Iwaki, Genzou; Sakai, Syuuji; Moriai, Hidezumi; Nishi, Masataka; Yoshida, Kiyoshi; Isono, Takaaki; Tsuji, Hiroshi.

    1997-01-01

    Development work to produce a high-performance Nb 3 Sn superconducting wire for the center solenoid coil of the ITER was carried out. The effects of concurrently adding Ti and Ta to bronze-processed Nb 3 Sn wires were examined. In addition, a high-Sn-concentration bronze matrix was applied. Then, the relation between hysteresis loss and filament diameter was examined. Moreover, the cause of wire breakage during processing was elucidated. As a result, a reliable manufacturing process for high-performance Nb 3 Sn superconducting wire was established. (author)

  10. The Effect of Increasing Sn Content on High-Temperature Mechanical Deformation of an Mg-3%Cu-1%Ca Alloy

    Georgios S.E. Antipas

    2013-11-01

    Full Text Available Chill casting of magnesium alloy samples with secondary alloying elements of Cu, Ca and Sn at % w.t. concentrations in the range 1–5, 0.1–5 and 0.1–3 respectively, gave rise to appreciably enhanced resistance to high-temperature creep, while maintaining good heat conductivity. The latter was considered to be driven by Cu and Mg-Cu intermetallics while it was clear that Sn mediated the high-temperature performance, mainly via networks of Mg2Sn and MgCaSn precipitates along the Mg matrix grain boundaries. It was postulated that Sn formed intermetallics by preferential substitution of Ca atoms and, thus, did not degrade the heat conductivity by retaining Cu. The % w.t. stoichiometry with the optimum combination of heat conductivity and resistance to high-temperature creep was found to be Mg-3Cu-1Ca-0.1Sn.

  11. Impact of protein and ligand impurities on ITC-derived protein-ligand thermodynamics.

    Grüner, Stefan; Neeb, Manuel; Barandun, Luzi Jakob; Sielaff, Frank; Hohn, Christoph; Kojima, Shun; Steinmetzer, Torsten; Diederich, François; Klebe, Gerhard

    2014-09-01

    The thermodynamic characterization of protein-ligand interactions by isothermal titration calorimetry (ITC) is a powerful tool in drug design, giving valuable insight into the interaction driving forces. ITC is thought to require protein and ligand solutions of high quality, meaning both the absence of contaminants as well as accurately determined concentrations. Ligands synthesized to deviating purity and protein of different pureness were titrated by ITC. Data curation was attempted also considering information from analytical techniques to correct stoichiometry. We used trypsin and tRNA-guanine transglycosylase (TGT), together with high affinity ligands to investigate the effect of errors in protein concentration as well as the impact of ligand impurities on the apparent thermodynamics. We found that errors in protein concentration did not change the thermodynamic properties obtained significantly. However, most ligand impurities led to pronounced changes in binding enthalpy. If protein binding of the respective impurity is not expected, the actual ligand concentration was corrected for and the thus revised data compared to thermodynamic properties obtained with the respective pure ligand. Even in these cases, we observed differences in binding enthalpy of about 4kJ⋅mol(-1), which is considered significant. Our results indicate that ligand purity is the critical parameter to monitor if accurate thermodynamic data of a protein-ligand complex are to be recorded. Furthermore, artificially changing fitting parameters to obtain a sound interaction stoichiometry in the presence of uncharacterized ligand impurities may lead to thermodynamic parameters significantly deviating from the accurate thermodynamic signature. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Role of rare-earth impurities in the thermoluminescence of calcium sulphate phosphors

    Nambi, K.S.V.; Bapat, V.N.

    1974-01-01

    Rare-earth (RE) doped calcium sulphate phosphors like CaSO 4 (Dy) and CaSO 4 (Tm) are being extensively employed for radiation dosimetric measurements because of their good sensitivity, negligible fading and the case with which these could be economically produced in the laboratory. However the role played by the RE dopants in these phosphors has not been clearly brought out by any systematic studies. This paper presents the results obtained in an attempt to investigate the part played by RE impurities in the thermoluminescence (TL) of calcium sulphate phosphors prepared in the laboratory with known concentrations of the RE dopant. The phenomenon of concentration quenching has been observed withi increasing concentrations of the dopant and the experimental results could be fitted into the theoretical expression derived by Ewles and Lee. The effect of the individual RE dopant (at a concentration of 0.1% by weight in CaSO 4 ), on the TL glow curve patterns as well as the TL emission spectra was investigated after gamma irradiation at room temperature. While the TL glow curve patterns were strikingly similar, the TL emission spectra were characteristically different for the various dopants. The discrete line emissions recorded for the individual RE dopants could be easily identified to be the 4f fluorescence emissions of RE 3+ ions. Investigations on undoped calcium sulphate samples of different origins have revealed that their TL glow curve patterns are similar, while the differences observed in TL emission spectra could be ascribed to the different RE impurities in the samples. The study brings out clearly the role played by RE impurities as emission centres in CaSO 4 and implies that presence of any RE impurity in CaSO 4 cannot be ignored while explaining its thermoluminescence. (author)

  13. The use of ion chromatography for the determination of impurities in crude phosphoric acid

    Pires, M.A.F.; Atalla, L.T.; Abrao, A.

    1988-07-01

    The determination of fluoride, nitrate, sulphate and phosphate ions in crude phosphoric acid by means of ion chromatography is described. A previous separation of interferent cations was made by using a cationic resin or EDTA complexation. The last alternative allowed more reproductible results. The technique described is very quick and is being applied for the simultaneous determination of impurities in phosphoric acid and its own phosphospate concentration. The method is quick and has good reprodutibility. (author) [pt

  14. Influence of Mo impurity on the spectroscopic and scintillation properties of PbWO4 crystals

    Boehm, M.; Hofstaetter, A.; Luh, M.; Meyer, B.K.; Scharmann, A.; Drobychev, G.Yu.; Grenoble-1 Univ., 74 - Annecy; Peigneux, J.P.

    1997-12-01

    The influence of molybdenum doping on the spectroscopic and scintillation properties of lead tungstate crystals has been investigated. From the results the slow scintillation component as well as the afterglow are found to be due to the Mo impurity. In addition the blue luminescence from excited (WO 4 ) 2- -complex seems to be increasingly suppressed as the doping concentration goes on. Possible mechanisms for the effects have been discussed. (author)

  15. Characterization of light element impurities in ultrathin silicon-on-insulator layers by luminescence activation using electron irradiation

    Nakagawa-Toyota, Satoko; Tajima, Michio; Hirose, Kazuyuki; Ohshima, Takeshi; Itoh, Hisayoshi

    2009-01-01

    We analyzed light element impurities in ultrathin top Si layers of silicon-on-insulator (SOI) wafers by luminescence activation using electron irradiation. Photoluminescence (PL) analysis under ultraviolet (UV) light excitation was performed on various commercial SOI wafers after the irradiation. We detected the C-line related to a complex of interstitial carbon and oxygen impurities and the G-line related to a complex of interstitial and substitutional carbon impurities in the top Si layer with a thickness down to 62 nm after electron irradiation. We showed that there were differences in the impurity concentration depending on the wafer fabrication methods and also that there were variations in these concentrations in the respective wafers. Xenon ion implantation was used to activate top Si layers selectively so that we could confirm that the PL signal under the UV light excitation comes not from substrates but from top Si layers. The present method is a very promising tool to evaluate the light element impurities in top Si layers. (author)

  16. Magnetic behaviour of cerium in Ce2 Sn5 and Ce3 Sn7, surstructures of Ce Sn3

    Stunault, A.

    1988-07-01

    The compound studied, Ce 2 Sn 5 and Ce 3 Sn 7 are both orthorhombic, surstructure of cubic Ce Sn 3 . Magnetic susceptibility measurements show in both compounds an antiferromagnetic order at low temperature and magnetization shows a high anisotropy. Magnetization densities are determined by polarized neutron diffraction. The cerium site which has two Ce atoms as nearest neighbourgs carries all the magnetism in both structures. For Ce 2 Sn 5 moments are directed as the high magnetization axis and structure is modulated. Ce 3 Sn 7 presents a simple antiferromagnetic order but moment are directed as low magnetization axis. Various transitions towards a ferromagnetic order are presented. Results are interpreted by measuring the difference between energy levels of crystalline field. A model of crystalline field and isotrope exchange agrees well with Ce 3 Sn 7 , but for Ce 2 Sn 7 it is necessary to reduce the magnetic moment which is typical of the Kondo effect [fr

  17. Terbium doped SnO2 nanoparticles as white emitters and SnO2:5Tb/Fe3O4 magnetic luminescent nanohybrids for hyperthermia application and biocompatibility with HeLa cancer cells.

    Singh, Laishram Priyobarta; Singh, Ningthoujam Premananda; Srivastava, Sri Krishna

    2015-04-14

    SnO2:5Tb (SnO2 doped with 5 at% Tb(3+)) nanoparticles were synthesised by a polyol method and their luminescence properties at different annealing temperatures were studied. Characterization of nanomaterials was done by X-ray diffraction (XRD), Fourier transformation infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and vibrating sample magnetometry (VSM). XRD studies indicate that the prepared nanoparticles were of tetragonal structures. Upon Tb(3+) ion incorporation into SnO2, Sn(4+) changes to Sn(2+) and, on annealing again at higher temperature, Sn(2+) changes to Sn(4+). The prepared nanoparticles were spherical in shape. Sn-O vibrations were found from the FTIR studies. In photoluminescence studies, the intensity of the emission peaks of Tb(3+) ions increases with the increase of annealing temperature, and emission spectra lie in the region of white emission in the CIE diagram. CCT calculations show that the SnO2:5Tb emission lies in cold white emission. Quantum yields up to 38% can be obtained for 900 °C annealed samples. SnO2:5Tb nanoparticles were well incorporated into the PVA polymer and such a material incorporated into the polymer can be used for display devices. The SnO2:5Tb/Fe3O4 nanohybrid was prepared and investigated for hyperthermia applications at different concentrations of the nanohybrid. This achieves a hyperthermia temperature (42 °C) under an AC magnetic field. The hybrid nanomaterial SnO2:5Tb/Fe3O4 was found to exhibit biocompatibility with HeLa cells (human cervical cancer cells) at concentrations up to 74% for 100 μg L(-1). Also, this nanohybrid shows green emission and thus it will be helpful in tracing magnetic nanoparticles through optical imaging in vivo and in vitro application.

  18. High-resolution photoluminescence spectroscopy of Sn-doped ZnO single crystals

    Kumar, E. Senthil; Mohammadbeigi, F.; Boatner, L.A.; Watkins, S.P.

    2016-01-01

    Group IV donors in ZnO are poorly understood, despite evidence that they are effective n-type dopants. Here we present high-resolution photoluminescence (PL) spectroscopy studies of unintentionally doped and Sn-doped ZnO single crystals grown by the chemical vapor transport method. Doped samples showed greatly increased emission from the I 10 bound exciton transition that was recently proven to be related to the incorporation of Sn impurities based on radio-isotope studies. The PL linewidths are exceptionally sharp for these samples, enabling a clear identification of several donor species. Temperature-dependent PL measurements of the I 10 line emission energy and intensity dependence reveal a behavior that is similar to other shallow donors in ZnO. Ionized donor bound-exciton and two-electron satellite transitions of the I 10 transition are unambiguously identified and yield a donor binding energy of 71 meV. In contrast to recent reports of Ge-related donors in ZnO, the spectroscopic binding energy for the Sn-related donor bound exciton follows a linear relationship with donor binding energy (Haynes rule) similar to recently observed carbon related donors, and confirming the shallow nature of this defect center, which was recently attributed to a Sn Zn double donor compensated by an unknown single acceptor.

  19. Impact of thickness on the structural properties of high tin content GeSn layers

    Aubin, J.; Hartmann, J. M.; Gassenq, A.; Milord, L.; Pauc, N.; Reboud, V.; Calvo, V.

    2017-09-01

    We have grown various thicknesses of GeSn layers in a 200 mm industrial Reduced Pressure - Chemical Vapor Deposition cluster tool using digermane (Ge2H6) and tin tetrachloride (SnCl4). The growth pressure (100 Torr) and the F(Ge2H6)/F(SnCl4) mass-flow ratio were kept constant, and incorporation of tin in the range of 10-15% was achieved with a reduction in temperature: 325 °C for 10% to 301 °C for 15% of Sn. The layers were grown on 2.5 μm thick Ge Strain Relaxed Buffers, themselves on Si(0 0 1) substrates. We used X-ray Diffraction, Atomic Force Microscopy, Raman spectroscopy and Scanning Electron Microscopy to measure the Sn concentration, the strain state, the surface roughness and thickness as a function of growth duration. A dramatic degradation of the film was seen when the Sn concentration and layer thickness were too high resulting in rough/milky surfaces and significant Sn segregation.

  20. Spectrophotometric determination of Sn+2 in lyophilized kit for labeling with 99mTc

    Araujo, Elaine Bortoleti; Sampel, Carolina Judith; Melo, Ivani Bortoleti; Okamoto, Miriam R.Y; Silva, Constancia P.G

    2004-01-01

    The preparation of 99 mTc labeled radiopharmaceuticals depends on the reduction of the technetium pertechnetate, commonly by stannous chloride (SnCl 2 ). The determination of the Sn +2 contents in the lyophilized preparations represents an important quality control procedure that may be applied to the process and to the final product. The objective os this work is the optimization of an spectrophotometric assay to the determination os Sn +2 contents in a citrate-stannous lyophilized kit for 99 mTc labeling. The spectrophotometric methodology employed is based in the colour development when Sn +2 reacts with sodium molybdate in the presence of potasium thiocyanate in chloridric medium. The colourfull reaction studied showed high stability after 60 minutes of the mixtures preparation. The sequence of reagents introduction in the reaction mixture was determinant to the assay. The molibdenium-stannous-tiocianate sequence produces calibration curves with good correlations (R2 ≥ 0.99). The concentrations of the molibdenium solution was also studied, in order to determine a ideal concentration for the Sn +2 range. The spectrophotometric method studied was usefull to the determination of Sn +2 content in different batches of citrate-stannous preparations. The method was fast and easy and can be applied to different stages of the production process, in order to guarantee the content of Sn +2 in the preparations (Au)